
DISTTM: Collaborative Traffic Matrix Estimation
in Distributed SDN Control Planes

Rhaban Hark⇤, Dominik Stingl⇤, Nils Richerzhagen⇤, Klara Nahrstedt‡ and Ralf Steinmetz⇤
⇤Multimedia Communications Engineering Lab, Technische Universität Darmstadt, Germany

‡Department of Computer Science, University of Illinois – Urbana, USA
⇤{rhaban.hark|dominik.stingl|nils.richterzhagen|ralf.steinmetz}@kom.tu-darmstadt.de ‡klara@illinois.edu

Abstract—Recently, several works propose monitoring ap-

proaches for the emerged paradigm of Software-defined Net-

working. These provide a couple of ideas to retrieve various

information about the network state leveraging new concepts for

monitoring data collection at flow-level. As existing approaches

reduce their scope to networks with a single controller, even

sophisticated approaches ignore a potentially great efficiency gap,

due to redundant flow measurements by multiple controllers

in adjacent networks. To show a possibility how to close this

efficiency gap, we propose a solution for collaborative traffic

matrix estimation, termed DISTTM. It exploits the property

that flows traverse multiple networks and are monitored by

several controllers. Through collaboration, the resulting moni-

toring tasks are coordinated and distributed among participating

controllers to capture relevant information about all traversing

flows, omitting redundant data collection. Conducted simulations

reveal that DISTTM operates efficiently: the monitoring traffic

is significantly reduced, while the traffic matrix entry staleness

is slightly affected. Furthermore, DISTTM provides different

schemes for a fair load balancing on controllers and switches

while taking different influencing aspects into consideration.

I. INTRODUCTION

Traffic monitoring constitutes the basis for nearly all net-
work management functions. Since monitoring should always
be non-invasive, thus, rather passive, yet robust, accurate and
timely, a trade-off between performance and monitoring costs
is omnipresent. This makes monitoring an inevitable challeng-
ing, however, required task. With the utilization of Software-
defined Networking (SDN) [14], that provides a separation of
the control and data plane, new possibilities evolve to measure
traffic in the data plane. Using new techniques, the need for
additional intelligence at forwarding elements and additional
dedicated collection devices, as was required in traditional
monitoring solutions, such as sFlow1 or NetFlow [4], vanishes.
Lately, several approaches propose a variety of monitoring
tasks, leveraging these new techniques of SDN, in particular
flow-level counters. These approaches measure, for instance,
basic metrics, like link utilizations, delay, and packet loss [3],
[21], [22]. Sophisticated approaches collect aggregated infor-
mation (e.g. traffic matrices [19]) or execute more advanced
monitoring tasks, such as heavy hitter detection [7].

So far, current approaches limit the control and measure-
ment of networks to single controllers. However, to (i) avoid
a single point of failure, (ii) provide scalability and (iii) relieve

1sFlow Overview, http://www.sflow.org/about/ [Access: Oct 21, 2015]

a controller from frequent polling of the switches, relying
on single controllers is not recommended. As a consequence,
physically distributed control planes are taken into account.

This work proposes a first step towards controller collabo-
ration for monitoring in SDNs. The benefits of the controller
collaboration are shown at the example of distributed traffic
matrix estimation. Traffic matrices provide useful means for
network provisioning, route planning, and further management
tasks [20]. The proposed approach, called DISTTM, makes
use of the property that traffic flows most likely take paths
through multiple adjacent network portions. The system hin-
ders the networks to monitor the flows each. More precisely, it
avoids the redundant measurement of flows traversing through
multiple networks that are managed by different controllers.
Instead, using DISTTM, the controllers collaborate to coor-
dinate monitoring tasks and share information in the control
plane.

DISTTM can be utilized inside single-administrated do-
mains, such as data center networks (intra-domain collabora-
tion), as well as, competing, adjacent domains (inter-domain
collaboration) and is applicable in both scenarios. As discussed
later, controllers must expose only a minimal amount of
information to other controllers. In addition, domains are not
forced to provide capacity which is not equally provided in
return.

One further contribution of this work is a fair distribution
of load among controllers and switches. Since the system
determines traffic matrices collaboratively, we propose dif-
ferent load distribution schemes to assign responsibilities for
flows among participating controllers or switches in a fair
manner. As different scenarios require different schemes for
load distribution, we show three elementary fairness schemes
for different purposes and scenarios.

The conducted simulations of DISTTM show, that the
system significantly reduces the overall monitoring traffic
overhead. Thus, it lowers the load on the controllers, whereas
it affects the accuracy in terms of staleness of matrix entries
only slightly. Furthermore, simulations show that we attain a
fair distribution of the overhead for switches and controllers.

The remainder of the paper is structured as follows: Sec-
tion II discusses the relevant background and related ap-
proaches. Section III describes the design of DISTTM. Further
on, Section IV presents the preliminary evaluation while
Section V concludes the paper.ISBN 978-3-901882-83-8 c� 2016 IFIP

82Networking 2016

II. BACKGROUND AND RELATED WORK

This section gives an overview over helpful backgrounds
and relevant works which contribute to this paper. The first
subsection briefly introduces mechanisms to capture data
plane information in SDNs, before the second subsection
specifies traffic matrices of interest. Additionally, it gives a
short introduction to OPENTM, a traffic matrix estimation
approach for single-controller SDNs. Its basic concept of how
a traffic matrix can be determined is used as reference for
non-collaborating networks. Subsequently, the third subsection
describes selected works about collaboration between network
nodes. To the best of the authors’ knowledge, collaborative
monitoring for SDNs on controller level, as it is targeted in
this work, has not yet been investigated.

A. Data Capturing in Software-defined Networks
In OpenFlow [12], the widely accepted de-facto standard

for Ethernet-based SDNs, the data plane consists of dump
switches with flow tables managed by controllers in the control
plane. In addition to a number of management fields, these
flow tables comprise counter fields which are incremented
every time a packet is processed using the corresponding
entry. For every entry a packet as well as a byte counter
are available for monitoring use. These can be deactivated
individually to reduce the load on a switch. The controller
is supposed to fetch counters in multiple ways: (i) using
explicit statistic requests for single flow entries or aggrega-
tions; or (ii) implicitly when a flow entry is removed (e.g.
triggered by a timeout). The OpenFlow switch specification
version 1.52 introduces additional thresholds for counters,
providing push-based counter access. A related OpenFlow
extension that is denoted FLEXAM [16] provides additional
packet sampling capabilities. In contrast, approaches such as
OPENSKETCH [23] and DCM [24] implement a specialized
data plane which make it again necessary to customize the
protocol, yet yielding to efficient data collection mechanisms.

Anyway, most existing monitoring approaches, rely on
version OpenFlow protocol version 1.3 which is expected to
be a stable basis3. In order to reach applicability in non-custom
SDN environments, this work only uses features available in
the original protocol.

B. Traffic Matrices of interest
Traffic matrices are abstract data structures showing traffic

information for pairs of network nodes. As an example and
also used in this work, a traffic matrix can accumulate the
amount of traffic in terms of packets or bytes between all
ingress/egress switch pairs in the network. They are used for
management tasks like capacity planning, network provision-
ing, load balancing policies for route optimization, but can also
be used to detect traffic anomalies and other security related

2ONF: SDN Resources – Technical Library, https://www.opennetworking.
org/sdn-resources/technical-library [Access: Oct 22,2015]

3Sean Michael Kerner: OpenFlow Protocol 1.3.0 Approved,
http://www.enterprisenetworkingplanet.com/nethub/openflow-protocol-1.
3.0-approved.html [Access: Oct 26, 2015]

events [20]. They might contain different representations,
such as a maximum, minimum, average or a sum. Besides
traffic matrices, other types of matrices, like delay matrices,
presenting the node-to-node delay for all pairs, or loss matrices
exist. Further studies as well as a taxonomy can be found
in [13], [20].

Tootoonchian et al. propose OPENTM [19] to estimate
traffic matrices in the context of SDN. It takes advantage of
the logical centralization of the controller. More precisely, it
uses centrally available information given by the controllers
routing application to observe upcoming flows. Further on, it
queries a flows path in order to be able to select one switch on
the path and poll it for statistics. By accumulating flow level
byte counters of flows originating at the same node and ending
at the same node, it calculates all entries of the traffic matrix.
Aside traffic matrix estimation, OPENTMs main contribution
is an intelligent selection of polled switches on the path in
order to support a fair overhead distribution among switches
and yet perform well in terms of accuracy due to packet loss.
However, this work adopts the matrix estimation concept of
OPENTM based on available routing information.

C. Collaboration in SDN
In the context of network collaboration, Yu et al. [24] pro-

pose a memory efficient collaboration-enabled control plane
for SDNs. The work states that flows are often monitored
redundantly at different switches if flow aggregation is used
to reduce the number of rules. On the other side, if single
flows are selected to reach fine granular measurements, the
number of rules becomes too large. They tackle the problem
using two-stage Bloom filters on switches. These filters can
be defined in a way the switches monitor particular sets of
flows without the need to define one rule per flow. Thus, as
rules can be defined efficiently in alignment with monitoring
rules of other switches, DCM allows collaboration on switch
level. In contrast, we try to achieve collaboration on the
controller level. Terzis et al. [17] already proposed a model for
collaboration on a comparable level in 1999 in another context.
In their approach, bandwidth brokers of different domains
maintain agreements to cooperatively allocate resources for
inter-domain traffic.

In order to be able to collaborate with other controllers, re-
cent approaches introduce infrastructures for distributed SDN
control planes [2], [5], [9], [15], [18]. Their target is to give
controllers of the same control plane a shared view on the
whole network while distributed properties are abstracted as
good as possible for their applications. Those approaches do
not include monitoring as a potential controller application for
distributed control planes. However, DISCO [15] introduces
monitoring agents in controllers which are able to measure link
utilization. Actually, as the monitoring is limited to links be-
tween peering points to adjacent networks and each controller
measures the statistics individually, no collaboration is done in
this context. In this work it is assumed that the control plane
allows controllers to communicate with one another. Hence,
a distributed control plane infrastructure, such as DISCO,

83Networking 2016

would be a good basis to satisfy the need for a communication
possibility between controllers. Levin et al. [11] point out,
that trade-offs between staleness and optimality as well as
between application complexity and robustness turn up when
logically centralized control planes are mapped to physically
decentralized.

III. DISTTM

This section deals with the concept of the distributed col-
laborative traffic matrix estimation system, termed DISTTM.
DISTTM consists of collaborating modules that are installed
at multiple controllers and exchange messages among each
other for the estimation of traffic matrices at the controllers.
Therefore, a controller periodically interacts with its switches
to capture the data, as detailed in Section III-A. Given this
interaction pattern, the collaboration and coordination among
controllers for the distributed estimation of traffic matrices
are presented in Section III-B and Section III-C, respectively.
Finally, Section III-D introduces three schemes to influence
DISTTM’s coordination for a fair task distribution based on
different criteria.

A. Generation of Traffic Matrices
The problem of estimating a traffic matrix in an SDN

with a single controller can be tackled using, for instance,
OPENTM [19] as described in Section II-B. A controller
informs its traffic matrix estimation module whenever a new
flow is installed. Afterwards, the statistics for this flow are
periodically polled from a selected switch on the flow’s path.
The interval for the periodic polling is specified by the system
parameter T (polling request interval). To select a switch
along a flow’s path, OPENTM presents multiple strategies
for an intelligent and sophisticated switch selection. However,
DISTTM relies on a random selection of a switch along
the path for the sake of simplicity and directs to OPENTM
for questions relating the switch selection. The traffic matrix
module in a controller uses the gathered statistics from the
selected switch to generate the traffic matrix and update the
affected cell of the matrix. For the identification of the correct
cell, the controller uses the origin (ingress switch) and the
destination (egress switch) of the flow. Given the example in
Figure 1, C

A

polls statistics of flows f
A

, f
B

and f
C

. Regarding
f
A

, the statistics can be polled at switch S
A1, S

A3 or S
A2

along its path. The measurements are used to fill the cell of
pair (S

A1, SA2) = (ingress, egress). C
B

polls statistics of
f
B

and f
C

to fill the cell of pair (S
B1, SB2) as well as f

D

for (S
B3, SB2). CC

acts analogously in its network. A flow is
polled until the controller receives a message about its timeout
(FlowRemoved). In this work, DISTTM stores the total amount
of bytes for each cell. Other metrics, such as the throughput
or bandwidth consumption, may be calculated or derived as
well.

The described interaction between a controller and its
switches represents an easy-to-operate solution. However, the
simplicity of this approach comes at the expense of inevitable
excessive cost in terms of statistic requests at switches and

20.0.0.110.0.0.1

CA CC

CB

fA

SA2SA1

SA3

SB1

SB2

SB3

SC1

SC3

SC2

 fD

fB

fC

Fig. 1. Inter-network flows.

controllers, particularly questioning its scalability. To reduce
the overhead and improve scalability, DISTTM breaks up
with the necessity to measure each upcoming flow on each
controller. Instead, we introduce the concept of controller
collaboration, i.e. sharing of information, in the following.

B. DISTTM Controller Collaboration

Assuming the knowledge about peering points between
adjacent networks, flows which traverse through networks
of cooperating controllers can be identified. As an example,
C

A

detects, that f
B

and f
C

exit its network towards the
network of C

B

. Given this capability and knowledge about
traversing flows, DISTTM provides the functionality to coor-
dinate the monitoring. Hence, controllers are able to trigger
a coordination whenever considered necessary to distribute
responsibilities for redundantly measured flows like f

B

and
f
C

among the controllers. A coordination assigns each flow
to exactly one controller, which is subsequently exclusively
responsible to capture statistics of this flow (e.g. only C

A

captures f
B

and C
B

captures f
C

). So, DISTTM informs each
controller (i) about the flows it must monitor and (ii) about
other controllers that are interested in the collected statistics
of the corresponding flows. As a result of that coordination,
in addition to periodic polling of statistics, controllers must
transmit updates to a list of interested controllers. These
actions are periodically triggered depending on the system
parameter T .

Given the example in Figure 1, flow f
B

originates at
host 10.0.0.1 and has its destination at host 20.0.0.1,
traversing the network of controller C

A

, C
B

, and C
C

. In
the naive solution controller C

A

, C
B

, and C
C

would poll
statistics of flow f

B

from selected switches in their network
to update their traffic matrix with the resulting traffic of f

B

.
Using DISTTM, only one controller, for instance C

A

, would
fetch the statistics of f

B

and provide the information to C
B

and C
C

. In turn, other flows, such as f
C

and f
D

, may be
assigned to C

B

and C
C

, while the resulting measurements
are transmitted to all interested controllers. As flow f

D

only
traverses the network of C

B

and C
C

, C
A

is even not aware of
f
D

and will not be informed about updates of f
D

. Flow f
A

is
only monitored by C

A

as it only traverses the network of C
A

.

84Networking 2016

For this particular example the number of statistic requests
reduces from 9 (C

A

: [f
A

, f
B

, f
C

]+C
B

: [f
B

, f
C

, f
D

]+C
C

:
[f

B

, f
C

, f
D

] = 9) to 4 (C
A

: [f
A

, f
B

] + C
B

: [f
C

] + C
C

:
[f

D

] = 4).
A controller uses directly polled values and received values

from other controllers to update its traffic matrix. In the
example C

A

uses the polled values of f
A

to update the matrix
entry for pair (S

A1, SA2). To update the (S
A1, SA3) entry it

uses the directly polled values of f
B

and complements it with
the received values from C

B

about f
C

.
Among the collaborating controllers DISTTM identifies

redundantly monitored flows and controllers interested in
these flows. Based on these insights DISTTM selects one
controller out of the pool of interested controllers to assign
the flow to. The chosen controller is subsequently responsible
to poll statistic values about the flow and share them with all
interested controllers. Hence, only a fraction of all traversing
flows must be monitored per controller. Besides the reduction
of monitored flows, the controller collaboration also influences
the number of transmitted messages as well as of transmitted
bytes. Exchanged information about multiple flows between
two controllers can be batched into one so-called statistic
batch message, whereas direct polling of values from multiple
flows must be performed per flow. Furthermore, a controller
proactively transmits information to interested controllers at
the end of each polling interval. This proactive transmission
avoids unnecessary transmissions to request the statistics.

So far, DISTTM basically focuses on a distributed and fair
procedure for collaborative data collection. As a result, it
currently relies on static per-flow polling intervals as well as a
static information exchange intervals between controllers. For
future work, improvements concerning the polling of values by
a controller in its own network, such as flow aggregation [25]
or adaptive polling [3], are applicable to minimize the traffic
or improve the performance.

C. DISTTM Coordination
As described, the system shares responsibilities for flows

among collaborating controllers. For this task DISTTM dele-
gates the coordination to one controller which is denoted as
coordinator. In this work, a static configuration is used to
select the coordinator. Nevertheless, leader election algorithms
from other research areas (e.g. [1]) are applicable that deal
with this problem and allow an autonomous and distributed
election of a coordinator. Using a central coordinator simplifies
the distribution of flow responsibilities among the controllers,
as described hereafter.

1) Coordination trigger: The advantage of DISTTM comes
at the expense of coordination overhead. This overhead com-
poses of coordination requests, responsibility assignments and
statistic exchange messages. Although the evaluation will
show that the impact of additional messages is reasonable,
it still needs to be considered. In order to avoid too many
coordinations and limit the resulting coordination overhead
in networks and scenarios with strong flow fluctuations,
DISTTM introduces a counter in every participating controller

Controller installs
Inter-Network Flow

Threshold
reached?

Increment Threshold
Counter

No

Request Coordination
at Coordinator

Yes

Coordinator collects
Monitoring Interests

Coordinator
calculates

Responsibilities

Controllers apply
Responsibilities

Coordinator
transmits

Responsibilities

Fig. 2. Coordination mechanism flow diagram.

and a system parameter, referred to as coordination threshold
R. The threshold may be set dynamically by the controllers
based on other system parameters according to findings in
the evaluation. At each controller, this counter is incremented
every time a controller becomes aware of a new flow. For this,
a controller takes only flows into account which have their
destination in it’s network but do not originate inside of the
network. Based on this scheme, simultaneous coordination re-
quests from multiple controllers are avoided since only the last
network considers an upcoming flow. In the example given in
Figure 1, assuming f

B

, f
C

and f
D

leave the union of cooper-
ating networks at the network controlled by C

C

, the threshold
counter of C

C

would be set to three. If the incremented counter
reaches the specified coordination threshold R a coordination
procedure is triggered. The coordination procedure comprises
the transmission of a so-called coordination request message
from the controller to the coordinator. The counters are reset
every time a coordination procedure is performed.

2) Coordination procedure: As described above, the co-
ordinator executes a coordination procedure whenever it re-
ceives a coordination requests. As depicted in Figure 2, if
the coordinator receives a coordination request message it
collects the monitoring interests of all participating controllers.
Therefore, it sends a monitoring interest request message to
all participating controllers, asking for flows which occurred
since the last coordination and traverse their network. The
requested information is sent back to the coordinator, using
a monitoring interest response message. Subsequently, the co-
ordinator applies a responsibility calculation function based on
the received interests. This responsibility calculation function
is responsible to assign flows to the controllers. Furthermore, a
list of interested controllers per flow is appended to inform the
responsible controller about other interested controllers. The
flow assignments including the list of interested controllers are
transmitted to the corresponding controllers, using a coordi-
nation instruction message.

Concerning the example of Figure 1, the coordinator takes
the information that controller C

A

is interested in f
A

, f
B

and f
C

; C
B

and C
C

are interested in f
B

, f
C

and f
D

as
depicted as input in Figure 3. The function may distribute
the responsibilities, for instance, as follows: C

A

is responsible
to monitor its intra-network flow f

A

. Furthermore, C
A

is
responsible to measure f

B

and inform C
B

and C
C

about its

85Networking 2016

C
A

fA; fB: CB, CC

C
B

fC: CA, CC

C
C

fD: CB

C
A

fA; fB; fC

C
B

fB; fC; fD

C
C

fB; fC; fD

Fig. 3. Coordination function input and output.

updates. C
B

needs to monitor f
C

and inform C
A

and C
C

,
while C

C

is responsible for flow f
D

and to inform C
B

about
measurement updates. In this case, excluding intra-network
flows, the coordinator assigns one flow to each controller.
Hence, it shares the responsibilities fair among controllers.

D. Fairness schemes
In addition to the relevant flows of a controller, a monitoring

interest response message comprises further information. This
covers the number of intra-network flows inside of a single
network (e.g., f

A

in C
A

), the number of previously assigned,
still active flows and the number of switches in the controllers
network. The additional information is optional and may not be
included due to privacy constraints. However, if it is included,
the coordinator uses this information for the responsibility
calculation function in order to apply various fairness schemes
that influence the assignment of flows. DISTTM offers four
fairness strategies that are applicable to distribute the respon-
sibilities among controllers.

1) Fair Controller Distribution (FCD): The FCD scheme
distributes the responsibilities equally among all participating
controllers in terms of monitored flows in total. Hence, this
scheme makes sure that every controller is supposed to make
the same number of statistic requests to switches in its
network. This includes requests for intra-network flows not
traversing networks controlled by other controllers. However,
FCD leads to equal statistic request load among controllers
and might be preferred, for instance, by single-administrated
networks.

2) Fair Domain Distribution (FDD): As different con-
trollers may be part of competing domains, they are not
willed to respect intra-domain flows of other networks. As a
simplified scheme to support this, the FDD scheme distributes
the responsibilities equally among controllers while intra-
network flows are not taken into account. This scheme leads to
an equal distribution of flows to monitor for other controllers.
A more elaborated version of this scheme could consider
fairness between each controller pair. A controller C

A

, for
instance, does neither want to respect a flow only in the
network of C

B

, nor traversing only the networks of C
B

and
C

C

.
3) Fair Switch Distribution (FSD): So far, the issue that

networks may differ in size has been ignored. Consider two
collaborating networks: one consisting of only two switches,
while the other consists of an order of magnitude more
switches. If flows traverse both networks with the same proba-
bility, a distribution based on the statistic requests a controller

has to poll from a switch would lead to a disproportional load
on the two switches of the small network. To tackle this issue,
the FSD scheme assigns the responsibilities in a fair manner
based on the current requests per switch. This leads to a fair
load distribution among switches in the network, however,
potentially not among controllers.

4) Random (RD): As reference model, a random distribu-
tion among controllers is used. As it can be expected, for
large experiments, the scheme resembles the fair controller
distribution assuming equal flow occurrences per network.

The listed schemes optimize particular scenarios and sit-
uations. Hence, we propose to use dynamic combinations
based on the characteristics and requirements in real-world
scenarios. As a flow is assigned to a controller DISTTM does
not dictate which switch needs to be selected on a flow’s
path to fetch statistics from. Consequently, the controllers are
responsible to make a sensible selection. As already mentioned
in Section III-A, related approaches tackle this aspect and is
not taken into consideration in this work. However, it may be
an important aspect for future work.

IV. EVALUATION

This section describes the evaluation of DISTTM. The ma-
jor objectives of the evaluation are to show (i) that the system
is able to reduce monitoring costs, while the performance can
be maintained and (ii) to highlight the influence of the different
fairness schemes of the responsibility calculation function
on DISTTM. To be able to quantify this, we implemented
DISTTM as a Floodlight4 OpenFlow controller application as
which it is deployed on all controllers in a virtual simulation
network. In addition, we included a simplified routing appli-
cation based on a modest host detection extension, the ability
to detect peering points with other networks, and a straight-
forward westbound interface. The westbound interface enables
the communication between controllers through TCP connec-
tions using an out-of-band controller network in the control
plane. Using this small set of functionality, the distributed
traffic matrix estimation system – DISTTM – is implemented.

A. Evaluation Methodology and Scenario
We use Mininet [10] as evaluation testbed to generate virtual

OpenFlow-enabled networks. As sketched in Figure 4, for this
preliminary evaluation, we choose a synthetic, linear topology
with three individually controlled networks with three switches
each as default scenario. The first network, controlled by C

A

has a peering-point to the network controlled by C
B

, which
itself has a peering point at the other end to the network
controlled by C

C

. This topology allows a direct presentation
and measurement of the DISTTM principles.

For the evaluation, we use the parameters shown in Table I.
The first to two parameters represent DISTTM’s system pa-
rameters, as introduced in the previous section. The following
parameters except the last one configure the modeled flows
in the network and are detailed in the following paragraph.

4Project Floodlight: Floodlight OpenFlow Controller http:
//www.projectfloodlight.org/floodlight/, [Access: Nov 09, 2015]

86Networking 2016

CA CB CC

H1 H9

...

Fig. 4. Synthetic evaluation topology.

The last parameter F
max

represents the flow idle timeout. If
multiple values are listed for a parameter, the values for a
default configuration are underlined.

TABLE I
SCENARIO AND SIMULATION SETUP.

Parameter Values Description

T [ms] 500, 1000, 2000, 5000 Polling period
R 1, 2, 3, 5, 10, 20 Coordination threshold
r [pps] 100 Packet rate
� [s] 1 E[Flow inter-arrival time]
k 5 Pareto shape index
x

min

[pkts] 500 Min. packets per flow
F

max

[s] 5 Flow idle timeout

As only the duration of active flows instead of their size is
relevant for the conducted evaluation, flows have a constant
packet rate r and minimal packet size. For the inter arrival
time of flows in seconds, we use an exponentially distributed
stochastic variable with � = 1 [8]. Concerning the length
of a flow, a Pareto distributed stochastic variable is used. As
parameters, k = 5 and x

min

= 500 are set. Thus, most flows
are small (slightly larger than 500 packets) and only a few are
significantly large. A flow consisting of more than 500 packets
is alive for at least 5 seconds with the specified packet rate.
Assuming one second inter arrival time, if the system is in
equilibrium, at least (and most commonly) six flows intersect
at a time. We set the probability of a flow’s source (H

i

) and
destination (H

j

) being in one of the networks to 1
3 each, with

i 6= j. All simulations were repeated 50 times. Bar plots report
the mean with 95% confidence intervals. Box plots report the
median, lower and upper quartiles as well as whiskers for the
fifth and 95th percentiles. The simulations were executed on
a dedicated simulation machine5.

During the evaluation, we investigated three different met-
rics to quantify DISTTM’s behavior. At first, we measure
monitoring costs of DISTTM using the number of statistic
requests per controller per flow. This metric is independent
of the evaluation duration as the number of flows increases
linear with time if the system is in equilibrium. The second
metric quantifies the overhead which is additionally produced
by DISTTM. This overhead comprises the different types of
coordination messages as well as statistic batch messages,
which are exchanged between controllers. Similar to the first

5Ubuntu 14.04.3 LTS / 24x2.6GHz Intel(R) Xeon(R) CPU / 128GB RAM

Fig. 5. Cost reduction evaluation.

metric, the second one is measured per controller per flow.
To enable a reasonable aggregation of the two metrics, in
some cases the metric’s presentation is in bytes instead of the
number of messages or requests. Although one cannot compare
statistic requests and coordination messages directly due to
the fact that they do not share the same medium and lead
to different load on the controllers, this compromise allows
finding a comprehensible operating point for the trade-off
between cost reduction and introduced overhead. Note, that
the statistic requests with their replies are always of the same
size, so that the qualitative behavior is similar for message
counts as well as bytes. The resulting bytes of coordination
messages may vary depending on the type and amount of
shared information. To compare fairness, we selected the
portion of statistic requests a controller or switch is supposed
to trigger or answer, respectively, as metric. This is identical to
the portion of flows a controller must monitor. In addition to
these metrics that particularly quantify the costs of DISTTM,
it must be shown, that the performance for the generation
of the traffic matrices does not suffer using DISTTM. As
packet losses are not considered in the scope of this evaluation,
the performance is measured in terms of staleness of matrix
entries. The staleness is defined by the period between two
consecutive updates of a matrix entry for active flows.

B. Monitoring Cost Reduction

Figure 5 shows the main contribution of DISTTM . For
the default polling period of T = 2000ms, the leftmost plot
of Figure 5 shows the number of bytes used for the statistic
requests and replies for one controller per flow. The number
reaches its peak when DISTTM is not used (w/o). In that case,
the non-collaborative approach is applied and every controller
must monitor all flows it is interested in. Using DISTTM , the
plot shows a significant reduction of the number of bytes for
statistic requests. However, it becomes apparent that the traffic
grows if the coordination threshold R is increased. This results
from the fact that low coordination thresholds lead to frequent
re-configurations and fast assignments of inter-network flows
to single controllers. Consequently, redundant measurements
occur fewer. For large thresholds, the occurrences of redundant
measurements of flows increase, as each controller monitors
all flows before they are monitored only once. Thus, as visible

87Networking 2016

Fig. 6. Statistic request distribution among controllers.

in the figure, the traffic from the transmitted statistic requests
and replies increases as well. The plot in the middle of
Figure 5 depicts the number of bytes needed for the different
coordination messages. Without the use of DISTTM this value
is zero since no coordination between the controllers occurs.
For a small threshold R this overhead is larger, while larger
thresholds, thus, rarer coordinations, lead to less coordination
control messages. The resulting coordination traffic in bytes
decreases with increasing threshold. Finally, the rightmost
plot of Figure 5 shows the total load in terms of bytes
comprising the statistic requests and replies plus the number
of bytes for coordination messages. As depicted, a trade-
off between the coordination threshold R and the total load
exists. Coordinating on every arising flow (R = 1), leads
to less monitoring costs (flows are always monitored only
by one controller instead of each), whereas the coordination
overhead is relatively high. Increasing the threshold R leads
to larger monitoring costs, whereas the coordination overhead
decreases. For the evaluated scenario with T = 2000ms, the
operating point is between R = 2 and R = 3.

Figure 6 depicts the distribution of statistic requests per
controller per flow for the different coordination threshold (R)
configurations. It can be seen that the total number of requests
is significantly lower using DISTTM. For R = 1 the system
must request the least statistics. Even for high thresholds,
the number is still lower than for the classical approach
without DISTTM. The reduced number of statistic requests
for a decreasing coordination threshold R originates from the
fact the frequency of redundant, thus, unnecessary requests
is reduced. As already mentioned, a lower R leads to more
frequent re-configurations and fast assignment of redundantly
measured flows to single controllers. In addition to the total
amount of requests, the cumulative distribution function (CDF)
depicts the distribution of the requests among the controllers.
Regarding the distribution without the use of DISTTM, we ob-
serve that the number of statistic requests has a shift after 2

3 of
the data points. In the given evaluation topology (cf. Figure 4)
controller C

B

must handle more flows in average than C
A

and C
C

, as it located in between. Due to this focal position
and an equal distribution of flow sources and destinations,

Fig. 7. Resulting traffic of the statistic requests and coordination control
messages.

it must monitor more flows than the other two controllers.
As a result, an unfair distribution occurs. DISTTM balances
the distribution more if responsibility for flows are shared
between the controllers. For large thresholds, the distribution
is still less balanced due to the larger number of redundantly
monitored flows. With a lower coordination threshold, the
negative impact of C

B

’s focal position nearly disappears due
to frequent re-configurations and the faster unique assignment
of flows to controllers. A more elaborated view on fairness
and load balancing is presented in Section IV-D.

C. Impact of the Polling Period
Figure 7 depicts the overall traffic (note the logarithmic

scale) comprising the statistic requests and replies plus the
coordination control messages for a varying statistic polling
period T and a varying coordination threshold R. As ex-
pectable, it can be observed that an increasing polling period
reduces the overall traffic. However, for shorter polling periods
the total savings are higher than for longer periods, whereas
relative savings are comparable, although hardly identifiable
in the figure. Apart from that, it is observable that the polling
period influences the operating point. For a short period, e.g.,
T = 500ms, the lowest total overhead is at R = 1. As the
period is extended, e.g., T = 5000ms, the operating point
shifts to larger thresholds (R ⇡ 3). Hence, for short polling
periods, the coordination overhead has less influence on the
total load. The other way around, lower frequencies lead to
larger influence of coordination control messages, thus min-
imizing the positive effect of DISTTM and the collaborative
estimation of traffic matrices.

D. DISTTM Fairness
In order to examine the fairness, Figure 8a depicts the share

of flows a controller has to monitor in relation to the total
number of flows monitored by all controllers. For the use of
DISTTM, three fairness schemes are applied and compared to
the classical approach (w/o DISTTM). The classical approach
and the RD scheme show rather unfair distributions. For the
classical approach, C

B

suffers from its central position in the
topology, as shown by the shift for 1

3 of all measurements.
In contrast, the FCD scheme and the FDD scheme (cf.

88Networking 2016

(a) Flow responsibility distribution
among controllers.

(b) Statistic request distribution
among switches.

Fig. 8. Fairness evaluation results

Section III-D) lead to a steep curve indicating a balanced
distribution of responsibilities among the controllers. Thus, the
proposed schemes improve the load fairness on controllers.
Due to the fact that intra-network flows occur in all three
networks with the same probability, FDD and FCD behave
similarly.

For the next experiment, the network of controller C
C

is
enlarged and consists of four times more switches. However,
the probability for a flow starting or ending in one network
is unchanged. Hence, the switches in the small networks
may be polled more often in average when FCD is applied.
Figure 8b depicts the portion of statistic requests in relation
to all triggered requests that must be processed by a switch. It
becomes apparent that the fairness in terms of load on a switch
is improved using the FSD scheme. This results from the fact
that the FSD scheme is the only scheme, which considers the
current state of the switches.

f(x1, .., xn

) =
(
P

n

i=1 xi

)2

n
P

n

i=1 x
2
i

(1)

In order to capture the fairness by a single value, we
calculate the fairness index (FI) proposed by Jain [6]. Equation
(1) produces a single value between 0 and 1, where 1 reports
the highest fairness.

TABLE II
OBSERVED CONTROLLER AND SWITCH FAIRNESS.

Scheme Controller

Fairness

Switch Fair-

ness

6

RD 0.9510 0.5377
FCD 0.9893 0.5400
FDD 0.9907
FSD 0.6736
w/o DISTTM 0.9677 0.5413

6Adapted topology: the network of C
C

contains four times more switches;
equal probability of flow source and destination per network.

Fig. 9. Traffic matrix entry staleness.

Using the unmodified scenario, the FCD and FDD schemes
balance the load among the controllers in the fairest manner.
Both FIs are qualitatively equal, as listed in Table II and
already depicted in Figure 8a. For the modified scenario with
the adapted topology the second column of Table II outlines
the fairest load balance among the switches if the FSD scheme
is applied. A fair balancing of statistic requests between the
switches cannot be provided if fairness schemes are applied
that ignore the different number of switches in the network as
well as the current load on switches.

E. Impact of DISTTM on Performance
To examine potential trade-offs, it must be analyzed to

which extent the traffic matrix estimation performance is
influenced. We use the matrix entry staleness to represent the
performance. For the sake of simplicity, all controllers poll
statistics with the same frequency. In the classical approach,
the delay between the actual values and the available data in
the controller consists only of the statistic reply transmission
delay between the switch and the controller. Using DISTTM,
this delay is extended by two further delays. At first, the
delay between a received statistic reply and the end of the
measurement period, where a statistic batch message is ex-
changed between two controllers is added. Furthermore, the
transmission delay of this statistic batch message between the
controllers must be added. Since the statistic polling interval
is typically much larger than the transmission delay, they
can be neglected. Figure 9 depicts the CCDF of the traffic
matrix entry staleness for the default statistic polling rate of
T = 2000ms. It becomes apparent that about 90% of the
values are updated every 2000ms (note the logarithmic scale).
However, some values are staler using DISTTM. Whenever
a coordination is triggered and its instructions are sent to
a controller, the statistics of a flow which is assigned to
another controller are not polled anymore. The next update
for this flow arrives with the next statistic batch message
of the responsible controller. In the meantime the affected
entries are not updated. As the figure shows for a polling
period of T = 2000ms, most remaining entries are updated
in less than 2 · 2000ms = 4000ms. Shorter intervals are
also possible during the coordination procedure. Altogether,
DISTTM leads to an exponentially distributed excess staleness.

89Networking 2016

After a coordination the staleness is restored to T .

F. Summary
The results of the evaluation demonstrate that DISTTM sig-

nificantly reduces monitoring costs resulting from a reduced
number of required statistic requests per controller. However,
introduced coordination messages lead to a trade-off between
monitoring costs and additionally added overhead. We control
this trade-off through a coordination threshold which con-
trols the frequency of coordinations and improves the flow
assignment. Furthermore, the results reveal that the staleness
of matrix entries remains the same for approximately 90% of
all measurements. Apart from that, the evaluation shows that
the introduced fairness schemes allow an adjustable and fairer
load distribution among controllers and switches, respectively.

V. CONCLUSIONS

In this paper we show how the collaboration between SDN
controllers significantly reduces monitoring overhead while
sacrificing a negligible performance fraction. The key to this
reduction is a collaborative system in a distributed SDN
control plane denoted DISTTM that divides the monitoring
tasks such that redundant flow monitoring is eliminated. We
use DISTTM to exemplarily collect estimates of traffic matrix
information. We measure the performance of the monitoring
system using the traffic matrix entry staleness. The empirical
results show an exponentially distributed excess staleness
when DISTTM is utilized. We explore the assignment of
monitored flows to corresponding controllers based on dif-
ferent criteria. For example, we show the impact of different
fairness allocations on the respective controller and switch
load distributions. Note that the SDN controllers need not
to be in the same domain. We keep the investigation using
real world network traces and topologies for future work.
Further investigations will also explore adaptive polling rates
per controller and dynamic fairness schemes.

ACKNOWLEDGMENT

This work has been funded in parts by the German Research
Foundation (DFG) as part of project B1, C2 and C3 within
the Collaborative Research Center (CRC) 1053 – MAKI.
Parts of this work have been conducted within the SENDATE
project, a project funded by the German Federal Ministry of
Education and Research (BMBF). The authors would like to
thank Julius Rückert and Amr Rizk for their valuable input
and contributions.

REFERENCES

[1] B. Awerbuch, “Optimal Distributed Algorithms for Minimum Weight
Spanning Tree, Counting, Leader Election, and Related Problems,” in
ACM Annual Symposium on the Theory of Computing (STOC), 1987.

[2] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an Open, Distributed SDN OS,” in ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (HotSDN),
2014.

[3] S. Chowdhury, M. Bari, R. Ahmed, and R. Boutaba, “PayLess: A
low Cost Network Monitoring Framework for Software Defined Net-
works,” in IEEE/IFIP Network Operations and Management Symposium
(NOMS), 2014.

[4] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC
3954, October 2004.

[5] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A Framework for Efficient
and Scalable Offloading of Control Applications,” in ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (HotSDN),
2012.

[6] R. Jain, The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 1991.

[7] L. Jose, M. Yu, and J. Rexford, “Online Measurement of Large Traffic
Aggregates on Commodity Switches,” in USENIX Workshop on Hot
Topics in Management of Internet, Cloud, and Enterprise Networks and
Services (Hot-ICE), 2011, pp. 1–13.

[8] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido, “A nonstationary
Poisson view of Internet traffic,” in IEEE International Conference on
Computer Communications (INFOCOM), vol. 3, 2004, pp. 1558–1569.

[9] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A Distributed
Control Platform for Large-scale Production Networks,” in USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2010.

[10] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-defined Networks,” in ACM Hot Topics in
Networks (HotNets), 2010.

[11] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Log-
ically Centralized?: State Distribution Trade-offs in Software Defined
Networks,” in ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking (HotSDN), 2012.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[13] A. Medina, C. Fraleigh, N. Taft, S. Bhattacharyya, and C. Diot,
“Taxonomy of IP traffic Matrices,” in SPIE ITCom: The Convergence of
Information Technologies and Communications. International Society
for Optics and Photonics, 2002.

[14] Open Networking Fundation, “Software-Defined Networking: The New
Norm for Networks,” ONF White Paper, 2012.

[15] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed multi-
domain SDN controllers,” in IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS), 2014.

[16] S. Shirali-Shahreza and Y. Ganjali, “FleXam: Flexible Sampling Exten-
sion for Monitoring and Security Applications in Openflow,” in ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking
(HotSDN), 2013.

[17] A. Terzis, L. Wang, J. Ogawa, and L. Zhang, “A Two-Tier Resource
Management Model for the Internet,” in IEEE Global Communications
Conference (GLOBECOM), 1999.

[18] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control
Plane for OpenFlow,” in USENIX Internet Network Management Work-
shop/Workshop on Research on Enterprise Networking (INM/WREN),
2010.

[19] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic Matrix
Estimator for OpenFlow Networks,” in Passive and Active Measurement,
A. Krishnamurthy and B. Plattner, Eds. Springer, 2010, vol. 6032, pp.
201–210.

[20] P. Tune and M. Roughan, “Internet Traffic Matrices: A Primer,” in ACM
SIGCOMM eBook: Recent Advances in Networking, H. Haddadi and
O. Bonaventure, Eds., 2013, vol. 1, pp. 108–163.

[21] N. van Adrichem, C. Doerr, and F. Kuipers, “OpenNetMon: Network
monitoring in OpenFlow Software-Defined Networks,” in IEEE/IFIP
Network Operations and Management Symposium (NOMS), 2014.

[22] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. Madhyastha,
“FlowSense: Monitoring Network Utilization with Zero Measurement
Cost,” in Passive and Active Measurement, M. Roughan and R. Chang,
Eds. Springer, 2013, vol. 7799, pp. 31–41.

[23] M. Yu, L. Jose, and R. Miao, “Software Defined Traffic Measurement
with OpenSketch,” in USENIX Symposium on Network Systems Design
and Implementation (NSDI), 2013.

[24] Y. Yu, C. Qian, and X. Li, “Distributed and Collaborative Traffic Mon-
itoring in Software Defined Networks,” in ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking (HotSDN), 2014.

[25] Y. Zhang, “An Adaptive Flow Counting Method for Anomaly Detection
in SDN,” in Conference on emerging Networking EXperiments and
Technologies (CoNEXT), 2013.

90Networking 2016

