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Abstract—Device-to-device communication (also referred to as
opportunistic networking) is considered a feasible means for
offloading mobile data traffic. Due to the sporadic nature of
contact opportunities, applications in the domain of device-to-
device communication are assumed to be delay-tolerant, with
content delivery deadlines being in the order of hours. However,
predictions suggest that by 2020 more than 75% of the traffic
volumes at mobile operators will be generated by multimedia
contents which is often seen as data served in real-time. In this
paper we explore how the concept of opportunistic networking
can be used for dissemination of real-time streaming contents
for users in urban environments without degrading quality of
experience. We first present a general framework for offloading
multimedia data that is organized in terms of playlists, and we
then investigate the performance of the framework in realistic
urban environments using the music streaming service Spotify
as a use-case. Our results show that it is feasible to use
opportunistic device-to-device communication in the context of
music streaming. We demonstrate that the system performance
is insensitive to a number of parameters such as playlist length
distribution, and initial content availability distribution, however
it exhibits sensitivity towards the amount of requested data and
the node density.

Index Terms—mobile data offloading, device-to-device commu-
nication, opportunistic networking, music streaming, Spotify.

I. INTRODUCTION

The proliferation of mobile devices has changed tremen-
dously the way in which people consume information. The
huge amounts of data delivered to mobile users on an every-
day basis requires mobile operators to face the challenge of
increased traffic volumes in their networks. In fact, predictions
are that by 2020 mobile operators will experience around 24
EB of monthly mobile data traffic. Approximately 75% of this
traffic is expected to be generated by multimedia contents [1].
Mobile operators are thus exploring different possibilities
for offloading traffic volumes to alternative networks, and
one of the promising solutions that has been proposed is
device-to-device (also called opportunistic) communication.
Opportunistic communication allows devices in proximity to
exchange data directly with each other without relying on
infrastructure.

Opportunistic communication has been perceived as a
means of disseminating and offloading delay-tolerant contents
characterized with content delivery deadlines in the order of
hours such as news or software updates. However with the

increasing amounts of multimedia contents such as music and
video delivered to mobile devices, offloading solely delay-
tolerant contents may not be enough to reduce the traffic
volumes at mobile operators. Thus, we here question whether
the concept of device-to-device opportunistic communication
could also be applicable for disseminating data with much
shorter deadline requirements, such as streaming data. Only
few studies [2], [3], [4] evaluate direct device-to-device com-
munication as an alternative for delivering on-demand stream-
ing to mobile devices, however the solutions rely on the pres-
ence of infrastructure for supporting the dissemination process.
Instead, we evaluate the feasibility of an infrastructureless
solution for offloading streaming data while maintaining the
quality of experience for the end user.

The contributions of this work are two-fold. We first in-
troduce a framework for disseminating real-time streaming
contents in an opportunistic manner. We then evaluate the
performance of the framework via extensive trace-driven simu-
lations based on realistic mobility traces that recreate mobility
patterns of urban users. We base our evaluation on the popular
music streaming service Spotify as a use-case. The rationale
behind choosing a music streaming service as a use-case is
the length of the flows. Music streams are long-lived (in
the order of hours) and although they do not require high
data rates, due to their duration they result into high traffic
volumes. Our results show that opportunistic device-to-device
communication is a viable means for offloading streaming
data. The system performance exhibits high sensitivity towards
the node density and the amount of requested data, but it is
insensitive towards the distribution of the playlist length and
the initial content availability.

The rest of this paper is structured as follows. In Section II
we present our proposed general framework for offloading
multimedia contents via device-to-device communication. Sec-
tion III presents a popular music streaming service, Spotify,
which we further use as a case study for evaluating the
framework. Sections IV and V summarize the evaluation
scenario and results, while Section VI discusses the related
work and positions our proposal with respect to it. Finally, we
conclude in Section VII.

II. OPPORTUNISTIC DISSEMINATION AND STREAMING

Opportunistic device-to-device communication allows nodes
equipped with mobile devices to exchange data with oneISBN 978-3-901882-83-8 c⃝ 2016 IFIP
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Fig. 1. An example with four nodes {A, B, C, D} interested in four content
items {1, 2, 3, 4}. Each node has one content item in its cache (left rectangle)
and one content item in its requested playlist to obtain in the nearest future
(right rectangle). Dashed lines show nodes in direct communication range;
solid lines show possibilities for content exchange.

another when in direct communication range. Data exchange
is only possible if nodes share one or more common interests.
An interest is expressed in the form of a subscription to a
specific content category through a publish/subscribe interface
exposed by an opportunistic content dissemination system [5].
Nodes encounter other peers, and are consecutively able to
discover and download contents stored on those peers, as they
move through an area. However, without keeping track of the
mobility pattern of each and every node in the system, it is not
possible to predict beforehand neither when any two devices
with shared interest would be in direct communication range,
nor how long the duration of their contact would be. Due to
this unpredictability, opportunistic communication is mostly
proposed as an offloading solution for delay-tolerant content,
and is often considered inappropriate for sharing real-time
contents such as streaming data.

Streaming data is provided in real-time when considering
the data that is delivered to a device. However, shifting the
viewpoint towards contents changes the definition from real-
time data into data with tight delay constraints. We define con-
tents to have tight delay constraints if its playout is in real-time
but its delivery to the requesting application happens within
some predefined delay boundaries. Contrary to traditional on-
demand data delivery, the delay boundaries in this case are
more generous. Let us illustrate this concept with an example,
Fig. 1. Four mobile nodes {A, B, C, D} are interested in
obtaining four content items {1, 2, 3, 4} constituting a playlist.
The dashed lines show direct communication links between
nodes. At the beginning, all playout buffers are empty. Thus,
each of the nodes begins by streaming one of the items of
interest from a server via the cellular network and playing it
out; node A streams item 1, node B streams item 2, etc. Since
all nodes are interested in all four of the content items, the
application at each node is aware both of the currently played
content item, as well as of other content items that are not
available on the device but are part of the playlist; we call
this the request playlist. In this example, the request playlist
of node A consists of item 2, the request playlist of node B
consists of item 3, etc. Normally node A would request item
2 from the server and stream it in real-time once it is done

. . . . . .
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Content Item
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Fig. 2. The cached playlist holds items that are already available on the device;
these can be either items that have been played by the device, or items that
have been downloaded for future usage. The requested playlist holds items
that still need to be downloaded. The playout point is denoted with PP.

streaming item 1. However, if node A’s application is aware
of the items in its request playlist, it may as well attempt to
obtain these items in advance in alternative ways, for example
via opportunistic device-to-device communication, before they
are requested by the application. Then, once the streaming
of item 1 is over, item 2 can be played seamlessly from a
local cache. In our example, node A has item 2 in its request
playlist, while node B which is a neighbor of node A already
has item 2 which it has obtained via streaming; node B could
consecutively share item 2 upon request with node A.

In the context of delivering multimedia to mobile devices,
a node can either stream the data in real-time directly from a
server via the cellular network, or it can download the data
from a peer via an opportunistic contact. Contents available in
the cache of a node is then played out whenever the application
requests it. Observe that play out is oblivious whether the data
source is local (the device’s cache) or remote (the server).

Fig. 2 illustrates the general concept of cached and re-
quested playlist items. A cached playlist item is already
available on the device. Observe that we do not specify how
the cached item has been made available to the device. For
instance, it could have been streamed via a cellular network, or
downloaded via an opportunistic contact. A requested playlist
item is a content item that the device is expected to provide
to the application in the future. A special case of a cached
item is the currently served content item, i.e. the item that is
being played out to the requesting application. The currently
served content item defines the maximum download delay as
the time until the next play out. In case that the currently
consumed content item is the last item in the cached playlist,
the maximum download delay measures how long the node
could search new content items in neighboring devices before
its buffer under-flows. Algorithm 1 presents the framework for
offloading streaming data with tight delay constraints. As long
as the request playlist of a node is not empty (line 3), the node
actively searches for peers in its vicinity that could provide it
with useful contents. Upon downloading a content item from
a neighbor, the node stores the item in its scheduled playlist,
and removes it from the request playlist (lines 7 and 8).
Whenever the playout buffer reaches the end of the currently
consumed content item (line 10), the requesting application
checks whether there are any scheduled content items; if this
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Algorithm 1 Framework for Offloading of Streaming Data
1: S ← set of scheduled content items
2: R← set of requested content items
3: while R is not ∅ do
4: search for peers in vicinity
5: if available peer with shared interest then
6: download content item
7: add content item to S
8: remove content item from R
9: end if

10: if playout buffer is ∅ then
11: if S is ∅ then
12: if replay then
13: replay cached content item
14: else
15: stream content item from server
16: end if
17: else
18: play out next content item
19: end if
20: end if
21: end while

is the case, the first of the scheduled content items is played
out from the local cache (line 18). However, if the scheduled
content items playlist is empty, the requesting application has
two options: either to replay a locally cached content item that
has already been played out before (line 13) or to stream a
new content item from the server via the cellular network (line
15).

The playout system in a device can be described as a G/G/1
queueing system, Fig. 3. Nodes arrive in the communication
range of an observer node j with mean arrival rate λ. However,
only a subset of these nodes could be useful to the observer
node. A contact is useful if it can deliver contents of interest
to the observer node while in its communication range. Useful
contacts occur at a content solicitation rate λ′ < λ, and can be
described with a distribution of useful inter-contact times f(t).
The distribution of the useful inter-contact times is defined
by the underlying node mobility, as well as the popularity
of the content items in the requested playlist of the observer
node. The duration of the currently served content item τ
in node j defines the service time. The service time follows
a distribution g(τ). Opportunistic mobile data offloading for
streaming services is then defined as feasible if the mean
inter-arrival time of useful nodes to node j is larger than the
mean service time for node j, E[f(t)] > E[g(τ)]. Contrary to
traditional queueing theory, the main objective for the system
is to operate in a saturated state.

III. MUSIC STREAMING WITH SPOTIFY

Spotify is a popular online peer-assisted music streaming
service [6]. Spotify offers an extensive music catalog with
more than 20 million music tracks to desktop, mobile and
web users. In the wired domain, users can stream music
directly from the Spotify servers or via peers who have already

Playout
Rate 1/τ

Cached Scheduled
Content Items

Content solicitation
Rate λ′ Requested

Content Items

Playlist

Fig. 3. The playout system in a device represented as a G/G/1 queueing
system.

<track href="spotify:track:5eCgNATwXgRc4mZx9NymGJ">
<name>Waiting For Love</name>
<artist href="spotify:artist:1vCWHaC5f2uS3yhpwWbIA6">

<name>Avicii</name>
</artist>
<album href="spotify:album:0LUr5Q06EQu7QIid7cACFU">

<name>Waiting For Love</name>
<released>2015</released>
<availability>

"AD", "AR", ... "TW", "UY"
</availability>

</album>
<track-number>1</track-number>
<length>228.750000</length>
<popularity>96</popularity>

</track>

Listing 1. Sample data structure of a Spotify track. Some parameters are
omitted in order to improve readability.

downloaded the track and cached it on their devices. It has
been shown that approximately 40% of all data delivered to
users is provided by peers instead of by the server. In the
wireless domain, however, users are currently only allowed to
download tracks directly from the Spotify servers. Recently
Spotify announced that the usage of their service on mobile
devices has surpassed the usage of desktop and web clients,
with more than 50% of users streaming music on their
smartphones or tablets [7]. This shift in usage significantly
increases the traffic volumes on the servers as well as on the
mobile operator, and would ultimately require a shift in the
way data is provisioned to devices in the wireless domain.

A. Spotify Data Analytics
Spotify provides an application programming interface

(API)1 which allows developers to access and extract meta
data about tracks, artists as well as users and their playlists.
Searching through Spotify’s database is performed by a simple
GET request:
GET http://api.spotify.com/v1/search?q=text&keyi=vali

Here, text denotes a free text, for instance a name of a
track, while keyi and vali are additional key-value filtering
options for improving the search results. For example, in this
section we make use of the market key which expects an ISO
3166-1 alpha-2 country code as a value to narrow down search
results to a specific country. Another popular filtering key
option is type which can take values of track, artist
and album.

The data provided by the API in response to a GET
search request is presented in the form of a JSON object,
and in essence it consists of a collection of key-value pairs
associated with a particular request. A sample data structure

1Spotify’s API is available at http://developer.spotify.com/web-api/
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Fig. 4. Statistics collected from 100 000 tracks on Spotify. (a) Distribution
of track durations. (b) Distribution of track popularity.

corresponding to a search of a popular track is presented in
Listing 1; the format is converted into XML for the sake
of readability. The track element is the highest level element
in the structure, and it contains various meta data associated
with the particular track, such as the length of a track (in
milliseconds), the associated artist and album, as well as the
track availability across the world. Each track has a unique
identifier in the form of a URI which is provided by the href
key.

To obtain a better understanding of the parameters of data
distributed by the Spotify service, we implemented a simple
crawler in Python and collected statistics of 100 000 tracks
out of the Spotify catalog. Fig. 4(a) presents the distribution
of track durations. Most tracks have durations of few minutes,
with the mean track duration being approximately 225 s.
However we see that few tracks exhibit much longer durations;
these are for example classical music pieces. None of the
general probability distributions is able to fully describe the
distribution of track durations however the lognormal distri-
bution gives the closest fit.

Spotify also provides their own estimate of the popularity
of tracks as a value between 0 and 100, with 100 denoting the
most popular tracks. Popularity is estimated with respect to the
total number of times a track has been played, as well as how
recently it has been played. Fig. 4(b) illustrates the popularity
distribution of 100 000 tracks plotted on a loglog scale. (We
here represent popularity with values between 0 and 1 on the
y-axis to improve readability.) Only few tracks have a high
popularity score. Those are the tracks that could potentially
be solicited by neighboring peers instead of streamed directly
from the Spotify server in the wireless domain. We there-
fore further focus on evaluating only high popularity tracks.
However we should note that when considering tracks for
disseminating via opportunistic device-to-device contacts, we
should not look into track popularity on global scale. Instead,
since device-to-device communication allows data exchange
among devices in proximity, we should attempt to describe
data popularity in a smaller and more local scope, i.e. the scope
of a country or even an area in a country. Spotify currently
provides data at the scope of a country in its availability tag.

Fig. 5 shows the popularity distribution of tracks currently
present in the Top 50 chart for three European countries:

Fig. 5. The popularity distribution of the top 50 tracks per country can
be described with a Zipf distribution. Popularity is calculated based on the
number of times a track has been played in the course of a week. Although
tracks tend to have different popularity across countries, the parameter
describing the Zipf distribution does not vary significantly.

Austria, France and Sweden. (We take into account only data
from European countries instead of the USA or China due to
the fact that the area is smaller and the statistics represent a
more localized view of the track popularity.) The graph plots
the popularity of tracks in terms of the times a track has been
played with respect to the position of the track in the chart.
Users in different countries exhibit different usage patterns
of the Spotify service, with the service being most commonly
used in Sweden, and least used in Austria (upper left in Fig. 5).
We then fit the popularity curve into a Zipf distribution, and
we estimate the parameter α for each of the three datasets.
It is interesting to see that although the usage statistics per
country vary significantly (the most popular song in Sweden
is played more than 250 000 times, while in Austria – less
than 10 000 times), the Zipf distribution that describes the
popularity exhibits similar behavior (with α ∈ [0.354, 0.386]).

Finally, we provide a rough quantitative measure of the
maximum offload that could be achieved if popular tracks
are to be disseminated via opportunistic contacts instead
of streaming the contents directly from the Spotify servers.
Table I shows the amount of data downloaded from the server
when the duration of each song has a mean of 225 s, the
audio stream is encoded with Ogg Vorbis q9 with 320 kbps
(the typical encoding scheme for premium users of Spotify).
Currently, the top 50 most popular tracks amount to hundreds
of terabits of data downloaded from a server, and traversing
a mobile network which could potentially be offloaded to
alternative networks.

B. Spotify and Opportunistic Communication
In order to be able to examine the performance of a

music streaming service such as Spotify in the opportunistic
domain, we first need to define how the current protocols and
data formats would fit into the context of device-to-device
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TABLE I
TOP 50 CHART: TOTAL WEEKLY DOWNLOADS AND MAXIMUM OFFLOAD

CAPACITY WHEN AUDIO STREAMS ARE ENCODED WITH OGG VORBIS Q9
AT 320 KBPS.

Country Total downloads Offload capacity
(millions) (terabits)

Austria 0.2 M 16 Tb
France 1.3 M 80 Tb
Sweden 5.4 M 380 Tb

communication. We thus present a sample publish/subscribe
framework for opportunistic networks. Similar to the pub-
lish/subscribe interface exposed currently by Spotify to its
users [8], in the opportunistic domain users should be able to
express interest in the tracks they wish to listen to. However,
while in the wired domain a user is able to subscribe to a
playlist or to an artist or to another user, in the wireless domain
such a fragmentation in subscriptions would lead to an under-
utilization of the opportunistic network. For instance, a node
is less probable to encounter another peer which is subscribed
to the same playlist, however a user has higher chances of
encountering another node which is subscribed to the same
track. The reason is that tracks may exist in multiple playlists,
and they are always defined by a single unique identifier.

IV. EVALUATION SCENARIO

A. Mobility scenario

In order to realistically recreate pedestrian mobility, we
use the Walkers traces [9] captured in Legion Studio [10],
a commercial simulator initially developed for designing and
dimensioning large-scale spaces via simulation of pedestrian
behaviors. Its multi-agent pedestrian model is based on ad-
vanced analytical and empirical models which have been cali-
brated by measurement studies. Each simulation run conducted
in Legion Studio results in a mobility trace file, containing a
snapshot of the positions of all nodes in the system every 0.6 s.

Fig. 6 presents an urban outdoor scenario considered in
our evaluation; the outdoor scenario recreates an actual part
of downtown Stockholm. The scenario consists of a grid of
interconnected streets with lengths varying between 20 m and
200 m. Each street has a width of 2 m which is representative
of a sidewalk. In terms of cellular coverage, we assume that the
area of the outdoor scenario corresponds to the area of a single
cell of a mobile operator. Nodes enter into the urban area
according to an arrival rate λ via one of the fourteen passages
that connect the area to the outside world, and roam around
the area until they reach an exit passage. The mean sojourn
time of nodes is approximately 295 s. The active area of the
scenario is 5872 m2; observe that the active area defines the
area through which nodes can actually move, i.e., the streets.
Throughout their lifetime nodes are constantly moving in the
observed area, therefore the scenario can be characterized as
a high mobility scenario. More details on the scenario can be
found in [11].

Fig. 6. Urban scenario: a grid of streets representing a part of an actual
downtown area in Stockholm.

B. Simulation Setup

In our evaluation scenario we assume that all nodes carry
mobile devices on which the Spotify application is installed.
Communication between nodes may occur when they are in
direct communication range; we set the range to be 10 m.
Since most technologies dedicated to device-to-device com-
munication, such as Wi-Fi Aware [12] and LTE-Direct [13],
are not yet mature, we here do not focus on evaluating the per-
formance of opportunistic mobile data offloading with respect
to a specific underlying technology. Instead we only assume
that the data rate between nodes is regulated to 10 Mbps.

Nodes have some contents preloaded into the caches of their
devices, and while this content is played out, they attempt to
obtain one or more tracks from their request playlist. Observe
that from the viewpoint of the Spotify service, nodes may
be subscribed to different playlists. However, as long as these
playlists contain the same track, opportunistic device-to-device
data exchange is possible. In this work we only evaluate the
performance of the system with respect to these overlapping
popular tracks as part of the request playlist. We believe that
such an evaluation is realistic based on the track popularity
distribution exhibited in the previous section. We assume that
a total of N tracks, belonging to one or more Spotify playlists,
are available in the area, and nodes may be subscribed to a set
of them, or to all of them. Based on the data collected from
Spotify in Section III we assume that the mean duration of a
track is 225 s, with a standard deviation of 30 s. The popularity
of tracks follows a Zipf distribution with parameter α = 0.368;
observe that the value of α is chosen in correspondence with
the results obtained in Section III. For each simulation run we
first remove the transient phase, and we then collect statistics
of 1000 nodes in steady state. For all results the mean values
are plotted with a 95% confidence interval.

C. Performance metrics and configurations

We focus on the following three metrics in our evaluation:
• User satisfaction: The user satisfaction is a measure of

the percentage of users who are able to obtain at least
one track from their request playlist via an opportunistic
contact with a neighboring node before the maximum
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download delay associated with the currently consumed
content item is reached.

• Offload ratio: The offload ratio is a measure of the
amount of data obtained via opportunistic contacts with
respect to the total amount of data in the request playlist
of a node. We only account for downloads from peers
that lead to transfer of an entire track.

• Inter-download time: The inter-download time defines
the interval between two consecutive encounters with
nodes that are able to provide contents of interest to a
given node. The ability of a node to provide contents of
interest is in turn defined by the local subscriptions and
the contact duration. Contacts with duration shorter than
the minimum transfer time for a track are discarded.

Although energy consumption is an important metric in the
context of device-to-device communication, we do not address
it in this work; instead we refer the reader to [14] where we
present power-saving algorithms for opportunistic mobile data
offloading.

V. RESULTS

A. Effect of Request Window Size

Let us assume that all nodes are interested in obtaining a
playlist, constituting a total of N = 50 tracks. Nodes that
enter the area have one track pre-loaded in their cache, and
are initially interested in obtaining k tracks from the request
playlist. A request window of size k = 1 denotes that a node is
interested in obtaining the next item on its playlist. We refer to
this type of playlist as a preset playlist. A preset playlist may
for instance contain a collection of podcast episodes which
need to be reproduced in the correct order at the end device.
A node that has a request window of size k > 1 is interested
to obtain any of the next k tracks on its playlist; there is no
need to preserve the order of tracks on the playlist, hence
the playlist is random. An example of a random playlist is
a playlist of independent music tracks which can be played
in any order. Note that in this study we do not consider a
scenario in which nodes can interact with the playlist, i.e., we
assume that nodes do not fast-forward or skip a track during
their lifetime in the system.

Fig. 7 shows the effect of the request window size on
the offload ratio for the urban scenario with two different
arrival rates. The offload ratio increases both with the size
of the request window and with the density of nodes in the
area. In fact, when a critical mass of nodes is present in the
area, even at relatively small values of the request window
k = 5, the offload ratio is approximately 90%. However, the
offload ratio should not be considered in isolation; instead it
should be coupled with the user satisfaction. A user is satisfied
when its buffer does not underflow, i.e. when it is able to
obtain at least one track out of its request playlist before the
maximum download delay is reached. Observe that even if the
offload ratio is low, the user satisfaction may be much higher
(Table II) even at low densities. The reason is that the offload
ratio provides a measure with respect to the overall size of

Fig. 7. Effect of the request window size for λ = {0.01, 0.15} nodes/s on the
offload ratio with and without replay. Observe the difference in the maximum
value on the the y-axis.

TABLE II
USER SATISFACTION WITH RESPECT TO THE REQUEST WINDOW SIZE.

Request Window Size
Arrival rate 1 2 3 4 5 10
λ = 0.01 n/s 6% 11.6% 16.9% 25% 31.9% 60.5%
λ = 0.15 n/s 66.9% 91.1% 97.3% 99% 100% 100%

the request window (thus the whole playlist), while the user
satisfaction provides a measure for the momentary state of the
node (what is to be played next).

Nodes that do not download a track before the maximum
download delay is reached have two options: either to stream
the track directly via the cellular network, or to replay one
of the previous tracks that are already available in the device
cache. The first strategy gives us the lower bound of offload
ratio - no node is willing to replay tracks; the second strategy
- the upper bound of the offload ratio - all nodes prefer to
replay tracks rather than to download contents via the cellular
network. Fig. 7 shows that at low densities, replaying tracks
allows for a marginal improvement of the offload ratio at low
values of the request window size, however as the request
window size increases the offload ratio achieved with and
without application of a replay strategy becomes comparable.
At higher densities the replay strategy is almost never used
since nodes have enough contact opportunities to download
fresh contents.

B. Effect of Node Density

Fig. 8 illustrates the effect of the node density on the system
performance in terms of offload ratio. We vary the arrival rate
of nodes in the area from λ = 0.01 n/s to λ = 0.15 n/s
for each entry point into the observed area, and we evaluate
the offload ratio for two values of the requested playlist size,
k = 1 (preset playlist) and k = 10 (random playlist). The
results in Fig. 8 confirm that the system performance improves
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Fig. 8. Effect of node density on the offload ratio for two different values
of the request window size, k = 1 (preset playlist) and k = 10 (random
playlist).

with the increase of node density. It is interesting that even at
low node densities, track dissemination via device-to-device
communication achieves relatively high offload ratio (more
than 50% for λ = 0.03 n/s) when the size of the request
playlist is large (k = 10) and the tracks from the request
playlist can be downloaded in random order. Furthermore, a
larger request window size results in faster increase of the
offload ratio, especially for small values of the arrival rate.
On the contrary, when the playlist is preset with k = 1, the
change in the offload ratio between two consecutive values of
the arrival rate is almost linear.

The results in Fig. 8 also illustrate that replay strategies
are useful for preset playlists regardless of the node density.
On the other hand, when the playlist is set to random with a
large request window size, replaying tracks does not improve
performance significantly even in sparsely populated scenarios
(λ = 0.01 n/s).

C. Effect of Playlist Length

Users have different music preferences; thus nodes often
would not be interested in obtaining all N tracks but only
a subset S ⊂ N of these tracks. In this section we evaluate
whether the distribution of the mean playlist length of the
subset S affects the system performance. Upon entering in the
area, each node subscribes to a subset S of tracks distributed
either uniformly or normally over all tracks in the original
set N . A subset of the playlist S is already available on each
device upon entering the area. According to [6], approximately
50% of tracks that are requested by the Spotify application can
be found locally in the cache of the requesting device. We thus
assume that initially the cache of each device is populated with
j tracks chosen uniformly at random from the S tracks in the
playlist, with the mean value of j being E[j] = |S|/2 where
|S| is the cardinality of the playlist set. The size of the request
window of a node is then calculated as |S| j.

Fig. 9 shows how the distribution of the playlist length |S|
affects the offload ratio for scenarios with different density.
The offload ratio exhibits sensitivity towards the mean value
of the playlist length, however it is not sensitive towards
the distribution of the playlist length. Again, adopting replay

(a)

(b)

Fig. 9. Effect of playlist length distribution on the offload ratio with and
without replay for (a) λ = 0.01 nodes/s, and (b) λ = 0.15 nodes/s. Observe
the difference in the maximum value on the the y-axis.

TABLE III
PERCENTAGE OF NODES THAT DO NOT OBTAIN A SINGLE TRACK DURING
THEIR LIFETIME IN THE SYSTEM UNDER DIFFERENT DISTRIBUTIONS OF

THE PLAYLIST LENGTH.

Arrival Rate
Playlist Length λ = 0.01 n/s λ = 0.15 n/s

Uniform Normal Uniform Normal
E[j] = 5 76.5% 75.2% 32.9% 34.2%
E[j] = 10 50.2% 45.2% 18.5% 15.2%
E[j] = 20 31.7% 25.3% 10.4% 8.8%

strategy is only beneficial for scenarios with low node densi-
ties, especially for short playlists. As the mean length of the
playlist increases, and with the increase of participating nodes
in the system, replaying tracks does not enhance the system
performance.

We further take a look into the distribution of inter-
download times, Fig. 10. Regardless of the node density,
the shorter the length of the playlist |S|, the longer the
inter-download times. Furthermore, the distribution of playlist
length does not significantly affect the distribution of inter-
download times.

Finally, we evaluate the effect of playlist length distribution
on content delivery. Table III shows the percentage of nodes
that are not able to obtain a single track throughout their life-
time in the system. Similar to the offload ratio, the percentage
of nodes that are not able to obtain contents via opportunistic
contacts is strongly dependent on the mean length of the
playlist as well as the node density in the area, however it
is not affected by the actual distribution of the playlist length.
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(a)

(b)

Fig. 10. Effect of playlist length distribution on the inter-download times for
(a) λ = 0.01 nodes/s, and (b) λ = 0.15 nodes/s. Observe the difference in the
maximum value on the the y-axis.

TABLE IV
AVERAGE INTER-DOWNLOAD TIMES FOR DIFFERENT DISTRIBUTION OF

THE INITIAL CONTENT AVAILABILITY WITH MEAN m = 25 TRACKS.

Arrival Rate
Distribution λ = 0.01 n/s λ = 0.15 n/s

Deterministic 42.2 s 3.8 s
Uniform 45.2 s 3.8 s
Normal 45.2 s 3.8 s

D. Effect of Initial Content Availability
Lastly we examine the effect of initial content availability.

We assume that all nodes are interested in obtaining all N
tracks from a playlist, and that on average they have already
stored half of the playlist in their local caches. We vary
the distribution of cached tracks, and examine three different
distributions: deterministic (exactly 50% of the items from
the playlist are cached), uniform and normal. Table IV shows
the average inter-download times for each of the distributions;
we see that the inter-download times are not sensitive to the
distribution of the initial contents available in the cache.

VI. RELATED WORK

Recent solutions for alleviating traffic load on cellular
networks can be divided in two main categories: offloading
to femtocells or existing Wi-Fi networks [15], [16], [4], and
offloading through opportunistic device-to-device communica-
tion. Although the large body of work produced in the area
of offloading cellular traffic pertain to femtocells and Wi-Fi
networks, such approach is limited to possible deployments
and the availability of Internet access. Using opportunistic

communication for mobile data offloading does neither depend
on available deployment, nor on Internet access, and has
thus become a popular candidate for traffic offloading in
recent years. A number of studies attempt to optimize the
traffic volumes delivered to end users through opportunistic
communication. In [17], Han et al. study a target-set selection
problem for choosing initial data carriers in order to minimize
the amounts of mobile data traffic. Lu et al. propose an
opportunistic forwarding protocol for increasing the proba-
bility of data delivery [18]. Since mobile data offloading
makes use of battery resources on battery-powered mobile
devices, a body of work in the mobile offloading domain has
been concentrated towards reducing energy consumption [14],
[19]. However, all of the studies assume that opportunistic
communication is used for offloading delay-tolerant contents.
Instead, we evaluate whether opportunistic communication
could be used for offloading data with tight delay constraints
such as streaming multimedia organized in playlists.

Few works evaluate the performance of on-demand video
streaming services in the presence of opportunistic contacts.
In [2] Yoon et al. present a mobile peer-to-peer video-on-
demand application which uses peers for delivering parts of
a video stream to the video player. The application however
relies heavily on the presence of a centralized scheduler
which coordinates the data exchange among the peers, and
it utilizes a complementary download link when contents
cannot be fetched in real-time from nodes in the vicinity.
In [3], Siris et al. present testbed experiments of multi-
source mobile video streaming which exploits mobility and
throughput prediction for prefetching video data in caches
located at hotspots that the mobile will encounter and device-
to-device communication to opportunistically obtain parts of
a video from neighboring mobile devices. A delay-tolerant
networking approach relying on multiple links and routing
is applied to live-streaming by Morgenroth et al. in [20].
In contrast to these works, we do not aim to offload the
currently served content item but instead we make use of
opportunistic contacts to deliver contents that would be needed
by the node in the near future. Furthermore, we do not rely
on infrastructure for supporting the content delivery, neither
do we incorporate routing for finding appropriate peers to
deliver the stream. In [21], Keller et al. propose MicroCast, a
system for cooperative video streaming among mobile devices
in close proximity. MicroCast is however designed to operate
for small number of participants in a static setting, and is thus
not applicable for mobile scenarios with users on-the-go. Our
approach is closest to the work of Ding et al. [4] in which they
examine prefetching of non-live streaming contents. However,
they rely on Wi-Fi infrastructure, on profiling user mobility
patterns and on location reporting for determining the access
points on which to offload future multimedia streams. Instead,
our solution is purely based on opportunistic communication.
Recently Jimenez et al. evaluated the effect on energy con-
sumption when mobile devices are introduced as participants
in Spotify’s peer-to-peer overlay in the wired domain [22]. As
opposed to them, we here evaluate a solution which creates
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a separate overlay in the wireless domain and alleviates the
communication with Spotify’s servers which allows offloading
mobile data from the operators’ networks. Lastly, in [23]
Danihelka et al. propose a hybrid architecture for video sharing
based on cloud logic and device-to-device communication.
Similar to us, the authors aim to offload the next to-be-played-
out piece of video contents within a predefined deadline. The
proposed architecture however requires a signalling feedback
to assist the device-to-device content spreading. Instead, in
our work we do not require nodes to provide feedback to the
network, and the content dissemination is purely opportunistic.

VII. CONCLUSION

It is expected that by 2020 more than 75% of the traffic
volumes at mobile operators will be generated by real-time
multimedia services such as audio and video streaming. Mo-
bile operators are thus seeking solutions for offloading mobile
data with an alternative being the use of opportunistic device-
to-device communication. However, opportunistic communica-
tion has been perceived mainly as a means for disseminating
delay-tolerant information. In this work we studied whether the
mechanisms of opportunistic device-to-device communication
could be applied to a particular class of real-time services,
namely music streaming; music streaming is characterized
by long-lived flows resulting into high traffic volumes. We
first introduced a framework for opportunistic content sharing
in the context of multimedia streaming services. We then
evaluated the feasibility of opportunistic device-to-device com-
munication for streaming data using the popular music stream-
ing service Spotify as a use-case, and performed extensive
trace-driven simulations of realistic pedestrian mobility in
urban environments. The main findings of our work can be
summarized as follows:

• Opportunistic device-to-device communication is viable
for offloading streaming data. The performance is en-
hanced when the inter-download times are shorter than
the mean track duration.

• The system performance depends on the node density
and the request window size. In sparse areas, the sys-
tem performance could be improved by adopting replay
strategies to avoid buffer under-flows. In dense scenarios
opportunistic device-to-device communication achieves
up to 90% offload ratio even at low values of the request
window size.

• The system performance exhibits low sensitivity towards
the distribution of parameters such as playlist length and
initial content availability. However, it is sensitive towards
the mean values of these parameters. This indicates that
it is sufficient to take into account mean values when
designing systems that use opportunistic device-to-device
communication for streaming services.

As part of our future work, we plan to implement the
proposed model on actual devices and to perform field tests
to verify the feasibility of our approach.
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