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Data Reduction and Approximation

• A fundamental concept of data reduction is to remove redundant and 
irrelevant information while preserving the relevant features
‣ e.g. through frequency analysis by projection onto pre-defined bases, or 

extraction of data intrinsic principal components
– identify spatio-temporal and frequency redundancies

‣ maintain strongest and most significant signal components

• Data reduction linked to concepts and techniques of data compression, 
noise reduction as well as feature extraction and recognition/extraction
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Data Approximation using SVD

• Singular Value Decomposition (SVD) standard tool for matrices, i.e., 2D 
input datasets
‣ see also principal component analysis (PCA)
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• Exploit ordered singular values: s1 ≥ s2 ≥ ... ≥ sN

• Select first r singular values (rank reduction)
‣ use only bases (singular vectors) of corresponding subspace
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• Matrix SVD
‣ rank reducibility
‣ orthonormal row/column matrices

Matrix SVD Properties
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What is a Tensor?

• Data sets are often multidimensional arrays (tensors)
‣ images, image collections, video, volume data etc.

6
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• Individual elements of a vector a are given by ai1, from a matrix A by ai1,i2 
and from a tensor A  by ai1,i2,i3

• The generalization of rows, columns 
(and tubes) is a fiber in a particular 
mode

• Two dimensional sections of a tensor 
are called slices
‣ frontal, horizontal and lateral for A ∈ ℝ3

Fibers and Slices
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• Operations with tensors often performed as 
matrix operations using unfolded tensor 
representations
‣ different tensor unfolding strategies possible

• Forward cyclic unfolding A(n) of a 3rd order 
tensor A  (or 3D volume)

• The n-rank of a tensor is typically defined 
on an unfolding
‣ n-rank Rn = rankn(A)  = rank(A(n))

‣ multilinear rank-(R1, R2, …, RN) of A
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Rank-one Tensor

• N-mode tensor A ∈ ℝI1×…×IN that can 
be expressed as the outer product of 
N vectors
‣ Kruskal tensor

• Useful to understand principles of 
rank-reduced tensor reconstruction
‣ linear combination of rank-one tensors
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Tensor Decomposition Models
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• Three-mode factor analysis (3MFA/Tucker3) 
[ Tucker, 1964+1966 ]

• Higher-order SVD (HOSVD) 
[ De Lathauwer et al., 2000a ]
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• PARAFAC (parallel factors) [ Harshman, 1970 ]
• CANDECOMP (CAND) (canonical decomposition) 

[ Caroll & Chang, 1970 ] 
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• Higher order tensor A ∈ ℝI1×…×IN  represented as a product of a core 
tensor B ∈ ℝR1×…×RN and N factor matrices U(n)∈ ℝIn×Rn

‣ using n-mode products ×n
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Tucker Model
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CANDECOMP-PARAFAC Model
• Canonical decomposition or parallel factor analysis model (CP)
• Higher order tensor A  factorized into a sum of rank-one tensors

‣ normalized column vectors ur(n) define factor
matrices U(n)∈ ℝIn×R and weighting factors λr
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• The CP model is defined as a linear combination of rank-one tensors
• The Tucker model can be interpreted as linear combination of rank-one 

tensors

Linear Combination of Rank-one Tensors
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CP a Special Case of Tucker
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• Any special form of core and 
corresponding factor matrices
‣ e.g. blocks along diagonal
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• Full reconstruction using a Tucker or CP model may require excessively 
many coefficients and wide factor matrices
‣ large rank values R (CP), or R1, R2 … RN (Tucker)

• Quality of approximation increases with the rank, and number of column 
vectors of the factor matrices
‣ best possible fit of these bases matrices discussed later
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Reduced Rank Approximation
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Rank-R Approximation

• Approximation of a tensor as a linear 
combination of ranke-one tensors using a 
limited number R of terms
‣ CP model of limited rank R
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Rank-(R1, R2, …, RN) Approximation

• Decomposition into a tensor with reduced, 
lower multilinear rank(R1, R2, …, RN)
‣  

• n-mode products of factor matrices and core 
tensor in a given reduced rank space
‣ Tucker model with limited ranks Ri

18

fA = B⇥1 U(1)⇥2 U(2)⇥3 · · ·⇥N U(N)

I3

I1

I2

I3

I1

U(3)

R3

R1

R2U(1)

I2

U(2)

B⇡fA
rankn( fA ) = Rn  rankn(A ) = rank(A(n))

Wednesday, June 12, 2013



Best Rank Approximation
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• Rank reduced approximation that 
minimizes least-squares cost 

‣  

• Alternating least squares (ALS) iterative 
algorithm that converges to a minimum 
approximation error based on the 
Frobenius norm ||…||F
‣ rotation of components in basis matrices
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Generalization of the Matrix SVD
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Properties of Higher Order TA
• Matrix SVD (~PCA)
‣ unique
‣ rank-R decomposition
‣ orthonormal row-space and column-space 

vectors

• Higher-order tensor decomposition
‣ CP model preserves rank-R decomposition
‣ all-orthogonal Tucker model preserves 

orthonormal row-space and column-space 
vectors
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Matrix and Tensor Rank Definitions

• Matrix has unique equal column and row ranks
‣ result of SVD

• The n-ranks Rn = rankn(A) of a tensor A  may all be different

‣ different unfoldings A(n) give rise to different n-ranks rank(A(n))

• Matrix rank concept is not uniquely defined for higher order tensors
‣ n-rank Rn

‣ multilinear rank-(R1, R2, …, Rn)

‣ tensor rank R = rank(A)
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• The tensor rank R = rank(A) is the minimal number of rank-one tensors Ai 

that yield A  in a linear combination

‣Ai are rank-one tensors, defined by outer product of N vectors

• Equal to the column and row rank for matrices
• Not necessarily equal to any n-rank Rn of a tensor 
‣ and it holds that R ≥ Rn

Tensor Rank R
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Rank-R Decomposition

• Minimal number R of rank-one tensors Ai  that yield A  in a linear 
combination, A = λ1 A1 + λ2 A2 + … + λR AR

• CP model allows a direkt rank-R decomposition
with respect to the tensor rank R
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Uniqueness
• Unique if it is the only possible decomposition
‣ except for indeterminacies of scaling and permutations

• Rank-R decompositions of higher-order tensors are often unique
• Matrix rank decompositions are not generally unique,

except e.g. for the SVD
‣ due to the orthogonality constraints, and
‣ the diagonal matrix of ordered singular values

• The CP decomposition is unique under weaker conditions (than the SVD)
‣ non-orthogonal factor matrices

• The Tucker decomposition is not unique

26

[Kolda and Bader, 2009]
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Orthonormality
• Matrix SVD generates orthonormal bases U and V
• A Tucker model can be formed with orthonormal 

factor matrices
‣ all-orthogonal Tucker core tensor B

• All-orthogonality example for third-order tensor:
‣ horizontal matrices are mutually orthogonal with 

respect to the scalar product of matrices
– the sum of the products of the corresponding entries 

vanishes

‣ the same holds for all frontal slices and lateral slices
– see De Lathauwer et al., 2000a

core 
tensor

factor matrices

U(1)B
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Higher-Order SVD (HOSVD)

• SVD on every mode’s tensor 
unfolding A(n)

‣ set basis factor matrices U(n) as R 
leading left singular vectors of A(n)

• Derive core B from original data 
and inverse factor matrices
‣ defines a Tucker model with B, U(n)

28

Tensor unfolding HOSVD algorithm
1256 L . D E L A T H A U W E R , B . D E M O O R , A N D J . V A N D E W A L L E

Fig. 1. Unfolding of the (I1 × I2 × I3 )-tensor A to the (I1 × I2I3 )-matrix A ( 1 ) , the (I2 × I3I1 )-
matrix A ( 2 ) and the (I3 × I1I2 )-matrix A ( 3 ) (I1 = I2 = I3 = 4).

position with row number i n and column number equal to

(i n+1 − 1)I n+2 I n+3 . . . I N I1 I2 . . . I n � 1 + (i n+2 − 1)I n+3 I n+4 . . . I N I1 I2 . . . I n � 1 + · · ·
+ (i N − 1)I1 I2 . . . I n � 1 + (i1 − 1)I2 I3 . . . I n � 1 + (i2 − 1)I3 I4 . . . I n � 1 + · · · + i n � 1 .

Example 1. Define a tensor A ∈ R3 ⇥ 2 ⇥ 3 by a111 = a112 = a211 = −a212 = 1,
a213 = a311 = a313 = a121 = a122 = a221 = −a222 = 2, a223 = a321 = a323 = 4,
a113 = a312 = a123 = a322 = 0. The matrix unfolding A (1) is given by

A (1) =





1 1 0 2 2 0
1 −1 2 2 −2 4
2 0 2 4 0 4



 .

2.2. R a n k p rop er t ies of a h igher -or der t ensor . There are major differences
between matrices and higher-order tensors when rank properties are concerned. As we
will explain in section 3, these differences directly affect the way an SVD generalization
could look. As a matter of fact, there is not a unique way to generalize the rank
concept.

First, it is easy to generalize the notion of column and row rank. If we refer
in general to the column, row, . . . vectors of an N th-order tensor A ∈ C I1 ⇥ I2 ⇥ . . . ⇥ IN

as its “n-mode vectors,” defined as the I n -dimensional vectors obtained from A by
varying the index i n and keeping the other indices fixed, then we have the following
definition.

HOSVD: Lathauwer et al., 2000a

B = A ⇥1 U(1)�1 ⇥2 U(2)�1 ⇥3 U(3)�1
fA = B⇥1 U(1)⇥2 U(2)⇥3 U(3)



Tucker Core
• Tucker column vectors of factor 

matrices U(n) are often defined to 
be orthonormal

• Core tensor B represents 
projection of data A onto its 
factor matrices U(n), thus is a 
representation in new bases
‣ computed using transposes for 

orthogonal factor matrices

• Optimized order of computation
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Rank Truncation
• SVD allows for progressive rank 

truncation
‣ orthogonality of singular vectors
‣ order of increasing singular values

• CP does not exhibit good 
progressive truncation behavior
‣ non-orthogonal factor matrices

• All-orthogonal Tucker model 
supports progressive truncation
‣ does not necessarily give best 

possible progression
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R = 4 R = 8 R = 16 R = 32 R = 64 R = 128 R = 256
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Properties of Tucker Factor Matrices
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• Vectors along horizontal axis (rows)
‣ 1.1; spatial selectivity
‣ 1.2; spatial subsampling

• Vectors along vertical axis (columns)
‣ 2: rank reduction
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Spatial Selection in Factor Matrices
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• Select submatrices U(n)Jn

(a selection of Jn row vectors)
‣ reconstruct only from submatrices 

and core tensor

• Core tensor stays unchanged
• Potential applications
‣ view-frustum culling 
‣ adaptive spatial selection 

(multiresolution DVR)
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Jn
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Orthogonality Issues and Truncation
• Spatial selection of factor matrix row ranges 

destroys the orthogonality property
• Newly derived, spatially local tensor cores 

from non-orthogonal factor submatrices are 
not all-orthogonal
‣ but only the all-orthogonality makes core tensors 

rank-reducible

• In order to achieve rank-reducible core 
tensors, another SVD is applied to spatially 
selective or averaged submatrices
‣ see Tsai and Shih, 2012; Suter, 2013
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level 4 level 3 level 2 level 1
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Spatial Subsampling in Factor Matrices

34

• Spatial correspondence of rows 
allows for averaging or 
subsampling of factor matrix row 
vectors

• Potential applications
‣ multiresolution modeling
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Global Factor Matrices Octree Hierarchy

I = 
512 I/2 I/4 I/8

R

R

R
R

octree level 1
(root)

octree level 4
(leaves)

octree level 3 octree level 2
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fAA decompose reconstruct

bases +
coefficients

compact data representation

compute

bases

coefficients

Aapply

bases

coefficients

A

Pre-Defined vs. Learned Bases

36

Pre-defined bases Learned bases

FT, DCT, WT TA
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DCT as Tucker Decomposition

37

• The DCT of a 2D image or higher order 
tensor directly maps to the Tucker tensor 
decomposition model
‣ tensor decomposition using pre-defined basis 

factor matrices

• Using the DCT type-II formulation, the basis 
matrices U(n) entries can be formed by:

‣ where i ∈ {1, …, In} and j ∈ {1, … , Rn}

u(n)i j =Ci cos

✓
(2( j�1)+1)(i�1)p

2In

◆

U(n)

In

Rn
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Example of Subsampled TA Factor Matrices

38

DCT factor matrix Tucker factor matrices

U↓0(n) U↓1(n) U↓2(n) U↓3(n)UDCT(n)



Tucker Reconstruction

• Reconstruction from rank-one tensors

• Element-wise reconstruction

39

To appear in an IEEE VGTC sponsored conference proceedings

for the outer product between the corresponding column vectors in the
factor matrices

⇥A = Â
r1

Â
r2

Â
r3

br1r2r3 · u(1)
r1 · u(2)

r2 · u(3)
r3 . (A.4)

The sum of all theses weighted “subtensors” forms the approxima-
tion ⇥A of the original data A (see Fig. 13).

+ ...= ... +

I3I2

I1
br1r2r3

u(1)
r1

u(2)
r2

u(3)
r3

�A

Fig. 13. Tensor reconstruction from Eq. A.4 visualized.

Another approach, is to reconstruct each element of the approxi-
mated dataset individually, which we call voxel-wise reconstruction
approach. Each element �ai1i2i3 is reconstructed as shown in Eq. A.5,
i.e., sum up all core coefficients multiplied with the corresponding co-
efficients in the factor matrices (weighted product).

�ai1i2i3 = Â
r1

Â
r2

Â
r3

br1r2r3 · u(1)
i1r1

· u(2)
i2r2

· u(3)
i3r3

(A.5)

A third reconstruction approach is to build the n-mode products
along every mode [15] (notation: B⇥n U(n)), which leads to a ten-
sor times matrix (TTM) multiplication for each mode, i.e., dimension.
This is analogous to the Tucker model given by Eq. A.3. The n-mode
product between a tensor and a matrix is equivalent to a matrix prod-
uct as it can be seen from Eq. A.6. In Fig. 14 we visualize the TTM
approach using n-mode products.

Y = X ⇥n U⇤ Y(n) = UX(n), (A.6)

where X(n) represents the mode-n unfolded tensor, i.e., a matrix.
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Fig. 14. TTM: tensor times matrix along the 3 modes (n-mode products).
Backward cyclic reconstruction after Lathauwer et al. [6].

Given the fixed cost of generating an I1⇥ I2⇥ I3 grid, the computa-
tional overhead factor varies from cubic rank complexity R1 ·R2 ·R3 in
the case of the progressive reconstruction (Eq. A.4) to a linear rank
complexity R1 for the TTM or the n-mode product reconstruction
(Eq. A.5). (For R = 16, the improvement to R3 = 4⌅096 is 256-fold.)
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