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Overview

• Programming interfaces and support libraries

• The CUDA programming abstraction

• An in-depth CUDA example

• CUDA-OpenGL binding
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GPU programming

• How can we program the GPU?

• We will focus on C/CUDA and NVIDIA GPUs in this tutorial
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GPU programming

• Horizontal vs. vertical application development
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GPU programming

• Software libraries to support GPU/CUDA programming

GPU Computing Applications

Application AccelerationEngines

SceniX, CompleX,Optix, PhysX

Utility Libraries

CUDPP, CUBLAS, CUFFT, CULA, NVPP, Magma

Development Environment

C, C++, Fortran, Python, Java, OpenCL, Direct Compute, …

CUDA Compute Architecture
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GPU programming

• A few software libraries to support GPU/CUDA programming

– CUDPP – a library of high-performance parallel primitives for GPUs

• Provides scan-primitives, stream compaction, radix sort, sparse matrix-

vector multiply, random number generation

– CUBLAS

• Basic Linear Algebra Subprograms like vector, vector/matrix, and

matrix/matrix operations (subset of BLAS 1/2/3)

– CUFFT (http://developer.download.nvidia.com)   

• 1D, 2D, and 3D transforms of complex and real‐valued data

• Transform sizes (2D/3D) up to 16384 in any dimension

– MAGMA - http://icl.cs.utk.edu/magma/

• Dense linear algebra on heterogeneous CPU+GPU systems

– CULA by EM Photonics (http://www.culatools.com/) 

• Emulates LAPACK on GPUs

• LU, QR and singular value decomposition, least squares

http://developer.download.nvidia.com/
http://icl.cs.utk.edu/magma/
http://www.culatools.com/
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CUDA – Compute Unified Device Architecture

• CUDA parallel programming abstraction

– Parallel computing architecture and programming model

– Unified hardware and software specification for parallel computing

• Hardware multithreading

• General purpose programming model

– User launches batches of threads on the GPU (application controlled SIMD 

program structure)

– Fully general load/store memory model

– Simple extension to standard C

• Not a graphics API

– But graphics API interoperability is possible

– “Buffer exchange” between CUDA and graphics API
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CUDA – Compute Unified Device Architecture

• CUDA is designed to fully exploit the SIMD execution paradigm 

underlying the GPU design

– Parallel kernels composed of many threads

– All threads execute the same sequential program

– Threads are grouped into thread blocks

– Cooperation within a block via fast, shared memory and hardware 

synchronization barriers

– Blocks are virtualized multiprocessors

– All blocks must be independent, implicit barrier between kernel launches

– Support by runtime API

• cudaMalloc(), cudaMemcpy(), cudaFree()

• cudaGetLastError()

• …
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CUDA – compiling CUDA for GPUs

• NVCC compiles into CPU and

Parallel Thread eXecution code
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CUDA programming example

• Evaluation of a finite-difference stencil on a 2D uniform grid
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CUDA programming example

• The 
sequential CPU code 
for computing the 
finite-difference stencil

int main(float *u, int Nx, Ny) { 

// pointer to CPU (host) memory
float *out; 

// allocate array on host
out = (float *)malloc(sizeof(float)*Nx*Ny); 

// compute stencil
for (int j=1; j<Ny-1; j++) {

for (int i=1; i<Nx-1; i++) { 
out[i + j * Nx] = 

u[i+1 + j * Nx] +
u[i-1 + j * Nx] + 
u[i + (j+1) * Nx] + 
u[i + (j-1) * Nx] –
4 * u[i + j * Nx]; 

// copy result to input array and free memory
memcopy(out, u, sizeof(float)*Nx*Ny);
free(out); 

} 
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CUDA programming example

• The parallel GPU code for computing the finite-difference stencil

Requirements:

– Allocation of memory on the GPU device and moving data to/from that 
memory

– A kernel – a function callable from the host (CPU) and executed on the 
device by many threads in parallel

– An execution configuration to specify the number and grouping of 
parallel threads used to execute the kernel

– Performing parallel computations based on a subdivision of the 
problem domain, i.e., a means to specify which part of the domain a 
thread has to work on
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CUDA programming example

• CUDA setup code for the stencil computation

#include <stdio.h>
#include <cuda.h> 

int main(float *u, int Nx, Ny) { 

// pointers to GPU (device) memory
float *u_d, *out; 

// allocate arrays on the GPUdevice
cudaMalloc((void **) &u_d, sizeof(float)*Nx*Ny); 
cudaMalloc((void **) &out, sizeof(float)*Nx*Ny);

•

•

•

Returns a pointer to a 

linear memory segment

in global device memory
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Copies content

of CPU array to

device array, and

vice versa

CUDA programming example

• Moving data between host and device memory.

• • •

// send data from host to device: u to u_d
cudaMemcpy(u_d, u, sizeof(float)*Nx*Ny, cudaMemcpyHostToDevice); 

// here: 
// CUDA configuration and execution of the parallel thread program

// retrieve data from device: out to u  
cudaMemcpy(u, out, sizeof(float)*Nx*Ny, cudaMemcpyDeviceToHost); 

// cleanup
cudaFree(u_d); cudaFree(out);

} // end of main
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CUDA programming example

• CUDA configuration and execution 
of the parallel thread program

– Remember: threads are grouped into blocks and 
blocks are structured into grids

• Blocks and grids can have multiple dimensions

• Threads in one block are executed on the same 
SM, whereas blocks can run on different SMs 

– The block/grid abstraction allows balancing the trade-offs between 
running many independent threads in parallel, and running blocks of 
threads that are synchronized and can cooperate with each other

– The execution configuration can be requested by a thread via variables:

• blockIdx: the thread’s block index within the grid

• threadIdx: the thread’s index within the block

• blockDim: the number of threads in the thread’s block
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CUDA programming example

• CUDA configuration and execution 
of the parallel thread program

– Remember: threads are grouped in blocks and 
blocks are structured in grids

– Blocks and grids can have multiple dimensions

// compute (2D) execution configuration
const int BLOCKSIZEX = 8;   // number of threads per block along dim 1
const int BLOCKSIZEY = 8;   // number of threads per block along dim 2

int nBlocksX = Nx / BLOCKSIZEX -2; // how many blocks along dim 1
int nBlocksY = Ny / BLOCKSIZEY -2; // how many blocks along dim 2

dim3 dimBlock(BLOCKSIZEX, BLOCKSIZEY);  // set values
dim3 dimGrid(nBlocksX, nBlocksY);

// call computeStencilOnDevice kernel
computeStencilOnDevice <<< dimGrid, dimBlock >>> (u_d, out, Nx, Ny);

Calls kernel with input

arguments using the

specific thread

configuration
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CUDA programming example

• The kernel – the program that is executed by the threads on the SPs

__global__ void computeStencilOnDevice(float *u, float *out, int Nx, Ny) { 

// the thread in the current block
int tX = threadIdx.x; 
int tY = threadIdx.y;                   

// the index of the first thread in the current block
// i.e., the base of the subgrid in the global grid
int baseX = blockIdx.x * (blockSizeX - 2) + 1; 
int baseY = blockIdx.y * (blockSizeY - 2) + 1;   

// the grid index at which the numerical stencil
// is to be evaluated by the thread
int i = baseX + tX; 
int j = baseY + tY;                    

• • •
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CUDA programming example

• The kernel – the program that is executed by the threads on the SPs

• • •

// allocate fast shared memory (lifetime of a block) to cache the working set
// reduces the number of device memory reads by a factor of 4
__shared__ float u_sh[BLOCKSIZEX][BLOCKSIZEY];

// fill the shared memory with the working set from the global device array
u_sh[tX][tY] = u[i + j * Nx];

__syncthreads(); // all threads wait at this barrier for all others

if(tX > 0 && tX < BLOCKSIZEX-1 && tY > 0 && tY < BLOCKSIZEY-1) {

// compute the stencil on the data in shared memory and write to out array
out[i + j * Nx] = u_sh[tX+1][tY] + u_sh[tX-1][tY] +

u_sh[tX][tY+1] + u_sh[tX][tY-1] - 4.0 * u_sh[tX][tY];
}

} // end of computeStencilOnDevice
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• Parallel memory transactions
– Assume threads are ordered in row-major order, e.g., in a 2x2 block:

thread[0][0]  0; thread[1][0]  1; thread[0][1]  2; thread[1][1]  3

– The device data is laid out in this way, too

– Per-thread memory reads due to 

should look like this: 

CUDA programming example

• • • • • • • •
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u_sh[tX][tY] = u[i + j * Nx];
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CUDA programming example

• Non-coalesce parallel memory transactions
– Every single read from the device memory reads buckets of at least 32 bytes

– One single thread 
– even though only requesting 4 bytes –
triggers the movement of 32 bytes when
reading one float

– This results in 
8 x 32 bytes 
to be read overall

– Moreover, since all threads read from 
the same memory bank, the read operations
are serialized

– In our case, since all requested data 
lies in succession, 
all 8 single reads are coalesce into 
one memory transaction of 8 x 4 = 32 bytes

32 bytes in single read operation


