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Guaranteed Quality Isotropic Tetrahedral Meshing of Arbitrary Geometric

Domains
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Figure 1: A tetrahedral mesh generated by our algorithm. On the left is a model of a hand and next to it is a cross section of the tetrahedra
generated. Our algorithm produces isotropic meshes with no sizing variation across the domain. This mesh has over 8700 vertices and 40,000
tetrahedra. It took a total of 33 seconds to generate the signed distance transform and the mesh on a 3.06GHz Pentium IV with 1GB of RAM
with an nVidia GeForce 7800 GTX graphics card. The histogram on the right shows the quality of the resulting mesh in terms of the dihedral
angles of the tetrahedra. The meshes produced by our method are very close to being regular tetrahedral meshes. Quality measures in terms
of aspect ratios (ratio of circumradius to inradius), and radius to edge ratios of the mesh are shown in Figure 2.

Abstract
Tetrahedralization of three-dimensional geometric domains find
numerous applications in scientific computing, computer graph-
ics, simulations and solid modeling. In this paper, we present a
novel, automatic mesh generation algorithm of arbitrary geomet-
ric domains. We answer the question: what is the best possible
set of tetrahedra, in terms of their regularity, that can tile three-
dimensional Euclidean space , since it is well-known that it is not
possible to do so with perfectly regular tetrahedra. We provide
a very simple scheme to tile space based on the tetrahedral close
packed structures of crystals. The quality of the tetrahedra in this
tiling is extremely close to regular tetrahedra for almost all the typ-
ical quality measures used in the meshing literature. We further ex-
tend this technique to mesh arbitary geometric domains without sig-
nificant degradation of quality. Our algorithm starts with our tiling
scheme and then retains only those tetrahedra that lie completely in-
side or intersect the domain of interest. Intersecting tetrahedra are
clipped with the domain boundary and retriangulated. One main
advantage of our method is that it is significantly faster than most
existing meshing algorithms since we avoid repeated Delaunay tri-
angulation. We demonstrate the quality of the resulting isotropic
meshes in a wide variety of examples.

1 Introduction

Simplicial mesh generation in three dimensions has numerous ap-
plications in scientific computing and visualization, simulations,
computer graphics and solid modeling. Primarily, a simplicial mesh
generation algorithm partitions a finite subset of R

3 into small tetra-
hedra such that any two tetrahedra are either disjoint or intersect in
a lower dimensional simplex. While the size requirement of each
tetrahedra varies with the application, it is usually acceptable if all
are of roughly the same size. This is called isotropic meshing. In
this paper, we will focus mostly on isotropic meshing. Graded
meshing, where the element sizing requirement varies across the
domain, will be briefly addressed.

Perhaps, more crucial than the sizing requirement is the quality
constraints imposed on the tetrahedra. The most popular measures
[Bern et al. 1992] in three dimensions are aspect ratio (circumra-
dius over inradius), maximum dihedral angle and radius-to-edge ra-
tio (circumradius over shortest edge). While each of these measures
are equivalent in two dimensions, it is not so in three dimensions.

There are some inherent mathematical limitations to the best pos-
sible meshes in three dimensions. It is well-known that R

3 can-
not be tiled with regular tetrahedra because its dihedral angle
(arccos(1/3) = 70.53◦) is not a submultiple of 360◦ (see Figure 3

on the left). However, equilateral triangles do tile R
2. Another is-

sue that complicates meshing in three dimensions is dealing with
the domain boundary. While it is possible to generate conforming
triangulations respecting fairly general boundary constraints, this is
not possible in three dimensions [Shewchuk 1998].

Cheng et al. [Cheng et al. 1999] provide a classification of various
degenerate tetrahedral shapes that are possible while triangulating
a set of points. Their classification is based on whether the vertices
are close to a line or plane. One of the latter cases is the sliver
where the four points are almost cocircular - for example, they lie
almost along the equator of their circumsphere (see Figure 3 on the
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Figure 2: Histograms showing the quality of the tetrahedral mesh
produced by our algorithm for the Hand model shown in Figure 1.
The two histograms shows the quality in terms of aspect ratios (ra-
tio of circumradius to inradius), and radius to edge ratios (in that
order). The histograms show that the mesh is very close to being
tiled with regular tetrahedra.

right). Previous approaches to meshing have tried to optimize one
of these measures. One of the most common measures optimized
is the radius-to-edge ratio. While they eliminate most of the bad
cases, they do not get rid of slivers. On the other hand, aspect ratios
and dihedral angles are good measures for all kinds of degeneracies.

Another issue that is important in mesh generation is the number
of tetrahedra produced. The running time of the finite element
method [Strang and Fix 1973] is a superlinear function of the num-
ber of tetrahedra in the mesh [Mitchell and Vavasis 2000]. Thus,
there is significant penalty for meshes with a large number of tetra-
hedra.

Figure 3: Left: Five regular tetrahedra sharing an edge. The gap
between the faces are less than 1.5◦. Right: Example of a sliver
tetrahedron.

A combination of all these issues make the problem of tetrahedral
mesh generation with boundary conditions very challenging. The
first question, however, to ask is if we cannot tile space with reg-
ular tetrahedra, how close can we come? To answer this question,
we resort to crystallographic literature. In order to understand the
atomic structure of various complex transition alloys, they have in-
vestigated the possibilities of space filling by “almost regular” tetra-
hedra. Based on this study, we formulate a particular kind of space
filling strategy that has surprisingly very nice properties.

Main Results: We present an algorithm to mesh arbitrary closed
three-dimensional domains. We assume that there is an oracle that
returns if a given point lies inside or outside the domain of inter-
est. This allows us to mesh fairly general domains whose boundary
can be polygonal meshes, implicit surfaces or even Boolean com-
binations of these domains. Figure 1 shows the mesh produced
by our algorithm on the hand model. The resulting mesh has over
8700 vertices and 40,000 tetrahedra and took around 33 seconds to

compute the signed distance field in the graphics hardware and the
resulting mesh. The histograms in Figures 1 and 2 show that the
tetrahedra in our meshes are close to being regular.

Our algorithm generates a special set of vertices obtained as a sub-
set of a union of lattices. The Delaunay triangulation of this point
set produces tetrahedra that are close to being regular. Tetrahedra
that intersect the domain boundary are subdivided and the portion
lying inside the domain is retriangulated. The quality of some of
the boundary tetrahedra are worsened by this process. We perform
a very simple local jittering of the generated boundary vertices to
improve their quality.

Some of the main results of our algorithm are:

Tiling quality: The special distribution of points lets us generate
tilings which are almost regular. All the tetrahedra in the tiling have
dihedral angles that lie in the range [60◦,74.2◦]. The lower bound
for the range in a tiling must be [60◦,72◦] since either five or six
tetrahedra much share en edge. It seems unlikely that our tiling
pattern could be improved.

Generality of domain boundaries: We rely on an inside/outside
classification test being available for the domain with respect to a
point. This can usually be provided for general boundaries like
polygonal meshes (through octrees, kd-trees or even signed dis-
tance transforms) those specified as the zero set of elementary func-
tions, as well as Boolean combinations of such domains.

Efficiency: As opposed to variational methods [Alliez et al. 2005]
or Delaunay refinement algorithms [Cheng et al. 1999], we do not
recompute a retriangulation of most of the points specified. We do,
however, perform retriangulation after small perturbations of the
boundary vertices.

Implementation: We have a system implementation of our algo-
rithm. It has been applied to complex polygonal meshes as well as
some simple implicit surfaces and Boolean combinations. We mea-
sure the quality of the resulting simplicial mesh with respect to all
three quality measures mentioned earlier: aspect ratio, radius-to-
edge ratio and dihedral angles.

A limitation of this work is that we do not seek to optimize the
number of tetrahedra produced inside the domain. However, by
specifying a single sizing parameter we can control the size and
number of simplices generated.

Organization: The rest of the paper is organized as follows.
Section 2 briefly reviews the related previous work. Out tiling
scheme is described in Section 3. Section 4 provides the details of
how to use the tiling scheme to mesh a finite domain. We conclude
in Section 6 after giving some results of applying our algorithm on
different domains in Section 5.

2 Previous Work

In this section, we briefly review some of the existing mesh genera-
tion techniques. The problem of mesh generation has been studied
extensively in the computational geometry, modeling and simula-
tion, and visualization community. Detailed surveys of the mesh
generation literature have been published [Bern and Plassmann
1999; Teng and Wong 2000; Eppstein 2001]. The interested reader
can get more details about the current state of the art in these sur-
veys and the references therein.
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Meshing algorithms can be roughly classified into three main cat-
egories: Octree methods, Delaunay methods and Advancing front
techniques.

Octree method: With this method, cubes containing the geo-
metric domain are recursively subdivided until a desired resolution
is reached. Irregular cells are then created where the voxels inter-
sect the surface. Tetrahedra are generated from both the irregular
cells on the boundary and the internal regular voxels [Yerry and
Shephard 1984; Shephard and Georges 1991]. Bern et al. [Bern
et al. 1990; Bern et al. 1994] use quadtrees to subdivide a two di-
mensional domain until each input point satisfies a well separated
condition. The quadtree cells are then warped and triangulated to
generate meshes of provable quality. Mitchell et al. [Mitchell and
Vavasis 2000] extend this algorithm to three dimensions using oc-
trees with guaranteed aspect ratio of all the tetrahedra. One disad-
vantage of octree methods is that the resulting meshes change as
the orientation of the cubes in the octree structure is changed. Our
method is close in spirit to the octree methods. Instead of tiling the
domain with voxels and then triangulating them, we tile the space
with tetrahedra. Hence our algorithm inherits most of the draw-
backs of octree method as well.

Delaunay methods: By far the most popular of the meshing
techniques are those utilizing the Delaunay criterion. The Delau-
nay criterion, sometimes called the ”empty sphere” property states
that any node must not be contained in the interior of the circum-
sphere of any tetrahedra within the mesh. A typical approach is to
first mesh the boundary of the geometry to provide an initial set of
vertices. The first step is to compute the Delaunay triangulation of
the boundary vertices. Nodes are then inserted incrementally into
the existing mesh, redefining the simplicial mesh. Different meth-
ods use different strategies to choose interior nodes to insert.

One approach is to define new vertices at element circumcenters
as proposed by Chew[15] and Ruppert[16]. When a specific or-
der of insertion is followed, this technique is often referred to as
”Guaranteed Quality” as triangles can be generated with a mini-
mum bound on any angle in the mesh. Delaunay refinement tech-
niques, in general, offer optimality in terms of quality measures
like radius-to-edge ratio and are also asymptotically optimal in the
number of tetrahedral elements they generate. As mentioned be-
fore, however, optimizing radius-to-edge ratios can introduce sliv-
ers. Sliver exudation and weighted Delaunay refinement [Cheng
et al. 1999; Cheng and Dey 2003] have been proposed to handle
slivers as part of the refinement process.

Another approach that has gained lot of traction recently is the use
of Centroidal Voronoi tessellations [Du and Wang 2003]. The main
idea here is to minimize a quadratic energy functional such that
the resulting meshes are dual to optimal Voronoi diagrams. Du et
al. [Du and Wang 2003] show that the functional is minimized when
the vertices are positioned at the centroids of their own Voronoi cell.
Through a subtle modification of the energy functional, Chen et
al. [Chen and Xu 2004] argue that this energy measures the quality
of the mesh tetrahedra, not their dual Voronoi cell. Alliez et al. [Al-
liez et al. 2005] provide an algorithm to consistently minimize the
energy functional proposed by Chen et al. [Chen and Xu 2004].
Freitag et al. [Freitag and Ollivier-Gooch 1996] use local swapping
and smoothing techniques like Laplacian smoothing to improve a
given tetrahedral mesh.

Advacing front methods: Another class of 2D and 3D mesh
generation algorithms is the advancing front, or moving front

method. In this method, the tetrahedra are built progressively in-
ward from the triangulated surface. An active front is maintained
where new tetrahedra are formed. A sizing function can also be
defined in this method to control element sizes. Li et al. [Li et al.
1999; Li et al. 2000] use an advancing front technique combined
with sphere packing to mesh the domain. They provide guaranteed
quality of tetrahedra based on radius-to-edge ratios.

2.1 Tetrahedral Close Packing

Tetrahedra have interesting connections to sphere packings [Con-
way and Sloane 1998], certain special tilings of space like foams
and froths [Sullivan 2000] and complex alloy structures. It is well
known that the maximum number of spheres that can be arranged
in R

3 such that all sphere touch each other is four. The dual struc-
ture leads to a regular tetrahedron. Crystallographers have studied
transition metal alloys in which the atoms are arranged as nearly
regular tetrahedra [Shoemaker and Shoemaker 1986]. Frank and
Kasper [Frank and Kasper 1958; Frank and Kasper 1959] observed
that studying sphere packings and their dual tetrahedral network can
explain the crystalline structure of transition metal alloys. These are
called the Frank-Kasper phases and belong to a class of tetrahedral
close-packed (tcp) structures. Sullivan [Sullivan 2000] provides a
mathematical definition of tcp structures as follows: triangulations
whose edges have valence (number of faces adjacent to an edge)
five or six, but no two edges of a triangle have valence six. Epp-
stein et al. [Eppstein et al. 2004] use this definition to list various
tilings of space with near regular tetrahedra.

3 Near Regular Tetrahedral Tiling of
Space

We shall now describe our tiling of space with near regular tetra-
hedra. We start by providing some definitions and cover relevant
background material.

3.1 Definition and Background

We start by defining a lattice. In simple terms, a lattice in R
3 is

a regular placement of points in an infinite integer grid defined by
three basis vectors, (v1,v2,v3). Any point p in the lattice can be
expressed as av1 +bv2 +cv3, where a,b,c∈Z. In general, the basis
vectors need not be mutually orthogonal, but we will assume that
they are linearly independent. Let V be the matrix whose column i
is the vector vi. Then,

Definition 3.1. A lattice L in three dimensions is a discrete sub-
group of R

3. L = VZ
3.

A canonical integer grid in three dimensions can be specified by the
identity matrix. Lattices of this type are referred to as cubic lattices.
Lattices are invariant to scaling and rigid transformations (rotation
and translation). So, in general, it is possible to express a lattice
of the form αRVZ

3 + t, where α is the scaling parameter, R is a
rotation matrix and t is a translation vector.

Some of the well-known crystal structures like body-centered cubic
(bcc) lattice and face-centered cubic (fcc) lattice can be expressed
as the union of multiple lattices. Let I denote the 3× 3 identity
matrix. Then, BCC = {IZ3}∪{IZ3 +(0.5,0.5,0.5)}.
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3.2 Tiling Scheme

We are now ready to provide our tiling scheme by choosing the
vertices. We start by choosing the lattice L = 0.5IZ3. We clas-
sify nodes in this lattice into four colors, 0,1,2,3 [Conway and
Torquato 2006]. A node p = (x,y,z) has color i if

2(x+ y+ z) ≡ i mod 4

Figure 4: Four coloring of the lattice 0.5IZ3. Color 0 is yellow,
color 1 is magenta, 2 is blue and 3 is green. The blue and yellow
nodes are at the center of the cells, while the green and magenta
nodes are at the cell vertices.

Figure 4 shows the coloring scheme. Given this coloring, we re-
place nodes of color 2 (blue) and 3 (green) by nodes of color 2.5
(cyan) which are located at the midpoints of the shortest line seg-
ments connecting nodes of color 2 and 3. This is shown in Figure 5.

Collect all nodes of color 0, 1 and 2.5. The Delaunay triangula-
tion of this point set tiles space with almost regular tetrahedra (see
Figure 6. Incidentally, this is one of the tetrahedral close-packed
structures. The dual Voronoi cells of this triangulation all have 16
faces (12 pentagonal and 4 hexagonal). Another interesting obser-
vation is that all the vertex coordinates are rational.

Figure 7 shows the histogram of three quality measures of the spa-
tial tiling (see Figure 6) produced by the vertex positioning scheme.
Statistics of the tiling are shown in Table 1. Notice that the his-
tograms are heavily concentrated near the values for a regular tetra-
hedron. There are exactly five values of dihedral angles in the tiling
and all of them range between 60◦ and 74.2◦ (the dihedral angle
for a regular tetrahedron is 70.53◦). The normalized radius ratios
are equally remarkable. All the tetrahedra have values greater than
0.97.

4 Meshing Algorithm

In this section, we will describe our algorithm to mesh arbitrary
three-dimensional domains. Let the domain of interest be Ω whose
boundary is ∂Ω. We will assume throughout the algorithm discus-
sion that ∂Ω is an orientable, compact surface enclosing a volume.
Our algorithm is divided into several steps.

Algorithm 1 is a high level overview of our algorithm. We will now
go through the details of the various steps.

Figure 5: Nodes of color 2 and 3 are replaced by nodes of color
2.5 (cyan in the figure) which are positioned at the midpoints of the
shortest line segments connecting nodes of color 2 and 3.

Figure 6: Left: The image shows the tiling of space with the tetra-
hedra specified by the above scheme. Right: The image on the
right shows the cross section of the tiling.

4.1 Computing Signed Distance Fields

We use the signed distance fields for many purposes. The primary
purpose is that it allows us to answer inside/outside queries on the
domain. This test allows us to classify points and tetrahedral el-
ements which are repeatedly used throughout the algorithm. Sec-
ondly, it greatly speeds up the intersection computation of individ-
ual tetrahedra with the domain boundary. There are several meth-
ods to compute the signed distance field both in software and hard-
ware [Mauch 2000]. With the recent advances in programmable
graphics hardware, it is possibly to scan convert and compute the
distance transform for very complex meshes in a matter of a few
seconds [Sud et al. 2006]. The grid resolution used in the distance
field computation determines the accuracy of various queries. In
practice, computing a 100 × 100 × 100 grid suffices for reliable
querying.
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Figure 7: From left, the image shows the histogram of all the dihedral angles in the mesh (notice that there are only 5 values of the dihedral
angles ranging from 60◦ to 74.2◦), the histogram of the radius ratios (all tetrahedra have a quality measure > 0.97) and the histogram of
radius-to-edge ratios (values range from 1.0 to 1.16), respectively. The radius ratio and radius-to-edge ratios are normalized so that it is 1.0
for regular tetrahedra.

Quality Measure Minimum Maximum Average Std. Deviation

Min. Dihedral Angle 60.0◦ 70.53◦ 64.4◦ 4.54◦

Max. Dihedral Angle 70.53◦ 74.21◦ 72.86◦ 1.36◦

Normalized Aspect Ratio 0.972 1.0 0.982 0.01
Normalized Radius-to-Edge Ratio 1.0 1.16 1.11 0.06

Table 1: Table showing the statistics of various quality measures used to measure our spatial tiling. The corresponding values for a regular
tetrahedron is 70.53◦ for dihedral angle and 1.0 for the normalized aspect and radius-to-edge ratios. The table clearly shows that our tiling
comes very close to being regular.

Algorithm 1 TetrahedralMeshing(∂Ω, s)

Input: Domain boundary ∂Ω and specified element size s Output:
Tetrahedral mesh M in the interior of Ω

∂Ω = ReadInputBoundary()
ComputeSignedDistanceField(∂Ω)
N = EstimateNumberofPointSamples(∂Ω, s)
GeneratePointSamplesFromTiling(N)
ComputeTilingMesh()
ClassifyMeshTetrahedra(Ω) as {inside, outside, intersecting}
Discard outside tetrahedra
Mesh M = inside tetrahedra
I = set of intersecting tetrahedra
while I 6= /0 do

Pick t ∈ I

R = t ∩∂Ω

R′ = retriangulate R
M = M∪R′

end while
Return M

4.2 Estimating Number of Points

The number of points to be generated inside the domain is a func-
tion of the sizing parameter s and the domain volume. For isotropic
meshing, s is a constant. We estimate the domain volume by per-
forming a quasi-Monte Carlo sampling [Niederreiter 1992] and es-
timating the volume by querying the signed distance field. This is
a standard approach and is easily extended to sizing fields that vary
across the domain [Alliez et al. 2005]. We use this estimate to de-
termine the number of copies of a single lattice block to produce
the vertices of the tiling. The details of the point and tiling mesh
generation were discussed in Section 3.2. We generate a tiling of
the space such that it contains the domain of interest.
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Figure 9: This image shows the distribution of the aspect ratio (cir-
cumradius to inradius) and the radius-to-edge ratio of the simplices
in the tetrahedral mesh produced by our algorithm on the model of
the horse shown in Figure 8.

4.3 Tetrahedral Classification

Once the tetrahedral tiling is produced, we have to classify tetrahe-
dra as either belonging inside, outside or intersecting the domain.
In order to classifiy tetrahedra reliably, we assume that the sign
of the distance field at the vertices and circumcenter of the tetra-
hedra is sufficient to determine if it intersects the domain or not.
While this condition need not necessarily be satisfied in domains
with fairly complex topology, this assumption is quite reasonable
for most practical considerations. Our heuristic is as follows.

• If the absolute distance value at the circumcenter is greater
than the circumradius and the circumcenter lies inside the do-
main, then the tetrahedron is classified inside.

• If the absolute distance value at the circumcenter is greater
than the circumradius and the circumcenter lies outside the
domain, then the tetrahedron is classified outside.

• If neither is true, detect zero crossing of the distance field
along any of the six edges. If there is one, classify tetrahe-
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Figure 8: From left, this image shows the tetrahedral mesh produced by our algorithm on the model of the horse. The figure to its right is a
cross section of the simplices generated. This mesh has close to 6000 vertices and 26,000 tetrahedra. It took a total of 19 seconds to generate
the signed distance transform and the mesh on a 3.06GHz Pentium IV with 1GB of RAM with an nVidia GeForce 7800 GTX graphics card.
The histogram on the right shows the distribution of the dihedral angles in the mesh. The histogram for aspect ratios and radius-to-edge ratios
are shown in Figure 9.

dron as intersecting.

• Otherwise, classify tetrahedron as inside or outside depend-
ing on the orientation of the circumcenter.

4.4 Tetrahedral Intersection and Retriangulation

The next step in the algorithm is to clip the intersecting tetrahe-
dra with the domain boundary. We use the signed distance field
again for this purpose. We use linear interpolation along the sim-
plicial edges to determine the intersection point. This is akin to the
Marching Tetrahedra method commonly used in volume visualiza-
tion. Figure 11 (top row) shows the various ways in which a tetrahe-
dron can intersect the domain boundary (provided the assumption
that intersection is determined by sign change along edges). The
bottom row shows the polyhedra that remain after they are clipped
by the domain boundary. The shapes are convex and are not very
difficult to triangulate. We observe here that this final step of the
algorithm which performs the retriangulation deteriorates the mesh
quality that is resulted. The number of such simplices is a very
small fraction (surface area vs. volume) of the entire mesh. Our
experiments also bear this fact out.

Before returning the final mesh, we try to improve the quality of the
mesh by only trying to perturb the boundary vertices slightly. We
search in the local neighborhood of the tangent plane to see if any
improvement is possible. This is similar to the “boundary vertex
jittering” peformed in Alliez et al. [Alliez et al. 2005].

5 Results and DIscussion

We have implemented our algorithm and tested it on various do-
mains. It is fairly simple to implement since software for most
of the heavy lifting like Delaunay triangulation and distance trans-
forms are available. We used Qhull (http://www.qhull.org)
to perform the Delaunay triangulation. We used the software of Sud
et al. [Sud et al. 2006] which computes the signed distance fields
on the graphics hardware. Prior to obtaining this code, we use a

software-based scan conversion method [Mauch 2000] to evaluate
distance fields.

Our algorithm can handle large complex meshes and produce qual-
ity meshes in a matter of seconds. The speed of our algorithm can
be attributed to the fact that we do not incur the cost of repeated De-
launay triangulations. The quality of the resulting meshes is evident
in the histogram plots. Figure 8 shows the mesh produced by our
algorithm on the horse model. This mesh has around 6000 vertices
and 26,000 tetraheda and it took 19 seconds to run on an 3.06GHz
Pentium IV with 1GB of RAM and a nVidia GeForce 7800 GTX
graphics card.

Model # Verts # Tets Time

Hand 8738 39994 33
Horse 5851 25404 19

Bunny(Midres) 10774 51548 31
GradedSphere 8095 40178 22

Socket 10667 48503 35
Boolean 875 4231 8

Table 2: Performance of our algorithm on various input domains.
All the timing measurements are reported on a 3.06 GHz Pentium
IV with 1 GB of RAM and an nVidia 7800 GTX graphics card.
The timing includes the time to generate the signed distance field
and is measures in seconds. For large datasets, the distance field
computation dominates the total time. Hand is the model in Fig-
ure 1, Horse is the model in Figure 8, Bunny (Midres) is the bunny
model on the top right of Figure 10, Graded Sphere is the model in
Figure 12, Socket is the model on the left of Figure 13 and Boolean
is the model to its right in Figure 13.

Perhaps one could wonder that using an initial distribution of
points like the one generated here could be used in conjunction
with other methods to produce better quality meshes. We experi-
mented with a few mesh generation software like Tetgen (http:
//tetgen.berlios.de/), QMG [Mitchell and Vavasis 2000]
and GRUMMP [Freitag and Ollivier-Gooch 1996]. However, all
the meshed produced as a result of perturbing our initial point set
were of significantly lower quality. It appears that the tiling ap-
proach is a special case that one does not arrive easily through local
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Figure 10: Sizing variation: The user can control the size of the
mesh elements using a parameter. This parameter is directly pro-
portional to the dimensions to the simplices produced by the mesh-
ing algorithm. In this image, the parameter is decreased. With
increasing complexity, the bunny has 1194 verts and 4868 tets; the
second one has 10774 verts and 51548 tets; and the final one has
13009 verts and 62887 tets. The histogram on the right shows the
distribution of the dihedral angles for the mesh in the top right.

search techniques. That is probably why meshing in three dimen-
sions is so difficult. On a related note, the question of meshing a
cube with tetrahedra such that all dihedral angles are strictly less
than 90◦ is still open. The related problem in two dimensions has
been solved.

There are many limitations to our approach. One of the most impor-
tant aspects of mesh generation is the ability to control the sizing
function and vary it along the mesh. We experimented a little with
some heuristics to control the quality degradation, but none were
promising. Figure 12 shows the cross section of a graded mesh of a
sphere and the distribution of the normalized radius ratios.

The algorithm as described in Section 4 is oblivious of the presense
of sharp edges and corners. However, we do handle sharp features
specially. The user can specify vertices in the boundary mesh that
have to be fixed. The vertices will be retained in the final mesh. The
only special case we handle is if the boundary tetrahedra intersect in
that region of the domain. Figure 13 (left) shows the mesh produced
when the boundary has sharp features. We do not show the quality
histogram because of lack of space. However, the mesh is of much
lower quality than for smooth surfaces.

We can also mesh domains by an implicit specification like a set
operation between two domains. In Figure 13 (right) we show a toy
example of meshing the difference between a truncated cylinder and
sphere. The domains are specified by their implicit equation.

The tiling scheme presented in Section 3.2 starts with the lattice
L = 0.5IZ3. However, we can also apply a rigid transformation
to this lattice to suit our domain of interest. For polyhedral do-

Figure 11: Top Row: The image shows various ways a tetrahe-
dron can intersect the domain boundary. Bottom Row: These the
clipped parts of the tetrahedron that remain in the domain. As is
observable, the remaining polyhedra are convex and can be trian-
gulated easily.
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Figure 12: Left: The image shows the cross section of a graded
mesh based on the local feature size. The mesh elements are be-
coming smaller as we approach the boundary of the domain. Right:
The image on the right shows the histogram of the normalized ra-
dius ratios of all the tetrahedra in the mesh.

mains, we use the vertices in the mesh boundary to compute a 3×3
covariance matrix C . We then perform a simple principal compo-
nent analysis (PCA) on this matric to obtain an orthogonal frame R

aligned with the domain. The vertices obtained by the tiling scheme
are transformed by this rotation matrix R. The rest of the algorithm
remains the same.

6 Conclusion

In this paper, we have presented a new algorithm to mesh arbitrary
geometric domains in three dimensions. We show that a partic-
ular set of points generated from an initial lattice produces close
to regular tetrahedra which tile space. We also presented an algo-
rithm that uses this initial tiling to mesh arbitary geometric domains
without significant degradation of quality. One main advantage of
our method is that it is significantly faster than most existing mesh-
ing algorithms since we avoid repeated Delaunay triangulation. We
have demonstrated the quality of the resulting isotropic meshes in a
wide variety of examples.
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