
IEEE Vis 2013 Tutorial:
Tensor Approximation in Scientific Visualization:

Background Theory

Susanne K. Suter, Student Member, IEEE

Abstract— This compendium on tensor approximation (TA) gives an overview on typical tensor approximation notation and definitions.
TA is a tool for data approximation in higher orders. Precisely speaking, TA is an higher-order extension of the matrix singular value
decomposition and is a generalization of a data factorization of multidimensional datasets into a set of bases and coefficients. TA
consists of two main parts: the tensor decomposition and the tensor reconstruction. In TA, there are several decomposition models
available, which are summarized in this document including the main different decomposition algorithms. Furthermore, since low-rank
tensor approximations is an interesting tool for data reduction and data factorization, the tensor rank reduction is another important
topic. For interactive visualization and graphics applications, the tensor reconstruction is another critical issue since often a fast
real-time reconstruction process is required. In this compendium, several reconstruction processes for the different TA models are
presented. Finally, some particular TA bases properties that are useful for computer graphics or scientific visualization applications
are outlined.
This TA background theory document is a compendium of the Ph.D. thesis of Susanne Suter (see [Sut13]).

Index Terms—Tensor decompositions, tensor approximations, Tucker model, CANDECOMP/PARAFAC model, compact visual data
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1 INTRODUCTION

Data approximation is widely used in the fields of computer graphics
and scientific visualizations. One way to achieve data approximation is
to decompose the data into a more compact and compressed represen-
tation. The general idea of a compact data representation is to express
a dataset by a set of bases, which are used to reconstruct the dataset to
its approximation when needed (see Fig. 1). Precisely speaking, a set
of bases usually consists of the actual bases and coefficients describ-
ing the relationship between the original data and the actual bases.
Typically, such bases sets constitute less data than the original dataset,
capture the most significant features, and, moreover, describe the data
in a format that is convenient/appropriate for adaptive data loading.
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Fig. 1. Compact data representation for a 3rd -order tensor A (a volume)
by bases and coefficients that can be used to reconstruct the data to its
approximation Ã at run-time.

Bases for compact data representation can be classified into two dif-
ferent types: pre-defined and learned bases. Pre-defined bases com-
prise a given function or filter, which is applied to the dataset without
any a priori knowledge of the correlations in the dataset. In contrast,
learned bases are generated from the dataset itself. Established ex-
amples of pre-defined bases are the Fourier transform (FT) and the
Wavelet transform (WT). Well-known examples of learned bases are
the PCA or the SVD. Using pre-defined bases is often computationally
cheaper, while using learned bases requires more computing time (to
generate the bases), but potentially removes more redundancy from a
dataset.
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Generally, PCA-like methods are able to extract the main data di-
rection of the dataset and represent the data in a different coordinate
system such that it makes it easier for the user to find the major contri-
butions within the dataset. To exploit this, PCAs higher-order exten-
sion – tensor approximation (TA) – can be used for multidimensional
datasets.

1.1 Higher-order Data Decompositions

As stated previously, the most common tools for data approximation
with learned bases are the matrix SVD and the PCA. Their higher-
order extensions are summarized under the term tensor approximation
(TA). The first occurrence of TA was in [Hit27]. The idea of multi-way
analysis, however, is generally attributed to Catell in 1944 [Cat44].
It took a few decades until tensor approximations received attention,
which was by several authors in the field of psychometrics [Tuc66,
CC70, Har70].

The matrix SVD/PCA work on 2D matrix data and exploit the fact
that the dataset can be represented with a few highly significant coef-
ficients and corresponding reconstruction vectors based on the matrix
rank reduction concept. The SVD and the PCA, being multilinear al-
gebra tools compute (a) a rank-R decomposition, and (b) orthonormal
row and column vector matrices. The extension to higher-orders is not
unique and the two properties from the SVD are captured by two dif-
ferent models that are both given the term tensor approximation: the
Tucker model [Tuc66, TBDLK87, dLdMV00a, dLdMV00b, KB09]
preserves the orthonormal factor matrices while the CP model (from
CANDECOMP [CC70] and PARAFAC [Har70]) preserves the rank-R
decomposition.

Generally speaking, a tensor is a term for a higher-order general-
ization of a vector or a multidimensional array. In TA approaches, a
multi-dimensional input dataset in array form, i.e., a tensor, is factor-
ized into a sum of rank-one tensors or into a product of a core tensor
(coefficients that describe the relationship to input data) and matrices
(bases), i.e., one for each dimension. This factorization process is gen-
erally known as tensor decomposition, while the reverse process of the
decomposition is the tensor reconstruction.

Tensor decompositions have been widely studied in other fields
and were reviewed [Mor04, KB09, dL09] and summarized [SBG04,
Kro08]. Since TA was emerging from different disciplines, it was
developed under various names. In particular, the Tucker model is



known in the literature under multiple terms. The CP model was inde-
pendently developed under the terms CANDECOMP and PARAFAC,
therefore it is sometimes referenced with a single name. The Tucker
model takes its name from Tucker, who initially worked on the three-
mode factor analysis (3MFA), which is sometimes referred to as
the Tucker3 model. [KDL80, TBDLK87, Kro08] called it the three
mode PCA (3MPCA). Similarly the model was referenced as N-mode
PCA by [KNW86]. [dLdMV00a] captured all these previous works
and wrote down the generalization of the SVD as multilinear singu-
lar SVD, which is usually termed as higher-order SVD or HOSVD.
Thereafter, [VT02, VT04] called it N-mode SVD.

Tensor approximation has been used in many areas among which
there are applications in the domain of visualization and computer
graphics. An overview of theses is given in the next section.

1.2 TA Applications in Graphics and Visualization
TA approaches have been applied to a wide range of applica-
tion domains. Starting from psychometrics, in recent years, ten-
sor approximation has been applied to visual data. A highly stud-
ied area is TA used for image ensembles [SL01, VT02, WA04,
HCLH05, SH05, WA05, WA08, YWT∗09, MUH11] and/or TA used
for pattern recognition, e.g., [SL01, WA05, SE07, SS08, EcGG11,
LLWY12]. In (real-time) rendering, tensor decompositions have re-
cently been used as method for global illumination models, e.g.,
for bidirectional reflectance distribution functions (BRDFs) [SZC∗07,
BÖK11] or precomputed radiance transfer (PRT) [TS06, SZC∗07,
TS12]. TA, furthermore, is successfully used for bidirectional tex-
ture functions (BTFs) [FKIS02, VT04, WWS∗05, WXC∗08, RK09,
RSK12, TS12], texture synthesis [WXC∗08], time-varying visual
data [WWS∗05, WXC∗08], 3D face scanning [VBPP05], compression
in animation [Vas02, MK07, PSK∗07, WSZP07, KTMW08, MLC10,
LXPER11], and multiresolution and multiscale direct volume render-
ing [SZP10, SIGM∗11].

In this compendium, we first give a brief introduction to the singu-
lar value decomposition, before we show how the linear algebra no-
tation and definitions are extended to higher-order tensor approxima-
tion. Then, the main tensor decomposition models and their low-rank
representations, and tensor decomposition algorithms are presented.
Subsequently, the alternatives for the inverse process – the tensor re-
construction – are illustrated. Finally, we give hints on particular TA
bases properties, which can be used for scientific visualization or com-
puter graphics.

2 SINGULAR VALUE DECOMPOSITION (SVD)
The singular value decomposition (SVD) is a widely used matrix fac-
torization procedure to solve linear least-square problems. The SVD
can be applied to any square or rectangular matrix A ∈RM×N . Hence,
the decomposition is always possible. The aim of the SVD is to pro-
duce a diagonalization of the input matrix A. Since the input matrix
A is not symmetric, two bases (matrices) are needed to diagonalize A.
Therefore, the SVD produces a matrix factorization into two orthogo-
nal bases U∈RM×M and V∈RN×N and a diagonal matrix Σ∈RM×N ,
as expressed in Eq. (1) (matrix form) or Eq. (2) (summation form).

A = UΣV−1 = UΣVT (1)

amn =
P

∑
r=1

umpσpvnp (2)

The bases U and V contain orthogonal unit length vectors u j and v j,
respectively, and represent a r-dimensional column space (RM) and a
r-dimensional row space (RN ). Hence, the bases U and V are even
orthonormal, as indicated in Eq. (1), where the inverse of the matrix
V−1 equals its transpose VT. The diagonal matrix Σ contains the sin-
gular values σi, where σ1 ≥ σ2 ≥ . . .σP ≥ 0, where P=min(M,N). A
singular value and a pair of singular vectors of a square or rectangular
matrix A are a non-negative scalar σ and two non-zero vectors u j and
v j so that A ·v j = σ j ·u j or AT ·u j = σ j ·v j. The vectors u j are the left

singular vectors, and the vectors v j are the right singular vectors (see
Fig. 2). The number of non-zero singular values determines the rank
R of the matrix A.

A

σ1 σRσ2

+ · · ·+= +u1 u2 uR

vRv2v1

Fig. 2. Visualization of the summed form of the SVD as shown in Eq. (2)
– illustrating the singular values with the corresponding left and right
singular vector pairs.

The SVD can be seen as linear transformation of the orthogonal
vectors u j into the orthogonal vectors v j, where σ j is the scaling fac-
tor. In other words: singular values are used when the matrix is trans-
formed from one vector space to a different vector space.

In some applications truncated versions of the SVD are desired.
That is, only the first K singular values σ1 . . .σK and the correspond-
ing K singular vectors u1 . . .uK and v1 . . .vK are used for the recon-
struction. This approach is referred to as low-rank approximation of a
truncated SVD.

The singular value decomposition is usually represented in its com-
pact or reduced form (Fig. 3(b)). If we look at the full SVD in Fig. 3(a),
we notice that there are only P singular values, where P = min(M,N),
in the diagonal matrix Σ. Therefore, the last columns of U will be mul-
tiplied by zeros. Hence, it is more economic to use the reduced form
for computations using the SVD. For so-called low-rank approxima-
tions, even smaller decompositions are required known as partial or
truncated SVD (Fig. 3(c)) and limiting the number of singular values
to K < P. In other words, the full SVD has P singular values, the com-
pact/reduced SVD has N singular value and the truncated SVD has K
singular values.
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Fig. 3. SVD variants: (a) full SVD (P singular values, where P =
min(M,N)), (b) reduced/compact SVD (N singular values), and (c) trun-
cated SVD (K singular values).

2.1 Computing the SVD
Most frequently, the SVD is computed by using a Householder reduc-
tion to a bidiagonal matrix followed by a diagonalization using the QR
factorization (for details we refer to [PTVF92, GV96]). However, the
SVD can also be computed by using symmetric eigenvalue decompo-
sition. That means, instead of computing the SVD of A, we compute
the symmetric eigenvalue decomposition of AAT or AT A, which are



both symmetric matrices and referred to as covariances matrices of
A. In order to find the u1 . . .um, we use the symmetric matrix AAT

(Eq. (3)); in order to find the v1 . . .vn, we produce the symmetric ma-
trix AT A and decompose it as in Eq. (4). P is the number of singular
values, where P = min(M,N).

AAT = (UΣVT)(UΣVT)T = U




σ2
1

. . .
σ2

P


UT (3)

AT A = (UΣVT)T (UΣVT) = V




σ2
1

. . .
σ2

P


VT (4)

Note that UT U = I and UT = U−1, VT V = I and VT = V−1. Thus

in the example of the matrix V computation, V




σ2
1

. . .
σ2

P


VT

has the same form as an eigenvalue decomposition of a symmetric
matrix (Eq. (5)), where the symmetric matrix is AT A. The columns of
V are the eigenvectors of this matrix. The diagonal matrix produces
the squares σ2 of the singular values σ . Note, no matter with which
initial symmetric covariance matrix (AAT and AT A) we start, the non-
zero eigenvalues stay the same.

A = QΛQ−1 = QΛQT (5)

In the following, it is shown how the notation and definitions of the
linear algebra concepts are extended from the matrix SVD to higher
orders.

3 TENSOR APPROXIMATION NOTATION AND DEFINITIONS

The notation taken here is inspired by that ones of De Lathauwer et
al. [dLdMV00a], Smilde et al. [SBG04], and Kolda and Bader [KB09],
who follow the notation proposed by Kiers [Kie00]. Other standards
have been proposed as well (see [Har01] and [HH02]). To illustrate
higher-order extensions we mostly make examples of order three.

3.1 General

A tensor is a multi-dimensional array (or an N-way data array): a 0th-
order tensor (tensor0) is a scalar, a 1st -order tensor (tensor1) is a vec-
tor, a 2nd-order tensor (tensor2) is a matrix, and a 3rd-order tensor
(tensor3) is a volume. We consistently use the letter A to represent
the data. This follows the notation of, e.g., [dLdMV00a, dLdMV00b,
WWS∗05, WXC∗08, TS12]1. We use lower case letters for a scalar
a, lower case boldfaced letters for a vector a in RI1 , capital boldfaced
letters for a matrix A in RI1×I2 , and calligraphic letters for a 3rd-order
tensor A in RI1×I2×I3 (see Fig. 4).

a

I2

I1 AI1 I1 Aa

i3 = 1, . . . , I3i2 = 1, . . . , I2i1 = 1, . . . , I1

I2
I3

Fig. 4. A tensor is a multi-dimensional array: a 0th-order tensor (tensor0)
is a scalar a, a 1st -order tensor (tensor1) is a vector a, a 2nd -order tensor
(tensor2) is a matrix A, and a 3rd -order tensor (tensor3) is a volume A .

1In other areas, however, as for example in statistics, it is common to use
the letter X for the data [Kie00, KB09].

The order of a tensor is the number data directions, also referred
as ways or modes. Along a mode j, the index i j runs from 1 to IJ .
By using lower script indices for the modes, we can extend the index
scheme to any order, i.e., I1, I2, I3, I4, . . . . The ith entry of a vector a is
denoted by ai, an element (i1, i2) of a matrix A is denoted by ai1i2 , and
an element (i1, i2, i3) of a 3rd-order tensor A is denoted by ai1i2i3 .

The general term fibers is used as a generalization for vectors taken
along different modes in a tensor (see Fig. 5). A fiber is defined by
fixing every index but one. A matrix column is a mode-1 fiber and a
matrix row is a mode-2 fiber. 3rd-order tensors have column, row, and
tube fibers, denoted by ai1 ,ai2 , and ai3 , respectively. Sometimes, fibers
are called mode-n vectors.

(a) rows ai1 (b) columns ai2 (c) tubes ai3

Fig. 5. Fibers of a tensor3 A .

Slices are two-dimensional sections of a tensor (e.g., one fixed in-
dex in a tensor3). For a 3rd-order tensor A , there are, for example,
frontal, horizontal, and lateral slices, denoted by Ai1 ,Ai2 , and Ai3 , re-
spectively, (see Fig. 6).

(a) frontal slices
Ai3

(b) horizontal
slices Ai1

(c) lateral slices
Ai2

Fig. 6. Slices of a tensor3 A .

For computations, a tensor is often reorganized into a matrix
what we denote as tensor unfolding (sometimes called matricization).
There are two main unfolding strategies, backward cyclic unfold-
ing [dLdMV00a] and forward cyclic unfolding [Kie00] (see Fig. 7).
An unfolded tensor in matrix shape is denoted with a subscript in
parentheses, e.g., A(n).

3.2 Computing with Tensors
Here, the most common products used while computing with tensors
are outlined. The notation taken here is mostly taken from [KB09] and
follows the notations proposed by Kiers [Kie00]. Some notations are,
however, taken from [dL09] and [SBG04].

• An Nth-order tensor is defined as A ∈ RI1×I2×···×IN .

• The tensor product is denoted here by ⊗: however, other sym-
bols are used in the literature, too. For rank-one tensors, the
tensor product corresponds to the vector outer product (◦) of N
vectors b(n) ∈ RIn and results in an Nth-order tensor A . The
tensor product or vector outer product for a 3rd-order rank-one
tensor is illustrated in Fig. 8: A = b(1) ◦ b(2) ◦ b(3), where an
element (i1, i2, i3) of A is ai1i2i3 = b(1)i1 b(2)i1 b(3)i3 .

• The inner product of two same-sized tensors A ,B ∈
RI1×I2×···×IN is the sum of the products of their entries, i.e.,
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(b) forward cyclic unfolding [Kie00]

Fig. 7. Backward vs. frontal unfolding of a tensor3.
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Fig. 8. Three-way outer product for a rank-one tensor3 A = b(1) ◦b(2) ◦
b(3).

Eq. (6).

(A ,B) =
I1

∑
i1=1

I2

∑
i2=1

. . .
IN

∑
iN=1

ai1,i2,...iN bi1,i2,...iN (6)

• The n-mode product [dLdMV00a] multiplies a tensor by a matrix
(or vector) in mode n. The n-mode product of a tensor B ∈
RI1×I2×···×IN with a matrix C∈RJn×In is denoted by B×n C and
is of size I1×·· ·× In−1× Jn× In+1×·· ·× IN . That is, element-
wise we have Eq. (7).

(B×n C)i1...ın−1 jnin+1...iN =
In

∑
in=1

bi1i2...iN · c jnin (7)

Each mode-n fiber is multiplied by the matrix C. The idea can
also be expressed in terms of unfolded tensors (reorganization of
tensor into a matrix; see Sec. 3.1).

A = B×n C⇔ A(n) = CB(n) (8)

The n-mode product of a tensor with a matrix is related to a
change of basis in the case when a tensor defines a multilinear
operator [KB09]. The n-mode product is the generalized operand
to compute tensor times matrix (TTM) multiplications, as illus-
trated in Fig. 17.
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(a) TTM of a tensor3
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I1 · I2
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(b) TTM of an unfolded tensor3

Fig. 9. Tensor times matrix (TTM) multiplication.

• The Hadamard product (∗) is the element-wise product between
two matrices A ∈ RI×J and B ∈ RI×J of the same size (see
Eq. (9)).

A∗B =




a11b11 . . . a1Jb1J
...

. . .
...

aI1bI1 . . . aIJbIJ


 (9)

• The Kronecker product (⊗) multiplies two matrices A ∈ RI×J

and B ∈ RK×M block-wise as in Eq. (10), while the resulting
matrix A⊗B is of size (IK× JM). The Kronecker product (⊗)
is denoted by the same operator as the outer product and is a
generalization of the vector outer product to matrices. The Kro-
necker product is in fact a special case of the tensor product, but
not every tensor product is a Kronecker product [Bur95].

A⊗B =




a11B . . . a1JB
...

. . .
...

aI1B . . . aIJB


 (10)



• The Khatri-Rao product (�) [SBG04] is denoted as a column-
wise Kronecker product. The resulting matrix A�B is of size
(IJ)×K for the two matrices A ∈ RI×K and B ∈ RJ×K (see
Eq. (11)).

A�B =
[
a1⊗b1 a2⊗b2 . . . aK ⊗bK

]
(11)

Note: If a and b are vectors, then the Khatri-Rao and Kronecker
products are identical, i.e., a⊗b = a�b.

• The Moore-Penrose inverse [Moo20, Pen55] is a generalized ma-
trix pseudo inverse A+ ∈RI×J , which works for rectangular ma-
trices A ∈ RI×J . There are other matrix pseudo inverses; how-
ever, here the robust and SVD-based Moor-Penrose inverse is
used: A+ = UΣ+VT , where Σ+ represents the pseudo inverse of
Σ as in Eq. (1) of the SVD.

• The norm of a tensor A ∈ RI1×I2×···×IN is defined analogously
to the matrix Frobenius norm ‖A‖F and is the square root of the
sum squares of all its elements, i.e., Eq. (12).

‖A ‖F =

√√√√
I1

∑
i1=1

I2

∑
i2=1

. . .
IN

∑
iN=1

a2
i1,i2,...iN (12)

3.3 Rank of a Tensor

In order to describe the definitions of the tensor rank, the definition for
the matrix rank is recaptured. The matrix rank of a matrix A is defined
over its column and row ranks, i.e., the column and row matrix rank
of a matrix A is the maximal number of linearly independent columns
and rows of A, respectively. For matrices, the column rank and the row
rank are always equal and, a matrix rank is therefore simply denoted as
rank(A). A tensor rank is defined similarly to the matrix rank. How-
ever, there are differences. In fact, the extension of the rank concept
is not uniquely defined in higher-orders. The definitions for the tensor
ranks are taken from [dLdMV00a].

• The n-rank of a tensor A , denoted by Rn = rankn(A ), is the
dimension of the vector space spanned by mode-n vectors, where
the mode-n vectors of A are the column vectors of the unfolding
A(n), and rankn(A ) = rank(A(n)). Unlike matrices, the n-ranks
of a tensor are not necessarily the same.

• A higher-order tensor has a multilinear rank
(R1,R2, . . . ,RN ) [Hit27] if its mode-1 rank (row vectors),
mode-2 rank (column vectors) until its mode-N rank are equal
to R1,R2, . . . ,RN , e.g., a multilinear rank-(R1,R2,R3) for a
3rd-order tensor.

• A rank-one tensor is an N-way tensor A ∈ RI1×I2×···×IN under
the condition that it can be expressed as the outer product of N
vectors, as in Eq. (13) (see also [Kru89, CM96]). A rank-one
tensor is also known under the term Kruskal tensor.

A = b(1) ◦b(2) ◦ · · · ◦b(N) (13)

• The tensor rank R= rank(A ) is the minimal number of rank-one
tensors that yield A in a linear combination (see [Kru89, CM96,
dLdMV00a, KB09]). Except for the special case of matrices,
the tensor rank is not necessarily equal to any of its n-ranks. It
always holds that Rn ≤ R.

Now that the basic notation and definitions with tensor approxima-
tion algebra is given, the possible factorizations into tensor decompo-
sitions models are summarized next.

4 TENSOR DECOMPOSITIONS

In general, in tensor decompositions an input tensor A ∈RI1×I2×···×IN

is decomposed into a set of factor matrices U(n) ∈ RIn×Rn and coef-
ficients that describe the relationship/interactivity between A and the
set of U(n).

Historically, as seen earlier, tensor decompositions are a higher-
order extension of the matrix SVD/PCA. The nice properties of the
matrix SVD, i.e., rank-R decomposition and orthonormal row-space
vectors and column-space vectors, do not extend uniquely to higher
orders. The rank-R decomposition can be achieved with the so-called
CP model, while the orthonormal row and column vectors are pre-
served in the so-called Tucker model. An extensive review of the two
models and further hybrid models can be found in [KB09]. Here, we
outline the two most common models, the Tucker model and the CP
model. Hybrid models are mentioned only briefly.

4.1 Tucker Model
The Tucker model is a widely used approach for tensor decomposi-
tions. As given in Eq (14), any higher-order tensor is approximated by
a product of a core tensor B ∈ RR1×R2×···×RN and its factor matrices
U(n) ∈RIn×Rn , where the products×n denote the n-mode product (see
Sec. 3.2) between the tensor and the matrices. This decomposition can
later be reconstructed to its approximation Ã . The missing informa-
tion of the input tensor A that cannot be captured by Ã is denoted
with the error ε . The Tucker decomposition is visualized for a 3rd-
order tensor in Fig. 10. Alternatively, a Tucker decomposition can be
expressed as a sum of rank-one tensors (Eq. (15) and Fig. 11).

A = B×1 U(1)×2 U(2)×3 · · ·×N U(N)+ e (14)

U(3)U(1) U(2)I1 I2I1

I2 I3

I3

R1 R2 R3

R1

R2
R3

B= e+A

Fig. 10. Tucker tensor3: A = B×1 U(1)×2 U(2)×3 U(3) + e.
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. . .
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∑
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r1 ◦u(2)r2 ◦ · · · ◦u(N)

rN + e (15)
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Fig. 11. Tucker tensor3 as a sum of rank-one tensors: A =

∑
R1
r1=1 ∑

R2
r2=1 ∑

R3
r3=1 br1r2r3 ·u

(1)
r1 ◦u(2)r2 ◦u(3)r3 + e.

The column vectors of the factor matrices U(n) ∈RIn×Rn are usually
orthonormal and can be thought of as principal components Rn in each
mode n [KB09]. The core tensor B ∈RR1×R2×···×RN represents a pro-
jection of the original data A ∈ RI1×I2×···×IN onto its factor matrices
and is always of the same order as the input data. The core tensor is
computed in general, as shown in Eq. (16), and for orthogonal factor
matrices as in Eq. (17) (see Fig. 12). The element-wise core tensor
computation is denoted in Eq. (18). In other words, the core tensor



coefficients br1r2...rN show the relationship or interactivity between the
Tucker model and the original data.

B = A ×1 U(1)(−1)×2 U(2)(−1)×3 · · ·×N U(N)(−1)
(16)

B = A ×1 U(1)T ×2 U(2)T ×3 · · ·×N U(N)T
(17)

B =
I1

∑
i1=1

I2

∑
i2=1

. . .
IN

∑
iN=1

ai1i2...iN ·u
(1)
i1

T
◦u(2)i2

T
◦ · · · ◦u(N)

iN

T
(18)
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Fig. 12. Forward cyclic tensor times matrix (TTM) computation af-
ter [Kie00] in order to produce the core tensor B: n-mode products
along the three modes.

The Tucker decomposition is not unique, which means that we can
modify the core tensor B without affecting the model fit as long as we
apply the same changes to the factor matrices (so-called core tensor
rotations). This provides the option to rearrange the core tensor such
that, for example, more values are zero. For details see [KB09].

4.2 CP Model
The parallel factor analysis (PARAFAC) or the canonical decompo-
sition (CANDECOMP), called CP in short, factorizes a tensor into
a sum of R rank-one tensors. Hence, a tensor A ∈ RI1×I2···×IN can
be rank decomposed as a sum of R rank-one tensors as in Eq. (19).
An example of a 3rd-order CP decomposition is illustrated in Fig. 13.
Note: The column vectors of the matrices in Eq. (19) are normalized,
which yields a weighting factor λr for each term. The information not
captured by the CP model is represented with the error ε .

A =
R

∑
r=1

λr ·u(1)r ◦u(2)r ◦ · · · ◦u(N)
r + e (19)
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A e+=

Fig. 13. CP tensor3, sum of rank-one tensors: A = ∑
R
r=1 λr ·u(1)r ◦u(2)r ◦

u(3)r + e.

The CP model is in fact a special case of the Tucker model. The
vector containing the λ -values can be arranged as the super-diagonal
of a Tucker core tensor with R diagonal values, while the rest of the
core tensor is zero (see Fig. 14). In contrast to the Tucker model,
the CP model is unique under certain constraints (see [KB09]). In
this context, uniqueness means that the current CP model is the only
possible combination of rank-one tensors that sums to Ã . However,
permutation freedom and scaling is still possible.
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Fig. 14. CP tensor3 visualized as a Tucker tensor3.

4.3 Other Models
There are a number of other models, mostly some hybrid forms of the
CP model and the Tucker model. One such model is the so-called
block-diagonal tensor decomposition by [DL08a, DL08b, dLN08],
which produces a super-diagonal of P core tensor with zeros except
for the blocks forming the diagonal, as illustrated in Fig. 15. Other
hybrid models can be found in the extensive review by [KB09].
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Fig. 15. Block-diagonal tensor3.

Often, we are interested in compact models, which enable a com-
pression of the input dataset. For example, after computing a Tucker
decomposition the core tensor B has the same size as the original in-
put dataset A and all the factor matrices are quadratic. However, we
are more interested in light-weight, approximative Tucker decompo-
sitions, where B is an element of RR1×R2×R3 with R1 < I1, R2 < I2
and R3 < I3. Using so-called rank-reduced tensor decompositions or
truncated tensor decompositions one can directly obtain more com-
pact decompositions. Furthermore, the rank-reduced decompositions
are usually better in terms of the difference between approximated and
original data [KB09]. In the next section, the tensor rank approxima-
tions corresponding to the Tucker model and the CP model are defined.

5 TENSOR RANK REDUCTION

As seen in Sec. 3.3, the extension of the matrix rank concept to higher
orders is not unique. There are two main directions followed, which
are based on either a rank-one, i.e., a rank-R tensor decomposition
or a rank-(R1,R2, . . . ,RN ) tensor decomposition. Their rank-reduced
approximations are defined accordingly:

i). A rank-one approximation is defined as Ã = λ ·u(1) ◦u(2) · · · ◦
u(N) from the rank-one tensor (vector) product (◦) of its basis vec-
tors u(n) ∈RIn and the scalar λ . Hence a tensor A can be approx-
imated by a linear combination of rank-one approximations as in



Eq. (20). This approximation, previously defined as a CP model,
and is called a rank-R approximation.

Ã ≈
R

∑
r=1

λr ·u(1)r ◦u(2)r ◦ · · · ◦u(N)
r (20)

ii). Alternatively, a rank-(R1,R2, . . .RN) approximation of A is
formulated as a decomposition into a lower-rank tensor Ã ∈
RI1×I2···×IN with rankn(Ã ) = Rn ≤ rankn(A ). The approximated
tensor is the n-mode product ×n of factor matrices U(n) ∈ RIn×Rn

and a core tensor B ∈RR1×R2···×RN in a given reduced rank space
(Eq. (21)). This rank-(R1,R2, . . .RN) approximation was previ-
ously introduced as the Tucker model.

Ã ≈B×1 U(1)×2 U(2)×3 · · ·×N U(N) (21)

In general a rank-reduced approximation is sought such that the
least-squares cost function in Eq. (22) is minimized.

Ã = argmin(Ã )
∥∥∥A − Ã

∥∥∥
2

(22)

The notation of the different rank-approximations becomes interesting
for compression approaches. Given that (R1,R2, . . .RN ) or R are suf-
ficiently smaller than the initial lengths (I1, I2, . . . , IN ), the coefficients
Λ ∈ RR or B ∈ RR1×R2×···×RN and the factor matrices U(n) ∈ RIn×Rn

lead to a compact approximation of Ã of the original tensor A . In
particular, the multilinear rank-(R1,R2, . . .RN) is typically explicitly
chosen to be smaller than the initial ranks in order to achieve a com-
pression on the input data. In contrast, the CP model often needs
larger factor matrices, where often Rn � In is necessary to represent
the dataset (see Fig. 14).

5.1 Choosing Principal Components
In tensor approximation, we would like to make use of selecting ma-
jor components from the decomposition, as similarly known from the
matrix PCA. That is, by eliminating the higher-ranked principal com-
ponents and their basis vectors, we preserve the most important di-
rections/structures in the dataset. In other words, we reconstruct the
major components of the original datasets, but details are missing.
These details can be added by progressively reconstructing more and
more principal components to the approximated form of the original
dataset. In practice, many of the insignificant principal components or
their basis vectors are very low or close to zero, i.e., they are negligi-
ble. Typically, the first couple of principal components already define
most of the total variability within a dataset. For data approximation
techniques, we therefore often use only a certain number of principal
components and their basis vectors to represent a dataset, i.e., we work
with a reduced set of singular values σs and truncated factor matrices
(see Sec. 2). Correspondingly, a rank-reduced or truncated tensor de-
composition is desired.

5.2 Truncated Tensor Decompositions
Similar as to matrix PCA, tensor rank reduction can be used to gen-
erate lower-rank reconstructions Ã of A . The tensor rank parameter
Rn is responsible for the number of TA coefficients and bases that are
used for the reconstruction and hence is responsible for the approxi-
mation level. In higher orders, the CP decomposition produced from
an alternating least squares (ALS) algorithm (see Sec. 6), is not rank-
reducible per se. The ex post truncation of the Tucker decomposition,
however, is possible due to the all-orthogonality property of the core
tensor.

For a 3rd-order tensor, all-orthogonality means that the different
horizontal matrices of the core B (the first index i1 is kept fixed, while
the two other indices, i2 and i3, are free) are mutually orthogonal with
respect to the scalar product of matrices (i.e., the sum of the prod-
ucts of the corresponding entries vanishes). The same holds for fixed

indices i2 and i3 (see [dLdMV00a]). Therefore, given an initial rank-
(R1,R2,R3) Tucker model, we can progressively choose lower ranks
Kn < Rn for reduced quality reconstruction. As indicated in Fig. 16 on
the example of the Tucker model, the rank indicates how many factor
matrix columns and corresponding core tensor entries are used for the
reconstruction. From that, we conclude that there are basically two
ways to go: (1) either start with the desired rank reduction as initially
described or (2) subsequently or progressively truncate the given de-
composition.
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I3
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K1 K2 K3

I1

K1
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B
�A U(1)

K1 U(2)
K2 U(3)

K3

Fig. 16. Illustration of a rank reduced Tucker tensor reconstruction: A
reduced range of factor matrix columns with corresponding fewer core
tensor entries reconstructs a lower quality approximation but at full res-
olution.

As in the matrix PCA case, a small Rn corresponds to a low-rank
Tucker tensor approximation (many details removed) and a large Rn
corresponds to an approximation matching the original more closely.
The ordering of the coefficients in the core tensor is not strictly de-
creasing as in the matrix SVD case the singular values are; however,
in practice, it can be shown that progressive tensor rank reduction in
the Tucker model works well for adaptive visualization of the data at
different feature scales.

The algorithms to compute such rank-reducible tensor decomposi-
tions are summarized in the next section.

6 TENSOR DECOMPOSITION ALGORITHMS

There are a couple of different strategies for how to perform tensor
decompositions or rank approximations. The most popular and widely
uses group of algorithms belongs to the alternating least squares
(ALS) algorithms. The other group of algorithms used various New-
ton methods. The respective algorithms differ also for the computation
of the CP model and the Tucker model.

For the Tucker model, the first decomposition algorithms used were
a simple higher-order SVD (HOSVD) (see [dLdMV00a]), the so-
called Tucker1 [Tuc66], a the three-mode SVD. However, the trun-
cated decompositions of higher orders are not optimal in terms of
best fit, which is measured by the Frobenius norm of the difference.
Starting from an Tucker1 (or HOSVD) algorithm, tensor approxima-
tion ALS algorithms [KDL80, Kro83] were developed, where one
of the first Tucker ALS was the so-called TUCKALS [TBDLK87].
Later various optimizations accelerated [AB98] or optimized the ba-
sic TUCKALS. The higher-order orthogonal iteration (HOOI) algo-
rithm [dLdMV00b] is an iterative algorithm to perform a better fit for
a truncated HOSVD version.

Newton methods are used for the Tucker decomposition or rank-
(R1,R2, . . . ,RN ) approximation as well. They typically start with an
HOOI initialization and then converge faster to the final point. [ES09]
developed a Newton-Grassman optimization approach, which takes
much fewer iterations than the HOOI - even though one single iteration
is more expensive due to the computation of the Hessian. While the
HOOI is not guaranteed to converge, the Newton-Grassmann Tucker
decomposition is guaranteed to converge to a stationary point. An-
other Newton method was proposed by [IDLAVH09], who developed
a differential-geometric Newton algorithm with a fast quadratic con-
vergence of the algorithm in a neighborhood of the solution. Since
this method is not guaranteed to converge to a global maximum, they
support the method by starting with an initial guess of several HOOI
iterations, which increases the chances of converging to a solution.



For the CP model, one question addressed is how to find the
number of rank-one tensors: CORCONDIA [BK03] is an algorithm
that performs a consistency diagnostic to compare different numbers
of components. For a fixed number of components, there is a CP
ALS algorithm, which was presented in the two original CP arti-
cles [CC70, Har70]. [ZG01] proposed to use incremental rank-one
fitting procedures, which first fit the original tensor by a rank-one ten-
sor, then subtract the rank-one approximation from the original and
fit the residue with another rank-one tensor until a certain given num-
ber of F incremental rank-one approximations have been performed.
They propose a Jacobi Gauss-Newton (JGN) iteration to execute the
incremental rank-one approximations.

In the following, the basic HOSVD algorithm and the widely used
ALS algorithms to produce the Tucker model and the CP model are
explained.

6.1 HOSVD Algorithm
The HOSVD or multilinear SVD [dLdMV00a], which is a higher-order
generalization of the SVD, is a basic algorithm that is used to compute
the different tensor decomposition models. The idea of the HOSVD
is to compute a matrix SVD along every mode of the input tensor
A ∈ RI1×I2×···×IN . To achieve this, the tensor A is unfolded along
every mode n to its matrix representation A(n), as shown in Fig. 7.
Then a matrix SVD is computed on the unfolded matrix A(n). The Rn

leading left singular vectors are chosen as the basis U(n) ∈ RIn×Rn for
the mode n. As shown in Alg. 1, this procedure is repeated for every
mode n.

Algorithm 1 HOSVD along every mode n.
1: for every mode n of N do
2: unfold A ∈ RI1×I2×···×IN into its matrix representation A(n) ∈

RIn×(I1·····In−1 ·In+1 ·····IN )

3: compute the matrix SVD A(n) = U(n)ΣV(n)T

4: set the Rn leading left singular vectors to the mode-n basis U(n) ∈RIn×Rn

5: end for

6.2 ALS Algorithms
Alternating least-squares algorithms are used to find parameters of a
model, which corresponds to an optimization problem. In particu-
lar, if no closed-form solutions to problems are available, iterative
algorithms that gradually improve the estimates and converge to the
optimum solution are used. The tensor ALS produces a tensor de-
composition consisting of N basis matrices U(1...N) and coefficients
representing the relationship between the input tensor and the basis
matrices (see Sec. 4). The general idea with the multiway/tensor ALS
algorithms is to fix all basis matrices but one and optimize only for
U(n). By fixing all bases but one, the optimization problem is reduced
to a linear least squares problem. This procedure is repeated for ev-
ery mode-n basis. One iteration step comprises the optimization of all
bases individually. The improvement of the solution is measured af-
ter each iteration by a predefined set of convergence/stopping criteria,
which decides if the current fit is considered to be the best fit.

Often it is difficult to define the stopping criteria [Kro08]. In or-
der to have a termination of the algorithm, a maximum number of
iterations should be set since ALS algorithms typically suffer from
converging neither to a global maximum nor a stationary point. It is,
however, possible that we only arrive at a local maximum instead of a
global one, e.g., by performing many small steps. Likewise, the defi-
nition of some restrictions on the step size should be considered (e.g.,
larger steps at the beginning, smaller ones towards the end). Generally,
it can be said that the more structure there is in the dataset, the greater
the chance that a global optimum can be reached. This means that one
of the ALS convergence criteria is the maximum number iterations al-
lowed. The number of iterations needed also depends on the goodness
of the initial starting point, called the initial guess. Common solutions
are to start either with a random initial guess or with the HOSVD ini-
tial guess. Nevertheless, we could end up with multiple solutions by

choosing different initial guesses. Another typical convergence crite-
rion is the so-called fit, which basically computes the differences of the
least-squares cost function Eq. (22). That is, in tensor approximation,
the norm of the tensor decomposition is compared to the norm of the
original data. If this difference changes, i.e., the improvement of the
fit from the last step is below a certain threshold, the ALS algorithm
exits after the current iteration.

In the following, we describe the two ALS algorithms selected
by [dLdMV00b]: HOOI for the Tucker ALS and HOPM for the CP
ALS. However, we would like to mention that many other authors have
come up with variants of the ALS algorithms, and these can be looked
up in [KB09].

6.3 Tucker ALS
Given an Nth-order tensor A ∈RI1×I2×···×IN the optimization problem
to be solved for Ã

def
=B×1 U(1)×2 · · ·×N U(N) is the minimization of

the least-squares cost function Eq. (22). This problem can be turned
into a maximization problem (Eq. (23)) in order to get a maximized ba-
sis matrix U(n) along mode n (details see [AB98, dLdMV00b, KB09]).
The maximization problem is implemented in the HOOI ALS as de-
scribed in Alg. 2. Both, the formula and the algorithm are given for
orthogonal basis matrices, where U(n) ∈ RIn×Rn . In the case of non-
orthogonal basis matrices, each matrix transpose has to be replaced by
a matrix inverse.

max
U(n)

∥∥∥A ×1 U(1)T ×2 U(2)T · · ·×N U(N)T∥∥∥ (23)

In fact, [dLdMV00b] show that we can substitute the minimization
problem for orthonormal bases such that Eq. (24) holds, which is used
in line 13 in Alg. 2.

argmin(Ã ) = ‖A ‖2−‖B‖2 (24)

Algorithm 2 The higher-order orthogonal iteration:
HOOI(A ,R1,R2, . . . ,Rn).
1: init basis matrices U(n) (random, HOSVD)
2: compute max norm ‖A ‖F
3: set fit change tolerance: 1.0e−4
4: set max number of iterations: typically, we use 10
5: while fit change greater than tolerance AND max number of iterations not

reached do
6: fitold = fit
7: for mode n = 1,2,3, . . . ,N do
8: optimize mode n: P ← A ×1 U(1)T · · · ×n−1 U(n−1)T ×n+1

U(n+1)T · · ·×N U(N)T

9: compute new basis matrix: U(n)← HOSV D(P(n))
10: end for
11: compute core: B = P×N U(N)

12: compute Frobenius norm on current core tensor: ‖B‖F

13: compute norm residual: ‖Aδ ‖F =
√
‖A ‖2

F −‖B‖2
F

14: compute fit: 1− ‖Aδ ‖F
‖A ‖F

15: compute fit change: | f itold− f it|
16: end while

6.4 CP ALS
For a CP-ALS, the least-squares problem to be solved can be
described as follows [dLdMV00b]: Given a real Nth-order ten-
sor A ∈ RI1×I2×···×IN , find a scalar λ and unit-norm vectors
U(1),U(2), . . . ,U(N) such that the rank-one tensor Ã

def
= λ ·U(1) ◦U(2) ◦

· · · ◦U(N) minimizes the least-squares cost function Eq. (22) over the
manifold of rank-one tensors. In other words, a rank-one approxima-
tion is defined as minimization of the distance between the given ten-
sor and its approximation on the rank-one manifold. In [dLdMV00b]
they show that this is equivalent to the maximization of the norm of



the projection of the original tensor onto the rank-one manifold. The
actual computation of the CP tensor approximation is performed by
the HOPM ALS, as described in Alg. 3. Note: The norm of the∥∥∥Ã

∥∥∥
F

(Alg. 3, line 12) can be approximated by computing ‖A ‖2
F ,

adding the squared norm of the Kruskal tensor, subtracting twice the
inner product of the Kruskal tensor, and taking the square root of
it (see [KB09, BK∗12]). This approach saves significant computing
time.

Algorithm 3 The higher-order power method: HOPM(A ,R).

1: init basis matrices U(n) (random, HOSVD)
2: compute max norm ‖A ‖F
3: set fit change tolerance: 1.0e−4
4: set max number of iterations: typically, we use 50−100
5: while fit change greater than tolerance AND max number of iterations not

reached do
6: fitold = fit
7: for mode n = 1,2,3, . . . ,N do
8: optimize mode n: V ← U(1)T U(1) ∗ · · · ∗ U(n−1)T U(n−1) ∗

U(n+1)T U(n+1) ∗ · · · ∗U(N)T U(N)

9: compute new basis matrix: U(n) ← A(n)(U(N) � ·· · � U(n+1) �
U(n−1)�·· ·�U(1))V+

10: normalize new U(n) (norm becomes λ )
11: end for
12: compute norm residual: ‖Aδ ‖F =

∥∥∥Ã
∥∥∥

F

13: compute fit: 1− ‖Aδ ‖F
‖A ‖F

14: compute fit change: | f itold− f it|
15: end while
16: sort decomposition

The described HOOI ALS and HOPM ALS produce tensor ap-
proximations for either a given rank R or a given multilinear rank
(R1,R2, . . .RN ), respectively. In particular, for the Tucker model rank-
reduced approximations are often desired in order to compress the
amount of data, while in the CP model the number of chosen ranks
is an important factor as well, as described in the previous section.
In fact, we can distinguish, for the CP decomposition, between algo-
rithms that directly compute a rank-R decomposition and algorithms
that incrementally compute rank-one decompositions [ZG01]. In the
latter approach some computationally expensive steps can be skipped;
however, the reconstruction step used for the incremental approach is
expensive as well.

After having introduced the concepts for (rank-reduced) tensor de-
compositions, we look at the possible reconstruction approaches. In
fact, it is critical to choose the appropriate reconstruction approach in
order to achieve a real-time reconstruction for interactive visualization.

7 TENSOR RECONSTRUCTION

The tensor reconstruction of a reduced-rank tensor decomposition can
be achieved in different ways. One alternative is a progressive recon-
struction: Each entry in the (superdiagonal) core tensor B is consid-
ered as weight for the outer product between the corresponding col-
umn vectors in the factor matrices. This looks like Eq. (25) for the
Tucker reconstruction and Eq. (20) for the CP reconstruction.

Ã ≈
R1

∑
r1=1

R2

∑
r2=1

. . .
RN

∑
rN=1

br1r2...rN ·u
(1)
r1 ◦u(2)r2 ◦ · · · ◦u(N)

rN (25)

This reconstruction strategy corresponds to reconstructing rank-one
tensors and cumulatively summing them up. The weighted “subten-
sors” then form the approximation Ã of the original data A . In par-
ticular for the Tucker model, this is an expensive reconstruction strat-
egy since it involves multiple for-loops to run over all the summations,
which typically slows down the computing time.

7.1 Element-wise Reconstruction

Another approach, is to reconstruct each element of the approximated
dataset individually, which we call element-wise reconstruction ap-
proach. Each element ãi1i2i3 is reconstructed, as shown in Eq. (26) for
the Tucker reconstruction, and as shown in Eq. (27) for the CP recon-
struction. For the Tucker model that is: All core coefficients multiplied
with the corresponding coefficients in the factor matrices are summed
up (weighted sum). Similarly, this applies for the CP model expect
that we have only diagonal core coefficients or λ ’s as they are usually
called.

ãi1i2...iN ≈ ∑
r1r2...rN

br1r2...rN ·u
(1)
i1r1
·u(2)i2r2

· · · · ·u(N)
iN rN

(26)

ãi1i2...iN ≈
R

∑
r=1

λr ·u(1)i1r ·u
(2)
i2r · · · · ·u

(N)
iN r (27)

The element-wise reconstruction can be beneficial for applications
where only a sparse amount of reconstructed elements are needed.

7.2 Optimized Tucker Reconstruction

A third reconstruction approach – applying only to the Tucker recon-
struction – is to build the n-mode products along every mode, which
leads to a tensor times matrix (TTM) multiplication for each mode,
e.g., TTM1 along mode 1, (see Eq. (8)). This is analogous to the
Tucker model given by Eq. (21). In Fig. 17 we visualize the TTM
reconstruction applied to a 3rd-order tensor using n-mode products.
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Fig. 17. Forward cyclic TTM multiplications after [Kie00] along the three
modes (n-mode products).

Given the fixed cost of generating a I1× I2× I3 grid, the computa-
tional overhead factor varies from cubic rank complexity R1 ·R2 ·R3
in the case of the progressive reconstruction (Eq. (25)) to a linear
rank complexity R1 for the TTM or the n-mode product reconstruction
(Eq. (26)). For example, for R = 16, the improvement to R3 = 4′096
is 256-fold.

7.3 CP Reconstruction by the Khatri-Rao Product

For completeness, an alternative CP reconstruction strategy is men-
tioned as well. That is, the CP reconstruction can be computed with
the Khatri-Rao product � (see Sec. 3.2), as in the example of a 3rd-
order tensor in Eq. (28).

Ãn ≈ U(1)(U(2)�U(3))
T

(28)

However, it is to be noted that this reconstruction strategy produces
large matrices (see Sec. 3) due to the Khatri-Rao product, which ex-
tends the matrix rows and the matrix columns to a multiple between
the rows and the columns of two matrices, respectively. Obviously,
that results in more expensive matrix-matrix multiplications.

After the general notation and concepts of TA has been introduced,
we outline next some ways to exploit specific TA bases properties for
scientific visualization applications.



8 USEFUL TA PROPERTIES FOR SCIENTIFIC VISUALIZATION

As stated in the introduction, TA is the higher-order generalization
of the matrix SVD, which exhibits the nice properties of (a) rank-R
decomposition and (b) orthonormal row-space and column-space vec-
tors. In higher orders, the orthonormal row and column vectors are
preserved in the Tucker model. The higher-order TA bases properties
can be exploited in order to steer different aspects of visualization.

The Tucker model (Sec. 4.1) consists of one factor matrix per mode
(data direction) U(n) ∈ RIn×Rn and one core tensor B ∈ RR1×R2...RN .
The core tensor B is in effect a projection of the original data A
onto the basis of the factor matrices U(n). In case of a volume, the
Tucker model has three modes, as illustrated in Fig. 10, and defines an
approximation Ã =B×1 U(1)×2 U(2)×3 U(3) of the original volume
A (using n-mode products ×n).

The row and column axes of the factor matrices represent two dif-
ferent spaces: (1) the rows correspond to the spatial dimension in the
corresponding mode, and (2) the columns to the approximation qual-
ity. Next, we show how these properties can be exploited for multires-
olution modeling (spatial selection and subsampling of rows) and mul-
tiscale approximation (rank reduction on the columns) (see Fig. 18).

1.1

1.2

Rn

In U(n)

U(n)
Jn

U(n)
↓k

2

Rn

In U(n)U(n)
Kn

Fig. 18. Factor matrix properties along the vertical axis: (1.1) spatial
selectivity, (1.2) spatial subsampling, and (2) low-rank approximation.

The next two subsections not only elaborate the spatial properties
of the TA matrices, but also illustrate how these properties can be ex-
ploited in multiresolution DVR, as a sample application in scientific
visualization.

8.1 Spatial Selectivity
For view-frustum culling and adaptive brick selection in interactive
multiresolution volume visualization, efficient access to spatially re-
stricted subvolumes is required. Since a TA factor matrix’s rows di-
rectly correspond to its spatial dimension, we can exploit this fact for
the reconstruction of a subvolume directly from the global factor ma-
trices. We first describe the spatial selection for a given fixed resolu-
tion and explain the multiresolution access in the following section.

The Tucker model defines an approximation of a volume A by the
decomposition Ã = B×1 U(1)×2 U(2)×3 U(3), and each element of
Ã is defined as

ãi1i2i3 = ∑
r1

∑
r2

∑
r3

br1r2r3 ·u
(1)
i1r1
·u(2)i2r2

·u(3)i3r3
, (29)

with factor matrix and core tensor entries u(n)inr and br1r2r3 .

Due to the correspondence of the rows of U(n) to the spatial dimen-
sion n (see Fig. 18), we can define row-index subranges Jn ⊆ [0 . . . In]
that reconstruct a well defined spatial subvolume J1× J2× J3 for the
reduced index ranges in ∈ Jn in Eq. 29. As illustrated in Fig. 19, we can
thus select and reconstruct a subvolume of the dataset by choosing a
subset of the row vectors of all factor matrices. Using these row-block
submatrices U(n)

Jn
we can formulate the subvolume reconstruction as

ÃJ1×J2×J3 = B×1 U(1)
J1
×2 U(2)

J2
×3 U(3)

J3
. (30)
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Fig. 19. Illustration of spatial selectivity within TA bases: A range of se-
lected submatrix rows reconstructs a well defined subvolume (in brown)
of the original whole dataset.

In Fig. 23 an example of two selected subvolumes (1 and 2) is il-
lustrated. For the two different subvolumes, we selected the factor
matrix row vectors corresponding to the position of the subvolume in
the input dataset.

8.2 Spatial Subsampling
For multiresolution volume visualization, we need lower resolution
subsampled and averaged representations of subvolume bricks for
view-dependent adaptive level-or-detail rendering. Due to the direct
spatial correspondence of factor-matrix rows to the spatial dimensions
as outlined above, we can apply the lower-resolution subsampling on
factor matrices before brick reconstruction from the TA representation.

Since the In rows of a factor matrix U(n) correspond to the resolu-
tion of the volume Ã in that mode, we can construct a lower-resolution
reconstruction in the n-th dimension by first merging and averaging
(pairs of) rows to get a downsampled matrix U(n)

↓1
(with In/2 rows).

This is possible because the columns of a factor matrix capture the
data variation along that dimension. Therefore, downsampling and
averaging pairs of rows corresponds to halving the reconstructed vol-
ume resolution. This downsampling of factor matrices is indicated in
Fig. 20 and corresponds to what is known as mipmapping.

level 4 level 3 level 2 level 1

U
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↓0

U
(1)
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U
(1)
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I/2 I/4 I/8

Rn

Rn

Rn
Rn

In

Fig. 20. Mipmapping of the global factor matrices: Subsampling by av-
eraging (example input data is of size 5123 and the bricks are of size
643).

Fig. 24 shows the factor matrix averaging as used for a hierarchi-
cal tensor representation and its effects on the visual reconstruction.
The top row uses standard scalar value averaging directly on the in-
put volume, while in the middle we show the direct TA of the these
subsampled datasets. In the third row we demonstrate the tensor re-
construction based on the subsampled and averaged factor matrices as
proposed. As can be seen the reconstructions are extremely close.

8.3 Orthogonality Properties Affected by Spatial Selectiv-
ity or Spatial Subsampling

The described selective usage of the factor matrices, i.e., the projection
of bricks onto submatrices, changes the energy distribution within the
core tensor. In the classical Tucker decomposition, we end up with
a core tensor having one extremely high value (hottest core value)
and many small values (that roughly follow a logarithmic distribu-
tion). In particular, the distribution of the core coefficient changes
with the usage of selective factor matrices. Furthermore, we lose the
all-orthogonality property [dLdMV00a] within the core tensor since



the subselections or subsamplings of the TA factor matrices lose their
orthogonality (in fact orthonormality). In fact, the all-orthogonality
property in the core tensor makes it possible to truncate ranks of
the tensor decomposition (similar to matrix rank reduction within an
SVD). Non-orthogonal TA factor matrices hence produce non-rank-
reducible core tensors. Therefore, it is necessary to develop a strategy
to produce all-orthogonal core tensors for multiresolution modeling
directly on the TA bases.

To solve the issue of maintaining rank-reducible core tensors, the
subspace of each row-block factor submatrix U(n)

Jn
can be re-spanned

by applying an SVD and replacing its columns with the singular vec-
tors (similar to [TS12, Sut13]). The TA matrices are then replaced and
recomposed from the re-spanned submatrices along each mode (see
Fig. 21). In that way, we are able to define rank-reducible per-brick
core tensors. Intuitively, this recomposition of the matrices can be
seen as a different representation of the same local subspaces as those
defined by the initial non-orthogonal submatrices. Jn corresponds to
the size of the subvolumes.

Jn

Jn

Jn

Jn

Jn

In

Rn Rn

SVD

SVD

SVD

SVD

U
(n)
↓k

U(n)
Jn ↓k

U(n)
Jn ↓k

U(n)
Jn ↓k

U(n)
Jn ↓k

Fig. 21. Postprocessing the mipmapped initial factor matrices in or-
der to obtain orthogonal localized row-block submatrices and thus all-
orthogonal core tensors.

To give an idea what such updated TA bases look like, we visual-
ize in Fig. 22 the factor matrices of U(1) of the scientific visualiza-
tion dataset (hazelnut). The intensity distributions look similar to fre-
quency patterns, but in fact show the input-data-specific distribution
of the TA’s data-specific factor matrix bases. Furthermore, similar to a
matrix PCA the first rank is represented by one major base frequency,
while the frequencies increase with subsequent ranks, i.e., higher fre-
quency details are encoded with additional ranks.

In
In

2
In

4
In

8

U(1)
#3U(1)

#2U(1)
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U(1)
#0

Rn
Rn

Rn
Rn
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U(1)

Fig. 22. Visualization of an initial factor matrix U(1) of the hazelnut and its
full resolution row-block SVD replacement U(1)

↓0 . Subsampled matrices

U(1)
↓k are stretched to fit and value coded: brown (negative), white (zero),

green (positive).

Until now, the modifications that can be applied to the spatial axis
of the factor matrices were explained; however, modifications along
the vertical axis can be applied as well and result in changes regarding
the approximation level.

8.4 Approximation and Rank Reduction

The Tucker model defines a rank-(R1,R2,R3) approximation, where
a small Rn corresponds to a low-rank approximation (with details re-
moved) and a large Rn corresponds to a more accurate approximation

of the original. The highest rank Rn for the initial Tucker decom-
position has to be given explicitly. However, rank reductions can be
applied after the initial decomposition (similar to the rank reduction
in matrix SVD). Even tough the core tensor coefficients are not guar-
anteed to be in decreasing order, as in matrix SVD, in practice it can
be shown that progressive tensor rank reduction in the Tucker model
works well for adaptive visualization of the data at different feature
scales.

The tensor rank Rn defines the number of coefficients and bases
used for the reconstruction, and hence is responsible for the approx-
imation level. As illustrated in Fig. 16, the rank indicates how many
factor matrix columns and corresponding core tensor entries are used
for a reconstruction. Thus, given a rank-(R1,R2,R3) Tucker model,
we can progressively choose lower ranks Kn < Rn for reduced quality
reconstruction at the same spatial resolution dictated by In.

Fig. 25 compares the progressive rank reduction from an initial
rank-(256,256,256) decomposition (bottom) to a specific fixed rank-
(R,R,R) decomposition (top) of a 5123 volume. Both reduced-rank
representations are visually similar down to the lowest ranks, which,
however, are hardly used. Fig. 25 indicate, moreover, that low-rank
tensor approximation can be used for multiscale feature visualization
or progressive image refinement.
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fer with multilinear models. ACM Transactions on Graphics 24,
3 (2005), 426–433.

[VT02] VASILESCU M. A. O., TERZOPOULOS D.: Multilinear anal-
ysis of image ensembles: TensorFaces. In Procedings in Eu-
ropean Conference on Computer Vision (May 2002), vol. 2350,
pp. 447–460.

[VT04] VASILESCU M. A. O., TERZOPOULOS D.: TensorTextures:
Multilinear image-based rendering. ACM Transactions on
Graphics 23, 3 (2004), 336–342.

[WA04] WANG H., AHUJA N.: Compact representation of multidimen-
sional data using tensor rank-one decomposition. In Proceed-
ings Pattern Recognition Conference (2004), pp. 44–47.

[WA05] WANG H., AHUJA N.: Rank-R approximation of tensors: Us-
ing image-as-matrix representation. In Proceedings IEEE Con-
ference on Computer Vision and Pattern Recognition (2005),
pp. 346–353.

[WA08] WANG H., AHUJA N.: A tensor approximation approach to
dimensionality reduction. International Journal of Computer
Vision 76, 3 (2008), 217–229.

[WSZP07] WAMPLER K., SASAKI D., ZHANG L., POPOVIĆ Z.: Dy-
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