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Abstract—A Community Network is a bottom-up network

created by a community of people with the goal of building a self-

owned, self-managed communication infrastructure. Community

Networks are blooming, they range from small ones (tens of

nodes) to gigantic ones (tens of thousands of nodes), they are

made primarily of wireless links but in some cases they mix

wired and wireless technologies. People running a Community

Network wish to have more independence and more control on

the infrastructure compared to what commercial ISPs offer. Such

networks can not be understood without studying the interaction

between the social and the technical aspects, since both layers are

tightly intertwined. This paper will show some properties of three

community networks, indicating that they have some structural

peculiarities. It will also show a socio-technical analysis using data

coming from the public mailing list of one of the community, in

order to highlight issues that the community needs to address to

guarantee its sustainable growth.

I. INTRODUCTION

A Community Network (CN) is a communication network
set-up by a community of people with a bottom-up, partic-
ipatory approach. It is primarily a wireless mesh network,
extended in some cases with wired connections. While the
concept of CN is not new [1] their development in the last
period was remarkable, and today, CN represent an extremely
interesting and timely research topic due to (among others)
three factors1: The first is that recent standards (such as
IEEE 802.11n/ac) make it possible to realize high-capacity
wireless links that can reach a length up to tens of km. This
allows to create networks that cover entire cities with excellent
performances. Thus, the scalability and the protocols for mesh
networks that were of high interest in the 2000s, today can be
finally applied to real networks made of hundreds of nodes.

The second factor is that CNs have shown to be an effective
way to bring connectivity in underserved areas, so they are
a valuable instrument against digital divide. An outstanding
case is the Guifi.net CN that was awarded by the European

This work was financed partially by the University of Trento under the
grant “Wireless Community Net-works: A Novel Techno-Legal Approach”
—Strategic Projects 2014, and partially by the European Commission, H2020-
ICT-2015 Programme, Grant Number 688768 ’netCommons’ (Network Infras-
tructure as Commons).

1Recently, various large research projects focussed on CNs: see the CON-
FINE, CLOMMUNITY, P2PValue and netCommons projects, respectively at
www.confine-project.eu, www.clommunity-project.eu, www.p2pvalue.eu and
www.netcommons.eu

Commission with the 2015 European Broadband Awards2.
The third factor is that CNs are unique environments to

experiment inter-disciplinary research, since they can be better
interpreted combining different research methodologies. In
a CN each network node corresponds to a person, a fam-
ily, an association or a small business. The management of
the network is collective so the social dynamics inside the
community influence the technical choices about the network
itself. It is crucial to understand the motivations that drive the
communities and the social norms that regulate them if one
wants to propose solutions that are not only technically sound
but also compatible with the open and participatory nature of a
CN. Such a mix of social and technical aspects makes a CN an
example of the emerging paradigm of the so-called “Internet
of People” (IoP), because the whole network infrastructure is
shaped by the behaviours of the individuals and their group
decisions. It is thus very interesting to understand if this
original organization leads to networks with different features
compared to other networks that have been already studied.

This paper contributes to this discussion and will analyse the
data available from three community networks: the FunkFeuer
network in Wien and Graz, and the ninux.org network in Rome
(abbreviated respectively as FFWien, FFGraz, ninux). The goal
of the paper is to answer two questions:

• Is the evolution of the network graph different compared
to other communication networks, such as scale-free
networks?

• Given that the goal of the community is to build a
distributed network with a de-centralized management,
is the result close to the expectations of the community?

II. MOTIVATIONS, DATA-SET, BACKGROUND

There is a large body of works that suggest that many
network graphs, including the Internet, show a scale-free
behaviour, that is, the distribution of the degree of the nodes
follows a power-law function. A scale-free network presents
a small number of densely connected hubs that strongly
influence the behaviour of a communication network. Hubs
guarantee that the average shortest path grows slowly with the
number of nodes, which is a positive factor because it keeps
the round-trip-time low. However, hubs are enormously more
important than other nodes, which is a negative factor, because

2see https://ec.europa.eu/digital-agenda/en/news/five-projects-got-first-ever-
european-broadband-awardISBN 978-3-901882-83-8 c� 2016 IFIP
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they introduce points of failures. This paper uses data from the
FFWien and FFGraz network to verify if this pattern can be
observed also in CNs.

Another level of interpretation is given by the socio-
technical analysis of ninux, that gives insights on the sus-
tainability of the network itself. Recent social analysis [2]
have shown that community networks have strong political
motivations: the construction of an independent, robust, decen-
tralized network infrastructure. Ninux is not an exception [3]:
Ninux participants have a critical opinion of ISPs and service
providers motivated by the recent discussions about neutrality,
privacy and forced disconnections. They identify the root cause
of these problems in the centralization (both technical and
administrative) of the networks and of the services, and for this
reason they build their own decentralized network, managed
with a peer-to-peer approach. Peer-to-peer organization is a
key feature of ninux: since the mesh network works without
introducing hierarchies and layers, the community tries to
reflect this approach also in the social organization. Thus, the
ninux community did not create a formal association, it does
not assign formal responsibilities and does not have “roles”
assigned to people. The discussions in the community are
primarily carried on in the mailing lists and in weekly face-
to-face meetings, and decisions are taken with a consensus-
based method. This approach is shared with other CNs and it
is original in the communication panorama.

It is legitimate to ask what is the degree of success of
ninux and its overall sustainability. To answer, it is crucial
to remember that the network exists because the participants,
through their social interactions, cooperate to reach a common
goal so the social networking layer is as important as the
technological one. If the network is not technically sound,
it will fail in bringing services to the people, but also if the
community is not participated enough, there will be a lack of
the social capital needed to maintain the infrastructure. The
key observation is that in a CN the social network and the
network infrastructure can be linked, since every node belongs
to a person. The two layers of analysis can be explored with
the same instruments to understand if there are cross-layer
single points of failure that can mine the future growth of the
network.

A. The data-set

The three networks use OLSR (Optimized Link-State Rout-
ing), a link-state routing protocol that makes it possible for
each node to be aware of the whole network topology. The
communities publish the network topology dumped by the
OLSRd daemon, that can be used to analyse the network
evolution. The topology recorded by the routing daemon can
be misleading: in some cases a number of devices placed in
the same physical location are attached to a wired switch and
each of them runs a separate instance of the routing protocol.
For OLSR they are different nodes but, in practice, they are
not. To merge these cliques, another source of information
is needed. More details about the networks and the merging
technique are out of the scope of this paper, the interested

FFWien FFGraz ninux
maximum recorded nodes 235 126 140
maximum recorded links 450 181 158

time series available yes yes limited
first dump 2013-07-27 2007-03-31 2014-1-14
last dump 2014-02-15 2016-02-21 2014-1-20

dump interval weekly monthly every 5 min
node ownership no no yes

mailing list no no yes

TABLE I: The summary of the available data

reader can find details in the published source code3 and in
previous works [4][5].

The FunkFeuer networks publish a long history of dumps,
while for Ninux only the current state is available, plus data
collected in a week-long monitoring realized in 2014 [5]. Tab. I
reports a summary of the data used for this paper. In the rest
of the paper the time based evolution of the network always
refers to the FreiFunk networks, instead when the analysis is
done on a single snapshot, the sample with the largest number
of nodes for each network in considered.

For the ninux network, two other sources of information
were accessed. The first is a database containing the mapping
between the physical node and the ID of a person that owns
it, the second is the archive of the mailing lists of the ninux
community of Rome for the year 2014.

B. Related Works
CNs have been the subject of a series of research works in

the past years that had the goal of analysing their topological
features [6][4][5][7] their routing solutions [8][9] and their
social and management aspects [10][11]. This paper performs
a different analysis based on two original elements, the first
is the analysis of the time-evolution of the networks, which
helps understanding what was, and potentially what will be
the evolution of the network. The second is the mixed social
and technological analysis aimed at identifying single points
of failure in the techno-social organization of the network.

III. THE NETWORK GRAPHS AND THEIR EVOLUTION

Fig. 1 Fig. 2 and Fig. 3 show the relative frequency of
the degree distribution for the three networks, and the best-fit
with a power-law function. A power-law degree distribution is
normally observable in the central part of a distribution or in
the right tail. In this case the size of the networks (hundreds
of nodes, and maximum degree that ranges from 11 to 29)
makes it statistically hard to identify a trend.

An alternative approach is to investigate if the network
evolution follows a preferential attachment model, which
would lead to a more evident scale-free behaviour with the
growth of the network. The preferential attachment model
describes the way in which new nodes are added to the
network, and the entry points they connect to. In such model
the rate ⇧(k) with which a node with k links acquires new
links is a monotonically increasing function of k. Following a
preferential attachment model is not a necessary condition to

3accessible via Git at github.com:leonardomaccari/
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Fig. 1: The degree distribution for FFWien, and the best power-
law fit x�↵, ↵ = 1.13.
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Fig. 2: The degree distribution for FFGraz, and the best power-
law fit x�↵, ↵ = 1.16.

have a scale-free network, however since it has been shown
that it is at the base of several different kinds of scale-free
networks (the Internet graph for instance, has been shown
to have ⇧(k) / k so that the probability of acquiring now
links is proportional to the current number of links of a node
[12]) measuring the relationship between ⇧(k) and k can give
insights on the future evolution of the network. This behaviour
is easier to test on this data-set because the total number
of new nodes that joined the network during the observed
period is much higher than the number of nodes at the end
of the interval, since many nodes join the network for a
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Fig. 3: The degree distribution for ninux, and the best power-
law fit x�↵, ↵ = 1.55.
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Fig. 4: The value of k(k) in the FFGraz and FFWien networks,
separately computed per each year
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Fig. 5: The value of ⇧(k) in the FFGraz and FFWien networks,
separately computed per each year

limited period of time. To test the hypothesis of the preferential
attachment model, for each year of the available data, for every
new node added to the network the degree of the entry node
was recorded and collected in a histogram that approximates
⇧(k) (each node is counted only once at its first entry). To
smooth fluctuations, as in [12], the cumulative function k(k)
is considered:

k(k) =
Z

k

0
⇧(x)dx (1)

In case ⇧(k) / k then k(k) / 2, which reported in a log-log
graph should be a straight line of slope 2.

Fig. 4 report k(k) for various years in the two FunkFeuer
network and show clearly that there is no linear trend. Indeed,
Fig. 5 confirms that for none of the years under analysis ⇧(k)
grows with k.

These results show that the two networks for which data
is available (for the ninux network the monitoring period is
too short) the growth model does not support the hypothesis of
preferential attachment. As such, if the network keeps growing
with the same model, coupled with the factual evidences
explained in the next section, we do not expect the emergence
of a scale-free behaviour.
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A. Interpretation of the results
Two features that influence the growth of a CN are: i) the

limited range of wireless links ii) an upper bound on the
number of incoming links.

Limited range: Wireless links are limited to a maximum
length of about tens of kilometers and need to have line-of-
sigh between the endpoints, while wired links do not have
this limitation. Thus, a new node entering the network can not
connect to any other node, and an existent node can acquire
new links only from nodes placed at a distance smaller than
the maximum range (which is not a fixed value and depends on
a number of factors, such as the antenna type, the transmission
power etc.). If the network grows in an urban area maintaining
a constant density, hubs will be formed less likely than in a
scale-free network.

Limited maximum node degree: A wireless node can be
equipped with several physical radios, but more radios require
more maintenance. Mounting tens of radios, cabling them,
powering them, configuring them, is costly. While wireless
ISPs use trellis and pay for the maintenance, a single person
typically does not have the physical space, the resources and
the time to install and maintain such a complex infrastructure.
Thus, node degree can not grow indefinitely.

This result confirms and extends the analysis carried on
portions of the Guifi network [7] that observed that some
portions of Guifi did not show a scale-free behaviour. The
authors suggest that this is true for networks that cover up to
a certain geographical area and it is influenced by the degree
of ”planning” in the evolution of the network (planned or
completely spontaneous). Another interpretation could be that
Guifi, contrarily to the networks analysed in this paper is a
real cooperative ISP, thus its mission is to bring Internet to the
people. This probably leads to shorten as much as possible the
path to the closest gateway, and a quasi-hierarchical network
design is more suitable for this task. Instead, networks that
have local connectivity as a goal may follow a different
evolution path; more research is needed to formulate a sound
interpretation.

IV. SOCIO-TECHNICAL ANALYSIS OF NINUX

The following data is taken from network dumps collected
in 2014 and extends the publication [5], the next two subsec-
tions expose the results and the third one jointly comments
them. Direct interaction with the community was necessary to
give a qualitative interaction of the quantitative results.

A. The Ownership of the ninux network
Fig. 6 presents the number of nodes possessed by the top

20 ninux participants, ordered by nodes owned, referring to
a snapshot of the network in which the maximum number of
nodes were present (140). Over a total of 78 owners, one user
possess 17% of the nodes and the top five people own 31% of
the nodes, top 13 people own roughly 50% of the nodes, 61
people own just one node. If we exclude the first individual
(that we call P

top

), the distribution is not particularly skewed,
reflecting the fact that the number of owned nodes is generally
limited by the number of physical locations in the city to which
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Fig. 6: The number of nodes per user in the ninux network,
top 20 users.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2  4  6  8  10  12  14  16  18  20

Pe
rs

on
 N

et
wo

rk
 C

en
tra

lit
y

Person

Fig. 7: The “person network centrality” for the participants to
the ninux network, top 20 users.

the person has access (home, workplace, houses of relatives
etc. . . ). P

top

owns 24 nodes and is not the owner of all the
locations where the nodes are placed, he is simply a technically
skilled person that very often offers his help to set up the
network for newcomers. As a result, he appears to be the owner
and the technical manager of the nodes.

Fig. 7 shows the group betweenness centrality computed
on all the nodes owned by the same person. The group
betweenness centrality is the fraction of shortest paths that pass
through at least one node in the group. Formally, if the network
graph is a weighted graph G(V,E), and P

i,j

= {v
i

. . . v

j

} is
the set of nodes that constitute the shortest path from node
v

i

to node v

j

then the group centrality of a set of nodes
S = {v1 . . . vn} ⇢ V is given by:

B(S) =
||{P

i,j

i, j 2 (1 . . . |V |) | S \ P

i,j

6= ;}||
||{P

i,j

i, j 2 (1 . . . |V |)}|| (2)

where ||·|| is the size of a set. The centrality metric is com-
puted running Djikstra’s algorithm on the weighted network
topology, and, without information on the traffic matrix is the
best estimation of the number of traffic flows that a group
of nodes can intercept. Fig. 7 shows the “person network
centrality”, the ranked group centrality of the nodes owned
by the same person and tells that P

top

can potentially control
almost 90% of the traffic flows.

Figs. 6 and 7 outline a peculiar feature of a CN. As long as
people are not allowed to own nodes out of their properties,
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Fig. 8: The fraction of answered emails on the total in the
mailing list.

the Wi-Fi range limitation does not allow a single person to
be too central, and thus too critical for the network economy.
This questions the peer-to-peer nature of the network in the
case in which it is participated not only by individuals but
also by associations, small business etc. that can be physically
located in several places. In that case, the community must
monitor the importance of those entities in order to avoid that
any of them could become a single point of failure for the
CN, as P

top

is for ninux.

B. The ninux mailing list
The analysis of the mailing list messages helps understand-

ing who are the individuals that lead the discussion inside
the community. Two metrics defined in the literature have
been chosen for this task [13]. The first is the normalized
number of answered email per user: given a number X of
total messages that reply to some other message, and being
x

i

the number of replies to a message sent by the ith person,
R(i) = xi

X

is the relevance metric shown in Fig. 8. This is
a basic metric that assumes that people that receive a high
number of replies are able to generate interesting discussion
topics, thus are considered important in the community.

Fig. 8 shows that the relevance to the mailing list is not
equally distributed among the participants, a very small num-
ber of people lead the discussion. The cumulative distribution
in Fig. 9 shows that as less as 6 people receive 50% of the
overall answers.

The second metric is the centrality of a person in the mailing
list social graph. The social graph is an undirected graph
G(V,E) in which every node v

i

is a person in the mailing list
and there is an unweighted edge between two nodes v

i

, v
j

if
person v

j

ever answered to person v

i

(or vice-versa). Mailing
list centrality is computed on the social graph for v

i

as in
Eq. (2) when S = {v

i

}. Betweenness centrality on mailing
lists is used to understand who is able to make other people
join the same discussion, so that he/she can facilitate the flow
of information in the community. Again, Fig. 10 shows that
there is a small number of people connecting all the other
participants, and one in particular whose centrality is at least
the double of the others.

Finally, Fig. 11 reports the percentage overlap on the two
betweenness rankings from Fig. 7 and Fig. 10. The percentage
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Fig. 9: The cumulative distribution of answered emails on the
total in the mailing list.
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Fig. 10: The ranked centrality of the top 20 participants in the
ninux mailing list.

overlap gives a measure of the correlation between the two
rankings. Given a family of sets B

i

and the respective ordering
functions o

i

(v) on their elements, we call B

k

i

the first k

element of B
i

ordered by o

i

(v): Bk

i

= {v|v 2 B

i

, o

i

(v)  k}.
Given two sets B1 and B2 the percentage overlap p(k) is a
function of k that shows the percentage of elements present
in both sets when considering only the first k elements:

p(k) =
100

k

⇥ ||Bk

1 \B

k

2 || (3)

Fig. 11 shows two fundamental points: the first is that P
top

,
the person that owns more nodes and has the highest person
network centrality is the same one that has the highest mailing
list centrality. The second is that excluding the top person the
correlation is not extremely strong, p(10) = 20% and p(20) =
35%.

C. Interpretation of the results
The distribution of the ownership, and thus the person

centrality shows that, albeit the goal of the ninux community is
to build a both technically and socially decentralized network,
the results diverge from the goal. In 2014 one person in ninux
managed a sufficient number of nodes to be able to control
the network, and to represent a single point of failure. The
same person, given his technical skills was a central person in
the social network of the community, so he had an influential
voice in the discussions. Indeed, direct discussion engaged
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Fig. 11: The percentage overlap metric computed on the
ranked mailing-list and group node centrality.

with people in the community revealed that this person left the
community in 2015 and the nodes he managed started to fail
and disconnect entire areas. At the time of writing the network
is made of 87 nodes, 53 less than at its maximum expansion.
In conclusion, the approach of the ninux community for the
decentralization of the technical and social network was not
successful since the network had a single point of failure
represented by P

top

.
However the situation changes excluding P

top

from the
analysis. Fig. 6 shows that the maximum number of owned
nodes is generally capped by the amount of physical locations
that the users have access to, which intrinsically limits the
chances of some individuals to take-over the network. Also,
even if the social network metrics show that the relevance of
the participants to the mailing list is not evenly distributed
(this is indeed pretty common in many mailing list [14]) the
correlation between the most relevant node owners and the
most relevant members of the mailing list is low. This means
that people participate to the community in diverse ways, with
the construction of new nodes or through rising discussion
topics.

V. CONCLUSIONS

This paper analyses the evolution of two large CNs and
produces a socio-technical analysis of a third one. The analysis
shows that wireless network with a bottom-up, peer-to-peer
organization do not match a preferential attachment growth
model. The emergence of hubs is reduced so the topology
is less dependent on hubs compared to a scale-free network.
More research, and time, is needed to tell if CNs will represent
with their growth a different network model, or they will
converge to some other known models, and what are the effects
on the applications that a CN can sustain.

If the community networkers want to pursue their goal of
building decentralized socio-technical infrastructure they will
have to monitor the social interactions in the community, to
verify that no single person or small group of people can
take over the network. Metrics such as network centrality and
person centrality, together with social network analysis as used
in this paper represent a starting point to develop monitoring
instruments that will give to the community the “pulse” of
the network and decide if the community is following a

direction that best represents the community’s collective goal.
This is particularly important when the network evolves and it
becomes the interconnection not only between private people
but also between for-profit activities, as it happens in the Guifi
network. In that case, the CN must monitor that a single entity
does not grow large enough or central enough to become the
effective “owner” of the network, reducing the control power
of the community on the infrastructure.
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