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Abstract—We present a fully verified firewall ruleset analysis

framework. Ultimately, it computes minimal service matrices,

i. e. graphs which partition the complete IPv4 address space

and visualize the allowed accesses between partitions for a fixed

service. Internally, we are working with a simplified firewall

model and a core contribution is the translation of complex

real-world iptables firewall rules into this model. The presented

algorithms and translation are formally proven correct with the

Isabelle theorem prover. A real-world evaluation demonstrates

the applicability of our tool. Both the iptables-save datasets

and the Isabelle formalization are publicly available.

I. INTRODUCTION

Firewall rulesets are inherently difficult to manage. It is
a well-studied but unsolved problem that many rulesets show
several configuration errors [1]–[3]. Tools were designed to
help uncover configuration errors and verify a ruleset. We
focus on tools for the static analysis of rulesets. They have
the benefit that the analysis can be carried out offline, without
any negative effects on the network. In contrast to testing,
static analysis can achieve a full coverage (e.g. the results
hold for all packets) and thus are able to uncover all errors
and give strong guarantees for the absence of certain classes
of errors. However, in practice, static ruleset analysis tools
fail for various reasons: They do not support the vast amount
of firewall features, they require the administrator to learn a
complex query language which might be more complex than
the firewall language itself, the analysis algorithms do not scale
to large firewalls, and the output of the verification tools itself
cannot be trusted.

To overcome these issues and to foster static analysis
and verification of real-world firewall rulesets, we present
the first fully verified and large-scale tested Linux/netfilter
iptables firewall analysis and verification tool. In detail, our
contributions are:

● A simple firewall model, designed for mathematical
beauty and ease of static analysis (Section III)● A series of translation steps to translate real-world firewall
rulesets into this simple model (Section IV)● Static and automatic firewall analysis methods, based on
the simple model, featuring○ IP address space partitioning (Section V)○ Minimal service matrices (Section VI)● Full formal and machine-verifiable proof of correctness
(Section Availability)● Evaluation on large real-world data set (Section VII)

The Linux iptables firewall is wide-spread, has evolved
over a long time, and is well-known for its vast amount of
features. In addition, in production networks, huge, complex,

and legacy firewall rulesets have evolved over time. Therefore,
iptables poses a particular challenge. Naturally, our methodol-
ogy can also be applied to firewalls with simpler semantics,
or younger technology with yet fewer features, e.g. Cisco IOS
Access Lists or OpenFlow.

We outline related work in Section II. The real-world and
simplified firewall models are presented in Section III. We
detail on the translation between these models in Section IV.
Afterwards, we present the IP address space partitioning (Sec-
tion V) and service matrices (Section VI). In Section VII, we
evaluate our algorithms on a large set of real-world iptables
rulesets.

II. RELATED WORK

We will call the features a firewall can use to match
on packets primitives. For example, among others, iptables
supports the following primitives: src IP address, layer 4 port,
inbound interface, conntrack state, entries and limits in the
recent list, . . .

Popular tools for static firewall analysis include FIRE-
MAN [4], Capretta et al. [5], and the Firewall Policy Advi-
sor [6]. They support the following primitives: IP addresses,
ports, and protocol. This corresponds to (a subset of) our
simple firewall model, hence, these tools would not be ap-
plicable to most firewalls from our evaluation. The tools focus
on detecting conflicts between rules and can consequently
not offer service matrices. The work most similar to our IP
address space partitioning is ITVal [7]: It supports a large
set of iptables features and can compute an IP address space
partition [8]. Unfortunately, ITVal is not formally verified
and its implementation has several errors. For example, ITVal
produces spurious results if the number of significant bits
in IP addresses in CIDR notation [9] is not a multiple of
8. It does not consider logical negations which may occur
when RETURNing prematurely from user-defined chains, which
leads to wrong interpretation of complement sets. It does
not support abstracting over unknown primitives but simply
ignores them, which also leads to spurious results. For rulesets
with more than 1000 rules, ITVal requires tens of gigabytes
of RAM. Finally, ITVal neither proves the soundness nor the
minimality of its IP address range partitioning. Nevertheless,
ITVal demonstrates the need for and the use of IP address range
partitioning and has demonstrated that its implementation
works well on rulesets which do not trigger the aforementioned
errors. Building on the ideas of ITVal (but with a different
algorithm), we overcome all presented issues.

Exodus [10] translates existing device configurations to a
simpler model, similar to our translation step. It translates
router configurations to a high-level SDN controller program,
which is implemented on top of OpenFlow. Exodus supportsISBN 978-3-901882-83-8 © 2016 IFIP
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many Cisco IOS features. The translation problem solved by
Exodus is comparable to this paper’s problem of translating to
a simple firewall model: OpenFlow 1.0 only supports a limited
set of features (comparable to our simple firewall) whereas IOS
supports a wide range of features (comparable to iptables); A
complex language is ultimately translated to a simple language,
which is the ‘hard’ direction.

Complementary to our verification tool, and well-suited
for debugging, is Margrave [11]. It can be used to query
firewalls and to troubleshoot configurations or to show the
impact of ruleset edits. Margrave can find scenarios, i.e. it can
show concrete packets which violate a security policy. Our
framework does not show such information. Margrave’s query
language (which should be learned by a potential user) is based
on first-order logic.

III. FIREWALL SEMANTICS

All facts presented in this work are formally verified with
the Isabelle theorem prover [12]. All executable algorithms are
also implemented in Isabelle and formally proven correct.

Isabelle is an LCF-style theorem prover: A proposition
is only accepted by Isabelle if it can be explained to its
mathematical inference kernel. That kernel is very small and
well-understood by the formal methods community which
makes it very unlikely that Isabelle allows proving false
statements. The last 20 years of Isabelle in practice underline
this statement. In general, the formal methods community
treats facts machine-verified with Isabelle as well-founded
truth. Also, the real-world firewall reference model we will
use in this work (Section III-B) has been previously evaluated
by said community [3]. Our formalization, implementation,
and proofs are publicly available (cf. Section Availability).
An interested reader can replay the proofs and results of the
evaluation on her system. For brevity, in this paper, we omit
all technical proof details and only outline the intuition of the
correctness proofs. For further mathematical details, we refer
the interested reader to our proof document. We use Isabelle’s
standard Higher-Order Logic (HOL). This means, all proofs
can be reduced to the axioms of HOL. We stick closely to
the formalization and do not sweep any assumption under the
carpet.

Our notation is close to Isabelle, Standard ML, or Haskell:
Function application is written without parentheses, e.g. f a
denotes function f applied to parameter a. For lists, we denote
cons and append by ‘∶∶’ and ‘∶∶∶’, e.g. ‘x ∶∶ [y, z] ∶∶∶ [a]’. Linux
shell commands are set in typewriter font. Executable
functions are set in sans serif font. We will write firewall rules
as tuple (m, a), where m is a match expression and a is the
action the firewall performs if m matches for a packet. The
firewall has two possibilities for the filtering decision: it may
accept ( ) the packet or deny ( ) the packet. There is also an
intermediate state ( ? ) in which the firewall did not come to
a filtering decision. Note that iptables firewalls always have a
default policy and the ? case cannot occur as final decision.

A. Simple Firewall

First, we present a very simple firewall model. This model
was designed to feature nice mathematical properties but it
is too simplistic to mirror the real world. Therefore, we will

afterwards present a model for real-world firewalls. Section IV
will show how rulesets can be translated between these two
models. This preprocessing step simplifies all future static
firewall analysis. The model is a simple recursive function.
The first parameter is the ruleset the firewall iterates over, the
second parameter is the packet.

simple-fw [] p = ?

simple-fw ((m, Accept) ∶∶ rs) p =
if match m p then else simple-fw rs p

simple-fw ((m, Drop) ∶∶ rs) p =
if match m p then else simple-fw rs p

A function match tests whether a packet p matches the
match condition m. The match condition is an 7-tuple, con-
sisting of the following primitives:

(in, out, src, dst, protocol, src ports, dst ports)
In contrast to iptables, negating matches is not supported. In
detail, the following is supported:

● in/out interface, including support for the ‘+’ wildcard● src/dst IP address range in CIDR notation, e.g.
192.168.0.0/24● protocol (Any, tcp, udp, icmp, or any numeric protocol
identifier)● src/dst interval of ports, e.g. 0:65535

For example, we obtain an empty match (a match that does
not apply to any packet) iff an end port is greater than the start
port. The match which matches any packet is constructed by
setting the interfaces to “+”, the ips to 0.0.0.0/0, the ports
to 0:65535 and the protocol to Any. With this type of match
expression, it is possible to implement a function conj which
takes two match expressions m1 and m2 and returns exactly
one match expression being the conjunction of both.

Theorem 1 (Conjunction of two simple match expressions).

match m1 p ∧match m2 p ←→ match (conj m1 m2) p
Computing the conjunction of the individual match expres-

sions for port intervals and single protocols is straightforward.
The conjunction of two intervals in CIDR notation is either
empty or the smaller of both intervals. The conjunction of two
interfaces is either empty if they don’t share a common prefix,
otherwise it is the longest of both interfaces (non-wildcard
interfaces dominate wildcard interfaces).

The type of match expressions was carefully designed such
that the conjunction of two match expressions is only one
match expression. If features were added to the match ex-
pression, for example negated interfaces, this would no longer
be possible. Of all common features found in a firewall, we
only found that it would further be possible to add TCP flags
to the match expression without violating the aforementioned
conjunction property.

B. Semantics of Iptables

We now outline the model of a real-world iptables firewall.
Most firewall analysis is concerned with the access control
rules of a firewall, therefore the model focuses on the filter
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table. This implies, packet modification (e.g. NAT, which must
not occur in this table) is not considered in this work. We rely
on our previous work [3]. The model supports the following
common actions: Accept, Drop, Reject, Log, Calling to and
Returning from user-defined chains, as well as the “empty”
action. The model is defined as an inductive predicate with the
following syntax:

�,�, p � �rs, s�⇒ t

The ruleset of the firewall is rs and the packet under ex-
amination is p. The states s and t are in { , , ? }. The
starting state of the firewall is s, usually ? . The filtering
decision after processing rs is t, usually or . User-
defined chains are stored in �, which corresponds to the
background ruleset. A primitive matcher � (a boolean function
which takes a primitive and the packet as parameters) decides
whether a certain primitive matches for a packet. Note that
the model and all algorithms on top of it are proven correct
for an arbitrary �, hence, this model supports all iptables
matching features. Obviously, there is no executable code
for an arbitrary �. However, the algorithms which transform
rulesets are executable.

We make use of these algorithms, in particular: An al-
gorithm which unfolds all calls to and returns from user-
defined chains and rewriting of further actions. This leaves
a ruleset where only the following actions occur: Accept
and Drop. Thus, a large step for translating the real-world
model to the simple firewall model is already accomplished.
Translating the match expressions remains. The real-world
model allows a match expression to be an arbitrary proposi-
tional logic expression. However, iptables only accepts match
expressions in negation normal form (NNF). A Boolean for-
mula is in NNF iff all occurring negations are on primi-
tives, i.e. there are no nested negated expressions. For ex-
ample, iptables can load -s 10.0.0.0/8 ! -p tcp but
not ! (-s 10.0.0.0/8 -p tcp). However, such negated
expressions may occur as a result of the unfolding algorithm.
An algorithm to translate a ruleset to a ruleset where all match
conditions are in NNF is already available [3].1 However, there
is an additional constraint imposed by iptables, not solved by
the algorithm: A primitive must only occur at most once. This
problem will be addressed in this paper.

We have implemented a subset of �, namely for all
primitives supported by the simple firewall and some further
primitives, detailed in Section IV. Previous work provides
an algorithm to abstract over all ‘unknown’ primitives which
are not understood by our subset implementation of �. This
algorithm leads to an approximation of the ruleset. It can either
be an overapproximation which results in a more permissive
ruleset, or an underapproximation, which results in a stricter
ruleset. For the sake of example, we will only consider the
overapproximation in this paper, the underapproximation is
analogous and can be found in our formalization.

Since firewalls usually accept all packets which belong to
an ESTABLISHED connection, the interesting access control
rules in a ruleset only apply to NEW packets. We only consider
NEW packets, i.e. --ctstate NEW and --syn for TCP

1NNF normalizing may create additional rules.

packets. Our first goal is to translate a ruleset from the real-
world model to the simple model. We have proven that the set
of new packets accepted by the simple firewall is a superset
(overapproximation) of the packets accepted by the real-world
model. This is a core contribution and we detail on the
translation in the following section.

Theorem 2 (Translation to simple firewall model).

�p. new p ∧ �,�, p � �rs, ? �⇒ �
⊆

{p. new p ∧ simple-fw (translate-oapprox rs) = }
Any packet dropped by the translated, overapproximated

simple firewall ruleset is guaranteed to be dropped by the real-
world firewall, for arbitrary �, �, rs . Similar guarantees for
certainly accepted packets can be given by considering the
translated underapproximation. Given the simple and carefully
designed model of the simple-fw, it is much easier to write
algorithms to analyze and verify the translated rulesets.

Example: We consider a FORWARD chain with a default policy
of DROP and a user-defined chain foo.

-P FORWARD DROP
-A FORWARD -s 10.0.0.0/8 -j foo
-A foo ! -s 10.0.0.0/9 -j DROP
-A foo -p tcp -j ACCEPT

This ruleset, though it only consist of three rules and a default
policy, is complicated to analyze. Our translation algorithm
translates it to the simple firewall model, where the ruleset
becomes remarkably simple. We use * to denote a wildcard:

( ∗ , ∗ ,10.128.0.0/9, ∗ , ∗ , ∗ , ∗ ) DROP

( ∗ , ∗ , 10.0.0.0/8 , ∗ ,TCP, ∗ , ∗ ) ACCEPT

( ∗ , ∗ , ∗ , ∗ , ∗ , ∗ , ∗ ) DROP

No over- or underapproximation occurred since all primitives
could be translated. Note the 10.128.0.0/9 address.

IV. TRANSLATING PRIMITIVES

A firewall has the same behavior for two rulesets rs1 and
rs2 iff for all packets, the firewall computes the same filtering
decision for rs1 and rs2. Formally,

∀p s t. �,�, p � �rs1, s�⇒ t ←→ �,�, p � �rs2, s�⇒ t

In this section, we present algorithms to transform an arbitrary
rs1 to rs2 without changing the behavior of the firewall. In
the resulting rs2 , all primitives will be normalized such that
the translation to the simple-fw is obvious. We continue by
describing the normalization of all common primitives found
in iptables rulesets.

A. IPv4 Addresses

“Modeling IP addresses efficiently is challenging.” [11]
First, we present a datatype to efficiently perform set oper-
ations on intervals of machine words, e.g. 32-bit integers. We
will use this type for IPv4 addresses, but it can be generalized
to machine words of arbitrary length, e.g. IPv6 addresses or
L4 ports. We call it word interval (wi ), and WI start end
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describes the interval with start and end inclusive. The Union

of two wis is defined recursively.

datatype wi =WI word word � Union wi wi

Let set denote the interpretation into mathematical sets, then
wi has the following semantics: set (WI start end) ={start ..end} and set Union wi1 wi2 = set (wi1)∪ set (wi2).

An IP address in CIDR notation or IP addresses specified
by e.g. -m iprange can be translated to one WI. We have
implemented and proven the common set operations: ‘∪’,
‘{}’, ‘�’, ‘∩’, ‘⊆’, and ‘=’. These operations are linear in
the number of Union-constructors. The result is optimized
by merging adjacent and overlapping intervals and removing
empty intervals. We can also represent ‘UNIV’ (the universe of
all IP addresses). Since most rulesets use IP addresses in CIDR
notation or intervals in general, the wi datatype has proven to
be very efficient. Recall that the intersection of two intervals,
constructed from addresses in CIDR notation, is either empty
or the smaller of both intervals.

wi is an internal representation and for the simple firewall,
the result needs to be represented in CIDR notation. For this
direction, one WI may correspond to several CIDR ranges.
We describe an algorithm to split off one CIDR range from
an arbitrary word interval r. The output is a CIDR range and
r′, the remainder after splitting off this CIDR range. split is
implemented as follows: Let a be the lowest element in r.
If this does not exist, then r corresponds to the empty set
and the algorithm terminates. Otherwise, we construct the list
of CIDR ranges [a�0, a�1, ..., a�32]. The first element in the
list which is well-formed (i.e. all bits after the network prefix
must be zero) and which is a subset of r is the wanted element.
Note that this element always exists. It is subtracted from r to
obtain r′. To convert r completely to a list of CIDR ranges,
this is applied recursively until it yields no more results. This
algorithm is guaranteed to terminate and the resulting list in
CIDR notation corresponds to the same set of IP addresses as
represented by r. Formally, �map set (split r) = set r.

For example, split (WI 10.0.0.0 10.0.0.15) =[10.0.0.0/28] and split (WI 10.0.0.1 10.0.0.15) =[10.0.0.1/32,10.0.0.2/31,10.0.0.4/30,10.0.0.8/29].
With the help of these functions, arbitrary IP address

ranges can be translated to the format required by the simple
firewall. The following is applied to matches on src and dst
IP addresses: First, the IP match expression is translated to
a word interval. If the match on an IP range is negated, we
compute UNIV � wi . All matches in one rule can be joined
to a single word interval, using the ∩ operation. The resulting
word interval is translated to a set of non-negated CIDR ranges.
Using the NNF normalization, at most one match on an IP
range in CIDR notation remains. We have proven that this
process preserves the firewall’s filtering behavior.

We conclude with a simple, synthetic worst-case ex-
ample. The evaluation shows that this worst-case does not
prevent successful analysis: -m iprange --src-range
0.0.0.1-255.255.255.254. Translated to the simple
firewall, this one range blows up to 62 ranges in CIDR
notation. A similar blowup may occur for negated IP ranges.

B. Conntrack State

If a packet p is matched against the stateful match condition
ESTABLISHED, conntrack looks up p in its state table. When
the firewall comes to a filtering decision for p, if the packet
is not dropped and the state was NEW, the conntrack state
table is updated such that the flow of p is now ESTALISHED.
Similarly, other conntrack states are handled.

We present an alternative model for this behavior: Before
the firewall starts processing the ruleset for p, the conntrack
state table is consulted for the state of the connection of p. This
state is added as a (phantom) tag to p. Therefore, ctstate can
be modeled as just another header field of p. When processing
the ruleset, it is not necessary to inspect the conntrack table
but only the virtual state tag of the packet. After processing,
the state table is updated accordingly.

We have proven that both models are equivalent. The latter
model is simpler for analysis purposes since the conntrack state
can be considered an ordinary packet field.2

In Theorem 2, we are only interested in NEW packets.
In contrast to previous work, there is no longer the need to
manually exclude ESTABLISHED rules from a ruleset. The
alternative model allows us to consider only NEW packets: all
state matches can be removed (by being pre-evaluated for an
arbitrary NEW packet) from the ruleset without changing the
filtering behavior of the firewall.

C. Layer 4 Ports & TCP Flags

Translating singleton ports or intervals of ports to the
simple firewall is straightforward. A challenge remains for
negated port ranges and the multiport module. However,
the word interval type is also applicable to 16 bit machine
words and solves these challenges. For ports, there is no need
to translate an interval back to CIDR notation.3

Iptables can match on a set of L4 flags. To match on flags,
a mask selects the corresponding flags and c declares the flags
which must be present. For example, the match --syn is a
synonym for mask = SYN,RST,ACK,FIN and c = SYN. For
a set f of flags in a packet, matching can be formalized as(f ∩mask) = c. If c is not a subset of mask , the expression
cannot match; we call this the empty match. We proved that
two matches (mask1, c1) and (mask2, c2) are equal if and
only if (if c1 ⊆ mask1 ∧ c2 ⊆ mask2 then c1 = c2 ∧mask1 =
mask2 else (¬c1 ⊆ mask1) ∧ (¬c2 ⊆ mask2)) holds. We also
proved that the conjunction of two matches is exactly (if c1 ⊆
mask1∧c2 ⊆mask2∧mask1∩mask2∩c1 =mask1∩mask2∩
c2 then (mask1 ∪mask2, c1 ∪ c2) else empty). If we assume
--syn for a packet, we can remove all matches which are
equal to --syn and add the --syn match as conjunction to
all other matches on flags and remove empty matches. Some
matches on flags may remain, e.g. URG, which need to be
abstracted over later.

2This holds because the semantics does modify a packet during filtering.
3As a side note, OpenFlow (technically, the Open vSwitch) defines CIDR-

like matching for L4 ports. With the small change of converting ports to CIDR-
like notation, our simple firewall can be directly converted to OpenFlow and
we have the first (almost) fully verified translation of iptables rulesets to SDN.
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D. Interfaces

The simple firewall model does not support negated inter-
faces, e.g. ! -i eth+. Therefore, they must be removed. We
first motivate the need for abstracting over negated interfaces.

For whitelisting scenarios, one might argue, that negated
interfaces is bad practice anyway. This is because new (virtual)
interfaces might be added to the system at runtime and a
match on negated interfaces might now also include these new
interfaces. Therefore, it can be argued that negated interfaces
correspond to blacklisting, which is not recommended for most
firewalls. However, the main reason why negated interfaces
are not supported by our model is of technical nature: Let set
denote the set of interfaces that match an interface expression.
For example, set eth0 = {eth0} and set eth+ is the set of
all interfaces that start with the prefix eth. If the match on
eth+ is negated, then it matches all strings in the complement
set: UNIV � (set eth+). The simple firewall model requires
that a conjunction of two primitives is again at most one
primitive. This can obviously not be achieved with such sets.
In addition, working with negated interfaces can cause great
confusion. Note that the interface match condition ‘+’ matches
any interfaces. Also note that ‘+’ ∈ UNIV�(set eth+). In the
second equation, ‘+’ is not a wildcard character but the name
of an interface. The confusion introduced by negated interfaces
becomes more apparent when one realizes that ‘+’ can occur
as both wildcard character and normal character. Therefore, it
is not possible to construct an interface match condition which
matches exactly on the interface ‘+’, because a ‘+’ at the end
of an interface match condition is interpreted as wildcard.4

Correlating with IP Ranges: Later, in Section V, we will
compute an IP address space partition. For best clarity, this
partition must not be ‘polluted’ with interface information.
Therefore, for the partition, we will assume that no matches on
interfaces occur in the ruleset. In this subsection, we describe
a method to get rid of both, negated and non-negated input
interfaces while preserving their relation to IP address ranges.

Interfaces are usually assigned an IP range of valid source
IPs which are expected to arrive on that interface. Let ipassmt

be a mapping from interfaces to an IP address range. This
information can be obtained by ip route and ip addr.
We will write ipassmt[i] to get the corresponding IP range of
interface i. For the following examples, we assume

ipassmt = [eth0� {10.8.0.0/16}]
The goal is to rewrite interfaces with the corresponding IP
range. For example, we would like to replace all occurrences
of -i eth0 with -s 10.8.0.0/16. This idea can only be
sound if there are no spoofed packets; we only expect packets
with a source IP of 10.8.0.0/16 to arrive at eth0. Once
we have assured that the firewall blocks spoofed packets, we
can assume in a second step that there are no spoofed accepted
packets left. By default, the Linux kernel offers reverse path
filtering, which blocks spoofed packet automatically. In this
case we can assume that no spoofed packets occur. In some
complex scenarios, reverse path filtering needs to be disabled
and spoofed packets should be blocked manually with the help
of the firewall ruleset. In previous work [13], we presented

4We greatly discourage the use of “ip link set eth0 name +” in
production. Please fix your VM startup scripts with untrusted input now!

an algorithm to verify that a ruleset correctly blocks spoofed
packets. This algorithm is integrated in our framework, proven
sound, works on the same ipassmt and does not need the
simple firewall model (i.e. supports negated interfaces). If
some interface i should accept arbitrary IP addresses (es-
sentially not providing spoofing protection), it is possible to
set ipassmt[i] = UNIV. Therefore, we can verify spoofing
protection according to ipassmt at runtime and afterwards
continue with the assumption that no spoofed packets occur.

Under the assumption that no spoofed packets occur, we
will now present two algorithms to relate an input interface
i to ipassmt[i]. Both approaches are valid for negated and
non-negated interfaces. Approach one provides better results
but requires stronger assumptions (which can be checked at
runtime), whereas approach two is applicable without further
assumptions. These approaches could be generalized to output
interfaces (-o), which requires the routing table instead of
ipassmt . Because a routing table may change frequently, even
triggered by external malicious routing advertisements, we
refrain from this rewriting in this work.

Approach One: In general, it is considered bad prac-
tice [1], [14] to have zone-spanning interfaces. Two interfaces
are zone-spanning if they share a common, overlapping IP
address range. Mathematically, absence of zone-spanning in-
terfaces means that for any two interfaces in ipassmt , their
assigned IP range must be disjoint. Our tool emits a warning
if ipassmt contains zone-spanning interfaces. If absence of
zone-spanning interfaces is checked, then all input interfaces
can be replaced by their assigned source IP address range. This
preserves exactly the behavior of the firewall. The idea is that
in this case a bidirectional mapping between input interfaces
and source IPs exists. Interestingly, our proof does not need
the assumption that ipassmt maps to the complete IP universe.

Approach Two: Unfortunately, though considered bad
practice, we found many zone-spanning interfaces in many
real-world rulesets and hence cannot apply the previous al-
gorithm. First, we proved that correctness of the described
rewriting algorithm implies lack of zone-spanning interfaces.
This leads to the conclusion that it is impossible to perform
rewriting without this assumption. Therefore, we present an
algorithm which adds the IP range information to the ruleset
(without removing the interface match), thus constraining the
match on input interfaces to their IP range. The algorithm
computes the following: Whenever there is a match on an
input interface i, the algorithm looks up the corresponding IP
range of that interface and adds -s ipassmt[i] to the rule. To
prove correctness of this algorithm, no assumption about zone-
spanning interfaces is needed, ipassmt may only be defined
for a subset of the interfaces, and the range of ipassmt may
not cover the complete IP universe. Consequently, there is no
need for a user to specify ipassmt , but having it may yield
more accurate results.

E. Abstracting Over Primitives

Some primitives cannot be translated to the simple model.
Previous work already provides the function pu which removes
all unknown match conditions [3]. This leads to an approxima-
tion and is the main reason for the ‘⊆’ relation in Theorem 2.
We found that we can also rewrite any known primitive at
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any time to an unknown primitive. This can be used to apply
additional knowledge during preprocessing. For example, since
we understand flags, we know that the following condition
is false, hence rules using it can be removed: --syn ∧
--tcp-flags RST,ACK RST. After this optimization, all
remaining flags can be treated as unknowns and abstracted over
afterwards. This allows to easily add additional knowledge and
optimization strategies for further primitive match conditions
without the need to adapt any algorithm which works on the
simple firewall model. We proved soundness of this approach:
The ‘⊆’ relation in Theorem 2 is preserved.

V. IP ADDRESS SPACE PARTITION

In the following sections, we will work on rulesets trans-
lated to the simple-fw model. In this section, we will com-
pute a partition of the IPv4 address space. All IP addresses
in the same partition must show the same behavior w.r.t
the firewall ruleset. We do not require that the partition is
minimal. Therefore, the following would be a valid solution:{{0} , {1} , . . . , {255.255.255.255}}. However, we will need
the partition as starting point for a further algorithm and a
partition of size 2

32 is too large for this purpose. In this
section, we will present an algorithm to compute a partition
which behaves roughly linear in the number of rules for real-
world rulesets. First, we motivate the partitioning idea with the
following observation.

Lemma 1. For an arbitrary packet p, we write p(src � s)
to fix the src IP address to s. Let X be the set of all src IP
matches specified in rs , i.e. X is a set of CIDR ranges. If

∀A ∈X. B ⊆ A ∨B ∩A = {}
then let s1 ∈ B and s2 ∈ B then

simple-fw rs p(src� s1) = simple-fw rs p(src� s2)
Reading the lemma backwards, it states that all packets

with arbitrary source IPs picked from B are treated equally by
the firewall. Therefore, B is a member of an IP address range
partition. The condition imposed on B is that for all src CIDR
ranges specified in the ruleset (called A in the lemma), B is
either a subset of the range or disjoint. The lemma shows that
this condition is sufficient for B, therefore we will construct an
algorithm to compute B. For an arbitrary set X , this condition
is purely set-theoretic and we can solve it independently from
the firewall theory.

For simplicity, we use finite sets and lists interchangeably.
We will write an algorithm part and reuse the common list
algorithm from functional programming foldr. For X , the fol-
lowing algorithm computes a partition: foldr part X {UNIV }.
In addition, it is guaranteed that the union of the resulting
partition is equal to the universe. For our scenario, this means
that the partitioning covers the complete IPv4 space. The
algorithm part is implemented as follows: The first parameter
is a set S ∈ X , the second parameter TS is a set of
sets and corresponds to the remaining set which will be
partitioned. In the first call TS = {UNIV }. For a fixed S,
part S TS iterates over TS and splits the set such that the
precondition of Lemma 1 holds: Written as recursive function:
part S ({T}∪TS) = (S ∩ T )∪ (T �S)∪ (part (S � T ) TS)

The result size of calling part once can be up to two times
the size of TS . This means, the partition of a complete firewall
ruleset is in O(2�rules �). However, the empirical evaluation
shows that the resulting size for real-world rulesets is much
better. This is because IP address ranges may overlap in a
ruleset, but they do not overlap in the worst possible way
for all pairs of rules. Consequently, at least one of the sets
S ∩ T or T � S is usually empty and can be optimized away.
For example, for our largest firewall, the number of computed
partitions is 10 times smaller than the number of rules. Table I
confirms that the number of partitions is usually less than the
number of rules.

Our algorithm fulfills the assumption of Lemma 1 for arbi-
trary X . Because IP addresses occur as source and destination
in a ruleset, we use our partitioning algorithm where X is the
set of all IPs found in the ruleset. The result is a partition
where for any two IPs in the same partition, setting the src or
dst of an arbitrary packet to one of the two IPs, the firewall
behaves equally. This results in a stronger version of Lemma 1,
which holds without any assumption and also holds for both
src and dst IPs simultaneously. In addition, the partition covers
the complete IPv4 address space.

VI. SERVICE MATRICES

The IP address space partition may not be minimal. That
means, two different partitions may exhibit exactly the same
behavior. Therefore, for manual firewall verification, these
partitions may be misleading. Marmorstein elaborates on this
problem [8]. ITVal’s solution is to minimize the partition.
We suggest to minimize the partition for a fixed service. The
evaluation shows that the result is smaller and thus more clear.
A fixed service corresponds to a fixed packet with arbitrary IPs.
For example, we can define ssh as TCP, dport 22, arbitrary
sport ≥ 1024. A service matrix describes the allowed accesses
for a specific service over the complete IPv4 address space. It
can be visualized as graph, for example Figure 1. The matrix
is minimal if it cannot be compressed any further.

First, we describe when a firewall exhibits the same behav-
ior for arbitrary source IPs s1, s2 and a fixed packet p:

∀d. simple-fw rs p(src� s1, dst� d) =
simple-fw rs p(src� s2, dst� d)

We say the firewall shows same behavior for a fixed service if,
in addition, the analogue condition holds for destination IPs.

We present a function groupWIs, which computes the mini-
mal partition for a fixed service. For this, the full access control
matrix for inbound and outbound connections of each partition
member is generated. This can be done by taking arbitrary
representatives from each partition as source and destination
address and executing simple-fw for the fixed packet with those
fixed IPs. The matrix is minimized by merging partitions with
equal rights, i.e. equal rows in the matrix. This algorithm is
quadratic in the number of partitions. The evaluation shows
that it scales surprisingly well, even for large rulesets, since
the number of partitions is usually small.

Theorem 3 (Service Matrix is Sound and Minimal). For any
two IPs in any member of groupWIs, the firewall shows the
same behavior for a fixed service.
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For any two arbitrary members A and B in groupWIs, if
we can find two IPs in A and B respectively where the firewall
shows the same behavior for a fixed service, then A = B.

VII. EVALUATION

We obtained real-world rulesets from over 15 firewalls.
Some are central, production-critical devices. They are written
by different authors, utilize a vast amount of different features
and exhibit different styles and patterns. Publishing the com-
plete rulesets itself is an important contribution (c.f. [1], [2]).
To the best of our knowledge, this is the largest, publicly-
available collection of real-world iptables rulesets. Note: some
administrators wish to remain anonymous so we replaced their
public IP addresses with public IP ranges of our institute,
preserving all IP subset relationships.

Table I summarizes the evaluation’s results. The first col-
umn (Fw) labels the analyzed ruleset. Column two (Rules) con-
tains the number of rules (only the filter table) in the output of
iptables-save. We work directly and completely on this
real-world data. Column three describes the analyzed chain.
Depending on the type of firewall, we either analyzed the
FORWARD (FW) or the INPUT (IN) chain. For a host firewall,
we analyzed IN; for a network firewall, e.g. on a gateway or
router, we analyzed FW. In parentheses, we wrote the number
of rules after unfolding the analyzed chain. The unfolding also
features some generic, straight-forward optimizations, such as
removing rules where the match expression is False. Column
four (Simple rules) is the number of rules when translated
to the simple firewall. In parentheses, we wrote the number
of simple firewall rules when interfaces are removed. This
ruleset is used subsequently to compute the partitions and
service matrices. In column five (Use), we mark whether the
translated simple firewall is useful. We will detail on the metric
later. Column six (Parts) lists the number of IP address space
partitions. For comparison, we give the number of partitions
computed by ITVal in parentheses. In Column seven (ssh)
and eight (http), we give the number of partitions for the
service matrices for ssh and http. In column nine, we give the
overall runtime of our analysis in seconds, minutes, or hours.
For comparison, we put the runtime of the partitioning by
ITVal in parentheses. When translating to the simple firewall,
to accomplish support for arbitrary matching primitives, some
approximations need to be performed. For every firewall, the
first row states the overapproximation (more permissive), the
second row the underapproximation (more strict).

In contrast to previous work, there is no longer the need
to manually exclude certain rules from the analysis [3]. For
some rulesets, we do not know the interface configuration. For
others, there were zone-spanning interfaces. For these reasons,
as proven in Section IV-D, in the majority of cases, we could
not rewrite interfaces. This is one reason for the differences
between over- and underapproximation.

We loaded all translated simple firewall rulesets (without
interfaces) with iptables-restore. We used iptables
directly to generate the firewall format required by ITVal
(iptables -L -n). Our translation to the simple firewall is
required because ITVal cannot understand the original complex
rulesets and produces flawed results for them.

Fw Rules Chain Simple rules Use Parts
(ITVal)

ssh http Time
(ITVal)

A 2784 FW (2376) 2381 (1920) 3 246 (1) 13 9 14min (3h∗)
- FW (2376) 2837 (581) 7 r 1 (1) 1 1 3min (9h∗)

A 4113 FW (2922) 3114 (2862) 3 334 (2) 11 11 75min (27h∗)
- FW (2922) 3585 (517) 7 r 490 (1) 1 1 5min (8h)

A 4814 FW (4403) 3574 (3144) 3 364 (2) 9 12 105min (46h∗)
- FW (4403) 5123 (1601) 7 r 1574 (1) 1 1 12min (3h∗)

A 4946 FW (4887) 4004 (3570) 3 371 (2) 9 12 94min (53h∗)
- FW (4887) 5563 (1613) 7 r 1585 (1) 1 1 11min (4h∗)

B 88 FW (40) 110 (106) 3 50 (4) 4 2 15s (2s)
- FW (40) 183 (75) 3 40 (1) 1 1 9s (1s)

C 53 FW (30) 29 (12) 3 8 (1) 1 1 7s (1s)
- FW (30) 27 (1) 3 1 (1) 1 1 1s (1s)
- IN (49) 74 (46) 3 38 (1) 1 1 6s (1s)
- IN (49) 75 (21) 3 6 (1) 1 1 2s (1s)

D 373 FW (2649) 3482 (166) 3 43 (1) 1 1 29s (3s)
- FW (2649) 16592 (1918) 7 67 (1) 1 1 4min (33min∗)

E 31 IN (24) 57 (27) 3 4 (3) 1 2 4s (1s)
- IN (24) 61 (45) 7 r 3 (1) 1 1 2s (1s)

F 263 IN (261) 263 (263) 3 250 (3) 3 3 11min (2min)
- IN (261) 265 (264) 3 250 (3) 3 3 10min (3min)

G 68 IN (28) 20 (20) 3 8 (5) 1 2 1s (1s)
- IN (28) 19 (19) 7 8 (2) 2 2 1s (1s)

H 19 FW (20) 10 (10) 7 9 (1) 1 1 1s (1s)
- FW (20) 8 (8) 7 r 3 (1) 1 1 1s (1s)

I 15 FW (5) 4 (4) 3 4 (4) 4 4 1s (1s)
- FW (5) 4 (4) 3 4 (4) 4 4 1s (1s)

J 48 FW (12) 5 (5) 3 3 (2) 2 2 1s (1s)
- FW (12) 8 (2) 3 1 (1) 1 1 1s (1s)

K 21 FW (9) 7 (6) 3 3 (1) 1 1 1s (1s)
- FW (9) 4 (3) 3 2 (1) 1 1 1s (1s)

L 27 IN (16) 19 (19) 3 17 (3) 2 2 1s (1s)
- IN (16) 18 (18) 3 17 (3) 2 2 1s (1s)

M 80 IN (92) 64 (16) 3 2 (2) 1 2 2s (1s)
- IN (92) 58 (27) 7 11 (1) 1 1 1s (1s)

N 34 FW (14) 12 (12) 3 10 (6) 6 6 1s (2s)
- FW (14) 12 (12) 3 10 (6) 6 6 1s (2s)

O 8 IN (7) 9 (9) 3 3 (3) 1 2 1s (1s)
- IN (7) 8 (8) 3 3 (3) 1 2 1s (1s)

∗ ITVal memory consumption, in order of appearance:
84GB, 96GB, 94GB, 95GB, 61GB, 98GB, 96GB, 21G

Table I. SUMMARY OF EVALUATION ON REAL-WORLD FIREWALLS

Performance: The code of our tool is automatically
generated by Isabelle. Isabelle can translate executable al-
gorithms to SML. For verifiable correctness, Isabelle also
generates code for many datastructures which are already in
the standard library of many programming languages. Usually,
the machine-generated code by Isabelle can be quite inefficient.
For example, lookups in Isabelle-generated dictionaries have
linear lookup time, compared to constant lookup time of
standard library implementations. In contrast, ITVal is highly
optimized C++ code. We benchmarked our tool on a commod-
ity i7-2620M laptop with 2 physical cores and 8 GB of RAM.
In contrast, we gave ITVal a server with 16 physical Xeon E5-
2650 cores and 128 GB RAM. The runtime measured for our
tool is the complete translation to the two simple firewalls,
computation of partitions, and the two service matrices. In
contrast, the ITVal runtime only consists of computing one
partition.

These benchmark settings are extremely ‘unfair’ for our
tool. Indeed, exporting our tool to a standalone Haskell appli-
cation, replacing some common datastructures with optimized
ones from the Haskell std lib, enabling aggressive compiler
optimization and parallelization, and running our tool on the
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Xeon server, the runtime of our tool improves by orders
of magnitude. Nevertheless, we chose the ‘unfair’ setting
to demonstrate the feasibility of running fully verified code
directly in a theorem prover. In addition, we preserve the
property of full verification; even for the results of executable
code.5

Table I shows that our tool outperforms ITVal for large
firewalls. We added ITVal’s memory requirements to the table
if they exceeded 20GB. ITVal requires an infeasible amount
of memory for larger rulesets while our tool can finish on
commodity hardware. The overall numbers show that the
runtime for our tool is sufficient for static, offline analysis,
even for large real-word rulesets.

Quality of results: The main goal of ITVal is to
compute a minimal partition while ours may not be minimal.
Since a service matrix is more specific than a partition, a
partition cannot be smaller than a service matrix. ITVal may
produce spurious results (and it did in certain examples) while
ours are provably correct. For firewall A, it can be seen
that ITVals’s results must be spurious. However, comparing
the number of partitions for other rulesets, we can see that
ITVal often computes better results. Our service matrices are
provably minimal and can improve on ITVal’s partition.

In column five, we show the usefulness of the translated
simple firewall (including interfaces). We deem a firewall
useful if interesting information was preserved by the ap-
proximation. Therefore, we manually inspected the rulesest
and compared it to the original. For the overapproximation,
we focused on preserved (non-shadowed) DROP rules. For the
underapproximation, we focused on preserved (non-shadowed)
ACCEPT rules. If the firewall features some rate-limiting for all
packets in the beginning, the underapproximation is naturally
a drop-all ruleset because the rate-limiting could apply to all
packets. According to our metric, such a ruleset is of no use
(but the only sound solution). We indicate this case with an r.
The table indicates that, usually, at least one approximation
per firewall is useful.

For brevity, we only elaborate on the most interesting
rulesets and stories.

Firewall A: This firewall is the core firewall of our
lab (Chair for Network Architectures and Services). It has
two uplinks, interconnects several VLANs, hence, the firewall
matches on more than 20 interfaces. It has around 500 direct
users and one transfer network for an AS behind it. The traffic
is usually several Mbit/s. The dumps are from Oct 2013,
Sep 2014, May 2015, Sep 2015 and the changing number
of rules indicates that it is actively managed. The firewall
starts with some rate-limiting rules. Therefore, its stricter
approximation assumes that the rate-limiting always applies
and transforms the ruleset into a deny-all ruleset. The more
permissive approximation abstracts over this rate-limiting and
provides a very good approximation of the original ruleset.
The ssh service matrix is visualized in Figure 1. The figure
can be read as follows: The vast majority of our IP addresses
are grouped into internal and servers. Servers are reachable
from the outside, internal hosts are not. ip1 and ip2 are two
individual IP addresses with special exceptions. There is also a

5There are methods to improve the performance and provably preserve
correctness, which are out of the scope of this paper.

internal

servers

multicast
INET

localhost

ip1

ip2

AS routers

INET’

Figure 1. TUM ssh Service Matrix

group for the backbone routers of the connected AS. INET is
the set of IP addresses which does not belong to us, basically
the Internet. INET’ is another part of the Internet. With the
help of the service matrix, the administrator confirmed that
the existence of INET’ was an error caused by a stale rule.
The misconfiguration has been fixed. Figure 1 summarizes
over 4000 firewall rules and helps to easily visually verify the
complex ssh setup of our firewall. The administrator was also
interested in the kerberos-adm and ldap service matrices. They
helped verifying the complex setup and discovered potential
for ruleset cleanup.

Firewall D: This firewall was taken from a Shorewall
system with 373 rules and 65 chains. It can be seen that unfold-
ing increases the number of rules. This is due to linearizing the
complex call structures generated by the user-defined chains.
The transformation to the simple firewall further increases the
ruleset size. This is, among others, due to rewriting several
negated IP matches back to non-negated CIDR ranges and
NNF normalization. However, the absolute numbers tell that
this blow up is no problem for computerized analysis. The
firewall basically wires interfaces together, i.e. it heavily uses
-i and -o. This can be easily seen in the overapproximation.
There are also many zone-spanning interfaces. As we have
proven, it is impossible to rewrite interface in this case. In
addition, for some interfaces, no IP ranges are specified.
Hence, this ruleset is more of a link layer firewall than a
network layer firewall. Consequently, the service matrices are
barely of any use.

Firewall E: This ruleset was taken from a NAS device
previously analyzed [3]. The ruleset first performs some rate-
limiting, consequently, the underapproximation corresponds
to the deny-all ruleset. In contrast to previous analysis, we
obtained a more recent version of the ruleset after a system
update. Our ssh service matrix reveals a misconfiguration: ssh
was accidentally left enabled after the update. The service
matrix for the services provided by the NAS (not listed in
the table) verifies that these services are only accessible from
the local network.

Firewall F: This firewall is running on a publicly acces-
sible server. The firewall first allows everything for localhost,
then blocks IP addresses which have shown malicious behavior
in the past and finally allows certain services. Since most rules
are devoted to blocking malicious IPs, our IP address space
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partition roughly grows linear with the number of rules. The
service matrices, however, reveal that there are actually only
three classes of IP ranges: localhost, the blocked IPs, and all
other IPs which are granted access to the services.

Firewall G: For this production server, the service
matrices verified that a SQL daemon is only accessible from a
local network and three explicitly-defined public IP addresses.

Firewall H: This ruleset from 2003 appears to block
Kazaa filesharing traffic during working hours. In addition,
a rule drops all packets with the string “X-Kazaa-User”. The
more permissive abstraction correctly tells that the firewall may
accept all packets for all IPs (if the above conditions do not
hold). Hence, the firewall is essentially abstracted to an allow-
all ruleset. According to our metric, this information is not
useful. However, in this scenario, this information may reveal
an error in the ruleset: The firewall explicitly permits certain
IP ranges, however, the default policy is ACCEPT and includes
all these previously explicitly permitted ranges. By inspecting
the structure of the firewall, we suppose that the default
policy should be DROP. This possible misconfiguration was
uncovered by the overapproximation. The underapproximation
does not understand the string match on “X-Kazaa-User” in
the beginning and thus corresponds to the deny-all ruleset.
However, a manual inspection of the underapproximation still
reveals an interesting error: The ruleset also tries to prevent
MAC address spoofing for some hard-coded MAC/IP pairs.
However, we could not see any drop rules for spoofed MAC
addresses in the underapproximation. Indeed, the ruleset allows
non-spoofed packets but forgets to drop the spoofed ones. This
firewall demonstrates the worst case for our approximations:
one set of accepted packets is the universe, the other is the
empty set. However, manual inspection of the simplified ruleset
helped revealing several errors.

VIII. CONCLUSION

We have demonstrated the first, fully verified, real-world
applicable analysis framework for firewall rulesets. Our tool
supports the Linux iptables firewall because it is widely used
and well-known for its vast amount of features. It directly
works on iptables-save. We presented an algebra on
common match conditions and a method to translate complex
conditions to simpler ones. Further match conditions, which
are either unknown or cannot be translated, are approximated
in a sound fashion. This results in a translation method for
complex, real-world rulesets to a simple model. The evaluation
demonstrates that, despite possible approximation, the simpli-
fied rulesets preserve the interesting aspects of the original
ones.

Based on the simplified model, we presented algorithms to
partition the IPv4 address space and compute service matrices.
This allows summarizing and verifying the firewall in a clear
manner.

The analysis is fully implemented in the Isabelle theorem
prover. No additional input or knowledge of mathematics
is required by the administrator. A stand-alone Haskell tool
can perform the analysis automatically, only requiring the
following input: iptables-save.

The evaluation demonstrates applicability on many real-
world rulesets. For this, to the best of our knowledge, we

have collected and published the largest collection of real-
world iptables rulesets in academia. We demonstrated that
our approach can outperform existing tools with regard to:
correctness, supported match conditions, CPU time, and RAM
requirements. Our tool helped to verify lack of or discover
previously unknown errors in real-world, production rulesets.

AVAILABILITY

The collection of firewall rulesets can be found at
https://github.com/diekmann/net-network

Our Isabelle formalization can be obtained from
https://github.com/diekmann/Iptables_Semantics
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