Tutorial: Tensor Approximation in Visualization and Computer Graphics

Introduction

Renato Pajarola, Susanne K. Suter, and Roland Ruiters
Introduction

• Renato Pajarola
 ‣ Professor, Visualization and MultiMedia Lab, University of Zürich

• Susanne K. Suter
 ‣ Postdoc, Visualization and MultiMedia Lab, University of Zürich

• Roland Ruiters
 ‣ PhD Student, Computer Graphics Group, University of Bonn
Overview

• **Part 1:** Introduction of the TA framework
 ‣ Tucker and CANDECOMP/PARAFAC (CP) tensor decompositions
 ‣ Rank-reduced tensor approximations, ALS methods
 ‣ Useful TA properties and features for data visualization
 ‣ Frequency analysis and DCT equivalence

• **Part 2:** Applications of TA in scientific visualization
 ‣ TA-based volume visualization applications
 ‣ Implementation details of tensor decomposition and tensor reconstruction algorithms
 ‣ Practical examples (MATLAB, vmmlib)

• **Part 3:** Applications of TA in rendering and graphics
 ‣ Examples for multidimensional datasets in rendering and graphics applications
 ‣ Influence of data organization, parametrization and error metric
 ‣ Clustering and sparsity
 ‣ Processing irregular and sparse input samples
Tutorial Schedule

- **Monday** May. 6 from **13:40 to 15:20**
 - Location: **Room B.1**
 - Introduction (Pajarola, 10min)
 - Tensor Decomposition Models (Pajarola, 25min)
 - Properties and Features (Pajarola, 25min)
 - Applications in Scientific Visualization (Suter, 30min)

- **Tuesday** May. 7 from **9:00 to 10:40**
 - Location: **Room B.1**
 - Implementation Examples in Scientific Visualization (Suter, 25min)
 - Graphics Applications (Ruiters, 30min)
 - Clustering and Sparsity (Ruiters, 25min)
 - Summary/Outlook (Pajarola, 10min)
Motivation

- Compact representation of large scale data sets important in many areas of scientific visualization and computer graphics

- Use a mathematical framework for the decomposition of the input data into bases and coefficients

- Key features of a compact data representation:
 - effective decomposition
 - good data reduction
 - fast access and reconstruction

- Tensor approximation methods have shown to be a powerful and promising tool
Decomposition Bases

• Decompositions into bases and weight coefficients can either use a set of pre-defined fixed bases, or computed bases

• Pre-defined bases are given a priori, often represent some form of frequency analysis, and the decomposition may be fast to compute
 ‣ e.g. Fourier, Discrete Cosine and Wavelet Transforms

• Computed bases, learned from the input data, may provide a better data fit, approximation and fast reconstruction
 ‣ e.g. SVD, PCA and Tensor Decomposition
Tensor Approximation – TA

• TA: Generalization of low rank SVD matrix approximation to higher order data collections
• Data analysis, bases computation via tensor decomposition followed by rank-reduced reconstruction and approximation
 ‣ data reduction achieved through reduced bases dimensionality

\[\tilde{A} = B \times_1 U^{(1)} \times_2 U^{(2)} \times_3 U^{(3)} \]