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Abstract—We consider the problem of finding efficient meth-
ods to update forwarding rules in Software Defined Networks
(SDNs). While the original and updated set of rules might both
be consistent, disseminating the rule updates is an inherently
asynchronous process, resulting in potentially inconsistent states.
We highlight the inherent trade-off between the strength of the
consistency property and the dependencies it imposes among rule
updates at different switches; these dependencies fundamentally
limit how quickly the SDN can be updated. Additionally, we
consider the impact of resource constraints and show that fast
blackhole free migration of rules with memory limits is NP-
hard for the controller. For the basic consistency property of
loop freedom, we prove that maximizing the number of loop free
update rules is NP-hard for interval-based routing and longest-
prefix matching. We also consider the basic case of just one
destination in the network and show that the greedy approach
can be nearly arbitrarily bad. However, minimizing the number
of not updated rules can be approximated well for destination-
based routing. For applying all updates, we develop an update
algorithm that has a provably minimal dependency structure.
We also sketch a general architecture for consistent updates that
separates the twin concerns of consistency and efficiency, and
lastly, evaluate our algorithm on ISP topologies.

I. INTRODUCTION

The Internet as a whole is a wild place, full of autonomous
participants. As such, it is naturally difficult to control cen-
trally; instead, routing and congestion control is achieved
through a selection of distributed protocols such as BGP
and TCP. However, distributed protocols degrade performance,
BGP cannot find the least congested path, and TCP will
only crudely approximate the available bandwidth on the path
selected by BGP. As a result, a loss of performance is to be
expected and accepted. Many desirable properties such as drop
freedom of packets, good utilization of links, or packet coher-
ence are not as important as robustness. In contrast, individual
networks that make up the Internet are controlled by single
administrative entites. These include enterprise networks, ISP
networks, data center networks, and wide area networks that
connect the data centers of large organizations. The owners
of these networks want to get the maximum out of their
massive financial investment, which often runs into hundreds
of millions of dollars per year (amortized). Towards this end,
they have started replacing inefficient distributed protocols.

The technological driver to this paradigm shift are so-called
Software Defined Networks (SDNs): In an SDN, the data plane

is separated from the control plane, allowing the decision of
where and how much data is sent to be made independent
of the system that forwards the traffic itself. A centralized
controller monitors the current state of the network, then
calculates a new set of forwarding rules, and distributes them
to the routers and switches [1], [2], [3], [4].

Are centrally controlled SDNs the beginning of the end
of distributed protocols? Not so fast! After all, the central
SDN controller has to inform the switches about updates, and
a network is an inherently asynchronous place, where nodes
might even be temporarily not accessible to the controller [4]!

In this paper we will discuss the problems that arise when
updating rules in an asynchronous SDN-based network. We
will show that despite the central control, distributed com-
puting will have an important role, depending on the kind of
consistency model one expects from the network. One of the
most basic consistency properties is that packets should not
loop. As a result, this property, which we call “loop freedom,”
is the starting point of our discussion. We will then discuss
the broader space of consistency properties and highlight the
inherent trade-off between the strength of the property and
the intricacy of dependencies it induces among the actions
of different switches. These dependencies fundamentally limit
how quickly the SDN can be updated.

We build on our prior work [5], which showed that single-
destination networks can be updated loop free in a distributed
fashion, but did not consider the inherent computational com-
plexity or dynamic architectures. We also extend the view on
the consistency space, especially regarding blackholes.

We start in Section III by formally modeling consistent
single-/multi-destination network updates, and show that not
all updates can be sent out in one flush. In Section IV, we
follow up by studying the NP-hardness of loop free updates.
In Section V, we study maximizing the number of sent out
updates at once and how to build a minimal dependency
structure for applying all updates. Afterwards, in Section VI,
we reveal the trade-off between consistency properties and
update dependencies. Additionally, we consider the impact
of resource constraints and show that fast blackhole free
migration of rules with memory limits, i.e., a packet arriving at
a switch must always have a matching rule to handle it, is NP-
hard. We sketch a general architecture for consistent network
updates in Section VII and conclude with Section VIII, where
we present practical evaluation results.ISBN 978-3-901882-83-8 c� 2016 IFIP
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II. BACKGROUND AND RELATED WORK

From early papers on the topic (e.g., [6], [7]), we can learn
that the primary promises of SDNs were that i) centralized
control plane computation can eliminate the ill-effects of dis-
tributed computation (e.g., looping packets), and ii) separating
control and data planes simplifies the task of configuring the
data plane in a manner that satisfies diverse policy concerns.
For example, to eliminate oscillations and loops that can
occur in certain iBGP architectures, the Routing Control
Platform (RCP) [6], [7] proposed a centralized control plane
architecture that directly configured the data plane of routers in
an autonomous system. However, as we gain more experience
with this paradigm, a nuanced story is emerging. Even with
SDNs, packets can take paths that violate policy [8] and traffic
greater than capacity can arrive at links [3]. What explains
this gap between the promise and these inconsistencies? The
root cause is that promises apply to the eventual behavior of
the network, after the data plane state has been changed, but
inconsistencies emerge during data plane state changes.

Recent works have tackled specific pieces of this consistent
update problem. Reitblatt et al. [8], [9] propose a per-packet
consistency solution that we call “packet coherence”—each
packet is routed entirely using the old rules or the new rules,
and never a mix of the two sets; Katta et al. [10] propose
extensions to this solution to reduce switch memory overhead.
SWAN [3] and [11], [12], [13] propose solutions to ensure
that link capacity is not exceeded. The work of Moses et
al. [14] discusses balancing update performance versus periods
of inconsistencies in a time-based update approach.

We make two contributions to this nascent line of work.
First, beyond looking at consistency properties in isolation,
we outline the broader consistency space and the fundamental
hardness of ensuring different consistency properties. This
perspective helps uncover the trade-off between the strength
of the consistency property and the difficulty of ensuring it.
Second, we investigate in detail loop freedom, a property that
has not been considered despite being basic, except for the
recent parallel work of [15], [16], [17]. The packet stamping
solution of Reitblatt et al. [8] can ensure loop freedom by
adding version numbers to packets, but because it ensures
the much stronger property of packet coherence, it is slow
and has high memory overhead. The whole network needs
to be updated first, before being able to use the system—a
long delay in updating single node induces a long delay for
the complete network. Further, despite the extensions of Katta
et al. [10], which trade-off switch memory for speed, packet
stamping has high memory overhead because it simultaneously
stores both old and new rules. Switch memory is a scarce
commodity, with even future generations of switches reaching
their memory limit easily when optimizing the network [3].
Our solutions, designed specifically for loop freedom, are
faster and memory efficient. Interestingly, a majority of the
motivating examples in [8] do not need packet coherence, only
loop freedom.

Francois et al. [18],[19] consider avoiding transient loops

during the convergence of link-state routing protocols. They
argue that, due to high reliability requirements nowadays,
one should try to avoid all packet losses. For the case of
single-destination rules, they consider the routing tree T of
the destination, layered into ranks equivalent to the depth.
The ranks are then updated after another, causing depth(T )
updates in total. Their mechanism design can achieve fast
convergence even in tier-1 ISPs and is carefully fine-tuned for
practical deployment [20]. Our work allows for updating nodes
from different ranks in one update. As such, our number of
updates is not linked to the maximum chain length in the tree,
but rather on the maximum chain length in the dependencies
imposed by the update in general.

Finally, Vanbever et al. [21] work on a related problem, and
study the migration of a conventional (non-SDN) network to
a new IGP protocol. The main differences to our work arise
from the fact that they impose two restrictions on their model:
First, every node must update all its rules at once. Second, only
a single node may be updated at a time, one after another. In
contrast, we can update individual forwarding entries for many
nodes in parallel.

III. MODEL FOR LOOP FREE ROUTING UPDATES

We model a network as a set of connected routers and
switches (from now on, nodes). Packets must be forwarded to
their destination without loops. More formally, a network is a
directed multi-graph with a set of nodes V , a set of destinations
D ✓ V , and a set of destination-labeled edges s.t. all edges
labeled with the same set of destinations will not contain a
directed loop. These edges form a directed spanning tree with
d being the root and all edges being oriented towards d.

Definition 1: Let T
d

= (V,E
d

) be a directed graph with V
being the set of nodes, d 2 D being the sole destination, and
E

d

being the set of edges each labeled with d. The edge from
u 2 V to v 2 V for destination d is noted as (u, v)

d

. The
labeled directed graph T

d

is a single-destination network, if
T
d

is a spanning tree with all directed edges being oriented
towards d.

Definition 2: Let V be a set of nodes and D ✓ V be
a set of destinations. For all d 2 D, let T

d

= (V,E
d

) be
a single-destination network and let E

D

=

S
d2D

E
d

. Then
the labeled directed multi-graph T

D

= (V,E
D

) is a multi-
destination network.
When a network needs to be updated, some (potentially all)
nodes receive a new set of forwarding rules, leaving the
network in a sort of limbo state. At some point all nodes will
be updated, but until then, the network might not be consistent,
i.e., it might induce loops.

Definition 3: Let T old

D

= (V,Eold

D

) and Tnew

D

= (V,Enew

D

)

be multi-destination networks for the same set of nodes V and
destinations D. Then U

D

= (V,Eold

D

, Enew

D

) is called a multi-
destination network update. If the labeled directed multi-graph
T
D

= (V,Eold

D

[ Enew

D

) does not contain any loops of edges
with the same label, then the update U

D

is called consistent
or loop free. A single-destination network update U

d

can be
defined analogously.
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Fig. 1. Illustrating loop freedom. Not all updates can be sent out at once.
Dotted edges are new, solid edges are old.

For an introductory example, consider the five-node single-
destination network in Figure 1. Assume that we want to
update the routing to destination d from the old pattern (solid
edges) to the new pattern (dotted edges). A naı̈ve method is to
send out all updates (e.g., ask v to send packets destined to d to
x) in one shot. However, during application of these updates,
it might happen that x updates its rule before y, introducing
a routing loop between x and y. This loop will eventually
disappear, once y updates its rule, but in an asynchronous
system with possible message delays and losses, we cannot
guarantee when this will happen. Asynchronicity is not a
technicality, as nodes in a production network can often react
slowly (some switches might take up to 100⇥ longer than
average to update [12]), or may not be accessible for some
time to the controller [4]. Thus, solutions in which the network
can quickly start using as many of the new rules as possible,
while maintaining the consistency properties, are preferable.

IV. UPDATES AND DEFAULT RULES

Interval routing and longest-prefix matching are common
routing techniques for large networks. In interval routing
(introduced in [22], cf. [23]), destinations {d1, . . . , d|D|} are
ordered cyclically, and forwarding rules for a node are defined
as disjoint intervals over the destinations, cf. [24], [25], [26].
In contrast, longest-prefix routing defines forwarding rules
via prefixes of the destination IDs, which may overlap: If
two rules are in conflict, the one with the longer matching
prefix is chosen, cf. [27], [28]. Both techniques have great
practical advantages, since multi-destination routing does not
scale well: Even when considering just IPv4 (and not IPv6),
no router on the market could store an individual rule for
every IP–address. Furthermore, this fine–grained information
is not available, since the complete knowledge over a network
is usually restrained to one’s own Autonomous System.

A subset of both techniques is multi-destination routing
with the possibility of default routes. Nodes can either have
individual forwarding rules for each destination or a default
rule, cf. [29], i.e., all packets go to a specific other node (except
for those that reached their destination at the current node).
In this section, we show that maximizing a loop free update
with default rules is an NP-hard problem – and therefore also
NP-hard for both supersets.

Definition 4: Let T
D

= (V,E
D

) be a multi-destination
network and let u, v 2 V . If all outgoing edges from u
point at v in E

D

, then those edges E
u

may be merged into a
default edge, labeled with all labels from D (but packets for a
destination u do not get forwarded from u). We denote such
an edge with (u, v)8. I.e., we remove E

u

from E
D

and add
{(u, v)8}. Let the resulting set of edges of this iterated process
be E

D,8. We call T
D,8 = (V,E

D,8) a multi-destination
network with default routes or multi-default network.

Definition 5: Let T old

D,8 = (V,Eold

D,8) and Tnew

D,8 = (V,Enew

D,8 )
be multi-default networks for the same set of nodes V and
destinations D. Then U

D,8 = (V,Eold

D,8, E
new

D,8 ) is called a
multi-default network update. If the labeled directed multi-
graph T

D,8 = (V,Eold

D,8 [ Enew

D,8 ) does not contain any loops
of edges with the same label, then the update U

D,8 is called
consistent or loop free.

88
8

v1 v2 v3

Fig. 2. Illustrating circular dependencies with default routes. Note that both
in the old and new rules, no packet will loop: E.g., in the old rules, a packet
sent out from v1 will be forwarded to v3, and possibly to v2, but never to
v1 again - as all possible destinations were already reached on the path.

Let us start with an example of just three nodes in Figure
2. We want to update the three old default edges (drawn
solid) to the three new default edges (drawn dotted). However,
due to circular dependencies, not even a single edge can be
updated without causing a loop. This problem can be handled
by relaxing the constraints of default routing: One can prevent
loops by breaking a single (default) rule into one helper rule
for each of the two other destinations, introducing these rules
during the update process and then removing them later. In
general, this is not desirable, as memory constraints on routers
can easily prevent introducing these additional helper rules,
cf. [3]. Nonetheless, one can directly check if a non-empty
update exists: Check each new edge individually, since adding
more edges cannot remove existing cycles. However, even if a
multi-default network can be updated with some edges, it is a
hard optimization problem. We define the problem of updating
multi-default networks as finding the maximum number of
edges that can be included in an update at once:

Problem 1: Let U
D,8 = (V,Eold

D,8, E
new

D,8 ) be a multi-default
network update. Find a set Emax

D,8 ✓ Enew

D,8 , s.t. i) Umax

D,8 =

(V,Eold

D,8, E
max

D,8 ) is a loop free multi-default network update
ii) for all loop free multi-default network updates Uother

D,8 =

(V,Eold

D,8, E
other

D,8 ) with Eother

D,8 ✓ Enew

D,8 it holds that they do
not contain more edges, i.e., |Eother

D,8 |  |Emax

D,8 |.
Theorem 1: Problem 1 is NP-hard.

Proof: Our proof is a reduction from the classic NP-
complete satisfiability problem 3-SAT, in the variant with
exactly three pairwise different variables per clause [30]:

1) Consider the routes for destination Y in the triangle-
gadget from Figure 3. If node X

i

updates, then node X
i

cannot update without inducing a loop for Y , and vice
versa. Choosing one of the two update rules corresponds
to a variable assignment for a variable x

i

in the instance
I of 3-SAT: x

i

is either true or false, but not both.
2) Let C be a clause in the instance I of 3-SAT. If there is a

variable assignment S that satisfies I , then updating the
triangle-gadgets for the variables according to S does not
induce a loop for any destination C in the cycle-gadget
for the corresponding clause in Figure 4. If no such
variable assignment S exists, then at least one triangle-
gadget cannot be updated at all without causing a loop
for a destination representing a clause.
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Y

Fig. 3. Triangle-gadget for
a variable x

i

. New edges are
drawn dotted, old solid.
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C
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C

X1 Y1

X1

X2 Y2

X2

X3 Y3

X3

Y

B

Fig. 4. Cycle-gadget for the clause C = (x1 _x2 _x3). All edges not shown point directly at their destination. Only if all
three nodes X1, X2, X3 update their forwarding rule for C, then there is a loop for the label C (via B�X1�X1�X2�
X2 �X3 �Y3 �B). E.g., C = (x1 _x2 _x3) could only induce a cycle via B�X1 �Y1 �X2 �Y2 �X3 �X3 �B.
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8 8

Y

8
Y

Z

Z

Z

Z

Z

Z

Z

Z

X

i

Y

i

X

i

Y

X

0
i

X

0
i

Z

i

Z

Fig. 5. Extension of the triangle-gadget for a variable x

i

from Figure 3. New edges are drawn dotted, old solid.
Edges not shown point at their destination. The four possible
cycles for destination Z are i) X

i

, X

0
i

, ii) X

i

, X

0
i

, iii)

X

0
i

, X

0
i

, Z

0
i

, iv) X

0
i

, X

i

, X

i

, X

0
i

, Z

i

. No other new cycles
are introduced.

# in sequence conflicting clauses variable false variable true

1 Y, Z, Yi Y, Z, Yi, Xi Y, Z, Yi, Xi

2
Xi, Xi X

0
i, Xi X

0
i, Xi

3
X

0
i, X

0
i X

0
i, Zi X

0
i, Zi

4 Zi ; ;

Fig. 6. Table depicting the fastest possible migration scenarios for the nodes in Figure 5. i)
X

i

cannot update before X

0
i

, ii) X

i

not before X

0
i

, iii) Z

0
i

not before X

0
i

or X

0
i

, and iv)

X

i

or X0
i

must update before X

0
i

and X

i

and Z

i

can all three be updated. Note that Y, Z, Y
i

can always update right away. However, if there are conflicting clauses (i.e., the corresponding
instance is not satisfiable), then neither X

i

nor X

i

can update right away, but must wait for
the next update to be sent out – after the conflicts with the clauses have been cleared, thus
requiring a sequence of length four. Else, one could update with a sequence of length three, as
shown in the two rightmost columns.

3) Let k be the number of variables in I . If k rules from
the nodes X

i

, X
i

in the triangle-gadgets can be updated
loop free, then there exists a variable assignment S that
satisfies the instance I of 3-SAT. If less than k rules can
be updated from the nodes X

i

, X
i

in the triangle-gadgets,
then I cannot be satisfied.

We now examine interval routing updates: Since the for-
warding rules have to be disjoint, we may only apply updates
that result in a valid state for each node. I.e., after applying an
update, the forwarding rules have to cover all destinations and
be disjoint. Removing all current rules and replacing them with
a default rule matches this requirement. In a similar fashion,
we specify longest-prefix matching updates: A new prefix rule
may contain a set of rules it overrides when the rule is inserted
at a node. Else, applying an “update” might not change the
routing behavior of a node at all.

Corollary 1: Maximizing loop free updates for interval
routing or longest-prefix matching is NP-hard.

A. Future Hardware

Even though asynchronicity is inherent in current hardware
solutions (e.g., node failures [4] or highly deviating update
times [12]), one could imagine these issues being tackled in
future work. For example, the method of updating routing
information could be decoupled from the remaining compu-
tational load of a node, resulting in roughly the same update
time for all nodes in a network. Then one would want to find
a shortest sequence of precomputed updates that migrate the
network from the current old to the desired new routing rules.
I.e., the controller will send out a first loop free multi-default
update and wait until all affected edge changes are confirmed.
This sending out of updates is iterated until all nodes switched
their edges to the new desired routing rules. Nonetheless, this

problem of updating a network remains hard, i.e., how long is
the sequence of updates that are sent out:

Problem 2: Let U
D,8 = (V,Eold

D,8, E
new

D,8 ) be a multi-default
network update. Find a sequence of r loop free multi-default
network updates U1

D,8 = (V,Eold

D,8, E
new1
D,8 ), U2

D,8, . . . ,
Ur

D,8 with vertex sets V and corresponding pairwise disjoint
new edge sets Enew1

D,8 , Enew2
D,8 , . . . , Enewr

D,8 s.t. Enew1
D,8 [Enew2

D,8 [
· · · [ Enewr

D,8 = Enew

D,8 s.t. r 2 N is minimal.
Theorem 2: Problem 2 is NP-hard.

Proof: Note that the construction for the proof of The-
orem 1 is not enough to show that Problem 2 is NP-hard:
While it is NP-hard to decide if k rules from the nodes X

i

, X
i

in the triangle-gadgets can be updated, the whole network
in the proof can always be updated in a sequence of just
two updates. In the first step, one would update all nodes
(except for the nodes X

i

, X
i

in the triangle-gadgets). Then, in
the second step, all the nodes X

i

, X
i

in the triangle-gadgets
can be updated, since the possibility of loops in the gadgets
created from variables and clauses have vanished after the first
update. However, we can extend our construction s.t. for a
solution of sequence-length three, all k triangle-gadgets need
to update either X

i

, X
i

in the first element of the sequence
of updates. Else, a sequence of length four would be needed.
The construction is described in the Figures 5 and 6.

Corollary 2: It is NP-hard to approximate the length of the
sequence of updates needed for Problem 2 with an approxi-
mation ratio strictly better than 4/3.

V. ALGORITHMS FOR LOOP FREE ROUTING UPDATES

We first consider variants for single-destination updates and
then extend the discussion to the other models. While dynamic
updates (i.e., update as much as you can at once) are desirable
due to fault-tolerance (see Section I, e.g., a node might be
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w d

Fig. 7. Illustrating multi-
ple maximal solutions. The
nodes u and v cannot up-
date together.

u v y z

a b d

Fig. 8. An update of the nodes a and b is a
maximal update, but an update of the nodes
u, v, . . . , y, z and b would be a maximum
update.

temporarily unable to update), we also study how to apply all
updates in this section. Some proofs are in the Appendix.

We start with single-destination updates: Given an up-
date U

d

= (V,Eold

d

, Enew

d

), find a loop free update U
d

=

(V,Eold

d

, E
0

d

) with E
0

d

✓ Enew

d

. We begin by setting E
0

d

= ;:
An update is maximal, if adding more edges from Enew

d

to E
0

d

violates loop freedom. Maximal updates do not have
to be unique, see Figure 7. Node w may switch to the new
rule immediately, but not nodes u and v. If they both switch
immediately, and w is still using the old rule, we get a loop. So,
one of them must wait for w to switch. Either one is fine, i.e.
either u must wait for w (and v, w may switch immediately),
or v must wait for w (and u,w may switch immediately).

Algorithm 1:
1) Check for an edge (u, v)

d

= e 2 Enew

d

if the update
U
d

= (V,Eold

d

, E
0

d

[ {e}) is loop free. This loop test can
be performed, e.g., by a DFS from node v to find node
u on edges with label d.

2) If adding e does not introduce a loop, set E
0

d

= E
0

d

[{e}.
3) Repeat step 1 until all edges were checked.
Lemma 1: The update calculated by Algorithm 1 is loop

free and maximal.
While a maximal solution might seem like a good approach at
first glance, it can be far from optimal regarding the number of
updates sent out in one flush, see Figure 8: Even for just one
destination, a maximum update can be of size |Enew

d

| � 1,
but a maximal might just be 2 edges. Can we do better?
Since we want to include as many edges as possible, we
are essentially solving restricted instances of the NP-complete
Feedback Arc Set Problem (FASP) [30]: Given a directed
graph, what is the minimum number of edges that needs to
be removed to break all cycles. FASP can also be considered
in a variant with weighted edges: This allows us to exclude
old edges from removal, by giving all old edges an arbitrarily
high weight, and all new edges a weight of just 1. The best
known approximation algorithm for weighted FAS has an
approximation ratio of O (log n log logn) [31], allowing us
to enhance the greedy algorithm for maximal updates:

Algorithm 2:
1) Set the weight of all edges contained in Eold

d

to 1, and
the weight of all other edges to just 1.

2) Calculate a FAS F for the weighted graph (V,Eold

d

[
Enew

d

) according to [31].
3) Set E

0

d

= Enew

d

\ F .
4) Apply Algorithm 1 to make the update maximal.
Lemma 2: The update calculated by Algorithm 2 is loop

free and maximal. The number of removed edges from Enew

d

can at most be reduced by a factor of O (log n log log n).

Proof: The removal of a FAS implies by definition loop
freedom for the network. However, old edges are not allowed
to be removed: But since all edges contained in the set of
old edges Eold

d

= Eold

d

[
�
Eold

d

\ Enew

d

�
have their weight

set to infinity, there is always an infinitely better solution than
removing any old edge. One would just set the edges being in
E

0

d

to ;, which results in a loop free network by definition.
Maximality is ensured by applying Algorithm 1 afterward,

which also preserves the loop free property for the network,
see Lemma 1. Since Algorithm 1 can only add more edges
to the update, and not remove any, the approximation ratio of
O (log n log logn) from [31] is still valid.

Let us now consider how to apply the whole desired update
for a single destination via sending out multiple smaller loop
free updates. In the worst case, we will need |Enew

d

| loop free
updates, for example when reversing the links in a ring – only
one edge can be updated loop free at a time.

Algorithm 3:
1) Use Algorithm 1/2 to send out a first update E

d,g1 .
2) Once a set of nodes has reported back to the central

controller that they have performed the rule updates
E0

d,g1
✓ E

d,g1 for destination d (and discarded their old
rules Eold

0

d,g1
), the controller can calculate a current set of

old rules. Take into account that the nodes applying the
rules E

d,g1 \E0
d,g1

are still in a limbo state: Either they
applied the update already or not, but it is not known
due to the asynchronicity until they report in.

3) Calculate and send out the next set of update edges
E

d,g2 ✓
�
Enew

d

\E
d,g1

�
with Algorithm 1/2, which are de-

rived from
⇣
V,

⇣
Eold

d

\ Eold

0

d,g1

⌘
[ E

d,g1 , E
new

d

\ E
d,g1

⌘
.

4) Iterate the process until all new edges are sent out.
Algorithm 3 computes a series of loop free updates E

d,g1 ,
. . . ,E

d,gk , with
S

k

i=1 Ed,gi = Enew

d

. For Algorithms 1 and 2,
this can be understood as a dynamic dependency forest, which
is minimal in the sense that an edge e 2 E

d,gj cannot be added
to E

d,gi , if i < j.
Lemma 3: Iterating either Algorithm 1 or 2 to construct a

dynamic dependency forest needs at most |Enew

d

| non-empty
updates to switch the network to the new rules in Enew

d

.
Proof: If an update is non-empty, then it contains at least

one new edge. Thus, |Enew

d

| non-empty updates suffice to
update the network to only new rules. We now show that we
can always include at least one new edge in an update, once
all sent out rules are applied. Assume that there is no node that
is currently applying a new rule, i.e., all nodes that received a
new rule for d applied it and reported back to the controller.
Thus, no node is in a limbo state, where the node was ordered
to apply a new rule, but has not successfully reported back yet.
For contradiction, let us now assume that Algorithm 1 does
not find any new edge to be sent out as an update. Thus, all
not yet applied edges were checked, and each would induce a
loop when adding it to the network in an update.

However, at least one edge exists that would not induce a
loop. For ease of notation, let us call nodes that still need to
apply a new rule old, and new elsewise. Note that currently no
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nodes are in limbo. Start from an arbitrary old node, and move
along the set of new rules towards the destination d. Since the
destination is (by definition) new, along this new-rules path,
there must be a last pair of nodes c, p, where the new edge
of c points at p, and c is old and p is new. The edge (c, p)

d

cannot induce a loop: It points only to nodes which are in the
new state already, that is, there are no more old rules which
can cause loops. Therefore, Algorithm 1 would have found at
least one more edge to be included in a non-empty update to
be sent out (and thus, Algorithm 2 as well).

Lemma 4: The structure of the dynamic dependency forest
is minimal: Any e 2 E

d,gj cannot be added to E
d,gi , if i < j.

Proof: W.l.o.g. let e 2 E
d,gj and consider any update

E
d,gi with i < j. The set of edges for E

d,gi was maximal,
i.e., no more edges could have been added, see the Lemmas
1 and 2.

Note that the Algorithms 1, 2, and 3 can be applied to
multi-destination network updates by treating them as a set
of single-destination network updates: We can compute the
variants separately for each label and apply updates in parallel,
as edges with different labels will not interfere with each other
regarding loop freedom.

A more complex case is where individual rules control
routing to multiple destinations and different rules control
overlapping sets of destinations. (For non-overlapping destina-
tion sets, the situation is similar to above; replace destination
sets with a virtual destination.) This situation can emerge in
interval-based routing and longest-prefix matching. One can
still use adapted versions of Algorithm 1 within Algorithm
3 for maximal loop free updates, but those updates might be
empty: In this case, no (loop free) dependency forests to apply
all new rules may exist (cf. the network in Figure 2).

We note that in practice, one should divide the multi-graphs
G = (V,Eold [ Enew

) into strongly connected components
(SCCs), e.g., by implementing Tarjan’s algorithm [32]: Edges
from different SCCs cannot be part of the same loop, allowing
to partition the problem into smaller instances. However, this
does not lead to better theoretical approximation bounds.

Also, if we were able to calculate the set of all loops for
each label in the multi-graph G induced by an update G =

(V,Eold[Enew

), then we can even improve the approximation
ratio for some cases: First, consider each loop for each label
as a set of edges, but only add new edges to the sets. The
set of old edges was loop free, meaning there are no empty
sets. Second, solve the Minimum Hitting Set Problem (MHSP)
[30] by choosing a minimum set of new update edges s.t.
each loop is broken. MHSP is NP-complete as well, but a
greedy approach yields an approximation ratio of H(|Enew|)
(with some improvement possible [33]), where H(n) is the
nth harmonic number, H(n) ⇡ lnn, cf. [34].

VI. CONSISTENCY SPACE

We now take a broader view of the range of consistency
properties. Table 9 helps frame this view. Its rows correspond
to consistency properties. We defined loop freedom in Section
III; the others are:

None Self Downstream
subset

Downstream
all

Global

Eventual
consistency

Always
guaranteed

Blackhole
freedom

Impossible Add before
remove

Loop freedom
(Section V)

Impossible (Lemma 5) Rule dep.
forest

Packet
coherence

Impossible (Lemma 6) Per-flow ver.
numbers

Global ver.
numbers [8]

Congestion
freedom

Impossible (Lemma 7) Staged partial
moves [3], [11],

[12], [13]

TABLE 9
BASIC CONSISTENCY PROPERTIES & THEIR DEPENDENCIES.

• Eventual consistency No consistency is provided during
updates. If the new set of rules computed by the controller
are consistent (by any definition), the network will be
eventually consistent.

• Blackhole freedom No packet should be blackholed
during updates. Blackholes occur if a packet arrives at
a switch when there is no matching rule to handle it.

• Packet coherence The set of rules seen by a packet
should not be a mix of old and new rules; they should
be either all old or all new rules.

• Congestion freedom The amount of traffic arriving at a
link should not exceed its capacity. Physical link capacity
is a natural limit, but other limits may be interesting as
well (e.g., margin for burstiness). Congestion freedom
must be maintained without dropping traffic; otherwise,
we can trivially meet any limit.

The consistency properties are listed in rough order of
strength, and satisfying a property lower on the list often (but
not always) satisfies a property above it. Obviously, packet
coherence implies blackhole and loop freedom (assuming
that the old and new rules sets are free of blackholes and
loops). Perhaps less obviously, congestion freedom implies
loop freedom because flows in a loop will likely surpass any
bandwidth limit. Note that flows may be splittable [35].

However, these properties cannot be totally ordered. Packet
coherence and congestion freedom are orthogonal, as packet
coherence does not address congestion, and congestion free-
dom can be achieved with solutions beyond packet coherence.
Blackhole freedom and loop freedom are also orthogonal.
In fact, trivial solutions for one violates the other—dropping
packets before they enter a loop guarantees loop freedom, and
just sending packets back to the sender provides blackhole
freedom but creates loops.

The columns in Table 9 denote dependency structures. They
capture rules at which other switches must be updated before a
new rule at a switch can be used safely. Thus, the dependency
is at rule level, not switch level; dependencies are often circular
at switch level—a rule on switch u depends on a rule on v,
which in turn depends on u for other rules. The structures in
Table 9 are:

• None The rule does not depend on any other update.
• Self The rule depends on updates at the same switch.
• Downstream subset The rule depends on updates at a

subset of switches downstream for impacted packets.
• Downstream all The rule depends on updates at all
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switches downstream for impacted packets.
• Global The rule depends on updates even at potentially

all switches, including those that are not on the path for
packets that use the rule.

These dependency structures are qualitative, not quantita-
tive. For instance, they do not capture the time it might take
for the update to complete. They also assume that switch
resources, such as forwarding table memory or internal queues
for unfinished updates, are not a bottleneck. Resource limita-
tions induce additional dependencies on the order in which
updates can be applied (see below).

In general, update procedures with fewer dependencies (i.e.,
to the left) are preferable. The cells in Table 9 denote whether a
procedure exists to update the network with the corresponding
consistency property and dependency structure. We can prove
that certain combinations are impossible (proofs are in the
Appendix). For example, packet coherence cannot be achieved
in a way that rules depend on updates at only a subset of
downstream switches.

As we can see, weaker consistency properties (towards
the top of Table 9) need weaker dependency structures (to-
wards the left). At one extreme, eventual consistency (i.e.,
no consistency during updates) has no dependencies at all.
Slightly stronger properties, such as blackhole freedom, have
dependencies on other rules at the switch itself. A simple
procedure for blackhole freedom is to add the new rule in
the switch before the old rule is removed. When installed
with higher priority, the new rules become immediately usable,
without wait.

At the other extreme, maintaining congestion freedom re-
quires global coordination. The intuition here is that main-
taining congestion freedom at a link requires coordinating all
flows that use it, and some of these flows share links with
other flows, and so on.

Interestingly, all cells to the immediate right of impossible
cells are occupied in Table 9, which implies that, across past
work and this paper, (qualitatively) optimal algorithms for
maintain all these consistency properties are known. However,
one must not infer from this observation that finding consistent
update procedures is a “solved problem,” for three reasons.
First, some networks may need different properties, for which
effective procedures or even best-case structures are unknown
(e.g., load balancing across links and maintaining packet
ordering within a flow).

Second, even for the properties in Table 9, the picture
looks rosy partly because it assumes plentiful switch re-
sources (e.g., forwarding table memory). If switch resources
are constrained, maintaining consistency becomes harder. For
instance, maintaining blackhole freedom with plentiful switch
memory is straightforward and induces no dependencies across
switches—we can just add all new rules with high priority
before deleting any old rules. But in the presence of switch
memory limits, this becomes challenging because introducing
a new rule at a switch might require removing another rule
first, which can only be removed after having added a new
rule at some other switch.

In fact, we can show that in the presence of memory limits,
even maintaining a simple property like blackhole freedom is
NP-hard. Formally:

Problem 3: Let c
i

2 N be the total interval rule memory of
a switch v

i

, the combined number of interval rules in current
use and the interval rules it can receive in one update. Let
G = (V,E) be the directed graph on which packets can be
routed, with the destinations D ✓ V and the sources S ✓ V
for the packets. In one round, a central controller can send out
a set of any interval rules as an update to each node in the
network. What is the minimum number of rounds, to migrate
the network from a set of blackhole free old rules to a new set
of blockhole free rules, if no blackholes should be introduced
during migration and routing should be possible at all times?

Theorem 3: Problem 3 is NP-hard.
Proof: The proof for Theorem 3 is based on a reduction

from the NP-hard directed Hamiltonian Cycle problem (HC),
cf. [30]: Given a directed graph G = (V,E), is there a
cycle that visits each node exactly once? The construction
with further details is shown in Figure 10: It is possible to
migrate blackhole free in two rounds if and only if there is a
Hamiltonian Cycle in G, thus allowing to first use the cycle
for intermediate routing via default rules, and then installing
the new rules; Else it will take three rounds, one for each new
rule. Thus, it is NP-hard to decide whether one can migrate
in two or three rounds, even if the diameter is just two. The
construction for the memory limit of c = 4 for all nodes in V
can be directly extended to any c 2 N with c � 4.

Furthermore, note that blackhole freedom is easy to guar-
antee for each node in the presence of default rules, if one
does not care about routing: Just set a default rule to any
neighboring node. While packets might not arrive at all (and in
addition violate other consistency properties, e.g., congestion
freedom), blackhole freedom is guaranteed.

Corollary 3: It is NP-hard to approximate the number of
rounds needed for Problem 3 with an approximation ratio

G = (V,E)

vold1

vold2

vold3

vnew1

vnew2

vnew3

Fig. 10. The center node represents the graph G = (V,E) from an instance I

of the directed Hamiltonian Cycle problem, with nodes v1, . . . , vn. The sets
of edges to (n each) and from (n/3 each) the outer six nodes are bundled into
single edges in this figure. Each node in V = S = D has a memory limit c
of four rules, with S being the set of packet sources and D being the set of
packet destinations. The solid edges represent the edges used for the three old
rules 8v 2 V , the dotted edges the edges used for the three new rules 8v 2 V .
All nodes in V currently use the three nodes v

old

1 (for v1, . . . , v(n/3)), vold2
(v(n/3)+1, . . . , v(2n/3)), v

old

3 (v(2n/3)+1, . . . , vn) on the left for 2-hop
routing to the respective destinations in D = V , and want to migrate to use
the nodes v

new

1 (for v1, . . . , v(n/3)), vnew

2 (v(n/3)+1, . . . , v(2n/3)), vnew

3
(v(2n/3)+1, . . . , vn) on the right for 2-hop routing.
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strictly better than 3/2.
Third, the table only shows the qualitative part of the story,

ignoring quantitative effects, which may be equally important.
Even though [8] and [3] both have global dependencies, [8]
can always resolve the dependencies in two rounds, whereas
[3] may need more stages. Because of these three reasons, we
believe that what is presented in this paper is just the tip of the
iceberg for consistent updates in Software Defined Networks.

VII. AN ARCHITECTURE FOR SDN UPDATES

We have argued that maintaining consistency during rule
updates is a key hurdle towards realizing the promise of
SDNs. The question is: how can we accomplish this in a
flexible, efficient manner? A straightforward possibility is that
a single software module (controller) decides on new rules
and then micro manages the update process in a way that
maintains consistency. However, this monolithic architecture
is undesirable because it mixes three separable concerns —
i) the rule set should be policy-compliant; ii) rules updates
should maintain the desired consistency property; iii) the
update process should be efficient, which depends on the
asynchronicity in the network.

We propose an alternative architecture (Figure 11) with
three parts, one for each concern above: i) the rule generator
produces policy-compliant rules; ii) the update method selec-
tor chooses the method of how to apply the rules, based on
data from past updates; and iii) the update executor schedules
the updates efficiently in a dynamic fashion, taking current
asynchronicity into account.

Rule
generator

Update
method selector

Update
executor

Routing policy Consistency property Network behaviour

New
rules

Preferred
method

Fig. 11. Proposed dynamic architecture for SDN updates
The update method selector proceeds in two steps. It
first generates, using the old rules and collected data from
past updates of the network, a model of the current state of
the network. This includes, e.g., the mean and variance of
applying an update to a switch or the amount of unallocated
memory/bandwidth. In the second step, multiple methods of
applying the update are checked and simulated on the model
of the network. Depending on the outcome, a preferred method
for updates is selected: For example, if the current amount of
free memory on switches is small, packet stamping is not a
viable update method. However, if a long chain of links needs
to be reversed loop free, and memory is not an issue, packet
stamping might be the best way to proceed. In this step, it
is also possible to issue helper rules, that are neither in the
old or new set of rules, but allow consistent updates via a
specific method. Consider the network in Figure 2: One can
prevent loops by breaking a single (default) rule into one for
each of the other destinations, introducing these rules during
the update process and then removing them later.
The update executor computes a maximal set of updates
that can be sent out immediately with the selected method,

using the old rules, the new rules, and the desired consistency
property. Once a set of nodes reported back on the successful
implementation of the new rules, another batch of updates
can be sent out into the network. Since the update process
is a dynamic one, faulty nodes only induce a limited delay,
independent parts of the network can still be updated. Nodes
that did not report back yet have to be considered in a limbo
state: Either they applied the new rules already or not, but to
not break consistency properties, one has to assume that they
are in both the new and the old state at the same time.

An example for an update executor would be Algorithm
3: Maximal sets of loop free updates are sent out each time
nodes report back about the successful implementation of
rules, inducing a minimal dependency structure in form of
a dynamic dependency forest.

VIII. EVALUATION

We took Rocketfuel ISP topologies with intra-domain rout-
ing weights [36] and considered link failures in these topolo-
gies, with our goal being loop free network updates from pre-
to post-failure least-cost routing.

Figure 12 plots the distribution of the length of dependency
chains that emerge across ten trials, where a randomly selected
link was failed in each. We see that roughly half of the updates
depended on 0 or 1 other switch, and 90% of all forwarding
rules were dependent on at most 3 other switches. In contrast,
had we used Reitblatt’s procedure [8], which ensures the
stronger property of packet coherence, rules would have had
to wait for all other switches (well over a hundred in some
cases), and a single slow switch can impede everyone.

Fig. 12. Chain lengths in loop free updates in six Rocketfuel topologies. The
x-axis label denotes the ASN.

Francois et al. [18] evaluated their work on a tier-1 ISP with
200 nodes and 800 links, resulting in chain lengths of 14. We
had a chain length of at most 7, even for tier-1 ISPs such as
ASN 1239 (Sprintlink) with 547 nodes and 1647 links.

IX. SUMMARY

We argued that consistent updates in Software Defined
Networks is an important and rich area for future research.
We highlighted the trade-off between the strength of the con-
sistency property and the dependency structure it imposes, and
developed minimal algorithms for loop freedom. For the basic
consistency properties of loop and blackhole freedom, we
showed that fast updates are NP-hard optimization problems.
We also sketched an architecture for consistent updates and
showed that our loop freedom algorithm performs well in
evaluations on ISP topologies.
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X. APPENDIX FOR SECTION 5
Proof of Lemma 1:

We start with loop freedom: The invariant of the algorithm
is that the current edges in the network are without loops.
The invariant is true at the beginning, since no new edge is
included, and the old edges form an in-tree to the destination
d. When a new egde (u, v)

d

is added, a now existing loop must
contain this edge, i.e., there is a path from v to u. If a DFS
starting at v cannot reach u, then there is no path from v to u,
and the network is loop free. We now look at maximality: The
algorithm checks each edge once if it can be added without
inducing a loop. Consider an edge e = (x, y)

d

, that is being
tested w.l.o.g. as the i-th edge, but cannot be added to the
network, because it would induce a loop x, y, z, . . . , x. If e is
being tested again after the (j� 1)-th edge, with i < j, could
e be added to a loop free network without inducing a loop in
the network? No, because it would still induce the same loop,
as edges were never removed, only possibly added.

XI. APPENDIX FOR SECTION 6
Lemma 5: Loop freedom depends on other nodes.

Proof: In Figure 1, node x depends on node y.
Lemma 6: Packet coherence depends on all non-trivial

downstream switches.
Proof: Let u be a switch router that is non-trivial, in the

sense that u is affected by a rule change, i.e. u’s old rule
differs from its new rule. If the source starts to route packets
according to the new rule, switch u will forward the packets
wrongly, or drop them, which is not packet coherent.

Lemma 7: Congestion freedom depends on all switches.
Proof: Let f be a flow that wants to use a new path p,

or increase its capacity on an existing path. The network may
be able to adapt to flow f , however, only if other flows use
different paths as well, which in turn may (recursively) move
even other flows (some of which have no single switch/link in
common with the new path p). As such, any f may potentially
depend on any single switch in the network.
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