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Abstract—Due to missing IP multicast support on an Internet
scale, over-the-top media streams are delivered with the help
of overlays as used by content delivery networks and their
peer-to-peer (P2P) extensions. In this context, mesh/pull-based
swarming plays an important role either as a pure streaming
approach or in combination with tree/push mechanisms. The
crucial impact of today’s variety of client systems with their
heterogeneous resources is not yet well understood. In this paper,
we contribute to closing this gap by mathematically analysing
the most basic scheduling mechanisms latest deadline first (LDF)
and earliest deadline first (EDF) in a continuous time Markov
chain framework and combining them into a simple, yet powerful,
mixed strategy to leverage inherent differences in client resources.
The contribution of this paper is, hence, twofold: (1) we develop a
mathematical framework for swarming on random graphs with a
focus on LDF and EDF strategies in heterogeneous scenarios; (2)
we propose a mixed strategy, named SCHEDMIX, that leverages
client heterogeneity. We show that SCHEDMIX outperforms LDF
and EDF using different abstractions: a mean-field theoretic
analysis of buffer probabilities, simulations of the stochastic
model on random graphs, and a full-stack implementation of
a P2P streaming system.

I. INTRODUCTION

Media streaming dominates the traffic share on Internet. As
new services are typically offered in an over-the-top (OTT)
manner, they need to be efficient and scalable, without de-
pendence on special network services. Because of its inherent
limitations [3], IP multicast was not adopted in more than
network islands and, in particular, is not usable for OTT
content delivery. Instead, multicast functionality is realized
at application layer in the form of content delivery networks
(CDNs) and, to make delivery more profitable, peer-to-peer
(P2P) mechanisms, or a combination of both [32]. In this work,
we focus on live media streaming, an important application
scenario with both high demand bandwidths and delays.

Over the years, different classes of P2P live stream-
ing approaches were proposed [29], such as tree/push- and
mesh/pull-based, as well as hybrid approaches. Due to their
inherent robustness, mesh/swarming approaches continue to be
of major importance, especially in hybrid settings where they
often function as a substrate even when tree structures run on
top of them [22], [24]. A key design issue in swarming is
the data scheduling strategy used by individual peers to select
chunks to be requested from their neighbours. Not only must

it ensure continuous playback for an individual client, but also
a healthy data replication to avoid content bottlenecks [20].

Several scheduling strategies of varying levels of complexity
were proposed in the literature [29]. The impact of resource
heterogeneity as observed in real client populations, however,
is not yet fully understood. This leaves a big gap in the design
space of practical P2P streaming approaches, where systemat-
ically leveraging resource imbalances could help simplifying
complex scheduling strategies or designing new ones.

In this paper, we contribute to closing this gap by analysing
the basic scheduling strategies earliest deadline first (EDF)
and latest deadline first (LDF) based on a continuous time
Markov chain framework. Our model can essentially be inter-
preted as a contact process [4], [15] on a random graph. An im-
portant facet of our framework is that it explicitly captures the
degree-dependence of peers. Driven by the resulting analytic
insights, we combine EDF and LDF into a simple, yet power-
ful, mixed strategy called SCHEDMIX to leverage differences
in upload resources. Our theoretical efforts are complemented
with a full-stack implementation of a P2P streaming system
based on the SIMONSTRATOR [21] framework. The proposed
strategy is shown to outperform the other two strategies using
different abstractions: a mean-field theoretic analysis of buffer
probabilities, simulation of the stochastic model, and discrete
event-based simulation of the full-stack implementation. Thus
we both theoretically and practically show the potential of
using a combination of primitive scheduling mechanisms
to improve overall performance in mesh-/pull-based media
streaming. These results are encouraging to consider using
primitive scheduling mechanism combinations in mesh-based
as well as hybrid streaming and enable seamless switching
(transitions) between them as proposed in [6].

The remainder of this paper is structured as follows: Sec-
tion II presents the proposed mathematical framework, fol-
lowed by our mean-field analysis in Section III. Subsequently,
Section IV presents our findings from simulations of the
stochastic process. Section V is devoted to the full-stack
implementation. Finally, in Section VI we discuss related work
and conclude our paper with a discussion in Section VII.

II. MODEL

A. The network
We describe the underlying network as a random graph. We

assume the associated degree distribution has a finite mean. LetISBN 978-3-901882-83-8 c� 2016 IFIP
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G
M

be the class of all simple and connected random graphs
with M nodes. Let ⇡ : N ! [0, 1] be the associated degree
distribution. We also define the size-biased degree distribution,
q as follows:

q(k) B
k⇡(k)
P

k

k⇡(k)
, (1)

for k 2 N. The quantity q(k) is the probability that a given
edge points to a vertex of degree k.

B. The peer-to-peer communication system
Suppose there are M peers and a single server. Let n

denote the buffer length. The server uniformly selects a peer at
random and uploads a chunk at buffer position 1. It continues
to upload chunks to the chosen peer until there is a connection
breakage/loss (an event that occurs with a small probability,
say " 2 (0, 1]) in which case the server chooses a peer
again uniformly at random. The chunk at buffer position n,
if available, is pushed for playback. After playback, the chunk
is removed and all other chunks are shifted one index closer
to playback. Each peer maintains a Poisson clock with rate
proportional to its degree1. A peer, if not selected by the server,
contacts one of its neighbours uniformly at random at each tick
of its Poisson clock and seeks to download a missing chunk.
The chunk it downloads from among all downloadable chunks
is decided by its chunk selection strategy. For simplicity, we
assume that the playback rate is one chunk per unit of time.

Let G B (V, E) 2 G
M

be a given realisation of a
random graph, where V and E ✓ V ⇥ V are the sets of
vertices and edges, respectively. Each node is a peer. Let
⌦ B {! 2 {0, 1}M⇥n | PM

i=1!(i, 1) = 1} be the configuration
space of all peers and buffers, and denote all subsets of ⌦ by
A. Define a continuous time Markov chain (CTMC) {X

t

}
t�0

on the measurable space (⌦,A) as X
t

(i, j) B 1 if the j-th
buffer location of the i-th peer is filled, and 0 otherwise. The
rows of the matrix X

t

, denoted as X1
t

, X2
t

, . . . , XM

t

represent
buffer states of peers 1, 2, . . . ,M , respectively.

Let S : {0, 1}M⇥n [ {0, 1}n ! {0, 1}M⇥n [ {0, 1}n denote the
buffer shifting operator defined as SY B (0, y1, y2, . . . , yn�1)
for Y = (y1, y2, . . . , yn) 2 {0, 1}M⇥n [ {0, 1}n where
y1, y2, . . . , yn denote the columns of Y .

Let us now define the transition rates of interaction for a
node v 2 V as follows

µv (u, u + e
i

) =

8>>>>>>>>><>>>>>>>>>:

X

l2V:(v,l)2E
&1(X

t

(l, i) = 1)↵v (i, u, X l

t

),

if i , 1,
1(X

t

(v, 1) = 1)(1 � " + "/M)
+1(X

t

(v, 1) = 0)"/M if i = 1,

(2)

where u = (u1, u2, . . . , un) 2 T B {0, 1}n, i 2 F B
{1, 2, . . . , n}, such that u

i

= 0, & > 0 is a constant, 1(.) is
the indicator function, e

i

is the i-th unit basis vector of the
n-dimensional Euclidean space and ↵v : F ⇥ T ⇥ T ! [0, 1]
is the chunk selection function of the peer v 2 V . In words,
↵v (i, u, X l

t

)�t is the probability of downloading chunk i when

1That is, we place a Poisson clock on each edge of the graph.

peer v is in buffer state u and contacts peer l in buffer state
X l

t

. We defer an elaborate discussion of the chunk selection
function to a later section. The system is described by the
following master equation

dP(X )
dt

= � P(X ) +
X

v

0 2V
1(X (v0, 1) = 1)

 X

Y 2⌦:SY=X��(v0,1)

µv
0
(Y v

0
,Y v

0
+ e1)

⇢
P(Y )

+
X

i2F \{1}

X

v2V\{v0 }

✓ X

Z2⌦:Z=Y��(v,i)

µv (Y v � e
i

,Y v)

⇥ P(Z ) � µv (Y v,Y v + e
i

)P(Y )
◆��
,

(3)

for X 2 ⌦, where �(v, i) is an M ⇥ n matrix of all zeroes
except for a unity at position (v, i). We omit the time index
whenever dependence is unambiguous.

The master equation (3) can not be solved analytically. We,
therefore, carry out an aggregation of the chain into population
counts. Define deg(v) B

P
l2V 1((v, l) 2 E) 8v 2 V and

D B {d | 9v 2 V, deg(v) = d}. Consider a map T defined by
T(X ) B (zk

x

: x 2 T , k 2 D) where zk
x

B
P

v2V 1(Xv =
x)1(deg(v) = k), the number of degree-k peers at buffer
configuration x. Define an equivalence relation T⇠ on ⌦ as
X T⇠ Y () T(X ) = T(Y ) and ⌦

t

B {X 2 ⌦ : T(X ) = t}
for each t. Then, {⌦

t

} is a partition of ⌦ and each ⌦
t

is an
equivalence class. The induced probability is given by

P(T(X ) = t) =
X

X2⌦:T(X)=t

P(X ). (4)

Such an aggregation is useful in reducing the state space
if we now consider the lumped process T of population
counts instead. In [10], we provide a necessary and sufficient
condition for such an aggregation to engender state space
reduction and also discuss worst case scenarios. We emphasize
that we do lose information in the process of aggregation.
Also, the lumped process is not necessarily Markovian [9].

III. MEAN-FIELD THEORETIC ANALYSIS

In this section, we approximate the lumped process T
defined in Section II-B, when M is large. Mean-field theory
is extensively used for this purpose [4], [13], [18]. As a first
step in this direction, peers are assumed to be independently
interacting with a mean environment. This allows us to treat
each neighbour of a degree-k peer as an independent sample
from a mean environment. We also impose that peers having
the same degree play the same chunk selection strategy
and thus, behave indistinguishably in a large random graph,
suggesting that such a mean-field behaviour can very well
be described by population counts. We, therefore, define a
mean-field population model that lumps the original process
according to the equivalence relation T⇠. We shall index all the
relevant quantities by degree k in the following, instead of
indexing by peers.

387Networking 2016



A. Mean-field master equations

Consider the process {Z
t

}
t�0 defined as Z

t

B (zk
x

(t) : x 2
T , k 2 N) where zk

x

(t) is the number of degree-k peers at
buffer configuration x 2 T at time t. We get our mean-field
transition rates for a degree-k peer as follows, for each k 2
N, u 2 T and i 2 F \ {1} such that u

i

= 0,

�k (u, u + e
i

) =
kX

l=1
&E[1(Y

l

(i) = 1)↵k (i, u,Y
l

)]

= k&E[1(Y1(i) = 1)↵k (i, u,Y1)],

where {(Y
l

, d
l

) | Y
l

= (Y
l

(1),Y
l

(2), . . . ,Y
l

(n)) 2 T , d
l

2 N}k
l=1

is a set of k independent and identically distributed (i.i.d.)
samples from the mean environment of a degree-k peer. The
first component of each neighbour is the buffer state and the
second component, its degree. Note that d

l

’s are distributed
according to q of eq. (1). Then,

E[1(Y1(i) = 1)↵k (i, u,Y1)]
=
X

v2T :vi=1

X

m2N
↵k (i, u, v)P(Y1 = v | d1 = m)P(d1 = m)

=
X

v2T :vi=1

X

m2N
q(m)

E[zm
v

]
n
m

↵k (i, u, v).

where n
m

is the number of peers of degree m. Thus, we get,

�k (u, u + e
i

) = k&
X

v2T :vi=1

X

m2N
q(m)

E[zm
v

]
n
m

↵k (i, u, v), (5)

for each k 2 N, u 2 T and i 2 F \ {1} such that u
i

= 0.
For i = 1, we set � such that

P
u2T :u1=1

z

k
u�e1
nk
�k (u � e1, u) =

1
M

, the total input to the system by the server. Define the
change vector % : N ⇥ T ⇥ F ! {�1, 0, 1} |T |⇥N such that
Y = Z � %(k, u, i) =) yk

u

= zk
u

+ 1, yk
u+ei

= zk
u+ei
� 1, yl

x

=

zl
x

8l 2 N\ {k}, x 2 T \ {u}. Broadening the scope of definition
of � by setting it to 0 for all u, u+e

i

not covered in eq. (5), for
large M , we have the following mean-field master equation

dP(Z )
dt

= � P(Z ) +
X

Y :PSv=u y

l
v=z

l
u

8u,v2T ,l2N

"
P(Y )

+
X

l2N,u2T ,i2F
(yl

u

+ 1) �l (u, u + e
i

)

⇥ P(Y � %(l, u, i))

�
X

l2N,u2T ,i2F
yl
u

�l (u, u + e
i

)P(Y )
#
.

(6)

In pursuance of the mean dynamics, we begin by first setting
P(Y ) = 0 8Y < N |T |⇥N0 where N0 B N [ {0}, and then by
defining, for each l 2 N, u 2 T , i 2 F , the following quantity
�
l,u,i (Z ) B zl

u

�l (u, u + e
i

). Next, we note that, in mean field,
we can write E[�

l,u,i (Z )] as E[zl
u

]�l (u, u+ e
i

). The following
result encapsulates the mean dynamics of the system.

Result 1. The process {Z
t

}
t�0 admitting master equation (6)

satisfies

dE[Z]
dt

= �E[Z]+E[Y ]+
X

l2N,u2T ,i2F
%(l, u, i)E[�

l,u,i (Y )], (7)

where Y 2 N |T |⇥N0 is such that yl
u

=
P
Sv=u zl

v

8l 2 N, u 2 T .

The proof is provided in [10]. Looking closely at eq. (7) and
recalling the definition of %(l, u, i), we write down explicitly,
for each u 2 T , k 2 N

dE[zk
u

]
dt

= �E[zk
u

] +
X

v2T :Sv=u

"
E[zk

v

]

+
X

i2F
E[zk

v�ei ]�
l (v � e

i

, v) �
X

i2F
E[zk

v

]�l (v, v + e
i

)
#
,

(8)

a self-consistent (autonomous) set of ordinary differential
equations (ODEs) for the mean population counts.

It is convenient to work with proportions to study the mean
dynamics. Therefore, define W

t

B (wk

x

(t) : x 2 T , k 2 N)
where wk

x

(t) B zk
x

/n
k

. We argue that, when the number
of peers is large, it suffices to study the mean dynamics of
the proportions, for the fluctuation around mean is expected
to be negligible for large systems [12]. Therefore, denoting
E[wk

x

], with abuse of notation, by wk

x

itself, we write down
the following rate equations,

dwk

u

dt
= � wk

u

+
X

v2T :Sv=u

"
wk

v

+
X

i2F

✓
wk

v�ei �
k (v � e

i

, v) � wk

v

�k (v, v + e
i

)
◆#
,

(9)

for each u 2 T , k 2 N. We find steady-state proportions
by setting dw

(k )
u

dt

= 0, giving rise to following fixed point
equations at steady state,

wk

u

=
X

v2T :Sv=u

"
wk

v

+
X

i2F

✓
wk

v�ei �
k (v � e

i

, v)

� wk

v

�k (v, v + e
i

)
◆#
.

(10)

Observe that
P

u2T
dw

k
u

dt

= 0 for all k 2 N. This is because
of the fact that proportions sum up to 1, i.e.,

P
u2T wk

u

=
18k 2 N. It does merit some attention that the population
model presented here can be thought of as an infection model
with 2n distinct levels of a disease, each level being repre-
sented by a u 2 T and (gradual) recovery being represented
by the shifting of buffer state after playback. This amounts
to saying, a peer with all buffer positions filled is infected to
the highest extent of a disease and if it does not download
any chunk, i.e., if it does not get infected, within the next
n-time units, it will gradually recover to a state of complete
susceptibility (no chunk available).

One of the key metrics of performance in live streaming
context is the buffer probability. The buffer probability of
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index i of a degree-k peer is the probability that a degree-k
peer has a chunk at buffer index i. In mean field, this becomes
the proportion of degree-k peers that have chunks at buffer
index i. Therefore, we define p

k

: {1, 2, . . . , n} ! [0, 1], the
buffer probability of a peer of degree k 2 N as

p
k

(i) =
X

u2T :ui=1
wk

u

. (11)

The corresponding global performance of the network is
linked to these degree-specific buffer probabilities through the
associated degree distribution of G as follows

p(i) =
X

k2N
⇡(k)p

k

(i). (12)

Next, we try to derive a recurrence relation among p
k

’s by
means of eq. (10) to understand their behaviour. We have the
following result in that direction.

Result 2. The process {W
t

}
t�0 of proportions obeying rate

equation eq. (9), admits the following recursion relation
among the buffer probabilities at steady state

p
k

(i + 1) = p
k

(i) +
X

u2T :ui=1
wk

u�ei �
k (u � e

i

, u)

p(i + 1) = p(i) +
X

k2N
⇡(k)

X

u2T :ui=1
wk

u�ei �
k (u � e

i

, u)

for all i, k 2 N. Moreover, buffer probabilities are nondecreas-
ing functions of their arguments, i.e., buffer indices.

The proof is omitted for want of space and is given in [10].
Interpretation of result 2: The left hand side of the re-

currence relation gives the probability that the chunk required
to fill the buffer location i + 1 is present. The right hand
side tells us that there are two possible ways to have the
chunk at buffer index i + 1 present. First, it could already
be there at buffer index i, with probability of buffer index i,
and was made available at index i+1 due to shifting. Second,
the chunk was not there, but the peer could download it in
the mean time. Roughly speaking, this occurs with proba-
bility

P
u2T :ui=1 w

k

u�ei �
k (u � e

i

, u) for a degree-k peer. This
forms the basis of our further analysis of buffer probabilities.

Now we make use of a largely adopted assumption about the
chunk selection function. We assume that the chunk selection
function of a degree-k peer, ↵k (i, u, v) does not depend on
any particular value of u and v, but rather assigns probability
to buffer indices according to their relative importance as
pronounced by EDF and LDF. Call this simplified policy s

k

,
instead of ↵k . This implies,

�k (u, u + e
i

) = k&
X

v2T :vi=1

X

l2N
q(l)wl

v

↵k (i, u, v)

= k&s
k

(i)
X

l2N
q(l)p

l

(i) = k&s
k

(i)✓
i

,

where i 2 F and ✓
i

B
P

l2N q(l)p
l

(i) encapsulates the
probability that an arbitrarily given edge points to a node
where chunk i is available.

Let us now revisit the recurrence relation in result 2 and
plug in the above simplified quantities. In order to do so, note
that, for all i 2 F ,

X

u2T :ui=1
wk

u�ei �
k (u � e

i

, u) =
X

v2T :vi=0
wk

v

�k (v, v + e
i

)

= k&✓
i

s
k

(i)
X

v2T :vi=0
wk

v

= k&✓
i

(1 � p
k

(i))s
k

(i).

The recursion relation in result 2 then reads

p
k

(i + 1) = p
k

(i) + k&✓
i

(1 � p
k

(i))s
k

(i), (13)

where k 2 N, i = 1, 2, . . . , n � 1, and ' B p
k

(1) = 1
M

. Such
a recurrence relation in the special case of a homogeneous
system has served as a starting point for the study of buffer
probabilities in a number of articles in the literature, e.g., [27],
[33], [34]. In fact, by choosing ⇡(k) = 1(k = k⇤), & = 1

k

⇤ for
some k⇤ 2 N, we retrieve from eq. (13) the corresponding
recurrence relation in the homogeneous setup, as found in
[27], [33], [34]. Our endeavour was to provide a principled
approach to derive such a recurrence relation in a more general
heterogeneous setup exhibiting degree dependence of peers.

Remark. Equations (12) and (13) are two key instruments in
our analysis of buffer probabilities. While eq. (13) describes
the playback experience of a degree-k peer, a local aspect,
eq. (12) allows us to combine these local information through
degree distributions of arbitrary networks to give us a global
view. This is notable because even this simple, approximate
model allows us to capture the dependence of performance on
network structure by plugging in its degree distribution.

We shall now focus on the two popular chunk selection
strategies, namely, LDF and EDF. We follow the same inter-
pretations of EDF and LDF as laid down in [34].

B. Chunk selection function
1) Latest deadline first (LDF) strategy: This strategy aims

to download the rarest piece first. The priority is thus on the
initial buffer indices. Therefore, s

k

(i) can be written as

s
k

(i) =
⇥1 � '⇤

i�1Y

j=1

f
p
k

( j) + (1 � p
k

( j))(1 � k&✓
j

)
g
.

The explanation, omitted for want of space, is simple and is
provided in [10]. This gives us the following result.

Result 3. 1) The chunk selection function for the latest
deadline first (LDF) strategy can be expressed as

s
k

(i) = 1 � p
k

(i). (14)

2) The recursion relation for buffer probabilities for the
latest deadline first (LDF) strategy has the following
form, for i = 1, 2, . . . , n � 1 and k 2 N

p
k

(i + 1) = p
k

(i) + k&✓
i

(1 � p
k

(i))2. (15)

The proof is similar to [34], however, for the sake of
completeness, it is provided in [10].
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2) Greedy strategy: The greedy strategy or the earliest
deadline first (EDF) strategy seeks to download pieces that are
close to playback. The priority is thus on playback urgency
and hence on the final buffer indices. Therefore, the chunk
selection function can be expressed as

s
k

(i) =
⇥1 � '⇤

n�1Y

j=i+1

f
p
k

( j) + (1 � p
k

( j))(1 � k&✓
j

)
g
.

The explanation is similar to the case of the LDF strategy,
with the notable exception that now we require to search buffer
index n first, then n � 1 and so on.

Result 4. 1) The chunk selection function for the greedy
strategy (EDF) can be expressed as

s
k

(i) = 1 � ' � p
k

(n) + p
k

(i + 1). (16)

2) The recursion relation for buffer probabilities for the
greedy strategy (EDF) has the following form, for i =
1, 2, . . . , n � 1 and k 2 N

p
k

(i + 1) = p
k

(i) + k&✓
i

(1 � p
k

(i))
⇥1 � ' � p

k

(n) + p
k

(i + 1)
⇤
.

(17)

The proof is provided in [10].

Remark. A typical EDF buffer probability curve exhibits a
late, sharp increase, contrary to an LDF curve (see [33], [34]).
However, when M is large, EDF hinders propagation of new
chunks. While LDF is known to possess good scalability, EDF
outperforms LDF when M is small. We wish to exploit this
feature of EDF even when M is large. In order to do so, we
must devise a way to arrest this content bottleneck. We con-
jecture that this can be done by employing a reasonably small
percentage of strong peers (the ones with higher bandwidth,
say, but not necessarily connected directly to the server) to
play LDF so as to act as pseudo-servers in the system. We
pursue this idea by studying different strategy profiles in a
minimal setup with only two degrees, where we call the peers
of higher degree strong peers and peers of smaller degree,
weak peers.

Suppose there are only two degrees k1, k2 2 N in the
system where k1 < k2. For typographical convenience, we
shall subscript all the relevant variables with only 1, 2 instead
of k1, k2 respectively, whenever the degree of a vertex appears
as a subscript or as an argument to a function, e.g., ⇡1, ⇡2 in
place of ⇡(k1), ⇡(k2) respectively and p1(i), p2(i) in place of
p
k1 (i), p

k2 (i) respectively.

C. Pure LDF strategy
As seen in Section III-B1, buffer probabilities for the two

degrees k1, k2 when everybody plays LDF, are given by the
following recursion relations

p1(i + 1) = p1(i) + k1&✓i (1 � p1(i))2,

p2(i + 1) = p2(i) + k2&✓i (1 � p2(i))2,
(18)

for i = 1, 2, . . . , n�1. We adopt a continuous approximation of
the above two difference equations (as done in [27], [34], for

instance). Treating the buffer index i as a continuous variable
x and writing y1, y2, ✓ for p1(i), p2(i) and ✓

i

respectively, we
have the following differential equations

dy1
dx
= k1&✓(1 � y1)2,

dy2
dx
= k2&✓(1 � y2)2.

(19)

The above luckily allows an exact solution which we present
in the next result.

Result 5. For the pure LDF strategy and large systems,
i.e., when M ! 1, the two buffer probabilities are related
according to the following equation

y2 =
y1

r + (1 � r)y1
, (20)

where r = k1
k2

is the relative strength of the weak peers
compared to the strong ones.

The proof is given in [10]. We immediately see that y2 > y1,
i.e., the stronger peers have better performance owing to
their greater rate of interaction. However, this difference in
performance for the weak peers due to degree disparity can
be made arbitrarily small if a sufficiently large buffer is
made available. Another interesting consequence is that the
above can now be used to derive an expression for buffer-size
requirements and facilitate sensitivity analysis therefrom. That
is, given ✏1 = 1�p1(n), the playback discontinuity of the weak
peers, we can find the required buffer length of the weak peers
n1 = f (⇡, r, ✏1) that ensures performance at level ✏1 for some
f 2. Notice that the global performance is related to ✏1 by

1 � ✏ = ⇡1(1 � ✏1) + ⇡2
1 � ✏1

1 � (1 � r)✏1
,

where 1 � ✏ = p(n). This can be used when we intend to
achieve a prespecified level of global performance.

D. Mixed strategy: SCHEDMIX

Now we turn to the mixed strategy referred to as SCHED-
MIX. Suppose the weaker peers of degree k1 adopt EDF
and the stronger peers of degree k2, LDF. Following Sec-
tions III-B1 and III-B2, we have the following recursion
relations

p1(i + 1) = p1(i) + k1&✓i (1 � p1(i))
⇥1 � ' � p1(n) + p1(i + 1)

⇤
,

p2(i + 1) = p2(i) + k2&✓i (1 � p2(i))2,

(21)

for i = 1, 2, . . . , n � 1. As before, we shall use a continuous
approximation to study their behaviour. Writing ✏1 = 1�p1(n),
we get the following differential equations:

dy1
dx
=

k1&✓(1 � y1)(y1 � ' + ✏1)
1 � k1&✓(1 � y1)

,

dy2
dx
= k2&✓(1 � y2)2.

(22)

2The exact expression is provided in [10].
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Fig. 1: Performance comparison based on mean-field analysis
of buffer probabilities. (a) Global buffer probabilities for the
three strategy profiles. SCHEDMIX gives higher playback
continuity than both EDF and LDF for the given buffer length.
(b) Comparison of weak versus strong under SCHEDMIX.
Weak peers indeed eventually outperform the strong peers
under SCHEDMIX. Parameter values: M = 10000, k1 = 5, k2 =
15, ⇡1 = 0.85 = 1 � ⇡2, & = 0.20.

The above equations, unfortunately, do not yield an analytic
solution. Therefore, we resort to numerical solution to compare
global performance of the system under different strategy
profiles. It turns out that performance under SCHEDMIX is
indeed better than that under the pure LDF strategy (see
Fig. 1), substantiating our claim.

When we compared performance of weak peers versus
strong ones, an interesting phenomenon was observed. The
weak peers could eventually manage to outperform the strong
ones, caused by a sharp increase in buffer probabilities that
a typical “EDF curve” enjoys and what we call the boon of
heterogeneity (see Fig. 1). This phenomenon is in agreement
with our supposition and can be explained intuitively. Both
strong and weak peers benefit from being exposed to a het-
erogeneous environment. In a homogeneous setup, one would
expect somewhat similar availability of chunks among all its
neighbours. On the contrary, a heterogeneous environment
makes available a diverse collection of chunks. This prepones
the steep rise that a typical “EDF curve” enjoys. Since an
EDF curve has a greater growth-rate in the neighbourhood
of 1 (see [33], [34]), weak peers can eventually outperform
LDF-playing strong peers even for moderate buffer-lengths.

Remark. We do not consider the pure EDF strategy separately
here as it can be studied in a similar fashion. In [10], we
also provide a short stability analysis that gives an additional
justification of why the weak peers outperform the strong ones.

IV. SIMULATION OF THE STOCHASTIC MODEL

In this section, we document our findings from the simula-
tion of the stochastic model. This is carried out in two steps:
first, generation of a random graph and second, simulation of
the content delivery process in accordance with Section II.

We dispense with a description of how to simulate CTMCs
due to insufficiency of space. Interested readers are referred

to [10] where we also investigated the effect of assuming an
exponential shifting time versus a deterministic one and con-
firmed that the behaviour of the strategies remained unaffected.

Startup latency: The second metric that we look at is
the start-up latency. It is the time a peer should wait before
starting playback. While there is no unanimity as to how one
should define this quantity, it is reasonable to wait until a
newly arrived peer’s buffer attains a steady state. If it starts
playback before that, it is likely to experience below steady
state playback quality initially. On the other hand, waiting
longer will not improve long-term playback experience. In a
homogeneous set-up where everybody plays the same policy
and has the same buffer probabilities, as argued in [33], this is
well represented by

P
i

p(i), the average number of available
chunks at each peer. In our heterogeneous model, a higher
degree peer interacts more often than a lower degree peer.
Therefore, a newly arrived degree-k peer should have start-
up latency of k&

P
i

p(i) in the mean-field. The corresponding
global metric follows as E[k]&P

i

p(i). For aesthetic reasons,
we normalise this quantity to (0, 1).

Impact of network structure: In order to see the impact
of network structure, we perform simulation of the model on
Barabási-Albert (BA) preferential attachment [2] and Watts-
Strogatz (WS) small world [25] networks. Simulation results
on a BA network with 2000 peers (with 25% of them playing
LDF) and that on a WS network with 5000 peers (with 20% of
them playing LDF) are depicted in Fig. 2. In both cases, the
mixed strategy SCHEDMIX gives a better performance, cor-
roborating our claim. More importantly, it causes a significant
reduction in start-up latency.
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Fig. 2: Impact of network structure and performance evaluation
in terms of buffer probabilities and the start-up latency on
a Barabási-Albert (BA) and a Watts-Strogatz (WS) graph.
Figures (a), (b) show performance on a BA graph with 2000
peers. Figures (c), (d) display performance on a WS graph with
5000 peers. In both cases, n = 40, & = 0.25. Please note that
start-up latency is shown only for strategies ensuring playback
continuity of at least 0.75 with buffer size n = 40.

Remark. Although Fig. 2 stands affirmatory to the fact that
SCHEDMIX does outperform the pure LDF and the pure
EDF strategies, the crux of employing SCHEDMIX remains
in letting most peers play greedy. SCHEDMIX, thus, allow for
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smaller start-up latency to ensure good playback performance
for everyone (at least as good as pure LDF strategy). This is
a significant benefit.

V. FULL-STACK SIMULATION STUDY

A. Practical system model
We also designed and implemented a practical P2P

live video streaming system and considered communication
network-related factors. The implementation is based on the
SIMONSTRATOR API [21] and is evaluated using the network
simulation framework PEERFACTSIM.KOM [23]. The full-
stack implementation includes protocols for mesh establish-
ment and maintenance, the scheduling mechanisms them-
selves, and buffer management. Due to space constraints, we
omit some details that follow state-of-the-art P2P streaming
systems and in particular [22], [26].

1) Mesh establishment: For the establishment of the mesh
overlay structure, a join procedure is implemented that uses
a BitTorrent-like tracker as central node registry. The tracker
selects a maximum of 30 neighbours uniformly at random
from the set of currently active peers and sends the list to the
requesting peer. For both in- and outgoing directions, peers
calculate a maximum number of connections by dividing 90%
of the available bandwidth by the video bitrate and rounding
the result to the next integer. Joining peers strive to fill their
free incoming connections and thus contact multiple peers
from the initial neighbour list in parallel and query the tracker
for additional contacts if necessary. Receivers accept the
requests depending on the availability of free connection slots.
Limiting the number of connections is combined with a per-
connection transfer queue to avoid too many parallel transfers
that could stall each other, leading to a situation where video
chunks would take an indefinite time to be delivered. In case
a peer has no free connection slots, requests can still be
accepted with a small probability to foster randomness in the
mesh structure where early peers might otherwise be already
blocked, and to allow peers with high bandwidths to eventually
become well connected. The second aspect turned out to
be important for applying the proposed mixed scheduling
strategy, which relies on degree heterogeneity across peers.

2) Scheduling and data exchange: The actual scheduling
of data transmissions is done by each peer individually based
on its local clock with a rate proportional to its in-degree and
buffer status. Chunks are selected by the scheduling strategy
from a defined request window on the local buffer, which
is used to limit the chunks requested. For the simulations,
the window size is set to a default value of 20, starting at
the beginning of the buffer for LDF and the end for EDF.
The selected chunks are assigned uniformly at random to a
peer’s in-connections, are batched on a per-neighbour basis
into chunk requests, and are sent out. The buffer length is 4
seconds, translating to 50 chunks at a rate of 8 chunks/s.

3) Playback policy: A simplified policy was realized for
this initial simulation study. Joining peers learn about the
current broadcasting position from the tracker and start their
playback after 4 seconds (the buffer length). In the meantime,

they establish connections and start requesting chunks. Once
started, the playback proceeds based on the local clock and at
the video bitrate. Chunks that miss the playback deadline are
recorded in terms of playback continuity.

B. Full-stack simulation results
A simulative sensitivity analysis was conducted, covering

key system and environment parameters. Due to space con-
straints, only results for the default configuration are presented
here (see [10] for additional results). The defaults were ob-
tained by conducting calibration runs for several parameter
combinations. Due to the large configuration space, ensuring
an overall optimal configuration was not possible and is hard to
achieve in general. The presented results, thus, focus on study-
ing the potential of the proposed scheduling mechanism, not
on the absolute performance. All simulations were repeated 30
times with different random seeds. 95%-confidence intervals
are reported for all mean values.

Simulation workload: Peers are divided into three resource
classes based on bandwidth distributions reported in [17] (see
Table I). We acknowledge that these bandwidths are rather
high in comparison to configurations used in related works.
Yet, we intend to reflect a setting in that the delivery is not pri-
marily limited by peer bandwidths but rather focus on content
bottlenecks resulting from the scheduling strategy itself [7].
This is important as peers can only use available bandwidth
if scheduling ensures a timely replication of chunks. At the
beginning of the simulation scenario, peers subsequently join
the system in a random order and at a constant arrival rate.
After the system stabilizes, performance and cost metrics are
recorded on per-peer basis and aggregated for 60 seconds
intervals and over the total simulation time of 90 minutes.
Peers stay in the system until the end of the simulation.

TABLE I: Used peer bandwidth distribution based on [17].

Class Number Share UL BW (Mbps) DL BW (Mbps)

Low 50 50% 5 26
Medium 30 30% 4.5 60
High 20 20% 56 134

As observed in [14], the source bandwidth plays an im-
portant role and, thus, its influence is studied in more detail
in [10]. Per default, a single source is used with an up-
/download bandwidth of 12.5Mbps. With a video bitrate of
1, 500 Kbps as commonly observed and recently reported [11],
this translates to a maximum out-degree of 7.

Figure 3 shows the streaming performance for the default
configuration. Here, it is to note that using a request window
of size 20 is an extreme case as it artificially limits the
request rate by localizing the chunks to be selected. This
is done to highlight the key difference between the chunk
selection strategies. Other configurations of this parameter are
presented in [10]. Figure 3a shows that SCHEDMIX achieves a
significantly higher playback continuity compared to the pure
strategies. The buffer probability (see Figure 3b) shows that
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an early replication of new chunks greatly supports the greedy
replication by EDF peers once entering their request window.
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Fig. 3: Streaming performance and buffer characteristics (de-
fault configuration), comparing EDF, LDF, and SCHEDMIX.

Figure 4 shows the resulting request rates for the indi-
vidual chunk selection strategies. For the overall population,
the request rate drastically drops using the mixed strategy,
indicating a major reduction in overhead by roughly 50% for
most peers, lending credence to the boon of heterogeneity.
When separating strong peers (i.e. peers that play LDF in case
of SCHEDMIX) from the rest of the population, it becomes
apparent that this reduction is limited to the non-strong sub-
population. The strong peers, however, are penalised as their
average request rate is slightly increased for SCHEDMIX. At
the same time (figures not shown here), the average playback
continuity rate across the sub-populations does not show any
difference. This supports the argument that there is a high
incentive for strong peers to play LDF instead of EDF to
improve the overall system performance (see [10] for a game
theoretic perspective). These results strengthen our previous
analytic arguments and establish that peer heterogeneity can
be leveraged to form a powerful mixed scheduling strategy.
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Fig. 4: Number of requests (default configuration) for (4a) all
peers as well separated into strong peers (LDF candidates in
SCHEDMIX) and the remaining sub-population (4b).

VI. RELATED WORK

P2P live streaming has been studied extensively in the
recent past, albeit in a homogeneous setup. Buffer probabil-
ity received considerable attention for due reasons. Zhou et

al. [33], [34] propose a simple model for its analysis based
on mean field heuristics. Adamu et al. [1] also attempt to
analyse it in the context of a discrete Markov chain. Zhao
et al. [31] develop a population model and make interesting
observations about optimal strategies. Outside live streaming,
Hajek et al. [8], [35] highlight interesting aspects of stability
of a P2P system and lay down insightful results on a CTMC
formulation. However, there has been little investigation into
heterogeneous strategies. The influence of degree, to the best
of our knowledge, has also not been studied so far. Our
endeavour in this article has been to carefully capture these
two important aspects in a principled way. Infection models
(see [4], [15], [18]) have proven useful in many computer
science problems such as the study of security investments in
networks [13], algorithms for distributed systems [5] and par-
ticularly many gossip algorithms that later found application
in the peer-to-peer area as well [16], [30].

Zhang et al. [28] show that pull-based streaming can achieve
high bandwidth utilisation and estimate a lower bound for the
delivery ratio, based on simulations and a steady-state analysis
of simple sender-requester topologies. Liang et al. [14] discuss
scheduling as a key mechanism for P2P streaming and name
source scheduling and bandwidth, the buffer sizes, and degrees
as additional factors. Besides, they argue that scheduling plays
a role only at a low resource index, whereas we observe clear
differences due to content bottlenecks. In [7], a scheduling
strategy is proposed, implicitly leveraging heterogeneity by
maximising bandwidth utilisation of peers. The authors show
a nearly optimal utilisation only for a fully connected mesh,
greatly limiting the applicability to realistic setup. In contrast,
we focus on pure pull strategies, do not assume a fully con-
nected mesh, and do not focus on maximising bandwidth only.
In [19], a mesh/push-based streaming system is proposed using
LRU as scheduling strategy. The authors consider overlay
rewiring and source scheduling to improve performance and
provide supportive experimental results.

VII. DISCUSSION

In this paper, we contributed to building a sound mathemat-
ical framework for swarming on random graphs. The depen-
dence of performance on degree was made explicit. The idea
of a degree-based (strength-based) combination of primitive
scheduling strategies led to two interesting revelations, namely,
the boon of heterogeneity and the weak peers outperforming
the strong ones. Inspired by these observations, we proposed
our mixed strategy SCHEDMIX.

We showed that SCHEDMIX could guarantee good playback
continuity at a smaller start-up latency and smaller unsuccess-
ful download rate. The question, however, remains why the
strong peers should opt to play LDF. We answer this question
with a game theoretic argument in [10] where we established
that SCHEDMIX is a Nash equilibrium.

The basic idea behind SCHEDMIX is rather simple: exploit
the capabilities of the strong peers to help the weak ones.
SCHEDMIX achieves this through degree-based assignment of
strategies, but the notion goes beyond degrees. The virtues of
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SCHEDMIX can also be achieved, perhaps more pronouncedly,
by taking into account other important networking factors such
as betweenness centrality, well-connectedness to the server.
Our initial simulation results with betweenness centrality-
based strategy assignment (not shown here) are affirmative.

We observed that it required only a small percentage of
strong peers to uplift the weak peers and improve overall
playback experience. However, the optimal percentage of
strong peers required to do so is an open research problem.

Our mathematical framework can also serve as a foundation
in problems other than the one in pursuit, e.g., network
security problems such as circulation of updates to anti-
virus in the event of cyber attacks or the circulation of
virus/malware itself, supply chain problems for products with
limited validity, express consignment delivery problems. Its
shifting feature makes it particularly interesting as it allows
for multiple interpretations, e.g., advertisement of promo-
tional offers with deadlines, gradual recovery or mutation in
the context of infection spread. Keeping analytic tractabil-
ity aside, the prospect of incorporating more sophisticated
mechanisms in practical implementation is broad. We expect
to see application of SCHEDMIX in combination with more
sophisticated mechanisms. One straightforward but important
step is the application of SCHEDMIX in a state-of-the-art
hybrid streaming system, where both mesh/pull and multi-
tree/push-based mechanisms coexist. In this context it would
also be interesting to understand the impact of other mech-
anisms, such as exchange of buffermaps or a streaming of
layered media content. The results presented in this paper
are encouraging in that SCHEDMIX could be used as an
alternative to complex scheduling strategies in the growing
number of scenarios where peer heterogeneity is inevitably
given, e.g., when bandwidth-constrained mobile users meet
well-connected and high-capacity home users. Besides, the
results could be used in the planning of transitions [6] between
strategies when environmental conditions change.
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