
Technische Universität München

Faculty of Informatics

GPU Programming

Rüdiger Westermann

Chair for Computer Graphics & Visualization

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

Overview

• Programming interfaces and support libraries

• The CUDA programming abstraction

• An in-depth CUDA example

• CUDA-OpenGL binding

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

GPU programming

• How can we program the GPU?

• We will focus on C/CUDA and NVIDIA GPUs in this tutorial

GPU Computing Applications

GPU

NVIDIA

CUDA

C/C++

exts.

OpenCL OpenGL

Compute

Shaders

DirectX

Compute

Shaders

Direct

Compute

AMD

Stream
Fortran

Java

Python

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

GPU programming

• Horizontal vs. vertical application development

Hardware

Programming system
primitives

Algorithms/data structure
libraries

Higher level libraries

Applications

Hardware

Programming system
primitives

A
p
p
lic

a
tio

n
1

A
p
p
lic

a
tio

n
2

A
p
p
lic

a
tio

n
3

Hardware

Programming system
primitives

Primitive libraries
(domain specific)

A
p

p
lic

a
tio

n
1

A
p

p
lic

a
tio

n
2

A
p

p
lic

a
tio

n
3

CPU GPU (historical) GPU (today)

Little code

reuse

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

GPU programming

• Software libraries to support GPU/CUDA programming

GPU Computing Applications

Application AccelerationEngines

SceniX, CompleX,Optix, PhysX

Utility Libraries

CUDPP, CUBLAS, CUFFT, CULA, NVPP, Magma

Development Environment

C, C++, Fortran, Python, Java, OpenCL, Direct Compute, …

CUDA Compute Architecture

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

GPU programming

• A few software libraries to support GPU/CUDA programming

– CUDPP – a library of high-performance parallel primitives for GPUs

• Provides scan-primitives, stream compaction, radix sort, sparse matrix-

vector multiply, random number generation

– CUBLAS

• Basic Linear Algebra Subprograms like vector, vector/matrix, and

matrix/matrix operations (subset of BLAS 1/2/3)

– CUFFT (http://developer.download.nvidia.com)

• 1D, 2D, and 3D transforms of complex and real‐valued data

• Transform sizes (2D/3D) up to 16384 in any dimension

– MAGMA - http://icl.cs.utk.edu/magma/

• Dense linear algebra on heterogeneous CPU+GPU systems

– CULA by EM Photonics (http://www.culatools.com/)

• Emulates LAPACK on GPUs

• LU, QR and singular value decomposition, least squares

http://developer.download.nvidia.com/
http://icl.cs.utk.edu/magma/
http://www.culatools.com/

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

CUDA – Compute Unified Device Architecture

• CUDA parallel programming abstraction

– Parallel computing architecture and programming model

– Unified hardware and software specification for parallel computing

• Hardware multithreading

• General purpose programming model

– User launches batches of threads on the GPU (application controlled SIMD

program structure)

– Fully general load/store memory model

– Simple extension to standard C

• Not a graphics API

– But graphics API interoperability is possible

– “Buffer exchange” between CUDA and graphics API

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

CUDA – Compute Unified Device Architecture

• CUDA is designed to fully exploit the SIMD execution paradigm

underlying the GPU design

– Parallel kernels composed of many threads

– All threads execute the same sequential program

– Threads are grouped into thread blocks

– Cooperation within a block via fast, shared memory and hardware

synchronization barriers

– Blocks are virtualized multiprocessors

– All blocks must be independent, implicit barrier between kernel launches

– Support by runtime API

• cudaMalloc(), cudaMemcpy(), cudaFree()

• cudaGetLastError()

• …

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

CUDA – compiling CUDA for GPUs

• NVCC compiles into CPU and

Parallel Thread eXecution code

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

CUDA programming example

• Evaluation of a finite-difference stencil on a 2D uniform grid

y

x

x

y
uij

uij+1

uij-1

ui+1j

ui+1j+1

ui+1j-1

ui-1j

ui-1j+1

ui-1j-1

x = y = 1

ijijijjiji

ijijijjiijjiij

uuuuu

uuuuuuu

4

22

1111

1111

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

CUDA programming example

• The
sequential CPU code
for computing the
finite-difference stencil

int main(float *u, int Nx, Ny) {

// pointer to CPU (host) memory
float *out;

// allocate array on host
out = (float *)malloc(sizeof(float)*Nx*Ny);

// compute stencil
for (int j=1; j<Ny-1; j++) {

for (int i=1; i<Nx-1; i++) {
out[i + j * Nx] =

u[i+1 + j * Nx] +
u[i-1 + j * Nx] +
u[i + (j+1) * Nx] +
u[i + (j-1) * Nx] –
4 * u[i + j * Nx];

// copy result to input array and free memory
memcopy(out, u, sizeof(float)*Nx*Ny);
free(out);

}

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

CUDA programming example

• The parallel GPU code for computing the finite-difference stencil

Requirements:

– Allocation of memory on the GPU device and moving data to/from that
memory

– A kernel – a function callable from the host (CPU) and executed on the
device by many threads in parallel

– An execution configuration to specify the number and grouping of
parallel threads used to execute the kernel

– Performing parallel computations based on a subdivision of the
problem domain, i.e., a means to specify which part of the domain a
thread has to work on

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

CUDA programming example

• CUDA setup code for the stencil computation

#include <stdio.h>
#include <cuda.h>

int main(float *u, int Nx, Ny) {

// pointers to GPU (device) memory
float *u_d, *out;

// allocate arrays on the GPUdevice
cudaMalloc((void **) &u_d, sizeof(float)*Nx*Ny);
cudaMalloc((void **) &out, sizeof(float)*Nx*Ny);

•

•

•

Returns a pointer to a

linear memory segment

in global device memory

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

Copies content

of CPU array to

device array, and

vice versa

CUDA programming example

• Moving data between host and device memory.

• • •

// send data from host to device: u to u_d
cudaMemcpy(u_d, u, sizeof(float)*Nx*Ny, cudaMemcpyHostToDevice);

// here:
// CUDA configuration and execution of the parallel thread program

// retrieve data from device: out to u
cudaMemcpy(u, out, sizeof(float)*Nx*Ny, cudaMemcpyDeviceToHost);

// cleanup
cudaFree(u_d); cudaFree(out);

} // end of main

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

CUDA programming example

• CUDA configuration and execution
of the parallel thread program

– Remember: threads are grouped into blocks and
blocks are structured into grids

• Blocks and grids can have multiple dimensions

• Threads in one block are executed on the same
SM, whereas blocks can run on different SMs

– The block/grid abstraction allows balancing the trade-offs between
running many independent threads in parallel, and running blocks of
threads that are synchronized and can cooperate with each other

– The execution configuration can be requested by a thread via variables:

• blockIdx: the thread’s block index within the grid

• threadIdx: the thread’s index within the block

• blockDim: the number of threads in the thread’s block

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

CUDA programming example

• CUDA configuration and execution
of the parallel thread program

– Remember: threads are grouped in blocks and
blocks are structured in grids

– Blocks and grids can have multiple dimensions

// compute (2D) execution configuration
const int BLOCKSIZEX = 8; // number of threads per block along dim 1
const int BLOCKSIZEY = 8; // number of threads per block along dim 2

int nBlocksX = Nx / BLOCKSIZEX -2; // how many blocks along dim 1
int nBlocksY = Ny / BLOCKSIZEY -2; // how many blocks along dim 2

dim3 dimBlock(BLOCKSIZEX, BLOCKSIZEY); // set values
dim3 dimGrid(nBlocksX, nBlocksY);

// call computeStencilOnDevice kernel
computeStencilOnDevice <<< dimGrid, dimBlock >>> (u_d, out, Nx, Ny);

Calls kernel with input

arguments using the

specific thread

configuration

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

CUDA programming example

• The kernel – the program that is executed by the threads on the SPs

__global__ void computeStencilOnDevice(float *u, float *out, int Nx, Ny) {

// the thread in the current block
int tX = threadIdx.x;
int tY = threadIdx.y;

// the index of the first thread in the current block
// i.e., the base of the subgrid in the global grid
int baseX = blockIdx.x * (blockSizeX - 2) + 1;
int baseY = blockIdx.y * (blockSizeY - 2) + 1;

// the grid index at which the numerical stencil
// is to be evaluated by the thread
int i = baseX + tX;
int j = baseY + tY;

• • •

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

CUDA programming example

• The kernel – the program that is executed by the threads on the SPs

• • •

// allocate fast shared memory (lifetime of a block) to cache the working set
// reduces the number of device memory reads by a factor of 4
__shared__ float u_sh[BLOCKSIZEX][BLOCKSIZEY];

// fill the shared memory with the working set from the global device array
u_sh[tX][tY] = u[i + j * Nx];

__syncthreads(); // all threads wait at this barrier for all others

if(tX > 0 && tX < BLOCKSIZEX-1 && tY > 0 && tY < BLOCKSIZEY-1) {

// compute the stencil on the data in shared memory and write to out array
out[i + j * Nx] = u_sh[tX+1][tY] + u_sh[tX-1][tY] +

u_sh[tX][tY+1] + u_sh[tX][tY-1] - 4.0 * u_sh[tX][tY];
}

} // end of computeStencilOnDevice

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

• Parallel memory transactions
– Assume threads are ordered in row-major order, e.g., in a 2x2 block:

thread[0][0] 0; thread[1][0] 1; thread[0][1] 2; thread[1][1] 3

– The device data is laid out in this way, too

– Per-thread memory reads due to

should look like this:

CUDA programming example

• • • • • • • •

thread

0

thread

1

thread

2

thread

3

thread

4

thread

5

thread

6

thread

7

thread

8

thread

9

thread

10

thread

11

thread

12

thread

13

thread

14

thread

15

thread

56

thread

57

thread

58

thread

59

thread

60

thread

61

thread

62

thread

63

One block

Data grid

u_sh[tX][tY] = u[i + j * Nx];

Technische Universität München

Faculty of Informatics – Chair for Computer Graphics & Visualization

CUDA programming example

• Non-coalesce parallel memory transactions
– Every single read from the device memory reads buckets of at least 32 bytes

– One single thread
– even though only requesting 4 bytes –
triggers the movement of 32 bytes when
reading one float

– This results in
8 x 32 bytes
to be read overall

– Moreover, since all threads read from
the same memory bank, the read operations
are serialized

– In our case, since all requested data
lies in succession,
all 8 single reads are coalesce into
one memory transaction of 8 x 4 = 32 bytes

32 bytes in single read operation

