
Action Computation for Compositional
Software-Defined Networking

Heng Pan∗†, Gaogang Xie∗, Peng He∗, Zhenyu Li∗, Laurent Mathy‡
∗ICT, CAS, China, †University of CAS, China, ‡University of Liége, Belgium

{panheng, xie, hepeng, zyli}@ict.ac.cn, laurent.mathy@ulg.ac.be

Abstract—Software-defined networking (SDN) envisions the
support of multiple applications collaboratively operating on the
same traffic. Policies of applications are therefore required to
being composed into a rule list that represents the union of
application intents. In this context, ensuring the correctness and
efficiency of composition for match fields as well as the associated
actions is the fundamental requirement. Prior work however fo-
cuses only on the composition of match fields and assumes simple
concatenation for action composition. We show in this paper that
simple concatenation can result in incorrect behavior (for parallel
composition) and inefficiency (for sequential composition) for
actions composition. To address this issue, we formalized the
action composition problem and prove a feasibility condition on
the composition of rule actions. We then propose a graph-based
approach that facilitates fast composition of action lists without
action redundancy. Our proposed approach has been integrated
into the CoVisor code base and the evaluation results show its
fitness for purpose.

Index Terms—Software-defined Networking, composition, ac-
tion

I. INTRODUCTION

Software-Defined Networking (SDN) decouples control log-
ic from the forwarding devices to simplify network manage-
ment and enable complex network applications [1]. Such a
separation allows the control plane software and data plane
hardware to evolve quickly and independently. Recent interest
in SDN has moved to the implementation of various SDN
applications upon controllers written in different programming
languages. The vision of SDN is to construct an SDN “App
Store” [2], [3], [4] for network management services. Similar
to the Android Market or the Apple Store, network adminis-
trators could download applications suited to their needs from
the SDN “App Store” and deploy them into the network. For
example, a single network could run simultaneously a firewall
written in Java on OpenDaylight [5], a routing application
written in Python on Ryu [6] or a monitoring application in
C on NOX [7].

To realize this vision, a mechanism that compiles different
processing logics of applications to cooperate correctly in the
data plane is essential. In general, there are two types of
approaches towards such a mechanism: top-down and bottom-
up. The top-down approaches use either domain specific pro-
gramming languages [8], [9], [10] or a specific programming
framework [11], [12], to express each application as a program
(module) or an expressive equivalent (e.g. graph in [11]).
These programs are then translated into a set of low-level

OpenFlow rules representing the union of the intents of the
applications. The bottom-up approaches on the other hand uti-
lize SDN hypervisors [13], [14], lying between the controllers
and the underlying forwarding devices, to compose policies1

into a prioritized list of (OpenFlow [15]) rules. Nonetheless,
both types of approaches essentially face the same challenge:
composing multiple policies, each representing the intent of
an application (program, module), into a single rule list that
represents the union of these intents.

In the context of composing multiple policies, two types of
composition operators have been proposed in existing SDN
programming frameworks: parallel (+) and serial (>>) [9],
[16], [10], [17], [18]. Parallel composition gives the illusion
that each member policy acts on its own separate copy of the
traffic while sequential composition enables multiple policies
to operate on traffic in sequence. For example, if the hypervisor
applies a composition configuration as follows: Firewall
>> (Monitoring + Routing), packets will be pro-
cessed first by Firewall, and then operated on by Monitoring
and Routing concurrently.

A policy consists of match fields and the associated atomic
actions, which enable programmers to design abundant ex-
pressive behaviour represented as a sophisticated action list.
A practical composition mechanism should ensure that the
composed rule of multiple policies is correct (in terms of ap-
plication intents) and efficient (in terms of packet processing)
for both match fields and action lists. Prior work on policy
composition [13], [19], [14], [11] however mostly discusses
how to merge the match fields of rules from different member
polices and how to calculate the priority of the composed
rules, leaving action composition much overlooked. Indeed,
the action composition essentially boils down to the “union”
of actions (often implemented as the concatenation of actions)
in the previous work. This observation was corroborated by
inspection of the released code of the CoVisor system [20]
and many language implementations such as Frenetic [21].

We show that simple concatenation for composing action
lists not only cannot preserve the semantics (or interests)
expected by the original member policies but also can result
in wasted compute cycles in the resource constrained for-
warding path environment of switches. For example, consider
one member policy rule’s action list is {push_vlan(1),

1To simplify our discussion, we use the terms “policy” and “application”
interchangeably.ISBN 978-3-901882-83-8 c⃝ 2016 IFIP

19Networking 2016

tcpdst ← 80, fwd(1)} while the other is {dstip
← 10.0.0.1, tcpdst ← 80, fwd(2)}. If the cor-
responding two rules are composed to operate on pack-
ets in parallel, and the actions lists are simply concate-
nated, the result becomes {push_vlan(1), tcpdst ←
80, fwd(1), dstip ← 10.0.0.1, tcpdst← 80,
fwd(2)}, which obviously violates the semantics of the
second original rule, since the packet appearing on port 2
are different from the one that would have been generated
by this second rule, had it been operating alone. This is
because the second rule forwards the input packets with
modified IP destination address 10.0.0.1 to port 2, while
the composed action list forwards the input packets with both
the appropriately modified IP destination address and an added
vlan header to port 2. Obviously, the second action of tcpdst
← 80 is redundant, which wastes the compute cycles of
underlying switches. Overall, to the best of our knowledge,
there is no mechanism to effectively compute action sequences
for composing SDN policies.

Motivated by our observations, we in this paper address the
challenge of correct and efficient action composition in the
context of policy composition. our contributions are four-fold:

1) We show and prove, feasibility conditions on the com-
position of rule actions in SDN networks. By extension,
this result also applies to the feasibility analysis of the
composition of the policies themselves;

2) We derive a feasibility test, which can be applied to the
“on-the-fly” composition of rules.

3) We propose a graph-based approach for fast computation
of the actions of a composed rule. The approach has
negligible effect on the performance of the composition
operation itself, while resulting in the minimum number
of actions to be performed in the data plane of switches;

4) We integrate our action composition algorithms in the
CoVisor code base2.

The rest of the paper is organized as follows: Section II
describes the background and motivation for our approach. We
present theoretical fundamentals and a model for action list
composition in Section III. In Section IV, we detail efficient
algorithms based on the model for the composition operators.
Section V presents experimental results of these algorithms.
We conclude with perspectives on our contributions in Sec-
tion VI.

II. BACKGROUND AND MOTIVATION

To set the scene, we first briefly present some features
of SDN policy, and then review the parallel and sequential
composition operations introduced in [14], [13], [19], [9].
Finally, we give examples to motivate our work.

A. SDN Policies

To fix ideas, one can think of OpenFlow [22] policies,
although our work is general and not limited to OpenFlow. A

2Our algorithms can be applied to other high-level programming frame-
works very easily.

policy is expressed as a set of prioritized rules. Each rule R is
a 3-tuple R = (p;m; a), where R.p is the rule’s priority, R.m
represents the match field patterns and R.a is a sequential
“program” (i.e. list) of the actions to be applied to packets
matching the rule (see Figure 1).

MatchPriority Actions
R1 1 0000 fwd(1)
R2 5 01** fwd(2)
R3 9 00** fwd(3)
R4 99 **** fwd(4)

Rule

Fig. 1. Example of policy as a rule table. Smaller priority values imply higher
priorities.

The match fields in R.m can, in all generality, consist
of any number of adjacent packet bits (although they are
usually limited to packet header fields) and ingress port. The
set of match fields is the same for each rule in the policy,
and their values can be any pattern including exact values,
ranges (including prefixes), wildcards (matching any value),
etc. If a packet potentially matches several rules, the rule with
the highest priority is selected as the actual match, and the
associated action list is applied to the packet. How a policy
is implemented inside a switch (e.g. hardware table, pipeline
of hardware tables, software hash, etc) is not relevant to the
considerations of this paper.

We consider that actions are of three types: modify actions,
whose effect is to modify packets or packet headers; forward-
ing actions, whose effect is to instantiate a packet on a port
(i.e. forward the packet through the port); and miscellaneous
(misc) actions, whose effect does not directly affect a packet
(e.g. count actions, action list modification actions, etc.) Note
that some of these misc actions have externally observable
side-effects (such as actions modifying counters), while others
do not (such as actions clearing the action list). To simplify,
in this paper, we only consider counters associated with rules
(one counter per rule) which count the number of packets for
which the corresponding rule was a “hit” (and thus a count
action simply increments such counter).

In this context, each rule of a policy is a function:

F (p)→ (p′, port)+|d

where (p′, port) is a forwarding pair representing the packet
p′ appearing on port port, and d represents some statistics data
side-effects. The (·)+-notation indicates that a rule can gener-
ate 0, 1 or more forwarding pairs for the given input packet
p, depending on the packet’s input port (which is part of the
rule’s matching pattern), and the packet itself. d is a positive
integer (possibly 0) that represents the increment to be applied
to the counter associated with the rule. Switches “implement”
these functions by “executing” the actions associated with the
rules3.

From this, we can simply define the notion of action list
equivalence: two action lists (i.e. two rule programs) are

3More precisely, switches select the highest priority rule matching the
packet and only execute the corresponding actions.

20Networking 2016

equivalent if and only if, for any packet p, F1(p) ≡ F2(p). In
other words, two action lists are equivalent, if they 1) produce
the same forwarding pairs, and 2) count the same packets.

B. Composition Operators
The composition operators fall into two major categories:

parallel composition and sequential composition. Here, we
give a simplified overview for these composition operators and
their compile algorithms presented in the prior art [13], [19].

Parallel Operator (+): The parallel operator compiles two
policies into a single one which behaves as though packets
were matched and processed by the two policies operating
concurrently on their own copy of the traffic. For example,
take a monitoring policy Monitor that counts packets with
source IP prefix 3.0.0.0/8 while dropping others. If a routing
policy Route forwards packets with destination IP 2.0.0.1 to
port 1 and drops others (see Figure 2), then, with the parallel
operator, we can generate a single policy Monitor + Route
shown in Figure 2.

IP_DSTPriority Actions
1 2.0.0.1 fwd(1)
2 **** drop

IP_SRCPriority Actions
1 3.0.0.0/8 count
2 **** drop

Rule
R1

R2

Rule
R1

R2

IP_SRCPriority Actions
1 3.0.0.0/8 count, fwd(1)

IP_DST
2.0.0.1

Rule
R1

+

2 3.0.0.0/8 count,drop****R2

3 **** fwd(1)2.0.0.1R3

4 **** drop****R4

Compositing

Fig. 2. Example of parallel composition, adapted from [16]

Next, we recall the existing compiler algorithms of the
parallel operator using the example in Figure 2. To compile
Monitor+Route, the compiler algorithms will calculate the
cross product of rules from Monitor and Route as follows:
any rule mi ∈ Monitor and rj ∈ Route, mi and rj can
generate a composed rule as long as mi.m∩ rj .m ̸= ∅, using
the intersection as its match fields and the concatenation of
mi.a and rj .a as its action list. For example, consider m1

and r1 (the first rule in Monitor and Route respectively).
As m1.m∩ r1.m is {srcip=3.0.0.0/8, dstip=2.0.0.1}, they can
generate a composed rule - the first rule in Monitor+Route.

Sequential Operator (>>): The sequential operator en-
ables multiple policies to operate packets in series by com-
bining those policies together. For example, suppose we have
a load balancer policy LB that distributes traffic to two back-
end servers by rewriting their IP destination address while
a routing policy Route forwards packets based on their IP
destination address (see Figure 3). Via the sequential operator,
the composed policy will first rewrite the IP destination
address and then forward these packets.

For the sequential composition of policies, the compiler
algorithms compute the cross product of rules from the two

Compositing

IP_SRCPriority Actions
1 0.0.0.0/1 IP_DST->2.0.0.1
2 ****

Rule
R1

R2

IP_DST

3 **** dropR3

3.2.1.1
3.2.1.1

IP_DST->2.0.0.2

IP_DSTPriority Actions
1 2.0.0.1 fwd(1)
2 2.0.0.2 fwd(2)

Rule
R1
R2

3 **** dropR3

>>
IP_SRCPriority Actions

1 0.0.0.0/1 IP_DST->2.0.0.1, fwd(1)
2 ****

Rule
R1

R2

IP_DST

3 **** dropR3

3.2.1.1
3.2.1.1

IP_DST->2.0.0.2, fwd(2)

Fig. 3. Example of sequential composition.

policies (LB >> Route) as follows: apply the associated
action list on the match fields of the rules from LB, and then
check, for any rule li ∈ LB and rj ∈ Route, whether the
intersection of li.m and rj .m is empty or not. A composed
rule is generated as long as li.m∩rj .m ̸= ∅, through merging
the match fields of li.m and rj .m as the match fields, and
concatenating li.a and rj .a as the action list.

C. Motivating Examples

Let us first consider two policies, say P1 and P2, to be
composed by parallel composition. From the very definition of
parallel composition, the parallel composition of these policies
should behave as though these policies operated in “parallel”
on their own copy of the traffic. In other words, the packets
generated by the parallel composition must be the union of
the packets that would be generated by each policy operating
on the traffic independently.

More formally, if L1(p), L2(p) and L//(p) denote the sets
of forwarding pairs respectively generated by P1, P2 and the
parallel composition of these policies, then

P//(p) ≡ P1(p) + P2(p)⇒ L//(p) = L1(p) ∪ L2(p)

It is trivial to prove that the parallel composition operator
is commutative, that is that P1(p) + P2(p) = P2(p) + P1(p),
since L1(p)∪L2(p) = L2(p)∪L1(p), confirming the intuition
that the order in which the policies are composed should not
affect the result of the parallel composition.

However, existing compositional systems all propose to
construct the action list of a rule resulting from parallel
composition as a simple concatenation of the action lists of
each composed rule (P//(p) ≡ P1(p) + P2(p) → a//(p) =
a1(p) ◦ a2(p)). Concatenation is obviously not commutative:
if, for instance, a1(p) = {dstip ← 8.0.0.2, fwd(2)}
and a2(p) = {fwd(1)}, then a1(p) ◦ a2(p) forwards the
same packet (whose destination address has been changed to
8.0.0.2) on both port 1 and 2, while a2(p)◦a1(p) forwards the
original input packet to port 1 and the packet with a modified

21Networking 2016

destination address to port 2. As parallel composition is a
commutative operation, it therefore cannot be realized through
simple action concatenation.

For sequential composition, which is not a commutative
operation by definition, simple concatenation of action lists is
also used. It is however, also easy to show that, while correct,
concatenation of actions can lead to redundant actions. Indeed,
consider, for instance, a1 = {vlan ← 1} and a2 ={vlan
← 2, fwd(1)}. P1 >> P2 yields a>> = {vlan ← 1,
vlan ← 2,fwd(1)}. Conceptually, the first modification in
the composed action list is redundant, leading to wastage in
the resource constrained switch fast path4.

We therefore see that simple concatenation for the compo-
sition of action lists cannot always preserve semantic equiv-
alence and correctness, or achieve optimal operations in the
data path. As a result, we conclude that action list composition,
in the context of policy composition operators, needs to be
revisited. We provide deeper analysis and solutions in the next
few sections.

III. ACTION COMPOSITION MODEL

Essentially, actions are used in rules to transform input
packets into output packets with specific properties, forward
these output packets to output ports, as well as keep statistics
on packets or rules. While other use of actions exists, such
as circumventing a switch’s lack of capabilities, it is the
above mentioned observable results of actions that matter for
compliance of the implemented policies.

The same is true for the composition operators: as long as
the observable forwarding pairs and statistics comply with the
intended compositional semantics, the result of the composi-
tion is correct.

A. Constructible Sequence and Graph-based Model
With the existence of set/write actions capable of

setting any sequence of bits and/or fields to any specified value
in the packet header, generating a packet with any specific
header may seem trivial. However, this is not the case.

Indeed, the composition of policies is computed by the
SDN hypervisor (a control plane component), using the policy
rules, while the specific packet headers are only known by the
switches (the data plane). In other words, the hypervisor can
only rely on the rule matching patterns to represent packets,
and the crux of the problem is that match patterns can contain
“don’t-care” bits (e.g. wild-cards, ranges, prefixes, etc.)

This is an issue, because once a part of a packet, correspond-
ing to a match pattern containing “don’t-care” bits, has been
set to any specific value by a set action, there is generally no
way to revert such change, as “don’t-care” bits always match
multiple values (see Figure 4).

The only way to revert a packet field, corresponding to a
rule match field containing “don’t-care” bits, is constructing
switches that can copy and save the original field value
from the input packet. However, current switch chipsets are

4Any (unnecessary) operation in the data plane potentially leads to a
decrease in forwarding rate.

F: Match pattern P: Packet
*: don`t care/wildcard

F1Priority Actions
1 0011 count

Rule
r

F2
000*

F1 F2

0011 0000p1
F1 F2

0011 0001P2

Hits

Fig. 4. Example of “don’t-care” bits. F2 in the rule contains one “don’t-care”
bit and thus matches two different values.

not willing to support such actions for three reasons. First,
recording packet values needs extra memory which is expen-
sive in resource limited switch chips; second, enabling copy
action causes race conditions because commodity switches
usually process packets in parallel; third, each revert needs
two memory copy operations (packet to memory and memory
to packet), leading to a lower performance. Thus, packet fields
fall into two categories:

1) Irreversible fields: packet fields that 1) cannot be copied
from the original (input) packet, and 2) correspond to
match fields that contain “don’t-care” bits in the policy
rule.

2) Reversible fields: packet fields that either can be copied
from the original (input) packet or that correspond to
match fields specifying an exact (unique) value (no
“don’t-care” in the bit pattern of the field, the exact
original value being thus available to the composing
hypervisor).

Consequently, in the presence of changes to irreversible
fields (see Figure 5), not every sequence of packets can be
generated by a switch, from a given input packet. In fact, a
set of output packets is said to be constructible from a given
input packet if there exists a sequence (i.e. permutation) of
those packets, starting with the input packet, such that no
change to an irreversible field must be reverted to progress
in the sequence. We now prove a fundamental theorem on
constructible sequences of packets.

We call ICi the set of irreversible fields that must change
to generate output packet pi from input packet pin. Note that
since changes to reversible fields can always be reversed (i.e.
undone), reversible fields can safely be ignored in feasibility
considerations.

Theorem 1. (CONSTRUCTIBLE SEQUENCE THEOREM): Giv-
en an input packet pin, n output packets pi and their set of
irreversible field changes ICi (1 ≤ i ≤ n), the sequence
< pin, p1, p2, . . . , pn > is constructible iff IC1 ⊆ IC2 ⊆
. . . ⊆ ICn.

Proof. We prove the forward direction by contradiction. As-
sume the sequence is constructible. Also assume that there
exists an irreversible field ifk that changes to generate pi, but
does not change to generate pj further in the sequence, that
is ∃ifk : ifk ∈ ICi, ifk ̸∈ ICj , with i < j.

Since ifk ̸∈ ICj , the value of ifk in pj is the original value

22Networking 2016

F1Priority Actions
1 0011 count

Rule
r

F2
00**

WildcardExact
Reversible

field
Irreversible

field

O(F): the input packet value
on the field F

Reversible changes
Irreversible changes

Packet header Packet header

O(F1)F1

F2

F1Å0010

e ts

O(F2)

0010

0111F2Å0111

F1

F2

Fig. 5. Example of reversible and irreversible field changes.

of that field in pin. Also, since i < j, pj is constructed after
pi in the sequence, and this can only be possible if the change
to irreversible field ifk, that was necessary to generate pi has
been reversed to generate pj . This is a contradiction, since ifk
is an irreversible field. We therefore have that in a constructible
sequence, (i < j, ∀ifk : ifk ∈ ICi) ⇒ ifk ∈ ICj , which
implies that ICi ⊆ ICj , i < j.

We prove the reverse direction by induction. Base case:
by definition of ICk, any packet pk can be constructed from
pin by changing the irreversible fields in ICk (along with
possibly changes to some reversible fields). In particular, p1
can always be generated from pin by changing the (irre-
versible) fields in IC1 (such operation is denote pin →ICi p1).
Inductive case: assume the prefix subsequence up to packet
pk (< pin, p1, p2, . . . , pk >) is constructible. We show that
pk+1 is constructible (can be generated) from pk, given that
ICk ⊆ ICk+1. Indeed, ICk+1 = (ICk ∩ ICk+1) ∪ (ICk+1 \
(ICk ∩ ICk+1)). But since ICk ⊆ ICk+1, we have that
ICk ∩ ICk+1 = ICk, so that pin →ICk∩ICk+1 pk. This
means that pk can be generated as a step in the construction
of pk+1. From this step, the remaining changes in ICk+1, that
is all the changes in ICk+1 \ (ICk ∩ ICk+1) can be applied
to yield pk+1 (pk →ICk+1\(ICk∩ICk+1) pk+1). We therefore
have pin →ICk∩ICk+1 pk →ICk+1\(ICk∩ICk+1) pk+1 =
pin →ICk+1 pk+1.

When an SDN hypervisor is composing policies, it does not
generally know the exact values of the fields of the packets that
will hit the resulting rules. Still, it can “simulate” the effects
of applying the actions associated with the rules (according
to the composition operators used), so that it can “compute”
the packets, in terms of which input packet fields get modified
or not, and on which ports these packets get forwarded. The
discussion and results describe above therefore suggest that the
problem for the hypervisor is thus to find the right sequence for
generating the output packets, given that as soon as an output
packet has been constructed, it can simply be forwarded to the
correct ports by issuing appropriate forward actions.

A convenient way to model the process of constructing
packets is thus as a graph, where vertices represent each unique
packet in the process (that is the input packet and each output
packet to be generated), and where there is an oriented edge
between two vertices if a series of actions can transform the
source packet into the destination packet. The important thing
to remember, is that reversible packet fields can always be
changed to any value in any order, while irreversible fields
can only be set to specific (known) values, but cannot be
reverted to their unknown original (input) value. The resulting
graph is thus not a “full mesh” (since some packets cannot
be constructed from others). Each edge in the graph can then
be labelled with the set of packet modification actions needed
to actuate the transformation from the source packet to the
destination packet (see Figure 6).

Reversible field: F1

Irreversible field: F2,F3,F4

F1 F2
O(F2)

F3
O(F3)O(F1)

{F1Å0010}
{F1Å0011}

{F2Å0011}

{F1Å0010,F2Å0011,F3Å0001}
{F1Å0010,F2Å0011}

{F2Å
0011,F3Å

0001}

O(F): the input packet value on the field F

Match Pattern
F1

0011
F2

000*
F3

00**
F4

0***

F4
O(F4)

F1 F2
0011

F3

00010010
F4

O(F4)

F1 F2
O(F2)

F3
O(F3)0010

F4
O(F4)

F1 F2
0011

F3
O(F3)0010

F4
O(F4)

P3

P4P2

Pin

{F1Å0001}

Fig. 6. Example of graph-based action composition. ICpin = ICp2 = ∅,
ICp3 = {F2, F3}, ICp4 = {F2}. An oriented edge from pi to pj exists
iff ICpi ⊆ ICpj . A path starting from the input packet pin and visiting
each vertex is pin → p2 → p4 → p3. The corresponding action list is
F1 ← 0010, F2 ← 0011, F1 ← 0001.

With such a graph, generating the required packets, and
computing the associated action list, reduces to finding a
Hamiltonian path [23], starting at the input packet, if such path
exists. Indeed, a Hamiltonian path through a graph visits each
vertex exactly once, corresponding to every output packets
being generated.

However, the Hamiltonian path problem is known to be NP-
complete [23], [24]. In section IV, we discuss algorithms to
find such a path, while aiming to minimize the number of
actions required to actuate the construction of output packets.

B. Misc Action Considerations
A misc action associated with a rule counts the number of

packets for which the corresponding rule was a “hit”. Let us
consider two policies P1 and P2 that need to be composed.
Suppose r1 ∈ P1 has a misc action to count C(r1) the number
of packets that hit r1. After composition of P1 and P2, we still
need to get C(r1) from the composed policy.

Let S(r1, P2) denote the set of composed rules that contain
the semantic of r1, i.e., S(r1, P2) = {r1.m ∩ ti.m|r1.m ∩
ti.m ̸= ∅, ti ∈ P2}. For each composed rule si ∈ S(r1, P2),

23Networking 2016

we associate one misc action to count the number of packets
that hit si. We then have the following Theorem for the
restoration of C(r1) from the composed policy.

Theorem 2. (QUERY STATISTICS): Given two policy P1 and
P2, policy M is composed of P1 and P2. The counter C(r1)
associated with the rule r1 ∈ P1 can be computed as:

C(r1) =
∑

C(si)

where si ∈ S(r1, P2) ⊆ M and S(r1, P2) = {r1.m ∩
ti.m|r1.m ∩ ti.m ̸= ∅, ti ∈ P2}.

Proof. On the one hand, for any packet that hits r1, it can hit
at least one rule of S(r1, P2): the rule composed by r1 and the
default rule of P2. On the other hand, due to the priorities
of composed rules, any packet can hit no more than one rule
of S(r1, P2). As such, any packet that hits r1 can hit exactly
one rule of S(r1, P2). In other terms, the number of packets
that hit r1 is equal to the number of packets that hit the rules
of S(r1, P2) ⊆M .

IV. ACTION COMPOSITION ALGORITHMS

We showed in section III that the problem of finding a con-
structible sequence of packets to implement the composition
of policies reduces to finding a Hamiltonian path in a graph.
While this problem is generally NP-complete, Theorem 1
states a fundamental property of such sequences that can be
exploited to efficiently find such sequence.

Indeed, Theorem 1 shows that, in a constructible sequence,
changes to irreversible fields must be applied “incrementally”,
due to the “nesting” of the set of irreversible fields that have
changed (compared with the input packet), from one packet
in the sequence to the next; in other words, packets further in
the sequence, can only be constructed by either “adding” more
changed irreversible fields or changing again (to specific know
values) some of these fields, compared with earlier packets in
the sequence.

This observation leads to a very simple, straightforward and
efficient algorithm (see Algorithm 1) to not only test for the
existence of a constructible sequence, but also obtain one such
sequence of packets (if it exists).

All we need to do is to represent all the irreversible fields
in a rule as a bitmap. Remember that what makes a header
field irreversible is the presence of “don’t care” bits in the
pattern of the rule representing that field and the lack of
switch capability to save the original value of this header
field in the input packet, both properties being known to
the compositional hypervisor. Then for each desired output
packets (again, these are know to the hypervisor), set to 1
the bits corresponding to changed irreversible fields (lines 1
to 4). Then sort the “output packets” by the number of bits
set in the bitmap (line 5), because irreversible field changes
must be applied incrementally. Then sweep across the or-
dered packets, checking if bitmap(k) & bitmap(k+1)
== bitmap(k), which is equivalent to checking that the
set of irreversible field changed in one packet is completely

Algorithm 1: SIMPLESEARCH(pin, {pout}, {IF})
Input: pin: input packet
Input: {pout}: set of (unique) output packets
Input: {IF}: set of irreversible fields in the rule
Output: path: Hamilton path “vector” (“empty” if no

such path exists)
1 path← newEmptyVector();
2 for p ∈ {pout} do
3 bm←BitMap(pin, p, {IF});
4 path.append((p, bm));

5 sort(path, ByNumberOfBitSet);
6 thisP ← path.first();
7 while (nextP ← path.next()) ̸= NULL do
8 if thisP .bm & nextP .bm ̸= thisP .bm then
9 return newEmptyVector();

10 thisP = nextP ;

11 return path;

contained in the set of irreversible fields changed in the next
packet (as required by Theorem 1). If this test succeeds for
each consecutive pair of packets, then not only a constructible
sequence of packets exists, but the ordered packets is one such
sequence (lines 6 to 11).

The complexity of this algorithm, given n output packets
to generate, is O(n) for generating the bitmaps; O(n lg n) for
sorting; and O(n) for testing the inclusion relation. Therefore
the overall complexity is O(n lg n).

From the returned sequence of packets (if it exists), the
compositional hypervisor can compute the action list for the
corresponding (composed) rule by simply concatenating the
modify actions required to generate each packet in the path,
from the preceding packet, and issuing the required forwarding
actions whenever the desired packets have been generated.

While Algorithm 1 finds a constructible sequence of packets
if such sequence exists, this sequence may not be optimal
in terms of the number of actions required to generate the
sequence. This is because packets that have the same set of
modified irreversible fields (and thus only differ from each
other by different sets of modified reversible fields) can appear
in any relative order in the sequence.

See, for instance, packets P3 and P4 in Figure 7. The
total cost of the path is 6 (1⃝ + 2⃝ + 3⃝ + 4⃝). But there
is another constructible sequence of packets, obtained by
exchanging packet P3 and P4 in the packet sequence, with
reduced cost 5. This is because the cost from P5 to P4

is 1 (F3 ← 0001) while P4 to P3 requires 2 modification
operations (F1 ← 0011, F3 ← 0011). The reason why we can
change the order of P3 and P4 to get a lower cost path is that
they contain identical sets of modified irreversible fields, i.e.
IC3 = IC4.

While Algorithm 1 actually worked on an implicit represen-
tation of the graph model for packets described in Section III,
finding optimal sequences will require an explicit representa-

24Networking 2016

O(F): the input packet value on the field F

Reversible field: F1

Irreversible field: F2,F3,F4

Match Pattern
F1

0011
F2

000*
F3

00**
F4

0***

F1 F2
0011

F3
00010010

F4
O(F4)

F1 F2
O(F2)

F3
O(F3)0010

F4
O(F4)

Pin
F1 F2

O(F2)
F3

O(F3)O(F1)
F4

O(F4)

F1 F2
0011

F3
O(F3)0010

F4
O(F4)

ICin={ }

IC2={ }
F1 F2

0011
F3

0011O(F1)
F4

O(F4)

P5

IC3={F2,F3}

IC4={F2,F3}

IC5={F2}

Input packet

A packet
sequence

ICin IC2 IC5 IC3 IC4 Sorting

P2

P3

P4

P4Pin P2 P5 P31 2 3 4

1 {F1Å0010} 2 {F2Å0011}
3 {F1Å0011,F3Å0011} 4 {F1Å0010, F3Å0001}

Fig. 7. Example of a Hamilton path. The packets sequence sorted by the
number of irreversible changes provides one Hamilton path.

tion of this graph.
The graph for packet generation as described in Section III

would have a directed edge between two packets if no modified
irreversible field has to be reverted to its original value (in
the input packet) to go from the “source” vertex to the
“destination” vertex. However, this is far too many edges:
indeed, because of the transitivity of the “subset” relationship
(i.e. “contain” operations) required of the modified irreversible
field subsets of the packets in a constructible sequence (The-
orem 1), a sub-sequence P1 ! P2 ! P3

5, would also
imply one directed edge P1 ! P3. However, the P1 ! P3

edge is completely useless, because it will never be part of a
Hamiltonian path in the graph: a sequence can never go back
to P2 from P3, as this would mean reverting (at least) one
irreversible change.

The output of the simple Algorithm 1 can here help avoid
generating these useless edges in the graph, and thus reduce
the space to be searched for optimality. Indeed, this simple
algorithm outputs packets ordered by their number of modified
irreversible fields. Any sub-sequence of adjacent packets with
the same number of such modifications thus forms a group of
packets whose order can be changed while still conserving a
constructible sequence. This is because packets in each group
form a “local full-mesh”, and they only differ from each other
by modifications to reversible fields. The simple algorithm
therefore also gives the sequence of groups, and there thus
only needs to be an edge from each packet in a group, to each
packet in the following group in the sequence (see Figure 8).

While finding an optimal path (in terms of the number
of actions needed) in such graph is still an NP-complete
Hamiltonian path search, we argue that in practical scenarios,
the number of distinct output packets to be generated will be

5We suppose IC1 ⊆ IC2 ⊆ IC3. ∀i ∈ [1, 3], ICi corresponds to Pi.

Irreversible field: F1, F2

ICin={ } IC2={F1} IC3={F1}

IC4={F1,F2} IC5={F1,F2}

Pin P2 P3

P4 P5 P6 IC6={F1,F2}

Pin

P2

P3

P4 P5

P6

Group 1 Group 2 Group 3

Fig. 8. Example of packet grouping.

kept relatively low (so the number of vertices in the graph
will be small). Furthermore, this graph only contains edges
that potentially belong to a constructible sequence (so the
number of edges has been reduced to a minimum). Because
of this “reduced” search space, we believe that a brute-force
algorithm, enumerating all the (Hamiltonian) paths in the
graph is a plausible solution to the optimal Hamiltonian path
finding problem at hand.

Nevertheless, should the search space become too big, the
compositional hypervisor can always decide to use a heuristic
algorithm (such as one based on a greedy approach) instead,
to trade running time for potential deviation from optimality6.

V. IMPLEMENTATION AND EVALUATION

We have implemented our model and the related algorithms
in CoVisor [13]. Using this implementation we evaluate its
performance.

More specifically, we replaced the core logic of action lists
composition for both the parallel and sequential operators.
Note that we implemented three Hamilton path searching
algorithms: the simple algorithm (Algorithm 1), the brute-
force (a.k.a. enumeration) algorithm and a greedy algorithm,
picking the less weighted edge whenever a choice is available
when searching for the Hamilton path: suppose the last added
vertex in the path is v, then the next vertex in the path is
u=argminu∈U(v) W (v, u), where W (v, u) is the weight (i.e.
the number of modification actions) of the edge from v to u
and U(v) is the set of destination vertices of edges from v.
This greedy algorithm works, because we ensure that the graph
only contains edges that are potentially part of a Hamilton path
(see Section IV).

A. Experimental Setup

We deployed our implementation on an octo-core
Intel R⃝Xeon R⃝E5506 CPU, clocked at 2.13GHz. The machine
is equipped with 16GB RAM and runs 64-bit Ubuntu Linux
10.04.3. We used two rulesets for our experiments:

1) D1 (real-life policies): L3 Router [26] and L3 Firewall
[27].

2) D2 (synthetic policies): rules are generated associated
with multiple types of actions (e.g. modification, for-

6As an extreme case, the hypervisor could even choose to use the output
of the simple algorithm.

25Networking 2016

warding and misc actions) to reflect more dynamic,
complex scenarios.

Each rule of D1 contains one forwarding action. Each
rule of D2 on the other hand contains multiple modifica-
tion/forwarding actions. To generate modification actions in
D2, we randomly select one packet header field as the field
that is modified by the action, whose value after modification is
also randomly assigned. The number of distinct output packets
for each rule is controlled through forwarding actions. In the
experiment, an action list can generate no more than 10 distinct
(different) output packets for one input packet – we believe
this value to represent an unrealistic value, chosen to illustrate
absolute worst case scenarios. The match pattern for IP address
is prefix-based, while for other match patterns (like port, MAC
address, vlan), we use exact match.

We are interested in four aspects of performance: 1) the
computation time; 2) factors that affect the computation time;
3) contribution of the various components to the computation
time; 4) comparison between the three path search algorithms
in terms of computation time and optimality.

B. Experimental Results

TABLE I
COMPUTATION TIME OVER TWO POLICIES (IN µS).

average minimum maximum
D1 85 72 95
D2 249 125 380

The average, minimum and maximum computation time
of the enumeration algorithm are reported in Table I. The
action lists of any rule in D1 can be computed within 95
µs. Computation of action lists for rules in D2 takes a longer
time and the average time is around 250 µs. This is because
rules in D2 have more complex actions and can generate more
distinct output packets. Nevertheless, the computation time is
relatively small, showing that our approach is practical.

7 8 9 10
0

50

100

150

200

250

300

350

The number of vertexes

The overhead

(a)

3 4 5 6
0

50

100

150

200

250

300

350

The number of groups

the overhead

(b)

Fig. 9. Variation of computation time with two factors: (a) the number of
vertices in a group, (b) the number of groups.

The computation time depends on both the number of
vertices in groups and also the number of groups in our
graph-based model. We first select the actions from D2 that
have 6 groups. Figure 9(a) plots the computation time when
varying the number of vertices. As expected, a larger number
of vertices leads to a higher computation time. But, even
with 10 vertices, the computation time is still within 320 µs.

We then select the actions from D2 that have 7 vertices.
The computation time with different number of groups is
reported in Figure 9(b). A larger number of groups leads
to a smaller number of vertices per group. Given that the
permutation within each group is one of the major contributors
on computation time, a smaller number of vertices in each
group in turn results in lower computation time.

3 4 5 6
0

50

100

150

200

250

300

350

the number of group

Simple algorithm
Greedy algorithm
Enumeration

(a)

7 8 9 10
0

50

100

150

200

250

300

350

The number of vertexes

Simple algorithm
Greedy algorithm
Enumeration

(b)

Fig. 10. Comparison of three algorithms in terms of computation time: (a)
varying the number of groups. (b) varying the number of vertices.

We then compare the three algorithms for the Hamilton
path search in terms of computation time. Figure 10 shows
the computation time of the three algorithms, where we vary
the number of groups while fixing the number of vertexes
(Figure 10(a)), and vary the number of vertexes while fixing
the number of groups (Figure 10(b)). Since the enumeration
and greedy algorithms use extra optimization (necessitating the
output of the simple algorithm to generate a “reduced” graph,
see Section IV), they requires to use more computation time.
Compared with enumeration algorithm, the greedy one can
save up to 50% of the computation time, and is less relevant
to the number of vertices and the number of groups.

Small rules Medium rules Big rules

Group 1 Group 1 Group 1

Group 2 Group 2 Group 2

Input packet

1/2 r. changes

1/2 r. change

2/3 r. changes

2/3 r. changes

3/5 r. changes

3/5 r. changes

Input packet Input packet

Fig. 11. The three scenarios. r. represents reversible fields.

Finally, we evaluate the amount of actions in the Hamilton
path generated by the three algorithms. To this end, we
construct three scenarios based on D2 (see Figure 11). In all
three scenarios, one input packet would generate two groups
of outputs. In the small rules scenario, each group contains
two packets which change 1 (out of 2) reversible field; in the
medium rules scenario, each group has three packets which
change 2 (out of 3) reversible fields; in the big rules scenario,

26Networking 2016

Small rules Medium rules Big rules
0.8

0.9

1.0

1.1

1.2

N
or
m
al
iz
ed
#a
ct
io
ns

The type of rules

Enumeration
Simple search
Greedy search

Fig. 12. Number of actions generated by the three path search algorithms,
normalized by the number of actions in the path generated by the enumeration
algorithm.

each group has five packets which have 3 (out of 5) reversible
fields. We apply the three algorithms on each scenario and
plot the number of actions in the path generated by each
algorithm in Figure 12. We can see that, compared with the
enumeration algorithm (which is optimal), the simple search
algorithm generates up to 20% more actions, and the greedy
algorithm incurs up to 15% more actions.

In summary, given that the composition of policies is
performed in servers (like controllers) other than switches
themselves, we believe the enumeration algorithms is more
applicable in practice in order to obtain optimal results.

VI. CONCLUSION

Policy composition has been emerging as a powerful and
important tool for facilitating the creation and deployment of
complex network applications. As the developer or network
administrator requesting such composition may not master, or
even want to know, the details of each policy component being
composed, it is of paramount importance that compositional
operators be supported in as much a transparent and effi-
cient manner as possible. Previous work introduced important
headways in this direction by proposing efficient techniques
to compute the matching patterns for composed rules. Our
work complements this by tackling the problem of correct and
efficient action list computation, another important component
of policy rules.

In particular, we formalize an action composition model,
and prove a feasibility condition on the composition of rule
actions. We abstract the action composition as a Hamilton
path search problem in a directed weighted graph, while
exploiting fundamental properties specific to the resulting
graph to compute solutions, to this otherwise NP-complete
problem, efficiently. We show that our approach is not only
correct, but also efficient.

ACKNOWLEDGMENTS

We thank the IFIP Networking reviewers for their insightful
feedback. This work is supported in part by National High
Technology Research and Development Program of China
(Grant No. 2015AA016101 and 2015AA010201), National
Natural Science Foundation of China (Grant No. 61502458
and 61502462) and Beijing Municipal Natural Science Foun-
dation (Grant No. 4162057).

REFERENCES

[1] N. McKeown, “Software-defined networking,” INFOCOM keynote talk,
2009.

[2] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[3] “The hp sdn app store.” http://h17007.www1.hp.com/us/en/networking/
solutions/technology/sdn/devcenter/#sdnAppstore.

[4] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti, et al.,
“A survey of software-defined networking: Past, present, and future of
programmable networks,” Communications Surveys & Tutorials, IEEE,
vol. 16, no. 3, pp. 1617–1634, 2014.

[5] “Opendaylight.” http://www.opendaylight.org/.
[6] “Ryu openflow controller.” http://osrg.github.io/ryu/.
[7] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “Nox: towards an operating system for networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[8] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer,
and N. Foster, “Merlin: A language for provisioning network resources,”
in ACM CoNEXT, 2014.

[9] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
in ACM SIGPLAN Notices, vol. 46, pp. 279–291, ACM, 2011.

[10] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” ACM SIGPLAN
Notices, vol. 47, no. 1, pp. 217–230, 2012.

[11] Y. T. Chaithan Prakash, Jeongkeun Lee and J.-M. Kang., “Pga: Using
graphs to express and automatically reconcile network policies,” in
Proceedings of the 2015 ACM conference on SIGCOMM, ACM, 2015.

[12] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark,
“Kinetic: Verifiable dynamic network control,” 2015.

[13] X. Jin, J. Gossels, J. Rexford, and D. Walker, “Covisor: A compositional
hypervisor for software-defined networks,” in Proc. USENIX NSDI,
2015.

[14] A. Dixit, K. Kogan, and P. Eugster, “Composing heterogeneous sdn
controllers with flowbricks,” in Network Protocols (ICNP), 2014 IEEE
22nd International Conference on, pp. 287–292, IEEE, 2014.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[16] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker, et al.,
“Composing software defined networks.,” in NSDI, pp. 1–13, 2013.

[17] N. Foster, A. Guha, M. Reitblatt, A. Story, M. J. Freedman, N. P. Katta,
C. Monsanto, J. Reich, J. Rexford, C. Schlesinger, et al., “Languages for
software-defined networks,” Communications Magazine, IEEE, vol. 51,
no. 2, pp. 128–134, 2013.

[18] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “Netkat: Semantic foundations for
networks,” ACM SIGPLAN Notices, vol. 49, no. 1, pp. 113–126, 2014.

[19] X. Jin, J. Rexford, and D. Walker, “Incremental update for a compo-
sitional sdn hypervisor,” in Proceedings of the third workshop on Hot
topics in software defined networking, pp. 187–192, ACM, 2014.

[20] “The opensource code of covisor.” https://github.com/CoVisor/CoVisor.
[21] “The code of frenetic language..” http://frenetic-lang.org/pyretic/.
[22] “Openflow switch specification.” https://www.opennetworking.org/.
[23] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction

to Algorithms. McGraw-Hill Higher Education, 2nd ed., 2001.
[24] A. A. Bertossi, “The edge hamiltonian path problem is np-complete,”

Information Processing Letters, vol. 13, no. 4, pp. 157–159, 1981.
[25] “Openflow switch specification.” https://www.opennetworking.org/

images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-switch-v1.5.0.noipr.pdf.

[26] “Routereview.” http://www.routeviews.org/.
[27] “The rules set of evaluation packet classification.” http://www.arl.wustl.

edu/∼hs1/PClassEval.html.

27Networking 2016

