
IEEE Vis 2013 Tutorial:
Tensor Approximation in Scientific Visualization

Susanne K. Suter, Student Member, IEEE, and Rafael Ballester-Ripoll, and Renato Pajarola, Member, IEEE

Abstract— In this course, we will introduce the basic concepts of tensor approximation (TA) – a higher-order generalization of the SVD
and PCA methods – as well as its applications to visual data representation, analysis and visualization, and bring the TA framework
closer to visualization researchers and practitioners. The course will cover the theoretical background of TA methods, their properties
and how to compute tensor decompositions, as well as practical applications of TA methods in visualization and visual computing.
In a first theoretical part, the attendees will be instructed on the necessary mathematical background of tensor decomposition and
approximation methods to learn the basics skills of using and applying these new tools in the context of the representation of large
multidimensional visual data. Specific and very noteworthy features of the TA framework are highlighted which can effectively be
exploited for spatio-temporal multidimensional data representation and visualization purposes. In a practical implementation and an
application oriented session, compact TA data representation in scientific visualization and visual computing as well as decomposition
and reconstruction algorithms will be demonstrated. At the end of the course, the participants will have a good basic knowledge of TA
methods along with a practical understanding of implementation issues and its potential application in visualization.

Index Terms—Tensor decompositions, tensor approximations, Tucker model, CANDECOMP/PARAFAC model, hybrid block-diagonal
TA models, compact visual data representation, higher-order SVD methods, data reduction, interactive volume visualization, multires-
olution and multiscale modeling, clustered tensor decomposition.

1 ORGANIZATION

Organizers Susanne K. Suter,
Rafael Ballester-Ripoll,
Prof. Dr. Renato Pajarola,
University of Zürich, Switzerland

Lecturers Susanne K. Suter
Rafael Ballester-Ripoll
Renato Pajarola

Duration Half-day
Level Intermediate
History Tutorial parts were held at Eurographics 2013

Supplemental
material

Theory document, example slides (selected
parts), slides on vmmlib TA classes, vmmlib TA
classes play project

As outlined in the abstract and further elaborated on below, this
tutorial will bring the concepts of tensor approximation (TA) closer
to the visualization communities. TA methods have already shown to
be quite useful in visualization and graphics in a number of specific
papers. This tutorial will review both, the underlying theory as well as
some of the recent applications in this context.

We strongly believe that the TA framework is a powerful toolbox
that has a large potential for a strong and lasting impact on large data
representation, analysis and visualization solutions. This topic, tensor
approximations and its applications in visual computing, has not re-
ceived a significant and broad treatment in the past. A first TA focused
tutorial has been given at Eurographics 2013. This tutorial was very
successful, attracted a good audience, and feedback indicated increas-
ing interest in the visual computing community. Furthermore, many
people newly exposed to this topic, e.g. as during the VisWeek’12
poster session [SP12], have shown a strong interest in the general the-
ory and possible applications of tensor approximation.

As applicable, we aim to provide practical insight into the imple-
mentation and usage of TA tools, e.g., using MATLAB or C++ code
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examples. To that extent we will provide sample tutorial code for par-
ticipants to exploit.

2 DESCRIPTION

2.1 Overview
The SVD and PCA approaches, which work effectively for matrix-
based data compression (2nd-order tensors) cannot directly be ex-
tended in a straight-forward way to higher-dimensional data (higher-
order tensors) and lose some of their unique properties. Nevertheless, a
number of common visual datasets naturally lend themselves to a rep-
resentation as higher-order tensors: volume data (3rd-order), spatio-
temporal volume and FMRI data (4th-order), image stacks and video
(3rd-order), BRDF/BTF illumination sample data (mostly 3rd-order
or 4th order), as well as general image and sample collections (k-th
order). In this tutorial, we briefly introduce the tensor approximation
(TA) framework as an extension of the SVD and PCA approaches to
higher-order tensor dimensionality, and describe TA with its special
properties as a numerical linear algebra toolbox to process, analyze
and represent complex visual data in novel ways.

The targeted audience consists of visualization researchers and
practitioners since the presented methods and techniques exhibit direct
applicability to represent and manage large multidimensional visual
datasets. Previous and recent research work has already demonstrated
the high potential of TA methods, and corresponding examples in vi-
sualization and visual computing in general will be reviewed as part of
this tutorial.

At the end of the course, participants should understand the main
concepts, properties and features of the TA framework and in par-
ticular the key differences between a Tucker model and a CANDE-
COMP/PARAFAC (CP) tensor model. Furthermore, he or she should
be able to apply a TA and its reconstruction to simple data models,
and be in a strong position to thoroughly understand the specific and
advanced approaches presented from the recent research literature. In
particular, the course will be augmented with practical examples.

Note that we propose a concise half-day course in order to keep
the tutorial compact; however, if desired, we could see an even more
detailed extension of the tutorial to a full day.

2.2 Target Audience
The targeted audience includes data visualization, visual computing
and computer graphics experts, researchers as well as practitioners



with a solid background in linear numerical algebra who have to
store, access and visualize large and complex multidimensional visual
datasets. The presented TA methods have a high degree of direct ap-
plicability to the analysis and visualization of multidimensional visual
data and to the compact representation and storage of large visual data
in visualization, as well as to other closely related fields like multime-
dia and image or video processing.

2.3 Previous Courses and Tutorials
To the best of our knowledge, there has not been a similar course or
tutorial on data tensors and applications of tensor approximations in
visualization and visual computing at any visualization oriented con-
ferences in the past. One related course on tensor methods in visual-
ization that we could identify was the Tensors in Visualization course
at the VisWeek 2010 [KST∗10]. However, that course largely focused
on tensor fields and their visualization, and only included data tensors
briefly at the end of the tutorial. The proposed tutorial exclusively fo-
cuses on data tensors (general multi-way arrays) and not tensor fields.
The main focus of this tutorial lies on tensor decomposition and tensor
reconstruction of data tensors and the application of tensor approxima-
tion methods in scientific data visualization. Thus, the outlined tutorial
is fundamentally different from the course at VisWeek 2010.

A first tutorial on Tensor Approximation in Visualization and
Graphics in the context of graphics, visual computing and visualiza-
tion was held at Eurographics 2013 [PSR13] (http://vmml.ifi.
uzh.ch/links/TutorTensorAprox.html). This tutorial is
closely related and shares parts of the structure and content. The main
differences of this proposed tutorial compared to the one from Euro-
graphics 2013 are its increased focus on scientific visualization, vol-
ume data representation, comparative analysis and practical details. In
particular, the following major changes and differences will be inte-
grated:

• The theory and properties of TA methods will be revised, inte-
grating novel block-based tensor models and further examples
exploiting certain TA properties.

• A new analysis will include substantial performance analysis of
the various TA models as well as comparative studies of wavelet
transform and TA based methods.

• In the applications we will focus more on scientific visualization,
and specifically discuss the integration of concepts such as out-
of-core data access, and hierarchical or clustered TA models.

• Extended implementation details we will include practical inter-
active demonstrations of the TA methods and their actual real-
ization within C++ and/or MATLAB programs.

2.4 Syllabus
This tutorial addresses the application of advanced numerical linear al-
gebra tools to compact data representations and interactive visualiza-
tion of large multidimensional datasets. These datasets arise in many
applications in scientific visualization and computer graphics, such as
visualization of volumetric data or spatio-temporal simulation data,
storage of reflectance data, motion synthesis or precomputed radiance
transfer. TA methods have recently attracted increasing interest from
the visual computing community, and a number of authors have shown
that the TA framework is a viable tool for the compact representation
of these multidimensional dataset. The idea of this tutorial is to give
an introduction of TA methods and how they can be applied in visu-
alization and graphics. Notably, we aim at making the successful TA
application strategies available to the scientific audience.

The overall tutorial is structured into four main parts consisting of
the general theoretical background and properties of TA methods, fol-
lowed by practical applications of TA methods in scientific visualiza-
tion and visual computing:

Part 1 Introduction of the TA framework

• Tucker and CP tensor decompositions

• Block-diagonal TA models

• Rank-reduced tensor approximations

• Useful TA properties and features for data visualization

Part 2 Comparative analysis

• Frequency analysis and DCT equivalence

• Performance analysis using MATLAB and vmmlib (C++)

• Multiscale feature expressiveness (wavelets vs. TA)

Part 3 TA applications in scientific visualization

• Out-of-core, level-of-detail and clustering concepts for
large data tensor handling

• Multiscale and multiresolution hierarchy modeling for TA-
based volume visualization

Part 4 Implementation and practice

• Live demo of multiscale and multiresolution TA

• Code examples with MATLAB and vmmlib (C++)

• GPU-based tensor reconstruction solutions

The sessions are designed in more detail as follows:

Opening (5min)

Presentation of the structure of this tutorial course and schedule of
topics, introduction of speakers.

Introduction to the TA Framework (45min)

In this first session, we introduce the basic definition of a tensor
approximation model, which is the decomposition of a higher-order
tensor into a multilinear combination of bases and weighting coef-
ficients. We introduce a wide range of TA models. The general-
ization of the matrix SVD is defined with two main models: the
CANDECOMP/PARAFAC (CP) model and the Tucker tensor model.
However, we also elaborate on various hybrid variants of the CP
and Tucker approaches (so-called block-diagonal TA models, see
e.g. [BRSEP13]), which we will present in this tutorial. Moreover,
we explain the definitions of multilinear ranks as used for TA models
and we elaborate on how a truncated tensor decomposition defines an
approximation of the original.

In the context of data approximation, the tensor models are re-
viewed and analyzed as being a data point in a high-dimensional ap-
proximation space. Consequently, some specific properties and fea-
tures of these approximation spaces, e.g., such as uniqueness, factor
matrix orthonormality, all-orthogonality of core tensors or space-rank
selectivity, are discussed as well as their effects on truncated tensor
reconstructions (see e.g. [SMP13]). Finally, we show direct or incre-
mental approaches for tensor decomposition algorithms.

Comparative Analysis (30min)

In this comparative part, we aim to highlight similarities of the
TA framework to frequency domain analysis and compare the im-
plementation performance of different TA toolboxes, as evaluated
in [BRSEP13]. With respect to TA bases, we show the equivalence
to frequency domain transformations for example by using discrete
cosine transform (DCT) vectors as TA bases. Moreover, we will show
performance results between the TA implementations of the MATLAB
tensor toolbox and vmmlib (C++), which are described in more detail
in Section 4.

Additionally, we compare the feature expressiveness and com-
pact data representation capabilities of wavelet and TA based ap-
proaches [WXC∗08, SZP10a].

http://vmml.ifi.uzh.ch/links/TutorTensorAprox.html
http://vmml.ifi.uzh.ch/links/TutorTensorAprox.html


TA Applications in Scientific Visualization (30min)

The goal of this part is to show various TA applications in the do-
main of scientific visualization. We start by reviewing compact data
representation approaches (TA and wavelets [WXC∗08, SZP10a]) and
showing tensor approximation applications for interactive multiscale
feature and multiresolution level-of-detail scientific volume visualiza-
tion [SMP13].

In scientific visualization and visual computing applications, dif-
ferent tensor-based hierarchies have been proposed and will be com-
pared in this tutorial, such as the progressively refined TA hierar-
chy of [WXC∗08], as well as full multiresolution tensor data repre-
sentation hierarchies (using local TA bases [SIGM∗11] or global TA
bases [SMP13]). We will show that most of these hierarchies support
good data compression rates and can exploit out-of-core data manage-
ment or decomposition methods. Moreover, it is shown in this tutorial
how the various TA hierarchies exploit data redundancy between sub-
volumes and how typical brick-artifacts during volume rendering can
be reduced effectively. Similarly, clustered TA models exploit redun-
dancy along one specific tensor mode [TS06, TS12].

Implementation and Practice (45min)

In interactive scientific visualization, the tensor decomposition is usu-
ally carried out as an offline preprocessing routine which is less time
critical, while the reconstruction process has to be performed at inter-
active rates. In this tutorial, the basic tensor data structures and tensor
decomposition algorithms are explained by the examples of two avail-
able tensor libraries: the MATLAB Tensor Toolbox and the vmmlib
template framework (see also Section 4). For the tensor reconstruc-
tion, we show a fast tensor reconstruction implementation on the GPU
(see [SIGM∗11]), which supports interactive large data visualization.

To demonstrate the applicability of TA methods in interactive vi-
sualization we intend to give a live demo of our tensor-based mul-
tiresolution and multiscale direct volume renderer [SMP13] (see also
http://github.com/VMML/Equalizer). Within the tutorial,
we show performance timings for the preprocessing step (generation
of multiscale multiresolution TA data structure) and the real-time re-
construction for datasets of different sizes, such that a potential user
gets a good impression about the offline and run-time performance
for different typical dataset sizes. For the tutorial, documented test
datasets and example routines are provided.

Closing (5min)

Finally, we will summarize the TA framework and its application in vi-
sualization and visual computing and provide a brief outlook on future
challenges in the field.

3 DOCUMENTATION

In addition to the full tutorial slide sets, additional documentation will
be made available to the attendees in form of summaries of related
papers including dedicated links to electronic online versions (see Ap-
pendix B).

The presented tutorial is based on a number of articles and papers on
tensor approximation methods and their applications. The basic theory
of tensor decomposition and approximation methods are described in
[dLdMV00a, dLdMV00b] and [KB09], of which we follow the latter
on notation and formalism. Other main resources are the PhD theses
of Tsai [Tsa09] and Suter [Sut13]. The attached theory part summa-
rizes the used TA notation, the main tensor decomposition models and
some decomposition properties, which can be exploited for scientific
visualization. This theory part will be extended with block-diagonal
tensor models as described in [BRSEP13]. Moreover, we review in
this tutorial a number of key applications of tensor methods in visu-
alization and visual computing [TS06, WWS∗05, WXC∗08, SZP10a,
SIGM∗11, TS12, SMP13, BRSEP13].

The slides from the previous Eurographics 2013 tutorial (see
http://vmml.ifi.uzh.ch/links/TutorTensorAprox.
html) will be extended with respect to the changes outlined in

Section 2.3 for block-diagonal TA models, more details on recent hi-
erarchical TA models [TS12, SMP13], and including new comparative
analysis (C++ vs. MATLAB, wavelets vs. TA).

Based on our extensive practical experience and work with
tensor decomposition methods, we will provide a number of
basic MATLAB examples (see https://files.ifi.uzh.
ch/vmml/ta_tutorial/vmmlib_ta_classes.pdf and
project example on http://vmml.github.io/vmmlib/).
These results are shown based on our own development [vmm]
(https://github.com/VMML/vmmlib) and the MAT-
LAB tensor toolbox [BK06] (http://www.sandia.gov/
˜tgkolda/TensorToolbox). The practical examples,
including test datasets will be made available to the atten-
dees. Our test volume datasets are already available online (see
http://vmml.ifi.uzh.ch/research/datasets.html)
and will be provided for the tutorial as well.

4 AVAILABLE SOFTWARE

We consider the four presented toolboxes as the most convenient ones
for tensor approximation applications; however, there is more tensor
software available, as summarized in [KB09]. In the actual tutorial,
we mostly refer to vmmlib (C++) and the MATLAB tensor toolbox.

4.1 vmmlib
The tensor classes that extend the vector and matrix math library
vmmlib [vmm] are a C++ implementation with templates, and sup-
port tensors up to the 4th order. They provide methods for basic tensor
manipulation (including foldings, unfoldings and product with vectors
or matrices), as well as more advanced algorithms for decomposing
and reconstructing (Tucker model). In particular, the 3rd-order version
can also deal with the CP model, as well as with a number of hybrid
block-based TA decompositions, as detailed in [BRSEP13]. Vmmlib
also supports tensor memory-mapping in order to process large input
tensors. So far, only compact tensor decompositions were considered,
sparse implementations will need to be added on top. Desired exten-
sions can be integrated by any developer since it is an open-source
project.
https://github.com/VMML/vmmlib

4.2 MATLAB Tensor Toolbox
The MATLAB Tensor Toolbox [BK∗12] is a comprehensive toolbox
for tensor approximation applications. It offers optimized decomposi-
tion algorithms for the Tucker model as well as the CP model. The
MATLAB tensor toolbox is a generic implementation for any Nth-
order tensor decomposition and includes a well-documented help man-
ual. The toolbox supports compact and sparse tensors, tensor unfold-
ings into matrices, and tensor multiplications. The main algorithms
are published in [BK06]. This toolbox is a comprehensive tensor en-
vironment that is easy to use and extend in MATLAB.
http://www.sandia.gov/˜tgkolda/TensorToolbox

4.3 MATLAB N-Way Toolbox
The N-Way Toolbox [AB00] is a MATLAB toolbox which provides
functions for the computation of Tucker and CP approximations of a
tensor. The implementations of these algorithms in the N-Way toolbox
are very flexible and provide the user with a large number of options.
Several initialization methods can be used, it is possible to specify
orthogonality and non-negativity constraints for each of the modes in-
dividually and the imputation of missing values is supported. Further-
more, the computation of weighted CP approximations is possible.
http://www.models.life.ku.dk/nwaytoolbox

4.4 Tensorlab – MATLAB Toolbox
Just recently, a new MATLAB toolbox – Tensorlab [SVBDL13] – has
been released. The toolbox offers algorithms for tensor decomposi-
tions, complex optimization (e.g., quasi-Newton), global minimization
of bivariate polynomials and rational functions, and other features such
as tensor visualization, estimating a tensor’s rank or multilinear rank.
The tensor decompositions include a large variety of algorithms such

http://github.com/VMML/Equalizer
http://vmml.ifi.uzh.ch/links/TutorTensorAprox.html
http://vmml.ifi.uzh.ch/links/TutorTensorAprox.html
https://files.ifi.uzh.ch/vmml/ta_tutorial/vmmlib_ta_classes.pdf
https://files.ifi.uzh.ch/vmml/ta_tutorial/vmmlib_ta_classes.pdf
http://vmml.github.io/vmmlib/
https://github.com/VMML/vmmlib
http://www.sandia.gov/~tgkolda/TensorToolbox
http://www.sandia.gov/~tgkolda/TensorToolbox
http://vmml.ifi.uzh.ch/research/datasets.html
https://github.com/VMML/vmmlib
http://www.sandia.gov/~tgkolda/TensorToolbox
http://www.models.life.ku.dk/nwaytoolbox


as canonical polyadic decomposition (CPD), CPD with structured fac-
tor matrices and (partial) symmetry, multilinear singular value decom-
position (MLSVD), block term decompositions (BTD) and low multi-
linear rank approximation (LMLRA).
http://www.esat.kuleuven.be/sista/tensorlab/

5 LECTURERS EXPERTISE

The tutorial is given by three experts on TA methods in visualization
and computer graphics (two young and an experienced researcher).
In the following, the lecturers’ backgrounds and specializations are
summarized.

Susanne K. Suter

Research Assistant, Post-Doc
Visualization and MultiMedia Lab (VMML)
University of Zürich, Switzerland
susuter@ifi.uzh.ch
http://vmml.ifi.uzh.ch/people/current-staff/suter.html

Susanne Suter is a post-doctoral research assistant at the University
of Zürich, Switzerland. Her scientific expertise lies in data reduction
and data compression, feature extraction, automation, real-time inter-
active visualization, and linear algebra in visualization.

Susanne K. Suter recently graduated from her PhD, where the core
topic of her thesis [Sut13] matches the presented VisWeek tutorial.
Her main focus in the area is interactive visualization of tensor approx-
imated data from large micro-computed tomography or phase-contrast
synchrotron datasets, where the main challenge lies in finding a math-
ematical framework to perform all tasks with one tool. That is (a) to
reduce the actual amount of data, (b) to extract relevant features, and
(c) to visualize from the decomposed data in real-time.

Susanne Suter contributed to the field by showing that TA is prac-
tical for multiscale volume visualization [SZP10b, SZP10a] and con-
firming that the online hardware-accelerated reconstruction for inter-
active rendering is fast enough [SIGM∗11]. Moreover, she showed that
multiscale feature visualization and state-of-the-art multiresolution
DVR can be modeled directly into global tensor factor matrices and vi-
sualized with a single feature scale parameter [SMP13]. Susanne Suter
explored other tensor decomposition approaches [FMPS13], suitable
models for visualization purposes [BRSEP13], and the development
of tensor approximation algorithms [vmm]. Furthermore, she re-
cently took an active part on sharing her knowledge with the com-
munity [BRGI∗13, PSR13].

During her PhD, Susanne Suter was granted a two-year fellowship
from the University of Zurich. Just recently she received a one-year
Swiss National Science foundation fellowship to pursue her research
at the University of Florida, Gainesville, USA. She is a member of
ACM, IEEE and IEEE VGTC.

Rafael Ballester-Ripoll

Research Assistant, PhD Candidate
Visualization and MultiMedia Lab (VMML)
University of Zürich, Switzerland
rballester@ifi.uzh.ch
http://vmml.ifi.uzh.ch/people/current-staff/ballester.html

Rafael Ballester-Ripoll is a doctoral candidate at the University
of Zürich (UZH), Switzerland, since 2012. Previously, he obtained
Diplomas in Mathematics and Informatic Engineering from the Tech-
nical University of Catalonia-BarcelonaTech, both in 2012. His re-
search interests include volume visualization, multidimensional data
processing and tensor-based compression, and real-time interactive
visualization. At the UZH, he currently develops and applies tensor-
approximation algorithms for volume visualization [BRSEP13, vmm].
His PhD position is funded by the Swiss National Science Foundation.

Professor, Dr. sc.-techn. ETH
Visualization and MultiMedia Lab (VMML)
University of Zürich, Switzerland
pajarola@acm.org
http://vmml.ifi.uzh.ch/people/current-staff/pajarola.html

Renato Pajarola
Renato Pajarola received his Dipl. Inf-Ing ETH and Dr. sc. techn.
degrees in computer science from the Swiss Federal Institute of Tech-
nology (ETH) Zürich in 1994 and 1998 respectively. Subsequently he
was a post-doctoral researcher and lecturer in the Graphics, Visualiza-
tion & Usability (GVU) Center at Georgia Tech. In 1999 he joined
the the University of California Irvine (UCI) as an Assistant Professor
where he founded the Computer Graphics Lab. Since 2005 he has been
leading the Visualization and MultiMedia Lab (VMML) at the Univer-
sity of Zürich (UZH) as Professor in the Department of Informatics.
He is a member of ACM, ACM SIGGRAPH, IEEE and Eurographics.

Dr. Pajarola’s research interests include real-time 3D graphics, mul-
tiresolution modeling, point based graphics, interactive large-scale sci-
entific visualization, remote and parallel rendering, volume visualiza-
tion and compression. He has published a wide range of internation-
ally peer-reviewed research articles in top journals and conferences.
He regularly serves on program committees, such as for example the
IEEE Visualization Conference (2004-06,09-11), Eurographics (2010-
11, 2013), Pacific Graphics (2002-03,07-08), IEEE Pacific Visualiza-
tion (2008-10) or EuroVis (2001,2006-10, 2013). He chaired the 2010
EG Symposium on Parallel Graphics and Visualization and was pa-
pers co-chair in 2011, as well as papers co-chair of the 2007 and
2008 IEEE/EG Symposium on Point-Based Computer Graphics. He
received a Eurographics Best Paper Award in 2005, an IADIS Best
Paper Award in 2007 and a SPIE Best Paper Award in 2013.

Dr. Pajarola has previously participated in four quite successful and
well received tutorials, at IEEE Visualization and ACM SIGGRAPH
Asia on out-of-core, interactive massive model and parallel rendering
methods [CESL∗03, DGM∗08, YMK∗09], and at Eurographics on ten-
sor approximation in visualization and graphics [PSR13].

Our intensive research activities on large scale multiresolution data
representation, data reduction and interactive visualization, in partic-
ular volume rendering, has led us to the field of tensor approximation
methods which are the central topic of this tutorial. Experiences from
our own research on tensor approximations used in volume visual-
ization [SZP10b, SZP10a, SIGM∗11, SMP13, BRSEP13, BRGI∗13,
PSR13, FMPS13] as well as in-depth reviews of other work on com-
pact visual data representation has triggered the proposal of this tuto-
rial. Our current and future areas of specialization in tensor approxi-
mation methods is in the general context of novel multiresolution, hi-
erarchical and out-of-core tensor decomposition models for large scale
volume data representation, multi-scale feature extraction and interac-
tive visualization.
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A ACRONYMS

ALS Alternating least-squares algorithm

BTF Bidirectional texture function

BRT Biscale radiance transfer

BRDF Bidirectional reflectance distribution functions

CP CANDECOMP/PARAFAC

CTA Clustered tensor approximation

DCT Discrete cosine transform

DVR Direct volume rendering

HOEIGS Higher-order symmetric eigenvalue decomposition

HOOI Higher-order orthogonal iteration

HOPM Higher-order power method

HOSVD Higher-order singular value decomposition

K-CTA K-clustered tensor approximation

OLS Ordinary least squares

PCA Principal component analysis

PSNR Peak signal-to-noise ratio

RMSE Root mean square error

SVD Singular value decomposition

SH Spherical harmonics

TA Tensor approximation

TTM tensor times matrix

TTM1 tensor times matrix multiplication along mode 1

vmmlib Vector and matrix math library

VOTF View-dependent occlusion texture functions

WT Wavelet transform

B SUMMARY OF RELATED PAPERS

In the following, a selection of related papers are briefly summarized.
Besides the major contributions of the papers, it is highlighted what
tensor models are used in what context. The first few articles rep-
resent good background literature in order to get started with tensor
approximation; then we added scientific visualization papers.



B.1 Kolda and Bader, 2009
Kolda and Bader [KB09] present an in-depth survey on various avail-
able higher-order tensor decomposition approaches. Besides the well-
known Tucker model and CP model, they mention many other (hybrid)
decomposition approaches. Hence, this survey is a great introduction
to the theory and notations of tensor decompositions. It mentions most
of the relevant related background works and gives a summary on the
origins and development of tensor approximation. It gives also an
overview what different terms are used for the same decomposition
approaches, which were developed in parallel for a similar purpose.
Furthermore, the main tensor decomposition algorithms are outlined.

With respect to applications, they mention several areas, where TA
was applied, however, they do not provide results of own applications.
Finally, they give an overview of software for tensor computing that
was available before 2009.
[KB09] http://epubs.siam.org/doi/pdf/10.1137/
07070111X

B.2 De Lathauwer et al, 2000a+b
De Lathauwer et al., introduce in [dLdMV00a] a generalization of
many previously mentioned TA-like approaches. Since tensor approx-
imation originated in applied sciences and in various areas in parallel,
there was no clear general notation and definition of the tensor ap-
proximation concepts available for quite some time. De Lathauwer
et al., name the extension of the singular value decomposition (SVD)
to higher-orders the multilinear singular value decomposition. They
give a clear overview on how the SVD can be extended to higher or-
ders and what properties can be maintained with what model. The
paper presents many definitions and notation for the multilinear SVD.
Furthermore, the basic algorithm to perform an SVD in higher orders
is generalized. This is the so-called higher order singular value decom-
position or in short the HOSVD. In that context, they explain also the
relationship between the SVD computation and the symmetric eigen-
value decomposition, which can be used to replace the SVD under
certain constraints. If you look for mathematical definition around
computing with TA including mathematical proofs, this is the paper to
look at. The concepts are mainly explained with the higher-order ex-
tension of the Tucker model. However, they briefly mention the links
between the Tucker model and a some other models.

In [dLdMV00b], De Lathauwer et al, present the generaliza-
tion of the two main tensor decomposition algorithms: the higher-
order orthogonal iteration (HOOI) and the higher order power-method
(HOPM). Both algorithms belong to the family of alternating least
squares (ALS) algorithms, which are applied to find a “best” approx-
imation with a tensor decomposition for given rank conditions. The
HOOI is applied to arrive at the Tucker model, the HOPM is applied
to reach the CP model. Based on the concept of the matrix rank and
the tensor rank, a rank-(R1,R2 . . .RN ) approximation is defined for the
Tucker model and a rank-R approximation for the CP model. Besides
the generalization of the best rank-R and rank-(R1,R2 . . .RN ) approxi-
mation, they given an overview on the ALS TA contributions that were
performed previously. Finally, they explain the limitations of the trun-
cation of tensor decompositions of higher orders.
[dLdMV00a] http://epubs.siam.org/doi/pdf/10.
1137/S0895479896305696
[dLdMV00b] http://epubs.siam.org/doi/pdf/10.
1137/S0895479898346995

B.3 Bader and Kolda, 2006
A good toolbox for computing with tensors was provided with the
MATLAB tensor toolbox by Bader and Kolda. In [BK06], the main
algorithms and their implementations are elaborated for the MATLAB
tensor classes. This article provides helpful examples on how to com-
pute with tensors in higher orders. For example, they explain how
to multiply with tensors or how to rearrange a tensor into a matrix –
both being elementary operations when working with tensor decom-
positions.
[BK06] http://delivery.acm.org/10.1145/1190000/
1186794/p635-bader.pdf

B.4 Tsai, 2009
The PhD thesis of Tsai [Tsa09] introduced two novel compression
algorithms, notably clustered tensor approximation (CTA) and K-
clustered tensor approximation (K-CTA). The main applications are
SRBFs and real-time data-driven rendering. The dissertation gives a
detailed explanation on how the CTA and K-CTA work and how they
are implemented. The development of the new TA algorithms was trig-
gered by the fact that previous TA approaches are not compact enough
for efficient reconstruction on the GPU. Therefore, the focus here is to
introduce sparse representations and clustering to multi-linear models
such as TA. An improved compression ratio with good image quality
was achieved. Especially, K-CTA helps to improve smoother bound-
aries between subtensors by exploiting inter-cluster coherence. CTA
and K-CTA seem to have some similarities with other matrix factoriza-
tions (e.g., two-stage SVD that exploits inter-block coherence); how-
ever, previous approaches did not cover sparse representations.
[Tsa09] http://www.cg.cse.yzu.edu.tw/research/
phd/prof/Prof_Tsai.pdf

B.5 Suter, 2013
In the PhD thesis of Suter [Sut13], tensor approximation was chosen
as the unique framework in scientific visualization (a) to reduce the ac-
tual amount of data, (b) to extract relevant features from the dataset, (c)
to visualize the data directly from the mathematical frameworks’ co-
efficients for compression-domain multiresolution direct volume ren-
dering (DVR). Particularly, the Tucker model was used to represent
and compress 3D volume datasets. However, there is an overview of
different TA models as well as TA notation and general formulations,
too.

The inherent TA bases properties such as spatial selectivity and spa-
tial subsampling were used to model multiresolution data structures.
Furthermore, it was shown that the tensor rank can be used to steer
feature visualization at different scales (multiscalability). In fact, the
tensor rank is a parameter that adjusts (a) the amount of data used
for the reconstruction, and (b) the scale of the features visualized in a
certain reconstruction. Using more ranks adds details as well as finer
scale features to a visualization, using only a few ranks visualizes the
most prominent data structure (main statistical direction of the data
distribution). Finally, the multiscalability available through TA has
been successfully combined with the above mentioned multiresolution
TA DVR models.

Moreover, this thesis includes a tensor specific quantization
scheme [SIGM∗11], which reduces the storage costs of one of the
selected multiresolution models to 15 percent of the original data el-
ements. In order to achieve interactive frame rates, a parallel GPU-
based tensor reconstruction was developed [SIGM∗11]. In fact, it
could be shown that the tensor reconstruction overhead is marginal
compared to the overall rendering costs. The developed algorithms
were applied to large volume datasets up to 68GB (floating point val-
ues).

The theory part of the thesis on TA is available in the tutorial notes.

B.6 Wang et al., 2005
Wang et al. [WWS∗05] focus in their paper on a tensor decomposi-
tion algorithm, which works for input tensors that do not fit into the
main memory. They develop a so-called out-of-core ALS and perform
experiments for initialization methods of the ALS. Since the computa-
tion of the HOSVD, which is used in the ALS algorithms, is expensive,
they develop a block-based algorithm to perform a rank-(R1,R2 . . .RN )
tensor decomposition. With respect to the ALS initialization, they ob-
served that a random initialization results in the same decomposition
as a HOSVD initialization; however, the random initialization was
much cheaper. In their experiments, they decompose datasets larger
than 10GB on a PC with 1GB memory. Particular applications are
BTFs (4th-order tensor with the dimensions: row, column, illumina-
tion, and view direction), time-varying BTFs (5th-order tensor) and a
4D volume simulation sequence (4th-order tensor with the spatial di-
mensions X,Y,Z and time). The compression ratio is analyzed in terms
of rate-distortion error based on PSNR.

http://epubs.siam.org/doi/pdf/10.1137/07070111X
http://epubs.siam.org/doi/pdf/10.1137/07070111X
http://epubs.siam.org/doi/pdf/10.1137/S0895479896305696
http://epubs.siam.org/doi/pdf/10.1137/S0895479896305696
http://epubs.siam.org/doi/pdf/10.1137/S0895479898346995
http://epubs.siam.org/doi/pdf/10.1137/S0895479898346995
http://delivery.acm.org/10.1145/1190000/1186794/p635-bader.pdf
http://delivery.acm.org/10.1145/1190000/1186794/p635-bader.pdf
http://www.cg.cse.yzu.edu.tw/research/phd/prof/Prof_Tsai.pdf
http://www.cg.cse.yzu.edu.tw/research/phd/prof/Prof_Tsai.pdf


[WWS∗05] http://delivery.acm.org/10.1145/
1080000/1073224/p527-wang.pdf

B.7 Tsai and Shih, 2006

Tsai and Shih [TS06] present a new data representation and com-
pression approach for precomputed radiance transfer (PRT) based on
spherical radial basis functions (SRBFs). They show experiments
with clustered principal component analysis and clustered tensor ap-
proximation (CTA). They organize the PRTs into clusters of multi-
dimensional arrays, which are iteratively updated in order to search
for locally optimal solutions. The CTA algorithm has three phases:
(1) initialization (obtain initial assignment of cluster members), (2)
clustering (iteratively re-classify vertices with the minimum approx-
imation error and repeat until convergence), and (3) approximation
(extract optimal basis matrices). Their tensor is organized with the
number of views of the BRDFs, the number of SRBF light transfer
functions and the number of vertices and is based on the Tucker model.
They use the block-based TA approach, as presented in [WWS∗05]. In
their experiments they compare their own results with OLS projection
on SH bases and wavelets.
[TS06] http://delivery.acm.org/10.1145/1150000/
1141981/p967-tsai.pdf

B.8 Wu et al., 2008

Wu et al. [WXC∗08] present a hierarchical tensor approximation ap-
proach with so-called tensor ensembles. At each hierarchy level N
subtensors of the current level are put into an (N + 1)th-order ten-
sor. Then the tensor decomposition is performed collectively in order
to exploit more redundancy. They receive one set of factor matrices
and one core tensor per hierarchy level, that is a sort of a hierarchical
Tucker model. The hierarchy is created by applying rank-reduced TAs
to the original tensor ensemble. The residual (error to original), is then
further tensor decomposed in the next hierarchy level. Each next hier-
archy level is divided into residual subtensors. The multilinear tensor
rank (R1,R2 . . .RN ) is given per hierarchy, where every next hierarchy
level uses half of the rank of the current level. Similar to multires-
olution analysis with wavelets, low-frequency components are repre-
sented at higher hierarchy levels and and high-frequency components
are at lower levels. High-frequency components have a smaller spatial
support and can therefore be approximated with shorter bases vectors
(that is why subdivision of hierarchy levels is performed). With that
procedure a progressive reconstruction over the hierarchies is possible.
Furthermore, they apply a thresholding of core tensor coefficients and
perform a uniform core tensor and factor matrices quantization.

In their experiments, Wu et al. compare their hierarchical TA
with wavelets, packet wavelets and single-level TA. The experiments
are applied to medical and scientific multidimensional datasets, data-
driven rendering (e.g., BTFs) and texture synthesis. The experiments
are tested in terms of rate-distortion error based on PSNR.
[WXC∗08] http://ieeexplore.ieee.org/ielx5/2945/
4384585/04359486.pdf

B.9 Suter et al., 2010

In Suter et al. [SZP10a] tensor approximation was applied to direct
volume visualization. A volume is represented as 3rd-order Tucker
tensor. The main idea of the paper is to use TA to compress data and
to extract relevant features. For this, different rank-reduced (truncated)
tensor reconstructions are compared. The features that can be visual-
ized from tensor decompositions differ from other feature preserving
decomposition approaches such as wavelets. While wavelets preserve
an overall data distribution (or an averaged and down-sampled version
of the original), TA reveals the major data directions differently. One
observation was that TA could reveal features with lower number of
coefficients, a second observation was that TA can preserve non-axis-
aligned features better than wavelets, and a third observation was that
TA makes it possible to show features at multiple spatial scales via
truncation. One application of the TA was growth structures in den-
tal material, both, simulated samples and phase-contrast synchrotron

tomography scanned samples. The data reduction levels are analyzed
visually and in terms of rate-distortion error based on the RMSE.
[SZP10a] http://diglib.eg.org/EG/DL/PE/VMV/
VMV10/203-210.pdf

B.10 Suter et al., 2011
In Suter et al. [SIGM∗11] the basic observation that TA is a viable tool
for multiscale volume feature visualization [SZP10a], was extended
to large volumes. The main contributions are a tensor-specific quan-
tization approach of the tensor decomposition coefficients, a GPU-
based tensor reconstruction scheme, and the application of feature-
preserving volume visualization to large multiresolution datasets. The
Tucker model was used within a multiresolution direct volume ren-
dering setup where each octree node was represented as a single ten-
sor decomposition (each original subvolume or brick of size 323 is
represented with a rank-(16,16,16) tensor decomposition). The re-
sults show a real-time interactive rendering system of large volumes
(largest input tensor is of size 20483). Thanks to the GPU tensor recon-
struction scheme, the tensor reconstruction overhead became marginal
compared to the overall rendering costs. The observed multiscale fea-
ture visualization property of TA observed in [SZP10a] could be fur-
ther confirmed with examples.
[SIGM∗11] http://ieeexplore.ieee.org/ielx5/2945/
6064926/06064978.pdf

B.11 Tsai and Shih, 2012
Tsai and Shih extend in their work the clustered TA (CTA) [TS06] to
K-clustered TA [TS12]. The CTA is extended by introducing inter-
cluster coherence and working with compact and sparse clustered TA.
The inter-cluster coherence is exploited by assigning each subtensor to
more than one clusters, notably to exactly Km clusters. This approach
controls the sparsity of the representation. The inter-cluster coher-
ence helped to improve the boundaries between clusters. The K-CTA
algorithm can be seen as a sparse extension of the CTA and a multilin-
ear generalization of the K-SVD. The applied tensor approximation is
based on the Tucker model. Since the K-CTA algorithm affects some
orthogonality properties in the Tucker bases, an additional SVD is ap-
plied to each cluster factor matrix. These post-processed matrices are
merged into a single global factor matrix for each mode. The experi-
ments show applications with BTFs, BRTs, and VOTFs.
[TS12] http://delivery.acm.org/10.1145/2170000/
2167077/a19-tsai.pdf

B.12 Suter et al., 2013
Suter et al. [SMP13] present a novel TA-based multiresolution hier-
archy, which uses global bases instead of local brick-based tensor
decompositions as in [SIGM∗11]. The new hierarchy makes use of
properties along the two TA factor matrix axes in order to model the
multiresolution hierarchy through spatial subsampling and spatial se-
lection, and to model multiscale volume feature visualization through
tensor rank truncation. The key point is that all those multiresolution
and multiscale features are modeled in one set of global TA bases,
which exploit redundancies available in the multiresolution hierarchy
and thus use less storage space. The modeling in one single TA hier-
archy is possible thanks to a re-orthogonalization process applied to
the global bases along the spatial brick positions (similar to [TS12]).
A second contribution of the paper is the developed feature scale pa-
rameter. This feature scale parameter is linked a the direct volume
rendering system, which allows a user to adaptively visualize volume
data sets with his preferences on a feature scale. A high feature scale
refers to many details in a data set, a low feature scale refers to only
the most basic structures. This makes a flexible and user-guided mul-
tiscale and multiresolution direct volume rendering possible.
[SMP13]
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