
The Visual Computer manuscript No.
(will be inserted by the editor)

Pablo Diaz-Gutierrez · M. Gopi

Quadrilateral and Tetrahedral Mesh Stripification
Using 2-Factor Partitioning of the Dual Graph

Abstract In order to find a 2-factor of a graph, there
exist O(n1.5) deterministic algorithm [7] and O(n3) ran-
domized algorithm [14]. In this paper, we propose novel
O(n log3 n log log n) algorithms to find a 2-factor, if one
exists, of a graph in which all n vertices have degree four
or less. Such graphs are actually dual graphs of quadri-
lateral and tetrahedral meshes. A 2-factor of such graphs
implicitly defines a linear ordering of the mesh primitives
in the form of strips. Further, by introducing a few ad-
ditional primitives, we reduce the number of tetrahedral
strips to represent the entire tetrahedral mesh, and rep-
resent the entire quad-surface using a single quad-strip.

Keywords Graph matching, 2-factor, quadrilateral
stripification, tetrahedral stripification.

1 Introduction

Quadrilateral and tetrahedral meshes are fundamental
geometric structures in many mechanical and scientific
simulations, and visualization. Due to the importance of
these primitives, a number of algorithms have been de-
signed to create these primitive representations of the
given mesh from other representations [1,3,4,9]. Given
a mesh with quadrilateral or tetrahedral representation,
a linear ordering of these primitives can be used in ge-
ometric processing applications including rendering and
compression of large data sets [10]. In fact, many com-
pression techniques yield primitive strips as a byproduct
[12,11,10,19,13,16,22]. Most of the compression based
stripification algorithms are greedy algorithms that col-
lect primitives while walking along the mesh elements.

Pablo Diaz-Gutierrez
Department of Computer Science
University of California, Irvine
E-mail: pablo@ics.uci.edu

M. Gopi
Department of Computer Science
University of California, Irvine
E-mail: gopi@ics.uci.edu

Fig. 1 A cube and its dual graph. A 2-factor of the graph
is a 2-regular spanning graph. Two possible 2-factors of the
dual graph are shown. They define disjoint quadrilateral strip
cycles on a manifold quadrangulation. Note that the edges
that belong to the complement of 2-factor also define disjoint
cycles in the dual of a quadrangulated manifold.

Further, there are specific algorithms for tetrahedral and
quadrilateral stripification. For regular tetrahedral meshes,
[15] suggests space-filling curve approach for stripifica-
tion. Heuristics for strip generation from rectangular ‘patches’
of quadrilaterals was suggested by [6] and was used by
[18]. Further, given a polygonal mesh, algorithm to effi-
ciently decompose them to create a triangular strips was
suggested by [24]. In this context, there are also works on
creating triangle strips specifically from a quadrilateral
meshes [20,23].

In this paper, given a quad or tetrahedral mesh, we
propose a graph based algorithm that performs a global
analysis of the mesh to find quad and tetra strips. This
algorithm takes advantage of the similarity in the dual
graph structures of quad and tetrahedral meshes and
presents a unified solution for the problem in meshes
with either of these primitives. Our work is closely re-
lated to the triangle strip generation algorithm by Gopi
and Eppstein [8] that finds strips using the 1-factor in
the dual graph of a manifold triangulated mesh. We use
the 2-factor in the dual graph of tetrahedral meshes and
manifold quadrilateral meshes.

2 Pablo Diaz-Gutierrez, M. Gopi

1.1 Main Contributions

– The fundamental contribution of this paper are the
algorithms to find a 2-factor of a graph with degree
four or less. A 2-factor of a graph has many more ap-
plications than just in quadrilateral and tetrahedral
stripification, like network flow analysis, sequencial
storage in databases, etc.

– Further, we present a unified algorithm to find quadri-
lateral and tetrahedral strips from quad manifold sur-
face meshes and tetrahedral volume meshes using the
above 2-factor finding algorithm.

– Efficient management of strips can be done if the
number of strips is less. We propose novel and gen-
eralized subdivision techniques for quad and tetrahe-
dral elements to merge strip-cycles and minimize the
number of strip loops. In the process, we can achieve
a single Hamiltonian quadrilateral strip covering the
entire manifold quadrilateral mesh.

We discuss the theory of k-factor of the graph in Sec-
tion 2 and propose algorithms to compute a 2-factor of
the graph. A 2-factor of the dual graph of a quad or
tetrahedral mesh implicitly defines quad and tetra strips.
In Section 3 we present subdivision techniques to merge
these disjoint strips. Finally, we discuss implementation
and results of our stripification algorithms in Section 4.

2 Quadrilateral and Tetrahedral Stripification

The dual of a quadrilateral mesh representation of a
manifold, a dual quad-graph, is a 4-regular graph (every
node has degree 4). For all practical purposes, tetrahe-
dral volume mesh form 3-manifold surfaces with bound-
aries. Hence its dual graph, a dual tetra-graph, will have
nodes with less than degree four on the boundaries. But
for this difference, these dual graphs have very similar
structures and hence most of the graph algorithms that
are applicable to one dual graph can be applied to the
other also.

In this paper, we propose algorithms that are appli-
cable to both dual quad- and tetra-graphs to find disjoint
cycles in the graph that translates to disjoint quad/tetra
strip loops in the primal mesh. Post-processing of these
strips are dependent on manfoldness of the mesh and
hence independent techniques are developed for quad
and tetra strips.

The fundamental concept we use to develop quad-
and tetra-strips is the 2-factor of a graph. In the next
section, we discuss the classical definition of a 2-factor
of a graph. In Section 2.2 we present two algorithms to
find a 2-factor in the dual graph which implicitly defines
a partition of the quadrilateral and tetrahedral primal
meshes into quad and tetrahedral strips.

Fig. 2 (left) The dual degree three graph of the triangula-
tion of a genus 0 manifold and a perfect matching shown by
dark edges. (center) The set of unmatched edges form dis-
joint cycles. Two such cycles are shown. These disjoint cycles
are connected to each other by matched edges. The algorithm
constructs a spanning tree of these disjoint cycles and hence
choose matched edges that connect these cycles. (right) The
triangle pairs corresponding to chosen matched edges in the
tree are split creating two new triangles for every pair. Match-
ing is toggled around the new (nodal) vertices resulting in a
triangulation with a Hamiltonian cycle of unmatched edges.
Reproduced from [8].

2.1 The 2-factor of a Graph

Definition 1 A k-factor of a graph G is a spanning k-
regular subgraph of G.

For example, a 1-factor matches every node of the graph
with one and exactly one of its neighbors. A 1-factor
is also called a perfect matching. By Peterson’s theorem
[17], a 3-regular, bridgeless graph always has a perfect
matching. Using the fact that the dual graphs of trian-
gulated two manifolds are 3-regular, bridgeless graphs
and that a perfect matching exists for such graphs, Gopi
and Eppstein [8] construct triangle strip loop partitions
and eventually a single triangle strip loop of a triangu-
lated two manifold of any arbitrary genus. Specifically,
since every node has degree three and exactly one of the
edges is chosen by the 1-factor graph, the rest of the two
edges form disjoint loops that partitions in the vertex
set of the dual graph and hence the input mesh. These
disjoint loops were merged by subdividing two adjacent
triangles belonging to two different cycles into four tri-
angles by inserting a new vertex in the midpoint of the
shared edge. This creates a single strip cycle covering all
the triangles in the input mesh. This algorithm is illus-
trated in Figure 2.

We use a similar approach to construct quad and
tetra strips using the following classical result attributed
to Peterson [17].

Theorem 1 Every regular graph of even degree has a
2-factor.

The implication of the above theorem is that the dual
quad-graph of a two manifold, which is a 4-regular graph,
has a 2-factor; that is, there is a subgraph in which every
vertex has degree two. Hence all the nodes in the dual
graph along with the chosen edges in the 2-factor form
disjoint loops and thus quad-strip loops in the primal
quadrangulation.

Since the dual tetra-graph is not a regular graph,
the above theorem does not apply to tetrahedral meshes.

Quadrilateral and Tetrahedral Mesh Stripification Using 2-Factor Partitioning of the Dual Graph 3

(a) (b) (c) (d)

Fig. 3 Illustration of a two-pass graph matching algorithm
on the dual of a cube. (a) Dual graph of a cube. (b) First
pass perfect matching. (c) Remove the matched edges from
the first pass and run the second pass of graph matching. (d)
Union of matched edges from (b) and (c) gives a 2-factor.

Hence the 2-factor finding algorithms that are explained
in the subsections below, when applied to the dual tetra-
graphs might not produce a 2-factor – not all nodes
might have degree two. In other words, the stripification
of the primal tetrahedral mesh may contain both linear
strips and strip-loops. Since linear tetrahedral strips also
are acceptable as solutions to our problem, we propose
the following 2-factor finding algorithms as unified al-
gorithms for the stripification of both quadrilateral and
tetrahedral meshes.

2.2 Algorithms for Finding a 2-Factor

Most recent work [14] uses randomized algorithms to find
a 2-factor in sparse graphs with n vertices in O(n3) ex-
pected time. There are deterministic algorithms that find
it in O(n1.5) time [7]. Our graphs are special graphs that
are dual to quad/tetra meshes which might lead to sim-
pler solutions. Here we present two algorithms to find the
2-factor in the dual quad/tetra graph using a 1-factor
finding algorithm which can be computed in O(n log4 n)
and can be improved to O(n log3 n log log n) using the re-
cent results from [21]. Though the theoretical improve-
ment over the results is marginal, the most important
practical advantage of the presented algorithms is that
of code reusability: there are many implementations of
graph matching (the 1-factor finding) algorithms avail-
able in public domain that we can use to find the 2-factor.

2.2.1 Two Pass Graph Matching Algorithm

The first algorithm, which we call the two-pass graph
matching method, applies the graph matching algorithm
twice on the input dual graph to get a 2-factor. Specifi-
cally, we run the graph matching algorithm once, remove
the matched edges from the input graph, and run the
matching algorithm again on the new graph. The union
of matched edges chosen from these two runs gives us
a 2-factor of the original graph, and hence disjoint cy-
cles in the mesh. This algorithm is illustrated in Figure
3. We use public implementation of a cardinality graph
matching algorithm that gives a perfect matching if one
exists and maximizes the matching, otherwise.

A
B

C
D

E

ABCD

BCDE

ABED

Fig. 4 Left: A five node 4-regular graph with no 1-factor
(perfect matching) but has a 2-factor as shown. Hence a two-
pass graph matching algorithm to find a two-factor will not
work in such graphs. Right: A geometric realization of a 3-
node 4-regular graph. Every quadrilateral shares two edges
with its neighbor – usually an unacceptable geometry for
graphics and visualization applications. A simple cycle in the
dual graph is its 2-factor.

This simple algorithm produces correct results for
most of the practical models but does not work on graphs
with odd number of nodes even if they are 4-regular (Fig-
ure 4). But most of such odd-node graphs either do not
have an orientable 2-manifold geometric realization or
have geometry (e.g non-planar faces) and topology (e.g.
two quadrilaterals sharing two edges) that are usually
unacceptable in graphics and visualization applications.
We show one geometric realization of an odd-vertex dual
graph in Figure 4. Our graphs are derived from geometric
meshes used in visualization applications and in fact, all
the models we tried with the two-pass graph matching
method yielded a 2-factor, if one existed.

The run-time complexity of the matching algorithm
is O(n log3 n log log n), where n is proportional to the
number of vertices or edges in the dual graph. Note that
given the peculiarities of the graph, the number of ver-
tices and edges is equal, up to a small constant factor.

2.2.2 Template Substitution Algorithm

The second algorithm, the template substitution method,
is guaranteed to find a 2-factor, if one exists, on any
graph in which every vertex is of degree four or less.
Specifically, the graph need not be a 4-regular graph and
hence this algorithm is suitable for the dual tetra-graphs
also.

In this method, we first transform the input dual
graph G into a new graph G′ by substituting every node
in G with the template shown in Figure 5. Let us call
the graph G′, the inflated graph. We state and prove the
following relationship between the 2-factor in the origi-
nal graph G and the perfect matching (1-factor) in the
inflated graph G′.

In the template that is substituted for each original
node, in addition to the quadruplicates representing the
original node, there are two more nodes. During graph
matching on this template, these two additional nodes
can get matched to two of the quadruplicates leaving
exactly two other nodes to be matched outside the tem-
plate. We call the process of adding these extra nodes
to engage a subset of nodes in the template as doping
for its resemblance to a similar process in semiconductor

4 Pablo Diaz-Gutierrez, M. Gopi

manufacturing. We use this concept of doping to prove
the following theorem.

Theorem 2 There exists a 1-factor in the inflated graph
if and only if there exists a 2-factor in the original graph.

Proof ⇒Let us assume that there exists a 1-factor in
the inflated graph. This means that both the dopes are
matched thus engaging exactly two of the quadrupli-
cates. Since there exists a 1-factor, the other two qua-
druplicates are also matched, and have to be matched
external to the template along the edges in the original
graph. This yields a 2-factor in the original graph.
⇐ Let us assume that there is a 2-factor in the orig-

inal graph. Hence exactly two of the quadruplicates are
connected external to the template structure thus leaving
two other nodes among the quadruplicates to be matched
internally with the dopes. Note the important connec-
tivity structure of dopes inside the template: any two
nodes among the quadruplicates can be matched with
the dopes. Hence, given any 2-factor, there exists a per-
fect matching in the inflated graph.

A 1-factor in the inflated graph gives a 2-factor in
the original graph and hence quad/tetra strip loops in
the primal mesh. Specifically, the inflated graph dual of
a quadrangulated 2-manifold mesh will always have a
1-factor and can be found using a (cardinality) graph
matching algorithm whose public implementations are
available. Such a 1-factor is not guaranteed in the inflated
dual graph of a tetrahedral mesh (with boundary) since
a 2-factor is not guaranteed by Peterson’s theorem.

If there is no 1-factor, the graph matching algorithm
will maximize the cardinality of matchings leaving min-
imum number of nodes unmatched. These unmatched
nodes might be either the nodes of the quadruplicates
or the dopes. If any of the dope nodes is unmatched, we
break the external matching of quadruplicate nodes to
match them internally with the free dope nodes. Thus
in the original graph every node will have either two or
fewer matched edges. All tetrahedra in the primal mesh
corresponding to unmatched dual graph nodes (that is,
with zero matched edges) are defined as singleton strips.
From each of the tetrahedron corresponding to the dual
node with exactly one matched edge, we follow the matched
edges to form a linear strip of tetrahedra till it reaches
another tetrahedron with exactly one matched edge. Rest
of the tetrahedra have two matched edges each and hence
they form disjoint tetrahedron strip loops.

Instead of using matched edges, an alternative ap-
proach is to use the unmatched edges to define strips.
This approach is similar to that of [8] to use unmatched
edges to define triangle strips. The advantage of this ap-
proach is that there will be no singleton tetrahedral strips
since every node will either have two, three, or four un-
matched edges (since they have two, one or zero matched
edges). A suitable traversal along the unmatched edges
will again produce tetrahedral strip loops or linear strips,

Fig. 5 Left: Dual graph node of one quadrilateral or tetrahe-
dron of a quad/tetra mesh. Right: The template that is sub-
stituted for every node in the dual graph. Unshaded nodes
are the new dope nodes added to the dual graph. If there ex-
ists a 2-factor outside this template, that is, if exactly two
of the quadruplicates are matched externally, the dope nodes
are matched with the remaining two nodes thus producing a
perfect matching for the entire graph. Note the internal con-
nectivity with the dope nodes that enables perfect matching
given any combination of two externally matched edges.

Fig. 6 Left: Nodal vertex processing on a vertex with four
incident quadrilaterals and two disjoint cycles. The resulting
merged cycle is shown.Similar arrangements can be realized
in tetrahedral meshes also, with even number of tetrahedra
incident on an edge. Right: The dual graph of a quad/tetra
strip. Six primitives incident on an (n−2)-dim simplex. Thick
edges are matched edges and the thin edges show the unique
disjoint cycles. Every node has degree four. Alternating edges
are matched and unmatched edges. Toggling these assign-
ments merges the incident cycles.

and every tetrahedron in the mesh will belong to one of
the strips. In fact, we follow this approach in our imple-
mentation.

The run-time complexity of the matching algorithm
is also O(n log3 n log log n) as the two-pass graph match-
ing algorithm. But this algorithm uses the inflated graph
which has six times more nodes and edges than the origi-
nal graph. Hence this algorithm is an order of magnitude
slower than the two-pass graph matching method. On the
other hand, it finds a two factor in any graph with vertex
degrees four or less.

3 Merging Cycles

Finding a single simple cycle that connects all nodes of
the graph is NP-complete. But we can merge the strips
yielded by the above algorithms to form a single strip by
subdividing the mesh primitives. Even though multiple-
strip partitions are valid representations for many graph-
ics and visualization rendering applications, [5] showed
that the overhead of maintaining multiple strips over

Quadrilateral and Tetrahedral Mesh Stripification Using 2-Factor Partitioning of the Dual Graph 5

a single strip is significant. Further, strips are used in
many other applications like connectivity compression,
and such applications would benefit from a single strip
representation.

First, we describe an extension of the nodal vertex
processing algorithm that was used to merge disjoint tri-
angle strip cycles [8], to process quadrilateral strip cycles.
Further, the same concept can be extended to tetrahedral
mesh which we call nodal edge processing. Such nodal
vertex/edge processing does not require subdivision of
primitives but reduces the number of disjoint loops in
the entire stripification of the model.

The remaining cycles after the nodal vertex/edge pro-
cessing are merged through subdivision processes. Since
the subdivisions are dependent on the geometry, even
though the dual quad- and tetra- graphs are locally sim-
ilar, we have to apply different subdivision techniques
depending on the mesh primitive. We discuss indepen-
dent algorithms for quadrilateral and tetrahedral subdi-
visions.

3.1 Nodal Fan-Simplex Processing

Since this processing is applicable to both quadrilater-
als and tetrahedra, we refer to them in generic terms
as primitives. Further, in a manifold (with boundaries)
mesh one or two primitives are incident on an (n−1)-dim
simplex (one or two quadrilaterals on an edge, and one
or two tetrahedra on a triangular face) and a number
of primitives form a fan around an (n − 2)-dim simplex
(quadrilateral fan around a vertex and tetrahedral fan
around an edge). We call an (n− 2)-dim simplex, gener-
ically, as a fan simplex and hence the nodal vertex/edge
processing as fan-simplex processing.

The goal of this optimization is to increase the length
of the disjoint cycles by merging many cycles without
any primitive splits. Assume that we have already con-
structed a 2-factor, and partitioned the primitives of the
input mesh into disjoint cycles. We classify a mesh fan-
simplex v as a nodal fan-simplex if it satisfies the follow-
ing conditions: qv, the number of primitives incident on
v is even, the total number of unique disjoint cycles that
these incident primitives belong to is qv

2 , and the inci-
dent primitives do not share more than one (n− 1)-dim
simplex between the adjacent neighbors.

An example of a nodal fan-simplex processing with
four primitives and two unique incident cycles in each
of them is shown in Figure 6. The neighborhood of ev-
ery nodal fan-simplex is modified such that the matched
and unmatched primitive pairs are toggled. This merges
all the incident cycles into one cycle. If we use a union-
find data structure to keep track of which primitives be-
long to which cycles, we can test whether any mesh fan-
simplex is nodal using a number of union-find queries
proportional to the degree of the fan-simplex, so the to-
tal time for the optimization is O(nα(n)) where α is the
extremely slowly growing inverse Ackermann function.

A

B

A

B

Fig. 7 Subdividing a quadrilateral pair using two vertices (A
and B). Note that in the case of strips crossing non-adjacent
edges (left example), after subdivision, a pair of adjacent sub-
divided quadrilaterals share two edges. Further, depending
on the configuration of the strip-path the connectivity of the
edges from A and B changes (right example).

The nodal fan-simplex optimization step typically sig-
nificantly reduces the number of disjoint strip-cycles, but
we have no theoretical guarantees on its performance.
The results on typical number of instances when such an
optimization is done is given in Tables 1 and 2. Once this
optimization is performed, we form a new graph in which
every node corresponds to a strip cycle, and two nodes
are connected if their corresponding cycles are adjacent
to each other [8]. A spanning tree in this new graph de-
termines which two cycles can be merged using primitive
subdivision operations, as explained in the following sec-
tions.

3.2 Quadrilateral Subdivisions for Merging Strips

In a manifold quadrilateral mesh, there are exactly twice
the number of edges than faces. Using this fact, we can
prove that in order to maintain the Euler characteristic
of the mesh during subdivision, the increase in number
of vertices and faces have to be the same. In order not
to affect the results of the matching algorithm, the new
faces should potentially be matched to each other; in
other words, there should be even number of additional
faces, and hence we can insert only even number of new
vertices during subdivision.

Given the above argument, the minimum number of
vertices we can introduce for a quadrilateral mesh subdi-
vision is two. Figure 7 shows two such subdivisions. First,
we observe that the subdivision of the quadrilateral itself
is dependent on the configuration of strip cycle path in
both of the quadrilaterals. Further, routing of the strips
inside the subdivision also depends on the original strip
path. This requires case-by-case handling of the subdi-
vision. Second, we see that under one of the strip path
patterns two new quadrilaterals share two edges between
them – an undesirable topological configuration. We can
also show that the subdivision with four new vertices
also suffers from the same two drawbacks as adding two
vertices.

The minimum number of vertices that we can add to
a quadrilateral pair subdivision without the above two
drawbacks is six (Figure 8). Each quad-pair subdivision

6 Pablo Diaz-Gutierrez, M. Gopi

a

a
b

b b

b

c

c

Fig. 8 Quadrilateral subdivision with six vertices. In the
figure, labeled as follows: (a) Internal quadrilaterals. (b) Ex-
ternal quadrilaterals in the strip. (c) External quadrilateral
not in the strip. Two new, shared vertices are added. The one
chosen as nodal vertex is shaded dark. The strip before and
after the subdivision is shown with thick arrow lines.

Fig. 9 Subdividing a quadrilateral pair with six vertices.
Four possible configurations are shown, one in each column:
top showing the original strip path and the bottom showing
the strip after subdivision and strip-merging: The strip within
each quadrilateral is routed in order to traverse through all
the four quadrilaterals after subdivision as shown in Figure
8. Once such a routing is done, the appropriate shared vertex
(shown shaded) is chosen for nodal vertex processing to merge
the strips in both the quadrilaterals. All other configurations
of strip paths are mirror reflections of the cases shown.

has six external quadrilaterals (three in each of the par-
ent quadrilaterals), two internal quadrilaterals (one in
each of the parent quadrilaterals), and two new shared
vertices in the shared boundary of the quad-pair. We
call the four of the six external quadrilaterals that are in
the strip-path as strip-quadrilaterals. Within each parent
quadrilateral, we first route the strip such that it tra-
verses through all the new quadrilaterals as follows: one
external strip-quad → internal-quad → external quad
that is not a strip-quad→ the other external strip-quad.
If such routing is done in both the adjacent subdivided
quadrilaterals then at least one of the shared vertices

will be a nodal vertex around which the two strips can
be merged using nodal vertex processing algorithm ex-
plained in the previous section. Different cases of strip
path are shown in Figure 8. Such a processing removes
the dependency of the geometric connectivity of the sub-
divided quadrilaterals from the strip path. Further, the
routing can be done automatically without case-by-case
analysis of the strip path configurations between the two
quadrilaterals of the subdivided quad-pair.

3.3 Tetrahedral Subdivisions for Merging Strips

Tetrahedral subdivision for strip-merging is exactly sim-
ilar to triangle subdivision for strip merging [8]. In tri-
angulated models, two adjacent triangles belonging to
different cycles are divided into two triangles each by in-
troducing a vertex in the mid-point of the shared edge
(Figure 2). Then a nodal vertex processing is performed
at this new vertex to merge the cycles. In tetrahedral
meshes, two adjacent tetrahedra belonging to different
cycles are divided into three tetrahedra each by intro-
ducing a vertex in the centroid of the shared face. Then
a nodal-edge processing is performed around one of the
three newly introduced edges on the shared face. The
process of finding this nodal edge is detailed below.

Unlike dual-quad/tri graph, the dual tetra-graph af-
ter subdivision is non-planar (Figure 10). First, as in
quad/tri-strip merging method, strips in each of the tetra-
hedron is routed within the three subdivided tetrahedra.
There is at least one adjacent tetrahedron-pair in the
strip among the upper three tetrahedra, whose corre-
sponding tetrahedra in the lower half also are adjacent
in their strip path (tetrahedrons A,B, A′, B′ in Figure
10). In the dual graph, they form a four-cycle in which
the matched and unmatched edges alternate. This cor-
responds to a nodal edge in the primal – the common
edge between these four tetrahedra. Nodal fan-simplex
processing is done around this edge to merge the upper
and lower strips.

As discussed in Section 2.1, the stripification of tetra-
hedral meshes might produce a combination of linear
strips and strip loops. We can merge two strips using
subdivision if and only if they are disjoint and at least
one of them is a strip loop. If both are linear strips, then
the subdivision and merging process would split and con-
nect to produce two linear strips again.

4 Implementation and Results

In our implementation, both the two pass and the tem-
plate matching algorithms use the LEDA implementa-
tion of cardinality graph matching algorithm. Since the
cardinality matching algorithm is independent of its ap-
plication (as in our case, stripification), we do not have
a metric to compare the quality of results of the strips

Quadrilateral and Tetrahedral Mesh Stripification Using 2-Factor Partitioning of the Dual Graph 7

A

A’ B’
C’

B
C

bca

(a) (b)
C’

C
A

A’ B’

B

bca
A

B

C

C
A

A’ B’
C’

B

bca

(c) (d) (e) (f)

Fig. 10 Subdividing a tetrahedron pair. (a-b) The dual graph before and after subdivision. (c) The strip path before
subdivision. (d) Strips in each of the tetrahedron is routed within the three subdivided tetrahedra. There is at least one edge
in the upper tetrahedron strip path, whose parallel path in the lower tetrahedron is traversed by the its strip path. In this
example, edge AB in the upper and A′B′ in the lower tetrahedron are traversed. This forms a four-cycle (shown as dotted
lines) along with the corresponding edges a and b in which the matched and unmatched edges in the dual alternate. This
corresponds to a nodal edge in the primal, shown in dark blue in (f). (e) Merging of cycles by nodal-edge processing. (f)
Result of subdivision and merging in the primal tetrahedral mesh.

produced by our two algorithms. (If we had use weighted
matching algorithm, then we could evaluate the qual-
ity of the strips based on its adherence to the weight-
ing function.) On the other hand, the efficiency of these
two algorithms can be compared. The template match-
ing algorithm runs on an inflated graph of six times the
number of edges and six times the number of nodes. On
the other hand, the two-pass matching method runs the
algorithm twice (but on a trimmed edge graph in the sec-
ond pass). Hence there is an overall improvement of effi-
ciency of an order of magnitude from template matching
to two-pass matching method. Note the template match-
ing algorithm works on all input graphs with degree four
or less, even if it had odd number of vertices. Further,
while the two-pass matching method may not work al-
ways work on tetrahedral meshes, template matching
works on the dual of all tetrahedral meshes. Tables 1 and
2 give more information about these algorithms on var-
ious inputs. The experiments were performed in a Pen-
tium 4 at 2.4GHz running Linux, with a NVidia Quadro4
980 XGL graphics card and 512MB RAM.

Model Faces Final %inc. Nodal #edge time
faces verts splits sec.

Sphere 640 646 0.9 26 1 0.12
Trico 2830 2902 2.5 119 12 0.99
Blob 8020 8146 1.6 334 21 6.89

Table 1 Quadrilateral stripification using two pass match-
ing algorithm: Note the significant number of nodal vertex
processing that merges cycles without subdivision. The total
number of cycles remaining after nodal vertex processing is
one more than the number of edge splits. In spite of intro-
ducing four more quadrilaterals for every split, note that the
percentage increase is very small. The result after the subdi-
visions and cycle mergings is one single Hamiltonian quadri-
lateral strip that traverses through all the quadrilaterals in
the mesh.

Model Tetra/Verts I II III IV V
Trico 15310/4633 139 376 12 9.8/8.1 132
Fandisk 22491/7144 290 471 2 8.3/6.6 414
Ball 430/162 3 9 0 7.4/4.9 <1
Spring 24359/7226 326 737 4 12.1/10.2 415
Blob 31526/8769 197 974 66 12.3/11.1 527

Table 2 Tetrahedral stripification using template substitu-
tion algorithm: For each tetrahedral mesh, we show: Number
of tetrahedra, number or vertices, (I) Number of nodal edges,
(II) Number of obtained cycles, (III) Number of obtained
linear strips, (IV) % increase in tetrahedra/vertices and (V)
Running time in seconds. The increase in number of tetra-
hedra and vertices are due to strip merging by subdivision.
Note the number of new vertices (which equals the number of
subdivisions) is exactly equal to the number of linear strips
minus one – to merge all the loops, plus one to merge this
loop with one linear strip, if one exists. Further, the number
of new tetrahedra is four times the number of new vertices.

5 Conclusion

In this paper, we presented a new algorithm to find the
2-factor of a class of graphs in O(n log3 n log log n) run-
ning time. We also presented novel algorithms that use
this 2-factor in the dual graph to create quadrilateral
and tetrahedral strips. The direction of the strips found
by above methods depends on the results of the graph
matching algorithm. As part of future work, we would
like to use the weighted graph matching to globally steer
the strip in order to satisfy certain properties like nor-
mal based clustering. Similar techniques were used for
back-face culling and transparent vertex caching [2,5].
Further, we can use weighted perfect matching to choose
the boundary triangles of the tetrahedral mesh to force
external matching to reduce the number of internal tetra-
hedral strips. We would also like to develop out-of-core
cardinality matching graph algorithms that can be ap-
plied on gigantic graphs to handle large models used in
graphics and visualization applications.

8 Pablo Diaz-Gutierrez, M. Gopi

Fig. 11 Rendering of a single-quad strip (left) and the ob-
tained tetrahedral strips of a sphere model.

Fig. 12 Rendering of used models: Blob, Fandisk, Spring
and Trico. These original triangulated models were quadran-
gulated by combining triangles. Further, they were tetrahe-
dralized by inserting a few extra vertices inside them to get
high quality tetrahedra.

Acknowledgements We would like to thank Hang Si, the
author of TetGen, the program we used to tetrahedralize our
models.

References

1. Asano, T., Asano, T., Imai, H.: Partitioning a polygonal
region into trapezoids. J. ACM 33(2), 290–312 (1986)

2. Bogomjakov, A., Gotsman, C.: Universal rendering se-
quences for transparent vertex caching of progressive
meshes. Computer Graphics Forum 21(2), 137–148
(2002)

3. Bose, P., Toussaint, G.T.: No quadrangulation is ex-
tremely odd. In: Int. Symp. Algorithms and Compu-
tation, pp. 372–381 (1995)

4. Conn, H.E., O’Rourke, J.: Minimum weight quadrilat-
eralization in O(n3 log n) time. In: Proc. of the 28th
Allerton Conference on Comm. Control and Computing,
pp. 788–797 (1990)

5. Diaz-Gutierrez, P., Bhushan, A., Gopi, M., Pajarola, R.:
Constrained Strip Generation and Management for Effi-
cient Interactive 3D Rendering. In: Proc. of Computer
Graphics International Conference (2005)

6. Evans, F., Skiena, S., Varshney, A.: Optimizing triangle
strips for fast rendering. In: Proceedings IEEE Visual-
ization 96, pp. 319–326. Computer Society Press (1996)

7. Gibbons, A.: Algorithmic graph theory. Cambridge Univ.
Press (1985)

8. Gopi, M., Eppstein, D.: Single strip triangulation of man-
ifolds with arbitrary topology. Computer Graphics Fo-
rum (EUROGRAPHICS) 23(3), 371–379 (2004)

9. Heighway, E.: A mesh generator for automatically sub-
dividing irregular polygons into quadrilaterals. IEEE
Trans. Magnetics, 19(6), 2535–2538 (1983)

10. King, D., Wittenbrink, C.M., Wolters, H.J.: An architec-
ture for interactive tetrahedral volume rendering. Tech.
Rep. HPL-2000-121 (R.3), HP Laboratories Palo Alto
(2001)

11. Mallon, P.N., Boo, M., Amor, M., Bruguera, J.: Compres-
sion and on the fly rendering using tetrahedral concentric
strips. Tech. rep., University of Santiago de Compostela,
Spain

12. Mukhopadhyay, A., Jing, Q.: Encoding Quadrilateral
Meshes. In: 15th Canadian Conference on Computational
Geometry (2003)

13. Pajarola, R., Rossignac, J., Szymczak, A.: Implant
sprays: Compression of progressive tetrahedral mesh con-
nectivity. In: Proceedings IEEE Visualization 99, pp.
299–305. Computer Society Press (1999)

14. Pandurangan, G.: On a Simple Randomized Algorithm
for Finding a 2-Factor in Sparse Graphs. Information
Processing Letters p. accepted for publication (2005)

15. Pascucci, V.: Isosurface computation made simple: Hard-
ware acceleration, adaptive refinement and tetrahedral
stripping. In: Joint EUROGRAPHICS - IEEE TCVG
Symposium on Visualization (2004)

16. Peng, J., Kim, C.S., Kuo, C.C.J.: Technologies for 3d
mesh compression: A survey. Tech. rep., Preprint (2005)

17. Peterson, J.P.C.: Die theorie der regularen graphs (The
Theory of Regular Graphs). Acta Mathematica 15, 193–
220 (1891)

18. Sommer, O., Ertl, T.: Geometry and Rendering Op-
timization for the Interactive Visualization of Crash-
Worthiness Simulations. In: Proceedings of the Vi-
sual Data Exploration and Analysis Conference in
IT&T/SPIE Electronic Imaging, pp. 124–134 (2000)

19. Szymczak, A., Rossignac, J.: Grow & Fold: Compression
of Tetrahedral Meshes. In: Fifth Symp. on Solid Model-
ing, pp. 54–64 (1999)

20. Taubin, G.: Constructing hamiltonian triangle strips on
quadrilateral meshes. In: Int. Workshop on Visualiza-
tion and Mathematics and IBM Research Tech. Rep. RC-
22295. (2002)

21. Thorup, M.: Near-optimal fully-dynamic graph connec-
tivity. In: STOC ’00: Proceedings of the thirty-second
annual ACM symposium on Theory of computing, pp.
343–350. ACM Press, New York, NY, USA (2000). DOI
http://doi.acm.org/10.1145/335305.335345

22. Ueng, S.K.: Out-of-Core Encoding Of Large Tetrahedral
Meshes. In: Volume Graphics, pp. 95–102 (2003)

23. Vanecek, P., Svitak, R., Kolingerova, I., Skala, V.:
Quadrilateral meshes stripification. Tech. rep., Univer-
sity of West Bohemia, Czech Republic (2004)

24. Xiang, X., Held, M., Mitchell, J.S.B.: Fast and effec-
tive stripification of polygonal surface models. In: Proc.
Symp. on Interactive 3D Graphics, pp. 71–78. ACM Press
(1999)

Quadrilateral and Tetrahedral Mesh Stripification Using 2-Factor Partitioning of the Dual Graph 9

Pablo Diaz-Gutierrez
Pablo Diaz-Gutierrez is a
Ph.D. student in the Depart-
ment of Computer Science at
the University of California,
Irvine. He got his M.S. at
the University of California,
Irvine in 2005 and his B.S.
in Computer Science at the
University of Granada, Spain,
in 2002. He worked in geo-
graphic information systems in
Madrid, Spain, and his current
research interests include mesh
processing, computational
geometry and fundamental
data structures.

M.Gopi
Gopi Meenakshisundaram (M.
Gopi) is an Assistant Profes-
sor in the Department of Com-
puter Science at the University
of California, Irvine. He got is
Ph.D from the University of
North Carolina at Chapel Hill
in 2001, M.S. from the Indian
Institute of Science, Bangalore
in 1995, and B.E from Thi-
agarajar College of Engineer-
ing, Madurai, India in 1992. He
has worked on various geomet-
ric and topological problems
in computer graphics. His cur-
rent research interest focusses

on applying graph algorithms to geometry processing prob-
lems in computer graphics.

