
Go-with-the-Winner: Performance Based
Client-Side Server Selection

Chang Liu†, Ramesh K. Sitaraman†‡, and Don Towsley†
†University of Massachusetts, Amherst ‡Akamai Technologies Inc.

{cliu, ramesh, towsley}@cs.umass.edu

Abstract—Content delivery networks deliver much of the

world’s web and video content by deploying a large distributed

network of servers. We model and analyze a simple paradigm

for client-side server selection that is commonly used in practice

where each user independently measures the performance of a

set of candidate servers and selects the one that performs the

best. For web (resp. video) delivery, we propose and analyze

a simple algorithm where each user randomly chooses two or

more candidate servers and selects the server that provides the

best hitrate (resp. bitrate). We prove that the algorithm converges

quickly to an optimal state where all users receive the best hitrate

(resp. bitrate), with high probability. We also show that if each

user chooses just one random server instead of two, some users

receive a hitrate (resp. bitrate) that tends to zero. We simulate

our algorithm and evaluate its performance with varying choices

of parameters, system load, and content popularity.

I. INTRODUCTION

Modern content delivery networks (CDNs) host and deliver
a large fraction of the world’s web content, video content,
and application services on behalf of enterprises that include
most major web portals, media outlets, social networks, appli-
cation providers, and news channels [17]. CDNs deploy large
numbers of servers around the world that can store content
and deliver that content to users who request it. When a user
requests a content item, say a web page or a video, the user is
directed to one of the CDN’s servers that can serve the desired
content to the user. The goal of a CDN is to maximize the
performance perceived by the user while efficiently managing
its server resources.

A key function of a CDN is server selection by which client
software running on the user’s computer or device, such as
media player or a browser, is directed to a suitable server of a
CDN [6]. The desired outcome of server selection is that each
user is directed to a server that will provide the requested
content with good performance. The performance metrics that
are optimized vary by the content type. For instance, good
performance for a user accessing a web page might mean low
latency web page downloads. Good performance for a user
watching a video might mean high bitrate video delivery by
the server while avoiding video freezing and rebuffering [11].

Server selection can be performed in two distinct ways
that are not mutually exclusive. Network-side server selection
algorithms monitor the real-time characteristics of the CDN
and the Internet. Such algorithms are often complex and
measure liveness and CDN server load, as well as latency, loss,

and bandwidth of the communication paths between servers
and users. Using this information, the algorithm computes a
good “mapping” of users to servers, such that each user is
assigned a “proximal” server capable of serving that user’s
content [17]. This mapping is computed periodically and is
typically made available to the client using the domain name
system (DNS). Specifically, the user’s browser or media player
looks up the domain name of the content that it wants to
download and receives as translation the IP address of the
selected server.

A complementary approach to network-side server selection
that is commonly is used is client-side server selection where
the client embodies a server selection algorithm. The client
software is typically unaware of the global state of the server
infrastructure, the Internet, or other clients. Rather, the client
software typically makes future server selection decisions
based on its own historical performance measurements from
past server downloads. Client-side server selection can often be
implemented as a plug-in within media players, web browsers,
and web download managers [2].

While client-side server selection can be used to select
servers within a single CDN, it can also be used in a multi-
CDN setting. Large content providers often make the same
content available to the user via multiple CDNs. In this case,
the client tries out the different CDNs and chooses the “best”
server from across multiple CDNs. For instance, NetFlix uses
three different CDNs and the media player incorporates a
client-side server selection algorithm to choose the “best”
server (and the corresponding CDN) using performance met-
rics such as achievable video bitrates [1]. Note also that in
the typical multi-CDN case, both network-side and client-side
server selection can be used together, where the former is used
to choose the candidate servers from each CDN and the latter
is used by the user to pick the “best” among all the candidates.

A. The Go-With-The-Winner paradigm

A common and intuitive paradigm that is often used for
client-side server selection in practice is what we call “Go-
With-The-Winner” that consists of an initial trial period during
which each user independently “tries out” a set of candidate
servers by requesting content or services from them (cf.
Figure 1). Subsequently, each user independently decides on
the “best” performing server using historical performance
information that the user collected for the candidate servers
during the trial period. It is commonly implemented in theISBN 978-3-901882-83-8 c� 2016 IFIP

404Networking 2016

ORIGIN

SERVERS

USERS

REQUESTPERFORMANCE
FEEDBACK U

S1 S2

Fig. 1: Client-side Server Selection with the Go-With-The-
Winner paradigm. User U makes request to two candidate
servers S1 and S2. After a trial period of observing the
performance provided by the candidate, the user selects the
better performing server.

content delivery context that incorporate selecting a web or
video content server from among a cluster of such servers.

Besides content delivery, the Go-With-The-Winner
paradigm is also used for other Internet services, though
we do not explicitly study such services in our work. For
instance, BIND, which is the most widely deployed DNS
resolver (i.e., DNS client) on the Internet, tracks performance
as a smoothed value of historical round trip times (called
SRTT) from past queries for a set of candidate name servers.
BIND then chooses a particular name server to query in part
based on the computed SRTT values [12]. It is also notable
that BIND implementations incorporate randomness in the
candidate selection process.

The three key characteristics of the Go-With-The-Winner
paradigm are as follows.

1) Distributed control. Each user makes decisions in a
distributed fashion using only knowledge available to it.
There is no explicit information about the global state
of the servers or other users, beyond what the user can
infer from it’s own historical experience.

2) Performance feedback only. There is no explicit feed-
back from a server to a user who requested service
beyond what can be inferred by the performance ex-
perienced by the user.

3) Choosing the “best” performer. The selection criteria is
based on historical performance measured by the user
and consists of selecting the best server according to
some performance metric (i.e., go with the winner).

Besides its inherent simplicity and naturalness, the paradigm is
sometimes the only feasible and robust solution. For instance,
in many settings, the client has no detailed knowledge of the
state of the server infrastructure as it is managed and owned

by other business entities. In this case, the primary feedback
mechanism for the client is its own historical performance
measurements.

While client-side server selection is widely implemented, its
theoretical foundations are not well understood. A goal of our
work is to provide such a foundation in the context of web and
video content delivery. It is not our intention to model a real-
life client-side server selection process in its entirety which
can involve other adhoc implemention-specific considerations.
But rather we abstract an analytical model that we can explore
to extract basic principles of the paradigm that are applicable
in a broad context.

B. Our contributions

We propose a simple theoretical model for the study of
client-side server selection algorithms that use the Go-With-
The-Winner paradigm. Using our model, we answer founda-
tional questions such as how does randomness help in the trial
period when selecting candidate servers? How many candidate
servers should be selected in the trial phase? How long does
it take for users to narrow down their choice and decide on
a single server? Under what conditions does the selection
algorithm converge to a state where all users have made correct
server choices, i.e., selected servers provide good performance
to their users? Some of our key results that help answer these
questions follow.

(1) In Section II, in the context of web content delivery, we
analyze a simple algorithm called GoWithTheWinner where
each user independently selects two or more random servers
as candidates and decides on the server that provides the
best cache hit rate. We show that with high probability, the
algorithm converges quickly to a state where no cache is
overloaded and all users obtain a 100% hit rate. Furthermore,
we show that two or more random choices of candidate servers
are necessary, as just one random choice will result in some
users (and some servers) incurring cache hit rates that tend
to zero, as the number of users and servers tend to infinity.
This work represents the first demonstration of the “power of
two choices” phenomena in the context of client-side server
selection for content delivery, akin to similar phenomena
observed in balls-into-bins games [14], load balancing, circuit-
switching algorithms [4], relay allocation for services like
Skype [16], and multi-path communication [10].

(2) In Section III, in the context of video content delivery,
we propose a simple algorithm called MaxBitRate where
each user independently selects two or more random servers
as candidates and decides on the server that provides the
best bitrate for the video stream, We show that with high
probability, the algorithm converges quickly to a state where
no server is overloaded and all users obtain the required bitrate
for their video to play without freezes. Further, we show
that two or more random choices of candidate servers are
necessary, as just one random choice will result in some users
receiving bitrates that tend to zero, as the number of users and
servers tends to infinity.

405Networking 2016

(3) In Section IV, we go beyond our theoretical model
and simulate algorithm GoWithTheWinner in more complex
settings. We establish an inverse relationship between the
length of the history used for hitrate computation (denoted
by ⌧) and the failure rate defined as the probability that the
system converges to a non-optimal state. We show that as
⌧ increases the convergence time increases, but the failure
rate decreases. We also empirically evaluate the impact of the
number of choices of candidate servers. We show that two or
more random choices are required for all users to receive a
100% hitrate. Though even if only 70% of the users make
two choices, it is sufficient for 95% of the users to receive
a 100% hitrate. Finally, we show that the convergence time
increases with system load. But, convergence time decreases
when the exponent of power law distribution that describes
content popularity increases.

II. HIT RATE MAXIMIZATION FOR WEB CONTENT

The key measure of web performance is download time
which is the time taken for a user to download a web object,
such as an html page or an embedded image. CDNs enhance
web performance by deploying a large number of servers in
access networks “close” to the users. Each server has a cache
capable of storing web objects. When a user requests an object,
such as a web page, the user is directed to a server that can
serve the object (cf. Figure 1). If the server already has the
object in its cache, i.e, the user’s request is a cache hit, the
object is served from the cache to the user. In this case, the
user experiences good performance, since the CDN’s servers
are proximal to the user and the object is downloaded quickly.
However, if the requested object is not in the server’s cache,
i.e., the user’s request is a cache miss, then the server first
fetches it from the origin, places it in its cache, and then
serves the object to the user. In the case of a cache miss,
the performance experienced by the user is often poor since
the origin server is typically far away from the server and the
user. In fact, if there is a cache miss, the user would have
been better off not using the CDN at all, since downloading
the content directly from the content provider’s origin would
likely have been faster! Since the size of a server’s cache is
bounded, cache misses are inevitable. A key goal of server
selection for web content delivery is to jointly orchestrate
server assignment and content placement in caches such that
the cache hit rate is maximized. While server selection in
CDNs is a complex process [17], we analytically model the
key elements that relate to content placement and cache hit
rates, leaving other factors that impact performance such as
server-to-user latency for future work.

A. Problem Formulation

Let U be a set of n
u

users who each requests an ob-
ject picked independently from a set C of size n

c

using a
popularity distribution {p

1

, p
2

, . . . , p
nc}, where the k-th most

popular object in C is picked with probability p
k

. The user
then makes a sequence of requests for that content item to the
set of available servers. In practice, users tend to stay with

one website for a while, say reading the news or looking at a
friend’s posts. We model the sequence of requests generated
by each user as a Poisson process with homogeneous arrival
rate �. Note that each request from user u can be sent to one
or more servers selected from S

u

✓ S, where S
u

is the set of
candidate servers for user u.

Let S be the set of n
s

servers that are capable of serving
content to the users. Each server can cache at most objects
and a cache replacement policy such as LRU is used to evict
objects when the cache is full. Given that the download time
of a web object is significantly different when the request is a
cache hit versus a cache miss, we make the assumption that the
user can reliably infer if its request to download an object from
a server resulted in a cache hit or a cache miss immediately
after the download completes.

The objective of client-side server selection is for each user
u 2 U to independently select a server s 2 S using only the
performance feedback obtained on whether each request was
a hit or a miss. Let the hit rate function H(u, s, t) denote the
probability of user u receiving a hit from server s 2 S

u

at time
t. We define the system-wide performance measure H(t), as
the best hit rate obtained by the worst user at time t,

H(t)
�

= min

u2U

max

s2Su

H(u, s, t), (1)

a.k.a. the minmax hit rate. Our goal is to maximize H(t).
In the rest of the section, we describe a simple “Go-With-
The-Winner” algorithm for server selection and show that it
converges quickly to an optimal state, with high probability.

Note: Our formulation is intentionally simple so that it can
model a variety of other situations in web content delivery. For
instance, a single server could in fact model a cluster of front-
end servers that share a single backend object cache. A single
object can model a bucket of objects that cached together as
is often done in a CDN context [17].

B. The GoWithTheWinner Algorithm
After each user u 2 U selects a content item and a set of

� servers S
u

, the user executes algorithm GoWithTheWinner

to select a server likely to always have the content. In this
algorithm, each user locally executes a simple “Go-With-The-
Winner” strategy of trying out � randomly chosen candidate
servers initially. For each server s 2 S

u

, the user keeps
track of the most recent request results in a vector hs

=

(hs

1

, hs

2

, · · · , hs

⌧

) where hs

k

= 1 corresponds to the k-th recent
request resulting in a hit from server s and hs

k

= 0 if otherwise.
⌧ is the “sliding window size”. Using the hit rates, each user
then independently either chooses to continue with all the
servers in S

u

or decides on a single server that provided good
performance. If there are multiple servers providing 100% hit
rate, the user decides to use the first one found.

C. Analysis of Algorithm GoWithTheWinner
Here we analyze the case where n

u

= n
c

= n
s

= n and ex-
perimentally explore other variants where n

c

and n
u

are larger
than n

s

in Section II-D and IV. Let H(t) be as defined in (1).
If � � 2, we show that with high probability H(t) = 100%,

406Networking 2016

Algorithm 1: GoWithTheWinner
1 The current user u chooses a set of � candidate servers
S
u

✓ S uniformly at random from all the servers;
2 for each s 2 S

u

do

3 set hs (hs

1

, hs

2

, · · · , hs

⌧

) = 0;
4 end

5 for each arrival of request do

6 set t to the current time;
7 Request content a

u

from all servers s 2 S
u

;
8 for each server s 2 S

u

do

9 hs

i

 hs

i�1

, 2 i ⌧ ;
10 hs

1

 if hit;hs

1

 0, if miss;
11 compute hit rate H

⌧

(u, s, t) (

P
⌧

i=1

hs

i

)/⌧ ;
12 if H

⌧

(u, s, t) = 100% then

13 decide on server s by setting S
u

 {s};
14 return;
15 end

16 end

17 end

for all t � T , where T = O(

log(+1)

(log n)+1

log logn).
That is, the algorithm converges quickly with high probability
to an optimal state where every user has decided on a single
server that provides a 100% hit rate, and every server has the
content requested by its users.

Definitions. A server s is said to be overbooked at some
time t if users request more than distinct content items from
server s, where is the number of content items a server can
hold. Note that a server may have more than users and not
be overbooked, provided the users collectively request a set
of or fewer content items. Also, note that a server that is
overbooked at time t is overbooked at every t0 t since the
number of users requesting a server can only remain the same
or decrease with time. Finally, a user u is said to be undecided
at time t if |S

u

| > 1 and is said to be decided if it has settled
on a single server to serve its content and |S

u

| = 1. Note that
each user starts out undecided at time zero, then decides on a
server at some time t and remains decided in all future time
later than t. Users calculate the hit rates of each of the available
servers based on a history record of the last ⌧ requests, where
⌧ is called the sliding window size.

Lemma 1: If the sliding window size ⌧ = ⇥(log

+1 n), the
probability that some user u 2 U decides on an overbooked
server s 2 S

u

upon any request arrival is at most 1/n⌦(1).
Proof: If user u decides on server s then the current

request together with the previous ⌧ � 1 requests are all hits.
Let H

k

, k = 1, 2, · · · , ⌧ be Bernoulli random variables, s.t.
H

k

= 1 if the most recent k-th request of u is a hit and
H

k

= 0 if it is a miss. To prove Lemma 1 we need to show

P (\⌧
k=1

(H
k

= 1)) n�⌦(1). (2)

Let t
1

denote the time of the most recent request for content
a
u

from user u appears at server s, resulting in feedback H
1

to the user. Let t
1

�� be the time that the previous request

for a
u

arrives at s. Let A
s

= {a
1

, a
2

, · · · , a
M

} be the set
of different content items requested at s, where M > . Let
N

i

� 1 be the number of users requesting a
i

from s. WLOG,
let a

1

= a
u

be the content that u requests, such that N
1

is
the number of users requesting for a

u

. Because we assume
all the users generates requests with a Poisson process with
arrival rate �, the aggregated arrival rate of requests for a

u

is
then N

1

�. Thus � is an exponential random variable, � ⇠
Exp(N

1

�). Now we look at the number of different requests
arrives between time t

1

�� and t
1

. Let X
i

, i = 2, 3, · · · ,M
be an indicator that a request for a

i

arrives at server s during
the time interval (t

1

��, t
1

), we have X
i

⇠ Bernoulli(1�
e�Ni��

). Furthermore, let random variable Y =

P
M

i=2

X
i

be
the number of different requests arrived in the time interval.
With the server running on LRU replacement policy,

P (H
1

= 0) = P (Y �) , (3)

because for content a
u

to be swapped out of the server, more
than different requests other than that for a

u

must have
arrived. Equation (3) shows that H

1

only depends on the
number different requests arrived after the previous request
for a

u

, which means events H
k

, k = 1, 2, · · · , ⌧ are mutually
independent.
Furthermore1, because N

i

� 1, we have X
i

�
d

X 0 where
X 0 ⇠ Bernoulli(1� e���

). Thus,

Y =

MX

i=2

X
i

�
d

MX

i=2

X 0
= Z,

where Z ⇠ Binomial(, (1� e���

)).
Thus, we have

P (Y �) � P (Z �)

=

Z 1

0

P (Z � |� = t) f
�

(t)dt

=

Z 1

0

(1� e��t

)

N�e�N�tdt

=

N !!

(N +)!

� (N +)�,

where f
�

(t) is the probability density function of �.
Note that N is the number of users requesting a at server

s, and is bounded by N = O(

logn

log logn

), with high probability
[19].

Now, we can finally prove (2). Let c0 be an appropriate
constant,

P (\⌧
k=1

(H
k

= 1)) = P (H = 1)

⌧

= (1� P (H = 0))

⌧

= (1� P (Y �))⌧

 (1� (N +)�

)

⌧

 (1� (c0
log n

log logn
+)�

)

⌧ ,

1random variables U �d V if P (U > x) � P (V > x) for all x.

407Networking 2016

which is n�⌦(1) when ⌧ = ⇥(log

+1 n).
By bounding the time for ⌧ requests to arrive at user u, we

have the following,
Lemma 2: If user u (with candidate servers S

u

) is not
decided at time t, then the server is overbooked at time
t � � for � =

⌧+1

�

c
0

where c
0

> 1 is a constant, with high
probability.

Proof: Let random variable N
�

be the number of requests
from u during time (t��, t), N

�

⇠ Poisson(��). A bound on
the tail probability of Poisson random variables is developed
in [15] as

P (X x) e��

0
(e�0

)

x

xx

,

where X ⇠ Poisson(�0
) and x < �0.

We can show there are at least ⌧+1 requests during (t��, t)
w.h.p. as the following,

P (N
�

< ⌧ + 1) e���

(e��)⌧+1

(⌧ + 1)

⌧+1

= e�(⌧+1)c

0

(ec
0

)

(⌧+1)

= e�(⌧+1)(c

0

�1)c(⌧+1)

0

= n� (⌧+1)

log n (c

0

�1�log c

0

)

= n�⇥(log

n),

as c
0

> 1 and ⌧ = ⇥(log

+1 n). Thus, w.h.p. no fewer than
⌧ + 1 requests arrive at u. And because user is not decided
at time t we know that with high probability, at least one
of the previous ⌧ requests results in a miss, which means
that between the previous (⌧ + 1)-th request and the miss,
different other requests arrived at the server. Thus server s is
overbooked at the time the previous (⌧+1)-th request arrives,
which with high probability is no earlier than t� �.

Based on Lemmas 1 and 2, we can then establish the fol-
lowing theorem about the performance of Algorithm GoWith-

TheWinner.
Theorem 3: With probability at least 1� 1

n

⌦(1)

, the minmax
hit rate H(t) = 100% for all t � T , provided � � 2

and T = O(

log(+1)

(log n)+1

log log n). That is, with high
probability, algorithm GoWithTheWinner converges by time
T to an optimal state where each user u 2 U has decided on
a server s 2 S that serves it content with a 100% hit rate.
This is the main result for the performance analysis of the
algorithm. Due to space limit, please refer to our technical
report [13] for detailed proof of this theorem.

Are two or more random choices necessary for all users
to receive a 100% hit rate? Analogous to the “power of two
choices” in the balls-into-bins context [14], we show that two
or more choices are required for good performance with the
following theorem.

Theorem 4: For any fixed constants 0 ↵ < 1 and � 1,
when algorithm GoWithTheWinner uses one random choice
for each user (� = 1), the minmax hit rate H(t) = o(1), with
high probability, i.e., H(t) tends to zero as n tends to infinity,
with high probability.
The reader is referred to technical report [13] for the proof.

D. When n
u

= n↵

s

,↵ > 1

Now we analyze the case that there are many more users
than the number of servers. Assume n

s

= n, n
u

= n↵ and
 =

nu
ns

= n↵�1, we have the following result,
Theorem 5: When n

s

= n, n
u

= n↵,↵ > 1, with
probability at least 1� 1

n

⌦(1)

, the maximum load (number of
incoming servers) over all servers is O(� nu

ns
). Furthermore, if

 =

nu
ns

, all users have 100% hit rate.
Theorem 5 implies that when n

u

= n↵

s

all the servers have
balanced load of � nu

ns
, and thus we don’t need a server selec-

tion mechanism for load balancing other than just letting users
randomly choose the server. In this case, it’s not beneficial to
let users start with more than one randomly selected servers,
because with � = 1 the load on all servers are balanced
already. Thus, as long as we have feasible server capacity
 = !(nu

ns
), all the users will have enough resources from the

server and have 100% hit rate by randomly select one server.
The number of content items n

c

here does not affect the
result of load balancing. Actually, the result stays the same
when n

c

� n
u

. When the number of content items is much
smaller than number of users, n

c

<< n
u

, the cache size can
be made smaller because the number of distinct requests at
each server becomes smaller.

III. BITRATE MAXIMIZATION FOR VIDEO CONTENT

In video streaming, a key performance metric is the bitrate
at which a user can download a video. If the server is unable
to provide the required bitrate to the user, the video may
frequently freeze resulting in an inferior viewing experience
and reduced user engagement [11]. For simplicity, we model
the server’s bandwidth capacity that is often the critical bottle-
neck resource, while leaving other factors that could influence
video performance such as the server-to-user connection and
the server’s cache2 for future work.

A. Problem formulation
The bitrate required to play a stream without freezes is often

the encoded bitrate of the stream. For simplicity, we assume
that each user requires a bitrate of 1 unit for playing its video
and each server has the capacity to serve an aggregation of
units. We also assume each server evenly divides its available
bitrate capacity among all users streaming videos from it. We
assume each user can tell the exact bitrate that it receives from
its chosen candidate servers and that this bitrate is used as the
performance feedback (cf. Figure 1).

Unlike web content delivery, where users make random
requests to the same website, we assume that users request-
ing video streaming maintain persistent connections with the
server. We use a discrete time model in this case as compared
to the continuous time model for web content delivery. We
assume after each time unit that users examine the bit rate
provided by each of the available servers and then make

2Unlike the web, cache hit rate is a less critical determinant of video
performance. Videos are cached in chunks by the server. The next chunk
is often prefetched from origin if it is not in cache, even while the current
chunk is being played by the user, so as to hide the origin-to-server latency.

408Networking 2016

decisions according to the performance (measured by bit rate).
The goal of each user is to find a server that can provide the
required bitrate of 1 unit for viewing the video.

B. Algorithm MaxBitRate

After each user u 2 U has selected a video object c
u

2 C
using the popularity distribution, Algorithm MaxBitRate de-
scribed below is executed independently by each user u 2 U ,
in discrete time steps.

1) Choose a random subset of candidate servers S
u

✓ S
such that |S

u

| = �.
2) At each time step t � 0, do the following:

a) Request the video content from all servers s 2 S
u

.
b) For each server s 2 S

u

, compute B(u, s, t)
�

=

bitrate provided by server s to user u in the current
time step.

c) If there exists a server s 2 S
u

such that
B(u, s, t) = 1, then decide on server s by setting
S
u

 {s}.
Note that each user executes a simple strategy of trying
� randomly chosen servers initially. Then, using the bitrate
received in the current time step as feedback, each user
independently narrows it’s choice of servers to a single server
that provides the required unit bitrate. If multiple servers
provide the required bitrate, the user selects one at random.
Further, note that a user u downloading from a server s at time
t knows immediately whether or not the server is overloaded,
since server s is overloaded if user u received a bitrate of
less than 1 unit from the server, i.e., B(u, s, t) < 1. This is
a point of simplification in relation to the complex situation
of hit rate maximization where any single cache hit is not
indicative of a non-overloaded server and a historical average
of hit rates over a large enough time window ⌧ is required
as a probabilistic indicator of server overload. Furthermore,
this simplification yields both faster convergence to an optimal
state in T = O(log log n/ log(+1)) steps and a much simpler
proof of convergence.

C. Analysis of Algorithm MaxBitRate

As before, we rigorously analyze the case where n
u

= n
s

=

n. Let the minmax bitrate B(t) be the best bitrate obtained by
the worst user at time t, i.e.,

B(t)
�

= min

u2U

max

s2S

B(u, s, t).

Theorem 6: When � � 2, the minmax bitrate con-
verges to B(t) = 1 unit, for all t � T , within time
T = O(log logn/ log(+ 1)), with high probability. When
� = 1 on the other hand, the minmax bitrate B(t) =

O(log logn/ log n), with high probability. In particular,
when � = 1 and the cache size is o(log n/ log logn),
including the case when is a fixed constant, B(t) tends to
zero as n tends to infinity, with high probability.
The proof can be found in [13].

IV. EMPIRICAL EVALUATION

We empirically study our algorithm GoWithTheWinner

through simulation. Requests from each user is modeled as
a Poisson arrival sequence with unit rate. We use n

u

= 1000

users. To simulate varying numbers of servers, users, and con-
tent items, we vary n

s

and n
c

such that 1 n
u

/n
c

, n
u

/n
s

100. We also simulate a range of values for the spread
1 � 6, and sliding window size 1 ⌧ 20. Each server
implements an LRU replacement policy of size � 2. We use
the power law distribution for content popularity distribution,
where the kth most popular object in C is picked with a
probability

p
k

�

=

1

k↵ · H(n
c

,↵)
, (4)

where ↵ � 0 is the exponent of the distribution and
H(n

c

,↵) =

P
nc

k=1

1/k↵. Note that power law distributions
(aka Zipf distributions) are commonly used to model the
popularity of online content such as web pages, and videos.
This family of distributions is parametrized by a Zipf rank
exponent ↵ with ↵ = 0 representing the extreme case of
an uniform distribution and larger values of ↵ representing
a greater skew in the popularity. It has been estimated that
the popularity of web content can be modeled by a power
law distribution with an ↵ in the range from 0.65 to 0.85 [3],
[9], [8]. In the simulations, the content items are requested by
users using the power law distribution of (4) with ↵ = 0.65 to
model realistic content popularity [3] [9]. However, we also
vary ↵ from 0 (uniform distribution) to 1.5 in some of our
simulations.

The system converges when all users have decided on a
single server from their set of candidate servers. There are two
complementary metrics that relate to convergence. Failure rate
is the probability that the system converged to a non-optimal
state where there exists servers that are overbooked, resulting
in some users incurring cache misses after convergence. The
failure rate is calculated from multiple runs of the simulation.
Convergence time is the time it takes for the system to
converge provided that it converges to an optimal state.

A. Speed of convergence

Figure 2 shows how the fraction of undecided users de-
creases over time until it reaches zero, resulting in conver-
gence. Note that users do not decide in the first ⌧ steps, since
they must wait at least that long to accumulate a window of ⌧
hits. However, once the first ⌧ steps complete, the decrease in
the number of undecided users is fast as users discover that at
least one of their two randomly chosen candidate servers have
less load. The rate of decrease in undecided users decreases
towards the end, as the number of users who experience cache
contention in both of their server choices require multiple
iterations to resolve.

In this simulation, we keep the number of users n
u

= 1000

but vary the number of servers n
s

to achieve different values
for n

u

/n
s

. Note that for a fair comparison, we keep the
system-wide load the same. Load l is a measure of cache

409Networking 2016

0 20 40 60 80 100 120
time t

0

20

40

60

80

100

un
de
ci
de
d
us
er
s
(%
)

⌧ =20
⌧ =15
⌧ =10
⌧ =5

(a) ↵ = 0.65, nu/ns = 1

0 10 20 30 40 50
time t

0

20

40

60

80

100

un
de
ci
de
d
us
er
s
(%
)

⌧ =20
⌧ =15
⌧ =10
⌧ =5

(b) ↵ = 0.65, nu/ns = 10

0 10 20 30 40 50
time t

0

20

40

60

80

100

un
de
ci
de
d
us
er
s
(%
)

⌧ =20
⌧ =15
⌧ =10
⌧ =5

(c) ↵ = 0.65, nu/ns = 20

Fig. 2: The figures show the percentage of undecided users for a typical power law distribution (↵ = 0.65) with spread � = 2

and n
u

= 1000. Note that the undecided users decrease with time in all cases, but the convergence is faster when we use
fewer but larger servers by setting n

u

/n
s

to be larger. Also, the smaller values of the look-ahead window ⌧ result in faster
convergence.

5 6 7 8 9 10 11 12
sliding window size ⌧

0

20

40

60

80

100

f
a
i
l
u
r
e

r
a
t
e

(
%

)

failure rate

0

20

40

60

80

100

c
o
n
v
e
r
g
e
n
c
e

t
i
m

e
t

90.0

55.0

25.0

5.0

15.0

5.0

0.0

5.0

46.5

47.5

56.1

61.9

72.6 72.6

80.0

85.3

convergence time

0

20

40

60

80

100

(a) ↵ = 0.6, nu/ns = 1

5 6 7 8 9 10 11 12
sliding window size ⌧

0

20

40

60

80

100

c
o
n
v
e
r
g
e
n
c
e

t
i
m

e
t

27.6

31.8

34.8

39.0

42.8

46.4

51.5

54.9

(b) ↵ = 0.6, nu/ns = 20

Fig. 3: Generally, as ⌧ increases, convergence time increases but failure rate decreases. It is also true for larger servers (n
u

/n
s

= 20), only the failure has gone to zero for all investigated sliding window size⌧ .

1 10 20 30 40 50 60 70 80 90 100

nu/ns

30

40

50

60

70

80

90

100

110

c
o

n
v
e

r
g

e
n

c
e

t
i
m

e
t

Fig. 4: As n
u

/n
s

increases fewer servers with larger
capacity are used and convergence time decreases. The
decrease is less pronounced beyond n

u

/n
s

� 40 under
this setting (↵ = 0.65, � = 2, ⌧ = 20).

1 2 3 4 5 6 7
spread �

0

100

200

300

400

500

c
o

n
v
e

r
g

e
n

c
e

t
i
m

e
t

Fig. 5: There is a very small incremental benefit in using
� = 3 instead of 2, though higher values of � > 3 only
increased the convergence time. (↵ = 0.65, n

u

/n
s

=

1, ⌧ = 20, = 2.)

contention in the network and is naturally defined as the ratio
of the numbers of users in the system and total serving capacity
that is available in the system. That is, l �

= n
u

/(· n
s

). For
all three setting of Figure 2, we maintain a load l = 0.5. The
figure shows that with fewer (but larger) servers (n

u

/n
s

is
larger) the convergence time is faster, because having server
capacity in a few larger servers provides a larger hit rate
than having the same capacity in several smaller servers.
Similar performance gains are also found in the context of web
caching and parallel jobs scheduling [18]. Convergence times
are plotted explicitly in Figure 4 for a greater range of user-to-

server ratios. As n
u

/n
s

increases from 1 to 40, convergence
time decreases. The decreases in convergence times are not
significant beyond n

u

/n
s

� 40.

B. Impact of sliding window ⌧

The sliding window ⌧ is the number of recent requests
used by algorithm GoWithTheWinner to estimate the hit rate.
As shown in Figure 3, there is a natural tradeoff between
convergence time and failure rate. When ⌧ increases, the users
take longer to converge, as they require a 100% hit rate in a
larger sliding window. However, waiting for a longer period
also makes their decisions more robust. That is, a user is less

410Networking 2016

1.0 1.2 1.4 1.6 1.8 2.0
average spread �avg

0

20

40

60

80

100

h
i
t
r
a

t
e

(
%

)

median

5%

1%

minimum

Fig. 6: Order statistics of the hit rate of the user popula-
tion. (↵ = 0.65, n

u

/n
s

= 1, ⌧ = 10, = 2.)

0 50 100 150 200 250
time t

0

20

40

60

80

100

m
in
m
ax

hi
tr
at
e
H
(t
)
(%
)

↵ = 0

↵ = 0.5

↵ = 1

↵ = 1.5

Fig. 7: Minmax hitrate versus time for different power
law distributions.

likely to choose an overbooked server, since an overbooked
server is less likely to provide a string of ⌧ hits for large ⌧ . In
our simulations with many smaller caches (n

u

/n
s

= 1), when
⌧ 4, users made quick choices based on a smaller sliding
window. But, this resulted in the system converging to a non-
optimal state 100% of the time. As ⌧ further increases, failure
rate decreases. The value of ⌧ = 11 is a suitable sweet spot
as it results in the smallest convergence time for a zero failure
rate. However, for fewer but larger servers (n

s

/n
u

= 20),
all selections of window size ⌧ (thus the small values like
⌧ = 5) yielded a 0% failure rate, while convergence time still
increases as the window size gets larger.

C. Impact of spread �

As shown in Theorems 3 and 4, a spread of � � 2 is
required for the system to converge to an optimal solution,
while a spread of � = 1 is insufficient. As predicted by our
analysis, our simulations did not converge to an optimal state
with � = 1. Figure 5 shows the convergence time as a function
of spread, for � � 2.

As � increases, there are two opposing factors that impact
convergence time. The first factor is that as � increases, each
user has more choices and a user is more likely to find a
suitable server with less load. On the other hand, an increase
in � also increases the total number of initial requests in the
system that equals �n

u

. Thus, the initiate server load increases
in �. These opposing forces result in a very small incremental
benefit when using � = 3 instead of 2, though the higher
values of � > 3 showed no benefit as convergence time
increases with � increases.

We established the “power of two random choices” phe-
nomenon where two or more random server choices yield
superior results to having just one. It is intriguing to ask what
percentage of users need two choices to reap the benefits
of multiple choices? Consider a mix of users, some with
two random choices and others with just one. Let �

avg

,
1 �

avg

 2, denote the average value of the spread among
the users.

In Figure 6, we show different order statistics of the hit
rate as a function of �

avg

. Specifically, we plot the minimum
value, 1

st-percentile, 5

th- percentile and the median (50th-
percentile) of user hit rates after simulating the system for
200 time units. As our theory predicts, when �

avg

= 2, the

minimum and all the order statistics converge to 100%, as all
users converge to a 100% hit rate. Further, if we are interested
in only the median user, any value of the spread is sufficient
to guarantee that 50% of the users obtain a 100% hit rate.
Perhaps the most interesting phenomena is that if �

avg

= 1.7,
i.e., 70% of the users have two choices and the rest have one
choice, the 5

th-percentile converges to 100%, i.e., all but 5%
of the users experience a 100% hit rate. For a higher value of
�
avg

= 1.9, the 1

st-percentile converges to 100%, i.e., all but
the 1% of the users experience a 100% hit rate. This result
shows that our algorithm still provides benefits even if only
some users have multiple random choices of servers available
to them.

D. Impact of demand distribution

We now study how hit rate changes with the exponent ↵
in the power law distribution of Equation 4. Note that the
distribution is uniform when ↵ = 0 and is the harmonic
distribution when ↵ = 1. As ↵ increases, since the tails
fall as a power of ↵, the distribution becomes more skewed
towards content items with a smaller rank. In Figure 7, we
plot the minmax hitrate over time for different ↵, where we
see that a larger ↵ leads to faster convergence. The reason is
that as the popularity distribution gets more skewed, a larger
fraction of users will request the same popular content items,
leading to higher hit rate and faster convergence. Thus, the
uniform popularity distribution (↵ = 0) is the worst case and
the algorithm converges faster for the distributions that tend
to occur more commonly in practice. Providing theoretical
support for this empirical result by analyzing the convergence
time to show faster convergence for larger ↵ is a topic for
future work.

V. RELATED WORK

Server selection algorithms have a rich history of both
research and actual implementations over the past two decades.
Several server selection algorithms have been proposed and
empirically evaluated, including client-side algorithms that use
historical performance feedback using probes [7], [5]. Server
selection has also been studied in a variety of contexts, such
as the web [5], [20], video streaming [21], and cloud services
[22]. Our work is distinguished from the prior literature in that
we theoretically model the “Go-With-The-Winner” paradigm

411Networking 2016

that is common to many proposed and implemented client-side
server selection algorithms. Our work is the first formal study
of the efficacy and convergence of such algorithms.

In terms of analytical techniques, our work is closely
related to prior work on balls-into-bins games where the
witness tree technique was first utilized [14]. Witness trees
were subsequently used to analyze load balancing algorithms,
and circuit-switching algorithms [4]. However, our setting
involves additional complexity requiring novel analysis due
to the fact that users can share a single cached copy of an
object and the hitrate feedback is only a probabilistic indicator
of server overload. Also, our work shows that the “power
of two random choices” phenomenon applies in the context
of content delivery, a phenomenon known to hold in other
contexts such as balls-into-bins, load balancing [23], relay
allocation for services like Skype [16], and circuit switching
in interconnection networks [14].

VI. CONCLUSION

Our work constitutes the first formal study of the sim-
ple “Go-With-The-Winner” paradigm in the context of web
and video content delivery. For web (resp., video) delivery,
we proposed a simple algorithm where each user randomly
chooses two or more candidate servers and selects the server
that provided the best hit rate (resp., bitrate). We proved that
the algorithm converges quickly to an optimal state where
all users receive the best hit rate (resp., bitrate) and no
server is overloaded, with high probability. While we make
some assumptions to simplify the theoretical analysis, our
simulations evaluate a broader setting that incorporates a range
of values for ⌧ and �, varying content popularity distributions,
differing load conditions, and situations where only some
users have multiple server choices. Taken together, our work
establishes that the simple “Go-With-The-Winner” paradigm
can provide algorithms that converge quickly to an optimal
solution, given a sufficient number of random choices and a
sufficiently (but not perfectly) accurate performance feedback.

VII. ACKNOWLEDGEMENTS

This work was supported in part by NSF grant CNS-
1413998. It was partially sponsored by the U.S. Army Re-
search Laboratory and the U.K. Ministry of Defence and
was accomplished under Agreement Number W911NF-06-3-
0001. The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defence or the U.K. Government. The
U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

REFERENCES

[1] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and
Z.-L. Zhang. Unreeling netflix: Understanding and improving multi-cdn
movie delivery. In INFOCOM, 2012 Proceedings IEEE, pages 1620–
1628. IEEE, 2012.

[2] Akamai. Akamai download manager. 2013. http://www.akamai.com/
html/solutions/downloadmanager overview.html.

[3] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and zipf-like distributions: Evidence and implications. In
INFOCOM, 1999.

[4] R. Cole, B. M. Maggs, M. Mitzenmacher, A. W. Richa, K. Schröder,
R. K. Sitaraman, B. Vöcking, et al. Randomized protocols for low-
congestion circuit routing in multistage interconnection networks. In
Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 378–388. ACM, 1998.

[5] M. E. Crovella and R. L. Carter. Dynamic server selection in the internet.
Technical report, Boston University Computer Science Department,
1995.

[6] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl.
Globally distributed content delivery. Internet Computing, IEEE,
6(5):50–58, 2002.

[7] S. G. Dykes, K. A. Robbins, and C. L. Jeffery. An empirical
evaluation of client-side server selection algorithms. In INFOCOM
2000. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 3, pages 1361–
1370. IEEE, 2000.

[8] C. Fricker, P. Robert, and J. Roberts. A versatile and accurate approxima-
tion for lru cache performance. In Proceedings of the 24th International
Teletraffic Congress, ITC ’12.

[9] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Youtube traffic characterization:
A view from the edge. In Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement, IMC ’07. ACM, 2007.

[10] P. Key, L. Massoulie, and P. Towsley. Path selection and multipath con-
gestion control. INFOCOM 2007. 26th IEEE International Conference
on Computer Communications. IEEE, 2007.

[11] S. S. Krishnan and R. K. Sitaraman. Video stream quality impacts
viewer behavior: inferring causality using quasi-experimental designs.
In Proceedings of the 2012 ACM conference on Internet measurement
conference, pages 211–224. ACM, 2012.

[12] C. Liu and P. Albitz. DNS and Bind. O’Reilly Media, Inc., 2009.
[13] C. Liu, R. K. Sitaraman, and D. Towsley. Go-with-the-winner: Client-

side server selection for content delivery. CoRR, abs/1401.0209, 2014.
[14] M. Mitzenmacher, A. W. Richa, and R. Sitaraman. The power of two

random choices: A survey of techniques and results. COMBINATORIAL
OPTIMIZATION-DORDRECHT-, 9(1):255–304, 2001.

[15] M. Mitzenmacher and E. Upfal. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press,
New York, NY, USA, 2005.

[16] H. X. Nguyen, D. R. Figueiredo, M. Grossglauser, and P. Thiran.
Balanced relay allocation on heterogeneous unstructured overlays. In
INFOCOM, 2008.

[17] E. Nygren, R. K. Sitaraman, and J. Sun. The akamai network: a platform
for high-performance internet applications. ACM SIGOPS Operating
Systems Review, 44(3):2–19, 2010.

[18] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:
Distributed, low latency scheduling. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. ACM.

[19] M. Raab and A. Steger. balls into binsa simple and tight analysis.
In Randomization and Approximation Techniques in Computer Science,
pages 159–170. Springer, 1998.

[20] M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek. Selection
algorithms for replicated web servers. ACM SIGMETRICS Performance
Evaluation Review, 26(3):44–50, 1998.

[21] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafo, and
S. Rao. Dissecting video server selection strategies in the youtube cdn.
In Distributed Computing Systems (ICDCS), 2011 31st International
Conference on, pages 248–257. IEEE, 2011.

[22] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford. Donar:
decentralized server selection for cloud services. In ACM SIGCOMM
Computer Communication Review, volume 40. ACM, 2010.

[23] L. Ying, R. Srikant, and X. Kang. The power of slightly more than one
sample in randomized load balancing. In Computer Communications
(INFOCOM), 2015 IEEE Conference on. IEEE, 2015.

412Networking 2016

