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Abstract—Cloud federation has emerged as an effective solu-

tion offering worldwide coverage, dynamic infrastructure scaling

and improved QoS for the demanding cloud services. In this

paper, we present a model for Cloud Service Providers (CSPs)

federation and we investigate the economic benefits of CSPs

under different federation modes. Each CSP is modeled as an

M/M/1 queue with arrivals corresponding to computation tasks

and service rate that captures the computational capabilities of

the CSP. Each CSP earns revenue by charging its customers

according to a QoS-dependent pricing function, and it undergoes

a cost due to energy consumption of its infrastructure. We

propose a model for the formation of cloud federations, according

to which each CSP may forward part of the workload stemming

from its customers to other CSPs. We define three federation

modes with varying degrees of CSPs’ interaction, namely the

strong, weak and elastic federations. In strong federations, the

CSPs jointly decide on their forwarding policies to maximize

the total profit of the federation; then, they share these profits

according to certain profit sharing policies. In weak federations,

a game arises, in which each CSP follows a forwarding policy

that aims to maximize its individual payoff, which however

incorporates some fairness. In elastic federations, each CSP again

aims to maximize its individual payoff, but it has the freedom

to tune the degree of its selfishness through a pricing function.

The numerical results validate and quantify the conjecture that

federation can incur substantial monetary benefits and achieve

a near to optimal QoS.

I. INTRODUCTION

Nowadays, the multi-faceted applications that are moving
to the cloud demands global geographic presence and high
QoS for end-users. Although Cloud Service Providers (CSPs)
promise flexible and scalable resources, thus creating the
illusion of infinite resources to their customers, no CSP can
provide on-demand dynamic resource scaling in order to
handle the workload variations in a cost-effective manner.
Furthermore, even market giants have limited geographic
coverage since it is not profitable to invest on establishing
datacenters in multiple geographical locations to satisfy the
demand. Cloud federation arises as an effective way to expand
the reach of CSPs and improve the QoS of their customers.

In a cloud federation, multiple CSPs cooperate to provide
seamless provisioning of high-quality services across different
domains. A cloud federation should be accompanied by certain
policies that ensure the sustainability of this CSP community,
and each CSP that participates has to conform to these policies.
The policies should guarantee that each CSP that joins the
federation will not undergo profit loss. Further, they need to
motivate all CSPs to participate regardless of their market

power or the size of their infrastructure. Cloud federation
comes together with several participation incentives such as
geographic footprint expansion, the scaling of resources to
handle the request traffic bursts of peak demand and the inter-
cloud load balancing. Hence, a cloud federation prevents the
datacenter over-dimensioning and further it reduces the CSPs’
energy cost through better utilization of their infrastructure.

In real life, there are several instances of cloud federation
in both academic and enterprise environments. The OnApp
Federation [1] is a network of CSPs running on the OnApp
cloud management platform. The CSPs that join this federation
may buy and sell capacity on demand through the OnApp
market. Arjuna’s Agility framework [2] is a dynamic federated
cloud computing platform that is created from IT resources
that are offered by autonomous, cooperating business parties
within and beyond an enterprise, and under certain policies.
EGI Federated Cloud [3] is a seamless grid of academic
private clouds and virtualized resources, built around open
standards and it focuses on the requirements of scientific com-
munity. BonFIRE [4] offers a federated testbed that supports
large-scale testing of applications, services and systems over
multiple, geographically distributed, heterogeneous cloud and
network testbeds. Finally, the CERN Openlab project [5] aims
to build a seamless federation among multiple private and
public cloud platforms on OpenStack.

Several works in recent literature investigate the problem of
resource allocation in cloud federations. These works can be
classified into two broad categories: (i) Cooperative resource
pooling [6]–[8], where CSPs aggregate their resources aiming
to maximize the total utility of federation and (ii) Resource
trading [9], [10], where CSPs aim to maximize their individ-
ual profit by trading their unused resources. In our prelude
work [11], we modeled each CSP as an M/M/1 queueing
system and devised a mathematical model for the net profit
of each CSP. This consists of accrued revenues from pricing
on its customers and of incurred energy cost at the cloud
infrastructure. Furthermore, we introduced a first approach to
model a service-oriented cloud federation between two CSP,
where each CSP may forward a portion of the tasks stemming
from its customers to other CSPs. Finally, we formulated
the problem of finding the utility-optimal federation as a
global profit maximization problem in which CSPs align their
strategies to jointly solve it.

In this paper, we build on and substantially extend our
previous work by studying different cloud federation regimes.
In particular, we define the strong, weak and elastic federationISBN 978-3-901882-83-8 c� 2016 IFIP
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modes. Each mode differs on the level of cooperation among
CSPs, the extent of private information that CSPs should make
available to others, and the CSPs’ objectives that may be
aligned or conflicting. Strong federation requires an offline
mutual commitment of CSPs, such that they all agree to align
their forwarding policies to optimize their total net profit.
Additionally, a mutually agreed policy is applied for the fair
sharing of total profit of federation. In weak federation, the
CSPs are still able to forward tasks, however each of them acts
unilaterally by trying to maximize its own net profit, and thus
an non-cooperative game arises. Nevertheless, the net profit
of each CSP in this type of federation is strongly connected
to its contribution in the federation, namely its profit share is
given by its Shapley value. It will be seen that use of Shapley
value as payoff function leads the relevant game to an efficient
equilibrium. We also develop a more elastic model for cloud
federations whereby all CSPs employ a flexible pricing scheme
on forwarded tasks that reflects their degree of selfishness.
Again, each of them aims to maximize its net profit and thus
a non-cooperative game arises, the outcome of which depends
on this degree of selfishness. For each federation mode we
formulate the problem of net profit-optimal service delegation
and we find the optimal forwarding policies.

The paper is organized as follows. In section II we provide
an overview of relevant state-of-the art work. In section III, we
present our model for a single CSP. In section IV we present
our cloud federation model, we introduce and specify the
three modes of federation and solve the relevant optimization
problems. In section V we present our numerical evaluation,
and in section VI we briefly present our conclusions.

II. RELATED WORK

Architectural approaches of cloud federation. The au-
thors in [12] present the challenges of a utility-oriented cloud
federation and propose three basic entities for a market-based
cloud federation architecture; the cloud exchange as the entity
that creates the market, a cloud coordinator per CSP as seller
and a cloud broker per client as buyer. The Reservoir model, a
modular cloud architecture, is proposed in [13]. In Reservoir,
multiple CSPs collaborate in order to create a virtual pool
of resources that seems infinite. The authors in [14] present
the concept of cloud federation as service aggregation and
they present two modes of such a federation, the redundancy
and migration federations. In redundancy federation, multiple
CSPs come together and jointly offer a service to achieve
improved quality for a client, while in migration federation
a client is moved from an old service to new one offered by
another CSP due to improved quality. Finally, the authors in
[15] envision the federation of CSPs as vertical stack that fits
on the layered model of cloud computing. A service request
may arrive in any layer of a CSP and can served either by
local resources using delegation to a lower layer or by another
federated CSP using delegation to a matching layer.

Cooperative inter-cloud resource allocation. The authors
in [16] propose cooperative price-based resource allocation
mechanisms in dynamic cloud federation platforms, aiming

to maximize the total utility of federation. In [6] and [7],
coalitional game theory is applied as a mechanism for the
dynamic formation of CSPs’ federation. Both these papers
have proposed algorithms that determine the optimal coalitions
for a set of CSPs, given their client generated workloads. In
[8] the inter-CSP VM migration is presented a solution to the
problem of resource over-provisioning. The authors propose a
global scheduler that decides whether a VM should migrate
or shut down, thus aiming to CSPs utility maximization.

Resource allocation among selfish CSPs. In [9], the
federation among geo-distributed CSPs is investigated. The
authors design double-auction based algorithms for inter-cloud
VM trading in federations of selfish CSPs. The authors in
[17] model each CSP as a set of heterogeneous servers,
each of them modeled as a queueing system. Then, they
formulate the problem of resource allocation in a multi-CSP
environment as a game among selfish CSPs, where each CSP
aims to maximize its individual utility taking into account the
customer SLAs. The author in [10] investigates the interactions
among CSPs as a repeated game among selfish players that aim
at maximizing their profit by selling their unused resources in
a spot market. The model incorporates information for both
historical and expected future revenue as part of the resource
trading decision, in order to simultaneously maximize the CSP
revenue and avoid future workload fluctuations.

Some of the above works provide an overview of the
architectural elements of a federated system, while others
consider the problem of resource allocation in inter-cloud
environments of either cooperative or selfish CSPs. In our
work, we propose the concept of federation among CSPs as
service delegation and we model the federated environment
as well as its involved economics. Contrary to most existing
works, we provide policies both for cooperative and the non-
cooperative federated environments. Further, we propose a
flexible policy where CSPs can move between cooperation
and selfishness. Additionally, most of existing works do not
take into account the QoS offered to CSPs’ customers in their
optimization approach. In our work, the federation policies
are optimal with respect to total or individual CSPs’ profit
(depends on policy), but they are also beneficial with respect
to the QoS offered to customers.

III. CLOUD SERVICE PROVIDER MODEL

A. CSP as an M/M/1 Queueing System
For each CSP i, we use Ci to denote the total computational

capacity (in operations/sec) of its infrastructure. We assume
that tasks from its customers arrive to a central controller
according to a Poisson process of rate �i (tasks/sec). Each of
these tasks requires a random number of operations in order
to be executed. We assume that the number of operations
follows an exponential distribution with mean number L

operations/task. The average service rate (in tasks/sec) for a
CSP i is µi = Ci/L, and thus the service time of a task is
exponentially distributed with mean 1/µi.

We use the average task completion time as a metric for
customers’ QoS. By standard theory for M/M/1 single-server
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queueing systems, the average completion time di for tasks
served by the infrastructure of CSP i is given by

di(�i) =
1

µi � �i
. (1)

The average rate of incoming tasks must always be lower than
the service rate of the system (�i < µi), otherwise the CSP
queue becomes unstable.

M/M/1 abstraction justification. In practice, a CSP con-
sists of multiple datacenters with servers within each of them.
In our approach, we abstract the multi-server infrastructure of
the CSP as a single-server M/M/1 queueing system. To this
end, we assume that a CSP performs perfect dispatching and
scheduling of incoming tasks by preventing its servers from
becoming idle. In particular, if the infrastructure of a CSP
i consists of Mi identical servers of computational capacity
Ci/Mi each, the CSP achieves the same average utilization
level ⇢i to all servers by applying the optimal internal task
dispatching and scheduling. Hence, we can safely assume that
the multi-server infrastructure of each CSP behaves as a single-
server with computational capacity Ci and utilization ⇢i.

The queueing-system assumption can be justified as follows:
Tasks arrive at the controller in the form of a stream. Since
cloud computing provides the technology for virtualizing
resources, tasks coming from the customers of a CSP are
assigned to established virtual machines (VMs). VMs are not
in abundance, but they are finite resources that are assigned
on-demand to serve requests. Given that a typical cloud
computing system serves a large number of customers where
each of them generates multiple computational tasks and these
arrive in bursts, is more probable to have smaller interarrival
times than larger ones. Thereafter, we can assume that the tasks
arrive according to a Poisson process. Furthermore, the time
that a task spends in the CSP’s system depends both on the
waiting and service time, i.e. on the number of existing tasks
that wait to be served, on the availability of resources when
the task arrives and on its size with respect to the number of
operations it entails. The majority of tasks that arrive in a CSP
queue usually demands a smaller number of operation, while
relatively fewer tasks require a large number of operation.
Hence, we can assume that the number of operations that a task
requires is exponentially distributed, and therefore the service
time also follows an exponential distribution. Consequently,
the M/M/1 queueing model is applicable. While this is a
simplification that allows the mathematical treatment of our
paper, it is also reasonable enough to capture the reality.

B. CSP Economics
Energy consumption cost. We take the infrastructure en-

ergy consumption cost of a CSP as measure for its total cost.
The power consumption of a server includes the power for
its operation and the power that is required for supportive
systems like cooling devices. However, according to prevalent
state-of-the art literature [18], the total power consumption is
a linearly increasing function of the utilization factor of the
server, ⇢. Specifically, the total power consumed is the sum of
server’s idle power and utilization factor-dependent dynamic

power consumption. The former amount of power, W0, is the
power consumed when the server is powered on but does not
serve any task. The latter one is linearly increasing in the
server utilization ⇢. If we denote by W1 the power of a server
when it is fully utilized (namely at ⇢ = 1), the range of power
consumption is [0,W1 �W0].

To estimate the total power consumption of a CSP, we take
into account that its infrastructure consists of multiple servers.
Since a CSP achieves the same average level of utilization ⇢
in all its servers (subsection III-A), idle and dynamic power
consumptions of the entire infrastructure can be computed by
aggregating the corresponding power consumption patterns of
all servers. Consequently, if a CSP i has Mi servers, and if
W0,ij and W1,ij denote the idle and total power consumption
of the j-th server of CSP i, the aggregate power consumption
of the CSP i in Watts is

Wi(�i) =

MiX

j=1

W0,ij +
�i

µi

MiX

j=1

⇣
W1,ij �W0,ij

⌘

= W0,i +

⇣
W1,i �W0,i

⌘
�i

µi
,

(2)

where W0,i and W1,i denote the idle and total power con-
sumptions of i’s infrastructure. If i uses electricity at a price
Zi per KWatt·sec, the cost of energy consumption per unit of
time is given by

Ei(�i) = Wi(�i) Zi. (3)

QoS-dependent Pricing. We assume that a CSP charges
its customers based on the offered QoS-level and on load of
received requests. Recall that we use average tasks completion
time as measure for the QoS offered by a CSP. Thereafter, a
CSP i sets a price per task according to a pricing function pi(·),
where pi(·) is decreasing in average task completion time,
di. This function should also be convex, because a marginal
change in delay is perceived more by the customer for smaller
values of the delay. Further, the average completion time of
task is always lower-bounded by the expected service time
�i = 1/µi. A function that satisfies the requirements above is

pi(�i) =
�i

di(�i)
Qi, (4)

where Qi denotes the price per task that i charges for offering
service in the best possible QoS, i.e. the expected service time
�i. In practice, the pricing function for each CSP is driven
by the competition in the cloud market. In our approach, we
assume that each CSP has made a decision offline on its pric-
ing function that already takes into account this competition.
Moreover, we assume that CSPs cannot adapt their pricing
functions and also that their customers are committed by some
contract and therefore they cannot change their serving CSP.

Revenue. The revenue of a CSP is generated from pricing
on the tasks coming from its customers. Since CSP is also
committed by some contract, we assume that the tasks arrive
in its queue are always served. Consequently, the revenue rate
in monetary units per unit of time for CSP i is given by

Ri(�i) = �i pi(�i). (5)
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Fig. 1. Cloud federation for N CSPs, each of them is modeled as a single-server M/M/1 queue. Each CSP may forward a portion of the tasks coming from
its customers to other CSPs and likewise it can receive task streams coming from customers of other CSPs. The streams of forwarded tasks between CSPs i
and j undergo a fixed average transfer delay Dij .

Net Profit. The net profit that i earns per time unit is

Pi(�i) = Ri(�i)� Ei(�i). (6)

IV. CLOUD FEDERATION POLICIES

Our cloud federation model is based on the ability of each
CSP to forward part of its incoming traffic stream of tasks to
other CSPs within the federation. Therefore, the forwarding
policy of each CSP is considered as its strategic leverage. The
objective of a CSP for joining the federation may vary, and
thus a CSP may have incentives to act either cooperatively or
selfishly. We investigate three different modes under which the
CSPs can federate:(i) the strong, (ii) weak and (iii) elastic
federation modes. Each mode differs from others either in
the level of private information that each CSP should make
available to other CSPs or in the cooperation level of CSPs
that may have common or conflicting federation objectives.

A. Model
We consider a set N of N = |N | CSPs, and for each

CSP i 2 N we define variables ↵ij for j = 1, .., N that
determine the portion of its incoming tasks that CSP i forwards
to a CSP j. Therefore, our global forwarding policy is a
N ⇥ N dimensional matrix A, whose entries ↵ij determine
the forwarding policy of all CSPs. We use vectors ai and a0i
to denote the i-th row and i-th column of A respectively.
The aggregate rate of tasks that CSP i forwards to others
is

P
j2N\{i}

↵ij�i, while the average rate of tasks that CSP i

receives from other CSPs is
P

j2N\{i}
↵ji�j .

Fig. 1 depicts our federation model for N CSPs. We assume
that the portion of tasks that are transferred from a CSP to
another, experiences an additional delay due to the intervening
Internet links between their datacenters. Therefore, for each
pair of CSPs i, j 2 N we define an average communication
delay Dij . This delay is understandably exogenous to the
system of CSPs. Also, we assume that the tasks that arrive

in all CSPs belongs to the same service class and thus have
the same mean number of operations, L, per task.

In our model, the task arrival rate at the input of each CSP’s
queue depends on the forwarding policy of other federated
CSPs. Therefore, the ultimate arrival rate of tasks in the queue
of CSP i depends on values of i-th column of matrix A (i.e.
on vector a0i) and is defined as �

0
i(a

0
i) =

P
j2N

↵ji�j . Thus, the

average completion time of the tasks that are served by the
infrastructure of CSP i is

di(a
0
i) =

1

µi � �

0
i(a

0
i)
. (7)

A portion of the task stream that arrives in a CSP is
served by its own infrastructure, while other portions may be
forwarded to other CSPs. Hence, the average completion time
of tasks coming from the customers of CSP i depends on
the average delay experienced at other CSP queues. Thus the
average task completion time for customers of CSP i depends
on all columns of matrix A and is defined as:

Ti(A) =

X

j2N
↵ij

�
dj(a

0
i) +Dij

�
. (8)

Note that Dii = 0. At this point, it is important to stress the
difference between Ti(·) and di(·):
di(·) the average completion time for tasks that are served

by i’s infrastructure, including tasks originating from
customers of i and tasks from other CSPs’ customers.

Ti(·) the average completion time of tasks that are generated
from customers of CSP i, regardless of whether they are
ultimately served by CSP i or by other CSPs.

In Section III a complete characterization of a single CSP
is provided, however we need to slightly revise our model
in order for it to be applicable in the federation. Now,
the power consumption of i’s infrastructure is affected by
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forwarding policies of CSPs. Thus, the power consumption
of i’s infrastructure is given by

Wi(a
0
i) = W0,i +

�
W1,i �W0,i

�
�

0

i(a
0
i)

µi
. (9)

Accordingly, the energy cost per unit of time is defined as

Ei(a
0
i) = Wi(a

0
i) Zi. (10)

The customers of CSP i should be charged based on Ti(·)
rather than di(·) because different tasks may be served from
different CSP queues. Hence, the pricing function becomes
pi(A) =

�i

Ti(A)Qi, and thus the revenue per unit of time is

Ri(A) = �i
�i

Ti(A)

Qi. (11)

Finally, the generated profit per unit of time is given by

Pi(A) = Ri(A)� Ei(a
0
i). (12)

B. Strong Federation
All CSPs that participate in a strong federation comply

to certain cooperation rules that have been agreed a priori.
These rules include: (i) cooperation on exchanging private
information, i.e. the values of their computational capacity
Ci and average request load �i, (ii) agreement on the com-
mon objective of total federation profit maximization (iii)

cooperation on defining the appropriate policy for sharing the
total profit incurred from federation, and (iv) commitment to
always serve the forwarded tasks of other federated CSPs.

Total Profit maximization. The CSPs cooperate and jointly
decide the forwarding policies A that maximize the total
federation profit. The globally optimal forwarding policy A⇤

is derived by solving the total profit maximization problem,

argmax

A

P
i2N

Pi(A)

s.t. ↵ij � 0 , 8i, j 2 N ,P
j2N

↵ij = 1 , 8i 2 N ,

�

0

i(a
0
i) < µi , 8i 2 N .

(13)

The second constraint captures the splitting of CSP i’s task
traffic across others. The third constraint is due to stability in
the queues of each CSP. We can solve this non-linear problem
by applying standard optimization methods, i.e. formation of
the Lagrangian and statement of the necessary and sufficient
KKT conditions that should be satisfied for optimality.

Profit Sharing Policies. Our problem formulation guar-
antees that under the optimal A⇤, the total federation profit
is maximized. Thereafter, in the worst case scenario, i.e. in
A⇤

= I (Identity matrix), the total profit of federation equals
the aggregate profit of CSPs in standalone operation. By stan-
dalone, we mean that each CSP serves only the tasks coming
from its customers. However the individual profit may in fact
deteriorate for one (or more) CSPs due to task forwarding
actions. Specifically, the CSPs that only receive forwarded
tasks may have loss because the extra workload will increase
their energy cost due to the higher infrastructure utilization.

As a result, these CSPs may be unwilling to comply with the
federation, unless some rule is applied for the elimination of
their losses. Since the total profit of the federation exceeds
the aggregate profit of CSPs in the standalone mode, CSPs
that only forward tasks definitely have higher profit than
before, thus they are able to compensate others. Therefore,
the CSPs have to reach an agreement for the fair sharing of
total generated profit that satisfies all of them.

Next, we present two cooperative profit-sharing policies that
serve the objective above. In the first policy, the profit share
that a CSP receives depends both on its standalone profit and
on the percentage of total forwarded tasks that it forwards or
receives. In the second policy, we determine the profit that
a CSP should get based on its marginal contribution in the
federation by making use of Shapley value notion [19].

1) Interaction driven profit-sharing: In this approach, a
CSP i gets at least the profit it had in standalone operation,
while the extra profit generated from the federated operation is
proportionally shared among N CSPs based on the percentage
of forwarded tasks that each of them forwarded or received.
We define the extra generated profit PF (A⇤

) by subtracting
the aggregate profit of CSPs in the standalone operation from
the total profit of federation

PF (A
⇤
) =

X

i2N
Pi(A

⇤
)�

X

i2N
Pi(I). (14)

where Pi(I) denotes the profit of CSP i in standalone opera-
tion. Consequently, the share of CPS i is determined by:

⇠i(A
⇤
) =

|�0i(a0⇤i )� �i|P
j2N

|�0j(a0⇤j )� �j |
PF (A

⇤
) + Pi(I), (15)

where |�0
i(a

0⇤
i )��i|P

j2N
|�0

j(a
0⇤
j )��j |

is the proportionality parameter which

defines that a CSP who forwards or receives more tasks
compared to another, will receive proportionally larger share
of the extra generated profit.

2) Shapley value driven profit-sharing: Shapley value has
been widely used in coalitional game theory applications as
a mechanism for sharing total utility in a fair manner. A
characteristic function �(·) measures the benefit of a coalition,
also called the worth of coalition. In our approach, we take as
characteristic function the total profit that is generated from
the federated operation of a given set of CSPs. For instance,
the worth of coalition �(·) for the set of N CSPs is

�(N ,A) = max

A

X

i2N
Pi(A), (16)

where the solution is obtained by (13). For a federation of
N CSPs, the Shapley value of each CSP is obtained by
calculating its average marginal contribution in all possible
sub-federations S ✓ N . Therefore, we need to know the worth
of coalition �(S,AS) for all possible subsets of CSPs S . Note
that S = |S| and AS is the corresponding S ⇥S dimensional
matrix of forwarding policies. In order to find the worth of
subset S , we have to solve the relevant optimization problem
(13) for all possible such subsets.
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Assuming that S ✓ N \ {i}, the marginal contribution of
CSP i when it joins a sub-federation S is defined as

MCi(S,AS , �) = �(S [ i,AS[i)� �(S,AS) (17)

Consequently, the profit share of a CSP i in the federation of
N CSPs is given by its Shapley value defined as

'i(N ,A) =
X

S✓N\{i}

|S|!
�
N � |S|� 1

�
!

N !
MCi(S,AS , �) , (18)

where 'i(N ,A) denotes the estimated marginal contribution
of CSP i over all possible subsets of S .

Remark I. The two profit-sharing policies differs on how
they perceived the level of a CSP’s contribution. In interaction
driven policy the extra profit is distributed only among the
CSPs that are involved in forwarding actions of optimal policy,
either as source or destination. On the other hand, Shapley
value is less tight since it takes also into account the potential
contribution of a CSP in all possible sub-federations. For more
than two CSPs the policies may lead to totally different result.

C. Weak Federation

Weak and strong federation both require a level of com-
mitment for each CSP in serving the requests forwarded to
it by others. However, in weak federation the CSPs do not
share the same objective any more, i.e. the maximization of
total profit. Each of them determines its individual forwarding
policy aiming to maximize its net profit, and thus a non-
cooperative game arises. Since the CSPs have conflicting
objectives, it is not sufficient to define the individual profit of
each CSP as its payoff function as if the CSP were standalone.
Otherwise, a selfish CSP would be able to outsource tasks
without cost, taking the game to an equilibrium point where
one or more CSPs may have less profit compared to that in
their standalone operation. As a result, CSPs that undergo
losses may be unmotivated to participate. In order to tackle
this participation constraint and to simultaneously achieve a
fair allocation of profits, it is announced to CSPs that their
profit in federation is determined by a fair contribution-based
profit sharing rule, namely their Shapley value. Then the CSPs
are left alone to choose their own forwarding policies.

Non-cooperative Game. The set of players in this game is
N = (1, 2, ..N

�
. The individual forwarding strategy of a CSP

i is defined by the entries of i-th row of forwarding matrix A,
thus the set of strategies of CSPs is A = (a1,a2, ...,aN ). Note
that A contains the same elements as A. We define by ai the
strategy of CSP i, and by a�i the strategies of all other CSPs
except i. The payoff of its CSP in the game is determined by
its Shapley value, thus the set of payoffs under a set of given
strategies A is ' = ('1(N ,A),'2(N ,A), ...,'N (N ,A)).

The game starts with each CSP operating in the standalone
mode, where A = I. In every step of the game, a CSP i takes
as input the current forwarding policies of other CSPs a�i

and determines its best response. The best response of CSP i

is to select a forwarding policy ai that maximizes its payoff
'i(N ,ai,a�i). Therefore, i determines its best response by

solving the following optimization problem:

argmax

ai

'i(N ,ai,a�i)

s.t. ↵ij � 0 , 8j 2 N ,P
j2N

↵ij = 1,

�

0

i(a
0
i) < µi.

(19)

In order to calculate its Shapley value, a CSP has to com-
pute its marginal contribution in all possible sub-federations
S ✓ N . For the moment, we assume that this information is
available and the game is played only for the full set N and
not for subsets S . At the end of this paragraph we elaborate on
how the marginal contribution of CSP i in each S ✓ N \ {i}
can be obtained. The game continues until the system reaches
a Nash equilibrium (NE) A⇤, where 8i 2 N and for every
possible strategy ai, 'i(N ,a⇤i ,a

⇤
�i) � 'i(N ,ai,a⇤�i).

Claim. Given a set of forwarding strategies A. If CSP i

applies a forwarding strategy a⇤i that maximizes its payoff
under Shapley value objective function, a⇤i is globally optimal.

Proof: Given that under strategy a⇤i the 'i(N ,a⇤i ,a
⇤
�i) of

CPS i is maximized. Due to strong monotonicity of Shapley
value [19] MCi(N ,a⇤i ,a

⇤
�i, �) is also maximized. From (17),

MCi(N ,a⇤i ,a
⇤
�i, �) is maximized when the total profit of

subset that i joins is maximized. Consequently, all CSPs adapt
their forwarding policies in a such way that the total profit of
federation is maximized.⌅

Corollary. Under Shapley value payoffs the set of individu-
ally optimal forwarding strategies A⇤ is a Nash Equilibrium.

Proof: We assume that in a step of the game all CSPs have
chosen their optimal forwarding strategies A⇤ that according to
our Claim are also globally optimal. We change the strategy
of CSP i from a⇤i to ai, and we let the game continue. In
the next step, CSP i changes back its strategy to a⇤i in order
to maximize its payoff. Suppose that A⇤ is not a NE, there
exist a CSP i that by changing its strategy to ai can achieve
'i(N ,ai,a⇤�i) > 'i(N ,a⇤i ,a

⇤
�i). However, since a⇤i 2 A⇤

this is a contradiction.⌅
Remark II. In order to determine its best response in

previously presented game, each CSP should calculate its
Shapley value based on its marginal contribution in all sub-
federations S ✓ N . There are two alternatives to obtain
this information: (i) The CSP plays recursive non-cooperative
games as the above one for all the possible sub-federations. It
starts playing these games from the smallest to largest subset,
and the output of each game is used as input to the larger ones.
(ii) Same as in section IV-B2, the CSP solves the relevant
global optimization problem (13) for all subsets S and uses
the results as input on determination of its best response in
(19). Note that the second approach is less complex because
we only have one game, however it has the drawback that
CSPs should reveal their private information as done in strong
federation.

D. Elastic Federation
The weak federation does not give CSPs the freedom to

select their objective function. In this section, we propose the
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elastic federation where CSPs are free to tune their level of
selfishness in the federation, and thus make a choice on their
objective function. The elastic federation does not require any
cooperation of CSPs on exchanging private information or on
deciding a fair profit sharing policy. Each CSPs advertises
a price that will charge all other CSPs for serving each
forwarded task. Given these, each CSP decides its individual
forwarding policy aiming to maximize its profit. Again, the
CSPs have conflicting objectives and thus a non-cooperative
game arises. However, by setting an arbitrary price per task,
there is no guarantee that in the Nash equilibrium point the
individual profit of each CSP will be better than its profit in
standalone operation. Thus, we provide a rule for computing
prices that does attain this goal.

Inter-CSP pricing rule. This rule guarantees that each CSP
i sets a price that does not violate the federation participation
constraint, i.e. CSP’s i profit does not decrease due to federa-
tion. This is achieved by setting a lower bound on the price of
each asking. This bound is determined based on an estimate
of the negative impact that a forwarded task can have on the
destination CSP’s profit. In addition, the pricing rule gives
CSPs the freedom to be as aggressive as they wish on the
selection of price. In particular, CSP i sets the price per task
by following the two steps below:

1) Lower bound of price: Given that the tasks arrival rate of
CSP i in standalone operation is �i, we estimate the profit loss
that a CSP would have by accepting to serve free of charge
a number of µi � �i more tasks so as to reach utilization
factor equal to 1. The profit is affected both by the increased
energy consumption cost and by QoS degradation that brings
revenue losses due to price reduction. When the utilization
factor reaches 1, the average completion time di ! 1,
thus the price per task (4) becomes zero and the revenue is
zero. Therefore, the revenue loss that a CSP can have equals
to its revenue in standalone operation Ri(�i). On the other
hand, the additional energy cost for serving the number of
additional tasks µi��i is given by subtracting its energy cost
in standalone operation from the energy cost that it would
have in utilization level 1. Thus, the energy loss is given by
Ei(µi) � Ei(�i). Consequently, the profit loss of CSP i for
accepting µi � �i more tasks without charging is given by
Ri(�i) + Ei(µi) � Ei(�i). Consequently, we can estimate
the empirical per-task average negative impact by dividing
the profit loss among the number of possible additional tasks,
µi � �i. Then, CSP i can set a lower bound on price xi(�i)

per task that covers its profit loss, where

xi(�i) =
1

µi � �i

⇣
Ri(�i) + Ei(µi)� Ei(�i)

⌘
. (20)

2) Selfishness aware pricing: Having set the lower bound
in the price, we now introduce the selfishness of each CSP
in price setting, i.e. the level of its intrinsic desire to gen-
erate more revenue. The selfishness level of each CSP i is
determined by a selfishness factor ✓i 2 [0, 1], where ✓i = 0

means that CSP i is not selfish and acts as being federation-
friendly, and ✓i = 1 implies that CSP i is extremely selfish.

An extremely selfish CSP i would charge each task with a
price that corresponds to the price paid by its customers in
standalone operation, i.e. the price given from (4) for the
current �i. On the contrary, a federation-friendly CSP would
only charge a price xi(�i) per task.

In practice the parameter ✓i determines how the extra
generated profit from a forwarded task is shared among the
source and destination CSPs. If the destination CSP i is totally
selfish, it gets all the extra generated profit; on the other hand if
i is totally friendly, all the generated profit is gathered from the
source CSP. However, being extremely selfish may discourage
others from forwarding tasks toward i and select other more
friendly destinations. Therefore, higher selfishness does not
necessarily mean higher revenue. Based on the above analysis,
the final price per task is determined as

!i(�i) = xi(�i) + ✓ipi(�i), (21)

where pi(�i) is the QoS-dependent pricing function (4). In
this paper, we assume that ✓ is fixed and same for all CSPs.
The selection of optimal ✓i per CSP gives rise to new game-
theoretic aspects that we plan to study in the near future.

Non-cooperative Game. In elastic federation the payoff of
a CSP i includes its individual profit, the monetary amount
that i receives by charging others for serving their tasks, and
the monetary amount that i pays to others for serving tasks of
its customers. Hence, the payoff of CSP i is defined as

 i(A) = Pi(A) +

X

j2N\i

↵ji�j!i(�i)� ↵ij�i!j(�j). (22)

Same as in weak federation, the set of players is N and their
strategies are A = (a1,a2, ...,aN ), but now their payoff set is
 = ( 1(A), 2(A), ..., N (A)). The best response of CSP i

is given by the solution of argmaxai  i(ai,a�i) and under
the same constraints as (19). The game stops when the CSPs
converge to a Nash equilibrium point. The pure NE existence
is confirmed by Debreu-Glicksberg-Fan’s theorem [20].

V. NUMERICAL EVALUATION

A. Simulation setup
We focus our attention to the scenario of two CSPs in

order to better understand and interpret the obtained results.
We assume that the tasks that arrive in both CSP queues
require an average of L = 200 Giga operations in order
to be executed. We assume that both CSPs are symmetric
with respect to computational capacity of their infrastructures
C = 2 Tera operations per second. This capacity corresponds
about 100 servers. The additional communication delay D for
the forwarded tasks is taken to be an order of magnitude lower
than tasks completion time in each CSP queue, D = 0.01. For
the power consumption, we take the idle and total powers as
W0 = 60 KWatt and W1 = 400 KWatt. Both CSPs pay the
same price to their electricity provider, namely Z = 2.7 ·10�5

$/KWatt·sec. Further, they both charge their customers accord-
ing to the same pricing function, with same maximum price Q

$/task. In our experiments, we select the value of Q by taking
as input the electricity price Z. In particular, given the price
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Fig. 2. Total profit of CSPs under different operation modes, for �2 = 7 and
�1 2 [1, 9]

Z, we find the value of Q for which the profit of CSP becomes
zero when the utilization factor is 0.99. This guarantees that
both CSPs in standalone operation will not have negative profit
for any value of utilization up to 99%. The price per task in our
setup is Q = 0.11 $/task. For the selfishness factor of CSPs in
the case of elastic federation, we try out different combinations
of ✓ values in the interval [0, 1]. In all experiments, we assume
that CSP 2 has a fixed rate of incoming tasks �2 and we set
values for �1 in the feasible range of values [1, 9.9], with a
step of 0.1. We run this type of experiment for different fixed
values of �2 from 1 to 9.9.

B. Numerical Results

Total Profit. Fig. 2 shows the total profit under all operation
modes, for fixed value of �2 = 7 and �1 2 [1, 9.9]. The results
reveal that all three federation modes can achieve higher or at
least the same total profit compared to the aggregate profit of
CSPs in standalone operation. The total profit of strong and
weak federation appears to coincide in all possible values of
�1 and �2. This happens because of Shapley value’s selection
as a CSP’s payoff in weak federation, since Shapley value
urges each CSP to act for the benefit of all federation. In
Fig. 2 we can observe that for �2 = 7 and for low load �1,
strong and weak federation achieve a profit that is around 80�
200% more than the aggregate profit of CSPs in the standalone
operation. For medium and high load, the benefit of strong
and weak federation seems to diminish, while for �1 = �2,
the total profit is equal to the one of standalone operation.
Note that if the value of �2 were fixed to 9.9, the benefit of
federation would be even higher for low and medium values
of �1; about 100�400% more than standalone. Consequently,
the more diverse the CSPs’ infrastructure utilization, the more
pronounced the benefit of strong and weak federation is.

The total profit of elastic federation is strongly dependent
on the selfishness factors ✓ of the federated CSPs. The results
in Fig. 2 show that the total profit of elastic federation for
✓ = 0.5 is lower but close enough to the one of strong and
weak federation. Further, the results reveal that when ✓ is very
close to or equal to 1, the extremely selfish CSPs set high
prices and therefore the benefit of federation is eliminated.
On the other hand, when ✓ equals to zero the total profit of
elastic federation coincides with the total profit of strong and
weak federation. Finally, the results show that for same value

Fig. 3. Optimal forwarding policies of CSPs under different operation modes,
for �2 = 7 and �1 2 [1, 9]

of ✓, the benefit of elastic federation is relatively closer to
strong and weak in high level of utilization, e.g. for �1 = 9.9

and �1 = 7 in Fig. 2.
Forwarding strategy. Fig. 3 shows the optimal forwarding

policy of both CSPs under different federation modes. Inter-
estingly, in the optimal solution at least one of ↵12 and ↵21

equals to zero. Further, the non-zero value always refers to
the most utilized CSP. Strong and weak federation result to the
same optimal pair (↵⇤

12,↵
⇤
21). In elastic federation, the value of

non-zero ↵ parameter is affected by the selfishness factor ✓ of
the less loaded CSP which eventually receives the forwarded
tasks. If ✓ = 0, then the optimal pair (↵

⇤
12,↵

⇤
21) of elastic

federation is the same as in strong and weak federation. On the
other hand, if the ✓ = 1, the source CSP has no benefit from
forwarding any task. Thereafter, the optimal pair of strong
and weak federation is the upper bound for the optimal for-
warding strategy of elastic federation. Further, we conducted
additional numerical evaluations by setting different values
in the communication delay D. The numerical results reveal
that as the communication delay increases, the CSPs follow a
more conservative forwarding policy and when D exceeds a
certain value, the optimal pair becomes (↵

⇤
12,↵

⇤
21) = (0, 0).

Consequently, network delay is an important parameter for the
effectiveness of federation.

Individual Profit. Fig. 4 and Fig. 5 show the individual
profit of both CSPs under all possible operation modes. The
individual profit of each CSP in all federation modes is higher
or at least equal to its profit in standalone operation. The
individual profit of a CSP under the interaction-driven profit
sharing policy of strong federation equals its profit share
when the Shapley value-driven policy is applied. However,
this would be different in an experiment with more than two
CSPs. In weak federation the individual profit of each CSP
equals to its profit share in the strong federation. This happens
because of Shapley value selection as payoff function of each
CSP in the game. The individual profit of CSPs in elastic
federation varies and is again related to their selfishness factor.
In particular, for ✓ = 0 a CSP that forwards a number of
tasks gain all the extra revenue generated from that action,
while the destination CSP only cover its profit loss. As ✓

increases the destination CSP demands a share of this extra
generated revenue, therefore the profit share of destination
CSP increases, and that of source CSP decreases. There are
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Fig. 4. Individual profit of CSP 1 under different operation modes, for �2 = 7
and �1 2 [1, 9]

non-zero values of ✓ where either CSP 1 or CSP 2 earns higher
individual profit than in strong federation, however this cannot
hold for both CSPs simultaneously because their aggregate
profit cannot exceed the total profit of strong federation. A
value of ✓ that achieves individual profit for both CSPs that
are close to their profit in strong federation varies and depends
on the input loads of CSPs. Consequently, the value of ✓ is
debatable and needs further investigation.

QoS level. The results show that all federation modes out-
perform standalone operation and achieve a close-to-optimal
QoS. The strong and weak federation achieves the same
average task completion time, and further their performance
is extremely close to the average completion time of a QoS-
optimal federation. In elastic federation, for ✓ = 0 the average
task completion time equals the one of strong and weak
federation, while for ✓ = 1 elastic federation has the same
performance as standalone operation.

VI. CONCLUSIONS

In this paper, we have presented models and policies for the
formation of service-oriented cloud federations. Our models
guarantee the economic sustainability of cloud federations
both for cooperative and non-cooperative environments. The
results show that in strong and weak federations the net profit
of federation is maximized, while the offered QoS is very close
the optimal one. The elastic federation gives CSPs the freedom
to select their selfishness level. By selecting the appropriate
selfishness level, a CSP may earn a higher individual profit
than in a strong and weak federation, but the total profit of
federation decreases. However, an extremely high selfishness
level may deter the generation of additional individual profit.

In the present work, the forwarding policy of each CSP is
consider as its strategic leverage. We plan to extend our work
by investigating federation modes where the strategies of CSPs
will be expressed through both forwarding policy and pricing.
We also plan to study different types of federation based on an
alternative model, where the federation is instantiated through
computational capacity sharing instead of sharing tasks.
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