
TCP Hollywood: An Unordered, Time-Lined, TCP
for Networked Multimedia Applications

Stephen McQuistin
University of Glasgow, UK

sm@smcquistin.uk

Colin Perkins
University of Glasgow, UK

csp@csperkins.org

Marwan Fayed
University of Stirling, UK

mmf@cs.stir.ac.uk

Abstract—Ossification of the transport-layer limits networked
multimedia applications to use TCP or UDP, despite standard-
isation of new transport protocols that better support their
requirements. To improve transport for these applications, we
present TCP Hollywood, an unordered, time-lined, TCP variant
designed to support real-time multimedia traffic while being
widely deployable. Analysis of the protocol indicates that it
increases the utility of the network in lossy conditions where total
one-way delay is constrained, such as with telephony applications
and low-latency video streaming. This allows retransmissions
to be useful in cases where they are not with standard TCP,
improving the timely good-put of the protocol and reducing
overheads. Initial experiments show that TCP Hollywood is
deployable on the Internet, successfully operating on all major
fixed and mobile networks in the UK, with safe failure modes.

I. INTRODUCTION

Real-time networked multimedia applications have long
contributed to Internet traffic. This can take the form of
telephony [1], video conferencing [2], live or on-demand TV
and movies [3], [4], or user-generated video. These applications,
and the traffic they generate, are rapidly increasing in popularity,
and now comprise the majority of Internet traffic [5].

The nature of such real-time traffic is that it prefers
predictable and bounded latency to strict reliability, since
data that arrives too late is as bad as data that does not
arrive at all. This suggests that data should be sent in packets
that can be independently decoded [6], to allow them to be
processed irrespective of the loss or delay of other packets.
However, the requirement for efficient media compression leads
to interdependence between packet contents and codecs that
operate across multiple frames. When coupled with challenging
network environments, such as mobile wireless, that have
unreliable delivery and unpredictable latency, the requirements
for effective media transport become difficult to satisfy.

Applications access the network via the transport layer.
The transport protocol should provide services to meet the
application demands, abstracting away details of the transport
process, and delivering data with an appropriate degree of reli-
ability and timeliness. For real-time networked multimedia, the
transport should be trusted to minimize transport-induced delay,
and should respect (partial) reliability semantics pertaining to
media importance, deadlines, and dependencies.

Message-oriented transports, such as SCTP [7] and DCCP
[8], ought to be suitable building blocks, but their deployment
is restricted by NATs, firewalls, and other middleboxes [9].

This leaves real-time applications to use UDP or TCP, neither
of which is well-suited to their needs. UDP contributes minimal
latency, making it the recommended transport to meet the strict
latency bounds of real-time applications [10], but provides
limited support to applications, and is commonly blocked by
enterprise firewalls. TCP prefers reliability to timeliness, and
its congestion control tends to drive up queueing delay, but is
often the only transport that can pass through middleboxes on
the path. Accordingly, and despite its many problems, TCP is
rapidly becoming the de facto transport for multimedia traffic.

In this paper, we engineer TCP Hollywood in response
to these trends. TCP Hollywood is an unordered and time-
lined transport protocol, that is wire compatible with standard
TCP, but eliminates two sources of transport-induced latency,
and provides reliability semantics that better suit real-time
multimedia applications. Specifically, TCP Hollywood: 1)
removes head-of-line blocking at the receiver and delivers
received data to the application immediately, irrespective of
ordering; and 2) relaxes reliability to respect time lines provided
by the application, so only data that will arrive in time
is retransmitted, otherwise retransmissions carry new data.
The combination of both design elements reduces latency
and introduces message-oriented semantics, allowing TCP
Hollywood to express inter-dependencies between messages.
Crucially, TCP Hollywood is wire-compatible with TCP, and
incrementally deployable on the public Internet.

Our implementation consists of an intermediate logic layer
that sits between the application and the kernel. Extensions
in the TCP stack facilitate out-of-order delivery, and can
be enabled or disabled via socket options. Messages are
delineated in the logic layer using timing and dependency
information from the application, and COBS-encoded [11]
to survive re-segmentation that may occur in the network.
We introduce the concept of inconsistent retransmissions: if
the round-trip time (RTT) estimator indicates that a message
will arrive too late to be useful, or if a message depends
on a previous unsuccessfully transmitted message, then TCP
Hollywood can exploit re-transmission slots to send new data
and avoid retransmitting useless data. The semantics of TCP are
maintained by preserving the sequence numbers in retransmitted
segments, whether inconsistent or not. We develop an analytical
framework to model the value of a retransmission against the
buffering and processing time of data at the receiver-side. Our
analysis reveals a wide range of RTT values where standard
TCP retransmissions will arrive too late to be useful. We use
this model to validate TCP Hollywood, and show that it handles
retransmissions correctly.ISBN 978-3-901882-83-8 © 2016 IFIP

422Networking 2016

Our contributions are as follows. After reviewing the
rationale and requirements in Section II, we design a TCP-
compatible architecture and application programming interface
(API) that eliminates transport related, but not congestion
control related, delay from TCP in Section III (this can be
used with any of the existing proposals to reduce congestion
control related delay, such as active queue management [12],
[13] or delay-based congestion control [14], [15]). We develop
an analytic framework in Section IV to determine the value and
content of retransmitted data. We outline our implementation
in Section V, alongside experiments to demonstrate ease of
deployment. Related work and concluding remarks are provided
in Sections VI and VII, respectively.

II. RATIONALE AND REQUIREMENTS

We begin by considering in more detail the requirements
and rationale for an unordered and time-lined transport protocol.
It is instructive to establish TCP as the foundation from which
to build, and understand its negative impact in the context of
live and interactive media.

Our primary design goal is to improve performance over
TCP for real-time traffic, while maintaining deployability on
the scale of TCP and UDP. Ossification of the transport layer
means this goal can only be achieved by using TCP or UDP as a
substrate. This is a limitation that exists in the Internet because
of middleboxes that process packets based on static views of
what is a valid transport. The operation of these middleboxes
places two constraints on transport protocols [16]. First, only
payloads marked as TCP or UDP are marked as valid; payloads
carried by other transport protocols are often rejected. Second,
middleboxes may reject valid TCP packets that don’t conform
to some limited subset of the TCP protocol that is understood
by the middlebox [17]. For example, packets with the SACK
(selective acknowledgement) extension might be rejected by a
middlebox that doesn’t understand that extension, and expects
only regular ACK packets. In this restricted domain, reliability
and congestion control are desirable features, that are difficult
to implement at the application layer, and have forced TCP
to emerge as the protocol of choice for real-time multimedia,
despite struggling to meet latency bounds.

Our secondary goal is to minimize the transport-induced
latency on applications. With TCP selected as the substrate,
it remains to determine the appropriate modifications to meet
our latency goals. TCP introduces latency in part because of
the nature of its congestion control dynamics, and in part by
providing an ordered, reliable, delivery model using head-of-
line blocking and retransmissions. The former can be addressed
using active queue management and/or delay-based congestion
control algorithms, and has been widely studied. The latter issue
is more applicable for real-time traffic, and is the subject of
our work. Figure 1 shows the impact of head-of-line blocking:
The loss of the third segment causes subsequent segments to
be buffered at the receiver while waiting for the retransmission.
Only when the delayed segment arrives can TCP deliver the in-
order sequence to the application. The impact of retransmissions
are exacerbated when they push segments outside of the window
in which they are useful to the application. Effectively such
segments are lost to the application, despite having been
delivered to the host on time. It is these late losses that TCP
Hollywood seeks to minimize.

Sender Network Receiver

kerneluser kernel user

HoL blocking
delay

tim
e

seq 1

seq 2

seq 4

seq 5

seq 6

seq 3

ack 1

ack 2

ack 2

ack 2

ack 2

seq 3

Figure 1. The interaction between head-of-line blocking and loss in TCP:
multiple segments are delayed by a loss, and potentially delivered too late to
be useful to the receiver

Two requirements follow. First, segments must be delivered
as they arrive to eliminate head-of-line blocking. Second,
retransmissions should be evaluated against timing information
to ensure the delivery of useful data, by allowing inconsistent
retransmissions to send new data in a segment that is retransmit-
ted. So that applications can benefit from out-of-order delivery,
a message-oriented abstraction is needed. Specifically, messages
should be independently useful to the receiver [6]. With both
a message-oriented abstraction and timing information, the
collection of message dependency information follows. This
increases the application-awareness of the transport layer.

III. ARCHITECTURE AND DESIGN

TCP Hollywood has been designed to be deployable on
the ossified Internet as it exists today, and to support partial
deployments where only the sender or the receiver has been
upgraded to support the TCP Hollywood extensions. The nature
of the extensions we propose supports the former, while the
latter is achieved by splitting the functionality between a user-
space intermediary ‘shim’ layer and a set of extensions to the
kernel TCP stack. The intermediary layer operates over either
unmodified TCP, or with the TCP Hollywood kernel extensions
enabled. The user and kernel components are represented in
the overall architecture represented in Figure 2. In discussing
the architecture it is useful to consider the sender separately
from the receiver, and for each to consider the user-space
intermediary layer separately from the kernel TCP extensions.

A. TCP Hollywood Sender architecture

The architecture of a TCP Hollywood sender is shown in the
left hand side of Figure 2. The sender inherits the requirements
identified in Section II to support a timed, message-oriented,
transport abstraction, with inconsistent retransmissions.

The intermediary layer provides the message-oriented
abstraction. It accepts a sequence of messages (i.e., datagrams,

423Networking 2016

Hollywood socket

Socket

COBS encoding

send_message()

write()
setsockopt()

RTT
estimate

Application

Intermediary Layer

Kernel: Transport

Kernel: Network

send queue

timing data buffer

Timing info

Hollywood receive logic

read()

fragment reassembly buffer

incomplete
messages

COBS decoding

receive_message()

Sender Receiver

receive queue

metadata queue

reassembly buffer

TCP receive logic ACKs

Figure 2. TCP Hollywood sender and receiver architecture

rather than a byte stream) from the application, with optional
timeliness and dependency information, to be delivered to
the destination. The intermediary layer supports a sub-stream
abstraction, allowing messages from multiple flows to be
multiplexed on a single transport-level connection (similar
to how multiple streams can be sent within a single SCTP
association [7]). This can be used to cleanly multiplex audio and
video flows onto a single connection, or to distinguish multiple
layers of a stream encoded using scalable video coding [18],
for example using H.264/SVC. The intermediary layer appends
a sub-stream identifier to messages before they are encoded,
framed, and passed to the kernel TCP sender, with a default
sub-stream being reserved for flows where no sub-stream is
specified. The application can provide timing or dependency
data via the intermediary layer API. This is passed to the kernel
alongside the encoded message, and used to determine whether
inconsistent retransmissions are appropriate.

To support a message-oriented abstraction over a TCP byte
stream, the TCP Hollywood flows must be resilient to re-
segmentation or segment coalescing by middleboxes. Message
integrity must be protected: messages received must have been
sent, and only complete messages must be delivered. This is
ensured by the intermediary layer, which frames messages
with a leading and trailing marker. The effect is shown in
Figure 3, where markers can be used to delineate messages
irrespective of the segmentation. The intermediary layer encodes
messages with consistent overhead byte stuffing (COBS) [19];
this efficiently encodes the stream to escape all zero bytes,
allowing their use as framing markers, while still providing a
transparent channel that can carry any message.

The TCP sender implementation in the kernel is modified
to perform consistent segmentation, and to manage inconsistent
retransmission by tracking message timing, deadline expiration,
and dependencies. Consistent segmentation ensures that a single
write() call made by the intermediary layer will generate a
single TCP segment, provided the size of the segment does not
exceed the MTU. This ensures each message is sent in a separate
TCP segment, allowing the receiver to process it independently
of other messages, reducing latency. This implies disabling
Nagle’s algorithm (i.e., setting the TCP_NODELAY socket
option) to avoid unnecessary buffering – Nagle’s algorithm
would not provide a significant benefit to our target applications,
where messages are large compared to their headers.

TCP TCPTCPTCPTCP

time

message fragmentation

Figure 3. Encoding and framing with leading and trailing markers protects
against middlebox re-segmentation; received segments can be properly decoded

TCP retransmissions ensure reliability, but also inject latency
that may cause late losses. A TCP Hollywood sender has the
notion of message expiry: a message expires when (i) RTT
estimates indicate the retransmitted message will arrive too
late, or (ii) if the message depends on a previous message
that was unsuccessfully delivered. Under these circumstances
TCP Hollywood can send a new message using the same TCP
sequence number space as a previously sent message, re-writing
the remaining bytes in the TCP send buffer with new content.
To support such inconsistent retransmissions, the intermediary
layer passes messages down to the modified kernel TCP stack
along with metadata to describe their deadline, dependency, and
sub-stream. This is enabled by calls to the Berkeley Sockets API
setsockopt() function. The metadata, with the exception
of the sub-stream identifier, is never transmitted on the wire,
but is held locally for each message for as long as the message
is buffered (i.e., until all ACKs associated with a message are
received). Our kernel extensions implement a separate buffer
to hold per-message metadata.

The inconsistent retransmission logic is triggered when the
standard TCP retransmission logic would be triggered by a
triple duplicate ACK or timeout. Metadata for unacknowledged
messages is then evaluated against the current RTT estimate, to
determine whether the original message is to be retransmitted,
or if an inconsistent retransmission is to be sent, replacing the
original data with new content while keeping the same TCP se-
quence number. Since messages are framed and self-describing,
a receiver can decode the inconsistent retransmission.

The latency benefits of inconsistent retransmissions will
be quantified in Section IV. In the interim, we emphasize the
message abstraction in this context: TCP Hollywood sends
messages rather than bytes in a data stream. Consequently,
a message may be composed of multiple fragments, split
across TCP segments. To preserve the semantics at the receiver,
fragments necessary to finish a partially received message are
always retransmitted, but if no part of a message was received,
it may be replaced with a new message when its containing
TCP segment is retransmitted.

The processing overhead of TCP Hollywood at the sender
is comprised of COBS encoding at the intermediary layer, and
the maintenance of metadata in the kernel. COBS encoding
requires a copy of the message to be made, but this could be
eliminated by performing the byte stuffing as the message is
being generated, as part of the multimedia encoding. Beyond
this copy, COBS is “computationally cheap” [11]. In the
kernel, the sender maintains metadata for each message, while
the message could still be sent. Further processing, such as
estimating whether a message will arrive on time, uses data
already maintained by the kernel.

424Networking 2016

B. TCP Hollywood Receiver Architecture

The receiver-side architecture of TCP Hollywood is shown
on the right hand side of Figure 2. Like the sender, it
is composed of a user-space intermediary layer, and TCP
extensions in the kernel receive path. The receiver supports
message-oriented delivery, and additionally eliminates head-
of-line blocking. The use of inconsistent retransmissions is
invisible to the receiver.

The kernel initially processes incoming segments as would
TCP. It generates the appropriate ACKs (e.g., duplicate ACKs
for out-of-order or lost segments), and places segments into
the reassembly buffer as usual. The on-the-wire response to
each received segment is identical to that of TCP: ACKs (and
SACK blocks, or other extensions, if negotiated) are generated
in exactly the same way as standard TCP, and the congestion
response is unchanged.

Where a TCP Hollywood receiver differs from standard TCP
is that all segments, including those received out-of-order, are
delivered to the intermediary layer in the order they are received,
with no head-of-line blocking or reordering. As each segment
arrives, a metadata structure is created to store its TCP sequence
number. This sequence number is then appended to the segment
as it is read by the intermediary layer. Sequence numbers are
used by the intermediary layer to delineate messages that are
encoded across multiple segments. Making segments available
to the intermediary layer as they arrive is the only change
needed to the kernel TCP code at the receiver.

The intermediary layer scans incoming segments for com-
plete messages, delineated by the COBS framing. If consistent
segmentation was used, and segments were not fragmented or
coalesced in the network, then messages will correspond to
TCP segments. Otherwise, incomplete message fragments are
buffered in the fragment reassembly buffer awaiting missing
fragments. The relative ordering of the bytes in message
fragments is established using the TCP sequence number
tag associated with received segments. As shown in Figure
2, complete messages are decoded and queued for delivery
to the application. The API between intermediary layer and
application is message oriented, and includes a message
sequence number. This simplifies receiver processing compared
to the TCP stream API.

The COBS decoding process is similar to that of the
receiver, incurring an additional copy at the intermediary
layer. In the kernel, our proof-of-concept implementation
maintains a metadata structure to store the TCP sequence
number and length of each incoming segment – data that would
be otherwise lost. For incoming segments that are out-of-order,
or arrive while there are segments in the reassembly queue, we
make an additional copy (versus the TCP implementation)
of the segment’s payload, storing this with the segment’s
metadata. While this simplifies the implementation, it is not a
requirement of the design: optimisation of our implementation
could eliminate this.

C. Partial Deployments and Legacy TCP Compatibility

The TCP Hollywood intermediary layer is a user-space
library that can run over a standard TCP implementation, using
the Berkeley Sockets API, or on a modified TCP stack using

the extensions we have described. If both sender and receiver
support the kernel TCP extensions, the full benefit described
above is achieved. However, the TCP Hollywood intermediary
layer can also be deployed as part of an application, irrespective
of the state of deployment of the kernel TCP extensions.

If only the receiver supports the TCP Hollywood kernel
extensions, with a standard TCP sender, then the intermediary
layer and application will benefit from avoidance of head-of-
line blocking, but not from the latency reduction of inconsistent
retransmission. Message oriented delivery will be supported,
since COBS framing is generated by the intermediary layer
at the sender, but COBS decoding may be less efficient since
messages boundaries will be less likely to be aligned with
segment boundaries.

If only the sender supports the TCP Hollywood kernel
extensions, it will generate inconsistent retransmissions, and
perform consistent segmentation as described, since both are
invisible to the TCP layer of the receiver (compatibility with
middleboxes is discussed in Section V-B). This will improve
latency, and increase efficiency of COBS decoding, at the
receiver, irrespective of whether the receiver has the TCP
Hollywood kernel extensions.

If neither sender or receiver support the TCP Hollywood
kernel extensions, the intermediary layers can communicate over
a standard TCP connection. In this case, the message oriented
abstraction persists, and applications can communicate using
a TCP Hollywood socket to exchange messages, rather than
byte streams, in a congestion controlled and reliable manner,
although with no latency benefit over standard TCP.

IV. LATENCY REDUCTIONS AND ANALYSIS

TCP Hollywood reduces transport latency through support
of inconsistent retransmissions, and by eliminating receiver-
side head-of-line blocking. To quantify the benefits of these
two techniques to the application, we begin by modelling the
one-way transport delay, Towd, as:

Towd = Tsender +Tplayout +Trtt/2 (1)

where Tsender is the time taken for the sender to capture, encode,
and transmit a frame of media data. Tplayout is the sum of the
de-jitter buffering delay, and the time taken to decode and
render a frame to the application at the receiver. Finally, Trtt

is the network round-trip time. With no loss of generality we
assume broadly symmetric network paths in this analysis.1

The inter-frame interval of the media, i.e., the duration of
media in each frame, is denoted by Tframing. We know that
Tsender ≥ Tframing, since a frame cannot be sent before it has
been captured. Similarly at the receiver, if the media is to be
decoded and rendered without gaps, then Tplayout ≥ Tframing. The
time needed to encode and decode media is generally negligible
in comparison to the framing interval, making Tsender ≈ Tplayout

a reasonable approximation in the absence of jitter. At the
receiver, however, while the media decoding and rendering

1This assumption does not hold in ADSL and cellular networks with
asymmetric downstream and upstream links. In these cases, our model mis-
approximates the application’s upper bound on delay, shifting the line marked
“Application Deadline” in Figure 4. While further analysis is needed to quantify
the impact of this, it is clear that it does not change the broad conclusion of our
analysis: that TCP Hollywood increases the usable region of retransmissions.

425Networking 2016

Tmax - Tframing - Trtt /2

Tframing

T rtt
+ 4⋅

T fra
ming

T p
la

yo
ut

Trtt

Retransmission
Time

Application Deadline

Region of Wasted
TCP Retransmits

Figure 4. Inconsistent Retransmissions for real-time applications: TCP
retransmissions may arrive too late to be used, if the play-out delay is set to
meet the application deadline

time is generally small, the de-jitter buffer duration can be
significant, and a similar approximation cannot be made.

The one-way transport delay contributes to an application’s
acceptable delay bound Tmax, such that Towd ≤ Tmax. For
interactive applications, the delay bound is generally around
150ms [20], whereas streaming applications can accept longer
delay bounds (around 0.5 seconds if channel surfing is to be
supported; up to tens of seconds for on-demand streaming).

A. Utility of Inconsistent Retransmissions

TCP senders interpret a triple duplicate acknowledgement
as an indication of packet loss, and retransmit the missing
packet. It follows that the time needed by a sender to identify
packet loss following a transmission has a lower bound of:

Trexmit = Trtt +3×Tframing (2)

At the receiver there is one additional framing interval to
compensate for the interval that was lost with the original
transmission. Assume media decoding and rendering take a
negligible time. A retransmitted packet will arrive in time to
be received and rendered to the application, provided:

Tplayout ≥ Trexmit +Tframing (3)

When Tplayout < Trexmit, retransmissions of the original
packet will arrive after the data was scheduled to be rendered,
and will be discarded by the application. This gives a lower
bound on Tplayout for standard TCP retransmission to be useful.

The corresponding upper bound is the maximum acceptable
delay for the application,Tmax. If we assume media encoding
delay is negligible, Tsender ≈ Tframing. By combining these
bounds, we see that standard TCP retransmissions will arrive
in time to be rendered to the application, provided:

Tmax −Tframing −Trtt/2 ≥ Tplayout ≥ Trtt +(3+1)×Tframing (4)

This inequality is shown graphically in Figure 4. The
unshaded regions in Figure 4 fall outside of the feasible
operating regime of the application and may be ignored, as they

correspond to stalls in play-out or overall delay bound violations.
The feasible operating regime is represented by the shaded
regions that separate useful from wasteful retransmissions. The
green cross-hatch highlights the region where standard TCP
retransmissions arrive in time to be useful.

Wasteful TCP retransmissions are marked by the red-lined
region in Figure 4. When the media play-out delay is less
than the retransmission time (Tplayout < Trexmit) but satisfies
the overall delay bound (Tplayout ≤ Tmax − Tframing − Trtt/2),
and is greater than the framing interval (Tplayout ≥ Tframing),
then standard TCP retransmissions will arrive too late.This is
where inconsistent retransmissions are useful: when a TCP
retransmission will arrive too late to replace the original lost
packet in this region. By contrast an inconsistent retransmission
can use that retransmission slot to transmit the next unsent data
segment. The lost packet is never recovered, but its sequence
number is reused to send data that will be useful when it
arrives.

B. Inconsistent Retransmissions and Real-Time Media

The benefits of TCP Hollywood can be quantified by
substituting real-time traffic parameters into Equation 4. Con-
sider interactive voice telephony. Widely deployed speech
codecs typically use Tframing = 20ms with a delay bound of
Tmax = 150ms [20]. Assuming media encoding delays are
negligible, so that Tsender = Tframing, then the feasible region
where standard TCP retransmissions arrive in time to be useful
can be derived from Equation 4 as:

130ms−Trtt/2 ≥ Tplayout ≥ Trtt +80ms (5)

which has valid solutions for Tplayout provided Trtt ≤ 33.33ms.
This round-trip time bound is low for wide-area networks. For
example, TCP retransmission would be useful for calls from
the authors’ homes within Europe, but discarded during inter-
continental calls. Figure 4 shows TCP Hollywood provides
valid solutions for Tplayout when Trtt ≤ 220ms, showing the
utility of inconsistent retransmissions for this application.

For on-demand video streaming using the MPEG DASH
framework, the framing interval and delay bounds are typically
much larger. A typical deployment today might use an encoding
segment size of Tframing = 2s, and an overall delay bound of
Tmax = 30s. Assuming Tsender = Tframing, and substituting into
Equation 4, this permits valid solutions for Tplayout provided
Trtt ≤ 13.33s, giving no benefit from inconsistent retransmission.

These two applications represent extremes in terms of
latency bounds: voice telephony has tight latency bounds,
while those of on-demand video streaming are relaxed. We
analyse a third application: IPTV delivery using DASH. IPTV
applications seek to minimise zap time (i.e., the total time taken
between a viewer selecting a channel, and content from that
channel being displayed). Bouzakaria et al. [21] show that end-
to-end latencies – the time between encoding and decoding of a
frame – of less than 240ms can be achieved using DASH. Using
their techniques, segments are fragmented into 200ms chunks
for delivery, giving Tsender = Tframing = 200ms. An overall delay
bound of Tmax = 1s allows for channel surfing to be supported.
Substituting these values into Equation 4, we see that regular
TCP retransmissions do not benefit this application for any
RTT values. In contrast, inconsistent retransmissions in TCP
Hollywood can be used when Trtt ≤ 1s.

426Networking 2016

Application Tmax (ms) RTT Bound (ms) Useful within a continent? Useful intercontinental?
Standard Hollywood Standard Hollywood Standard Hollywood

Voice telephony 150 33.3 220 Y Y N Y
On-demand video 30000 13333.3 52000 Y Y Y Y
Live video 1000 0.0 1200 N Y N Y

Table I. SAMPLE TCP AND TCP HOLLYWOOD RTT BOUNDS REQUIRED TO MEET APPLICATION BOUNDS, HIGHLIGHTING INDICATES WHERE TCP
HOLLYWOOD IS BENEFICIAL

Table I summarises the three applications considered. Utility
of inconsistent retransmission is seen to depend on the latency
bounds of the application. Interactive applications, where the
overall latency requirements are tight, can strongly benefit from
the ability to send new data in place of a retransmission, but
those applications with relaxed latency bounds find less benefit.

C. Connecting Head-of-Line Blocking

If a packet is lost, then TCP will send a retransmission once
a triple duplicate ACK is received. If standard TCP is used,
then later segments will not be delivered to the application until
the retransmission of the lost segment is received, potentially
causing media play-out to stall. This is known as head-of-line
blocking, as discussed in Section II.

The size of the play-out buffer relative to the round-trip
time and media framing interval determines whether play-out
stalls, or whether there is sufficient buffering to cover the
retransmission delay. As was shown in Equation 3, if Tplayout ≥
Trexmit +Tframing, then the retransmission will arrive in time to
be played out, and no head-of-line blocking will occur.

However, if Tplayout < Trexmit +Tframing, then the retransmis-
sion will not arrive in time to be played-out. This will cause
a 1-segment gap in the media play-out, since some data is
missing (this occurs with both standard TCP, and with the
TCP Hollywood extensions). If standard TCP is used, then the
receiver may also suffer head-of-line blocking and be unable
to access later segments, leading to a longer gap in play-out.

If the retransmission arrives less than one framing interval
after it was scheduled to be played out, i.e., if Trexmit ≤ Tplayout <
Trexmit +Tframing then it will arrive before the following packet
is to be played. In this case, there is no head-of-line blocking,
and only a single packet gap occurs in play-out. If it is further
delayed, such that Tplayout < Trexmit, then head-of-line blocking
will cause one or more later frames to also miss their play-out.

A graphical representation is provided by Figure 5. The
yellow cross-hatch region in Figure 5a is the region of Tplayout

values where blocked segments will be made wasteful. The
details are labeled in Figure 5a by numbered events, with
associated time-lines in Figure 5b. For a given value of Trtt

the process begins with a loss marked by the red ‘×’. The
next frame arrives at 1⃝ and is held by TCP, as are all the
segments that follow, awaiting the retransmission. For any size
of Tplayout at that moment 2⃝, the retransmission will arrive
too late. Upon arrival of the retransmission 3⃝ TCP releases
blocked segments to the play-out buffer. The duration of the
head-of-line blocking that will be discarded by the play-out
buffer is labelled as THoL in Figure 5, can be calculated as:

THoL = Trexmit −Tplayout = Trtt +3×Tframing −Tplayout (6)

The duration translates to NHoL frames missing their play-
out due to head of line blocking, and in addition to the
retransmission that arrived too late, where:

NHoL = max

(⌈

Trtt +3×Tframing −Tplayout

Tframing

⌉

,0

)

(7)

Finally, we remark on the grey shaded region in Figure 5a
that occurs when that when retransmissions arrive past the
acceptable deadline. From Equation 4, values of Tplayout are
upper-bound by the application deadline. Subsituting this into
Equation 6 gives a lower bound on THoL of:

THoL ≥ 3×Trtt/2+4×Tframing −Tmax (8)

As Trtt increases under TCP, so too does THoL, and with
it the fragility of the real-time connection. While a TCP
retransmission under these circumstances will always arrive
too late, the TCP Hollywood extensions eliminate THoL. In
doing so the grey shaded region in Figure 5a, where real-time
connections may be infeasible under TCP, are made viable with
TCP Hollywood.

Our analysis identifies the value of inconsistent retransmis-
sions, and the way in which they interact with head-of-line
blocking. Specifically, it shows that removal of head-of-line
blocking, via receiver side modifications to the kernel TCP
stack, is necessary to make effective use of inconsistent retrans-
missions. For this reason, a full deployment of TCP Hollywood
eliminates head-of-line blocking, to support latency reduction
and improve good-put due to inconsistent retransmissions.

V. IMPLEMENTATION AND DEPLOYMENT

To evaluate our design, we have an implementation of TCP
Hollywood that has been tested in fixed and mobile networks
in the UK to evaluate ease of deployment.

A. Implementation

We implemented TCP Hollywood in the FreeBSD 10.1
operating system. The TCP modifications in the kernel impact
approximately 300 lines of code, while the intermediary layer
comprises 600 lines of user-space C code. The source code is
available at http://dx.doi.org/10.5525/gla.researchdata.291.

The main implementation complexity in TCP Hollywood
comes from the use of inconsistent retransmissions, since they
cause the TCP RTT estimator to interact closely with the
message deadlines and dependency tracking features of TCP
Hollywood. Figure 6 shows sample results from a dummynet
testbed used to validate our inconsistent retransmission imple-
mentation. These simulate a voice telephony scenario, like that

427Networking 2016

Tframing

T rtt
+ 4⋅

T fra
ming

T p
la

yo
ut

Trtt

Retransmission
Time

×

2

3

1

HoL Discards

Tmax - Tframing - Trtt /2

Application Deadline

(a) Tplayout region where blocked segments will be delivered too late.

Trtt + 4⋅Tframing

Tplayout

x

x

time

✔......

...... time

THoL

1

2

3

(b) Head of line blocking events between a loss and its retransmission.

Figure 5. Head of line blocking for real-time applications using regular TCP: for any given RTT and playout, segments that immediately follow a loss (1) are
pushed past the acceptable deadline (2), and delivered as late as (3). The gap between RTT and playout is the duration of useful HoL blocked segments that
become wasteful

 0 50 100 150 200 250

RTT (ms)

 0

 20

 40

 60

 80

 100

 120

 140

P
la

y
-o

u
t

d
el

ay
 (

m
s)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Figure 6. Implementation validation test. Shading shows the percentage of
all retransmissions that are inconsistent at different combinations of play-out
delay and RTT, for a VoIP scenario. This validates Figure 4

described Section IV-B, using 20ms framing, 120 byte payload
per frame, and a maximum one-way delay of 150ms. The
colours in Figure 6 show the fraction of retransmissions sent
as inconsistent retransmissions, when subject to 5% random
packet loss. RTT and playout delay were sampled at 10ms
spacing across the entire range, with each point being repeated
5 times. We see that inconsistent retransmissions are triggered
as expected, based on the analysis in Section IV. The step-like
nature of the curve is due to the 10ms sampling interval. The
fuzzy regions around the edge of the coloured space stem from
limitations in the timer resolution that cause some degree of
unpredictability in whether a retransmission will be inconsistent
or not. This test shows that our implementation works as
expected, but does not evaluate performance. A detailed
evaluation of the implementation performance compared to
the analytical results is for future work.

B. Feasibility of Deployment

We investigate the feasibility of deploying TCP Hollywood,
using results from initial experiments with our FreeBSD
implementation on residential and mobile networks in the UK.

TCP Hollywood ought to be entirely compatible with
TCP. The only on-the-wire visible difference between a TCP
Hollywood flow and a standard TCP flow appears within the
payload data carried by inconsistent retransmissions. Recall
from Section III-A that inconsistent retransmissions carry new
payload data inside of segments with previously transmitted
sequence numbers. This modification is invisible to receivers
and middleboxes that only process TCP/IP headers, but is
visible to middleboxes that use deep packet inspection if they
compare the contents of a retransmitted packet with the original
data. Depending on the configuration such behaviour may
disrupt the connection. For example, a firewall may interpret
inconsistent retransmissions as belonging to a man-on-the-side
attack, and reset the connection.

We conducted experiments with a live deployment of
TCP Hollywood to obtain an initial assessment on whether
such middleboxes exist, and what impact they have. A TCP
Hollywood server was setup on a public IP address, and
configured to always send inconsistent retransmissions in lieu of
the original data, so that all retransmissions contained new data
with the same sequence numbers. The server was configured
to listen on ports 80, 4001, and 5001. Port 80 is used by web
traffic, and can be expected to be affected by middleboxes
such as “transparent” caches and firewalls. We expect ports
4001 and 5001 to be less likely to be subject to interference by
middleboxes, since they are not used by popular applications.

Clients were deployed across a number of access networks,
operated by different service providers. Each client connected
to the server, and received data. All incoming segments to
the client host were recorded by tcpdump, then filtered by
iptables to uniformly drop 5% of segments before reaching
the TCP stack for traffic from ports 80 and 4001, leaving

428Networking 2016

traffic from port 5001 unaffected.2 Each loss induced at the
client triggered an inconsistent retransmission from the server.
Remaining segments were passed up the stack to the client
application, as normal. Data received by the client application
was recorded, and compared against tcpdump logs from the
server to identify the dropped segments, and to compare the
payload data in the dropped segments with that sent in the
original packet and in the inconsistent retransmission. This
allows us to see what segments have been dropped, and to
confirm that both the original and retransmission cross the
path between client and server, and whether the inconsistent
retransmission was delivered.

The evaluation was conducted using clients in 14 different
locations in the UK, connecting to a server located at the
University of Glasgow. The clients connected via eight different
fixed-line residential ISPs (Andrews & Arnold, BT, Demon,
EE, Eclipse, Sky, TalkTalk, and Virgin), and four mobile
operators (EE, O2, Three, and Vodafone). All of the fixed-
line residential ISPs successfully delivered the inconsistent
retransmissions. In contrast only one out of the four mobile
operators delivered inconsistent retransmissions. The three
remaining mobile operators delivered the original segments
instead, while the server saw no corresponding segment loss.
The observed behaviour is consistent with a transparent split-
connection TCP performance enhancing proxy cache that
intercepts and responds to ACKs from the client on behalf
of the server. On two of the three providers, this caching
behaviour was seen on both port 80 and port 4001, while the
other provider appeared to operate a cache on port 80 only.

Crucially, TCP Hollywood continued to operate whether
or not the provider middlebox was present in the network.
At no time did connections suffer a reset, and the use of
the TCP Hollywood extensions did not affect connectivity
or performance. Middlebox manipulations such as caching
are designed to be transparent, leaving the client to believe
it is interacting with a standard TCP server. Recall from
Section III-C that TCP Hollywood is designed for partial
deployment. This experiment provides evidence that TCP
Hollywood continues to deliver messages and eliminate head-
of-line blocking, even when inconsistent retransmissions are
absent. In the worst-case, performance is the same as TCP
without our extensions.

The set of networks tested is by no means exhaustive.
Further, and larger scale, evaluation is needed to build evidence
that inconsistent retransmissions are deployable. Previous
studies provide room for optimism, however. Honda et al. [17]
investigated deployment of TCP modifications with regards to
middlebox interaction, from 142 networks in 24 countries, in
early 2011, including inconsistent retransmission measurements
taken over a large number of paths, with path diversity.
Their observations mirror ours: the majority of paths deliver
inconsistent retransmissions as expected, while a small number
deliver the original instead. They also observed connection
resets on one path, representing less than 1% of paths evaluated.

2Given that our goal is to test the ability to deploy TCP Hollywood, rather
than performance, we are only concerned with creating sufficient loss to trigger
inconsistent retransmissions. A high un-correlated drop rate enables TCP to
survive where it would fail against correlated drops. The ensuing reduction
in throughput translates to reduced loss due to congestion. Thus the client is
more likely to see both the original transmission and its retransmission.

VI. RELATED WORK

The immediate precursors of TCP Hollywood are the
Minion protocol suite [22] and TL-TCP [23]. The Minion
protocol suite includes uTCP, which proves a COBS-encoded
user-space datagram abstraction atop TCP, with prioritization
and out-of-order delivery. uTCP also provides an API that
enables applications to replace existing datagrams in the
transmission buffer before they are sent. Datagrams that have
already been sent (i.e., those being retransmitted) cannot be
replaced. The authors acknowledge this as a conservative design
choice, made to ensure middlebox interaction.

Our wire compatibility experiments from Section V-B,
and those of Honda et al. [17], indicate that inconsistent
retransmissions are possible, but that the integrity of the
sequence space needs to be preserved. The need to consider
middlebox interaction with new or modified protocols is
underscored by the design, and success, of Multi-Path TCP [24].
The design of TCP Hollywood builds on a number of protocols,
and tweaks to TCP, that are unlikely to be deployable.

TL-TCP marks the first appearance of time-lines and incon-
sistent retransmissions [23]. The underlying mechanism works
by injecting gaps into the sequence space. This modification is
observable by middleboxes, and so is unlikely to be deployable.
TCP Hollywood builds on TL-TCP, and related protocols,
but does so while focussing on deployability. As discussed
in Section III, we minimise changes to the wire protocol to
maximise compatibility with middleboxes.

Transport protocols that rely on application-layer metadata
to improve performance include Partially Error Controlled
Connection (PECC) [25] and PRTP-ECN [26]. Other protocols
such as SCTP [7] and DCCP [8] were engineered to broaden the
delivery models offered by the transport-layer. Despite stand-
ardization and deployment in mainstream operating systems,
their use is hampered by a lack of middlebox support.

Liang and Cheriton in [27] note that loss can be more
detrimental to streaming application performance than jitter.
On-demand streaming applications, for example, can effectively
hide jitter from the application but are unable to tolerate loss.
The authors present a modified TCP, TCP-RTM, that allows
receivers to read beyond a gap in the receive buffer. The
sequence numbers in the gap are ACKed, preventing their
retransmission by the sender. Applications read from the socket
at a predetermined play-out rate offset by some delay. There
are no changes to TCP itself; instead, the interaction between
application and receiver buffer is modified. Selective negative
ACKs (NACKs) allow senders to be informed of the segments
that were skipped over.

Deadline-aware TCP is a modified TCP specifically for data-
centers, and implements flows with soft time constraints [28].
The modifications allow for the TCP window size and conges-
tion back-off to be varied based on the flow congestion deadline.
Flows with imminent deadlines benefit from larger windows.
As the network becomes congested, flows will tend to complete
closer to their deadlines. The modifications require ECN support
in the network, and a modified TCP sender. Requiring ECN
support effectively prevents deployment outside of datacenters.

QUIC (Quick UDP Internet Connections) [29] is a transport-
layer protocol implemented atop UDP. It incorporates a number

429Networking 2016

of latency-reducing techniques (e.g., large initial data transfers,
low RTT setups) that are slowly migrating to TCP. Its use of
UDP as a substrate provides an interesting contrast to our choice
of TCP. The main motivation being the ability to deploy without
kernel modifications, and so QUIC is implemented entirely in
userspace. The flexibility of a userspace implementation comes
at the cost of universal deployment, since the initial estimates
by the QUIC authors show around 5-10% are behind UDP-
blocking firewalls. Upon detection of a blocking device QUIC
is forced to fall back to TCP. The analysis presented in Section
IV shows that falling back to TCP Hollywood is better for
latency-sensitive applications (such as those using QUIC), in
certain network conditions.

The trade-off between a UDP-based protocol with fall-
back to standard TCP, as chosen by the QUIC authors,
and a slightly modified TCP variant, as we have chosen,
hinges on ease of implementation and deployment. We believe
our implementation is simpler, since we build on the TCP
infrastructure, but acknowledge that this gives us less flexibility
to evolve the protocol. Equally, we believe our implementation
is likely to be more deployable, as it builds on TCP. Broader
measurement studies, for both TCP Hollywood and QUIC, are
needed to evaluate this claim, however.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented TCP Hollywood, a modified
TCP for real-time multimedia. The analysis shows that our
modifications are beneficial to applications with tight latency
bounds, such as voice telephony and live video delivery. Further,
we’ve shown that by limiting the wire-visible modifications,
we can maintain TCP’s widespread ease of deployment.

Future work includes real-world performance evaluation.
Measuring the performance improvements, in terms of the
increase in usable bytes delivered to the application, that
TCP Hollywood provides to the applications analysed in real
networks is key to validating the analysis in Section IV. Beyond
this, we are exploring enhancements to TCP Hollywood that
may further improve performance. For example, dependency
information is currently used to determine when not to send
a message, but it may be a cause to send a message, even if
that message may not arrive in time to be played out, to allow
future messages to be processed. Broader enhancements, such
as integration with SACK or MP-TCP, should also be studied.

TCP Hollywood exists within a transport-layer protocol
design space that is constrained by ossification. We have
TCP and UDP as substrates, with little room for modification.
Substrate selection presents trade-offs: TCP gives a wider
deployment story than UDP, but depending on the desired
functionality, receiver-side kernel modifications can be needed.
These trade-offs may shift over time, as the network responds
to large deployments of substrate-based transports. For example,
QUIC is seeing non-trivial deployment by being included
within Google’s web browser, and may result in fewer firewalls
blocking UDP. This is a long-term concern, however, and in the
near future we believe that protocols like TCP Hollywood offer
important advantages relating to middlebox traversal, that will
make them easy and valuable to deploy. Our initial results show
TCP Hollywood is deployable on all major fixed and mobile
operators in the UK, and offers compelling latency advantages.

REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “SIP: Session initiation protocol,”
IETF, June 2002, RFC 3261.

[2] C. Jennings, T. Hardie, and M. Westerlund, “Real-Time Communications
for the Web,” IEEE Communications, vol. 51, no. 4, Apr. 2013.

[3] M. Cha, P. Rodriguez, J. Crowcroft, S. B. Moon, and X. Amatriain,
“Watching television over an IP network,” in Proc. Internet Measurement
Conference. ACM, October 2008.

[4] T. Stockhammer, “Dynamic adaptive streaming over HTTP – standards
and design principles,” in Proc. MMSys. ACM, February 2011.

[5] Cisco, “Visual Networking Index: Forecast and Methodology, 2012-
2017,” White Paper, May 2013.

[6] D. D. Clark and D. L. Tennenhouse, “Architectural Considerations for
a New Generation of Protocols,” in Proc. ACM SIGCOMM, 1990.

[7] R. Stewart, “SCTP,” RFC 4960, IETF, Sep. 2007.

[8] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” RFC 4340, IETF, Mar. 2006.

[9] S. Hätönen et al., “An Experimental Study of Home Gateway Charac-
teristics,” in Proc. Internet Measurement Conference. ACM, 2010.

[10] C. S. Perkins, M. Westerlund, and J. Ott, “WebRTC: Media transport
and use of RTP,” IETF, Nov. 2014, work in Progress.

[11] S. Cheshire and M. Baker, “Consistent Overhead Byte Stuffing,” in Proc.
ACM SIGCOMM, 1997.

[12] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM Queue,
vol. 10, no. 5, May 2012.

[13] N. Khademi, R. Ros, and M. Welzl, “The New AQM Kids on the Block:
An Experimental Evaluation of CoDel and PIE,” in Proc. Global Internet
Symposium. Toronto, ON, Canada: IEEE, April 2014.

[14] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, Architecture,
Algorithms, Performance,” in Proc. IEEE Infocom, Mar. 2004.

[15] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas:
New Techniques for Congestion Detection and Avoidance,” in Proc.
SIGCOMM Conference. London, UK: ACM, August 1994.

[16] S. McQuistin and C. S. Perkins, “Reinterpreting the Transport Protocol
Stack to Embrace Ossification,” in Proc. IAB Workshop on Stack
Evolution in a Middlebox Internet, Zürich, Switzerland, Jan. 2015.

[17] M. Honda et al., “Is it still possible to extend TCP?” in Proc. ACM
IMC, Berlin, Germany, Nov. 2011.

[18] J.-R. Ohm, “Advances in Scalable Video Coding,” Proc. IEEE, vol. 93,
no. 1, pp. 42–56, Jan 2005.

[19] S. Cheshire and M. Baker, “Consistent Overhead Byte Stuffing,” in Proc.
ACM SIGCOMM, 1997.

[20] ITU-T, “One-way transmission time,” Rec. G.114, May 2003.

[21] N. Bouzakaria, C. Concolato, and J. L. Feuvre, “Overhead and
performance of low latency live streaming using MPEG-DASH,” in
Proc. 5th Intl. Conf. Information, Intelligence, Systems and Applications.
Crete, Greece: IEEE, 2014.

[22] M. F. Nowlan, N. Tiwari, J. Iyengar, S. O. Amin, and B. Ford, “Fitting
Square Pegs Through Round Pipes: Unordered Delivery Wire-Compatible
with TCP and TLS,” in Proc. USENIX NSDI, San Jose, CA, Apr. 2012.

[23] B. Mukherjee and T. Brecht, “Time-lined TCP for the TCP-friendly
delivery of streaming media,” in Proc. IEEE ICNP, 2000.

[24] C. Raiciu et al., “How Hard Can It Be? Designing and Implementing a
Deployable Multipath TCP,” in Proc. USENIX NSDI, vol. 12, 2012.

[25] B. Dempsey, T. Strayer, and A. Weaver, “Adaptive Error Control for
Multimedia Data Transfer,” in Proc. IWACA, vol. 92, 1992.

[26] K.-J. Grinnemo and A. Brunstrom, “Evaluation of the QoS offered by
PRTP-ECN - a TCP-compliant partially reliable transport protocol,” in
Proc. IWQoS, Karlsruhe, Germany, Jul. 2001.

[27] S. Liang and D. Cheriton, “TCP-RTM: Using RTP for Real Time
Multimedia Applications,” May 2002, submission to IEEE International
Conference on Network Protocols (ICNP).

[28] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-Aware Data-
center TCP (D2TCP),” in Proc. ACM SIGCOMM, 2012.

[29] J. Iyengar and I. Swett, “QUIC: A UDP-based secure and reliable
transport for HTTP/2,” Work in progress, IETF, Jun. 2015.

430Networking 2016

