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Abstract—The traditional mechanisms to traverse Network 
Address Translators (NAT) do not scale well to battery powered 
mobile-hosts: the majority of Internet users today. Private Realm 
Gateway (PRGW) aims to replace NATs at network edges and 
overcome the drawbacks of the NAT traversal mechanisms. The 
solution does not require changes in end-hosts or protocols, and 
hosts in the private realm can remain globally reachable without 
polling. PRGW handles incoming connections based on domain 
resolution of the served hosts. Incoming DNS queries create 
connection state in PRGW for subsequent packet forwarding. The 
connection state provides means for access control on the Internet-
originated flows. This paper analyses the security of PRGW and 
introduces mechanisms that protect the served hosts and networks 
against Internet-borne attacks, in particular: address spoofing and 
Distributed Denial of Service (DDoS). The paper contributes to 
establish PRGW as an incrementally deployable network function 
that offers light-weight NAT traversal and protects the private 
realm against the inherent Internet threats. 

Keywords— Security; Gateway; NAT Traversal; PRGW; DNS; 
NAT;  Denial of Service; DDoS; Internet threats; Network; 

I. INTRODUCTION 
 According to ITU-T, mobile broadband subscriptions have 

reached 3.2 billion individuals connected to the Internet [1]. 
This growing number of mobile users raises challenges for the 
Internet and further aggravates the IPv4 address space depletion 
problem. The adoption of NAT at network edges alleviated the 
IPv4 address space exhaustion at the cost of introducing the 
reachability problem, which prevents the Internet hosts from 
unilaterally initiating a connection to hosts in the private realm. 
The mobile hosts typically reside in the private address space; 
however the IETF recommended methods for NAT traversal [2] 
scale poorly to battery-powered hosts [3] and communication 
applications: 1) device has to periodically wake-up to keep its 
NAT binding alive; and 2) session setup requires exchanging 
hundreds of overhead messages per application that seeks 
global reachability, leading to extra power consumption on the 
device and delays in the session setup. 

In [4], we address these drawbacks of the classical NAT 
traversal mechanisms and propose the Private Realm Gateway 
(PRGW) solution. The solution does not require any changes in 
end-hosts, i.e. clients and servers in the private network can stay 
globally reachable without applications having to run the code 
for NAT traversal or to maintain their NAT binding. PRGW can 
be deployed either as a standalone replacement of NATs or as 
a component of a customer edge switching [5-6] node, at the 
network edge.  

However, as PRGW makes end hosts reachable in the private 
realm, it will open new opportunities for the hackers to target the 

private hosts and their network. The increasing reliance of users 
on their smart phones and mobile apps have presented mobile 
networks and their hosts as lucrative targets to Internet hackers. 
As a result, they are subject to a wide variety of threats possible 
in the Internet. 

The paradigm of Internet security can be viewed as an arms 
race between attackers and defenders. The possibility of source 
address spoofing, distributed denial of service (DDoS), traffic 
floods and network/port scans is inherent in the Internet. Today, 
hackers often abuse free services, e.g. Google DNS, and employ 
compromised hosts as reflectors/amplifiers in launching their 
attacks. The outcome of these attacks may lead to excessive 
network usage, computing downtime, service unavailability, and 
ultimately waste of human capital [7]. Societies heavily rely on 
the Internet, and use it for mission-critical activities. Therefore, 
the networks shall deploy mechanisms that protect their hosts 
and resources against Internet-borne attacks, in particular source 
address spoofing, network scans and DoS, which are often used 
as launch point for more advanced attacks. Consequently, our 
threat model in the paper spans to the above attack types. 

In this paper, we seek to provide mechanisms that protect 
PRGW and make it a feasible function in modern IP-networks. 
As a result, PRGW emerges as a network function that besides 
overcoming the drawbacks of the NAT traversal solutions [4] is 
hardened against the inherent Internet threats, i.e. traffic floods, 
source address spoofing and DoS. The mechanisms adhere to 
the basic principles of PRGW design and limit all the changes 
to network edges. This keeps the deployment of PRGW simple, 
as the upgrade only takes place at the edge nodes, and can be 
performed one network at a time. We argue that it may possible 
to take a clean-slate approach, and design a better architecture 
free of any security weaknesses, at the cost of a huge 
deployment difficulty. Contrary to this, we take the deployment 
constraints as the corner stone of our work. 

The rest of the paper is structured as follows. Section II 
discusses the related work. Section III presents vulnerabilities of 
PRGW in handling the inherent Internet threats. Section IV 
establishes the basis of our security solutions. Section V and VI 
describe the security mechanisms and heuristics. Section VII 
evaluates the security. Section VIII presents the discussion, and 
Section IX concludes the paper. 

II. RELATED WORK 
The introduction of NAT at network edges extended the IPv4 

address space lifetime. NAT effectively hides the private realm, 
such that hosts in the private network share a set of public IP 
address(es) towards the Internet. By default, NAT devices allow 
outbound connections towards the Internet and create a state to 
admit subsequent inbound packets of the flow. The connection 
state enables address translation on packets traversing across the ISBN 978-3-901882-83-8 © 2016 IFIP 
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public and private realm, and at minimum contains a 5-tuple: IP 
and port pair towards public Internet; IP and port pair in the 
private network; and the transport protocol. Inbound packets that 
do not have a state in NAT are dropped [8]. As a consequence, 
connection attempts from the Internet hosts towards the private 
realm fail, raising the reachability challenge. The current NATs 
thus employ static port forwarding, or complex NAT traversal 
mechanisms to admit new connections in the network. 

The traditional NAT traversal mechanisms do not scale well 
to mobile devices [3, 4]. While, static forwarding in NATs can 
be vulnerable to ills of the Internet, in particular: spoofed flows, 
network/port scans, and traffic floods from botnets. 

Many proposals have attempted to tackle address spoofing 
and DoS floods. Ingress filtering [9] is a typical solution to the 
problem of source address spoofing. However, the solution has 
not been globally adopted, possibly because costs and benefits 
of ISPs are not well aligned: the receiver or its ISP benefit from 
spoofing elimination while the other entities bear the expense of 
configuring and executing the ingress filtering. 

IETF proposed the use of SYN Cookies [10] during TCP 
handshake, to protect the victim host against resource exhaustion 
from spoofed SYNs. SYN cookie delays the allocation of TCP 
resources in the host until the sender is verified as non-spoofed.  

Besides eliminating spoofing, IP puzzles [11] dis-incentivise 
spurious connection attempts from hosts. The mechanism slows 
an aggressive host, by requiring the sender to process a received 
challenge with certain computational effort before it can 
establish a connection. Similarly, Hop-Count Filtering [12] aims 
to protect against SYN floods, by comparing the statistics of the 
received traffic with traffic observed during normal periods. 
However, these techniques are not in wide use. 
 Today, an advanced attacker often tricks a large number of 
hosts to unknowingly participate in launching a DDoS. The 
compromised hosts are mostly bot controlled by the hacker, in a 
master-slave configuration. Networks typically detect attacks 
using a set of security approaches, categorized into: Signature 
detection, Anomaly detection, or a hybrid of both approaches. 
Upon detecting a DDoS, DoS mitigation proposals typically 
react by rate limiting the accepted traffic [13]. While it affects 
the legitimate traffic as well, trace-back techniques are used to 
locate the malicious entities. An identified attacker is blacklisted 
and eventually filtered in the admitted traffic. 
 The research in [14] leverages this understanding of network 
security to propose a cooperative Feecod architecture. Under this 
architecture, when a host detects DoS, i.e. from overloading of 
its resources, the edge router of its ISP rate limits the admitted 
traffic, so that the total workload for the victim is below its upper 
bound. A log of each forwarded packet is then sought from the 
outbound edge to ascertain if no attack originated from its 
network, upon which the rate-limit is removed. The architecture 
however requires many changes in end-hosts, as well as in the 
sender and destination networks, detrimental to its adoption.  
 The research in [15] tackles DoS through an overlay network 
that registers the inbound requests before forwarding them to the 
destination. The proposed indirection infrastructure aims to 
tackle DoS using P2P networks. The paper in [16] presents 
various server specific DoS mitigation techniques that require 
changes in end hosts. 

 Mobile networks rate availability as the top concern due to 
high volume of DoS and network/port scans, and typically rate-
limit or reset the connections from aggressive hosts [13, 17]. 
 PRGW presents an architecture to overcome the drawbacks 
of classical NAT traversal solutions. It follows the behaviour of 
NATs for outgoing connections, such that private hosts connect 
to Internet sharing a set of public IP addresses. But unlike NATs, 
it allows Internet hosts to unilaterally initiate connection towards 
the private hosts using a circular pool of public IP addresses 
(CPPA). Upon receiving a DNS query for fully qualified domain 
name (FQDN) of the private host, it temporarily allocates a 
public IP address from the pool to represent the host in the 
Internet and creates a temporary half connection state that allows 
forwarding of the subsequent inbound flow to the private host. 
The client typically initiates the data flow, upon resolving the 
domain. Upon receiving the first inbound packet from the client, 
PRGW creates a full connection state for the flow and returns 
the allocated public address to CPPA for future allocations. In 
this manner, by dynamically assigning an address from CPPA, 
PRGW protects the private network from direct exposure to the 
Internet, compared to port forwarding possible in NATs. The 
half connection state in PRGW applies endpoint independent 
filtering [18] relative to the client, while in the full connection 
state the filtering is upgraded to address and port dependent 
relative to the client. Since PRGW does not require any changes 
in end-hosts or remote edge, it avoids the deployment challenge. 

III. SECURITY VULNERABILITIES 
This section analyses the impact of Internet’s weaknesses in 

handling address spoofing and network floods on PRGW. We 
argue that PRGW does not introduce any explicit security 
weakness in comparison to the current Internet model, or how 
NAT allows inbound connections. Like NATs, it also filters to 
drop the packets that do not have an ongoing connection or a 
valid state. In addition, 1) the CPPA prevents the private hosts 
from direct exposure to the Internet, compared to static NATs; 
and 2) hosts in the private realm are only accessible through 
their FQDNs, which provides defence-in-depth, in combination 
with a set of mechanisms that we will introduce in this paper. 

Fig. 1 identifies a set of hazardous scenarios where PRGW 
and the hosts located behind it could be vulnerable to Internet 
abuses, i.e. in the absence of security mechanisms. 

Here we adopt the filtering classification developed in RFC 4787 related 
to the servers, and use the terms in relation to the clients. 

 
Fig. 1. RGW vulnerabilities to inherent Internet threats 
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1) Denial of Service: Fig. 1.a illustrates DoS attack from an 
aggressive Internet host that forces PRGW into blocking state, 
by issuing flood of DNS requests for the served hosts. In this 
state, the CPPA is depleted due to allocation of all its addresses, 
leaving PRGW unable to accept new incoming connections. 
The exhaustion of circular pool could also happen due to poor 
provisioning of the public IP address pool. 

2) Connection hijacking: The attacker in Fig. 1.b floods an 
address R1 of PRGW. PRGW would drop any packet unrelated 
to an ongoing connection or valid inbound state. However, on 
the event that a public host initiates a connection and address 
R1 is allocated, there is a window of opportunity when the 
attacker can claim the connection state. This will result in DoS 
to the host that originally requested access to the service. 
Unfortunately, IP address filtering is not a fail proof solution 
due to the possibility of source address spoofing in the Internet. 

IV. PRINCIPLES OF SECURITY MECHANISMS 
Attackers often exploit the best effort nature of the current 

Internet to launch attacks. Disguising under a spoofed identity, 
the attackers can successfully inject the traffic in the destination 
network and yet escape the network auditing. Therefore, the key 
to improve Internet security comes from deploying mechanisms 
that eliminate spoofing, authenticate the sender, detect malicious 
hosts, thwart hijacking attempts and thereby grant access only to 
the legitimate hosts. We define that PRGW must comply with 
the following principles to tackle the inherent Internet threats: 

1) Flow acceptance must be limited to verifiable sources to 
tackle address spoofing and prevent resource exhaustion. 

2) UDP flow initiations are admitted only after a connection 
has been signalled through a secure channel e.g. SIP(S) [19]. 

3) To favor deployment, security algorithms and operations 
shall not require changes to end-hosts, protocols, or application. 

4) Under the network stress, resource access should be 
granted based on the source reputation. 

V. PREVENTING DNS ABUSE/EXPLOITATION 
PRGW allows unilateral connection initiation to the private 

realm using CPPA. Since CPPA relies on the inbound domain 
resolutions, the architecture of PRGW carries a DNS leaf node 
that is authoritative for the domains located in its private realm. 

The state of the art with DNS is such that it uses UDP as 
transport protocol for majority of its operations. As connection-
less protocol, UDP is open to possibility of address spoofing. 
Attackers often exploit this vulnerability to launch DNS floods, 
and yet avoid the network audits. Alternatively DNS floods may 
originate from non-spoofed hosts, under bot control. In addition 
hackers often use freely-accessible open DNS resolvers, such 
as Google DNS, as DNS reflectors in launching their attacks. 

PRGW is susceptible to this abuse of DNS that can lead to 
exhaustion of the CPPA resources. To trace aggressive host, the 
current practice in public name servers is not to serve recursive 
domain requests. As a result, source address of the actual DNS 
resolver is revealed to the destination. However, the possibility 
of address spoofing hinders the ability of the destination, i.e. in 
our case PRGW, to protect itself from DNS floods initiated by 
the invisible attacker.  

The resource [20] describes best practices and existing state 
of the art in the DNS security. Among others, it recommends 

DNS resolvers/servers to rate limit the domain requests from a 
source, handle malformed packets, filter requests to not-hosted 
domains, apply ingress filtering, detect dictionary DNS attacks 
from hackers i.e. scanning their targets, use of DNSSEC, access 
control lists (ACL) to filter DNS requests from un-allocated or 
reserved address spaces, and to drop domain requests originated 
outside of its network to avoid becoming a DNS reflector. 

While these recommendations aim to improve the Internet’s 
resilience against DNS abuses, the ultimate outcome depends 
on their global adoption by all the network administrators and 
operators. Realizing this, we attempt PRGW security against 
the DNS abuses and exploitations by defining set of heuristics 
and mechanisms, limiting all the changes to the network edges. 

A. DNS Relay 
We implemented DNS-Relay as a frontend to protect PRGW 

from direct exposure to the Internet. This is to prevent the CPPA 
exhaustion from malicious domain resolutions, e.g. inbound 
DNS floods and spoofed requests. Under this model, PRGW is 
protected by virtue of delegating the DNS security to its ISP. 

The DNS relay implementation draws upon the use of DNS 
reverse proxies in ISP networks and security solutions that aim 
to secure networks against DNS abuses. In our implementation, 
we leverage this approach such that the DNS relay forwards an 
incoming domain request to PRGW and identifies the original 
sender in the DNS extensions or additional records. The sender 
tuple identifies: source IP and source port, besides the transport 
protocol and transaction-ID of the inbound query message. This 
allows PRGW to identify the original sender, and thus apply its 
security mechanisms, such as the address allocation model and 
name server classification. These mechanisms are defined in the 
subsequent sections. The corresponding DNS response message 
from PRGW is forwarded by DNS Relay to the actual source, 
after removing the sender-identification tuple. 

The mechanism only requires a few alterations in the edge 
network, i.e. the ISP name server forwards the inbound domain 
queries with DNS source information to PRGW. We argue that 
the changes in the edge network can be motivated by benefits 
possible from adoption of PRGW, e.g. deployment of servers in 
private address space, and less-complex session setups. But we 
consider these aspects beyond the scope of this paper. 

The delegation of security to a dedicated DNS-Relay element 
offers multiple opportunities: 1) it lessens the load of executing 
the complex DNS security algorithms from PRGW; and 2) the 
dedicated relay element can independently leverage the existing 
state-of-the-art and future research in DNS threat detection, to 
serve the PRGW with legitimate traffic only. As a result, 
PRGW stays protected against DNS attacks and can allocate the 
CPPA resources to legitimate hosts. 

B. Name Server Classification 
When the aforementioned DNS Relay is in attack detection 

phase, and has not mitigated the DNS attack yet, it is possible 
that some share of DNS flood is received at PRGW. To prevent 
the consequent resource depletion, PRGW leverages from the 
classification of external name servers and allocates the CPPA 
resources following an Address Allocation Model. 
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Under this model, PRGW classifies the external DNS servers 
into: whitelist, greylist and blacklist. Servers on each list are 
treated differently in PRGW and are promoted/demoted in the 
classification dynamically, based on the influx of attack traffic. 

Whitelisting can be based on business contracts and service 
level agreements (SLAs) between service providers, where the 
networks that seek priority access meet a set of pre-conditions. 
A whitelist server can meet the specific SLA, by employing the 
best DNS practices, e.g. active ingress filtering of DNS requests 
originated in its network, and disabling recursive resolution for 
external sources. The DNS resolver can also transport domain 
queries towards PRGW over TCP connection. This eliminates 
the possibility of spoofing in DNS requests, and on the event 
that an attack is reported it enables tracing an aggressive host 
back to its network. The terms of whitelisting can be agreed in 
peering agreements between mobile operators, administrators 
of the ISPs, or trusted networks, and may stress the networks to 
employ mechanisms such as DNS/TCP, DNSSEC and ingress 
filtering to receive whitelist/preferred access.  

The whitelist servers are specifically configured in PRGW. 
By default, the rest of the name servers are greylist. This also 
includes open DNS resolvers and name servers that are freely 
accessible to Internet hosts, and often serve as DNS reflectors 
in launching DoS. A greylist name server is therefore offered 
less resources in PRGW than a corresponding whitelist server. 

PRGW actively maintains these lists based on the influx of 
attack traffic. A name server is demoted to a lower category if 
states reserved by it repeatedly expire in PRGW. A state expires 
in the PRGW if it is not claimed by an inbound flow in time T0. 
When the state expiration rate for a name server meets threshold 
RT, the server undergoes a time penalty TD in demoted category. 
A name server that repeatedly exceeds its SLA is blacklisted for 
time TB, during which it is barred from accessing the circular 
pool resources. 

C. Circular Pool Address Allocation Model 
The CPPA address allocation model responds to an incoming 

DNS query based on the circular pool load conditions. The 
model rate limits the number of simultaneous states reserved to 
a DNS server or for a private host, and manages total allocations 
of CPPA such that DNS requests from multiple greylist servers 
only take a portion of the circular pool. For this, the address 
allocation model operates in conjunction with the name server 
classification. The model primarily attempts to tackle the DNS 
floods from less secure greylist servers. By prioritizing whitelist 
servers in address allocation over greylists, the model ensures 
that whitelist servers always have preferred access to PRGW, 
particularly under the attack/load conditions. 

VI. FILTERING MALICIOUS INTERENT FLOWS 
Internet hackers distribute malicious packets, initiate traffic 

floods and perform network/port scans to launch their attacks. 
A hacker can either employ a spoofed identity or hire bots from 
bot-rental business to launch these attacks. In this section, we 
introduce a set of mechanisms that attempt to ensure that only 
a legitimate host gains access to the private realm. 

A. TCP-Splice Mechanism 
The mechanism ensures that PRGW is secured against hijack 

attempts from spoofed sources. Fig. 2 presents the mechanism, 
where an inbound SYN that corresponds to a temporary state is 
challenged by PRGW with a cookie. Since the TCP handshake 
only completes on arrival of an ACK bearing the sent cookie, it 
ensures that the sender is non-spoofed. Next, the PRGW assigns 
the state to the sender followed by the connection setup with the 
private host. 

Since TCP connection does not complete with spoofed host, 
PRGW is protected against spoofed sources. PRGW employs a 
slightly tailored SYN cookie algorithm [10] for computing the 
initial sequence number (ISN), which is used as a cookie to 
eliminate address spoofing in the inbound packets. 
 ISN = time mod-32[5-bits]+MSS encoding[3-bits]+hash{source-IP, 
destination-IP, source-port, destination-port, SECRET} [24-bits] (1) 

The use of the SYN cookie requires that TCP flow is relayed 
across PRGW. The relay itself must adjust the SEQuence and 
the ACKnowedgement number on both sides of the PRGW, to 
maintain the end-to-end semantics of the TCP connection. This 
is necessary due to the selection of random initial sequence 
numbers by the private host and PRGW. The translation of SEQ 
and ACK numbers effectively splices the connection on both 
sides of the PRGW. By keeping the SEQ number of the SYN to 
the private host the same as that of the inbound SYN, PRGW 
saves translation cost on one TCP sequencing. 

B. Bot-detection Scheme 
Attacks to PRGW could also originate from non-spoofed, i.e. 

bot hosts. In this section, we present a bot-detection method that 
attempts to protect PRGW against SYN floods from botnets, 
and thus complements the limitations of TCP-Splice. 

In contrast to the networking elements that simply filter the 
packets mismatching to a flow or a connection state, PRGW can 
carry bot-detection on the dropped packets. Fig. 3 illustrates the 
mechanism where PRGW seeks to ascertain if the sender of the 
repeatedly mismatching SYNs is a non-spoofed entity. When 
the mismatching packets exceed a threshold in time TO, PRGW 
handles the next inbound SYN failing to claim a state as per the 
SYN cookie algorithm. The subsequent arrival of an ACK 
bearing the sent cookie establishes the sender as non-spoofed. 
The history of dropped packets together with the non-spoofing 
check hints at a high likelihood of the sender as a bot-controlled 
host. Following which, the PRGW refuses any state to this host. 

1) Implementation Considerations 

 
Fig.  2 TCP-Splicing in PRGW 

 

246Networking 2016



 

 

An attacker meets the detection threshold, when mismatched 
packets reach a threshold in time TO. Attackers typically initiate 
SYN floods at higher rates than a normal host, which only re-
attempts if the previous packet is not responded within a 
retransmission timeout (RTO). RTO is typically an operating 
system defined parameter, and we choose a value below it as 
measurement interval TO, since it significantly differentiates the 
legitimate behaviour from an attack. For TCP, UNIX domain 
sockets and Windows define RTO as 3 seconds [21]. Hackers 
can also initiate slow-rate SYN floods from various addresses, 
and thus bypass the bot-detection threshold. This will reveal the 
lower bound of PRGW security, where PRGW is secure against 
spoofed flows only. Bot-detection is executed only after an 
attacker meets the detection threshold, because a continuous 
monitoring for bot-detection would be too costly. 

To realize the impact of our design choices, we classify the 
source of a mismatching packet into: 1) spoofed host; 2) non-
spoofed attacker; or 3) a legitimate host. A packet may arrive 
from a host whose corresponding state was previously hijacked. 
However, a legitimate host does not re-attempt (or would not 
re-attempt x times) within RTO, and thus it would not meet the 
detection threshold. Similarly, a spoofed address cannot reply 
to SYN/ACK with the sent cookie, and hence is not blacklisted 
as attacker. Thus, only a bot-operated host is susceptible to this 
mechanism after it replies with an ACK bearing the sent cookie.  

2) Caveats and Considerations 
We realize that Bot-detection is not a fail proof solution and 

is vulnerable to abuse. Thus, we suggest to dynamically adjust 
the detection threshold and measurement interval TO, to prevent 
the exploitation of the protection mechanism. Despite all the 
countermeasures, the possibility of a false alarm exists, and thus 
a bot-suspected host is blacklisted for temporal time TD. 

Since both the TCP-splice and Bot-detection could co-exist 
in the PRGW, there is a need to differentiate an inbound ACK 
under Bot-detection from an ACK that is part of TCP handshake 
with a public host. For this, SYN cookies of TCP-Splice and 
Bot-detection must differ, e.g. in SECRET value of equation 1. 

C. Security by Deployment 
A carrier-grade realm gateway (CGRG) can improve security 

of the private realm from a variety of resources at its disposal. 
For instance, the traffic from white and greylist sources can be 
accepted over separate sets of interfaces. This is often possible 
e.g. in mobile networks, where the traffic from other operators 
or corporate networks is processed on separate interfaces than 
those for public Internet [13]. This ensures dedicated access for 

whitelist networks and enables pursuing rather aggressive 
security on the greylist interfaces. 

D. Enhancing the Circular Pool Algorithm 
In [22], we present a new algorithm for allocating the public 

IP addresses of the circular pool, enabling fine-grained access 
control to flows arriving from the Internet. The new algorithm 
significantly improves the scalability and security of PRGW. 

The underlying idea is to address the services and endpoints 
simultaneously. To that end, we leveraged the concept of the 
SRV DNS records and created Service FQDN (SFQDN) to 
address services on end-hosts. Currently, the use of SRV is only 
limited to a few applications, whereas the DNS A records are 
widely in use. SFQDN bridges this gap between DNS A records 
and the SRV records, and defines simple domain names linked 
to a specific service. For example, an SSH service at Host A – 
a.foo can be represented as ssh.a.foo or it can arbitrarily 
be defined as a combination of port number and transport 
protocol as in tcp22.a.foo. For aesthetic/security purposes, 
hosts can hide their SFQDN naming in favour of a more user 
friendly name, e.g. using CNAME records in DNS as a pointer 
to other domain names. The SFQDN and its mapping to a port 
can stay inside the PRGW while the CNAME to PRGW 
mapping is stored at a DNS server in the ISP network. 

Since the SFQDN includes both the endpoint and the service, 
using the RFC defined terminology, SFQDN resolution allows 
endpoint independent but port dependent filtering in the half 
connection state relative to the remote host. The more specific 
half state allows reusing a public IP address for several different 
services, improving the scalability of CPPA. Theoretically, it 
implies that a single IP address can be reused as many times as 
the combination of available ports and protocols. Meanwhile, 
forcing the blocking state on PRGW becomes more difficult 
because the hacker must send significantly larger number of 
DNS requests to reserve the address pool for all the ports. In 
addition, the hackers must also target the allocated port besides 
simply flooding the public IP addresses for state hijacking. The 
temporary half connection state (RX:oPH, H:iPH, Pproto, Ttimeout) 
is unique and carries the IP address and port of the private host 
(H:iPH), IP address and port on the public side of the PRGW 
(RX:oPH), the protocol (Pproto) and lifetime (Ttimeout) of the entry. 
Upon the arrival of the first packet of the flow, PRGW upgrades 
the filtering to address and port dependent. 

SFQDN contributes to security due to its more specific 
address allocation. This increases the attack surface, such that a 
hacker has more opportunities to meet the detection threshold, 
as a hacker must scan the entire port range to discover the active 
services and compromise respective allocations. The increased 
scalability also makes it more difficult to force the blocking 
state. Since PRGW solely admits inbound connections based on 
the domain queries, it becomes simple to temporarily block a 
service under attack and collect the evidence of misbehaviour. 

VII. SECURITY EVALUATION 
This section evaluates the security of PRGW in tackling the 

inherent Internet threats: source address spoofing, network/port 
scans and DNS floods. We implemented the above mechanisms 
in our PRGW prototype and subjected them to a set of attacks 
to determine the bounds of the PRGW security. The prototype 
runs in our test network, which is built in Linux environment 
using standard Linux networking capabilities: linux containers 

 
Fig.  3 Bot-detection method on SYN floods from a bot-operated host 
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and switches. The PRGW node in the testbed attends hosts and 
services located in its private realm, whereas legacy hosts in the 
testbed either initiate inbound connections or attacks towards 
the PRGW. The legacy nodes use virtual network interfaces to 
provide an illustration of many hosts participating in the traffic 
towards the PRGW. 

We utilize Scapy [23] to craft malicious packets and launch 
attacks on PRGW. For our testing, this enables the legacy nodes 
to: 1) initiate spoofed traffic; and 2) emulate network floods 
from non-spoofed hosts, i.e. bots. The attack load is measured 
in SYNs per second from the hacker, whereas the network delay 
between the nodes is artificially generated. The outcome of the 
testing reveals the effectiveness and cost of the PRGW security, 
in terms of the ratio of the hijacked connections and processing 
delay introduced in the PRGW, respectively. 

Fig. 4 demonstrates the PRGW security against DNS abuses. 
Having pre-configured the whitelist servers, we submit PRGW 
to DNS flood from multiple greylist servers. In the absence of 
security, the DNS flood would reserve all the CPPA resources 
and thus force PRGW in blocking state. However, the address 
allocation model notes that the DNS source is greylist and limits 
the resource allocations to a portion of the circular pool. 

In this manner, the allocation model prevents the exhaustion 
of CPPA under DNS floods and ensures that whitelist servers 
have access to PRGW even under load conditions. A similar 
resource depletion attack using SFQDN is more challenging, 
since the high flood rate and amount of domain queries required 
to force blocking state increases likelihood of attack detection. 
Moreover, the rate limits on simultaneous domain queries from 
a DNS server and to a host, hinders the attacker ability to launch 
DNS floods from a few name servers or open resolvers. 

We tested the CPPA enhancement algorithm by designing 
different inbound traffic patterns that evaluate the improvement 
in PRGW security due to SFQDN, especially against network 
and port scan attacks. We designed the following tests: 

x Test1: 100% of the inbound traffic has the FQDNs of the 
destination hosts. On the event that hacker’s packet meets 
an allocated address, the half connection state is claimed. 

x Test2: 50% of the inbound traffic is generated using FQDN 
and the rest employs SFQDN. Hacker must target the right 
IP and port pair to claim the SFQDN allocation. 

x Test3: 75% of inbound traffic is SFQDN; the rest FQDN. 
x Test4: 100% of the inbound traffic is SFQDN. 

Fig. 5 shows the result of stressing the prototype with above 
traffic patterns at network delay of 200 msec and a constant load 

of 4 connections per second. The connection load is distributed 
among private hosts and follows an exponential distribution. In 
parallel, a network scan attack at 40 SYNs/sec from the legacy 
nodes targets the CPPA. The figure reveals that for test1: FQDN 
initiations only, nearly all the connections are hijacked. This is 
because the hacker constantly scans the CPPA at high rate and 
beats the legitimate host in claiming the end point independent 
state. However, as the share of SFQDN grows and nears 100% 
in total inbound DNS queries, the ratio of hijacked connections 
declines and nears zero for an all SFQDN traffic. This is due to 
the fact that besides scanning the public IP addresses, a probing 
attacker also has to randomly scan for the allocated port out of 
216 possible ports to claim the state. The more specific address 
allocation for SFQDN enables more opportunities for a hacker 
to meet the detection threshold, which leads it to blacklisting in 
Bot-detection and subsequent rise in the legitimate connections. 

Next, we evaluate the PRGW security against spoofed flows 
and network scans. We subjected PRGW to 3 connections (i.e. 
DNS requests) per second and in parallel launched 40 spoofed 
SYNs per second from the legacy nodes to CPPA, for hijacking 
the states. The testing reveals that spoofed SYNs failed to claim 
the half states due to better filtering enabled by the SFQDN. 
However, the spoofed SYNs could hijack the FQDN allocations 
in the absence of security mechanisms, because a hacker would 
scan the network at a high rate and can compromise states if its 
packet meets an IP address, allocated in the FQDN state. 

In contrast, TCP-Splice successfully thwarts hijack attempts 
from spoofed sources and prevents leaking of spoofed packets 
into the private realm. Fig. 6 summarizes the PRGW’s delay in 
assigning the half state to legacy hosts, not considering the link 
latency. The figure shows that TCP-Splice obviates spoofing in 
the admitted flows, at the cost of delaying the claim to the half 

    
Fig. 6 Delay in assigning TCP half-connection state, before and after security 

 

 
Fig. 4 Allocation model limiting the DNS flood from greylist servers 

 
Fig. 5. Impact of inbound traffic type on security, versus network scans 
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connection state. This is because to its SYN the sender receives 
a cookie from PRGW, which must be relayed back in the next 
inbound ACK to establish the connection, causing the delay. 

In terms of performance, this limits the reusability of the 
public IP address and the port combination by the same duration 
for the next inbound connection. In a real network, the end-to-
end latency for TCP messages would be added to compute the 
total delay in assigning the half-state. It is possible to reduce the 
average delay penalty caused by TCP Splice by using it 
selectively, i.e. on privileged ports, or under network attacks.  

Fig. 7 presents an overview of PRGW security against SYN 
floods from bot hosts, which are non-spoofed sources under a 
botnet. Without security, an attacker can constantly scan the 
CPPA at high rate and on the event that its packet meets a half 
connection state, it will claim the allocation. In comparison, the 
Bot-detection would constantly track the dropped packets and 
once they exceed a threshold, the source is blacklisted following 
a non-spoofing test. As a result, states reserved by legacy clients 
are protected against the hijacking attempts. The figure shows 
that Bot-detection is more reactive to high flood rates and filters 
them earlier, as they quickly meet the detection threshold. 

Fig 8 expands on the same result and shows the impact of 
stressing PRGW with a SYN flood sourced from eight hosts 
participating in the attack. In parallel, the public hosts initiate 3 
connections/second towards the CPPA of three addresses, the 
network delay is 200 msec and the bot-detection threshold for a 
source is 12 dropped SYNs in 2 second interval. In practice, this 
threshold could be chosen during network planning phase, i.e. 
based on peaks in the traffic statistics graph. The figure reveals 
that the ratio of hijacked connections decreases as the attack 
load increases, since an attack with more active bots is filtered 
earlier, contributing to rise in the legitimate connections. Fig. 9 
shows the impact of network delay, where the network delay is 

time elapsed from creating a half connection state to the arrival 
of first packet from the client host.  

The outcome of Bot-detection depends on multiple factors. 
From attack perspective, these are: number of flooding sources; 
choice of network/port scan strategies, i.e. targeting the known 
services or random port scans; and flooding rates for attacks or 
avoiding the detection threshold. On the other hand, the PRGW 
can improve its defense by dynamically adjusting the detection 
threshold, allocating more circular pool addresses and allowing 
SFQDN only. These strategies can provide more opportunities 
to hackers to meet the detection threshold and get blacklisted. 

The paper obviously cannot present the PRGW security as a 
function of all the parameters. But, the testing generally reveals 
that Bot-detection reacts the best when attack volume is shared 
by few hosts. This means that to succeed a hacker must sacrifice 
rather large number of bots that do not use spoofing, and hence 
are likely to be identified by the target network’s PRGW. The 
use of Bot-detection together with TCP-Splice guarantees that 
only legitimate hosts gain access to the private realm. 

Fig. 10 compares the security of FQDN initiated connections 
in PRGW, in presence and absence of the security algorithms. 
Again,-we subject the PRGW to a load of 3 connections/sec at 
a network delay of 200 msec, while 8 non-spoofed sources 
flood CPPA with 40 SYNs/sec. Fig. 10.b shows that the ratio of 
hijacked connections decreases significantly after the security. 
The figure also reveals the impact of increasing CPPA address 
space, which contributes to security by increasing the overall 
attack surface. This shows that careful network planning and 
proper dimensioning of the CPPA resources can have positive 
impact on the PRGW security. 

To deeply analyse the security of SFQDN states, we divide 
the Internet hackers into: 1) probing/scanning hackers; and 2) 
advanced hackers. A probing hacker scans the entire CPPA 
address space and port range to discover the available services, 
IP addresses or NAT mappings. It is quite likely that such an 
attacker due to its limited victim’s knowledge, and thus random 
network scanning will fail to attack PRGW as shown for Test 4 
in Fig. 5. In comparison, an advanced hacker may already know 
services/ports in the target network, via knowledge sharing 
among hackers or using botnets that perform the service 
discovery process. As a result, the hacker can target the SYN 
floods to the specific ports. We analysed the security of SFQDN 
allocations against such attacks and depict it in Fig. 11. We use 
the same test parameters as for Fig. 10. The result in Fig. 11.b 
shows a rise in the legitimate connections after security. This is 
because Bot-detection filters the hosts that initiate the floods 

 
Fig.  8 Securing states against SYN floods from bot-controlled hosts 

 
Fig. 7 Mitigating DDoS (SYN flood) via Bot-Detection method 

 
 

 
Fig. 9. Impact of network delay on PRGW security 
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towards PRGW, however it is possible that a flood hijacks some 
states before it is entirely mitigated, as shown in the figure. 

Clearly PRGW attains best-case security, when the hacker is 
unaware and simply scans the network for vulnerable services 
or IPs, i.e. a probing attacker, while the PRGW accepts SFQDN 
requests only. Under the premise that the attacks are directed to 
the served ports, it is perhaps best that SFQDN naming is 
changed to new service ports. This will force attacker to restart 
its service/port discovery cycle and help PRGW regain its best 
case security. Such use of SFQDN is possible in cases where a 
single administration owns or manages both the remote hosts 
and the PRGW. For example, Internet of Things (IoT) can 
emerge as one such use case where the communicating nodes 
and gateway will fall under single administration. In absence of 
such a scheme, Fig.11 shows the security of SFQDN allocations 
against an advanced hacker. 

It is pertinent to mention that in our testing no state allocation 
was compromised by spoofed flows. However, few allocations 
were hijacked by the packets from the bot-hosts. This is because 
before a traffic flood is mitigated, some of its packets can beat 
a legitimate host in claiming the allocated state, and cause DoS 
to the actual client. Thus the security of PRGW can exhibit false 
negatives during attack. However, these false negatives reduce 
as the attack progresses, since the more active bots will be 
filtered upon exceeding the detection threshold. 

The ratio of false negatives can further reduce by: 1) network 
dimensioning that presents an attacker more opportunities to 
meet the detection threshold; and 2) dynamically adjusting the 
detection threshold to prevent exploitation of the protection 
mechanisms. Though our testing identified few false negatives, 
PRGW did not exhibit any false positives, i.e. classifying a 
valid client as attacker. We argue that in the PRGW networks, 
a false negative is not as severe as a false positive; since a client 
that suffers hijacks can always re-attempt to access the desired 
service in the private realm. 

Table-I summarizes the mechanisms deployed for securing 
PRGW against Internet threats and their impact on the PRGW’s 
performance. Whereas, Table-II presents the duration that a 
received packet is processed in the PRGW security before a 
decision is reached. The delay values in Table II are computed 
within PRGW at algorithmic level, i.e. they do not include the 
time spent in acquisition, packetizing and forwarding of the 
packet. These values nicely fit with the delay requirements of 
the end-to-end connection. Hence, PRGW and its hosts can be 
protected at the cost of minute processing delay. 

The current PRGW prototype employs a minimalistic set of 
rules, i.e. rate-limiting, to provide the firewall functions. The 
deployment of PRGW at the network edges would require 
integrating PRGW with a commercial firewall. We argue that 
integrating a firewall would further reduce and nearly eliminate 
the false negatives during an attack, besides hardening the 
security of PRGW against well-known attacks.  

VIII. DISCUSSION 
The security testing shows promising results. Though, the 

implemented mechanisms exhibit false negatives, the proposed 
firewall integration will present PRGW as a feasible network 
function. For HTTP, which can set up many flows after a single 
DNS query, PRGW employs an HTTP reverse proxy to serve 
the inbound requests. Besides lessening the load on the circular 
pool, it offers advantages in terms of offloading SSL encryption 
and load balancing to the proxy [4]. Compared to proxy-server 
operations in SOCKS [24], TCP-Splice offers an efficient 
redirection mechanism for admitting the flows, and moves the 
processing load from caching at application-layer to mere 
sequence number translation at the transport layer. 

TABLE I.  SECURITY MECHANISMS AND THEIR PERFORMANCE 

Security threats Mechanisms Cost of Security 

Source address spoofing TCP-Splice Extends duration of 
assigning the state 

Bot-controlled flows Bot-detection Possible False 
Negatives 

Malformed ACK segments cookie verification - 

DNS-floods 
Rate limit simultaneous 
DNS allocations to hosts 

and greylist server(s) 

Less trusted servers 
face congestion, under 

load 

Spoofed DNS requests DNS/TCP, DNS Relay 
and Ingress filtering 

SLA negotiations, and 
sender’s effort  

TABLE II.  PROCESSING OF INBOUND PACKET/FLOW IN THE PRGW SECURITY 
 Processing delay Outcome 

Inbound TCP SYN segment < 0.1 msec Respond with cookie 
TCP-Splice (on non-spoofed) ~1 msec Eliminates spoofing  

Packet not matching any state  ~0.01 msec Processing in bot-
detection method 

Malformed ACK segments < 0.1 msec Accept/Drop 

DNS/TCP request Connection-setup 
delay for 1st query 

Spoofing elimination 
in the DNS queries 

(Greylisted) DNS/UDP request ~ 1 msec Accept if the load  
< threshold 

 

 
Fig. 10. Security of FQDN allocations, (a) without and (b) with security 

 
Fig. 11. Security of SFQDN allocations against advanced hackers, (a) 

without and (b) with PRGW security 
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In [4], we introduced PRGW to address the challenges in the 
Internet and offer a reachability solution that overcomes the 
drawbacks of the classical NAT traversals. The contribution of 
this paper is in presenting PRGW as a feasible function in the 
edge nodes that is well protected against the Internet attacks. 

For end host security we can compare PRGW to the case that 
the application is using the cumbersome but functional IETF 
NAT traversal mechanisms [2]. To prevent attacks to the hosts 
that use SFQDNs and to identify the host application, we see 
the need to integrate an application policy database in PRGW 
that will link SFQDNs to application parameters, such as proxy 
name or addresses that can communicate with this SFQDN, and 
timeouts that will be used to monitor the application traffic, etc. 
PRGW can consult this database for making address allocation 
decisions. The idea would be to allow flows only from known 
entities or allocate most CPPA resources to known entities. The 
time parameter in the database can also rate limit an application 
that assumes connection initiation from unknown entities. We 
believe this would work for example for Peer-to-Peer SIP. 

By tying the use of communication service proxies to PRGW 
via an application policy database, and by monitoring and rate 
limiting the application traffic, we reach the same level of host 
protection as in the case of application-specific NAT traversal. 

IX. CONCLUSION 
PRGW offers better than NAT service to hosts in the private 

address space. Unlike NAT, it presents a scalable way to initiate 
flows from other networks to hosts in the private address space. 
At the same time, no application-layer NAT traversal code is 
needed. Private hosts can stay reachable without need for keep-
alive signalling to maintain their state, thus reducing the battery 
consumption. It offers shorter session setup delays, and eases 
configuring and managing of the port forwarding compared to 
how it is implemented in NATs, since PRGW can dynamically 
establish it upon the domain resolution. 

This paper complements these advantages of PRGW through 
a security analysis that presents it as a feasible Internet function. 
The presented heuristics and mechanisms harden the PRGW 
against the inherent Internet weaknesses, such as source address 
spoofing, network/port scans and DNS floods. The mechanisms 
limit all the changes to network edges to favour the deployment 
and prevent the resource exhaustion in PRGW, by limiting flow 
acceptance to verifiable sources only. 

PRGW admits inbound connections towards private hosts 
based on the domain name resolutions. We briefly discuss the 
current state of the art with DNS and leverage it for securing 
PRGW against Internet DNS abuses. Besides employing the 
best practices, we also present a new Bot-Detection algorithm 
that together with TCP-Splice attempts PRGW security against 
flows from spoofed and non-spoofed sources. 

The security evaluation reveals that PRGW can be protected 
against the inherent Internet threats, at the cost of minimal 
processing delay. We briefly discuss the impact of different 
factors, such as attack strategy and inbound traffic pattern on 
the effectiveness of PRGW security. By addressing the security 
limitations of PRGW, this paper further adds to the claim of 
deploying PRGW at the network edges to address the Internet 

challenges [4]. We argue this further by briefly comparing NAT 
and PRGW, and the security of end hosts under both solutions. 
The adoption of PRGW to networks is simple, since it does not 
require any changes in end hosts, protocols or applications. 
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