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Downloads and 
Resources



Test Volumes
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• MicroCT test volumes
• http://www.ifi.uzh.ch/vmml/research/datasets.html



Test Dataset: Hazelnut
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• A microCT scan of dried hazelnuts
• I1 = I2 = I3 = 512
• Values: unsigned char (8bit)
• http://www.ifi.uzh.ch/vmml/research/datasets.html

I2

I1 A

I3

http://www.ifi.uzh.ch/vmml/research/datasets.html
http://www.ifi.uzh.ch/vmml/research/datasets.html


TA Tutorial

• Tutorial on Tensor Approximation in Visualization and 
Computer Graphics
‣ http://www.ifi.uzh.ch/vmml/links/
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Part 1:
Data Structures



Tensor: A Multidimensional Array
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a

0th-order tensor

I1 a

i1 = 1, . . . , I1

1st -order tensor

I1 A

i2 = 1, . . . , I2

I2

2nd-order tensor

I2

I1 A

i3 = 1, . . . , I3

I3

...

3rd-order tensor



A Vector in vmmlib
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vector< I1, Type >

vector< 4, unsigned char > v;

std::cout << v << std::endl; 

(0, 1, 2)

[vmmlib]

I1 a

i1 = 1, . . . , I1



A Matrix in vmmlib
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• I1 rows
• I2 columns
• The matrices are per default column-major ordered
• A matrix is an array of I2 columns, where each column is of size I1 

matrix< I1, I2, Type >

matrix< 4, 3, unsigned char > m;

std::cout << m << std::endl; 

(0, 1, 2)
(3, 4, 5)
(6, 7, 8)
(9, 10, 11)

[vmmlib]

I1 A

i2 = 1, . . . , I2

I2



A Tensor3 in vmmlib
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A

I1

I2

I3

• A tensor3 A in vmmlib is an array of I3 matrices each of 
size I1 times I2

• A tensor3 is internally allocated and deallocated as pointer

tensor3< I1, I2, I3, Type >

tensor3< 4, 3, 2, unsigned char > t3;

(0, 1, 2)
(3, 4, 5)
(6, 7, 8)
(9, 10, 11)
 *** 
(12, 13, 14)
(15, 16, 17)
(18, 19, 20)
(21, 22, 23)
 *** 

[vmmlib]

std::cout << t3 << std::endl; 



A Tensor4 in vmmlib
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A

I1

I2

I3

• A tensor4 in vmmlib is an array of I4 tensor3s

tensor4< I1, I2, I3, I4, Type >

tensor4< 4, 3, 2, 2, unsigned char > t4;

Example:
(0, 1, 2)
(3, 4, 5)
(6, 7, 8)
(9, 10, 11)
 *** 
(12, 13, 14)
(15, 16, 17)
(18, 19, 20)
(21, 22, 23)
 *** 
---- 

(24, 25, 26)
...

A

I1

I2

I3

[vmmlib]

std::cout << t3 << std::endl; 



Large Data Tensors (in vmmlib)
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A

I1

I2

I3

! const size_t d = 512;
! typedef tensor3< d,d,d, unsigned char > t3_512u_t;
! typedef t3_converter< d,d,d, unsigned char > t3_conv_t;
! typedef tensor_mmapper< t3_512u_t, t3_conv_t > t3map_t;

[vmmlib]

! std::string in_dir = "./dataset";
! std::string file_name = "hnut512_uint.raw";
! t3_512u_t t3_hazelnut;
! t3_conv_t t3_conv;

! t3map_t t3_mmap( in_dir, file_name, true, t3_conv ); //true -> read-only
! t3_mmap.get_tensor( t3_hazelnut );



Part 2: 
TA Models



Data Approximation by SVD
• Singular Value Decomposition (SVD) standard tool for 

matrices, i.e., 2D input datasets
‣ see also principal component analysis (PCA)
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M: rows

N: columns

=A

N N
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N
0

0
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left singular
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(column-space)

right singular
vectors
(row-space)

singular 
values



Matrix SVD

• Exploit ordered singular values: s1 ≥ s2 ≥ ... ≥ sN
• Select first r singular values (rank reduction)
‣ use only bases (singular vectors) of corresponding subspace

• Matrix SVD
‣ rank-R decomposition
‣ orthonormal row/column matrices
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SVD Extension to Higher Orders
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I3

I1

I2

A

• PARAFAC (parallel factors) [ Harshman, 
1970 ]

• CANDECOMP (CAND) (canonical 
decomposition) 
[ Caroll & Chang, 1970 ] 

CP

I1 U
(1

)

I2

U(2)

I3

U
(3)

R

R

R

R
coefficients

• Three-mode factor analysis (3MFA/Tucker3) 
[ Tucker, 1964+1966 ]

• Higher-order SVD (HOSVD) 
[ De Lathauwer et al., 2000a ]

Tucker

I1 U
(1

)

I2

U(2)

I3

U(3)

R1

R3

R2
R3

R1

core tensor B

basis matrices U(n)

B
R2

rank-R decomposition
preserved

orthonormal matrices
preserved



Tucker Model

• Higher order tensor A ∈ ℝI1×…×IN  represented as a product 
of a core tensor B ∈ ℝR1×…×RN and N factor matrices U(n)∈ 
ℝIn×Rn

‣ using n-mode products ×n
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U(3)U(1) U(2)I1 I2I1

I2 I3

I3

R1 R2 R3

R1

R2
R3

B= e+A

A = B⇥1 U(1)⇥2 U(2)⇥3 · · ·⇥N U(N) + e



Tucker3 Tensor
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[vmmlib]

typedef tucker3_tensor< R1, R2, R3, I1, I2, I3, T_value, T_coeff > tucker3_t;

• Define input tensor size (I1,I2,I2)

• Define multilinear rank (R1,R2,R3)

• Define value type and coefficient value type

• Internally always computes with floating point values

• Stores the three factor matrices (In x Rn) and the core tensor (R1,R2,R3)

• ALS (alternating least-squares algorithm): 

‣ if not converged (fit does not improve anymore, tolerance 1e-04)

‣ the ALS stops latest after 10 iteration

• Reconstruction

I3

I1

I2

I3

I1

U(3)

R3

R1

R2U(1)

I2

U(2)

B⇡fA



 !typedef tensor3< I1, I2, I3, values_t > t3_t;
! t3_t t3; //after initializing a tensor3, the tensor is still empty
! t3.fill_increasing_values(); //fills the empty tensor with the values 0,1,2,3...

  typedef tucker3_tensor< R1, R2, R3, I1, I2, I3, values_t, float > tucker3_t;
! tucker3_t tuck3_dec; //empty tucker3 tensor
!
! //choose initialization of Tucker ALS (init_hosvd, init_random, init_dct)
! typedef t3_hooi< R1, R2, R3, I1, I2, I3, float > hooi_t;
!
! //Example for initialization with init_rand
! tuck3_dec.tucker_als( t3, hooi_t::init_random());

! //Example for initialization with init_hosvd
! tuck3_dec.tucker_als( t3, hooi_t::init_hosvd());
!
! //Reconstruction
! t3_t t3_reco;
! tuck3_dec.reconstruct( t3_reco );

  //Reconstruction error (RMSE)
  double rms_err = = t3.rmse( t3_reco );

Example Code Tucker3 Tensor
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[vmmlib]

I3

I1

I2

I3

I1

U(3)

R3

R1

R2U(1)

I2

U(2)

B⇡fA



Tucker Tensor-specific Quantization
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To appear in an IEEE VGTC sponsored conference proceedings

data management system that divides the data into blocks is an impor-
tant basis both to process and to visualize large datasets. Our method
is based on the offline decomposition of the original volumetric dataset
into small cubical bricks (subvolumes), i.e., third-order tensors, which
are approximated, quantized and organized into an octree structure
maintained out-of-core. The octree contains data bricks at different
resolutions, where each resolution of the volume is represented as a
collection of bricks in the subsequent octree hierarchy level.

Each brick has a fixed width B with an overlap of two voxels at each
brick boundary for efficiently supporting runtime operations requiring
access to neighboring voxels (trilinear interpolation and gradient com-
putation). The width of the brick is flexible, but in this paper is set to
B = (28 + 2 + 2) = 32, i.e., one brick is 323, which has proved small
enough to guarantee LOD adaptivity, while coarse enough to permit
an effective brick encoding by the analysis of the local structure.

Each octree brick A ⌅ R3 is tensor approximated using rank-
reduced Tucker decomposition. A Tucker decomposition (see Ap-
pendix A) is defined as �A = B⇤1 U(1) ⇤2 U(2) ⇤3 U(3), where B
is the so called core tensor and U(n) are the factor matrices. A rank-
reduced TA along every mode of the dataset is written with the no-
tation: rank-(R1,R2,R3) TA. As illustrated in Fig. 1, we compute for
each brick of size B3 a rank-(R,R,R) TA, with R⌅ [1..B�1]. Typically,
we use a rank reduction, where R = B/2, i.e., R = 16 for B = 32, fol-
lowing the rank reduction scheme used in other tensor approximation
works [27, 23]. The resulting rank-reduced decomposition is quan-
tized to further reduce memory usage (see Sec. 4) and stored in a
out-of-core brick database. With each brick, we store a 64-bit binary
histogram, which is used for transfer-function-based culling.

...

......

lowest resolution

highest resolution

B3 bricks

core tensor    and
basis matrices U

B

A

Fig. 1. Multiresolution octree tensor decomposition hierarchy with B3

sized bricks.

The whole preprocessing is performed in a low-memory setting us-
ing a bottom-up process on a brick-by-brick basis, which is repeated
until we reach the octree root. Leafs are constructed by sampling
the original dataset, while non-leaf bricks are constructed from their
previously constructed eight children, which are dequantized, recon-
structed, and spatially averaged.

At run-time, an adaptive loader updates a view- and transfer
function-dependent working set of bricks. The working set is incre-
mentally maintained on the CPU and GPU memory by asynchronously
fetching data from the out-of-core brick multiresolution TA structure.
Following the MOVR approach [12, 14], the working set is maintained
by an adaptive refinement method guided by the visibility information
fed back from the renderer. The adaptive loader maintains on GPU a
cache of recently used volume bricks, stored in a 3D texture. At each
frame, the loader constructs a spatial index for the current working set
in the form of an octree with neighbor pointers.

For rendering and visibility computation, the octree is traversed us-
ing a CUDA stack-less octree ray-caster, which employs preintegrated
scalar transfer functions to associate optical properties to scalar values,
and supports a variety of shading modes [14]. The ray-caster works on
reconstructed bricks, and reconstruction steps occur only upon GPU
cache misses. The quantized tensor decomposition is dequantized and

reconstructed on demand by the adaptive loader during the visualiza-
tion on the GPU (see Sec. 5).

In order to permit structural exploration of the datasets, the recon-
struction can consider only the K most significant ranks of the tensor
decomposition, where K ⌅ [1..R] is chosen by the user. The recon-
struction rank K can be changed during the visualization process with
a rank slider. Lower-rank reductions give a faster outline of the visu-
alized dataset and can highlight structures at specific scales [23], see
also Sec.6. Higher K values add more details onto the dataset.

4 ENCODING OF COEFFICIENTS

As mentioned previously, the tensor and factor matrix coefficients take
up unnecessary space if maintained as floating point values, see also
storage cost analysis in Sec. 6.2. For compact representation of the ten-
sor decomposition and to reduce the disk to host to device bandwidth
during rendering, we apply a simple fixed bit length encoding based
on tensor-specific quantization. In particular, the factor matrices and
the core tensor of the Tucker model have a different distribution of co-
efficients and thus the quantization approach was selected accordingly,
as described below. A fixed bit length approach has been selected in
order to simplify parallel decoding on the GPU.

4.1 Factor Matrices and Core Tensor Coefficients
The coefficients of the basis factor matrices U(1...3) are normalized
and distributed between [�1,1], due to the orthonormality of factor
matrices in the Tucker model. Therefore, a uniform linear 8- or 16-bit
quantization as in Eq. 1 can effectively be applied. We use a single
min/max-pair to indicate the quantization range for all three factor
matrices to minimize the number of coefficients that need to be loaded
by the CUDA kernels.

x̃U = (2QU �1) · x� xmin
xmax� xmin

(1)

As per definition of the Tucker model, the core tensor B captures
the contribution of the linear bases combinations, i.e., the energy of
the data, in its coefficients. The distribution of the signed coefficients
is such that the first entry of the core tensor has an especially high
absolute value close to the volume’s norm, capturing most of the data
energy, while many other entries concentrate around zero. The prob-
ability distribution of the other values between the two extrema is de-
creasing with their absolute magnitude in a logarithmic fashion. Hence
we apply a logarithmic quantization scheme as in Eq. 2 for the core
tensor coefficients, using a separate sign-bit.

|x̃B | = (2QB �1) · log2(1+ |x|)
log2(1+ |xmax|) (2)

Special treatment is given to the one first high energy value men-
tioned before. It is known that this value, the hot-corner coefficient,
is always at position B(0,0,0). Since it is one value and in order to
give more space to the quantization range to the other coefficients, we
optionally do not quantize this value and store it separately.

Various quantization levels for the other coefficients, QU and QB ,
could be used and analyzed. In practice, we have chosen a byte-
aligned quantization of QU,B = 8- or 16-bit as a compromise between
the most effective quantization and efficient bit-processing. The ef-
fects of quantization as well as other tensor-specific optimizations are
reported in Sec. 6.2 where we analyze the quantization error.

4.2 Storage Requirements
The basic storage needed for a volume dataset A of size of I1⇤ I2⇤ I3,
is I1 · I2 · I3 · Q, where Q is the number of bits (bytes) per scalar
value. A rank-(R1,R2,R3) tensor approximation, however, only re-
quires R1 · R2 · R3 · QB +(I1 · R1 + I2 · R2 + I3 · R3) · QU, in addition to
three floating point numbers for the quantization ranges of the factor
matrices (min/max values) and core tensor (max quantization value),
and one floating point value for the hot-corner value. This first coef-
ficient of the core tensor is (optionally) encoded separately from the
remaining ones, leading to a reduced quantization range for Eq. 2.
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sized bricks.

The whole preprocessing is performed in a low-memory setting us-
ing a bottom-up process on a brick-by-brick basis, which is repeated
until we reach the octree root. Leafs are constructed by sampling
the original dataset, while non-leaf bricks are constructed from their
previously constructed eight children, which are dequantized, recon-
structed, and spatially averaged.
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function-dependent working set of bricks. The working set is incre-
mentally maintained on the CPU and GPU memory by asynchronously
fetching data from the out-of-core brick multiresolution TA structure.
Following the MOVR approach [12, 14], the working set is maintained
by an adaptive refinement method guided by the visibility information
fed back from the renderer. The adaptive loader maintains on GPU a
cache of recently used volume bricks, stored in a 3D texture. At each
frame, the loader constructs a spatial index for the current working set
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R1

R2
R3

B

U(3)U(1) U(2)I1 I2 I3

R1 R2 R3

• Factor matrices 
quantization
‣ values between [-1,1]
‣ linear quantization

• Core tensor quantization
‣ many small values; few 

large values
‣ logarithmic quantization

typedef qtucker3_tensor< R1, R2, R3, I1, I2, I3, T_value, T_coeff > qtucker3_t;[vmmlib]

Suter et al.. Interactive multiscale tensor reconstruction for multiresolution volume visualization. 
IEEE Transactions on Visualization and Computer Graphics, 17(12):2135–2143, December 2011.



CP Model
• Canonical decomposition or parallel factor analysis model 

(CP)

• Higher order tensor A  factorized into a sum of rank-one 
tensors
‣ normalized column vectors ur(n) define factor

matrices U(n)∈ ℝIn×R and weighting factors λr
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U(3)

U(1)

U(2)

I1

I2I1

I2 I3

I3

R

R

R

0

0l1l2

lR

lR�1

. . .A e+=

A =
R

Â
r=1

lr ·u(1)
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r � . . .u(N)
r + e



CP3 Tensor
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[vmmlib]

• Define input tensor size (I1,I2,I2)

• Define rank R

• Define value type and coefficient value type

• Internally always computes with floating point values

• Stores three factor matrices each of size (In x R) and the lambdas R

• ALS: 

‣ if not converged (fit does not improve anymore, tolerance 1e-04)

‣ set number of maximum CP ALS iterations

• Reconstruction

I3

I1

I2

I3

I1

U(3)

U(1)

I2

U(2)

fA ⇡

R

R

R

l1

lR

. . .



Code Example CP3 Tensor
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I3

I1

I2

I3

I1

U(3)

U(1)

I2

U(2)

fA ⇡

R

R

R

l1

lR

. . .

[vmmlib]

! typedef cp3_tensor< r, a, b, c, values_t, float > cp3_t;
! typedef t3_hopm< r, a, b, c, float > t3_hopm_t;
!
! cp3_t cp3_dec;
!
! //Decomposition or CP ALS
! //choose initialization of Tucker ALS (init_hosvd, init_random, init_dct)

! int max_cp_iter = 20;
! cp3_dec.cp_als( t3, t3_hopm_t::init_random(), max_cp_iter );
!
  //Reconstruction
! t3_t t3_cp_reco;
! cp3_dec.reconstruct( t3_cp_reco );

  //Reconstruction error (RMSE)
! rms_err = t3.rmse( t3_cp_reco ) ;
!



Generalization

• Any special form of 
core and corresponding 
factor matrices
‣ e.g. blocks along 

diagonal

• Incremental methods
‣ see: ihopm, ihooi
‣ Code examples to be 

done...
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Part 3: 
Typical TA Algorithms and 

Operations



Typical TA Operations
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tensor approximation

tensor decomposition
real-time

tensor reconstruction

I2

I1 A

I3

I2
I3

I1 fAU(3)U(1) U(2)I1 I2 I3

R1 R2 R3

R1

R2
R3

B

U(3)U(1) U(2)I1 I2 I3

R1 R2 R3

R1

R2
R3

B



Tensor Decomposition

• Create factor matrices
‣ Higher-order SVD (HOSVD)

– Tensor unfolding

‣ Alternating least-squares (ALS) algorithms
– Higher-order orthogonal iteration (HOOI)
– Higher-order power method (HOPM)

• Generate core tensor
‣ Tensor times matrix (TTM) multiplications
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I2

I1 A

I3

U(3)U(1) U(2)I1 I2 I3

R1 R2 R3

R1

R2
R3

B



Tensor Reconstruction

• Reconstruction
‣ Tensor times matrix (TTM) multiplications
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I2
I3

I1 fA

U(3)U(1) U(2)I1 I2 I3

R1 R2 R3

R1

R2
R3
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Higher-order SVD (HOSVD)
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start HOSVD 
for mode n

tensor A

stop HOSVD 
for mode n

set        left singular 
vectors as U_n

Rn
U(n)

compute the matrix 
SVD on A_nA(n)

A

mode n 
matrix U_nU(n)

unfold A   along 
mode n (A_n  )A(n)

A

De Lathauwer, de Moor, Vandewalle. A multilinear singular value decomposition. 
SIAM Journal on Matrix Analysis and Applications, 21(4):1253–1278, 2000.



Slices of a Tensor3
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frontal slices horizontal slices

matrix< 512, 512, values_t > slice; 

t3.get_frontal_slice_fwd( 256, slice ); 

t3.get_horizontal_slice_fwd( 256, slice );

t3.get_lateral_slice_fwd( 256, slice );

lateral slices

[vmmlib]



Tensor Unfolding (Matricization)
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I2

I3

A

A

I1

I1

I2

I3 I2

I3

I1

I2

I1

A

I1

I2

I3

I3

I3 I3

I2 I2

I1 I1

A(3)

A(1)

A(2)

I2 · I1

I1 · I3

I3 · I2

I1

I2

I3

A

A

A

I1

I1

I1

I2

I2

I3

I3

I2

I3

I3 I3 I3

I1 I1 I1

I2 I2 I2

A(2)

A(1)

A(3)

I2 · I3

I3 · I1

I1 · I2

Kiers. Towards a standardized 
notation and terminology in multiway 
analysis. Journal of Chemometrics, 
14(3):105–122, 2000.

forward cyclic unfolding backward cyclic unfolding

De Lathauwer, de Moor, Vandewalle. 
A multilinear singular value 
decomposition. SIAM Journal on 
Matrix Analysis and Applications, 
21(4):1253–1278, 2000.



Forward Cyclic Unfolding
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tensor3< I1, I2, I3, values_t > t3
matrix< I1, I3*I2, values_t > unf_front_fwd;
t3.frontal_unfolding_fwd( unf_front_fwd ); 

forward unfolded tensor (frontal)
(0, 1, 2, 12, 13, 14)
(3, 4, 5, 15, 16, 17)
(6, 7, 8, 18, 19, 20)
(9, 10, 11, 21, 22, 23)

forward unfolded tensor (horizontal)
(0, 12, 3, 15, 6, 18, 9, 21)
(1, 13, 4, 16, 7, 19, 10, 22)
(2, 14, 5, 17, 8, 20, 11, 23)

forward unfolded tensor (lateral)
(0, 3, 6, 9, 1, 4, 7, 10, 2, 5, 8, 11)
(12, 15, 18, 21, 13, 16, 19, 22, 14, 17, 20, 23)

matrix< I3, I2*I1, values_t > unf_lat_fwd;
t3.lateral_unfolding_fwd( unf_lat_fwd );

matrix< I2, I1*I2, values_t > unf_horiz_fwd;
t3.horizontal_unfolding_fwd( unf_horiz_fwd );

I2

I3

A

A

I1

I1

I2

I3 I2

I3

I1

I2

I1

A

I1

I2

I3

I3

I3 I3

I2 I2

I1 I1

A(3)

A(1)

A(2)

I2 · I1

I1 · I3

I3 · I2



Backward Cyclic Unfolding
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I1

I2

I3

A

A

A

I1

I1

I1

I2

I2

I3

I3

I2

I3

I3 I3 I3

I1 I1 I1

I2 I2 I2

A(2)

A(1)

A(3)

I2 · I3

I3 · I1

I1 · I2

tensor3< I1, I2, I3, values_t > t3
matrix< I1, I2*I3, values_t > unf_lat_bwd;
t3.lateral_unfolding_bwd( unf_lat_bwd );     

backward unfolded tensor (lateral)
(0, 12, 1, 13, 2, 14)
(3, 15, 4, 16, 5, 17)
(6, 18, 7, 19, 8, 20)
(9, 21, 10, 22, 11, 23)

backward unfolded tensor (frontal)
(0, 3, 6, 9, 12, 15, 18, 21)
(1, 4, 7, 10, 13, 16, 19, 22)
(2, 5, 8, 11, 14, 17, 20, 23)

backward unfolded tensor (horizontal)
(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11)
(12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23)

matrix< I3, I1*I2, values_t > unf_horiz_bwd;
t3.horizontal_unfolding_bwd( unf_horiz_bwd ); 

matrix< I2, I3*I1, values_t > unf_front_bwd;
t3.frontal_unfolding_bwd( unf_front_bwd );    



Tensor Unfolding Example
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... ...mode-1 
unfolding

... ...mode-2 
unfolding

... ...mode-3 
unfolding

262’144

262’144

262’144

51
2

51
2

51
2



Optimize Factor Matrices
• Higher-order orthogonal iteration
‣ Keep factor matrix of mode n fixed
‣ Generate optimized data tensor

– Project original data tensor on the inverted factor matrices of 
all other modes

‣ Receive optimized mode-n factor matrix
– Apply HOSVD to the optimized tensor

36

De Lathauwer, de Moor, Vandewalle. On the best rank-1 and rank-(R1,R2,...,RN) 
approximation of higher-order tensors. SIAM Journal on Matrix Analysis and 
Applications, 21(4):1324–1342, 2000.



Optimize Mode-n Factor Matrix
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invert all matrices, 
but mode n

start mode-n 
optimization

multiply tensor with 
all inverted 

matrices (TTMs)

optimized 
tensor A'

tensor aa, 
matrices Uu

stop mode-n 
optimization

U(n)
A

Pn

I2

R2

I1

A

U(2)T

I2

I3

T
R2

I1 I3

R3 U(3)T

R2

I3

R3

T

P
I1R2



Higher-order Orthogonal Iteration (HOOI)
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convergence?

init matrices U
(random, HOSVD)

compute max 
Frobenius norm

set convergence 
criteria

input 
tensor A

mode-n 
optimization

compute new 
mode-n matrix 

(HOSVD on Aab)

yes

no

compute core 
tensor hh

compute fit

stop 
iterations

start HOOI ALS

matrices uua, 
core tensor B

mode-n optimized 
tensor PPPP

A

U(n)

U(n)

B

B

Pn

Pn

[vmmlib]

typedef t3_hooi< R1, R2, R3, I1, I2, I3 > t3_hooi_t;



Tensor Times Matrix Multiplication
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C

B(n) In

In

A(n) JnJn

I1 · I2

I1 · I2

A(n) = CB(n)

A

B

C

In

In

I1

I1

Jn
Jn

I2

A = B⇥n C

,

(B⇥n C)i1...ın�1 jnin+1...iN =
In

Â
in=1

bi1i2...iN · c jnin

n-mode product
[De Lathauwer et al., 2000a]



Tensor Times Matrix Multiplications
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A

B

C

In

In

I1

I1

Jn
Jn

I2

t3_ttm::multiply_frontal_fwd(    tensor3_b, matrix_c1, tensor3_a1 ); 
t3_ttm::multiply_horizontal_fwd( tensor3_b, matrix_c2, tensor3_a2 ); 
t3_ttm::multiply_lateral_fwd(    tensor3_b, matrix_c3, tensor3_a3 ); 

t3_ttm::full_tensor3_matrix_multiplication( 
tensor3_b, 
matrix_c1, 
matrix_c2, 
matrix_c3, 
tensor3_a 
);

• The T3_TTM is implemented using openMP and BLAS for the parallel matrix-
tensor_slice multiplications.

• The full TTM multiplication includes three TTMs: first a TTM along frontal slices, 
then a TTM along horizontal slices, and finally a TTM along lateral slices.

• Since the tensor3 is an array consisting of frontal slices (matrices), we start first 
with the frontal slice multiplication. This is optimized for tensors with In > Jn (For 
example, Tucker core generation). If you have a situation, where Jn > In (for 
example Tucker reconstruction), you could rearrange the order of the modes of the 
TTM multiplications such that the most expensive TTM (the one of the largest 
tensor) is performed along frontal slices. 



Example TTMs: Core Computation
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I1

I2

I1

R1

A

U(1)T B
0

I2

R1

I3 I2

R2 B
00

U(2)T

B
0

I2

I3

I3

R2

R1 I3

R3 BU(3)T

B
00I3

R1

R1

R3

R2

• Three consecutive TTM multiplications
• For orthogonal matrices, use the transposes of the three factor 

matrices (otherwise the (pseudo)-inverses)
• t3_ttm::full_tensor3_matrix_multiplication( A, U1_t, U2_t, U3_t, B );

B = A �1 U(1)T �2 U(2)T �3 · · ·�N U(N)T
B = A ⇥1 U(1)(�1)⇥2 U(2)(�1)⇥3 · · ·⇥N U(N)(�1) orthogonal

factor matrices



unfold A   along 
mode n (A_n  )

start HOSVD 
for mode n

compute the matrix 
SVD on A_n

mode n 
matrix U_n

tensor A

stop HOSVD 
for mode n

set        left singular 
vectors as U_n

unfold      along 
mode n (A_n  )

start HOEIGS 
for mode n

compute the matrix 
symmetric EIG on

mode n 
matrix U_n

tensor A

stop HOEIGS 
for mode n

set eigenvectors (of
        most significant 
eigenvalues) as      

compute covariance 
matrix

Rn Rn
U(n)U(n)

A(n)

A(n) A(n)

C(n) = A(n)AT
(n)

C(n)

A A

U(n)U(n)

A A

[vmmlib] typedef t3_hosvd< R1, R2, R3, I1, I2, I3 > t3_hosvd_t;
//HOSVD modes: eigs_e or svd_e



multiply each U's 
transpose with U

start mode-n 
optimization

normalize new U_n
norm -> new lambda

new matrix U_n, 
new lambda

tensor A, 
matrices U

stop mode-n 
optimization

unfold A along mode 
n to A_n

Khatri Rao product of 
all Us, but U_n -> 

U_krp

piecewise 
multiplication of all 

U^T U -> V

new U_n: multiply A_n 
with U_krp and V^+

pseudo inverse of V -
> V^+

Higher-order Power Method (HOPM)

43

convergence?

init matrices U
(random, HOSVD)

compute max 
Frobenius norm A

set convergence 
criteria

input 
tensor A

mode-n optimization

yes

no

compute fit

stop 
iterations

start HOPM ALS

matrices U, 
lambdas

[vmmlib]

typedef t3_hopm< R, I1, I2, I3 > t3_hopm_t;


