
Multi-Flow Congestion Control with Network
Assistance

Yannis Thomas, George Xylomenos, Christos Tsilopoulos and George C. Polyzos
Mobile Multimedia Laboratory & Department of Informatics

School of Information Sciences and Technology
Athens University of Economics and Business

Patision 76, Athens 10434, Greece
E-mail: {thomasi, xgeorge, tsilochr, polyzos}@aueb.gr

Abstract—A well-known technique for enhancing the perfor-
mance and stability of content distribution is the use of multiple
dissemination flows. Multipath TCP (MPTCP), the most popular
multiflow protocol on the Internet, allows receivers to exploit
multiple paths towards a single sender. Nevertheless, MPTCP
cannot fully exploit the potential gains of multipath connectivity,
as it must fairly share resources with (single-flow) TCP, without a
clear understanding of whether the available paths do share any
bottleneck links. In this paper, we introduce a hybrid congestion
control algorithm for multisource and multipath transport that
enables higher bandwidth utilization compared to MPTCP, while
remaining friendly to TCP-like flows. Our solution employs (i) an
in-network module that offers essential topological information
and (ii) Normalized Multiflow Congestion Control (NMCC), a
novel end-to-end congestion control algorithm. While NMCC
is architecture-independent and the in-network module can be
adapted for Multi-Protocol Label Switching (MPLS) or Software
Defined Networks (SDNs), our prototype was implemented on
the Publish-Subscribe Internetworking (PSI) architecture, which
offers centralized path formation and source routing. Using an
actual protocol implementation deployed on our test-bed, we
provide experimental results which validate the effectiveness
of our design in terms of performance, adaptation to shifting
network conditions and friendliness to other flows.

I. INTRODUCTION

Experience with content distribution indicates that multi-
source and multipath [1], i.e. the use of multiple sources
and multiple paths to each source, respectively, can benefit
both network operators and end users. First, the exploitation
of multiple paths allows achieving higher throughput via
bandwidth aggregation. Second, the use of multiple sources
offers resilience to both link and source failures via path
or source switching. As a result, multisource and multipath,
collectively referred to as multiflow in this paper, provide load
balancing and higher resource utilization, by spreading flows
across more links and sources.

Multiflow transport is the focus of considerable research
activity, due to the increase of multihomed devices, such as
smartphones with WiFi, Bluetooth and Cellular connectivity.
A significant body of research has focused on the side-effects
of multipath, such as lack of TCP friendliness [2], [3], [4], [5],
[6], [7]. This issue arises from the uncoupled congestion con-
trol scheme originally proposed for Multipath TCP (MPTCP),

where an independent congestion window is used for each
subflow. This causes the multiflow transfer of N flows to
grasp up to N times more bandwidth than a single-path flow
over the same bottleneck, thus causing the latter to starve.
The current MPTCP congestion control algorithm achieves
TCP-friendliness by limiting all subflows, so as to fairly
share bandwidth with single-path flows. Nevertheless, blindly
restricting multipath flows can lead to degraded resource
utilization when friendliness is not an issue, for example, when
a multipath flow exploits physically disjoint paths.

Efficient utilization of network resources is also the driving
force of the Publish Subscribe Internet (PSI) architecture,
an instantiation of the Information-Centric Networking (ICN)
paradigm [8]. Following ICN principles, PSI bases com-
munication on self-identified information items, rather than
end-hosts. PSI also supports centralized path selection via
a special network entity, the Topology Manager, and source
routing via LIPSIN forwarding [9]. We have exploited these
features in previous studies [10], [11], where we presented
the Multisource and Multipath Transfer Protocol (mmTP),
a multiflow transport protocol for PSI. The use of multiple
paths to multiple sources was shown to greatly enhance the
performance and resilience of mmTP over the, inherently
unpredictable, PlanetLab testbed [11].

In this paper we focus on multiflow congestion control,
proposing to exploit any available topological knowledge of
the network to better balance performance and friendliness.
Specifically, we present and evaluate a novel congestion
control scheme for multiflow transport that consists of two
independent modules: (i) Normalized Multiflow Congestion
Control (NMCC), an end-to-end multiflow-aware algorithm,
and (ii) an in-network mechanism to assist NMCC. NMCC
is a simple, yet effective algorithm that manages bandwidth
aggregation under the friendliness constraint, even in the face
of heterogeneous paths and sudden changes in the congestion
level. On the other hand, the in-network mechanism provides
information about shared bottlenecks, thus allowing NMCC to
adapt its behavior accordingly. Furthermore, we explain how
our scheme can be adapted to IP networks operating over
technologies utilizing centralized path computation compo-
nents, including Multi-Protocol Label Switching (MPLS) and
Software Defined Networks (SDNs).ISBN 978-3-901882-83-8 c⃝ 2016 IFIP

440Networking 2016



The remainder of this paper is organized as follows. In
Section II we summarize existing work on multiflow transport
in IP and ICN networks. In Section III we briefly describe PSI
and its features that allow us to realize selective friendliness. In
Section IV we introduce our hybrid congestion control scheme,
which consists of NMCC and the in-network assistance mech-
anism. In Section V we experimentally evaluate our design,
using a prototype implementation. In Section VI we explain
how the required in-network mechanisms can be provided by
MPLS and SDNs. We provide our conclusions in Section VII.

II. BACKGROUND WORK

Multipath congestion control is an active research topic for
both traditional IP networks and ICN clean-slate architectures.
The common goal is maximizing resource utilization, in terms
of exploiting the bandwidth available in multiple paths, while
not harming competitive single-flow transfers, a constraint also
known as TCP-friendliness.

A. TCP-friendliness
When a multiflow connection with N independent subflows

competes against a single-flow connection for the same bottle-
neck link, the multiflow connection can be up to N times as
aggressive as the single-flow one. While we usually say that
the multiflow connection is not TCP-friendly, we will use the
term friendly to imply single-flow friendly, defined as follows:

When a multiflow connection competes with a single-flow
connection for the same network resource, the former should
not acquire a larger share of that resource than the latter.

The price of friendliness is performance degradation: often,
the bandwidth of the multiple subflows is not fully exploited,
to prevent the starvation of single-flow connections. However,
when the paths taken by each subflow are disjoint, meaning
that we do not have multiple subflows sharing the same bottle-
neck link, this needlessly penalizes the multiflow connection.

B. Multiflow Congestion Control in IP
The coupled1 congestion control algorithm of Multipath

TCP (MPTCP) jointly tackles performance and friendli-
ness [2]. MPTCP represents an evolution of TCP-Reno and
EWTCP [5], adopting the slow-start and congestion avoid-
ance phases per subflow, while also addressing multipath-
specific problems, such as fair bottleneck sharing, Round Trip
Time (RTT) mismatch and shifting network load. MPTCP
manages its subflows under two constraints: (i) a multipath
flow should achieve at least as much throughput as it would
get with single-path TCP on the best of its paths and (ii) a
multipath flow should grasp no more capacity on any path or
collection of paths than a single-path TCP flow using the best
of those paths. The second constraint, which assures MPTCP’s
friendliness towards unicast connections, compromises perfor-
mance when friendliness in not an actual issue, for example,
when the available paths do not share a bottleneck link.

Even though this decision may be far from optimal, it is
imposed by the IP routing architecture. Due to the distributed,

1We use the term coupled to refer to the final algorithm presented in [2].

hop-by-hop routing of IP networks, a transport protocol can-
not reliably detect whether the dissemination paths used are
overlapping. As a result, its congestion control module cannot
detect whether friendliness is an issue or not. There are some
application-layer solutions for the end-to-end detection of
shared bottlenecks [12], [13], but their efficiency is debatable.
In [12] the authors detect shared bottlenecks based on the tem-
poral correlation of fast-retransmit packets, while in [13] the
authors evaluate both loss-based and delay-based correlation
techniques, arguing that the loss-based technique is unreliable,
while the delay-based methods require considerably more time
for accurate results; also, the convergence time of the loss-
based method is roughly 15 ms, which is unrealistically high
for a general purpose multiflow protocol.

C. Multiflow Congestion Control in ICN
In ICN networks, the location-based networking of IP

is replaced with information-based routing and forwarding.
These features can support more efficient transport patterns,
such as multipath, multisource and multicast, since they pin
transport paths on the physical topology. Thereupon, it is
often proposed that ICN routers should assist topology-aware
congestion control so as to better handle friendliness issues.

Along these lines, in [14] and [15] the authors discuss
the design of transport protocols that pull data from multiple
sources via multiple paths over the Content Centric Network-
ing (CCN) architecture [8], exploiting congestion detection
and control in the forwarding nodes. In [14] flow control
and part of congestion control is managed by the receiver,
but in-network congestion control is also present in the form
of dynamic request forwarding: intermediate routers choose
on-the-fly the most appropriate interface to forward each
packet, shifting flows to less congested parts of the network.
In contrast, in [15], traffic control is exclusively assigned
to in-network nodes, which separate content (cache) from
forwarding (queue) storage: each router maintains a per-
flow queue with the Deficit Round Robin (DRR) scheduling
policy to determine which packets must be dropped and/or
connections must be rejected, based on link utilization and
fairness constraints. The receiver uses a simple control loop,
responding to explicit congestion signals from routers.

The stateful CCN-based approaches have some important
disadvantages. First, CCN nodes face significant overheads:
the estimation of link utilization for congestion detection
in [14], [15] and the additional per packet state for fair queuing
in [15] can impact their performance, making the achievement
of wire speed forwarding doubtful. Second, distributed in-
network congestion control has a delayed reaction to losses.
While TCP rapidly detects lost packets via either out-of-
sequence packets or time-outs, in [15] authors use explicit
notifications to the receiver when a queue drops a packet; [14]
introduces a novel time-out estimation function, which is not
investigated with regard to its effects on the other CCN timers.

A different approach for enriching congestion control with
topological information, involves an in-network notification
system that can report the existence of shared bottlenecks.

441Networking 2016



This notification system, which must be aware of both network
structure and dissemination routes, should explicitly indicate
path disjointness to the end-hosts, allowing them to apply
friendliness mechanisms more selectively. This design offers
accurate information without convergence delay and without
stressing the core routers, which are the weaknesses of the IP
and CCN solutions, respectively. PSI follows this approach,
since routing takes place at a conceptually centralized in-
network entity, the Topology Manager. We briefly discuss the
PSI architecture in the following section.

III. MULTIFLOW TRANSPORT IN THE PSI ARCHITECTURE

A. The PSI architecture

In the PSI architecture, content objects are treated as publi-
cations, content sources as publishers and content consumers
as subscribers. User programs exploit a publish/subscribe
API for advertising and requesting information. A fundamen-
tal design tenet in PSI is the clear separation of its core
functions [16]: (i) the Rendezvous function tracks available
publications and resolves subscriptions to publishers, (ii) the
Topology Management and Path Formation function monitors
the network topology and forms forwarding paths and (iii) the
Forwarding function handles packet forwarding [17].

Network nodes in a PSI network are classified into Ren-
dezvous Nodes (RNs), Topology Managers (TMs) and For-
warding Nodes (FNs). The RNs receive and store the pub/sub
requests and match publications with subscriptions of the same
content. When matching takes place, the RN asks a TM to find
the appropriate dissemination routes. The TM, which is aware
of topology, network conditions and content characteristics,
discovers the “best” path(s) and encodes them into LIPSIN
identifiers [17]. LIPSIN forwarding, which is realized by the
FNs, offers line-speed stateless source routing. Finally, the
LIPSIN identifiers are delivered to the end-host applications
that exploit them for direct communication, thus delegating
congestion control to the network edges.

The centralized nature of the TMs raises concerns about
PSI’s feasibility, since they must compute paths for all network
connections. However, recent work showed that a centralized
intra-domain TM service is feasible: for a typical national-
scale network provider in the UK, it was demonstrated that a
reasonable number of TM instances with precomputed paths
can efficiently cope with the resulting network load [18].

B. Multipath and multisource in PSI

We have presented a multiflow transport protocol for PSI
in previous studies [10], [11], the Multisource and Multipath
Transfer Protocol (mmTP). mmTP is a reliable protocol that
supports multisource and multipath data transfers by exploiting
PSI’s source routing and centralized path selection. mmTP
relies on a TM function that can discover multiple paths
between a receiver and multiple senders. These paths are
encoded in LIPSIN identifiers that are later sent to the end-
hosts. Given that LIPSIN identifiers encode dissemination
routes without unveiling the actual dissemination paths, or

even the destination nodes, the end-hosts acquire a set of dis-
tinct options for requesting data, which may involve different
publishers and/or different paths. Hence, mmTP provides a
generic interface, transparently supporting any combination of
multisource and/or multipath services.

The design of mmTP allows congestion control in two
levels: (i) path selection by the TMs and (ii) path utilization by
the end-hosts. Specifically, the TMs, which are aware of net-
work conditions, select appropriate routes for load balancing
and bandwidth aggregation. We have previously shown the
gains of centralized path formation in [19], where we used
QoS routing schemes to satisfy certain throughput and error
rate constraints in PSI. Based on these routes, the end-hosts
evaluate in real-time the performance of each path and adjust
the amount of data to be delivered through it. The congestion
control mechanism used at the end-hosts, which is derived
from TCP, pushes complexity at the network edges, thus
enhancing network stability and keeping forwarding stateless.

IV. HYBRID MULTI-FLOW CONGESTION CONTROL

In this section we present a hybrid multiflow congestion
control algorithm that enhances resource utilization without
violating the friendliness requirement. Our novel congestion
control scheme consists of two independent modules: (i)
NMCC, an end-to-end multiflow-aware algorithm, and (ii) an
in-network mechanism to assist congestion control. NMCC is
simple, yet it outperforms the coupled congestion control of
MPTCP in terms of friendliness in short transfers and perfor-
mance in heterogeneous networks. The in-network mechanism
exploits knowledge of shared bottlenecks to enhance the
performance adaptation of NMCC.

A. Path Formation
The best case scenario for multiflow communication arises

when all communication paths are physically disjoint, that is,
they do not share any links or routers. In this case, each
multiflow connection can use the same congestion control
algorithm as single-flow connections. In contrast, when some
subflows use paths which are not disjoint, their aggressiveness
needs to be limited in order for them to remain friendly.

Path selection in PSI is performed by the TMs, whose
operation extends beyond the scope of this paper. Our only
requirement is that when the TMs return a set of paths encoded
as LIPSIN identifiers, a group id code should be added to
each identifier so as to indicate non-disjoint paths. Specifically,
all paths that share at least one link with each other (not
necessarily the same link) are marked with the same group id.
In general, for any given underlying routing mechanism, the
in-network assistance mechanism must be able to signal to
NMCC how the available paths are grouped by group id.

For example, Figure 1 shows three examples of path com-
position along with the corresponding group id codes. In
Figure 1(a) the three paths are disjoint, thus each path is
marked with a distinct group id, whereas in Figure 1(b) paths
A and B share a link, thus they have the same group id. In
1(c) Paths A and B share a link and paths B and C share a

442Networking 2016



Fig. 1. Three different cases of path composition and their corresponding group id codes: (a) Disjoint paths, (b) Paths A and B share one link, (c) Paths A
and B share one link, paths B and C share another link.

different link; they still get the same group id, to ensure that
each path belongs to a single group. This simplifies operation,
at the cost of losing some efficiency, since a congested link
may only affect some of the paths in a group.

B. Window Management
When the available paths have different group ids (i.e.,

they do not share any links), then window management does
not consider friendliness: our algorithm creates a distinct TCP-
like subflow for each path with an individual congestion
window variable (cwnd), RTT-based loss detection mecha-
nism, retransmission mechanism and slow start and conges-
tion avoidance algorithms. Therefore, window management is
similar to MPTCP’s uncoupled congestion control scheme.

In contrast, when multiple paths have the have the same
group id (i.e., they share some links) our NMCC algorithm is
used to maintain friendliness. NMCC differs from the coupled
congestion control algorithm of MPTCP in two respects. First,
coupled MPTCP only tries to limit its aggressiveness during
congestion avoidance, while NMCC also considers slow start.
Second, NMCC is simpler to operate than coupled MPTCP.
The coupled MPTCP algorithm is a variant of TCP Reno,
where aggressiveness is controlled by reducing the growth rate
of the congestion window per RTT. This introduces compli-
cations when paths have different RTTS and shifting network
loads, which are due to the use of a single-flow solution to
a multiflow problem. On the other hand, NMCC exploits a
well-known TCP-fairness issue, the fact that connections with
higher RTTs are less aggressive [20], to ensure friendliness.
Instead of reducing the growth of the congestion window per
RTT, NMCC controls the congestion window by inflating the
RTTs; this reduces complexity, simplifies friendliness during
slow start and avoids multiflow-related issues due to RTT
mismatch and sudden load and congestion shifts.

1) Congestion Avoidance: NMCC uses an inflated RTT ′
i ≥

RTTi for each subflow i to control window growth; the in-
flated RTT ′

i makes the congestion window grow slower com-
pared to a single-flow connection. We introduce a friendliness
factor m ≥ 1 so that RTT ′

i = m∗RTTi, trying to approximate

the two goals of fair bottleneck sharing: (i) the growth rate
of all subflows sharing a link should be no more than that
of a single-flow connection and (ii) the overall growth rate
should not be less than that of the most aggressive single-flow
connection. Since the most aggressive single-flow connection
has the minimum RTTi = RTTmin and during congestion
avoidance the growth rate of a single-flow connection is one
packet per RTT , the rate increase intervals during congestion
avoidance must satisfy the following equation:

1

RTTmin
=

N∑

i=1

1

RTT ′
i

=
N∑

i=1

1

m ∗RTTi

where N is the number of jointly controlled subflows. We can
therefore estimate m using the following equation:

m = RTTmin ∗
N∑

i=1

1

RTTi

To understand the friendliness factor m, consider a simple
example. When the TM offers two paths marked with the
same group id, we initially set m = 2, the number of
jointly controlled paths. Upon receipt of the first packet over
each path, the RTTi’s are updated and m is re-calculated.
If RTT1 = 50 ms and RTT2 = 100 ms, then m = 1.5,
so RTT ′

1 = 75 ms and RTT ′
2 = 150 ms, therefore NMCC

will increase its overall congestion window by three maximum
segment sizes (MSS) during a period of 150 ms: two MSS from
the first subflow and one MSS from the second. This is equal
to the increase of the fastest single-flow connection: one MSS
per 50 ms.

By applying m to all subflows, we adapt the growth rate
across all paths. This means that, although we favor the
subflow which operates over the fastest path, we do not
neglect the slower paths. Therefore, NMCC does not require
probing to detect load changes on an unused path, whereas
the coupled MPTCP algorithm introduces a special parameter
for controlling the amount of probing. NMCC can therefore
perform efficiently in heterogeneous environments, adapting
fast to path failures and congestion bursts. For instance,

443Networking 2016



consider an integrated terrestrial-satellite network where the
terrestrial link has 10 ms delay and the satellite one 250 ms. In
this case m = 1.004, hence window growth is not constrained
and NMCC effectively grasps the available capacity.

2) Slow Start: Most work on multiflow transport only deals
with congestion avoidance, disregarding slow start. Neverthe-
less, during the evaluation of NMCC we noticed that friend-
liness was compromised when (i) the content was relatively
small and (ii) the path was very congested. An analysis of
the evolution of the congestion windows showed that NMCC
gained bandwidth almost N -times faster than a single-flow
connection during slow start, with N subflows. Since short
and very congested connections spend a substantial fraction
of their lifetimes in slow start, meeting the friendliness goals
in congestion avoidance was not enough to amortize NMCC’s
aggressive behavior during slow start.

One way to reduce aggressiveness during slow start is to
reduce ssthresh so as to move faster to congestion avoidance.
Unfortunately, this has two disadvantages. First, when a con-
nection starts, the available bandwidth of the communication
path is unknown, thus ssthresh should be set high enough to
probe it. Second, reducing ssthresh only limits the amount
of bandwidth that the protocol will re-acquire, not its rate of
acquisition. For this reason, we reused the friendliness factor
m to also control slow start.

During slow start, a subflow i doubles its congestion win-
dow during a period of RTTi; its growth rate is cwndi

RTTi
, while

during congestion avoidance it drops to 1
RTTi

. We introduce
Ωi and Ω′

i, the regular and the friendly growth rate of subflow
i, respectively, where Ωi = m ∗Ω′

i. Again, we want to match
the growth rate of the most aggressive flow, Ωmax, therefore
we have the following equation:

Ωmax =
N∑

i=1

Ω′
i =

N∑

i=1

Ωi

m

for N jointly controlled subflows. We can then calculate m
based on the regular growth rates of all subflows as follows:

m =

∑N
i=1 Ωi

Ωmax

Consequently, each flow’s growth rate Ω′
i becomes cwndtcp

i
m∗RTTi

during slow start and 1
m∗RTTi

during congestion avoidance,
where cwndtcpi is the equilibrium window of TCP for path
i. As increases in slow start are multiplicative, any change
in window growth affects the subsequent increases: smaller
windows grow slower. Therefore, during slow-start we use
cwndtcp in order to assure that the cumulative growth of
NMCC is equal to single-flow TCP. Algorithm 1 provides the
combined slow start and congestion avoidance algorithm. Note
that the algorithm translates the “inflated RTTs” of NMCC into
MPTCP-like “decreased window growths” to avoid any side-
effects of prolonged timeouts, such as delayed loss detection.

V. PERFORMANCE EVALUATION

In this section we focus on the extent to which our hybrid
congestion control can meet the friendliness requirement of

Algorithm 1 Window adjustment and estimation of m.
1: procedure INCREASE WINDOW
2: if (cwnd < ssthresh) then
3: cwnd← cwnd+ cwndtcp ∗MSS/(cwnd ∗m)
4: else
5: cwnd← cwnd+MSS/(cwnd ∗m)
6: end if
7: end procedure
1: procedure ESTIMATE M
2: max rate← 0
3: total rate← 0
4: for (i ∈ subflows) do
5: if (subflow statei == CONG AVOID) then
6: rate←MSS/RTTi

7: else
8: rate← cwndi/RTTi

9: end if
10: total rate← total rate+ rate
11: if (rate > max rate) then
12: max rate← rate
13: end if
14: end for
15: m← total rate/max rate
16: end procedure

multiflow transfers in different network scenarios. We have
implemented our scheme as part of the mmTP protocol that
runs over Blackadder, the PSI prototype implementation [21].
Our implementation includes the mmTP sender and receiver
applications with NMCC enabled, as well as a TM that com-
putes the k-shortest paths from every publisher to a subscriber,
using the algorithm by Yen [22] with hop count as the metric.2

We deployed Blackadder with mmTP in several LAN
topologies, using 100 Mbit switches and workstations as
network nodes. Our experiments examine (i) the effect of TM
assistance when paths are disjoint, (ii) the effectiveness of
NMCC with overlapping paths, (iii) NMCC’s behavior in short
transfers (iv) the friendliness of NMCC and coupled MPTCP
and (v) NMCC’s behavior in heterogeneous networks.

In our testbed, the transmission latency among all nodes is
0.2-0.3 ms and the bandwidth of each link is 11.7 MB/s, as
estimated using iperf.3 The duration of transfers during all
experiments is 20 seconds, except when mentioned otherwise.
In order to enhance the reliability of our conclusions, we
repeated each experiment until the margin of error was less
than 1%, so as to achieve a confidence level of 95%.

A. Disjoint paths

We first deployed mmTP in the topology of Figure 2(a),
where we investigated the performance gains of our hybrid
congestion control scheme when paths are known to be

2Our implementation is available at http://mm.aueb.gr/.
3Available at http://iperf.sourceforge.net/.

444Networking 2016



Fig. 2. Topology for performance evaluation with (a) disjoint paths and (b)-(c) shared paths.

Transmission mode Transfer rate (MB/s)
Multipath with TM assistance 21.3
Multipath with no TM assistance 20.7
Single-flow from P1 to S1 10.6
Single-flow from P2 to S2 10.7
Single-flows on both paths 21.1

TABLE I
AVERAGE TRANSFER RATES WITH DISJOINT PATHS.

disjoint. Figure 2(a) supports one multisource path from pub-
lishers P1 and P2 to subscriber S1 and two single-paths from
publishers P1 and P2 to subscribers S1 and S2, respectively.
Thereupon, we ran some experiments with no contending
traffic, so as to establish a performance baseline, leading to
the average transfer rates shown in Table I. These experiments
include deployment of multiflow mmTP connections with
and without TM assistance, as well as single-flow mmTP
connections. We notice that each path offers roughly 10.6
MB/s throughput and multiflow mmTP achieves 21.3 and 20.7
MB/s with and without TM assistance, respectively. These
preliminary results validate that mmTP fully exploits available
capacity and imply that TM assistance slightly enhances
performance, even in the absence of competitive flows.

We then deployed mmTP in multipath mode over the same
topology (S1 requests data from both P1 and P2), with one
or two single-flow connections competing over one or both
disjoint paths (S1 to P1 and S2 to P2). In Figure 3(a) we show
the average share of the total bandwidth that mmTP achieved
in each case, depending on whether TM assistance was turned
on or off. The results validate the performance gains and the
friendliness of NMCC. Ideally, with one contending single-
flow connection NMCC should use half of the bandwidth over
one path and the entire bandwidth over the other, or 75%
of the total bandwidth, while with two contending single-
flow connections NMCC should use half of the bandwidth
over each path, or 50% of the total bandwidth. With TM
assistance, mmTP acquires 67.5% and 49.5% of the overall
bandwidth, respectively. Not only is this higher than with
no TM assistance, it is also closer to the ideal bandwidth
share. The bandwidth shares of mmTP with no TM assistance,
which are only 52.6% and 36.8%, respectively, correspond
to an equal share of the bandwidth among all connections,
disregarding the actual topology.

Fig. 3. Bandwidth share of mmTP (a) with and without TM assistance and
(b) with and without friendly slow start in short transfers.

B. Shared paths

To investigate the case where paths share some links,
mandating a less aggresive behavior to ensure friendliness,
we used the topology shown in Fig. 2(b), where Publishers
and Subscribers are connected by paths sharing a link. We
deployed a multisource connection from subscriber S1 to
publishers P1 and P2, in parallel with 1, 2, 4 and 9 single-
flow connections from subscriber S1 to publisher P1 and from
subscriber S2 to publisher P2; these connections are distributed
uniformly between the two paths.

Fig. 4(a) demonstrates the average bandwidth percentage
acquired by NMCC and all single-flow connections, while
Fig. 4(b) displays the average transfer rate achieved by NMCC
and the average unicast connection. NMCC acquires 51.1%,
35.5%, 21.5% and 10.8% of the bottleneck link’s bandwidth
when competing with 1, 2, 4 and 9 single-flow connections,
respectively, marginally over the optimal sharing ratios of
50%, 33.3%, 20% and 10%, respectively, thus satisfying the
friendliness goal. The slight performance advantage of NMCC,
also evident in the transfer rates, is a side effect of the friend-
liness constraint: since window growth is distributed across
all subflows, NMCC approaches congestion limits gradually,
resulting in slightly less retransmissions than the average
single-flow connection (2.1% on average).

We also examined NMCC’s response to a sudden change
in the congestion level, by repeating the previous experiment,
but this time starting the multiflow connection either 7 sec
after or 7 sec before the start of the single-flow connections.

445Networking 2016



Fig. 4. (a) Bandwidth shares of NMCC and all single-flow connections. (b) Transfer rate of NMCC and the average single-flow connection.

The results of these experiments are nearly identical to the
previous ones, as NMCC acquires 52%, 35.6%, 21.1% and
10.8% of the bandwidth when competing with 1, 2, 4 and
9 single-flow connections, respectively. Consequently, NMCC
manages to efficiently share bandwidth with newly established
connections, as well as to obtain a fair share of bandwidth
when launched in an already congested path.

C. Short Transfers

NMCC is friendly during slow-start, unlike MPTCP which
is only concerned with congestion avoidance. This is particu-
larly important for short transfers, where friendly congestion
avoidance cannot compensate for an unfriendly slow start. To
evaluate this aspect of NMCC, we reused the shared link topol-
ogy of Fig. 2(b), deploying one multisource NMCC connection
and either 1 or 2 contending single-flow connections. Each
connection transfers a 10 MByte object, which would require
less than 1.1 second to complete in the absence of contention.
Fig. 3(b) presents the percentage of overall bandwidth acquired
by NMCC when friendly slow start is turned on or off.

With unfriendly slow start, NMCC grabs a disproportionate
amount of bandwidth from the competing connections, com-
pared to the ideal shares of 50% and 33%. In the first case,
NMCC gets 57.4% of the bandwidth; while in the second
case it gets 38.9%, or 14.8% and 16.8% more than the fair
share, respectively. On the other hand, NMCC with friendly
slow start gains 49.4% and 34.8% of the total bandwidth.
Consequently, NMCC is friendly even with short transfers.

For even shorter transfers, for example Web objects a few
KBytes long, the unfairness is even more pronounced, as such
connections can easily complete during slow start. The reason
for presenting results from a 10 MByte transfer is to show
that the initial over-aggressiveness during slow start cannot be
compensated even with longer transfers.

D. Friendliness of NMCC and MPTCP

We then compared the friendliness of the hybrid approach
of NMCC and the coupled congestion control of MPTCP [2].
MPTCP’s design is similar to NMCC, in that congestion
management takes place at the endpoints and time-out esti-
mation is based on RTTs. These similarities simplified the

implementation of the coupled congestion control algorithm
of MPTCP in our mmTP implementation.

For these experiments we used the topology of Fig. 2(c),
where all paths share at least one link; MPTCP’s inability to
support TM assistance would make a comparison over disjoint
paths unfair. We deployed a number of single-path flows from
subscriber S1 to publisher P1, as well as multipath flows from
subscriber S2 to publisher P2, using the paths indicated in
Fig. 2(c). Multipath connections utilized either the coupled
MPTCP or the NMCC algorithm. We denote each experiment
as X : Y : Z, where X shows the number of single-path
flows, Y shows the number of multipath flows using coupled
MPTCP and Z shows the number of those using NMCC.

The results of these experiments are summarized in Fig. 5.
Fig. 5(a) displays the deviation of the obtained bandwidth
of each connection from its fair share which, due to the
shared link, is given by Link Capacity

#Connections . Results below 0%
indicate overly friendly flows, while results over 0% indicate
overly aggressive ones. We can distinguish three groups in
this figure. The first group reflects experiments ‘1:3:3’, ‘1:2:2’
and ‘1:1:1’, where MPTCP is too friendly, resulting in poor
performance. The second group reflects experiment ‘2:1:1’,
where all connections are close to their fair shares. The
third group reflects experiments from ‘3:1:1’ to ‘8:1:1’, where
multiflow connections are more aggressive, making single-
flow ones lose some of their share.

Figure 5(b) presents the above results for multipath con-
nections normalized to the bandwidth achieved by single-path
flows, that is, we divide the bandwidth share obtained by
MPTCP and NMCC by the bandwidth achieved by the average
single-flow connection. Thereupon, the closer the score is to
1 the friendlier a connection is to single-flow. Based on this
figure we can argue that NMCC is more friendly to single-
flow connections than MPTCP most of the time. Even though
the performance superiority of NMCC is mostly evident when
there are fewer single-path flows competing for capacity, we
observe that NMCC gives more consistent results in general.

E. Heterogeneous Networks

Finally, we explored NMCC’s performance in heteroge-
neous networks where paths exhibit diverse capacity, delays

446Networking 2016



Fig. 5. (a) Deviation of obtained bandwidth from fair shares, (b) Difference
of multiflow and single-flow deviation from fair shares normalized to the
single-flow deviation from fair shares.

and error-rates. In order to emulate these conditions, we
replicated the RTT-mismatch scenario used in the evaluation
of coupled MPTCP [2]. This scenario assumes a smartphone
device that uses simultaneously two disjoint paths: (a) a WiFi
link with 10 ms delay and 4% error-rate and (b) a 3G link
with 100 ms delay and 1% error-rate. First, we used netem4

to configure the delay and error-rate of the multisource paths
in the topology of Figure 2(a) and then we deployed mmTP
with no contending traffic, so as to study window growth
without congestion. We investigated the behavior of NMCC
against both the coupled and uncoupled MPTCP congestion
control algorithms. Figure 6 presents the number of packets
that are sent over the WiFi link within a period of 60 seconds;
we neglect the 3G link, as it is identically saturated by all
algorithms. The results validate the expected performance
superiority of NMCC. The significant RTT divergence leads
NMCC to compute a low friendliness factor (m ≃ 1.1)
which offers similar performance to the uncoupled MPTCP
algorithm, thus grasping all available capacity from the start. In
contrast, coupled MPTCP fails to adapt to this RTT mismatch,
as it utilizes less than 93% of the available capacity until 10 sec
and roughly 96% thereon.

VI. IN-NETWORK ASSISTANCE IN IP NETWORKS

Our hybrid congestion control mechanism for multiflow
transfers, NMCC, relies on an in-network scheme that reports
shared bottlenecks to the end-hosts. The PSI architecture is
an appropriate terrain for this design, since it provides a TM
function that (i) is aware of network topology and (ii) interacts

4http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

Fig. 6. Packets/sec sent over the WiFi link for a 60 sec period.

with the end-hosts. The TM knows the physical structure of the
network, so it can easily detect shared bottlenecks. In addition,
when two pub/sub requests are matched, the TM sends the
LIPSIN identifiers of the paths directly to the applications,
therefore it directly pushes the topological information to
the users. In order to extend our scheme to other types of
networks, such as IP-based ones, we need equivalent in-
network mechanisms to provide such information.

A technology that offers centralized path selection and
source routing in IP networks is Multi-Protocol Label Switch-
ing (MPLS) [23]. MPLS is used in backbone networks, where
it applies QoS-based traffic control by classifying flows and
forwarding them via predefined routes. Short fixed-length
labels are assigned to packets at the ingress to an MPLS cloud,
and these labels are used to make forwarding decisions inside
the MPLS domain. The path formation process is generic,
allowing route computation by the underlying routing proto-
cols or explicit definition by a network operator. Multipath
deliveries are also encouraged, in the form of splitting single-
flow connections into several subflows at the ingress router.

Currently, MPLS is used for applying domain-scale traffic
engineering rather than for enhancing the performance of
individual connections, hence, connection splitting is done
with static sharing weights for general load balancing. Conse-
quently, congestion control takes place at the actual end-hosts
(i.e the users), while the ingress MPLS router is confined
to the flow control of the available paths. However, if we
consider the ingress router as the congestion manager of the
MPLS cloud, as it splits the flow, assigns labels to each of its
subflows and becomes the end-host of a local MPLS service,
then our network-assisted congestion control can be integrated
to the MPLS network. Specifically, when the network operator
discovers multiple paths for bulk flows and sends the corre-
sponding labels to the ingress router, it also sends information
on how flows are grouped depending on path sharing, as
described in Sec. IV-A. The ingress router, which runs NMCC
for each bulk flow, exploits this information and source routing
to selectively engage the friendliness mechanism.

Software-Defined Networking (SDN) [24] is a novel net-
working scheme that can be used to achieve similar goals
to PSI, including centralized path selection. In SDN, pro-

447Networking 2016



grammable switches forward packets based on “dynamic”
rules that bind flow identifiers, such as fields of the IP header,
with outgoing network interfaces. These rules are defined by
a centralized controller that is aware of the network topology
and forms virtual circuits by explicitly sending rules to all on-
path routers. Circuit creation can be reactive, where a router
ask the controller’s assistance when no rule can be applied
to a received packet, or proactive, where the controller forms
the route a priori, for example, to achieve load balancing. In
both cases, SDN operation is transparent to the end-hosts that
manage congestion control.

As the SDN controller does not communicate with end
hosts, which means that it cannot pass any topological infor-
mation to them, we can apply the same ideas as for MPLS to
introduce in-network assistance and NMCC to SDN clouds, by
considering the ingress SDN router as the congestion manager
of bulk flows. When the SDN controller creates forwarding
paths by sending the appropriate rules to the SDN switches, it
can send information on how flows are grouped depending on
path sharing to the ingress SDN router, as well as instructions
on how to tag each IP header so as to implicitly select the
appropriate path. The ingress SDN router will then run NMCC
for each bulk flow, as above.

Adding in-network assistance to MPLS or SDN clouds may
raise two concerns: (i) the computational costs of applying
congestion control for numerous flows at the ingress router
may degrade scalability, (ii) the limited application scope of
backbone networks may prevent fully exploiting all connectiv-
ity options. For example, when multihomed devices connect
to different access networks, these may not employ the same
MPLS or SDN cloud, preventing the transparent use of NMCC
within each separate cloud.

VII. CONCLUSIONS

We presented a hybrid congestion control algorithm for
multiflow transport, consisting of NMCC and an in-network
assistance mechanism. Our design offers friendliness to single
path connections using TCP-like congestion control, while
increasing the utilization of network resources. It achieves this
by detecting shared physical bottlenecks and managing ag-
gressiveness appropriately, without requiring complex network
signaling or adding state to routers. We have implemented the
congestion control algorithm in the PSI architecture prototype
and evaluated its performance gains in several topological and
traffic scenarios. Our results not only verify the effectiveness
of our design, they also validate its performance superiority
over MPTCP’s coupled congestion control algorithm in short
transfers and heterogeneous networks. Finally, we discussed
how in-network assistance can be provided in IP networks
based on centralized routing, such as MPLS or SDN.

ACKNOWLEDGEMENT

The work presented in this paper was supported by the EU
funded H2020 ICT project POINT, under contract 643990.

REFERENCES

[1] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer
content distribution technologies.” ACM Computing Surveys, vol. 36,
no. 4, pp. 335–371, 2004.

[2] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath TCP,”
in Proc. of the USENIX NSDI Conference, 2011.

[3] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC 2992,
2000.

[4] J. Widmer, R. Denda, and M. Mauve, “A survey on TCP-friendly
congestion control,” IEEE Network, vol. 15, no. 3, pp. 28–37, May 2001.

[5] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and H. Tokuda, “Multipath
congestion control for shared bottleneck,” in Proc. of the PLFDNeT
Workshop, 2009.

[6] P. Key, L. Massoulie, and D. Towsley, “Path selection and multipath
congestion control,” in Proc. of the IEEE INFOCOM, 2007, pp. 143–
151.

[7] M. Becke, T. Dreibholz, H. Adhari, and E. P. Rathgeb, “On the fairness
of transport protocols in a multi-path environment,” in Proc. of the IEEE
ICC, 2012, pp. 2666–2672.

[8] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-
los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of
information-centric networking research,” IEEE Communications Sur-
veys and Tutorials, vol. 16, no. 2, pp. 1024–1049, 2014.

[9] P. Jokela, A. Zahemszky, S. Arianfar, P. Nikander, and C. Esteve,
“LIPSIN: line speed publish/subscribe internetworking,” in Proc. of the
ACM SIGCOMM, 2009, pp. 195–206.

[10] Y. Thomas, C. Tsilopoulos, G. Xylomenos, and G. C. Polyzos, “Mul-
tisource and multipath file transfers through publish-subscribe inter-
networking,” in Proc. of the ACM SIGCOMM ICN Workshop (poster
session), 2013, pp. 43–44.

[11] ——, “Accelerating file downloads in publish subscribe internetwork-
ing with multisource and multipath transfers,” in Proc. of the World
Telecommunications Congress (WTC), 2014, pp. 1–6.

[12] M. Zhang, J. Lai, A. Krishnamurthy, L. L. Peterson, and R. Y. Wang,
“A transport layer approach for improving end-to-end performance and
robustness using redundant paths.” in Proc. of the USENIX Annual
Technical Conference, 2004, pp. 99–112.

[13] D. Rubenstein, J. Kurose, and D. Towsley, “Detecting shared congestion
of flows via end-to-end measurement,” IEEE/ACM Transactions on
Networking, vol. 10, no. 3, pp. 381–395, 2002.

[14] G. Carofiglio, M. Gallo, L. Muscariello, and M. Papali, “Multipath
congestion control in content-centric networks,” in Proc. of the IEEE
INFOCOM NOMEN Workshop. IEEE, 2013, pp. 363–368.

[15] S. Oueslati, J. Roberts, and N. Sbihi, “Flow-aware traffic control for a
content-centric network,” in Proc. of the IEEE INFOCOM, 2012, pp.
2417–2425.

[16] D. Trossen, M. Sarela, and K. Sollins, “Arguments for an information-
centric internetworking architecture,” SIGCOMM Computer Communi-
cations Review, vol. 40, no. 2, pp. 26–33, Apr. 2010.

[17] G. Xylomenos, X. Vasilakos, C. Tsilopoulos, V. Siris, and G. Polyzos,
“Caching and mobility support in a publish-subscribe Internet architec-
ture,” IEEE Communications, vol. 50, no. 7, pp. 52–58, July 2012.

[18] B. A. Alzahrani, M. J. Reed, J. Riihijärvi, and V. G. Vassilakis,
“Scalability of information centric networking using mediated topology
management,” Journal of Network and Computer Applications, 2014.

[19] Y. Thomas, P. A. Frangoudis, and G. C. Polyzos, “Qos-driven multipath
routing for on-demand video streaming in a publish-subscribe internet,”
in Proc. of the IEEE Workshop on Multimedia Streaming in Information-
centric Network (MuSIC). IEEE, 2015, pp. 1–6.

[20] T. Henderson, E. Sahouria, S. McCanne, and R. Katz, “On improving
the fairness of TCP congestion avoidance,” in Proc. of the IEEE
GLOBECOM, vol. 1, 1998, pp. 539–544 vol.1.

[21] G. Parisis, D. Trossen, and D. Syrivelis, “Implementation and evaluation
of an information-centric network,” in Proc. of the IFIP Networking
Conference, 2013, pp. 1–9.

[22] J. Yen, “Finding the k shortest loopless paths in a network,” Science
Management, vol. 17, no. 11, pp. 712–716, 1971.

[23] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus,
“Requirements for traffic engineering over mpls,” RFC 2702, 1999.

[24] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Communications, vol. 51, no. 2, pp.
114–119, 2013.

448Networking 2016


