
Time-Aware Congestion-Free Routing
Reconfiguration

Shih-Hao Tseng, Chiun Lin Lim, Ning Wu, and Ao Tang
School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, U.S.A.

Email: {st688, cl377, nw276}@cornell.edu, atang@ece.cornell.edu

Abstract—A general model is developed to study how network
routing can be reconfigured quickly without incurring transient
congestion. Assuming both initial and target configurations are
congestion-free, it is known that transient congestion may still
occur during the reconfiguration process if links contain a mix
of traffic flows following old and new routing rules, resulting
from variation of switch reaction time and propagation delay
differences among paths. We consider these factors by explicitly
incorporating timing uncertainty intervals into the model. The
model leads to an optimization problem whose solution represents
a fast (in terms of actual physical time) congestion-free routing
reconfiguration. Our formulation naturally reduces to existing
work of finding minimal number of algorithmic update steps
when the timing uncertainty intervals are very large, meaning
we have little prior knowledge about them. The optimization
problem is shown to be a Mixed Integer Linear Program (MILP)
with a polynomial-size constraint set, and is proved to be NP-
hard. We then further introduce an approximation algorithm
with performance guarantee to solve the problem efficiently.
Several numerical examples are provided to illustrate our results.
In particular, it is demonstrated that timing information can
possibly accelerate the update process, even if more steps are
involved.

I. INTRODUCTION

Network routes are frequently reconfigured to accomplish
tasks such as middlebox traversal constraint satisfaction, vir-
tual machine live migration, and scheduled network main-
tenance [1]–[5]. There are three key challenges for route
reconfiguration, namely optimality, consistency and swiftness.

An optimal update ensures the final routing configuration
is the targeted optimal solution. Network operators derive the
optimal solution from the new network conditions and traffic
demands by solving the well-known multi-commodity flow
problem [6]–[8]. In practice, we have various protocols at-
tempting to achieve the static solution of the multi-commodity
flow problem. Under a distributed setting, routes could be
reconfigured with switches choosing different per-destination
next-hops as in link-state routing protocols such as OSPF [9].
Alternatively, the routes could be predetermined and route
reconfiguration could be done by ingress switches individually
selecting different tunnels as in MPLS [10]. A drawback of
these distributed methods is that the achieved configuration is
not necessarily the desired one [11], [12]. However, having
a centralized controller with a global view, as in a Software
Defined Network (SDN), can guarantee optimality by directly
establishing the optimal routing configuration.

With a centralized controller guaranteeing optimality, the
concern moves on to the transient stages while getting to the
optimal solution, and this is where consistency and swiftness

requirements come in. A consistent update ensures certain
network properties of interest, such as in-order delivery, loop-
freedom or capacity constraint, are satisfied during all tran-
sient stages of the routing reconfiguration [13]–[16]. When
implemented incorrectly, an inconsistent update could be a
very costly exercise to the operator by causing severe service
disruptions that would take days to fully recover [17]. On the
other hand, swiftness refers to the ability to reconfigure the
network from the initial state to the target state in the least
amount of time possible. A swift update prevents the new
routing setup from becoming obsolete due to fast changing net-
work conditions. This becomes increasingly critical especially
for data center networks where traffic dynamics fluctuates very
fast [18].

Recently, several methods have been developed to acquire
timing information in the network [19]–[21], which enable us
to present our approach to achieve fast congestion-free routing
reconfiguration. Given an initial routing configuration and a
target one, our goal is to produce a series of update steps to
move from the initial to the target configuration as quickly
as possible while congesting no link during any update step.
The key problem is that congestion can still occur during the
transient even if both old and new routing configurations are
congestion-free, since traffic flows following the new config-
uration could enter the links containing some traffic flows
keeping the old one. We capture this behavior by explicitly
incorporating timing information such as propagation delay
and time variability into updates.

Our work differs from prior works [15], [22], [23] by
optimizing reconfiguration time instead of the number of
algorithmic update steps. The key motivation behind the
extension is that minimizing the number of update steps
does not necessarily translate to a faster update (Example
3). Timing information is useful for network operators to
achieve faster reconfiguration as it helps rule out the im-
possible scenarios which are still considered by worst-case
analysis [15]. Our framework reduces to SWAN [15] when the
uncertainty dominates the network and we have essentially no
prior timing knowledge. zUpdate [22] is also a special case
of our framework when we have perfect timing information
(zero uncertainty) and the network has layered structure.

II. BACKGROUND AND MOTIVATION

As discussed in Section I, even if initial and the target
configurations both obey capacity constraints, congestion may
still occur during transient stages. There are two main factors
that can lead to transient congestion: propagation delay and
timing uncertainty. In this section, we provide two examplesISBN 978-3-901882-83-8 c� 2016 IFIP

55Networking 2016

(a) The initial configuration (b) The target configuration

(c) Transient congestion (d) A congestion-free update exists
when the bottom flow switches to the
top path

Fig. 1. Differences in propagation delay can cause congestion

(Example 1, 2) to intuitively illustrate how that can happen.
Furthermore, we also demonstrate how timing information can
help achieve faster reconfiguration (Example 3).

A. Causes of Transient Congestion

1) Propagation Delay: When switching traffics between
different paths, the differences between propagation delays of
the paths may incur transient congestion. We will illustrate
this phenomenon with the following example.

Example 1. Consider the network as shown in Fig. 1. The
flow along the top path (Fig. 1(a)) is directly rerouted to the
bottom one (Fig. 1(b)). Assume the bottom path has a shorter
delay, the new flow can arrive at the rightmost link before the
previous flow on the longer path clears there (Fig. 1(c)). The
shared link of the two paths may thus exceed its capacity and
cause congestion.

Propagation delay can cause congestion as Example 1
reveals. However, it also grants better performance. We will
discuss this opportunity in Section II-B with Fig. 1(d).

2) Timing Uncertainty: In practice, network operator can-
not precisely specify when each path reconfiguration is exe-
cuted. This can be due to imperfect synchronization among
different switches. Some other reasons include the inevitable
varying reaction time of different switches for an update
instruction [23] as well as varying processing time that cannot
be accurately predicted [24].

Although accurate prediction is practically hard, estimations
still help order the upcoming events. The arrivals and the
clearances of flows on a link can be depicted as intervals,
and the uncertainty is reflected by the length of the interval,
which converges to zero if the event timing is certain. The
overlapping intervals indicate that the link may consist of flows
in different configurations at the same time. In the extreme
case, all the intervals intersect with each other because of
uncertainty, and we call this scenario order-oblivious.

(a) The initial configuration (b) The target configuration

(c) A congestion-free update (d) Uncertainty causes congestion

Fig. 2. Timing uncertainty can cause congestion

Example 2. Fig. 2 shows a part of a network. The operator
shifts the flow along the top path (Fig. 2(a)) to somewhere
else and routes another flow to the bottom path (Fig.
2(b)). If the two source switches perform the update without
uncertainties, the reconfiguration is congestion-free (Fig. 2(c)).
However, uncertainty of the source switch on the top may
postpone the update and congest the rightmost link (Fig. 2(d)).

B. Benefits of Timing Information

Previous work considers only the order-oblivious worst-case
scenario, which assumes the arrivals of the new flows are
independent of the others [15]. However, better performance
is possible as the timing information reveals the arriving order.

To illustrate this, reversed update in Fig. 1 is considered:
moving the flow from the bottom path to the top one. The
clearance of the old flow finishes earlier than the arrival of the
new flow on the rightmost link (Fig. 1(d)), which suggests a
congestion-free one-shot update. Nevertheless, order-oblivious
scenario rejects this possibility if the shared link cannot
accommodate the two flows simultaneously.

In addition to enlarging the set of feasible update sequences,
timing information in general can help accelerate the reconfig-
uration process. We define the required time as the minimum
time needed to ensure the change has been fully deployed
to the network. For example, the required time for a flow
variation along a path is the maximum time needed for the
new flow to propagate through the path; the required time for
the clearance of an update step is the maximum required time
for the flows varied in the step (is zero if all the flows stay the
same); the required time for an update sequence is the sum of
the required time for the clearance of each step.

Adopting required time can expedite an update. Previous
work finds the least step update sequence without timing
information [15]. At each step, a long fixed period of time
should be waited to avoid the interference between consecutive
steps. Replacing the fixed time with the required time yields
a more aggressive update. Moreover, an update can achieve
shorter required time with more steps.

56Networking 2016

TABLE I
RELEVANT CONFIGURATIONS

Configurations Top Traffic Bottom Traffic
Initial 0 2 0 0 0 0 2 0
Target 0 0 2 0 0 2 0 0

Intermediate 1 1 0 0 1 0 0 0 2
Intermediate 2 1 1 0 0 0 1 1 0
Intermediate 3 1 0 1 0 0 2 0 0

(a) The initial configuration (b) The target configuration

Fig. 3. Minimizing the number of update steps does not necessarily minimize
the update time

Example 3. In Fig. 3, two traffics with the same rate 2 are
swapped in a network without uncertainty. Each traffic has four
candidate acyclic paths to flow through, and the capacities of
the paths are 1, 2, 2, 4 respectively from the top to the bottom.
Each link causes propagation delay 1 unit time except for
the bottom two 5-unit delay links. Table I lists the relevant
configurations. The columns under each traffic are the flows
on the paths. The leftmost column corresponds to the topmost
path, and the rightmost column refers to the bottommost one.

Clearly, one-shot update is infeasible, and thus we need to
stagger the update into multiple steps. Least step update in-
volves two steps by using the bottom spare path (Intermediate
1). The required time for the update is 11 + 11 = 22.

However, we can leverage the top path and shift half top
flow through it first. The bottom flow is also split half to its
target path (Intermediate 2). In the second step, we shift the
flows to the target except for the unit flow along the top path
(Intermediate 3). Clearing the flow on the top path serves as
the last step of the three-step update, which has the required
time 3 + 3 + 3 = 9 faster than the least step solution.

III. FORMULATION

Section II discloses the potential of timing information
to achieve a fast congestion-free reconfiguration. Similar to
[15], we are interested in congestion-free update in upper
bounded number of steps. In contrast to finding the least-
step solution as in [15], we seek the fastest solution. In this
section, we introduce the notations to model the centralized
routing scheme and express our model as an optimization
problem in Section III-B3.

A. Notations
A centralized controller controls a network consisting of

a set V of switches and a set L of directed links. N users
utilize the network, and each user n demands a traffic rate
dn from a source switch to a destination switch (or simply the
source/destination). A set of acyclic paths Pn is predetermined
and established for each user n to communicate between the
source and the destination. The controller performs routing by

TABLE II
DEFINITIONS OF THE MAJOR VARIABLES

For each link l 2 L

cl The capacity on the link l

fl The total flow on the link l

Pl The set of paths passing through the link l

P

⌥
l A P-partition (P�

l , P

+

l)
Pl The collection of all valid P-partitions of Pl

For each user n 2 N

d

n The demanded flow rate into the network for
the user n

P

n The set of acyclic paths for the user n
For each path p 2 P

xp The flow on the path p

zp The binary integer variable for the path p⇥
w

min

p , w

max

p

⇤
The time interval for the updated flow to clear
the path or subpath p

For each level 0 ⇡ ⇡

max (see Section IV)
r⇡ The level variable for the level ⇡

w

max

⇡ The required time for the level ⇡
Other variable

u The required time to finish an update step

specifying the split ratio among the paths in Pn for each user
n at its source. Define P =

S
n2N Pn as all acyclic paths.

For each link l in a path p 2 P , qpl denotes the subpath from
the source to the switch prior to link l. For example, if p =
(v1, l1, v2, l2, v3) connects the source v1 and the destination
v3, qpl

2

= (v1, l1, v2). Define Pl = {p 2 P : l 2 p} as the
paths passing through link l, which is a subset of P .

Define xp as the rate of the flow along a path p. fl
denotes the total flow injecting to link l. Due to the timing
issues discussed in Section II, we assume the delays to pass
through switches and links are interval-ranged. Those delays
are accumulated along the paths and encountered by the
flows. An interval-ranged delay is also assumed for an update
instruction between being issued and becoming effective.

The interval [wmin
p , wmax

p] specifies the time needed for
a packet to go through a path p. The lower bound wmin

p
is derived by adding all the lower bound of the delays for
the source-switch instruction update and the on-path device
transitions. Analogous computation gives the upper bound
wmax

p . Notice that wmax
p is the required time for the path p,

which is introduced in Section II-B. We can define the interval
[wmin

q , wmax
q] for a subpath q in the similar way.

An update sequence generally consists of multiple steps,
which are labeled by step numbers a in chronological order.
The parentheses enclosing a is attached behind a variable to
denote the value of the variable between step a and a + 1.
For example, xp(a) is the flow along path p after the network
applies update step a; u(a) is the required time for the update
to fully switch from step a to a+1 configuration. ta refers to
the time elapsed since the step a is applied to the network.

We may drop the subscript of path p or the step number a
to refer to a vector, such as x and u.

B. Model
1) Objective: Given an upper bound b, our objective is

to find the fastest update sequence in b steps to reconfigure
the network from a given initial state to a given target
state, both static feasible and congestion-free, while remaining

57Networking 2016

congestion-free during the whole transient stage. The initial
and the target routing configurations are denoted by xp(0) and
xp(b) for all p 2 P , respectively. Without loss of generality, we
assume there exists p 2 P such that xp(0) 6= xp(b). Finding
an update sequence in b steps involves deciding a series of
flows xp(a) for all p 2 P and a = 1, . . . , b� 1.

For simplicity, we impose the assumption that the user
traffic demands remain the same during the whole update,
although our framework can easily deal with general cases.
Extending the update mechanism in [15], we also assume the
centralized controller waits the required time u(a) between
consecutive steps a and a + 1 to ensure the full deployment
of the new update (a+1) before performing the next (a+2).

2) Constraints: According to the update mechanism as-
sumption in Section III-B1, each flow can only follow either
step a or a+1 configuration at an arbitrary time ta after each
step a. Congestion-free property requires that all the possible
combinations of the flows at each link do not exceed the
capacity. The number of potential combinations is exponential
to the number of flows [22], thus it is critical to identify the
essential ones. Example 4 shows how timing information helps
select the relevant constraints and avoid enumerating all the
unnecessary combinations.

Example 4. Consider a link l shared by two paths p1, p2 2 P .
For simplicity, we use q1 = qp

1

l and q2 = qp
2

l in this example.
Once updated from step a to a+1, the flow along pi arrives

at the link l within the time interval
⇥
wmin

qi , wmax
qi

⇤
for i = 1, 2.

When the time intervals overlap, such as wmin
q
1

 wmin
q
2

wmax

q
1

, either flow can arrive before the other. That results
in the order-oblivious scenario, and all possible combinations
should be covered by the following four constraints:

xp
1

(a) + xp
2

(a) cl, xp
1

(a+ 1) + xp
2

(a) cl,

xp
1

(a) + xp
2

(a+ 1) cl, xp
1

(a+ 1) + xp
2

(a+ 1) cl,

or we can represent them as

max(xp
1

(a), xp
1

(a+ 1)) + max(xp
2

(a), xp
2

(a+ 1)) cl.

When the two intervals are separated, assuming wmax
q
1

< wmin
q
2

without loss of generality, xp
1

(a + 1) always arrives earlier
than xp

2

(a+ 1). Instead of considering all four combinations
of flows, only three combinations are possible and they lead
to the less strict constraint set:

xp
1

(a) + xp
2

(a) cl,

xp
1

(a+ 1) + max(xp
2

(a), xp
2

(a+ 1)) cl.

To write down the congestion-free constraints, we define
a P-partition of Pl as a pair of subsets P⌥

l = (P�
l , P+

l)
such that P�

l \ P+
l = ; and P�

l [P+
l = Pl. With the

P-partition notation, we can express each of the 2|Pl| order-
oblivious constraints at each link l in the following form:

fl(P
⌥
l , a) =

X

p2P�
l

xp(a) +
X

p2P+

l

xp(a+ 1) cl

where fl(P
⌥
l , a) is the corresponding total flow on the

link. In Example 4, Pl = {p1, p2}, and four possible P-
partitions P⌥

l = (P�
l , P+

l) are ({p1, p2}, ;), ({p1}, {p2}),

({p2}, {p1}), and (;, {p1, p2}), corresponding to the four
fl(P

⌥
l , a) cl constraints respectively.

We then characterize the P-partitions P⌥
l which lead to

possible flow combinations fl(P⌥
l , a). A P-partition is valid if

there exists a time interval [ta, ta+✏] for some constant ✏ > 01,
such that all the flows in P+

l have its update propagated to link
l while those in P�

l still remain in the old configuration. We
define the collection Pl as the set of all the valid P-partitions
of Pl. As demonstrated in Example 4, we can decide the
validity of a P-partition by scrutinizing the arrival intervals
of the flows. In particular, there must exist ta � 0 and ✏ > 0
for a valid P-partition such that ta � wmin

qpl for every p 2 P+
l

and ta+ ✏ wmax
qpl , for every p 2 P�

l . Therefore, we have the
following equation:

max
qpl:p2P+

l

wmin
qpl < min

qpl:p2P�
l

wmax
qpl . (1)

Since |P | is finite, both sides of the inequality are attained
finite, which implies the existence of ✏ by setting it as the
gap. It is clear that a P-partition satisfies the condition (1) if
and only if it is valid.

3) Optimization Problem: Now we summarize the objective
in Section III-B1 and the constraints in Section III-B2 into
an optimization problem. Our objective can be expressed as
an optimization problem of minimizing the objective functionPb�1

a=0 u(a), which is the required time for the resulted update
sequence. At each step a, the required time can be written as

u(a) = max
�
wmax

p : xp(a+ 1) 6= xp(a)

.

By convention, we set the expression to zero if none of the
flows is updated. We create the artificial binary integer variable
zp(a) for each path p, which is one if and only if xp(a+1) 6=
xp(a), so that

u(a) = max
p2P

�
wmax

p zp(a)

. (2)

We name the optimization problem Fast Congestion-free
Reconfiguration problem in b steps (FCR(b), or simply FCR
for an arbitrary b), and formulate it in a form of Mixed Integer
Linear Programming (MILP):

min
b�1X

a=0

u(a)

s.t. fl(P
⌥
l , a) cl 8l 2 L,P⌥

l 2 Pl

0 a b� 1 (3)
X

p2Pn

xp(a) = dn 8n 2 N, 1 a b� 1 (4)

xp(a) � 0 8p 2 P, 1 a b� 1 (5)
xp(0), xp(b) are given 8p 2 P (6)
u(a) � wmax

p · zp(a) 8p 2 P, 0 a b� 1 (7)
zp(a) · ↵p � |xp(a+ 1)� xp(a)|

8p 2 P, 0 a b� 1 (8)
zp(a) 2 {0, 1} 8p 2 P, 0 a b� 1 (9)

1By requiring ✏ > 0, we exclude the case that the network congests for 0
time.

58Networking 2016

where the constant ↵p for path p is set as the bottleneck link
capacity minl2p cl so that zp(a) behaves as expected.

The constraints (3) - (6) are the feasibility constraints. x
satisfying these constraints gives a feasible congestion-free up-
date sequence. We introduce the constraints (7) - (9) to realize
the relationship (2). The optimal value of FCR(b) is written
as OPTFCR(b) for given step upper bound b. One important
observation is that if FCR is feasible in b steps, it is also
feasible for b+ 1 steps and OPTFCR(b+ 1) OPTFCR(b).
Conversely, if the problem is not feasible in b steps, there
exists no solution for fewer steps.

IV. MAIN RESULTS

In Section III-B, we formulate the reconfiguration problem
as an MILP problem FCR. In this section, we present a proof
sketch of the NP-hardness of FCR, which motivates us to
develop an approximation algorithm for FCR. In particular, we
provide a polynomial time relaxation-rounding based approx-
imation algorithm, which involves only the Linear Program
(LP) solutions. We start the section with Theorem 1.

Theorem 1. FCR is NP-hard.

Theorem 1 can be proved by showing that 3-SAT, a
well-know NP-complete problem, polynomial reduces to
FCR. For each 3-SAT instance, there exist a network and its
corresponding initial and target configurations such that the
optimal FCR solution meets the lower bound if and only if
the 3-SAT instance is satisfiable. We omit the details as they
are not the main focus of this work.

Since FCR is NP-hard, we develop an approximation algo-
rithm for FCR as the following. We first define the term kernel.
A kernel A(b) is an algorithm which gives a feasible solution
to FCR(b) when it is feasible; and FCR is not feasible in b steps
if A(b) finds no solution to it. We write SOLA(b) to denote
the objective value of the feasible solution given by the kernel
A(b), and we set SOLA(b) = 1 if the kernel A(b) declares
FCR(b) infeasible. We then propose the algorithm ALG[A](b)
(Algorithm 1) with respect to a kernel A(·), which essentially
picks the best solution from the feasible solutions generated
by A(1), A(2), · · · , A(b).

Algorithm 1 Algorithm ALG[A](b)

1: SOLALG[A](b) min1b̂b SOLA(b̂).
2: if SOLALG[A](b) =1 then
3: Output “no congestion-free solution in b steps.”
4: else
5: Output the solution corresponding to the minimum

SOLA(·).
6: end if

If the required time u(a) for each step given by the kernel A
is upper bounded by a constant Wmax and the required time
wmax

p for each path is lower bounded by a constant Wmin,
we have the following theorem to ensure that ALG[A](b) is a
Wmax

Wmin

-approximation algorithm.

Theorem 2. Let Wmax and Wmin be positive constants and
u belong to the feasible solution to FCR(b) given by a kernel

A(b). ALG[A](b) is a Wmax

Wmin

-approximation algorithm, if the
following conditions hold:

• 0 u(a) Wmax for all 0 a b� 1.
• wmax

p �Wmin for all p 2 P .

Proof. If FCR(b) is infeasible, the kernel algorithm gives
SOLA(b̂) = 1 for all 1 b̂ b and ALG[A](b) declares
infeasibility of FCR(b). If FCR(b) is feasible, there exists
1 b0 b such that OPTFCR(b

0) = OPTFCR(b) and
u(a) > 0 for all 0 a b0� 1. Since u(a) � wmax

p zp(a) for
all p 2 P , we know 9p0 2 P such that zp0(a) = 1, and hence
u(a) � wmax

p0 � Wmin. Denote this optimal u by uOPT. Let
the solution u corresponding to SOLA(b) be ub, we know

SOLALG[A](b) = min
1b̂b

SOLA(b̂)

 SOLA(b
0) =

b0�1X

a=0

ub0(a)

b0�1X

a=0

Wmax
b0�1X

a=0

WmaxuOPT(a)

Wmin
=

Wmax

Wmin

b0�1X

a=0

uOPT(a)

=
Wmax

Wmin
OPTFCR(b

0) =
Wmax

Wmin
OPTFCR(b).

There are generally more than one kernels satisfying the
first condition in Theorem 2. For instance, we have the
kernel RFCR(b), which solves the linear relaxation of
FCR(b), uprounds all the resulted non-zero zp(a) to 1 and
sets u(a) = maxp:zp(a)=1 w

max
p maxp2P wmax

p . In that
case, Wmax = maxp2P wmax

p and ALG[RFCR](b) is a
maxp2P wmax

p

minp2P wmax

p
-approximation algorithm.

Unlike the kernel-independent approximation ratio, the
complexity of ALG[A](b) depends on the complexity of its
kernel. If the kernel A(b) is a polynomial-time algorithm,
ALG[A](b) also terminates in polynomial time. LP-based
kernel, such as RFCR(b), is indeed polynomial-time when the
constraint set is also in polynomial size of its input variables.
Among the constraints of FCR, we only need to find an
polynomial-size expression of the constraint (3) to have a
polynomial-time LP-based kernel. Equivalently, we need to
consider all valid P-partitions P⌥

l and their corresponding total
flows fl(P

⌥
l , a). We develop a polynomial time constraint

set generation algorithm (Algorithm 2) and give a theorem
(Theorem 3) to prove that the generated constraint set is
equivalent to the one derived from all valid P-partitions.

Theorem 3. A solution x satisfies the constraint (3) if and only
if there exists s such that (x, s) is feasible for the constraints
generated by the Algorithm 2.

Theorem 3 is proved by showing that every valid P-
partition can be expressed as (⌃y [⌃�

c ,⌃
+
c [⌃u) and each

(⌃y [⌃�
c ,⌃

+
c [⌃u) is a valid P-partition, where ⌃y,⌃c

and ⌃u are obtained at some iteration of Algorithm 2 and
⌃�

c ,⌃
+
c is a partition of ⌃c. The proof is straightforward,

and we omit the details here because of the space limitation.

Besides the size of the constraint set, the number of input
variables also plays an important role in the time complexity

59Networking 2016

Algorithm 2 Constraint Set Generation
1: for each path p 2 P and 0 a b� 1 do
2: Add a slack variable sp(a) and two slack constraints

sp(a) � xp(a), sp(a) � xp(a+ 1).

3: end for
4: for l 2 L and a = 0 to b� 1 do
5: Pl {p 2 P : l 2 p}
6: Set the updated set ⌃u ;.
7: Set the current set ⌃c ;.
8: Set the yet-updated set ⌃y Pl.
9: Collect wmax

qpl and wmin
qpl for all p 2 Pl to be a list.

10: for w in the list from the smallest to the largest do
11: while w = wmin

qpl for some p 2 ⌃y do
12: Remove p from ⌃y and add it to ⌃c.
13: end while
14: while w = wmax

qpl for some p 2 ⌃c do
15: Remove p from ⌃c and add it to ⌃u.
16: end while
17: Generate a constraint

X

p2⌃y

xp(a) +
X

p2⌃c

sp(a) +
X

p2⌃u

xp(a+ 1) cl.

18: end for
19: end for

of a kernel. RFCR(b) introduces b|P | more artificial variables
zp(a). There exist algorithms introducing fewer variables
while still giving a feasible solution to FCR(b). We now
introduce the concept of level in the following paragraphs and
show how it incorporates timing benefits with fewer additional
variables.

The concept of level is motivated by the constraint (7).
Notice that u(a) is determined by the flow variations on
the paths with the longest wmax

p . Hence, we can partition
P into several level sets and assign each path a level ⇡p

according to the level set it belongs to. Each level ⇡ associates
with a required time wmax

⇡ such that u(a) > wmax
⇡�1 while

any flow along a level ⇡ path changes between step a and
a + 1. In other words, each path p in level ⇡p = ⇡ satisfies
wmax

⇡�1 < wmax
p wmax

⇡ . We define the level of the paths with
the longest required time to be ⇡max and level 0 has wmax

0 = 0.
Without loss of generality, we can set wmax

⇡max

= maxp2P wmax
p

and by definition

0 = wmax
0 < wmax

1 < · · · < wmax
⇡max

= max
p2P

wmax
p .

We create the binary level variable r⇡(a) to indicate whether
the level ⇡ is the highest level involving flow change between
step a and a + 1. r⇡(a) = 1 if and only if a flow along
a level ⇡ path changes and all the flows along higher level
paths remain the same between step a and a + 1. We say
a level variable r depicts a FCR solution x if r⇡(a) = 1
implies xp(a) = xp(a + 1) for every path p with ⇡p > ⇡.
By definition, if the level variable r depicts a feasible solution
x, we can construct a feasible solution (x, u, z) by setting

zp(a) =

⇡maxP
i=⇡p

ri(a)

!
and u(a) =

⇡maxP
i=0

wmax
i ri(a) for all

p 2 P and 0 a b� 1. Hence, finding a feasible (x, u, z)
to FCR is equivalent to finding a feasible x and a level variable
r depicting x.

We can find a feasible x and its depicting level variable r
by the transformed FCR problem with ⇡max levels in b steps
(tFCRh⇡maxi(b)):

min
b�1X

a=0

u(a)

s.t. x 2 X (10)

u(a) =
⇡maxX

i=1

wmax
i · ri(a) 80 a b� 1

r0(a) +
⇡maxX

i=1

ri(a) = 1 80 a b� 1

0

@
⇡maxX

i=⇡p

ri(a)

1

A · ↵p � |xp(a+ 1)� xp(a)|

8p 2 P, 0 a b� 1

ri(a) 2 {0, 1} 80 i ⇡max,

0 a b� 1 (11)

where the constraint (10) represents the constraints (3) - (6).
Consider the subproblem tFCRsh⇡maxi(b) which assumes

u(a) > 0 (or r0(a) = 0) for all steps. We form
tFCRsh⇡maxi(b) by removing all r0(a) from tFCRh⇡maxi(b).
Then we propose the kernel RtFCRsh⇡maxi(b), which solves
the linear relaxation of tFCRsh⇡maxi(b) (relax the constraint
(11)), uprounds the non-zero ri(a) with the highest level to
1 (the other level variables are set to 0) and sets u(a) to its
corresponding wmax

i for each a. RtFCRs h⇡maxi (b) solves a
feasible r for every feasible x, and hence gives feasible u and
z to FCR(b). Theorem 2 suggests that ALG[RtFCRsh⇡maxi](b)

is also a maxp2P wmax

p

minp2P wmax

p
-approximation algorithm. Nevertheless,

we add only b⇡max more variables in RtFCRsh⇡maxi(b) instead
of b|P | in RFCR(b). In practice, kernel RtFCRsh⇡maxi(b) can
even perform near-optimal (much better than RFCR(b)) as
shown in Section V-A and V-B.

We know that ALG[RtFCRsh1i](b) gives the least-step solu-
tion. Under order-oblivious scenario, it gives the same update
steps as the SWAN solution [15]. SWAN considers no timing
information, so its solutions wait at least maxp2P wmax

p be-
tween steps, which equals to wmax

1 . Thus ALG[RtFCRsh1i](b)
performs at least the same as SWAN. Since a multilevel
solution can be truncated to a single level solution, we have
SOLALG[R

tFCRsh1i](b) � SOLALG[R
tFCRsh⇡i](b) if ⇡ > 1.

Thus, by considering multilevel ⇡ > 1, ALG[RtFCRsh⇡i](b)
outperforms SWAN.

V. SIMULATIONS

We have implemented Algorithm 1 and 2 with two different
kernels mentioned in Section IV and the two state-of-the-
art methods regarding transient congestion-free reconfiguration
on ns-3.24 [25]. Together with the optimal solution, they are
summarized below:

60Networking 2016

• OPTFCR: The optimal FCR solution obtained by solving
the MILP problem.

• ALG[RtFCRsh3i]: Algorithm 1 with the LP-based kernel
solving the linear-relaxed transformed FCR subproblem
involving 3 levels (set ⇡max = 3, delete r0(a) and relax
the constraint (11)).

• ALG[RFCR]: Algorithm 1 with the LP-based kernel solv-
ing the linear-relaxed FCR problem (relax the constraint
(9)).

• SWAN: The order-oblivious solution in [15] with the step
waiting time equal to the maximum path required time.

• zUpdate: The switch-based routing method proposed in
[22] for layered structured networks.

Those algorithms are installed on a controller which com-
municates with other OpenFlow switches via OpenFlow pro-
tocol 0.8.9 [26], which is the latest supported version in
ns-3.24, with Multiprotocol Label Switching (MPLS) exten-
sion. Controller conducts tunnel-based routing via extended
switches supporting Weighted Cost Multipath (WCMP). For
the algorithms, CBC-2.9.0 [27] serves as the LP/MILP solver.
All measurements are obtained from a 2.4GHz quad core
laptop with 8 GB memory on Fedora 20.

We compare the algorithms with the step upper bound b =
10. The initial and target configurations for the experiments in
Section V-B and V-C result from user and traffic generation.
Users are set by a Bernoulli process: each source-destination
pair can be selected as a user with a specified probability.
For each selected user, 2 acyclic paths are predetermined by
Yen’s k-shortest-path Algorithm [28] with k = 2 to send
traffic through. Each user uses UDP to send 1 kb packets at a
constant data rate which distributes uniformly between 0 and
1 Mbps. We vary the data rate to form the initial and target
configurations.

Each link capacity is set as 1/(1� �) times the maximum
traffic the link might carry under both configurations. As such,
a scratch capacity rate � for every link is guaranteed, and
hence a congestion-free update sequence exists as shown in
[15]. The scratch capacity rate results from the fact that the
backbone links are in general underutilized [29]. We alter � in
each case to compare the algorithms under different scenarios.

Table III shows some attributes of the algorithms we will
compare in this section. We first examine Example 3 in Section
V-A to compare the performance of the algorithms. In Section
V-B, we show how our algorithm helps a practical large
scale inter-data center network achieve faster reconfiguration
in reasonable time. Finally, we demonstrate how uncertainty
can cause congestion significantly in a data center network
with layered structure in Section V-C.

A. A Simple Example

We solve Example 3 by four applicable algorithms (zUpdate
is excluded because it requires equal delay between layers),
and the results are shown in Table IV.

ALG[RtFCRsh3i](10) attains the 3-step optimal solution
as given by OPTFCR(10). ALG[RtFCRsh3i](10) not only
introduces less variables but also achieves a better solution
than ALG[RFCR](10). By comparing ALG[RtFCRsh3i](10)

TABLE III
COMPARISON OF THE METHODS

Method ALG[R
tFCRsh·i] SWAN zUpdate

Applicable arbitrary arbitrary layered structureNetwork
Update minimum time minimum step minimum stepObjective

Applicable tunnel-based tunnel-based switch-basedRouting
Uncertainty yes yes noTolerance

TABLE IV
PERFORMANCE COMPARISON

Method Solution Update
Steps Time (unit)

OPT
FCR

(10) 10 9
ALG[R

tFCRsh3i](10) 3 9
ALG[R

FCR

](10) 2 22
SWAN 2 22

(a) The B4 topology

(b) The geographical distribution of the Google Data Centers

Fig. 4. The B4 topology of 12 data centers

with SWAN, we find that the update time can be shortened
with the help of the timing information.

By Theorem 2, the theoretical approximation ratio is 11
3 .

In this case, ALG[RtFCRsh3i](10) achieves the ratio 1 and
ALG[RFCR](10) achieves 22

9 .

B. WAN (Inter-Datacenter Network)
Our method is also applicable for wide area networks

(WANs), such as Google B4 [30]. Google implements B4
to connect their data centers [31]. We create a network
consisting of 12 nodes representing those data centers and
19 interconnected links based on the topology described in
[30] (Fig. 4(a)) with the link latency (ms) proportional to their
actual geographical distance as shown in [31] (Fig. 4(b)). We
assume the data centers perform packet switching within a
millisecond, which contributes to the uncertainty intervals.
100 random traffic patterns are generated for both � = 10%

and � = 5% by adding source-destination pair with 0.05
probability. We solve the patterns by ALG[RtFCRsh3i](10),
SWAN and OPTFCR(10). We know OPTFCR(10) gives the
shortest update time in 10 steps. Thus for each test case, we
normalize the results of ALG[RtFCRsh3i](10) and SWAN by
OPTFCR(10) if they have solutions (Fig. 5). We sort the test
cases by the normalized update time of ALG[RtFCRsh3i](10).

61Networking 2016

0 20 40 60 80 100

1

2

3

Test Case

N
or

m
al

iz
ed

U
pd

at
e

Ti
m

e

(a) Scratch capacity rate � = 10%

0 20 40 60 80 100

1

2

3

Test Case

N
or

m
al

iz
ed

U
pd

at
e

Ti
m

e

(b) Scratch capacity rate � = 5%

Fig. 5. The resulted update time normalized by the shortest update time.
Dashed line: ALG[R

tFCRsh3i](10); normal line: SWAN; dotted constant 1
line: OPT

FCR

(10)

When � = 10%, ALG[RtFCRsh3i](10) updates strictly
faster than SWAN in 70 out of 100 cases. Also, we can find
that ALG[RtFCRsh3i](10) takes less than 2 times the shortest
update time given by OPTFCR(10) in general (Fig. 5(a)).

Whilst � = 5%, there exists no guarantee that we can find
a congestion-free update plan in 10 steps. We collect 100
solvable cases and 11 unsolvable ones. SWAN fails in all
11 unsolvable cases, while our method ALG[RtFCRsh3i](10)
and the optimal method OPTFCR(10) can still provide
congestion-free reconfiguration update plans for 7 cases be-
cause of the timing information. In 69% of the solvable
cases, ALG[RtFCRsh3i](10) strictly outperforms SWAN (Fig.
5(b)). Again, we can observe that the normalized update time
of ALG[RtFCRsh3i](10) is mostly less than 2, even though
Theorem 2 promises Wmax

Wmin

only2.
To verify the congestion-free property, we adjust the buffer

size of every network card interface to be only two packets in
ns-3 (one in progress and one arriving). For each solution, we
monitor the packet drop event. No packet is dropped during
the reconfiguration, which implies those methods are truly
congestion-free.

This simple example shows how timing information enables
us to expand the feasible solution set and update faster. In
fact, SWAN considers only the order-oblivious case when the
network is totally uncertain for the operator, which is just an
extreme case of our framework.

C. Layered Structure (Intra-Datacenter Network)
For a layered network, zUpdate [22] searches for a switch-

based least step congestion-free update sequence toward a
target set of configurations described by constraints, which
can be the target state. The flows from the same user do not
interfere with each other, resulting from the assumptions of

2The bound is actually tight for ALG[R
tFCRsh3i](10). The algorithm

tends to choose smaller latency/capacity ratio instead of shorter latency, and
hence we can construct an example showing that the bound is tight.

the layered structure and the absence of uncertainty. Hence,
it is another special case of our framework with uncertainty
issue eliminated. In practice, rule change will not take effect
immediately and thus the deviation can cause congestion
during the transient stage.

Fat-tree topology [32] is a layered network structure pro-
posed for data center networks. We implement a simple fat-tree
network with 1 ms delay links, as shown in Fig. 6(a), to verify
the uncertainty effect. Each circle mark represents a switch
and the users are located at the squares. We select source-
destination pairs as users with probability 0.1. The scratch
capacity rate is set to � = 17% and we find congestion-free
update plans in 5 steps.

We consider two timing uncertainty effects: rule-update pro-
cessing delay and packet switching delay. When we update the
rules of an user at a switch, we encounter a processing delay
uniformly distributed over [0, �d] (ms); as a flow arrives at a
switch v 2 V , it gets delayed by a time uniformly distributed
over [0, �v] (ms) before it leaves the output interface. We apply
both ALG[RtFCRsh3i](5) and zUpdate to solve for congestion-
free update plans under �d = 0.5 and �v = 10. Our method is
tunnel-based, while zUpdate reconfigures the network switch-
by-switch. We assume further that once a new rule-update
instruction is set to a switch, the switch discards the previous
in-progress update and starts adopting the new rules.

The time domain simulations are done in MATLAB. We do
not simulate the link congestion phenomenon, such as buffer-
ing or packet dropping, since those decisions are operator-
dependent. Instead, we simply allow flows to exceed the link
capacity and we define the utilization of a link as the total
flow on the link divided by its capacity. When the utilization
is greater than one, it implies congestion occurs in the network
(not necessarily on the corresponding link).

Both ALG[RtFCRsh3i](5) and zUpdate are examined under
three different network conditions: without uncertainty, low
uncertainty and high uncertainty. We simulate the zUpdate
solution without uncertainty, pick the most utilized link during
the reconfiguration and show its utilization along the time
under each scenario. The simulation results are shown in Fig.
6(b), 6(c) and 6(d). The left charts are the update results of
ALG[RtFCRsh3i](5), while the right ones belong to zUpdate.

Both ALG[RtFCRsh3i](5) and zUpdate are congestion-free
without uncertainty (Fig. 6(b)). However, uncertainty may
result in timing deviation and cause congestion for the zUpdate
solution (Fig. 6(c)). The less precise control we can achieve,
the more congested situation we will encounter. In all three
uncertainty scenarios, we can still update without congestion
by applying our algorithm ALG[RtFCRsh3i](5). It ensures
congestion-free property during the whole reconfiguration by
updating in a slower pace than zUpdate.

VI. CONCLUSION

We formulate a time-aware optimization model to find fast
congestion-free routing reconfiguration plans. Our approach
benefit from given timing information with any level of
uncertainty. Several existing models become special cases of
our formulation when we have perfect timing information or
no timing information at all. This framework helps determine

62Networking 2016

(a) The fat-tree topology

0 20 40 60
0.7

0.8

0.9

1

Time (ms)

U
til

iz
at

io
n

0 5 10 15 20
0.7

0.8

0.9

1

Time (ms)

U
til

iz
at

io
n

(b) Without uncertainty (�d = 0, �v = 0): Both ALG[R
tFCRsh3i](5)

(left chart) and zUpdate (right chart) are congestion-free

0 20 40 60
0.7

0.8

0.9

1

Time (ms)

U
til

iz
at

io
n

0 5 10 15 20
0.7

0.8

0.9

1

Time (ms)

U
til

iz
at

io
n

(c) Low uncertainty (�d = 0.5, �v = 0.5): ALG[R
tFCRsh3i](5) (left

chart) is congestion-free while zUpdate (left chart) congests

0 20 40 60
0.7

0.8

0.9

1

Time

U
til

iz
at

io
n

0 5 10 15 20
0.7

0.8

0.9

1

Time

U
til

iz
at

io
n

(d) High uncertainty (�d = 10, �v = 0.5): ALG[R
tFCRsh3i](5) (left

chart) remains congestion-free and zUpdate (right chart) endures a long
congestion period

Fig. 6. The network topology and the timing charts of the busiest link
utilization

less conservative update schedule. We further provide an effi-
cient approximation algorithm to solve this new optimization
problem, which is proven to be NP-hard, with performance
guarantee. Extensive packet-level simulations confirm our pre-
dictions.

REFERENCES

[1] J. Sherry et al., “Making middleboxes someone else’s problem: Network
processing as a cloud service,” ACM SIGCOMM CCR, vol. 42, no. 4,
pp. 13–24, 2012.

[2] Z. A. Qazi et al., “SIMPLE-fying middlebox policy enforcement using
SDN,” ACM SIGCOMM CCR, vol. 43, no. 4, pp. 27–38, 2013.

[3] C. Clark et al., “Live migration of virtual machines,” in Proc. USENIX
NSDI, 2005, pp. 273–286.

[4] A. Strunk, “Costs of virtual machine live migration: A survey,” in IEEE
SERVICES, 2012, pp. 323–329.

[5] A. Markopoulou et al., “Characterization of failures in an operational IP
backbone network,” IEEE/ACM Trans. Netw., vol. 16, no. 4, pp. 749–
762, 2008.

[6] R. G. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE Trans. Commun., vol. 25, no. 1, pp. 73–85, Jan
1977.

[7] L. Fratta, M. Gerla, and L. Kleinrock, “The flow deviation method:
An approach to store-and-forward communication network design,”
Networks, vol. 3, no. 2, pp. 97–133, 1973.

[8] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional
IP routing protocols,” IEEE Commun. Mag., vol. 40, no. 10, pp. 118–
124, 2002.

[9] J. Moy, “RFC 2328: OSPF version 2,” 1998.
[10] M. Meyer and J. Vasseur, “RFC 5712: MPLS traffic engineering soft

preemption,” 2010.
[11] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing

OSPF weights,” in Proc. IEEE INFOCOM, vol. 2, 2000, pp. 519–528.
[12] A. Pathak et al., “Latency inflation with MPLS-based traffic engineer-

ing,” in Proc. ACM IMC, 2011, pp. 463–472.
[13] M. Reitblatt et al., “Abstractions for network update,” in Proc. ACM

SIGCOMM, 2012, pp. 323–334.
[14] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”

in Proc. ACM SIGCOMM HotSDN Workshop, 2013, pp. 49–54.
[15] C.-Y. Hong et al., “Achieving high utilization with software-driven

WAN,” ACM SIGCOMM CCR, vol. 43, no. 4, pp. 15–26, 2013.
[16] L. Vanbever et al., “Lossless migrations of link-state IGPs,” IEEE/ACM

Trans. Netw., vol. 20, no. 6, pp. 1842–1855, 2012.
[17] Summary of the Amazon EC2 and Amazon RDS service disruption in

the US East region. [Online]. Available:
http://aws.amazon.com/message/65648/

[18] M. Alizadeh et al., “CONGA: Distributed congestion-aware load bal-
ancing for datacenters,” in Proc. ACM SIGCOMM, 2014, pp. 503–514.

[19] N. L. Van Adrichem et al., “OpenNetMon: Network monitoring in
OpenFlow software-defined networks,” in IEEE/IFIP NOMS, 2014.

[20] M. Azizi, R. Benaini, and M. B. Mamoun, “Delay measurement in
OpenFlow-enabled MPLS-TP network,” Modern Applied Science, vol. 9,
no. 3, pp. 90–101, 2015.

[21] C. Yu et al., “Software-defined latency monitoring in data center
networks,” in Passive and Active Measurement. Springer, 2015, pp.
360–372.

[22] H. H. Liu et al., “zUpdate: Updating data center networks with zero
loss,” ACM SIGCOMM CCR, vol. 43, no. 4, pp. 411–422, 2013.

[23] X. Jin et al., “Dynamic scheduling of network updates,” in Proc. ACM
SIGCOMM, 2014, pp. 539–550.

[24] C. L. Lim et al., “Packet clustering introduced by routers: Modeling,
analysis and experiments,” in Proc. IEEE CISS, 2014.

[25] ns-3. [Online]. Available: https://www.nsnam.org/
[26] OpenFlow switch specification 0.8.9. [Online]. Available:

http://archive.openflow.org/documents/openflow-spec-v0.8.9.pdf
[27] CBC (COIN-OR branch and cut). [Online]. Available:

https://projects.coin-or.org/Cbc
[28] J. Y. Yen, “Finding the k shortest loopless paths in a network,”

Management Science, vol. 17, no. 11, pp. 712–716, 1971.
[29] A. Hassidim et al., “Network utilization: The flow view,” in Proc. IEEE

INFOCOM, 2013, pp. 1429–1437.
[30] S. Jain et al., “B4: Experience with a globally-deployed software defined

wan,” ACM SIGCOMM CCR, vol. 43, no. 4, pp. 3–14, 2013.
[31] Google data center locations. [Online]. Available:

http://www.google.com/about/datacenters/inside/locations/index.html
[32] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data

center network architecture,” ACM SIGCOMM CCR, vol. 38, no. 4, pp.
63–74, 2008.

63Networking 2016

