
Pin it!
Improving Android Network Security At Runtime

Damjan Buhov⇤, Markus Huber†, Georg Merzdovnik⇤, and Edgar Weippl⇤
⇤SBA Research, Vienna, Austria

E-mail: {dbuhov, gmerzdovnik, eweippl}@sba-research.org
† St. Pölten University of Applied Sciences, St. Pölten, Austria

E-mail: markus.huber@fhstp.ac.at

Abstract—Smartphones are increasingly used worldwide and
are now an essential tool for our everyday tasks. These tasks are
supported by smartphone applications (apps) which commonly
rely on network communication to provide a certain utility such
as online banking. From a security and privacy point of view a
properly secured (encrypted) communication channel is impor-
tant in order to protect sensitive information against passive and
active attacks. Previous research outlined that developers often
fail to implement proper certificate validation in their custom
SSL/TLS implementations and thus fail to secure the network
communication. Previous research however proposed solutions
for developers and not for the affected users. This global growth
introduced drastic changes to the network utilization.

In this paper we discuss this issue on the basis of Android
apps. We analyzed over 50,000 Android apps, collected during
two consecutive years, regarding the correct use of SSL/TLS
protocols. Furthermore, we discuss the current situation. We
propose dynamic certificate pinning, a device-based solution that
overcomes the problem of broken SSL/TLS implementations in
Android apps. To the best of our knowledge, we are the first
to solve this problem by combining established techniques such
as certificate pinning with dynamic instrumentation techniques
to tackle one of the major security challenges in the network
communication of smartphone applications.

I. INTRODUCTION

The increased use of smartphones also means more risks.
People tend to part with the traditional desktop computers,
even notebooks, and satisfy their requirements and needs with
smartphones. This is possible, because all web services essen-
tial for personal and business use are rapidly transforming to
meet the requirements of the mobile domain. The vast majority
of those applications rely on network communication for data
transfer, implying that applications that deal with sensitive
user information are required to provide secure (encrypted)
communication. Although there are multiple concepts that
provide secure communication, Android applications most
commonly use SSL (Secure Sockets Layer) and its successor
TLS (Transport Layer Security) [16]. These two protocols are
used to securely connect the client with a legitimate server. In
Android, the security of SSL/TLS is in close interdependence
with the client application. This means that the client (ap-
plication) should employ proper verification methods for the
server certificate, the hostname and deal with the SSL/TLS
errors correctly. Hence, the verification logic is completely

controlled by the application, or in other words the application
developers are responsible for implementing the SSL/TLS
certificate validation correctly. If such a validation scheme is
not correctly employed, users face the risk of a Man-in-the-
Middle (MITM) attack [28]. Such attacks can have significant
implications especially in the financial sector, which increases
the importance in the mobile domain. By default, the An-
droid applications trust only certificates validated against the
internal trust store, however, there are certain cases in which
the developers need to implement custom validation of the
certificates. Whether developers add custom implementation
due to the need of applying additional protection measures
such as certificate pinning or just because of problems they
encounter with their self-signed certificates, the networking
part of the application could easily become a vulnerable spot as
a result of mistakes in these implementations. Since Android is
the most dominant market share holder [15], such vulnerability
will affect millions of users.

Recent research outlined that particular measures have to
be taken in order to solve this issue. There have been many
attempts, however, the situation has not changed. Tendulkar et
al. [37] proposed that all the SSL/TLS configuration including
pinned certificates etc. should be stated in the manifest file as a
part of the application package. Back in 2012, Fahl et al. [26]
examined the state of more than 13,000 applications regarding
their SSL implementation. Using their script Mallodroid [12]
they discovered that more than 1,000 applications from the
data set were vulnerable to MITM attacks. All of the previous
research efforts, however, propose instructions and solutions
that are aimed towards the developers and not the affected
users. This implies that even if there is a solution for the
problem, developers might ignore this fact for various reasons.
Another major drawback of using certificate pinning is the
update interval of the applications, since it has been proven
that from the time the update has been released by the
vendor, until it reaches the users, makes the application totally
unsuitable from a security point of view [31]. Thus, the goal
of this paper is to detect and resolve this problem on a large
scale and in real time, focusing on the affected users instead
of the developers. For a single application or a very small set
of applications it is possible to detect and fix this issue using
static instrumentation. However, we aim for a dynamic device-
based solution that overcomes the SSL/TLS issue and reachesISBN 978-3-901882-83-8 c� 2016 IFIP

297Networking 2016



a large number of users. In summary, the contributions of this
paper are:

• We analyzed the most popular 50,000 Android applica-
tions gathered over the period of two years and discovered
that the SSL/TLS issue still exists and, more importantly,
we found an increase of nearly 6% in terms of vulnerable
applications from 2014 compared to 2013.

• We present a novel approach for patching Android appli-
cations during runtime that solves the SSL/TLS problem
without any user interaction. Our solution employs es-
tablished techniques such as certificate pinning combined
with dynamic instrumentation techniques and provides a
tool that can be installed on every Android device.

• To the best of our knowledge, we are the first to actually
provide a solution that combines these techniques and
directly affects the user, unlike most of the research effort
that is aimed towards the developers.

The remainder of this paper is organized as follows. Sec-
tion II provides the background and threat model of our work.
Section III briefly describes our methodological approach. In
Section IV we present a detailed explanation of the imple-
mentation of the proposed tool while Section V presents the
results from the static analysis as well as evaluation of our tool.
Section VI is reserved for discussion about the advantages,
limitation and future work for the proposed solution. In
Section VII we revise existing approaches that tackle this
problem. Finally, Section VIII concludes the findings of our
paper.

II. BACKGROUND AND MOTIVATION

In this section we provide a brief overview on the security
of Android with an emphasis on providing secure network
communication. We furthermore discuss our threat model.

A. Android Security
Smartphones and tablets continue to replace the traditional

desktop computer; Android has the biggest share of the overall
smartphone market. The ongoing transition from desktop op-
erating systems to mobile operating systems such as Android
brings along a number of security improvements for the aver-
age user. Android relies on the concept of multilevel security
[30] and, compared to traditional desktop operating systems,
each Android application is executed in an isolated sandbox.
In combination with Google’s firm control over available
applications with their Play Store1, the impact of common
security threats such as malware has been limited. While the
overall security of Android outlines a number of security
improvements, users still face security and privacy risks. These
risks emerge from the ever growing amount of third-party ap-
plications. The development of third-party applications relies
on the capability and knowledge of the developer. Their lack
of knowledge or ignorance of security issues introduces grave
implementation bugs in applications, which have an overall
negative impact on the security of mobile users. Security of

1https://play.google.com

these applications is achieved through the use of the Android
permission model and sandboxing which defines a particular
memory space for the application to execute. This way the
system ensures that only allowed resources will be available
to the particular application. In most of the cases the requested
resources by applications include permission to access the
network/Internet. Hereby, the actual implementation within
the application dictates the level of security for the network
communications. In Android, SSL/TLS are the standards that
enable secure communication and are widely used among the
Android applications. Because of the fact that the security of
SSL/TLS relies on certificates, proper implementation of the
validation procedure for the server certificate is essential. By
default, every Android device comes pre-shipped with 150+
root certificates.2 These 150+ root certificates are used to
ensure that applications can verify that they are communicating
with legitimate servers. This basic network security model
requires that application developers buy legitimate certificates
from Certification Authorities (CAs). Nowadays, there are
numerous Certificate Authorities that issue verified certificates,
however, just 15 of them hold more than 95% of the market
shares [2], [17]. There are cases in which the developers are
using self-signed certificates. The use of self-signed certificates
puts an obligation on the developer to ensure that proper
security mechanisms are put in place to achieve the same level
of security as with officially signed certificates.

B. SSL in Android

The implementation of SSL in Android is achieved through
certain packages provided by the Android SDK [1]. Usu-
ally, developers make use of the javax.net.*, java.net.*, an-
droid.net.*, java.security,*, org.apache.* modules which pro-
vide them with all the important interfaces such as TrustMan-
ager and HostnameVerifier. Furthermore, the TrustManager
interface contains a method called checkServerTrusted through
which the validation of the certificates is performed. Develop-
ers can choose whether to use the default configuration of the
SSL/TLS or to implement their own custom version. Usually,
the default configuration is used when the application is using
trusted certificates, whereas custom implementation is required
for any other case. In both cases, they must ensure that the
validation of the certificates is properly implemented. This
procedure can be described as follows:

• Certificate verification The server sends the chain of
certificates to the application. At this point the application
tries to validate the chain using the bottom-up approach,
i.e. starting from the end certificate (also known as leaf
certificate) and continue to the intermediate and root cer-
tificate. The validation of the certificates includes checks
for the expiration date of the certificate and whether it
is signed from its successor in the list or from a trusted
root certificate. In this setup the last certificate is usually
signed by one of the certificates that came with the device.

2Location of the Root CAs: Settings ! Security ! Trusted credentials

298Networking 2016



If the validation succeeds, the connection is established;
otherwise it is immediately terminated.

• Hostname Verification Another very important check is
the hostname verification. Every certificate has its desig-
nated destination so the application has to check whether
the certificate is issued for the desired destination. This
information is usually found in the Common Name (CN)
field or the subjectAltName. According to the newer
standard [14], the subjectAltName should be checked first
and if it exists, the CN field should not be checked at all.

Although this validation procedure works for certificates
that are signed by some of the root certificates that are pre-
shipped with Android, there are certain cases in which the
developers need to implement their own logic. The most
common reason behind this is the fact that most of the
Android developers make use of self-signed certificates for
various reasons, such as testing the product before official
release, or simply because of financial reasons. When using
this kind of certificates, developers are obligated to perform
custom implementation of the validation procedure to make
the application immune to the most common threat described
in II-D Threat Model.

C. Certificate Pinning
Among all available advanced protection measures, certifi-

cate pinning [10], [11], [24], [29], [33] stands out as the most
recommended one. With proper implementation, it reduces
the risk of Man-in-the-Middle attacks to a minimum. This
technique is the most common representative of the advanced
concepts with respect to the custom use of SSL/TLS protocols
that was previously mentioned. There are a lot of publicly
available solutions that could be directly applied in order to
secure the network communication and in particular Android
applications. Certificate pinning works by bundling the server
certificates with the application. Hereby, the application ver-
ifies the security of the network communication based on
its included Pins (server certificates). Therefore, developers
do not need to buy third-party certificates from CAs, and
applications can, moreover, detect attacks in which trusted
certificates are forged.

Since the application receives the whole chain of certificates
from the server side, developers are left with the choice of
which certificate to pin. Accordingly, pinning different certifi-
cates from the entire trust chain brings its own advantages as
well as disadvantages:

• Pinning the end certificate (leaf) reduces the attack sur-
face to a minimum since there are no certificates that
are or could be signed from it; however, it is potentially
subjected to a major drawback when it comes to change.
These types of certificates are subjected to a change more
often than the intermediate certificate, which implies that
with every change of the leaf certificate the application
has to be updated with the new pins, otherwise it will not
be usable in terms of network connectivity.

• Pinning the intermediate certificate has a reasonably
larger attack surface in comparison with the previous

category, but it requires less updates since this certificate
is not changed very often.

• Pinning the root certificate leaves the biggest attack sur-
face compared to the previous two categories, however,
in this case the update frequency is the lowest.

Furthermore, this technique could be applied both to the
whole certificate as well as just to the public key of the
certificate. Although it is the easier solution and in general it
seems natural to pin the whole certificate, it is not the optimal
one. The reason behind this is the fact that certificates can
be reissued multiple times. This means that we can encounter
multiple certificates with the same public key, but with differ-
ent attributes, e.g. expiration date. Based on this assumption,
we can conclude that it is more convenient to pin the public
key of the certificate. Although the implementation of this
approach is more difficult due to some extra steps regarding the
key extraction, in the end, this approach significantly reduces
the need for frequent updates of the application.

D. Threat Model

Our threat model regarding the network security of Android
applications focuses on Man-In-The-Middle (MITM) attacks.
MITM attacks describe a category of network-based attacks
during which an adversary places himself between a client
and a server. The adversary can then perform either passive or
active attacks on the observed network traffic. Active attacks
include hijacking active user session to perform malicious
actions on behalf on the targeted users. Passive attacks in-
clude the collection of sensitive information such as account
credentials or personal information. Proper use of certificates
can prevent such attacks. If applications do not protect the
communication between mobile devices and their backend
servers, attackers can easily perform active/passive MITM
attacks by e.g. monitoring users on public Wi-Fi hotspots.
Our particular threat model focuses on applications that aim
to protect their users with a secure communication channel
(SSL/TLS), but fail to implement this protocol properly. In
particular, our threat model accounts for the following network
security challenges:

• Broken Certificate Verification: If an Android applica-
tion uses certificates issued from one of those certificate
authorities, which are shipped in with the device, it relies
on the standard implementation of the SSL/TLS protocol
and provides therefore basic security. The problem arises
with the use of self-signed certificates. In this case, the
developers should implement proper validation proce-
dures in order to secure the connection. These custom
implementations tend to leave the application insecure
by implementing a broken certificate validation. The
issue of a broken custom certificate validation remains
a major problem of current Android applications and
leaves applications as vulnerable to MITM attacks as if
no encryption was used at all.

• Compromised Certification Authorities: Even in cases
in which developers rely on certificates issued by trusted

299Networking 2016



certification authorities and the default verification mech-
anisms of Android, powerful adversaries might still per-
form MITM attacks. The Diginotar case [9] clearly
showed the risk of trusted certificate authorities (CAs)
being compromised by adversaries. If an attacker is able
to compromise one of the 150 CAs trusted by Android,
he can perform MITM attacks on applications with the
standard SSL/TLS protection.

To account for the attack vectors of our threat model, we
propose a solution to dynamically pin application certificates.
Hereby, we rely on the Trust on First Use (TOFU) principle.
Since we do not have any previous information about the
certificate that is going to be pinned, we use this approach
to get the first certificate that the application will receive
during the establishing of the SSL/TLS connection. Therefore,
our threat model assumes that the first connection between a
given mobile application and their corresponding servers is not
compromised. Based on our threat model we aim to overcome
the following challenges regarding the network security of
Android applications:

• Dynamically upgrade applications to use certificate
pinning. If the implementation of the pinning is not
correct, the user faces grave security and privacy conse-
quences. Users become an easy target for adversaries to
steal sensitive information such as banking credentials,
social security numbers, etc. We attribute the lack of
proper SSL/TLS implementations to a knowledge gap
of the developers. Previous research showed e.g. that
the vast majority of developers are not familiar with
the concept of certificate pinning [31]. Most of the time
they are guided by random forum posts and discussions
on popular online forums such as stackoverflow.3 It so
happens that a number of posts related to the use of
SSL/TLS on Android actually advise developers to handle
the SSL/TLS errors by accepting all certificates. By doing
this, they actually remove any security on the network
level, even the (secure) default setting, because most
of the posted solutions suggest to use custom imple-
mentations of the TrustManager [18] which overrides
the default one. Therefore, we aim at overcoming this
knowledge gap by proposing a solution that focuses on
the affected users instead of developers.

• Providing the users with detailed information for ev-
ery certificate change. In order not to significantly lower
the usability of the Android applications by immediately
terminating the connection when a certificate change
occurs, we have provided the users with a notification
containing detailed description for the change that just
occurred. At this point, users are left with the possibility
to accept this change and continue to use the application,
or to reject it, which would imply that the connection will
be terminated immediately.

3http://stackoverflow.com

III. METHODOLOGY

A. Number of vulnerable applications

Generally speaking, Android can be divided into two main
parts: The first part is the Android operating system, and the
second one are the Android applications. We do not focus
on the overall security of the Android operating system, but
rather on applications and the not-so-obvious threats presented
by them. Nowadays, there are more than 1.5 million available
applications in the official Android market place [13]. Taking
in consideration the popularity of the Android OS, we firstly
analyzed the top 50,000 applications from all categories over
two consecutive years. This allowed us to determine to what
extend SSL/TLS issues are present in these two sets of ap-
plications. These analyses are focusing directly on the correct
implementation of the HTTPS protocol, namely the TrustMan-
ager. The cases in which the applications are using pure HTTP
are not taken into consideration and are immediately classified
as applications that do not have any issues. To perform our
analysis, we rely on the Mallodroid tool which explicitly
targets the implementation of the TrustManager. In detail, we
performed an indicative experiment in order to determine if the
SSL/TLS errors still exist. Detection of other network flaws
or tracking the evolution of particular applications is out of
the scope of this work.

The applications were already crawled by Playdrone [39]
and are publicly available at archive.org. We selected the
top 25,000 applications from late 2013 and resp. from late
2014. According to [39], crawled applications originate from
different categories. Finally, this experiment should help to
understand if SSL/TLS implementation errors continue to put
user data at risk or if the situation improved.

B. Fixing a broken trust manager

Since Android applications are packages stored across
servers (market place), we do not have access to nor are we
permitted to perform any changes to them. The situation is
however different when the applications are downloaded and
installed on a certain device, since the user has already agreed
on all of the previously presented terms, known as Android
permissions. In general, our approach does not interact or
change the code of the application as static instrumentation
would. We tackle the problem of broken SSL/TLS imple-
mentations dynamically, leaving the apk4 intact. We are able
to achieve this by leveraging the functionality of the Cydia
Substrate framework [35]. We chose to use Cydia because of
two reasons:

• It is available for other smartphone operating systems
which increases the chances of a widespread use of our
approach.

• It is the only framework that supports the Android per-
mission model. This means that even though it requires
ROOT access, its use must be explicitly specified in the
Android manifest file.

4Android application package

300Networking 2016



The overall goal of our approach is to evaluate a proof-of-
concept solution of our dynamic approach to fix the SSL/TLS
issue from the users’ perspective.

IV. DESIGN

Our proof-of-concept implementation is based on the dy-
namic instrumentation of mobile applications [19], [35]. These
dynamic instrumentation frameworks are especially popular
among the users of custom ROMs such as CyanogenMod [4].
Today, the most common use of these frameworks consists in
the creation of customized widgets and other GUI elements.
The only requirement that has to be met for proper use of these
frameworks is the available ROOT access to the device. This
unleashes the full power of the frameworks, expressed through
the possibility of interception, hooking and modification of
functions, system calls and class loading, interpreted both
through Java and native code. The fact that they operate at
runtime enables us to intercept and modify all networking
calls. Furthermore, the wide use of these frameworks in
communities that rely on custom ROMs renders our tool as a
promising candidate for securing the network communication.
Recent statistics [5] [3] show that there are currently more than
50 million people using CyanogenMod on their smartphones.
The vast majority of those users are strongly focused on pri-
vacy and security enhancements, especially after the Edward
Snowden revelations.

In our previous research [22] we identified the most suitable
candidates to achieve our goal. We thus decided to use
the Cydia Substrate framework [6], [35] for our dynamic
approach. We chose this framework because it is the only
framework that is available for the two leading smartphone
operating systems – Android and iOS. In contrast to previous
research – which is mostly focused on the developers – our
focus group are the users. Furthermore, our solution presents
itself as an OS extension, so it could be easily included as a
factory feature. Cydia Substrate (formerly known as Mobile
Substrate) serves as a base for the development of particular
tools/modules. It provides a set of different APIs which can
be adapted according to the specific needs. In general, these
APIs make it possible to get a reference to a particular class
of the applications with the MSJavaHookClassLoad and then
search inside that class for the desired method or function
that should be hooked with the MSJavaHookMethod. The last
step would be to replace the code of the hooked function
or method with our custom implementation. This procedure
could be easily applied to all generic calls, however, in some
cases static instrumentation of the code might be needed
in order to detect the hooking point. Our implementation
consists of two classes, one for the implementation of the
hooking functionality, and the other for the pinning trust
manager. Since SSL/TLS implementations in Android apps
are dependent on certain API calls that are provided in the
tutorial itself [20], we do not have to perform any static
instrumentation to distinguish these calls. Instead, we can
directly interact with those API calls. Using the previously
mentioned MSJavaHookClassLoad function, we wait for the

javax.net.ssl.TrustManagerFactory to load and search for the
getTrustManagers method to be hooked. Upon hooking, the
current implementation of the getTrustManagers is overridden
by our custom implementation. This set of instructions di-
rectly influences the current implementation by substituting
it with our version. Furthermore, additional changes have
to be made for the application to work properly. We then
override the setSSLSocketFactory method upon loading of the
javax.net.ssl.HttpsURLConnection and setting it to use our
implementation of the trust manager. Last but not least, we
override the init method from the javax.net.ssl.SSLContext
class to use our TrustManager. This way we ensure that
every established connection will be pinned. Although there
are different ways to verify the hostname, we are using strict
verification. This means that every pin is associated with its
designated host. By using the TOFU principle, we pin every
connection upon the first encounter. Therefore, every pin is
associated with the designated host, and when the connection
is trying to be established later on, the hostname along with
the pin for that particular connection is checked. Whenever
there is a mismatch in any of the fields, whether it would
be the hostname or the pin itself, a notification will alert the
user immediately. Instead of terminating the connection if the
certificate changes, which can happen without any malicious
intent, we enable the user to decide whether to approve the
change and pin the new certificate or to reject the change
and terminate the connection. The users are included in this
process, because if we directly terminate the connection, it
will render the applications unusable.

V. RESULTS

We conducted a static analysis of 50,000 Android applica-
tions. The static analysis is solely focused on the TrustMan-
ager implementation within the applications. The applications
dated from two consecutive years. One set of top 25,000
applications was crawled in late 2013 and the second set in late
2014. For our analysis we used the Mallodroid script [12] and
the results are categorized according to the following criteria:
Broken TrustManager, Possibly Broken TrustManager, Broken
hostnameVerifier, Possibly Broken hostnameVerifier, Broken
SSLError Handling and Possibly Broken SSLError Handling.
The results confirmed that the applications rely more and more
on network communication. The results are presented in Table
I and Table II.

Trust Manager Hostname Verifier SSL Error
Broken 17% 7% 0.08%

Possibly Broken 6% 1% 15%
No issues 54%

TABLE I: Classification of applications that contain Broken
and Possibly broken TrustManager, Hostname Verifier and
SSL Errors for the set of 25,000 applications from late 2013

It is evident that the situation is just getting worse. The
top 25,000 applications from late 2013 contained 3,834 ap-
plications or nearly 17% that had no implementation or a
broken custom implementation of the validation procedure.

301Networking 2016



(a) Screenshot from the no-
tification in the Notification
Bar

(b) Screenshot from the
body of the notification
showing the change of the
certificate that occurred

(c) Example of terminated
network connection due to
key mismatch

(d) Example of terminated
network connection due to
hostname mismatch

Fig. 1: Screenshots of the notification and the error messages produced by a mismatch of the public keys and the hostnames
– simulation of MITM attack

Trust Manager Hostname Verifier SSL Error
Broken 23% 13% 0.05%

Possibly Broken 10% 4% 29%
No issues 21%

TABLE II: Classification of applications that contain Broken
and Possibly broken TrustManager, Hostname Verifier and
SSL Errors for the set of 25,000 applications from late 2014

Usually, such a set of applications also contains the other two
categories, i.e. broken hostname and no handling of SSL/TLS
errors. Rather surprisingly for us, the applications from 2014
turned out to have more broken SSL/TLS implementations. As
seen in Table II, 23% resp. 4,804 applications have a broken
SSL/TLS implementation or are set to accept every certificate
that is presented to them. This increase of nearly 6% is a clear
indication that the problem still exists among the Android
applications that make use of the SSL/TLS protocols for
securing their network communication. Although it is evident
that the problem still exists, moreover we notice an increase in
the applications that contain broken SSL/TLS implementation
from the set of 2014, it could be an indication that the
awareness towards this issue has finally raised. This is because
of the functionality of the Mallodroid script which targets
just the applications that are using SSL/TLS, specifically the
TrustManager implementation, while the applications that use
just HTTP are immediately classified as applications that
contain no issues. Due to the design of this script, additional
network flaws are also not registered. This indicates that all of
the applications that use just HTTP or do not use Internet are
classified under the No Issues category. Moreover, this increase
could be classified as mixture of fast adoption of the concepts
providing additional SSL/TLS security combined with the lack
of knowledge with regard to the actual implementation of these

public TrustManager(){

return;

}

public void

checkServerTrusted(java.security.cert.

X509Certificate[]s1, String s2){

return;

}

Listing 1: Example code for Broken TrustManager that would
accept all certificates

concepts. The lack of a centralized body (such as Google
Play is for testing the applications regarding all additional
threats) that is capable of testing the actual implementation of
the networking part of the application could easily introduce
such increase in the results, since Google itself has a quite
open approach towards the process of becoming a developer
without assessing their actual qualifications. This implies that
even with increased awareness, there is no guarantee that
the implementation will be correct. Finally, we handpicked
a very small set of already identified applications with broken
SSL/TLS implementation for further analysis. In this set
of apps, we encountered classes named FakeTrustManager,
AcceptAllTrust etc. and found copied chunks of code directly
from the forums that advice users to trust all certificates in
order to solve the SSL/TLS errors in their applications. An
example of a detected broken implementation is outlined in
Listing 1.

After having presented the design of our tool, we assess its
effectiveness. In order to be able to test our tool, we did a
setup that includes Android devices with root access, Cydia
Substrate installed and our tool, which in turn was installed

302Networking 2016



Fig. 2: Screenshot from the file that contains the public key
pins and the hostnames

as an extension to the framework. As specified by the Cydia
Substrate framework, after installation of a new module the
phone has to be rebooted. From the point when the phone is
booted, the public key of every certificate for every connection
is automatically pinned. Figure 2 shows the pinned public
keys.

Our implementation of the pinning is based on the sugges-
tions from the OWASP guide [33]. Although it might require
frequent updates, we decided to pin the end certificate in
order to reduce the attack surface as much as possible. By
pinning the public key of the certificate, we introduced the
user with a little bit more flexibility compared to pinning the
whole certificate. This means that the applications that use
our approach will eliminate the need for an update when the
certificate is reissued, since the public key will be the same.

We manually verified our solution against a number of
applications that had a completely broken use of SSL/TLS
protocols. Upon applying our solution, all of the tested ap-
plications were functioning as expected and their public keys
were successfully pinned. In order to simulate a MITM attack,
we manually changed the pinned keys in the file. This means
that next time when the application tries to establish a network
connection, our solution should send an alert to the user. After
successfully changing the key and reopening the application,
we received an alert that the key had been changed (shown in
Figure 1a and Figure 1b). Here the user can decide whether he
accepts this change and pin the new certificate or just reject it.
If the user pins the new key, the application will continue to
work normally, since in our case the certificate that is received
is the valid one from the application, because we performed
the change directly in the file that contain the pins. In general,
if the user rejects the change of the certificate, the connection
will be immediately terminated. An example of this case can
be seen in Figure 1c and Figure 1d. Furthermore, the tests
performed against the set of applications showed no decrease
in the overall performance of the applications.

VI. DISCUSSION

Our approach improves the network security of broken/de-
fault SSL implementations in Android applications by dynam-
ically pinning server certificates. Hereby, we directly improve
the security of affected users instead of focusing on the
developers of the applications. We also managed to shift
the pinning strategy from an application-based approach to
a broader device-based solution. Furthermore, we do not have
any limitations regarding the number of applications, because
our approach works with all Android applications that are
using network communication.

A. Security Challenges

Besides all the benefits presented throughout this paper, our
current proof-of-concept implementation has open challenges.
Since we are relying on the TOFU principle, our tool works
only if the first connection is benign. Although there is still a
risk that the first connection might be malicious, it is definitely
significantly lower in comparison to the risk of MITM attacks
on a totally insecure application. Furthermore, our approach
could be easily adapted to overcome the TOFU issue in future
work. As proposed by Wendlandt [41], we plan to implement
a third-party notary service to ensure that applications use the
correct pin, even when the first connection has already been
tampered with. This solution enables the possibility to provide
pins in advance and, more importantly, offers a distributed
infrastructure to detect MITM attacks. By implementing such
an extension, the application will directly receive the pins
while the risk of a first malicious connection is eliminated,
because the provided pins are verified against our third-party
notary service. Furthermore, it also overcomes the limitation
presented by the certificate updates, because new certificates
will be verified and the user will be accordingly informed
whether the certificates are malicious. An other alternative
approach to overcome the limitation presented with the use of
the TOFU approach is to use the DNS-based Authentication of
Named Entities (DANE) [7]. This alternative would, however,
also require the support of DANE by applications developers.

Our approach requires root privileges to work. Therefor, an
attacker would also need root privileges to subvert our security
improvements by e.g. tampering with the pin storage of our
tool. In scenarios where attackers are able to gain root access
to a device, they can already access any information stored on
the device directly and would likely not focus on subverting
our protection mechanisms. It is also important to state that our
approach is not directly exposing the system to any additional
risks apart from the ones already presented with the use
of the root mode in Android operating system. Finally, to
address the cases in which applications already have a correct
implementation of the SSL/TLS protocols, we will introduce
application whitelisting. This means that applications with a
correct implementation of SSL/TLS could be excluded and not
obligated to use our implementation of the TrustManager.

303Networking 2016



B. Usability Challenges
Our proof-of-concept implementation requires user interac-

tion and can thus be compared with the current implementation
of common web browser warnings, during which users are
explicitly asked to decide whether to proceed or terminate the
connection to the desired web service. Due to the specific
nature of real-world usability testing of our module, a large-
scale long-term usability test would provide additional insights
regarding the user acceptance of our approach. In addition, an
adaption of the previously mentioned notary-based or DANE-
based pinning approach would also minimize the requirement
for users to decide if a given certificate is valid or not. Our
work touches upon another important issue related to secure
network communication that is still present in the Android OS:
the lack of visual indicators. Unlike browsers, where the user is
notified with the lock in the address bar when HTTPS is used,
in Android there is no way for the user to distinguish whether
the user is using a secure channel to transmit sensitive data or
not. Our approach could therefor be used to inform the user
when secure network communication is used for a specific app.
Finally, we plan to make our approach even more accessible
by porting our proof-of-concept implementation to iOS.

VII. RELATED WORK

Taking into consideration the market share of Android, it is
obvious that any vulnerability would affect a large number
of users. From the start, researchers put a lot of effort in
discovering bugs and proposing solutions. It is the same with
the networking part of the applications that are currently on
the official market. Trummer et al. [38] and Onwuzurike
et al. [32] recently showed that some of the most popular
applications currently available are still vulnerable to MITM
attacks. This underlines that the problem still exists and
according to [27], lack of knowledge is one of the reasons
for this issue. While not being able to directly influence this
matter, researchers turn to proposing tools for static analysis
that could help developers and researchers to detect broken
SSL/TLS implementations. Sounthiraraj et al. [36] proposed
SMV-Hunter, a tool that combines static and dynamic analysis
to detect incorrect use of SSL/TLS protocols. Zuo et al. [42]
presented a hybrid approach to discover these vulnerabilities.
They analyzed 13,820 applications and found out that 1,360
are potentially vulnerable. The drawback of all those solutions
is that they are focused on the developers. In contrary, our
approach is aiming at a more scalable solution: we developed
a module for dynamic certificate pinning which scales the
common application-based approach to a broader device-based
and user-focused solution. Instead of limiting the certificate
pinning to just one app, our module is able to implement this
approach for every single application installed on the device.
Furthermore, all of the past research is performed over a fixed
set of applications, whereas our focus is put on the users, i.e.
without having a limitation for the application set. This means
that we are able to apply our solution to any application that
is utilizing the network. This way we directly influence the
user instead of the developers.

Network security is just a part of the whole Android security
model, therefore we refer the interested user to Enck et al. [25]
for a detailed explanation of the Android operating system as
well as its overall security concept. Currently a number of
researchers focus on discovering applicable attack vectors for
the Android operating system. Bugiel et al. [21] and Davi et al.
[23] present privilege escalation attack vectors that underline
weaknesses in the Android operating system. Finally, the
Android permission has received considerable attention from
the research community. Information regarding the evolution
and effectiveness of the permission system as well as detailed
studies regarding over-privileged applications can be found in
[34], [40].

VIII. CONCLUSION

In this paper we discuss a major security and privacy issue
of Android applications: weak protection of the network com-
munication between devices and backend servers. To this end
we performed a static analysis on 50,000 Android applications
gathered over a period of two years. Our analysis showed
that the broken implementation of SSL/TLS communication
remains a serious issue for popular Android applications. Our
analysis suggests that this issue did not improve over time. We
furthermore present a novel approach to overcome the issue
of broken SSL/TLS use in Android applications. Hereby, we
proposed a tool that provides dynamic pinning of certificates
during runtime. To the best of our knowledge, we are the
first to tackle this major security challenge from the users’
perspective. Our approach is based on a popular dynamic
instrumentation framework which is available for the great
majority of Android devices and, thus, makes our proposed
implementation a suitable candidate for future custom ROMs.
Therefore, we made the source code of our proof-of-concept
implementation publicly available [8] to spur adaption of
our approach in popular custom Android ROMs such as
CyanogenMod.

ACKNOWLEDGMENT

This research was funded by COMET K1, FFG – Austrian
Research Promotion Agency. Moreover, this work has been
carried out within the scope of “u’smile”, the Josef Ressel
Center for User-Friendly Secure Mobile Environments, funded
by the Christian Doppler Gesellschaft, A1 Telekom Austria
AG, Drei-Banken-EDV GmbH, LG Nexera Business Solutions
AG, NXP Semiconductors Austria GmbH, and Österreichische
Staatsdruckerei GmbH.

REFERENCES

[1] Android sdk. [Online]. Available: http://developer.android.com/sdk/
index.html

[2] Certificate authority. [Online]. Available: https://en.wikipedia.org/wiki/
Certificate authority

[3] Cyanogen usage statistics. [Online]. Available:
http://www.androidcentral.com/cyanogen-now-has-more-users-
windows-mobile-and-blackberry-combined

[4] Cyanogenmod. [Online]. Available: http://www.cyanogenmod.org
[5] Cyanogenmod statistics. [Online]. Available: http:

//www.digitaltrends.com/mobile/does-cyanogen-really-have-more-
users-than-windows-mobile-and-blackberry-combined/

304Networking 2016



[6] Cydia substrate apk. [Online]. Available: https://play.google.com/store/
apps/details?id=com.saurik.substrate

[7] Dns-based authentication of named entities (dane). [Online]. Available:
https://tools.ietf.org/html/rfc6698

[8] “Dynamic pinning solution.” [Online]. Available: https://github.com/
dbuhov/pinningTrustManager

[9] Final report on diginotar hack shows total compromise of ca servers.
[Online]. Available: https://threatpost.com/final-report-diginotar-hack-
shows-total-compromise-ca-servers-103112/77170/

[10] M. marlinspike. tack - trust assertions for certificate keys. [Online].
Available: http://tack.io/draft.html

[11] M. marlinspike. your app shouldn’t suffer ssl’s problems. [Online].
Available: http://www.thoughtcrime.org/blog/authenticity-is-broken-in-
ssl-but-your-app-ha/

[12] Mallodroid script - https://github.com/sfahl/mallodroid. [Online].
Available: https://github.com/sfahl/mallodroid

[13] Number of available applications in the google play store.
[Online]. Available: http://www.statista.com/statistics/266210/number-
of-available-applications-in-the-google-play-store/

[14] Representation and verification of domain-based application service
identity within internet public key infrastructure using x.509 (pkix)
certificates in the context of transport layer security (tls). [Online].
Available: https://tools.ietf.org/html/rfc6125

[15] Smartphone os statistics 2015. [Online]. Avail-
able: https://www.netmarketshare.com/operating-system-market-share.
aspx?qprid=8&qpcustomd=1&qpsp=2015&qpnp=1&qptimeframe=Y

[16] The transport layer security (tls) protocol version 1.2. [Online].
Available: https://tools.ietf.org/html/rfc5246

[17] Usage of ssl certificate authorities. [Online]. Available: http://w3techs.
com/technologies/overview/ssl certificate/all

[18] X509trustmanager. [Online]. Available: http://developer.android.com/
reference/javax/net/ssl/X509TrustManager.html

[19] Xposed framework. [Online]. Available: http://repo.xposed.info
[20] Android. Security with https and ssl. [Online]. Available: http:

//developer.android.com/training/articles/security-ssl.html
[21] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and

B. Shastry, “Towards taming privilege-escalation attacks on android,”
in 19th Annual Network and Distributed System Security Symposium,
NDSS 2012, San Diego, California, USA, February 5-8, 2012. The
Internet Society, 2012. [Online]. Available: http://www.internetsociety.
org/towards-taming-privilege-escalation-attacks-android

[22] D. Buhov, M. Huber, G. Merzdovnik, E. Weippl, and V. Dimitrova,
“Network security challenges in android applications,” in Availability,
Reliability and Security (ARES), 2015 10th International Conference
on, Aug 2015, pp. 327–332.

[23] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
escalation attacks on android,” in Proceedings of the 13th International
Conference on Information Security, ser. ISC’10. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 346–360. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1949317.1949356

[24] N. Elenkov. Certificate pinning in android 4.2. [Online]. Available:
https://github.com/nelenkov/cert-pinner

[25] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android secu-
rity,” Security Privacy, IEEE, vol. 7, no. 1, pp. 50–57, Jan 2009.

[26] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben,
and M. Smith, “Why eve and mallory love android: An analysis
of android ssl (in)security,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 50–61. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382205

[27] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
ssl development in an appified world,” in Proceedings of the 2013 ACM
SIGSAC Conference on Computer &#38; Communications Security,
ser. CCS ’13. New York, NY, USA: ACM, 2013, pp. 49–60. [Online].
Available: http://doi.acm.org/10.1145/2508859.2516655

[28] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: Validating ssl
certificates in non-browser software,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 38–49. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382204

[29] M. Marlinspike. Android pinning. [Online]. Available: https://github.
com/moxie0/AndroidPinning

[30] J.-S. Oh, M.-W. Park, and T.-M. Chung, The Multi-level Security for
the Android OS, B. Murgante, S. Misra, A. Rocha, C. Torre, J. Rocha,
M. Falcão, D. Taniar, B. Apduhan, and O. Gervasi, Eds. Springer
International Publishing, 2014, vol. 8582.

[31] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl,
“To pin or not to pin—helping app developers bullet proof their
tls connections,” in 24th USENIX Security Symposium (USENIX
Security 15). Washington, D.C.: USENIX Association, 2015,
pp. 239–254. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/oltrogge

[32] L. Onwuzurike and E. De Cristofaro, “Danger is my middle
name: Experimenting with ssl vulnerabilities in android apps,”
in Proceedings of the 8th ACM Conference on Security &
Privacy in Wireless and Mobile Networks, ser. WiSec ’15. New
York, NY, USA: ACM, 2015, pp. 15:1–15:6. [Online]. Available:
http://doi.acm.org/10.1145/2766498.2766522

[33] OWASP. Certificate and public key pinning. [Online]. Available:
https://www.owasp.org/index.php/Certificate and Public Key Pinning

[34] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and
I. Molloy, “Android permissions: A perspective combining risks
and benefits,” in Proceedings of the 17th ACM Symposium on
Access Control Models and Technologies, ser. SACMAT ’12. New
York, NY, USA: ACM, 2012, pp. 13–22. [Online]. Available:
http://doi.acm.org/10.1145/2295136.2295141

[35] Saurik. Cydia substrate. [Online]. Available: http://www.cydiasubstrate.
com

[36] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “Smv-
hunter: Large scale, automated detection of ssl/tls man-in-the-middle
vulnerabilities in android apps,” in Proceedings of the 19th Network
and Distributed System Security Symposium, 2014.

[37] V. Tendulkar and W. Enck, “An application package configuration
approach to mitigating android SSL vulnerabilities,” CoRR, vol.
abs/1410.7745, 2014. [Online]. Available: http://arxiv.org/abs/1410.7745

[38] T. Trummer and T. Dalvi. The savage curtain: Mobile ssl failures,
black hat - https://www.blackhat.com/docs/ldn-15/materials/london-15-
trummer-dalvi-the-savage-curtain-mobile-ssl-failures-wp.pdf.

[39] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google
play,” SIGMETRICS Perform. Eval. Rev., vol. 42, no. 1, pp. 221–233,
Jun. 2014. [Online]. Available: http://doi.acm.org/10.1145/2637364.
2592003

[40] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission
evolution in the android ecosystem,” in Proceedings of the 28th
Annual Computer Security Applications Conference, ser. ACSAC ’12.
New York, NY, USA: ACM, 2012, pp. 31–40. [Online]. Available:
http://doi.acm.org/10.1145/2420950.2420956

[41] D. Wendlandt, D. G. Andersen, and A. Perrig, “Perspectives: Improving
ssh-style host authentication with multi-path probing,” in USENIX
2008 Annual Technical Conference, ser. ATC’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 321–334. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1404014.1404041

[42] C. Zuo, J. Wu, and S. Guo, “Automatically detecting ssl error-handling
vulnerabilities in hybrid mobile web apps,” in Proceedings of the
10th ACM Symposium on Information, Computer and Communications
Security, ser. ASIA CCS ’15. New York, NY, USA: ACM, 2015,
pp. 591–596. [Online]. Available: http://doi.acm.org/10.1145/2714576.
2714583

305Networking 2016


