
BEAD: Best Effort Autonomous Deletion in
Content-Centric Networking

Cesar Ghali⇤ Gene Tsudik⇤ Christopher A. Wood+
University of California, Irvine

Email: {cghali, gene.tsudik, woodc1}@uci.edu

Abstract—A core feature of Content-Centric Networking
(CCN) is opportunistic content caching in routers. It enables
routers to satisfy content requests with in-network cached copies,
thereby reducing bandwidth utilization, decreasing congestion,
and improving overall content retrieval latency.

One major drawback of in-network caching is that content
producers have no knowledge about where their content is stored.
This is problematic if a producer wishes to delete its content. In
this paper, we show how to address this problem with a protocol
called BEAD (Best-Effort Autonomous Deletion). It performs
content deletion via small and secure packets that resemble
current CCN messages. We discuss several methods of routing
BEAD packets from producers to caching routers with varying
levels of network overhead and efficacy. We assess BEAD’s
performance via simulations and provide a detailed analysis of
its properties.

Keywords—Content-Centric Networking, Information-Centric

Networking, caching, best-effort content deletion, controlled flood-

ing, forwarding histories, accounting.

I. INTRODUCTION

Content-Centric Networking (CCN) is a relatively recent
internetworking paradigm touted as an alternative current IP-
based Internet architecture. While IP traffic consists of packets
between communicating end-points, CCN traffic is comprised
of explicit requests for, and responses to, named content
objects.

An important feature of name-based content retrieval is
decoupling of content from its producer. This enables more
natural content distribution by allowing routers to opportunis-
tically cache content within the network. Cached content can
be returned in response to future requests, called interests. This
reduces the need to forward interests to content producers, thus
lowering network congestion and content retrieval latency.

However, router caches are not mandatory in CCN. In some
cases, caching content might not be beneficial, e.g., for routers
with high content processing speeds, since high arrival rates
translate to less time spent in cache. If the content’s cache
lifetime is very short, the probability of cache misses increases
and the cache’s utility decreases commensurately. Indeed,
some prior literature shows (via simulations and experiments)
that caching at the edges of the internetwork, i.e., at consumer-
facing routers, is most beneficial and more cost-effective than
doing so in the core, i.e., in transit routers [1].

⇤Supported by NSF award: “CNS-1040802: FIA: Collaborative Research:
Named Data Networking (NDN)”.

+Supported by NSF Graduate Research Fellowship DGE-1321846.

To help caching routers determine the lifetime of cached
content, the latter includes an optional ExpiryTime field.
Routers are expected to flush content once this time elapses.
However, a router can choose to keep content cached beyond
its lifetime. Lifetime of content in a particular router’s cache
depends entirely upon that router’s implementation and policy.
This uncertainty (or freedom) means that content may linger
in the network for a very long time.

One notable drawback of this libertarian approach to
caching is that some content may need to be deleted before
ExpiryTime elapses. Consider content that frequently (yet
sporadically) evolves over time, e.g., news articles. The appear-
ance of breaking-news articles is unscheduled. As situations
develop, updates and corrections to the content occur at unpre-
dictable times. Such updates supersede previously distributed
content by rendering it stale. Thus, in this case, producers need
a way to remove old content. Another example is content
(that has released and subsequently cached) which contains
erroneous information. As errors are detected and corrected, a
producer needs to flush the incorrect older version.

The deletion problem occurs because ExpiryTime is
the only way for a producer to communicate anticipated
content lifetime to the network. However, a producer can
not change its mind after content has been published and
distributed. Thus, there is a need for a safety mechanism
for in-network content deletion. For this reason, we design
such a technique called BEAD: Best-Effort and Autonomous
Deletion. In the process, we encounter and address several
challenges, including efficacy, performance, and security. We
also experimentally assess the proposed technique.

The rest of this paper is organized as follows. Section II
overviews CCN. Related work is summarized in Section III.
Section IV presents minimal requirements for content deletion.
Sections V and VI describe authentication and routing of
deletion requests in BEAD, respectively. The BEAD technique
is analyzed in Section VII and its performance is assessed
in Section VIII. The paper ends with a discussion of BEAD
optimizations and practical factors in Section IX. Future work
is summarized in Section X.

II. CCN OVERVIEW

We now summarize the current CCN architecture [2].
Given familiarity with CCN, it can be skipped without loss
of continuity.

Unlike IP, which focuses on addressable end-hosts, CCN
emphasizes named and addressable content. A consumer issues
a request, called an interest, specifying the name of desiredISBN 978-3-901882-83-8 c� 2016 IFIP

180Networking 2016

content. CCN names are structured similar to URIs. For
example, a content produced by the NSA might be named:
ccnx:/us/gov/DoD/NSA/Snowden-Diary. An inter-
est for a particular content named N is routed towards an
authoritative producer for that content, based on N itself. In
CCN, both interest and content messages have general-purpose
Payload fields. Consumers can use an interest’s Payload
field to push information to producers, while producers use a
content’s Payload field to carry actual application data.

As an interest traverses the network, each router determines
if a copy of requested content is cached in its Content Store
(CS). If a cache hit occurs, the router satisfies the interest by
sending the matching content on the interface on which the
interest arrived. Otherwise, the router (1) records some state
derived from the interest in its Pending Interest Table (PIT)
in order to provide a backwards path for the future content,
and (2) forwards the interest to the next hop(s) specified
in its Forwarding Information Base (FIB). State retained in
the PIT contains the content name and the interface(s) on
which interests for that name have been received. A FIB
is a routing table that maps hierarchical name prefixes to
outbound interfaces. Longest-Prefix Matching (LPM) is used
to determine the matching FIB entry.

A router R can collapse multiple interests into the same
PIT entry whenever all of the following holds:

1) R receives an interest for name N
2) R does not have content N in its cache
3) R’s PIT already contains an entry for N

When interest collapsing occurs, R only records the interface
on which the new interest arrived and drops that interest.
Whenever requested content arrives, R forwards it on all
interfaces listed in the corresponding PIT entry. Afterwards,
the PIT entry is flushed.

If no router can find a locally cached copy of requested
content, the interest eventually reaches the producer that re-
sponds with the matching content, if possible. If the producer
can not provide it (e.g., content does not exist) a NACK is
generated [2], [3]. As content traverses the reverse path to the
consumer, routers may choose to cache it in anticipation of
future requests. As mentioned earlier, each content includes a
producer-set ExpiryTime field. This value is content- and
application-specific. However, each router can use any cache
management algorithm, e.g., LRU or LFU.

III. RELATED WORK

Lack of on-demand content deletion is a well-known prob-
lem in CCN [4]–[9]. The problem of unsafe replicas or stale
content in CCN was first considered in [10]. Analytical and
experimental assessment showed that: “...the more frequently
content is requested the higher is the chance of one request
ending up in between a revocation and the eviction [of the
stale key].” The proposed method relies on a monotonically
decreasing cache lifetime enforced by cooperating routers. This
does not allow a producer to change the lifetime after content
is published; it only seeks to minimize the time window when
stale or unsafe replicas can be accessed.

[4] proposed a mechanism to implement revocation of con-
tent without input from the consumer. The proposed approach

uses the ccnx-sync protocol to perform OCSP-like [11] syn-
chronization of key data, i.e., determine content that has been
revoked. This requires proactive behavior by each participating
repository. [5] suggests using ChronoSync [12] to synchronize
revoked key endorsements among group members. Revocation,
however, is not the same as cache deletion. Revoked content,
if still cached, can be inadvertently accessed by malicious or
benign consumers.

[13] discussed a new caching technique allowing routers
to proactively share content with downstream peers which
did explicitly request that content. The suggested multicast
forwarding strategy serves to increase the number of replicas
in the network. However, unsolicited content objects can be
seen as a form of attack similar to cache poisoning [7].

The concept of cost-aware caching in CCN was introduced
in [14]–[18]. Various economic incentives for ISPs and ASs
to cache content on behalf of producers have been explored.
Cost-aware routers that cache based on popularity and eco-
nomic incentives are studied in [19]. In general, the economic
problem of supporting prioritized caching in the network is
addressed without any attention to the inverse problem: how
is content removed from caches?

IV. BEAD REQUIREMENTS

Our motivation stems from the need to remove stale or erro-
neous content from the network, i.e., from routers’ caches. One
intuitive way of doing this is through the use of versioning,
whereby the content naming format includes a component that
explicitly reflects the current version. For example, the content
of BBC’s World News web-page could be named: ccnx:
/bbc/news/world/v2.4. Alternatively, timestamps could
be used. In that case, the same BBC page could be named
ccnx:/bbc/news/world/1449187200.1 However, in
either case, is unclear how a consumer would determine (in
advance) the current timestamp or version number, without
which an interest can not be formed.2

The main problem with versioning and timestamps is that
they can not handle unpredictable content updates. In current
CCN design, producers are oblivious to where and for how
long their content is stored in the network. Although this
opportunistic caching is one of the biggest CCN advantages, it
greatly complicates deletion of stale content. We believe that,
in order to address the problem, producers need:

1) A way to communicate a single deletion request to all
routers that might have cached offending content.

2) A way to efficiently secure deletion requests (allowing
routers to quickly authenticate them) while avoiding triv-
ial Denial of Service (DoS) attacks.

The first requirement is reminiscent of IP traceback – a class
of techniques for identifying the original source of a (usually
malicious) packets. In the context of IP, this is often framed as
a mechanism to mitigate Denial of Service (DoS) attacks. In
this paper, the goal is to learn where content was previously
forwarded so that deletion requests can be routed along the
same paths. These paths correspond to the original sources

11449187200 is 12/04/2015 at 12:00am UTC.
2There is one trivial way: a consumer contacts the producer directly and

asks for the most recent version number or timestamp. However, this would
incur an extra round-trip delay per content retrieval.

2

181Networking 2016

of interests for that content. Thus, ideas from IP traceback
based on packet logging (e.g., [20]) and (deterministic or
probabilistic) packet marking (e.g., [21], [22]) influence the
design and forwarding strategies of BEAD messages.

We now show how to address these requirements with the
BEAD technique.

V. AUTHENTICATING DELETION REQUESTS

Producers must prove content ownership to routers that
receive deletion requests. Otherwise, an adversary can imper-
sonate a producer and induce content deletion, resulting in
another form of DoS. One way to attain authentication is by a
producer-generated digital signature on each deletion request.
However, besides being inefficient, forcing routers to verify
signatures on deletion requests can be itself parlayed into DoS
attacks [7], [23]. Moreover, it involves public key retrieval,
certificate handling and other messy (for routers) issues.

Our approach uses a light-weight token that proves content
ownership. When a producer P creates a content object C, it
generates a random �-bit string x

C

, called the deletion token.
P then computes the digest of this token using a suitable
cryptographic hash function3, y

C

= H(x
C

), and includes y
C

in C. Later, if and when P wishes to delete C from the
network, it includes x

C

in the deletion request. (We assume
that P can route these requests to any router caching C.) Upon
receipt, each R verifies that y

C

(cached alongside the content)
matches H(x

C

). If so, R knows that P must have issued the
request and deletes C from the cache.4

VI. ROUTING DELETION REQUESTS

The remaining (though major) issue is how to route dele-
tion requests from the producer to each caching router. This
can be viewed as a multicast problem where producers must
distribute a message (deletion request) to only a subset of
nodes which could have cached the content.

Let Int[N] and C[N] be the interest and content messages
referring to name N . The hash of C[N] is a �-bit string d, i.e.,
d = H(C[N]). Let E[N, d] be a deletion request for content
named N and hash digest d. Let R

N

be the set of routers
which cached C[N]. Finally, let the FIB of router R 2 R

N

be
FIBR.

From here on, we use the term erase to refer to deletion
requests. Also, we assume that erase messages are authenti-
cated using the method described in Section V.

A. Flooding

We begin by considering the simplest approach: reverse-
path controlled flooding [24] of deletion requests. When R 2
R

N

receives E[N, d], it forwards it on all interfaces except
those which have a matching FIB entry.

Flooding offers some advantages, the most important of
which is the ability to reach network edges even if routers on
the producer-to-consumers paths no longer cache the content to
be deleted. This is important since routers do not cache content

3Suitable hash functions include those with pre-image resistance, which
means that, given y, it is difficult to find an x such that y = H(x).

4This is due to the randomness of xC and the collision-resistance of H(·).

uniformly and some may not even have caches. On the negative
side, the volume of traffic generated from a single deletion
request is very high and most deletion requests would be
forwarded to routers that never even cached the target content.

B. Forwarder Histories for Content Traceback

In the optimal case, routers would only forward erase
messages on interfaces on which the referenced content had
been previously forwarded. In other words, erase messages
should only be forwarded along the content distribution span-
ning tree where the producer is the root and leaves are the
consumers who requested the content. One way to forward
erase messages along the edges of this tree is for each router
R 2 R

N

to maintain a forwarding history of C[N]. There are
several places where this history can be kept, including: (1) in
the cache where C[N] is stored, (2) in a forwarding log (similar
to [20], as a form of IP traceback) at each router, and (3) in
the packets themselves. In each case, historical information
constitutes a form of traceback that allows routers to identify
where content was previously forwarded. We now describe
each approach in more detail.

1) In-Cache Forwarding Histories: When a router caches
C[N] it can also remember the downstream interfaces where
the cached copy was forwarded. We denote the set of these
interfaces as F

N

. When a router receives an interest Int[N]
on interface F

i

, it responds with C[N] and adds F
i

to F
N

. For
a router with K interfaces, this additional state costs O(K) bits
per cache entry. When a router caching C[N] receives E[N, d],
it forwards it on all interfaces in F

N

.

In-cache forwarding histories are only effective for routers
with large caches, since the lifetime of forwarding information
is bound to the lifetime of cache entries, which can be small or
even zero (if a router has no cache at all). Since a forwarding
history F

N

is deleted whenever C[N] is flushed from the
cache, this can lead to a future E[N, d] not being forwarded
to downstream routers which might still cache C[N].

2) Local Forwarding Logs: Long-term packet logs have
their roots in IP traceback techniques from the early 2000-
s, e.g., [20], [25]. The problem here is similar: routers need
long-term histories of packets (content) that were previously
processed and forwarded. In this context, a history is a set-
like data structure that allows content objects to be inserted
and then later queried for membership. There are two types
of histories: lossless and lossy. The former always return
“yes” for content objects that have previously been inserted.
In contrast, a lossy history might return false positives or
negatives. Routers use these structures by associating one
history to each interface. When a router receives E[N, d] and
C[N] is not cached, it forwards E[N, d] on each interface for
which the corresponding forwarding interface history has a
record of C[N], i.e., all histories for which membership query
returns “yes”. This procedure is outlined in Figure 1.5

We now describe some ways of implement lossless and
lossy histories that vary in their computation and memory
requirements.

Lossless Forwarder Histories require a unique identifier
to be kept after a content object has been forwarded. We

5Similar to the flooding algorithm, this check is not performed for interfaces
via which the content producer can be reached.

3

182Networking 2016

F0
F1
F2

CS

F3
F4
F5
F6
F7

C[/a/b], {F0, F2}

E[/a/b, d]E[/a/b, d]

E[/a/b,d]

H0
H1
H2

(1) check
cache

(2) check
forwarding
histories

(3) forward
erase message

for matches

Fig. 1. E[N, d] forwarding strategy based on per-interface forwarding
histories. Upon receipt of an erase message a router searches the cache for the
respective content. If the content is not present then the histories are examined
and the history is forwarded as needed.

assume that content hash d serves as such an identifier (with
collision probability negligible in �). Implementing this type of
forwarder history can be done trivially with a hash set HS

R

as
follows: to insert a content object into the history, compute and
store d in HS

R

. To query the history, return “yes” if d 2 HS
R

and “no” otherwise. Insertion and lookup each require constant
time.

Lossy Forwarder Histories are intended to store historical
information in memory-constrained systems at the cost of false
positives and false negatives. Similar to SPIE traceback [20],
we use Bloom Filters (BFs) [26] to implement lossy forwarder
histories. BFs enable probabilistic set membership queries.

The choices of BF properties, e.g., size and hash functions,
impact efficacy of this technique. Filters that saturate too
quickly result in high false positive rates. If all interface
filters become saturated then erase is effectively broadcast.
Therefore, it is important to eventually remove stale elements
from filters. Unfortunately, a regular BF does not provide
element removal. However, so-called Counting Bloom Filters
(CBFs) [27] support set membership queries with removal.
Instead of using bits to indicate set membership, CBFs use
counters. When loading an element into CBF, the counters
corresponding to the output of the hash functions are increased
by one. Consequently, removing an element is done by decre-
menting the same counters. The problem with CBFs is that
one must know the element to delete. Since routers would
discard content after inserting them into these filters6, they
have no way of knowing what content is in the filter, and
thus what elements to eventually delete. Their only recourse
is to remove elements by decrementing counters at random.
Intuitively, a router would delete random elements from the
filter (the history) at a frequency which reflects the average
ExpiryTime of received content. This can increase the false
negative probability and reduce the possibility of delivering
erase messages to their corresponding destination.

Variants of the CBF, such as Time-Decaying (TDBFs) [28],
[29] and Stable (SBFs) [30] BFs can also be used. TDBFs
have the property that elements are slowly removed from the
filter over time, thereby keeping the rate of false positives
minimized. However, the natural decay property may lead to

6This is because content is only added to histories upon its removal from
the cache.

false negatives. SBFs on the other hand are dynamically self-
resized to keep the false probabilities minimized. Similar to
CBFs and TDBFs, SBFs also suffer from false negatives.

3) Interest Marking for Content Traceback: Packet mark-
ing is a standard technique for IP traceback [21]. In the
context of this work, marking is performed on interests to
indicate sources of content requests. This information can be
later used to learn the interface to which an erase needs to
be sent. Specifically, erase messages can carry this marking
information in order for routers to identify the appropriate
downstream interfaces without storing any local state.

One trivial marking method is to append the arrival inter-
face to each interest. Specifically, when R receives Int[N] on
face F

i

, R prepends (R,F
i

) to a list contained in the header of
the interest. Producers record these traces upon receipt. In the
event that an erase needs to be generated, P includes the trace
in the erase and forwards it on the appropriate downstream
interface. When R receives an erase with a trace it pops the
last element (R,F

i

) off the trace list and forwards it on the
specified interface F

i

.

This technique distributes the forwarding history among
messages in the network. Therefore, this information must
be secure. To illustrate this requirement, assume router R

i

receives E[N, d] with the sequence of hops

[(R
i

, F
i

), (R
i�1, Fi�1), . . . , (R2, F2), (R1, F1)]

from interface F
i+1. R

i

needs a way to securely guarantee
that (R

i

, F
i

) was previously prepended, by itself, to the
subsequence:

[(R
i�1, Fi�1), . . . , (R2, F2), (R1, F1)].

Otherwise, the adversary can forge unsolicited erase messages
with apparently correct routing sequences. Alternatively, one
can modify existing sequences in erase messages to prevent
them from being routed towards their destination.

One way of authenticating hop-sequence traces is for R
i

to compute a Message Authentication Code (MAC) [31],
[32] tag t

i

over the (relevant) interest details, e.g., the name
and previously present traces in the hop-sequence. R

i

then
adds the tuple (R

i

, F
i

, t
i

) to the interest before forwarding it.
Since erase messages carry the name of the content to be
deleted, each router will be able to verify its pre-computed
tag before forwarding erase messages downstream. Since
routers compute and verify tags locally, a key management and
distribution protocol is not required. We do, however, assume
that routers are able to generate and maintain cryptographic
keys of sufficient length necessary for MAC computation. As
an added feature, hop-sequence information can also be used
for detecting both interest and erase loops [33].

Although this technique of marking interest is effective to
deliver erase messages to all routers on the path between
consumers and producers, it has several drawbacks. One of this
is that interest traces received by producers need to be stored
so that they can be included in erase messages. This is due
to the fact that (1) each trace corresponds to only one path in
the network, and (2) interests issued by multiple consumers
are most likely to traverse different paths to the producer.
Producers can attempt to compile all collected traces in a
data structure forming a spanning tree. This structure would

4

183Networking 2016

be included in erase message headers, allowing routers to
forwarder erase messages correctly. The main disadvantage
of this approach is that the size of the data structure grows
linearly with the number of consumers and is most likely to
be greater than average allowed MTU. This means that erase
messages will be fragmented (and possibly re-fragmented), and
hop-by-hop reassembly is not avoidable. Another alternative
is for producers to send multiple erase messages one for
each set of traces correlated to a hop-sequence. In Section
VII, we compare and evaluate the performance and resource
consumption of these two techniques.

VII. ANALYSIS

We now assess some routing strategies for erase messages.
Let nR

t

be the total number of content objects forwarded by
R at time t and let µR

F

be R’s content forwarding rate. Note
that nR

t

grows monotonically as a function of µR

F

.

A. Flooding Analysis

Recall that the reverse path flooding algorithm works by
only sending broadcast messages to interfaces through which
the producer is not reachable. Though very effective, this is
highly unscalable. If all routers flooded erase messages then
they would certainly be delivered to every R 2 R

N

. However,
the number of routers receiving a specific erase message is
much larger than |R

N

|. Therefore, flooding should always
be the last resort for erase messages. We assess the actual
overhead of this technique in Section VIII.

B. Forwarding History Analysis

We now analyze performance of lossless and lossy for-
warding histories described in Section VI-B.

1) Lossless Histories: The memory (and possibly computa-
tional) cost of a lossless forwarder history grows as a function
of t. Thus, history collection will inevitably saturate memory
at some point. Let nR

max

be the total size (in entries) of the
history memory for R. Saturation is reached at time t such
that nR

t

� nR

max

. We compute the time required to saturate
a lossless forwarder history in two scenarios. We assume that
each content object is 4, 096 bytes and hash digests are 32
bytes.

• Consumer-facing router: We assume a caching
consumer-facing router (e.g., an access point) with 4GB
of history storage and data rate of 100 Mbps. This
data rate is equivalent to a content forwarding rate of
µR

F

= 30200 Cps (content packets per second). If R
operates at full capacity with a full cache – i.e., storing
every forwarded content requires eviction of an already
cached one – it will take 41, 943 secs. for history storage
to be saturated. This is roughly 12 hours. This window of
time might be longer than the ExpiryTime of content
objects that are subject to be erased. For instance, news
feed pages are likely to be updated with a frequency faster
than 1/12 hours.

• Core router: We assume a non-caching CCN core router
with 1TB of flash history storage and data rate of 10
Tbps, i.e., equivalent to µR

F

= 335 MCps. If R always
operates at full capacity (i.e., forwards at 10 Tbps),
lossless forwarder history can be saturated in 102 secs.

In this case producers have a time window of less than 2
minutes to issue an erase message for content C after it
was last served.

R’s saturation time can be lengthened by increasing the size
of the forwarder history. However, at this rate, the cost of
adding more memory to make saturation time useful is far too
expensive: 1TB for 2 minutes of history.

A very natural question arises: what happens when R’s
history storage is saturated? R can evict old history entries
randomly, or according to some policy, e.g., LRU. However,
keeping track of history entries’ ages might lead to reduced
performance. Another alternative is to divide history storage
into smaller chunks, each corresponding to a set time window
of history entries. Once history storage is saturated, the oldest
chunk is erased to provide space for new entries. Using
the consuming-facing router example above, 4GB of history
storage can be divided into 12 chunks, each corresponding to
one hour. The router could then erase the history recorded 12
hours ago in order to store history entries for the coming hour.

2) Lossy Histories: Lossy histories are useful when lossless
ones are too expensive, e.g., in core network routers. Our
approach to lossy forwarder history is based on Bloom Filters
(BFs) – probabilistic data structures with tunable performance.
Given an m-bit BF that stores n elements, the number of
input hash functions k can be optimized and false positive
probability can be estimated using Equation 1 [34]. Note that
optimal value of k is also given as a function of m an n.

f(m, ·, n) ⇡ (0.6185)
m
n , k = ln(2) · m

n
(1)

In practice, a router can optimize the number of hash functions
in order to lower false positive probability. An upper bound of
k can be set to limit hashing overhead.

As mentioned above, standard BFs do not support entry
deletion, which is necessary to deal with the saturation prob-
lem. As indicated in [20], historical information for Internet-
scale traffic (IP packets) can not last beyond a few minutes,
which might still be less than what we needed for BEAD.

We now analyze lossy forwarder histories in the context of
two scenarios mentioned above with the same history storage
and data rates. We also assume that each content object added
to a BF changes the value of new distinct k bits from 0 to
1. Clearly, this is unrealistic, since we do not consider the
possibility of overlapping of hash function outputs for different
input elements. However, this assumption captures the worst-
case scenario.

• Consumer-facing router: To maintain a maximum false
positive probability of 10�32, a BF of size 4 GB can fit
n 2 ⇥ 108 elements. Based on Equation 1, it requires
k = 120 hash functions. Thus, it will take 890478 secs.
(a little over one day) for the forwarder history to be
saturated.

• Core router: To maintain the same false positive proba-
bility, a BF of size 1 TB can accommodate n 5.7⇥ 108

elements, which corresponds to k = 107 hashes. The
forwarder history will be saturated in 245 secs.

One major drawback of using BFs for lossy forwarding histo-
ries is that history saturation is more difficult to resolve. Recall
that, with lossless histories, a router can remove old entries in

5

184Networking 2016

order to add new ones. A router could also delete the oldest
chunk of the history once it is saturated. However, with lossy
histories, a router can either: (1) flush the entire lossy history
and start over, or (2) use CBFs which support element deletion
with the use of counters. Unfortunately, this introduces false
negative probabilities.

3) Packet Marking Analysis: Packet marking is compu-
tationally inexpensive since it requires a single MAC com-
putation per (either interest or erase) packet. However, its
drawback is increased memory footprint of the interest along
every hop. Recall that traces in the hop-sequence consist of: (1)
router identifier, (2) interface identifier, and (3) tag. Assuming
a 2-byte interface identifier and a SHA-256-based MAC, the
total size of each trace is 38 bytes. This corresponds to extra
608 bytes for each interest, assuming a 16-hop router-level
path.7

We now compare two hop-sequence techniques described
in Section VI-B3. Assume a tree topology with: (1) producer
P at the root with height h, (2) 2h consumers at the leaves
with height 0, and (3) 2h�2 routers. We assume all consumers
request content C and all routers append hop-sequence traces
to the corresponding interests. In this case, P receives 2h

interests, each with h � 1 traces. If P includes all these
traces in a single erase message, its size would grow by�
2h · (h� 1)

�⇥ 38 bytes. This grows to 35 MB for h = 16,
which is clearly impractical.8 On the other hand, if P decides
to send a separate erase to each consumer it would generate
2h erase messages. The same overall volume of traces (35
MB) will be sent from P to consumers. However, it would
be split into numerous erase messages. One advantage is that
erase messages size will likely not exceed the path MTU and
therefore not require fragmentation.

C. Summary of BEAD

As follows from the above, BEAD is not a single protocol.
It is a set of techniques for generating erase messages and
distributing them to routers which may have cached offending
content. We presented several alternatives, each of which
are practical in different network locations. For instance,
consumer-facing (caching) routers can keep lossless or lossy
histories for at least a day. Meanwhile, interest marking is bet-
ter suited for core network routers. Therefore, we believe that
all aforementioned techniques can be used, in combination, for
routing erase messages. Our specific recommendations are as
follows:

1) If R supports interest marking, the first tuple in the hop-
sequence traces is valid and appended by the router itself,
then information in the tuple is used to route the erase
downstream.

2) If the content is in R’s cache, then in-cache history is
used to route the erase.

3) If the content is not in R’s cache, but R keeps lossless
or lossy histories, then they are used for erase message
routing.

4) Otherwise, R floods received erase messages.

7The average Internet hop-count is currently 16 [35].
8We defer designing a more efficient scheme for combining hop-sequence

traces to future work.

Recommendation 1 is most appropriate for core network
routers, 2 and 3 for less busy edge network routers, and 4 as a
failover mechanism. Most routers would likely prefer to drop
erase messages instead of flooding them. This is why BEAD
is best-effort: it does not guarantee that each erase message
will be delivered to all entities caching the target content.

As mentioned before, not all published content is subject
to future deletion. If routers can make this distinction, there
is no need to record history entries about content that will
not be deleted. Such distinction can be achieved by adding an
optional CanERASE flag to content object headers. If this flag
is not present, the default behavior is to assume that no erase
messages will ever be sent for the corresponding content.
Moreover, interests requesting content that will not be deleted
are not required to be marked by routers. Producers could tell
consumers what content is subject to deletion (i.e., an erase)
by overloading catalogs or manifests. As described in [7] and
[36], catalogs and manifests contain lists of Self-Certifying
Names (SCNs) of content to be requested. This list is provided
by the producer and can contain the CanERASE flag alongside
each SCN. In this case, the interest header format should
be modified to include this optional flag. Moreover, since it
is not guaranteed that all content objects will be requested
using SCNs, the default behavior of (core) routers should be
to append hop-sequence traces to interests if the CanERASE

flag is missing.

VIII. SIMULATION RESULTS

Our simulations focused on two properties of BEAD:
network overhead (in terms of additional bytes added for
erase messages) and forwarder overhead for processing erase
messages, i.e., the average amount of time it takes to process
each erase.

A. Network Overhead

To assess network overhead due to generating and forward-
ing erase messages we study the most costly scenario next to
broadcasting: BEAD with lossless histories and routers with
lossless links. To do so, we extended ndnSIM 2.0 [37] – an
implementation of NDN architecture as a NS-3 [38] module for
simulation purposes – to support erase messages. With this
modified architecture, we ran two sets of experiments using
the following topologies (shown in Figure 2):

• The DFN network, Deutsches ForschungsNetz (German
Research Network) [39], [40]: a German network devel-
oped for research and education purposes which consists
of 30 connected routers positioned in different areas of
Germany. The blue dots in the figure represent group of
consumers (10 consumers per blue dot) connected to edge
routers (red dots), while the green dots represent core
network routers.

• The AT&T backbone network [41]. This consists of
over 130 routers. Each logical consumer in the figure
represents multiple (5) physical consumers connected to
an edge router.

In all experiments, consumers issue requests at a rate of
10 interests per second for content with the name prefix
/prefix/A and monotonically increasing sequence number
suffix. Every router uses a lossless history to record previously

6

185Networking 2016

Consumer
Edge Router
Core Router

(a) The DFN topology.

C0

C1

C2

C3

C4

C5

C6

C7

C8
C9

C10

C11

C12
C13

C14

C15

R0 R1

R2

R3
R4

R5

R6

R7

R8

R9

R10
R11

R12

R13

R14
R15

R16

R17

R18

R19
R20

R21

R22

R23

R24

R25

R26

R27

R28

R29
R30

R31

R32

R33

R34

R35

R36

R37

R38
R39

R40

R41

R42

R43
R44 R45

R46

R47

R48

R49

R50
R51

R52

R53

R54

R55

R56R57
R58

R59

R60
R61
R62

R63R64

R65

R66

R67
R68

R69

R70 R71

R72

R73 R74

R75

R76
R77

R78

R79

R80

R81
R82

R83

R84

R85
R86

R87
R88

R89

R90
R91

R92

R93
R94

R95

R96
R97

R98
R99

R100

R101

R102

R103

R104 R105

R106

R107
R108

R109
R110R111

R112R113
R114
R115

R116

R117
R118

R119
R120

R121 R122

R123
R124

R125
R126

R127
R128
R129
R130
R131

(b) The AT&T topology. Blue nodes represent clusters of consumers and black
nodes represent routers.

Fig. 2. The DFN and AT&T topologies.

forwarded content objects for erase forwarding. Routers com-
municate over lossless links. Lastly, producers issue erase
messages for 50% of their content every 1 second. (This
may cause a producer to send a BEAD more than once.)
Under these conditions, we measure router packet processing
overhead with respect to content objects and erase messages.
Figures 3(a) and 3(b) compare the overhead of processing
content objects and erase messages in the DFN topology with
160 consumers. Similarly, Figures 3(c) and 3(d) show the same
type of overhead in the AT&T topology with the same number
of consumers. Comparatively, we find that erase messages
contribute very little overhead to the network with respect to
the bandwidth consumed by content objects. Specifically, the
total amount of erase message traffic in the DFN topology
is 1.8% of the total content objects traffic, whereas it is only
0.09% in the AT&T topology. To understand these differences,
consider Figures 3(c) and 3(d). In Figure 3(c), core routers
receive and forward more content packets than those not in
the core. In Figure 3(d), those same core routers receive erase
messages but do not forward all of them since they have were
not in the history. This means that the content had previously
been deleted. This is why the amount of egress traffic is less
than the amount of ingress traffic.

We also assessed the actual computational overhead in-
curred by each router in these scenarios. The average time
to process a single erase message for the DFN and AT&T
scenarios are shown in Figures 4(a) and 4(b). We see that only
a subset of the routers incur greater than 1.0ms to process an
erase. These are the routers closest to the producer since they
almost always receive, store, and forward erase messages.

IX. MONETIZING CONTENT DELETION

We now discuss potential economic incentives for routers
and ISPs to support content deletion and implement BEAD.

A. BEAD & Accounting

So far, we discussed how the network routes erase mes-
sages towards routers that possibly cache corresponding con-
tent. The main challenge is that producers do not know where

such content is cached. We also acknowledge that BEAD is
best-effort, unless flooding is used, which is undesirable.

However, if producers knew exactly where content is
cached, then erase messages could be routed efficiently. For
example, if a producer knew that a particular AS had a copy
of the content cached by some node in the system, then the
producer could specifically ask the AS to distribute an erase
internally. This is far superior to routing erase messages in
the core of the network in hopes that they might reach this AS
(and any others with a cached copy).

We believe that it is possible to distribute content caching
location information along with accounting information. A
scheme for secure accounting in CCN [42], suggests that
routers should notify producers of content they serve from
caches by sending a so-called “push interest” or pInt. This
approach can be modified such that: (1) AS gateways send pInt
messages when content is cached in their domain and (2) pInt
messages carry the prefix of an AS accounting management
server within the AS.9 Whenever a producer wants to delete
certain content, it sends an erase message to each accounting
management server (one per AS) that previously reported
caching corresponding content. Then, the latter distribute the
erase message within their ASs. Intra-AS distribution can
be achieved via techniques described in Section VI. In fact,
flooding might well be appropriate for that purpose since erase
messages would not traverse AS boundaries.

The relationship between accounting and BEAD is natural.
This is because one of the important applications of accounting
is to bill for cache space. From an economic perspective, it
would not be surprising for in-network caching to become a
paid service. Routers and ASs could offer caching services for
producers. A reasonable extension to this service would be to
also offer a deletion service via BEAD.

9Accounting management servers are centralized entities that manage ac-
counting activities inside the AS.

7

186Networking 2016

(a) Data processing overhead in the DFN topology with 160 consumers. (b) erase message processing overhead in the DFN topology with 160 con-
sumers.

(c) Data processing overhead in the AT&T topology with 160 consumers. Not
all routers are present in the image.

(d) erase message processing overhead in the AT&T topology with 160
consumers. Not all routers are present in the image.

Fig. 3. Network overhead from processing erase messages. Routers are identified by integers in the range [160..189]. InData (OutData) and InErase (OutErase)
correspond to the amount of content object and erase traffic received from (sent to) an upstream (downstream) node, respectively. Ingress data is shown in red
and egress data is shown in blue.

B. BEAD in the Core

Flooding in the network core is not viable as a means
of distributing erase messages. Moreover, forwarder histories
and packet marking are (relatively) expensive operations and
too costly for the fast path in the core. ISPs will likely just
drop these messages due to a lack of economic incentive to
forward them. Thus, in any plausible CCN network – where
producers and consumers are at the edges of a network, while
most traffic is routed through the core – erase messages are
most likely to be propagated along only half of producer-to-
consumer path(s). This is troublesome since content is most
likely to be cached near consumers in edge (or near-edge)
routers, and erase messages might never reach these routers.

To address this issue, core routers must be incentivized
to carry and forward erase messages from producers to con-
sumers. Since erase messages will typically amplify traffic,

producers should be expected to pay for this increase. As
before, this effectively turns BEAD into a service provided
by ISPs that complements monetized caching; producers who
pay for cache space may also have the choice to pay for on-
demand deletion via BEAD.

X. CONCLUSION

We proposed BEAD – a technique for best-effort au-
tonomous deletion in CCN. BEAD is designed to solve the
problem of stale or unsafe content in CCN. We described
an efficient and lightweight form of authenticator for BEAD
deletion requests and discussed several ways in which they
could be routed from producers to consumers. We assessed
the performance of each technique and verified the network
overhead using simulations. For future work, we will expand
the set of experiments to study the penetration impact due to
erase message forwarding based on lossy histories. We will

8

187Networking 2016

(a) DFN topology with 160 consumers. (b) AT&T topology with 160 consumers.

Fig. 4. Forward erase processing overhead in the DFN and AT&T topologies. The results are captured for each of the routes assessed in the bandwidth
overhead experiments. Routers are identified by integers in the range [160..189] and correspond to the routers in Figure 3.

also study this metric in the presence of lossy links. Finally,
we will formalize the integration of accounting and BEAD to
form a comprehensive platform for premium caching in CCN.

REFERENCES

[1] A. Dabirmoghaddam et al., “Understanding optimal caching and oppor-
tunistic caching at the edge of information-centric networks,” in ICN,
2014.

[2] M. Mosko and I. Solis, “CCNx semantics,” 2015, https://www.ietf.org/
id/draft-irtf-icnrg-ccnxsemantics-00.txt.

[3] A. Compagno et al., “To NACK or not to NACK? negative acknowl-
edgments in information-centric networking,” in ICCCN, 2015.

[4] G. Mauri and G. Verticale, “Distributing key revocation status in named
data networking,” in Advances in Communication Networking, 2013.

[5] Y. Yu et al., “An endorsement-based key management system for
decentralized NDN chat application,” Technical Report NDN-0023,
2014.

[6] C. Ghali et al., “Interest-based access control for content centric
networks,” in ICN, 2015.

[7] C. Ghali et al., “Network-layer trust in named-data networking,” ACM
CCR, vol. 44, no. 5, 2014.

[8] Y. Yu et al., “Schematizing trust in named data networking,” in ICN,
2015.

[9] C. Wood et al., “Flexible end-to-end content security in ccn,” in CCNC,
2014.

[10] F. Angius et al., “Drop dead data,” https://users.soe.ucsc.edu/⇠cedric/
papers/angius2015drop.pdf.

[11] M. Myers et al., “RFC 2560: X.509 internet public key infrastructure
online certificate status protocol-ocsp,” Internet Engineering Task Force,
1999.

[12] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset
state synchronization in named data networking,” in ICNP), 2013.

[13] R. Ishiyama et al., “On the effectiveness of diffusive content caching
in content-centric networking,” in APSITT, 2012.

[14] P. K. Agyapong and M. Sirbu, “Economic incentives in information-
centric networking: implications for protocol design and public policy,”
IEEE Communications Magazine, vol. 50, no. 12, 2012.

[15] A. Araldo et al., “Cost-aware caching: optimizing cache provisioning
and object placement in ICN,” in GLOBECOM, 2014.

[16] C. Wang and J. W. Byers, “Incentivizing efficient content placement in
a global content oriented network,” Technical Report BUCS-TR-2012-
012, Boston University, Tech. Rep., 2012.

[17] A. Araldo et al., “Cost-aware caching: Caching more (costly items) for
less (ISPs operational expenditures),” TPDS, 2015.

[18] K. Suksomboon et al., “On incentive-based inter-domain caching for
content delivery in future internet architectures,” in AINTEC, 2012.

[19] A. Araldo et al., “Design and evaluation of cost-aware information
centric routers,” in ICN, 2014.

[20] A. C. Snoeren et al., “Hash-based IP traceback,” in ACM CCR, vol. 31,
no. 4, 2001.

[21] M. T. Goodrich, “Efficient packet marking for large-scale IP traceback,”
in CCS, 2002.

[22] A. Belenky and N. Ansari, “IP traceback with deterministic packet
marking,” IEEE communications letters, vol. 7, no. 4, 2003.

[23] P. Gasti et al., “Dos and ddos in named data networking,” in ICCCN,
2013.

[24] F. Baker and P. Savola, “RFC 3704: Ingress filtering for multihomed
networks,” Tech. Rep., 2004.

[25] R. Stone et al., “CenterTrack: An IP overlay network for tracking DoS
floods.” in USENIX, 2000.

[26] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, 1970.

[27] L. Fan et al., “Summary cache: a scalable wide-area web cache sharing
protocol,” TON, vol. 8, no. 3, 2000.

[28] L. Zhang and Y. Guan, “Detecting click fraud in pay-per-click streams
of online advertising networks,” in ICDCS, 2008.

[29] G. Koloniari et al., “One is enough: distributed filtering for duplicate
elimination,” in CIKM, 2011.

[30] F. Deng and D. Rafiei, “Approximately detecting duplicates for stream-
ing data using stable bloom filters,” in SIGMOD/PODS, 2006.

[31] H. Krawczyk et al., “RFC 2104: HMAC: Keyed-hashing for message
authentication,” 1997.

[32] P. Gutmann, “RFC 6476: Using message authentication code (MAC)
encryption in the cryptographic message syntax (CMS),” 2012.

[33] J. Garcia-Luna-Aceves and M. Mirzazad-Barijough, “Enabling correct
interest forwarding and retransmissions in a content centric network,”
in ANCS, 2015.

[34] A. Broder and M. Mitzenmacher, “Network applications of bloom
filters: A survey,” Internet mathematics, vol. 1, no. 4, 2004.

[35] F. Begtasevic and P. Van Mieghem, “Measurements of the hopcount in
internet,” in PAM, 2001.

[36] J. Kurihara et al., “An encryption-based access control framework for
content-centric networking,” in IFIP Networking, 2015.

[37] S. Mastorakis et al., “ndnSIM 2.0: A new version of the NDN simulator
for NS-3,” Technical Report, 2015.

[38] “Network simulator 3 (NS-3),” http://www.nsnam.org/.
[39] “DFN-Verein,” http://www.dfn.de/.
[40] “DFN-Verein: DFN-NOC,” http://www.dfn.de/dienstleistungen/

dfninternet/noc/.
[41] A. Compagno et al., “Poseidon: Mitigating interest flooding DDoS

attacks in named data networking,” in LCN, 2013.
[42] C. Ghali et al., “Practical accounting in content-centric networking,” in

NOMS, 2016.

9

188Networking 2016

