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Abstract—Telecommunication networks are generally dimen-

sioned to provide services with small delays and high throughput

during peak-periods. Due to the sizable difference in the network

utilization between the peak and off-peak periods as well as

the requirements of robust performance in face of both traffic

burstiness and various types of network failures, these networks

are significantly over-dimensioned for the average network loads.

In this paper, we propose to use this extra capacity for

supporting a deferrable traffic class with some guarantees on

its end-to-end delays. Using the Software-Defined Networking

(SDN) capabilities for controlling the network ingress rates of the

deferrable traffic class in real time, we ensure that such a service

would remain transparent to existing delay-sensitive traffic. To

estimate the available capacities for the deferrable service, we

analyze large deviations for the proposed traffic model.

Starting from an initial network designed for delay-sensitive

traffic, one can readily “overlay” a new network for the deferrable

service at no extra cost. This overlaid network has the same

topology as the original one, and its link capacities can be directly

computed from the characteristics of the existing traffic, the

original link capacities, and the end-to-end delay tolerances.

I. INTRODUCTION

Telecommunication networks have been witnessing an ex-
ponential increase in traffic volumes since the 1990s, driven in
the last years by the widespread adoption of cloud services, the
generalization of 4G mobile usage, and the user consumption
changes from television to video streaming. This trend is very
likely to continue with the advent of 5G and the higher defini-
tion of videos viewed online, putting again more pressure on
the infrastructure owners to increase transmission capacities.

A comparable increase in demand is observed in electric
power distribution networks. There, many solutions are envi-
sioned to reduce infrastructure, production, and/or environment
costs by smoothing out the (also highly variable) demand.
Those solutions include deferring part of the demand in
exchange for a lower unit price, and quantitative analyses show
how much can be saved, for example when different types of
demand have different deadlines [4], [5].

Telecommunication network features differ from electric
distribution, including faster variations over time and the ab-
sence of alternative sources of supply. (Note that [4], [5] focus
on the use of renewable energy, but assume that grid power is
always available.) Nevertheless, we believe the idea of deferred
traffic–treatable within a deadline with high probability–is
worth investigating also there. A typical example is for video
on demand: consumers could be asked to select a movie in
advance, which would then be “pushed” through the network
within a deadline, using only the capacity left unused by other

flows instead of being downloaded or streamed as a delay-
sensitive flow. Such a new service would then be transparent to
existing traffic, and could help postpone capacity investments
through a more efficient use of the existing infrastructure.

In this paper, we use large deviations analysis [16], [18]
to estimate the amount of capacity that could be used by
deferrable traffic. The idea is to control the probability that the
average capacity available over some duration T is insufficient
to carry some amount of deferrable traffic: given T and a target
failure probability, we compute a corresponding capacity for
deferrable traffic. While the analysis only provides results for
the rate at which that probability decreases with T , simulation
results show that ignoring smaller-order terms leads to very
good estimates of the available capacity for deferrable traffic.

In terms of implementation, our approach relies on the
current Software-Defined Networking (SDN) efforts [1], [11],
in that it can leverage the use of logically centralized con-
trollers, aware of the current network conditions, to inject
deferrable traffic so as to remain transparent to delay-sensitive
flows. Beyond the controller, some other management tools can
also be applied, ranging from lower prioritization of deferrable
traffic to more elaborate methods aimed at reducing the need
for buffering in intermediate nodes, such as the Fastpass
approach proposed in [15]. Since deferrable traffic will use
the volatile resource left available by non-deferrable flows, we
can also imagine that the routing applied to deferrable traffic be
subject to rapid changes in order to optimize the instantaneous
throughputs; this again implies the knowledge of the current
network states, and the capacity to impact rapidly the behavior
of routers through interfaces such as OpenFlow [13].

We are not the first ones to apply large deviations to analyze
delays. In [17] the focus is on scheduling jobs in a multi-class
queue so that out-of-time probabilities decrease at target rates
for each class when the tolerated delay increases. Considering
the network aspect, the large deviations of a network of G/G/1
(single-class) queues are analyzed in [3], also at the job (or
packet) level. With regard to those references, our interpreta-
tion of delays here is for fluid-like models (continuous flows),
not jobs. Additionally, our methodology focuses on estimating
the throughput that can be offered to a low-priority service
for a given tolerated delay, while the references focus on
the performance for high-priority jobs: in [17] the objective
is to minimize out-of-time probabilities, and [3] analyzes the
waiting times and queue lengths (two notions we do not have
in this paper for nondeferrable traffic given our “session”
modeling for non-deferrable flows).
Large deviations are also applied, again in the power grid
context, in [14] to control the risks of delaying some part of
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the energy demand from specific devices (pool pumps) with
specific constraints (e.g., at least one cycle per device per
24 hours). In this paper we consider a steady-state setting
of demand (e.g., during the peak hour) instead of relying
on partially predictable (daily) cycles in demand, and we
concentrate on providing some deferrable service at a constant
perceived rate, the delay being a consequence of variations in
the primary use of the network.
Our approach is close to stochastic network calculus [6],
[7]; the main differences being twofold. First, most stochastic
network calculus models consider random arrival flows served
by a (non-random) network node, while here the service
provided is the capacity left unused by nondeferrable traffic,
hence randomness on the service side. Second, while the
goal in network calculus is to provide conservative bounds
(e.g., on usable capacity for delay to be below a threshold
with high probability), we intend here to estimate the actual
value, and for that we treat the large-deviation results (giving
the speed for deviation probabilities) as “direct” estimates.
Extensive simulations highlight the accuracy of this method.
In stochastic network calculus, the closest notion to what we
are investigating is that of leftover capacity, studied in [2],
where the focus is still on obtaining bounds rather than on
approaching the actual value. The contribution of this paper is
then a method to estimate the usable capacity for given quality
constraints given the characteristics of the nondeferrable traffic
using it, and its extension in a very simple manner to the
network case: it is indeed sufficient to apply the single-link
method independently on each link of a network.

Our work is also related to the literature on delay-tolerant
networks [8], [19], but the paradigm is sensibly different.
Indeed, delay-tolerant networks are generally studied in a
wireless context, the changes in connectivity coming from
node mobility, hence a focus on routing [20] and buffering [12]
strategies. In contrast, here the topology is assumed fixed
and the instantaneous “connectivity” (the available capacity)
results from demand variations over time of the non-deferrable
service, which can be studied with a specific stochastic model.
Studying that stochastic model to infer delay guarantees for the
deferrable traffic is the main focus of this paper.

For any tolerable delay T , our method provides an estimate
for the available capacities on a global network, obtained
from a per-link analysis. The outcome of the analysis is
a possibly simple exploitation of those unused resources in
the near future, through the coordination possibilities offered
by the SDN paradigm. Numerical examples show that even
for networks optimized for delay-sensitive traffic, capacity
utilization can be raised to 95% by adding deferrable traffic,
while in current practice it is limited to at most 75-80%, and
quite often in the vicinity of 50% due to the time-of-day
and day-of-year traffic variations as well as inherent traffic
burstiness and the provision of backup paths to be used in
the event of failures. Hence, we think our proposition has the
potential to enable new types of services without incurring any
cost for additional capacity.

The remainder of the paper is organized as follows.
The general model considered in the paper is presented in
Section II, while Section III treats the special case of one
communication link. A simple network case is detailed in
Section IV, highlighting the key difficulties in the extension

to more complex topologies, in particular insisting on the
necessity of caching deferrable traffic in intermediate nodes.
Section V summarizes the implications of our results for the
“deferrable service network” that can be defined on an existing
network, by explaining how to estimate the capacity of each
link of this overlay network to satisfy delay constraints while
remaining transparent to the non-deferrable traffic. Conclu-
sions and directions for future work are given in Section VI.

II. GENERAL MODEL

We consider a peak period during which the non-deferrable
traffic is assumed in steady-state. We focus on links that
carry the traffic of many users, such as backbone links (as
schematized in Figure 1) and possibly backhaul links. Those
links are now facing congestion issues because of the demand
increase but also because of the increase in last-mile capacities.
We nevertheless assume that access capacities are still the
bottleneck for users most of the time, i.e., the network is
designed so that users use all of their access capacities when
active. We use the term sessions to refer to user flows, assumed
with a constant throughput equal to their access link capacity.
Thus, we consider that the network is dimensioned to offer
a throughput limited only by the access rate, with a high
probability. In that sense, we neglect sessions (flows) that
are too short to reach the access transmission rate. A way
to include those “mice” in our model is to average, for each
given link, their throughputs and to subtract them from the link
capacity. This corresponds to assuming that those sessions are
such that their aggregate rate is approximately constant at the
scale of the acceptable delays for deferrable services.

We also assume that all users have the same access rate,
denoted by b. Therefore, when a number X of users have their
sessions use a given link (considering fixed routing per flow),
the used capacity is simply Xb. If the link has capacity C,
there consequently remains some bandwidth C �Xb that can
be used for our new (deferrable) service. In the rest of the
paper, b will be taken as the capacity unit.
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Figure 1. The type of backbone network considered (in black): individual
rates are limited by user access rates. Grey parts schematize the access
network, nodes in black can be entry points (for users and/or content providers)
or simply intermediate nodes. All links are labeled by their capacity.
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We consider large numbers of users connected to each
entry point, that behave independently. As a consequence,
we assume that user sessions arrive according to independent
Poisson processes. We moreover model session durations as
exponentially distributed random variables with a common
average duration denoted by 1/µ. Finally, we assume session
routing is fixed, as least statistically: for each session route,
arrivals follow a Poisson process. In practice, routes may adapt
to network conditions, but since we consider networks that are
dimensioned to keep saturation rare, we ignore that effect.

The question we now ask regards the use of the remaining
capacity for deferrable service: given backbone link capacities,
session arrival rates and average duration, we intend to offer
a service based on that capacity, with looser delay constraints.
More specifically, we want to choose a deadline T and offer
a service for which delay is guaranteed to be below T with
some high probability. In this paper we show how to compute
the amount of such deferrable traffic that can be carried by the
network, as a function of T , of the network capacities, and of
the non-deferrable traffic characteristics.

We are aware that some of the assumptions we make are
a considerable simplification of reality, but we believe the
model we build on them provides useful insights regarding
the potential offered by resources temporarily left idle by non-
deferrable traffic.

III. THE CASE OF ONE LINK

In this section, we consider the case of a single (backbone)
link, and detail the reasoning that will be applied in later
sections to more complex topologies.

A. Setting and mathematical formulation

We denote the request arrival rate–assumed constant over
the considered period–by � (arrivals per time unit). Each
session uses the same bandwidth b due to last-mile capacity
limits, and goes through a single backbone link with capacity
C. As stated in Section II, the service duration of each request
is assumed to follow an exponential distribution with parameter
µ, so that if we assume that requests arriving while the link
is full are rejected, the process describing the evolution of
the number of active requests over time is an M/M/C/C
queue [10], with C := bC/bc.

Then the blocking probability for a non-deferrable re-
quest is simply given by the Erlang-B formula B(⇢, C) =

⇢

C

/C!P
C

k=0 ⇢

k

/k!

with ⇢ := �/µ. This formula can be used either to
dimension the link (decide the value of C) for a given demand
level ⇢, or to decide how many users to route through this link
(decide the value of �).

In practice, the requests arriving while the link is fully
used may not be rejected but rather be re-routed, or have to
share the link capacity with existing sessions (although we can
imagine an admission control scheme actually rejecting those
requests). But we assume the decisions (on C or �) are such
that this occurs with small probability, so that the M/M/C/C
model would still be a good approximation.

We consider providing deferrable service at an effective
throughput represented by D, the equivalent number of access

links with capacity of b bit/s each. For example, D = 3

corresponds to a effective throughput of 3b bit/s. The question
is: depending on T and on the target probability of delay
remaining below T , what value of D can the network handle?
Equivalently, for given D and T , what is the probability that
the amount DT of deferrable traffic is carried before the
deadline T ? The network controller will limit the amount
of deferrable traffic to a value for which that probability is
acceptably large, say 99%.

To address the question, let us consider a deferrable bit
that enters the network at time t. If the network provides a
first-come-first-served service for deferrable demand, that bit
will be served after all the deferrable bits that arrived in the
time interval [t � T, t), since the value of D is chosen so
that the delay does not exceed T . The probability that our
considered bit can be served before t + T at least equals the
probability that the capacity left unused by the non-deferrable
traffic during [t, t+ T ] exceeds DT , i.e.,

P
 Z

t+T

t

(C �X

⌧

)d⌧ � DT

!
=1�P

 
1

T

Z
t+T

t

X

⌧

d⌧ > C �D

!
,

(1)
where X

⌧

is the number of active users of the non-deferrable
service at time ⌧ .

The situation is illustrated in Figure 2 for a given re-
alization of non-deferrable traffic: the network can offer an
equivalent throughput D to a delay-T deferrable traffic if the
average idle capacity over a duration T exceeds D with a
sufficiently high probability.

surface � DT ?

nominal usage (non-deferrable flows)

t t+ T
0

C

Time

Li
nk

us
ag

e

Figure 2. A trajectory for nominal (non-deferrable) usage, and the corre-
sponding instantaneous available capacity (C=65, � =50, µ=1, T=5).

In the following, we will therefore look for the relation
between A > 0, T , and the “failure” probability

P

A,T

:= P
 

1

T

Z
T

0

X

⌧

d⌧ > A

!
(2)

where (X

⌧

) is a continuous-time Markov chain corresponding
to the number of clients in an M/M/C/C queue with offered
load ⇢, and X

0

is assumed to be distributed according to the
stationary distribution of X , i.e., P(X

0

= x

0

) =

⇢

x0
/x0!P

C

k=0 ⇢

k

/k!

for x

0

= 0, 1, . . . , C. We call P

A,T

the failure probability,
since for A = C �D it gives the probability that the average
available capacity for deferrable traffic over T is below D, as
indicated in (1).
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B. Large deviations analysis

For delay durations that are large (e.g., with respect to the
mean session duration 1/µ), the probability P

A,T

in (2) can
be studied using large deviations [16], [18], and should then
verify

P

A,T

= e

�TI(A)+o(T ) (3)

where
I(A) := sup

✓2R
[✓A� ⇤

✓

] , (4)

with ⇤

✓

the principal eigenvalue (eigenvalue with largest real
part) of the matrix Q+✓V , V a diagonal matrix with V (i, i) =

i for i = 0, ..., C (assuming matrix indices start at 0), and
Q the infinitesimal generator matrix for the process X . The
function I(·) is called the large deviations rate function, and
is continuous and convex.

Figure 3 displays examples of the objective function in (4),
and of the large deviation rate I(A) when A varies. Note that
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Figure 3. Some values of ✓A�⇤✓ (left), and corresponding large deviation
rates (right) for the average occupancy during T , when � = 50, µ = 1,
C = 65 (blocking rate for non-deferrable demand: 0.0064).

the large deviation analysis only provides the rate I(A) > 0

at which the probability tends to 0 as T increases. In this
paper we nevertheless intend to ignore the o(T ) in (3), or
more precisely to ignore its variations with T , and directly use
Ke

�TI(A) (for an appropriate constant K) as an approxima-
tion for the probability of the average occupancy over a period
T to exceed A. This will allow us to look for combinations
of T and A such that P

A,T

is small enough. We choose the
value of the constant K such that the formula gives a correct
response when T tends to 0, hence we will consider that

P

A,T

⇡ P

A,0

e

�TI(A)

, (5)

with P

A,0

approximating the probability that the instantaneous
bandwidth used by non-deferrable traffic exceeds A. For our
session model this probability is simply

1

P
C

k=0

⇢

k

/k!

CX

i=dAe

⇢

i

i!

, (6)

which is not continuous in A. For later convenience we will
preferably use for P

A,0

an approximation that is continuous
in A, for example by taking P

A,0

as in (6) for integer values
of A and piecewise linear between (our choice for the curves
plotted in this paper), keeping the difference very small.

The approximation (5) gives us a relationship between T

and A: the minimum T such that we can offer some capacity
C�A to deferrable service with “failure” probability below ✏

would be
T ⇡ logP

A,0

� log ✏

I(A)

.

Inverting that function in A, the difference C�A is the amount
of capacity that can be offered for deferrable service with
probability 1� ✏ within delay T during the peak hour, which
we denote by D(T, ✏):

D(T, ✏) ⇡ C � inf

⇢
A :

log(P

A,0

/✏)

I(A)

< T

�
. (7)

As expected, that capacity increases with the guaranteed delay:
the rate I(A) increases with A (see Figure 3) while P

A,0

decreases from (6), hence the inf in (7) decreases with T .
Moreover, since I(A) and P

A,0

vary continuously with A, the
right-hand side of (7) is continuous in T , as the inf describes
the inverse of the continuous and strictly decreasing function
A 7! log(P

A,0/✏)

I(A)

.

An example is displayed in Figure 4, together with sim-
ulation results to illustrate that the large deviations theory
very accurately predicts the throughput that can be offered to
deferrable service as a function of the delay T . More evi-
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Figure 4. Available capacity for deferrable demand (proportion of the link
capacity), with out-of-time probability less than 0.01 (C=65, � =50, µ=1,
blocking probability=0.00645, non-deferrable usage=76%)

dence of this accuracy is given in Figure 5, suggesting that the
large deviations approach slightly underestimates the available
capacity, with a relative error below 5% (for reasonable link
loads) that decreases when the link capacity increases.

Figure 4 shows the case of a link for which the offered
non-deferrable traffic (in number of sessions) is 50, but that is
dimensioned to C = 65 to keep a blocking rate below 0.8%.
This results in only 76% of the link capacity being used on
average, hence some margin (up to 24% of the link capacity)
to offer deferrable service. Both simulation and large-deviation
results indicate that we could use 15% of the link capacity–
thus reaching 91% link utilization–by proposing a service with
delay below 15/µ and a 99% guarantee.

More stringent delay constraints could be preferred: with
the same 99% guarantee but for the delay 4/µ we can use
10% of the total link capacity, thus reaching a 86% usage for
that link. Alternatively, for very large delays (around 90/µ)
the link usage rate can get as high as 96%.
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Figure 5. Relative error of (7) to predict deferrable supply with respect to
simulations for delay T = 10, with out-of-time probability less than 0.01,
µ=1.

C. Offering different delay guarantees

Before extending our results to the network case, let
us briefly evoke the possibility of proposing simultaneously
different “deferrable traffic” offers, with distinct delays and
likely with different prices. This provides the network manager
with even more flexibility, to segment demand and reach a
higher social welfare (and/or higher revenues).

A way to provide that service in practice is to use priorities,
traffic with tighter delay constraints having higher priority (and
of course, non-deferrable traffic having the highest priority).
For the example of Figure 4, as much as 10% of the link
capacity can be sold for a “4/µ-delay” service. If that amount
is sold, then the network manager can still devote an additional
5% of the link capacity to a “15/µ-delay” service, and even
another additional 5% to a “90/µ-delay” service.

This option, and in particular the revenue-maximization
possibilities it offers, are not developed in this paper: in the
following sections we still consider a unique delay T . But the
same simple reasoning as done here is applicable to our next
results as well.

IV. A SIMPLE NETWORK CASE

In this section we consider the simplest generalization of
our results, to a 2-link network topology. We explain how the
large-deviation results obtained for one link can be applied for
multiple-link transfers, insisting on the importance of caching
data in intermediate nodes.

A. Model

Let us consider the simple network topology depicted in
Figure 6, with three nodes, two links, and three types of flow:
we denote by X

i

(t) the number of ongoing non-deferrable
sessions using link i only for i = 1, 2 at time t, and by X(t) the
number of ongoing non-deferrable sessions using both links.
Mirroring the previous section, we denote by �, �

1

and �

2

the arrival rates for sessions using both links, link 1 only, and
link 2 only, respectively. We assume as before that all sessions
use the same bandwidth b, so that the capacity C

i

of link i

can be expressed as the maximum number of sessions that can
simultaneously use that link. Recall that we assume sessions

for the three types of flows have the same duration distribution
(namely, exponential with parameter µ).

C1 C2

X1(t) X2(t)

X(t)

Figure 6. A simple network topology with three types of non-deferrable
sessions (represented by arrows). Arc are labelled with their capacity.

B. Available capacity on one link

Under our assumptions, the number of sessions using a
given link i is not exactly an M/M/C

i

/C
i

queue since some
requests of two-link connections can be blocked because of
the other link. Hence treating X(t) +X

i

(t) as an M/M/C
i

/C
i

queue will be over-pessimistic, but will yield a lower bound
of what can be offered as deferrable traffic on that link.
Additionally, we can expect this lower bound to be close to the
actual value when the blocking probability of non-deferrable
flows is low, which is the case in properly dimensioned
systems.

Therefore we will take, as an estimate of the available
capacity on each link, the result obtained from the analysis
in Section III, taking for the arrival rate the sum of the arrival
rates of all paths using that link (hence, for our 2-link example,
taking ¯

�

i

= � + �

i

as the arrival rate on link i, i = 1, 2).
Figure 7 provides an illustration, where for each link we
observe results similar to the one-link case: the large deviation
approach provides a very accurate estimation of the available
capacity on each link. The gap is a bit larger than in Figure 4,
though, especially for link 1, because of the blocking of some
two-link sessions due to saturation of link 2 (link 2 has a
larger blocking rate than link 1), an aspect neglected in our
large deviation approach as explained above.
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Figure 7. Available capacity for deferrable demand, with out-of-time proba-
bility less than 0.01 (C1 = 58, C2 = 60, � = 27, �1 = 15, �2 = 20, µ=1,
blocking probabilities⇡(0.0035,0.01), non-deferrable usage⇡ (72%, 78%)).

C. Available capacity on a path

Now consider the “long” path in Figure 6. To quantify the
amount of bandwidth that could be offered on that path for
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deferrable service, we distinguish two cases, according to the
possibility or not of caching (storing) data in the middle node.

1) Without caching at the middle node: When no data
caching is possible at the middle node, deferrable traffic on
the path should be controlled by the source, to send data only
when there is capacity available on the whole path, i.e., at an
instantaneous rate equal to the minimum of the available rates
on the traversed links as proposed in [15]. We leverage here
the fact that an SDN architecture can be aware of the usage
of each link, and use that knowledge to control the sending
rate of each deferrable traffic source. Hence for our two-link
path, we are looking for the maximum capacity D such that,
assuming the system in stationary regime at time 0,

P
 
1

T

Z
T

t=0

min(C

1

�X

1

�X , C

2

�X

2

�X)dt<D

!
 ✏, (8)

where we omit the dependence on t of X
1

, X

2

, and X: at time
t, X

i

(t) is the number of non-deferrable sessions using link i

only, and X(t) the number of non-deferrable sessions on the
two-link path. The left-hand side of (8) being continuous in
D, we actually have equality in (8) for the optimal D, that we
denote by Dpath.

We can now state a result lower-bounding Dpath to the value
obtained when no non-deferrable traffic uses the two-link path.

Proposition 1: The available capacity Dpath on the two-
link path is lower-bounded by the one obtained when only
one-link sessions arrive, with arrival rate ¯

�

i

= �

i

+ � on link
i = 1, 2.

The proof is provided in Appendix A.
Proposition 1 is illustrated by simulations in Figure 8, where
we plot the available transmission rates on the two-link path
when arrival rates of non-deferrable sessions on link-1, link-2,
and the two-link paths are respectively �

1

+��, �
2

+��, and
(1� �)�, for � varying in [0, 1]. As stated in the proposition,
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Figure 8. Available capacity for deferrable demand, with out-of-time proba-
bility less than 0.01 when �1 = 10+10�, �2 = 15+10�, � = 10(1� �),
µ = 1, C1=40, C2=45 (simulation results).

the available rates are the lowest when � = 1.

Unfortunately, we do not have a large-deviation derivation
for that case for a general delay T . However we think that
a networked version of the deferrable service should involve
caching in intermediate nodes to reach a significant use of
network links. As an illustration, consider a chain of M

links behaving as independent and identical M/M/C/C queues

with offered traffic ⇢ on each link. Then, without caching,
the steady-state probability that at least some capacity D is
available on the whole path equals U(D)

M , with

U(D) =

C�dDeX

i=0

⇢

i

/i!

P
C

k=0

⇢

k

/k!

< 1,

and therefore decreases exponentially in M . When T ! 1,
the maximum capacity that could be offered on the M -link
path equals the average minimum available capacity among
the M links, that can be computed as

P
C

D=1

U(D)

M . For
T < 1 we can of course offer even less.
Figure 9 plots this upper bound for some example values,
showing that the available bandwidth for the deferrable service
decreases very fast with M , hence a very limited service offer
even for numbers of hops around 5, a reasonable value [9].
Therefore, we think a network application of the deferrable
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Figure 9. Available capacity on an M -link path (multiple of the session rate
b) without caching, when all links behave as independent M/M/C/C queues.
Link capacity C is optimized to maintain blocking rate below 0.01.

service is worth considering only when caching is available at
intermediate nodes. This is also illustrated later, in Figure 10.

2) With caching at the middle node: With the possibility
of caching data in the middle node, the deferrable service does
not need to limit instantaneous data rates to the minimum
of the instantaneous available rates on the path links: data
can be sent on a per-link basis, just being constrained by
the currently used link instantaneous available capacity, and is
then possibly cached at the next hop. The capacity of interest
then becomes the minimum (over links) average (over time)
available capacity on a period of length T . Mathematically,
while without caching we were looking for Dpath such that

P
 
1

T

Z
T

t=0

min(C

1

�X

1

�X , C

2

�X

2

�X)dt<Dpath

!
= ✏,

with caching we are looking for Dc
path such that

P
 
1

T

min

(Z
T

t=0

C

1

�X

1

�Xdt,

Z
T

t=0

C

2

�X

2

�Xdt

)
<D

c
path

!
=✏,

(9)
which will give larger available capacities, i.e., Dc

path � Dpath,
since the minimum of averages is larger than the average of
minimums.

More specifically, we claim that with caching, the available
capacity on the two-link path is very close to the minimum of
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the available capacities along the path, computed separately
with the common delay target T .
The reasoning is as follows: the principle of large deviations
not only gives the rate at which the probability of “excep-
tionally large average occupancy” on each link decreases with
the considered duration T , but also indicates how such large
occupancies can be attained. Specifically, only the most likely
behaviors leading to such large average occupancies should be
considered.
In an M/M/C/C queue, one can show that due to the convexity
of the rate function, the most likely trajectories yielding to
a given high average occupancy are those with a (almost)
constant occupancy, equal to that average. The intuition is
that trajectories going below that level must also have periods
with even higher occupancy (to reach the same average value),
which have a high “likelihood cost” since the likelihood of
having an extra client (i.e., an arrival rather than a departure)
decreases with the occupancy.
Going back to our two-link path, the most likely way to have
“exceptionally bad” performance on the path is to have only
one link with “exceptionally large average occupancy”, more
specifically, the one for which such occupancy is the most
likely. But when the target probability of those exceptional
events is ✏, this is precisely the link i with the smallest available
capacity D

i

computed from (7) for link i. Then, the most likely
behavior for the other link is to have more than D

i

available.
This reasoning leads to the simple method below.

Method 1: To estimate the available capacity on the two-
link path with caching, take the minimum available capacity
of both links, computed independently from (7), with a session
arrival rate ¯

�

i

= �+ �

i

on link i = 1, 2.

Figure 10 displays an example for a symmetric (C
1

= C

2

and �

1

= �

2

) and “pessimistic” case (� = 0), showing that
our large-deviation results applied separately to each link still
capture very accurately the variations of what can be offered
end-to-end with the tolerable delay. Figure 10 also shows the
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Figure 10. Available capacity for deferrable demand, with out-of-time
probability less than 0.01. (Parameters: C1=C2=65, �=0, �1=�2=50, µ=1,
blocking probabilities⇡ 0.0064, non-deferrable usage⇡ 76%)

importance of caching: without caching, Method 1 does not
apply and the available capacity on the path is significantly
below the available capacity on each link. Note that for that
case the upper bound as T increases is consistent with the
observations in Figure 9 for M = 2.

A direct consequence of Method 1 is that the use of the
available “delay-T ” capacity on the links can be on any path,
leading to a straightforward method to check feasibility of a
deferrable-traffic matrix:

Method 2: To check whether a deferrable traffic through-
put profile R

1

, R

2

, R (on the link-1, the link-2, and the two-
link paths respectively) can be served with the delay guarantee
T and the out-of-time probability ✏, verify that the link capacity
constraints R

1

+ R  D

1

and R

2

+ R  D

2

are satisfied,
with D

i

, i = 1, 2, obtained as in Method 1.

3) Possible loss of efficiency: The expression (9) actually
forgets a part of the problem, by just focusing on the average
bandwidth available along the path: there may indeed be
cases when some bandwidth is available on link 2 before the
equivalent amount is available on link 1. In that case, even
if link 2 is the bottleneck in the sense of Method 1, not all
the capacity of link 2 can be used, hence some possible loss
with respect to the proposition due to this “backlog effect”, as
simulation results show in Figure 10.
However, we think this effect should be minor in practice
because of the pipelining that occurs: recall that we have been
pessimistic in Section III by considering that no deferrable
data received for treatment in the interval [t�T, t] was treated
in that interval. This is how we reached (1), and which is
simulated in Figure 10. Additionally, Figure 10 considers a
worst-case situation, where both links have the same avail-
able capacity: this maximizes the likelihood of data being
backlogged by link 1 among situations where link 2 is the
bottleneck. Even with those two pessimistic assumptions the
effect is not so salient, we expect it to be even less important in
practice and therefore ignore it in the remainder of this paper.

V. BUILDING A “DELAY-T NETWORK”

In this section, we propose to extend the results of the
two previous sections over a whole network. More specifically,
we suggest that the manager of an existing network decide
on a delay T for the deferrable service, and we provide a
methodology to estimate the capacities that could be offered
with that delay constraint. We first extend Method 1 to claim
that an analysis on a per-link basis is sufficient: the delay
guarantee on each link will still be satisfied end-to-end. Hence
we can just represent a “delay-T network” as a network with
the same topology as the original one, with some “delay-T
capacity” on each link.

Note that while our “delay-T network” comes at no costs
in terms of transmission capacities, there may be some storage
costs at the network nodes to provide caching as described in
the previous section. We expect the storage amounts to remain
small because of pipelining of data treatment, but quantifying
the amount of storage space needed is of interest and should
be studied in future work. Here, we assume that storage is
cheap and focus on transmission capacities.
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A. Lower-bounds: assuming independence among links

In the rest of this section we assume sufficient caching
is available within the network. As in Method 1, we target
delay guarantees on an end-to-end basis. The reasoning is
exactly the same: given a path, considering all traversed links
as independent (with arrival rates equal to the sum of the arrival
rates of all flows using that link), should leave less capacity
than the initial setting. We will use the lower bound obtained
this way as an estimate of the available capacities on links.

Then, as in the previous section, we exploit the properties
of large deviations as depending only on the most likely
trajectories, to claim it is sufficient to consider the minimum
available capacity (for the chosen delay T and guarantee level
✏) among the path links. Indeed, again the most likely way to
get bad average performance over a sufficiently long period
T is through the “weakest” link in the path, i.e., the most
saturated. And for that path, the most likely trajectory leaving
a capacity D on average is one leaving a (almost) constant
capacity D; for the other links the most likely behavior would
not be far away from the average, hence leaving at least D

except for very short durations (managed through caching, and
only slightly affecting the delay for deferrable service).

Method 3: Assume that there are sufficiently large caching
capacities in intermediate nodes in the network, and consider
a single path on that network. Then, to estimate the available
capacity on any path, take the minimum available capacity of
the links on that path, computed independently from (7), with
an arrival rate equal to the sum of all arrival rates for sessions
using that link.

B. How much capacity to offer?

Treating all links as independent has the advantage of
removing complex delay constraints due to multi-link paths:
to get some delay-T capacity D over a path, one just needs
to ensure to get delay-T capacity on each link over that path,
i.e., exactly as in the initial network for non-deferrable traffic.
We therefore have the counterpart of Method 2:

Method 4: To check whether a deferrable-traffic through-
put profile (on all possible paths on the network) can be served
with the delay guarantee T and the out-of-time probability ✏,
verify that the link delay-T capacity constraints on all links are
satisfied, where those capacities are obtained independently on
each link from (7), taking for the arrival rate the sum of all
arrival rates for non-deferrable flows using that link.

A simple way of representing the delay-T service is there-
fore to keep the network topology, and display the available
capacity on each link for the chosen delay T . An example is
provided in Figure 11, for two different values of the delay.

VI. CONCLUSION AND PERSPECTIVES

Telecommunication networks are over-dimensioned with
respect to the average traffic they carry, because of traffic
demand variations. In this paper, we propose to leverage
these extra capacities to provide a new service, using only
the resources left available by the non-deferrable traffic. We
show that we can still provide guarantees for the delay ex-
perienced by such traffic, and provide a methodology based
on large deviations analysis to estimate the capacities of the
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Figure 11. An example of network topology with existing non-deferrable
demands (top), and the associated delay-T network for T = 2 and T = 10,
when ✏ = 0.01 and µ = 1. Arcs are labeled with their capacities; all link
blocking rates are below 1%.

corresponding deferrable-service network, a “new” network
that does not imply any capacity expansion costs but possibly
some in-network storage costs. Even if a new external service
is not offered, the ideas discussed in this paper can be
used for internal purposes by a large operator. For example,
large operators periodically have to perform some synchro-
nization or backup of large distributed databases, which is
very bandwidth-consuming. Although we suspect they already
perform those operations using low-priority traffic, our results
help understand the type of delays that could be guaranteed,
or reciprocally the maximum loads of such low-priority traffic
that could be supported while keeping delays reasonable.

Possible future work includes a quantitative study of the
amount of in-network storage needed to make the most of
such a system: we have assumed that there is sufficient
caching space in the network, and would be able to estimate
the associated costs to gain even more insight regarding the
realizability of our proposition. Another interesting extension
is to consider heterogeneous access rates among users: our
model (with equal access capacities for all users) provides
useful insights, but given the diversity of available access
technologies it would be more realistic to study different types
of sessions, with different capacities and probably different
duration distributions. A first step could be to assume an access
rate that depends only on the entry node: in Figure 1 we would
have a common b

j

for all users accessing the network through
entry point j. The case of routing (for non-deferrable traffic)
that would depend on the current network conditions is also
worth considering: we have ignored it here for simplicity, so
that we have Poisson arrivals for each type of route, but in
practice we may have spill-over sessions on secondary routes.
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APPENDIX A
PROOF OF PROPOSITION 1

Proof: Let us consider the process (X

1

+ X,X

2

+ X),
and consider a slightly different Markov process ( ˜X

1

,

˜

X

2

) such
that arrivals of one-link sessions are unchanged but arrivals of
2-link sessions are “duplicated” into a one-link session on each
link. Mathematically, for arrivals we have transitions
• (

˜

X

1

,

˜

X

2

) ! (min(C

1

,

˜

X

1

+ 1), X

2

) with rate �

1

,
• (

˜

X

1

,

˜

X

2

) ! (X

1

,min(C

2

,

˜

X

2

+ 1)) with rate �

2

,
• (

˜

X

1

,

˜

X

2

) ! (min(C

1

,

˜

X

1

+1),min(C

2

,

˜

X

2

+1)) with rate �.

In terms of departures, all sessions of ( ˜X
1

,

˜

X

2

) leave after
independent exponentially distributed times with parameter µ

(i.e., the “duplicated” sessions are then independent).

Then min(C

1

� ˜

X

1

, C

2

� ˜

X

2

) is stochastically smaller than
min(C

1

� (X

1

+X), C

2

� (X

2

+X)), since the differences are:
i) in the original case more sessions are blocked: when a link

is saturated and a 2-link session arrives, the state is unchanged
while in the new case there is a new session on one link.

ii) in the original case, two-link sessions leave after an
exponentially distributed time with parameter µ, freeing one
“server” (the space for one session) simultaneously on both
links. In contrast, in the new case the duplicated sessions leave
one by one, each one with an exponentially distributed time
with parameter µ.
Hence there tends to be more active sessions in the new case
than in the original one, thus less space for deferrable flows.

Finally, consider another process (

¯

X

1

,

¯

X

2

), that only dif-
fers from (

˜

X

1

,

˜

X

2

) in that the “duplicated” sessions now arrive
independently (hence we have independent arrivals on each
link according to two independent Poisson processes with
rate � for those specific sessions). In summary, ¯

X

1

and ¯

X

2

are simply two independent processes, each ¯

X

i

(i = 1, 2)

corresponding to an M/M/C
i

/C
i

queue with arrival rate ¯

�

i

and
service rate µ.
Now remark that in both cases, for any fixed i 2 {1, 2}
the “marginal” processes ¯

X

i

and ˜

X

i

both correspond to an
M/M/C

i

/C
i

with the same arrival rate ¯

�

i

and service rate
µ, hence are stochastically equivalent. But because of some
joint arrivals (the duplicated ones) in the case of (

˜

X

1

,

˜

X

2

),
the processes ˜

X

1

and ˜

X

2

are positively correlated.
It results that (C

1

� ¯

X

1

, C

2

� ¯

X

2

) and (C

1

� ˜

X

1

, C

2

� ˜

X

2

) also
have marginal processes that are stochastically equivalent, but
C

1

� ˜

X

1

and C

2

� ˜

X

2

are positively correlated while C

1

� ¯

X

1

and C

2

� ¯

X

2

are independent.

Let us now define, for i = 1, 2, p
i

(�) := P(C
i

� ¯

X

i

< �).

Then for any � > 0:
• because of the independence between ¯

X

1

and ¯

X

2

we have
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• now since ˜

X

i

is stochastically equivalent to ¯

X

i

for i = 1, 2,
we have at each instant
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But because of the positive correlation between C
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, the probability that both C

1

� ˜

X

1

and C

2

� ˜

X

2

exceed � is larger than if those processes were independent:
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) is stochastically smaller than
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thus we cannot offer more than Dpath to the system with arrival
rates �

1

=

¯

�

1

,�

2

=

¯

�

2

,� = 0. Hence the proposition.
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