
Connectivity-aware Virtual Network Embedding
Nashid Shahriar⇤, Reaz Ahmed⇤, Shihabur Rahman Chowdhury⇤, Md. Mashrur Alam Khan⇤, Raouf Boutaba⇤,

Jeebak Mitra†, and Feng Zeng†
⇤David R. Cheriton School of Computer Science, University of Waterloo

{nshahria | r5ahmed | sr2chowdhury | mmalamkh | rboutaba}@uwaterloo.ca

†Huawei Technologies
{jeebak.mitra | zengfeng137140}@huawei.com

Abstract—The problem of ensuring virtual network (VN) con-
nectivity in presence of multiple link failures in the substrate net-
work (SN) is not well investigated in Network Virtualization (NV)
literature. We name this problem as Connectivity-aware Virtual
Network Embedding (CoViNE). Solving CoViNE will enable a VN
operator to perform failure recovery without depending on the
SN provider, similar to the IP restoration mechanisms in IP-
over-WDM networks. There are two steps in solving CoViNE: i)
finding the virtual links that should be embedded disjointly, and
ii) finding a substrate resource efficient embedding that ensures
the virtual link disjointness constraint. We present two solutions
to the CoViNE problem. The first solution uses a heuristic to
compute the disjointness constraint, while an optimization model
is used for VN embedding. The second solution, in contrast, uses
heuristic for both the steps, and thus can solve larger instances
of the problem. We compare our solutions with a cut set based
approach that ensures VN connectivity for a single substrate link
failure. Evaluation results show that our heuristics allocate ⇠15%
extra resources on average compared to the cut set based optimal
solution, and executes two to three orders of magnitude faster
on the same problem instances.

I. INTRODUCTION

Perceived as a key enabling technology for the future
Internet, Network Virtualization (NV) offers efficient resource
sharing by embedding multiple Virtual Networks (VNs) on a
single Substrate Network (SN). One of the major challenges
in NV is VN embedding (VNE) [1], i.e., to find a mapping
of the virtual nodes and links onto substrate nodes and paths,
respectively without violating physical resource constraints.

Substrate resources may fail. Surviving failures is of
paramount importance, since a single failure in SN may result
into multiple failures in the embedded VNs. Finding a VN
embedding that can survive failures in SN is known as the
Survivable Virtual Network Embedding (SVNE) problem [2].
Majority of the works on SVNE focus on link failures, as
they occur more frequently than node failures [3]. SVNE
approaches, in general, allocate redundant bandwidth for each
(or selected) virtual link(s), either proactively while computing
the embedding or reactively after a failure occurs [4].

In this paper, we focus on a different form of surviv-
ability than traditional SVNE, which we call Connectivty-
aware Virtual Network Embedding (CoViNE). Our goal is
to find a VN embedding that can ensure connectivity in a
VN topology in presence of multiple substrate link failures. In
contrast, SVNE approaches focus on guaranteeing virtual link
demand in presence of failure(s). SVNE approaches assume

that SN-providers hide physical failures by over-provisioning
a fraction of each virtual link’s bandwidth, which in turn
incurs additional cost to VN-operators. In contrast, we ensure
VN connectivity, which is a weaker form of survivability
incurring lesser resource overhead and reduced cost of leasing.
We intend to empower a VN-operator to handle link failures
according to its internal policy, e.g., customer priority. A VN-
operator can plan and over-provision different amounts of
bandwidth in each virtual link to handle failures according
to its needs, instead of blindly relying on the SN-provider that
over provisions fixed bandwidth for each virtual link as in
SVNE approaches. Connectivity aware embedding will enable
a VN-operator to reroute traffic on failed virtual links, which
can be done using any IP link restoration protocol.

Although our focus is NV, the CoViNE problem is
equally applicable in IP-over-Wavelength-division multiplex-
ing (WDM) domain. The problem of ensuring IP layer con-
nectivity in presence of a single WDM link failure is known as
link survivable mapping. Two variations of the problem have
been studied in IP-over-WDM literature [5]: i) weakly link
survivable mapping (WLSM) ensures IP-layer connectivity; ii)
strong link survivable mapping guarantees both connectivity
and bandwidth of the failed IP link(s) in presence of a single
WDM link failure. WLSM, which considers single link failure,
is merely a special case of CoViNE.

Despite being neglected in the literature, we focus on multi-
ple (more specifically up to double) link failures, since it is not
a rare event in large transport networks. First, repairing a failed
link (e.g., due to fiber cut) can take long time [3]. Chances of
a second link failure is not negligible given the high Mean-
Time-to-Repair (MTTR). Second, some inter-datacenter links
destined to different places may be physically routed together
for some distance, and a backhaul failure may cause multiple
physical links to fail [6]. It can be derived from the statistics
in [7] that ⇠12% of the failures in inter-datacenter transport
networks are double link failures in SN.

There are two conditions for surviving multiple (say, k)
substrate link failures: i) the VN topology must be k + 1

edge connected, and ii) the embedding algorithm must ensure
at least k + 1 edge-disjoint paths in SN between every pair
of virtual nodes. The first condition can be satisfied by
augmenting the VN with new links [8]. A naive way to satisfy
the second condition is to embed all the virtual links of a
k + 1 edge connected VN onto disjoint paths in the SN.
However, this is an NP-complete problem [9], and imposes anISBN 978-3-901882-83-8 c

� 2016 IFIP

46Networking 2016

unsatisfiable number of disjointness constraints. Existing cut
set based approaches suffer from poor scalability [10], [11].
Furthermore, most of the heuristic schemes either focus on
single link failure [12], [13], or fail to deal with arbitrary VN
topologies [14]. The approach in [8] proposes a generalized so-
lution for multiple link failures. This solution requires a large
number of virtual links to be embedded disjointly, hence, is not
resource efficient. Therefore, we propose novel solutions that
embed arbitrary VN topologies with near-optimal disjointness
constraints to survive in presence of multiple link failures.
Our solutions augment a VN with minimal number of virtual
links while preserving the topological structure of the VN. The
major contributions of this paper are:

1) We explore an alternate survivability model, CoViNE,
requiring significantly less backup resources than tradi-
tional survivability approaches in SVNE literature.

2) We present two generalized solutions to the CoViNE
problem dealing with multiple substrate link failures.
The first solution builds upon heuristic for augmenting
the VN and computing the virtual links that should be
embedded disjointly, and an optimization model for VN
embedding adhering to the disjointness requirement. The
second solution, in contrast, uses heuristic for both the
steps and thus can solve larger instances of the problem.

3) Through extensive simulations, we evaluate the optimal-
ity and the time-complexity of the proposed solutions. In
addition, we show how CoViNE can reduce the impact
of failure in single and double link failure scenarios.

The rest of this paper is organized as follows. We present the
related literature in Section II. In Section III, we present the
system model and problem statement. A theoretical foundation
of CoViNE is laid in Section IV. A heuristic algorithm for
computing disjointness constraint is presented in Section V.
An optimization model and a heuristic algorithm for VN
embedding are presented in Section VI and Section VII,
respectively. We present the simulation setup and evaluation
results in Section VIII. Finally, we conclude with future
research directions in Section IX.

II. RELATED WORKS

A number of approaches exist in the literature for survivable
VN Embedding. However, these approaches mostly focus
on ensuring the same end-to-end QoS guarantee after single
SLink failure [2], [15], [16], [17]. A number of research works
in IP-over-WDM literature focus on ensuring connectivity of
IP links under WDM link failures [10], [13], [14]. In this
section, we briefly describe the most prominent approaches in
literature, and contrast them with our solutions for CoViNE.

Modiano et al. [10] presented an ILP formulation for
survivable VLink routing on WDM SN in presence of single
SLink failure. Their formulation explores exponential number
of cut sets in the VN and routes all the VLinks of a cut set on
disjoint WDM paths. Todimala et al. [11] improved the ILP
formulation by identifying polynomial number of primary cuts
in a VN. The authors in [18] extended the Max-flow min-cut
theorem for multi-layer networks and proposed approximation

algorithms for VLink routing, while maximizing the minimum
cross layer cut. A major drawback of these approaches is
that they do not scale well with network size, because of the
inherent complexity of LP-solvers.

Several heuristic based approaches have been proposed
for survivable VN embedding in large networks. Kurant et
al. [14] proposed SMART, a framework for finding survivable
mapping of a VN by repeatedly picking cycles of a VN and
finding survivable mappings for the cycles. SMART can ensure
connectivity under double SLink failures for VNs having a
few special structures, hence, has limited applicability. An
extension to SMART has been proposed by [12] that exploits
the duality between circuits and cuts in the VN. Zhou et
al. [13] proposed an algorithm that identifies a set of spanning
trees of the VN and computes a shortest-path based routing of
the VLinks such that at least one of the spanning trees survives
after an SLink failure. In contrast, our solution is generic, i.e.,
does not assume any specific property of the VN and SN, and
can ensure connectivity in presence of multiple SLink failures.

Several research works from IP-over-WDM literature ensure
survivability through IP link augmentation [12], [13], [19],
[20]. However, all of these works focus on the single failure
resiliency and cannot be generalized to multiple failures. In
contrast, Thulasiraman et al. propose an augmentation strategy
for ensuring survivability under k SLink failures [8]. They
propose to augment VLinks until a complete subgraph of k+1

VNodes is constructed and the remaining VNodes are k + 1

edge connected to the subgraph. Their solution maps any k
of the VLinks incident to a VNode onto disjoint paths. This
approach requires higher number of VLinks to be augmented
and more disjointness constraints on the SN than our approach.

III. PRELIMINARIES

The subsequent sections build upon the background, defini-
tions, and assumptions presented in this section.

A. System Model

1) Substrate Network: We represent the Substrate Network
(SN) as an undirected graph, G = (V,E), where V and E
denote the set of Substrate Nodes (SNodes) and Substrate
Links (SLinks), respectively. The set of neighbors of an SNode
u 2 V is denoted by N (u). Bandwidth capacity of an SLink
(u, v) 2 E is b

uv

, while the cost of allocating one unit of
bandwidth in (u, v) is C

uv

.
2) Virtual Network: A VN is represented as an undirected

graph ¯G = (

¯V , ¯E), where ¯V and ¯E denote the set of Virtual
Nodes (VNodes) and Virtual Links (VLinks), respectively. The
neighbors of a VNode v̄ 2

¯V is denoted by N (v̄). Each VLink
(ū, v̄) 2 ¯E has bandwidth requirement b

ūv̄

. Each VNode ū 2

¯V has a location constraint, L(ū) ✓ V , that denotes the set of
SNodes where ū can be embedded.

B. Design Choices

The first condition for surviving k SLink failures is that a
VN must be k+1 edge connected. However, if the input VN
¯G does not have such connectivity, we will need to augment

47Networking 2016

TABLE I
NOTATION TABLE

G = (V,E) Substrate Network (SN)
Ḡ = (V̄ , Ē) Virtual Network (VN)

Ĝ = (V̂ , Ê) k-protected VN

Ĝ
k

= (V̂
k

, Ê
k

) k-protected component of a VN Ḡ

Ĝ
k

� v̂ An expansion of Ĝ
k

towards v̂

�ûv̂ Conflicting set of a VLink (û, v̂)

�ûv̂

� Conflicting set of a VLink (û, v̂) during expansion

�Ĝ Conflicting set of a VN Ĝ

Quv A path between SNodes u and v in G

P ûv̂ A path between VNodes û and v̂ in Ĝ

Pûv̂ Set of edge-disjoint paths between û and v̂ in Ĝ

pûv̂
i

ith edge-disjoint shortest path from û to v̂ in Ĝ

P

Ĝk v̂ Set of edge-disjoint shortest paths from v̂ to Ĝ
k

¯G with additional VLinks. This augmentation can be done
in two ways: i) VLinks can be augmented between arbitrary
pair of VNodes to ensure k + 1 edge connectivity, which is
a well studied problem [19], [20]; ii) the other way is to
augment only parallel VLinks between adjacent VNodes in
¯G [12], [13]. Arbitrary augmentation can ensure k + 1 edge
connectivity by introducing minimal number of VLinks, but
this approach will change the input VN topology. Although
parallel VLink augmentation may not be minimal in terms of
resource usage, it does not change the input VN topology.
From VN user perspective, it is very important to preserve the
input VN topology. Hence, we opt for the second alternative,
i.e., to augment parallel VLinks only.

We use the term k-protected VN, ˆG = (

ˆV , ˆE), to represent
a VN that is made k + 1 edge connected by adding parallel
VLinks to an input VN, ¯G = (

¯V , ¯E). Here, ˆV =

¯V and
ˆE =

¯E [

˜E where ˜E is the set of parallel VLinks to be
added. Determining the capacity of the parallel VLinks (in ˜E)
as well as the amount of spare capacity to be reserved for the
input VLinks (in ¯E) in order to guarantee full bandwidth of
a failed VLink is a separate problem of its own [21]. In this
work, we assume that the capacity of a parallel VLink will be
the same as the capacity of the input VLink it augments.

C. Definitions

Definition 1. k-protected component: A k-protected compo-
nent of a graph ¯G is a multi-graph ˆG

k

= (

ˆV
k

, ˆE
k

), where
ˆV
k

✓

¯V , ˆE
k

=

¯E
k

[

˜E
k

, ¯E
k

✓

¯E, ˜E
k

✓

˜E and ˜E
k

is a set of
parallel VLinks augmented in such a way that simultaneous
removal of k arbitrary VLinks in ˆG

k

will not partition ˆG
k

.

Definition 2. Conflicting VLinks: Two VLinks are considered
as conflicting if they must be embedded on edge-disjoint
substrate paths in order to ensure k + 1 edge connectivity.

Definition 3. Conflicting set: A conflicting set of a VLink
(û, v̂), denoted by �ûv̂ , is the set of VLinks in ˆE those are
conflicting with (û, v̂). A Conflicting set of a VN ˆG = (

ˆV , ˆE),
denoted by �Ĝ, is defined as �Ĝ

=

[

8(û,v̂)2Ê

�ûv̂ .

D. CoViNE Problem Statement

Given an SN G = (V,E), a VN ¯G = (

¯V , ¯E), and location
constraints L(ū) for all ū 2

¯V find an embedding that
• provides a function f :

¯V ! V to map every VNode
ū 2

¯V to exactly one SNode u 2 V while satisfying the
location constraint and without any overlap, i.e., 8ū, v̄ 2

¯V ^ū 6= v̄ =) f(ū) 6= f(v̄) and 8ū 2

¯V f(ū) 2 L(ū),
• provides a function g :

¯E ! 2

E to map each VLink
(ū, v̄) 2

¯E to a substrate path Qf(ū)f(v̄) with sufficient
bandwidth to satisfy the VLink demand b

ūv̄

,
• ensures the connectivity in ¯G in presence of up to k SLink

failures in G,
• minimizes the total cost of embedding in terms of sub-

strate bandwidth consumption.

(a) Single Failure (b) Double Failure

Fig. 1. CoViNE examples

We illustrate CoViNE examples for different failure scenar-
ios in Fig. 1. In these examples, xyz is the VN and ABCD
is the SN. The arrow from a VNode to an SNode defines
node mapping and the dotted lines between SNodes define link
mapping. To survive single (k = 1) failure, the VN must be 2

edge-connected. Since xyz VN is already 2 edge-connected,
no augmentation is required. Fig. 1(a) shows an un-survivable
embedding (on the left) and a survivable embedding (on the
right) of the xyz VN. They differ in satisfying disjointness
constraints. The embedding on the left satisfies no disjointness
constraint, hence VLinks (x, y) and (y, z) share an SLink
(A,B). Upon the failure of (A,B), both VLinks fail, and
VNode y is disconnected from the rest of the VN. The
embedding on the right adheres to the disjointness constraints,
hence no sharing of SLinks is possible. Even though SLink
(A,B) and correspondingly VLink (x, y) fail, the VN remains
connected.

Fig. 1(b) exhibits the double (k = 2) failure scenario for
the same VN and SN topology. To survive double failures,
the VN must have 3 edge-connectivity which is absent in
the xyz VN. The embedding on the left demonstrates that
even an edge-disjoint embedding of the VN results in an un-
survivable embedding for double link failures due to the lack
of necessary edge-connectivity in the VN. For the embedding
on the right, the VN has necessary edge-connectivity through
augmentation of green colored VLinks, and embedding is
done adhering to the disjointness constraints resulting in a
survivable embedding. It is to be noted that for the augmented
VN on the right, not all the VLinks need to be disjoint with
each other, hence there are some sharing of SLinks.

48Networking 2016

a d

b c

e f

Fig. 2. The VN with only solid edges is the input VN, Ḡ. The VN with
both solid edges (Ē) and dashed edges (Ẽ) is the 2-protected VN, Ĝ. Any
subgraph of Ĝ having 3 edge connectivity is Ĝ2.

IV. PROBLEM FORMULATION

In this section, we propose a simple but efficient mechanism
for computing Conflicting set of a VN (§ IV-A). We also show
that this mechanism helps to transform a given VN ¯G to a k-
protected VN ˆG by augmenting parallel VLinks only (§ IV-B).

A. Conflicting Set Computation

In this subsection, we assume that the VNs are k-protected,
while the mechanism for transforming an arbitrary VN to a
k-protected VN is discussed in the next subsection. In order to
remain connected in presence of k SLink failures, the embed-
ding algorithm must ensure k + 1 edge connectivity between
SNodes f(ū) and f(v̄) for every pair of VNodes û 2

ˆV and
v̂ 2

ˆV of the k-protected VN ˆG. This can be achieved if the
VLinks of every edge-cut in ˆG are embedded on at least k+1

edge-disjoint paths in G. Since there are exponential number of
edge-cuts in ˆG and there are combinatorial number of ways of
choosing k+1 conflicting VLinks from an edge-cut in ˆG, the
number of possibilities for computing a conflicting set of ˆG is
enormous. However, an optimal conflicting set of ˆG is one that
ensures k+1 edge connectivity of the embedding of ˆG while
minimizing disjoint path requirement in the embedding. This
can be achieved by finding the minimum number of partitions
of the VLinks of ˆE such that the VLinks in a partition are not
conflicting with each other. Since the VLinks in a partition do
not impose any disjointness constraint, minimizing the number
of partitions will yield optimal conflicting set. Computing the
optimal conflicting set of a VN is NP-complete since it can
be reduced to the the well-known Minimum vertex coloring
problem.1 The following results provide a basis of our heuristic
algorithm for computing the conflicting set of a VN ˆG.

Theorem 1. ([22]) The size of the minimum edge-cut for two
distinct VNodes û, v̂ 2

ˆG is equal to the maximum number of
edge-disjoint paths between û and v̂ in ˆG.

According to Theorem 1, also known as Menger’s Theorem,
any pair of VNodes û and v̂ in ˆG will remain connected in
presence of k SLink failures, if at least one of the edge-disjoint
paths P ûv̂

i

2 P ûv̂ remains intact. This can be achieved by
mapping any k + 1 paths in P ûv̂ into k + 1 edge-disjoint
paths in the SN. There are a combinatorial number of ways of
choosing these k + 1 edge-disjoint paths between û and v̂. If
P ûv̂

1 = P ûv̂

1 , P ûv̂

2 ,, P ûv̂

k+1 is one possible combination cho-
sen to have edge-disjoint mapping, two VLinks (x̂, ŷ) 2 P ûv̂

i

and (ŵ, ẑ) 2 P ûv̂

j

, s.t. x 6= w and y 6= z, cannot share an

1Minimum vertex coloring is to color the vertices of a graph with a
minimum number of colors so that adjacent vertices are of different colors.

SLink in their mappings. Therefore, a VLink (x̂, ŷ) 2 P ûv̂

i

is conflicting with all other VLinks present in the paths in
P ûv̂

1 \ P ûv̂

i

, leading to |�x̂ŷ

| =

P
P

ûv̂
i 2Pûv̂

1 ^(x̂,ŷ) 62P

ûv̂
i

|P ûv̂

i

|.
For example, in Fig. 2, VNodes a and b will remain connected
in presence of 2 SLink failures if the VLinks on paths
P ab

1 = (a, b), P ab

2 = {(a, d), (d, c), (c, b)}, and P ab

3 =

{(a, c), (c, e), (e, d), (d, b)} are mapped to disjoint SN paths.
Hence, �ab

= P ab

2 [P ab

3 .
We now discuss some heuristics to reduce the above com-

putation. First, we can ensure connectivity in ˆG by ensuring
connectivity in a minimum spanning tree ˆT of ˆG. In this
case, we need to compute k + 1 edge-disjoint paths only
for the |

ˆV | � 1 VLinks in ˆT , as opposed to considering
all the VLinks in ˆG. For the VN in Fig. 2, k + 1 edge-
disjoint path computations are required for the VLinks in
ˆT = {(a, b), (a, c), (c, d), (d, e), (e, f)} instead of all the 12

VLinks in ˆG. Second, instead of arbitrarily picking k + 1

edge-disjoint paths from P ûv̂ , we can pick the first k + 1

edge-disjoint shortest paths between û and v̂. Thus, the size
of the conflicting set of a VLink (û, v̂) in ˆT becomes |�ûv̂

| =P
ik+1
pûv̂
i 2Pûv̂^(û,v̂) 62pûv̂

i
|pûv̂

i

|, where pûv̂
i

is the ith edge-disjoint
shortest path between two adjacent VNodes û and v̂. This
method yields smaller conflicting set �ab

= pab2 [pab3 , where
pab2 = {(a, c), (c, b)}, and pab3 = {(a, d), (d, b)} in Fig. 2.

Definition 4. Expansion Operator �: Given a k-protected
component ˆG

k

of a VN ˆG and a VNode v̂ s.t., v̂ 2

ˆV \

ˆV
k

and
9û 2

ˆV
k

, v̂ 2 N (û), we define ˆG
k

� v̂ as an expansion of ˆG
k

generated by adding v̂ and all the incident VLinks on v̂ from
any VNode in ˆG

k

. Mathematically,
ˆG
k

� v̂ = (

ˆV
k

[{v̂}, ˆE
k

[{(û, v̂)|û 2

ˆV
k

, û 2 N (v̂)})

Definition 5. EDSP P

Ĝkv̂: We define EDSP as a set of Edge-
Disjoint Shortest Paths P

Ĝkv̂
= {px̂v̂

i

} between ˆG
k

and a
VNode v̂ 2

ˆV \

ˆV
k

s.t. x̂ 2

ˆV
k

and all px̂v̂
i

terminate as the
first VNode x̂ in ˆV

k

is encountered, i.e., the only VNode from
ˆV
k

that is on px̂v̂
i

is x̂.

Observation 1: Using the expansion lemma, it can be
shown that ˆG

k

� v̂ is a k-protected component if and only
if there exists k + 1 edge-disjoint paths from ˆG

k

to v̂ in ˆG
[8]. Furthermore, it can be intuitively observed that in ˆG

k

� v̂,
any k+1 EDSPs in P

Ĝkv̂ will not contain a VLink from ˆE
k

.

Lemma 1. In an expansion ˆG
k

� v̂, the size of the con-
flicting set of a VLink (û, v̂) 2

ˆE \

ˆE
k

is |�ûv̂

� | =P
ik+1

pûv̂
i 2PĜkv̂^(û,v̂) 62pûv̂

i

|pûv̂
i

|, where û 2

ˆV
k

and v̂ 2 N (û).

Proof. For the embedding of ˆG
k

�v̂ on G to remain connected
in presence of k SLink failures, we need to satisfy two
conditions: i) at least k + 1 edge-disjoint paths from v̂ to ˆG

k

exist (i.e., |P

Ĝkv̂
| � k + 1), and ii) all of these paths are

embedded on k + 1 edge-disjoint paths in G. Therefore, the
VLink (û, v̂) is conflicting with all the VLinks in the first k+1

edge-disjoint shortest paths in P

Ĝkv̂
\pûv̂

i

, where (û, v̂) 2 pûv̂
i

.
This leads to |�ûv̂

� | =

P
ik+1

pûv̂
i 2PĜkv̂^(û,v̂) 62pûv̂

i

|pûv̂
i

|.

49Networking 2016

Theorem 2. In comparison to computing conflicting set �ûv̂

independently for a VLink (û, v̂) 2 ˆE, computing conflicting
set for (û, v̂) through the expansion ˆG

k

� v̂ will generate
conflicting sets of lesser or equal size.

Proof. Let’s consider two VNodes û 2

ˆV
k

and v̂ 2

ˆV \

ˆV
k

s.t. v̂ 2 N (û). When computed independently, the size of the
conflicting set of (û, v̂) is |�ûv̂

| =

P
ik+1
pûv̂
i 2Pûv̂^(û,v̂) 62pûv̂

i
|pûv̂

i

|.
On other hand, when we construct conflicting set through the
expansion, ˆG

k

� v̂, the size of the conflicting set of the VLink
(û, v̂) 2

ˆE \

ˆE
k

is |�ûv̂

� | =

P
ik+1

pûv̂
i 2PĜkv̂^(û,v̂) 62pûv̂

i

|pûv̂
i

| (as

proven in Lemma 1). In the beginning, when ˆG
k

contains only
one VNode i.e. | ˆV

k

| = 1, it is obvious that |�ûv̂

| = |�ûv̂

� |. For
|

ˆV
k

| > 1, consider x̂ 2

ˆV
k

s.t. 9pûv̂
i

2 P ûv̂ contains x̂ and
px̂v̂
j

2 P

Ĝkv̂ . Since pûv̂
i

contains x̂, according to the optimal
substructure property of shortest path, we get pûv̂

i

= pûx̂
i

||px̂v̂
j

,
assuming || is the path concatenation operator. Thus, |px̂v̂

j

| <
|pûv̂

i

| resulting into |�ûv̂

� | < |�ûv̂

|. If such an x̂ is not found,
we can assume x̂ = û and in that case px̂v̂

j

= pûv̂
i

yielding
|�ûv̂

� | = |�ûv̂

|. Hence, |�ûv̂

� | |�ûv̂

|.

As an example of Theorem 2, let us consider the VLink
(d, e) in Fig. 2 and the VN needs to survive against single
SLink failure. If we compute independently, we get �de

=

{(d, c), (c, e)}. When we compute through expansion ˆG1 � e
where ˆV1 = {a, b, c, d}, we get �de

= {(c, e)}.

B. VLink Augmentation

As described in § III-B, we may need to augment a given
VN ¯G with parallel VLinks in order to make it a k-protected
VN ˆG = (

ˆV , ˆE). Now, the challenge here is to minimize
the number of augmented parallel VLinks. We use Menger’s
Theorem [22] to find the pair of VNodes with less than k+1

edge connectivity and add parallel VLinks as needed. Assume
that for each pair of adjacent VNodes ū, v̄ 2

¯V there are at
least m edge-disjoint paths in ¯G. If m � k+1, ¯G is at least k+
1 edge-connected, hence no augmentation is needed. If m <
k+1, we need to add k+1�m parallel VLinks between ū and
v̄. In general, max(0, k+ 1�m) parallel VLinks are needed
for each pair of adjacent VNodes. For instance, a VN should
be 3 edge connected to survive 2 SLink failures. Since there
are 2 edge-disjoint paths between d and e in Fig. 2, we add a
parallel VLink. Similarly, we add two parallel VLinks between
e and f to make the VN 3 edge connected. No augmentation
is required for the rest of the adjacent pair of VNodes. It
can be easily shown that the number of parallel VLinks to be
augmented remains the same during the expansion, ˆG

k

� v̄. In
other words, if there are m̂ edge-disjoint paths from ˆG

k

to v̄
in ¯G, augmentation of max(0, k + 1� m̂) parallel VLinks is
needed to ensure the k + 1 edge connectivity between û and
v̄, where û 2

ˆV
k

and v̄ 2 N (û).

V. HEURISTIC ALGORITHM FOR CONFLICTING SET

Given the NP-complete nature of computing optimal con-
flicting set (§ IV), we propose a heuristic algorithm (Algo-
rithm 1) for computing conflicting sets within a reasonable

time. Algorithm 1 starts with a k-protected component, ˆG
k

,
containing an arbitrary VNode ū 2

¯V . The algorithm then
includes all of ū’s neighbors v̄ 2 N (ū) to ˆV

k

. This process
is repeated until all the VNodes of ¯G are added to ˆG

k

. For
each v̄, the algorithm computes k+ 1 EDSPs, PĜkv̄ between
ˆG
k

and v̄ using the procedure COMPUTE-EDSP (Line 8).
This procedure initially includes the VLink, (ū, v̄) as the
first shortest path pĜkv̄

1 to P

Ĝkv̄ . It then invokes Dijkstra’s
shortest path algorithm k times to compute pĜkv̄

i

, the ith
EDSP between ˆG

k

and v̄. After computing each pĜkv̄

i

, all
the VLinks present in pĜkv̄

i

are removed from ¯G in order to
ensure the edge-disjointness of the later paths. Although we
use Dijkstra’s shortest path algorithm repeatedly to compute
k+1 EDSPs, other algorithms from the literature can be used
for this purpose [9]. If the number of computed EDSPs is less
than k+1, Algorithm 1 adds k+1� |P

Ĝkv̄
| parallel VLinks

between ū and v̄ (Line 10). The ith parallel VLink is denoted
by (ū, v̄)i, and constitutes the (|P

Ĝkv̄
| + i)th EDSP between

ˆG
k

and v̄. Finally, Algorithm 1 updates the conflicting sets of
the corresponding VLinks as described in Lemma 1 (Line 13).

Algorithm 1 Compute Conflicting Sets
1: function COMPUTE-CONFLICTING-SETS(Ḡ)
2: 8(ū, v̄) 2 Ē: �ūv̄ �, Q �

3: 9v̄ 2 V̄ : Ĝ
k

 ({v̄},�) // v̄ is an arbitrary VNode
4: ENQUEUE(Q, v̄)
5: while Q is not empty do
6: ū DEQUEUE(Q)
7: for all v̄ 2 N (ū) and v̄ 62 Ĝ

k

do
8: PĜk v̄ COMPUTE-EDSP(Ḡ, Ĝ

k

, ū, v̄, k + 1)
9: for i = 1! (k + 1� |PĜk v̄|) do

10: Ē Ē [(ū, v̄)i, PĜk v̄ PĜk v̄ [(ū, v̄)i

11: end for
12: 8(x̄, ȳ) 2 p

Ĝk v̄

i

, p
Ĝk v̄

i

2 PĜk v̄ :

13: �

x̄ȳ �

x̄ȳ[{(s̄, t̄) 2 p
Ĝk v̄

j

|pĜk v̄

j

2 PĜk v̄^i 6= j}
14: Ĝ

k

 Ĝ

k

� v̄

15: ENQUEUE(Q, v̄)
16: end for
17: end while
18: return �

Ḡ

19: end function

The time complexity of the heuristic algorithm is dominated
by the COMPUTE-EDSP procedure, which invokes Dijkstra’s
shortest path algorithm k times. The time complexity of
Dijkstra’s shortest path algorithm based on a min-priority
queue is O(|

¯E| + |

¯V | log |

¯V |). Since COMPUTE-EDSP is
invoked O(|

¯V ||N (ū)|) times, the running time of Algorithm 1
becomes O(k| ¯V ||N (ū)|(| ¯E|+ |

¯V | log |

¯V |)).

VI. ILP FORMULATION FOR COVINE

In this section, we present an Integer Linear Programming
(ILP) formulation for CoViNE. The ILP minimizes the total
cost of provisioning bandwidth for the VLinks of a VN, ˆG.

50Networking 2016

We represent the location constraint L(û) ✓ V of û 2

ˆV
with the binary variable `

ûu

defined as follows:

`
ûu

=

⇢
1 if û 2

ˆV can be mapped to u 2 V,
0 otherwise.

A. Decision Variables

A VLink is mapped to a path in SN. The following decision
variable indicates the mapping between a VLink (û, v̂) 2

ˆE
and an SLink (u, v) 2 E.

xûv̂

uv

=

⇢
1 if (û, v̂) 2 ˆE is mapped to (u, v) 2 E,
0 otherwise.

The following variable represents VNode mapping:

y
ûu

=

⇢
1 if û 2

ˆV is mapped to u 2 V,
0 otherwise.

B. Constraints

1) VLink Mapping Constraints: Our VLink mapping con-
straints are as follows:

8(û, v̂) 2 ˆE :

X

8(u,v)2E

xûv̂

uv

� 1 (1)

8(u, v) 2 E :

X

8(û,v̂)2Ê

xûv̂

uv

⇥ b
ûv̂

 b
uv

(2)

8û, v̂ 2

ˆV , 8u 2 V :

X

8v2N (u)

(xûv̂

uv

� xûv̂

vu

) = y
ûu

� y
v̂u

(3)

(1) ensures that each VLink is mapped to a non-empty set
of SLinks and no VLink is left unmapped. (2) ensures that an
SLink is not assigned VLink demands that exceeds the SLink’s
capacity. Finally, (3) ensures that the in-flow and out-flow of
each SNode is equal except at the SNodes where the endpoints
of a VLink are mapped following the constraint in [23].

2) VNode Mapping Constraints: We map the VNodes ac-
cording to the location constraint as described in (4). We also
ensure that a VNode is mapped to exactly one SNode by (5).
Finally, (6) ensures that an SNode does not host more than
one VNode from the same VN. The VNode mapping follows
from the VLink mapping since we do not have any VNode
mapping cost.

8û 2

ˆV , 8u 2 V : y
ûu

 `
ûu

(4)

8û 2

ˆV :

X

u2V

y
ûu

= 1 (5)

8u 2 V :

X

û2V̂

y
ûu

 1 (6)

3) Disjointness Constraints: To ensure the desired surviv-
ability of CoViNE, a VLink (û, v̂) 2 ˆE should never share an
SLink with it’s conflicting VLinks in �ûv̂ in their mappings.
This disjointness requirement is ensured with the following
constraint 8(u, v) 2 E, 8(û, v̂) 2 ˆE, 8(â,ˆb) 2 �ûv̂:

xûv̂

uv

+ xûv̂

vu

+ xâb̂

uv

+ xâb̂

vu

 1 (7)

C. Objective Function

Our objective is to minimize the bandwidth provisioning
cost over all the SLinks used by the mappings of all the
VLinks of a VN, ˆG. Given that C

uv

is the cost of allocating
unit bandwidth on SLink (u, v) 2 E, we have the following
objective function for our ILP:

minimize

0

@
X

8(û,v̂)2Ê

X

8(u,v)2E

xûv̂

uv

⇥ C
uv

⇥ b
ûv̂

1

A

VII. HEURISTIC ALGORITHM FOR COVINE

The ILP formulation presented in § VI cannot solve larger
instances of the problem due to the limitation of LP solvers.
Hence, we propose a heuristic algorithm (Algorithm 2) to
produce near-optimal solutions within reasonable time limit.
Algorithm 2 embeds ˆG while ensuring the disjointness con-
straint imposed by �Ĝ and minimizing the total cost of
embedding according to the objective function in § VI-C.

Algorithm 2 computes two functions, nmap and emap,
which represent the VNode and VLink mapping of ˆG on G,
respectively. Since there is no cost associated with VNode
mapping, a VLink mapping that minimizes total cost deter-
mines the VNode mapping. Algorithm 2 first sorts the VNodes
û 2

ˆV in decreasing order of the sum of conflicting set sizes
of incident VLinks. This sorted list of VNodes is represented
by ˆ

V . A VNode with VLinks having larger conflicting sets
becomes too constrained to be mapped to a suitable SNode,
hence, Algorithm 2 tries to map VNodes in the order of ˆ

V .
For each VNode û 2

ˆ

V , Algorithm 2 searches for an

Algorithm 2 VN-Embedding
1: function VN-EMBEDDING(G, Ĝ)
2: V̂ Sort û 2 V̂ in decreasing order of

P
8v̂2N (û) |�

ûv̂|
3: for all û 2 V̂ do
4: Candidate �

5: for all l 2 L(û) do
6: Add mapping û! l to nmap

7: E Sort (û, v̂) 2 Ê in decreasing order of |�ûv̂|
8: 8(û, v̂) 2 E such that emap(û, v̂) = �

9: P [(û, v̂)] VLINK-MAP(G, Ĝ, (û, v̂))
10: if

X

8(u,v)2E

cost(P [(û, v̂)]) is minimum then

11: M P , Candidate l

12: end if
13: nmap(û) �, 8(û, v̂) 2 E : emap(û, v̂) �

14: end for
15: if Candidate 6= � then
16: Add mapping û! Candidate to nmap

17: 8(û, v̂) 2 E and nmap(û) 6= � and nmap(v̂) 6= �:
18: Add mapping (û, v̂)!M [(û, v̂)] to emap

19: else
20: return No Solution Found
21: end if
22: end for
23: return {nmap, emap}
24: end function

unallocated SNode in û’s location constraint set, L(û), which
yields a feasible mapping while minimizing the cost. To embed
û, Algorithm 2 loops through each candidate SNode l 2 L(û)
(Line 5 � 14), to first temporarily map û to l (Line 6). Then

51Networking 2016

Algorithm 3 VLink-Map
1: function VLINK-MAP(G, Ĝ, (û, v̂))
2: p

ûv̂ �

3: 8(ŝ, t̂) 2 �

ûv̂ :
4: E E � {(a, b) 2 E|(ŝ, t̂) is mapped to (a, b)}
5: if nmap(û) 6= � ^ nmap(v̂) 6= � then
6: Q

nmap(û)nmap(v̂) MCP(G,nmap(û), nmap(v̂), b
ûv̂

)
7: else if nmap(x̂) = � ^ nmap(ŷ) 6= � s.t. x̂, ŷ 2 {û, v̂},

ŷ 6= x̂ then
8: Q

nmap(û)nmap(v̂)
9: min

8l2L(x̂)
{MCP(G,nmap(ŷ), l, b

ŷl

)}
10: end if
11: if Qnmap(û)nmap(v̂) 6= � then
12: Add mapping (û, v̂)! Q

nmap(û)nmap(v̂) to emap

13: end if
14: return Q

nmap(û)nmap(v̂)

15: end function

the algorithm tries to embed all the VLinks incident to û. The
VLINK-MAP (Algorithm 3) procedure is invoked to find the
mapping for each such VLink (Line 9). VLinks incident to
û are processed in the decreasing order of their conflicting
set sizes to maximize the chances of finding substrate paths
that can satisfy the disjointness constraint enforced by the
conflicting sets. Algorithm 2 finally embeds û to the l that
leads to a feasible mapping for all the VLinks incident to û
and yields the minimum embedding cost. The algorithm fails,
if no such feasible l is found. Once a VNode ū has been finally
mapped, Algorithm 2 creates the final mapping for only those
VLinks incident to û whose both endpoints are already finally
mapped (Line 17�18). The mappings of other VLinks incident
on û are finalized when their unmapped endpoints are mapped.
We now describe the VLINK-MAP (Algorithm 3) procedure
for finding the mapping of a VLink, (û, v̂). First we remove
all the SLinks used by the mapping of all the VLinks in �ûv̂

to satisfy the disjointness constraint (Line 3 � 4). Then, we
compute mapping for (û, v̂) by considering the following two
cases: (i) both endpoints of (û, v̂) have already been mapped
to some SNodes (Line 5). In this case, we find a minimum
cost path between nmap(û) and nmap(v̂) with capacity at
least b

ûv̂

in G; (ii) only û (or v̂) is mapped and the other
endpoint v̂ (or û) has not been mapped (Line 7). In this case,
we compute the minimum cost path between nmap(û) (or
nmap(v̂)) and all possible locations for the unmapped VNode
v̂ (or û), l 2 L(v̂) (or L(û)) with at least b

ûv̂

capacity.
(û, v̂) is temporarily mapped to this path and the mapping
is added to emap (Line 12). We modified Dijkstra’s shortest
path algorithm to consider link capacities while computing the
minimum cost path (MCP procedure call in Algorithm 3). The
cost for each SLink is set (u, v) 2 E to C

uv

⇥ b
ûv̂

, where b
ûv̂

is the bandwidth requirement of the VLink to be embedded.

The most expensive step of Algorithm 2 is the VLINK-MAP
function, which invokes Dijkstra’s shortest path algorithm on
the SN requiring O(|E|+|V | log |V |) time. Since VLINK-MAP
is invoked O(|

ˆV ||L(û)||N (û)|) times, the running time of
Algorithm 2 becomes O(|

ˆV ||L(û)||N (û)|(|E|+ |V | log |V |)).

VIII. EVALUATION

A. Compared Approaches

We compare six approaches (Table II) that combine differ-
ent strategies for computing disjointness constraint and VN
embedding. We have chosen single failure (k = 1) and double
failure (k = 2) scenarios, since the possibility of more than
two simultaneous link failures is very low [7], [3]. The first
four approaches in Table II are from our contributions, while
the last two are based on [10] and [24].

TABLE II
COMPARED ALGORITHMS

Notation Failures Disjointness Embedding
S-CoViNE Single Algorithm 1 Algorithm 2
D-CoViNE Double Algorithm 1 Algorithm 2
S-CoViNE-ILP Single Algorithm 1 § VI
D-CoViNE-ILP Double Algorithm 1 § VI
S-Cutset-ILP [10] Single Optimal Cut-set ILP
ViNE-ILP [24] None None MCUF ILP1

1. Multi-commodity Unsplittable Flow

B. Simulation Setup

We implement the ILP formulations using IBM ILOG
CPLEX C++ library. The simulations were performed on a
server with quad-core 3.4GHz processor and 8GB of RAM.
To demonstrate the scalability of our solutions, we consider
both small and large network topologies as summarized in
Table III. For each problem instance in this table, we perform
3 simulation runs and take the average. VNs for the small
scale scenario are 2-edge connected, since it is required by
the cut-set based approach [10]. We also vary the Link-to-
Node Ratio (LNR) to assess the robustness of our solution
for different VN connectivity levels. In addition to scalability
and robustness, we analyze the behavior of our approach under
different failure scenarios. Since our focus is VN connectivity,
we use enough bandwidth capacity in SN topologies.

TABLE III
SUMMARY OF SIMULATION PARAMETERS

Scenario Figure SNodes SLinks VNodes VLinks

Small Scale

Fig. 3(a)
Fig. 3(c) 150 310 4-20 5-37

Fig. 3(b)
Fig. 3(d) 50-250 105-494 10 17-24

Large Scale

Fig. 4(a) 500 2017 10-100 21-285
Fig. 4(d) 1000 4023 10-100 21-285

Fig. 4(b) 500 2017 10 11-31
1000 4023 10 11-31

Fig. 4(c) 500 1000-2000 10 21
1000 2000-4000 10 21

Failure Fig. 5 150 310 10 11-31

C. Results

1) Small Scale Scenarios:
a) Embedding Cost: Fig. 3(a) and Fig. 3(b) depict em-

bedding cost for different VN and SN sizes, respectively.
As expected, ViNE-ILP produces the lowest cost embedding,
since it neither augments any parallel VLinks nor satisfies any
disjointness constraint. The costs of embedding produced by
S-Cutset-ILP and S-CoViNE-ILP lie very close to that of ViNE-
ILP. Since the VNs are 2-edge connected in this experiment,

52Networking 2016

 20

 40

 60

 80

 100

 120

 140

 160

 4 8 12 16 20

Co
st

 (
x1

04
)

Number of VNodes

S-Cutset-ILP
S-CoViNE-ILP
D-CoViNE-ILP

S-CoViNE
D-CoViNE
ViNE-ILP

(a) Cost Vs. VN Size

 40

 60

 80

 100

 50 100 150 200 250

Co
st

 (
x1

04
)

Number of SNodes

S-Cutset-ILP
S-CoViNE-ILP
D-CoViNE-ILP

S-CoViNE
D-CoViNE
ViNE-ILP

(b) Cost Vs. SN Size

 0.1

 1

 10

 100

 1000

 10000

 4 8 12 16 20

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of VNodes

S-Cutset-ILP
S-CoViNE-ILP
D-CoViNE-ILP

S-CoViNE
D-CoViNE
ViNE-ILP

(c) Time Vs. VN Size

 0.1

 1

 10

 100

 1000

 10000

 50 100 150 200 250

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of SNodes

S-Cutset-ILP
S-CoViNE-ILP
D-CoViNE-ILP

S-CoViNE
D-CoViNE
ViNE-ILP

(d) Time Vs. SN Size

Fig. 3. Small Scale Performance

no parallel augmentation is performed. The difference in S-
Cutset-ILP and S-CoViNE-ILP is only due the variation of
the disjointness computation methods. In contrast, S-CoViNE
employs heuristic algorithms for disjointness computation and
embedding, resulting in ⇠10% more cost than S-CoViNE-
ILP and ⇠15% more cost than the cut set based optimal
solution (S-Cutset-ILP). Both D-CoViNE-ILP and D-CoViNE
incur ⇠30% more cost than single failure approaches, since
they augment parallel VLinks to ensure 3-edge connectivity.
In general, cost increases almost linearly with increase in SN
size for a fixed VN, and vice versa.

b) Execution Time: Fig. 3(c) and Fig. 3(d) present exe-
cution times in logarithmic scale by varying VN and SN sizes,
respectively. Execution times of S-CoViNE and D-CoViNE
vary almost linearly with VN or SN sizes. When embedding a
VN of 18 VNodes on a 150 node SN, S-CoViNE-ILP and D-
CoViNE-ILP take ⇠ 285s and ⇠ 456s, respectively, which is
significantly slower compared to less than a second execution
time for S-CoViNE and D-CoViNE. ViNE-ILP runs faster than
S-CoViNE-ILP and D-CoViNE-ILP, since it does not satisfy
any disjointness constraint while embedding. S-Cutset-ILP is
the slowest since it computes an optimal solution.

c) Scalability: S-CoViNE and D-CoViNE can scale with
arbitrary VN and SN sizes, whereas the ILP-based approaches
can only scale up to 18 node VNs on 150 node SNs. Scalability
of S-Cutset-ILP is the worst as it cannot scale beyond 10 node
VNs on the same 150 node SNs. In summary, the higher costs
of S-CoViNE and D-CoViNE, compared to the corresponding
ILP-based approaches, are compensated by their higher scal-
ability and faster execution time.

2) Large Scale Scenarios:
a) Embedding Cost: Fig. 4(a) shows embedding cost by

varying VN sizes on SNs of 500 and 1000 nodes. On the other
hand, Fig. 4(b) and Fig. 4(c) show embedding cost for VN
and SN topologies with different LNRs, respectively. In this
scenario, embedding cost is mostly influenced by disjointness
constraint and parallel VLink augmentation. For double failure
scenarios, augmentation cost dominates for VN LNR 2.4,
hence the initial decrease in embedding cost. However for VN
LNR > 2.4, cost for ensuring disjointness constraint domi-
nates, which justifies the corresponding increase in Fig. 4(b).
On the other hand for S-CoViNE, disjointness constraint dom-
inates and embedding cost increases as higher number of
VLinks are embedded on the same SN for larger LNR. An
increase in SN LNR results into higher path diversity in SN.

S-CoViNE and D-CoViNE exploit this path diversity by finding
shorter paths while embedding a VLink. This accounts for the
decrease in cost with an increase in SN LNR.

b) Execution Time: Conforming to the running time
analysis in § V and § VII, the execution times for S-CoViNE
and D-CoViNE increase with both VN and SN sizes (Fig. 4(d)).

3) Impact of Failure: In this scenario, we assume three
traffic classes in VN, labeled as 1 (highest priority), 2 and
3 (lowest priority) demanding 20%, 30%, and 50% of each
VLink’s bandwidth, respectively. We handle failures by rerout-
ing traffic in the affected VLinks along alternate shortest paths
in VN. Bandwidth sharing along these paths follow fair sharing
policy between traffic from the same class and weighted fair
sharing across different traffic classes.

Fig. 5(a) and Fig. 5(b) present the percentage of restored
bandwidth for single and double failure scenarios, respectively.
On the other hand, Fig. 5(c) and Fig. 5(d) present the overhead
for ensuring connectivity in terms of embedding cost and
number of augmented VLinks, respectively. Fig. 5(a) and
Fig. 5(b) depict that performance of our embedding heuristics
(S-CoViNE and D-CoViNE) is very close to the optimal embed-
ding (S-CoViNE-ILP and D-CoViNE-ILP) for all three traffic
classes. The percentage of restored bandwidth by ViNE-ILP is
very poor at low VN LNR and increases with the increase in
VN LNR. A higher LNR induces higher path diversity in VN.
This has twofold impact. First, it reduces the chances of VN
partitioning. Second, there are more options for steering traffic
in the affected VLinks. Both of these reasons contribute to the
increase in restored bandwidth for VN with higher LNR.

As envisioned at the beginning of this paper, our approach
is able to successfully restore almost the full bandwidth for
the highest priority traffic in presence of single and double
failures as shown in Fig. 5(a) and Fig. 5(b). However, this
successful restoration is at the expense of penalizing the
lower priority traffic classes. The overall decrease in restored
bandwidth for all variants of CoViNE with increasing VN LNR
is counter-intuitive. This can be explained by observing the
overheads in Fig. 5(c) and Fig. 5(d). As VN LNR increases,
the number of augmented VLinks decreases. This results
into lower spare bandwidth in VNs with higher LNR, and
consequently reducing the percentage of restored bandwidth.

IX. CONCLUSION

In this paper, we have investigated the Connectivty-aware
Virtual Network Embedding (CoViNE) problem that ensures
VN connectivity in presence of multiple SLink failures. We

53Networking 2016

 0

 100

 200

 300

 400

 500

 20 40 60 80 100

Co
st

 (
x1

04
)

Number of VNodes

S-CoViNE-SN-500
D-CoViNE-SN-500

S-CoViNE-SN-1000
D-CoViNE-SN-1000

(a) Cost Vs. VN Size

 60

 80

 100

 120

 140

 160

 1.2 1.6 2 2.4 2.8 3.2

Co
st

 (
x1

04
)

VLink to VNode Ratio

S-CoViNE-SN-500
D-CoViNE-SN-500

S-CoViNE-SN-1000
D-CoViNE-SN-1000

(b) Cost Vs. VN LNR

 50

 60

 70

 80

 90

 100

 110

 2 2.4 2.8 3.2 3.6 4

Co
st

 (
x1

04
)

SLink to SNode Ratio

S-CoViNE-SN-500
D-CoViNE-SN-500

S-CoViNE-SN-1000
D-CoViNE-SN-1000

(c) Cost Vs. SN LNR

 0

 50

 100

 150

 200

 250

 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of VNodes

S-CoViNE-SN-500
D-CoViNE-SN-500

S-CoViNE-SN-1000
D-CoViNE-SN-1000

(d) Time Vs. VN Size

Fig. 4. Large Scale Performance

 0
 20
 40
 60
 80

 100

 1.2 1.6 2 2.4 2.8 3.2%
 o

f
Re

st
or

ed
 B

/w

Ratio of VLinks to VNodes

ViNE-ILP-1
ViNE-ILP-2
ViNE-ILP-3
S-CoViNE-1
S-CoViNE-2

S-CoViNE-3
S-CoViNE-ILP-1
S-CoViNE-ILP-2
S-CoViNE-ILP-3

(a) Single Failure

 0
 20
 40
 60
 80

 100

 1.2 1.6 2 2.4 2.8 3.2%
 o

f
Re

st
or

ed
 B

/w

Ratio of VLinks to VNodes

ViNE-ILP-1
ViNE-ILP-2
ViNE-ILP-3

D-CoViNE-1
D-CoViNE-2

D-CoViNE-3
D-CoViNE-ILP-1
D-CoViNE-ILP-2
D-CoViNE-ILP-3

(b) Double Failure

 10

 20

 30

 40

 50

 60

 1.2 1.6 2 2.4 2.8 3.2

Co
st

 (
x1

04
)

VLink to VNode Ratio

S-CoViNE-ILP
D-CoViNE-ILP

ViNE-ILP

S-CoViNE
D-CoViNE

(c) Overhead

 0

 4

 8

 12

 16

1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

N
um

be
r o

f P
ar

al
le

l V
Li

nk
s

Ratio of VLinks to VNodes

S-CoViNE
D-CoViNE

(d) Parallel VLink Augmention

Fig. 5. Impact of Failure

have addressed the two major challenges in solving CoViNE:
i) finding the conflicting VLinks that should be embedded
disjointly, and ii) computing a resource efficient embedding
that adheres to disjointness requirement. For the first chal-
lenge, we have coined the concept of conflicting set, and
have proven that computing optimal conflicting set is NP-
complete. We also provided a heuristic algorithm for find-
ing conflicting set efficiently. For the second challenge, we
provided an ILP formulation and a heuristic to tackle its
computational complexity. All of our solutions are generalized
to handle multiple SLink failures for any VN and SN topology.
Evaluation results show that solutions from our heuristics
use around 15% extra resources on average compared to the
optimal solution, whereas the execution time of our heuristic is
two to three orders of magnitude faster on the same problem
instances. We have also demonstrated that VN connectivity
can be successfully applied to restore high priority traffic in
presence of multiple SLink failures.

We believe that CoViNE can set the stage for further
research investigations. Among the possibilities, we want to
investigate the problem of ensuring different connectivity
levels for each VLink in a VN, which can empower a VN-
operator to offer a wide variety of Service Level Agreements
(SLAs) to its customers. We also want to extend our current
solutions by considering SLinks’ spare bandwidth allocation,
SNodes’ throughput, and substrate path length constraints in
a coordinated manner.

ACKNOWLEDGMENT

This work was supported in part by Huawei Technologies
and in part by an NSERC Collaborative Research and Devel-
opment Grant.

REFERENCES

[1] N. M. M. K. Chowdhury et al., “A Survey of Network Virtualization,”
Computer Networks, Apr 2010.

[2] M. R. Rahman et al., “SVNE: Survivable Virtual Network Embedding
Algorithms for Network Virtualization,” IEEE TNSM, 2013.

[3] A. Markopoulou et al., “Characterization of Failures in an IP Backbone,”
in INFOCOM, Mar 2004.

[4] S. Herker et al., “Survey on Survivable Virtual Network Embedding
Problem and Solutions,” in ICNS, 2013.

[5] Z. Zhou et al., “Cross-layer network survivability under multiple cross-
layer metrics,” IEEE/OSA J. of Optical Comm. & Net., 2015.

[6] H. Choi et al., “Loopback recovery from double-link failures in optical
mesh networks,” IEEE/ACM TON, Dec 2004.

[7] P. Gill et al., “Understanding Network Failures in Data Centers: Mea-
surement, Analysis, and Implications,” in ACM SIGCOMM, Aug 2011.

[8] K. Thulasiraman et al., “Logical topology augmentation for guaranteed
survivability under multiple failures in ip-over-wdm optical networks,”
Optical Switching and Networking, vol. 7, no. 4, pp. 206–214, 2010.

[9] J. M. Kleinberg, “Approximation algorithms for disjoint paths prob-
lems,” Ph.D. dissertation, Citeseer, 1996.

[10] E. Modiano et al., “Survivable lightpath routing: a new approach to the
design of wdm-based networks,” IEEE JSAC, 2002.

[11] A. Todimala et al., “A scalable approach for survivable virtual topology
routing in optical wdm networks,” IEEE JSAC, 2007.

[12] K. Thulasiraman et al., “Circuits/cutsets duality and a unified algorithmic
framework for survivable logical topology design in ip-over-wdm optical
networks,” in IEEE INFOCOM, Apr 2009.

[13] Z. Zhou et al., “Novel survivable logical topology routing in ip-over-
wdm networks by logical protecting spanning tree set,” in ICUMT, 2012.

[14] M. Kurant et al., “Survivable mapping algorithm by ring trimming
(smart) for large ip-over-wdm networks,” in BroadNets, Oct 2004.

[15] T. Guo et al., “Shared backup network provision for virtual network
embedding,” in IEEE ICC, 2011.

[16] J. Xu et al., “Survivable virtual infrastructure mapping in virtualized
data centers,” in IEEE CLOUD, 2012.

[17] M. M. A. Khan et al., “Simple: Survivability in multi-path link embed-
ding,” in IEEE CNSM, 2015, pp. 210–218.

[18] K. Lee et al., “Cross-layer survivability in wdm-based networks,”
IEEE/ACM TON, Aug 2011.

[19] C. Liu et al., “A new survivable mapping problem in ip-over-wdm
networks,” IEEE JSAC, Apr 2007.

[20] M. Kurant et al., “Survivable routing of mesh topologies in ip-over-wdm
networks by recursive graph contraction,” JSAC, 2007.

[21] D. D.-J. Kan et al., “Lightpath routing and capacity assignment for
survivable ip-over-wdm networks,” in IEEE DRCN, 2009.

[22] Menger’s theorem [online] http://math.fau.edu/locke/menger.htm.
[23] M. Melo et al., “Virtual network mapping–an optimization problem,” in

Mobile Networks and Management. Springer, 2012, pp. 187–200.
[24] Y. Zhu and M. H. Ammar, “Algorithms for assigning substrate network

resources to virtual network components,” in IEEE INFOCOM, 2006.

54Networking 2016

