
Congestion Aware Priority Flow Control
in Data Center Networks

Serhat Nazim Avci, Zhenjiang Li, Fangping Liu
Futurewei Technologies

{serhat.avci,andy.z.li,julius.f.liu}@huawei.com

Abstract—The data center bridging (DCB) protocols enable
Ethernet to become the leading unified fabric for a converged
data center. As a part of DCB, priority flow control (PFC) is a
control mechanism that provides the losslessness feature required
by certain applications such as Fibre Channel over Ethernet.
Quantized congestion notification (QCN) is also a DCB protocol
and provides congestion control functionality to complement PFC.
However, in today’s practical data center networks, QCN is not
feasible and PFC is not efficient against congestion. We propose
a new link layer mechanism called congestion aware priority flow
control (CaPFC) that equips PFC with better congestion control
capability in the absence of QCN. Changes brought by CaPFC
on top of PFC are lightweight. By conducting simulations in
NS-3, we demonstrate that CaPFC handles persistent and flash
congestion much better than PFC. For the short messaging traffic
and the query traffic, which are sensitive to tail latencies, CaPFC
consistently outperforms PFC in terms of tail flow completion
time.

I. INTRODUCTION

One of the major trends in data center networking is the
fabric convergence, which helps to eliminate separate networks
for servers, storage and computing, thereby reducing the costs
related to maintenance, management, training, equipment, ca-
bling, power and space [1]. Data center bridging (DCB) is an
effort by the IEEE 802.1 working group to promote Ethernet
as the unified fabric of data center networks by expanding
its networking and management capabilities, which is also
called as Converged Enhanced Ethernet. DCB requires per-
priority link level flow control, traffic differentiation, con-
gestion management and transmission scheduling features to
make Ethernet a candidate for unified data center networking
fabric [2]. For that purpose, DCB includes four different
protocols, namely priority-based flow control (PFC), enhanced
transmission selection (ETS), congestion notification (QCN)
and data center bridging exchange protocol.

Although the other two protocols are also important to
DCB, only PFC and QCN play a role in the congestion
control of the flows, which is the focus of this paper. The
goal of PFC is to push the congestion from inside the network
to the edges by recursively propagating this congestion to
upstream nodes. In theory, PFC is envisioned to keep flow
control for different priorities independent and hence create
virtual lanes. Congestion created by one priority pauses only
the traffic of that specific priority and does not affect the
traffic of other priorities. QCN is developed to carry out large
scale persistent congestion management in Ethernet-based data
center networks.

PFC and QCN have proved to be successful to a certain

extent. However, they have practical issues that limit their
deployment. In one hand, even though PFC manages to pre-
vent packet losses under certain assumptions, it has certain
drawbacks such as congestion spread, head of the line (HOL)
blocking,and potential deadlocks.

In another hand, despite the necessity of a congestion
control mechanism that will complement PFC in datacenter
networks and the proven performance of QCN in testbeds,
QCN has serious issues that prevent its wide deployment. First
of all, the scope of QCN is restricted to a single VLAN.
It cannot pass through network borders [3] in data centers
or Fibre Channel Forwarders (FCF) in Fibre Channel over
Ethernet networks [4]. Second, QCN increases the switch and
adapter complexity [2]. In a DCB switch, hundreds of con-
gestion points are needed in addition to the tens to thousands
rate limiter units in the adapters. They put a burden on the
network devices in terms of complexity, power and cost. Third,
QCN lacks application control, which is also pointed by [2].
As increasingly more applications prefer to control the rate at
end-hosts, the QCN reaction point is disabled by default in
order to prevent conflict with the rate control of applications.

This paper has three main contributions.

• We show how some overlooked assumptions about
PFC fail in most merchant silicon data center switches.
We show how PFC fails to prevent packet drops be-
tween ingress and egress queues in a typical merchant
silicon switch. When trying to fix this issue with
the current architecture of PFC, we also demonstrate
that backpressure caused by PFC results in congestion
spread not only among different ports and switches but
also within ideally independent priorities.

• We propose congestion aware priority flow control
(CaPFC) as a novel link layer mechanism that incorpo-
rates congestion control functionality in PFC. CaPFC
is designed to address the shortcomings of PFC in the
absence QCN. It employs a joint ingress and egress
queue monitoring mechanism to handle congestion
proactively.

• We demonstrate that two versions of CaPFC consis-
tently outperforms two versions of PFC in terms of
tail flow completion time. For that purpose, we build
a simulation setup in NS-3 to evaluate the performance
of the proposed CaPFC compared to PFC.

In the next section, we provide the technical details on the
research problem and describe the proposed CaPFC mecha-
nism. Next, we discuss how to tune the parameters in CaPFCISBN 978-3-901882-83-8 c⃝ 2016 IFIP

126Networking 2016

!"#$%&'()*+()+$"+$,-(./*/*

01!(2'"%3$4#

01!(2'"%3$4#

01!(2'"%3$4#

01!(2'"%3$4#

!"#

!"#

!"#

!
"
#
$
%
&
&
'
(
)
*
%
+
,
-
.
"
#

Fig. 1. The switch architecture and the HOL blocking

in Section III. The simulation setup and the simulation results
are presented in Section IV. In Section V, a brief summary of
the related work is presented before concluding the paper.

II. CONGESTION AWARE PRIORITY FLOW CONTROL

In this section, we present the proposed CaPFC mechanism
and how it is integrated into the legacy PFC architecture.
Before that, a typical merchant silicon architecture is presented
to define the research problem and the motivation.

A. Problem Definition

The architecture of the switches that are commonly de-
ployed in today’s data center networks has a critical impact on
the design and performance of the flow and congestion control
mechanisms. One of the key insights behind this paper is the
inefficient propagation of congestion from the egress ports to
the ingress ports of a network device. The way PFC messages
propagated from inside the network to the edge hosts is not
very clearly analyzed. The usual assumption is that when an
egress buffer of a paused port gets filled up, the packets starts
to fill ingress buffers, hence PFC messages are created to the
upstream device. However, there is no clear mechanism in PFC
standards on how to stop switching packets from ingress to
egress if there is no space left at the egress.

The reference merchant silicon switch architecture has a
pipelined packet processor and a traffic manager. Whenever
a packet is admitted from an ingress port, first, its header is
extracted. The header is sent to a pipeline to decide what to
do with the packet while the payload is stored in the ingress
buffers or in shared memory buffers depending on the type
of the switch. At the ingress ports, even though packets are
processed on a FIFO order, we logically implement a separate
queue per priority by keeping per-priority packet counters.
PFC generates pause (XOFF) and unpause (XON) messages
per-priority with respect to counter of each priority. When
admitting packets to the pipeline, round robin scheduling is
implemented between different input ports.

Unlike crossbar type of architectures, the packets are put
into the egress queue whenever a forwarding decision is made,
which is only after the packet processing phase. Therefore,
once a forwarding decision is made for a packet, it will either
will be placed at the corresponding egress queue if there is
any empty space or it will be dropped. This has a sinister
effect on the data transmission between ports when one of the
egress queues for a single priority is completely full. The only
way to prevent packet drop is to stop packet processing which
will halt the data transmission towards any egress port for any
priority. In this case, the packet belonging to other priorities or

designated to different ports will suffer from the HOL blocking
as shown in Fig. 1. In most of the merchant silicon switches, it
is not feasible to stop packet processing [5] which means PFC
cannot completely prevent packet drops. Dropping packets
results in lengthy timeouts and retransmission and aggravates
the latency and the congestion in the network. In Section IV,
congestion spread, packet drops, and HOL among different
priorities are empirically observed to cause high tail latencies
for short flows.

This issue exists also in shared memory merchant silicon
switches. In these switches, the payload is buffered only once,
therefore moving a packet from ingress to egress does not
occupy extra buffer space. However, the header of the packet
is queued at the corresponding egress port when a decision is
made. In most merchant silicon switches, the egress queues
have queuing and scheduling policies to satisfy the quality
of service which limit the capacity of the queues [5]. When
an egress queue reaches that limit, a packet is dropped from
ingress to egress even in shared memory switches.

Even though PFC is envisioned to keep flow control for
different priorities independent and hence create virtual lanes,
in typical switches, egress buffer overflow in one priority
causes either HOL at all ingress ports for every priority
or results in packet drops at the end of packet processing.
Eventually, it causes a saturation tree inside the network in
less than a few round-trip times, [6], which makes software
solutions too slow to succeed forcing the adoption of hardware
solutions. Both of these scenarios dramatically increase the tail
completion time of short and time-sensitive flows. To prevent
these scenarios, the key idea behind CaPFC is to develop a
proactive congestion aware flow control mechanism which will
keep the buffers on the egress ports from being completely
occupied. In CaPFC, the virtual lanes for each priority are
preserved by preventing congestion in one priority spreading
to other priorities.

B. CaPFC Introduction

In typical PFC, ingress queue states are taken into account
when deciding the state of flow control. CaPFC also monitors
egress queues in order to add congestion control awareness on
top of PFC. CaPFC employs per-input-port counters at each
egress buffer to measure the congestion contribution of each
input port to that specific egress buffer. It is important that
these measurements are fresh and do not increase complexity
as we describe in Section II-D.

In Fig. 2, it is shown that different ingress queues may
send packets to a single egress queue of the same priority. If
the buffer occupancy of an egress queue for a specific priority
passes a certain threshold, the queue starts to count the number
of packets newly arriving from each input interface. If the
buffer occupancy passes the congestion threshold (explained in
Section II-D), CaPFC finds the highest contributor or highest
contributors of that congestion among ingress interfaces. After
identifying those culprit ingress interfaces, the egress queue
ask those ingress interfaces to issue PFC-XOFF messages to
their corresponding upstream devices. It should be noted that
CaPFC never pauses ingress scheduling for any ingress queue
instead it asks them to pause the traffic from their upstream
devices. The details of the CaPFC operation is explained in
the following subsections.

127Networking 2016

!"#$%"&$'(')*+*#*+,

!
"
#
$
%
&
&
'&
(
)
%
*
+
,
%
$

!-.+'/

0&1.$22'34'!."4'5

61.$22'34'!."4'5

!-.+'7

0&1.$22'34'!."4'5

!-.+'8

0&1.$22'34'!."4'5

!-.+'5

0&1.$22'34'!."4'5

!-.+'9

1,4
3E

0,4
3E

2,4
3E
3,4

3E

Fig. 2. An egress queue of a priority receives packets from ingress queues
of other ports with that priority. In return, it sends congestion state signals
per-ingress queue per-priority.

C. Ingress Congestion Management

CaPFC ingress queue management is the same as it is in
PFC. CaPFC monitors the buffer occupancy of ingress queues
which are PFC-enabled. Per-priority ingress buffer state keeps
track of the ingress congestion behaviour. Buffer occupancy
over time of an ingress queue of port i for priority p is Bi

p
and it is shown in Fig. 3. MAX threshold is the maximum
capacity of the queue. The variable Ip

i keeps ingress queue
congestion state of port i for priority p. It is equal to 1 in
congestion (XOFF) state and 0 in non-congestion (XON) state.
In the beginning, XON is the default state. In Fig. 3, when
the buffer occupancy passes the XOFF threshold, this queue
switches to XOFF state which is shown by dashed red line.
The queue turns back to XON state once the buffer occupancy
drops below the XON threshold.

!"#$

!
"
#
#
$
%
&'
(
(
"
)
*
+
(
,

%&'

'())

'(*

0=i
pI

1=i
pI

0=i
pI

i
pB

Fig. 3. Buffer occupancy over time for ingress queue buffers.

D. Egress Congestion Management

Buffer occupancy of the egress queues are monitored as in
QCN. The goal is to detect congestion in the egress queues
and identify the heavy flows that contribute most to the
congestion. In Fig. 4, the buffer occupancy over time graph
of an egress queue is depicted. In addition to the MAX,
XOFF, and XON thresholds, the WARN threshold is added.
As in the ingress queues, XOFF and XON thresholds are used
to detect congestion and the lack thereof. MAX threshold is
the absolute capacity of the buffer. If it is reached, the new
packets are dropped. Before explaining the WARN threshold,
we introduce a new variable Ci,o

p which keeps the arrival
count of the packets in egress queue of port o of priority p
from input port i. These counters are used to identify the
heaviest contributors to the congestion at the egress queues.
However, they bring additional complexity since they need to

be updated every time a new packet comes in to an egress
queue. In addition, the freshness of these counters is also
important to accurately identify the congestion contributors.
Therefore, CaPFC introduces the WARN threshold to trigger
those counters only in the congestion state. If the buffer
occupancy is below the WARN threshold, the counters are
reset to 0. When the buffer occupancy passes the WARN
threshold, the counters are activated to keep the number of
packets arriving from each ingress port for a specific egress
queue. WARN threshold helps to reduce complexity and keep
counters fresh and accurate. In Section III, we discuss how to
tune these thresholds to optimize the performance.

!"#$

!
"
#
#
$
%
&'
(
(
"
)
*
+
(
, %&'

'())

*&+,

'(,

o
pB

Fig. 4. Buffer occupancy over time for egress queue buffers.

!
"
#
$
%
&
&
'&
(
)
%
*
+
,
%
$

!"#$%&

'()#*++%,-%!#.-%/%0%%%%1

2)#*++%,-%!#.-%/

2)#*++%,-%!#.-%/

2)#*++%,%!#.-%/

2)#*++%,-%!#.-%/

!"#$%/

!"#$%3

!"#$%4

!"#$%5

0,1
3E

!.6*7.(*%8%9:$:6:$;

0,2
3E

0,3
3E

0,4
3E

0
3D

0
3I

Fig. 5. Packets from a single ingress queue are forwarded to all egress
queues per-priority. In return, the ingress queue receives a congestion state
signal from each egress queue per-priority.

CaPFC introduces the variable Ei,o
p to keep the congestion

state of an egress port o for input port i and for priority
queue p. These congestion state values are fed back to the
corresponding input ports as shown in Fig. 5. These state
variables are then used to determine to send XON or XOFF
messages out of those input ports to the upstream devices. In
CaPFC, egress queues do not pause the traffic coming out of
ingress queues to avoid HOL which helps to preserve virtual
parallel lanes for each priority.

Stop-Max is the name of the first algorithm that is used
to calculate the congestion states where only the maximum
contributor of the congestion is identified and the egress
congestion signal Ei,o

p is set to 1 only for that input port. If the
congestion persists, the counter of other input ports continue to
increase and the max contributor index changes. At that point,
the new maximum counter input port is also put in congestion
state and asked to pause upstream traffic. Input ports are put
into congestion state one-by-one as long as congestion persists.
The pseudocode of this algorithm is given in Algorithm 1.

The second algorithm is named Stop-Calibrate Policy.
When the buffer occupancy is above the XOFF threshold, it

128Networking 2016

Algorithm 1 Stop-Max Algorithm
Require: Bo,+

p = Bo
p + size of the new packet

Require: Bo,−
p = Bo

p - size of the dequeued packet
1: if Enqueue a packet at port o with priority p then
2: if Bo,+

p ≥MAX threshold then
3: Drop the packet
4: else
5: Accept the packet
6: Bo

p ← Bo,+
p

7: if Bo
p ≥WARN threshold then

8: Ci,o
p ← Ci,o

p + 1
9: if Bo

p > XOFF threshold then
10: Detect the heaviest contributor i∗
11: i∗ ← argmaxi C

i,o
p

12: Put it into congestion state
13: Ei∗,o

p ← 1

14: else if Dequeue a packet from port o with priority p then
15: Remove the packet
16: Bo

p ← Bo,−
p

17: if Bo
p ≤WARN threshold then

18: Ci,o
p ← 0 ∀i

19: if Bo
p ≤ XON threshold then

20: Ei,o
p ← 0 ∀i

first sorts the congestion counters of the egress queue. Then
starting from the highest, it sets the congestion signal for
the input ports whose cumulative counter percentages pass
a predefined cut-off threshold ratio. This threshold can be
calibrated between 0 and 1 defining the aggressiveness of
the CaPFC technique. If the threshold ratio is set as 1, then
congestion signal of every input port with a packet inside the
egress queue is set to 1. In Algorithm 2, we only reflect the
differences from the Algorithm 1. The steps 10 and 13 in
Algorithm 1 are replaced by the steps in Algorithm 2. CUT
is the calibrated cut-off threshold, the ratio of the congestion
contribution that is determined to be heavy.

Algorithm 2 Changes for Stop-Calibrate Policy
1: Detect the heaviest contributors ◃ In place of Step 10
2: Sort congestion counters Ci,o

p based on i
3: Find the set of input ports IP whose cumulative conges-

tion contribution ratio passes the CUT threshold
4: Ei,o

p ← 1 ∀i ∈ IP ◃ In place of Step 13

E. Combined Congestion Reaction

In PFC, if the ingress queue of a certain priority gets into
a congestion state, it sends a PFC-XOFF message to pause the
incoming traffic. CaPFC incorporates both ingress queue state
and egress queue states to pause and unpause the incoming
traffic. An ingress queue may send packets to different egress
queues of the same priority as depicted in Fig. 5. Likewise, it
receives an egress state signal Ei,o

p destined for this input port.
If any of the egress ports sees the traffic coming from ingress
queue i is responsible for the congestion at egress queue o,
they will notify the ingress queue with the Ei,o

p signal set to
1. Therefore, the decision to send an XOFF or XON message
to the upstream device is based on the congestion state of the

XONPFCDi
p −= /0

XOFFPFCDi
p −= /1

!"## !"$ 0=i
pD1=i

pD

Fig. 6. The decision logic behind CaPFC, which is very similar to that of
PFC except Iip is replaced by Di

p.

ingress queues and the congestion state signals received from
all egress queues. In input port i, for priority p, the combined
congestion state variable Di

p is calculated by

Di
p = Iip ∨

∨

o∈P,
o ̸=i

Ei,o
p ∀i ∈ P, 1 ≤ p ≤ 8,

where P is the set of ports. For example, if we assume the
switch has five input/output ports indexed as 0, 1, 2, 3, 4, then
the CaPFC decision variable for port 0 for priority 3 will be
equal to

D0
3 = I03 ∨ E0,1

3 ∨ E0,2
3 ∨ E0,3

3 ∨ E0,4
3 .

In order to reduce complexity and overhead, we assume
that congestion state signals Ei

p are only sent when there is a
change of state. The ingress queue stores the latest updates of
these signals and recalculates Di

p only if at least one of the
state signals change. The XOFF/XON behaviour of a receiving
port based on variable Di

p is highlighted with a finite state
machine in Fig. 6. Compared to PFC, the only difference is
the CaPFC messages are triggered by combined congestion
state signals Di

p instead of just ingress congestion state signals
Iip. In short, the traffic incoming at port i with priority p is
paused if the ingress queue is in congestion state or the ingress
queue is deemed responsible for congestion at any of the egress
queues, for that priority. The traffic for priority p is unpaused
only if both the ingress queue is out of congestion state for
that priority and is not responsible for the congestion in any
of the egress queues for that priority.

F. Shared Memory Switches

In shared memory merchant silicon switches, every priority
queue at every port has a small dedicated memory. The
rest of the memory is assigned to a common pool. There
are per-priority-queue, per-port, per-all-ingress-ports, per-all-
egress-ports thresholds on the buffer usage from this shared
memory pool. When admitting a packet from an ingress queue
to an egress queue, the buffer occupancy counters of that
egress queue, counters of that egress port and the total buffer
occupancy of all egress ports are checked. If any of those
counters are equal to the capacity threshold, this packet cannot
be admitted. When an ingress queue admits a packet, it also
checks the buffer occupancy counter of total shared memory
usage in that switch. If there is no space left in the shared
memory pool, the packet is not admitted. In our CaPFC
implementation, setting XOFF, XON, and WARN thresholds
for each buffer usage counter would be complex. Therefore,
we implement CaPFC only on per-priority-queue buffer usage
and set those thresholds with more safety margin to mitigate
the buffer overflow with respect to other counters.

129Networking 2016

G. CaPFC Implementation Requirements

The goal behind CaPFC is to design a congestion aware
flow control scheme with maximum added functionality but
with minimum extra complexity. It is crucial that CaPFC
is easily integrated to the legacy hardware in which PFC
has already been deployed. As depicted in Fig. 7, CaPFC
assumes no change on top PFC from a network perspective.
The transmitter and receiver mechanisms of PFC is intact
whereas the decision logic behind XOFF and XON messages
is modified. Therefore, CaPFC does not require any change
in the network interface cards (NICs) but requires monitoring
of the egress queues, signaling between the ingress and egress
queues and a modified logic in the ingress queues. All of these
changes are easy to adapt in practical switches.

CaPFC introduces per-input-port per-priority counters at
egress ports. CaPFC is envisioned to be used only for lossless
traffic services. In a network, typically few of eight classes
of services will use lossless services. Therefore, the counters
for this purpose will be typically lower end of O(P 2), where
P is the number of ports. In popular commodity switches
with 48 ports, that corresponds to maximum 18432 counters
for 8 priorities, which is manageable in those switches. If
each counter occupies 2 bytes of memory, it corresponds to
approximately 36 KB extra memory, which is easily affordable.
In high-radix switches with 128 ports, the CaPFC service
would be enabled for a small number of lossless priorities,
which keeps the number of total counters around 10K’s.

The computational complexity brought by CaPFC is updat-
ing the congestion counters every time a new packet comes in
and goes out of an egress queue and calculating the heaviest
ingress ports. This complexity is significantly simplified after
the introduction of the WARN threshold since only the lossless
queues which observe high levels of buffer occupancies need
to update their counters at the line rate. A software solution
may not scale in the cases when multiple queues observe high
occupancy levels, therefore a hardware solution is a better fit.
A dedicated FPGA can keep the counters in a table per egress
port and update them in line rate if the corresponding queue
occupancy is over the WARN threshold. Once the occupancy
of an egress queue passes the XOFF threshold, the FGPA
module is responsible to sort the per-ingress-port counters,
which has O(PlogP) complexity. In Stop-Max algorithm, the
congestion signal of the index of the maximum counter is set to
1. In Stop-Calibrate algorithm, the minimum set of the indexes
whose counter contributions exceed the CUT threshold are
found. It is carried out by cumulating the counters in the
decreasing order until the threshold ratio is passed. It has
a O(P) complexity. Overall, CaPFC has a limited memory
requirement and requires a small die space with O(PlogP)
computational complexity in an FPGA.

On the other hand, CaPFC mitigates the disadvantages of
QCN. Unlike QCN, CaPFC can cross VLAN borders since it
uses the same network interface of PFC as shown in Fig. 7.
Second, it incurs much less complexity compared to QCN. In
Stop-Max algorithm, it introduces only the WARN threshold.
For simplicity, the WARN threshold is a virtual register which
is represented by the XON threshold in the switch ASIC.
In Stop-Calibrate algorithm, the cut-off parameter is also
introduced. On the other hand, a typical QCN implementation
introduces 12 extra parameters [7]. The tuning complexity of

those parameters are also much higher. In addition, CaPFC
works per-input port whereas QCN works per-flow, which
also increases the complexity of the operation. Finally, unlike
QCN, CaPFC does not require any change in the end-hosts.
In conclusion, CaPFC adds significant congestion control
functionality to flow control without introducing compatibility
issues and significant complexity concerns.

!"#$

%&'(&

#)!"#

*+,-.

/$$$$$$0

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

*+,-.

/$$$$$0
i
pI

i
pD

Fig. 7. CaPFC does not change the transceiver structure already deployed for
PFC. CaPFC only replaces the decision logic of PFC by incorporating egress
queue states along with the ingress queue state per-priority per-input port. The
ingress decision variable Iip of PFC is replaced by combined decision variable
Di

p = Iip ∨
∨

o∈P,
o ̸=i

Ei,o
p of CaPFC.

H. Cross Layer Interaction

We believe a comprehensive solution should come from
a multi-layer approach which integrates different techniques.
Therefore, we built CaPFC on the cross-layer architecture of
DeTail [8]. In DeTail, besides a lossless fabric and hierarchical
prioritization, there are changes in the network layer and
transport layer. In network layer, it proposes a per-packet adap-
tive load balancing scheme which dominates Flow Hashing
and Lossless Packet Scatter in terms of reducing congestion
hotspots [8]. In addition, the transport layer is modified to be
reorder-resistant since packets can take different routes due
to Adaptive Load Balancing. The transport layer of DeTail
uses explicit congestion notification (ECN) protocol to detect
congestion. CaPFC interacts with TCP in the same way PFC
does as explained in [8]. CaPFC redesigns the link layer
portion of DeTail but requires no change in the network and
transport layers except tuning of the parameters.

III. PARAMETER SELECTION ANALYSIS

Setting parameters in PFC is limited to finding XOFF and
XON thresholds assuming the MAX threshold is given by the
hardware specs. It is clear that XON must be smaller than
XOFF. In selecting the XOFF threshold, the idea is to put
the minimum amount of headroom buffer that will absorb all
of the traffic that was received after a PFC pause message
is sent to the upstream device [9]. To calculate this value,
maximum transmission unit (MTU) on the transmitting end
of receiver, length of the cable, speed of the wire, transceiver
latency, response time of sender, and MTU on the transmitting
end of sender are taken into account. To simplfiy, the headroom
buffer must be approximately equal to maximum link capacity
times RTT between two links. The XOFF threshold is set
by subtracting the headroom buffer from the MAX threshold.
Setting XON threshold is more challenging than the setting
the XOFF threshold. Setting it too low causes buffer underflow,
low link utilization and congestion spreading [8]. Setting it too
high causes too many PFC messages which creates too much
overhead in return [8]. We tuned the value of XON threshold
according to the on simulation results.

130Networking 2016

In CaPFC, XOFF and XON thresholds of the ingress
buffers are set the same as in PFC. At the egress buffers, setting
XOFF threshold requires a deeper analysis. Even if the egress
queue sends congestion state signals to trigger a pause message
at all input ports, it needs to take the packets already in the
ingress buffers and on the links into account. However, taking
the worst case into account may end up with an extremely large
headroom buffer which makes CaPFC unfeasible. Therefore,
a statistical multiplexing approach is adopted since egress
buffer overflow is not desirable but tolerable. The cost of
egress overflow with very low probability is usually less than
under utilization of buffer and link capacities. We tuned to the
optimal value by simulations. XON threshold in egress buffers
is set with the same idea in the ingress buffers.

The WARN threshold is set less than the XOFF threshold
to have a fresh picture of the congestion contribution before
asking the input ports to send pause messages. However, it
should not be set less than the XON threshold because in
persistent congestion states, the buffer occupancy may not
drop well below the XON threshold. Therefore, the counters
may be not be reset for a long time if the WARN threshold
is set lower than the XON threshold. It results in expired
statistics about the contributors of congestion. We set the
WARN threshold the same value as the XON threshold at
the egress buffers because it enables using the existing XON
threshold in hardware for the purposes of the WARN threshold
to simplify the implementation.

IV. PERFORMANCE EVALUATION

A. NS-3 Simulation Setup

The NS-3 simulation setup is built using the code base
of DeTail [8] work to evaluate the performance of CaPFC
compared to PFC. Even though it is missing in [8], the code
base uses Network Simulation Cradle (NSC), a framework that
embeds real Linux code in the NS-3 simulation. It enables to
get more realistic results and it has ECN functionality. We
also adopted the topology based on the input from Section
5.4 of [10] which is larger than the one in [8]. The simulated
switch has a pipeline based packet processor as presented in
Section II-A. It employs FIFO and ETS for ingress and egress
scheduling, respectively. The parameters of this switch are
taken from [8] which assumes 25µs switch delay. We vary the
packet processing speed of the pipeline-based switch from 1M
packets/s to 0.5M packets/s. ECN is implemented using NSC’s
TCP stack. ECN threshold is set to 20KB as optimized by the
simulations. The adaptive load balancing thresholds explained
in [8] are set to 16KB and 32KB, respectively.

B. Traffic Characterization

In data center networks, traffic can be characterized by
mainly three different traffic types namely real-time query traf-
fic, latency-sensitive short messaging traffic and throughput-
oriented long background traffic [3]. Query traffic is also
sensitive to latency in addition to having a risk of throughput
collapse named as TCP Incast [11]. We simulate all three traffic
patterns concurrently inside the network. Inter-arrival times
of the long traffic and short traffic flows are exponentially
distributed with a mean of 5000 and end-nodes of the flows
are uniformly selected. Query traffic consists of randomly
selected 40 source nodes sending a fixed size of flow to a

TABLE I. DIFFERENT TRAFFIC SIMULATION SCENARIOS

Long Traffic Short Traffic Query Traffic
Scenario No PS Size Queue Type Size Queue Type Size Queue Type

1 1Mpps 1MB WDRR 64KB SP 16KB WDRR
2 1Mpps 1MB WDRR 16KB SP 16KB WDRR
3 1Mpps 1MB WDRR 64KB SP 32KB WDRR
4 1Mpps 1MB WDRR 64KB WDRR 16KB SP
5 1Mpps 1MB WDRR 64KB WDRR 16KB WDRR
6 0.5Mpps 1MB WDRR 64KB SP 16KB WDRR

randomly selected common aggregation node simultaneously.
The inter-arrival time of the query traffic is also exponentially
distributed with the expected arrival rate of 100. These traffic
types are differentiated from each other by setting different
priorities. Some of these priorities may use Strict Priority
(SP) Queues, whereas some others can go over Weighted
Deficit Round Robin (WDDR) scheduling. We created six
traffic simulation scenarios for the dedicated buffer memory
and one for shared buffer memory setup to test the proposed
techniques in different conditions. The traffic scenarios for the
dedicated memory setup are given in Table I. PS is the packet
processing speed of the pipeline in terms of packets per second.

C. Simulation Results

In this section, we investigate the performance of two ver-
sions of CaPFC compared to two versions of PFC used in De-
Tail in terms of tail (maximum) flow completion time (FCT).
CaPFC max implements the Stop-Max algorithm whereas
CaPFC cal implements the Stop-Calibrate algorithm. In PFC
with drop (PFC wdrop), a packet is dropped at the end of
pipeline if the destination egress queue has no space, whereas
PFC with stop (PFC wstop) pauses packet processing in that
case to prevent any packet drop.

The test network is a Fat-Tree topology with 8-port 128
servers and 80 switches from [10]. Since the simulation em-
ploys NSC, it is not easy to try larger networks. The capacity
of the links are 1Gbs and the packet processing speed is either
1M packets/s or 0.5M packets/s depending on the simulation
scenario in Table I. Total subscription ratio is 4, two from ToR
to aggregate and two from aggregate to core. The values of
parameters are given in Table II. We note that MAX, XOFF,
and XON thresholds are per-port per-priority.

TABLE II. SIMULATION PARAMETERS

Parameter Value Parameter Value
Pipeline speed 0.5Mpps or 1Mpps Ingress XON thres. 40KB
Switch delay 25µs Egress MAX thres. 60KB
ECN thresh. 20KB Egress XOFF thres. 25KB
ALB thresh. (min/max) 16KB/32KB Egress XON thres. 20KB
Ingress MAX thresh. 60KB Egress WARN thres. 20KB
Ingress XOFF thres. 50KB CUT thresh. 80%

We take the simulation scenario 1 as the base case and
observe the effect of different parameters on the performance
by changing them one-by-one in each scenario. In the base
scenario, short message traffic has higher priority than the rest
of the traffic. In Fig. 8(a), tail FCT of four different techniques
are shown with a breakdown in terms of traffic type. The major
observations are detailed in the following sections.

1) CaPFC provides high burst absorbtion for query traffic:
Both versions of CaPFC reduces the maximum FCT of the
query traffic approximately 6 times and 3 times compared to
PFC wdrop and PFC wstop, respectively. CaPFC absorbed
the traffic bursts in a much better way than both versions
of PFC. Query traffic experiences TCP incast most severly

131Networking 2016

!"#$$

%$#$$

%"#$$

&$#$$

&"#$$

'$#$$

!""!

!"#$!%&"'

!"#$!%(")

#$!%*+,-.

$#$$

"#$$

!$#$$

!"#$$

()*+,-./*01 234+5-6+7889:

#$!%*+,-.

#$!%*/0-.

(a)

!"#$$

%$#$$

%"#$$

&$#$$

&"#$$

'$#$$

!""!

!"#$!%&"'

!"#$!%(")

#$!%*+,-.

!"#$

!"%!

!"#&

$#$$

"#$$

!$#$$

!"#$$

()*+,-./*01 234+5-6+7889:

#$!%*+,-.

#$!%*/0-.

(b)

!"#$$

%$#$$

%"#$$

&$#$$

&"#$$

'$#$$

!""!

!"#$!%&"'

!"#$!%(")

#$!%*+,-.

$#$$

"#$$

!$#$$

!"#$$

()*+,-./*01 234+5-6+7889:

#$!%*+,-.

#$!%*/0-.

(c)

!"#$$

%$#$$

%"#$$

&$#$$

&"#$$

'$#$$

!""!

!"#$!%&"'

!"#$!%(")

#$!%*+,-.

$#$$

"#$$

!$#$$

!"#$$

()*+,-./*01 234+5-6+7889:

#$!%*+,-.

#$!%*/0-.

(d)

!"#$$

%$#$$

%"#$$

&$#$$

&"#$$

'$#$$

!""!

!"#$!%&"'

!"#$!%(")

#$!%*+,-.

$#$$

"#$$

!$#$$

!"#$$

()*+,-./*01 234+5-6+7889:

#$!%*+,-.

#$!%*/0-.

(e)

!"#""

$"#""

%"#""

&""#""

!""!

!"#$!%&"'

!"#$!%(")

#$!%*+,-.

"#""

'"#""

!"#""

()*+,-./*01 234+5-6+7889:

#$!%*+,-.

#$!%*/0-.

(f)

Fig. 8. Comparison of different versions of CaPFC and PFC in terms of tail FCT (unit of y-axis is miliseconds) in (a) simulation scenario 1, (b) simulation
scenario 2, (c) simulation scenario 3 (d) simulation scenario 4, (e) simulation scenario 5, and (f) simulation scenario 6.

under PFC wdrop mechanism since sudden bursts lead to
synchronous packet drops.

2) CaPFC satisfies low latency for the short message flows:
In terms of tail latency of the short message flows, both
versions of CaPFC resulted in approximately 5 fold savings
compared to both versions of PFC. PFC wdrop suffers from
fast retransmissions and timeouts whereas PFC wstop suffers
from HOL blocking and congestion spread.

In the rest of the evaluation, we change some of the
simulation and traffic parameters one-by-one to see their effect
on the performance of techniques. These scenarios are outlined
in Table I from scenario 2 to 6.

3) CaPFC is efficient in different flow sizes: In scenario
2, the size of the short flows are decreased from 64KB to
16KB. Similarly, in scenario 3, the size of the query traffic
flows are doubled to 32KB compared to the base case. In
Fig. 8(b) and Fig. 8(c), the tail FCT of the query and the short
messaging traffic are shown for simulation scenario 2 and 3.
Interestingly, in Fig. 8(b), PFC wdrop incurs approximately 17
times more tail FCT for short flows whereas PFC wstop incurs
approximately 6 times more tail FCT for the query traffic. The
results in Fig. 8(b) and Fig. 8(c) are consistent with the results
in Fig. 8(a), which means both versions of CaPFC performs
good for different flow sizes.

4) CaPFC is efficient in different prioritization configura-
tions: In scenarios 4 and 5, we change the queue types of the
short and query flows. Originally, short message traffic has the
highest priority. In simulation scenario 4, the query traffic has
the highest priority whereas in scenario 5, all traffic types go
through separate WDRR queues. The results are presented in
Fig. 8(d) and Fig. 8(e). These results are also consistent with
the results in scenario 1.

5) CaPFC is efficient in different packet processing speeds:
Lastly, we decrease the processing speed of the pipeline to

TABLE III. LONG BACKGROUND TRAFFIC TAIL FCT

Tail FCT (ms) Based on Scenario
Technique Sce. 1 Sce. 2 Sce. 3 Sce. 4 Sce. 5 Sce. 6

CaPFC max 52.56 51.08 55.13 58.55 50.87 58.32
CaPFC cal 53.21 55.34 51.77 57.80 49.32 55.55
PFC wdrop 50.67 49.80 62.42 56.78 51.57 56.08
PFC wstop 55.22 55.87 52.17 53.46 61.02 59.75

half. It puts the pressure more on the ingress buffers therefore
egress buffer occupancy becomes less important. According
to the results in Fig. 8(f), changing the speed of the pipeline
does not curb the advantage of CaPFC over PFC wstop but
amplifies over PFC wdrop.

6) CaPFC offers high throughput for the long background
flows: The tail FCT of the long background flows are given in
Table III for every scenario. Even though CaPFC resulted in
significant savings in terms of tail latencies of the query traffic
and short message traffic, it did not compromise the bandwidth
requirement of the long background flows. Both versions of
CaPFC had similar results compared to both versions of PFC.
In the worst case scenario, CaPFC results in 4% increase in the
tail FCT compared to PFC wdrop in Scenario 6. It improves
the tail FCT up to 11.7% and 16.6% compared to PFC wdrop
and PFC wstop, respectively.

7) CaPFC is efficient in shared memory architectures:
We modify the switch architecture to observe the performance
of both versions of CaPFC in shared memory switches. Each
priority queue has 8KB dedicated memory and there is total
350KB available memory in the shared pool. The maximum
shared buffer capacity that can be used by each priority queue
and by each port are 80KB and 100KB, respectively. In the
egress queues, we set the XOFF, XON, and WARN thresholds
to 50KB, 35KB, and 35KB, respectively. In the ingress
queues, XOFF threshold is set to 30KB whereas XON thresh-
old is set to 20KB. The traffic scenario is given as scenario 1

132Networking 2016

in Table I. The tail FCT of query traffic and short messaging
traffic are given in Fig. 9. Even though both versions of CaPFC
perform significantly better than both versions of PFC for the
query traffic, CaPFC cal is 3 times better then CaPFC max.
Shared memory architecture helps both versions of PFC in
terms of tail FCT of the short messaging traffic. However,
PFC wdrop doubles the tail FCT of short messaging traffic
compared to both versions of CaPFC and PFC wdrop.

!"#$$

%$#$$

%"#$$

&$#$$

&"#$$

'$#$$

!""!

!"#$!%&"'

!"#$!%(")

#$!%*+,-.

!"#$
!"#%

!"#&
&"!!

$#$$

"#$$

!$#$$

!"#$$

()*+,-./*01 234+5-6+7889:

#$!%*+,-.

#$!%*/0-.

Fig. 9. Tail FCT (ms) results for all techniques in a shared memory switch.
V. RELATED WORK

Flow control and congestion control are addressed in
different layers and in different places in the network. Recently,
limitations of PFC, such as HOL blocking and unfairness,
are highlighted in [12]. Authors propose DCQCN a new
congestion protocol based on QCN and DCTCP. DCQCN
is an end-to-end protocol that involves higher layers. As an
alternative, we propose a purely link-layer-based hop-by-hop
solution. In [13], limitations of PFC are also listed as large
buffering delays, unfairness, HOL blocking, and deadlock.
Similarly, PFC is combined with DCTCP [3] and a deadlock-
free routing scheme is proposed in [13]. In this paper, we
assume no changes to TCP and propose a solution based on
the link layer, which can react faster to flash congestion. A
different approach is taken in [14], a modified QCN technique
is proposed to reduce the side effects of PFC. It complements
per-port per-priority granularity of PFC with the per-flow
granularity of QCN. However, it inherits all three limitations
of QCN described in Section I.

In [7], the impacts of PFC and QCN over different TCP
mechanisms are investigated. The results suggest that PFC
improves the TCP performance in every case and emphasize on
the deficiencies of QCN as burst sensitivity, lack of adaptivity
and unfairness. The performance of PFC over different traffic
scenarios is investigated in [15], which elaborates the limita-
tions of PFC, which are starvation and unfairness, arising due
to interactions of different flows. Compared to these works,
CaPFC improves the benefits of PFC by alleviating some of
these limitations utilizing from both ingress and egress queue
statistics to take proactive action earlier.

Infiniband uses a credit based flow control algorithm to
ensure lossless service [16]. A receiver advertises to the sender
the free capacity in its buffers and the sender does not exceed
that limit while transmitting data. However, Infiband is much
less ubiquitous than Ethernet. Virtual output queueing (VOQ)
is also used to alleviate HOL blocking when there is an
association between ingress and egress queues, which is not
possible at the switch architecture we take reference in Section
II-A. VOQ is a costly operation but more importantly, it does

not differentiate between heavy and light flows. Therefore, it
leads to long queueing delays for light short flows, when the
egress queue is full.

Congestion management has been a popular topic in data
center networks for some time. Most of the recently proposed
techniques address this problem at the network or transport
layer. The survey in [17] breaks down the techniques dealing
with this problem into four subcategories, reducing queue
length, accelerating retransmission, prioritizing mice flows,
and exploiting multipath. DCTCP [3] is acknowledged to be a
seminal work in this field. DeTail [8] is one of those techniques
and is unique for utilizing both prioritization and multipath. It
is also unique because it implements PFC to provide lossless
link layer operation to complement the per-packet adaptive
load balancing algorithm that reduces tail flow completion
times in data center networks. However, in [8], the main
switching mechanism is characterized as a crossbar rather than
a pipeline mechanism, which is taken as the main reference in
this paper. Also in [8], analysis about different switch types is
shallow.

Finally, the lack of fairness in QCN is pointed out by
[11] and [18] and its effect on the network performance for
the TCP incast scenarios are shown and a modified version
of QCN is proposed, namely FQCN in [11], to mitigate this
drawback. [18] also proposes a modification to QCN, namely
AF-QCN, which provides faster fairness convergence and
enables weighted fairness. Even though these modifications
improve the performance of QCN, they could not help it to
gain widespread adoption.

VI. CONCLUSION

PFC and QCN are proposed as parts of DCB to enhance the
capabilities of Ethernet. However, they have certain limitations
that bars their wide deployment. First, PFC only relies on
monitoring ingress queues, therefore, it is not protected against
saturation trees and HOL. Second, QCN has multiple issues but
most importantly it cannot pass VLAN borders. As a remedy
to the shortcomings of PFC and QCN, we propose CaPFC as
a congestion aware flow control mechanism. CaPFC monitors
both ingress and egress queues and takes proactive action to
prevent egress buffer overflow which causes congestion spread
and HOL blocking.

By implementing CaPFC, we achieve four features of low
latency data center networks. First, we use prioritization and
use SP queueing for latency-sensitive flows. Also, we provide
parallel lanes for each type of traffic by preventing congestion
in one type of traffic to spread to other types of flows.
Second, by proactively monitoring both ingress and egress
queues, we minimize HOL blocking and retransmissions due to
packet drops. This in turn increases link utilization and reduces
average queue length, which also reduces latency.

We carried out simulations in NS-3 to evaluate the per-
formance of CaPFC compared to PFC. The results show that
CaPFC is able to reduce maximum FCT of the query traffic
up to 6 times. It also reduces the maximum FCT of the short
messaging traffic up to 17 times. In addition, CaPFC keeps
the performance improvement on various traffic scenarios and
switch parameters. On the other hand, it does not sacrifice
the bandwidth requirement of the long background traffic at

133Networking 2016

the expense of dramatic performance of the latency-sensitive
traffic. For future work, we plan to implement CaPFC with
different transport protocols, such as DCTCP, and different
load balancing schemes, such as [10].

As a future work, we also consider to test CaPFC in a
realistic topology with real network loads to observe tighter
queue limits as the number of ports in the switch and the
number of senders in query traffic increase. We expect that
CaPFC would still provide low latency for short and query
traffic flows at the cost of little bandwidth loss for large flows.

REFERENCES

[1] K. Won, “Trends reshaping networks,” http://www.networkworld.com/
article/2198766/tech-primers/trends-reshaping-networks.html, 2011.

[2] D. Crisan, “Optimized protocol stack for virtualized converged en-
hanced ethernet,” Ph.D. dissertation, ETH Zurich, 2014.

[3] M. Alizadeh et. al., “Data center TCP (DCTCP),” in Proc. SIGCOMM
’10, vol. 1, New York, 2010, pp. 63–74.

[4] “Quantized congestion notification and todays fibre channel over ether-
net networks,” Cisco Systems, Inc, Cisco Website, Tech. Rep., 2014.

[5] “High capacity StrataXGS R⃝ Trident II ethernet switch
series,” http://www.broadcom.com/products/Switching/Data-
Center/BCM56850-Series, 2014.

[6] M. Gusat, C. Minkenberg, and G. J. Paljack, “Flow and congestion
control for datacenter networks,” IBM, Tech. Rep., 2009.

[7] D. Crisan et. al., “Short and fat: Tcp performance in CEE datacenter
networks,” in Proc. HOTI 2011, Santa Clara, CA, August 2011.

[8] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail:
reducing the flow completion time tail in datacenter networks,” in Proc.
SIGCOMM ’12, vol. 1, New Delhi, 2012, pp. 139–150.

[9] “Priority flow control: Build reliable layer 2 infrastructure,” Cisco
Systems, Inc, Cisco Website, Tech. Rep., 2009.

[10] J. Cao et. al., “Per-packet load-balanced, low-latency routing for clos-
based data center networks,” in Proc. CoNEXT ’13, Santa Barbara, CA,
December 2013.

[11] Y. Zhang and N. Ansari, “On mitigating TCP incast in data center
networks,” in Proc. INFOCOM 2011, Shangai, April 2011.

[12] Y. Z. et. al., “Congestion control for large-scale RDMA deployments,”
in Proc. SIGCOMM ’15, vol. 1, London, 2015, pp. 523–536.

[13] B. Stephens et. al., “Practical DCB for improved data center networks,”
in Proc. IEEE INFOCOM 2014, Toronto, April 2014, pp. 1824–1832.

[14] F. D. Neeser et. al., “Occupancy sampling for terabit CEE switches,”
in Proc. HOTI 2012, Santa Clara, CA, August 2012.

[15] M. Haggen and R. Zarick, “Performance evaluation of DCBs priority-
based flow control,” in Proc. 10th International Symposium on Network
Computing Applications (NCA), Cambridge, MA, August 2011.

[16] “Infiniband FAQ, rev 1.3,” Mellanox Technologies, Mellanox Website,
Tech. Rep., December 2014.

[17] S. Liu, H. Xu, and Z. Cai, “Low latency datacenter networking: A short
survey,” http://arxiv.org/abs/1312.3455, 2014.

[18] A. Kabbani et. al., “Approximate fairness with quantized congestion
notification for multi-tenanted data centers,” in Proc. HOTI 2010,
Mountain View, CA, August 2010.

134Networking 2016

