Vector field
Def: A vector fold I on \mathbb{R}^{3} \& a function that assigns to each point ip of \mathbb{R}^{3} a tangent vector $V(p)$ to \mathbb{R}^{3} at p.

Roughly speaking, a veetw fill is puss a bis collection of arrows, one at each point of \mathbb{R}^{3}.

$$
\begin{aligned}
& (V+w)(p)=V(p)+w(p) \\
& (f V) \varphi)=f(p) V(p)
\end{aligned}
$$

Def Let $U_{1}=(1,0,0), U_{2}=(0,1,0)$ and $U_{3}=(0,0,1)$ be the vector fulls on \mathbb{R}^{3}. for each pt. $\#$ of \mathbb{R}^{3}. These then vector fuels colluetudy called the NANURA Frame FoEs on \mathbb{R}^{3}
lemme If V is a vector fill on 3^{3} there are Tree unquely determined real-valued functions v_{1}, v_{2}, v_{3} on π^{3} such that

$$
V=v_{1} V_{1}+v_{2} U_{2}+v_{3} U_{3} \text {. }
$$

v_{1}, v_{2}, and v_{3} are culled Euclingar Corinoimete foes. q^{-v}

Def. Let f be a differentiable real-valued function on \mathbb{R}^{3}, ans let v_{p} be a tangent vector to \mathbb{R}^{3}. Then the umber

$$
v_{p}[f]=\left.\frac{d}{d t}(f(p+t v))\right|_{t=0}
$$

is called the derivative of f wire v_{p}
If v_{p} is a unit vector then $V_{p}[f]$ is called the directional dervative of f out v_{p}.

Lemma $\quad r_{p}=\left(v_{1}, r_{2}, v_{3}\right)$ is a tangent vector to \mathbb{R}^{3} then

$$
r_{p}[f]=\sum v_{1} \frac{\partial f}{\partial x_{i}}(p)
$$

Derivative of f int natural frame is. $F=\frac{\partial f}{\partial x_{1}}, \frac{\partial r}{\partial x_{2}}, \frac{\partial f}{\partial x_{3}}$. This is a vector and Is component along v_{p} is its directional derivative. Hence $v_{p}[f]=F \cdot v=\sum v_{i} \frac{\partial f}{\partial x_{i}}(\rho)$

Theorem

1. $\left(a v_{p}+b w_{p}\right)[f]=a v_{p}[f]+b w_{p}[f]$
2. $V_{p}[a f+b g]=a r_{p}[f]+b V_{p}[g]$
3. $r_{p}[f g]=r_{p}[f] \cdot g(p)+f(r) \cdot r_{p}[g]$

Directional Denvative along a Vector fill is analogous.

Covariant derivative
Def. Let W be a vector field on \mathbb{R}^{3} and let r be a tangent vector field to \mathbb{R}^{3} at hie point p. Then the covariant derivative of W wat V is the tangier vector

$$
\nabla_{v} w=w(p+t v)^{\prime}(0)
$$

at the point \mathbb{P}.

How to compute Covariant Derivatives?
Example.

$$
\begin{gathered}
w=x^{2} v_{1}+y_{2} U_{3} \\
v=(-1,0,2) \quad p=(2,1,0) \\
p+t v=(2-t, 1,2 t) \\
W(p+t v)=(2-t)^{2} v_{1}+2 t U_{3} \\
\nabla_{v} W=W(p+t v)^{\prime}(0)=-4 U_{1}(1)+2 U_{3}(p)
\end{gathered}
$$

ALTERNATE WAY of COMP STING COVARIANT DERINATVES

$$
W=w_{1} U_{1}+w_{2} U_{2}+w_{3} U_{3}
$$

w, w_{2}, and w_{3} are scalar coordinate far. Compute the rate of change of these indurdual functions in the direction of V.
$V\left[w_{1}\right], V\left[w_{2}\right]$ and $V\left[w_{3}\right]$
The covarnant deruvative of the vector fiuld w wrt v is.

$$
\nabla_{v} W=v\left[w_{1}\right] U_{1}+v\left[w_{2}\right] U_{2}+v\left[w_{3}\right] U_{3}
$$

Previons Example $\begin{aligned} & W=x^{2} U_{1}+y_{z} V_{3} \\ & V=(-1,0,2) \quad \rho=(2,1,0)\end{aligned}$

$$
\begin{aligned}
& w_{1}=x^{2} \quad w_{2}=0 \quad w_{3}=y_{3} \\
& w_{1}^{\prime}=\left(\frac{\partial w_{1}}{\partial x}, \frac{\partial w_{1}}{\partial y}, \frac{\partial w_{1}}{\partial z}\right)=(2 x, 0,0) \\
& v\left[w_{1}\right]=v \cdot w^{\prime}=-2 x
\end{aligned}
$$

Sumilarly, $\quad V\left[w_{2}\right]=0 \quad V\left[w_{3}\right]=2 y$

$$
\begin{aligned}
& \nabla_{V} w=-2 x U_{1}+2 y U_{3} \\
& \left(\nabla_{V} w\right)(p)=-4 U_{1}(p)+2 U_{3}(p)
\end{aligned}
$$

Another Example

$$
\begin{aligned}
& w=x v_{1}+x^{2} v_{2}-z^{2} v_{3} \\
& v=(1,-1,2) \quad P=(1,3,-1) \\
& w_{1}^{\prime}=(1,0,0) \quad w_{2}^{\prime}=(2 x, 0,0) \\
& w_{3}^{\prime}=(0,0,-2 z) \\
& v\left[w_{1}\right]=1 \quad v\left[w_{2}\right]=2 x \quad v\left[w_{3}\right]=-4 z \\
& \nabla_{v} w=(1,2 x,-4 z) \\
& \left(\nabla_{v} w\right)(\rho)=v,(P)+2 v_{2}(p)+4 v_{3}(\rho)
\end{aligned}
$$

