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Abstract—Legacy Internet systems and protocols are mostly
static and keep state information in silo-style storage, thus mak-
ing state migration, transformation and re-use difficult. Software
Defined Networking (SDN) approaches in unison with Network
Functions Virtualization (NFV) allow for more flexibility, yet
they are currently restricted to a limited set of state migration
options. Impeding the sharing of networking and system state
severely limits the ability to optimally manage resources and
dynamically adapt to a desirable overall configuration. We
propose a generalized way to collect, store, transform, and
share context between NFs in both the legacy Internet and
NFV/SDN-driven systems. To this end, we design and implement
a Storage and Transformation Engine for Advanced Networking

Context (STEAN), which constitutes a shared context storage,
making network state information available to other systems
and protocols. Its pivotal feature is the ability to allow for state
transformation as well as for persisting state to enable future re-
use. By means of experimentation, we show that STEAN covers
a diverse set of challenging use cases in legacy systems as well
as in NFV/SDN-enabled systems.

I. INTRODUCTION

Network management currently undergoes massive changes
towards realizing a more flexible management of complex
networks. Recent efforts include 1) rethinking the control
plane design by applying operating system design principles to
realize Software Defined Networking (SDN), and 2) Network
Function Virtualization (NFV) inspired by the success of vir-
tualization in the server market. These advances aim at a more
flexible and dynamic service deployment, increased resource
utilization, improved energy efficiency, vendor independence,
and ,ultimately, decreased operational costs.

While these techniques advance packet processing and ser-
vice control, they do not address state management. However,
to achieve the true benefits of network and service virtualiza-
tion as well as control plane programmability, scalable state
sharing is of high importance—in particular when attempting
to virtualize stateful network functions (NFs). This require-
ment has lead to the development of various systems that allow
explicit state migration between NFs such as Split/Merge [1],
OpenNF [2] or StatelessNF [3].

Despite their success, current state sharing mechanisms are
customized solutions tailored to specific use cases and are
ignoring the fact that they continue to use closed “silo style”
storage as shown in Fig. 1 (a).

We advocate to break these silos open and allow state to be
shared within the entire ecosystem of a network, ranging from
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Fig. 1. Current state sharing frameworks only allow sharing between functions
of the same group (a). We enable sharing context between different groups
by using a common base context and mapping the function specific context
using the transformation functions fT1 and fT2 (b).

SDN controllers over NFs to routers and protocol implemen-
tations (Fig. 1 (b)). By following this approach, we pave the
way for realizing a network state plane in which network state
is decoupled from the implementation of NFs similar to the
decoupling of the control and data plane introduced by SDN.
This decoupling of packet processing and network state will
lead to a more flexible and dynamic network management, and
further boost the deployment of new and innovative services.

New network management functions can use the state plane
to easily aggregate state of multiple functions operating at
different layers without requiring explicit support in each
function. The proposed state decoupling thus enables new
ways for network state cross-layering that is harder to achieve
in current isolated solutions. In a similar fashion, network
state can be migrated between functions more easily without
explicit support.

As state migration between NFs is challenged by different
state representations, we further advocate the use of state
transformation functions. Transformation functions allow us
to leave the internal state representation of the legacy systems
unaltered while still sharing state with other systems. Since
the transformation functions operate within the state plane
rather than in each network function, we limit the explicit
need for supporting state migrations. This approach surpasses
the flexibility of existing solutions and enables us to generalize
state management across multiple systems.

Extending the sharing and re-use of information between
systems and protocols beyond state information further opens
networks to a more flexible and dynamic management. We callISBN 978-3-901882-83-8 c� 2016 IFIP
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this extended set of information the context of a networked
system. The context includes the internal state as well as the
metadata describing how to interpret the stored information.
Additionally, the context includes the current configuration
parameters, monitoring information and historical records.

We summarize our contributions as follows:
1) We propose a Storage and Transformation Engine for

Advanced Networking Context (STEAN). It provides a general-
ized way to share context in a diverse set of core functionality
such as routing, network processing, and dynamic protocol
adaptation. This relies on collecting and managing context
from different sources (e.g., NFs, protocols on all layers of
the network stack) using their preferred state representation,
thus replacing per-entity state storage with a shared context
management. It makes this dynamic information available to
other systems and protocols, and stores and persists the current
context to re-use at later points in time.

2) We introduce transformation functions that allow for
context sharing between systems that were not originally
built with sharing in mind. Transformations allow STEAN
to be integrated into legacy systems and to interoperate with
arbitrary protocols, which permits the seamless extension of
existing protocol stacks and network topologies. Furthermore,
transformation functions allow us to share context between
different NFs that are—until now—only designed to exchange
state between instances of the same implementation.

3) We demonstrate the functionality of STEAN and evalu-
ate its general applicability as well as its performance in two
selected use cases.

II. USE CASES

We provide several motivating use cases that show why
broader sharing of context is beneficial for NFs as well as
for existing systems such as routing protocols in Wireless
Multihop Networks (WMNs). Moreover, we show that explicit
support of context sharing is essential for the development of
future networks. To demonstrate the general applicability, we
discuss both abstract and specific use cases.

A. UC1. Migration of Network Functions: The migration
or sharing of context is a core enabler of employing virtualized
NFs. This allows NFs to not only scale dynamically but
keep per-flow information consistent across all instances. For
example, an IDS keeps state about each flow, and rerouting
the flow to a different IDS instance can significantly impact
the accuracy due to missing context. Thus, context sharing
improves the detection rate while still supporting dynamic
scaling and flow redirection.

B. UC2. Reconfigure Network Functions: NFs are cur-
rently unable to directly share context with other systems. All
information exchanged between groups of NFs flows via a
central controller, limiting the available context to a predefined
set that is known to the providing and consuming NF as well as
to the controller. An asset management system like PRADS [4]
might want to share information about hosts and services with
an IDS to allow event-to-host/service correlation, or an IDS

might wants to consent a firewall to access a list of malicious
flows in order to block them.

Direct sharing of context adds robustness as it enables a
decentralized context management, and avoids bottlenecks on
the control plane when the shared context is large.

C. UC3. Switching Routing Protocols: Wireless Multi-
hop Networks are a key technology in fifth generation (5G)
wireless networks [5]. Today WMNs are deployed in environ-
ments where wired infrastructure is either not available or too
expensive to deploy [6]. Currently, a variety of parameters and
environmental conditions have to be considered when planning
and deploying a WMN. These considerations determine a
choice of technology and protocols that are fixed over the
lifetime of the network as changing or adapting the networking
stack to varying conditions or usage patterns basically results
in deploying a completely new system configuration.

The dynamic adaptation of routing protocols provides an
exit route to this dilemma. The protocol change within a
WMN, however, must be seamless, without interruption of
end-to-end connectivity and transparent to the end user.

III. CONTEXT TRANSFORMATION

The support for context transformations is the core enabler
for sharing context between different network components.
STEAN implements transformation functions that enable con-
nected clients to share information without agreeing on a com-
mon context. Hence, a client might profit from the information
others have contributed without being explicitly aware of the
existence, or even the context, of other systems or protocols.

We use a running example throughout this section to
show how transformation functions can be employed to share
context between independent NFs: a network consisting of a
Network Address Translator (NAT), an SDN-enabled switch
that balances the traffic load between two firewalls, and an IDS
(Fig. 2). All NFs in this example are STEAN-enabled. The
SDN controller providing rules for the switch is connected
to STEAN, where it stores its state, including the SDN
rules. During normal operation, the different NFs operate
independently of each other.

Now, we consider the following failover scenario: Link 1
carrying the traffic assigned to Firewall A fails so all traffic is
re-routed to Firewall B. The traffic load exceeds the capacity
of a single firewall instance, thus traffic must either be dropped
or SDN rules must be dynamically generated to enable a pre-
filtering on the switch.

A. Concept
Transformations allow developers to create and use an

extensible set of functions that acts as an additional layer
between the client and the context storage. This layer is
responsible for translating between the client-specific context
and the common base context. It allows the client to store and
retrieve the information “as is” and “as needed” without adapt-
ing its internal representation to the one used in the context
management system. The client does not need any information
on how the context of other clients has to be interpreted. This
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Fig. 2. Simple network to show the advantages of sharing context between
different NFs. All NFs as well as the SDN controller are connected to a central
STEAN instance (omitted for clarity).

interpretation is provided by the transformation functions that
offer a client specific view on the base context.

In our example, the NFs can share state between each
other to allow for a flexible load balancing and dynamic
reconfiguration in case of failure. Each NF as well as the
SDN controller keep their internal state representation, and
STEAN provides transformation functions for each client. We
identified four different types of transformation functions:

1) Filter Functions are applied during data retrieval and
limit the results to the context information that is relevant to
the client. For example, filters allow the NAT to only select
the specific state relevant for the currently inspected packet
instead of retrieving a large information base for all active
translation rules.

2) Mapping Functions are applied to transform the client
specific context to the base context and vice versa. Addi-
tionally, these functions can be used to transform serialized
protocol objects within a request to the base context. This
allows for minimal modifications on the client side as all
mappings to the context definition are done within the context
management system. In our example, the firewall as well as
the SDN controller can continue to store context information
using their internal state representation. In case of failure, the
SDN controller is able to request additional rules from STEAN
that are generated from the firewall state using mapping
functions. The controller does not need to understand the state
representation of the firewall but is able to use the additional
information provided without adaptations.

3) Aggregation Functions allow for sub-context re-use.
They enable the context management to combine two or
more existing contexts to a single new context. Aggregations
can thus be compared to the JOIN operation in traditional
databases. After registration, clients can use complex queries
for data retrieval in the same way they do for standard
annotations. For example, the SDN rules generated from the
firewall state (as described above) can be aggregated with the
SDN rules stored by the controller to create a unified rule set
that can be directly installed on the switch.

4) Modifier Functions are called on (filtered) data items
retrieved from the storage. The functions can change the actual
data within the item, alter the metadata attached to the entry,
or modify custom metadata the client contributed. In our
example, a modifier function can be used to add additional
information from which state the SDN rules are generated.

Transformation of partial context, i.e., context information
not providing the complete state required by a client, is
explicitly supported. Partial context can occur when a new
client is connected and other clients only gathered parts of
the required state. When partial context is available, the client
can retrieve the stored state information using transformation
functions to convert the context but has to gather the missing
information using system or protocol specific mechanisms.
Then, the additional context can be contributed to the context
management system and, hence, made available to other
clients. For instance, one routing protocol might only be able
to contribute one-hop neighbors to the context storage while
another protocol also requires all two-hop neighbors of a node.
When switching protocols, the latter can retrieve the list of
one-hop neighbors from context management and start the
discovery of two-hop neighbors based on this information.

STEAN-side transformations allow us to make use of a
shared cache between clients when they connect in parallel
and query the same context information. This cache reduces
the load on the system and thus decreases the response time
for subsequent requests. Additionally, we are able to reduce
the communication overhead between STEAN and the clients
when filtered or aggregated context information is requested
as only the needed set of context information is returned to
the client. The firewalls in our example use the same state
representation and thus share a common cache. This results
in faster access times when packets matched by the same rule
are processed on either instance.

B. Features

STEAN allows clients to specify the transformation func-
tions between their context and the base context upon connec-
tion. Those functions are then called each time data a client
reads or writes data, and the base context is automatically
mapped to the client specific context and vice versa.

The mapping does not need to be a static function but
can be adaptive to runtime configuration changes. This allows
the client to dynamically adapt its context to the current
environment without the need for redefining annotations or
exchanging the transformation function. In our example above,
the IDS can dynamically adapt the information retrieved from
STEAN when a suspicious flow is detected and extend the
number of evaluated flow properties without reconfiguration.
This allows to faster detect attackers by looking for flow
context stored in STEAN—that is contributed by the firewall
systems—once a suspicious flow is identified.

Transformation functions are designed to be modular and
composable: functions can call other functions to create
complex transformations with minimal effort. Additionally,
transformation functions query external systems to retrieve ad-
ditional information. For example, the transformation between
an IP address and a MAC address requires to issue an ARP
request on the local network.
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C. Limitations
Transformation functions are mainly limited by their com-

plexity and the resulting loss in performance. The complexity
of a transformation not only depends on the function itself
but also on the design of the base context. If the base context
efficiently supports the envisioned clients and thus the needed
transformations, the overhead can be kept minimal and the
performance loss is mostly negligible.

Furthermore, the client developer has to manually define
the required transformation functions. Currently, there is no
automatic system that generates transformation functions from
either existing implicit context representations within the
client (data structures, object relations), or from an explicit
description of the client specific context (annotations, mod-
els). Naturally, state transformations are further bound by
the available state. That is, state can only be transformed
but not inferred. For example, transforming state from a
routing protocol maintaining a 1-hop neighborhood to a 2-
hop neighborhood is only partially possible, as the missing
state needs to be inferred by the protocol itself.

D. Designing Transformation Functions
When designing and implementing new transformations, it

is important to keep the computational overhead as low as
possible since all information stored in and retrieved from
STEAN potentially passes the functions. Moreover, it is nec-
essary to evaluate the cost of using transformations against
the cost of locally retrieving or calculating the information
within the client without accessing the context management
system. In some cases, it might be more efficient to (re-
)generate the context in the client rather than extracting the
needed context from STEAN using a complex transformation
function. This is especially true for information with a short
lifetime which requires regular updates that prevent efficient
caching of transformation results.

As the complexity of the transformation functions depends
on the design of the base context, a close interaction while
building the base context and the transformation functions
might reduce computational overhead. This includes that
transformations should target a small scope of the overall
context and apply filter functions as early and as restrictive as
possible. Restrictive filtering limits the number of data items
processed by other, potentially more complex, functions to a
minimum, thus improving the response time of STEAN. This
also contemplates that functions exit as early as possible: if
the NAT in our example requests a single state item, the filter
function must be terminated after the item is found.

During a lookup operation, transformation functions should
be called in a specific order: 1) filter functions reduce the
amount of data retrieved from storage, 2) mapping functions
translate the base context to the client-specific context, and
3) aggregate functions then unify different data items to
provide a single context to the client.

While technically feasible, transformation functions should
not fetch information from external sources unless this infor-
mation is a direct transformation of stored context. Additional

functionality should be placed within the client as it is a feature
of the implemented system or protocol rather than a necessity
of sharing context. In general, transformation functions should
not generate new state but work on the existing context stored
by the clients. Additionally, in order to support concurrent
access, all transformation functions must not directly alter the
stored data but only transform the information received from
the storage subsystem.

IV. SYSTEM DESIGN

STEAN is designed as a node-local system that manages all
context information of connected clients. A node is not limited
to a physical system but can be any network entity with a
well-defined purpose. This can be instances of a virtualized
NF that form a cluster of Intrusion Detection Systems (UC1),
or a single wireless device that is forwarding traffic in a
WMN (UC3). A certain number of clients thus form a node.
The design is centered around the transformation functions as
the enabler for a generalized context management system.

A. Components
STEAN consists of five core components which are assigned

specific tasks within our architecture and can be exchanged
with other implementations. Fig. 3 gives an overview of the
components and their interaction.
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Fig. 3. Architectural overview of STEAN. The arrows show the interaction
between components.

1) Interaction Component: The Interaction Component
(IC) is responsible for handling incoming commands. These
commands can be either context requests from a client, or
updates to the state of STEAN itself such as adding new
transformation functions or registering additional annotations.

2) Storage Component: The Storage Component (SC)
holds the actual data that the clients add and query. Data
within the SC is grouped by annotations and organized in
several sets. These sets are used for efficient data retrieval
since only those sets using the requested annotations have
to be searched. In addition, metadata is attached to each
data item. This metadata can either be provided by the client,
by transformation functions that are called during the storage
process, or by STEAN itself.
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3) Transformation Component: The Transformation Com-
ponent (TC) implements transformation functions as described
in Section III. The TC is invoked on every query and connects
to the SC. The TC either transforms the data retrieved by
the SC to match the context of the requesting client (lookup
request) or transforms the inserted data to the base context
(add or modify request).

4) Cache Component: To be better suitable for performance
critical NFs, STEAN makes intensive use of caching. The
Cache Component (CC) is placed between IC and TC. The
cache thus holds context information where the client specific
transformation functions are already applied. The placement
keeps the computational overhead of applying transformation
functions as low as possible but leads to a minimal reuse of
cached results across clients.

We opted against a shared cache placed between TC and IC
but for a cache holding an individual set of results for each
client. The diversity of clients would not allow for a wide reuse
of cached entries as each client specifies its own context. A
shared cache instead extend the number of entries per cache
set and thus lead to a higher retrieval time. Additionally, we
decided not to place a shared cache between SC and TC.
This placement would allow for a higher reuse of cached
information but the gains are much lower since transformations
have to be applied to each returned result.

The cache allows to reduce the retrieval costs for state
lookups, which is relevant for performance critical NFs (e.g.,
functions performing per-packet lookups at line rate). How-
ever, such high-speed NFs are out the of scope of this paper,
and we leave their evaluation for future work.

5) Management Base: The complete metadata and the state
of STEAN itself is represented in the Management Base (MB).
The Type Base within the MB stores information about known
annotations and possible attributes, while the Library Base
manages the transformation functions available. The Module
Base subcomponent holds a list of clients, and their registered
annotations and transformation functions.

B. Communication and Interaction

STEAN provides two interfaces for outside communication.
The Client API is used by the accessing systems and protocols
to store and retrieve context, and the Management API is
used to control the behavior of STEAN itself. While the first
interface is openly available to all clients, the second interface
is protected to prevent unauthorized reconfiguration.

1) Client API: STEAN supports multiple annotation sets
that are registered by clients. Upon connection, each client
has to register and provide the annotation (sub-)set it will
use, and specify the transformation functions to convert the
client-specific context to the base context and vice versa.
After successful registration, the client can access the specified
annotations and transformation rules while access to other an-
notations or transformations is denied. This initial registration
forces each client to completely model its environment and
describe its context compared to the base context before access

is granted. Changes to the set of annotations or transformation
functions require a full re-connect of the client.

STEAN also offers a publish-subscribe interface that notifies
connected protocols when changes to subscribed annotations
occur. This interface can notify connected clients such as
monitoring systems when the stored context changes.

2) Management API: The management interface provides
methods to alter the base context of the service, add and
remove annotations, and register new transformation functions.
Access limitations on the interface prevent clients from reg-
istering arbitrary annotations or transformation functions that
have no value to other clients (as they are unknown), or even
compromise the service itself as malicious functions might
leak sensitive data.

V. IMPLEMENTATION

STEAN is implemented in C++ and runs as an indepen-
dent service on the host system. We successfully tested the
functionality on Linux, FreeBSD and Apple OS X.

A. Storage System

The storage system is implemented on top of a XML
database using RapidXML [7], and the items in the database
are accessible via a management plane. The management plane
is implemented as a map of pointers that allows for direct
access to the requested annotation and handles the lifetime
of each data item. The database consists of several sets,
one per available annotation. Each data item can currently
only be tagged with one annotation and is thus associated
to exactly one set. To remove this limitation, the management
plane provides additional indices that allow for direct access
across annotation sets. These indices can be seen as virtual
annotations and can be accessed in the same way.

STEAN also supports a snapshot feature that can be used
to create a persistent copy of the stored information and the
current state of the service. The snapshots, however, do not
contain the shared libraries registered but assume that the
libraries are available at the same location.

B. Function Libraries

Transformations are implemented as Unix shared objects
and have to be loaded via the Management API. This enables
us to add functions on demand without shutting down or even
recompiling STEAN. After registering the library system wide,
each client needs to register the used transformation functions
together with the base context annotation and the mapping
annotation within its client context. This ensures that STEAN
calls the correct transformation function when an annotation
is requested without the need to specify the function on each
request, and prevents inconsistent mappings between requests
from the same client. Additionally, it keeps the size of request
messages low and thus increases the response time of STEAN.
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C. Client Implementation

We designed and implemented a client library that provides
convenient access to STEAN without the need for the client
developer to handle the connection management and the XML
message building and parsing.

1) UC1. Migration of Network Functions: The PRADS
asset monitor [4] is a passive network monitor that allows
to map the services running in a network and detect changes
in real time. It uses TCP and UDP fingerprinting to identify
operating systems and service applications. PRADS also keeps
an internal state table to identify flows in the network and
provide information on the services offered and used by the
networked systems.

The STEAN support for PRADS is built on top of the
OpenNF [2] modifications that allow to migrate NF state
between different instances. Instead of migrating the state via
the controller, we directly share context information between
the PRADS instances using STEAN. We therefore modified
PRADS to be a STEAN client while still supporting the
OpenNF controller messages to initiate the migration of flows.

The PRADS instances share the complete internal state of
all observed flows using STEAN. Beside a unique identifier
per flow, the protocol 5-tuple and the IP protocol version,
the flow state also includes timestamps for the first and last
seen packets, the number of packets observed for the flow,
as well as the total size of transmitted data for each direction.
PRADS also includes the hardware protocol and any TCP flags
observed into the flow state along with a list of identified assets
for source and destination.

As we are only sharing information between instances
running the same implementation, the only transformation
functions required are filters to select specific flow entries
based on the unique flow identifier assigned by PRADS.

2) UC3. Switching Routing Protocols: We modified im-
plementations of the Ad hoc On-Demand Distance Vector
(AODV) routing protocol [8] as well as the Optimized Link
State Routing (OLSR) protocol [9] to support UC3. The pro-
tocols are implemented using the Click Modular Router [10]
framework and we extended the state handling elements to
connect to STEAN. Each protocol uses a special Click element
that is responsible for specifying the protocol context, and
registering annotations and transformation functions during
system startup. This element also handles the communication
with STEAN during protocol operation.

Accompanying the implementation changes, we designed
a base context that closely matches the requirements of the
routing protocols. Specifically, we share the list of one- and
two-hop neighbors as well as the list of multipoint relays and
the routing tables. The protocols do not hold any local context
but solely access information stored in STEAN.

We have implemented transformation functions for both
routing protocols that 1) filter entries in the routing table to
select only the specific route for a single packet and 2) map
the format of an entry to match the internal format of the
accessing routing protocol.

VI. EVALUATION

We evaluate STEAN in the use cases UC1 and UC3
from Section II since they represent the diversity of possible
operation scenarios for a context management system. Before
we present the results from the use case study, we show
the general applicability of STEAN and how the usage of
transformation functions influences the system behavior.

A. General applicability: Our goal is to understand the
performance of basic STEAN operations. We evaluate the
behavior of STEAN using a simple client that is able to
store and retrieve context information. The client inserts and
reads IPv4 addresses that are either represented as a string
with dots separating the octets or each octet represented as
an integer value. Additionally, transformation functions are
available in STEAN to convert between these two formats.
The evaluation is conducted on a single machine with a Quad-
core Intel Xeon CPU and 16 GB of memory. All caches are
disabled to show the raw performance of the transformation
engine and the context storage.

Fig. 4 shows the time per insert for inserting 1000 (a, d),
10.000 (b, e) and 100.000 (c, f) unique IPv4 addresses both
with and without applying the transformation function.
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Fig. 4. Time per insert without calling a transformation function (a–c), and
with calling a transformation function to convert the representation (d–f).

Our results show that writing to STEAN takes constant time
regardless of the number of entries already stored. Saving
one context entry takes about 140µs when no transformation
function is employed and around 180µs when the simple
function described above is used to convert the representation.
Additionally, we see that at least 1/3 of the request completion
time is spent on socket communicatin. The time shown for
transformations, even when no function is executed, is due to
the overhead passing all requests through the transformation
engine and not interfacing with the storage directly. While we
focus on a single client in Fig. 4, we remark that additional
clients have a negligible performance impact and only increase
the variability of the insert time (not shown).

Fig. 5 depicts the results for reading one out of the
1000 (a, d), 10.000 (b, e) and 100.000 (c, f) addresses inserted
before. The address is selected by applying a filter function
for a random but fixed address per operation.

The experiments show that the time for retrieving context is
linear to the number of entries stored in STEAN. This is due
to the current implementation of the storage component that
is iterating over all entries for an annotation until a match is
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Fig. 5. Time to retrieve an address without calling a transformation function
(a–c), and with calling a transformation function (d–f). The boxes represent
the median and the error bars show the first and third quartile.

found. This behavior is also represented in the timings for the
transformation engine as they include the time for applying the
filter function. Each item is passed through the filter to check
for a match and thus the transformation time also increases
with the number of entries. Concurrent lookup requests do
not influence the performance of STEAN as read operations
are executed in parallel.

B. UC1. Migration of Network Functions: Our goal is
to compare context sharing using STEAN with current state
migration systems for virtualized NFs such as OpenNF. We are
using a modified implementation of the PRADS asset monitor
that supports OpenNF and also includes our extensions for
STEAN support as described in Section V-C1. All experiments
were conducted inside a Mininet [11] instance.

The data network consists of two PRADS instances
(PRADS1 and PRADS2) that are connected to an Open
vSwitch, and a dedicated host in the data network replays a
university-to-cloud trace. The trace has an overall duration of
approx. 20 h and contains 70 k TCP flows, 2/3 of which are
HTTP(S) flows. On average, a flow has a duration of 35 s and
33.6 flows are active in parallel. For 13 % of the time, more
than 100 flows are active in parallel.

The PRADS instances are connected to STEAN using a ded-
icated management network that also hosts the NF controller.
The controller is responsible for initiating the migration of
flows between the two PRADS instances and for reconfiguring
the SDN switch during migration. The setup is depicted in
Fig. 6. The experiments are run on a single machine with a
Quad-core Intel Xeon CPU and 16 GB of RAM.

STEANSTEAN

Data Network

PRADS
1

PRADS
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Open vSwitchOpen vSwitch
Replay HostReplay Host
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2

PRADS
2

NF ControllerNF Controller

Management Network

Fig. 6. Experimental setup for the evaluation of UC1.

We replay the trace at 500 packets per second and initially
send all traffic to PRADS1. Once it has created state for 250
and 400 flows, respectively, we initiate the migration of the
flow state to PRADS2.

The state is either migrated via the controller (OpenNF)
or by sharing the current context using STEAN and only
signalling the migration via the controller. All migrations are
executed with order preserving enabled and STEAN executes
filter transformations to select the context of the flow that is
currently migrated. Fig. 7 shows the migration time for one
TCP flow, comparing the OpenNF implementation to STEAN.
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Fig. 7. Total migration time per flow context between two PRADS instances.

We observe that employing STEAN for context migration
reduces the median migration time by 60 % per flow from
280 ms to 160 ms for the 400 flow case. This reduction,
however, comes with an increased variability that is due to
database locking of the current STEAN storage backend on
inserts, delaying some concurrent requests.

Increasing the number of flows to be migrated above 400
results in a large increase in time between storing the context
on PRADS1 and retrieving the context on PRADS2, while
the times for operations involving STEAN remain almost
constant as shown in Fig. 8. The overall performance decrease
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Fig. 8. Store and retrieve time per flow for migrating flows using STEAN.

when more than 400 flows are migrated is therefore not due to
a bottleneck in STEAN but originates from either a congestion
in the management network, or an overload of the controller.

Our results show that sharing context using STEAN is faster
than migrating state employing OpenNF for the use case UC1,
proving that STEAN can compete with state-of-the-art systems
for migrating NF state.

C. UC3. Switching Routing Protocols: The main ob-
jective of this experiment is to demonstrate the applicability
of transformation functions by providing seamless transitions
between two routing protocols using STEAN.

We use a wireless mesh testbed in an office environment
to conduct our experiments. Each host runs an instance of
the modified AODV and OLSR implementations along with
a STEAN instance to manage context. The STEAN instance
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is configured with the base context and the transformation
functions described in Section V-C2.

The experiments are conducted with a constant packet rate
of 250 packets per second and a packet size of 1000 Bytes.
The performance of STEAN does not depend on the absolute
throughput of the network but rather on the packet rate as the
number of requests to STEAN does not increase when using
larger packets. We enabled client-side as well as STEAN-side
caches for optimal forwarding performance.

First, we evaluate the behavior of OLSR when running
the original implementation as well as our modifications that
enable context sharing. Running OLSR with STEAN support
to manage the protocol context increases the average end-to-
end delay from 6.76 ms to 11.93 ms and the jitter from 1.76 ms
to 103.08 ms. However, this increase is still acceptable for
almost all applications running across a wireless mesh network
and even allows for Voice over IP calls [12]. Here we observed
that for 2/3 of all packets the forwarding time is equal for both
the standard and the STEAN-enabled implementation. The
higher delay for other packets is due to blocking updates of the
routing table that include packet counters and are thus altered
regularly. Additionally, 95 % of all packets arrive within 33 ms
and the high jitter comes from a few outliers.

Next, we execute a routing protocol transition from OLSR
to AODV during runtime. The transition is triggered using a
central controller and an out-of-band connection to each host
as described in [13]. In Fig. 9, we show that the transition is
executed without interruption in packet forwarding. The only
visible effect is that the jitter is reduced and thus a better
overall network performance is achieved.
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Fig. 9. End-to-end delay when migrating from OLSR to AODV during normal
network operation. The transition is executed after 295 s (dark blue line).

We conclude from the experiments shown above that a
common state store in conjunction with transformation func-
tions as implemented by STEAN is able to support seamless
protocol transition in WMNs with minimal overhead and
enables protocol transitions during run-time without loosing
end-to-end connectivity. The transition is transparent to end
systems as well as overlying protocols.

D. Implementation Overhead: To quantify the modifi-
cation required to support STEAN in the aforementioned
systems, we counted the Lines of Code (LoC) that were added
or changed in each implementation (Table I).

The results show that systems designed to share context
information only require minimal changes to support STEAN.
While the number of LoCs for AODV and OLSR might
indicate rather dramatic changes, the actual implementation

TABLE I
ADDITIONAL OR CHANGED CODE TO IMPLEMENT STEAN SUPPORT.

Implementation LoC added/changed Change in Code

AODV 542 21.4 %
OLSR 1289 49.9 %

Common Click Code 1243 n/a
PRADS w. OpenNF 144 0.7 %

STEAN shared library 972 n/a

overhead was minimal since only a few functions needed to
be changed. As these functions were largely scattered over the
code, they increased the overall LoC count.

VII. RELATED WORK

One approach of existing work to migrate NFs is moving
the complete virtual machine (VM) as done by Remus [14].
This guarantees seamless failure recovery without modifying
the function itself. However, migrating the VM comes at a sig-
nificant cost as not only the relevant state of the NF itself but
the state of the complete operating system is transferred to the
backup system on a regular basis. Depending on the load of the
actual VM, this checkpointing can cause a significant amount
of additional latency to the normal operation. Alternatively,
lightweight VMs such as specialized single-process containers
can be used to reduce the overall replication overhead as
shown by Tardigrade [15].

While migrating the complete (lightweight) VM suffices in
a failover scenario, the systems lack an efficient measure to
scale on different loads as the complete state of all flows needs
to be duplicated, which not only wastes memory but also might
result in a false behavior of the replicated NF.

Split/Merge [1] and Pico Replication [16] provide a frame-
work to copy, migrate and replicate the state of NFs. They
allow the migration of state from several instances of the
same NF when creating or destroying a copy, or in the case
of failover. In addition to the above, OpenNF [2] provides
coordinated control of forwarding state in SDN to avoid packet
loss or re-ordering, which can lead to a degraded performance
of NFs. Kothandaraman et al. [17] as well as Gember-Jacobson
and Akella [18] improve the performance of OpenNF by
exchanging the function state directly without involving the
control plane during migration. In contrast, Kablan et al. [3]
propose to keep the state externally, leaving the NF itself
stateless and centralizing all state management.

Statesman [19] introduces a network-wide state manage-
ment architecture that is tailored towards data centers. It
focuses on the collection and migration of states from multiple
network management applications. The goal is to manage the
configuration state of the complete network and to allow for a
coordinated network-wide state transition, while keeping track
of network invariants and offering several mechanisms for con-
flict resolving during state migration. Statesman focuses on the
network-wide configuration state of management applications,
but is not designed to handle the state of protocols or NFs.
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TABLE II
OVERVIEW OF THE RELATED WORK.

Scope State Exchange Features Use Case
VM App. Direct Sharing Migration Persistence Transformations Decoupled State NFs Mgmt. WMN

Remus [14] ++ �� o � �� �� �� + o ��
Tardigate [15] ++ �� �� + �� �� �� + o ��

Split/Merge [1] �� ++ �� + �� �� �� ++ � ��
Pico Replication [16] �� ++ + o �� �� �� ++ � ��

OpenNF [2] �� ++ �� + o o �� ++ � ��
DiST [17] �� ++ � ++ �� �� �� ++ o ��

p2p OpenNF [18] �� ++ � ++ �� �� �� ++ o ��
Stateless NF [3] o ++ ++ � o �� ++ ++ o ��
Statesman [19] �� ++ + �� ++ � ++ � ++ ��

STEAN + ++ ++ o o ++ + + o ++

Table II gives an overview of the related work discussed
above. It specifically shows that existing solutions focus on
the migration of either the complete state of a VM (Remus,
Tardigate) or the state of the NF running within this machine
(Split/Merge, Pico Replication, OpenNF, Statesman).

STEAN separates the context from the actual functionality
and provides a backend store for state information. While
Stateless NF follows the same approach, our solution is also
capable of storing state information from different protocols
and applications across the network stack in a common base
context and is thus capable of sharing the complete virtual
machine state if required.

The current solutions provide state migration between sys-
tems of the exact same type as they directly extract the state
from within the NF (Split/Merge, OpenNF, Stateless NF) or
even require connecting applications to adopt to the state
model of the management system (Statesman). To overcome
this limitation, STEAN uses transformations to allow clients
to specify their context and share information across imple-
mentations without adapting to a specific state model.

Furthermore, the existing systems focus on a single use
case while STEAN specifically targets the complete network
environment and provides a generalized solution for managing
context information.

VIII. CONCLUSION

Sharing context information across components is essential
for a more flexible and dynamic network management, and
further boosts the deployment of new and innovative services.
With this, we are able to overcome the limitations of current
network functions and to include legacy systems such as rout-
ing protocols into new network architectures. Transformations
are a core enabler for this extensive sharing as they allow us to
support a large variety of network components and protocols
without the need to adapt the internal state of these systems
but with minimal changes to existing implementations.

We presented STEAN, a Storage and Transformation Engine
for Advanced Network Context, that enables us to not only
share state between instances of the same implementation
but to extend the sharing of networking context beyond
these boundaries. STEAN supports transformation functions

by design and the architecture is centered around this core
feature. Our evaluation shows that we are able to support a
wide range of use cases with an acceptable overhead.
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