From the SIGGRAPH 2007 conference proceedings

Isosurface Stuffing: Fast Tetrahedral Meshes with Good Dihedral Angles

Francois Labelle

Jonathan Richard Shewchuk

University of California at Berkeley

DSOS

A a9V

il
%
vl
vl
vl
vl

VN
>
AN
\ &s

ZVAVAVAY.

INANAN

NN/
4

/

\ &%

,

Figure 1: A 134,400-tetrahedron mesh produced by isosurface stuffing, with cutaway views. At the lower right is a histogram of tetrahedron
dihedral angles in 2° intervals; multiply the heights of the red bars by 20. (Angles of 45°, 60°, and 90° occur with high frequency.) The
extreme dihedral angles are 15.2° and 158.2°. This mesh took 55 seconds to generate on a Mac Pro with a 2.66 GHz Intel Xeon processor,
but the mesh generation time was only 642 milliseconds; nearly all the time was spent in the isosurface evaluation code.

Abstract

The isosurface stuffing algorithm fills an isosurface with a uni-
formly sized tetrahedral mesh whose dihedral angles are bounded
between 10.7° and 164.8°, or (with a change in parameters) be-
tween 8.9° and 158.8°. The algorithm is whip fast, numerically ro-
bust, and easy to implement because, like Marching Cubes, it gener-
ates tetrahedra from a small set of precomputed stencils. A variant
of the algorithm creates a mesh with internal grading: on the bound-
ary, where high resolution is generally desired, the elements are fine
and uniformly sized, and in the interior they may be coarser and
vary in size. This combination of features makes isosurface stuft-
ing a powerful tool for dynamic fluid simulation, large-deformation
mechanics, and applications that require interactive remeshing or
use objects defined by smooth implicit surfaces. It is the first al-
gorithm that rigorously guarantees the suitability of tetrahedra for
finite element methods in domains whose shapes are substantially
more challenging than boxes. Our angle bounds are guaranteed by
a computer-assisted proof. If the isosurface is a smooth 2-manifold
with bounded curvature, and the tetrahedra are sufficiently small,
then the boundary of the mesh is guaranteed to be a geometrically
and topologically accurate approximation of the isosurface.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Geometric algorithms

Keywords: isosurface, tetrahedral mesh generation, dihedral angle

1 Introduction

Finite element methods are the most popular techniques for numer-
ical simulation of the partial differential equations governing phys-
ical phenomena such as fluid flow, mechanical deformation, and
diffusion. Most objects worth simulating have complicated shapes.
To make them amenable to analysis, modelers decompose them
into simple shapes called elements, which commonly are tetrahedra.
The success of the finite element method depends on the shapes of
these tetrahedra—Ilarge dihedral angles cause large interpolation er-
rors and discretization errors, robbing the numerical simulation of
its accuracy [Jamet 1976; Kiizek 1992; Shewchuk 2002], and small
dihedral angles render the stiffness matrices associated with the fi-
nite element method fatally ill-conditioned [Bank and Scott 1989;
Shewchuk 2002].

Mesh generation is a famously difficult problem, in part because
of the severe difficulty of forcing a mesh to conform to objects’
sharp creases and corners without sacrificing the quality of the tetra-
hedra. Moreover, conventional mesh generators depend on Delau-
nay triangulations, iterative algorithms, or numerically sensitive ge-
ometric calculations, all of which are costly and tend to preclude
remeshing at interactive speeds.

In this paper, we show that generating a high-quality finite ele-
ment mesh is surprisingly quick and easy for bodies whose bound-
aries are smooth surfaces—or for circumstances where the modeler
is willing to round off the edges a bit (for instance, in videogames).
Our mesher is well suited for simulations that dynamically track a
smooth liquid boundary, or for modeling elasticity in organic struc-
tures such as the tissues of the body. Besides speed, it offers sure
numerical robustness and tetrahedron quality, which is particularly
reassuring for simulations that need to generate new meshes fre-
quently, perhaps even at frame rates.

Our algorithm is not heuristic; it absolutely guarantees that all
the dihedral angles of all the tetrahedra it generates are between
10.78° and 164.74°. To our knowledge, ours is the first tetrahedral

From the SIGGRAPH 2007 conference proceedings

mesh generation algorithm of any sort that both offers meaning-
ful bounds on dihedral angles and conforms to the boundaries of
geometric domains with complicated shapes. Significant provable
bounds on dihedral angles (1° or over) are virtually unheard of out-
side of space-filling or slab-filling tetrahedralizations.

We assume that the input is a continuous cut function f : R? — R
that implicitly represents the geometric domain to be stuffed with
tetrahedra, namely the point set {p : f(p) > 0}. Points where
f is negative are outside the domain, and usually should not be
meshed—though our algorithm offers the option to create compati-
ble meshes on both sides of the boundary, with a somewhat weaker
angle guarantee.

Besides high-quality tetrahedra, isosurface stuffing offers three
other guarantees, described in Section 4.2. First, every vertex on
the boundary of the mesh lies on the zero-surface {p: f(p) = 0},
presuming that the client can answer a query requesting a zero-
surface point that intersects a specified line segment. Second, any
point p sufficiently far from the zero-surface is correctly classified,
in the sense that it is inside the mesh if f(p) is positive, and outside
the mesh if f(p) is negative. (Our notion of “sufficiently far” scales
with the tetrahedron size. See Theorem 2.) The only precondition
for these two guarantees to hold is that f be continuous. The third
guarantee is that if the zero-surface is a smooth 2-manifold with
bounded curvature, and if the tetrahedra are sufficiently small, then
the boundary of the mesh is homeomorphic to the zero-surface. (We
also guarantee ambient isotopy. See Theorem 3.)

These guarantees imply that the triangles on the boundary of the
mesh collectively form an accurate approximation of the boundary
of the domain. This is important because the boundary is often
where the most interesting physics occurs, and is the part of the
domain that is most frequently rendered.

Isosurfaces are popular geometric representations in computer
graphics. They arise naturally in modeling with implicit surfaces,
and are produced by several algorithms for surface reconstruction
[Zhao et al. 2001; Ohtake et al. 2003; Shen et al. 2004]. Even
for geometric models that do not use isosurfaces, it is usually pos-
sible to compute a suitable cut function f by approximating the
signed distance function, which is the distance from a point p to the
boundary of the domain, using a negative distance for points out-
side the domain. Signed distance functions can be approximated
from geometric models or voxel data by fast marching level set
methods [Sethian 1996; Osher and Fedkiw 2002]. An algorithm
of Barentzen and Aanas [2002] for watertight triangular surface
meshes computes just the sign, which suffices for our algorithm.

Isosurface stuffing borrows ideas from the popular Marching
Cubes algorithm [Lorensen and Cline 1987], which triangulates an
isosurface (but not its interior). Marching Cubes computes f at the
vertices of a cubical grid, and processes the domain cube by cube.
When Marching Cubes processes a cube, it outputs triangles that
approximate the intersection of the isosurface with that cube. The
cubes themselves are not part of the output; they form an invisible
background grid. The output triangles are generated from a small
table of precomputed stencils. The vertices of the output triangles
depend solely on the values of f at the eight vertices of the cube,
and the choice of stencil depends solely on the signs of f at those
eight vertices.

Because our algorithm also uses stencils to generate tetrahedra,
it is blazingly fast compared to traditional mesh generation algo-
rithms based on Delaunay triangulations or advancing front meth-
ods. It is also much easier to implement—we coded our prototype
mesher for uniformly sized tetrahedra in two days. Furthermore,
our algorithm is numerically bulletproof, as its correctness does not
rely on numerically sensitive geometric predicates or any iterative
numerical procedure more delicate than using iterated bisection to
find a zero of a function of one variable.

A second version of isosurface stuffing creates meshes whose in-
terior tetrahedra are graded—they grade from largest at the core to
smallest at the surface, as Figure 1 illustrates. This option reduces
the amount of computation the finite element method expends on

the domain interior while maintaining high resolution near the sur-
face, where modeling errors are most visible. Our algorithm uses a
nonstandard octree to create a tetrahedral background grid.

Although our technique can also be used to generate fully graded
meshes (whose surface tetrahedra vary in size too), most of whose
tetrahedra have excellent quality, we are unable to guarantee dihe-
dral angles better than 1.66° degrees for the worst tetrahedra, so we
do not report details here. (But see Section 6 for an example.)

A drawback of our approach is that it does not preserve sharp
edges or corners. Guaranteed-quality mesh generation that tightly
fits sharp features (without rounding them off) has challenged re-
searchers for over two decades, and will continue to do so, be-
cause these constraints impose fundamental difficulties that ar-
guably could never be accommodated by any approach as simple
as the method we describe here. For our smooth target domains,
however, we make guaranteed-quality meshing easy.

2 Related Work

Tetrahedral mesh generation has an extensive history in both en-
gineering and computer science, so we review here only meth-
ods that share similarities with ours or have theoretical guarantees.
Octree algorithms were pioneered by Yerry and Shephard [1984].
Fuchs [1998] and Naylor [1999] proposed using the body centered
cubic (BCC) lattice and observed the high quality of its tetrahedra.
Our algorithms also use octrees and the BCC lattice.

The first provably good mesh generation algorithms—guarantee-
ing some bounds on the angles of the triangles in a two-dimensional
mesh—were the grid-based algorithm of Baker, Grosse, and Raf-
ferty [1988], the Delaunay algorithm of Chew [1989], and the
quadtree algorithm of Bern, Eppstein, and Gilbert [1994]. (We
adopt the idea of warping a background grid from Bern et al.) Anal-
ogous three-dimensional algorithms followed, but it is difficult to
guarantee that a mesh’s dihedral angles will not be arbitrarily close
to 0° or 180°. High-quality space-filling or slab-filling tetrahedral-
izations are known [Eppstein et al. 2004], but the need to conform
to domain boundaries makes meshing substantially harder.

There are nearly a dozen algorithms that provide a theoretical
guarantee on the smallest dihedral angle of any tetrahedron, us-
ing octrees [Mitchell and Vavasis 2000] or Delaunay triangulations
[Chew 1997; Cheng et al. 2000; Li and Teng 2001; Cheng and Dey
2002]. Unfortunately, these algorithms share the characteristic that
their provable bounds on dihedral angles are so small—less than
0.1° and probably less than a millionth of one degree for most of
them—that the authors don’t bother to explicitly derive the numer-
ical bounds.

Delaunay-based meshing algorithms often work well in prac-
tice, but the quality of their tetrahedra can be poor at the domain
boundary, and virtually none guarantee a meaningful dihedral an-
gle bound (e.g. 1°). The single exception is an algorithm by La-
belle [2006], also based on the BCC lattice, that creates a graded
mesh that encloses (but does not conform to) the domain bound-
ary, with all dihedral angles between 30° and 135°. That algorithm
only accommodates two kinds of constraints: a user may input a
set of points which must be vertices of the output mesh, and the
tetrahedron sizes cannot exceed a user-specified “sizing function.”

Most tetrahedral meshing algorithms take for granted that the in-
put geometry has sharp corners and edges that the output mesh must
represent precisely; this constraint introduces tremendous compli-
cations that become moot when the boundaries are smooth isosur-
faces. Implementing a robust tetrahedral mesh generator for clas-
sical input models is a year-long task, whereas our algorithms took
us days to code.

There are several prior algorithms for filling smooth surfaces
with tetrahedra. Molino, Bridson, Teran, and Fedkiw [2003] be-
gin with a BCC grid, then grade the mesh by using red-green mesh
refinement [Bey 1995] to locally adapt tetrahedron sizes as desired.
Next, they use an iterative optimization procedure to deform the
tetrahedra so that they conform to the boundary. This iterative
method is necessarily more expensive than our one-pass stencil-

From the SIGGRAPH 2007 conference proceedings

Figure 2: The body centered cubic (BCC) lattice is composed of
two staggered cubical grids of vertices. The three tetrahedra illus-
trated here (which are identical) and copies of them tile space.

based approach. Molino et al. obtain dihedral angles between 13°
and 156° for the meshes they use to illustrate their algorithm, but
they offer no guarantees.

The Delaunay refinement algorithm of Oudot, Rineau, and
Yvinec [2005] relies on a technique called sliver exudation [Cheng
et al. 2000] to remove poor tetrahedra from meshes and achieve
good dihedral angles. Edelsbrunner and Guoy [2001] demonstrate
that sliver exudation usually removes most of the bad tetrahedra
from a Delaunay mesh, but rarely all; tetrahedra with dihedral an-
gles less than 1° sometimes survive, and in most of their examples
a few dihedral angles less than 5° survive. Alliez, Cohen-Steiner,
Yvinec, and Desbrun [2005] claim (without mathematical guar-
antees) that their variational meshing algorithm produces no poor
tetrahedra in practice. Neither Oudot et al. nor Alliez et al. specify
the dihedral angles they achieve, so we cannot compare ourselves
with them on that basis.

Freitag and Ollivier-Gooch [1997] achieve results better than
Edelsbrunner and Guoy through optimization-based smoothing and
topological transformations, but again dihedral angles less than 1°
sometimes survive, and in many examples dihedral angles under
10° survive.

3 Isosurface Stuffing: Uniform Tetrahedra

The isosurface stuffing algorithm, like the Marching Cubes algo-
rithm, employs a space-tiling background grid to guide the creation
of a mesh. The body centered cubic (BCC) lattice, which describes
the structure of many crystals, is the union of two point grids,

BCC =270 (2 +(1.3.4)).

where Z? is the grid of points with integer coordinates, and Z3 +
(%, %, %) is a copy of that grid shifted so that each point falls at the
center of a cube of the original grid.

The Delaunay triangulation of these points, illustrated in Fig-
ure 2, is a tetrahedral mesh that we call the BCC grid. The BCC
grid is composed of identical tetrahedra that are of excellent quality,
having edge lengths 1 and 1/3/2, and dihedral angles 60° and 90°.
This space-filling tetrahedron was noted by Sommerville [1923].
The fact that all the BCC grid tetrahedra are identical simplifies
both implementing our algorithm and proving its correctness.

We fill a zero-surface with uniformly sized tetrahedra in four
steps. All but the third step are borrowed (with changes) from
Marching Cubes.

1. Choose a subset P of the BCC lattice. P should include ev-
ery lattice point where the cut function f is nonnegative, and
every lattice point connected by an edge of the BCC grid to a
lattice point where f is positive. Compute and store the value
of f at each lattice point in P.

2. For each edge of the BCC grid with both endpoints in P, if one
endpoint is positive (meaning “inside”) and one is negative
(meaning “outside”), then compute or approximate a cut point
where the edge crosses the zero-surface.

3. For each lattice point ¢ € P, check for the presence of cut
points on the fourteen grid edges that adjoin ¢. If one of these
cut points ¢ is too close to ¢, we say that ¢ violates g. If any
cut point violates ¢, warp the grid by moving ¢ to a cut point
that violates g. (We usually choose the nearest violating cut

Lus
ol

A

v

Figure 3: Stencils for isosurface stuffing. Vertices of the BCC grid
tetrahedra are labeled with their signs (+, —, 0). Cut points are
white, and output tetrahedra are yellow. The seven stencils in the
top row apply in all rotations and reflections, and their edges can
be matched arbitrarily with the long and short edges of the BCC
grid. For the remaining five stencils, the long edges of the BCC
grid are depicted as thick and black; the short edges are red. For the
three stencils in the bottom row (wherein the bottom long edge has
both endpoints positive), the Parity Rule applies and may require a
stencil to be reflected. The bottom five stencils apply in all rotations
and reflections (left to right or front to back) that observe the Parity
Rule and correctly match the edge colors.

point, but our guarantees do not depend on it. Technically,
q is no longer a lattice point, but we still call it one.) The
effect is to snap ¢ onto the zero-surface. Change ¢’s value
to zero. Discard all cut points on the edges adjoining ¢, be-
cause those edges no longer have both a positive endpoint and
a negative endpoint. Because we process every lattice point
in P sequentially in this manner, no cut point adjoining ¢ can
subsequently cause another lattice point to move.

4. For each BCC grid tetrahedron that has at least one vertex with
a positive value, fill the tetrahedron (which might be warped)
with a stencil of 1-3 precomputed tetrahedra. Output these
tetrahedra. Figure 3 depicts the stencils. The choice of sten-
cil depends on the signs of the four vertices of the BCC grid
tetrahedron.

We distinguish between three kinds of points and two kinds
of tetrahedra. Cut points (where BCC grid edges cross the zero-
surface) and lattice points may or may not become output vertices.
Likewise, some of the output tetrahedra that comprise the final
mesh are distinct from the BCC tetrahedra of the background grid.

3.1 Steps 1 and 2: Lattice and Cut Points

For a general continuous cut function f, the first step is technically
impossible, because there is an infinite number of lattice points to
test. Every isosurface-processing algorithm faces the problem that
it is difficult to find all the components of f(p) = 0—and it is gen-
erally impossible if f is a black box that can only be evaluated at
individual points. A practical way to find the points in P is to be-
gin with several “seed” points known to be in the domain, then find
the rest by depth-first search on the edges of the BCC grid. This
method may fail to find the entire domain if the lattice is not fine
enough to resolve the narrower portions of the domain, or if the
domain has a connected component that does not contain a seed
point. For ease of programming, our prototype mesher evaluates f
at every lattice point in a user-specified bounding box, but this is
costly when the volume of the bounding box is much greater than
the domain volume. (Our timings reflect that.)

For the second step, we assume that the geometric modeler that

From the SIGGRAPH 2007 conference proceedings

Guaranteed bounds | minimum maximum | minimum maximum minimum maximum | use these parameters
dihedral dihedral plane plane exposed exposed
To optimize the ... angle angle angle angle plane plane Olong Olshort
maximum dihedral angle, unsafe 89716 *158.7403 11.9072 150.9944 12.0162 147.6786 | 0.26649 0.36918
minimum dihedral angle, unsafe | *10.7843 164.7373 9.0454 154.9845 9.0454 154.9845 | 0.28511 0.39882
maximum dihedral angle, safe 9.0551 160.5331 8.7614 155.7053 8.7614 155.7053 | 0.24999 0.40173
minimum dihedral angle, safe 9.3171 161.6432 7.7810 158.2252 7.7810 158.2252 | 0.24999 0.41189
... with ordered warping 9.7766 163.5685 10.5695 149.7137 15.1645 138.1929 | 0.24999 0.42978
max dihedral, double-sided, safe 6.4917 164.1013 8.8535 157.8278 13.0689 145.1886 | 0.21509 0.35900
min dihedral, double-sided, safe 7.6872 168.0481 9.2237 155.0594 9.2237 154.5340 | 0.22383 0.39700
... with ordered warping 7.8653 168.0572 9.5400 154.6644 14.4726 135.7164 | 0.22385 0.40501
max exposed plane angle, safe 5.3440 163.8969 6.2646 158.2960 11.8387 *124.9195 | 0.23926 0.27376
... with ordered warping 5.8017 162.1673 7.2694 158.0368 12.1108 *124.0867 | 0.23463 0.29505
min exposed plane angle, unsafe n/a n/a 104741 7149.6794 *15.1285 *149.5205 | 0.36378 0.33951
min exposed plane angle, safe 7.8390 160.5447 10.4213 153.7863 13.5241 144.1259 | 0.24999 0.35464
... with ordered warping 7.4904 169.1465 92685 7145.4921 16.4299 1449032 | 0.23573 0.5

Table 1: Choices of Qiong and Opoy that optimize the minimum or maximum dihedral angles, or the minimum or maximum plane angles
of triangles exposed on the boundary of the mesh. Columns list the extremal dihedral angles, plane angles of triangular faces (including
triangles in the mesh interior), and plane angles of triangular faces exposed on the boundary. Rows marked “safe”” indicate values for which
the tetrahedra are guaranteed not to overlap each other, even if the background grid is not fine enough to resolve the surface correctly. Rows
marked “double-sided” are for guaranteeing good quality when meshing both sides of an isosurface with compatible tetrahedra. Ordered
warping is described in Section 3.2. Asterisks and daggers are explained in Section 5. The bottom five rows are of interest mainly for surface
meshing; see Section 6. All angle bounds have been computer-verified to be strictly correct as written and tight to within 0.0001°.

defines the cut function f can answer a query asking for a point
where a line segment intersects the zero-surface. Our prototype
implementation does this by iterative bisection, which can approxi-
mate the cut point to arbitrary accuracy, even for a black box func-
tion f. If f is expensive to evaluate, one could estimate the cut point
by linear interpolation along the edge, at the cost of losing all the
guarantees about geometric and topological fidelity, and retaining
only the angle guarantee.

3.2 Step 3: Warping the Background Grid

The third step uses a simple rule to decide if a lattice point is vio-
lated. If a cut point ¢ lies on a grid edge e, and the distance between
¢ and an endpoint v of e is less than ¢ times the length of e, then ¢
violates v; so v must be snapped to the isosurface, assigned a value
of zero, and purged of adjoining cut points—unless the other end-
point of e gets snapped first, eliminating c.

BCC grid edges come in two lengths, and we use a different
value of o for each, chosen by experimentation. Several options
are summarized in Table 1. In the table, 04op is the coefficient for
the longer, axis-aligned edges, which we call the black edges; and
Oihort 18 the coefficient for the shorter, diagonal edges, which we
call the red edges. The angle bounds are derived with a computer-
assisted proof, discussed in Section 4.1.

The order in which we process and warp the lattice points affects
the final mesh, but it does not affect most of our guarantees. The
exceptions are the four rows of Table 1 wherein an angle bound
is improved by ordered warping, in which we use the following
algorithm to ensure that a lattice point never warps along an edge
toward a neighboring vertex that will also be warped.

while some negative lattice point ¢~ is violated by a cut point on
an edge adjoining an unviolated positive lattice point
Warp ¢~ to a violating cut point on such an edge
while some positive lattice point g™ is violated
Warp ¢ to a violating cut point

When this algorithm terminates, no violated lattice points sur-
vive, because if a negative lattice point is still violated when the
first loop ends, the cut points that violate it are discarded when the
second loop warps the violated positive lattice points. The disad-
vantage of this ordering is that it makes a parallel or streaming im-
plementation difficult, because the dependences of the first loop can
cascade long distances. When a negative lattice point warps, the cut
points that adjoin it disappear, which may cause a formerly violated

positive lattice point to become unviolated, thereby forcing a differ-
ent negative lattice point to warp toward it, and so on ad infinitum.
It is sometimes better to settle for a slightly weaker angle bound so
that the lattice points can warp in an arbitrary order.

3.3 Step 4: Triangulating the Background Grid

The fourth step generates the output tetrahedra specified by the
stencils depicted in Figure 3. We store the stencils in a table, in-
dexed by the signs of the vertex values (positive, negative, or zero).
Some stencils generate two or three output tetrahedra, to respect
surviving cut points on the grid edges. Symmetry reduces the num-
ber of distinct cases from 81 to the 12 illustrated. In accounting
for symmetry, note that black edges are not always interchange-
able with red ones—some stencils offer better quality than others
in particular circumstances, and not all stencils meet compatibly
face-to-face.

Some cases admit more than one possible stencil because the iso-
surface truncates some BCC grid triangles, creating quadrilateral
faces, each of which we bisect into two triangles. Each stencil’s
tetrahedra are determined by the choice of diagonal used to bisect
each quadrilateral. To choose diagonals, we use two disambigua-
tion rules, designed to produce high-quality output tetrahedra.

Observe that every BCC grid triangle has one black edge and
two red ones, so each quadrilateral has either a whole black edge
or a truncated one. We bisect a quadrilateral with a truncated black
edge by choosing the diagonal that adjoins the cut point where the
black edge was truncated. The stencils in Figure 3 obey this rule.

If a quadrilateral face has a whole black edge (and two truncated
red edges), we break symmetry by using the following Parity Rule
to choose a diagonal. Let @ and b be the endpoints of the black edge,
and let ¢ and d be the cut points where the red edges are truncated,
labeled so the quadrilateral’s diagonals are ac and bd. Because of
the geometry of the BCC lattice, either a has an even number of
coordinates that are greater than ¢’s corresponding coordinates and
b has an odd number of coordinates greater than d’s coordinates, or
vice versa. If @ and b lie on the cubical lattice Z> (the black points
in Figure 2), we choose ac if a has an odd number of coordinates
greater than ¢’s coordinates; we choose bd if the number is even.
This rule allows us to use the bottom right stencil in Figure 3, which
has better quality than alternatives. Observe that the stencil has not
one but two of these quadrilateral faces, front and back, and the two
corresponding diagonals do not share an endpoint.

If @ and b lie on the cubical lattice Z> + (%, %, %) (the red points

From the SIGGRAPH 2007 conference proceedings

in Figure 2), we reverse the rule and choose ac if a has an even
number of coordinates greater than c’s coordinates. This reversal
makes it possible to mesh both sides of an isosurface compatibly
with the same stencil. To implement the Parity Rule, we occasion-
ally have to reflect one of the stencils in the bottom row of Figure 3
after looking it up.

Every BCC tetrahedron with no negative (outside) vertex be-
comes an output tetrahedron, except perhaps a BCC tetrahedron
with all four vertices labeled zero. Such a quadruple-zero tetrahe-
dron is ambiguous; it is not clear whether to treat it as if it is inside
or outside the domain. Because all four vertices of this tetrahedron
are warped, the most aggressive choices for the o parameters in Ta-
ble 1 (those labeled “unsafe”) may cause it to be inverted (turned
inside-out, with negative signed volume)—even if the isosurface is
nearly flat. Parameters are marked “safe” if our computer-assisted
proof code (Section 4.1) guarantees that no BCC tetrahedron can
become inverted. Inverted BCC tetrahedra do not necessarily hurt
the mesh or imply that the lattice is insufficiently fine to resolve
the surface. In rare cases, though, they might cause a few output
tetrahedra to have mutually intersecting interiors. This danger is
avoided if the zero-surface is a smooth manifold with bounded cur-
vature and the BCC grid is sufficiently fine to resolve it.

We offer four options for handling quadruple-zero tetrahedra.
The simplest is to discard them all. In some applications this is
mandatory; Molino et al. [2003] observe that for modeling large
mechanical deformations, a tetrahedron with all four vertices on
the boundary (or an edge that extends through the mesh interior but
has both vertices on the boundary) is easily crushed and can ruin a
simulation.

For applications that can tolerate tetrahedra with all four vertices
on the boundary, we observe that we can often improve a mesh’s
surface fidelity by heuristically retaining some of the quadruple-
zero tetrahedra. We discard the quadruple-zero tetrahedra that are
inverted or whose dihedral angles are poor, and we argue that these
tetrahedra are too flat to have much effect on the surface fidelity. Of
the nicely shaped survivors, we choose to retain a tetrahedron if all
four of its faces adjoin output tetrahedra (not of the quadruple-zero
kind), and to discard a tetrahedron if none of its faces does. This
heuristic prevents spurious “bubbles” from appearing in the mesh.
For the remaining tetrahedra, the decision is made by an evaluation
of the cut function f at each tetrahedron’s centroid. This heuristic
tends to reduce divots on a poorly-resolved surface.

Both these options guarantee the angle bounds in Table 1, by
discarding quadruple-zero tetrahedra that fail to meet them.

A third option is to change the warping parameters so that it is
safe to output every quadruple-zero BCC tetrahedron, at the cost of
weakening the dihedral angle bounds. The options labeled “double-
sided” in Table 1 achieve this; the bounds given in those rows of the
table include BCC tetrahedra with all four vertices warped (whereas
the other dihedral angles in the table do not take them into account).
These options make it possible to mesh both sides of an isosurface
with compatible tetrahedra. To mesh the exterior of a domain, sim-
ply swap the + and — signs in Figure 3. Again, heuristics can
classify each quadruple-zero tetrahedron as being inside or outside
the domain.

A fourth option is to observe that if the isosurface is a smooth
manifold with bounded curvature, and the BCC grid is sufficiently
fine, then the boundary of the mesh will be a geometrically and
topologically accurate approximation of the zero-surface. (See
Theorems 2 and 3 in Section 4.2.) Any good-quality quadruple-
zero BCC tetrahedron is a sign that the lattice does not adequately
resolve the surface, and that one might start over with a finer lattice.
(But remember, a poor-quality quadruple-zero BCC tetrahedron is
not a sign of insufficient resolution; just discard it.)

3.4 Mesh Examples

Figure 4 depicts two meshes whose dihedral angles lie between 14°
and 158°. More than half the dihedral angles in each mesh are 60°
or 90°. (Note the red bars, which represent twenty times more an-

EXXPURSAD
B

60

0 20 40 60 801100 120 140 160 180

Figure 4: Meshes of uniformly sized tetrahedra produced by isosur-
face stuffing with oope = 0.28511 and Qo = 0.39882. Whirled
White Web is by courtesy of Carlo Séquin. Histograms tabulate the
dihedral angles in 2° intervals; multiply the heights of the red bars
by 20.

gles than blue bars of the same height.) It took 25.2 seconds to gen-
erate the 131,259-tetrahedron Whirled White Web mesh on a Mac
Pro with a 2.66 GHz Intel Xeon processor, of which 644 millisec-
onds were mesh generation time (the rest being used to evaluate the
cut function f). The 32,853-tetrahedron Stanford dragon mesh took
24.5 seconds, of which 172 milliseconds were for mesh generation.

Our mesh generation timings are misleadingly slow, because our
prototype implementation evaluates the cut function at every lattice
point in a large box, and typically inspects twenty empty BCC tetra-
hedra for every BCC tetrahedron that intersects the domain. A more
efficient implementation would never stray far from the domain. To
get a sense of how much faster this would be, we performed a com-
parison of our prototype implementation against Pyramid, our fast
Delaunay-based meshing code. We used a dense domain, intersect-
ing about half the BCC grid tetrahedra, for which evaluating the cut
function took only 20% of the running time. Our implementation
generates about 510 tetrahedra per millisecond, whereas the Delau-
nay mesher generates about 157 tetrahedra per millisecond. This
discrepancy in running time occurs because isosurface stuffing does
far fewer numerical calculations and requires less complicated data
structures.

4 Guarantees

Isosurface stuffing offers three mathematical guarantees. First, the
tetrahedra it produces have good angles. Second, the boundary of
the mesh it produces is close to the zero-surface. Third, if the zero-
surface is a smooth manifold with bounded curvature and the BCC
grid is fine enough, then the mesh boundary is homeomorphic to
the zero-surface. We suggest proofs of these facts here.

4.1 Dihedral and Plane Angles

Theorem 1. The bounds in Table 1 on the angles produced by
isosurface stuffing are correct as written (i.e., lower bounds are
rounded down; upper bounds are rounded up). They are tight to
within a margin of 0.0001°—we can exhibit cut functions that cause
these angles to appear. |

Our angle guarantees were obtained through a computer-assisted
proof. There is only a finite number of stencils to test; but there is
an infinite number of locations where a cut point might be placed,

From the SIGGRAPH 2007 conference proceedings

Figure 5: Some of the limiting cases in which a dihedral angle of
10.7843° arises (where the two yellow triangles meet). Warped
background vertices must lie on their green asterisks. Cut points
must lie on the magenta segments.

or destinations a lattice point might be warped to. Although a proof
by hand might be possible through a (horrendous) case analysis,
we verified the angle bounds by writing a program that breaks the
space of possible tetrahedron configurations into a finite number of
subspaces that can be verified by interval arithmetic.

The analysis begins with the observation that each edge of the
BCC grid has a central part (from a fraction of o to 1 — & of its
length) where a cut point triggers no warping, and two peripheral
parts where a cut must trigger warping. The asterisk of a grid ver-
tex is the union of the peripheral parts adjacent to the vertex, as
illustrated in Figure 5. We depend upon the following facts.

e A warped vertex lies on its asterisk, and its value (in choosing
a stencil) is zero.

e Stencil vertices labeled + or — are not warped.
e A cut point cannot lie on an edge adjoining a warped vertex.

e Two vertices that share an edge of the BCC grid cannot both
warp toward each other along that edge. (The first one to warp
eliminates the cut point between them.)

e If ordered warping is used, a vertex cannot warp along an edge
whose other endpoint also warps.

To divide the configuration space into cases, we consider each
tetrahedron in each stencil. Each cut point’s location is described
by a single parameter (its position along the segment). Each as-
terisk is composed of seven segments, so a vertex labeled zero is
represented by seven separate cases. In particular, the quadruple-
zero tetrahedron requires the enumeration of 74 cases. In each case,
the position of each vertex is fixed or described by one parameter.

Suppose a tetrahedron has vertices a, b, ¢, and d, each of which is
constrained to lie on a segment (different for each vertex), and sup-
pose that the four vertices cannot be coplanar under that constraint.
Then it is easy to prove that the dihedral angle at edge ab can be
minimized (or maximized) with ¢ and d lying at endpoints of their
respective segments. (For intuition, imagine opening an infinitely
large door that is constrained to intersect a line segment floating in
space.) Therefore, we only need to consider cases wherein each of
¢ and d lies at one of the two endpoints of the segment it is con-
strained to lie on. We reduce every case to cases that have at most
two continuously varying parameters.

Our program verifies the dihedral angle bounds by subdividing
this two-dimensional parameter space with a quadtree, and esti-
mating the worst-case angles for each quadrant by interval arith-
metic. When an interval does not prove our conjectured bound to
within a specified tolerance, the program subdivides the quadrant
into smaller quadrants, and tries again on those. To verify plane an-
gle bounds, we subdivide a three-dimensional parameter space with
an octree. By this means, we have verified all the angle bounds in
Table 1 as stated in Theorem 1. The cases that limit our bound on
the smallest dihedral angle to 10.7843° degrees appear in Figure 5.

4.2 Geometric and Topological Fidelity

A mesh generation algorithm needs more than good elements; it
also needs to produce a mesh that is a reasonable facsimile of the
domain it is supposed to represent. It is clear from the algorithm
that every vertex on the boundary of the mesh is a cut point or is
labeled zero, and therefore lies on the isosurface. By inspection of
the stencils, we see that isosurface stuffing never connects a vertex

inside the isosurface (labeled +) to one outside (labeled —), so the
mesh respects the isosurface.

Furthermore, the boundary of a mesh produced by isosurface
stuffing approximates the zero-surface by a one-sided Hausdorff
bound: every point on the mesh boundary is close to the zero-
surface. If the background grid is a BCC lattice scaled by a factor ¢,
then as ¢ — 0, the greatest distance between a mesh boundary point
and its nearest neighbor on the zero-surface converges to zero. The
following theorem confirms this, and is more general.

Theorem 2. Suppose isosurface stuffing meshes a continuous cut
function f. (It does not matter which quadruple-zero tetrahedra
become output tetrahedra.) For any point p in space, if p lies in
an output tetrahedron but f(p) < 0 (implying that p should lie
outside the mesh), or if p does not lie in a output tetrahedron
but f(p) > 0, then p is within a distance no greater than ® =

max{y/0Z, .+ Gtong +5/16. /303, + 3o+ 5/4) from the
isosurface. (The number ® applies for the unscaled BCC lattice. If
the BCC lattice is scaled by c, the number is @c.)

Proof. Let 7 be the tetrahedron that contains p, or (if p is outside the
mesh) the tetrahedron that would contain p if the domain exterior
were meshed as well. All four vertices of ¢ have different signs
than p (opposite or zero), so the distance from p to the isosurface
cannot exceed the distance from p to the nearest vertex of . The
latter quantity is maximized when p lies at the centroid of a BCC
tetrahedron, all four of that tetrahedron’s vertices are labeled zero,
and all four vertices are warped as far from p as possible. |

The Hausdorff distance discussed above is one-sided because, if
we can only access the cut function f by pointwise probing, it is im-
possible to guarantee that every point on the zero-surface is close
to the mesh boundary. In general, an isosurface can have extremely
tiny components that are unlikely to be found by pointwise probing.
However, if the isosurface is a smooth manifold with bounded cur-
vature and the BCC grid is sufficiently fine, then we can guarantee
that our Hausdorff distance bound is two-sided and that the mesh is
topologically accurate.

Theorem 3. Suppose isosurface stuffing uses a background BCC
grid scaled by c to mesh a continuous cut function f whose zero-
surface is a smooth 2-manifold. Let dy; > 0 be the shortest distance
from a point on the zero-surface to a point on the medial axis of
the zero-surface. (Thus 1/dyy is an upper bound on the curvature
of the zero-surface.) If dyy > wc, with @ defined as in Theorem 2,
then every point on the zero-surface is within a distance of @c from
the mesh boundary. Moreover, if c¢/dy is sufficiently small, then
the boundary of the mesh is homeomorphic to the zero-surface, and
there is a continuous deformation of space that carries the zero-
surface to the mesh boundary. (lLe., there is an ambient isotopy
from the identity map on the zero-surface to the homeomorphism
that maps the zero-surface to the mesh boundary.)

Proof sketch. Suppose dy; > wc. For each point p on the zero-
surface, let i(p) be the point found by moving a distance infinitesi-
mally greater than @c from p along the inward-facing normal to the
zero-surface, and let o(p) be the point found by moving the same
distance outward. The isotopy segment s(p) is the segment with
endpoints i(p) and o(p); it is perpendicular to the zero-surface at p.
Imagine an isotopy segment for each point on the surface. None of
these isotopy segments intersect the medial axis or each other, and
their union forms an envelope around the zero-surface.

We construct a continuous map m : R3 — R3 that maps each iso-
topy segment to itself, and maps each point p on the zero-surface to
the point where its isotopy segment s(p) intersects the boundary of
the mesh. Our goal is to show that each isotopy segment intersects
the mesh boundary in one and only one point. (Every point on the
mesh boundary intersects exactly one isotopy segment, because by
Theorem 2, every point on the mesh boundary is within a distance

From the SIGGRAPH 2007 conference proceedings

A

KOO ESS

VAN N
WA A v

‘. RO

AN PVAN **4’\%,%&

a DRI

AN, Oy
N

V\

80 1100 120 140 160

Figure 6: Cutaway view of a 42,053-tetrahedron mesh whose ele-
ments are uniformly fine on the surface but grade to coarse in the
interior. Produced with 0gope = 0.28511 and O = 0.39882. A
histogram of dihedral angles in 2° intervals appears at lower right;
multiply the heights of the red bars by 20. This mesh took 4.9 sec-
onds on a Mac Pro with a 2.66 GHz Intel Xeon processor, of which
403 milliseconds were mesh generation time.

of wc from the zero-surface.) It follows that m induces a home-
omorphism between the zero-surface and the mesh boundary, and
we have an ambient isotopy by linearly interpolating between the
identity map and m.

By Theorem 2, for any point p on the zero-surface, i(p) lies in a
tetrahedron and o(p) does not, so s(p) intersects at least one point
on the mesh boundary. Thus, the bound on Hausdorff distance im-
plied by Theorem 2 is two-sided when dy; > wc.

The hard part is showing that each isotopy segment intersects
only one point—loosely speaking, that the mesh boundary does not
have wrinkles or extraneous components. Suppose for the sake of
contradiction that an isotopy segment s(p) intersects several points
on the mesh boundary. Then on a “walk” from i(p) to o(p) one re-
enters the mesh at least once, implying that some boundary triangle
t faces the “wrong” way relative to s(p).

Because ¢ is a boundary face, all three of its vertices lie on the
zero-surface, and it is a face of a high-quality output tetrahedron .
Let v be the vertex of ¢t opposite ¢’s longest edge. The two balls of
radius dj; tangent to the zero-surface at v have interiors that do not
intersect the zero-surface, so no vertex of ¢ lies inside them. The
size of ¢ is proportional to the BCC grid size c, so if ¢/d) is suffi-
ciently small, the balls constrain 7 to be nearly parallel to the tangent
plane (see Theorem 5 of Amenta, Choi, Dey, and Leekha [2002]).
Because h has good quality, its fourth vertex must lie inside one of
the two balls, so the vertex is labeled + (rather than 0) and the ball
lies entirely within the domain (as its interior does not intersect the
isosurface). Thus the isotopy segment s(v), which is collinear with
the ball centers, is correctly oriented relative to # (i.e., i(v) is on the
same side of 7 as h). So are all the isotopy segments that intersect 7,
because the curvature of the zero-surface is bounded (see Lemma 3
of Amenta and Bern [1999]). We omit details. |

5 Graded Interior Tetrahedra

For many applications in rendering and engineering, the need for
accuracy is greatest near the surface of the domain. This section
addresses the goal of creating a graded mesh that has uniformly
fine (small) elements on its boundary, where accuracy is most cru-
cial, but increasingly coarse elements deeper in its interior, as il-
lustrated in Figures 1 and 6. By reducing the number of tetrahedra
in the mesh, we reduce the finite element method’s computation
time. (Ideally, we would like to allow element sizes to grade on
the boundary too, but we have not been able to achieve satisfying
dihedral angle bounds. See Section 6.)

A o

Figure 7: Graded background grids consist of BCC tetrahedra,
bisected BCC tetrahedra, quadrisected BCC tetrahedra, and half-
pyramids.

We replace the BCC grid with a graded background grid com-
posed of four kinds of tetrahedra, illustrated in Figure 7. In addition
to the BCC tetrahedron, we use a bisected BCC tetrahedron, created
by splitting a BCC tetrahedron at the midpoint of one of its long
edges, and a quadrisected BCC tetrahedron, created by splitting a
bisected BCC tetrahedron along the surviving long edge. These
tetrahedra are nearly as well shaped as the BCC tetrahedron, having
dihedral angles of 45°, 60°, and 90°. The fourth tetrahedron kind
is a half-pyramid. A cube can be divided into six pyramids—one
for each face of the cube—with their apices meeting at the center of
the cube, as illustrated. Each pyramid can be bisected by a diago-
nal into two half-pyramids, which have dihedral angles of 45°, 60°,
90°, and 120°. Half-pyramids can also be obtained by bisecting the
red edge of a quadrisected BCC tetrahedron.

In addition to the black and red edges of the BCC grid, bisection
and quadrisection also introduce a new kind of diagonal edge we
call blue edges. Bisection and quadrisection also split black edges
into shorter black edges, and quadrisection creates a new black edge
(so colored because it is axis-aligned).

We use an octree to help create a graded tetrahedral background
grid using these four kinds of tetrahedra. The vertices of the back-
ground grid will be corners and centers of the octants (cubes) in the
octree. As in the BCC grid, one tetrahedron can span two octants.
If the octree were refined to the same depth everywhere, the back-
ground grid would be composed of BCC tetrahedra, except at its
boundary. However, we try to refine the octree as little as possible,
to minimize the number of tetrahedra.

Our octree is not quite the usual one. In a classical octree,
when an octant is refined, it is divided into eight octants of half
the length—its children. For better grading, our octree is adjusted
so that an octant can be refined without creating all eight children—
rather, we can choose to create any subset of an octant’s eight pos-
sible children, and thus target refinement more precisely.

Figure 8 shows how to bridge between BCC grids whose edge
lengths differ by a factor of two. Not only can our four tetrahe-
dron kinds bridge between an octant and an adjoining octant twice
the size; they can bridge between an octant and its parent (unlike
with most octree meshing algorithms). On the coarse side, we
use quadrisected BCC tetrahedra. On the fine side, we use half-
pyramids. (Bisected BCC tetrahedra are also needed, because some
octants have extra vertices at the midpoints of some of their edges.)

A useful intuition is to observe that, given a BCC grid, we can bi-
sect any arbitrary subset of black (long) edges independently, yield-
ing a mesh of our first three tetrahedron kinds. This fact is germane
in the transition regions, where smaller tetrahedra force some larger
ones to be bisected.

The main idea of our meshing algorithm is to ensure that only
BCC tetrahedra will intersect the isosurface, so most of the an-
gle bounds in Table 1 apply to our graded meshes as well as our
uniform ones. Tetrahedra of the other three kinds might still have
their vertices warped, however. It is a straightforward extension
of our computer-assisted proof, described in Section 4.1, to show
that these tetrahedra will not be warped enough to violate the angle

From the SIGGRAPH 2007 conference proceedings

Figure 8: Background tetrahedra used to bridge two levels of the
octree, viewed from two different angles. Cube centers are red.

bounds in Table 1, except for the two bounds marked by daggers,
which deteriorate to 158.1918° and 147.0470°, respectively.

To start the algorithm, a user selects an approximate tetrahedron
size by specifying the width w of the leaf octants of the octree.
Conceptually, the algorithm partitions space into an infinite grid of
cubes having width w. Each cube has nine probe points: its center
and its eight vertices. The sign of a probe point is the sign of the
cut function f at that point. Ideally, we wish to find every cube that
the isosurface passes through. Practically, we search for every cube
that has at least one nonnegative probe point and one nonpositive
probe point, as illustrated in Figure 9(a). (This includes every cube
with a zero probe point.) If the isosurface is connected, and the
grid is fine enough to resolve it accurately, and we can find one
such cube, then we can find the others by depth-first search through
the space of cubes (using a hash table to store the cubes, keyed on
their coordinates). This is a standard technique, sometimes called
continuation; see Bloomenthal [1994] for details.

These cubes will be among the leaves of the octree. To ensure
that only BCC tetrahedra will intersect the isosurface, we gather
additional cubes according to a Continuation Condition.

If a leaf octant o has a square face s with at least one
nonpositive vertex and one nonnegative vertex (a zero
vertex counts as both), then we must create a leaf octant
(the same size as o) adjoining the other side of s. More-
over, if a leaf octant o has a corner vertex v whose sign
is opposite the sign of 0’s center point, or if either sign is
zero, then we must create the three leaf octants incident
on v that share a square face with o.

Next, to obtain the angle guarantees marked by asterisks in Ta-
ble 1, we sometimes must create a few additional leaf octants to
prevent half-pyramids from becoming overly deformed by warp-
ing. We determine which lattice points are violated by cut points.
If a leaf octant has a violated center point and a face s with two op-
posite violated corners, we create a leaf octant adjoining the other
side of s. The goal is to ensure that the kind of triangle shared by
two half-pyramids, having two red edges and one blue edge, never
has all three vertices warped. This step is unnecessary to achieve
the angle bounds not marked by asterisks.

Next, we create an octree whose octants are the leaf cubes and
their ancestors. We keep the octree as sparse as possible by taking
advantage of the fact that an octant can have a child without having
eight children. See Figure 9(b).

We cannot bridge directly between two octants whose lengths
differ by more than a factor of two while maintaining high element

B L b
000 BO0 DO0SSCON
35 ol Geto
‘e’ o *
3 e RS
oo 1»31%» o¢’e
73 4 £
)OSO0D0 900020 BN BB 0.0
DOO) 1 . ololel T TeloTelelo

(@)
(@

L 4 L 2 L 2 L =]
© 000 ¢ 0 ¢9 o

.;-

’\.
3

AN Z\ 2N

Figure 9: A two-dimensional illustration of the (three-dimensional)
algorithm. (a) Cells intersecting the isosurface. (b) After enforc-
ing the Continuation Condition and building an octree. (c) After
enforcing the Weak Balance Condition. (d) The background grid.
(e) After introducing cut points and warping the vertices. (f) The
final mesh.

quality, so the next step is to impose the following Weak Balance
Condition, illustrated in Figure 9(c).

If an octant o intersects an edge e of the octree for which
the length of e is strictly less than half o’s width, then we
must create every child of o that intersects the interior
of e. (Note that e could be on the boundary or in the
interior of o—in the latter case, it would be an edge of a
grandchild of 0.)

The algorithm in Figure 10 converts a balanced octree to a back-
ground grid, as illustrated in Figure 9(d).

Once we have a background grid, our algorithm for constructing
an internally graded mesh is almost identical to the uniform mesh-
ing algorithm. We compute the value of the cut function f at every
vertex of the background grid. (Most of these values were already
computed to enforce the Continuation Condition.) We compute cut
points and warp the background grid as described in Section 3 and
illustrated in Figure 9(e). (The Continuation Condition ensures that
blue edges are never cut.) We use the stencils in Figure 3 to create
output tetrahedra from the BCC tetrahedra in the background grid.
Every background tetrahedron of the other three kinds becomes an
output tetrahedron if it has at least one positive vertex. See Fig-
ure 9(f) for a two-dimensional analog.

Figure 11 illustrates the use of isosurface stuffing in a liquid

From the SIGGRAPH 2007 conference proceedings

for each octant o that is a leaf or has a nonnegative center point
¢ <= the center vertex of o.
for each square face s of o
if there is no vertex at the center of s
if s is shared with another octant o’ the same size as o
¢’ <= the center vertex of o’.
for each edge e of the square s
if there is no vertex at the midpoint of ¢
Create the BCC tetrahedron conv(eU {c,c'}).
else
m <= the midpoint vertex of e.
for each endpoint p of e
Create the bisected BCC tet conv({p,m,c,c’}).
else {s is shared with a larger octant or the boundary }
Create two half-pyramids filling the pyramid conv(sU{c}).
The diagonal bisecting the pyramid must
adjoin a corner or center vertex of ¢’s parent.
else {there is a vertex at the center of the square s}
d < the center vertex of s.
for each edge e of the square s
if there is no vertex at the midpoint of e
Create the bisected BCC tetrahedron conv(eU{d,c}).
else
m <= the midpoint vertex of e.
for each endpoint p of e
if 0 has no child with vertex p
Create the quadrisected BCC tet conv({p,m,d,c}).
{ else do nothing; o has a child that will take care of
tetrahedralizing the corner of o near p. }

Figure 10: Algorithm for creating a background grid from our
weakly balanced octree. Note that the algorithm as written here
creates any background tetrahedron that spans two octants twice;
an implementation should take care to avoid this duplication.

simulation video by the Berkeley Computer Animation and Mod-
eling group. They tell us they prefer it to their previous algorithm,
the variational mesher of Alliez et al. [2005], because it is faster,
it never creates poor tetrahedra near the boundary, its meshes are
more coherent between time steps, and they can exploit the regular-
ity of the meshes for fast point location and element stiffness matrix
reuse.

6 Conclusions

Isosurface stuffing doubles as a guaranteed-quality, watertight iso-
surface triangulation algorithm almost as simple and fast as March-
ing Cubes: simply output the triangles on the boundary of the mesh
generated by isosurface stuffing, and enjoy the exposed plane an-
gle bounds listed in Table 1. The upper bounds of less than 125°
on plane angles are noteworthy. They compete with the 120° guar-
antee of Chew’s algorithm [1989], at a fraction of the effort and
running time.

For the o parameters listed as “safe” in Table 1, the background
BCC tetrahedra cannot become degenerate, so the surface mesh
generated by the algorithm cannot have self-intersections. The
15.1285° bound in the table is unsafe; a BCC lattice tetrahedron
with four warped vertices could become inverted, and could poten-
tially cause a few of the output triangles to have intersecting inte-
riors (though we have not seen it in practice) if the grid is insuf-
ficiently fine or if the zero-surface is not a smooth manifold with
bounded curvature. To obtain the most aggressive bound on the
smallest angle (16.4299°, with ordered warping), we use Qgport =
0.5, which allows a BCC tetrahedron to become arbitrarily close to
degenerate. To prevent it from becoming perfectly flat, we adopt

the convention that a cut point precisely at the midpoint of a red

edge violates the endpoint on the cubical lattice Z3 + (%, %, %), but

not the endpoint on the cubical lattice Z3. The choice Qo = 0.5
means that no cut point ever survives on a red edge, so most of

Figure 11: A frame from an animation of flowing liquid, and a frag-
ment of the mesh used to create it. Courtesy of Nuttapong Chen-
tanez, Bryan Feldman, and James O’Brien.

0 20 40 60 80 '100 120 140

Figure 12: A 22,728-tetrahedron mesh, and a cutaway view thereof,
generated in 2,859 milliseconds by a variant of isosurface stuffing
that allows tetrahedra to grade both on and inside the surface. Di-
hedral angles vary from 13.8° to 144.7°. Plane angles on the sur-
face vary from 10.9° to 138.5°. These results are typical, but much
worse angles can occur.

the stencils are never used. This simplifies the algorithm, and also
makes the 16.4299° bound possible.

An alluring goal that we have not been able to achieve is a tetra-
hedral meshing algorithm that permits grading of both surface and
interior tetrahedra and has a strong bound on the dihedral angles.
This is not to say that we have no algorithm. With our techniques,
we can construct a background grid that is graded on the domain
boundary as well as in the interior, and we can apply our cutting
and warping technique to it. We have experimented with different
stencils for the four kinds of background tetrahedron, and found
some good choices. The majority of the tetrahedra produced this
way are good in practice, as Figure 12 shows. However, we cannot
make guarantees on dihedral angles better than 1.66° or 174.72°.
We see three main obstacles: the half-pyramid background tetra-
hedron can be severely distorted by warping (because of its 120°
dihedral angle); smaller tetrahedra can have their vertices warped a
long distance by larger neighbors; and although we can find good
stencils for all four kinds of background tetrahedron, we cannot get
them to agree on their shared diagonals without sacrificing quality.
We are optimistic that a solution to this hard problem is tantaliz-
ingly within reach, but it might require a more clever graded back-
ground grid, one that somehow avoids dihedral angles much larger
than 90°.

Nevertheless, this paper achieves a goal that has eluded re-
searchers for nearly two decades: a mesh generation algorithm for
complicated shapes that offers theoretical guarantees on dihedral
angles strong enough to be meaningful to practitioners. The short-
comings of isosurface stuffing—its tendency to round off sharp cor-
ners and edges, and the reduction of guaranteed quality if the sur-
face tetrahedra are not of uniform size—are balanced by its simplic-
ity and raw speed. The combination of three features—speed, guar-
anteed quality, and numerical robustness—makes isosurface stuff-
ing the first mesh generation algorithm suitable for robust remesh-
ing in physically-based animation at interactive rates.

From the SIGGRAPH 2007 conference proceedings

Acknowledgments

We thank Nuttapong Chentanez for providing isosurface code and
geometric models; Carlo Séquin for Whirled White Web; and Nut-
tapong, Bryan Feldman, and James O’Brien for their animation
still. This work was supported in part by the National Science Foun-
dation under Awards CCF-0430065 and CCF-0635381, and in part
by an Alfred P. Sloan Research Fellowship.

References

ALLIEZ, P., COHEN-STEINER, D., YVINEC, M., AND DESBRUN,
M. 2005. Variational Tetrahedral Meshing. ACM Transactions
on Graphics 24, 3, 617-625. Special issue on Proceedings of
SIGGRAPH 2005.

AMENTA, N., AND BERN, M. 1999. Surface Reconstruction by
Voronoi Filtering. Discrete & Computational Geometry 22, 4
(Dec.), 481-504.

AMENTA, N., CHOI, S., DEY, T. K., AND LEEKHA, N. 2002. A
Simple Algorithm for Homeomorphic Surface Reconstruction.
International Journal of Computational Geometry and Applica-
tions 12, 1-2, 125-141.

BZERENTZEN, J. A., AND AANZES, H. 2002. Generating Signed
Distance Fields from Triangle Meshes. Tech. Rep. IMM-TR-
2002-21, Informatics and Mathematical Modelling, Technical
University of Denmark, Lyngby, Denmark.

BAKER, B. S., GROSSE, E., AND RAFFERTY, C. S. 1988. Nonob-
tuse Triangulation of Polygons. Discrete and Computational Ge-
ometry 3,2, 147-168.

BANK, R. E., AND ScOTT, L. R. 1989. On the Conditioning of
Finite Element Equations with Highly Refined Meshes. SIAM
Journal on Numerical Analysis 26, 6 (Dec.), 1383—-1394.

BERN, M., EPPSTEIN, D., AND GILBERT, J. R. 1994. Provably
Good Mesh Generation. Journal of Computer and System Sci-
ences 48, 3 (June), 384-409.

BEY, J. 1995. Tetrahedral Grid Refinement. Computing 55, 355—
378.

BLOOMENTHAL, J. 1994. An Implicit Surface Polygonizer. In
Graphics Gems IV. Academic Press, ch. V.8, 324-349.

CHENG, S.-W., AND DEY, T. K. 2002. Quality Meshing with
Weighted Delaunay Refinement. In Proceedings of the Thir-
teenth Annual Symposium on Discrete Algorithms, 137-146.

CHENG, S.-W., DEY, T. K., EDELSBRUNNER, H., FACELLO,
M. A., AND TENG, S.-H. 2000. Sliver Exudation. Journal
of the ACM 47, 5 (Sept.), 883-904.

CHEW, L. P. 1989. Guaranteed-Quality Triangular Meshes. Tech.
Rep. TR-89-983, Department of Computer Science, Cornell Uni-
versity.

CHEW, L. P. 1997. Guaranteed-Quality Delaunay Meshing in 3D.
In Proceedings of the Thirteenth Annual Symposium on Compu-
tational Geometry, 391-393.

EDELSBRUNNER, H., AND GUOY, D. 2001. An Experimen-
tal Study of Sliver Exudation. In Tenth International Meshing
Roundtable, 307-316.

EPPSTEIN, D., SULLIVAN, J. M., AND UNGOR, A. 2004. Tiling
Space and Slabs with Acute Tetrahedra. Computational Geome-
try: Theory and Applications 27, 3 (Mar.), 237-255.

FREITAG, L. A., AND OLLIVIER-GOOCH, C. 1997. Tetrahe-
dral Mesh Improvement Using Swapping and Smoothing. In-
ternational Journal for Numerical Methods in Engineering 40,
21 (Nov.), 3979-4002.

10

FucHs, A. 1998. Automatic Grid Generation with Almost Reg-
ular Delaunay Tetrahedra. In Seventh International Meshing
Roundtable, 133-148.

JAMET, P. 1976. Estimations d’Erreur pour des Elements Finis
Droits Presque Dégénérés. RAIRO Analyse Numérique 10, 43—
61.

N

KRIZEK, M. 1992. On the Maximum Angle Condition for Linear
Tetrahedral Elements. SIAM Journal on Numerical Analysis 29,
2 (Apr.), 513-520.

LABELLE, F. 2006. Sliver Removal by Lattice Refinement. In
Proceedings of the Twenty-Second Annual Symposium on Com-
putational Geometry, 347-356.

L1, X.-Y., AND TENG, S.-H. 2001. Generating Well-Shaped De-
launay Meshes in 3D. In Proceedings of the Twelfth Annual Sym-
posium on Discrete Algorithms, 28-37.

LORENSEN, W. E., AND CLINE, H. E. 1987. Marching Cubes: A
High Resolution 3D Surface Construction Algorithm. In Com-
puter Graphics (SIGGRAPH '87 Proceedings), 163—170.

MITCHELL, S. A., AND VAVASIS, S. A. 2000. Quality Mesh
Generation in Higher Dimensions. SIAM Journal on Computing
29,4, 1334-1370.

MOLINO, N., BRIDSON, R., TERAN, J., AND FEDKIW, R. 2003.
A Crystalline, Red Green Strategy for Meshing Highly De-
formable Objects with Tetrahedra. In Twelfth International
Meshing Roundtable, 103—114.

NAYLOR, D. J. 1999. Filling Space with Tetrahedra. International
Journal for Numerical Methods in Engineering 44, 10 (Apr.),
1383-1395.

OHTAKE, Y., BELYAEV, A., ALEXA, M., TURK, G., AND SEI-
DEL, H.-P. 2003. Multi-Level Partition of Unity Implicits. ACM
Transactions on Graphics 22, 3 (July), 463—-470. Special issue
on Proceedings of SIGGRAPH 2003.

OSHER, S., AND FEDKIW, R. 2002. Level Set Methods and Dy-
namic Implicit Surfaces. Springer-Verlag, New York.

OuUDOT, S., RINEAU, L., AND YVINEC, M. 2005. Meshing Vol-
umes Bounded by Smooth Surfaces. In Proceedings of the 14th
International Meshing Roundtable, 203-219.

SETHIAN, J. A. 1996. A Fast Marching Level Set Method for
Monotonically Advancing Fronts. Proceedings of the National
Academy of Sciences 93, 4 (Feb.), 1591-1595.

SHEN, C., O’BRIEN, J. F., AND SHEWCHUK, J. R. 2004. In-
terpolating and Approximating Implicit Surfaces from Polygon
Soup. ACM Transactions on Graphics 23, 3 (Aug.), 896-904.
Special issue on Proceedings of SIGGRAPH 2004.

SHEWCHUK, J. R. 2002. What Is a Good Linear Element? In-
terpolation, Conditioning, and Quality Measures. In Eleventh
International Meshing Roundtable, 115-126.

SOMMERVILLE, D. M. Y. 1923. Space-Filling Tetrahedra in Eu-
clidean Space. Proceedings of the Edinburgh Mathematical So-
ciety 41, 49-57.

YERRY, M. A., AND SHEPHARD, M. S. 1984. Automatic Three-
Dimensional Mesh Generation by the Modified-Octree Tech-
nique. [International Journal for Numerical Methods in Engi-
neering 20, 11 (Nov.), 1965-1990.

ZHAO, H.-K., OSHER, S., AND FEDKIW, R. 2001. Fast Surface
Reconstruction Using the Level Set Method. In Workshop on
Variational and Level Set Methods, 194-202.

