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Abstract—Peer-to-Peer networks are extensively used for large-
scale file sharing. As more information flows through these
networks, people are becoming increasingly concerned about
their privacy. Traditional P2P file sharing systems provide
performance and scalability at the cost of requiring peers to
publicly advertise what they download. Several P2P privacy-
enhancing systems have been proposed but they still require
peers to advertise, either fully or partially, what they download.
Lacking alternatives, users have adopted anonymity systems
for P2P file sharing, misunderstanding the privacy guarantees
provided by such systems, in particular when relaying traffic of
insecure applications such as BitTorrent.

Our goal is to prevent any malicious peer(s) from ascertaining
users’ content interests so that plausible deniability always
applies. We propose a novel P2P file sharing model, Mistrustful
P2P, that (1) supports file sharing over open and untrustworthy
P2P networks, (2) requires no trust between users by avoiding
the advertisement of what peers download or miss, and (3) still
ensures deterministic protection of user’s interests against attacks
of size up to a configured privacy protection level. We hope that
our model can pave the ground for a new generation of privacy-
enhancing systems that take advantage of the new possibilities it
introduces. We validate Mistrustful P2P through simulation, and
demonstrate its feasibility.

I. INTRODUCTION

Peer-to-Peer (P2P) networks are extensively used for large-
scale file sharing. As more information flows through these
networks, people are becoming increasingly concerned about
their privacy. The reasons behind the privacy concerns may
be various such as (1) avoiding user profiling, tracking and
data mining, (2) engaging in legal content sharing that may
be embarrassing or deplorable from a political, religious or
social point-of-view, or (3) engaging in illegal or incriminating
content sharing.

Traditional P2P file sharing systems are designed for per-
formance and scalability. These systems take advantage of
the large number of interconnected peers1, and their idle
resources, to more efficiently distribute contents at the cost
of requiring peers to publicly advertise what they download.
Given that peers form interest-based communities [6], every
single connection presents an opportunity for a malicious peer
to passively obtain additional information that may enable
user’s content interests identification.

Several P2P privacy-enhancing systems have been proposed,
such as [17], [19], [12], [13], [10], the majority employing

1We say peer to refer to the network node, and user to refer to the person.

either techniques to provide anonymity, such as onion rout-
ing [11] and information slicing [13], or employing techniques
to provide plausible deniability, such as request relaying –
peers relay requests to create uncertainty about communicating
endpoints –, and content interest disguise – peers download ad-
ditional contents to hide their real interests. All these solutions
share one common issue: they require peers to advertise, either
fully or partially, what they download. Lacking alternatives,
users have adopted anonymity systems for P2P file sharing [4],
misunderstanding the privacy guarantees provided by such
systems [5], in particular when relaying traffic of insecure
applications [14], i.e., applications that disclose sensitive in-
formation.

Our objective is to prevent any malicious peer(s) from
ascertaining the interests of any user downloading a content,
either through observation or through active probing attacks,
while completing the download in a timely manner. Users
interested in downloading contents are provided with plausible
deniability against regular peers or groups of colluding peers.

In this paper, we propose a novel P2P file sharing model,
which we name Mistrustful P2P, that enables file sharing over
open and untrustworthy P2P networks (networks in which
peers should be mistrusted) without disclosing user’s interests.
Our model does not require trust between users by avoiding
the advertisement of what peers are downloading or missing.
The Mistrustful P2P model ensures deterministic protection
of user’s interests from regular peers or groups of colluding
peers of size up to a privacy protection level configured by
the user. It resorts on erasure coding to avoid advertising
what is downloaded. The remaining of this paper is structured
as follows. Section II details the problem we aim to solve.
Section III presents the related work. Section IV provides
the required background. Section V depicts the novel P2P
file sharing model we propose. Sections VI and VII describe,
respectively, the validation of our model through simulation,
and the results obtained. Section VIII presents the conclusions.

II. PROBLEM DESCRIPTION

One privacy aspect that is especially sensitive to users is
the concealment of their interests. Users look for a privacy-
enhancing system that is able to protect their interests from
other participants in the system without compromising per-
formance. Also, providing a configurable per content privacy
protection level, supporting untrustworthy P2P networks, and
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having high performance, are all desirable features because
user’s privacy requirements are idiosyncratic, they may find
themselves in need to join untrustworthy P2P networks, and
want to download contents as fast as possible. Above all, users
tend to prefer security mechanisms that provide strong defense
against well defined attacks, even if narrow ones, rather than
broad but weak security defense mechanisms.

We consider an attacker that participates in the system,
either a regular peer or a group of colluding peers, but not
external entities monitoring all traffic of a peer, such as ISPs,
or controlling the whole network, such as governments. Protec-
tion against link monitoring could be achieved by encrypting
communications between peers, but requires key exchange and
distribution mechanisms, which are out of the scope of this
work.

P2P privacy-enhancing systems typically either completely
hide user’s activities through anonymity or disguise them by
relaying traffic and/or generating cover downloads. Anonymity
systems, being Tor [10] the most popular, as a rule, are not
designed for P2P file sharing. Nevertheless, lacking alterna-
tives, users have adopted anonymity systems for such end [4],
misunderstanding the privacy guarantees they provide [5], and
unaware of the privacy impact that relaying traffic of insecure
applications, such as BitTorrent, introduces [14]. On the other
hand, systems disguising user’s activities are designed for
P2P file sharing but require users to publicly advertise what
they download, either fully or partially, so that peers know to
whom blocks (chunks, using BitTorrent terminology) can be
requested, and also to improve content availability by provid-
ing incentives to download rarer blocks. However, advertising
what is downloaded (block advertisement) enables download
progress tracking, allowing passive attackers to differentiate
genuine from cover traffic, therefore disclosing user’s interests.
Content interest disguise systems that fully download cover
contents are an exception to this, but increase greatly the
network overhead.

Thus, the problem we aim to solve is how to enable P2P file
sharing so that (1) block advertisement and trust links between
users are avoided, (2) users are protected against attacks of size
for a privacy protection level that is flexible and configurable
per content, and (3) contents can be downloaded in due time.

III. RELATED WORK

Several P2P privacy-enhancing systems have been proposed
in the literature providing different degrees of privacy to
users, the majority of which provides either anonymity or
plausible deniability. Tor and Freenet [1] are probably the
most prominent anonymity solutions for, respectively, low-
latency anonymity and anonymous content distribution net-
works. Given that anonymity systems tend to introduce more
overhead, and do that without improving the overall perfor-
mance, herein, we depict the state-of-the-art P2P privacy-
enhancing systems providing plausible deniability and de-
signed specifically for P2P file sharing.

BitBlender [3] provides plausible deniability by introducing
relay peers that simply proxy requests on behalf of other peers.

Peers willing to act as relay peers can register at a central node
called blender, and, once requested, will join a P2P swarm
(group of peers sharing a content) in a probabilistic way so that
they cannot be distinguished from regular peers. The joining
probability of relay peers is defined by the blender, when
asking registered peers to join a P2P swarm, so that the set
of relay peers remains unknown while having the cardinality
requested by the tracker. As so, BitBlender requires users to
trust both the tracker and the blender.

SwarmScreen [6] provides plausible deniability by obscur-
ing user’s interests through cover traffic (content interest
disguise). The devised scheme, which consists in “adding
a small percentage (between 25% and 50%) of additional
random connections that are statistically indistinguishable
from natural ones”, thwarts guilt-by-association attacks, i.e.,
attacks in which the user’s interests can be inferred with high
certainty just by classifying peers based on the behavior of the
communities they participate in. SwarmScreen’s attack model
only considers passive attacks, it is vulnerable to active attacks.

OneSwarm [12] attempts to be an alternative to BitTorrent,
and builds upon friend-to-friend networks – networks in which
peers only communicate with trusted peers (friends). It pro-
vides a high privacy protection level and extensive control over
what information is disclosed to other peers. Nevertheless,
content availability may be limited as it is difficult to connect
any pair of peers using just trusted links. Also, the problem of
providing such privacy guarantees in large groups of untrusted
peers remains unsolved.

The BitTorrent Anonymity Marketplace [16] follows
SwarmScreen’s approach to provide plausible deniability.
However, in order to protect against both passive and active
attacks, all contents are fully downloaded because peers adver-
tise what they download. The authors define k-anonymity as
the privacy protection level obtained from fully downloading
k contents. Thus, as it increases greatly the network overhead,
it either prevents downloads from completing in due time or
constrains the privacy protection level.

Petrocco et. al [17], following SwarmScreen’s approach,
proposed a system that aims to protect user’s interests without
compromising download completion in due time. Their system
relies on private swarms, request relaying, caching, and partial
advertisement of downloaded blocks. As stated by the authors,
private swarms are required to ensure a good level of privacy.
Yet, to obtain the credentials needed to join a private swarm,
peers must trust one or more participants. Also, as only a frac-
tion of the blocks are advertised, it is not clear how a content
sharing is bootstrapped with few seeders nor how request relay
should operate during periods of content unavailability.

IV. ERASURE CODES

Erasure codes are a class of Forward Error Correction (FEC)
codes for the Binary Erasure Channel (BEC), a channel in
which transmitted data packets are either correct or missing
(erasures). Networking layers above the data link layer behave
as an erasure channel since packets are either correct, and are
delivered, or present errors, and are discarded.
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An erasure code generates a set of n symbols from a set of
k symbols, k < n, at a rate given by k/n, so that any subset of
k (1 + ✏(k)) is enough to reconstruct the original information,
where ✏(k) is the erasure coding overhead. Erasure codes are
usually classified according to three orthogonal properties: (1)
systematicity, (2) rate fixedness, and (3) coding overhead. An
erasure code is systematic if the input symbols are embed into
output symbols, and non-systematic otherwise. If n is static
and needs to be known before encoding, the erasure code is
fixed-rate. If n can be dynamically increased and the amount
of symbols that can be generated does not impose any practical
limitation, the erasure code is rateless. Finally, an erasure code
is said MDS (Maximum Distance Separable) if any k symbols
out of n are enough to reconstruct the original information
[✏(k) = 0], or non-MDS if additional symbols are required
[✏(k) > 0]. Non-MDS erasure codes reduce significantly the
encoding and decoding time complexity orders by introducing
coding overhead.

For P2P file sharing, MDS erasure codes are more suitable
as the network is typically the most constrained resource, not
the CPU [15]. Non-systematic erasure codes may have the
property of only granting access to any part of a content after
fully downloading it. Rateless erasure codes enable the setting
of n as a function of hard to predict dynamic variables, such
as peer arrival rate, to continuously adjust it to the P2P file
sharing dynamics.

V. MISTRUSTFUL P2P MODEL

In this section, we describe the Mistrustful P2P model, a
novel P2P file sharing model that (1) supports file sharing over
open and untrustworthy P2P networks, (2) requires no trust
between users by avoiding the advertisement of what peers
download or miss, and (3) still ensures deterministic protection
of user’s interests, through plausible deniability, against attacks
of size up to a configured privacy protection level. We consider
that the burden of an increased privacy protection level should
be on the peer requiring it and not on other peers’ resources,
thereby peers communicate through direct links, i.e., there is
no peer relaying. For this reason, our model relies on cover
downloads to protect user’s interests, and therefore, targets the
development of content interest disguise systems.

The description of each component of the model is con-
ceptual but we provide the instantiation used for validating
the Mistrustful P2P model (Section VI) as an example. We
hope that our model can pave the ground for a new generation
of privacy-enhancing systems that take advantage of the new
possibilities it introduces.

A. Overview

Mistrustful P2P avoids block advertisement, and therefore
peers no longer know to whom blocks can be requested nor
can request a specific block they need. Consider a content
divided into k blocks, and that a block request is sent to a
randomly selected peer which offers a randomly selected block
it owns. Such approach enables to share some blocks between
peers but is unfeasible for fully downloading contents because,

assuming an uniform distribution of blocks among peers, the
probability of obtaining the last block is just 1/k. Using erasure
codes we are able to generate a set of n blocks so that any
subset of k0 blocks enables to retrieve the content, where k0 =
k (1 + ✏(k)), and ✏(k) is the erasure coding overhead. As so,
for the same conditions, the probability of retrieving the last
block increases to 1� k0�1

n .
Peers only share erasure coded blocks to ensure that access

to any part of a content is only granted after fully downloading
it, albeit all contents being publicly available. This way, there
is no proof that a user had full or partial access to a particular
content, including cover ones, by just having downloaded
some blocks; thus, they can still participate in its sharing. We
assume that this property is provided by the erasure codes,
although content encryption can be used to achieve the same
goal. Unless otherwise stated, from now on, we say block to
refer to erasure coded block.

The Mistrustful P2P model aims at enabling P2P file sharing
in large groups of untrusted peers, thereby, no trust links
between peers are required. Attending to the idiosyncrasy
of user’s privacy requirements and to the flexibility required
to not constrain the privacy-enhancing systems that can be
built on top of our model, the user privacy protection level
is configurable per peer and per content. It is defined as
a two-dimensional variable composed by c, the size of the
largest colluding group considered by the user, and m, the
maximum number of blocks that can be shared with any set
of c peers, where c  m and m < k so that the content
cannot be fully downloaded from a single considered colluding
group. Thereby, our model provides a deterministic protection
of user’s interests as long as the effective size of the largest
colluding group does not exceed the one configured. When
the user privacy requirements for a particular download are
not met, the download pauses until they are met again.

Peers, per content, can take one of two roles depending on
their privacy requirements and the way they contribute to the
file sharing: seeder – peer having a content that wants to share,
and willing to forgo its privacy –, or commoner – peer willing
to download content blocks if its privacy requirements can be
met. Seeders may be the authors or some party interested in
publishing the content, and therefore do not require interest’s
concealment. We consider that there is always at least one
seeder to ensure content availability, which provides a new
erasure coded block for each request it receives. This is a
realistic assumption given that a small fraction of publishers
are responsible for 67% of the published content and 75%
of the downloads in BitTorrent [7]. Seeders only refuse to
serve block requests if they have no resources available. On
the other hand, commoners do not create new blocks and only
share them if their privacy remains protected. They can either
act as an helper (cover downloads) or as, using BitTorrent
terminology, a leecher (genuine downloads). Commoners keep
track of what they have shared with other peers both for
privacy enforcement reasons and to avoid offering a block
twice to the same peer. They may refuse to serve block
requests (1) due to resources constraints, (2) if they have
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no useful blocks to offer due to privacy constraints, or (3)
due to content disguise strategies. The reason behind is never
disclosed. If a block is offered, the requesting peer can then
either cancel the request (duplicate block) or proceed with its
download (useful block).

Let k be number of blocks required to fully download a
content, n the number of unique blocks that can be generated,
na the number of unique blocks available for download,
and Di the set of unique blocks already downloaded by
commoner i. Commoner i attempts to select a random peer
that maximizes the probability of having it offering a block
that is not in the set Di. Given that any subset of k0 blocks
out of na enables to fully retrieve the content, increasing na

maximizes the probability of a peer obtaining a useful block;
which can be achieved by increasing the number of seeders.
However, determining which block should be offered in reply
to a request, when should a request be sent, and to which
peer is not trivial. Let us consider ei,j to be the number of
blocks that can be exchanged between commoners i and j,
and Ei the number of blocks that commoner i can exchange
with all other peers (available requests), which is limited by
the privacy constraints. If commoner i makes too much block
requests, more block requests will fail to retrieve useful blocks
and it will run out of available block requests (Ei = 0); on the
other hand, if commoner i makes too few block requests, more
block requests could have been sent and the available requests
to commoner j will still be far from zero once commoner j
leaves (ei,j � 0).

We devised three mechanisms which main purpose is to
attend the issues stated above. The block selection mechanism
is used by commoners to determine which block should be
offered to a requesting peer. The request backoff mechanism
aims at delaying block requests to help maximizing the amount
of useful blocks that can be obtained from the available
block requests, in the shortest time frame possible. The peer
selection mechanism aims at determining the peers that should
be selected to minimize the download time.

In sum, the Mistrustful P2P model relies on cover down-
loads to protect user’s interests, and has five main components:
erasure codes, the privacy enforcement mechanism, the request
backoff mechanism, the peer selection mechanism, and the
block selection mechanism. It is out of the scope of this
work to provide optimal instantiations of each component.
We provide only, as an example, the instantiation used for
validating our model.

B. Erasure Codes

Although other erasure codes can be used, we refer the
reader to [9] for a rateless MDS construction of Reed-Solomon
codes that we developed for our model. These erasure codes
are defined over the finite field Fp2 , where p is a Mersenne
prime (p = 2q � 1), and n  2q+1. Their performance was
evaluated over F(231�1)2 , so n  232, and does not impose any
constraints to the file sharing. Also, they are non-systematic
erasure codes that have the property of only granting access
to any part of a content after fully downloading it.

C. Privacy Enforcement

The privacy enforcement mechanism ensures deterministic
protection of user’s content interests, through plausible de-
niability, against attacks of size up to a configured privacy
protection level. Mistrustful P2P guarantees that any peer or
colluding group, with size up to c peers, are unable to (1)
prove that the user downloaded a particular content or had
full or partial access to it, and to (2) distinguish between cover
and genuine downloads by tracking its progress. The user can
configure, per content, the size of the largest colluding group
to consider, c, and the maximum amount of blocks that can be
shared with any set of c peers, m, where c  m and m < k
so that the content cannot be fully downloaded from a single
group of size c. The protection provided is guaranteed as long
as the effective size of the largest colluding group does not
exceed the one considered by the user. Given that finding the
maximum intersection between the set of blocks exchanged
with any c peers is an NP-hard problem [18], we devised a
conservative yet efficient algorithm to evaluate the numbers
of blocks that can still be shared with a peer. The algorithm
is divided into two main functions, one to update the counter
of blocks shared with a peer (Function 1), and the other to
determine the number of blocks that can still be exchanged
with a peer (Function 2).

Function 1 Update Blocks Shared
. commoners is an array sorted by blocks shared.

. blksShared is the max no. of blocks shared w/ c peers.

function INCREMENTBLOCKSSHARED(id)
i commoners.getIndex(id)

if invalidIndex(i) then . New.
commoners.push(id)
commoners.last.blks 1
i commoners.getIndex(id)

else . Known.
commoners[i].blks commoners[i].blks+ 1
j  i� 1

while validIndex(j) do
blksI  commoners[i].blks
blksJ  commoners[j].blks

if blksI > blksJ then . Still unsorted.
swap(commoners[i], commoners[j])
i j

j  j � 1
else . Sorted.

break
end if

end while
end if
if i < c then . Changes on top c peers.

blksShared blksShared+ 1
end if

end function

Function 1 relies on an array sorted by the number of blocks
shared with a peer, and the maximum number of blocks shared
with any set of c peers. The function receives a peer id as a
parameter, and starts by checking if any blocks have been
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exchanged with that peer. If it is the first one, sets the number
of blocks shared to 1. Otherwise, the number of shared blocks
is incremented, and, if needed, some elements are swapped
until the array is again sorted. The maximum number of blocks
shared with any set of c peers is incremented if the update was
in one of the top c positions of the array. Function 1 has linear
time complexity.

Function 2 Blocks to Share Left
. commoners is an array sorted by blocks shared.

. blksShared is the max no. of blocks shared w/ c peers.

function BLOCKSHARELEFT(id)
if c > m or m � k then . Invalid.

return 0
end if
top min(c, commoners.length) . Top peers.
left m� blksShared� (c� top)
i commoners.getIndex(id)

if invalidIndex(i) then . New.
if commoners.length > c then

left left+ commoners.last.blks� 1
end if
return left

else . Known.
if i � c then

left left+ commoners.last.blks

left left� commoners[i].blks
end if
return left� 1

end if
end function

Function 2 relies on the same variables as Function 1, and
also receives the same parameter. It starts by checking if the
configured privacy protection level is invalid. If it is valid,
left contains the number of blocks that can still be exchanged,
ensuring that at least one block is exchanged with each one
of the top c peers. This value needs to be updated if there are
already at least c peers and the peer referred by id is outside
of that set. Function 2 runs in logarithmic time.

D. Block Selection

The block selection mechanism is used by commoners to
determine which block should be offered to a requesting peer.
It plays an important role on how the blocks end up distributed
among peers, affecting the probability of peers obtaining
useful blocks. This mechanism ensures that no block is offered
twice to the same peer, and determines when requests should
be refused due to the lack of useful blocks to share.

Although this mechanism should use content sharing infor-
mation as input, such as the number of requests that end up
canceled (both as source and destination), for validating the
model we select blocks randomly due to its simplicity. With
Mistrustful P2P model there is no need to suddenly terminate,
remove downloads, or stop sharing because the privacy pro-
tection level does not depend on the time a peer keeps sharing
a content, as long as cover and genuine downloads are treated
in the same way.

E. Request Backoff

The request backoff mechanism aims at delaying block
requests to help maximizing the amount of useful blocks that
can be obtained from the available block requests, in the
shortest time frame possible. It does so by constraining the set
of peers to which block requests can be sent (eligible peers),
and by determining for how long no block requests should
be performed. Therefore, as the former is a direct result of
individual peer behavior and the latter depends on the swarm
behavior, we define the backoff time has a two-dimensional
variable that has a per peer and a swarm components. The
peer backoff component provides the delay to return a peer to
the set of eligible peers while the swarm backoff component
provides the delay to perform a new block request.

A block request has five possible outcomes: 1) refusal – the
request is refused by the contacted peer, 2) cancellation – the
request is canceled by the requester (duplicate block), 3) ac-
ceptance – the request is accepted and a block is downloaded,
4) interruption – the request is accepted but the download is
interrupted, and 5) disposal – no request is sent due to the lack
of eligible peers. Refusal and disposal reveal no information,
but all the others do. Cancellation and acceptance reveal that
both peers already own that block; interruption reveals that the
contacted peer owns that block.

To validate our model, we considered that the peer backoff
component is a function of the block transfer time, btt, and is
defined as min (↵ · �⌧ , µ) = min

�
btt
8 · 2⌧ , k·btt

4

�
, where ↵ is

the peer base backoff time, � is the exponential factor, ⌧ is the
number of consecutive failed requests (all but disposal), and µ
is the maximum peer backoff time (25% of download time).
The swarm backoff component should be a function of the
swarm dynamics to find the proper amount of block requests
but, for the sake of simplicity, it is defined as � + � · ⌧ =
100 + 100 · ⌧ , where � is the swarm base backoff time, �
is the scale factor, and ⌧ is the number of consecutive failed
request attempts (including disposal).

F. Peer Selection

The peer selection mechanism also helps to maximize the
amount of useful blocks of a given content that can be obtained
from the available block requests, in the shortest time frame
possible, by selecting the peers that return useful blocks in less
time. It depends both on the privacy enforcement and on the
request backoff mechanisms. The former provides, for a given
content, the list of peers to which no further block requests
can be sent; the latter provides, also for a given content, which
peers are ineligible for the moment, and when can the next
block request be performed.

For the validation, given that we considered homogeneous
peers and no parallel requests, and also for the sake of
simplicity, we select peers randomly.

VI. VALIDATION

This section details the simulation setup, the peer arrival
traces used as simulation input, and the use cases considered to
validate the Mistrustful P2P model. Given that simulations are
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only as good as their models, the simulations were carried out
using the ns-3 network simulator [2], which provides realistic
network stack and its protocols. Still, the simulation of large
scale P2P networks using accurate and realistic models is a
complex task. Thereby, to be able to simulate P2P file sharing
with thousands of peers using accurate network models, we
also use CIDRarchy module [8], a module that we developed
for ns-3 that performs IP packet forwarding in constant time.

The validation of our model is done by asserting that peers
are able to download contents in due time without advertising
what they download. To do so, we simulate the content sharing
to evaluate the rate of peers that are able to complete their
downloads, and the average download time. Given that the
content download due time is subjective, we consider that a
content is received in due time if the average download time is,
at most, one order of magnitude above direct download time.
For the sake of clarity, although cover downloads are required
to protect user’s content interests, we consider a single content
download and no cover downloads. Also, peers are provided
with a list of all peers currently in the swarm, request one
block at a time, and accept one request at a time. We consider
the worst case scenario for how long peers share a given
content: peers leave immediately after finishing the download.
It is out of the scope of this work to provide a performance
comparison with state-of-the-art privacy-enhancing systems.

A. Simulation Setup

We consider a star network topology with a central node
mimicking an ISP, and with homogeneous leaf nodes connect-
ing to it through asymmetric links: 30 Mbit/s downlink and
3 Mbit/s uplink. As described in Section V, our model was
instantiated as follows. We considered Storm erasure codes,
and therefore, any subset of k blocks enables to fully download
a content, seeders generate a new block per request, and peers
only have access to the content after fully downloading it. The
privacy mechanism ensures that peers do not exchange more
than m blocks with any set of c peers. The block selection,
and peer selection mechanisms select, respectively, blocks and
peers randomly. The request backoff mechanism sets the peer
backoff component as a function of block transfer time that
grows exponentially with failed requests, while the swarm
backoff component is set as a linear function of failed request
attempts.

To ensure that the peer arrival models are realistic, we
gathered peer arrival traces of several contents and use them as
input to the simulation. The traces were collected by querying
a tracker for typical BitTorrent contents, and provide the
number of new peers that arrived within ten minute intervals
since content publication up to 21 days. We consider the peer
arrivals to be independent within each interval, and therefore,
we use an exponential function to generate the peer inter-
arrival times within that period (Poisson process). We classify
content’s popularity according to their average peer arrival
rate: more popular contents are those that have higher average
peer arrival rates. From those collected traces, we selected

TABLE I
OVERALL NUMBER AND RATIO OF DOWNLOADS COMPLETE.

Contents 1 Seeder,
Col. of 1

1 Seeder,
Col. of 32

64 Seeders,
Col. of 1

64 Seeders,
Col. of 32

VideoMP 100 75296
(99.82%)

75294
(99.82%)

75323
(99.86%)

75321
(99.85%)

VideoMP 800 74509
(98.78%)

74520
(98.79%)

74565
(98.85%)

74569
(98.86%)

VideoP 100 22444
(99.45%)

22439
(99.42%)

22471
(99.57%)

22472
(99.57%)

VideoP 800 21772
(96.46%)

21762
(96.42%)

21808
(96.63%)

21821
(96.69%)

VideoLP 100 3308
(99.91%)

3257
(98.37%)

3308
(99.91%)

3308
(99.91%)

VideoLP 800 3257
(98.37%)

3240
(97.86%)

3271
(98.79%)

3269
(98.73%)

three video traces for comparison that have different degrees
of popularity.

B. Use Cases

For each individual peer arrival trace we consider eight use
cases, which are a result of combining three distinct variables,
each taking one of two possible values. We consider a privacy
protection level against single peer attacks (collusion of 1)
or collusion group attacks of, at most, 32 peers (collusion of
32). Contents are always divided into 64 blocks, have a size
of either 100 MiB or 800 MiB, and are shared either by 1
seeder or 64 seeders; seeders are always present during the
content sharing. Given that, for the traces we collected, the
peer arrival peak usually occurs within the first 36 hours, each
use case is simulated for 48 hours to encompass, at least, the
content bootstrap and the content sharing peak. We consider
m = k � 1, i.e., no single peer can download all k blocks
from peers belonging to a group of c peers.

Our goal is to validate the model for different content pop-
ularities, privacy protection levels, content sizes, and number
of seeders.

VII. RESULTS AND DISCUSSION

In this section, we present the simulation results for the
validation of the Mistrustful P2P model. For each use case,
we measured the rate of peers that completed the download,
and the average download time. All values are for one hour
intervals, thus, for the sake of clarity, we use ’overall’ to
differentiate between the values for the whole simulation and
those for one hour intervals. Figure 1 depicts the number
of downloads completed over time, and Table I provides
the overall number of downloads completed and the overall
completion rate. The average download time is illustrated on
Figure 2 while the average overall download time, and the
ratio to the direct download time are presented on Table II.
Content download is limited by the uplink (3 Mbit/s) because
block requests are performed one at a time, thus to a single
peer at a time. As so, the reference download times for direct
download of 100 MiB and 800 MiB contents are, respectively,
approximately 5 and 38 minutes.

The results demonstrate that our model is feasible as peers
were able to complete their downloads, and do so in due
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Fig. 1. Number of downloads completed over one hour periods for 100 MiB (left) and 800 MiB (right) contents using a more popular (MP), a popular (P),
and a less popular (LP) peer arrival traces as input (one per row). Each plot depicts four use cases that are a result of using either 1 or 64 seeders, and
considering either single peer attacks or collusion attacks of, at most, 32 peers. The peer arrival rate is represented in gray with a y-scale on the right.

time, without advertising what they have downloaded. For
most use cases, the average overall download time is close
to the direct download time (see Table II). As shown in
Figure 1, peers download completion rate closely follows the
peer arrival rate with an offset, which increases as the size
of the content increases because peers need to stay longer
to fully download the content. Table I shows that the overall
download completion rate is very high; the only peers that have
not completed the download are those that were sharing when
the simulation stopped. Figure 2 shows that peers complete
their downloads in due time, and that the average download
time depends on the peer arrival rate (content popularity), the
privacy protection level, the number of seeders sharing the
content, and on the content size.

The average download time decreases down to a minimum

TABLE II
AVERAGE OVERALL DOWNLOAD TIME, IN MINUTES, AND RATIO TO

DIRECT DOWNLOAD TIME.

Contents 1 Seeder,
Col. of 1

1 Seeder,
Col. of 32

64 Seeders,
Col. of 1

64 Seeders,
Col. of 32

VideoMP 100 8.4 (1.8) 8.4 (1.8) 6.8 (1.5) 6.8 (1.5)
VideoMP 800 60.7 (1.6) 60.8 (1.6) 57.8 (1.6) 57.6 (1.5)
VideoP 100 8.4 (1.8) 11.0 (2.4) 6.0 (1.3) 6.0 (1.3)
VideoP 800 60.1 (1.6) 60.5 (1.6) 55.5 (1.5) 55.4 (1.5)
VideoLP 100 8.4 (1.8) 51.1 (11.0) 5.2 (1.1) 5.2 (1.1)
VideoLP 800 61.0 (1.6) 85.1 (2.3) 47.8 (1.3) 48.0 (1.3)

near the direct download time as the peer arrival rate increases.
As the peer arrival rate decreases, both the average download
time and the download time variance increase, which suggests
that some peers have to wait for others to join before being
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Fig. 2. Average download time over one hour periods for 100 MiB (left) and 800 MiB (right) contents using a more popular (MP), a popular (P), and a
less popular (LP) peer arrival traces as input (one per row). Each plot depicts four use cases that are a result of using either 1 or 64 seeders, and considering
either single peer attacks or collusion attacks of, at most, 32 peers. The bars represent the minimum and maximum download times within one hour intervals.
The peer arrival rate is represented in gray with a y-scale on the right.

able to complete the download. The numbers of peers that
need to be contacted is constrained by the privacy protection
level (at least c+1 peers) but also depends on how successful
the block requests are, which in turn are dependent on other
variables such as the block distribution among the peers.
Therefore, the results suggest that the number of peers that
need to be contacted is higher than that imposed by the
privacy protection level (c + 1), and the average download
time increases when those peers are not immediately available.
Adding seeders provides a two-fold improvement on the
average download time: 1) since seeders are always present,
less commoners need to be simultaneously sharing to be able
to complete the download; 2) seeders improve the probability

of successful block requests as they always offer a useful
block, which increases the number of unique blocks available
on the network. Unlike direct download time, the average
download time does not increase linearly with the increase of
the content size. The average number of peers present in the
network increases with the increase of the content size because
commoners have to stay longer to fully download the content,
therefore increasing the probability of successful requests,
which, in turn, contributes to a lower average download time.
This is more evident for less popular contents: for the less
popular peer arrival trace, despite the 800 MiB content being
eight times larger than the 100 MiB one, the average download
time is only less than two times higher.
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In sum, the results demonstrate that our model is feasible
and, for most of the use cases considered, the average overall
download time is close to the direct download time. We con-
sidered an instantiation of our model that focus on simplicity
instead of optimality, and the peer download completion rate
is still very high. For the 64 seeders use cases, the average
download time is very close to the direct download time, even
for a privacy protection level against collusion group attacks
of, at most, 32 peers.

VIII. CONCLUSIONS

We proposed a novel P2P file sharing model that provides
deterministic protection of user’s content interests, against
attacks of size up to a configured privacy protection level, by
avoiding the advertisement of what peers download, as long
as the effective size of the largest colluding group does not
exceed the one configured; it supports open and untrustworthy
P2P networks, and requires no trust links between peers. Our
model thwarts passive attacks differentiating genuine from
cover downloads using solely block advertisements, and forces
attackers to engage in content sharing to know which blocks
a peer owns.

By avoiding block advertisement, our model enables peers
to control individually what information is disclosed to other
peers, and has no requirements on the amount of blocks that
have to be downloaded per cover content, so that no single
colluding group is able to identify it as a cover content. As
so, novel disguise schemes can be devised to conceal user’s
interests that use more cover contents without increasing the
network overhead.

We demonstrated its feasibility through simulation, using
ns-3, considering an instantiation of our model focused on
simplicity rather than on optimality, and where peers leave
immediately after finishing the download. In the majority of
the use cases considered, the average overall download time
is close to the direct download time. With the Mistrustful
P2P model, peers have no need to suddenly terminate or
remove downloads because the privacy protection level does
not depend on the time a peer keeps sharing a content, as long
as cover and genuine downloads are treated in the same way.

As future work, we intend to (1) compare our model against
a simple traditional P2P file sharing model, (2) improve the re-
quest backoff mechanism to increase the overall performance,
and (3) conduct further experiments to evaluate the Mistrustful
P2P model with more peer arrival traces, mainly less popular
ones, and include more variables such as the number of blocks
into which a content is divided. Then, we will analyze how
the probability of successful requests changes over time, so
that we can improve the instantiation of our model herein
presented. We will also propose cover download selection
algorithms that minimize the amount of cover traffic required
while preserving the privacy protection.
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