
BLEST: Blocking Estimation-based MPTCP
Scheduler for Heterogeneous Networks

Simone Ferlin,⇤†, Özgü Alay⇤
⇤Simula Research Laboratory, Norway

{ferlin,ozgu}@simula.no

Olivier Mehani,† Roksana Boreli†
†National ICT Australia (NICTA), Sydney, Australia

{first.last}@nicta.com.au

Abstract—With the widespread availability of multi-homed
devices, multipath transport protocols such as MPTCP are
becoming increasingly relevant to support better use of multiple
connectivity through capacity aggregation and seamless failover.
However, capacity aggregation over heterogeneous paths, such
as offered by cellular and Wi-Fi networks, is problematic. It
causes packet reordering leading to head-of-line (HoL) blocking
at the receiver, increased end-to-end delays and lower application
goodput. MPTCP tackles this issue by penalising the use of
longer paths, and increasing buffer sizes. This, however, results
in suboptimal resource usage. In this paper, we first evaluate
and compare the performance of default MPTCP and alternative
state-of-the-art schedulers, all implemented in the Linux kernel,
for a range of traffic patterns and network environments. This
allows us to identify shortcomings of various approaches. We then
propose a send-window BLocking ESTimation scheduler, BLEST,
which aims to minimise HoL-blocking in heterogeneous networks,
thereby increasing the potential for capacity aggregation by
reducing the number of spurious retransmissions. The resulting
scheduler allows an increase by 12% in application goodput with
bulk traffic while reducing unnecessary retransmissions by 80%
as compared to default MPTCP and other schedulers.

Index Terms—MPTCP, multipath, transport protocol, packet
scheduling, head-of-line blocking, receive window limitation,
heterogeneous networks

I. INTRODUCTION

Multipath transport protocols, and particularly Multipath
TCP, allow to better use the network resources available
to multi-homed devices such as mobile phones. Two main
advantages are envisioned: capacity aggregation across mul-
tiple links, and the ability to maintain connection if one of
the path fails. Capacity aggregation is however challenging
with heterogeneous paths, such as offered by cellular and
Wi-Fi, in particular because of delay heterogeneity [1]. This
heterogeneity results in packet reordering, leading to head-of-
line (HoL) blocking, increased out-of-order (OFO) buffer use
at the receiver and, ultimately, reduced goodput.

MPTCP’s default scheduler, minRTT, is based on Round-
Trip Time (RTT). minRTT starts by filling the congestion
window (CWND) of the subflow with the lowest RTT before
advancing to other subflows with higher RTTs. When one of
these subflows blocks the connection, e.g., due to head-of-line
blocking, MPTCP’s default scheduler retransmits the segments
blocking the connection on the lowest-delay path and penalise
longer (i.e., higher-delay) paths that caused the issue [2]. This

has a long-term impact on the CWND of these subflows, which
are limited in their growth [3], leading to sub-optimal capacity
aggregation, as higher-delay paths are underused [4]. As a rule-
of-thumb, it is also recommended to increase the receive buffer
size to further limit HoL-blocking situations [5].

The need for multipath transport protocol schedulers is
known, and a number of proposals have been made and
evaluated in the past [6]. However, in the specific case of
heterogeneous paths, more care is required to avoid the issues
discussed above. Such schedulers have been proposed in [7]–
[9], based on the concept of sending packets out of order
so they reach the receiver in order. There exists, however,
no comparison of these schedulers to the MPTCP default
scheduler in a consistent environment.

In this paper, we first offer a comparative study of the pro-
posed MPTCP schedulers [7]–[9], by experimentally evaluat-
ing our Linux implementation of these algorithms. We evaluate
their behaviour for different traffic types (Web, Bulk, CBR).
The performance of these schedulers is compared to MPTCP’s
default scheduler as well as plain single-path TCP, in terms
of application goodput (for bulk traffic), end-to-end delays
(CBR) and completion time (Web). Based on observations in
these experiments, we identify how the studied mechanisms
offer the best performance, and what they fail to properly
account for. We also take insight from the observations
of [10] that not all subflows should be used at all times and,
while scheduling is needed to complement pure congestion
control, path selection and send buffer management are also
primordial. We then propose a novel BLocking ESTimation-
based scheduler, BLEST, which takes a proactive stand towards
minimising HoL-blocking. Rather than penalising the slow
subflows, BLEST estimates whether a path will cause HoL-
blocking and dynamically adapts scheduling to prevent block-
ing. Although BLEST is designed for heterogeneous paths, we
show in our experiments that it works as well as MPTCP’s
minRTT scheduler in homogeneous scenarios.1

The remainder of this paper is organised as follows. We
present the background to this work, and show motivating
examples in the next section. We describe our evaluation setup
in Section III. In Section IV, we discuss our implementation
of different schedulers [7]–[9] and compare their perfor-
mance side-by-side with MPTCP’s default scheduler. Based

1BLEST’s code is available at http://nicta.info/mptcp-blest.ISBN 978-3-901882-83-8 c� 2016 IFIP

431Networking 2016

on observations in these experiments, we propose a proactive
minimum-delay scheduler that can predict the send-window
blocking risk, and schedule accordingly in Section V, and
evaluate its performance in Section VI, both in emulated and
real multipath environments. We finally offer some concluding
remarks in Section VII.

II. BACKGROUND AND MOTIVATION

A. Multipath Transfer over Heterogeneous Paths
Multipath transport has be shown to provide benefits from

bandwidth aggregation to increased robustness [2], [11]–[13].
Whenever the underlying network paths are homogeneous,
MPTCP accomplishes its goals [14]. However, path hetero-
geneity can hinder achievement of MPTCP’s goals, mostly
due to the HoL-blocking which causes higher end-host mem-
ory usage and path bandwidth underutilisation [1], [3]. In
MPTCP, the scheduler is the component that is responsible
for the distribution of packets among the available paths. A
well-designed scheduler that can dynamically adapt packet
distribution based on the channel conditions to provide a better
performance, both in terms of goodput and delay, is crucial.

MPTCP’s default minRTT scheduler2 first sends data on
the subflow with the lowest RTT estimation, until it has filled
its congestion window [2]. Data is sent on the subflow with
the next higher RTT. In order to address the heterogeneity of
the paths, a mechanism of opportunistic retransmission and
penalisation (PR) has also been proposed in [2]. In order to
quickly overcome HoL-blocking, opportunistic retransmission
immediately reinjects segments causing HoL-blocking onto a
subflow with an RTT lower than that of the blocking subflow
which has space available in its congestion window. The
penalisation mechanism also halves the congestion window
of the blocking subflow to limit its use. [3] showed that
MPTCP’s PR does not behave well in some scenarios when
path characteristics (e.g., capacity, delay and loss rates) are
significantly different. Penalisation of a long subflow (higher
RTT) has a long-term detrimental impact on the performance:
it will take longer for the subflow to increase its CWND,
leading to underutilisation of the path and, ultimately, lower
capacity aggregation.

In order to illustrate the challenges in heterogeneous sce-
narios, we ran experiments with constant bitrate (CBR) and
web transfers, and contrast the results with homogeneous
scenarios. In Figure 1, we observe that the amount of data
and the path heterogeneity are the main factors determining
the performance of MPTCP. MPTCP generally provides lower
completion times, especially for websites with many objects.
However, when the paths are heterogeneous in terms of delay
and loss, as in the 3G+WLAN case, losses in the WLAN force
MPTCP to use the 3G path, therefore MPTCP’s completion
time becomes higher than TCP on the WLAN path. Similarly,
Figure 1(d) shows the same effect for the packet delay of
a CBR flow: MPTCP’s minRTT adequately leverages the
aggregation of two homogeneous WLAN paths and reduces

2We base our work on MPTCP v0.90 throughout this paper.

WLAN+WLANWLAN
0

500

1000

C
o
m

p
le

tio
n
 T

im
e
 [
m

s]

3G+WLANWLAN 3G

0

1000

2000

3G WLAN MPTCP

(a) Download time, Wikipedia

WLAN+WLANWLAN
0

500

1000

1500

2000

C
o
m

p
le

tio
n
 T

im
e
 [
m

s]

3G+WLANWLAN 3G

0

2000

4000

6000

3G WLAN MPTCP

(b) Download time, Amazon

WLAN+WLANWLAN
0

2000

4000

6000

C
o
m

p
le

tio
n
 T

im
e
 [
m

s]

3G+WLANWLAN 3G

0

0.5

1

1.5

2
x 10

4
3G WLAN MPTCP

(c) Download time, Huffington Post

WLAN+WLANWLAN
0

20

40

60

80

100

C
o
m

p
le

tio
n
 T

im
e
 [
m

s]

3G+WLANWLAN 3G

0

200

400

600
3G WLAN MPTCP

(d) Packet delay, CBR video
Figure 1. Download times for selected websites, and application packet
delay for CBR video traffic, both over MPTCP in WLAN+WLAN (left
of each pair) and 3G+WLAN (right of each pair) (CORE emulation, with
background traffic, see III-1). MPTCP with heterogeneous paths (3G+WLAN)
underperforms single-path TCP on the best (WLAN) path.

both delay and jitter; however, it doesn’t perform as well
as a single WLAN path when running over heterogeneous
3G+WLAN paths.

This goes against one of MPTCP’s design goals: “[a]
multipath flow should perform at least as well as a single
path flow would on the best of the paths available to it” [5].

B. Schedulers for heterogeneous paths

Alternative multipath scheduling algorithms have been ob-
ject of multiple studies [4], [10], [15]. In [6], the authors
evaluated different scheduling strategies (pull, push and hy-
brid) focusing on implementation performance. They also
considered how schedulers should cope with paths that have
heterogeneous delay and/or capacities. They concluded that a
scheduler must take both delay and capacity into consideration
in order to effectively leverage multipath scenarios.

Later, [8] evaluated and extended the idea of a Delay-Aware
Packet Scheduler (DAPS) [7] for MPTCP in order to overcome
HoL-blocking due to path heterogeneity. In that work, the
authors derived a rule-of-thumb for buffer size for MPTCP. [9]
explored a more ambitious scheduler implementation, sending
packets out of order so they arrive in order. They however
included some simplications that expose vulnerabilities of the
approach. For example, no consideration is given to segment
reinjection if a certain path is blocking the connection.

These alternative algorithms were so far not extensively
tested against MPTCP’s default scheduler. The number of sce-
narios in which they were evaluated was also limited, and did
not cover many scenarios (homogeneous vs. heterogeneous)
and traffic classes. The differences in evaluation methods also
make it difficult to accurately compare their performance. In
the next sections, we address this issue by re-implementing
these schedulers in the Linux kernel, and systematically eval-
uating their performance in a range of scenarios and traffic
use-cases agains MPTCP’s default scheduler.

432Networking 2016

Bottleneck 1

Bottleneck 2

MPTCP
Server

MPTCP
Client

Server 1

Server 2

Client 1

Client 2

Figure 2. Emulation experiment setup

III. MEASUREMENT SETUP

We used CORE [16] for the initial evaluation. CORE is
a network emulator able to emulate a real network stack
implementation within Linux containers, making it suitable
to avoid simulation model simplifications. Figure 2 shows the
emulation topology. Bottleneck 1 was loaded with background
traffic from Server 1 to Client 1, and bottleneck 2 with traffic
from Server 2 to Client 2. The link characteristics for WLAN
and 3G links are set as follows.

• WLAN: Capacity=25 Mbit/s, Delay=25 ms, Loss=1%
• 3G: Capacity=5 Mbit/s, Delay=65 ms, Loss=0%

Based on measurements carried in real networks, the queue
lengths at each router interface were set to 100 packets for
WLAN and 3750 packets for 3G. The losses applied to the
WLAN path are random.

1) Network and System characteristics: System settings are
known to impact TCP’s performance. In order to emulate
realistic network scenarios, we used system settings close to
the standard characteristics of each technologies. The TCP
buffer sizes (send/receive) were set to be equivalent to widely
known Android settings, that are configured as follows.

• Homogeneous (WLAN): 1024 KiB/2048 KiB.
• Heterogeneous (3G+WLAN): 1024 KiB/2048 KiB.

For bulk traffic experiments, we set both send and receive
buffers to 16 MiB to evaluate MPTCP’s aggregation capability.

To ensure independence between runs, the cached TCP
values were flushed after every run. We focused on congestion
avoidance; therefore, we discarded the initial phase for each
experiment and analyzed a period of 90 s for bulk and constant
bitrate (CBR) traffic. For single-path TCP flows, we used TCP-
Reno, therefore, fairly compairing against MPTCP-OLIA.3

2) Application Traffic: We considered three different types.
a) Video Streaming: We considered constant bit-rate

(CBR) video traffic with a frame size of 5 KiB on the ap-
plication level and a rate of 1 Mbps. This is in line with the
recent measurement studies [17] showing that more than 53%
of the downstream traffic in North America is video streaming,
and with other reports [18] predicting further increase,

b) Web Traffic: We selected three websites of different
sizes, small, medium and large (see Table I), as a good set of
typical website sizes. To mimic the behavior of a real browser
downloads were performed with 6 concurrent connections.

c) Bulk Transfer: We completed the evaluation with the
most common case for MPTCP — a buk transfer, of 64 MiB.

3TCP-Linux kernel 3.14.33 is used throughout our evaluations.

3) Background Traffic: A synthetic mix of TCP and UDP
traffic was generated with D-ITG [19] as background traffic
in order to create a realistic environment. The TCP traffic
was composed of saturated sender and rate-limited TCP flows
with a exponentially distributed mean rate of 157 pps. The
UDP traffic was composed of UDP on/off flows with Pareto
distributed on and exponentially distributed off times. Each
flow has an exponentially distributed mean rate of 100 kbps in
the heterogeneous scenario and 500 kbps in the homogeneous
scenario. Packet sizes were varied with a mean of 1000 Bytes
and RTTs between 20 and 100 ms. We repeated all experiment
settings 50 times, in both emulation and real scenarios.

IV. SCHEDULING AGAINST HOL-BLOCKING

In the following, we discuss both Delay-Aware Packet
Scheduler (DAPS) [7], [8] and Out-of-order Transmission for
In-order Arrival Scheduler (OTIAS) [9], evaluating them in
common scenarios, and commenting on their implementation.

A. Delay-Aware Packet Scheduler (DAPS)
The DAPS algorithm was proposed in two versions. In [7],

it pursues the goal to make segments arrive in order by
planning which subflows the next segments should be sent over
based on both the forward delay and CWND of each subflow.
A schedule is created to span the least common multiple
(LCM) of the forward delays lcm(D

i

2 {D1, D2, . . . , Dn

}).
Algorithm 1 shows the main loop of the mechanism.

As an example, assume two subflows with similar capac-
ities, but with a subflow having a forward delay ten times
higher than the fast subflow. DAPS will derive the following
schedule: segments 1. . . 10 will be sent on the fast subflow,
and segment 11 on the other subflow. Ideally, segment 11 will
arrive right after segment 10, thereby avoiding HoL-blocking.

In [8], DAPS is formulated for a scenario with only two
subflows (r

s

and r
f

). It is also a simplification of the original
algorithm [7] as it does not take CWND asymmetry into
account, only considering the subflows’ RTT ratio (⌘) and the
CWND of the fast subflow.

Since both algorithms are comparable, we consider only
the original DAPS [7] in our evaluations. We ignore the
simplifications presented in [8], as they were only introduced
to ease the implementation in the ns-2 of CMT-SCTP.

B. Out-of-order Transmission for In-order Arrival Scheduler
(OTIAS)

The OTIAS algorithm [9] is based on the idea of scheduling
more segments on a subflow than what it can currently send.
Queues may therefore build up at each subflow of the sender,
under the assumption that these segments will be sent as soon

Table I
WEB TRAFFIC GENERATION

Domain name Number of Objects Size of Objects

http://www.wikipedia.org 15 72 KiB
http://www.amazon.com 54 1024 KiB
http://www.huffingtonpost.com 138 3994 KiB

433Networking 2016

Algorithm 1 DAPS [7]
1: S

max

 0
2: for P

i

2 {P1, P2, ..., Pn

} do
3: SEQ

Pi InitializeV ector()
4: end for
5: for P

i

2 {O1, O2, ..., OP
i21,2,...,n

lcm(Di)
Di

} do
6: SEQ

Pi Append(SEQ
Pi [Smax

+ 1, S
max

+ C
i

]
7: end for
8: t 0
9: while t < lcm(D

i

2 {D1, D2, ..., Dn

}) do
10: for P

i

2 {P1, P2, ..., Pn

} do
11: if t ⌘ 0 (mod D

i

) then
12: Transmit(P

i

, SEQ
Pi [

t

Di
])

13: S
max

 S
max

+ C
i

14: end if
15: end for
16: t t+ 1
17: end while
Where:

• {P1, P2, ..., Pn

} set of paths
• {D1, D2, ..., Dn

} paths’ respective forward delays
• SEQ

Pi seqnos of packets to be transmitted on P
i

as there is space in the CWND for the subflow. When asked
to schedule a new segment, the algorithm estimates its arrival
time if sent over each subflow (T j

i

), and chooses the subflow
with the earliest arrival time. The estimation is performed
based on a subflow’s RTT, its CWND, the number of in-flight
packets and the number of already queued packets. If there is
space in the CWND, the segment would be sent immediately,
yielding an arrival time of approximately RTT/2 (assuming
symmetric forward and backward delays). If the CWND is full,
however, the segments will have to wait in the subflow’s queue.
Assuming a send rate of 1 CWND per RTT, the additional
waiting time is calculated as RTT_to_waitj

i

. Algorithm 2
shows the main loop of the OTIAS mechanism.

Algorithm 2 OTIAS [9]
1: for each available subflow j do
2: pkt_can_be_sent

j

= cwnd
j

� unacked
j

3: RTT_to_wait

j

i

=
j
not_yet_sentj�pkt_can_be_sentj

cwndj

k

4: T j

i

= (RTT_to_waitj

i

+ 0.5)⇥ srtt
j

5: if T j

i

< min
T

then
6: min

T

= T j

i

7: selected_subflow = j
8: end if
9: end for

C. Comparative evaluation of DAPS and OTIAS
Although DAPS and OTIAS have the same goal to reduce

HoL-blocking, they follow different approaches: DAPS creates
a schedule for the distribution of future segments into the
available subflows for a scheduling run and follows this

0

100

200

300

400

500

G
o
o
d
p
u
t
[k

iB
p
s]

minRTT DAPS OTIAS

0

500

1000

1500

2000

2500

3000

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

(a) 3G+WLAN

0

100

200

300

400

500

G
o
o
d
p
u
t
[k

iB
p
s]

minRTT DAPS OTIAS

0

100

200

300

400

500

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

(b) WLAN+WLAN
Figure 3. Goodput and OFO queue for bulk traffic between DAPS, OTIAS
and minRTT.

schedule until it is completed, after which planning for the next
run is determined. On the other hand, OTIAS decides which
subflow to use on a per-packet basis. It takes into account the
RTTs and the queue sizes of the subflows at a given moment
and it is closer to MPTCP’s default scheduler (minRTT) in
this respect, albeit taking into account more information from
the subflows.

OTIAS operates based on current data and is able to react
more dynamically to network changes, where DAPS can only
react to changes in the next scheduling run. OTIAS is however
still less dynamic than MPTCP’s minRTT since it builds up
queues on the subflows. If a segment that had already been
sent is blocking the connection, e.g., it could be delayed or
lost, the queued packets would linger at the sender more than
assumed, disturbing the created schedule. Moreover, MPTCP’s
default scheduler retransmission mechanism, retransmitting a
packet on the fastest subflow [4], is not applicable if a send
queue exists for a subflow, as that segment would have to wait
in the queue before retransmission.

In the following we present an evaluation of DAPS and
OTIAS against MPTCP’s minRTT with bulk, web and CBR
traffic through emulations. We look at application goodput for
bulk transfers, completion times for web transfers, and average
application delay for CBR traffic. In all cases, we also sample
the maximum value of the out-of-order (OFO) queue every
10 ms during the experiments and present the results.

1) Bulk: Figure 3 shows DAPS, OTIAS and MPTCP’s
default scheduler goodput and OFO buffer size for bulk
transfer in both 3G+WLAN and WLAN+WLAN scenarios.
OTIAS provides a goodput increase of 6% but requires 35%
less OFO buffer compared to MPTCP’s minRTT. On the other
hand, DAPS provides a goodput decrease of 27% and requires
65% less OFO buffer compared to MPTCP’s default scheduler.
In WLAN+WLAN scenarios, MPTCP’s default scheduler has
a 3.5% lower goodput compared to OTIAS, which on the
contrary takes about 87% more OFO buffer. DAPS delivers
goodput values of about 16% less compared to MPTCP’s
default scheduler with about 97% more OFO buffer.

2) Web: Figure 4 shows the completion times and OFO
buffer sizes for DAPS, OTIAS and MPTCP’s default sched-
ulers in both 3G+WLAN and WLAN+WLAN scenarios. For
3G+WLAN, in Figure 4(a), all scheduler algorithms per-
form similarly in terms of completion time. However, for
larger object sizes, we observe a larger OFO buffer size. In
WLAN+WLAN, in Figure 4(c), DAPS and OTIAS struggle

434Networking 2016

Wikipedia

0.1

0.2

0.3

0.4

0.5

Amazon
0.5

1

1.5

2

2.5

3

Huffpost

2

3

4

5

6

C
o

m
p

le
tio

n
 T

im
e

 [
s]

OTIAS DAPS minRTT

(a) 3G+WLAN, Completion time

Wikipedia
0

1

2

3

4

5

A
ve

ra
g

e
 M

P
T

C
P

 O
F

O
 Q

u
e

u
e

 [
ki

B
]

Amazon
0

10

20

30

40

50

Huffpost
0

50

100

150

200

250
minRTT DAPS OTIAS

(b) 3G+WLAN, OFO queue

Wikipedia

0.2

0.4

0.6

0.8

1

Amazon1

1.5

2

2.5

Huffpost

2.5

3

3.5

4

4.5

5

C
o

m
p

le
tio

n
 T

im
e

 [
s]

OTIAS DAPS minRTT

(c) WLAN+WLAN, Completion time

Wikipedia
0

1

2

3

4

5
A

ve
ra

g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

Amazon
0

10

20

30

40

50

Huffpost
0

50

100

150

200

250
minRTT DAPS OTIAS

(d) WLAN+WLAN, OFO queue
Figure 4. Completion time and OFO queue for web traffic (Wikipedia,
Amazon and Huffington Post) for DAPS, OTIAS and minRTT.

when both paths have higher loss rates, because DAPS cannot
react quickly enough to changes on the paths, and OTIAS
builds queues that also don’t allow immediate reaction. While
the losses on the WLAN paths cause higher OFO buffer size
in WLAN+WLAN, the path heterogeneity is the main reason
for the higher OFO size in 3G+WLAN.

3) CBR: Figure 5 shows the average application delay and
the OFO buffer size for DAPS, OTIAS and MPTCP’s default
schedulers in both 3G+WLAN and WLAN+WLAN scenarios.
Both 3G+WLAN and WLAN+WLAN yield higher application
delay with DAPS. OTIAS can reduce the usage of the 3G
subflow in the 3G+WLAN scenario, leading to improved
application delay compared to MPTCP’s default scheduler.
However, for the WLAN+WLAN scenario, OTIAS provides
higher delay values compared to MPTCP due to the lack
of design for a reinjection mechanism. Moreover, MPTCP’s
default scheduler PR mechanism can partially overcome path
heterogeneity in 3G+WLAN, where we can observe burst of
packets on the 3G path, which lead to spikes in the OFO
buffer, resulting in higher application delay.

D. Successes and Failures of Existing Algorithms

Overall, we observe that, although all state-of-the-art ap-
proaches address the challenges of multipath scheduling in
heterogeneous scenarios, trying to overcome receive-window
limitation and, consequently, HoL-blocking, they still fail in
some typical use-case scenarios settings, e.g., heterogeneous
delays and/or loss rates, as well as with excessive delays due to
buffering. Here, we comment on the strong and weak aspects
of the state-of-the-art proposals just evaluated.

1) OTIAS: Although OTIAS can make decisions on a per-
packet basis (subflow j and packet i) reacting fast and using
current state from the network (cwnd

j

loop), it builds up
queues on the subflows with lowest RTTs, regardless of their
CWND state, i.e., it does not restrict the scheduler if the

1 Mbps0

200

400

600

800

1000

A
p
p

lic
a
tio

n
 D

e
la

y
[m

s]

1 Mbps
0

50

100

150

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]minRTT DAPS OTIAS

(a) 3G+WLAN
1 Mbps

50

55

60

65

A
p

p
lic

a
tio

n
 D

e
la

y
[m

s]

1 Mbps
0

5

10

15

20

25

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

minRTT DAPS OTIAS

(b) WLAN+WLAN
Figure 5. Packet delay and OFO queue for CBR traffic for DAPS, OTIAS
and minRTT.

CWND is full. In addition, the algorithm assumes symmetric
forward delays (OWD = RTT/2), and scheduler reinjections
(retransmissions) are not mentioned. While OTIAS can yield
good results with heterogeneous RTTs, if the heterogeneity
is too large and losses occur in one of the subflows, the
algorithm will build up long queues in the subflows with lower
RTTs, reducing their ability to overcome HoL-blocking. In
homogeneous scenarios the OTIAS scheduler delivers lower
performance due to not using both subflows as fully as
MPTCP’s default scheduler.

2) DAPS: The DAPS implementation is more complex,
requiring more memory at run-time to keep the schedule
run. Furthermore, DAPS is not able to react upon network
changes in a timely manner due to long schedules arising
from high heterogeneity in the subflow delays, i.e., high
LCM in Algorithm 1. Last but not least, DAPS will use all
subflows that can send, even if a certain subflow’s contribution
is very low. This is the main contrast compared to both
OTIAS and MPTCP’s default schedulers, which can reduce the
slow subflow contribution, if a faster subflow can sustain the
required rate. This is particularly important for transfers where
the sender is not saturated. Finally, similar to OTIAS, DAPS
does not have a defined behaviour for scheduler reinjections.

V. BLEST: BLOCKING ESTIMATION-BASED MPTCP
SCHEDULER

Based on the observations from Section IV, we introduce a
new algorithm, BLEST, addressing the challenges of reducing
HoL-blocking, spurious retransmissions, and hence increas-
ing application performance in heterogeneous scenarios. The
scheduling is based on a new metric, estimating the amount of
HoL-blocking, which might result from scheduling a packet
on a give subflow.

For each new segment, MPTCP’s default scheduler, min-
RTT, chooses the subflow with lowest RTT among all subflows
ready to send, i.e., with space in the CWND. When MPTCP
detects that it cannot send new data due to a full send window
(mirror of receive window at the sender), it will resend the
segment blocking the fastest subflow, but only if it hasn’t
been sent on that subflow before. It will also penalise the
slow subflow responsible for blocking, halving its CWND.
The idea is to reduce its contribution preventing further HoL-
blocking. Such an approach reduces the chance of HoL-
blocking only for a limited amount of time. In other words,

435Networking 2016

1

MPTCP Send Window

0 … 10

Subflow 2
Send Window

2 3

0 … 10

Subflow 1
Send Window

MPTCP
Send Window

13…20 ?

13…20

Subflow 1
Send Window

4

24…32

Subflow 1
Send Window

11…12

21…23!

Subflow 2
Send Window

MPTCP
Send Window

24…32 21…23!

Figure 6. MPTCP example with BLEST: In ¨, segments 0. . . 10 are in flight on subflow 1, the subflow with lowest delay. In ≠ it is uncertain how many
segments should be sent on subflow 2, which has a higher delay. While subflow 2’s window could accommodate more data, only segments 11. . . 12 are
allocated, due to BLEST’s blocking prediction. Here, minRTT would allocate as much data as fits into subflow 2’s window given its CWND. In Æ subflow
1 can advance with segments 13. . . 20, because 0. . . 10 were acknowledged. At Ø both subflows can advance with MPTCP’s send window with subflow 1
carrying segments 24. . . 32 and subflow 2 carrying 21. . . 23.

after the CWND was reduced by penalisation, the congestion
control will start increasing it again, until a recurrence of
blocking. Furthermore, the approach is reactive as it depends
on blocking to trigger PR at the sender. The PR mechanism
itself is detrimental in the long run, since it keeps the CWND
of slow subflow artificially low.

To overcome the issues of the PR, we propose a proactive
scheduler where we decide at packet scheduling time whether
to send packets over the slow subflow or not. The decision is
based on MPTCP’s send window. MPTCP maintains a send
window on its control-plane for each MPTCP connection, one
level above the subflows. This window is necessary due to the
full multiplexing among all subflows belonging to the same
MPTCP connection. However, due to its scheduler design, if
data is not acknowledged in one of the subflows, MPTCP’s
send window can be temporarily blocked, stalling the whole
multipath connection.

BLEST assumes that a segment will occupy space in
MPTCP’s send window (MPTCPSW) for at least RTT

S

if it
is sent now on subflow S, as illustrated in Figure 6. We assume
that all segments in flight on S occupy space in the window for
the same amount of time. This is a conservative assumption,
as these segments can be acknowledged earlier. The remaining
send window can be used by the faster subflow (i.e., lower RTT
subflow), F . This means that HoL-blocking would occur if F
were not able to send due to lack of space in the send window
because of S. Therefore, we estimate the amount of data X
that will be sent on F during RTT

S

, and check whether this
fits into MPTCP’s send window . To estimate X , we assume
that for every RTT

F

, its CWND grows by 1 (as it is done in
congestion avoidance) and is always filled by the scheduler,
as

rtts = RTT
S

/RTT
F

X = MSS
F

· (CWND + (rtts� 1)/2) · rtts
If X⇥� > |M |�MSS

S

·(inflight
S

+1), the next segment
will not be sent on S. Instead, the scheduler waits for the
faster subflow to become available. Essentially, while minRTT
always opts to use an available subflow, our scheduler is able to
skip a subflow, waiting for a more advantageous subflow which
can offer a lower risk of HoL-blocking, and the number of
retransmissions that would have been consequently triggered.

0

0.5

1

1.5

δ
λ

Experiment Time [s]0 45

δ

λ
=0.001

δ
λ
=0.003

δ
λ
=0.005

δ
λ
=0.01

δ
λ
=0.02

0

100

200

300

400

500

G
o

o
d

p
u

t
[k

iB
p

s]

minRTT δ
λ
=0.001 δ

λ
=0.003 δ

λ
=0.005 δ

λ
=0.01 δ

λ
=0.02

0

500

1000

1500

2000

2500

3000

A
ve

ra
g

e
 M

P
T

C
P

 O
F

O
 Q

u
e

u
e

 [
ki

B
]

Figure 7. 3G+WLAN and BLEST’s � parameter influence on bulk traffic with
varying ��=0.001, 0.003, 0.005, 0.01, and 0.02; compared against minRTT.

The estimate of X , however, can be inaccurate at times. To
address this, we introduce a correction factor �, to scale X . �
is adjusted as follows. HoL-blocking during one RTT

F

is an
event that triggers an increase of � by �

�

; the absence of HoL-
blocking triggers a decrease by �

�

. In the beginning of the
connection we set �=1.0, i.e., no correction of the estimation.

Figure 7 shows how � changes over time in our scenario
with different �

�

. With �
�

= 0.001 we see that � changes
slowly towards a value that represents the reality on the (lossy
WLAN) link. Note that X is over-estimated in the beginning
of the transfer. Therefore, most of the traffic is sent over the
WLAN link leading to a reduced goodput. However, in time,
the estimate is corrected by � to reach a steady value where
the HoL-blocking is minimised.

On the left side, Figure 7 shows the first 45 seconds of a
bulk transfer and how � corrects the estimation (each dot in the
plot curves show the average and standard deviation over 1s)
of the rate of the faster subflow throughout the period. On
the right side, Figure 7 shows the effect in the OFO buffer
size and, consequently, in the goodput for different �

�

. � is
corrected to lower values than its initial setting of 1.0, because
the model does not incorporate losses.

VI. EVALUATION

One of MPTCP’s goals is to perform at least as well as TCP
on the best path. For this reason, we compare MPTCP’s default
scheduler, minRTT, and BLEST against single path TCP on
3G and WLAN paths. We include both 3G+WLAN and
WLAN+WLAN scenarios in our evaluation to illustrate the
improvements in heterogeneous settings, while not impacting
MPTCP in homogeneous scenarios. In the following we show
emulations and real network experiments results.

Networking 2016

0

100

200

300

400

500

G
o
o
d
p
u
t
[k

iB
p
s]

WLAN 3G minRTT BLEST

0

500

1000

1500

2000

2500

3000

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

(a) 3G+WLAN

0

100

200

300

400

500

G
o
o
d
p
u
t
[k

iB
p
s]

WLAN
0 minRTT BLEST

0

5

10

15

20

25

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

(b) WLAN+WLAN
Figure 8. 3G+WLAN and WLAN+WLAN scenarios for bulk traffic with
minRTT, BLEST and TCP on 3G and WLAN.

A. Emulation Experiments
1) Bulk: Increasing application goodput for bulk trans-

fer has been one of the most common ways to evaluate
MPTCP’s performance. Figures 8(a) and 8(b) compares the
performance in terms of goodput and OFO queue size for
minRTT and BLEST with bulk traffic in 3G+WLAN and
WLAN+WLAN scenarios, respectively. In 3G+WLAN, we
observe that BLEST reduces OFO buffer size by 19%, while it
increases application goodput by 12%. Note that the MPTCP
default scheduler’s penalisation and retransmission (PR)
mechanism has a particular negative impact in 3G+WLAN. As
illustrated in Table II, MPTCP’s PR mechanism can send up to
0.53 MiB retransmissions, to overcome blocking of the WLAN
path. BLEST achieves better aggregation with less OFO buffer,
saving up to 80% of retransmissions. In WLAN+WLAN,
BLEST achieves similar application goodput with negligible
OFO buffer size of 2.5 kiB compared to minRTT.

2) Web: The total download time is not a perfect metric as
most browsers start rendering the page before the transmission
is complete. However, we are focusing on the transport-level
performance, and discard any browser-related optimisations.
Figures 9(a) and 10(a) show the completion times for minRTT
and BLEST for web traffic with different object sizes, see
Table I. We also compare the OFO buffer size shown in
Figures 9(b) and 10(b), and quantify the contribution of the
additional subflow with smaller web objects, the amount of
bytes transferred on each subflow relative to the transfer size,
see Figures 9(c) and 10(c). In 3G+WLAN, for smaller web
objects such as Wikipedia, the contribution of the additional
subflow (3G) can be considered negligible, with only up to 2%
of the total transfer. However, the small contribution of the 3G
path for Amazon can cause an impact of up to 7% reduction
in the completion time for BLEST compared to minRTT,
see Table III and Figure 9(b). For Huffington Post, although
the contribution of the additional subflow is still comparably
low (about 2%), the completion time for BLEST is 6%
lower than minRTT. In WLAN+WLAN, BLEST provides an

Table II
PENALISATION AND RETRANSMISSION MECHANISM TRIGGER IN

3G+WLAN WITH BULK TRAFFIC SHOWN IN FIGURE 3

Scheduler Traffic Retrans. Packets

3G+WLAN minRTT Bulk 366.37 0.53 MiB

BLEST 70.3 0.1 MiB

improvement of 3% for Huffington Post and 2% for Amazon
in completion times compared to minRTT. Overall, Table III
illustrates the benefits of BLEST where the lowest completion
time is achieved by the proposed BLEST algorithm for both
heterogeneous and homogeneous scenarios for all the websites
evaluated.

3) CBR: Live video has higher requirements of low latency
compared to other forms of video streaming, e.g., video on
demand. Moreover, live video is more sensitive to network
delay variations and, therefore, impacts the user experience the
most. As we want to assess whether MPTCP could be used
for applications other than bulk traffic, we evaluate live video
performance that is more sensitive to latency. Figures 11(a)
and 11(b) show the average application delay for minRTT
and BLEST for CBR traffic with 1 Mbps. In the 3G+WLAN
scenario, BLEST improved the application delay over minRTT
by 8% for CBR (1 Mbps) and a slight improvement in
OFO buffer size of 8% is also achieved, see also Table 11.
In the same scenario and with the same application traffic,
comparing BLEST to results shown in Figures 4, BLEST
performed worse than OTIAS with CBR, because OTIAS
completely discarded the 3G path. In contrast to that, DAPS
keeps utilising the 3G path. In WLAN+WLAN shown in
Figure 11(b), BLEST performed similar to MPTCP’s default
scheduler as expected.

B. Real Experiments
Finally, we validate the performance of the different sched-

ulers with real-network experiments within the same topology
as shown in Figure 2 for the emulation experiments, but now
constructed over NorNet [20]. To generate background traffic,
we use Virtual Machines (VM) from five commercial cloud
service providers (2x in Europe, 1x in North America and 2x
in Asia) connected via 100 Mbps links, as described in Sec-
tion III, towards the server machine in Figure 12. We also use
consumer hardware with a RaspberryPi connected to a home
DSL provider via WLAN and another interface via 3G/3.5G to
a mobile broadband operator. On the RaspberryPi side, back-
ground traffic from other connected devices congested both
WLAN and 3G. The experimental setup is shown in Figure 12.

Table III
AVERAGE WEB COMPLETION TIME, SEE FIGURES 4, 9, AND 10

minRTT OTIAS DAPS BLEST

Scenario Traffic Completion Time [s]

3G+WLAN Web
Wikipedia 0.421 0.392 0.435 0.337
Amazon 1.60 1.724 1.789 1.503

Huffington Post 4.87 4.858 4.932 4.62

WLAN+WLAN Web
Wikipedia 0.398 0.4107 0.333 0.324
Amazon 1.461 1.621 1.598 1.456

Huffington Post 4.218 4.509 4.393 4.114

Table IV
AVERAGE CBR APPLICATION DELAY, SEE FIGURES 5AND 11

minRTT OTIAS DAPS BLEST

Scenario Traffic [Mbps] Application Delay [ms]

3G+WLAN CBR 1 68 53.2 843.7 62.8

WLAN+WLAN CBR 1 52.18 53.49 54.02 52.24

437Networking 2016

Wikipedia

0.5

1

1.5

Amazon
1

2

3

4

5

Huffpost

2

4

6

8

10

12

14

C
o
m

p
le

tio
n
 T

im
e
 [
s]

BLEST minRTT 3G WLAN

(a) Completion Time

Wikipedia
0

0.2

0.4

0.6

0.8

1

A
ve

ra
g

e
 M

P
T

C
P

 O
F

O
 Q

u
e

u
e

 [
ki

B
]

Amazon
0

10

20

30

40

50

Huffpost
0

50

100

150
minRTT BLEST

(b) MPTCP OFO Queue

Wikipedia
0

0.2

0.4

0.6

0.8

1

B
yt

e
 o

n
 P

a
th

 R
a

tio
 [

%
]

Amazon
0

0.2

0.4

0.6

0.8

1

Huffpost
0

0.2

0.4

0.6

0.8

1

minRTT−3G WLAN BLEST−3G WLAN

(c) Byte on Path: 3G and WLAN
Figure 9. 3G+WLAN for web traffic with Wikipedia, Amazon and Huffington Post with minRTT, BLEST and TCP on 3G and WLAN.

Wikipedia

0.2

0.3

0.4

0.5

Amazon
1

1.2

1.4

1.6

1.8

2

Huffpost

3.5

4

4.5

5

C
o
m

p
le

tio
n
 T

im
e
 [
s]

BLEST minRTT WLAN
0

(a) Completion Time

Wikipedia
0

0.2

0.4

0.6

0.8

1

A
ve

ra
g

e
 M

P
T

C
P

 O
F

O
 Q

u
e

u
e

 [
ki

B
]

Amazon
0

10

20

30

40

50

Huffpost
0

50

100

150
minRTT BLEST

(b) MPTCP OFO Queue

Wikipedia
0

0.2

0.4

0.6

0.8

1

B
yt

e
 o

n
 P

a
th

 R
a

tio
 [

%
]

Amazon
0

0.2

0.4

0.6

0.8

1

Huffpost
0

0.2

0.4

0.6

0.8

1

minRTT−WLAN
0

WLAN
1

BLEST−WLAN
0

WLAN
1

(c) Byte on Path: WLAN0 and WLAN1

Figure 10. WLAN+WLAN for web traffic with Wikipedia, Amazon and Huffington Post with minRTT, BLEST and TCP on WLAN (WLAN0 and WLAN1).

1 Mbps

0

100

200

300

400

500

A
p
p
lic

a
tio

n
 D

e
la

y
[m

s]

BLEST minRTT 3G WLAN

1 Mbps
0

5

10

15

M
a
xi

m
u
m

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

(a) 3G+WLAN

1 Mbps

45

50

55

60

A
p
p
lic

a
tio

n
 D

e
la

y
[m

s]

BLEST minRTT WLAN
0

1 Mbps
0

1

2

3

4

5

M
a
xi

m
u
m

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

(b) WLAN+WLAN
Figure 11. 3G+WLAN and WLAN+WLAN scenarios for 1 Mbps CBR
traffic with minRTT, BLEST and TCP on 3G and WLAN.

Multi-homed
Client

Subflow@3G

India
U.S.A.

Server

Subflow@WLAN

Lab network
3G!

WLAN!

U.K.

Germany

Download

Background
Traffic

Figure 12. Real network experiment setup

0

500

1000

1500

2000

2500

3000

G
o
o
d
p
u
t
[k

iB
p
s]

WLAN 3G minRTT BLEST

0

200

400

600

800

1000

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

(a) 3G+WLAN
Figure 13. 3G+WLAN for bulk traffic in real experiments, see Figure 12.

In our experiments, we used the same parameters and settings
from Section III as well as the same traffic from Section VI-A.
We evaluate the performance of different schedulers under
realistic network conditions, with real-network experiments,
in a constructed non-shared bottleneck scenario as used in the
emulation experiments shown in Figure 2.

1) Bulk: Figure 13 shows the application goodput and OFO
buffer size for bulk traffic with minRTT and BLEST compared
to TCP on 3G and WLAN paths. BLEST achieves on average
18% higher application goodput aggregation, while reducing
the amount of retransmissions by more than 37%, see Table V,
with a slight improvement in OFO buffer size of 3%.

2) Web: Figures 14(a) and 14(b) show the completion times
and OFO buffer sizes for the web transfers. With larger object
sizes, BLEST reduces the completion time by up to 10%,
while reducing the OFO size by up to 25%. Thus, MPTCP’s
performance with BLEST is closer to the WLAN path, only
3% worse than TCP on the best path (WLAN).

3) CBR: Figure 15(a) shows the the average application
delay and OFO buffer size for the 1 Mbps CBR traffic with
both minRTT and BLEST. BLEST improves the application
delay by 11% while reducing the OFO size by more than
20%. We noticed, looking at single experiments, that MPTCP’s
default scheduler had small packet bursts sent over 3G, causing
some spikes in the OFO buffer and, consequently, increasing
the application delay. However, BLEST used the 3G path in
the majority of the cases to send few single packets.

VII. CONCLUSION

Path heterogeneity is rather the rule than the exception with
MPTCP. Even subflows from a single machine can follow
different paths to the destination with distinct delay, capacity,

Networking 2016

Wikipedia

0.2

0.3

0.4

0.5

0.6

0.7

Amazon
1

1.5

2

2.5

3

Huffpost

1

2

3

4

5

6

7

C
o
m

p
le

tio
n
 T

im
e
 [
s]

BLEST minRTT 3G WLAN

(a) Completion time

Wikipedia
0

0.2

0.4

0.6

0.8

1

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

Amazon
0

10

20

30

40

50

Huffpost
0

50

100

150
minRTT BLEST

(b) MPTCP OFO queue
Figure 14. 3G+WLAN for web traffic with Wikipedia, Amazon and Huffin-
gton Post in real experiments, see Figure 12.

1 Mbps

0

200

400

600

800

1000

A
p
p
lic

a
tio

n
 D

e
la

y
[m

s]

BLEST minRTT 3G WLAN

1 Mbps
0

1

2

3

4

5

M
a

xi
m

u
m

 O
F

O
 Q

u
e

u
e

 [
ki

B
]

(a) Delay and MPTCP OFO queue
Figure 15. 3G+WLAN for CBR traffic in real experiments, see Figure 12.

and losses. Such path heterogeneity results in HoL-blocking
at the receiver undermining MPTCP’s overall performance.
To overcome path heterogeneity, MPTCP follows a reactive
approach and penalizes the subflows that cause HoL-blocking,
through the penalisation and retransmission mechanism.

In this paper, we highlighted the limitations of such an
approach for different application types in heterogeneous sce-
nario through emulations and real-world experiments. More-
over, we have implemented and systematically evaluated
scheduling algorithms aiming at mitigating this issue. We
found, however, that neither was able to perform well in all
multi-homing scenarios and traffic use-cases. We therefore
proposed BLEST, a new scheduler based on a BLocking
time ESTimation. Compared to previous proposals, BLEST
directly considers the prospective HoL-blocking as a metric
to minimise, and based on this metric, it dynamically selects
whether it is worthwhile to schedule a packet on a specific
subflow, or to ignore it. This allowed us to eliminate the pe-
nalisation and retransmission by implementing a more robust,
proactive, scheduling metric. We evaluated our algorithm in
emulated and real experiments with different application traffic
(CBR, web and bulk). By comparing BLEST with minRTT,
as well as the alternative DAPS and OTIAS, we showed that
our approach outperfoms all algorithms across the presented
scenarios, achieving its goal of reducing HoL-blocking, and
consequently unnecessary retransmissions. This results in an
increasing application goodput, lower packet delay and com-

Table V
PENALISATION AND RETRANSMISSION ALGORITHM RETRANSMISSIONS’

OVERHEAD IN 3G+WLAN WITH BULK TRAFFIC SHOWN IN FIGURE 12

Scheduler Traffic Retrans. Packets

3G+WLAN minRTT Bulk 33.42

BLEST 21.3

pletion time, and reduced receiver buffer size.
For future work, we believe that both BLEST and OTIAS

follow the right approach towards robust and effective schedul-
ing for heterogeneous scenarios. We want to expand our eval-
uation with the method proposed in [5], add other elements of
heterogeneity, e.g., other network access technologies, evaluate
different application performance metrics, e.g., throughput
aggregation versus delay constraints, increase the number of
subflows and test the approach in mobility scenarios.

REFERENCES

[1] G. Sarwar, R. Boreli, E. Lochin, and A. Mifdaoui, “Performance
evaluation of multipath transport protocol in asymmetric heterogeneous
network environment,” in ISCIT 2012.

[2] C. Raiciu, C. Paasch, S. Barré, A. Ford, M. Honda, F. Duchêne,
O. Bonaventure, and M. Handley, “How Hard Can It Be? Designing
and Implementing a Deployable Multipath TCP,” in NSDI 2012.

[3] S. Ferlin, T. Dreibholz, and O. Alay, “Multi-path transport over hetero-
geneous wireless networks: Does it really pay off?” in GLOBECOM
2014.

[4] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
evaluation of multipath TCP schedulers,” in ACM SIGCOMM Capacity
Sharing Workshop (CSWS), 2014.

[5] C. Paasch, “Improving multipath TCP,” Ph.D. dissertation, UCLouvain
/ ICTEAM / EPL, Nov. 2014.

[6] A. Singh, C. Goerg, A. Timm-Giel, M. Scharf, and T.-R. Banniza, “Per-
formance comparison of scheduling algorithms for multipath transfer,”
in GLOBECOM 2012.

[7] G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, and G. Smith, “Mitigating
receiver’s buffer blocking by delay aware packet scheduling in multipath
data transfer,” in WAINA 2013.

[8] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli,
“DAPS: Intelligent delay-aware packet scheduling for multipath trans-
port,” in ICC 2014.

[9] F. Yang, Q. Wang, and P. Amer, “Out-of-order transmission for in-order
arrival scheduling policy for multipath TCP,” in WAINA 2014.

[10] B. Arzani, A. Gurney, S. Cheng, R. Guerin, and B. T. Loo, “Impact of
path characteristics and scheduling policies on MPTCP performance,”
in WAINA 2014.

[11] S. Barré, C. Paasch, and O. Bonaventure, “Multipath TCP: From theory
to practice,” in IFIP Networking 2011.

[12] C. Paasch, G. Detal, F. Duchêne, C. Raiciu, and O. Bonaventure,
“Exploring mobile/WiFi handover with multipath TCP,” in CellNet 2012.

[13] C. Paasch, R. Khalili, and O. Bonaventure, “On the benefits of applying
experimental design to improve multipath TCP,” in CoNEXT 2013.

[14] C. Raiciu, S. Barré, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving Datacenter Performance and Robustness with
Multipath TCP,” in SIGCOMM 2011, Toronto, ON, Canada.

[15] I. A. Halepoto, F. Lau, and Z. Niu, “Management of buffer space for the
concurrent multipath transfer over dissimilar paths,” in DINWC 2015.

[16] J. Ahrenholz, “Comparison of CORE network emulation platforms,” in
MILCOM 2010.

[17] Sandvine Intelligent Broadband Networks, “Global
Internet Phenomena Report,” Jul. 2013. [Online].
Available: https://web.archive.org/web/20141216103806/https:
//www.sandvine.com/downloads/general/global-internet-phenomena/
2013/sandvine-global-internet-phenomena-report-1h-2013.pdf

[18] Cisco Visual Networking Index, “Forecast and
Methodology, 2014–2019,” 2014. [Online]. Avail-
able: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
ip-ngn-ip-next-generation-network/white paper c11-481360.pdf

[19] A. Botta, A. Dainotti, and A. Pescapé, “A tool for the generation
of realistic network workload for emerging networking scenarios,”
Computer Networks, vol. 56, no. 15, pp. 3531–3547, 2012.

[20] E. G. Gran, T. Dreibholz, and A. Kvalbein, “NorNet core — a multi-
homed research testbed,” Computer Networks, Special Issue on Future
Internet Testbeds, vol. 61, pp. 75–87, Mar. 2014.

439Networking 2016

