
Anomaly-Free Policy Composition in
Software-Defined Networks

Mohsen Rezvani, Aleksandar Ignjatovic, Maurice Pagnucco and Sanjay Jha
School of Computer Science and Engineering, UNSW Australia
{m.rezvani,a.ignjatovic,m.pagnucco,sanjay.jha}@unsw.edu.au

Abstract—Software Defined Networking (SDN) provides con-
siderable simplification of design and deployment of various
network applications for large networks. Each application has
its own view of network policy and sends its policy to a
network hypervisor in which a composed policy is generated
from the application policies and deployed into the data plane.
A significant challenge for the hypervisor is to detect and
resolve both intra and inter policy anomalies during the policy
composition. However, current SDN compilers do not consider the
policy anomalies well and generate large number of unnecessary
rules for the data plane. This leads to a considerable inefficiency
in both policy composition and policy deployment. In this paper,
we propose a novel framework for policy composition in a
SDN hypervisor which takes into account both inter and intra
policy anomalies. Moreover, we augment the framework with an
efficient insertion transformation mechanism which allows the
applications to issue rule insertion and priority change updates.
Our evaluation shows that our method is several orders of
magnitude more efficient than the state of the art in both policy
composition and compiling the rule insertion updates.

I. INTRODUCTION

Software Defined Networking (SDN) is transforming tra-
ditional network architectures to more flexible and pro-
grammable platforms by decoupling the control logic from
the forwarding (data) layer. A logical SDN architecture in-
cludes three distinct layers: application, control and forwarding
(data) [1]. Network applications at the top of this multi-layer
architecture can define network policies based on a global
view of the network provided by software-based controllers
in the control layer. The controllers enforce network policies
in the data layer by translating application defined policies
into low-level and identifiable rules in network devices. The
OpenFlow protocol [2] is one of the earlier and more popular
communication standards between the control and data layers.

The SDN multi-layer architecture allows multiple applica-
tions or even multiple administrators to specify the network
policy simultaneously. Each application can take advantage of
the global network view to effectively define its network policy
as a sequence of OpenFlow rules. The controller then, as a
hypervisor integrates the policies received from different ap-
plications based on a policy composition strategy. The strategy
specifies how to use three common binary operators: parallel
(two policies can be applied at the same time), sequential (the
second policy is processed after the first one) and override
(the second policy is applied only on the traffic which is not
matched by the first policy) to combine the policies [3]. As a
result of such policy composition, the controller generates a
set of prioritized OpenFlow rules, called composed policy and
installs such a policy into the data plane (as shown in Fig. 1).

Routing Load
Balancer Firewall

Network Applications

Network Hypervisor / Policy Composition

Data Plane

Fig. 1: Policy composition in a SDN hypervisor.
A naive policy composition method is to recompute and

reinstall the composed policy every time an application up-
dates its policy. Jin et al. [4] recently proposed CoVisor which
incrementally updates the policy without shifting existing
rules. CoVisor limits the policy updates to only two operations:
add a new rule and delete an existing rule. However, in many
applications, such as firewalls, an administrator can insert a
new rule in the middle of existing rules. Such insert rule
operation can lead to a shift of many rules if there is no
empty space for the priority of the new rule [5]. Accordingly,
applying a rule insertion in CoVisor needs in average n

2 delete
and n

2 add operations in the base policy, where n is the number
of rules in the policy. Note that a composition operator, such
as parallel operator, after such many updates in the application
policy may generate O(n2) updates in the composed policy.

Another important challenge in SDN policy management is
to detect and resolve policy anomalies, such as redundancies
and conflicts, in the application policies and then combine
them to make an anomaly-free composed policy. This not only
reduces the number of rules in the application-level policies
[6], but also considerably improves the efficiency of the policy
composition as it prevents cascading the anomalous rules into
the composed policy. Although the anomaly detection within
an individual application policy (intra-policy anomalies) has
been well investigated in the literature [6], [7], [8], [9], the
SDN multi-layer architecture makes the anomaly detection
more difficult. This is because existing anomalies among
policies (inter-policy anomalies) must be considered. Our
experiments show that the policy anomaly detection is more
significant in a SDN hypervisor as its policy composition
can quadratically propagate the existing intra-anomalies into
the composed policy. This can result in deploying many
unnecessary rules into the data plane which leads to not
only inconsistency in the network policy but also significant
inefficiency due to deployment of these rules.ISBN 978-3-901882-83-8 c⃝ 2016 IFIP

28Networking 2016

To address the above challenges, we first propose a novel
anomaly-free policy model which help us to efficiently detect
and resolve anomalies for policy updates. We maintain a
separate model for each application-level policy. Then, we
define the policy composition operators over our policy model
which helps us to generate a model for the composed policy.
Thus, the results of policy composition is a policy model
which is also an anomaly-free model. We then propose a
straightforward algorithm to translate the model to low-level
OpenFlow rules. Moreover, we leverage our policy model to
efficiently translate the rule insertion updates received from
the application policies. The policy model efficiently emits the
sequence of prioritized rules which reduces the complexity of
both anomaly detection and policy composition.

In summary, we make the following contributions.
• We propose a new model for OpenFlow-based policies

which allows to efficiently obtain the dependencies be-
tween OpenFlow rules;

• We develop a formal mechanism to detect and resolve
both intra and inter-application policy anomalies which
leverages our OpenFlow policy model to reduce the
complexity of the detection process;

• We develop a new algorithm to incrementally compose
inserting updates which eliminates unnecessary shifting
in both individual and composed policies.

We provide a comparative evaluation of the performance
of our algorithms with the state of the art in SDN policy
composition. The results show that our method significantly
improves the efficiency of the policy composition by reducing
the update length several orders of magnitude compared to
proposed method in [4]. Moreover, the proposed insertion
translation considerably increases the performance of the naive
approach for handing insertion updates.

The rest of this paper is organized as follows. Section II
presents the related work. Section III describes the details of
our policy model. Section IV presents our anomaly-free policy
composition system. Section V describes our experimental
results. Finally, the paper is concluded in Section VI.

II. RELATED WORK

Anomaly detection in traditional access control policies,
such as firewalls, has been extensively studied in the research
community [10], [6], [7], [8], [11]. Al-Shaer and Hamed
present a set of algorithms to discover simple pairwise anoma-
lies in centralized and distributed firewall rules [6]. Inconsis-
tencies and inefficiencies among multiple rules are treated in
[7], [9]. Adao et al. [11] propose Mignis, a declarative policy
language to specify a Linux firewall, Netfilter configurations.
The Mignis tool is tightly integrated with Netfilter and is hard
to use for the OpenFlow policies.

Several SDN policy languages, such as Frenetic [12],
NetKAT [13] and Pyretic [3], have been proposed. They
use different batch mechanisms for policy composition which
make a large number of updates for each update in an appli-
cation policy. Wen et al. [5] introduced an incremental policy
update for Frenetic policies. The proposed method maintains a
dependency graph and scattered priority distribution for each
policy. Our method, instead of a using a dependency graph,
maintains an anomaly-free model which efficiently handles the
priority updates, such as insertion, without maintaining any

priority distribution. Recently, Jin et al. [4] proposed CoVisor
which employs a simple algebra for priority assignment in
an incremental policy composition. However, CoVisor neither
considers policy anomalies nor rule insertion updates. While
our method uses the algebra proposed in CoVisor, it also takes
into account both policy anomalies and insertion updates.

Han et al. [14] proposed a multi-layer policy management
framework for SDNs. However, the proposed method for intra-
policy anomaly resolution makes the policy enforcement a
nondeterministic task which can affect the rules’ semantics
and change the intention of policy definition [8]. Moreover,
the proposed method for inter-policy anomaly detection does
not consider the priority assignment in the incremental policy
composition. Dwaraki et al. [15] proposed GitFlow, a conflict-
free flow repository management for SDNs. However, GitFlow
considers neither the total conflicts in the application policies
nor the conflicts during the policy composition. Shin et al. [16]
present FRESCO, a framework for developing and deploying
network security applications for OpenFlow networks. How-
ever, its conflict detection module only considers simple pair-
wise rule conflicts in the data plane level. Prakash et al. [17]
recently proposed policy graph abstraction (PGA), a high level
policy graph abstraction which provides a conflict detection
and resolution mechanism. However, PGA is a whitelisting
model while the OpenFlow policies in an SDN hypervisor
can contain blocking rules. Smolka et al. [18] proposed a fast
compiler for NetKAT which introduces forwarding decision
diagrams (FDDs) to improve the efficiency of BDDs for
encoding the packet headers. Although our experiments show
a promising performance with BDDs, in our framework one
can also use FDDs for conflict detection and resolution.

III. SDN POLICY MODEL

We assume that each application defines its policy as a set
of flows defined in OpenFlow specification [19]. In this paper,
the term rule refers to a flow in OpenFlow specification.

A. OpenFlow Rule

Without loss of generality, we represent an OpenFlow rule
r with three components: 1) a priority, denoted as r.priority,
is a non-negative integer value used for matching precedence
of the rule within a policy; 2) rule match, denoted as r.match
which is a set of matching fields for specifying a set of
packets; and 3) actions, denoted as r.actions which is a set
of instructions to apply on the packets. A rule r defines how a
set of packets specified in r.match is treated in the network.

In the basic model, the matching fields represent information
about source and destination of the matched packets. Thus,
we can simply divide these fields into two sets where each of
them is called a peer. A combination of these fields defines
the source (destination) of the matched packets and is called
source (destination) peer, denoted as r.speer (r.dpeer) for a
rule r. In other words, source (destination) peer is a generaliza-
tion to specify the source (destination) sides of the matched
packets. Specifically, r.speer (r.dpeer) is a combination of
matching fields including source (destination) MAC, source
(destination) IP, source (destination) port, and protocol. A
matching field x for a peer p is denoted as p[x]. Note that some
fields in OpenFlow, such as protocol and VLAN identifier, are
neither assigned to source nor destination as they are common

29Networking 2016

for both peers. Thus, we repeat their values in the specification
of both peers if a rule is defined by these fields.

In order to model a peer of a rule, we use the idea of binary
representation of packet headers proposed in [9], [20], [21].
To this end, we first encode each matching field as a bit stream
and a peer is then represented as a bit stream obtained from
a combination of bit streams of its matching fields. In the
basic model, the representation of a matching field in a peer
contains: a MAC address as a stream of 48 bits, a network
address as a stream of 32 bits, a port as a stream of 16 bits,
and a protocol as a with of 8 bits. Thus, a peer is encoded as
a stream of 48 + 32 + 16 + 8 = 104 bits.

Using the above encoding, a matching field x in a peer
p is represented as a propositional logic formula, denoted
as p[x].formula. We define n variables to make the for-
mula from a stream of n bits. The formula is conjunction
of the variables for every bit set 1, its negation for every
bit set zero, and nothing for every bit set don’t care [9].
Now rule r is represented by a conjunction of the formulas
obtained for its matching fields. Thus, r.match.formula =∧

x∈r.match x.formula and the match formula contains at
most 104 ∗ 2 = 208 variables.

A rule match can be defined based on conjunction of
matching fields. All fields but network addresses define either
all values using a wildcard or only one specific value. A
network address is represented by a CIDR domain which
defines an arbitrary set of IP addresses. Thus, a matching
field can be specified by a set of values. Now we show that
all the fields hold the DISJOINTORSUBSET property which is
employed to propose a hierarchy representation of different
matching fields in a policy. Note that OpenFlow proposes a
bitmask feature which allows matching single bits of a filed
[19]. DisjointOrSubset holds when there is no such bitmask
in the fields. Supporting the bitmask is our future work.

Proposition 1 (DISJOINTORSUBSET). Each two values in a
matching field are either disjoint or one is a subset of the
other. More formally, assume that p1 and p2 are two peers
and x is a matching field defined according to our OpenFlow
rule model. The following relation holds:

∀p1, p2 : (p1[x] ∩ p2[x] = ∅) ∨ (p1[x] ∩ p2[x] = p1[x])∨
(p1[x] ∩ p2[x] = p2[x]).

(1)

Proof. Since all matching fields but network address define
either wildcard or only one specific value, it is obvious that
they satisfy the property. A network address field is specified
as a masked CIDR domain which contains an IP address and a
mask which is an integer value in the range of [0,31]. Clearly,
if two network domains contain non-overlapping IPs, they are
disjoint and otherwise one with smaller mask is a subset of the
other one. Thus, all the matching field holds the property.
B. OpenFlow Policy

Our idea for modeling a network policy is the fact that
the main source of inefficiency in a SDN hypervisor is the
set operations, such as union and intersection of match rules,
needed during both policy composition and anomaly detection.
We propose a graphical model to represent an OpenFlow
policy which is inspired by PGA [17]. Since our solution
is deployed within a SDN hypervisor (as shown in Fig. 1),
our policy model is required to 1) specify prioritized rules

while PGA only supports a set of rules without any priority; 2)
specify different actions according to OpenFlow specification
[19] which includes conflicting actions, such as Forward and
Drop, while PGA is limited to a whitelisting policy containing
only permit rules; and 3) incrementally compose policies and
generate minimum updates for deploying into the data plane,
while PGA supports batch policy composition.

An OpenFlow policy is a set of rules P = {r1, r2, . . . rn},
where ri = (ri.priority, ri.speer, ri.dpeer, ri.actions), (1 ≤
i ≤ n) represents the ith rule in the set. Now we introduce the
Policy Semantics Graph (PSG) to model an OpenFlow policy.

Definition 1. (Policy Semantics Graph) A PSG is a directed
graph, generated from an OpenFlow policy P . The vertices
are the peers in the rules in P . Also, there is an edge between
two vertices corresponding to peers p1 and p2 if and only if
∃r ∈ P, r.speer = p1 ∧ r.dpeer = p2. An edge represents a
rule in the policy and consists of the priority and actions of
the corresponding rule.

Corollary 1. A PSG model has no multiple edges between
any two vertices (thus a PSG is not a multigraph).

Proof. Follows directly from the fact that PSG has one and
only one edge corresponding to each rule in the policy.

Corollary 1 shows that PSG is a replica-free policy model.
Thus, the model automatically eliminates the fully replicated
rules from the policy. Note that a policy may contain other
types of rule redundancy, described in Section IV-C. Fig-
ures 2(a) and 2(b) show an example of an OpenFlow policy
and its corresponding PSG model, respectively.

Priority Match Actions

2 proto=ssh drop
1 dstip=1.0.0.2 fwd(2)
1 dstip=1.0.0.3 fwd(3)
0 * drop

(a) An OpenFlow policy.

ANY

2;drop 1;fwd(2)

1;fwd(3)

0;drop

proto=ssh dstip=1.0.0.2

dstip=1.0.0.3

(b) A PSG model.

Fig. 2: An OpenFlow policy and its PSG model.
C. SDH Hypervisor

As shown in Fig. 1, each application maintains a network
policy specified as an OpenFlow policy. The hypervisor also
maintains a policy obtained from a combination of the appli-
cation policies, called composed policy. As each application
submits its policy updates, such as add/delete/insert rules, the
hypervisor accordingly updates the composed policy and in-
stalls the final updates into the data plane. Note that the details
of translating the composed policy into physical policies, in-
cluding mapping the virtual network to physical network is out
of scope of this paper. The network administrator configures
the composition between each two application policies using
three operators: sequential, parallel, and overriding [12]. In
this section, we briefly review these operators.

a) Parallel Composition: The parallel composition be-
tween policies P1 and P2 applies both policies over all
incoming packets and then computes the union of their output
packets. For example, one can combine the policies from
Monitoring and Routing applications using the parallel oper-
ator. Accordingly, the actions obtained from both policies are
applied on any incoming packet.

30Networking 2016

b) Sequential Composition: The sequential composition
between policies P1 and P2 applies P2 after P1 over the
incoming traffic. To this end, the hypervisor first applies policy
P1 on the traffic and it then applies policy P2 on the resulted
traffic. For example, and administrator can use the sequential
composition to combine the policies from Load Balancer and
Router applications. The incoming packets first pass the load
balancer policy which might manipulates the packet header.
The routing policy is then applied on the new packet headers.

c) Overriding Composition: Such composition of poli-
cies P1 and P2 applies policy P2 over the incoming traffic
which does not match P1. The overriding operator can be used
to define a default policy.

IV. ANOMALY-FREE POLICY COMPOSITION

A. Solution Overview
The main idea behind our policy composition is to model

the application policies using PSG and then combine the PSG
models to obtain a new PSG which specifies the composed
policy. We assume that each application sends a list of
OpenFlow rules as policy updates to our system. The updates
may request to add, delete, or insert rules into the application
policy. Our system compiles the updates and generates a new
list of rules for the data plane.

Fig. 3 shows our anomaly-free frameworkcontaining two
layers: in the upper layer there is a policy manager for each
application and in the lower layer there is one policy manager
for the composed policy. Each policy manager maintains a
PSG to specify its policy. The updates from an application
first enter into the corresponding policy manager in which the
updates are checked for intra-policy anomalies such as rule
redundancy. The updates passed from the anomaly detection
are considered for updating the PSG model in the manager
which generates updates for the lower layer. The composed
policy manager employs the application-layer PSG models
to apply a typical policy composition and obtain a list of
add/delete rules to update the composed policy. After that, the
updates are checked for both intra and inter policy anomalies,
the composed PSG is updated accordingly, and finally the
updates are sent to the data plane.

It is worth noting that we augmented the application policies
to submit updates including rule insertion. This provides an
opportunity for an application manager to either insert rules
in the middle of the policy or update the priority of rules.
This is a common requirement supported in traditional rule-
based security tools such as firewalls and VPNs. As one can
see in Fig. 3, an application can generate insertion updates
and the application policy manager efficiently transforms such
updates into several Add/Delete updates. Thus, the composed
policy manager only accepts Add/Delete updates. The detailed
insertion transformation is described in Section IV-E.
B. Policy Construction

As described, each policy in our solution is represented by
a PSG. Thus, the hypervisor maintains one PSG for every
application and one for the composed policy. It is clear that
the main operations with high time complexity in both policy
composition and anomaly detection are set theoretic opera-
tions, such as union and intersection, among rule matches.
Thus, we employ a multidimensional Patricia trie to maintain
the list of peers used in each policy. The multidimensional trie

Policy updates from network applications
(Add/Insert/Delete rules)

Update PSG

Anomaly detection

Generate updates
(Add/Del rules)

Compose the updates

Update PSG

Generate updates
(Add/Del rules)

Data Plane

Application Policy Manager

Composed Policy Manager

Anomaly detection

Update PSG

Anomaly detection

Generate updates
(Add/Del rules)

Application Policy Manager

Fig. 3: Our policy composition framework.
is widely used for packet classification [22] and SDNs [23].
We instead use a Patricia trie which is a compressed trie and
stores data in every node. Since all the matching fields hold the
DISJOINTORSUBSET property (as shown in Proposition 1),
we can efficiently store them in the trie. In our data structure,
each level in the trie is corresponding to a matching field. Also,
each node which contains data, has a link to the root node of
a lower-level trie specifying the next matching field. This data
structure helps us to obtain the union and intersection using
postfix and prefix functions in the tries. Note that each field is
represented by a bit stream which help us to make a trie for
all values of the field within a policy.

In order to build the PSG model, we employ an incremental
method in which for any new rule, the corresponding nodes
and edge are created in the model. We also use an adjacency
list to represent the PSG model while its nodes are stored in
a multidimensional trie.

As described in the previous section, in order to implement
the sequential composition, we need the intersection between
matching packets after applying the actions of rules. In order
to improve the computational complexity of the sequential
composition, we maintain another trie which specifies the
results of applying all the rules within the policy. Using
this idea, we sacrifice the space complexity to reduce the
time complexity of the sequential composition to same as the
complexity of the parallel composition.
C. Anomaly Detection

Al-Shaer et al. [6] introduced four types of pairwise anoma-
lies among rules in a policy: Shadowing, Correlation, Gen-
eralization and Redundancy. Basi et al. [24] also classified
the anomalies into two categories: conflict where a packet
is matched with multiple rules with conflicting actions, and
suboptimality where there is a rule such that its removal has
no effect on the policy. We extend these pairwise anomalies
to hidden anomalies between a rule and a set of other rules in
the policy, called total anomalies [9]. Now, we leverage the
PSG model to efficiently detect the anomalies in a policy.

We concentrate on redundancy anomalies as the detection
algorithms for other anomalies are mostly similar. Moreover,
this avoids adding the redundant rules into the policy which

31Networking 2016

reduces the number updates for the policy. Note that avoiding
the redundant rules in the application policies can quadratically
decrease both the number of rules in the composed policy and
the number of updates installed in the data plane.

Definition 2. (Simple Redundancy) An OpenFlow rule is
simply redundant in a policy if its rule match is overlapped
with an existing rule with a higher priority in the policy. More
formally, rule r is simply redundant in policy P if and only if

∃ri ∈ P : r.priority ≤ ri.priority ∧ r.speer ⊆ ri.speer∧
r.dpeer ⊆ ri.dpeer.

A naive algorithm for detecting simple redundancy of a new
rule is to traverse over all rules with a higher priority than
such rule. Thus its complexity would be in O(n), where n
in the number of rules in the policy. However, one needs to
investigate only rules whose both peers are supersets of the
peers of the new rule. We leverage the trie structure to obtains
such rules for checking the simple redundancy. Clearly, if the
new rule is redundant, it is ignored and the system generates
a message to notify the administrator of this redundancy.

Definition 3. (Total Redundancy) An OpenFlow rule is totally
redundant in a policy if its rule match is overlapped with a
set of existing rules with higher priority in the policy. More
formally, rule r is totally redundant in policy P if and only if
the following formula is a tautology.

r.match.formula →
∨

ri∈P
r.priority≤ri.priority

ri.match.formula (2)

Similarly to the detection algorithm for the simple redun-
dancy, one can search over all rules with a higher priority
than the new rule to construct the propositional formula
on the right hand side of the implication in Eq. (2). This
equation then is transformed into a propositional logic formula.
If the formula obtained from the equation is a tautology
(a proposition that is always true), the new rule is totally
redundant. Now the redundancy detection is transformed to
a theorem proving problem in propositional logic. A typical
method for theorem proving in propositional logic is using
Binary Decision Diagrams (BDDs) [25].

As we have shown, an OpenFlow rule can be encoded as
a propositional logic formula using maximum 208 variables.
This formula can be represented as a 208-variable BDD.
Accordingly, we can build a BDD to represent Eq. 2 for each
new rule. After that, the obtained BDD is checked to validate
the equation. Although the procedure seems straightforward,
the size of the BDD exponentially increases as the number
of rules in the policy increases [25]. This is because of many
variables used in the decoding of an OpenFlow rule match.

The idea for reducing the size of the BDD obtained from
Eq. (2) is to consider only effective rules for transforming
the equation to a propositional logic formula. Assume that the
hypervisor wants to add a new rule r to policy P . An existing
rule ri ∈ P is effective for the redundancy detection of rule r
if all of the following conditions are held:

• The priority of ri is greater than or equal to the priority
of r, ri.priority ≥ r.priority;

• There exists some packets matched by both rules.
In other words, the formula r.match.formula ∧

ri.match.formula is not a contradiction (a proposition
that is always false);

• Assume the current formula obtained for the right side of
Eq. (2), is denoted by f . Adding rule ri to f is effective
if formula ri.match.formula → f is not a tautology.

It is clear that if an existing rule ri satisfies the above
conditions, it certainly contributes to the right side of Eq. (2).
The last condition avoids adding rules which already over-
lapped with the obtained formula for the right side. By
combining the last two conditions, we only check if formula
(r.match.formula∧ri.match.formula) → f is a tautology.
Algorithm 1 shows the procedure for detecting total redun-
dancy of a new rule r with policy P .

Algorithm 1 Total redundancy detection.
1: procedure TOTALREDUNDANCY(PSG P , Rule r)
2: f ← BDD(False)
3: for all rule ri ∈ P do
4: if r.priority ≤ ri.priority then
5: f ′ ← BDD((r.match ∧ ri.match) → f)
6: if f ′ is not a tautology then
7: f ← BDD(f ∨ f ′)
8: end if
9: end if

10: end for
11: f ← BDD(r.match → f)
12: if f is a tautology then
13: return True
14: end if
15: return False
16: end procedure

D. Policy Composition
Jin et al. [4] proposed CoVisor, an incremental policy com-

position algorithm for making small changes to the composed
policy every time an application policy changes. Basically,
an incremental composition does not need to recompute and
reinstall all rules in the composed policy for every single
update in an application policy. Instead, it leverages a priority
assignment mechanism to generate and install only rules which
are related to the update. We employ the calculus proposed in
CoVisor for prioritizing the new rules in the composed policy
and show how our PSG model improves the efficiency of the
policy composition. Note that the overriding composition is
implemented using a straightforward algorithm as there is no
need to apply any set operators among rule matches. Thus, we
take advantage of our PSG model to implement the parallel
and sequential compositions.

a) Parallel Composition: In order to combine two poli-
cies P1 and P2 using the parallel composition, for any two
rules r1 ∈ P1 and r2 ∈ P2 we add a new rule rk along two
original rules r1 and r2 to the composed policy. The rule rk
is added into the composed policy if the rule matches of two
base rules are not disjoint and rk is thus obtained as

rk.match = r1.match ∩ r2.match

rk.actions = r1.actions ∪ r2.actions

rk.priority = r1.priority + r2.priority

32Networking 2016

Without loss of generality, we assume that a request arrives
to add a new rule r1 to application policy P1 and the
hypervisor wants to obtain all corresponding updates in the
composed policy. A naive algorithm is to traverse all rules in
P2 and create all possible rules, such as rk described above.
However, we leverage the trie structure of peers in the PSG
model of P2 to efficiently obtained all rules in P2 which has
intersection with r1. To this end, we first obtain two sets
SP and DP which are overlapping peers with r1.speer and
r1.dpeer, respectively. Then, the edges in PSG from a node in
SP to a node in DP represent all the rules intersected with r1.
Note that the updates generated from the policy composition
are used to update the PSG model of the composed policy.
Clearly, some of the updates may be removed in the anomaly
resolution of the PSG model.

b) Sequential Composition: Similar to the parallel com-
position, we assume that new rule r1 is added to policy P1 and
the hypervisor can use a similar method to obtain the updates
for sequential composition of P1 and P2. The only difference
is that instead of r1.speer and r1.dpeer the hypervisor uses the
peers r1.speer′ and r1.dpeer′ which respectively correspond
to r1.speer and r1.dpeer after applying the actions of r1.

In the case that a new rule r2 is added to policy P2, the
hypervisor must obtain the rules in P1 which their matches
after applying their actions have intersection with r2.match.
As discussed in the model construction phase, the hypervisor
maintains two PSG models for each policy, one for the original
policy and another for modeling the peers after applying the
actions. We employ the second PSG model of P1 to obtain a
subset of rules in P1 must be sequentially combined with r2.

E. Insertion Transformation
The methods described in the previous sections implement

both add and delete rules to/from an application policy and
consequently to/from the composed policy in the hypervisor.
Since the flow tables in an OpenFlow switch support redundant
priority for the flow entries [19], adding a rule is implemented
without changing the priority of other rules in the policy. How-
ever, many rule-based security systems allow the administrator
to manipulate the priority of existing rules as well as inserting
a rule in a specific position with the policy.

For example, assume that the administrator of the policy
shown in Fig. 2 wants to forward all the packets coming from
source IP 2.0.0.5 to port number 5 except for the http packets
which must be dropped. Now, the administrator can simply
insert a rule “2;srcip=2.0.0.5;fwd(5)” between the
first two rules in the policy. To this end, the first rule must be
shifted in order to make a free space for the new rule. This is
because there is a rule with an identical priority and with an
overlapped rule match with the new rule in the policy.

It is worth noting that the inserting operation is a very
beneficial feature in rule-based applications as the adminis-
trator can locally decide about the position of a new rule
without checking whole of the rules in the policy. A naive
method to implement the insert operation is to first shift all
the higher priority rules in order to make free space for the
new rule. After that, the insert operation is transformed into an
add operation. Accordingly, if there are n rules with a higher
priority than the new rule, this method first removes these n
rules, adds them while increments their priority, and finally add

the new rule in the free space. Thus, the naive method needs
2n + 1 = O(n) update operations. Note that such number of
updates generated for updating an application layer policy can
lead to an update with a quadratic length, O(n2) for either a
parallel or sequentially composed policy.

It is clear that the main objective of the rule priorities is
to prioritize the overlapping rules in the match process as
the OpenFlow policy uses a first match mechanism. In other
words, such priority can be disregarded when the match rules
are disjoint. By leveraging this fact we formulate our approach
based on two propositions: 1) we can limit the propagation
of any priority update to only the rules intersected with the
updated rule; and 2) if the policy contains a free space for the
inserted rule, we need no rule shifting. Note that we augment
the application policy updates allows an administrator to insert
rules. The hypervisor uses our approach to transform the insert
operation into a list of add/delete updates for such policy. It
then sends these updates to the policy composition module to
generate corresponding updates for the composed policy.

Algorithm 2 shows our approach for transforming an insert
update requested for an application policy into a list of
add/delete updates. The method proposed for model con-
struction is used for applying the add/delete updates in the
application policy. Moreover, the composed policy is updated
for the updates based on the composition algorithms described
in the previous section.

Algorithm 2 Transforming an insert rule into add/delete rules.
Input: P : a PSG, r: a new rule to be inserted into P
Output: U : A set of add/delete updates

1: procedure TRANSFORMINSERT(PSG P , Rule r)
2: U ← {Add(r)}
3: if ̸ ∃r′ ∈ P, r′.priority = r.priority then
4: return U
5: end if
6: for all rule r′ ∈ P do
7: if r.priority ≤ r′.priority then
8: f ← BDD(r.match.formula ∧ r′.match.formula)

9: if f is not a contradiction then
10: U ← U ∪ {Del(r′)}
11: r′′ ← Clone(r′)
12: r′′.priority ← r′′.priority + 1
13: U ← U ∪ {Add(r′′)}
14: end if
15: end if
16: end for
17: return U
18: end procedure

F. PSG to Flow Table
Although we propose an incremental method for updating

the flow tables in the data plane, a hypervisor might regenerate
and reinstall the rules into the data plane. Thus, we need to
efficiently translate the PSG model into forwarding tables that
represent packet processing in the switches.

As we described, a path from root to a leaf node in the
multi-dimensional trie represents an existing peer in the policy.
Such a leaf node has an edge to another leaf node for each

33Networking 2016

rule in which the rule participates as a source peer. Thus,
in order to generate a set of forwarding rules from a PSG
model, one can use a DFS-like algorithm for traversing the
whole of the trie and generate the rules for each source peer.
Note that the PSG model contains the priority of the rules
and there is no need to sort the rules before deploying them
into the data plane. Moreover, the forwarding rules generated
using this approach from a PSG model is anomaly-free as we
resolves the anomalies during the model updating process.

V. EXPERIMENTAL EVALUATION

A. Experimental Environment
We implemented a prototype of our method on the top of

CoVisor1 which itself is a part of the OpenVirteX network hy-
pervisor [26]. We selected this platform for two reasons. First,
this allows us to conduct a comparative evaluation against
CoVisor, a recently proposed policy composition method [4].
Second, our policy composition works independently and is
compatible with the built-in virtualizations in both OpenVirteX
and CoVisor. We used the PatriciaTrie API2 to imple-
ment the trie for each matching field. We extended the library
to also give us a sorted map of objects that are not disjoint
by a key. This helps to efficiently detect both simple and total
anomalies. We also used the JavaBDD library3 to manipulate
BDDs needed for our anomaly detection mechanism.

We assume that the applications’ administrators generate
their policy update requests as a list of add/insert/delete rules.
Thus, in all experiments we evaluate the efficiency of the
hypervisor for generating and installing the corresponding
updates for the composed policy based on four types of
metrics: 1) update length which is the average number of
updated flows in the composed policy per each update in the
application policy; 2) total length which is the composed
policy length after compiling the updates in the application
policies; 3) compile time which is the average elapsed time
needed to compile one update from an application policy into
the composed policy; and 4) total time which is the total
elapsed time needed to compile one update and install the
corresponding generated updates into the data plane.

We conducted experiments to evaluate the performance of
the proposed policy compositions and insertion transformation.
In all these experiments, the application policies are obtained
based on the filter sets generated by ClassBench [27] and we
randomly create the rule updates. All the experiments were
conducted on an iMac PC with 2.00GHz Intel Core 2 Duo
processor and 4GB RAM running Ubuntu 12.04 LTS. The
program code was written in Java with JDK 1.7.

B. Policy Composition
In order to conduct a fair comparative evaluation of the

policy composition, we follow the evaluation method proposed
in [4]. Accordingly, in this section we consider a network with
two applications where the hypervisor composed their policy
using either a parallel, sequential or overriding composition
operator. To measure the efficiency metrics, we first install
the base policy of both applications into the hypervisor, and

1http://covisor.cs.princeton.edu/
2http://docs.oracle.com/javase/6/docs/technotes/guides/collections/
3http://javabdd.sourceforge.net/

then measure the performance of policy updating by adding 10
uniformly randomly selected rules into both applications. The
process is repeated 100 times and then results are averaged.
We also vary the number of rules in the base policies for both
application to investigate the performance of the composition
algorithms in different policy lengths. For all experiments,
we measure the performance metrics for both the proposed
method, called PSG and CoVisor proposed in [4].

Fig. 4 shows the performance results of both approaches
for a parallel composition between two applications such as
Monitor and Router. As one can see in Fig. 4(a), the rule
update overhead in CoVisor linearly increases as the number
of rules increases in the base policies while the overhead is
approximately steady for PSG. Moreover, the number of flows
generated per each update in PSG is always less than CoVisor.
This can be explained by the fact that the number of anomalous
rules increases in the larger base policies and consequently this
dramatically raises the number of unnecessary rules generated
in the composed policy. A similar trend can be observed in the
composed policy length shown in Fig. 4(b). As we expected,
the total number of flows in the composed policy generated by
PSG is considerably less than the policy generated by CoVisor.
This is because of many unnecessary flows in both base and
composed policies were not treated in CoVisor.

Figures 4(c) and 4(d) show the compile time and total time
of composition per rule update, respectively. The results show
that the policy compilation using PSG takes longer than CoVi-
sor. This is due to additional processing for anomaly detection
and resolution based on algorithms described in Section IV-C.
However, PSG is significantly faster than CoVisor according
to the total time of policy composition shown in Fig. 4(d).
This can be explained by the fact that PSG sacrifices a few
milliseconds to resolve the anomalies and consequently it
considerably reduces the number of updates needed to be
installed in the data plane. Since the hypervisor needs to
communicate with the switches to install the updates, reducing
the update length through eliminating the unnecessary rules
leads to a significant efficiency in the network.

In the second scenario, we assume a sequential composition
between two applications such as a Firewall and a Router.
Fig. 5 shows the performance results of this composition.
Again, PSG is several order of magnitude efficient than
CoVisor in terms of number of rules generated per each update
as well as the length of composed policy. Although that PSG
is slightly slower than CoVisor in compilation of a sequential
composition, it is significantly faster than CoVisor according
to the total composition time as it considerably filters the
anomalous rules.

Fig. 6 illustrates the performance results of an overriding
composition between two application policies. As one can see
in Fig. 6(a), CoVisor always generates one update rule for the
composed policy while the average number of update rules
generated by PSG is less than one. Note that the maximum
updates per one rule added in overriding composition is
one rule in the composed policy as we have employed an
incremental mechanism. Thus, since PSG is an anomaly-free
composition method, it eliminates the anomalous rules and
consequently its average update length is less than one.

34Networking 2016

500 1000 1500 2000 2500 3000

�
��
�
��

�

0

200

400

600
���

	�
����

(a) Update length.

500 1000 1500 2000 2500 3000
�

��
�
��

�
104

105

106

107
���

	�
����

(b) Total length.

500 1000 1500 2000 2500 3000

�
��

�
��

��

0

1

2

3

4
�	

������

(c) Compile time.

500 1000 1500 2000 2500 3000

�
��

�
��

�

0

1

2

3

4
�	

������

(d) Total time.

Fig. 4: Update performance for parallel composition.

0 1000 2000 3000

�
��
�
��

�

0

200

400

600
���

	�
����

(a) Update length.

0 1000 2000 3000

�
��
�
��

�

102

104

106

108
���

	�
����

(b) Total length.

0 1000 2000 3000

�
��

�
��

��

0

1

2

3
�	

������

(c) Compile time.

0 1000 2000 3000

�
��

�
��

�

0

1

2

3

4
�	

������

(d) Total time.

Fig. 5: Update performance for Sequential composition.

� � � �� ����
0.6 0.7 0.8 0.9 1

�
��

�
�
�

0

0.5

1

	
�

������

(a) Update length.

� � � �� ����
0 2000 4000 6000 8000

�
��

�
�
�

0

0.5

1

	
�

������

(b) Total length.

�� ���� ����
0 0.005 0.01 0.015 0.02

�
��

�
��

0

0.5

1
	
�

�����

(c) Compile time.

�� ���� ��� �10-3
3 4 5 6 7

�
��

�
��

0

0.5

1
	
�

�����

(d) Total time.

Fig. 6: Update performance for Override composition.

0 500 1000

�
��
�
��

�

102

103

104

105
����	
���

����

(a) Update length.

0 500 1000

�
��
�
��

�

103

104

105

106
����	
���

����

(b) Total length.

0 500 1000

�
��

�
��

��

0

200

400

600

800
��	�
����

����

(c) Compile time.

0 500 1000

�
��

�
��

�

0

100

200

300
��	�
����

����

(d) Total time.

Fig. 7: Update performance for rule insertion into parallel composition.

C. Rule Insertion

In this section, we evaluate the performance of our method
for translating insert operations for both single and com-
posed policies. In the first experiment, we consider a single
application policy and then randomly select a portion (2%,
5%, or fixed update length of 10) of rules and generate
updates for inserting these rules. The base policy in this
experiment is generated from firewall filter set by ClassBench
[27]. We measure the update size for our insert translation,
called Selective and the naive approach, called Naive for each
process. As described in Section IV-E, an insertion request
will be transformed into a set of add and delete rule requests.
Thus, we consider the total number of these requests as the
update length of insertion transformation. We also use the

PSG composition approach for both cases which help us to
eliminate anomalous rules. The process is repeated 100 times
and then results are averaged.

Table I shows the average update length generated for
insertions into a single policy. The results shows that the
update generated by the Selective approach is often more than
10 order magnitude smaller than that of the Naive method.

In the second experiment, we evaluate the performance of
rule insertion into a combined policy. To this end, we use
the settings of the experiment for parallel composition in the
previous section. Then, the updates is randomly generated
by 10 rule insertion into the application policies. Fig. 7
shows the performance results for insertion into a parallel
composition policy. As one can see in this figure, Selective

35Networking 2016

TABLE I: Average rule updates for inserting into a policy.

Base 2% 5% Fixed=10
Rules # Naive Selective Naive Selective Naive Selective

100 60.66 2.93 63.29 3.72 63.68 4.07
300 230.55 16.38 232.61 16.38 235.15 16.43
500 362.79 30.14 366.32 31.72 362.79 30.14
700 460.32 39.95 460.98 39.52 461.99 40.71
900 531.75 53.25 522.89 48.36 526.28 48.95
1100 614.15 60.87 559.30 52.08 585.98 62.40
1300 650.30 62.29 595.64 54.09 625.94 66.76
1500 695.12 64.10 610.86 57.22 657.91 67.46

usually generates updates with a length of around half of
the length of updates generated by Naive. Moreover, the total
length of composed policies generated by these two approach
are approximately in the same order.

Figures 7(d) and 7(d) illustrate that both the compilation
and total time of Naive considerably increase with the policy
size, because larger policies force more updates including both
deleting and adding rules. Since these updates need to be ap-
plied into the composition procedure, Naive is becoming much
slower. On the other hand, Selective has a slight growth in both
the compilation and total time, because it generates much less
updates in transforming the insertion for the composition.

VI. CONCLUSIONS

In this paper, we proposed a novel framework for policy
composition in a SDN hypervisor which considers both intra
and inter anomaly detection and resolution. Moreover, we
augmented the framework to efficiently transform priority
change updates, such as rule insertion, in the application-level
policies into the composed policy. We plan to extend the PSG
model for bitmask feature proposed in the recent OpenFlow
version. Moreover, supporting a network abstraction in PSG
can help us to detect and resolve run-time anomalies in the
network policies. We also plan to take advantage of multi-
table support in OpenFlow to improve the performance of the
policy composition.

ACKNOWLEDGMENT

This work was funded in part by the Google Faculty Award
2015 (Jha & Pagnucco).

REFERENCES

[1] O. N. Foundation, “Software-defined networking: The new norm for
networks,” ONF White Paper, Tech. Rep., April 2012.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., 2008.

[3] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing software-defined networks,” in Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation, ser.
nsdi’13, 2013, pp. 1–14.

[4] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor: A compositional
hypervisor for software-defined networks,” in Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation,
ser. NSDI’15, 2015, pp. 87–101.

[5] X. Wen, C. Diao, X. Zhao, Y. Chen, L. E. Li, B. Yang, and K. Bu,
“Compiling minimum incremental update for modular SDN languages,”
in Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’14, 2014, pp. 193–198.

[6] E. S. Al-Shaer and H. H. Hamed, “Discovery of policy anomalies in
distributed firewalls,” in INFOCOM 2004. Twenty-third Annual Joint
Conference of the IEEE Computer and Communications Societies.

[7] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra, “FIRE-
MAN: A toolkit for firewall modeling and analysis,” in Proceedings of
the 2006 IEEE Symposium on Security and Privacy, 2006, pp. 199–213.

[8] H. Hu, G.-J. Ahn, and K. Kulkarni, “Detecting and resolving firewall
policy anomalies,” Dependable and Secure Computing, IEEE Transac-
tions on, vol. 9, no. 3, pp. 318–331, May 2012.

[9] M. Rezvani and R. Aryan, “Analyzing and resolving anomalies in
firewall security policies based on propositional logic,” in IEEE 13th
International Multi Topic Conference, INMIC, 2009.

[10] R. Jalili and M. Rezvani, “Specification and verification of security
policies in firewalls,” in Proceedings of the First EurAsian Conference
on Information and Communication Technology, 2002, pp. 154–163.

[11] P. Adao, C. Bozzato, G. D. Rossi, R. Focardi, and F. Luccio, “Mignis:
A semantic based tool for firewall configuration,” in IEEE Computer
Security Foundations Workshop, July 2014, pp. 351 – 365.

[12] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
SIGPLAN Not., vol. 46, no. 9, pp. 279–291, Sep. 2011.

[13] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic foundations for
networks,” SIGPLAN Not., vol. 49, no. 1, pp. 113–126, Jan. 2014.

[14] W. Han, H. Hu, and G.-J. Ahn, “LPM: Layered policy management
for software-defined networks,” in Data and Applications Security and
Privacy XXVIII, ser. LNCS, 2014, vol. 8566, pp. 356–363.

[15] A. Dwaraki, S. Seetharaman, S. Natarajan, and T. Wolf, “GitFlow: Flow
revision management for software-defined networks,” in Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, ser. SOSR ’15, 2015.

[16] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson,
“FRESCO: Modular composable security services for software-defined
networks,” in Proceedings of the ISOC Network and Distributed System
Security Symposium, February 2013.

[17] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “PGA: Using graphs to
express and automatically reconcile network policies,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication, ser. SIGCOMM ’15, 2015, pp. 29–42.

[18] S. Smolka, S. Eliopoulos, N. Foster, and A. Guha, “A fast compiler
for NetKAT,” in Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, 2015, pp. 328–341.

[19] “Openflow switch specification version 1.5.0,” https://www.
opennetworking.org/ , 2014.

[20] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and
verification of federated openflow infrastructures,” in Proceedings of the
3rd ACM Workshop on Assurable and Usable Security Configuration,
ser. SafeConfig ’10. New York, NY, USA: ACM, 2010, pp. 37–44.

[21] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’13, 2013, pp. 99–112.

[22] G. Varghese, Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices. Elsevier/Morgan Kaufmann, 2005.

[23] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in Proceedings of
the First Workshop on Hot Topics in Software Defined Networks, ser.
HotSDN ’12, 2012, pp. 49–54.

[24] C. Basile, A. Cappadonia, and A. Lioy, “Network-level access control
policy analysis and transformation,” IEEE/ACM Trans. Netw., vol. 20,
no. 4, pp. 985–998, Aug. 2012.

[25] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Comput., vol. 35, no. 8, pp. 677–691, Aug. 1986.

[26] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “OpenVirteX: Make your virtual SDNs
programmable,” in Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking. ACM, 2014, pp. 25–30.

[27] D. E. Taylor and J. S. Turner, “ClassBench: A packet classification
benchmark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499–511, 2007.

36Networking 2016

