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Abstract
A feature-oriented generic progressive lossless mesh coder (FOLProM) is proposed to encode triangular meshes
with arbitrarily complex geometry and topology. In this work, a sequence of levels of detail (LODs) are generated
through iterative vertex set split and bounding volume subdivision. The incremental geometry and connectivity
updates associated with each vertex set split and/or bounding volume subdivision are entropy coded. Due to
the visual importance of sharp geometric features, the whole geometry coding process is optimized for a better
presentation of geometric features, especially at low coding bitrates. Feature-oriented optimization in FOLProM
is performed in hierarchy control and adaptive quantization. Efficient coordinate representation and prediction
schemes are employed to reduce the entropy of data significantly. Furthermore, a simple yet efficient connectivity
coding scheme is proposed. It is shown that FOLProM offers a significant rate-distortion (R-D) gain over the prior
art, which is especially obvious at low bitrates.

Categories and Subject Descriptors(according to ACM CCS): E.4 [Data]: CODING AND INFORMATION
THEORY—Data compaction and compression

1. Introduction

High resolution 3D models, which have become common
with the advent of automatic 3D scanning devices, take a
huge amount of space to store in raw formats. Reducing
the storage, bandwidth and rendering costs of 3D data has
been an active research topic for over a decade. With the
rapid development in network-based interactive 3D appli-
cations, progressive 3D model coding has become vital to
the transmission of large models over networks of limited
bandwidth. Further, such coding techniques have to handle
generic models including manifolds and non-manifolds, en-
code both geometry and connectivity and achieve good rate-
distortion performance. In this paper, we propose techniques
to address all of the above requirements in a mesh coding
scheme.

In the proposed 3D mesh compression scheme, called
FOLProM, we progressively encode geometry as well as
connectivity information. Compared to the previous work,
the proposed FOLProM coder has the following distinctive
features.

• Feature-oriented geometry coding.Geometric features
like high curvature regions, usually convey important vi-
sual information. Hence the entire geometry coding pro-
cess in our coder is optimized to preserve geometric fea-
tures of the input model.

– Feature-directed hierarchy control.A hierarchy of
model representations is considered in order to create
an appropriate level of detail of the model at a given
bit-rate budget. Since normal vectors and hence cur-
vatures convey important geometric and perceptual in-
formation, an adaptive distance metric based on nor-
mal vectors for clustering control and a Gaussian func-
tion based curvature weighting for representative com-
putation are proposed to optimize the approximation
quality at the intermediate level of detail within the hi-
erarchy.

– Feature-based adaptive quantization.The quantiza-
tion parameters to encode geometry are adaptively de-
termined based on the local shape of the surface. For
a given number of quantization bits, local distortion is
minimized by assigning higher quantization resolution
to the more important spatial dimension.

• Effective entropy reduction techniques.The employ-
ment of cylindrical coordinates, prediction of polar angles
and delta coding of heights leads to a significantly reduced
data entropy.

• Simple yet effective connectivity coder.Our method em-
ploys a simple connectivity coder that takes advantage of
the local distribution of vertices to reduce the data entropy
and at the same time handles arbitrary variation in local
topology, including non-manifold connectivity.
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As compared with related work, FOLProM with optimiza-
tion leads to outstanding rate-distortion performance with
well-preserved geometric features especially at low bit-rates.

1.1. Related Work

3D mesh compression techniques can be classified using dif-
ferent attributes [PKK05]: single-rate and progressive, loss-
less and lossy, connectivity-driven and geometry-driven ap-
proaches. The method presented in this work is a progres-
sive lossless geometry-driven mesh coder that can handle
meshes of arbitrary topology including non-manifolds, even
complex triangle soups. We briefly highlight relevant work
in this section. For a comprehensive survey on 3D mesh
coding technologies, we refer the reader to [PKK05,AG03,
GGK02].

Single-rate mesh coders encode a 3D mesh, part by part,
in one resolution. They are lossless coders in that they pre-
serve the original connectivity and allows only negligible
geometry quantizationerrors [TR98,BPZ99b,TG98,AD01b,
GS98,Ros99,CR04]. Later on, lossy single-rate mesh codecs
such as [SRK02,AFSR03] were proposed, offering a higher
coding gain by combining the compression process with
remeshing. Most of the single-rate coders are connectivity
driven in the sense that mesh traversal order is determined
by the connectivity, which restricts the order and the coding
of vertex positions.

In contrast to a single-rate mesh coder, a progres-
sive encoder represents the input mesh as a sequence of
models with different resolutions, called levels of detail
(LODs), from coarse to fine, and encodes the differences
between adjacent LODs. There are connectivity-driven ap-
proaches [Hop96, PH97, TGHL98, PR00, COLR99, AD01a,
LK98, BPZ99a, KBG02, VP04] and geometry-driven ap-
proaches [GD02, DG00, PK05a, KG00a, KSS00, KG00b,
GGH02,GP05,VCP09] to progressive mesh coding. The for-
mer usually simplify an input mesh through a sequence of
topological operations and encode the reverse of this simpli-
fication process while the latter usually give a higher priority
to geometry coding, which dictates the order and method of
connectivity coding, or even discard the original connectiv-
ity through remeshing.

Although remeshing-based coders produce outstanding
rate-distortion performance, they are effective only for man-
ifold or almost manifold meshes. Furthermore, they are
not suitable for applications that demand faithful repre-
sentation of the input mesh that call for lossless mesh
coders. Progressive lossless encoders that work with mani-
fold meshes only [Hop96,TGHL98,PR00,COLR99,AD01a,
LK98, BPZ99a, KBG02, VP04, VCP09]) or general meshes
including non-manifolds [PH97,GD02,PK05a,PEK06] en-
code the original connectivity and keep the geometric er-
ror within bounds as determined by the quantization pa-
rameters. It should be noted that the majority of the above-

mentioned lossless mesh coders prequantize the vertex co-
ordinates before encoding. There are also lossless geom-
etry coders such as [ILS04, ILS05] that do not prequan-
tize but encode the original floating-point vertex coordi-
nates. State-of-the-art progressive lossless mesh coders in-
clude [GD02, PK05a, VP04, VCP09]. In [VP04], the pro-
gressive coding process relies on a wavelet-based multi-
resolution analysis of irregular meshes. The connectivity
coder encodes the insertion of new vertices, the face sub-
division and the edge flips associated with each incremental
topology refinement. The geometry coder encodes the coef-
ficients resulting from a wavelet decomposition of the ge-
ometry. As claimed in [VP04], its coding performance out-
performs that of [AD01a] and [KBG02] in general. The al-
gorithm in [VCP09] remodels the progressive mesh com-
pression as a model generation problem. Starting from a
base model, it iteratively inserts vertices to the approxima-
tion and performs local Delaunay mesh refinements corre-
spondingly. Connectivity of the intermediate models will be
corrected through a sequence of edge flips only after the ge-
ometry information has been fully transmitted. As demon-
strated in [VCP09], it in general leads to efficient coding of
models with smooth surfaces. But its performance on mod-
els with sharp features is not well documented and its per-
formance is highly dependent on the order of vertex inser-
tion which sometimes may cause degeneration in the recon-
structed connectivity. Both [GD02] and [PK05a] apply a hi-
erarchical kd-tree- or octree-based partitioning to the bound-
ing box of an input mesh, and encode the geometry and con-
nectivity updates associated with each tree node subdivision.
They achieve outstanding final bitrates, but generate highly
aliased intermediate meshes. In [PK05b] the geometry of the
3D mesh is progressively encoded, but the connectivity is
not. It performs hierarchical vertex set splits, calculates a
representative for each newly generated vertex subset, and
encodes the associated geometry updates.

The FOLProM coder proposed in this work is a generic
progressive lossless triangular mesh coder that can encode
triangular meshes with arbitrary geometric and topological
complexity. It does not resample the original surface, pre-
serves the original connectivity, and restores each vertex
up to a tolerance from its original position. Its superiority
over [PK05b] is demonstrated in Section2, and its compar-
isons with several state-of-the-art progressive mesh coders
that encode both geometry and connectivity, [VP04,PK05a,
VCP09,KG00a], are detailed in Section4.

1.2. Algorithm Overview

The FOLProM coder first splits a vertex set into several child
vertex sets using generalized Lloyd algorithm (GLA), and
the geometric representative of each vertex set is computed.
The representative is chosen to be the vertex that is close to
the averaged geometry center and has high curvature. The
number of children is entropy encoded and the offsets of
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Figure 1: Effectiveness of the adaptive hierarchy control for Star (with 21,198 vertices).

their representatives from the representative of the parent
vertex set are quantized and entropy encoded. If the vertex
set has only one vertex, the residual between the represen-
tative after local quantization and the real vertex position is
further refined through subdivision of its bounding volume.
In this case, the index of the nonempty child bounding vol-
ume is encoded. The vertex set split and/or bounding volume
subdivision processes are iteratively performed until a ter-
minating criterion is met. In addition, vertex sets with more
than one vertex are prioritized over those with single ver-
tex in split. Further, the associated local connectivity updates
are encoded. At each intermediate stage, the representatives
of all current vertex sets and the connectivity between them
form an approximation to the original mesh.

In essence, for each cluster in the FOLProM coder, we
employ novel placement and prediction of vertex cluster
representatives and introduce feature-based prioritization of
vertex set split operations to preserve geometric features.
These help us achieve outstanding R-D performance, espe-
cially at low bitrates. In addition, a simple yet effective con-
nectivity coder is adopted.

2. Geometry Coder

The FOLProM encoder splits a parent vertex set intoK
(a user-defined constant) children if the vertex set contains
more thanK vertices, andm children if the set containsm
vertices (2≤ m≤ K). Each child vertex set has a represen-
tative calculated as its geometric center or a vertex that is
close to the geometric center and has a high curvature. The
geometry of the representative is encoded by its offset from
the parent set representative. We split vertex sets with more
than one vertex first till we reach the stage of exactly one
vertex per set. Thereafter, each set will not be split but its
representative is further refined and moved towards its cor-
rect position through bounding volume subdivision as de-
scribed in Section2.4. The number of children, their offsets
and bounding volume indices are all arithmetic-coded.

Regarding the choice of value forK, too small a value
will not enable us to fully utilize the advantage of prediction
techniques as described in Section2.3; too big a value will
lead to an explosive number of vertex sets and hence the

coding bits in the intermediate meshes while the geometry
precision is still low. In our experiments,K = 4 consistently
gave good results to us.

When compared to [PK05b], the proposed geometry
coder uses sophisticated techniques including adaptive hier-
archy control, adaptive offset quantization, prediction tech-
niques and detail refinement, as detailed below.

2.1. Adaptive Hierarchy Control

In the generation of vertex set and representative hierarchy,
the Generalized Lloyd Algorithm (GLA) process automat-
ically adapts to the specific distribution of geometry sam-
ples in a mesh in order to optimize the quality of geome-
try approximation in an intermediate LOD. It returns when
the decrease in distortion between two consecutive iterations
is below a threshold or a maximum number of iterations is
reached.

Two key ingredients in GLA that we can control are
the definition of the distance metric,d(v1,v2) between two
pointsv1 andv2 and the computation of the representative
for each vertex set.

Distance Metric

A straightforward choice is the Euclidean distance as
adopted in [PK05b]. However, it tends to collapse feature re-
gions that contain vertices close in distance but high variance
in their normals. On the other hand, a purely normal-based
distance metric for shape approximation does not work for
our top-down hierarchy construction since we do not want
to group distant vertices with similar normals, especially at
an early stage of the hierarchy construction process. Hence,
we propose a distance metric that is a convex combination
of the Euclidean and normal-based metrics:

d(v1,v2) = wn ·dn(n1,n2)+(1−wn) ·de(v1,v2),

where the Euclidean distancede and the normal difference
dn are defined by

de(v1,v2) = |v1−v2|,
dn(n1,n2) = |n1−n2|,

and wheren1 andn2 are the unit normals at pointsv1 and
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v2, andwn is a weighting factor which is adaptively deter-
mined based on the geometric feature of a vertex set to split.
Generally, if the normal variation is large within a vertex set,
wn should be large. To be more specific, for a vertex set with
K vertices,wn is determined as

wn = 1−a(1− 1
2

ave(dn(ni ,nR)))b,

whereni represents the normal of any vertex in the vertex
set,nR is the unit average normal over all the member ver-
tices, given bynorm( 1

K ∑K
i=1 ni). Since the maximum value

of ave(dn(ni ,nR)) can be 2, it is normalized by a factor of
1/2. a andb are user-defined constants with 0≤ a ≤ 1 and
b ≥ 1, andwn is in the range of[0,1]. In our experiments,
a = 1 andb = 8 gave good results for meshes with geomet-
ric coordinates in the range of[0,212). A general rule in the
choice ofa is that it should be inversely proportional to the
geometric scale of the input mesh in order to maintain the
relative scale ofde(v1,v2) and dn(n1,n2) in the proposed
distance metric, where the former’s scale varies with differ-
ent input meshes, while the latter’s keeps constant.

Representative Computation

A straightforward approach is to use the averaged geomet-
ric center of a vertex set as its representative. But it tends to
smooth out regions with sharp creases and/or corners which
are often seen in CAD models (e.g., Fandisk). Based on the
fact that those regions contain high variation of local curva-
tures, we identify those regions and adopt a Gaussian func-
tion based curvature weighting approach for the computation
of representatives.

For a given vertex setV, we first check if the standard
deviation of vertex curvatures,Dc, is above a threshold,Tc.
For every vertexvi ∈V, we use the standard deviation of its
adjacent facets’ normals (normalized to the range [0,1]) as
a measure of the curvatureci . If Dc > Tc, we use the Gaus-
sian function based curvature weighting approach to select
the representative, which will be described below; Other-
wise, we compute the representative as the averaged geo-
metric center.

We compute a priority valuespi for eachvi ∈ V, and
choose the vertex with the largestpi as the representative.
A desirable representative should be close to the averaged
geometric center and have high curvature at the same time.
Thus, we computepi as the weighted curvature atvi , i.e.,
the product ofci and a Gaussian function of the distance be-
tweenvi and the geometric centerc of V. Specifically, for
eachvi ∈V, we calculate its priority valuepi as

pi =
ci

σ
√

2π
e−|vi−c|2/(2σ2)

whereσ is the parameter which determines the shape of the
Gaussian function curve. In order for the shape of the Gaus-
sian function curve to adapt to the dimension of any vertex
set, we specifyσ asσ = rg×A whereA is the average dis-

tance ofvi to c andrg is a system parameter which is set to
3 in our experiments.

The clustering for Star (with 21,198 vertices) correspond-
ing to an intermediate LOD is illustrated in Fig.1(a), where
different clusters are colored differently. It clearly demon-
strates the effect of the normal term in the proposed reg-
ularized isophotic metric of distance,i.e., adjacent surface
patches are neatly separated by sharp edges in most cases.

In order to demonstrate the effectiveness of the proposed
adaptive hierarchy control techniques, we show in Fig.1(d)
the R-D curves for the coding of Star with and without the
adaptive hierarchical control, respectively. In this figure, the
bitrate is reported in the unit of bits per vertex (bpv), and the
distortion is the mean error as measured with the METRO
tool [CRS98] on a scale of 10−4 with respect to the diag-
onal of the original mesh’s bounding box. In addition, the
visual results of two intermediate models decoded at 2bpv
without and with the adaptive hierarchical control are shown
in Fig. 1(b) and Fig.1(c), respectively. Comparing Fig.1(b)
and Fig.1(c), we see more indentations on the model surface
in Fig. 1(b) due to the clustering of spatially close vertices
with highly different normals, such as those on the two sides
of each thin wing; we see less sharp edges in Fig.1(b) due
to the computation of representatives without taking into ac-
count the curvature information, which tends to smooth out
the regions around sharp edges.

2.2. Adaptive Offset Quantization

Once the vertex set is split, the child representatives are en-
coded by their geometric offsets from the parent representa-
tive. In FOLProM, we use cylindrical coordinates(ρ,θ,z),
whereρ is the distance from the axis of the cylinder,θ is
the angle from theX-axis of the local coordinate system of
the cylinder, andz is the height from the tangent plane. In a
typical vertex split, we expect that child representatives are
rather evenly distributed around the parent, which is typi-
cally observed in many 3D meshes. Hence, the children’s
ρ(z) coordinates should have similar magnitudes, and the an-
gles between the projections of children onXY plane with
respect to thez axis should be similar too, all of which are
good for entropy reduction. The Cartesian coordinates used
in [PK05b] do not have such an advantage. Furthermore, the
ρ andz components in cylindrical coordinates roughly cor-
respond to the tangential and normal dimensions of a local
neighborhood, respectively, which provides a distinct advan-
tage over spherical coordinates since it facilitates adaptive
quantization dictated by the local surface feature as detailed
below. It should be noted that local quantization is also used
in [LAD02] for geometry coding. Compared to [LAD02],
our quantization scheme adapts to the relative importance
of normal and tangential accuracy and the cylindrical coor-
dinates representation enables effective prediction and leads
to significantly reduced data entropy.

Unlike most progressive lossless mesh coders developed
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before, the FOLProM encoder does not pre-quantize input
mesh vertices in a global frame. Instead, for each vertex set
split, the cylindrical coordinates of child representative off-
sets are quantized in a local frame that has the parent vertex-
set representativep as its origin, normal atp as theZ axis,
projection of one of the global frame base vectors on to the
tangent plane atp as theX-axis, and theY axis asZ×X.
Note that we obtain the normal atp from the best fit plane
at p along with its neighbors computed using linear least
squares. The quantization parameter is fixed for theθ com-
ponents, but adaptively determined for theρ andz compo-
nents so as to adaptively assign higher quantization resolu-
tion to the more important dimension as explained below.

According to [KSS00,KG00b], normal accuracy is often
more important than parametric (or tangential) accuracy in
manifold mesh approximation. However, for local surfaces
with high curvature, tangential accuracy may be more im-
portant. This is illustrated by 2D examples in Fig.2. The left
and right plots show a polyline (in black) with low and high
curvatures at the middle vertex, respectively. In the left plot,
perturbation of the middle vertex along the tangent is visu-
ally less disturbing and less distinguishable from the orig-
inal, than perturbing it by the same amount in the normal
direction. In the right plot, the effect is opposite. These 2D
examples demonstrate that the relative importance of normal
and tangential accuracy depends on the local curvature.

(a) (b)

Figure 2: Illustration of the relative importance of nor-
mal/tangential accuracy to the curve approximation quality
with (a) a relatively flat polyline and (b) a highly curved
polyline.

A quantization parameter is the distance between two ad-
jacent quantization levels. It should be small (fine) for more
accuracy in representation. LetGρ, Gθ andGz be the quan-
tization parameters ofρ, θ, andz respectively. For a vertex,
v, to split, we first find the ranges of its neighbors’ρ and
z coordinates, denoted byRρ and Rz, respectively. Gener-
ally speaking, the smaller (larger) the ratioRz/Rρ, the flatter
(more curved) the local surface and, hence, the more im-
portant the normal (tangent) accuracy. Thus,Gρ ∝ Rρ and
Gz ∝ Rz. Specifically, we have

Gρ = Rρ/Q, Gθ = 2π/Q andGz = Rz/Q,

whereQ is a parameter representing the number of quanti-
zation levels for each coordinate component. ParametersGρ
andGz not only adapt to the relative importance of normal
and tangential components but also lead to empirically more

compact distribution of quantized values ofρ andz, which
is good for coding efficiency. Using the proposed adaptive
quantization scheme, theL2 distortion is reduced by more
than a third for most of our test models over a wide range of
bit-rates.

2.3. Prediction Techniques

Assuming even distribution of children around the parent,
we expect even distribution of children’sθ coordinates in
the range of[0,2π), and similar delta-z coordinate between
each child and the parent, which serve as the basis of our
prediction techniques as detailed below. Suppose that ver-
tex v in a given LOD is to be split intoK child vertices,
ci , with quantized offsets(ρi ,θi ,zi), wherei = 1, · · · ,K and
K > 1. The encoder maintains theK child offsets in the lex-
icographic order ofθ, ρ andz. In order to reduce the redun-
dancy in the offset coordinates, predictors are adopted to pre-
dict theθ andz coordinates, and the prediction residuals are
arithmetic-coded. Theρ coordinates are directly arithmetic-
coded without prediction.

The coordinateθ1 of the first child vertex is directly
arithmetic-coded. The valueθi , 2≤ i ≤ K, can be predicted
from θ1 andθi−1 based on the following idea. The 2D polar
angles ofc1 andci−1 are

α1 = θ1Gθ andαi−1 = θi−1Gθ,

respectively, whereGθ is the quantization parameter for the
θ offsets. By assuming that the 2D polar angles of the re-
maining K − i + 1 offsets are evenly distributed between
αi−1 and 2π+α1, but not beyond 2π, we can predictθi by

θ′i = min[θi−1 +
2π+α1−αi−1

(K − i +2)Gθ
,

2π
Gθ

].

Subsequently, the residualθi −θ′i is arithmetic-coded.

Next, we encode thezi value of each childci , i = 1, · · · ,K.
If we denote theZ coordinate of the parentv as zp, zi is
predicted by

z′i = zp.

The residualzi −z′i is arithmetic-coded.

Using the proposed predictors, the entropies ofθ- and
z-information are significantly reduced. Predictions onρ
yield little performance improvement in our experiments
and, hence, the values ofρ are directly arithmetic-coded.

2.4. Detail Refinement

During the encoding and decoding process, both the en-
coder and the decoder perform the same calculation of the
local frame and the local quantization parameters associ-
ated with each vertex split. As a result, they always main-
tain the same bounding volume centered on each newly
generated representative. To be more specific, if we denote
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the locally quantized polar coordinates of the representa-
tive as (ρc,θc,zc) and the quantization parameters asGρ,
Gθ andGz, respectively, the original position of the repre-
sentative is bounded by the cylindrical volume defined by
two corner points,[ρc−0.5Gρ,θc−0.5Gθ,zc−0.5Gz] and
[ρc + 0.5Gρ,θc + 0.5Gθ,zc + 0.5Gz]. When it comes to the
point that only one original vertex is contained in a ver-
tex set, the encoder and the decoder perform the same it-
erative cylindrical bounding volume subdivision process to
refine the geometry of the contained vertex. At each step,
we subdivide the cylindrical bounding volume along one of
the three dimensions (i.e.,ρ, θ andz), resulting in two child
cylindrical bounding volumes, and arithmetic-code one bit
specifying the nonempty one. In the reconstructed mesh, the
representative position will be refined to the centroid of the
nonempty cylindrical child bounding volume.

All the above novel techniques and improvements in ge-
ometry coding lead to a significant R-D advantage of the
proposed FOLProM geometry coder over that of [PK05b]
called HVSS (Fig.3). Note that [PK05b] does not encode
connectivity.
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Figure 3: Comparison of geometry R-D curves for (a) Torus
and (b) Horse with FOLProM and HVSS.

3. Connectivity Coder

3.1. Overview

Although single-rate connectivity coders [TG98, AD01b,
CR04] have achieved excellent compression ratios, they are
not compatible with progressive mesh coding, and only ap-
plicable to manifold or almost manifold mesh coding. Con-
nectivity coders have also been proposed in lockstep with
progressive geometry coders, among which [AD01a,GD02,
PK05a] yield the state-of-the-art connectivity compression
ratio. It should be noted that [AD01a] processes only man-
ifold meshes, while [GD02, PK05a] can handle meshes of
arbitrary topology. The proposed connectivity coder also ap-
plies to meshes of arbitrary topology, even triangle soups,
and it is compatible with the proposed progressive geometry
coder.

After encoding the geometry of child vertices, we encode

their connectivity affected by the vertex split. If we denote
two vertices in an intermediate LOD asr1 andr2 and their
corresponding vertex sets asV1 andV2, respectively,r1 and
r2 are connected if and only if an edge in the original mesh
connects an original vertex inV1 and an original vertex inV2.
Associated with each vertex split, triangular facets incident
on the parent vertex are discarded, while a new triangular
facet is constructed for every three vertices that include at
least one of the children and are mutually connected. In this
context, we assume that a triangle facet is double-sided and,
in the original model, each three mutually connected vertices
form a facet. Under these assumptions, it is provable that
the proposed connectivity coder can accurately restore the
original topology. Such assumptions are not uncommon in
the compression literature and are used in [GD02,PK05a].

3.2. Connectivity Coding Algorithm

This section describes the process of splitting a vertex set
into two sets. This process is repeatedK −1 times in order
to realize a 1-to-K vertex set split. Let the parent vertex set
representative bev and the child representatives bev1 and
v2. Furthermore, let the neighbors ofv beNi before the split,
and neighborhood setSv = {Ni}. In the splitting process, the
following information have to be encoded.

• one bit representing ifv1 andv2 are connected,
• |S| bits representing if eachNi is connected to bothv1 and

v2, and
• |S| bits representing if eachNi is connected to eitherv1 or

v2 (not both).

The neighborsNi that are connected to bothv1 andv2 are
called pivot neighbors, and other neighbors arenon-pivot
neighbors. Note that it is not possible thatNi is connected
to neitherv1 norv2.

Depending on the mesh construction process, the order
of neighbors in the encoder and the decoder may not be
the same. In order to make a consistent coding context
and reduce the data entropy, we order neighbors based on
their likelihood of being apivot vertex. Prevalent 3D mod-
eling techniques strive to produce regular meshes where a
dominant number of triangles over the surface are close to
equilateral triangles. Thus, for each neighborNi , the closer
△(Ni ,v1,v2) is to an equilateral triangle, the more prob-
able thatNi is a pivot. We measure the regularity,Ri , of
△(Ni ,v1,v2) as the ratio of its squared perimeter to its area:

Ri =
Si ×Si

Ai
,

where

Si =
(|Niv1|+ |v1v2|+ |v2Ni |)

2
,

Ai =
√

Si × (Si −|Niv1|)× (Si −|v1v2|)× (Si −|v2Ni |).
It can be proved thatRi reaches its minimum if and only if
△(Ni ,v1,v2) is an equilateral triangle.
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Thereafter, the neighbors can be ordered according to
their regularities. Tiny offsets in floating point calculation
may lead to inconsistent ordering of neighbors between the
encoder and the decoder in some cases. In order to resolve
this issue, the encoder and the decoder generate and main-
tain consistent and unique vertex IDs for each vertex in the
same order. If the difference in regularity of two neighbors
is less than a threshold, their relative order is determined in
both the encoder and the decoder by their unique global IDs
instead of their regularities. Thus, consistent neighbor order-
ing is always maintained in the encoder and the decoder. The
bits that are used to flagpivots are ordered correspondingly,
forming a bit-pattern which is arithmetic-coded. This bit pri-
oritization technique reduces the bit budget by about 50% for
our test manifold meshes.

Given the above order, thenon-pivotneighbors are pre-
dicted to be connected to the closer child vertex, and we use a
one bit flag for eachnon-pivotneighbor to indicate if the pre-
diction is correct or not. All the bit patterns are arithmetic-
coded. This simple distance-based prediction technique re-
duces the bit budget by about 70% for the manifold meshes
used in our experiments.

C2 C1

N2(ID=3298)
N1

N1N2N3N4N5N6
 N5N2N6N1N3N4

N3

N4

N6N5(ID=3287)

010010  110000

|N1C1| < |N1C2| 

Figure 4: Illustration of the 1-to-2 connectivity coding.

The proposed 1-to-2 connectivity coding algorithm is il-
lustrated in Fig.4. The original order of neighbors are
N1N2N3N4N5N6; after prioritization, their order is changed
to N5N2N6N1N3N4. Correspondingly, the bit-pattern that
specifies thepivot neighbors are changed from 010010 to
110000. Here,N2 andN5 have very close regularity values,
and the ambiguity is resolved by their IDs, 3298 and 3287.
For thenon-pivotneighborN1, we predict it to be connected
to a closer child vertex,C1. Correctness of this prediction is
encoded using a bit.

Similar to the proposed connectivity coder, [KBG02] also
encodes the update to the local connectivity in the context of
a 1-to-2 vertex split, and also the information as to which
neighbors becomepivotsafter the split. However, the con-
nectivity coder in [KBG02] is based on a manifold local
neighborhood and needs special codes to address the cases of
non-continuous vertex split and illegal edge collapse, while
our work uniformly processes a configuration of generic lo-
cal neighborhood.

Our design criteria for the connectivity coder are its sim-
plicity, range of applicability (should handle all sorts of tri-
angular models) and run-time efficiency. The fact that the

geometry bitrate is often a more dominant factor than the
connectivity bitrate in progressive mesh compression gives
us a wide space in design decisions. Connectivity coders de-
scribed in [AD01a,GD02,PK05a] either handle only man-
ifold meshes affecting their range of applicability, or use
complex prediction and neighbor segmentation techniques
that reduce their run-time efficiency. Hence these methods,
although in general have better compression ratios, do not
meet our design criteria. In our experiments, the proposed
connectivity coder encodes the full-resolution mesh connec-
tivity with about 5 bits per vertex (bpv) for manifold meshes,
and about 10 bpv for triangle soups.

4. Experimental Results

4.1. Rate-Distortion Performance Comparison

We compare the coding performance with state-of-the-art
progressive mesh coders that encode both geometry and con-
nectivity, [VP04, PK05a, VCP09, KG00a]. Further, meshes
with a wide range of complexity and topology types have
been used in our experiments.

Table 1: R-D statistics for test meshes with distortion mea-
sured as mean error with the METRO tool [CRS98].

Mesh(#v) Encoder Bitrates (bpv)
1.0 2.0 4.0 8.0 12.0 16.0

David OCT 12.5 7.9 5.9 2.9 1.0 N/A
(258,329) FOLProM 4.6 3.5 1.8 1.2 0.8 0.6

Donna OCT 32.1 22.2 14.3 7.0 2.7 1.2
(50,691) FOLProM 16.7 9.1 5.8 3.1 2.3 1.5

Dragon OCT 11.4 8.5 4.9 1.5 0.8 N/A
(437,645) FOLProM 4.2 2.2 1.5 0.9 0.7 0.6

Feline OCT 27.5 17.2 10.5 5.0 1.8 0.7
(49,864) FOLProM 16.7 9.1 6.1 2.9 1.9 1.2

Horse OCT 33.82 20.3 14.9 4.3 1.9 1.0
(19,851) FOLProM 16.0 10.3 5.3 3.4 2.0 1.3

Igea OCT 20.2 15.6 10.1 2.7 0.9 N/A
(134,345) FOLProM 4.6 2.9 2.1 1.4 1.2 0.7

Maple OCT 29.8 18.6 13.8 11.3 6.1 4.0
(45,499) FOLProM 21.5 13.6 8.4 5.4 3.7 2.8

Rabbit OCT 20.2 15.0 9.6 2.7 1.1 N/A
(67,039) FOLProM 5.2 3.9 2.1 1.6 1.2 0.5

Skeleton_hand OCT 10.3 6.1 3.0 1.4 N/A N/A
(327,323) FOLProM 3.4 2.5 1.2 0.9 0.6 0.5

Table 1 shows the R-D results of the OCT mesh
coder [PK05a] and the proposed FOLProM coder applied
to various models.

This table gives the mean error (as measured with
METRO) of each input mesh when coded at a sequence of
bitrates using a specific mesh encoder (OCT or FOLProM),
where the distortion is reported on a scale of 10−4 with re-
spect to the diagonal of the bounding box of the original
mesh. An “N/A" in this table indicates unavailable data due
to the early termination of OCT coding when the octree has
expanded to the maximum level (determined by the quan-
tization resolution). The bitrates listed are the total bitrates,
including bitrates for both geometry coding and connectiv-
ity coding, expressed in bits-per-vertex with respect to the
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(a) (b) (c) (d)

Figure 5: The R-D performance curves for (a) Rabbit, (b) Igea, (c) Skeleton_hand and (d) Maple. Note that the Maple model
is a non-manifold triangle soup.

OCT: 0. 5

OCT: 2. 0 FOLProM: 2.0

FOLProM: 0.5 IPR: 4

IPR:10

FOLProM: 4

FOLProM: 10

IPR: 4

IPR:8 FOLProM: 8

FOLProM: 4

OCT: 8.0. 0 FOLProM: 8.0 Original

Figure 6: Intermediate meshes for Donna, a non-manifold model, Fandisk, Horse and Skeleton, another non-manifold model,
at different bitrates as indicated by bpv using OCT, IPR and FOLProM.

total number of vertices in the original mesh. It can be seen
that FOLProM has significant R-D advantage over OCT for
all meshes, especially with large meshes, for which efficient
compression is more critical. It is also observed that the R-
D advantage of FOLProM for triangle soups (e.g., Maple)
is not as sharp as that for meshes with significant mani-
fold components. The reason may be that the techniques
like GLA partition, adaptive offset quantization, and off-
set prediction in FOLProM, although is applicable for non-
manifolds meshes also, are most effective when the local sur-
face is manifold and smooth. It is worthwhile to point out
that Donna is a non-manifold model with dominant mani-
fold components. From table1, we see a clearly better R-D
performance of FOLProM than that of OCT for Donna, and
Fig.6 shows the visual comparison using one of the interme-
diate decoded meshes of Donna. We also illustrate the R-D
performance gain of FOLProM over OCT on other models
in Fig. 5.

We compare with the wavelet-based mesh
coder(Wavemesh) [VP04] in Fig. 7, and with the spec-
tral geometry coder(Spectral) [KG00a] in Fig. 7(a). We
demonstrate in Fig.7(a) the R-D advantage of FOLProM
over Wavemesh and Spectral. In Fig.7(a), the R-D curves
of the three mesh coders on the Venus Head model (with

8,268 vertices) are plotted. We measure, for FOLProM,
the distortion of an intermediate mesh by its mean square
error (using METRO) to the original mesh divided by the
diagonal of the original mesh’s bounding box. The R-D
data for Wavemesh and Spectral were extracted from Fig.8
in [VP04]. The R-D advantage of FOLProM is clearly
demonstrated in Fig.7(a). Fig.7(b) shows the R-D curves
for FOLProM and Wavemesh on Fandisk (with 6,475
vertices), where we observe a clearly better performance
of FOLProM over Wavemesh in the low and the high
ends of bitrates while Wavemesh performs slightly better
in the middle. We are not able to compare with [KG00a]
on Fandisk since its coding performance on Fandisk was
not reported in [VP04]. It is worthwhile to point out that
Wavemesh is suitable only for manifold mesh compression.

In Fig. 8, we compare the R-D performance with
the incremental-parametric-refinement-based mesh
coder(IPR) [VCP09] using the RMS and the Haus-
dorff distance in Fig.8(a) and Fig.8(b), respectively. In
this comparison we use two models – Horse and Fandisk.
From Fig.8(a), we see a comparable performance between
IPR and FOLProM when RMS is adopted as the distortion
metric. However, in terms of Hausdorff distortion, FOL-
ProM achieves a significantly better performance than IPR,
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Figure 7: Comparison of R-D curves for Venus Head (with
8,268 vertices) and Fandisk (with 6,475 vertices).

as illustrated in Fig.8(b). This can be explained by the fact
that FOLProM tries to preserve salient features even at the
low end of bitrates, which accounts for the sharp reduction
in Hausdorff distortion when compared with IPR. The effect
of the reduced Hausdorff will be visually illustrated in
Section4.2.
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Figure 8: Comparison of R-D curves for Horse (with 19,851
vertices) and Fandisk (with 6,475 vertices). Although mea-
suring the error with two different metrics show different dif-
ferences in the methods, the visual comparison as shown in
Fig.6 clearly shows that FOLProM performs better in pre-
serving geometric features at low bit rates.

Total bitrates when the connectivity is fully restored are
listed in Table2 for several models with the settings of our
experiments. It should be noted that beyond the complete
restoration of connectivity, the vertex positions can still be
iteratively refined through bounding volume subdivision.

Table 2: Total bitrates (in bpv) when connectivity is fully
restored.

Model Venus Head Horse Feline Rabbit Igea

Bitrate 18.7 15.8 17.4 15.4 15.8

4.2. Visual Performance Comparison

To demonstrate the superior visual quality of decoded inter-
mediate meshes of the FOLProM coder at low bitrates, sev-
eral LODs for Donna, Fandisk, Horse and Skeleton at dif-
ferent bitrates are shown in Fig.6, where the coder and the
bitrates are marked below each reconstructed mesh. We see

from these figures that OCT suffers from the aliasing artifact
while FOLProM yields much better visual quality, especially
at low bitrates. It is worthwhile to point out that Donna and
Skeleton are both non-manifold models.

Fig. 8 shows the R-D comparison and Fig.6 show visual
comparison between the results of IPR [VCP09] and Fol-
PROM. In particular, we see that the sharp features in the
models including ears in Horse and the edges and corners
in Fandisk are well preserved under FolPROM especially at
low bit rates. It should also be noted that IPR [VCP09] can
compress only manifold models while FolPROM can com-
press models with arbitrarily complex topology.

4.3. Timing Statistics

Table 3: Timing statistics for encoding and decoding of se-
lected models. The data are based on 16bpv encoding and
decoding.

Horse Feline Donna Rabbit Igea
(19,851) (49,864) (50,691) (67,039) (134,345)

Encoding 0.9s 2.2s 2.2s 4.7s 7.6s

Decoding 0.5s 1.1s 1.1s 2.2s 3.8s

Timing statistics for the encoding and the decoding of se-
lected models are reported in Table3. The data are collected
by running our program on a Laptop platform of Sony(R)
VAIO Z55 with Intel(R) Core(TM)2 Duo CPU P8800 @
2.66GHz 2.67GHz and 4.00GB RAM, and the data are based
on 16bpv encoding and decoding. The time taken for encod-
ing and decoding are roughly proportional to the number of
vertices in the original mesh. It should be noted that our re-
search code for the encoder and the decoder is not yet opti-
mized for running efficiency.

5. Conclusion and Future Work

A feature-oriented progressive lossless mesh coder is pro-
posed, which can encode arbitrarily complex triangular
meshes, even triangle soups. The coding scheme is driven
by the process of iterative vertex set split and/or bounding
volume subdivision, which strives to preserve geometric fea-
tures and minimize surface distortion in any intermediate
mesh. In addition, novel techniques have been proposed to
reduce the data entropy. As a result, the proposed mesh coder
achieves a significant R-D gain over the prior art and is par-
ticularly effective in preserving sharp features at the low end
of bitrates.

As to future extension, it is worthwhile to try bottom-up
hierarchical construction as in [GWH01]. It is also interest-
ing to investigate the issue of optimal bit allocation between
coding more vertices and coding more bits per vertex in any
intermediate mesh, as discussed in [KR99]. In addition, we
may investigate wavelet coding of the child offsets using
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well-designed local shape descriptors as contexts. Further-
more, we may try coding the original floating-point vertex
coordinates with minor adaption of our current work.
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