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Abstract
Studying the relationship between Gaussian space and a surface can provide invaluable information about the
properties of the surface. In this paper, we use recent results on quantization and surface approximation theory
to propose a simple, robust, linear time, feature preserving mesh sampling algorithm that can be easily controlled
by the user. This algorithm is based on the explicit inverse one-to-many mapping of a regular sampling of the
Gaussian sphere onto a manifold surface, and it is memoryless in the sense that most of its operations are local
and no global information is maintained. For the same reason, this algorithm can also be run in parallel without
dependencies between the samples. We demonstrate our sampling method by applying it to the problem of shape
approximation.

1. Introduction
Sampling 3D models involves choosing points from the sur-
face such that an interpolation of these points faithfully re-
produces the desired features of the given model, both in
terms of geometry and topology. Mesh sampling is impor-
tant in many geometry processing problems including shape
approximation, surface reconstruction and parameterization.
In this paper, we propose a linear time algorithm to produce
a feature sensitive sampling of a surface. The output sample
set is a subset of the vertices of the input mesh, and can be
shown to be minimal for a given sampling error.

The fundamental challenge in surface sampling is to find
the minimal set of sample points that capture the features of
a shape within an (approximation or sampling) error bound.
For shape approximation, [Cla06] proved that the sampling
size is proportional to the integral of the absolute Gaussian
curvature over the surface. This result has been indepen-
dently proved for surface approximation [CSAD04] and sur-
face reconstruction [ACK01, Eri01], with different interpre-
tations of “Gaussian curvature”. In the surface reconstruc-
tion literature, the interpretation of the Gaussian curvature at
a point on the surface is the square of the curvature of the me-
dial axis ball tangential to that point. We use this observation
to directly approximate the total absolute Gaussian curvature
by regular sampling of the Gaussian sphere. We thus find the
appropriate surface samples by inverse mapping these regu-
lar Gaussian samples back onto the surface (a one-to-many
mapping). The result is a simple and robust linear time sur-
face sampling algorithm. This sampling algorithm has po-
tential uses in shape approximation, topology processing,

streaming and out-of-core simplification of large data sets,
as well as parameterization and compression of meshes. We
demonstrate the applicability of our sampling algorithm as
the first step of a shape approximation technique.

1.1. Main Contributions

Following are the main contributions of this paper:

• We introduce the sampling of a surface as on the one-to-
many mapping of a sampling on Gaussian space back onto
the surface.

• We prove that the above sampling set is minimal with re-
spect to the given sampling error for a class of models.

• We present a practical algorithm that applies the above
theory for sampling polygonal meshes. This method is
very efficient and hence the sampling can even be inter-
actively driven by the user.

• We extend the sampling method to solve the problem of
shape approximation.

After a brief survey of previous work in Section 2, we dis-
cuss the theory and our sampling algorithm for smooth man-
ifolds in Section 3. We adapt this theory to manifold meshes
in Section 4 and discuss the application of this method to the
problem of shape approximation in Section 5.

2. Previous Work
In this section we briefly survey the extensive literature re-
lated to our proposed surface sampling method and its rela-
tionship with the problem of shape approximation.
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Figure 1. Feature sensitive samples on a mesh.

Gaussian Sampling: We broadly classify the algorithms
that use normal vectors for geometry processing as Gaussian
sampling algorithms. In [JC01] face normals are clustered
in order to quickly extract silhouettes for shadow bound-
ary computation. In order to precompute radiance transfer,
[SHHS03] accumulates surface samples with similar orien-
tation. Convergence of the iterative closest point algorithm
can be accelerated by selecting sample points according to
the normal variation they introduce in the shape [RL01].
Other applications of Gaussian maps include partitioning of
mesh into developable surfaces [JKS05] and mesh segmen-
tation [YGZS].

Shape Approximation: Surface simplification or shape
approximation techniques aim at reproducing a given sur-
face with minimum error using fewer mesh elements than
in the original. The vertices of this approximation can be
considered a feature sensitive sampling of the original sur-
face, which indicates their relationship with our problem. In
this context we would like to distinguish between sampling
and approximation error. While sampling error is used to
evaluate the effectiveness of a sampling technique (distance
among samples, and between any point on the surface to its
closest sample), approximation error is used in the context
of approximation algorithms (distance between the original
and the simplified surfaces).

Discrete shape approximation techniques produce a sam-
pling of the most important points on the surface. These

points can be a subset of those in the input, or they can be
relocated to an optimal position at greater computing cost.
Since there is a long history of surface simplification algo-
rithms, we refer to excellent surveys in this field [HG97,
Lue01]. In general, these methods try to optimize an energy
functional or iterate in order to find (optimal) positions and
shape of the mesh elements (vertices, edges and faces) that
would reduce the approximation error [CSAD04, She01].

3. Sampling of Smooth Manifolds
Following are three desirable properties for a sampling S on
a surface U:

1. Anisotropy: At any point on the surface, sampling should
be denser along the lower curvature direction than along
the higher curvature direction.

2. Sufficiency: All points x ∈ U should not be further than
an ε distance from their closest sample.

3. Minimality: Every sample s ∈ S should be necessary; In
other words, removing it would make S violate some of
the previous conditions.

The remainder of this section is devoted to explaining how
our sampling method meets the stated conditions. For the
purpose of sampling, we measure the distance between two
points x and y on the surface as the Euclidean distance be-
tween the normal vectors at x and y (written n(x) and n(y)),
or D(x,y) = ||n(x)−n(y)||. This metric, also known as the
L2,1 metric, naturally captures the anisotropy of the model
as shown by [PSH∗04, CSAD04].

Definition 1. ε-covering: Given a surface U and a set of
samples S ∈U, if for every point x ∈U there exists a sample
point s ∈ S that is at distance not greater than ε (L2,1(x,s)≤
ε), then the sampling S is called an ε-covering of the surface
U.

An ε-covering S of surface U meets the condition of suf-
ficiency by definition. Moreover, a sample set T of surface
U is an ε-covering of U if it contains a sample set S which
is also an ε-covering of U. Although finding the smallest of
all possible ε-coverings is NP-hard, in order to just meet the
condition of minimality we can start with a sufficient sam-
pling and simply remove all the unnecessary samples. One
way to get fewer samples is to force a minimum distance
between samples.

Definition 2. ε-packing: Let S be a set of samples on sur-
face U, and s, t be two adjacent * samples, s, t ∈ S. If
L2,1(s, t) ≥ ε, then the sampling S is called an ε-packing
of the surface U.

Definition 3. ε-net: If a sample set S is both an ε-covering
and an ε-packing of U, then it is called an ε-net of U.

* Let the distance between s and t be d. We say two samples s, t are
adjacent if there is a connected path between s and t on the surface
such that the distance between any point on this path to s (and t) is
less than or equal to d.
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Figure 2. As a sphere morphs into a rounded cube, samples migrate towards high curvature regions. Since all the objects in this sequence are
convex, genus zero manifolds, the total number of samples is constant.

Given the above definitions of sampling, we can derive a
lower bound on the number of samples required to sample
a smooth surface with the given error. Gruber [Gru04] and
later, in the context of ε-net, Clarkson [Cla06] prove that
the sample size of an ε-net sampling of a surface U using
the distance metric L2,1 is proportional to

∫
U |K(x)|dx/ε

2,
where K(x) is the Gaussian curvature at the point x. In other
words, the sample size is proportional to the total absolute
Gaussian curvature of the surface. A similar result on the
sample size for surface reconstruction algorithm was proved
by [Eri01].

From the above arguments, we conclude that an ε-net
sampling of L2,1 on the surface U would satisfy our desider-
ata, and this constitutes the basis for our sampling algorithm.

3.1. Conceptual Sampling Algorithm

Since L2,1(x,y) = ||n(x)−n(y)||, the ε-net sampling of L2,1
on surface U is equivalent to the Euclidean distance ε-net
on the Gaussian sphere. In order to exploit this duality, we
construct a uniform tessellation of a unit sphere by iterated
regular subdivision of the faces of a regular polyhedron. (For
practical reasons, a tetrahedron, octahedron or icosahedron
are preferred.) Let l be the distance between any two adja-
cent vertices of this uniform tessellation. The vertices are at
least l− µ away from each other (µ is a small positive num-
ber), and any point on the sphere is less than l− µ distance
from its closest vertex in the tessellation. In other words, the
vertices of this tessellation form an (l− µ)-net sampling of
the Euclidean metric of the sphere.

Given the vertices of the uniform tessellation of a unit
(Gaussian) sphere, the ε-net sampling of L2,1 on the sur-
face U is given by the sample set S consisting of all those
points x on U whose normal vector is one of the vertices of
the Gaussian sphere. Different orientations of the Gaussian
sphere will produce different samplings on U but all of these
sample sets are equivalent, in the sense that they satisfy the
same sampling properties.

3.2. Properties of Our Sampling

The size of the sampling produced by the above method is
proportional to the total absolute Gaussian curvature. For

convex genus-zero objects, the Gaussian curvature is posi-
tive everywhere, and the total absolute Gaussian curvature is
the surface area of the unit sphere, 4π (given by the Gauss-
Bonnet theorem [O’N97]). Using the following definition of
convexity, the previous result can be extended to 2-manifolds
with higher-genus, considering objects like a torus to be con-
vex for our purposes.

Definition 4. Manifold n-convexity: A 1-manifold (closed
curve) M1 on a plane is convex (1-convex) if and only if the
line segment between any two points in its interior does not
intersect M1. A compact 2-manifold M2 with arbitrary genus
is said to be 2-convex if and only if the intersection of any
plane with M2 is a set of 1-convex 1-manifolds.

Lemma 1. The total absolute Gaussian curvature of a genus
g, 2-convex 2-manifold equals 4(g+1)π.

Since the total absolute Gaussian curvature is the same for
any 2-convex model with genus g, regardless of any other
shape considerations, the total number of samples should
also be the same for all these models (for a given tessella-
tion of the Gaussian sphere). Also, the sampling produced
by our method is minimal for this class of models. Proof of
minimality is provided in the Appendix.

Figure 2 illustrates this property. We show a sequence
of models depicting the transformation of a sphere into a
rounded cube. As expected, the number of samples remains
the same. Moreover, the distribution of these samples ex-
hibits anisotropy, with more samples migrating towards the
high curvature regions. The normal deviation between the
adjacent samples is constant by construction.

The properties of the application of our sampling method
to higher genus objects is illustrated in Figure 3, which
shows the samples obtained on two (convex) torii of differ-
ent sizes. In both cases, the number of samples is the same,
but the different distribution of the Gaussian curvature in the
thicker torus makes the samples migrate towards its interior.
Further, as a consequence of Lemma 1, for a given tessel-
lation of the Gaussian sphere, the total number of samples
on either torus is twice the number of samples on a convex
genus zero object (like those in Figure 2).

Finally, Figure 4 illustrates the effect of concavities in the
sampling size. The total absolute Gaussian curvature of the
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Figure 3. The sampling size produced by our algorithm is propor-
tional to the total absolute Gaussian curvature. For a 2-manifold,
this value is constant, regardless of size and shape, as long as it is
2-convex. So the total number of samples generated is the same for
both the two torii above.

Figure 4. A concavity in the shape increases its total absolute Gaus-
sian curvature. Correctly sampling it requires more samples than a
convex shape.

model shown is higher than that of the convex objects from
Figure 2, and therefore more samples are produced to main-
tain the proportionality.

Sampling for Shape Approximation: An ε-covering S of a
slightly perturbed version of the L2,1 metric has been shown
to exhibit Hausdorff bounds on the error between the orig-
inal surface U and the triangulation constructed using the
samples in S [Cla06]. The topological correctness of the ap-
proximation must be enforced by appropriately connecting
the samples in the same way as they are connected in the
original surface.

4. Sampling Manifold Meshes
In this section, we present an algorithm that applies the
above theory to the problem of sampling polygon meshes,
including those with sharp features. We suggest an initial nu-
merical approach and a second, more robust approach, based
on the discretization of the space of normals.

For a smooth manifold M, our samples are those points
on M whose normal matches exactly with one of the vertices

of the tessellation of the Gaussian sphere G. For a piecewise
linear approximation of M, such as a triangle mesh, the prob-
ability of a vertex normal coinciding exactly with a Gaussian
vertex is zero. In a triangle mesh, normals change only at the
edges and vertices. A mesh vertex v represents the range of
normals Nv that span the interior of a spherical polygon de-
fined by the normals of the mesh triangles incident on v. The
mesh vertex v is considered a sample if and only if its spher-
ical polygon on the Gaussian sphere G contains one or more
vertices of G. This procedure is described in Figure 5.

Figure 5. In the ideal conception of our algorithm, a mesh vertex is
selected as a sample if the spherical polygon induced by the normals
of its incident faces encloses a Gaussian vertex.

Unfortunately the spherical polygons created by connect-
ing the normal vectors of the incident triangles are small (in
low curvature regions) and may self-intersect (in saddle ver-
tices). Point location in such spherical polygons is numer-
ically unstable and best avoided. Instead of this numerical
approach we proceed by quantizing the normal vectors as
described below.

Definition 5. Triangle association, feature edge, candi-
date sample: A mesh triangle t with normal nt is associated
to a Gaussian triangle tG if nt pierces tG in normal space. An
edge e of a triangle mesh is a feature edge if the two incident
faces are associated to different Gaussian triangles. A vertex
v of a triangle mesh is a candidate sample if three or more
feature edges are incident on it.

Let us quantize the normal vectors such that the normal
vector of a triangle in the mesh is assigned the normal vector
of its associated Gaussian triangle. Under this reassignment,
it can be seen that our sampling set is a subset of all the can-
didate samples in the mesh, given a specific tessellation G of
the Gaussian sphere. We discard those which are not sam-
ples by applying three filtering rules: untriangulatable patch
filtering, non-sample filtering and noisy sample filtering.

Untriangulatable Patch Filtering: We observe that fea-
ture edges form closed curves, thus partitioning the input
mesh. Triangles within a partition are associated to the same
Gaussian triangle. In order to approximate the shape of a
patch, it should have at least three samples in its boundary.
But due to noise in the mesh and normal vectors of low cur-
vature mesh regions that are roughly aligned with a Gaussian
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Figure 6. Four cases of degenerate partition boundaries and how
they are cleansed before constructing the polygons. From left to
right: Polygon boundary with (a) one or (b) two feature vertices;
Former candidate sample with only (c) one or (d) two incident fea-
ture edges.

vertex, it is quite possible that a few patches are not triangu-
latable. Figure 6 shows these degenerate conditions and how
we process them. Note that Figure 6 cases (c) and (d) do not
occur naturally. Resolving case (a) may lead to case (c), and
case (b) may lead to case (d).

Non-sample Filtering: Not all candidate samples are
samples. For example, let a, b, and c be Gaussian triangles
such that a is edge-adjacent to b and b is edge-adjacent to c.
Let A1,B1,C1,B2,A2 be mesh triangles incident on a mesh
vertex v. Let A1 and A2 be associated to a, B1 and B2 be as-
sociated to b, and C1 be with c, via their normals. There are
feature edges between A1B1, B1C1, C1B2 and B2A2, all in-
cident on v. Hence v will be considered a candidate sample.
Clearly, the spherical polygon formed by the normal vectors
of the mesh triangles around v does not enclose any Gaus-
sian vertex and hence v cannot be a sample. Such cases can
be generalized as follows. Consider the spherical polygon
formed by the normal vectors of the incident triangles on the
mesh vertex v. If consecutive vertices of this spherical poly-
gon fall in adjacent (edge connected) Gaussian triangles, and
if these Gaussian triangles form a tree (a unique path exists
within this set of Gaussian triangles to go from one trian-
gle to another), then that spherical polygon cannot enclose a
Gaussian vertex, and hence v cannot be a sample. See Fig-
ure 8 for an example.

Noisy Sample Filtering: In noisy and low curvature re-
gions of the mesh, there would still be superfluous samples
that are not eliminated by the above two filtering techniques
(Figure 9). One of such cases occurs when multiple candi-
date samples representing the same Gaussian vertex exist in
the same local neighborhood, even though clearly a subset of
them would suffice to represent that region (and that Gaus-
sian vertex). The noisy-sample filtering technique detailed
here identifies the samples that have to be retained; the rest
of the candidates can be removed.

Represented Gaussian Vertex: A candidate sample v rep-
resents a Gaussian vertex vG if all the associated Gaussian
triangles of the mesh triangles incident on v are incident on
vG.
Convex, Concave, and Saddle Samples: A candidate sample
v is convex (or concave) if for counter-clockwise traversal

Figure 7. The faces of two meshes (left) are clustered according
to their associated Gaussian triangles (Gaussian sphere shown to
the right). These clusters are separated by feature edges. Vertices
adjacent to three or more feature edges are candidate samples.

Figure 8. Candidate samples (left) can be discarded if the normals
of their incident faces form a spherical polygon (middle) that cannot
contain a Gaussian sample.

of the incident triangles around v, the spherical polygon on
the Gaussian sphere formed by the normal vectors of the
incident triangles enclose the Gaussian vertex in counter-
clockwise (respectively, clockwise) direction. It is a saddle
vertex if the spherical polygon is self-intersecting. We call
such a classification of a candidate sample as its curvature
characteristic.
Adjacent Samples: Two candidate samples v1 and v2 are ad-
jacent to each other on the mesh if there is a sequence of fea-
ture edges connecting v1 and v2 that does not pass through
any other candidate sample.

As the first rule of retaining samples, we retain two adja-
cent candidate samples representing the same Gaussian ver-
tex if they have different curvature characteristics. The sec-
ond rule of retaining samples is as follows: Among a group
of adjacent candidate samples which represent the same
Gaussian vertex and have the same curvature characteris-
tic, a subset of them has to be retained such that the union
of their associated triangles covers all the incident Gaussian
triangles of the Gaussian vertex (see Figure 10). Finding the
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Figure 9. Low curvature regions which are roughly aligned with a
Gaussian edge or vertex produce an excess of candidate samples.

minimum number of such candidate samples from the set is
equivalent to the min-vertex-cover graph problem. Although
good approximation algorithms exist for this NP-complete
problem, since the number of Gaussian triangles incident on
a Gaussian vertex is very small, we can even go for an ex-
haustive search for the min-cover solution. Any candidate
sample not retained by either of the above two rules can be
safely removed as a noisy-sample. Figures 1, 11, 12 and 13
contain examples of sampling results.

Figure 10. Some candidate vertices (yellow circles) can be dis-
carded if they are adjacent to other candidate vertices representing
the same Gaussian vertex and with the same curvature characteristic.
A subset of these vertices is retained such that the union of their in-
cident triangles covers all the incident Gaussian triangles around the
represented Gaussian vertex. Here, the middle vertex is redundant,
because its incident triangles are associated to Gaussian triangles
that are covered by its neighbors.

«««< sampling.tex

4.1. Effects of Noise in the Mesh

Consider an almost planar region of the mesh whose normal
coincides with a Gaussian vertex vG. With minor noise in the
mesh, the normal vectors of the triangles in the planar region
will be associated to different Gaussian triangles around vG,
and hence many mesh vertices will be considered feature
vertices. Extensive studies in computational geometry point
out that such cases constitute degeneracies [EM90]. By the
definition of degeneracy, they can be removed by a slight
perturbation of the orientation of the Gaussian sphere.

On the other hand, consider a smooth curved region of the

Figure 11. Feature sensitive samples produced by our algorithm on
a large mesh. The Gaussian sphere was tessellated using 112 trian-
gles.

Figure 12. Samples produced by our algorithm on a mesh. Notice
the dramatic changes in sample distribution between low and high
curvature regions.

mesh whose normal space span a large region in the Gaus-
sian sphere (as in the back of the horse in Figure 14). If such
a region has noise, then it cannot be removed by perturba-
tion of the orientation of the Gaussian sphere. We have to
handle the noise in the normal vectors directly by applying
the low-pass Laplacian filter [Tau01] on them. In our exper-
iments (see Figure 14), we observed that a single iteration
of Laplacian smoothing is usually enough to remove all the
irrelevant concavities and the samples.

======= »»»> 1.34

Memoryless Sampling: Almost all the presented opera-
tions, such as finding a candidate sample and non-sample fil-
tering, are local operations around the mesh vertices. Hence
the entire sampling algorithm requires no memory or com-
munication/sharing of data and thus is embarrassingly par-
allelizable on each mesh vertex. If an application can accept
more than a minimal set of samples, the candidate samples
chosen by the above operations would well serve the pur-
pose. The other two operations, namely the untriangulatable
patch filtering and noisy-sample filter require limited local
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Figure 13. Samples produced on two mechanical parts.

Figure 14. Concave regions are shown in yellow and convex in red.
Blue spheres represent samples. A low-pass filter on the mesh nor-
mals reduces the noise in the normal variation of the original mesh
(top), eliminating spurious concavities and reducing the number of
samples in the output (bottom).

traversal of the incident feature edges, but can still be per-
formed with minimal memory using appropriate indexing
and storage of mesh triangles based on their normal vectors.

5. Shape approximation
By construction, the feature edges of a mesh form closed
curves on the surface, which partition the mesh into clusters
of connected triangles associated to the same Gaussian tri-
angle (see Section 4). This implies that these clusters only
contain faces with bounded normal deviation and it must
therefore be possible to substitute each such cluster with a
set of similarly oriented triangles (bounded normal devia-
tion). Illustrations of this partitioning are shown in Figure 7.
We can therefore approximate each of these patches using a
simpler proxy.

In order to produce a triangulated approximation to the
original shape, two approaches can be considered. The first
and most straightforward one produces a triangulation using

Figure 15. Shape approximation on a mechanical part. The triangle
edges are rendered in black for clarity.

Figure 16. A cow model 5830 faces (left) approximated using 1996
faces (right).

only the vertices marked as samples. To do so, we compute
the Voronoi diagram of the original shape using the sample
vertices as Voronoi centers, and the L2,1 metric. As is done
in [CSAD04], when we encounter a mesh triangle whose
three vertices belong to different Voronoi cells, we output a
triangle connecting the Voronoi centers of those three cells.

The second approach involves applying the above algo-
rithm on a per-patch basis, using the corner vertices of each
patch (this is all the original candidate samples, even those
not selected as samples) as Voronoi centers. Because not all
the vertices used in this triangulation are samples, a series of
edge collapse operations may be applied as necessary. The
added complexity of this second approach offers the guaran-
tee of topological correctness. Furthermore, since each patch
is relatively small, any geometric discrepancies with respect
to the original model can be solved at low cost by rearrang-
ing the produced triangles. Both triangulation algorithms run
in O(n logn) time on the size of the original mesh. Some re-
sults of the approximation algorithm are shown in Figure 15,
16 and 17.

Effect of the Orientation of the Gaussian Sphere: In our
algorithm, the sampling on the surface changes by differ-
ent orientations of the Gaussian sphere. But both the sam-
pling and the approximation error bounds of the surface ap-
proximations given by any of these samplings are the same,
since that bound depends only on the density of the Gaus-
sian sphere tessellation. This is demonstrated in Figure 18 in
which the Hausdorff error between the original model and
the simplified model generated by the samples from different
orientations of the Gaussian sphere are plotted. Although the
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Figure 17. A skull model with 22104 faces (left) approximated us-
ing 6462 faces (right).

error is maintained for different orientations of the sphere,
the number of samples might be different in each of these
cases. Given an error bound, finding the optimal orientation
of the Gaussian sphere tessellation in order to minimize the
sample size is NP-hard, as can be derived from [CVM∗96].
On the positive side, identification of feature vertices in the
mesh is so fast that the user can interactively select a good
orientation of the Gaussian sphere for (visually) better sam-
pling.
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Figure 18. Approximation error for different input meshes and eight
random orientations of the tessellated Gaussian sphere. The error,
measured as a percentage of the size of the model, is never greater
than 8%.

Handling Meshes with Boundaries: The holes of the mesh
are treated like special mesh partitions themselves. If the
boundary of a hole has at least three feature vertices, a hole
polygon is created, and the hole remains after triangulation.
Otherwise the hole is eliminated as its associated polygon
is degenerate. Interestingly, while boundary curves on the
mesh which are close to geodesics are approximated auto-
matically (Figure 19), other boundary curves whose Frenet
frame normal vector is perpendicular to the mesh normal are
filled by default, but this can be avoided with user interven-
tion.

Figure 19. By tagging the boundaries of the model as feature edges
for the approximation, we can ensure that they are retained in the
simplified output. In the figures above, a hole in the chest of the
bunny model remains after simplification and is well approximated
by our algorithm.

6. Application: Segmentation for Spherical
Parameterization

Various techniques have been developed for segmenting
topologically complex polygonal meshes into patches home-
omorphic to a disk. Not many attempts have been made to
segment meshes into patches homeomorphic to other well
known topological entities, like the sphere or torus. These
domains have various advantages over the disk including
a naturally seamless continuity of the parameterization. In
this section we present a technique to partition the mesh into
patches that are directly parameterizable using spherical co-
ordinates.

Overview of the algorithm: For a convex object with genus
g, the normal vector space would wrap the Gaussian sphere
g+1 number of times (and hence the Lemma 1 which states
that the total absolute Gaussian curvature is g+ 1 times the
area of the unit sphere). The fundamental idea behind mesh
segmentation into spherical pieces is to segment the mesh in
such a way that the normal vector space of each contiguous
partition would wrap the sphere exactly once. Thus we will
get exactly g+1 partitions from a genus g convex object.

In non-convex objects, the normal vectors of more than
g+ 1 points of the object might map to the same point of
the Gaussian sphere. If we perform a low pass filtering on
the normal vector space sufficient number of times, then the
number of pre-images of all points (except for a finite num-
ber of points) of the Gaussian sphere would be exactly g+1.
The effect of the low pass filtering on the normal space is to
remove the concavities of the model and make it convex. The
finite number of points on the Gaussian sphere which has
fewer than g+1 pre-images on the model are called poles. If
we remove the pre-imaegs of the poles from the model, the
rest of the model will be automatically separated into g+ 1
pieces. The pre-images of the poles are then attached to the
closest partition of the model to create g+1 patches that are
directly parameterizable using spherical coordinates.
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Figure 20. Segmentation process of a torus, from left to right. First: Normal based partitioning of the input mesh. Second: Patches associated
to a Gaussian triangle that appears less often than the others are marked as poles. Third: Non-pole patches can be directly aggregated, forming
the skeleton of the segmentation. Fourth: Final segmentation, after assigning all pole faces to adjacent segments.

6.1. Algorithm for Mesh Segmentation

Given the tessellation of the Gaussian sphere, each partition
of a polygonal mesh as done in Section 4 is a pre-image of a
Gaussian triangle. The number of pre-images of a Gaussian
triangle may be more than g+ 1. With sufficient smoothing
of mesh normals [Tau01], the number of patches on the mesh
associated with every Gaussian triangle can be brought down
to no more than g + 1. Note that, since all our processing
is with the normal vectors, we do not change the positions
of the vertices while smoothing the normal. The spherical-
parameterizable segmentation we are looking for can be pro-
duced by finding g+1 connected sets of patches such that in
every set each Gaussian triangle is not represented by more
than one patch.

Patch grouping: Finding the connected set of unique
patches as described above is equivalent to the following
graph problem. Consider a colored undirected graph G using
c different colors. We need to find a graph partitioning into
connected subgraphs such that each subgraph has at most
one vertex of each color. This problem is known to be NP-
hard [SSKBD01], and therefore no efficient solution is be-
lieved to exist.

Figure 21. Left: In convex objects, each Gaussian triangle is rep-
resented exactly once. Middle: Concavities force some Gaussian
triangle to be representated more than once. Right: By smoothing
its normals, a concave object can be treated as a convex one.

We have found a heuristic that exploits the characteris-
tics of the graph induced by the manifold mesh to produce a
correct solution in much shorter time. The heuristic is based
on the notion of poles, or patches with neighborhood not

Figure 22. Color coded segmentation of a double torus into three
patches parameterizable with spherical coordinates.

homeomorphic to a disk. Pole patches are identified by be-
ing associated to a Gaussian triangle that appears less than
(g+1) times in the mesh. These patches isolate the non-pole
patches that form the g handles of the manifold. A greedy
heuristic that exploits this notion is illustrated in Figure 20.
The heuristic first aggregates all connected non-pole patches
such that no aggregate has more than one patch associated
with the same Gaussian triangle. Then triangles from pole
patches are assigned to the closest adjacent non-poles, using
the L2,1 metric. So long as the normals of the input object
are smoothed (Figure 21) as to functionally remove all their
concavities, this heuristic produces correct results in all our
experiments (Figure 22).

7. Conclusion and Future Work
We have presented a novel linear time surface sampling tech-
nique derived from the imposition of three reasonable sam-
pling conditions. To meet these conditions, we create the ε-
net sampling in the Euclidean distance metric on the Gaus-
sian sphere, which translates to ε-net sampling in the L2,1
metric on the given surface. As shown before, the sampling
size is proportional to the total absolute Gaussian curvature
of the given shape. This sampling technique is the basis for
a robust shape approximation algorithm with guarantees on
topological correctness, by construction.
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Two promising directions for future work include non-
uniform Gaussian sampling and the parallel implementation
of the method. In the former, a varying sampling density for
the Gaussian sphere could be used to represent a notion of
importance sampling, with applications, for example, in ren-
dering. In the latter, the algorithm would be extended to han-
dle different regions of large models concurrently, exploiting
the fact that our sampling algorithm requires only access to
local neighborhood in order to accept or reject a sample.
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Appendix: Proof of Minimality The sampling produced
by our method is minimal in the sense that any subset of the
sample set is not guaranteed to be an ε-net sampling of the
surface. In other words, there exists at least one object in
which the sampling produced by our method is minimal.

Consider a regular tessellation of a Gaussian sphere in
which the lengths of all the edges are l. An (l− µ)-net sam-
pling (where µ is a small positive quantity) of a convex genus
zero object M will map the vertices of this Gaussian sphere
to the points on M that has the same normal vectors. Let us
assume that we remove one of these samples s from this sam-
ple set. Then we find that a point p (= s) on M is more than
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(l−µ) distance away (as calculated by the L2,1 metric) from
any other sample in the sample set. Thus, S−{s} is not an
(l−µ)-covering and hence not an (l−µ)-net of M. Since the
sample s is arbitrary, no subset of the sampling generated by
our algorithm can be a valid (l−µ)-net sampling of M. This
result holds good for any convex 2-manifold with arbitrary
genus.
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