

Securing the Private Realm Gateway
Hammad Kabir, Jesús Llorente Santos, Raimo Kantola

Department of Communications and Networking
Aalto University
Helsinki, Finland

{hammad.kabir, jesus.llorente.santos, raimo.kantola}@aalto.fi

Abstract—The traditional mechanisms to traverse Network
Address Translators (NAT) do not scale well to battery powered
mobile-hosts: the majority of Internet users today. Private Realm
Gateway (PRGW) aims to replace NATs at network edges and
overcome the drawbacks of the NAT traversal mechanisms. The
solution does not require changes in end-hosts or protocols, and
hosts in the private realm can remain globally reachable without
polling. PRGW handles incoming connections based on domain
resolution of the served hosts. Incoming DNS queries create
connection state in PRGW for subsequent packet forwarding. The
connection state provides means for access control on the Internet-
originated flows. This paper analyses the security of PRGW and
introduces mechanisms that protect the served hosts and networks
against Internet-borne attacks, in particular: address spoofing and
Distributed Denial of Service (DDoS). The paper contributes to
establish PRGW as an incrementally deployable network function
that offers light-weight NAT traversal and protects the private
realm against the inherent Internet threats.

Keywords— Security; Gateway; NAT Traversal; PRGW; DNS;
NAT; Denial of Service; DDoS; Internet threats; Network;

I. INTRODUCTION
 According to ITU-T, mobile broadband subscriptions have

reached 3.2 billion individuals connected to the Internet [1].
This growing number of mobile users raises challenges for the
Internet and further aggravates the IPv4 address space depletion
problem. The adoption of NAT at network edges alleviated the
IPv4 address space exhaustion at the cost of introducing the
reachability problem, which prevents the Internet hosts from
unilaterally initiating a connection to hosts in the private realm.
The mobile hosts typically reside in the private address space;
however the IETF recommended methods for NAT traversal [2]
scale poorly to battery-powered hosts [3] and communication
applications: 1) device has to periodically wake-up to keep its
NAT binding alive; and 2) session setup requires exchanging
hundreds of overhead messages per application that seeks
global reachability, leading to extra power consumption on the
device and delays in the session setup.

In [4], we address these drawbacks of the classical NAT
traversal mechanisms and propose the Private Realm Gateway
(PRGW) solution. The solution does not require any changes in
end-hosts, i.e. clients and servers in the private network can stay
globally reachable without applications having to run the code
for NAT traversal or to maintain their NAT binding. PRGW can
be deployed either as a standalone replacement of NATs or as
a component of a customer edge switching [5-6] node, at the
network edge.

However, as PRGW makes end hosts reachable in the private
realm, it will open new opportunities for the hackers to target the

private hosts and their network. The increasing reliance of users
on their smart phones and mobile apps have presented mobile
networks and their hosts as lucrative targets to Internet hackers.
As a result, they are subject to a wide variety of threats possible
in the Internet.

The paradigm of Internet security can be viewed as an arms
race between attackers and defenders. The possibility of source
address spoofing, distributed denial of service (DDoS), traffic
floods and network/port scans is inherent in the Internet. Today,
hackers often abuse free services, e.g. Google DNS, and employ
compromised hosts as reflectors/amplifiers in launching their
attacks. The outcome of these attacks may lead to excessive
network usage, computing downtime, service unavailability, and
ultimately waste of human capital [7]. Societies heavily rely on
the Internet, and use it for mission-critical activities. Therefore,
the networks shall deploy mechanisms that protect their hosts
and resources against Internet-borne attacks, in particular source
address spoofing, network scans and DoS, which are often used
as launch point for more advanced attacks. Consequently, our
threat model in the paper spans to the above attack types.

In this paper, we seek to provide mechanisms that protect
PRGW and make it a feasible function in modern IP-networks.
As a result, PRGW emerges as a network function that besides
overcoming the drawbacks of the NAT traversal solutions [4] is
hardened against the inherent Internet threats, i.e. traffic floods,
source address spoofing and DoS. The mechanisms adhere to
the basic principles of PRGW design and limit all the changes
to network edges. This keeps the deployment of PRGW simple,
as the upgrade only takes place at the edge nodes, and can be
performed one network at a time. We argue that it may possible
to take a clean-slate approach, and design a better architecture
free of any security weaknesses, at the cost of a huge
deployment difficulty. Contrary to this, we take the deployment
constraints as the corner stone of our work.

The rest of the paper is structured as follows. Section II
discusses the related work. Section III presents vulnerabilities of
PRGW in handling the inherent Internet threats. Section IV
establishes the basis of our security solutions. Section V and VI
describe the security mechanisms and heuristics. Section VII
evaluates the security. Section VIII presents the discussion, and
Section IX concludes the paper.

II. RELATED WORK
The introduction of NAT at network edges extended the IPv4

address space lifetime. NAT effectively hides the private realm,
such that hosts in the private network share a set of public IP
address(es) towards the Internet. By default, NAT devices allow
outbound connections towards the Internet and create a state to
admit subsequent inbound packets of the flow. The connection
state enables address translation on packets traversing across the ISBN 978-3-901882-83-8 © 2016 IFIP

243Networking 2016

public and private realm, and at minimum contains a 5-tuple: IP
and port pair towards public Internet; IP and port pair in the
private network; and the transport protocol. Inbound packets that
do not have a state in NAT are dropped [8]. As a consequence,
connection attempts from the Internet hosts towards the private
realm fail, raising the reachability challenge. The current NATs
thus employ static port forwarding, or complex NAT traversal
mechanisms to admit new connections in the network.

The traditional NAT traversal mechanisms do not scale well
to mobile devices [3, 4]. While, static forwarding in NATs can
be vulnerable to ills of the Internet, in particular: spoofed flows,
network/port scans, and traffic floods from botnets.

Many proposals have attempted to tackle address spoofing
and DoS floods. Ingress filtering [9] is a typical solution to the
problem of source address spoofing. However, the solution has
not been globally adopted, possibly because costs and benefits
of ISPs are not well aligned: the receiver or its ISP benefit from
spoofing elimination while the other entities bear the expense of
configuring and executing the ingress filtering.

IETF proposed the use of SYN Cookies [10] during TCP
handshake, to protect the victim host against resource exhaustion
from spoofed SYNs. SYN cookie delays the allocation of TCP
resources in the host until the sender is verified as non-spoofed.

Besides eliminating spoofing, IP puzzles [11] dis-incentivise
spurious connection attempts from hosts. The mechanism slows
an aggressive host, by requiring the sender to process a received
challenge with certain computational effort before it can
establish a connection. Similarly, Hop-Count Filtering [12] aims
to protect against SYN floods, by comparing the statistics of the
received traffic with traffic observed during normal periods.
However, these techniques are not in wide use.
 Today, an advanced attacker often tricks a large number of
hosts to unknowingly participate in launching a DDoS. The
compromised hosts are mostly bot controlled by the hacker, in a
master-slave configuration. Networks typically detect attacks
using a set of security approaches, categorized into: Signature
detection, Anomaly detection, or a hybrid of both approaches.
Upon detecting a DDoS, DoS mitigation proposals typically
react by rate limiting the accepted traffic [13]. While it affects
the legitimate traffic as well, trace-back techniques are used to
locate the malicious entities. An identified attacker is blacklisted
and eventually filtered in the admitted traffic.
 The research in [14] leverages this understanding of network
security to propose a cooperative Feecod architecture. Under this
architecture, when a host detects DoS, i.e. from overloading of
its resources, the edge router of its ISP rate limits the admitted
traffic, so that the total workload for the victim is below its upper
bound. A log of each forwarded packet is then sought from the
outbound edge to ascertain if no attack originated from its
network, upon which the rate-limit is removed. The architecture
however requires many changes in end-hosts, as well as in the
sender and destination networks, detrimental to its adoption.
 The research in [15] tackles DoS through an overlay network
that registers the inbound requests before forwarding them to the
destination. The proposed indirection infrastructure aims to
tackle DoS using P2P networks. The paper in [16] presents
various server specific DoS mitigation techniques that require
changes in end hosts.

 Mobile networks rate availability as the top concern due to
high volume of DoS and network/port scans, and typically rate-
limit or reset the connections from aggressive hosts [13, 17].
 PRGW presents an architecture to overcome the drawbacks
of classical NAT traversal solutions. It follows the behaviour of
NATs for outgoing connections, such that private hosts connect
to Internet sharing a set of public IP addresses. But unlike NATs,
it allows Internet hosts to unilaterally initiate connection towards
the private hosts using a circular pool of public IP addresses
(CPPA). Upon receiving a DNS query for fully qualified domain
name (FQDN) of the private host, it temporarily allocates a
public IP address from the pool to represent the host in the
Internet and creates a temporary half connection state that allows
forwarding of the subsequent inbound flow to the private host.
The client typically initiates the data flow, upon resolving the
domain. Upon receiving the first inbound packet from the client,
PRGW creates a full connection state for the flow and returns
the allocated public address to CPPA for future allocations. In
this manner, by dynamically assigning an address from CPPA,
PRGW protects the private network from direct exposure to the
Internet, compared to port forwarding possible in NATs. The
half connection state in PRGW applies endpoint independent
filtering [18] relative to the client, while in the full connection
state the filtering is upgraded to address and port dependent
relative to the client. Since PRGW does not require any changes
in end-hosts or remote edge, it avoids the deployment challenge.

III. SECURITY VULNERABILITIES
This section analyses the impact of Internet’s weaknesses in

handling address spoofing and network floods on PRGW. We
argue that PRGW does not introduce any explicit security
weakness in comparison to the current Internet model, or how
NAT allows inbound connections. Like NATs, it also filters to
drop the packets that do not have an ongoing connection or a
valid state. In addition, 1) the CPPA prevents the private hosts
from direct exposure to the Internet, compared to static NATs;
and 2) hosts in the private realm are only accessible through
their FQDNs, which provides defence-in-depth, in combination
with a set of mechanisms that we will introduce in this paper.

Fig. 1 identifies a set of hazardous scenarios where PRGW
and the hosts located behind it could be vulnerable to Internet
abuses, i.e. in the absence of security mechanisms.

Here we adopt the filtering classification developed in RFC 4787 related
to the servers, and use the terms in relation to the clients.

Fig. 1. RGW vulnerabilities to inherent Internet threats

244Networking 2016

1) Denial of Service: Fig. 1.a illustrates DoS attack from an
aggressive Internet host that forces PRGW into blocking state,
by issuing flood of DNS requests for the served hosts. In this
state, the CPPA is depleted due to allocation of all its addresses,
leaving PRGW unable to accept new incoming connections.
The exhaustion of circular pool could also happen due to poor
provisioning of the public IP address pool.

2) Connection hijacking: The attacker in Fig. 1.b floods an
address R1 of PRGW. PRGW would drop any packet unrelated
to an ongoing connection or valid inbound state. However, on
the event that a public host initiates a connection and address
R1 is allocated, there is a window of opportunity when the
attacker can claim the connection state. This will result in DoS
to the host that originally requested access to the service.
Unfortunately, IP address filtering is not a fail proof solution
due to the possibility of source address spoofing in the Internet.

IV. PRINCIPLES OF SECURITY MECHANISMS
Attackers often exploit the best effort nature of the current

Internet to launch attacks. Disguising under a spoofed identity,
the attackers can successfully inject the traffic in the destination
network and yet escape the network auditing. Therefore, the key
to improve Internet security comes from deploying mechanisms
that eliminate spoofing, authenticate the sender, detect malicious
hosts, thwart hijacking attempts and thereby grant access only to
the legitimate hosts. We define that PRGW must comply with
the following principles to tackle the inherent Internet threats:

1) Flow acceptance must be limited to verifiable sources to
tackle address spoofing and prevent resource exhaustion.

2) UDP flow initiations are admitted only after a connection
has been signalled through a secure channel e.g. SIP(S) [19].

3) To favor deployment, security algorithms and operations
shall not require changes to end-hosts, protocols, or application.

4) Under the network stress, resource access should be
granted based on the source reputation.

V. PREVENTING DNS ABUSE/EXPLOITATION
PRGW allows unilateral connection initiation to the private

realm using CPPA. Since CPPA relies on the inbound domain
resolutions, the architecture of PRGW carries a DNS leaf node
that is authoritative for the domains located in its private realm.

The state of the art with DNS is such that it uses UDP as
transport protocol for majority of its operations. As connection-
less protocol, UDP is open to possibility of address spoofing.
Attackers often exploit this vulnerability to launch DNS floods,
and yet avoid the network audits. Alternatively DNS floods may
originate from non-spoofed hosts, under bot control. In addition
hackers often use freely-accessible open DNS resolvers, such
as Google DNS, as DNS reflectors in launching their attacks.

PRGW is susceptible to this abuse of DNS that can lead to
exhaustion of the CPPA resources. To trace aggressive host, the
current practice in public name servers is not to serve recursive
domain requests. As a result, source address of the actual DNS
resolver is revealed to the destination. However, the possibility
of address spoofing hinders the ability of the destination, i.e. in
our case PRGW, to protect itself from DNS floods initiated by
the invisible attacker.

The resource [20] describes best practices and existing state
of the art in the DNS security. Among others, it recommends

DNS resolvers/servers to rate limit the domain requests from a
source, handle malformed packets, filter requests to not-hosted
domains, apply ingress filtering, detect dictionary DNS attacks
from hackers i.e. scanning their targets, use of DNSSEC, access
control lists (ACL) to filter DNS requests from un-allocated or
reserved address spaces, and to drop domain requests originated
outside of its network to avoid becoming a DNS reflector.

While these recommendations aim to improve the Internet’s
resilience against DNS abuses, the ultimate outcome depends
on their global adoption by all the network administrators and
operators. Realizing this, we attempt PRGW security against
the DNS abuses and exploitations by defining set of heuristics
and mechanisms, limiting all the changes to the network edges.

A. DNS Relay
We implemented DNS-Relay as a frontend to protect PRGW

from direct exposure to the Internet. This is to prevent the CPPA
exhaustion from malicious domain resolutions, e.g. inbound
DNS floods and spoofed requests. Under this model, PRGW is
protected by virtue of delegating the DNS security to its ISP.

The DNS relay implementation draws upon the use of DNS
reverse proxies in ISP networks and security solutions that aim
to secure networks against DNS abuses. In our implementation,
we leverage this approach such that the DNS relay forwards an
incoming domain request to PRGW and identifies the original
sender in the DNS extensions or additional records. The sender
tuple identifies: source IP and source port, besides the transport
protocol and transaction-ID of the inbound query message. This
allows PRGW to identify the original sender, and thus apply its
security mechanisms, such as the address allocation model and
name server classification. These mechanisms are defined in the
subsequent sections. The corresponding DNS response message
from PRGW is forwarded by DNS Relay to the actual source,
after removing the sender-identification tuple.

The mechanism only requires a few alterations in the edge
network, i.e. the ISP name server forwards the inbound domain
queries with DNS source information to PRGW. We argue that
the changes in the edge network can be motivated by benefits
possible from adoption of PRGW, e.g. deployment of servers in
private address space, and less-complex session setups. But we
consider these aspects beyond the scope of this paper.

The delegation of security to a dedicated DNS-Relay element
offers multiple opportunities: 1) it lessens the load of executing
the complex DNS security algorithms from PRGW; and 2) the
dedicated relay element can independently leverage the existing
state-of-the-art and future research in DNS threat detection, to
serve the PRGW with legitimate traffic only. As a result,
PRGW stays protected against DNS attacks and can allocate the
CPPA resources to legitimate hosts.

B. Name Server Classification
When the aforementioned DNS Relay is in attack detection

phase, and has not mitigated the DNS attack yet, it is possible
that some share of DNS flood is received at PRGW. To prevent
the consequent resource depletion, PRGW leverages from the
classification of external name servers and allocates the CPPA
resources following an Address Allocation Model.

245Networking 2016

Under this model, PRGW classifies the external DNS servers
into: whitelist, greylist and blacklist. Servers on each list are
treated differently in PRGW and are promoted/demoted in the
classification dynamically, based on the influx of attack traffic.

Whitelisting can be based on business contracts and service
level agreements (SLAs) between service providers, where the
networks that seek priority access meet a set of pre-conditions.
A whitelist server can meet the specific SLA, by employing the
best DNS practices, e.g. active ingress filtering of DNS requests
originated in its network, and disabling recursive resolution for
external sources. The DNS resolver can also transport domain
queries towards PRGW over TCP connection. This eliminates
the possibility of spoofing in DNS requests, and on the event
that an attack is reported it enables tracing an aggressive host
back to its network. The terms of whitelisting can be agreed in
peering agreements between mobile operators, administrators
of the ISPs, or trusted networks, and may stress the networks to
employ mechanisms such as DNS/TCP, DNSSEC and ingress
filtering to receive whitelist/preferred access.

The whitelist servers are specifically configured in PRGW.
By default, the rest of the name servers are greylist. This also
includes open DNS resolvers and name servers that are freely
accessible to Internet hosts, and often serve as DNS reflectors
in launching DoS. A greylist name server is therefore offered
less resources in PRGW than a corresponding whitelist server.

PRGW actively maintains these lists based on the influx of
attack traffic. A name server is demoted to a lower category if
states reserved by it repeatedly expire in PRGW. A state expires
in the PRGW if it is not claimed by an inbound flow in time T0.
When the state expiration rate for a name server meets threshold
RT, the server undergoes a time penalty TD in demoted category.
A name server that repeatedly exceeds its SLA is blacklisted for
time TB, during which it is barred from accessing the circular
pool resources.

C. Circular Pool Address Allocation Model
The CPPA address allocation model responds to an incoming

DNS query based on the circular pool load conditions. The
model rate limits the number of simultaneous states reserved to
a DNS server or for a private host, and manages total allocations
of CPPA such that DNS requests from multiple greylist servers
only take a portion of the circular pool. For this, the address
allocation model operates in conjunction with the name server
classification. The model primarily attempts to tackle the DNS
floods from less secure greylist servers. By prioritizing whitelist
servers in address allocation over greylists, the model ensures
that whitelist servers always have preferred access to PRGW,
particularly under the attack/load conditions.

VI. FILTERING MALICIOUS INTERENT FLOWS
Internet hackers distribute malicious packets, initiate traffic

floods and perform network/port scans to launch their attacks.
A hacker can either employ a spoofed identity or hire bots from
bot-rental business to launch these attacks. In this section, we
introduce a set of mechanisms that attempt to ensure that only
a legitimate host gains access to the private realm.

A. TCP-Splice Mechanism
The mechanism ensures that PRGW is secured against hijack

attempts from spoofed sources. Fig. 2 presents the mechanism,
where an inbound SYN that corresponds to a temporary state is
challenged by PRGW with a cookie. Since the TCP handshake
only completes on arrival of an ACK bearing the sent cookie, it
ensures that the sender is non-spoofed. Next, the PRGW assigns
the state to the sender followed by the connection setup with the
private host.

Since TCP connection does not complete with spoofed host,
PRGW is protected against spoofed sources. PRGW employs a
slightly tailored SYN cookie algorithm [10] for computing the
initial sequence number (ISN), which is used as a cookie to
eliminate address spoofing in the inbound packets.
 ISN = time mod-32[5-bits]+MSS encoding[3-bits]+hash{source-IP,
destination-IP, source-port, destination-port, SECRET} [24-bits] (1)

The use of the SYN cookie requires that TCP flow is relayed
across PRGW. The relay itself must adjust the SEQuence and
the ACKnowedgement number on both sides of the PRGW, to
maintain the end-to-end semantics of the TCP connection. This
is necessary due to the selection of random initial sequence
numbers by the private host and PRGW. The translation of SEQ
and ACK numbers effectively splices the connection on both
sides of the PRGW. By keeping the SEQ number of the SYN to
the private host the same as that of the inbound SYN, PRGW
saves translation cost on one TCP sequencing.

B. Bot-detection Scheme
Attacks to PRGW could also originate from non-spoofed, i.e.

bot hosts. In this section, we present a bot-detection method that
attempts to protect PRGW against SYN floods from botnets,
and thus complements the limitations of TCP-Splice.

In contrast to the networking elements that simply filter the
packets mismatching to a flow or a connection state, PRGW can
carry bot-detection on the dropped packets. Fig. 3 illustrates the
mechanism where PRGW seeks to ascertain if the sender of the
repeatedly mismatching SYNs is a non-spoofed entity. When
the mismatching packets exceed a threshold in time TO, PRGW
handles the next inbound SYN failing to claim a state as per the
SYN cookie algorithm. The subsequent arrival of an ACK
bearing the sent cookie establishes the sender as non-spoofed.
The history of dropped packets together with the non-spoofing
check hints at a high likelihood of the sender as a bot-controlled
host. Following which, the PRGW refuses any state to this host.

1) Implementation Considerations

Fig. 2 TCP-Splicing in PRGW

246Networking 2016

An attacker meets the detection threshold, when mismatched
packets reach a threshold in time TO. Attackers typically initiate
SYN floods at higher rates than a normal host, which only re-
attempts if the previous packet is not responded within a
retransmission timeout (RTO). RTO is typically an operating
system defined parameter, and we choose a value below it as
measurement interval TO, since it significantly differentiates the
legitimate behaviour from an attack. For TCP, UNIX domain
sockets and Windows define RTO as 3 seconds [21]. Hackers
can also initiate slow-rate SYN floods from various addresses,
and thus bypass the bot-detection threshold. This will reveal the
lower bound of PRGW security, where PRGW is secure against
spoofed flows only. Bot-detection is executed only after an
attacker meets the detection threshold, because a continuous
monitoring for bot-detection would be too costly.

To realize the impact of our design choices, we classify the
source of a mismatching packet into: 1) spoofed host; 2) non-
spoofed attacker; or 3) a legitimate host. A packet may arrive
from a host whose corresponding state was previously hijacked.
However, a legitimate host does not re-attempt (or would not
re-attempt x times) within RTO, and thus it would not meet the
detection threshold. Similarly, a spoofed address cannot reply
to SYN/ACK with the sent cookie, and hence is not blacklisted
as attacker. Thus, only a bot-operated host is susceptible to this
mechanism after it replies with an ACK bearing the sent cookie.

2) Caveats and Considerations
We realize that Bot-detection is not a fail proof solution and

is vulnerable to abuse. Thus, we suggest to dynamically adjust
the detection threshold and measurement interval TO, to prevent
the exploitation of the protection mechanism. Despite all the
countermeasures, the possibility of a false alarm exists, and thus
a bot-suspected host is blacklisted for temporal time TD.

Since both the TCP-splice and Bot-detection could co-exist
in the PRGW, there is a need to differentiate an inbound ACK
under Bot-detection from an ACK that is part of TCP handshake
with a public host. For this, SYN cookies of TCP-Splice and
Bot-detection must differ, e.g. in SECRET value of equation 1.

C. Security by Deployment
A carrier-grade realm gateway (CGRG) can improve security

of the private realm from a variety of resources at its disposal.
For instance, the traffic from white and greylist sources can be
accepted over separate sets of interfaces. This is often possible
e.g. in mobile networks, where the traffic from other operators
or corporate networks is processed on separate interfaces than
those for public Internet [13]. This ensures dedicated access for

whitelist networks and enables pursuing rather aggressive
security on the greylist interfaces.

D. Enhancing the Circular Pool Algorithm
In [22], we present a new algorithm for allocating the public

IP addresses of the circular pool, enabling fine-grained access
control to flows arriving from the Internet. The new algorithm
significantly improves the scalability and security of PRGW.

The underlying idea is to address the services and endpoints
simultaneously. To that end, we leveraged the concept of the
SRV DNS records and created Service FQDN (SFQDN) to
address services on end-hosts. Currently, the use of SRV is only
limited to a few applications, whereas the DNS A records are
widely in use. SFQDN bridges this gap between DNS A records
and the SRV records, and defines simple domain names linked
to a specific service. For example, an SSH service at Host A –
a.foo can be represented as ssh.a.foo or it can arbitrarily
be defined as a combination of port number and transport
protocol as in tcp22.a.foo. For aesthetic/security purposes,
hosts can hide their SFQDN naming in favour of a more user
friendly name, e.g. using CNAME records in DNS as a pointer
to other domain names. The SFQDN and its mapping to a port
can stay inside the PRGW while the CNAME to PRGW
mapping is stored at a DNS server in the ISP network.

Since the SFQDN includes both the endpoint and the service,
using the RFC defined terminology, SFQDN resolution allows
endpoint independent but port dependent filtering in the half
connection state relative to the remote host. The more specific
half state allows reusing a public IP address for several different
services, improving the scalability of CPPA. Theoretically, it
implies that a single IP address can be reused as many times as
the combination of available ports and protocols. Meanwhile,
forcing the blocking state on PRGW becomes more difficult
because the hacker must send significantly larger number of
DNS requests to reserve the address pool for all the ports. In
addition, the hackers must also target the allocated port besides
simply flooding the public IP addresses for state hijacking. The
temporary half connection state (RX:oPH, H:iPH, Pproto, Ttimeout)
is unique and carries the IP address and port of the private host
(H:iPH), IP address and port on the public side of the PRGW
(RX:oPH), the protocol (Pproto) and lifetime (Ttimeout) of the entry.
Upon the arrival of the first packet of the flow, PRGW upgrades
the filtering to address and port dependent.

SFQDN contributes to security due to its more specific
address allocation. This increases the attack surface, such that a
hacker has more opportunities to meet the detection threshold,
as a hacker must scan the entire port range to discover the active
services and compromise respective allocations. The increased
scalability also makes it more difficult to force the blocking
state. Since PRGW solely admits inbound connections based on
the domain queries, it becomes simple to temporarily block a
service under attack and collect the evidence of misbehaviour.

VII. SECURITY EVALUATION
This section evaluates the security of PRGW in tackling the

inherent Internet threats: source address spoofing, network/port
scans and DNS floods. We implemented the above mechanisms
in our PRGW prototype and subjected them to a set of attacks
to determine the bounds of the PRGW security. The prototype
runs in our test network, which is built in Linux environment
using standard Linux networking capabilities: linux containers

Fig. 3 Bot-detection method on SYN floods from a bot-operated host

247Networking 2016

and switches. The PRGW node in the testbed attends hosts and
services located in its private realm, whereas legacy hosts in the
testbed either initiate inbound connections or attacks towards
the PRGW. The legacy nodes use virtual network interfaces to
provide an illustration of many hosts participating in the traffic
towards the PRGW.

We utilize Scapy [23] to craft malicious packets and launch
attacks on PRGW. For our testing, this enables the legacy nodes
to: 1) initiate spoofed traffic; and 2) emulate network floods
from non-spoofed hosts, i.e. bots. The attack load is measured
in SYNs per second from the hacker, whereas the network delay
between the nodes is artificially generated. The outcome of the
testing reveals the effectiveness and cost of the PRGW security,
in terms of the ratio of the hijacked connections and processing
delay introduced in the PRGW, respectively.

Fig. 4 demonstrates the PRGW security against DNS abuses.
Having pre-configured the whitelist servers, we submit PRGW
to DNS flood from multiple greylist servers. In the absence of
security, the DNS flood would reserve all the CPPA resources
and thus force PRGW in blocking state. However, the address
allocation model notes that the DNS source is greylist and limits
the resource allocations to a portion of the circular pool.

In this manner, the allocation model prevents the exhaustion
of CPPA under DNS floods and ensures that whitelist servers
have access to PRGW even under load conditions. A similar
resource depletion attack using SFQDN is more challenging,
since the high flood rate and amount of domain queries required
to force blocking state increases likelihood of attack detection.
Moreover, the rate limits on simultaneous domain queries from
a DNS server and to a host, hinders the attacker ability to launch
DNS floods from a few name servers or open resolvers.

We tested the CPPA enhancement algorithm by designing
different inbound traffic patterns that evaluate the improvement
in PRGW security due to SFQDN, especially against network
and port scan attacks. We designed the following tests:

x Test1: 100% of the inbound traffic has the FQDNs of the
destination hosts. On the event that hacker’s packet meets
an allocated address, the half connection state is claimed.

x Test2: 50% of the inbound traffic is generated using FQDN
and the rest employs SFQDN. Hacker must target the right
IP and port pair to claim the SFQDN allocation.

x Test3: 75% of inbound traffic is SFQDN; the rest FQDN.
x Test4: 100% of the inbound traffic is SFQDN.

Fig. 5 shows the result of stressing the prototype with above
traffic patterns at network delay of 200 msec and a constant load

of 4 connections per second. The connection load is distributed
among private hosts and follows an exponential distribution. In
parallel, a network scan attack at 40 SYNs/sec from the legacy
nodes targets the CPPA. The figure reveals that for test1: FQDN
initiations only, nearly all the connections are hijacked. This is
because the hacker constantly scans the CPPA at high rate and
beats the legitimate host in claiming the end point independent
state. However, as the share of SFQDN grows and nears 100%
in total inbound DNS queries, the ratio of hijacked connections
declines and nears zero for an all SFQDN traffic. This is due to
the fact that besides scanning the public IP addresses, a probing
attacker also has to randomly scan for the allocated port out of
216 possible ports to claim the state. The more specific address
allocation for SFQDN enables more opportunities for a hacker
to meet the detection threshold, which leads it to blacklisting in
Bot-detection and subsequent rise in the legitimate connections.

Next, we evaluate the PRGW security against spoofed flows
and network scans. We subjected PRGW to 3 connections (i.e.
DNS requests) per second and in parallel launched 40 spoofed
SYNs per second from the legacy nodes to CPPA, for hijacking
the states. The testing reveals that spoofed SYNs failed to claim
the half states due to better filtering enabled by the SFQDN.
However, the spoofed SYNs could hijack the FQDN allocations
in the absence of security mechanisms, because a hacker would
scan the network at a high rate and can compromise states if its
packet meets an IP address, allocated in the FQDN state.

In contrast, TCP-Splice successfully thwarts hijack attempts
from spoofed sources and prevents leaking of spoofed packets
into the private realm. Fig. 6 summarizes the PRGW’s delay in
assigning the half state to legacy hosts, not considering the link
latency. The figure shows that TCP-Splice obviates spoofing in
the admitted flows, at the cost of delaying the claim to the half

Fig. 6 Delay in assigning TCP half-connection state, before and after security

Fig. 4 Allocation model limiting the DNS flood from greylist servers

Fig. 5. Impact of inbound traffic type on security, versus network scans

248Networking 2016

connection state. This is because to its SYN the sender receives
a cookie from PRGW, which must be relayed back in the next
inbound ACK to establish the connection, causing the delay.

In terms of performance, this limits the reusability of the
public IP address and the port combination by the same duration
for the next inbound connection. In a real network, the end-to-
end latency for TCP messages would be added to compute the
total delay in assigning the half-state. It is possible to reduce the
average delay penalty caused by TCP Splice by using it
selectively, i.e. on privileged ports, or under network attacks.

Fig. 7 presents an overview of PRGW security against SYN
floods from bot hosts, which are non-spoofed sources under a
botnet. Without security, an attacker can constantly scan the
CPPA at high rate and on the event that its packet meets a half
connection state, it will claim the allocation. In comparison, the
Bot-detection would constantly track the dropped packets and
once they exceed a threshold, the source is blacklisted following
a non-spoofing test. As a result, states reserved by legacy clients
are protected against the hijacking attempts. The figure shows
that Bot-detection is more reactive to high flood rates and filters
them earlier, as they quickly meet the detection threshold.

Fig 8 expands on the same result and shows the impact of
stressing PRGW with a SYN flood sourced from eight hosts
participating in the attack. In parallel, the public hosts initiate 3
connections/second towards the CPPA of three addresses, the
network delay is 200 msec and the bot-detection threshold for a
source is 12 dropped SYNs in 2 second interval. In practice, this
threshold could be chosen during network planning phase, i.e.
based on peaks in the traffic statistics graph. The figure reveals
that the ratio of hijacked connections decreases as the attack
load increases, since an attack with more active bots is filtered
earlier, contributing to rise in the legitimate connections. Fig. 9
shows the impact of network delay, where the network delay is

time elapsed from creating a half connection state to the arrival
of first packet from the client host.

The outcome of Bot-detection depends on multiple factors.
From attack perspective, these are: number of flooding sources;
choice of network/port scan strategies, i.e. targeting the known
services or random port scans; and flooding rates for attacks or
avoiding the detection threshold. On the other hand, the PRGW
can improve its defense by dynamically adjusting the detection
threshold, allocating more circular pool addresses and allowing
SFQDN only. These strategies can provide more opportunities
to hackers to meet the detection threshold and get blacklisted.

The paper obviously cannot present the PRGW security as a
function of all the parameters. But, the testing generally reveals
that Bot-detection reacts the best when attack volume is shared
by few hosts. This means that to succeed a hacker must sacrifice
rather large number of bots that do not use spoofing, and hence
are likely to be identified by the target network’s PRGW. The
use of Bot-detection together with TCP-Splice guarantees that
only legitimate hosts gain access to the private realm.

Fig. 10 compares the security of FQDN initiated connections
in PRGW, in presence and absence of the security algorithms.
Again,-we subject the PRGW to a load of 3 connections/sec at
a network delay of 200 msec, while 8 non-spoofed sources
flood CPPA with 40 SYNs/sec. Fig. 10.b shows that the ratio of
hijacked connections decreases significantly after the security.
The figure also reveals the impact of increasing CPPA address
space, which contributes to security by increasing the overall
attack surface. This shows that careful network planning and
proper dimensioning of the CPPA resources can have positive
impact on the PRGW security.

To deeply analyse the security of SFQDN states, we divide
the Internet hackers into: 1) probing/scanning hackers; and 2)
advanced hackers. A probing hacker scans the entire CPPA
address space and port range to discover the available services,
IP addresses or NAT mappings. It is quite likely that such an
attacker due to its limited victim’s knowledge, and thus random
network scanning will fail to attack PRGW as shown for Test 4
in Fig. 5. In comparison, an advanced hacker may already know
services/ports in the target network, via knowledge sharing
among hackers or using botnets that perform the service
discovery process. As a result, the hacker can target the SYN
floods to the specific ports. We analysed the security of SFQDN
allocations against such attacks and depict it in Fig. 11. We use
the same test parameters as for Fig. 10. The result in Fig. 11.b
shows a rise in the legitimate connections after security. This is
because Bot-detection filters the hosts that initiate the floods

Fig. 8 Securing states against SYN floods from bot-controlled hosts

Fig. 7 Mitigating DDoS (SYN flood) via Bot-Detection method

Fig. 9. Impact of network delay on PRGW security

249Networking 2016

towards PRGW, however it is possible that a flood hijacks some
states before it is entirely mitigated, as shown in the figure.

Clearly PRGW attains best-case security, when the hacker is
unaware and simply scans the network for vulnerable services
or IPs, i.e. a probing attacker, while the PRGW accepts SFQDN
requests only. Under the premise that the attacks are directed to
the served ports, it is perhaps best that SFQDN naming is
changed to new service ports. This will force attacker to restart
its service/port discovery cycle and help PRGW regain its best
case security. Such use of SFQDN is possible in cases where a
single administration owns or manages both the remote hosts
and the PRGW. For example, Internet of Things (IoT) can
emerge as one such use case where the communicating nodes
and gateway will fall under single administration. In absence of
such a scheme, Fig.11 shows the security of SFQDN allocations
against an advanced hacker.

It is pertinent to mention that in our testing no state allocation
was compromised by spoofed flows. However, few allocations
were hijacked by the packets from the bot-hosts. This is because
before a traffic flood is mitigated, some of its packets can beat
a legitimate host in claiming the allocated state, and cause DoS
to the actual client. Thus the security of PRGW can exhibit false
negatives during attack. However, these false negatives reduce
as the attack progresses, since the more active bots will be
filtered upon exceeding the detection threshold.

The ratio of false negatives can further reduce by: 1) network
dimensioning that presents an attacker more opportunities to
meet the detection threshold; and 2) dynamically adjusting the
detection threshold to prevent exploitation of the protection
mechanisms. Though our testing identified few false negatives,
PRGW did not exhibit any false positives, i.e. classifying a
valid client as attacker. We argue that in the PRGW networks,
a false negative is not as severe as a false positive; since a client
that suffers hijacks can always re-attempt to access the desired
service in the private realm.

Table-I summarizes the mechanisms deployed for securing
PRGW against Internet threats and their impact on the PRGW’s
performance. Whereas, Table-II presents the duration that a
received packet is processed in the PRGW security before a
decision is reached. The delay values in Table II are computed
within PRGW at algorithmic level, i.e. they do not include the
time spent in acquisition, packetizing and forwarding of the
packet. These values nicely fit with the delay requirements of
the end-to-end connection. Hence, PRGW and its hosts can be
protected at the cost of minute processing delay.

The current PRGW prototype employs a minimalistic set of
rules, i.e. rate-limiting, to provide the firewall functions. The
deployment of PRGW at the network edges would require
integrating PRGW with a commercial firewall. We argue that
integrating a firewall would further reduce and nearly eliminate
the false negatives during an attack, besides hardening the
security of PRGW against well-known attacks.

VIII. DISCUSSION
The security testing shows promising results. Though, the

implemented mechanisms exhibit false negatives, the proposed
firewall integration will present PRGW as a feasible network
function. For HTTP, which can set up many flows after a single
DNS query, PRGW employs an HTTP reverse proxy to serve
the inbound requests. Besides lessening the load on the circular
pool, it offers advantages in terms of offloading SSL encryption
and load balancing to the proxy [4]. Compared to proxy-server
operations in SOCKS [24], TCP-Splice offers an efficient
redirection mechanism for admitting the flows, and moves the
processing load from caching at application-layer to mere
sequence number translation at the transport layer.

TABLE I. SECURITY MECHANISMS AND THEIR PERFORMANCE

Security threats Mechanisms Cost of Security

Source address spoofing TCP-Splice Extends duration of
assigning the state

Bot-controlled flows Bot-detection Possible False
Negatives

Malformed ACK segments cookie verification -

DNS-floods
Rate limit simultaneous
DNS allocations to hosts

and greylist server(s)

Less trusted servers
face congestion, under

load

Spoofed DNS requests DNS/TCP, DNS Relay
and Ingress filtering

SLA negotiations, and
sender’s effort

TABLE II. PROCESSING OF INBOUND PACKET/FLOW IN THE PRGW SECURITY
 Processing delay Outcome

Inbound TCP SYN segment < 0.1 msec Respond with cookie
TCP-Splice (on non-spoofed) ~1 msec Eliminates spoofing

Packet not matching any state ~0.01 msec Processing in bot-
detection method

Malformed ACK segments < 0.1 msec Accept/Drop

DNS/TCP request Connection-setup
delay for 1st query

Spoofing elimination
in the DNS queries

(Greylisted) DNS/UDP request ~ 1 msec Accept if the load
< threshold

Fig. 10. Security of FQDN allocations, (a) without and (b) with security

Fig. 11. Security of SFQDN allocations against advanced hackers, (a)

without and (b) with PRGW security

250Networking 2016

In [4], we introduced PRGW to address the challenges in the
Internet and offer a reachability solution that overcomes the
drawbacks of the classical NAT traversals. The contribution of
this paper is in presenting PRGW as a feasible function in the
edge nodes that is well protected against the Internet attacks.

For end host security we can compare PRGW to the case that
the application is using the cumbersome but functional IETF
NAT traversal mechanisms [2]. To prevent attacks to the hosts
that use SFQDNs and to identify the host application, we see
the need to integrate an application policy database in PRGW
that will link SFQDNs to application parameters, such as proxy
name or addresses that can communicate with this SFQDN, and
timeouts that will be used to monitor the application traffic, etc.
PRGW can consult this database for making address allocation
decisions. The idea would be to allow flows only from known
entities or allocate most CPPA resources to known entities. The
time parameter in the database can also rate limit an application
that assumes connection initiation from unknown entities. We
believe this would work for example for Peer-to-Peer SIP.

By tying the use of communication service proxies to PRGW
via an application policy database, and by monitoring and rate
limiting the application traffic, we reach the same level of host
protection as in the case of application-specific NAT traversal.

IX. CONCLUSION
PRGW offers better than NAT service to hosts in the private

address space. Unlike NAT, it presents a scalable way to initiate
flows from other networks to hosts in the private address space.
At the same time, no application-layer NAT traversal code is
needed. Private hosts can stay reachable without need for keep-
alive signalling to maintain their state, thus reducing the battery
consumption. It offers shorter session setup delays, and eases
configuring and managing of the port forwarding compared to
how it is implemented in NATs, since PRGW can dynamically
establish it upon the domain resolution.

This paper complements these advantages of PRGW through
a security analysis that presents it as a feasible Internet function.
The presented heuristics and mechanisms harden the PRGW
against the inherent Internet weaknesses, such as source address
spoofing, network/port scans and DNS floods. The mechanisms
limit all the changes to network edges to favour the deployment
and prevent the resource exhaustion in PRGW, by limiting flow
acceptance to verifiable sources only.

PRGW admits inbound connections towards private hosts
based on the domain name resolutions. We briefly discuss the
current state of the art with DNS and leverage it for securing
PRGW against Internet DNS abuses. Besides employing the
best practices, we also present a new Bot-Detection algorithm
that together with TCP-Splice attempts PRGW security against
flows from spoofed and non-spoofed sources.

The security evaluation reveals that PRGW can be protected
against the inherent Internet threats, at the cost of minimal
processing delay. We briefly discuss the impact of different
factors, such as attack strategy and inbound traffic pattern on
the effectiveness of PRGW security. By addressing the security
limitations of PRGW, this paper further adds to the claim of
deploying PRGW at the network edges to address the Internet

challenges [4]. We argue this further by briefly comparing NAT
and PRGW, and the security of end hosts under both solutions.
The adoption of PRGW to networks is simple, since it does not
require any changes in end hosts, protocols or applications.

REFERENCES
[1] ITU-T ICT STATISTICS. Free statistics. [Retrieved on Oct.2015]

Available: https://www.itu.int/en/ITU-D/Statistics/Documents/facts/
ICTFactsFigures2015.pdf

[2] L. Daigle, IAB Considerations for UNilateral Self-Address Fixing
(UNSAF) Across Network Address Translation, RFC 3424, Nov 2002

[3] G. Camarillo, J. Mäenpää, A. Keränen and V. Andersson, ”Reducing
Delays Related to NAT Traversal in P2PSIP Session Establishments,” in
Proc. IEEE Consumer Communications and Networking Conference,
CCNC 2011, pp.549-553, Las Vegas, NV, USA, 9-12 Jan. 2011.

[4] J. Llorente, R. Kantola, N. Beijar, and P. Leppäaho, "Implementing NAT
Traversal with Private Realm Gateway", Communications (ICC), 2013
IEEE International Conference, 2013, pp. 3581-3586.

[5] R. Kantola, “Implementing Trust-to-Trust with Customer Edge
Switching,”, AMCA in connection with AINA 2010, Perth, Australia, 20-
23 April 2010.

[6] H. Kabir, R. Kantola, and J. Llorente, "Security Mechanisms for a
Cooperative Firewall," in Internatinal Symposium on Cyberspace Safety
and Security (CSS), Paris, 2014.

[7] "2014 Cisco Annual Security Report," CISCO, 2014.
[8] Guha, S., Biswas, K., Ford, B., Sivakumar, S., and P. Srisuresh, "NAT

Behavioral Requirements for TCP", BCP 142, RFC 5382, October 2008.
[9] P. Ferguson and D. Senie, "Network Ingress Filtering: Defeating Denial

of Service Attacks which employ IP Source Address Spoofing," RFC
2827, May 2000.

[10] W. Eddy, "TCP SYN Flooding Attacks and Common Mitigations," RFC
4987, August 2007.

[11] M. Ma, "Mitigating Denial of Service Attaks with Password Puzzles," in
Information Technology: Coding and Computing, 2005, pp. 621-626.

[12] H. Wang, C. Jin, and K. G. Shin, "Defense Against Spoofed IP Traffic
using Hop-Count Filtering," in IEEE/ACM, Transactions on Networking,
Volume 15, 2007, pp. 40-53.

[13] "SRX Series AS Gi/SGi Firewall for Mobile Network Infrastructure
Protection," Juniper Networks, Whitepaper.

[14] H. Beitollahi and G. Deconinck, "A Cooperative Mechanism to Defense
Against Distributed Denial of Service Attacks," in 10th IEEE
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom) 2011, 2011.

[15] R. Lua and K. C. Yow, "Mitigating DDoS Attacks with Transparent and
Intelligent Fast-Flux Swarm Network," in IEEE Networks, Volume: 25,
Issue:4, 2011, pp. 28-33.

[16] R. R. Robinson and C. Thomas, "Evaluation of Mitigation Methods for
Distributed Denial of Service Attacks," in 7th IEEE Conference on
Industrial Electronics and Applications (ICIEA), 2012, pp 713-718.

[17] ”DEFEATING DDOS ATTACKS,” CISCO Systems, Inc., White Paper,
2014.

[18] F. A. Ed. and C. Jennings, ”Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP,” RFC 4787, 2007

[19] J. Rosenberg, et al., "SIP: Session Initiation Protocol," RFC 3261, 2002
[20] ”DNS Best Practices, Network Protections, and Attack Identification,”

CISCO Systems, White Paper, 2015.
[21] MICROSOFT. TCP/IP and NBT configuration parameters for Windows.

[Online]. http://support.microsoft.com/kb/314053 {On: 22.07. 14}
[22] J. Llorente and R. Kantola, "Transition to IPv6 with Realm Gateway 64,"

IEEE International Conference on Communications (ICC), London, June,
2015.

[23] (2015, Mar.) SCAPY. http://www.secdev.org/projects/scapy/
[24] M. Leech, M.Ganis, Y. Lee, R. Kuris, D Koblas, L. Jones , "SOCKS

Protocol Version 5," RFC 1928, March 1996.

251Networking 2016

