
Arrange Your Network Updates as You Wish
Shouxi Luo, Hongfang Yu, Long Luo, Lemin Li

Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education
University of Electronic Science and Technology of China, Chengdu, P. R. China

Abstract—Updating network configurations responding to dy-
namic changes is still a tricky task in SDN. During the update
process, in-flight packets might misuse different versions of rules,
and “hot” links could be overloaded due to the unplanned update
order. As for the problem of misusing rule, recently proposed
suggestions like two-phase mechanism and Customizable Consis-
tency Generator (CCG) have provided generic and customizable
solutions. Yet, there does not exist an approach that is flexible to
avoid the transient congestion on hot links respecting to diverse
user requirements like guaranteeing update deadline, managing
transient throughput loss, etc.; controllers urgently need one.

In this paper, we propose CUP, Customizable Update Planner,
to seek the solution. Different from prior approaches that adopt
fixed designs for a single purpose like optimizing the update speed
(e.g., Dionysus) or avoiding congestions (e.g., zUpdate, SWAN),
CUP introduces generic linear programming models to formulate
user-specified requirements and the update planning problem. By
solving these customized models, CUP is able to plan network
updates according to a large fraction of user requirements, such
as guaranteeing deadlines, prioritizing operation orders, man-
aging throughput loss, etc., while avoiding transient congestion.
We prototype CUP on Ryu and employ it to arrange updates
for networks built upon Mininet. Results confirm the flexibility
of CUP while indicating that it always obtains the “best” update
plans following the user’s wish.

I. INTRODUCTION

Reconfiguring forwarding rules in networks responding to
dynamic demands such as periodical traffic optimization, un-
expected failover, is always a tricky task for operators [1]–
[6]. Recent trends toward Software Defined Networking
(SDN) seem to provide a promising solution for network
management—with a logical central controller, operators can
directly operate the forwarding rules on all switches. Even so,
the network is still an asynchronous system in essence. It is
difficult to synchronize the changes to flows from different
ingress switches. Therefore, when migrating a group of flows
to their new paths, even if the network is safe both before and
after the reconfiguration, some “hot” links could be overloaded
during the update process in case new flows move in before
those old ones move out [2]–[4].

As an example, consider the toy case shown in Fig. 1.
On executing WAN optimizations [3], the controller wants to
update the network’s configuration from Fig. 1a to Fig. 1b.
For simplicity, we assume that the network uses tunnel-
based routing and all necessary tunnels have already been
established. If the controller carries out the update in one-shot,
link S4-S3 or S1-S3 might be overloaded during the update,
corresponding to the case that switch S4 happens to change
F3 to its new path before S1 moving F1 away from link S4-
S3, or vice versa. The congestion can not be evaded by simply

(a) Current State (b) Target State

Fig. 1: A network update example. Each link has 10 units of
capacity and flows are labeled with their sizes. If the controller
carries out the update in one-shot, link S1-S3 or S4-S3 will
be overloaded during the update.

letting F1 and F3 be switched to their new paths at exactly the
same time [7]—because the incoming packets of F2 and F3,
together with the in-flight packets of F1, could still congest
S4-S3 until F1 drains; and so does S1-S3.

Such a type of congestion disappears following the com-
pletion of update, but its destructibility lasts long—burst
traffic leads to serious queuing delay, and even, packet drops,
which will let involved TCPs’ windows collapse, or worse,
kill flows. These bad influences are not desirable, especially
for real-time applications. Accordingly, carrying out network
reconfigurations without introducing transient congestion is a
fundamental function required by SDN controller.

Planning network updates to avoid transient congestion is
never an easy task. Recent approaches like zUpdate [2] and
SWAN [8] try to solve the problem by introducing a sequence
of intermediate configurations, among which, the update from
a former stage to the latter must always be congestion-free. To
ensure such a stage sequence exists, they require part of the
link capacity to be left vacant, which results in a great waste of
link capacities [8, 9]. Furthermore, the intermediate configura-
tions they introduce will greatly complicate the update process,
and might even disturb user’s QoS—e.g., an intermediate path
might have a larger latency than both the initial and target
ones. In contrast, Dionysus [3] and ATOMIP [4] address the
challenges by scheduling updates in thoughtful orders without
bringing in additional stages. For instance, by executing the
update illustrated in Fig. 1 following the 3-round sequence of
[F4→F1→F3], no link would be overloaded and no extra paths
are introduced. Order arrangement provides a more practical
solution. However, it is not always the panacea because such
a congestion-free operating sequence does not always exist.
Indeed, due to the various update scenarios and user demands
that a controller would deal with, simply arranging the update
operations, or introducing intermediate stages, is far from
enough for a practical solution. We argue that, a practical
planner should have these properties.ISBN 978-3-901882-83-8 © 2016 IFIP

10Networking 2016

1) Effective to handle deadlock and deadline. First of all, the
planner must be able to find feasible congestion-free solutions
for any given task. On one hand, in some update scenarios,
there does not exist a congestion-free sequence [3, 4]. For
instance, in the case of Fig. 1, if the demand of either F1
or F3 increases to 6, it is impossible to migrate the network
to its target routing state by arranging the execution order
without overloading S1-S3 or S4-S3. This is a deadlock in
update planning. On the other hand, even though congestion-
free schedules are found, they may not meet the deadline
requirements. This is because to remove overloads, the con-
troller can not switch flows belonging to round-(i + 1) to
their new paths until flows moved out from these paths in
round-i have exited. Suppose in-flight packets require about τ
units of time to exit from a path on average; then, it would
take about k · τ for the entire network to perform a k-round
update, even without considering the time of rule installations.
Such an update delay/duration might be unacceptable for time-
critical cases like failover routing [10]. Therefore, on planning
updates, the planner should have the ability to break deadlocks
and guarantee deadlines.

Fortunately, for any update, by limiting the rates of some
flows at their senders or traffic shapers, controllers can always
obtain a congestion-free update sequence that involves fewer
rounds and satisfies the deadline requirements. Indeed, there
is a trade-off between the time an update takes, and the
throughput the network has to drop (induced by congestion
or rate-limiting). For example, one can carry out the update
request demonstrated in Fig. 1 within 2 rounds by limiting the
rate of either F2 or F4 to 0 (e.g., when F2’s rate is limited to 0,
[F3→F1, F4] is congestion-free), or even perform the update
within 1 round by limiting the rate of both F2 and F4 to 0.
This example gives us a valuable insight: the planner should
have the ability to trade throughput loss for update speed.

2) Expressive to deal with user-specified requirements.
As infrastructure, today’s network is shared by numerous
customers while simultaneously carrying various kinds of
traffic. To be a universal tool for controller, the update planner
should be extensible and easy to adapt to user-specified
requirements. As an example, consider the case of removing
transient congestion for the update illustrated in Fig. 1 again.
Provided the reconfiguration is time-sensitive and required to
complete within 1 round, the controller has to reduce some
flow rates to avoid congestion. Suppose this is an instance
of inter-datacenter traffic optimization [8], in which both F1
and F3 are interactive traffic while F2 and F4 are background
traffic, and the operator prefers to minimize the amount of
interactive traffic disturbed by the update. In such a scenario,
the planner should temporarily reduce the rates of F2 and F4
to 0 to execute the update, i.e., limit the rates of {F1, F2,
F3, F4} to {5, 0, 5, 0}. On the contrary, if F2 and F4, instead
of F1 and F3, are interactive, the result would be {1, 4, 1, 4}.
As another example, if all flows share the same class and a
fairness alike policy is expected [11], the planner should set
their rates to { 5

14 ,
4
14 ,

5
14 ,

4
14}, with the target of letting the

decrease of throughput be fairly shared in proportion.
Indeed, due to network’s diversity, such a special constraint

of rate-limiting is only the tip of an iceberg. In practice, there
are plenty more kinds of user-specified demands (about the
update execution time or throughput loss) that a controller
would deal with. It follows that, on planning rate-limiting
schemes, the planner should be flexible enough to suit various
update scenarios, as well as user-specified demands.

3) Efficient to scale up. Last but not least, to be practical,
the planner must be time-efficient to find feasible solutions
for update requests in time. In consideration of that the size
of today’s network might be really huge (e.g., Datacenter or
backbone), the planner needs to easily scale up.

As the first step, this paper proposes CUP, Customizable
Update Planner, to help controller deal with various updating
requirements. CUP suggests adopting generic methods such as
two-phase mechanism [5, 6] to enforce rule consistency, and
focuses on eliminating the transient congestion during updates.
Distinguished from existing solutions proposed for fixed tar-
gets, CUP is effective and expressive to deal with deadlock,
deadline, prioritization, and many other user-specified require-
ments as Table I summaries (Note that, proposals focusing on
enforcing rule consistency are not listed, e.g., CCG [12].). We
analyze various demands and realize that, besides consistency,
what users/operators concern about the implementation of an
update, no matter how complex it is, generally involves two
types of fundamental issues—i) when a flow could enjoy its
new path(s) and ii) how its throughput would be impacted
during the update process?

At a high-level, CUP provides an expressive user-friendly
language, with which, customers and operators can describe
their own requirements easily and explicitly. When the network
is to be updated, CUP maps these high-level requirements into
the essence (involved) flows, and translates them into low-
level linear constrains. At its core, CUP builds a couple of
generic linear programming models to formulate the update
request while capturing constrains from users. Via solving
these customized models, CUP obtains a congestion-free up-
date execution plan that explicitly follows the user’s wish.

Roughly, CUP’s model involves two parts, Order Scheduler
and Rate Manager, which respectively answer the two basic
problems mentioned above. On planning an update, Order
Scheduler first determines the operation order respecting to
time-related requirements. If congestion-free sequences are
found, Order Scheduler outputs the one involving the mini-
mum rounds; otherwise, it chooses the sequence causing least
overload on links. For the overloaded traffic, Rate Manager
then figures out the optimal rate-limiting scheme that is able
to erase the congestion while satisfying all throughput-related
requirements. As the core of both Order Scheduler and Rate
Manager is to solve a single Linear Program (LP), with
high performance LP solvers, CUP obtains solutions within
polynomial time and is able to scale up.

We prototype CUP upon Ryu1 and use it to plan updates for
networks conducted by Mininet [13]. Results show that CUP
is quite flexible to exactly meet user-specified requirements,
while effective to outperform existing approaches.

In summary, we make three contributions in this paper.

1An open-source SDN controller framework, https://osrg.github.io/ryu/

11Networking 2016

TABLE I: Summary of previous approaches and comparison to CUP.

#Proposal Introduce
intermediate status?

Effectiveness Expressiveness

Handle deadlock Deal with deadline Meet user-specified requirements

zUpdate [2] Yes No No No
SWAN [8] Yes Yes Single deadline for all No
GI [9] Yes Yes Single deadline for all No
Dionysus [3] No Yes No No
ATOMIP [4] No Yes Single deadline for all No
CUP No Yes Per-flow deadline Yes (any time- and rate- related requirements)

Fig. 2: The workflow of CUP on planning updates.

• Abstraction: We show how to express various user-
specified updating requirements with a high-level lan-
guage, and show how to dynamically translate them into
low-level linear constraints (Section II).

• Model: We propose generic linear programming models
to formulate and solve the customized update planning
problem, with which, controllers obtain the “best” update
plan explicitly following user’s wish (Section III).

• Evaluation: We show that our CUP tool is flexible and
effective to make update plans for “real” networks built
by Mininet (Section IV).

II. FLEXIBLE CUP

In CUP, network users as well as operators describe their
desired properties about the update with the high-level CUP
language; they can change the clauses at any time. On planning
a network update, at the first step, CUP “compiles” the user’s
codes to figure out their exact “meaning” in this instance.
After that, CUP employs back-end solvers, Order Scheduler
and Rate Manager, to find the update processing plan that
exactly follows the user’s wish. Roughly, the entire workflow
of how CUP produces is as Fig. 2 shows.

In the following, we present the high-level language in
Section II-A and show the compilation process in Section II-B.
After that, in next section, we introduce how CUP solves the
planning problems and discuss how it handles multi-tenants
and concurrent update requests.

A. High-level language

CUP language (Fig. 3) provides end-users and operators
with an easy way to specify their requirements on config-
uring the network. A CUP policy is a collection of rules,
in which, each term specifies a specific requirement, of
either the activation time of new paths or the degradation
of throughputs, for a group of packets. CUP uses a regular

Grammar
pol ::= (s1; . . . ; sn) CUP Policy
s ::= t | r Rule
t ::= T (m) ≤ val | T (m1) ≤ T (m2) Time Related Req.
r ::= R(m) ≥ amap | R(m1) ≥ R(m2) Rate Related Req.
Notation
m : a match string/predicate specifying flows
val : a value specifying a deadline requirement
T (m) : the waiting time before m enjoys the new path(s)
amap : the keyword specifying objectives (as much as possible)
R(m) : the rate-limit setting of flow(s) defined by m

Fig. 3: Syntax of CUP high-level language.

expression on the match fields of packet header to define
the involved packets. For instance, ∗ defines all packets pass
through the network; dstTCP=80 defines all web access
traffic; srcIP=10.0.0.1/24 ∧ dstIP=20.0.0.11 defines those
packets from network 10.0.0.1/24 to destination 20.0.0.11;
and srcIP=10.0.0.2 ∨ dstIP=10.0.0.4 defines the traffic from
10.0.0.2, or to 10.0.0.4.

For the update of a collection of packets specified by m,
there are two basic types of indicators that customers and
operators might concern: 1) how long it would wait before
enjoying the new path(s), and 2) how its throughput (i.e.,
rate) would be limited to avoid transient congestion. CUP uses
T (m) and R(m) to denote, respectively. Using their relation
expressions, these two basic elements can generate other com-
plicated requirements. For instance, T (m1) ≤ T (m2) says,
flows matched with m1 should be switched into the new paths
“no later than” those matched with m2, while T (m2) ≤ val
indicates the waiting time before m2 switched should be “no
larger than” val. Similarly, R(m1) ≥ R(m2) implies the
effective bandwidth of m1 during the update should “no less
than” that of m2, while R(m3) ≥ amap means the user would
like the effective bandwidth of m3 be maximized.

CUP language is simple yet expressive for most require-
ments. As examples, revisit the toy update cases of Fig. 1. With
CUP language, users can formulate their own requirements
precisely and concisely as the instances in Table II illustrate.

B. Dynamic translator
High-level CUP policies are compiled into low-level re-

strictions, which tell the planner how to process each flow’s
reconfiguration is in line with user requirements. To achieve
this, the most challenging task is to figure out the exact time
cost of migrating a flow. CUP employs the approach of pre-
installing new rules then triggering two-phase reconfigurations
to address the problem. In this part, we first present how to
make the estimation of reconfiguration’s time cost possible in

12Networking 2016

TABLE II: Examples of CUP language on describing update
cases shown in Fig. 1.

Update scenarios Policy expression

1
Minimize transient congestion with-
out deadline requirements on the up-
date process.

(R(∗) ≥ amap)

2

Let interactive flows,F2 and F4, en-
joy new paths no later than 1 unit
time, while minimizing the impacts
on their throughputs (e.g., inter-DC
WAN optimization [8, 14]).

(T (mF2 ∨mF4) ≤ 1;
R(mF2 ∨mF4) ≥ amap)

3

Execute all flow migrations no later
than 1 unit time, and let the through-
put loss be shared in proportion since
they are in the same class.

(T (∗) ≤ 1;
R(mF1) ≥ amap;
R(mF2) ≥ amap;
R(mF3) ≥ amap;
R(mF4) ≥ amap)

Section II-B1, then introduce the way of binding high-level
requirements with flows and translating them into low-level
linear constraints in Section II-B2.

1) Estimating time cost of traffic migration: As Section I
and Fig. 1 have shown, to not overload any link during the
update, the controller has to wait the flow that moved out from
a link exits, before moving other flows in. Thus, the time cost
of migrating a flow to its new path(s) mainly involves two
parts of i) waiting the moved-out traffic exits (if any); and
then ii) installing rules to shift the flow to its new path(s).

As for the first part of draining time, we can simply use
the well-known One-Way Delay (OWD) as an approxima-
tion, which can be estimated at end hosts [15, 16], or at
edge switches in OpenFlow-enabled networks. CUP suggests
adopting two-phase update mechanism to guarantee strong rule
consistency (refer to Appendix A in [17] for the discussion).
On carrying out an N -rounds flow migration, at the first step,
CUP pre-installs the new configurations and sets rate-limits.
Supposing the time of installing/modifying a rule from the
controller is ϵ, the total time cost of this step is ϵ because
all rule installations (for both new paths and rate-limits) can
perform in parallel. Thus, the rest operations for each round
are to i) wait a draining time then ii) touch some flows’ ingress
switches to activate their new paths. Provided the largest OWD
in network is τ , we get the point that flows migrated in the kth
round would enjoy their new paths at time k×τ +(k+1)× ϵ.
Consequently, if a flow’s deadline requirement on the update
process is val, we know that the controller should make sure
it get migrated no later than round ⌊ val−ϵ

τ+ϵ ⌋.
In practice, the time cost of modifying a rule on physical

switches is usually inconstant [3, 14, 18, 19]. Yet, recent
studies have shown its long-tailed characteristic [3]. That is
to say, simply choosing the 95th percentile value (or other
thresholds) as the estimated time is reasonable in most cases.
Moreover, since OpenFlow-style control is still in its early
stages, most switch software and SDKs are not optimized for
dynamic table programming yet [14]. Some effects have been
put on improving this and we argue that future switches will
be more stable and fast for table changes [18, 20].

As yet, we have found a way to estimate the time cost
of migrating a flow based the network’s maximum OWD
and ingress’s rule modification delay. In real networks, both

TABLE III: The key notations of the network model

Notation Description

Mdue
R the set of predicates (m) holding T (m) ≤ val

Mamap
R the set of predicates (m) holding R(m) ≥ amap

MPT the set of ⟨mx,my⟩ pairs holding T (mx) ≤ T (my)
MPR the set of ⟨mx,my⟩ pairs holding R(mx) ≥ R(my)
N̂due

m the round deadline for flow matching with m

f ∈ F the set of all current flows in the network
F (m) the set of all flows matching with predicate m
tf the demand of flow f
rf the rate-limit setting of f during the update
r∗m the rate-limit setting for all flows matching with m
e ∈ E the set of all (directed) links in the network
ce the capacity of link e
tf,e the load of f on link e before the update
t′f,e the load of f on link e after the update
FB the set of flows that will not be updated/migrated
FU the set of flows that will be updated/migrated
FU (m) the set of to-be-updated flows matching with m
FPT ∀⟨fi, fi⟩ ∈ FPT : fi should be updated no later than fj
Ndue

f f ’s update deadline, in the form of round number
yf,k whether f has been updated in round-k
tf,e,k the (maximum) load of f on e in round-k

types of delays can be measured by the controller. With this
information, CUP is able to translate the absolute deadline re-
quirements into round requirements. For simplicity, hereafter,
all deadline requirements we discuss in this paper are in the
form of round number.

2) Mapping requirements to each flow: Now, we show
how CUP maps user requirements into each flow. The basic
notations that CUP’s model uses are summarized in Table III.

Lexical analysis and preprocessing. CUP first parsers user-
specified policies to get the semantics. Obviously, there are
four types of constraints on the flow predicates, indicating
the absolute update deadline (i.e., T (m) ≤ val), the rel-
ative update order in “no-later-than” form (i.e., T (mx) ≤
T (my)), relative rate-limiting setting in “no-less-than” form
(i.e., R(mx) ≥ R(my)), and the expected targets that should
be optimized (e.g., R(m) ≥ amap). Without loss of generality,
we let Mdue

T be the set of predicates holding the relation of
T (m) ≤ val, and Mamap

R be the set of predicates holding
R(m) ≥ amap. As well, we further use MPT and MPR to
denote the set of predicate pairs (e.g., ⟨mx,my⟩) that have
the relation of T (mx) ≤ T (my) and R(mx) ≥ R(my),
respectively. As discussed above, for a deadline requirement
on flows specified by predicate m, CUP can transfer it into a
round number requirement with Equation (1), where τ̂ is the
network’s measured maximum OWD and ϵ̂ is the measured
95th rule modification delay.

N̂due
m = ⌊valm − ϵ̂

τ̂ + ϵ̂
⌋ (1)

Basic network model. We assume that the network, G, is
hosting a set of flows F with links E. The rate of flow
f ∈ F is denoted by tf while the capacity of link e ∈ E
is denoted by ce. By letting tf,e be the traffic load of
flow f on link e, the network’s state can be formulated as
S = {tf,e|∀(f ∈ F, e ∈ E)}. Then, a network update is to
change its state from S to S′ = {t′f,e|∀(f ∈ F, e ∈ E)} by
rerouting some flows, or changing their traffic split ratios in the

13Networking 2016

case of multi-path routing. For the update of S /→ S′, let FU

be the set of updated flows and FB be the set of unmodified
flows. Obviously, there must be FU ∩FB = ∅, FU ∪FB = F ,
and tf,e = t′f,e for ∀(f ∈ FU , e ∈ E). We assume that the
update of flow f is required to be finished within Ndue

f rounds,
and use bin variable yf,k(1 ≤ k ≤ Ndue

f) to indicate whether
f (f ∈ FU) has been migrated/updated in the k-th round. By
defining yf,0 = 0 for convenience, we get the constraints as
Equation (2) and (3) show.

∀k, f ∈ FU : yf,k ∈ {0, 1} (2)
∀f ∈ FU : 0 = yf,0 ≤ yf,1 ≤ . . . ≤ yf,Ndue

f
= 1 (3)

Besides, we let rf denote the proportion of rate-limiting that
flow f would be set to during the update. Then, after rate-
limiting is enabled, the total load of f would be reduced to
tf ·rf , and the subpart on e before and after the update would
also decrease to tf,e · rf and t′f,e · rf , respectively.

∀f : 0 ≤ rf ≤ 1 (4)

Embedding user-specified requirements. In networks, flows
are also defined by predicate strings of the packet header
fields. By checking whether a flow’s predicate intersects with
the user-specified predicate, CUP figures out which flows are
involved with that rule. For rule predicate string m, we denote
F (m) as the set of flows that it intersects with, and FU (m)
as the subpart of to-be-updated flows in F (m). Then, via
Equation (5), CUP gets the set of rules that a flow is matched
with and gets the exact deadline requirement of each flow.
It should be noted that, the entire update process will never
exceed |FU |, the number of flow to be updated. So, in case
the estimated round calculated from user policies is larger than
|FU |, or no deadline is required, Ndue

f will be set to |FU |.

Ndue
f = min(|FU |, min

∀m∈Mdue
T :f∈FU (m)

N̂due
m) (5)

As for the “no-later-than” order requirements, T (mx) ≤
T (my), if two to-be-updated flows, fi and fj , happen to
hold the relations of fi ∈ FU (mx) and fj ∈ FU (my),
it means they have order-dependency on the update active
time, namely, yfi,k ≥ yfj ,k for all feasible k. Let FPT be
the set of such order-dependent flow pairs; CUP can easily
get it by calculating Equation (6). Then, all “no-later-than”
requirements are as Equation (7) shows.

FPT ={⟨fi, fj⟩|∃⟨mx,my⟩ ∈ MPT ;

fi ∈ FU (mx); fj ∈ FU (my)}
(6)

∀(fi, fj) ∈ FPT , k ≤ min(Ndue
fi , Ndue

fj) : yfi,k ≥ yfj ,k (7)

Now, CUP deals with rate/throughput related requirements.
Same to the case of time-related predicates, the predicate m in
a rate-specified rule also might match with multiple flows at
the same time. We denote the collection of involved flows as
F (m) and regard them as a “virtual” aggregated flow. For this
“virtual” flow, we further use r∗m to present what its rate-limit
would be during the update process. Then the two types of
throughput requirements could be formulated as Equation (8)

and (9) show, in which r∗m is defined by Equation (10) and
amap is the index/variable that should be optimized.

∀(mi,mj) ∈ MPR : r∗mi
≥ r∗mj

(8)

∀mi ∈ Mamap
R : r∗mi

≥ amap (9)

r∗m =

∑
∀f∈F (m) rf · tf∑

∀f∈F (m) tf
(10)

So far, CUP has translated all user-specified requirements
into low-level flow-based constraints, which are all linear.

III. EFFICIENT SOLVER

To handle various updates, CUP needs a generic yet effi-
cient solver. However, the design is not easy since planning
updates is computationally intractable in ordinary sense—even
answering the question of whether there exists a congestion-
free solution for a given update is NP-hard as Theorem 1 says.

Theorem 1. Determining whether there is a congestion-free
update order scheduling that meets user-specified deadline is
NP-Hard in ordinary sense.

Proof. Refer to Appendix B in [17] for details.

Corresponding to the fact that planning an update involves
two parts of 1) finding an execution order and 2) computing the
relevant rate-limiting scheme, CUP heuristically decouples the
original problem into two parts as Fig. 2 shows. On planning
a group of flow migrations, the Order Scheduler module first
determines which round each flow should be moved in, based
on user-specified time-related requirements. If there exists
congestion-free sequences, Order Scheduler outputs the one
with the minimum rounds; otherwise, it suggests the sequence
causing smallest traffic overloads. Then, for the congested
traffic, Rate Manager further finds the optimal rate-limiting
scheme that makes the update free of congestion, respecting
to throughput/rate-related rules.

A. Order Scheduler

The first step of planning update to prevent transmit con-
gestions is to evaluate what link loads would be during the
update procedure. For flow f ∈ FU , we let tf,e,k indicate
its maximum possible load on link e when preforming the
reconfiguration of round k. Then, the maximum (possible) load
on link e in this round is

∑
f∈FB tf,e +

∑
f∈FU tf,e,k.

tf,e,k =

⎧
⎨

⎩

tf,e−yf,k−1 ·(max(tf,e, t′f,e)− t′f,e)
+yf,k ·(max(tf,e, t′f,e)− tf,e)

Changed ind.

tf,e − yf,k−1 · tf,e + yf,k · t′f,e Otherwise
(11)

The calculation of tf,e,k for round k has two formulations
depending on f ’s update senses as Equation (11) shows. In
both formulations, it is certainly that f ’s load on link e equals
tf,e if f has not been migrated yet, i.e., yf,k−1 = yf,k = 0,
or equals t′f,e if its migration has completed, i.e., yf,k−1 =
yf,k = 1. The difference exists in the case when f happens
to be migrated in round k, i.e., yf,k−1 = 0 and yf,k = 1, and
the link is used by both f ’s old path(s) and new path(s).

14Networking 2016

fS2

S4S3S1

Fig. 4: An example of that the updated flow is not changed
independently: move f from path S1-S2-S3-S4 to S1-S3-S4.

In datacenter networks, the multiple paths between two
end-hosts usually share the same hops and packets traveling
through them are likely to experience the similar delay [2].
Accordingly, the load of f on link e during the update is either
tf,e or t′f,e. In this condition, f is changed independently [2]
on link e, and its maximum possible load during the update is
max(tf,e, t′f,e), corresponding the upper case of Equation (11).
However, the situation of WAN is quite different, in which
multiple paths of a source-destination pair generally have
distinct delays. In the worst case, the load of flow f on e
would reach tf,e + t′f,e. As an example, consider the case of
rerouting flow f from path S1-S2-S3-S4 to S1-S3-S4 shown
in Fig. 4. On switching f to its new path, because of the
transmission and buffer delays, incoming packets traveling
through S1-S3, together with the in-flight packets on sub-
path S1-S2-S3, would contribute a total load of tf,e + t′f,e
on link S3-S4. Fortunately, by comparing the new network
configuration with the old one, CUP knows whether a flow is
changed independently or not. Then, the right expression of
tf,e,k for flows and links can be decided.

On computing the update order, CUP tries to minimize the
overloaded traffic on links while optimizing the total required
rounds. Provided oe is the amount of overloaded traffic on
link e (whose capacity is ce), there are many alternative
formulations that capture the link load situation of the entire
network—E.g.,

∑
∀e oe, max∀e oe,

∑
∀e

oe
ce

, and max∀e
oe
ce

.
CUP adopts max∀e oe. With this design, even if the network is
failed to apply the rate-limiting schemes, the scheduled update
order will still let the transient congestions be distributed on
most links, so that the overloaded packets are more likely to
be held by switch buffers.

∀e, k > 0 :
∑

f∈FB

tf,e +
∑

f∈FU

tf,e,k ≤ ce + oe; oe ≥ 0 (12)

Obviously, this order scheduling problem is naturally to be
formulated as a MIP (Mixed Integer linear Program) as Fig. 5
shows, where γ is a small factor (0 ≤ γ ≪ 1) and the tail of
−γ·

∑
∀(f,k) yf,k is to let flows be migrated as soon as possible.

For the schedule of a small scale update, we can obtain
the optimal order by directly solving this MIP with efficient
solvers. However, as finding the optimization scheduling order
is theoretically NP-hard, the computation process becomes
quite time-consuming when the network scales up. To find
scheduling orders quickly, we relax the original MIP into
a Linear Program (LP), and develop an efficient heuristic
solution based on the relaxed LP’s outputs. Due to the lack of
space, the detail of heuristic algorithm follows in our technical
report (Appendix C) [17].

In practice, a simple way to achieve both efficiency and
effectiveness on order scheduling is to employ a “dual-core”
trick. For each planning request, CUP can perform the MIP

⎧
⎪⎪⎨

⎪⎪⎩

Input: FB , FU ,FPT , {ce}, {tf,e}, {t′f,e}, {Ndue
f }

Output: {yf,k|∀(f ∈ FU , k)}
Minimize max∀e oe − γ ·

∑
∀(f,k) yf,k

Subject to (2), (3), (7), (11), and (12),

Fig. 5: Schedule update orders to minimize the link overloads.
γ is a small constant: 0 < γ ≪ 1.
⎧
⎪⎪⎨

⎪⎪⎩

Input: FB , FU , {ce}, {tf,e}, {tf,e,k},MPR,M
amap
R

Output: {rf |∀f}
Maximize amap+ ϱ×min∀f rf
Subject to (4), (8), (9), (10), and (13).

Fig. 6: Manage transient congestions in each update round
{rf |∀f} explicitly following user’s requirement. ϱ is a small
constant: 0 < ϱ ≪ 1.

solving and heuristic computation, simultaneously. If MIP
completes within a certain time (e.g., one second), CUP gets
the optimal results; otherwise, CUP chooses the heuristic result
and stops the task of MIP solving.

B. Rate Manager
Once the update order is determined, CUP gets the value

of {tf,e,k|∀(f, e, k)}. The next issue is to find a rate-limiting
scheme avoiding congestion respecting to user’s requirements.
As defined in Section II-B2, rf is the ratio that flow f
should decrease to for removing transient congestions; then,
the straightforward solution to obtain the optimal rate-limiting
scheme for user-specified requirements is to solve the corre-
sponding LP shown in Fig. 6.

∀e, k > 0 :
∑

f∈FB

rf · tf,e +
∑

f∈FU

rf · tf,e,k ≤ ce (13)

Note that, when no amap-based rule is specified, CUP
adopts R(∗) ≥ amap by default, which results in minimizing
the total throughput loss. In some cases, there might be
multiple rate-setting schemes that obtain the same optimal
amap. CUP adds a tail of ϱ×min∀f rf (ϱ is a small positive
constant) into the objective to gain the one let flows share the
loss of throughput in proportion.

About efficiency. So far, we have built a generic solver made
up of Order Scheduler and Rate Manager for CUP. Obviously,
the core of both Order Scheduler and Rate Manager is solving
LPs, which can be efficiently done within polynomial time by
leveraging fast solvers like CPLEX and MOSEK. Consequently,
the entire solver is a polynomial time approach as well.
Furthermore, there are several simple yet efficacious tricks
that CUP can employ to simplify the model and accelerate the
computation. For example, if a link would never be overloaded
during the update, CUP can exclude its related constraints from
the model safely. We call such links non-critical, and they
can be determined by Equation (14) easily. Corresponding, if
a flow only encounters with non-critical links, it is also non-
critical and there is no need to limit its rate. So, CUP can
remove its constraints from the rate-manage model. As well,
if a to-be-updated flow is non-critical and does not have “no-
later-than” relation with others, it can be migrated directly in

15Networking 2016

the first round without planning computations.

Enon-crit. = {∀e |
∑

∀f∈FB

tf,e+
∑

∀f∈FU

max
∀k

tf,e,k ≤ ce} (14)

Multi-tenant. In practice, a network might be shared by
multiple tenants (or virtual operators) simultaneously [21]. The
requirements specified by a tenant should only impact its own
updates and own traffic. In such cases, CUP would look into
the tenant information when embedding policies. As for CUP’s
solver, Order Scheduler is able to handle this directly because
there is no difference on the sub-problem of order scheduling;
however, Rate Manager needs a modification as the rate man-
agement problem is a multi-objective optimization problem
now—max (amap1, amap2, . . . , amapn). Multiple-objective
optimization has been studied for very long time and there
are so many solutions, such as scalarization, no-preference
methods, priori methods, etc [22]. In this paper, CUP simply
adopts the approach of linearly scalarizing [22] the multiple
objectives into the single objective of max

∑
∀i wi · amapi,

where wi ≥ 0 stands for the weight of the ith tenant. By
simply pursuing this scalarizated objective, CUP supports
multi-tenant updates. We note that there is room to improve
and CUP is flexible to be upgraded.

Concurrent updates. In general, a “fat” update request in-
volving many flow migrations would be planned to execute in
more than one round. As the network configuration is volatile,
new update request is likely to occur before the current “fat”
one completes. This should be handled appropriately and
immediately as some new flow migration requests might have
urgent deadline requirements. CUP adopts the generic two-
phase mechanism [5] to implement the reconfiguration of each
round, which naturally supports update streams. Accordingly,
CUP can immediately deal with a new request by just re-
garding it together with these unperformed rounds as a fresh
request; rule consistency is always guaranteed.

IV. EVALUATION

In this section, we implement CUP based on Ryu, and
conduct virtual networks with Mininet to test CUP. Our
results indicate that CUP is flexible enough to handle user-
specified time- and throughput- requirements. Moreover, CUP
is very effective. On each type of requirement, CUP always
significantly outperforms the variant of Dionysus which is
modified to handle that requirement type.

A. Implementation
We prototype CUP upon Ryu 3.26, and employ it to plan

traffic migrations for toy virtual networks on Mininet 2.2 [13].

Network setup. When switches start up, the controller installs
default routes and tunnel rules via OpenFlow 1.3. We let
end-hosts send UDP packets with each other in steady rates
to simulate the case of backbone traffic in WAN, and use
VLAN tags to implement tunnel-based forwarding for them.
We assume that the network adopts multi-path routing, in
which ingress switches split and assign a flow to its sub-
tunnels respecting to tunnel weights. Then, updating a flow

is only to reconfigure its tunnel weights at the ingress, so that
each update is consistent in essence [5, 6].

To carry out weighted traffic splitting on Open vSwitch,
the controller installs a group of exact-match rules specifying
the tunnel for each microflow.2 Unfortunately, this approach
makes rule management on ingress complex as the update of
a single flow might trigger the modification of a collection of
microflow rules. We address the problem by using the Multiple
Flow Table mechanism provided by OpenFlow switches (sup-
ports start from OpenFlow 1.1). Basically, rules in an ingress
switch are either stored in Table 0 or Table 1 depending on
their types. In normal, forwarding functional rules like tunnels
and default routes reside in Table 1, and these microflow rules
that realize traffic splits and tunnel selections, together with a
lower priority all-∗ whose action is “goto Table 1”, reside in
Table 0. When a flow’s splitting weights are to be updated,
the controller first installs microflow rules that implement the
new weights in Table 1, then installs a high-priority wildcard
rule with action “goto Table 1” into the first table to “guide”
involved packets to the new weights. After that, the controller
silently modifies the actions of those unmatched microflow
rules in Table 0 following the new weights, then deletes
the previously installed wildcard rule and microflow rules.
Following this, we make rules easy to manage and guarantee
the consistency property during weight reconfigurations.

Benchmark schemes. We implement CUP’s algorithm in
Python and employ Mosek as the backend solver for LPs.
As a benchmark, we implement the schedule algorithm of
Dionysus. Although it is designed for dynamic scheduling of
updates, under the situation that new rules are pre-installed and
ingress switches share the similar time cost on enabling new
configurations for flow, Dionysus would also derive a round
schedule together with a rate limiting scheme for each update
in advance [3]. If the obtained round number is larger than
the deadline requirement, we assume that Dionysus adopts its
deadlock-break mechanism for help—limit the rates of flows
whose scheduled time would miss the deadline to zeros, and
perform all their migrations in the last round.

B. Case study
To evaluate how transient congestion caused by unplanned

updates would influence the traffic, we first conduct experi-
ments for the toy update cases shown in Fig. 1. Note that all
virtual hosts and switches in Mininet use the shared CPU and
bandwidth resources for simulation [13]. To avoid resource
competition between them and to highlight the results, we
set link bandwidth to 5 Mbps with 100 ms delay, and let
port buffer size be large enough to hold all overloaded traffic.
Accordingly, in the case of no congestion, the transmission
delay of all old paths is about 200 ms, same to the network’s
maximum OWD, and that of the new paths is about 100 ms.

Fig. 7a shows the transmission delay of packets in each
flow when the controller sends the “activate the new path”
commands for {F1, F3, F4} in One Shot at the 0.4 s.

2In tests, the traffic from a host to another is equally dispersed over 20
UDP flows, and its ingress switch holds a corresponding number of microflow
rules for traffic splitting. Thus, the accuracy of traffic-splitting is 0.05.

16Networking 2016

(a) Unplanned One-Shot update (b) Planed update (R(∗) ≥ amap)

Fig. 7: Transient congestion during unplanned updates.

About 150 ms later, receivers get packets through the new
paths. Obviously, the latency of packets in all flows increase
during the update process. That is to say, they all entered
queues because of transient congestion. In the test, we set
no artificial control delay between the controller and switches
(however, there is still a delay about 50 ms for each flow table
modification from CUP sending the command via REST API)
so that all flows enjoy their new paths almost at the same time.
As a result, the newly incoming packets of F1 together with the
in-flight packets of F3 and F4 overload Link S1-S3, while F1’s
in-flight packets together with the newly incoming packets of
F2 and F3 overload Link S4-S3. In practice, the activation time
of new rule might be distinct on switches; transient congestion
happens once a flow moves in the hot link before the old in-
flight packets exists. And these overloaded packets in high
speed network can be really huge, which would quickly eat
up switch buffers and result in heavy packet loss [3].

As a comparison, Fig. 7b shows the case of migrating flows
in order of [F4→F1→F3], which is the result planned by both
Dionysus and CUP under the policy of (R(∗) ≥ amap). In this
case, the controller triggers flow migrations round by round,
and waits the maximum OWD time (200 ms) between them.
Following the plan, the update process takes about 600 ms to
complete, but avoids all transient congestion.

Then, we look into the case of planning updates with time-
and throughput- requirements. Provided the update request
appear at the 0.4 s, and the operator wants all flows to enjoy
their new paths no later than 300 ms; that is to say, all
flow migrations must be carried out within one round,3 and
rate-limits are needed to avoid congestion. Fig. 8 and Fig. 9
show the results planned by CUP under user-specified policies
(T (∗) ≤ 1;R(∗) ≥ amap) and (T (∗) ≤ 1;R(mF2 ∨mF4) ≥
amap), respectively. In the case of Fig. 8, all flows share the
same importance and the operator prefers the total throughput
be reduced as less as possible. With the objective function
shown in Fig. 6, CUP’s Rate Manager lets the throughput
loss be shared by all flows in proportion as Fig. 8b shows,
where ∆y

∆x stands for the flow rates observed by the sender or
receiver—about { 5

14 ,
4
14 ,

5
14 ,

4
14}. Different from Fig. 8, Fig. 9

demonstrates the case that F1 and F4 are background traffic

3It takes about 200 ms to pre-install new rules and wait rate-limits coming
into force; then less than 100 ms is left for performing the updates.

while F2 and F4 are interactive whose throughput should be
keep as much as possible. As the results show, CUP finds the
update plan exactly following the operator’s wish. In contrast,
Dionysus will handle the requirements in a rough way—
completely kill F1 and F2 to avoid congestion.

C. CUP flexibility

To investigate the flexibility of CUP, we further employ it to
plan updates for a small WAN [3, 9], which involves 8 nodes
and 14 links as Fig. 10 illustrates. In this case, each link is
assumed to have the capacity of 10 Mbps and delay of 200 ms.
We consider the case of WAN optimization, where ingress
switches split the traffic to a destination among its 4-shortest
paths to pursue load balancing. Because of lacking real traffic
matrices, we assume that all the possible paths of a source-
destination share the equal weight initially, and use gravity
model [4] to synthesize the current traffic demands, which
make the maximum link load be 99% in the old configuration.
Then, the update scenario is to reconfigure traffic split weights
to the new one that reduces the maximum link load to the
minimized value, 78%. The longest path(s) in tests involves 4
links; accordingly, the network’s maximum OWD is 800 ms.
For each link e, we consider it as unchanged independently
for flow f , if f has more than one path going through e and
these paths hold distinct lengths (i.e., delays).

When no update deadline is required, CUP finds a
congestion-free plan involving 5 rounds without limiting flow
rates, while Dionysus obtains a 6-round plan that achieves the
same goal. Then, we artificially add deadline requirements to
all flows and compute the propitiation of network throughput
that CUP, as well as Dionysus, has to abandon for congestion
freedom. Numerical results indicate that CUP outperforms
Dionysus about 3× on reducing the impact of network
throughput as Fig. 11 shows. CUP is excellent because its
Rate Manager always obtains the optimal rate-limiting scheme
respecting to user’s requirements. On the contrary, Dionysus
just randomly kills some flows to move on. In addition,
Dionysus would never touch the rate of the un-updated flows.
But in some cases, slowing down some of them really helps.

We also study the cases that some traffic is background and
the operator wishes interactive traffic be less impacted during
the update. To this end, we assume that a certain percentage
of traffic between each source-destination pair is background,
then calculate how many round CUP, as well as Dionysus,
would need to perform congestion-free reconfiguration without
reducing the throughput of interactive traffic. Fig. 12 demon-
strates the results. It implies that, with the proportion of back-
ground traffic increasing, the round number required by CUP
rapidly decreases. And after the background traffic accounts
for half of the traffic, CUP always performs congestion-free
updates in one round without reducing the rates of interactive
flows. In contrast, Dionysus can not achieve this because of
its unawareness of user-specified requirements. If we pre-limit
the rates of background traffic to zeros, Dionysus then obtains
small update rounds as CUP does. However, similar to the
cases shown in Fig. 11, such a solution is far from good
because too many flows are killed unnecessarily.

17Networking 2016

(a) Impact on transmission delay (b) Impact on flow rate

Fig. 8: Plan under policy: (T (∗) ≤ 1;R(∗) ≥ amap), i.e.,
all migrations should be finished within 1 round and the total
network throughput should be as-much-as-possible.

(a) Impact on transmission delay (b) Impact on flow rate

Fig. 9: Plan under (T (∗) ≤ 1;R(mF2∨mF4) ≥ amap), i.e.,
all migrations should be finished within 1 round and the total
throughput of F2 and F4 should be as-much-as-possible.

Fig. 10: WAN topology in [3]. Fig. 11: Throughput loss V.S. update speed. Fig. 12: Impact of background traffic.

V. CONCLUSION

As transient congestions are prone to occur during SDN
updates, controllers are in urgent need of a planner to handle
the trouble. We argue that planning the reconfiguration process
respecting to specified requirements is an import issue. In
this paper, we have analyzed the desired properties of such
planners and proposed a case design–CUP. CUP translates
high-level user-specific requirements into linear constraints
and formulates the planning problem as generic linear pro-
grams. By solving customized LPs, CUP is flexible to obtain
“best” plans for a large fraction of updates.

Acknowledgements. This work was supported in part by the
973 Program (2013CB329103), 863 Program (2015AA015702,
2015AA016102), NSFC (61271171, 61271165, 61571098), Ministry
of Education - China Mobile Research Fund (MCM20130131), China
Postdoctoral Science Foundation (2015M570778), Fundamental Re-
search Funds for the Central Universities (2682015CX072), Science
and Technology Program of Sichuan Province (2016GZ0138).

REFERENCES

[1] S. Raza, Y. Zhu, and C.-N. Chuah, “Graceful Network State Migrations,”
IEEE/ACM Trans. Netw, vol. 19, no. 4, pp. 1097–1110, Aug 2011.

[2] H. H. Liu et al., “zUpdate: Updating data center networks with zero
loss,” in SIGCOMM, Aug 2013, pp. 411–422.

[3] X. Jin el al., “Dynamic scheduling of network updates,” in SIGCOMM,
Aug 2014, pp. 539–550.

[4] L. Luo, H. Yu, S. Luo, and M. Zhang, “Fast lossless traffic migration
for SDN updates,” in IEEE ICC, June 2015, pp. 5803–5808.

[5] S. Luo, H. Yu, and L. Li, “Consistency is not easy: How to use two-phase
update for wildcard rules?” IEEE Communications Letters, vol. 19, no. 3,
pp. 347–350, March 2015.

[6] M. Reitblatt el al., “Abstractions for network update,” in SIGCOMM,
Aug 2012, pp. 323–334.

[7] T. Mizrahi, E. Saat, and Y. Moses, “Timed consistent network updates,”
in Proc. ACM SOSR, 2015, pp. 21:1–21:14.

[8] C.-Y. Hong el al., “Achieving high utilization with software-driven
WAN,” in SIGCOMM, Aug 2013, pp. 15–26.

[9] J. Zheng, H. Xu, G. Chen, and H. Dai, “Minimizing transient congestion
during network update in data centers,” in Proc. 23rd ICNP, Nov 2015.

[10] H. H. Liu el al., “Traffic engineering with forward fault correction,” in
SIGCOMM, Aug 2014, pp. 527–538.

[11] V. T. Lam el al., “Netshare and stochastic netshare: Predictable band-
width allocation for data centers,” SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 3, pp. 5–11, Jun. 2012.

[12] W. Zhou el al., “Enforcing customizable consistency properties in
software-defined networks,” in NSDI, May 2015, pp. 73–85.

[13] N. Handigol el al., “Reproducible network experiments using container-
based emulation,” in CoNEXT, 2012, pp. 253–264.

[14] S. Jain el al., “B4: Experience with a globally-deployed software defined
wan,” in SIGCOMM, Aug 2013, pp. 3–14.

[15] O. Gurewitz, I. Cidon, and M. Sidi, “One-way delay estimation using
network-wide measurements,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2710–2724, June 2006.

[16] A. Pathak el al., “A measurement study of internet delay asymmetry,”
in Proc. 9th PAM, 2008, pp. 182–191.

[17] S. Luo et al., “Arrange your network updates as you wish,” http://shouxi.
name/publication/cup-tr.pdf, Tech. Rep., Dec 2015.

[18] J. H. Han el al., “Blueswitch: enabling provably consistent configuration
of network switches,” in Proc. ACM/IEEE ANCS, May 2015, pp. 17–27.

[19] M. Kuzniar et al., “What you need to know about SDN control and data
planes,” Tech. Rep., 2014, EPFL-REPORT-199497.

[20] R. Bifulco and A. Matsiuk, “Towards scalable SDN switches: Enabling
faster flow table entries installation,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 5, pp. 343–344, Aug. 2015.

[21] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Can the production network be the testbed?”
in OSDI, 2010, pp. 1–14.

[22] Wikipedia, “Multi-objective optimization,” https://en.wikipedia.org/wiki/
Multi-objective optimization, 2015, [Online; accessed 23-Nov-2015].

18Networking 2016

