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Abstract—A deep understanding of the queuing performance
of wireless networks is essential for the advancement of future
wireless communications. The stochastic nature of wireless chan-
nels in general gives rise to a time varying transmission rate. In
such an environment, interference is increasingly becoming a key
constraint. Obtaining an expressive model for offered service of
such channels has major implications in the design and optimiza-
tion of future networks. However, interference channels are not
well-understood with respect to their higher layer performance.
The particular difficulty for handling interference channels arises
from the superposition of random fading processes for the signals
of the transmitters involved (i.e., for the signal of interest and
for the signals of the interferers). Starting from the distribution
of the signal-to-interference-plus-noise ratio (SINR), we derive
a statistical characterization of the underlying service process
in terms of its Mellin transform. Then, we adapt a recent
stochastic network calculus approach for fading channels to
derive measures of the queuing performance of single- and multi-
hop wireless interference networks. Special cases of our solution
include noise-limited and interference-limited systems. A key
finding of our analysis is that for a given average signal and
average sum interference power, the performance of interfered
systems not only depends on the relative strength of the sum
interference with respect to the signal-of-interest power, but also
on the interference structure (i.e., the number of interferers) as
well as the absolute levels.

I. INTRODUCTION

Over the last decade interference has become the key bottle-
neck for the further evolution of wireless networks. With the
advent and proliferation of broadband wireless communication
services, this interference limitation is apparent in multiple
ways. For unlicensed bands, the interference limitation is
due to the constantly increasing number of deployed wireless
systems, running heterogeneous technologies and not under-
going a deployment planning. This has led to quite crowded
frequency bands which are facing a significant coexistence
problem [1]. On the other hand, the need for higher commu-
nication rates has forced cellular network providers to operate
advanced packet-switched networks with a frequency reuse
of one, i.e., potentially introducing a significant interference
coupling between neighboring cells of the same system. Con-
sequently, (mitigating) the impact of interference in wireless
communication networks has become an intense area of re-
search recently [2], [3]. Despite the large research interest with
respect to interference channels on the physical layer, little is
known with respect to the impact of interference regarding the
higher layers. In particular, from a fundamental point of view
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only few attempts have been made to characterize the inter-
ference channel from a queuing-theoretic perspective. Hence,
models to study the performance of wireless (interfered) store-
and-forward networks are lacking.

For instance, a higher-layer queuing analysis of wireless net-
works under the impact of interference is presented in [4] for
sensor networks. However, the considered interference model
relates to the so-called protocol model, where nodes avoid
interference for example based on CSMA/CA coordination.
Furthermore, the authors studied only average performance
metrics by mapping the transmission behavior to standard
G/G/1 queuing models. A related analysis in the context of
multi-hop networks is presented in [5]. Here, the authors also
study the protocol interference model and analyze multi-hop
packet transmissions based on the G/G/1 open queuing net-
work model, providing average performance metrics like the
delay. However, the more subtle effects of interference on the
physical layer due to fading are not taken into account, while
the analysis also falls short of providing a characterization
of the end-to-end delay distribution. The concept of effective
capacity can address these issues, in particular it provides
bounds on the tail of the delay of a single-hop communication
systems. However, typically interference is characterized in
this context only as an additional constant contribution to the
noise, ignoring the fading characteristic of interference [6], [7].
Finally, [8] analyzes the interference channel with respect to
scheduling stability in larger ad-hoc networks under the well-
known Lyapunov stability framework. While stability is an
important aspect of queuing networks, further relevant metrics
like the delay distribution cannot be addressed by this analysis.

In summary, most of the above works make a significant
contribution towards understanding the average queuing per-
formance of wireless networks under interference. However,
they cannot provide a more fine-grained analysis especially
of the delay distributions. Furthermore, a common assumption
among these works is the transmission of a single constant rate
traffic stream over a single interference channel. The charac-
terization of multi-hop performance of interference channels
for variable rate traffic streams, in particular with respect to
delay distributions, is an open challenge. This is especially true
when it comes to precise models of the physical layer that also
take into account the fading of the interference signals. This
clearly limits these approaches in terms of their expressibility
with respect to fading profiles or transmit power settings.

In this work, we provide a network-layer performance
analysis of interference channels in terms of their fading pa-
rameters. To our knowledge, this aspect has not been addressedISBN 978-3-901882-83-8 c

� 2016 IFIP

216Networking 2016



before. To enable such analysis, we utilize recent results from
the literature, namely (i) the fading distribution of interference
channels [9], and (ii) the (min,⇥) network calculus for
wireless network analysis [10]. A key step in such analysis
is the characterization of the service element (in this case
the interference channel) which then enables the determination
of the desired performance bounds. Our main contribution is
to provide such mathematical characterization of the service
offered by the interference channel, i.e., a fading channel in
the presence of multiple (fading) interferers, in terms of the
Mellin transform of the cumulative service process of the
channel. Computing this particular Mellin transform involves
the solution of an integral transform of a ratio distribution
which is known to be notoriously difficult to handle. We then
use the resulting service process to obtain probabilistic bounds
on the delay performance and provide the corresponding delay
performance for some special cases.

This contribution has four main and novel implications:
First, our analysis revealed that when the interference power is
time-varying due to channel fading, then for a given total aver-
age interference power, the performance of interfered wireless
systems depends heavily on the structure of the interference
rather than just the average interference power. In particular,
characterizing the interference as constant noise leads to
wrong performance assumptions of the system. Second, the
mathematical treatment of wireless systems with interference
channels that we propose here can serve as the basis for
a system-level, cross-layer optimization. Third, due to the
network calculus approach used in this work, the obtained
results can be easily extended to multi-hop settings, as we
show in Section III-C. Finally, the capacity expression for
many other interesting channels, e.g., the secrecy channel, have
similar structure to that of the interference channel. Hence, one
can use our proposed approach and results to investigate the
performance of such channels.

The rest of the paper is structured as follows: In Section II,
we provide the required background on the stochastic network
calculus. The network calculus model of the interference chan-
nel is derived in Section III. Our numerical investigations are
presented in Section IV. Finally, we provide brief conclusions
in Section V.

II. STOCHASTIC NETWORK CALCULUS FOR WIRELESS
CHANNELS

In this section, we provide a brief description of the stochas-
tic network calculus and its application to fading channels.
We then adapt this network calculus to interference channels
in the following section. The reader may refer to [10]–[18]
for more details on the network calculus and to [19]–[23] for
applications to wireless, fading, and Gilbert-Elliott channels.

Stochastic network calculus considers queuing systems and
networks of systems with stochastic arrival, departure, and ser-
vice processes, where the bivariate functions A(⌧, t), D(⌧, t)
and S(⌧, t) for any 0  ⌧  t denote the cumulative arrivals
to the system, departures from the system, and service offered
by the system, respectively, in the interval [⌧, t). We consider

a discrete time model, where time-slots have a duration T and
t � 0 denotes the index of the respective time-slot.

A lossless system with service process S(⌧, t) satisfies the
input/output relationship D(0, t) � A ⌦ S (0, t), where ⌦ is
the (min,+) convolution operator given by x ⌦ y (⌧, t) =

inf⌧ut {x(⌧, u) + y(u, t)}. A network service process of an
H-hop path can be obtained using the (min,+) convolution,
i.e., S

net

= S
1

⌦S
2

⌦· · ·⌦SH . In general, we are interested in
probabilistic bounds of the form Pr [W (t) > w"

]  ", which
is also known as the violation probability for a target delay
w", under stable system operation.

Modeling wireless links in the context of network calculus
however is not a trivial task. A particular difficulty arises
when we seek to obtain a stochastic characterization of the
cumulative service process of a wireless fading channel, as
also witnessed in the context of the effective capacity of
wireless systems [24]. A promising, recent approach for wire-
less networks has been proposed in [10] where the queuing
behavior is analyzed directly in the “domain” of channel
variations instead of the bit domain [10], [25]. This can be
interpreted as the SNR domain (thinking of bits as “SNR
demands” that reside in the system until these demands can
be met by the channel).

To start with, the cumulative arrival, departure, and service
processes in the bit domain, i.e., A, D, and S, are related to
their SNR domain counterparts (represented in the following
by calligraphic capital letters A, D, and S) respectively,
through the exponential function. Thus, we have A(⌧, t) ,
eA(⌧,t), D(⌧, t) , eD(⌧,t), and S(⌧, t) , eS(⌧,t). Due to
the exponential function, these cumulative functions become
products of the increments in the bit domain. Assuming
Shannon capacity

ct = log g (�t) = N log

2

(1 + �t) , (1)

where ct is the random service offered by the system in time-
slot t, N is the number of transmitted symbols per time-slot,
and �t is the instantaneous SNR, we obtain the cumulative
service process in the SNR domain as

S(⌧, t) =
t�1Y

u=⌧

ecu =

t�1Y

u=⌧

g (�u) =
t�1Y

u=⌧

(1 + �u)
N
, (2)

where N = N/ log 2. To simplify notation, we consider the
case N = 1 in the following. Performance bounds for the
general case can be obtained by appropriately scaling the
obtained results. Furthermore, in case of first-come first-served
order, the delay at time t is obtained as follows

W (t) = W(t) = inf{u � 0 : A(0, t)/D(0, t+ u)  1}. (3)

A bound " for the delay violation probability Pr [W (t) > w"
]

can be derived based on a transform of the cumulative arrival
and service processes in the SNR domain using the moment
bound. In [10], it was shown that such a violation probability
bound for a given w" can be obtained as

" = inf

s>0

{K(s, t+ w", t)} . (4)
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We refer to the function K (s, ⌧, t) as the kernel defined as

K(s, ⌧, t) =

min(⌧,t)X

u=0

MA(1 + s, u, t)MS(1� s, u, ⌧), (5)

where the function MX (s) is the Mellin transform [26] of a
random process, defined as

MX (s, ⌧, t) = MX (⌧,t) (s) = E

⇥
X s�1

(⌧, t)
⇤
, (6)

for any s 2 C, where we restrict our derivations in this work
to real valued s 2 R. We note that by definition of X (⌧, t) =
eX(⌧,t), the Mellin transform MX (s, ⌧, t) = E

⇥
e(s�1)X(⌧,t)

⇤

after substitution of parameter s = ✓+1 implies also a solution
for the moment-generating function (MGF), that is the basis
of the effective capacity model [24] and of an MGF network
calculus [15].

In the following, we will assume A (⌧, t) and S (⌧, t) to
have stationary and independent increments. We denote them
by ↵ for the arrivals (in SNR domain) and g (�) for the service.
Hence, the Mellin transforms become independent of the time
instance, which we account for by denoting MX (s, ⌧, t) =

MX (s, t� ⌧). In addition, as we only consider stable queuing
systems in steady-state, the kernel becomes independent of the
time instance t and we denote K (s, t+ w, t)

t!1
= K (s,�w).

The strength of the Mellin-transform-based approach be-
comes apparent when considering block-fading channels. The
Mellin transform for the cumulative service process in SNR
domain is given by

MS (s, ⌧, t) =

t�1Y

u=⌧

Mg(�) (s) = Mt�⌧
g(�) (s) = MS (s, t� ⌧) ,

where Mg(�) (s) is the Mellin transform of the stationary and
independent service increment g (�) in the SNR domain. The
function g (·) represents here the modification of the SNR
due to the Shannon formula Eq. (1). However, it can also
model more complex system characteristics, most importantly
scheduling effects.

Assuming the cumulative arrival process in SNR domain
to have stationary and independent increments and denoting
the corresponding Mellin transform by MA (s, t� ⌧) =Qt�1

i=⌧ M↵(s), the steady-state kernel for a fading wireless
channel is given by [10]

K (s,�w) =
Mw

g(�) (1� s)

1�M↵ (1 + s)Mg(�) (1� s)
(7)

for any s > 0, under the stability condition

M↵ (1 + s)Mg(�) (1� s) < 1. (8)

Assuming Rayleigh fading, i.e., an exponentially distributed
SNR with average �; at the receiver, the Mellin transform
results into [10]

Mg(�) (s) = e
1
�; �;

s�1

�

�
s, ��1

;
�
. (9)

where �(x, y) =

R1
y

tx�1e�t
dt is the incomplete Gamma

function. Then the steady-state kernel for a Rayleigh-fading
wireless channel turns out to be

K (s,�w) =

⇣
e1/�;�;

�s
�

�
1� s, 1

�;

�⌘w

1�M↵ (1 + s) e1/�;�;�s
�

�
1� s, 1

�;

� (10)

for any s > 0 and under the stability condition in Eq. (8). By
substitution of the kernel Eq. (10) into Eq. (4), a bound of the
delay violation probability " for a given w" can be obtained.

III. PERFORMANCE OF INTERFERENCE CHANNELS

We first introduce a characterization of interference channels
assuming independent block-fading processes for a trans-
mitter/receiver pair and an arbitrary number of interferers.
We then use this channel model to compute probabilistic
performance bounds for interference channels in terms of their
fading parameters.

A. Block-Fading Interference Channel

Consider a wireless communication scenario with one trans-
mitter/receiver pair that is subject to interfering signals from
a set I of interferers. Index i  |I| denotes the link between
interferer i and the receiver, while i = 0 denotes the link
between the transmitter and the receiver (i.e., the signal of
interest). Denote by Pi the transmit power per link, i.e., P

0

denotes the transmit power of the signal of interest, P
1

denotes
the transmit power of interferer 1, and so on.

The received power varies from time slot to time slot
due to randomly varying channel gains of all links. Denote
the random channel gain of link i during slot t by hi,t.
We focus in the following on random variations due to
independent Rayleigh-distributed block-fading processes for
all links i. Hence, the received signal strength of link i is
given by Pi|hi,t|2 and is exponentially distributed with mean
pi = Pi · E

⇥
|hi|2

⇤
. The fading is assumed to stay constant

during one slot but varies independently from slot to slot.
Furthermore, the fading between different links is assumed to
be statistically independent. Based on the above definitions, the
instantaneous signal-to-interference-plus-noise ratio (SINR) at
the receiver during slot t is a random variable and given as

�t =
P
0

|h
0,t|2P

i Pi|hi,t|2 + �2

, (11)

where �2 denotes the power of the additive white Gaussian
noise (AWGN) process at the receiver. Depending on the
SINR, which is assumed to be known at the transmitter, the
amount of information that can be conveyed changes in each
time slot. In this work, we consider that for an SINR �t the
transmitter is able to transmit ct bits correctly to the receiver
during slot t, where ct is defined by Eq. (1).

B. Derivation of Mg(�)(s)

Based on the system model in Section III-A, we proceed
to present the main contributions of the paper. Initially, we
concentrate on deriving the Mellin transform of the service
process for the interference channel. Then, we use the result
to compute the kernel in Eq. (7). Recall that we assume, apart
from the signal of interest, |I| interferers to be present. The
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resulting SINR �t is given by the ratio of exponentially dis-
tributed random variables in Eq. (11). Considering stationary
and independent �t for all t, we omit the index t. For � we
have the distribution function [27]

Pr [�  x] = F� (x) = 1� e
�x

�;
Y

8i2I

ai
ai + x

, (12)

where ai =
p0

p
i

denotes the ratio of the average received power
from the signal of interest and interferer i. Furthermore, �; =

p0

�2 is the noise-limited average SNR of the signal of interest.
Based on partial fractions decomposition [28], it was shown
[9] that the CDF in Eq. (12) can be reorganized as

F� (x) = 1� e
�x

�;
X

8i2I

ui

ai + x
, (13)

where ui =

Q
8s2I as

⇣Q
8t2I\{i} (at � ai)

⌘�1

if there are
multiple interferers |I| � 2, and u

1

= a
1

if there is only
one interferer |I| = 1. Note that the above representation only
holds for interferers with different interference strengths, that
is ai 6= aj for all i 6= j.

First, we determine the Mellin transform for g(�), where �
is the instantaneous SINR distributed according to Eq. (13).
The Mellin transform is given by

Mg(�) (s) = E

⇥
g(�)s�1

⇤
=

Z 1

0

(1 + x)s�1

dF� (x) (14)

for s < 1. To solve the integration above, we need the
following lemma.

Lemma 1.
1Z

0

(1 + x)s�2

ai + x
e

�x

�;
dx = e

1
�;

⇣
I1
1

(s) + I�(s) + I1
2

(s)
⌘
,

for any small � > 0, where

Ik
1

(s)=
kX

n=0

(�1)

n�s+n�1

;
(ai � 1)

n+1

"
�

✓
s+ n� 1,

1

�;

◆

� �
✓
s+n�1,

ai�1��)

�;

◆#
, (15)

for ai > 2 + � and Ik
1

(s) = 0, otherwise;

I�(s) =

max(1,a
i

�1+�)Z

max(1,a
i

�1��)

zs�2

z + ai � 1

e
�z

�;
dz (16)

and

Ik
2

(s) =
kX

n=0

(1�ai)
n
�s�n�2

; �

✓
s�n�2,

max(1, ai�1+�)

�;

◆

(17)

for k � 0.

Proof: To solve the integral in Lemma 1, we start by
performing a change of variable and letting z = x+ 1. Then,

1Z

0

(1 + x)s�2

x+ ai
e

�x

�;
dx = e

1
�;

1Z

1

zs�2

z + ai � 1

e
�z

�;
dz. (18)

Note that since ai > 0 by definition and z 2 [1,1), we have
z + ai � 1 > 0.

For the integral in the right hand side of Eq. (18), we use
the following series representation

1

b+ 1

=

1X

n=0

(�1)

nbn, for |b| < 1. (19)

To ensure that |b| < 1, we partition the integral in Eq. (18)
into three parts given as

1Z

1

f(z)dz =

max(1,a
i

�1��)Z

1

f(z)dz +

max(1,a
i

�1+�)Z

max(1,a
i

�1��)

f(z)dz +

1Z

max(1,a
i

�1+�)

f(z)dz.

(20)
In the expression above, the second term, which is Eq. (16),
diminishes when � ! 0. Depending on the range of values of
ai, we identify three cases: (i) ai 2 (0, 2��], then the first term
and the second term will evaluate to zero and the integral in
the third term will start at one; (ii) ai 2 (2��, 2+�], then the
first term will again evaluate to zero, the integral in the second
term will start at one, while the integral in the third term will
start at ai� 1+ �; and the last case (iii) ai 2 (2+ �,1), then
the first term will have a value greater than zero, the integral
in the second term will start at z = ai�1� � and the integral
in the third term will start at z = ai � 1 + �.

We can now apply the series expansion to the first and third
term of Eq. (20) above. Starting with the integral in the first
term, after multiplication with ai�1 and considering the non-
trivial case ai > 2 + �, we have
a
i

�1��Z

1

zs�2

z
a
i

�1

+ 1

e
� z

�;
dz =

a
i

�1��Z

1

1X

n=0

✓
�z

ai�1

◆n

zs�2e
� z

�;
dz

=

1X

n=0

(�1)

n�s+n�1

;
(ai � 1)

n

(a
i

�1��)/�;Z

1/�;

ys+n�2e�y
dy

= (ai � 1)I1
1

(s), (21)

where in the second line we used the change of variables
y =

z
�;

. The last equality follows from the definition of the
incomplete Gamma function.

For the third term in Eq. (20), we compute
1Z

max(1,a
i

�1+�)

zs�3

1 +

a
i

�1

z

e
� z

�;
dz

=

1Z

max(1,a
i

�1+�)

1X

n=0

✓
1� ai

z

◆n

zs�3e
� z

�;
dz
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=

kX

n=0

(1� ai)
n
�s�n�2

;

1Z

max(1,a
i

�1+�)/�;

ys�n�3e�y
dy

= I1
2

(s). (22)

Again we used the change of variables y =

z
�;

in the third
line and the definition of the incomplete Gamma function in
the last line. The lemma follows by substituting Eq. (21) and
Eq. (22) in Eq. (20) and by considering the range of ai.

In Lemma 1, we decompose the integral into three terms
in order to be able to handle the evaluation of the otherwise
intractable integral. The second term (I�(s)) diminishes when
� approaches 0 and may be ignored for � ⌧ 1. The first term
(I

1

(s)) has a value only when ai > 2, i.e., when p
0

> 2pi and
is zero otherwise. The third term contributes to the solution
for the entire range of ai and represents the complete solution
when ai < 2, i.e., p

0

< 2pi.

Theorem 1. For the interference channel, we have

Mg(�) (s) =

1 +

X

8i2I

ui

⇣
(s� 1)e

1
�;

⇣
I1
1

(s)+ I�(s)+I1
2

(s)
⌘⌘

,

for any s < 1.

Proof: The Mellin transform of g(�) is given by Eq. (14)
as

Mg(�) (s) =

Z 1

0

(1 + x)s�1

dF� (x) . (23)

Using integration by parts, we obtain for s < 1 that

Mg(�)(s) =(1 + x)s�1F� (x)
���
1

0

� (s� 1)

Z 1

0

(1 + x)s�2F� (x) dx

=� (s� 1)

Z 1

0

(1 + x)s�2

dx

+ (s� 1)

X

8i2I

ui

1Z

0

(1 + x)s�2

ai + x
e

�x

�;
dx

=1 + (s� 1)

X

8i2I

ui

1Z

0

(1 + x)s�2

ai + x
e

�x

�;
dx,

where in the second step we inserted Eq. (13).
Lemma 1 gives the exact solution of the individual terms of

Theorem 1 expressed by infinite sums of incomplete Gamma
functions. For numerical evaluation this may pose a com-
putational problem. The following corollary provides easily
computable bounds through truncation of these sums.

Corollary 1. For any even k > 0, ai > 1, and s < 1,

 

k+1

i (s) 
1Z

0

(1 + x)s�2

ai + x
e

�x

�;
dx   k

i (s), (24)

where

 

k
i (s) = lim

�!0

e
1
�;

⇣
Ik
1

(s) + I�(s) + Ik
2

(s)
⌘
.

The approximation error is bounded by | k+1 � k|.

Proof: The proof follows directly from the monotonicity
of the series expansion in Eq. (19) that has a limit of zero and
the Leibniz alternating series test. The approximation error of
the partial sum for n = 0, . . . , k, where k is an even integer,
is upper bounded by the (k + 1)

th element of the series.
The corollary above provides a practical way to bound the

integral in Lemma 1. In general, we are interested in an upper
bound on the Mellin transform of the service Mg(�)(s) for
s < 1 which provides an upper bound on the delay violation
probability. Thus, truncation of the series at an even k always
leads to valid delay bounds. The truncation error can be made
arbitrarily small by choosing larger k. For the case ai < 1 the
series expansion of Lemma 1 uses the geometric series, where
a truncation provides an approximate solution for the Mellin
transform of the service. Again due to the convergence of the
series, the truncation error can be made arbitrarily small by
the choice of k.

Network layer performance bounds, e.g., a probabilistic
delay bound, for a network of nodes with interference channels
can be readily obtained from the Mellin transform of the
service process of the channel which is characterized by
Theorem 1 and results from the network calculus presented in
Section II. The numerical results are presented in Section IV.

C. Asymptotes, Special Cases, and Multi-Hop Networks

In this subsection, we consider special cases, such as the
noise-limited and the interference-limited channels. Also, we
provide a solution of multi-hop networks.

a) Noise-Limited Channel: In this case p
0

� pi so that
ai = p

0

/pi ! 1. It follows that Eq. (12) evaluates to

F� (x) = 1� e
�x

�; ,

which is the CDF of the Rayleigh fading channel.
Considering Theorem 1 and the case of a single interferer

with ui = ai the Mellin transform evaluates to

Mg(�) (s) =
⇣
1 + (s� 1)e

1
�; aiI

1
1

(s)
⌘
,

where we used that Eq. (16) and Eq. (22) tend to zero for ai !
1. The term aiI

1
1

(s), where I1
1

(s) is given by Eq. (15),
evaluates for ai ! 1 to

aiI
1
1

(s) = �s�1

; �

✓
s� 1,

1

�;

◆
,

where we used that only the summand at n = 0 does not tend
to zero. The Mellin transform follows as

Mg(�) (s) = 1 + (s� 1)e
1
�; �s�1

; �

✓
s� 1,

1

�;

◆
. (25)

Using the recurrence relation �(s, x) = (s� 1)�(s� 1, x) +
xs�1e�x we find that Eq. (25) is equivalent to the Mellin
transform of the Rayleigh fading channel that was previously
found in [10], i.e., Eq. (9) is recovered.
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Fig. 1. Effective capacity (defined as �1
s logMg(�)(1 � s)) as a function

of s for �; 2 {0, 4, 8, 10} dB, for an interference channel with a single
interferer and identical average received power compared to noise-limited
channel, assuming Rayleigh fading.

b) Large Number of Interferers: For a large number
of interferers |I| with independent fading, the central limit
theorem predicts that the combined interference power at the
receiver becomes a Gaussian random variable. Consequently,
when the total power of the interference is split between
infinitely many interferers, the variance of that random variable
goes to zero and the total interference power at the receiver
will have constant power pI. This has the same effect as
an additional noise term with constant power pI, and thus
the channel will behave like a noise-limited channel whose
average SNR is equal to the average SINR p0

�2
+pI

of the
interference channel.

c) Identical Average Received Power: We consider the
special case where the average received power of the signal of
interest and the signal of interferer i are identical, i.e., p

0

= pi
so that parameter ai evaluates to ai = 1. By insertion of ai = 1

into Lemma 1, we obtain I1
1

(s) = 0. Letting � ! 0, it follows
that I�(s) ! 0 diminishes. Finally, the first factor of I1

2

given
by Eq. (17), i.e., (1 � ai)

n, is defined to be one for n = 0

and zero otherwise, so that Lemma 1 evaluates to the simpler
form

1Z

0

(1 + x)s�2

ai + x
e

�x

�;
dx = e

1
�; �s�2

; �

✓
s� 2,

1

�;

◆
.

For this special case, the above integral can also be solved
directly without using the series expansion of Lemma 1,
resulting in the same solution.

Considering a single interferer, the Mellin transform from
Theorem 1 becomes

Mg(�) (s) = 1 + (s� 1)e
1
�; �s�2

; �

✓
s� 2,

1

�;

◆
, (26)

which closely resembles the form of the Rayleigh fading
channel in Eq. (25).

Fig. 1 depicts the effective capacity, computed as the
normalized log Mellin transform of the service process defined
as �1

s logMg(�)(1�s), against parameter s > 0 for the special
case (c) and compared to the noise-limited channel in case (a).
As expected, when s approaches zero, the effective capacity
approaches the average channel capacity. As we increase s
(i.e., when a flow demands better QoS than mere average
guarantees), the effective capacity diminishes and approaches

the minimal capacity, that is zero. As expressed by Eqs. (25)
and (26), the general shape of the effective capacity is the same
for the case with and without interference. While the effective
capacity of the noise-limited channel improves significantly
as the channel SNR (i.e., �;) increases, the improvement is
much smaller for the case with interference, and the effect of
interference becomes more prominent with increasing SNR.

d) Interference-Limited Channel: We characterize the
interference-limited case by considering �; ! 1, i.e., the
noise power diminishes against the signal of interest as well
as the interfering signals. Consequently, the distribution in
Eq. (13) reduces to

F� (x) = 1�
X

8i2I

ui

ai + x
. (27)

This leads to a structurally simpler solution. The exponential
term in the integral of Lemma 1 disappears. The following
lemma provides the solution for the new integral.

Lemma 2.
1Z

0

(1 + x)s�2

ai + x
dx =

ˆI1
1

(s) + ˆI�(s) + ˆI1
2

(s),

for any small � > 0, where

ˆIk
1

(s)=
kX

n=0

(�1)

n

(ai � 1)

n

 
(ai � 1� �)

s�1+n � 1

s� 1 + n

!
, (28)

for ai > 2 + � and ˆIk
1

(s) = 0, otherwise;

ˆI�(s) =

max(1,a
i

�1+�)Z

max(1,a
i

�1��)

zs�2

z + ai � 1

dz (29)

and

ˆIk
2

(s) =

kX

n=0

(1� ai)
n (ai � 1 + �)

s�2�n

s� 2� n
(30)

for k � 0.

The proof follows very closely the one of Lemma 1 except
that we consider Eq. (21) and Eq. (22) with respect to the
new distribution given in Eq. (27). We omit the detailed proof
due to space constraints. The corresponding Mellin transform
can then be obtained by applying Theorem 1 using Lemma 2
instead of Lemma 1.

e) Multi-Hop Interference Networks: Stochastic network
calculus allows the representation of a multi-hop network by
a single network service process S

net

, which is obtained by
concatenating the service processes for all H nodes along the
traversed path, i.e.,

S
net

(⌧, t) = S
1

⌦ S
2

⌦ · · ·⌦ SH(⌧, t), (31)

where ⌦ is the (min,⇥) convolution operator defined in
Section II.

221Networking 2016



A bound on the convolution of two independent service
processes S

1

(⌧, t) and S
2

(⌧, t) can be obtained using the
Mellin transform, for any s < 1, as

MS1⌦S2(s, ⌧, t) 
tX

u=⌧

MS1(s, ⌧, u)MS2(s, u, t). (32)

For a cascade of H independent and identically distributed
(i.i.d.) fading channels, we obtain for s < 1 [25],

MSnet(s, ⌧, t) 
✓
H � 1 + t� ⌧

t� ⌧

◆⇣
Mg(�)(s)

⌘t�⌧

, (33)

where Mg(�)(s) is given by Theorem 1. When ai > 1 and to
simplify the computation of the desired performance bound,
we use Corollary 1 to bound Mg(�)(s), then Eq. (33) becomes

MSnet(s, ⌧, t) 
✓
H � 1 + t� ⌧

t� ⌧

◆

·
 
1 +

X

8i2I

ui

�
(s� 1) 

k
i (s)

�
!t�⌧

,

for any s < 1. Substituting the above in Eq. (5) gives the
desired network performance bound. For a cascade of channels
that are independent but have different distributions, the joint
Mellin transform can still be obtained from the individual ones,
however the expressions are more complex [29].

IV. NUMERICAL INVESTIGATION

In this section, we conduct numerical investigations of
the interference channel performance based on the analysis
presented in the previous section. We first validate our ana-
lytical results using simulations. Then we use the analytical
model to address several important questions regarding the
structure of the interference channel and its impact on the
system performance. In particular, we focus on the number
of interferers as well as their absolute strengths, i.e., their
average powers. We define the ratio of average received signal
power to average interference-plus-noise power at the receiver
as � =

p0

�2
+

P
i

p
i

, which is equivalent to the average SINR of
a system where the total interference power is considered as
an additive contribution to the noise.

In all of the following investigations, we choose the arrival
model to be a constant rate process with rate ⇢ measured in
bits per time slot. The Mellin transform of the arrival process
is then given by MA (s, t� ⌧) = e⇢(s�1)(t�⌧). Using this
Mellin transform and that of the service process derived in
Section III for the interference network, we obtain the kernel in
Eq. (7) and consequently the bound on the delay and violation
probability based on Eq. (4).

A. Validation of the Analytical Bounds
We validate our computed bounds using simulation. We

simulate a queuing system with service process given by the
channel capacity of the interference channel, an arrival process
with constant rate ⇢ and with FIFO service discipline. In order
to estimate the target delay violation probabilities in the order
of 10

�6, we run the simulation for 10

10 slots. In Fig. 2a
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Fig. 2. Validation of the analysis and delay performance with simulations for
the parameter �̄ 2 {0, 4} and number of interferers |I| 2 {1, 5} with fixed
average SNR �; = 15 dB: (a) Delay bound (w") in slots versus violation
probability (") with fixed arrival rate ⇢ = 0.85 bit/symbol. (b) Delay bound
(w") in slots versus arrival rate (⇢) in bit/symbol with fixed " = 10

�6.

we show the delay bound (w") measured in transmission
slots versus the violation probability (Pr[W (t) > w"

]  ")
and compare it to the simulated delay. We study the delay
performance for different combinations of � and number of
interferers (|I|), while we keep the arrival rate and the average
SNR �; = 15 dB constant for all curves. These combinations
reflect a wide delay performance range. As expected, we
observe that the analytical results (solid curves) indeed are
upper bounds for the performance of their corresponding
simulated systems (dotted curves). Furthermore, we observe
that the bounds are tight enough for a reasonable estimation
of the system performance. It also shows that bounds grow
tighter as the system becomes less utilized. More importantly,
in all cases the slope (i.e., the exponential decay) of the
analytical and simulated curves match, therefore the relative
gap diminishes as the delay grows larger.

In Fig. 2b, we show the delay bound (w") measured in trans-
mission slots versus the arrival rate for a violation probability
of " = 10

�6 and using the same parameter combinations as in
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different arrival rates ⇢ 2 [1.8, 2.0, 2.2] with fixed �̄ = 8 dB, average SNR
�; = 15 dB, and " = 10

�6. The delay for the noise-limited case with
average SNR �; = 8 dB is also shown.

Fig. 2a. Again, we observe that the analytical results provide a
reasonable bound for the simulated system performance. The
figure also shows that the bound accurately predicts the system
stability region. Therefore, we conclude that w" is a reasonable
upper bound for the system’s delay performance. In the rest
of this section, we focus only on the analytical delay bounds
to study different trends of the system performance.

B. Effect of the Number of Interferers
Compared to state-of-the-art networking models that view

interference as an additional constant contribution to the
noise [6], [7], our explicit consideration of the individual
random fading processes of the interferers enables us to
address more fundamental questions. One interesting question
is the following: Given an average total interference power,
what is the impact of the number of interferers on the system
performance?

To answer the question above, we show in Fig. 3 the delay
as a function of the number of interferers (|I|) in the network
for different arrival rates. In this scenario, the average SNR
is set to �; = 15 dB and the delay violation probability to
" = 10

�6. We fix the parameter � = 8 dB, i.e. the sum of
the average interference powers stays constant. When there are
multiple interferers, the total interference power is distributed
among the interferers almost equally without violating the
constraint ai 6= aj in Eq. (13). However, when the number
of interferers grows to infinity, then the combined interference
can be modeled as additive noise with constant power as it was
demonstrated in [6], [7]. This corresponds to the noise-limited
case with average SNR �; = 8 dB, which we also show for
comparison. The figure clearly reveals the importance of the
structure of the interference that a certain transmitter/receiver
pair is exposed to. In general, if the sum of the average
interference powers is kept constant, the more interferers are
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Fig. 4. Effect of average SNR �; for different values of �̄ 2 {8, 9} and
number of interferers |I| 2 {1, 3, 8}: (a) Maximum constant arrival rate
versus average SNR (�;) so that delay bound still satisfies w"

= 10 and
" = 10

�6. (b) Average capacity versus average SNR (�;)

present, the worse the system performance gets. This happens
because in the case of only few interferers, the variance of
the SINR is higher, i.e., occasionally the interference is very
small, leading to very high transmission rates. In contrast, the
higher the number of interferers, the lower is the variance of
the SINR, leading a decreasing performance.

C. Effect of Main Signal Power

Next, we study the effect of the SNR of the signal-of-interest
on the system performance. For a system that is operating at
a fixed arrival rate and for a given number of interferers, we
would like to study the effect of increasing the average signal
strength and the interference strength simultaneously, such that
the average signal to the average interference plus noise (�)
remains constant.

Fig. 4a confirms the observation that the performance de-
creases when there are more interferers, despite keeping the
summed average interference power constant. Although this
was already shown in Fig. 3, we now want to study how
this depends on the average SNR (�;) of the basic signal-
of-interest. When the average SNR is small, the disturbance
comes mostly from the noise rather than from the interference,
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such that the number of interferers has little impact. At high
SNR, the noise becomes relatively small, and the performance
is limited by the interference. Fig. 4b indicates that the increase
in performance for fewer interferers is most likely due to a
large increase in the average capacity, which occurs because
sometimes the interference-plus-noise can become close to
zero, such that there is some probability that the SINR is
extremely high. Under delay constraints, it seems that more
interferers still decrease the system performance, as seen in
Fig. 4a. However, when comparing both figures at high SNR
�; for different values of �̄, it can be seen that higher average
capacity does not always mean better performance under
delay constraints. Fewer interferers lead to a large increase
in average capacity, but only to a small or moderate increase
in performance under delay constraints.

V. CONCLUSIONS

In this paper, we considered interference channels, where
the signal of interest and the signals of an arbitrary number
of interferers experience independent Rayleigh fading. We
provided a fundamental stochastic characterization of the time-
varying channel capacity by its Mellin transform. Using the
transform domain and network calculus queuing relations, we
contributed the first higher layer performance evaluation of
such channels which enabled us to reveal key aspects of inter-
ference channels. We showed that even for a fixed summed in-
terference power, the interference channel has relevant degrees
of freedom that impact the delay performance significantly,
namely strength and number of interfering transmitters. While
our evaluations have shown this result for scenarios where
the average sum interference power has been kept constant,
similar conclusions can be drawn if the average SINR of the
scenario is kept constant. Even in this case, the structure of
the interference has a significant impact on the performance
of the system. As future work, we consider in particular the
coupling of wireless systems as key next step that result from
the work presented in this paper.
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