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Streaming Surface Sampling using Gaussian e-nets
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Abstract We propose a robust, feature preserving and
user-steerable mesh sampling algorithm, based on the
one-to-many mapping of a regular sampling of the Gaus-
sian sphere onto a given manifold surface. Most of the
operations are local and no global information is main-
tained. For this reason, our algorithm is amenable to a
parallel or streaming implementation, and is most suit-
able in situations when it is not possible to hold all the
input data in memory at the same time. Using e-nets,
we analyze the sampling method and propose solutions
to avoid shortcomings inherent to all localized sampling
methods. Further, as a byproduct of our sampling algo-
rithm, a shape approximation is produced. Finally, we
demonstrate a streaming implementation that handles
large meshes with a small memory footprint.

Keywords normal quantization, surface sampling,
shape approximation, epsilon-nets

1 Introduction

Polygon mesh sampling is important in many geom-
etry processing problems, including shape approxima-
tion, surface reconstruction and parameterization. Cor-
rectly sampling surfaces involves choosing a set points
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Fig. 1 Feature sensitive samples on a mesh.

such that their interpolation faithfully reproduces the
desired features of the given surface, both in terms of
geometry and topology. In this paper, we propose an
efficient algorithm to produce a feature sensitive sam-
pling of a surface. The output sample set is a subset of
the vertices from the input surface.

The fundamental challenge in surface sampling is to
find the minimal set of sample points that capture the
features of a shape within an error bound. For shape
approximation, Clarkson [2] proved that the minimum
sampling size is proportional to the integral of the abso-
lute Gaussian curvature over the surface. Our method
computes a regular sampling of the Gaussian sphere,
and then selects as samples all the points from the in-
put surface whose surface normal coincides with one of
those Gaussian sphere samples (a one-to-many mapping



from the Gaussian sphere to the given surface). This
method can be justified using the theory of e-nets, a
construction that guarantees sufficient and well placed
surface samples given a distance function. The result
is a simple, robust surface sampling algorithm with a
small memory footprint. This algorithm has potential
uses in efficient shape approximation, parameterization
and compression. Finally, we describe an application of
our sampling algorithm as a fast shape approximation
technique.

1.1 Main Contributions

Following are the main contributions of this paper:

— We introduce the sampling of a surface as the one-
to-many mapping of a sampling on Gaussian space
onto the surface, and justify it using the theory of
e-nets.

— We present a practical algorithm that applies the
above theory for sampling polygonal meshes, while
allowing the user to interactively control the place-
ment and density of the samples.

— We provide a detailed analysis of our sampling algo-
rithm and its properties, among which we highlight
its ability to handle large meshes with a small mem-
ory footprint.

— We use the vertex elimination stage of our sampling
method as a fast algorithm for the problem of shape
approximation.

After a brief survey of previous work in Section 2,
we discuss the theory and our sampling algorithm for
smooth manifolds in Section 3. We adapt this theory
to manifold meshes in Section 4 and discuss the appli-
cation of this method to the problem of shape approxi-
mation. Finally, in Section 5 we describe the implemen-
tation details of our sampling method in a streaming
framework.

2 Previous Work

In this section we briefly survey the extensive litera-
ture on relation with to our proposed surface sampling
method and its relationship with the problem of shape
approximation.

Surface Sampling: Sampling for surface recon-
struction has been widely studied in the literature [4].
Although different in nature, surface reconstruction shares
with surface sampling the need for a solid theoretical
foundation regarding error measures. However, the sim-
ilarities cannot go very far, since the type of data and
constraints present in surface reconstruction and shape

simplification are fundamentally different. With the ex-
ception of some local methods like [1,7], most surface
reconstruction algorithms are based on global construc-
tions like the medial axis of the object and its relation-
ship to 3D Voronoi diagrams. Since these algorithms
are inherently global, they pose significant resistance
to their parallel or streaming implementation.

Gaussian sampling algorithms are those which use
normal vectors for geometry processing. As illustrated
in [18], Gaussian sampling also provides a means to effi-
ciently select data points with interesting features with-
out costly distance computations. One of the most sin-
gular advantages of Gaussian sampling is its amenabil-
ity for online and streaming algorithms. We exploit
this feature in the streaming implementation of our
sampling algorithm. Other applications of Gaussian
maps include curvature based mesh segmentation [20,
3] which, as we continue reviewing below, provides a
theoretically sound foundation for shape approximation
methods.

Sampling for Shape Approximation: Discrete
shape approximation techniques produce a sampling of
the most important points on the surface. These points
can be a subset of those in the input, or they can be
relocated to an optimal position at greater computing
cost. Our sampling method falls in the former category.
Because our approximation algorithm is a byproduct
of our surface sampling method, we consider only sam-
ples that are on the input surface. Since there is a long
history of surface simplification algorithms, we refer to
excellent surveys in this field [9,12]. In general, these
methods try to optimize an energy functional or iter-
ate in order to find the (optimal) positions and shape
of the mesh elements (vertices, edges and faces) that
would reduce the approzimation error [3,17]. The main
difference between most of these methods and ours is
that they require access to a relatively large amount of
connected geometry before deciding when and how to
simplify. On the other hand, we decide whether to keep
or eliminate a vertex solely based on local information.

Finally, we must refer to the fundamental theoreti-
cal basis for our algorithm. Recently developed by Clark-
son [2] using results by others [8,13,16], the theory of
e-nets represents a solid foundation for the joint study
of surface sampling and triangulation algorithms.

3 Sampling of Smooth Manifolds

The following are desirable properties for a sampling S
of a smooth surface U, using a chosen metric function:

1. Anisotropy: At any point on the surface, sampling
should be denser along the higher curvature direc-



tion than along the lower curvature direction. This
is most naturally accomplished by using a distance
function that grows faster along higher curvature
directions. Under this configuration, samples would
be at a uniform e distance from each other, when
measured by the appropriate metric.

2. Sufficiency: Every surface point « € U should not
be farther than an e distance from the closest sam-
ple p € S, as measured by the distance function
chosen for the previous condition. This condition
determines the correctness of the sampling, ensur-
ing that all the features of the sampled surface are
properly captured.

3. Minimality: Every sample s € S should be neces-
sary, in the sense that removing one of them could
break the condition of sufficiency. In practice, this
condition plays the role of preventing unnecessarily
dense sampling, making sure that samples are not
closer than an e distance from each other.

In this section we first briefly describe the theory
of e-nets as developed by Clarkson [2], followed by our
choice of distance functions and our sampling algorithm.

3.1 e-net Theory

Let U be a surface and D(x,y) be the distance metric
on U that measures the distance between two points =
and y on U. Some sampling properties, which lead to
the concept of e-nets, are defined below.

Definition 1 e-cover: Given a surface U and a set of
samples S € U, if for every point x € U there exists a
sample point s € S within a distance ¢ (D(z,s) < ¢),
then the sampling S is called an e-cover of surface U.

An e-cover S of surface U meets the condition of
sufficiency by definition. Moreover, a sample set T of
surface U is an e-cover of U if it contains a sample set
S which is also an e-cover of U. Although finding the
smallest of all possible e-covers is NP-hard, in order to
meet the condition of minimality we can start with a
sufficient sampling and simply remove all the unneces-
sary samples.

Definition 2 e-packing: Let S be a sample set on sur-
face U, and s,t € S be any two samples. If D(s,t) > e,
then S is called an e-packing of surface U.

Definition 3 e-net: If sample set S is both an e-cover
and an e-packing of U, then S is an e-net of U.

3.2 Choice of Distance Function

As previously studied [2], although the fundamental
theory behind e-nets is independent of the choice of
metric for their construction, different distance func-
tions confer the structure with desirable properties for
various applications. We have studied three possibilities
for our distance function, with their qualities and short-
comings illustrated in Figure 2. In the context of sur-
face approximation, the Euclidean metric Lo generally
produces a low Hausdorff distance between the input
surface and its approximation. However, it misses im-
portant features where the curvature changes rapidly.
The L5 ; norm measures the distance between two sur-
face points as the Euclidean distance between the sur-
face normal vectors at these points: D(z,y) = ||n(z) —
n(y)||. This distance function appropriately captures
the curvature variations and features, but it produces
a more significant deviation from the original surface
in low curvature regions. Finally, the isophotic metric,
which is a convex combination of the Ly and Lo ; dis-
tances is chosen for its adaptability in [2,3]. This dis-
tance function provides a good balance between the two
previously mentioned alternatives. Unfortunately, the
construction of e-nets using either an isophotic or Eu-
clidean metric requires access to a neighborhood within
a radius of at least € around each sample. Having stated
our goal of producing a localized sampling and approx-
imation method, we choose the L2 1 norm, which can
be computed by looking only at the immediate neigh-
borhood around each sample.

Fig. 2 Schematic illustration of three metrics considered for e-
net construction. The black spirals represent the surface being
sampled, and the corners of the red dashed polylines indicate the
position of the samples. The metrics being used are, from left to
right: Euclidean, £2 1 and isophotic.

It has been shown [8,2] that the size of an e-net
of surface U using the Ly metric is proportional to
Jy | K (x)|dz/e?, where K (z) is the Gaussian curvature
at the point x. That is, the sampling size is propor-
tional to the total absolute Gaussian curvature of the
surface. Given these properties of anisotropic sampling,
amenability for local decision making and control over
the sampling density, we choose L2 1 to be our distance
function, and this constitutes the basis for our sampling
algorithm.



3.3 Conceptual Sampling Algorithm

Since L21(z,y) = ||n(x) — n(y)||, the e-net sampling
of L1 on a convex surface U is equivalent to an Eu-
clidean distance e-net on the Gaussian sphere. In order
to exploit this duality, we construct a uniform tessella-
tion of a unit sphere by iterated regular subdivision of
the faces of a regular polyhedron. Let [ be the distance
between any two adjacent vertices of this tessellation.
The vertices are at least [ — u away from each other,
for a small positive p, and any point on the sphere is
not farther than [ — p distance away from the closest
vertex in the tessellation. In other words, the vertices
of this tessellation form an Euclidean metric (I — p)-net
sampling of a sphere.

Given the vertices of a uniform tessellation of a unit
(Gaussian) sphere, our sampling of a surface U is given
by the sample set S, which consists of all those points
x € U whose surface normal n(z) coincides with any of
the vertices of the Gaussian sphere tessellation. Differ-
ent orientations of the Gaussian sphere produce differ-
ent sample sets on surface U. However, all these sam-
ple sets are equivalent, in the sense that they satisfy
the same sampling properties and error bounds. These
sample sets are always an e-cover of surface U using
the L3 1 metric, indicating that the samples meet the
condition of sufficiency. Further, if there is enough sep-
aration among samples, then the sample set is also an
e-packing, and thus an e-net, meeting the condition of
minimality. The condition of minimality is automati-
cally satisfied for a special class of shapes, defined in
Section 3.4. For other shapes, we remove superfluous
vertices while still maintaining an e-cover.

3.4 Sampling Properties

The size of the sampling produced by the above method
is proportional to the total absolute Gaussian curva-
ture. For convex genus-zero objects, the Gaussian cur-
vature is positive everywhere, and the total absolute
Gaussian curvature is the surface area of the unit sphere,
47 (given by the Gauss-Bonnet theorem [14]). Using the
following definition of convexity, this result can be ex-
tended to two-manifolds with higher genus, considering
objects like a torus to be convex for our purposes.

Definition 4 A compact two-manifold M, in R, with
genus g, is 2-convex iff its total absolute Gaussian cur-
vature is 4(g + 1).

Lemma 1 A convex two-manifold M is also 2-convex.
The converse is not necessarily true.

By Definition 4 and Lemma 1, the manifolds in
Figure 3 are convex and hence 2-convex. The tori in
Figure 6 are 2-convex, but they are not convex. Cor-
respondingly, the dimpled sphere in the same figure is
neither convex nor 2-convex.

Since the total absolute Gaussian curvature is the
same for any 2-convex model with a given genus g, re-
gardless of any other geometric considerations, the to-
tal number of samples should also be the same for all
these models (for a given tessellation of the Gaussian
sphere). Also, for a given value of € (which defines the
tessellation level of the Gaussian sphere), the sampling
produced by our method is minimal for this class of
models. The reason is that, for any value of the surface
normal n, on a smooth, 2-convex surface there can be
exactly g+ 1 surface points with surface normal n. Con-
sequently, there are exactly g + 1 pre-images for every
Gaussian vertex. Removing any one of these pre-image
surface points from the sample set would produce a
surface region which is farther than e from the closest
sample, this way rendering the sample set not sufficient.

Figures 3 and 4 illustrate this property. In the for-
mer, we show a sequence of models depicting the trans-
formation of a sphere into a rounded cube. In the latter,
the sampled surface is static, but the Gaussian sphere
is smoothly rotating. As expected, in both cases the
number of samples remains constant after each trans-
formation. Moreover, the distribution of these samples
exhibits anisotropy, with more samples migrating to-
wards the high curvature regions. The maximum nor-
mal deviation between the adjacent samples is constant
by construction. Figures 4 and 5 also illustrate a degree
of user control over the sampling process. The sam-
pling density depends on the refinement of the Gaussian
sphere tessellation (Figure 5), while the placement can
be partially controlled through appropriate rotations of
the Gaussian sphere (Figure 4).

Fig. 3 As a sphere morphs into a rounded cube, the samples
from an e-net using L£2,1 metric migrate towards high curvature
regions. Surface samples are colored based on their associated
Gaussian sample, with consistent coloring throughout the se-
quence. Since all the shown surfaces are convex, the total number
of samples is constant.

The properties of the application of our sampling
method to higher genus objects is illustrated in Fig-
ure 6, which shows the samples obtained on two (con-
vex) tori of different sizes. In both cases, the number



W\

Fig. 4 Samples on a shape, produced with varying orientations
of a Gaussian sphere tessellation. The surface samples smoothly
slide over the surface following the rotation of the Gaussian sam-
ples. Since the surface is convex, the number of samples is con-
stant. Note also the effect of the anisotropic L2 1 metric on the
sample placement.

A

Fig. 5 Samples on a shape, produced with increasingly refined
tessellations of the Gaussian sphere. The sequence of Gaussian
sphere tessellations starts with an octahedron and continues by
splitting each triangle in four, at each iteration. The produced
samples accumulate faster on high curvature regions.

Fig. 6 Samples produced on different manifolds, computed as
the surface points whose normal coincides with that of a Gaussian
sample in the tessellation of a sphere. The sampling size produced
by our algorithm is proportional to the total absolute Gaussian
curvature. For any 2-convex manifold (left, middle), this value is
constant and proportional to its genus. Concavities in a shape
(right) increase its total absolute Gaussian curvature, and hence
the model would require more samples than if it were convex.

of samples is the same, but the different distribution of
the Gaussian curvature in the thicker torus makes the
samples migrate towards its interior. Further, as a con-
sequence of Definition 4, for a given tessellation of the
Gaussian sphere, the total number of samples on either
torus is twice the number of samples on a convex genus
zero object. On the other hand, the dented sphere in
Figure 6 illustrates the effect of concavities in the sam-
pling size. The total absolute Gaussian curvature of the
model shown is higher than that of the convex objects
from Figure 3, and therefore more samples are produced
to maintain the proportionality.

3.5 Non-convex sampling

Our sampling method is based on a quantization of the
surface normals. In fact, the sampling size is propor-
tional to the absolute Gaussian curvature as measured
using not the original normal vectors, but the quantized
normal vectors. When the Gaussian sphere tessellation
is refined, the quantized normal vector approaches the
exact normal vector, and hence the Gaussian curva-
ture measure also approaches the correct value. In many
common situations, there may be differences. If a genus
g manifold M is 2-conver by Definition 4, the map-
ping of its normals onto the Gaussian sphere wraps
around the sphere exactly g + 1 times. But, if M is
not 2-convex, then its total absolute Gaussian curva-
ture is higher than the 4(¢g + 1)7, and this mapping
contains folds. The resolution and orientation of the
Gaussian sphere tessellation determines whether these
folds are captured in the normal quantization and are
able to contribute samples. Accordingly, sampling a sur-
face which is not 2-convex may or may not satisfy the
e-packing condition, and hence the condition of mini-
mality. Nevertheless, even in the case when the quan-
tized estimate of the total absolute Gaussian curvature
differs from the real value, the resulting sampling is
still an e-cover, and hence it meets the condition of suf-
ficiency. In Section 4.2 we will discuss how to achieve
an e-packing in such models, and therfore an e-net.

4 Sampling Manifold Meshes

In this section, we present an algorithm that applies the
introduced theory to the problem of sampling polygonal
meshes, including those with sharp features. We first
suggest a direct numerical approach and then a more
robust approach, based on the quantization of polygon
normals.

4.1 Direct Mesh Sampling

On a smooth manifold M, its samples are all the points
on M whose normals coincide with one of the vertices
of the Gaussian sphere tessellation G. On a polygo-
nal approximation of M, the samples can ideally be
on the mesh faces, edges, or vertices. Since each mesh
face represents one normal on the Gaussian sphere, and
each mesh edge represents a “curve” of normals, the
likelihood of these normals coinciding exactly with a
Gaussian vertex is essentially zero. Thus the samples
can come only from the input mesh vertex set. A mesh
vertex v represents the range of normals NN, that span



the interior of a spherical polygon defined by the nor-
mals of the mesh faces incident on v. Mesh vertex v is
considered a sample if and only if its induced spherical
polygon on the Gaussian sphere G contains one or more
vertices of G (see Figure 7).

Fig. 7 Direct mesh sampling. A mesh vertex is a sample if the
spherical polygon formed by its incident face normals contains a
Gaussian vertex.

Unfortunately the spherical polygons created by con-
necting the normal vectors of the incident triangles are
small (in low curvature regions) and may self-intersect
(in saddle vertices). Point location in such spherical
polygons is numerically unstable and best avoided. In-
stead, we proceed as described below.

4.2 Conservative Mesh Sampling

A more robust sampling method starts considering a
wide range of mesh vertices as candidate samples, and
then discards those that can be positively shown not to
map to a sample in the Gaussian sphere tessellation.

Definition 5 Gaussian triangle association, fea-
ture edge and candidate sample: A mesh face ¢
with normal n; is associated with a Gaussian triangle
tg if ny is located inside ¢t in normal space. A mesh
edge e is a feature edge if its two incident faces are asso-
ciated with different Gaussian triangles. A mesh vertex
v is a candidate sample if it is incident on any feature
edge.

Given a specific tessellation G of the Gaussian sphere,
let us assign each mesh face to its associated Gaussian
triangle. This would partition the input mesh into re-
gions with the same associated Gaussian triangle. Un-
der this partitioning, it can be seen that the surface
samples are a subset of all the mesh vertices on the
boundaries between partitions. We prune the candi-
date sample set by applying a simple filtering rule as
follows.

Identifying non-samples: Not all candidate sam-
ples are samples. For example, let a, b, and ¢ be Gaus-
sian triangles such that a is edge-adjacent to b and b

Fig. 8 The faces of two meshes (left) are clustered according
to their associated Gaussian triangles (Gaussian sphere shown to
the right). These clusters are separated by feature edges. Vertices
adjacent to any feature edges are candidate samples.

is edge-adjacent to c. Let A, By, (4, By, A> be mesh
faces incident on a mesh vertex v, in order. Let A; and
As be associated with a, By and Bs be associated with
b, and Cy be with ¢, via their normals. There are fea-
ture edges between A By, B1Cy, C1Bs and BsA,, all
incident on v. Hence v will be considered a candidate
sample. Clearly, the spherical polygon formed by the
normal vectors of the mesh faces around v does not
enclose any Gaussian vertex and hence v cannot be a
sample. Such cases can be generalized as follows (see
Figure 9). Consider the spherical polygon formed by the
normal vectors of the faces incident on the mesh ver-
tex v. If consecutive vertices of this spherical polygon
fall in adjacent ! Gaussian triangles, and if this spheri-
cal polygon can be closed without enclosing a Gaussian
sample,then v cannot be a sample. We call these ver-
tices, as well as all the mesh vertices that are inside the
partitions, “non-samples”. The rest of the mesh vertices
are the samples chosen by our algorithm.

From e-cover to e-net: The samples that remain
after the above operation clearly form an e-cover of
the input model with respect to the £, ; metric, since
the normal deviation between any point on the original
model and its closest sample is less than e (the angle
between adjacent Gaussian vertices). But if the input
model is not 2-convex, under the various situations ex-
plained in Section 3.4, the normal deviation between
two adjacent samples on the mesh may also be less than
€. In this case, the sampling may not be an e-packing
(and hence not an e-net). Often, slightly perturbing the
orientation of the sphere mitigates this issue. But this

1 The condition of adjacency through edge connectivity can be
relaxed to ensuring that the union of Gaussian triangles traversed
by one edge of the spherical polygon form a convex polygon.



Fig. 9 Candidate samples (left) can be pruned if the normals
of their incident faces form a spherical polygon (middle) that can
be shown not to contain a Gaussian sample just by looking at
their associated Gaussian triangles.

Fig. 10 Feature sensitive samples produced by our algorithm
on a large mesh. The Gaussian sphere was tessellated using 112
triangles.

Fig. 11 Samples produced on two mechanical parts. Areas with
null Gaussian curvature (cylindrical and planar regions) do not
contain any samples.

procedure is not robust and it does not always guar-
antee an e-packing in all regions of the input surface.
Instead, we propose an optional iterative process that
can be used to eliminate unnecessary samples and turn
such a e-cover into an e-net.

This optional process requires that every non-sample
vertex is merged with an arbitrary adjacent vertex [10]

(with constant time per vertex), thus maintaining the
triangulation of the input mesh with only the retained
samples. On this modified mesh, if we rerun the sam-
pling algorithm using a different orientation of the Gaus-
sian sphere, then we can eliminate some samples that
violate the e-packing condition. We can repeat the pro-
cess until convergence. The resulting sample set is both
an e-cover and also an e-packing, and hence an e-net of
the original mesh.

All the operations performed by our sampling al-
gorithm, namely identifying and removing non-samples
and the optional edge collapse operations, are local op-
erations around the mesh vertices. Hence the entire
sampling algorithm requires no communication/sharing
of data between different operations. Further, each in-
dividual operation requires only local memory access to
the vertices adjacent to a candidate sample. Our algo-
rithm is thus embarrassingly parallelizable. In the fol-
lowing section, we describe a streaming version of our
algorithm that exploits these properties.

5 Streaming Implementation

The streaming implementation of the above Gaussian
sampling and approximation algorithms is based on
an underlying streaming meshes representation [11] for
polygonal surfaces. Similar to the stream-processing ap-
proach of [15], the (streaming) triangle mesh is pro-
cessed sequentially from out-of-core with only a limited
amount of data kept active in main memory at any
time. As indicated in Figure 12, within a sliding win-
dow over the streaming mesh data the active vertices
and triangles are processed in a multi-stage pipeline of
sampling and simplification operators.

The three major phases of the stream-processing
pipeline are the identification of sample and non-sample
vertices as outlined in the previous section, the removal
of non-sample vertices from the input mesh, and the
reestablishment of the proper (streaming) mesh output
format.

In the first stage, the streaming mesh input is con-
verted into a half-edge triangle mesh data structure [19]
for efficient mesh manipulation in main memory. Care
has to be taken to correctly maintain and treat refer-
ences to future or past mesh elements — in the streaming
order — while processing the in-core triangles. Hence the
active region of the streaming mesh (see Figure 12) is
maintained in-core in a proper topological mesh data
structure that dynamically changes as the stream bor-
der advances. Moreover, after mesh initialization, each
vertex is processed to check if no feature edge is in-
cident on it (inside the partition), or if feature edges
are incident on it but the vertex is a non-sample (see



Section 4). These operations are local and can thus be
applied in a streaming context.

In the second processing stage, non-sample vertices
are pruned from the input mesh by the application
of mesh simplification operations. Non-sample vertices
are removed by an iterative and greedy application of
half-edge collapses [5]. In order to get a better approx-
imation of the model, we retain a sufficient number
of non-samples in-core and repeatedly choose the best
half-edge to collapse from all the half-edges that are
in-core. Such an approach constitutes an improvement
over a greedy method, since each active non-sample ver-
tex gives rise to a number of half-edge collapse can-
didates. Only half-edge collapses which fulfill a set of
mesh topology as well as normal deviation constraints
can become collapse candidates. Dynamically maintain-
ing a priority queue of applicable half-edge collapse can-
didates, prioritized using a quadric error metric [6], the
collapse which introduces the smallest error can be se-
lected efficiently.

During the streaming process, triangles in every stage
are kept in a priority queue so that faces passed to the
next stage are always monotonically ascending accord-
ing to their minimal vertex corner coordinates along
the streaming-axis. When a half-edge is collapsed, its
mesh elements (its incident faces and their half-edges)
are removed from the mesh immediately. Also, all mod-
ified faces (those incident on a removed vertex) are rein-
serted into the priority queue.

Finally, the last stage is formed by a data cleansing
process, in which faces are re-indexed to account for
the eliminated non-sample vertices, and non-referenced
vertices are omitted from the output.

During the entire process of sampling, edge-collapse,
and streaming mesh I/0, the necessary conditions on
triangle mesh neighborhood existence are maintained,

such as minimum and maximum extents along the streaming-

axis for the triangle itself and its one- and two-ring
neighborhoods. The output is a simplified mesh, in the
same streaming mesh format as the input, where all
the vertices are samples. This output can be fed back
to the system to iterate this method over a different,
random orientation of the Gaussian sphere to ensure
the sampling is an e-net on the original mesh.

6 Results

As indicated in the introduction and our elaborations
on the proposed sampling of manifold surfaces, the main
contribution of this paper is a local, feature sensitive

active set of streaming mesh

streaming
mesh out

streaming
mesh in

<

sweep-direction

4
iterative vertex
removal

Fig. 12 Streaming pipeline with Gaussian sample filtering and
non-sample vertex removal.

The adaptivity of our sampling method to sharp
features or high curvature regions of a surface is demon-
strated throughout the paper, and in particular is shown
in Figures 1, 10, 13 and 14. From a qualitative aspect
we can thus observe that the experimental sampling re-
sults perfectly match the given theory as samples are
concentrated where indicated by the Gaussian sphere
sampling and surface curvature.

Fig. 13 A mesh of 345,944 faces sampled using 30,392 feature

sensitive samples.

From a quantitative point of view it is assured, by
construction of the sampling algorithm in Section 4,
that we identify a set of samples on the surface that
form an e-cover with respect to the £ metric.

Through the application of our sampling algorithm
to shape approximation we can further evaluate it quan-
titatively to a mesh simplification baseline, i.e. QSlim.
While the proposed sampling addresses the L1 nor-

sampling of manifold surfaces. Our implementations demon-mal error metric, the typical comparison for mesh sim-

strate the effectiveness of the proposed sampling method
on polygonal, i.e. triangle meshes.

plification is based on the L5 norm Euclidean distance
metric between the original and simplified surface. We



Fig. 14 A mesh of 10,000,000 faces sampled using 883,505 fea-
ture sensitive samples.

want to stress here that QSlim uses the quadric error
metric [6] which directly approximates the Lo distance
and thus optimizes for this metric in particular. Nev-
ertheless, as we can see from Table 1, shape approx-
imation based on our Gaussian sampling can achieve
good simplification results for large models. Gaussian
sampling targets another goal but still produces good
simplifications also with respect to Hausdorff distance.
A visual example is also given in Figure 16, where the
Gaussian sampled and simplified model is compared to
QSlim. As shown in Table 2, when the simplification is
extreme, the optimal vertex placement of in-core meth-
ods like QSlim cannot be easily beaten. However, even
under these unfavorable conditions, the error, measured
against the bounding box diagonal, stays reasonably
low, as illustrated in Figure 15. This result suggests the
convenience of a combination of streaming and in-core
methods when simplifying gigantic meshes.

However, the main advantage as mentioned before is
the locality of our sampling method. The effectiveness
in that respect can be demonstrated by the memory
footprint, or the number of mesh elements, that have to
be kept in main memory for sampling and mesh simpli-
fication. In Table 3 we show the results of the stream-
processing implementation described in Section 5. As
we can see, the memory requirements are very low as

Model Faces Error
original | simplified ours gslim
Armadillo 346K 200K | 0.0012 | 0.00018
Manuscript 4.3M 2.8M | 0.00030 | 0.00026
Dragon 7.2M 3.6M | 0.00052 | 0.00054
Statuette 10M 4.5M | 0.0010 | 0.0015

Table 1 Example comparisons between a simplification satis-
fying our Gaussian sampling and QSlim. Errors are measured
relative to the bounding box diagonal by sampling the Hausdorff
distance between the original and the simplified meshes.

Approximation error

#faces Our method | QSlim
52703 0.0035 0.0013
43924 0.0042 0.0014
35146 0.0049 0.0014
26369 0.0065 0.0017

Table 2 Comparison of the approximation error on the Ar-
madillo model (345944 faces originally) using our method and
QSlim. Each row is coarser than the previous, as indicated by the
number of vertices. Errors are measured relative to the bound-
ing box diagonal by sampling the Hausdorff distance between the
original and the simplified meshes.

ours

QSlim

Fig. 16 Comparison to QSlim using an approximation reduced
to 50% of the original size.

the maximum size of mesh elements, of the active set
in the sliding window, is only a small fraction of the
overall size of the processed models.

7 Conclusion and Future Work

We have presented a novel surface sampling technique
derived from the imposition of three reasonable sam-
pling conditions: anisotropy, sufficiency and minimal-
ity. To meet these conditions, we create the e-net sam-
pling in the Euclidean distance metric on the Gaussian
sphere, which translates to an e-net sampling in the
Lo1 metric on the given surface. The resulting sam-
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Fig. 15 Sequence of simplifications of the armadillo model, with 15%, 12%, 10%, and 7% of the original vertices, left to right.

Model Max. Active Set Size

2 subdivisions | 4 subdivisions
Armadillo 43016 49480
Manuscript 91893 63702
Dragon 394324 467161
Statuette 418581 495466

Table 3 Maximal size of the active set during stream-processing
various meshes, given for a Gaussian sampling with sphere sub-
division 2 and 4 respectively.

pling size is proportional to the total absolute Gaus-
sian curvature of the given shape. This technique is the
basis for a robust shape approximation algorithm with
guarantees on topological correctness by construction,
and it is amenable to streaming implementation. Fur-
ther, although shape approximation through Gaussian
sampling aims at bounding the normal deviation, it still
produces good simplifications with respect to the Haus-
dorff distance. One promising direction for future work
is non-uniform Gaussian sampling. A changing Gaus-
sian sampling density can be used to represent a notion
of importance sampling, with applications in rendering
and importance driven approximation.

Acknowledgements We would like to thank Behzad Sajadi for
his help preparing some of the images in this paper. We also
thank the Digital Michelangelo Project at Stanford University
and AIM@QSHAPE for the provided models. This work was par-
tially supported by the NSF grants 1IS-0712253, CCF-0738401
and CCF-0811809, and the Swiss National Science Foundation
Grant 200021-111746/1.

References

1. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C.,
Taubin, G.: The ball-pivoting algorithm for surface recon-
struction. IEEE Vis. 5(4) (1999)

2. Clarkson, K.L.: Building triangulations using e-nets. In:
SIGACT Symposium. ACM SIGACT (2006)

3. Cohen-Steiner, D., Alliez, P., Desbrun, M.: Variational shape
approximation. ACM ToG. 23(3), 905-914 (2004). DOI
http://doi.acm.org/10.1145/1015706.1015817

4. Dey, T.K.: Curve and Surface Reconstruction: Algorithms
with Mathematical Analysis (Cambridge Monographs on Ap-

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

plied and Computational Mathematics). Cambridge Univer-
sity Press, New York, NY, USA (2006)

Dong, W., Li, J., Kuo, J.: Fast mesh simplification for pro-
gressive transmission. In: Proceedings International Confer-
ence on Multimedia and Expo ICME 2000. IEEE (2000)
Garland, M., Heckbert, P.S.: Surface simplification using
quadric error metrics. In: Proceedings ACM SIGGRAPH,
pp. 209-216. ACM SIGGRAPH (1997)

Gopi, M., Krishnan, S., Silva, C.: Surface Reconstruction us-
ing Lower Dimensional Localized Delaunay Triangulation.
Eurographics 19(3), 467-478 (2000)

Gruber, P.M.: Optimum quantization and its applications.
Adv. Math. 186, 456-497 (2004)

Heckbert, P.S., Garland, M.: Survey of polygonal surface sim-
plification algorithms. Tech. rep., Computer Science Depart-
ment, Carnegie Mellon University (1997)

Hoppe, H.: Progressive meshes. In: SSIGGRAPH, pp. 99-108.
ACM SIGGRAPH (1996)

Isenburg, M., Lindstrom, P.: Streaming meshes. In: Proceed-
ings IEEE Visualization, pp. 231-238 (2005)

Luebke, D.P.: A developer’s survey of polygonal simplifica-
tion algorithms. IEEE Comput. Graph. Appl. 21(3), 24-35
(2001)

Nadler, E.: Piecewise-Linear Best l2 Approximation on Tri-
angulations. In: C.K. Chui, L.L. Schumaker, J.D. Ward
(eds.) Approximation Theory V, pp. 499-502. Academic
Press (1986)

O’Neill, B.: Elementary Differential Geometry, 2nd edn. Aca-
demic Press, www.apnet.com (1997)
Pajarola, R.: Stream-processing points.
IEEE Visualization, pp. 239246 (2005)
Pottmann, H., Krasauskas, R., Hamann, B., Joy, K., Seibold,
W.: On Piecewise Linear Approximation of Quadratic Func-
tions. Journal of Geom. Graphics 4(1), 31-53 (2000)
Sheffer, A.: Model simplification for meshing using face clus-
tering. CAD 33, 925-934 (2001)

Vetterli, M., Marziliano, P., Blu, T.: Sampling signals
with finite rate of innovation. IEEE Transactions
on Signal Processing 50(6), 1417-1428 (2002). DOI
10.1109/TSP.2002.1003065

Weiler, K.: Edge-based data structures for solid modeling in
curved-surface environments. IEEE Computer Graphics and
Applications 5(1), 21-40 (1985)

Yamauchi, H., Gumhold, S., Zayer, R., Seidel, H.P.: Mesh
segmentation driven by gaussian curvature. The Visual Com-
puter 21(8-10), 649-658 (2005)

In: Proceedings



