

IFIP Networking 2016
May 17-19, 2016
Vienna, Austria

Proceedings

IFIP Networking 2016 is technically co-sponsored by as well as hosted by:

IFIP Networking 2016 gratefully acknowledges the generous support from the following
patrons:

Proceedings: Patrick Poullie
Cover/preface: Burkhard Stiller

Organizing Committee

General Chair

Peter Reichl, University of Vienna, Austria

Technical Program Chairs

Jörg Ott, Technische Universität München, Germany

Christos Papadopoulos, Colorado State University, USA

Fabio Ricciato, University of Ljubljana, Slovenia

Steering Committee

Jordi Domingo-Pascual, Universitat Politècnica de Catalunya (UPC), Spain (Chair)

Andrea Passarella, IIT-CNR Pisa, Italy

Aiko Pras, University of Twente, The Netherlands

Henning Schulzrinne, Columbia University, USA

Jozef Wozniak, Gdansk University of Technology, Poland

Publication Chairs

Patrick Poullie, University of Zürich, Switzerland

Burkhard Stiller, University of Zürich, Switzerland

Publicity Chairs

Tobias Hoßfeld, University of Duisburg-Essen, Germany

Aruna Balasubramanian, Stony Brook University, USA

Local Arrangements

COSY Research Group, University of Vienna, Austria

Web Responsible

Hannes Weisgrab, University of Vienna, Austria

Technical Program Committee

Rui Aguiar, University of Aveiro, Portugal
Kevin Almeroth, University of California, Santa Barbara, USA
Nils Aschenbruck, University of Osnabrück, Germany
Marinho Barcellos, Federal University of Rio Grande do Sul, Brazil

Robert Bestak, Czech Technical University in Prague, Czech Republic
Jun Bi, Tsinghua University, P.R. China
Andrea Bianco, Politecnico di Torino, Italy
Chris Blondia, University of Antwerp, Belgium
Fernando Boavida, University of Coimbra, Portugal
Gennaro Boggia, Politecnico di Bari, Italy
Olivier Bonaventure, Université catholique de Louvain, Belgium
Jean-Marie Bonnin, Institut Mines Telecom/Telecom Bretagne, France
Christos Bouras, University of Patras CTI&P-Diophantus, Greece
Raouf Boutaba, University of Waterloo, Canada
Torsten Braun, University of Bern, Switzerland
Raffaele Bruno, IIT-CNR, Italy
Maria Carla Calzarossa, University of Pavia, Italy
Antonio Capone, Politecnico di Milano, Italy
Georg Carle, Technische Universität München, Germany
Damiano Carra, University of Verona, Italy
Augusto Casaca, Instituto Superior Técnico in Lisbon, Portugal
Pedro Casas, Telecommunications Research Center Vienna (ftw.), Austria
Claudio Casetti, Politecnico di Torino, Italy
Piotr Cholda, AGH University of Science and Technology, Poland
Florin Ciucu, University of Warwick, United Kingdom
Massimiliano Comisso, University of Trieste, Italy
Marco Conti, IIT-CNR, Italy
Rubén Cuevas, Universidad Carlos III de Madrid, Spain
Italo Cunha, Universidade Federal de Minas Gerais, Brazil
Alessandro D'Alconzo, Telecommunications Research Center Vienna (ftw.), Austria
Alberto Dainotti, CAIDA, UC San Diego, USA
Aaron Yi Ding, University of Helsinki, Finland
Ognjen Dobrijevic, University of Zagreb, Croatia
Christian Doerr, Delft University of Technology, The Netherlands
Jordi Domingo-Pascual, Universitat Politècnica de Catalunya (UPC), Spain
Benoit Donnet, Université de Liège (ULg), Belgium
Idilio Drago, Politecnico di Torino, Italy
Zhenhai Duan, Florida State University, USA
Lars Eggert, NetApp, Germany
Joachim Fabini, Vienna University of Technology, Austria
Marwan Fayed, University of Stirling, United Kingdom
Laura Marie Feeney, Swedish Institute of Computer Science, Sweden
Olivier Festor, INRIA Nancy - Grand Est, France
Michal Ficek, Telefonica I+D, Czech Republic
Markus Fidler, Leibniz Universität Hannover, Germany
Daniel Figueiredo, Federal University of Rio de Janeiro, Brazil
Jorge Finochietto, National University of Córdoba, Argentina
Rossano Gaeta, Università di Torino, Italy
Laura Galluccio, DIEEI, Italy
Miquel Garrich, Centro de Pesquisa e Desenvolvimento em Telecomunicações, Brazil
Silvia Giordano, University of Applied Sciences and Arts of Southern Switzerland (SUPSI),

Switzerland
Domenico Giustiniano, IMDEA Networks Institute, Spain
Ivan Gojmerac, AIT - Austrian Institute of Technology, Austria
Sergey Gorinsky, IMDEA Networks Institute, Spain
James Griffioen, University of Kentucky, USA

Francesco Gringoli, University of Brescia, Italy
Andrei Gurtov, Aalto University, Finland
David Hausheer, TU Darmstadt, Germany
Boudewijn Haverkort, University of Twente, The Netherlands
Markus Hofmann, Bell Labs/Alcatel-Lucent, USA
Chengchen Hu, Xi'an Jiaotong University, P.R. China
Longbo Huang, Tsinghua University, P.R. China
Karin Hummel, ETH Zurich, Switzerland
David Hutchison, Lancaster University, United Kingdom
Esa Hyytiä, Aalto University, Finland
Paola Iovanna, Ericsson, Italy
Hongbo Jiang, Huazhong University of Science and Technology, P.R. China
Yuming Jiang, Norwegian University of Science and Technology (NTNU), Norway
Rahim Kacimi, University of Toulouse, France
Gunnar Karlsson, KTH Royal Institute of Technology, Sweden
Andreas J. Kassler, Karlstad University, Sweden
Hyun-chul Kim, Sangmyung University, Korea
Kimon Kontovasilis, NCSR Demokritos, Greece
Dimitrios Koutsonikolas, University at Buffalo, SUNY, USA
Udo R. Krieger, Otto-Friedrich-University Bamberg, Germany
Fernando Kuipers, Delft University of Technology, The Netherlands
Thomas Kunz, Carleton University, Canada
Axel Küpper, TU Berlin, Germany
Xavier Lagrange, Institut Mines Telecom / Telecom Bretagne, France
Guy Leduc, University of Liege, Belgium
Kenji Leibnitz, NICT, Japan
Jorg Liebeherr, University of Toronto, Canada
Alex Liu, Michigan State University, USA
Bin Liu, Tsinghua University, P. R. China
Jaime Lloret, Universidad Politecnica de Valencia, Spain
Renato Lo Cigno, University of Trento, Italy
Olaf Maennel, Tallinn University of Technology, Estonia
Dario Maggiorini, University of Milano, Italy
Zoubir Mammeri, Paul Sabatier University, France
Mahesh Marina, University of Edinburgh, United Kingdom
Ivan Martinovic, University of Oxford, United Kingdom
Maja Matijasevic, University of Zagreb, Croatia
Deep Medhi, University of Missouri-Kansas City, USA
Michael Menth, University of Tuebingen, Germany
Sándor Molnár, Budapest University of Technology and Economics, Hungary
Edmundo Monteiro, University of Coimbra, Portugal
Luis Muñoz, University of Cantabria, Spain
Maurizio Naldi, University of Rome "Tor Vergata", Italy
Ilkka Norros, VTT Technical Research Centre of Finland, Finland
Philippe Owezarski, LAAS-CNRS, France
Elena Pagani, University of Milano, Italy
Ai-Chun Pang, National Taiwan University, Taiwan
Andrea Passarella, IIT-CNR, Italy
Veljko Pejovic, University of Ljubljana, Slovenia
Colin Perkins, University of Glasgow, United Kingdom
Harry Perros, North Carolina State University, USA
Antonio Pescapé, University of Napoli Federico II, Italy

Dirk Pesch, Cork Institute of Technology, Ireland
Thomas Plagemann, University of Oslo, Norway
George Polyzos, Athens University of Economics and Business, Greece
Ana Pont, Universitat Politécnica de València, Spain
Ioannis Psaras, University College London, United Kingdom
Guy Pujolle, University Pierre et Marie Curie - Paris 6, France
James Roberts, IRT SystemX, France
Jean-Louis Rougier, TELECOM ParisTech / LTCI, France
Gerardo Rubino, Inria/Irisa, France
Stefano Salsano, University of Rome "Tor Vergata", Italy
Ricardo Schmidt, University of Twente, The Netherlands
Jens Schmitt, University of Kaiserslautern, Germany
Jürgen Schönwälder, Jacobs University Bremen, Germany
Stefano Secci, University Pierre et Marie Curie - Paris 6, France
Aruna Seneviratne, University of New South Wales, Australia
Christoph Sommer, University of Paderborn, Germany
Yang Song, IBM Research, USA
Otto Spaniol, RWTH Aachen University, Germany
Ioannis Stavrakakis, National and Kapodistrian University of Athens, Greece
Moritz Steiner, Bell Labs / Alcatel-Lucent, USA
Burkhard Stiller, University of Zürich, Switzerland
Aaron Striegel, University of Notre Dame, USA
Violet Syrotiuk, Arizona State University, USA
Yutaka Takahashi, Kyoto University, Japan
Y. C. Tay, National University of Singapore, Singapore
Chen Tian, Huazhong University of Science and Technology, P. R. China
Joe Touch, USC/ISI, USA
Gareth Tyson, Queen Mary, University of London, United Kingdom
Steve Uhlig, UK, United Kingdom
Piet Van Mieghem, Delft University of Technology, The Netherlands
Sandrine Vaton, Telecom Bretagne, France
Bing Wang, University of Connecticut, USA
Ning Wang, University of Surrey, United Kingdom
Cedric Westphal, Huawei Innovation Center, USA
Joerg Widmer, IMDEA Networks Institute, Spain
Sabine Wittevrongel, Ghent University, Belgium
Lars Wolf, Technische Universität Braunschweig, Germany
Tilman Wolf, University of Massachusetts, USA
Jozef Wozniak, Gdansk University of Technology, Poland
Fan Wu, Shanghai Jiao Tong University, P.R. China
Kui Wu, University of Victoria, Canada
Haiyong Xie, University of Science and Technology of China, P.R. China
Yang Xu, New York University, USA
George Xylomenos, Athens University of Economics and Business, Greece
Marco Zennaro, The Abdus Salam International Centre for Theoretical Physics (ICTP), Italy
Chi Zhang, University of Science of Technology of China, P.R. China
Zhi-Li Zhang, University of Minnesota, USA
Haojin Zhu, Shanghai Jiao Tong University, P.R. China

Table of Content

IFIP Networking 2016

Software-Defined Networking 1
Klaus-Tycho Förster, Ratul Mahajan, Roger Wattenhofer:
Consistent Updates in Software Defined Networks:
On Dependencies, Loop Freedom, and Blackholes..1

Shouxi Luo, Hongfang Yu, Long Luo, Le Min Li:
Arrange Your Network Updates as You Wish ...10

Heng Pan, Gaogang Xie, Peng He, Zhenyu Li, Laurent Mathy:
Action Computation for Compositional Software-Defined Networking19

Mohsen Rezvani, Aleksandar Ignjatovic, Maurice Pagnucco, Sanjay Jha:
Anomaly-Free Policy Composition in Software-Defined Networks......................................28

Resilience and Routing
Wei Koong Chai, Vaios Kyritsis, Konstantinos Katsaros, George Pavlou:
Resilience of Interdependent Communication and
Power Distribution Networks against Cascading Failures...37

Nashid Shahriar, Reaz Ahmed, Shihabur Rahman Chowdhury, Md Mashrur Alam Khan,
Raouf Boutaba, Jeebak Mitra, Feng Zeng:
Connectivity-aware Virtual Network Embedding ...46

Shih-Hao Tseng, Chiun Lin Lim, Ning Wu, Kevin Tang:
Time-Aware Congestion-Free Routing Reconfiguration..55

Olivier Brun, Hassan Hassan, Josselin Vallet:
Scalable, Self-Healing, and Self-Optimizing Routing Overlays ...64

Software-Defined Networking 2
Bela Genge, Piroska Haller:
A Hierarchical Control Plane for Software-Defined Networks-based
Industrial Control Systems ..73

Rhaban Hark, Dominik Stingl, Nils Richerzhagen, Klara Nahrstedt, Ralf Steinmetz:
DistTM: Collaborative Traffic Matrix Estimation in Distributed SDN Control Planes............82

Marc Werner, Johannes Schwandke, Matthias Hollick, Oliver Hohlfeld,
Torsten Zimmermann, Klaus Wehrle:
STEAN: A Storage and Transformation Engine for Advanced Networking Context............91

Heitor Moraes, Marcos Vieira, Italo Cunha, Dorgival Guedes:
Efficient Virtual Network Isolation in Multi-Tenant Data Centers
on Commodity Ethernet Switches...100

Data Plane
Paul Emmerich, Sebastian Gallenmüller, Georg Carle:
FLOWer - Device Benchmarking Beyond 100 Gbit/s ..109

Farnaz Moradi, Christofer Flinta, Andreas Johnsson, Catalin Meirosu:
On Time-Stamp Accuracy of Passive Monitoring in a Container Execution Environment.117

Serhat Nazim Avci, Zhenjiang Li, Fangping Liu:
Congestion Aware Priority Flow Control in Data Center Networks....................................126

Patrick Maillé, Shyam Parekh, Jean Walrand:
Overlaying Delay-Tolerant Service Using SDN...135

Wireless Networking 1
Sangyup Han, Myungjin Lee, Myungchul Kim:
Demand-Aware Centralized Traffic Scheduling in Wireless LANs144

Ann Wang, Muhammad Shahzad, Alex Liu:
A Stochastic Frame Based Approach to RFID Tag Searching..153

Mohamad Yassin, Samer Lahoud, Marc Ibrahim, Kinda Khawam,
Dany Mezher, Bernard Cousin:
Centralized Multi-Cell Resource and Power Allocation for Multiuser OFDMA Networks...162

Information-Centric Networking 1
J. J. Garcia-Luna-Aceves, Maziar Mirzazad Barijough:
Content-Centric Networking Using Anonymous Datagrams ...171

Cesar Ghali, Gene Tsudik, Christopher Wood:
BEAD: Best Effort Autonomous Deletion in Content-Centric Networking..........................180

Jianxun Cao, Dan Pei, Zhelun Wu, Xiaoping Zhang, Beichuan Zhang,
Lan Wang, Youjian Zhao:
Improving the Freshness of NDN Forwarding States..189

Wireless Networking 2
Lynda Zitoune, Stefan Cerovic, Danilo Cerovic, Véronique Vèque, Jean-Marc Kelif:
Performance Evaluation of JT CoMP Approach:
Tractable Model Using Spatial Fluid Modeling..198

Guohao Lan, Sangyup Han, Il-Gu Lee, Myungchul Kim:
AMONET: A Method for Detecting and Mitigating the Data Rate Degradation
Due to Interference Over Wireless Networks..207

Sebastian Schiessl, Farshad Naghibi, Hussein Al-Zubaidy,
Markus Fidler, James Gross:
On the Delay Performance of Interference Channels ...216

Measurement Studies
Džiugas Baltrunas, Ahmed Mustafa Elmokashfi, Amund Kvalbein, Ozgu Alay:
Investigating Packet Loss in Mobile Broadband Networks under Mobility225

Huy Hang, Adnan Bashir, Michalis Faloutsos, Christos Faloutsos, Tudor Dumitras:
"Infect-me-not": A User-centric and Site-centric Study of Web-Based Malware................234

Network Security 1
Hammad Kabir, Jesus Llorente Santos, Raimo Kantola:
Securing the Private Realm Gateway ...243

Cornelius Diekmann, Julius Michaelis, Maximilian Haslbeck, Georg Carle:
Verified iptables Firewall Analysis...252

Rahul Hiran, Niklas Carlsson, Nahid Shahmehri:
Does Scale, Size, and Locality Matter?
Evaluation of Collaborative BGP Security Mechanisms..261

Green Networking
Angelos Chatzipapas, Vincenzo Mancuso:
Measurement-Based Coalescing Control for 802.3az...270

Xiaoda Zhang, Zhuzhong Qian, Sheng Zhang, Kui Wu, Sanglu Lu:
Consolidating Flows with Implicit Deadlines for Energy-Proportional
Data Center Networks...279

Fernando Ramos, Jon Crowcroft, Ian White:
Blending Photons with Electrons to Reduce the Energy Footprint of IPTV Networks288

Network Security 2
Damjan Buhov, Markus Huber, Georg Merzdovnik, Edgar Weippl:
Pin It! Improving Android Network Security at Runtime ..297

Jorge Granjal, Edmundo Monteiro:
End-to-end Transparent Transport-Layer Security for
Internet-integrated Mobile Sensing Devices ...306

Silke Holtmanns, Siddharth Prakash Rao, Ian Oliver:
User Location Tracking Attacks for LTE Networks
Using the Interworking Functionality ...315

Caching
Andrea Araldo, Fabio Martignon, Dario Rossi:
Representation Selection Problem: Optimizing Video Delivery through Caching323

Pietro Marchetta, Jaime Llorca, Antonia Tulino, Antonio Pescapé:
MC3: A Cloud Caching Strategy for Next Generation
Virtual Content Distribution Networks ...332

Andre Gomes, Torsten Braun, Edmundo Monteiro:
Enhanced Caching Strategies at the Edge of LTE Mobile Networks341

Mobile Cooperation
Luca Baldesi, Leonardo Maccari, Renato Lo Cigno:
Optimized Cooperative Streaming in Wireless Mesh Networks ..350

Argyrios Tasiopoulos, Ioannis Psaras, Vasilis Sourlas, George Pavlou:
Tube Streaming: Modelling Collaborative Media Streaming
in Urban Railway Networks...359

Ajita Singh, Yuxuan Xing, Hulya Seferoglu:
Energy-Aware Cooperative Computation in Mobile Devices...368

Sylvia Kouyoumdjieva, Gunnar Karlsson:
Device-to-Device Mobile Data Offloading for Music Streaming ..377

P2P and Content Distribution
Wasiur KhudaBukhsh, Julius Rückert, Julian Wulfheide,
David Hausheer, Heinz Koeppl:
Analysing and Leveraging Client Heterogeneity in Swarming-based Live Streaming386

Pedro Moreira da Silva, Jaime Dias, Manuel Ricardo:
Mistrustful P2P: Privacy-preserving File Sharing over
Untrustworthy Peer-to-Peer Networks ..395

Chang Liu, Ramesh K Sitaraman, Don Towsley:
Go-with-the-Winner: Performance Based Client-Side Server Selection............................404

Truong Khoa Phan, David Griffin, Elisa Maini, Miguel Rio:
Utility-maximizing Server Selection...413

Transport Layer
Stephen McQuistin, Colin Perkins, Marwan Fayed:
TCP Hollywood: An Unordered, Time-Lined, TCP for
Networked Multimedia Applications ..422

Simone Ferlin, Özgü Alay, Olivier Mehani, Roksana Boreli:
BLEST: Blocking Estimation-based MPTCP Scheduler
for Heterogeneous Networks ..431

Yannis Thomas, George Xylomenos, Christos Tsilopoulos, George Polyzos:
Multi-Flow Congestion Control with Network Assistance ..440

Information-Centric Networking 2
Ali Dabirmoghaddam, Mostafa Dehghan, J. J. Garcia-Luna-Aceves:
Characterizing Interest Aggregation in Content-Centric Networks....................................449

Thomas Schmidt, Sebastian Wölke, Nora Berg, Matthias Wählisch:
Let's Collect Names: How PANINI Limits FIB Tables in Name Based Routing.................458

Anat Bremler-Barr, David Hay, Daniel Krauthgamer, Shimrit Tzur David:
Scalable URL Matching with Small Memory Footprint ..467

Network Economics
Toni Mäki, Patrick Zwickl, Martín Varela:
Network Quality Differentiation: Regional Effects, Market Entrance,
and Empirical Testability ...476

George Darzanos, Iordanis Koutsopoulos, George Stamoulis:
Economics Models and Policies for Cloud Federations ..485

Video Streaming
Zakaria Ye, Rachid El-Azouzi, Tania Jimenez, Eitan Altman, Stefan Valentin:
Backward-Shifted Strategies Based on SVC for HTTP Adaptive Video Streaming...........494

Christian Sieber, Poul Heegaard, Tobias Hoßfeld, Wolfgang Kellerer:
Sacrificing Efficiency for Quality of Experience:
YouTube's Redundant Traffic Behavior ..503

Workshop on Internet of People (IoP-W 2016)

Social Aspects of IoP
C. Quadri, M. Zignani, S. Gaito , G. P. Rossi:
Clique-Aware Mobile Social Clouds ..512

L. Maccari:
On the Technical and Social Structure of Community Networks.......................................518

P. Terevinto Charquero, A.Pont Sanjuán, J.A. Gil Salinas, J. Domenech i de Soria:
A Flexible Workload Model Based on Roles of Interactive Users in Social Networks524

N. Yousefnezhad, M. Nagy, N. Asokan:
On Improving Tie Strength Estimates by Aggregating
Multiple Communication Channels..530

Analysis toward Supporting IoP System Design
M. Seufert, T. Hoßfeld, A. Schwind, V. Burger, P. Tran-Gia:
Group-based Communication in WhatsApp..536

M. Hall, S. Caton:
Online Social Engagement at Higher Education Institutes: A German Case Study542

Q. Vinh Dang. C.-L- Ignat:
Performance of Real-time Collaborative Editors at Large Scale: User Perspective548

Authors Index ...563

Consistent Updates in Software Defined Networks:
On Dependencies, Loop Freedom, and Blackholes

Klaus-Tycho Förster
ETH Zurich

foklaus@ethz.ch

Ratul Mahajan
Microsoft Research

ratul@microsoft.com

Roger Wattenhofer
ETH Zurich

wattenhofer@ethz.ch

Abstract—We consider the problem of finding efficient meth-
ods to update forwarding rules in Software Defined Networks
(SDNs). While the original and updated set of rules might both
be consistent, disseminating the rule updates is an inherently
asynchronous process, resulting in potentially inconsistent states.
We highlight the inherent trade-off between the strength of the
consistency property and the dependencies it imposes among rule
updates at different switches; these dependencies fundamentally
limit how quickly the SDN can be updated. Additionally, we
consider the impact of resource constraints and show that fast
blackhole free migration of rules with memory limits is NP-
hard for the controller. For the basic consistency property of
loop freedom, we prove that maximizing the number of loop free
update rules is NP-hard for interval-based routing and longest-
prefix matching. We also consider the basic case of just one
destination in the network and show that the greedy approach
can be nearly arbitrarily bad. However, minimizing the number
of not updated rules can be approximated well for destination-
based routing. For applying all updates, we develop an update
algorithm that has a provably minimal dependency structure.
We also sketch a general architecture for consistent updates that
separates the twin concerns of consistency and efficiency, and
lastly, evaluate our algorithm on ISP topologies.

I. INTRODUCTION

The Internet as a whole is a wild place, full of autonomous
participants. As such, it is naturally difficult to control cen-
trally; instead, routing and congestion control is achieved
through a selection of distributed protocols such as BGP
and TCP. However, distributed protocols degrade performance,
BGP cannot find the least congested path, and TCP will
only crudely approximate the available bandwidth on the path
selected by BGP. As a result, a loss of performance is to be
expected and accepted. Many desirable properties such as drop
freedom of packets, good utilization of links, or packet coher-
ence are not as important as robustness. In contrast, individual
networks that make up the Internet are controlled by single
administrative entites. These include enterprise networks, ISP
networks, data center networks, and wide area networks that
connect the data centers of large organizations. The owners
of these networks want to get the maximum out of their
massive financial investment, which often runs into hundreds
of millions of dollars per year (amortized). Towards this end,
they have started replacing inefficient distributed protocols.

The technological driver to this paradigm shift are so-called
Software Defined Networks (SDNs): In an SDN, the data plane

is separated from the control plane, allowing the decision of
where and how much data is sent to be made independent
of the system that forwards the traffic itself. A centralized
controller monitors the current state of the network, then
calculates a new set of forwarding rules, and distributes them
to the routers and switches [1], [2], [3], [4].

Are centrally controlled SDNs the beginning of the end
of distributed protocols? Not so fast! After all, the central
SDN controller has to inform the switches about updates, and
a network is an inherently asynchronous place, where nodes
might even be temporarily not accessible to the controller [4]!

In this paper we will discuss the problems that arise when
updating rules in an asynchronous SDN-based network. We
will show that despite the central control, distributed com-
puting will have an important role, depending on the kind of
consistency model one expects from the network. One of the
most basic consistency properties is that packets should not
loop. As a result, this property, which we call “loop freedom,”
is the starting point of our discussion. We will then discuss
the broader space of consistency properties and highlight the
inherent trade-off between the strength of the property and
the intricacy of dependencies it induces among the actions
of different switches. These dependencies fundamentally limit
how quickly the SDN can be updated.

We build on our prior work [5], which showed that single-
destination networks can be updated loop free in a distributed
fashion, but did not consider the inherent computational com-
plexity or dynamic architectures. We also extend the view on
the consistency space, especially regarding blackholes.

We start in Section III by formally modeling consistent
single-/multi-destination network updates, and show that not
all updates can be sent out in one flush. In Section IV, we
follow up by studying the NP-hardness of loop free updates.
In Section V, we study maximizing the number of sent out
updates at once and how to build a minimal dependency
structure for applying all updates. Afterwards, in Section VI,
we reveal the trade-off between consistency properties and
update dependencies. Additionally, we consider the impact
of resource constraints and show that fast blackhole free
migration of rules with memory limits, i.e., a packet arriving at
a switch must always have a matching rule to handle it, is NP-
hard. We sketch a general architecture for consistent network
updates in Section VII and conclude with Section VIII, where
we present practical evaluation results.ISBN 978-3-901882-83-8 c� 2016 IFIP

1ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

II. BACKGROUND AND RELATED WORK

From early papers on the topic (e.g., [6], [7]), we can learn
that the primary promises of SDNs were that i) centralized
control plane computation can eliminate the ill-effects of dis-
tributed computation (e.g., looping packets), and ii) separating
control and data planes simplifies the task of configuring the
data plane in a manner that satisfies diverse policy concerns.
For example, to eliminate oscillations and loops that can
occur in certain iBGP architectures, the Routing Control
Platform (RCP) [6], [7] proposed a centralized control plane
architecture that directly configured the data plane of routers in
an autonomous system. However, as we gain more experience
with this paradigm, a nuanced story is emerging. Even with
SDNs, packets can take paths that violate policy [8] and traffic
greater than capacity can arrive at links [3]. What explains
this gap between the promise and these inconsistencies? The
root cause is that promises apply to the eventual behavior of
the network, after the data plane state has been changed, but
inconsistencies emerge during data plane state changes.

Recent works have tackled specific pieces of this consistent
update problem. Reitblatt et al. [8], [9] propose a per-packet
consistency solution that we call “packet coherence”—each
packet is routed entirely using the old rules or the new rules,
and never a mix of the two sets; Katta et al. [10] propose
extensions to this solution to reduce switch memory overhead.
SWAN [3] and [11], [12], [13] propose solutions to ensure
that link capacity is not exceeded. The work of Moses et
al. [14] discusses balancing update performance versus periods
of inconsistencies in a time-based update approach.

We make two contributions to this nascent line of work.
First, beyond looking at consistency properties in isolation,
we outline the broader consistency space and the fundamental
hardness of ensuring different consistency properties. This
perspective helps uncover the trade-off between the strength
of the consistency property and the difficulty of ensuring it.
Second, we investigate in detail loop freedom, a property that
has not been considered despite being basic, except for the
recent parallel work of [15], [16], [17]. The packet stamping
solution of Reitblatt et al. [8] can ensure loop freedom by
adding version numbers to packets, but because it ensures
the much stronger property of packet coherence, it is slow
and has high memory overhead. The whole network needs
to be updated first, before being able to use the system—a
long delay in updating single node induces a long delay for
the complete network. Further, despite the extensions of Katta
et al. [10], which trade-off switch memory for speed, packet
stamping has high memory overhead because it simultaneously
stores both old and new rules. Switch memory is a scarce
commodity, with even future generations of switches reaching
their memory limit easily when optimizing the network [3].
Our solutions, designed specifically for loop freedom, are
faster and memory efficient. Interestingly, a majority of the
motivating examples in [8] do not need packet coherence, only
loop freedom.

Francois et al. [18],[19] consider avoiding transient loops

during the convergence of link-state routing protocols. They
argue that, due to high reliability requirements nowadays,
one should try to avoid all packet losses. For the case of
single-destination rules, they consider the routing tree T of
the destination, layered into ranks equivalent to the depth.
The ranks are then updated after another, causing depth(T)
updates in total. Their mechanism design can achieve fast
convergence even in tier-1 ISPs and is carefully fine-tuned for
practical deployment [20]. Our work allows for updating nodes
from different ranks in one update. As such, our number of
updates is not linked to the maximum chain length in the tree,
but rather on the maximum chain length in the dependencies
imposed by the update in general.

Finally, Vanbever et al. [21] work on a related problem, and
study the migration of a conventional (non-SDN) network to
a new IGP protocol. The main differences to our work arise
from the fact that they impose two restrictions on their model:
First, every node must update all its rules at once. Second, only
a single node may be updated at a time, one after another. In
contrast, we can update individual forwarding entries for many
nodes in parallel.

III. MODEL FOR LOOP FREE ROUTING UPDATES

We model a network as a set of connected routers and
switches (from now on, nodes). Packets must be forwarded to
their destination without loops. More formally, a network is a
directed multi-graph with a set of nodes V , a set of destinations
D ✓ V , and a set of destination-labeled edges s.t. all edges
labeled with the same set of destinations will not contain a
directed loop. These edges form a directed spanning tree with
d being the root and all edges being oriented towards d.

Definition 1: Let T
d

= (V,E
d

) be a directed graph with V
being the set of nodes, d 2 D being the sole destination, and
E

d

being the set of edges each labeled with d. The edge from
u 2 V to v 2 V for destination d is noted as (u, v)

d

. The
labeled directed graph T

d

is a single-destination network, if
T
d

is a spanning tree with all directed edges being oriented
towards d.

Definition 2: Let V be a set of nodes and D ✓ V be
a set of destinations. For all d 2 D, let T

d

= (V,E
d

) be
a single-destination network and let E

D

=

S
d2D

E
d

. Then
the labeled directed multi-graph T

D

= (V,E
D

) is a multi-
destination network.
When a network needs to be updated, some (potentially all)
nodes receive a new set of forwarding rules, leaving the
network in a sort of limbo state. At some point all nodes will
be updated, but until then, the network might not be consistent,
i.e., it might induce loops.

Definition 3: Let T old

D

= (V,Eold

D

) and Tnew

D

= (V,Enew

D

)

be multi-destination networks for the same set of nodes V and
destinations D. Then U

D

= (V,Eold

D

, Enew

D

) is called a multi-
destination network update. If the labeled directed multi-graph
T
D

= (V,Eold

D

[Enew

D

) does not contain any loops of edges
with the same label, then the update U

D

is called consistent
or loop free. A single-destination network update U

d

can be
defined analogously.

2ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

v yxu d

Fig. 1. Illustrating loop freedom. Not all updates can be sent out at once.
Dotted edges are new, solid edges are old.

For an introductory example, consider the five-node single-
destination network in Figure 1. Assume that we want to
update the routing to destination d from the old pattern (solid
edges) to the new pattern (dotted edges). A naı̈ve method is to
send out all updates (e.g., ask v to send packets destined to d to
x) in one shot. However, during application of these updates,
it might happen that x updates its rule before y, introducing
a routing loop between x and y. This loop will eventually
disappear, once y updates its rule, but in an asynchronous
system with possible message delays and losses, we cannot
guarantee when this will happen. Asynchronicity is not a
technicality, as nodes in a production network can often react
slowly (some switches might take up to 100⇥ longer than
average to update [12]), or may not be accessible for some
time to the controller [4]. Thus, solutions in which the network
can quickly start using as many of the new rules as possible,
while maintaining the consistency properties, are preferable.

IV. UPDATES AND DEFAULT RULES

Interval routing and longest-prefix matching are common
routing techniques for large networks. In interval routing
(introduced in [22], cf. [23]), destinations {d1, . . . , d|D|} are
ordered cyclically, and forwarding rules for a node are defined
as disjoint intervals over the destinations, cf. [24], [25], [26].
In contrast, longest-prefix routing defines forwarding rules
via prefixes of the destination IDs, which may overlap: If
two rules are in conflict, the one with the longer matching
prefix is chosen, cf. [27], [28]. Both techniques have great
practical advantages, since multi-destination routing does not
scale well: Even when considering just IPv4 (and not IPv6),
no router on the market could store an individual rule for
every IP–address. Furthermore, this fine–grained information
is not available, since the complete knowledge over a network
is usually restrained to one’s own Autonomous System.

A subset of both techniques is multi-destination routing
with the possibility of default routes. Nodes can either have
individual forwarding rules for each destination or a default
rule, cf. [29], i.e., all packets go to a specific other node (except
for those that reached their destination at the current node).
In this section, we show that maximizing a loop free update
with default rules is an NP-hard problem – and therefore also
NP-hard for both supersets.

Definition 4: Let T
D

= (V,E
D

) be a multi-destination
network and let u, v 2 V . If all outgoing edges from u
point at v in E

D

, then those edges E
u

may be merged into a
default edge, labeled with all labels from D (but packets for a
destination u do not get forwarded from u). We denote such
an edge with (u, v)8. I.e., we remove E

u

from E
D

and add
{(u, v)8}. Let the resulting set of edges of this iterated process
be E

D,8. We call T
D,8 = (V,E

D,8) a multi-destination
network with default routes or multi-default network.

Definition 5: Let T old

D,8 = (V,Eold

D,8) and Tnew

D,8 = (V,Enew

D,8)
be multi-default networks for the same set of nodes V and
destinations D. Then U

D,8 = (V,Eold

D,8, E
new

D,8) is called a
multi-default network update. If the labeled directed multi-
graph T

D,8 = (V,Eold

D,8 [Enew

D,8) does not contain any loops
of edges with the same label, then the update U

D,8 is called
consistent or loop free.

88
8

v1 v2 v3

Fig. 2. Illustrating circular dependencies with default routes. Note that both
in the old and new rules, no packet will loop: E.g., in the old rules, a packet
sent out from v1 will be forwarded to v3, and possibly to v2, but never to
v1 again - as all possible destinations were already reached on the path.

Let us start with an example of just three nodes in Figure
2. We want to update the three old default edges (drawn
solid) to the three new default edges (drawn dotted). However,
due to circular dependencies, not even a single edge can be
updated without causing a loop. This problem can be handled
by relaxing the constraints of default routing: One can prevent
loops by breaking a single (default) rule into one helper rule
for each of the two other destinations, introducing these rules
during the update process and then removing them later. In
general, this is not desirable, as memory constraints on routers
can easily prevent introducing these additional helper rules,
cf. [3]. Nonetheless, one can directly check if a non-empty
update exists: Check each new edge individually, since adding
more edges cannot remove existing cycles. However, even if a
multi-default network can be updated with some edges, it is a
hard optimization problem. We define the problem of updating
multi-default networks as finding the maximum number of
edges that can be included in an update at once:

Problem 1: Let U
D,8 = (V,Eold

D,8, E
new

D,8) be a multi-default
network update. Find a set Emax

D,8 ✓ Enew

D,8 , s.t. i) Umax

D,8 =

(V,Eold

D,8, E
max

D,8) is a loop free multi-default network update
ii) for all loop free multi-default network updates Uother

D,8 =

(V,Eold

D,8, E
other

D,8) with Eother

D,8 ✓ Enew

D,8 it holds that they do
not contain more edges, i.e., |Eother

D,8 | |Emax

D,8 |.
Theorem 1: Problem 1 is NP-hard.

Proof: Our proof is a reduction from the classic NP-
complete satisfiability problem 3-SAT, in the variant with
exactly three pairwise different variables per clause [30]:

1) Consider the routes for destination Y in the triangle-
gadget from Figure 3. If node X

i

updates, then node X
i

cannot update without inducing a loop for Y , and vice
versa. Choosing one of the two update rules corresponds
to a variable assignment for a variable x

i

in the instance
I of 3-SAT: x

i

is either true or false, but not both.
2) Let C be a clause in the instance I of 3-SAT. If there is a

variable assignment S that satisfies I , then updating the
triangle-gadgets for the variables according to S does not
induce a loop for any destination C in the cycle-gadget
for the corresponding clause in Figure 4. If no such
variable assignment S exists, then at least one triangle-
gadget cannot be updated at all without causing a loop
for a destination representing a clause.

3ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Y

8 8

Y

8Y

X

i

Y

i

X

i

Y

Fig. 3. Triangle-gadget for
a variable x

i

. New edges are
drawn dotted, old solid.

C

C

CC

C

C

C

C

Y Y Y

8 8 8 8 8 8

88
8

C

X1 Y1

X1

X2 Y2

X2

X3 Y3

X3

Y

B

Fig. 4. Cycle-gadget for the clause C = (x1 _x2 _x3). All edges not shown point directly at their destination. Only if all
three nodes X1, X2, X3 update their forwarding rule for C, then there is a loop for the label C (via B�X1�X1�X2�
X2 �X3 �Y3 �B). E.g., C = (x1 _x2 _x3) could only induce a cycle via B�X1 �Y1 �X2 �Y2 �X3 �X3 �B.

Y

8 8

Y

8
Y

Z

Z

Z

Z

Z

Z

Z

Z

X

i

Y

i

X

i

Y

X

0
i

X

0
i

Z

i

Z

Fig. 5. Extension of the triangle-gadget for a variable x

i

from Figure 3. New edges are drawn dotted, old solid.
Edges not shown point at their destination. The four possible
cycles for destination Z are i) X

i

, X

0
i

, ii) X

i

, X

0
i

, iii)

X

0
i

, X

0
i

, Z

0
i

, iv) X

0
i

, X

i

, X

i

, X

0
i

, Z

i

. No other new cycles
are introduced.

in sequence conflicting clauses variable false variable true

1 Y, Z, Yi Y, Z, Yi, Xi Y, Z, Yi, Xi

2
Xi, Xi X

0
i, Xi X

0
i, Xi

3
X

0
i, X

0
i X

0
i, Zi X

0
i, Zi

4 Zi ; ;

Fig. 6. Table depicting the fastest possible migration scenarios for the nodes in Figure 5. i)
X

i

cannot update before X

0
i

, ii) X

i

not before X

0
i

, iii) Z

0
i

not before X

0
i

or X

0
i

, and iv)

X

i

or X0
i

must update before X

0
i

and X

i

and Z

i

can all three be updated. Note that Y, Z, Y
i

can always update right away. However, if there are conflicting clauses (i.e., the corresponding
instance is not satisfiable), then neither X

i

nor X

i

can update right away, but must wait for
the next update to be sent out – after the conflicts with the clauses have been cleared, thus
requiring a sequence of length four. Else, one could update with a sequence of length three, as
shown in the two rightmost columns.

3) Let k be the number of variables in I . If k rules from
the nodes X

i

, X
i

in the triangle-gadgets can be updated
loop free, then there exists a variable assignment S that
satisfies the instance I of 3-SAT. If less than k rules can
be updated from the nodes X

i

, X
i

in the triangle-gadgets,
then I cannot be satisfied.

We now examine interval routing updates: Since the for-
warding rules have to be disjoint, we may only apply updates
that result in a valid state for each node. I.e., after applying an
update, the forwarding rules have to cover all destinations and
be disjoint. Removing all current rules and replacing them with
a default rule matches this requirement. In a similar fashion,
we specify longest-prefix matching updates: A new prefix rule
may contain a set of rules it overrides when the rule is inserted
at a node. Else, applying an “update” might not change the
routing behavior of a node at all.

Corollary 1: Maximizing loop free updates for interval
routing or longest-prefix matching is NP-hard.

A. Future Hardware

Even though asynchronicity is inherent in current hardware
solutions (e.g., node failures [4] or highly deviating update
times [12]), one could imagine these issues being tackled in
future work. For example, the method of updating routing
information could be decoupled from the remaining compu-
tational load of a node, resulting in roughly the same update
time for all nodes in a network. Then one would want to find
a shortest sequence of precomputed updates that migrate the
network from the current old to the desired new routing rules.
I.e., the controller will send out a first loop free multi-default
update and wait until all affected edge changes are confirmed.
This sending out of updates is iterated until all nodes switched
their edges to the new desired routing rules. Nonetheless, this

problem of updating a network remains hard, i.e., how long is
the sequence of updates that are sent out:

Problem 2: Let U
D,8 = (V,Eold

D,8, E
new

D,8) be a multi-default
network update. Find a sequence of r loop free multi-default
network updates U1

D,8 = (V,Eold

D,8, E
new1
D,8), U2

D,8, . . . ,
Ur

D,8 with vertex sets V and corresponding pairwise disjoint
new edge sets Enew1

D,8 , Enew2
D,8 , . . . , Enewr

D,8 s.t. Enew1
D,8 [Enew2

D,8 [
· · · [Enewr

D,8 = Enew

D,8 s.t. r 2 N is minimal.
Theorem 2: Problem 2 is NP-hard.

Proof: Note that the construction for the proof of The-
orem 1 is not enough to show that Problem 2 is NP-hard:
While it is NP-hard to decide if k rules from the nodes X

i

, X
i

in the triangle-gadgets can be updated, the whole network
in the proof can always be updated in a sequence of just
two updates. In the first step, one would update all nodes
(except for the nodes X

i

, X
i

in the triangle-gadgets). Then, in
the second step, all the nodes X

i

, X
i

in the triangle-gadgets
can be updated, since the possibility of loops in the gadgets
created from variables and clauses have vanished after the first
update. However, we can extend our construction s.t. for a
solution of sequence-length three, all k triangle-gadgets need
to update either X

i

, X
i

in the first element of the sequence
of updates. Else, a sequence of length four would be needed.
The construction is described in the Figures 5 and 6.

Corollary 2: It is NP-hard to approximate the length of the
sequence of updates needed for Problem 2 with an approxi-
mation ratio strictly better than 4/3.

V. ALGORITHMS FOR LOOP FREE ROUTING UPDATES

We first consider variants for single-destination updates and
then extend the discussion to the other models. While dynamic
updates (i.e., update as much as you can at once) are desirable
due to fault-tolerance (see Section I, e.g., a node might be

4ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

v

u

w d

Fig. 7. Illustrating multi-
ple maximal solutions. The
nodes u and v cannot up-
date together.

u v y z

a b d

Fig. 8. An update of the nodes a and b is a
maximal update, but an update of the nodes
u, v, . . . , y, z and b would be a maximum
update.

temporarily unable to update), we also study how to apply all
updates in this section. Some proofs are in the Appendix.

We start with single-destination updates: Given an up-
date U

d

= (V,Eold

d

, Enew

d

), find a loop free update U
d

=

(V,Eold

d

, E
0

d

) with E
0

d

✓ Enew

d

. We begin by setting E
0

d

= ;:
An update is maximal, if adding more edges from Enew

d

to E
0

d

violates loop freedom. Maximal updates do not have
to be unique, see Figure 7. Node w may switch to the new
rule immediately, but not nodes u and v. If they both switch
immediately, and w is still using the old rule, we get a loop. So,
one of them must wait for w to switch. Either one is fine, i.e.
either u must wait for w (and v, w may switch immediately),
or v must wait for w (and u,w may switch immediately).

Algorithm 1:
1) Check for an edge (u, v)

d

= e 2 Enew

d

if the update
U
d

= (V,Eold

d

, E
0

d

[{e}) is loop free. This loop test can
be performed, e.g., by a DFS from node v to find node
u on edges with label d.

2) If adding e does not introduce a loop, set E
0

d

= E
0

d

[{e}.
3) Repeat step 1 until all edges were checked.
Lemma 1: The update calculated by Algorithm 1 is loop

free and maximal.
While a maximal solution might seem like a good approach at
first glance, it can be far from optimal regarding the number of
updates sent out in one flush, see Figure 8: Even for just one
destination, a maximum update can be of size |Enew

d

| � 1,
but a maximal might just be 2 edges. Can we do better?
Since we want to include as many edges as possible, we
are essentially solving restricted instances of the NP-complete
Feedback Arc Set Problem (FASP) [30]: Given a directed
graph, what is the minimum number of edges that needs to
be removed to break all cycles. FASP can also be considered
in a variant with weighted edges: This allows us to exclude
old edges from removal, by giving all old edges an arbitrarily
high weight, and all new edges a weight of just 1. The best
known approximation algorithm for weighted FAS has an
approximation ratio of O (log n log logn) [31], allowing us
to enhance the greedy algorithm for maximal updates:

Algorithm 2:
1) Set the weight of all edges contained in Eold

d

to 1, and
the weight of all other edges to just 1.

2) Calculate a FAS F for the weighted graph (V,Eold

d

[
Enew

d

) according to [31].
3) Set E

0

d

= Enew

d

\ F .
4) Apply Algorithm 1 to make the update maximal.
Lemma 2: The update calculated by Algorithm 2 is loop

free and maximal. The number of removed edges from Enew

d

can at most be reduced by a factor of O (log n log log n).

Proof: The removal of a FAS implies by definition loop
freedom for the network. However, old edges are not allowed
to be removed: But since all edges contained in the set of
old edges Eold

d

= Eold

d

[
�
Eold

d

\ Enew

d

�
have their weight

set to infinity, there is always an infinitely better solution than
removing any old edge. One would just set the edges being in
E

0

d

to ;, which results in a loop free network by definition.
Maximality is ensured by applying Algorithm 1 afterward,

which also preserves the loop free property for the network,
see Lemma 1. Since Algorithm 1 can only add more edges
to the update, and not remove any, the approximation ratio of
O (log n log logn) from [31] is still valid.

Let us now consider how to apply the whole desired update
for a single destination via sending out multiple smaller loop
free updates. In the worst case, we will need |Enew

d

| loop free
updates, for example when reversing the links in a ring – only
one edge can be updated loop free at a time.

Algorithm 3:
1) Use Algorithm 1/2 to send out a first update E

d,g1 .
2) Once a set of nodes has reported back to the central

controller that they have performed the rule updates
E0

d,g1
✓ E

d,g1 for destination d (and discarded their old
rules Eold

0

d,g1
), the controller can calculate a current set of

old rules. Take into account that the nodes applying the
rules E

d,g1 \E0
d,g1

are still in a limbo state: Either they
applied the update already or not, but it is not known
due to the asynchronicity until they report in.

3) Calculate and send out the next set of update edges
E

d,g2 ✓
�
Enew

d

\E
d,g1

�
with Algorithm 1/2, which are de-

rived from
⇣
V,

⇣
Eold

d

\ Eold

0

d,g1

⌘
[E

d,g1 , E
new

d

\ E
d,g1

⌘
.

4) Iterate the process until all new edges are sent out.
Algorithm 3 computes a series of loop free updates E

d,g1 ,
. . . ,E

d,gk , with
S

k

i=1 Ed,gi = Enew

d

. For Algorithms 1 and 2,
this can be understood as a dynamic dependency forest, which
is minimal in the sense that an edge e 2 E

d,gj cannot be added
to E

d,gi , if i < j.
Lemma 3: Iterating either Algorithm 1 or 2 to construct a

dynamic dependency forest needs at most |Enew

d

| non-empty
updates to switch the network to the new rules in Enew

d

.
Proof: If an update is non-empty, then it contains at least

one new edge. Thus, |Enew

d

| non-empty updates suffice to
update the network to only new rules. We now show that we
can always include at least one new edge in an update, once
all sent out rules are applied. Assume that there is no node that
is currently applying a new rule, i.e., all nodes that received a
new rule for d applied it and reported back to the controller.
Thus, no node is in a limbo state, where the node was ordered
to apply a new rule, but has not successfully reported back yet.
For contradiction, let us now assume that Algorithm 1 does
not find any new edge to be sent out as an update. Thus, all
not yet applied edges were checked, and each would induce a
loop when adding it to the network in an update.

However, at least one edge exists that would not induce a
loop. For ease of notation, let us call nodes that still need to
apply a new rule old, and new elsewise. Note that currently no

5ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

nodes are in limbo. Start from an arbitrary old node, and move
along the set of new rules towards the destination d. Since the
destination is (by definition) new, along this new-rules path,
there must be a last pair of nodes c, p, where the new edge
of c points at p, and c is old and p is new. The edge (c, p)

d

cannot induce a loop: It points only to nodes which are in the
new state already, that is, there are no more old rules which
can cause loops. Therefore, Algorithm 1 would have found at
least one more edge to be included in a non-empty update to
be sent out (and thus, Algorithm 2 as well).

Lemma 4: The structure of the dynamic dependency forest
is minimal: Any e 2 E

d,gj cannot be added to E
d,gi , if i < j.

Proof: W.l.o.g. let e 2 E
d,gj and consider any update

E
d,gi with i < j. The set of edges for E

d,gi was maximal,
i.e., no more edges could have been added, see the Lemmas
1 and 2.

Note that the Algorithms 1, 2, and 3 can be applied to
multi-destination network updates by treating them as a set
of single-destination network updates: We can compute the
variants separately for each label and apply updates in parallel,
as edges with different labels will not interfere with each other
regarding loop freedom.

A more complex case is where individual rules control
routing to multiple destinations and different rules control
overlapping sets of destinations. (For non-overlapping destina-
tion sets, the situation is similar to above; replace destination
sets with a virtual destination.) This situation can emerge in
interval-based routing and longest-prefix matching. One can
still use adapted versions of Algorithm 1 within Algorithm
3 for maximal loop free updates, but those updates might be
empty: In this case, no (loop free) dependency forests to apply
all new rules may exist (cf. the network in Figure 2).

We note that in practice, one should divide the multi-graphs
G = (V,Eold [Enew

) into strongly connected components
(SCCs), e.g., by implementing Tarjan’s algorithm [32]: Edges
from different SCCs cannot be part of the same loop, allowing
to partition the problem into smaller instances. However, this
does not lead to better theoretical approximation bounds.

Also, if we were able to calculate the set of all loops for
each label in the multi-graph G induced by an update G =

(V,Eold[Enew

), then we can even improve the approximation
ratio for some cases: First, consider each loop for each label
as a set of edges, but only add new edges to the sets. The
set of old edges was loop free, meaning there are no empty
sets. Second, solve the Minimum Hitting Set Problem (MHSP)
[30] by choosing a minimum set of new update edges s.t.
each loop is broken. MHSP is NP-complete as well, but a
greedy approach yields an approximation ratio of H(|Enew|)
(with some improvement possible [33]), where H(n) is the
nth harmonic number, H(n) ⇡ lnn, cf. [34].

VI. CONSISTENCY SPACE

We now take a broader view of the range of consistency
properties. Table 9 helps frame this view. Its rows correspond
to consistency properties. We defined loop freedom in Section
III; the others are:

None Self Downstream
subset

Downstream
all

Global

Eventual
consistency

Always
guaranteed

Blackhole
freedom

Impossible Add before
remove

Loop freedom
(Section V)

Impossible (Lemma 5) Rule dep.
forest

Packet
coherence

Impossible (Lemma 6) Per-flow ver.
numbers

Global ver.
numbers [8]

Congestion
freedom

Impossible (Lemma 7) Staged partial
moves [3], [11],

[12], [13]

TABLE 9
BASIC CONSISTENCY PROPERTIES & THEIR DEPENDENCIES.

• Eventual consistency No consistency is provided during
updates. If the new set of rules computed by the controller
are consistent (by any definition), the network will be
eventually consistent.

• Blackhole freedom No packet should be blackholed
during updates. Blackholes occur if a packet arrives at
a switch when there is no matching rule to handle it.

• Packet coherence The set of rules seen by a packet
should not be a mix of old and new rules; they should
be either all old or all new rules.

• Congestion freedom The amount of traffic arriving at a
link should not exceed its capacity. Physical link capacity
is a natural limit, but other limits may be interesting as
well (e.g., margin for burstiness). Congestion freedom
must be maintained without dropping traffic; otherwise,
we can trivially meet any limit.

The consistency properties are listed in rough order of
strength, and satisfying a property lower on the list often (but
not always) satisfies a property above it. Obviously, packet
coherence implies blackhole and loop freedom (assuming
that the old and new rules sets are free of blackholes and
loops). Perhaps less obviously, congestion freedom implies
loop freedom because flows in a loop will likely surpass any
bandwidth limit. Note that flows may be splittable [35].

However, these properties cannot be totally ordered. Packet
coherence and congestion freedom are orthogonal, as packet
coherence does not address congestion, and congestion free-
dom can be achieved with solutions beyond packet coherence.
Blackhole freedom and loop freedom are also orthogonal.
In fact, trivial solutions for one violates the other—dropping
packets before they enter a loop guarantees loop freedom, and
just sending packets back to the sender provides blackhole
freedom but creates loops.

The columns in Table 9 denote dependency structures. They
capture rules at which other switches must be updated before a
new rule at a switch can be used safely. Thus, the dependency
is at rule level, not switch level; dependencies are often circular
at switch level—a rule on switch u depends on a rule on v,
which in turn depends on u for other rules. The structures in
Table 9 are:

• None The rule does not depend on any other update.
• Self The rule depends on updates at the same switch.
• Downstream subset The rule depends on updates at a

subset of switches downstream for impacted packets.
• Downstream all The rule depends on updates at all

6ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

switches downstream for impacted packets.
• Global The rule depends on updates even at potentially

all switches, including those that are not on the path for
packets that use the rule.

These dependency structures are qualitative, not quantita-
tive. For instance, they do not capture the time it might take
for the update to complete. They also assume that switch
resources, such as forwarding table memory or internal queues
for unfinished updates, are not a bottleneck. Resource limita-
tions induce additional dependencies on the order in which
updates can be applied (see below).

In general, update procedures with fewer dependencies (i.e.,
to the left) are preferable. The cells in Table 9 denote whether a
procedure exists to update the network with the corresponding
consistency property and dependency structure. We can prove
that certain combinations are impossible (proofs are in the
Appendix). For example, packet coherence cannot be achieved
in a way that rules depend on updates at only a subset of
downstream switches.

As we can see, weaker consistency properties (towards
the top of Table 9) need weaker dependency structures (to-
wards the left). At one extreme, eventual consistency (i.e.,
no consistency during updates) has no dependencies at all.
Slightly stronger properties, such as blackhole freedom, have
dependencies on other rules at the switch itself. A simple
procedure for blackhole freedom is to add the new rule in
the switch before the old rule is removed. When installed
with higher priority, the new rules become immediately usable,
without wait.

At the other extreme, maintaining congestion freedom re-
quires global coordination. The intuition here is that main-
taining congestion freedom at a link requires coordinating all
flows that use it, and some of these flows share links with
other flows, and so on.

Interestingly, all cells to the immediate right of impossible
cells are occupied in Table 9, which implies that, across past
work and this paper, (qualitatively) optimal algorithms for
maintain all these consistency properties are known. However,
one must not infer from this observation that finding consistent
update procedures is a “solved problem,” for three reasons.
First, some networks may need different properties, for which
effective procedures or even best-case structures are unknown
(e.g., load balancing across links and maintaining packet
ordering within a flow).

Second, even for the properties in Table 9, the picture
looks rosy partly because it assumes plentiful switch re-
sources (e.g., forwarding table memory). If switch resources
are constrained, maintaining consistency becomes harder. For
instance, maintaining blackhole freedom with plentiful switch
memory is straightforward and induces no dependencies across
switches—we can just add all new rules with high priority
before deleting any old rules. But in the presence of switch
memory limits, this becomes challenging because introducing
a new rule at a switch might require removing another rule
first, which can only be removed after having added a new
rule at some other switch.

In fact, we can show that in the presence of memory limits,
even maintaining a simple property like blackhole freedom is
NP-hard. Formally:

Problem 3: Let c
i

2 N be the total interval rule memory of
a switch v

i

, the combined number of interval rules in current
use and the interval rules it can receive in one update. Let
G = (V,E) be the directed graph on which packets can be
routed, with the destinations D ✓ V and the sources S ✓ V
for the packets. In one round, a central controller can send out
a set of any interval rules as an update to each node in the
network. What is the minimum number of rounds, to migrate
the network from a set of blackhole free old rules to a new set
of blockhole free rules, if no blackholes should be introduced
during migration and routing should be possible at all times?

Theorem 3: Problem 3 is NP-hard.
Proof: The proof for Theorem 3 is based on a reduction

from the NP-hard directed Hamiltonian Cycle problem (HC),
cf. [30]: Given a directed graph G = (V,E), is there a
cycle that visits each node exactly once? The construction
with further details is shown in Figure 10: It is possible to
migrate blackhole free in two rounds if and only if there is a
Hamiltonian Cycle in G, thus allowing to first use the cycle
for intermediate routing via default rules, and then installing
the new rules; Else it will take three rounds, one for each new
rule. Thus, it is NP-hard to decide whether one can migrate
in two or three rounds, even if the diameter is just two. The
construction for the memory limit of c = 4 for all nodes in V
can be directly extended to any c 2 N with c � 4.

Furthermore, note that blackhole freedom is easy to guar-
antee for each node in the presence of default rules, if one
does not care about routing: Just set a default rule to any
neighboring node. While packets might not arrive at all (and in
addition violate other consistency properties, e.g., congestion
freedom), blackhole freedom is guaranteed.

Corollary 3: It is NP-hard to approximate the number of
rounds needed for Problem 3 with an approximation ratio

G = (V,E)

vold1

vold2

vold3

vnew1

vnew2

vnew3

Fig. 10. The center node represents the graph G = (V,E) from an instance I

of the directed Hamiltonian Cycle problem, with nodes v1, . . . , vn. The sets
of edges to (n each) and from (n/3 each) the outer six nodes are bundled into
single edges in this figure. Each node in V = S = D has a memory limit c
of four rules, with S being the set of packet sources and D being the set of
packet destinations. The solid edges represent the edges used for the three old
rules 8v 2 V , the dotted edges the edges used for the three new rules 8v 2 V .
All nodes in V currently use the three nodes v

old

1 (for v1, . . . , v(n/3)), vold2
(v(n/3)+1, . . . , v(2n/3)), v

old

3 (v(2n/3)+1, . . . , vn) on the left for 2-hop
routing to the respective destinations in D = V , and want to migrate to use
the nodes v

new

1 (for v1, . . . , v(n/3)), vnew

2 (v(n/3)+1, . . . , v(2n/3)), vnew

3
(v(2n/3)+1, . . . , vn) on the right for 2-hop routing.

7ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

strictly better than 3/2.
Third, the table only shows the qualitative part of the story,

ignoring quantitative effects, which may be equally important.
Even though [8] and [3] both have global dependencies, [8]
can always resolve the dependencies in two rounds, whereas
[3] may need more stages. Because of these three reasons, we
believe that what is presented in this paper is just the tip of the
iceberg for consistent updates in Software Defined Networks.

VII. AN ARCHITECTURE FOR SDN UPDATES

We have argued that maintaining consistency during rule
updates is a key hurdle towards realizing the promise of
SDNs. The question is: how can we accomplish this in a
flexible, efficient manner? A straightforward possibility is that
a single software module (controller) decides on new rules
and then micro manages the update process in a way that
maintains consistency. However, this monolithic architecture
is undesirable because it mixes three separable concerns —
i) the rule set should be policy-compliant; ii) rules updates
should maintain the desired consistency property; iii) the
update process should be efficient, which depends on the
asynchronicity in the network.

We propose an alternative architecture (Figure 11) with
three parts, one for each concern above: i) the rule generator
produces policy-compliant rules; ii) the update method selec-
tor chooses the method of how to apply the rules, based on
data from past updates; and iii) the update executor schedules
the updates efficiently in a dynamic fashion, taking current
asynchronicity into account.

Rule
generator

Update
method selector

Update
executor

Routing policy Consistency property Network behaviour

New
rules

Preferred
method

Fig. 11. Proposed dynamic architecture for SDN updates
The update method selector proceeds in two steps. It
first generates, using the old rules and collected data from
past updates of the network, a model of the current state of
the network. This includes, e.g., the mean and variance of
applying an update to a switch or the amount of unallocated
memory/bandwidth. In the second step, multiple methods of
applying the update are checked and simulated on the model
of the network. Depending on the outcome, a preferred method
for updates is selected: For example, if the current amount of
free memory on switches is small, packet stamping is not a
viable update method. However, if a long chain of links needs
to be reversed loop free, and memory is not an issue, packet
stamping might be the best way to proceed. In this step, it
is also possible to issue helper rules, that are neither in the
old or new set of rules, but allow consistent updates via a
specific method. Consider the network in Figure 2: One can
prevent loops by breaking a single (default) rule into one for
each of the other destinations, introducing these rules during
the update process and then removing them later.
The update executor computes a maximal set of updates
that can be sent out immediately with the selected method,

using the old rules, the new rules, and the desired consistency
property. Once a set of nodes reported back on the successful
implementation of the new rules, another batch of updates
can be sent out into the network. Since the update process
is a dynamic one, faulty nodes only induce a limited delay,
independent parts of the network can still be updated. Nodes
that did not report back yet have to be considered in a limbo
state: Either they applied the new rules already or not, but to
not break consistency properties, one has to assume that they
are in both the new and the old state at the same time.

An example for an update executor would be Algorithm
3: Maximal sets of loop free updates are sent out each time
nodes report back about the successful implementation of
rules, inducing a minimal dependency structure in form of
a dynamic dependency forest.

VIII. EVALUATION

We took Rocketfuel ISP topologies with intra-domain rout-
ing weights [36] and considered link failures in these topolo-
gies, with our goal being loop free network updates from pre-
to post-failure least-cost routing.

Figure 12 plots the distribution of the length of dependency
chains that emerge across ten trials, where a randomly selected
link was failed in each. We see that roughly half of the updates
depended on 0 or 1 other switch, and 90% of all forwarding
rules were dependent on at most 3 other switches. In contrast,
had we used Reitblatt’s procedure [8], which ensures the
stronger property of packet coherence, rules would have had
to wait for all other switches (well over a hundred in some
cases), and a single slow switch can impede everyone.

Fig. 12. Chain lengths in loop free updates in six Rocketfuel topologies. The
x-axis label denotes the ASN.

Francois et al. [18] evaluated their work on a tier-1 ISP with
200 nodes and 800 links, resulting in chain lengths of 14. We
had a chain length of at most 7, even for tier-1 ISPs such as
ASN 1239 (Sprintlink) with 547 nodes and 1647 links.

IX. SUMMARY

We argued that consistent updates in Software Defined
Networks is an important and rich area for future research.
We highlighted the trade-off between the strength of the con-
sistency property and the dependency structure it imposes, and
developed minimal algorithms for loop freedom. For the basic
consistency properties of loop and blackhole freedom, we
showed that fast updates are NP-hard optimization problems.
We also sketched an architecture for consistent updates and
showed that our loop freedom algorithm performs well in
evaluations on ISP topologies.

8ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers for their
helpful comments, which helped us to improve the presenta-
tion of this paper. We would also like to thank Stefan Schmid
and Stefano Vissicchio for pointing us to [15], [16], [17]
shortly before this article was accepted for publication. Klaus-
Tycho Förster was supported in part by Microsoft Research.

REFERENCES

[1] M. Borokhovich and S. Schmid, “How (Not) to Shoot in Your Foot with
SDN Local Fast Failover,” in OPODIS, 2013.

[2] M. Casado, N. Foster, and A. Guha, “Abstractions for software-defined
networks,” Commun. ACM, vol. 57, no. 10, pp. 86–95, Sep. 2014.

[3] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
WAN,” in SIGCOMM, 2013.

[4] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hoelzle, S. Stuart,
and A. Vahdat, “B4: Experience with a globally-deployed software
defined WAN,” in SIGCOMM, 2013.

[5] R. Mahajan and R. Wattenhofer, “On consistent updates in software
defined networks,” in HotNets, 2013.

[6] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and
J. van der Merwe, “Design and implementation of a routing control
platform,” in USENIX NSDI, 2005.

[7] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and K. van der
Merwe, “The Case for Separating Routing from Routers,” in SIGCOMM
Workshop on Future Directions in Network Architecture (FDNA), 2004.

[8] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker,
“Abstractions for network update,” in SIGCOMM, 2012.

[9] M. Reitblatt, N. Foster, J. Rexford, and D. Walker, “Consistent updates
for software-defined networks: Change you can believe in!” in 10th ACM
Workshop on Hot Topics in Networks, 2011.

[10] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”
in HotSDN, 2013.

[11] S. Brandt, K.-T. Förster, and R. Wattenhofer, “Augmenting anycast
network flows,” in ICDCN, 2016.

[12] X. Jin, H. Liu, R. Gandhi, S. Kandula, R. Mahajan, J. Rexford,
R. Wattenhofer, and M. Zhang, “Dionysus: Dynamic Scheduling of
Network Updates,” in SIGCOMM, 2014.

[13] S. Brandt, K.-T. Förster, and R. Wattenhofer, “On Consistent Migration
of Flows in SDNs,” in INFOCOM, 2016.

[14] T. Mizrahi, O. Rottenstreich, and Y. Moses, “TimeFlip: Scheduling
network updates with timestamp-based TCAM ranges,” in INFOCOM,
2015.

[15] A. Ludwig, J. Marcinkowski, and S. Schmid, “Scheduling Loop-free
Network Updates: It’s Good to Relax!” in PODC, 2015.

[16] S. Vissicchio and L. Cittadini, “FLIP the (Flow) Table: Fast LIghtweight
Policy-preserving SDN Updates,” in INFOCOM, 2016.

[17] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid, “Transiently Secure
Network Updates,” in Sigmetrics, 2016.

[18] P. François and O. Bonaventure, “Avoiding transient loops during the
convergence of link-state routing protocols,” IEEE/ACM Trans. Netw.,
vol. 15, no. 6, pp. 1280–1292, 2007.

[19] P. François, C. Filsfils, J. Evans, and O. Bonaventure, “Achieving sub-
second IGP convergence in large IP networks,” Computer Communica-
tion Review, vol. 35, no. 3, pp. 35–44, 2005.

[20] P. Francois and O. Bonaventure, “Loop-free convergence using oFIB,”
Internet-Draft, IETF, 2011.

[21] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and O. Bonaventure,
“Lossless Migrations of Link-state IGPs,” IEEE/ACM Trans. Netw.,
vol. 20, no. 6, pp. 1842–1855, Dec. 2012.

[22] N. Santoro and R. Khatib, “Routing without routing tables,” SCS-TR-6,
Carleton University, Ottawa, Tech. Rep., 1982.

[23] C. Gavoille, “A survey on interval routing,” Theor. Comput. Sci., vol.
245, no. 2, pp. 217–253, 2000.

[24] M. Flammini, G. Gambosi, and S. Salomone, “Boolean Routing,” in
WDAG, 1993.

[25] P. Fraigniaud and C. Gavoille, “A characterization of networks support-
ing linear interval routing,” in PODC, 1994.

[26] J. Van Leeuwen and R. B. Tan, “Interval routing,” The Computer
Journal, vol. 30, no. 4, pp. 298–307, 1987.

[27] D. Comer, Ed., Internetworking with TCP/IP - Principles, Protocols,
and Architectures, Fourth Edition. Prentice-Hall, 2000.

[28] A. S. Tanenbaum and D. J. Wetherall, Computer Networks, 5th ed.
Upper Saddle River, NJ, USA: Prentice Hall Press, 2010.

[29] V. Fuller and T. Li, “RFC 4632, Classless Inter-domain Routing (CIDR):
The Internet Address Assignment and Aggregation Plan,” 2006.

[30] M. R. Garey and D. S. Johnson, A Guide to the Theory of NP-
Completeness. New York, NY, USA: W. H. Freeman & Co., 1990.

[31] G. Even, J. Naor, B. Schieber, and M. Sudan, “Approximating minimum
feedback sets and multicuts in directed graphs,” Algorithmica, vol. 20,
no. 2, pp. 151–174, 1998.

[32] R. E. Tarjan, “Depth-first search and linear graph algorithms,” SIAM J.
Comput., vol. 1, no. 2, pp. 146–160, 1972.

[33] A. Srinivasan, “Improved approximations of packing and covering
problems,” in STOC, 1995.

[34] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics: A
Foundation for Computer Science, 2nd ed. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 1994.

[35] R. Cohen and G. Nakibly, “Maximizing restorable throughput in mpls
networks,” IEEE/ACM Trans. Netw., vol. 18, no. 2, pp. 568–581, 2010.

[36] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, “Inferring link
weights using end-to-end measurements,” in IMW, 2002.

X. APPENDIX FOR SECTION 5
Proof of Lemma 1:

We start with loop freedom: The invariant of the algorithm
is that the current edges in the network are without loops.
The invariant is true at the beginning, since no new edge is
included, and the old edges form an in-tree to the destination
d. When a new egde (u, v)

d

is added, a now existing loop must
contain this edge, i.e., there is a path from v to u. If a DFS
starting at v cannot reach u, then there is no path from v to u,
and the network is loop free. We now look at maximality: The
algorithm checks each edge once if it can be added without
inducing a loop. Consider an edge e = (x, y)

d

, that is being
tested w.l.o.g. as the i-th edge, but cannot be added to the
network, because it would induce a loop x, y, z, . . . , x. If e is
being tested again after the (j� 1)-th edge, with i < j, could
e be added to a loop free network without inducing a loop in
the network? No, because it would still induce the same loop,
as edges were never removed, only possibly added.

XI. APPENDIX FOR SECTION 6
Lemma 5: Loop freedom depends on other nodes.

Proof: In Figure 1, node x depends on node y.
Lemma 6: Packet coherence depends on all non-trivial

downstream switches.
Proof: Let u be a switch router that is non-trivial, in the

sense that u is affected by a rule change, i.e. u’s old rule
differs from its new rule. If the source starts to route packets
according to the new rule, switch u will forward the packets
wrongly, or drop them, which is not packet coherent.

Lemma 7: Congestion freedom depends on all switches.
Proof: Let f be a flow that wants to use a new path p,

or increase its capacity on an existing path. The network may
be able to adapt to flow f , however, only if other flows use
different paths as well, which in turn may (recursively) move
even other flows (some of which have no single switch/link in
common with the new path p). As such, any f may potentially
depend on any single switch in the network.

9ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Arrange Your Network Updates as You Wish
Shouxi Luo, Hongfang Yu, Long Luo, Lemin Li

Key Laboratory of Optical Fiber Sensing and Communications, Ministry of Education
University of Electronic Science and Technology of China, Chengdu, P. R. China

Abstract—Updating network configurations responding to dy-
namic changes is still a tricky task in SDN. During the update
process, in-flight packets might misuse different versions of rules,
and “hot” links could be overloaded due to the unplanned update
order. As for the problem of misusing rule, recently proposed
suggestions like two-phase mechanism and Customizable Consis-
tency Generator (CCG) have provided generic and customizable
solutions. Yet, there does not exist an approach that is flexible to
avoid the transient congestion on hot links respecting to diverse
user requirements like guaranteeing update deadline, managing
transient throughput loss, etc.; controllers urgently need one.

In this paper, we propose CUP, Customizable Update Planner,
to seek the solution. Different from prior approaches that adopt
fixed designs for a single purpose like optimizing the update speed
(e.g., Dionysus) or avoiding congestions (e.g., zUpdate, SWAN),
CUP introduces generic linear programming models to formulate
user-specified requirements and the update planning problem. By
solving these customized models, CUP is able to plan network
updates according to a large fraction of user requirements, such
as guaranteeing deadlines, prioritizing operation orders, man-
aging throughput loss, etc., while avoiding transient congestion.
We prototype CUP on Ryu and employ it to arrange updates
for networks built upon Mininet. Results confirm the flexibility
of CUP while indicating that it always obtains the “best” update
plans following the user’s wish.

I. INTRODUCTION

Reconfiguring forwarding rules in networks responding to
dynamic demands such as periodical traffic optimization, un-
expected failover, is always a tricky task for operators [1]–
[6]. Recent trends toward Software Defined Networking
(SDN) seem to provide a promising solution for network
management—with a logical central controller, operators can
directly operate the forwarding rules on all switches. Even so,
the network is still an asynchronous system in essence. It is
difficult to synchronize the changes to flows from different
ingress switches. Therefore, when migrating a group of flows
to their new paths, even if the network is safe both before and
after the reconfiguration, some “hot” links could be overloaded
during the update process in case new flows move in before
those old ones move out [2]–[4].

As an example, consider the toy case shown in Fig. 1.
On executing WAN optimizations [3], the controller wants to
update the network’s configuration from Fig. 1a to Fig. 1b.
For simplicity, we assume that the network uses tunnel-
based routing and all necessary tunnels have already been
established. If the controller carries out the update in one-shot,
link S4-S3 or S1-S3 might be overloaded during the update,
corresponding to the case that switch S4 happens to change
F3 to its new path before S1 moving F1 away from link S4-
S3, or vice versa. The congestion can not be evaded by simply

(a) Current State (b) Target State

Fig. 1: A network update example. Each link has 10 units of
capacity and flows are labeled with their sizes. If the controller
carries out the update in one-shot, link S1-S3 or S4-S3 will
be overloaded during the update.

letting F1 and F3 be switched to their new paths at exactly the
same time [7]—because the incoming packets of F2 and F3,
together with the in-flight packets of F1, could still congest
S4-S3 until F1 drains; and so does S1-S3.

Such a type of congestion disappears following the com-
pletion of update, but its destructibility lasts long—burst
traffic leads to serious queuing delay, and even, packet drops,
which will let involved TCPs’ windows collapse, or worse,
kill flows. These bad influences are not desirable, especially
for real-time applications. Accordingly, carrying out network
reconfigurations without introducing transient congestion is a
fundamental function required by SDN controller.

Planning network updates to avoid transient congestion is
never an easy task. Recent approaches like zUpdate [2] and
SWAN [8] try to solve the problem by introducing a sequence
of intermediate configurations, among which, the update from
a former stage to the latter must always be congestion-free. To
ensure such a stage sequence exists, they require part of the
link capacity to be left vacant, which results in a great waste of
link capacities [8, 9]. Furthermore, the intermediate configura-
tions they introduce will greatly complicate the update process,
and might even disturb user’s QoS—e.g., an intermediate path
might have a larger latency than both the initial and target
ones. In contrast, Dionysus [3] and ATOMIP [4] address the
challenges by scheduling updates in thoughtful orders without
bringing in additional stages. For instance, by executing the
update illustrated in Fig. 1 following the 3-round sequence of
[F4→F1→F3], no link would be overloaded and no extra paths
are introduced. Order arrangement provides a more practical
solution. However, it is not always the panacea because such
a congestion-free operating sequence does not always exist.
Indeed, due to the various update scenarios and user demands
that a controller would deal with, simply arranging the update
operations, or introducing intermediate stages, is far from
enough for a practical solution. We argue that, a practical
planner should have these properties.ISBN 978-3-901882-83-8 © 2016 IFIP

10ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

1) Effective to handle deadlock and deadline. First of all, the
planner must be able to find feasible congestion-free solutions
for any given task. On one hand, in some update scenarios,
there does not exist a congestion-free sequence [3, 4]. For
instance, in the case of Fig. 1, if the demand of either F1
or F3 increases to 6, it is impossible to migrate the network
to its target routing state by arranging the execution order
without overloading S1-S3 or S4-S3. This is a deadlock in
update planning. On the other hand, even though congestion-
free schedules are found, they may not meet the deadline
requirements. This is because to remove overloads, the con-
troller can not switch flows belonging to round-(i + 1) to
their new paths until flows moved out from these paths in
round-i have exited. Suppose in-flight packets require about τ
units of time to exit from a path on average; then, it would
take about k · τ for the entire network to perform a k-round
update, even without considering the time of rule installations.
Such an update delay/duration might be unacceptable for time-
critical cases like failover routing [10]. Therefore, on planning
updates, the planner should have the ability to break deadlocks
and guarantee deadlines.

Fortunately, for any update, by limiting the rates of some
flows at their senders or traffic shapers, controllers can always
obtain a congestion-free update sequence that involves fewer
rounds and satisfies the deadline requirements. Indeed, there
is a trade-off between the time an update takes, and the
throughput the network has to drop (induced by congestion
or rate-limiting). For example, one can carry out the update
request demonstrated in Fig. 1 within 2 rounds by limiting the
rate of either F2 or F4 to 0 (e.g., when F2’s rate is limited to 0,
[F3→F1, F4] is congestion-free), or even perform the update
within 1 round by limiting the rate of both F2 and F4 to 0.
This example gives us a valuable insight: the planner should
have the ability to trade throughput loss for update speed.

2) Expressive to deal with user-specified requirements.
As infrastructure, today’s network is shared by numerous
customers while simultaneously carrying various kinds of
traffic. To be a universal tool for controller, the update planner
should be extensible and easy to adapt to user-specified
requirements. As an example, consider the case of removing
transient congestion for the update illustrated in Fig. 1 again.
Provided the reconfiguration is time-sensitive and required to
complete within 1 round, the controller has to reduce some
flow rates to avoid congestion. Suppose this is an instance
of inter-datacenter traffic optimization [8], in which both F1
and F3 are interactive traffic while F2 and F4 are background
traffic, and the operator prefers to minimize the amount of
interactive traffic disturbed by the update. In such a scenario,
the planner should temporarily reduce the rates of F2 and F4
to 0 to execute the update, i.e., limit the rates of {F1, F2,
F3, F4} to {5, 0, 5, 0}. On the contrary, if F2 and F4, instead
of F1 and F3, are interactive, the result would be {1, 4, 1, 4}.
As another example, if all flows share the same class and a
fairness alike policy is expected [11], the planner should set
their rates to { 5

14 ,
4
14 ,

5
14 ,

4
14}, with the target of letting the

decrease of throughput be fairly shared in proportion.
Indeed, due to network’s diversity, such a special constraint

of rate-limiting is only the tip of an iceberg. In practice, there
are plenty more kinds of user-specified demands (about the
update execution time or throughput loss) that a controller
would deal with. It follows that, on planning rate-limiting
schemes, the planner should be flexible enough to suit various
update scenarios, as well as user-specified demands.

3) Efficient to scale up. Last but not least, to be practical,
the planner must be time-efficient to find feasible solutions
for update requests in time. In consideration of that the size
of today’s network might be really huge (e.g., Datacenter or
backbone), the planner needs to easily scale up.

As the first step, this paper proposes CUP, Customizable
Update Planner, to help controller deal with various updating
requirements. CUP suggests adopting generic methods such as
two-phase mechanism [5, 6] to enforce rule consistency, and
focuses on eliminating the transient congestion during updates.
Distinguished from existing solutions proposed for fixed tar-
gets, CUP is effective and expressive to deal with deadlock,
deadline, prioritization, and many other user-specified require-
ments as Table I summaries (Note that, proposals focusing on
enforcing rule consistency are not listed, e.g., CCG [12].). We
analyze various demands and realize that, besides consistency,
what users/operators concern about the implementation of an
update, no matter how complex it is, generally involves two
types of fundamental issues—i) when a flow could enjoy its
new path(s) and ii) how its throughput would be impacted
during the update process?

At a high-level, CUP provides an expressive user-friendly
language, with which, customers and operators can describe
their own requirements easily and explicitly. When the network
is to be updated, CUP maps these high-level requirements into
the essence (involved) flows, and translates them into low-
level linear constrains. At its core, CUP builds a couple of
generic linear programming models to formulate the update
request while capturing constrains from users. Via solving
these customized models, CUP obtains a congestion-free up-
date execution plan that explicitly follows the user’s wish.

Roughly, CUP’s model involves two parts, Order Scheduler
and Rate Manager, which respectively answer the two basic
problems mentioned above. On planning an update, Order
Scheduler first determines the operation order respecting to
time-related requirements. If congestion-free sequences are
found, Order Scheduler outputs the one involving the mini-
mum rounds; otherwise, it chooses the sequence causing least
overload on links. For the overloaded traffic, Rate Manager
then figures out the optimal rate-limiting scheme that is able
to erase the congestion while satisfying all throughput-related
requirements. As the core of both Order Scheduler and Rate
Manager is to solve a single Linear Program (LP), with
high performance LP solvers, CUP obtains solutions within
polynomial time and is able to scale up.

We prototype CUP upon Ryu1 and use it to plan updates for
networks conducted by Mininet [13]. Results show that CUP
is quite flexible to exactly meet user-specified requirements,
while effective to outperform existing approaches.

In summary, we make three contributions in this paper.

1An open-source SDN controller framework, https://osrg.github.io/ryu/

11ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE I: Summary of previous approaches and comparison to CUP.

#Proposal Introduce
intermediate status?

Effectiveness Expressiveness

Handle deadlock Deal with deadline Meet user-specified requirements

zUpdate [2] Yes No No No
SWAN [8] Yes Yes Single deadline for all No
GI [9] Yes Yes Single deadline for all No
Dionysus [3] No Yes No No
ATOMIP [4] No Yes Single deadline for all No
CUP No Yes Per-flow deadline Yes (any time- and rate- related requirements)

Fig. 2: The workflow of CUP on planning updates.

• Abstraction: We show how to express various user-
specified updating requirements with a high-level lan-
guage, and show how to dynamically translate them into
low-level linear constraints (Section II).

• Model: We propose generic linear programming models
to formulate and solve the customized update planning
problem, with which, controllers obtain the “best” update
plan explicitly following user’s wish (Section III).

• Evaluation: We show that our CUP tool is flexible and
effective to make update plans for “real” networks built
by Mininet (Section IV).

II. FLEXIBLE CUP

In CUP, network users as well as operators describe their
desired properties about the update with the high-level CUP
language; they can change the clauses at any time. On planning
a network update, at the first step, CUP “compiles” the user’s
codes to figure out their exact “meaning” in this instance.
After that, CUP employs back-end solvers, Order Scheduler
and Rate Manager, to find the update processing plan that
exactly follows the user’s wish. Roughly, the entire workflow
of how CUP produces is as Fig. 2 shows.

In the following, we present the high-level language in
Section II-A and show the compilation process in Section II-B.
After that, in next section, we introduce how CUP solves the
planning problems and discuss how it handles multi-tenants
and concurrent update requests.

A. High-level language

CUP language (Fig. 3) provides end-users and operators
with an easy way to specify their requirements on config-
uring the network. A CUP policy is a collection of rules,
in which, each term specifies a specific requirement, of
either the activation time of new paths or the degradation
of throughputs, for a group of packets. CUP uses a regular

Grammar
pol ::= (s1; . . . ; sn) CUP Policy
s ::= t | r Rule
t ::= T (m) ≤ val | T (m1) ≤ T (m2) Time Related Req.
r ::= R(m) ≥ amap | R(m1) ≥ R(m2) Rate Related Req.
Notation
m : a match string/predicate specifying flows
val : a value specifying a deadline requirement
T (m) : the waiting time before m enjoys the new path(s)
amap : the keyword specifying objectives (as much as possible)
R(m) : the rate-limit setting of flow(s) defined by m

Fig. 3: Syntax of CUP high-level language.

expression on the match fields of packet header to define
the involved packets. For instance, ∗ defines all packets pass
through the network; dstTCP=80 defines all web access
traffic; srcIP=10.0.0.1/24 ∧ dstIP=20.0.0.11 defines those
packets from network 10.0.0.1/24 to destination 20.0.0.11;
and srcIP=10.0.0.2 ∨ dstIP=10.0.0.4 defines the traffic from
10.0.0.2, or to 10.0.0.4.

For the update of a collection of packets specified by m,
there are two basic types of indicators that customers and
operators might concern: 1) how long it would wait before
enjoying the new path(s), and 2) how its throughput (i.e.,
rate) would be limited to avoid transient congestion. CUP uses
T (m) and R(m) to denote, respectively. Using their relation
expressions, these two basic elements can generate other com-
plicated requirements. For instance, T (m1) ≤ T (m2) says,
flows matched with m1 should be switched into the new paths
“no later than” those matched with m2, while T (m2) ≤ val
indicates the waiting time before m2 switched should be “no
larger than” val. Similarly, R(m1) ≥ R(m2) implies the
effective bandwidth of m1 during the update should “no less
than” that of m2, while R(m3) ≥ amap means the user would
like the effective bandwidth of m3 be maximized.

CUP language is simple yet expressive for most require-
ments. As examples, revisit the toy update cases of Fig. 1. With
CUP language, users can formulate their own requirements
precisely and concisely as the instances in Table II illustrate.

B. Dynamic translator
High-level CUP policies are compiled into low-level re-

strictions, which tell the planner how to process each flow’s
reconfiguration is in line with user requirements. To achieve
this, the most challenging task is to figure out the exact time
cost of migrating a flow. CUP employs the approach of pre-
installing new rules then triggering two-phase reconfigurations
to address the problem. In this part, we first present how to
make the estimation of reconfiguration’s time cost possible in

12ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE II: Examples of CUP language on describing update
cases shown in Fig. 1.

Update scenarios Policy expression

1
Minimize transient congestion with-
out deadline requirements on the up-
date process.

(R(∗) ≥ amap)

2

Let interactive flows,F2 and F4, en-
joy new paths no later than 1 unit
time, while minimizing the impacts
on their throughputs (e.g., inter-DC
WAN optimization [8, 14]).

(T (mF2 ∨mF4) ≤ 1;
R(mF2 ∨mF4) ≥ amap)

3

Execute all flow migrations no later
than 1 unit time, and let the through-
put loss be shared in proportion since
they are in the same class.

(T (∗) ≤ 1;
R(mF1) ≥ amap;
R(mF2) ≥ amap;
R(mF3) ≥ amap;
R(mF4) ≥ amap)

Section II-B1, then introduce the way of binding high-level
requirements with flows and translating them into low-level
linear constraints in Section II-B2.

1) Estimating time cost of traffic migration: As Section I
and Fig. 1 have shown, to not overload any link during the
update, the controller has to wait the flow that moved out from
a link exits, before moving other flows in. Thus, the time cost
of migrating a flow to its new path(s) mainly involves two
parts of i) waiting the moved-out traffic exits (if any); and
then ii) installing rules to shift the flow to its new path(s).

As for the first part of draining time, we can simply use
the well-known One-Way Delay (OWD) as an approxima-
tion, which can be estimated at end hosts [15, 16], or at
edge switches in OpenFlow-enabled networks. CUP suggests
adopting two-phase update mechanism to guarantee strong rule
consistency (refer to Appendix A in [17] for the discussion).
On carrying out an N -rounds flow migration, at the first step,
CUP pre-installs the new configurations and sets rate-limits.
Supposing the time of installing/modifying a rule from the
controller is ϵ, the total time cost of this step is ϵ because
all rule installations (for both new paths and rate-limits) can
perform in parallel. Thus, the rest operations for each round
are to i) wait a draining time then ii) touch some flows’ ingress
switches to activate their new paths. Provided the largest OWD
in network is τ , we get the point that flows migrated in the kth
round would enjoy their new paths at time k×τ +(k+1)× ϵ.
Consequently, if a flow’s deadline requirement on the update
process is val, we know that the controller should make sure
it get migrated no later than round ⌊ val−ϵ

τ+ϵ ⌋.
In practice, the time cost of modifying a rule on physical

switches is usually inconstant [3, 14, 18, 19]. Yet, recent
studies have shown its long-tailed characteristic [3]. That is
to say, simply choosing the 95th percentile value (or other
thresholds) as the estimated time is reasonable in most cases.
Moreover, since OpenFlow-style control is still in its early
stages, most switch software and SDKs are not optimized for
dynamic table programming yet [14]. Some effects have been
put on improving this and we argue that future switches will
be more stable and fast for table changes [18, 20].

As yet, we have found a way to estimate the time cost
of migrating a flow based the network’s maximum OWD
and ingress’s rule modification delay. In real networks, both

TABLE III: The key notations of the network model

Notation Description

Mdue
R the set of predicates (m) holding T (m) ≤ val

Mamap
R the set of predicates (m) holding R(m) ≥ amap

MPT the set of ⟨mx,my⟩ pairs holding T (mx) ≤ T (my)
MPR the set of ⟨mx,my⟩ pairs holding R(mx) ≥ R(my)
N̂due

m the round deadline for flow matching with m

f ∈ F the set of all current flows in the network
F (m) the set of all flows matching with predicate m
tf the demand of flow f
rf the rate-limit setting of f during the update
r∗m the rate-limit setting for all flows matching with m
e ∈ E the set of all (directed) links in the network
ce the capacity of link e
tf,e the load of f on link e before the update
t′f,e the load of f on link e after the update
FB the set of flows that will not be updated/migrated
FU the set of flows that will be updated/migrated
FU (m) the set of to-be-updated flows matching with m
FPT ∀⟨fi, fi⟩ ∈ FPT : fi should be updated no later than fj
Ndue

f f ’s update deadline, in the form of round number
yf,k whether f has been updated in round-k
tf,e,k the (maximum) load of f on e in round-k

types of delays can be measured by the controller. With this
information, CUP is able to translate the absolute deadline re-
quirements into round requirements. For simplicity, hereafter,
all deadline requirements we discuss in this paper are in the
form of round number.

2) Mapping requirements to each flow: Now, we show
how CUP maps user requirements into each flow. The basic
notations that CUP’s model uses are summarized in Table III.

Lexical analysis and preprocessing. CUP first parsers user-
specified policies to get the semantics. Obviously, there are
four types of constraints on the flow predicates, indicating
the absolute update deadline (i.e., T (m) ≤ val), the rel-
ative update order in “no-later-than” form (i.e., T (mx) ≤
T (my)), relative rate-limiting setting in “no-less-than” form
(i.e., R(mx) ≥ R(my)), and the expected targets that should
be optimized (e.g., R(m) ≥ amap). Without loss of generality,
we let Mdue

T be the set of predicates holding the relation of
T (m) ≤ val, and Mamap

R be the set of predicates holding
R(m) ≥ amap. As well, we further use MPT and MPR to
denote the set of predicate pairs (e.g., ⟨mx,my⟩) that have
the relation of T (mx) ≤ T (my) and R(mx) ≥ R(my),
respectively. As discussed above, for a deadline requirement
on flows specified by predicate m, CUP can transfer it into a
round number requirement with Equation (1), where τ̂ is the
network’s measured maximum OWD and ϵ̂ is the measured
95th rule modification delay.

N̂due
m = ⌊valm − ϵ̂

τ̂ + ϵ̂
⌋ (1)

Basic network model. We assume that the network, G, is
hosting a set of flows F with links E. The rate of flow
f ∈ F is denoted by tf while the capacity of link e ∈ E
is denoted by ce. By letting tf,e be the traffic load of
flow f on link e, the network’s state can be formulated as
S = {tf,e|∀(f ∈ F, e ∈ E)}. Then, a network update is to
change its state from S to S′ = {t′f,e|∀(f ∈ F, e ∈ E)} by
rerouting some flows, or changing their traffic split ratios in the

13ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

case of multi-path routing. For the update of S /→ S′, let FU

be the set of updated flows and FB be the set of unmodified
flows. Obviously, there must be FU ∩FB = ∅, FU ∪FB = F ,
and tf,e = t′f,e for ∀(f ∈ FU , e ∈ E). We assume that the
update of flow f is required to be finished within Ndue

f rounds,
and use bin variable yf,k(1 ≤ k ≤ Ndue

f) to indicate whether
f (f ∈ FU) has been migrated/updated in the k-th round. By
defining yf,0 = 0 for convenience, we get the constraints as
Equation (2) and (3) show.

∀k, f ∈ FU : yf,k ∈ {0, 1} (2)
∀f ∈ FU : 0 = yf,0 ≤ yf,1 ≤ . . . ≤ yf,Ndue

f
= 1 (3)

Besides, we let rf denote the proportion of rate-limiting that
flow f would be set to during the update. Then, after rate-
limiting is enabled, the total load of f would be reduced to
tf ·rf , and the subpart on e before and after the update would
also decrease to tf,e · rf and t′f,e · rf , respectively.

∀f : 0 ≤ rf ≤ 1 (4)

Embedding user-specified requirements. In networks, flows
are also defined by predicate strings of the packet header
fields. By checking whether a flow’s predicate intersects with
the user-specified predicate, CUP figures out which flows are
involved with that rule. For rule predicate string m, we denote
F (m) as the set of flows that it intersects with, and FU (m)
as the subpart of to-be-updated flows in F (m). Then, via
Equation (5), CUP gets the set of rules that a flow is matched
with and gets the exact deadline requirement of each flow.
It should be noted that, the entire update process will never
exceed |FU |, the number of flow to be updated. So, in case
the estimated round calculated from user policies is larger than
|FU |, or no deadline is required, Ndue

f will be set to |FU |.

Ndue
f = min(|FU |, min

∀m∈Mdue
T :f∈FU (m)

N̂due
m) (5)

As for the “no-later-than” order requirements, T (mx) ≤
T (my), if two to-be-updated flows, fi and fj , happen to
hold the relations of fi ∈ FU (mx) and fj ∈ FU (my),
it means they have order-dependency on the update active
time, namely, yfi,k ≥ yfj ,k for all feasible k. Let FPT be
the set of such order-dependent flow pairs; CUP can easily
get it by calculating Equation (6). Then, all “no-later-than”
requirements are as Equation (7) shows.

FPT ={⟨fi, fj⟩|∃⟨mx,my⟩ ∈ MPT ;

fi ∈ FU (mx); fj ∈ FU (my)}
(6)

∀(fi, fj) ∈ FPT , k ≤ min(Ndue
fi , Ndue

fj) : yfi,k ≥ yfj ,k (7)

Now, CUP deals with rate/throughput related requirements.
Same to the case of time-related predicates, the predicate m in
a rate-specified rule also might match with multiple flows at
the same time. We denote the collection of involved flows as
F (m) and regard them as a “virtual” aggregated flow. For this
“virtual” flow, we further use r∗m to present what its rate-limit
would be during the update process. Then the two types of
throughput requirements could be formulated as Equation (8)

and (9) show, in which r∗m is defined by Equation (10) and
amap is the index/variable that should be optimized.

∀(mi,mj) ∈ MPR : r∗mi
≥ r∗mj

(8)

∀mi ∈Mamap
R : r∗mi

≥ amap (9)

r∗m =

∑
∀f∈F (m) rf · tf∑

∀f∈F (m) tf
(10)

So far, CUP has translated all user-specified requirements
into low-level flow-based constraints, which are all linear.

III. EFFICIENT SOLVER

To handle various updates, CUP needs a generic yet effi-
cient solver. However, the design is not easy since planning
updates is computationally intractable in ordinary sense—even
answering the question of whether there exists a congestion-
free solution for a given update is NP-hard as Theorem 1 says.

Theorem 1. Determining whether there is a congestion-free
update order scheduling that meets user-specified deadline is
NP-Hard in ordinary sense.

Proof. Refer to Appendix B in [17] for details.

Corresponding to the fact that planning an update involves
two parts of 1) finding an execution order and 2) computing the
relevant rate-limiting scheme, CUP heuristically decouples the
original problem into two parts as Fig. 2 shows. On planning
a group of flow migrations, the Order Scheduler module first
determines which round each flow should be moved in, based
on user-specified time-related requirements. If there exists
congestion-free sequences, Order Scheduler outputs the one
with the minimum rounds; otherwise, it suggests the sequence
causing smallest traffic overloads. Then, for the congested
traffic, Rate Manager further finds the optimal rate-limiting
scheme that makes the update free of congestion, respecting
to throughput/rate-related rules.

A. Order Scheduler

The first step of planning update to prevent transmit con-
gestions is to evaluate what link loads would be during the
update procedure. For flow f ∈ FU , we let tf,e,k indicate
its maximum possible load on link e when preforming the
reconfiguration of round k. Then, the maximum (possible) load
on link e in this round is

∑
f∈FB tf,e +

∑
f∈FU tf,e,k.

tf,e,k =

⎧
⎨

⎩

tf,e−yf,k−1 ·(max(tf,e, t′f,e)− t′f,e)
+yf,k ·(max(tf,e, t′f,e)− tf,e)

Changed ind.

tf,e − yf,k−1 · tf,e + yf,k · t′f,e Otherwise
(11)

The calculation of tf,e,k for round k has two formulations
depending on f ’s update senses as Equation (11) shows. In
both formulations, it is certainly that f ’s load on link e equals
tf,e if f has not been migrated yet, i.e., yf,k−1 = yf,k = 0,
or equals t′f,e if its migration has completed, i.e., yf,k−1 =
yf,k = 1. The difference exists in the case when f happens
to be migrated in round k, i.e., yf,k−1 = 0 and yf,k = 1, and
the link is used by both f ’s old path(s) and new path(s).

14ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

fS2

S4S3S1

Fig. 4: An example of that the updated flow is not changed
independently: move f from path S1-S2-S3-S4 to S1-S3-S4.

In datacenter networks, the multiple paths between two
end-hosts usually share the same hops and packets traveling
through them are likely to experience the similar delay [2].
Accordingly, the load of f on link e during the update is either
tf,e or t′f,e. In this condition, f is changed independently [2]
on link e, and its maximum possible load during the update is
max(tf,e, t′f,e), corresponding the upper case of Equation (11).
However, the situation of WAN is quite different, in which
multiple paths of a source-destination pair generally have
distinct delays. In the worst case, the load of flow f on e
would reach tf,e + t′f,e. As an example, consider the case of
rerouting flow f from path S1-S2-S3-S4 to S1-S3-S4 shown
in Fig. 4. On switching f to its new path, because of the
transmission and buffer delays, incoming packets traveling
through S1-S3, together with the in-flight packets on sub-
path S1-S2-S3, would contribute a total load of tf,e + t′f,e
on link S3-S4. Fortunately, by comparing the new network
configuration with the old one, CUP knows whether a flow is
changed independently or not. Then, the right expression of
tf,e,k for flows and links can be decided.

On computing the update order, CUP tries to minimize the
overloaded traffic on links while optimizing the total required
rounds. Provided oe is the amount of overloaded traffic on
link e (whose capacity is ce), there are many alternative
formulations that capture the link load situation of the entire
network—E.g.,

∑
∀e oe, max∀e oe,

∑
∀e

oe
ce

, and max∀e
oe
ce

.
CUP adopts max∀e oe. With this design, even if the network is
failed to apply the rate-limiting schemes, the scheduled update
order will still let the transient congestions be distributed on
most links, so that the overloaded packets are more likely to
be held by switch buffers.

∀e, k > 0 :
∑

f∈FB

tf,e +
∑

f∈FU

tf,e,k ≤ ce + oe; oe ≥ 0 (12)

Obviously, this order scheduling problem is naturally to be
formulated as a MIP (Mixed Integer linear Program) as Fig. 5
shows, where γ is a small factor (0 ≤ γ ≪ 1) and the tail of
−γ·

∑
∀(f,k) yf,k is to let flows be migrated as soon as possible.

For the schedule of a small scale update, we can obtain
the optimal order by directly solving this MIP with efficient
solvers. However, as finding the optimization scheduling order
is theoretically NP-hard, the computation process becomes
quite time-consuming when the network scales up. To find
scheduling orders quickly, we relax the original MIP into
a Linear Program (LP), and develop an efficient heuristic
solution based on the relaxed LP’s outputs. Due to the lack of
space, the detail of heuristic algorithm follows in our technical
report (Appendix C) [17].

In practice, a simple way to achieve both efficiency and
effectiveness on order scheduling is to employ a “dual-core”
trick. For each planning request, CUP can perform the MIP

⎧
⎪⎪⎨

⎪⎪⎩

Input: FB , FU ,FPT , {ce}, {tf,e}, {t′f,e}, {Ndue
f }

Output: {yf,k|∀(f ∈ FU , k)}
Minimize max∀e oe − γ ·

∑
∀(f,k) yf,k

Subject to (2), (3), (7), (11), and (12),

Fig. 5: Schedule update orders to minimize the link overloads.
γ is a small constant: 0 < γ ≪ 1.
⎧
⎪⎪⎨

⎪⎪⎩

Input: FB , FU , {ce}, {tf,e}, {tf,e,k},MPR,M
amap
R

Output: {rf |∀f}
Maximize amap+ ϱ×min∀f rf
Subject to (4), (8), (9), (10), and (13).

Fig. 6: Manage transient congestions in each update round
{rf |∀f} explicitly following user’s requirement. ϱ is a small
constant: 0 < ϱ≪ 1.

solving and heuristic computation, simultaneously. If MIP
completes within a certain time (e.g., one second), CUP gets
the optimal results; otherwise, CUP chooses the heuristic result
and stops the task of MIP solving.

B. Rate Manager
Once the update order is determined, CUP gets the value

of {tf,e,k|∀(f, e, k)}. The next issue is to find a rate-limiting
scheme avoiding congestion respecting to user’s requirements.
As defined in Section II-B2, rf is the ratio that flow f
should decrease to for removing transient congestions; then,
the straightforward solution to obtain the optimal rate-limiting
scheme for user-specified requirements is to solve the corre-
sponding LP shown in Fig. 6.

∀e, k > 0 :
∑

f∈FB

rf · tf,e +
∑

f∈FU

rf · tf,e,k ≤ ce (13)

Note that, when no amap-based rule is specified, CUP
adopts R(∗) ≥ amap by default, which results in minimizing
the total throughput loss. In some cases, there might be
multiple rate-setting schemes that obtain the same optimal
amap. CUP adds a tail of ϱ×min∀f rf (ϱ is a small positive
constant) into the objective to gain the one let flows share the
loss of throughput in proportion.

About efficiency. So far, we have built a generic solver made
up of Order Scheduler and Rate Manager for CUP. Obviously,
the core of both Order Scheduler and Rate Manager is solving
LPs, which can be efficiently done within polynomial time by
leveraging fast solvers like CPLEX and MOSEK. Consequently,
the entire solver is a polynomial time approach as well.
Furthermore, there are several simple yet efficacious tricks
that CUP can employ to simplify the model and accelerate the
computation. For example, if a link would never be overloaded
during the update, CUP can exclude its related constraints from
the model safely. We call such links non-critical, and they
can be determined by Equation (14) easily. Corresponding, if
a flow only encounters with non-critical links, it is also non-
critical and there is no need to limit its rate. So, CUP can
remove its constraints from the rate-manage model. As well,
if a to-be-updated flow is non-critical and does not have “no-
later-than” relation with others, it can be migrated directly in

15ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

the first round without planning computations.

Enon-crit. = {∀e |
∑

∀f∈FB

tf,e+
∑

∀f∈FU

max
∀k

tf,e,k ≤ ce} (14)

Multi-tenant. In practice, a network might be shared by
multiple tenants (or virtual operators) simultaneously [21]. The
requirements specified by a tenant should only impact its own
updates and own traffic. In such cases, CUP would look into
the tenant information when embedding policies. As for CUP’s
solver, Order Scheduler is able to handle this directly because
there is no difference on the sub-problem of order scheduling;
however, Rate Manager needs a modification as the rate man-
agement problem is a multi-objective optimization problem
now—max (amap1, amap2, . . . , amapn). Multiple-objective
optimization has been studied for very long time and there
are so many solutions, such as scalarization, no-preference
methods, priori methods, etc [22]. In this paper, CUP simply
adopts the approach of linearly scalarizing [22] the multiple
objectives into the single objective of max

∑
∀i wi · amapi,

where wi ≥ 0 stands for the weight of the ith tenant. By
simply pursuing this scalarizated objective, CUP supports
multi-tenant updates. We note that there is room to improve
and CUP is flexible to be upgraded.

Concurrent updates. In general, a “fat” update request in-
volving many flow migrations would be planned to execute in
more than one round. As the network configuration is volatile,
new update request is likely to occur before the current “fat”
one completes. This should be handled appropriately and
immediately as some new flow migration requests might have
urgent deadline requirements. CUP adopts the generic two-
phase mechanism [5] to implement the reconfiguration of each
round, which naturally supports update streams. Accordingly,
CUP can immediately deal with a new request by just re-
garding it together with these unperformed rounds as a fresh
request; rule consistency is always guaranteed.

IV. EVALUATION

In this section, we implement CUP based on Ryu, and
conduct virtual networks with Mininet to test CUP. Our
results indicate that CUP is flexible enough to handle user-
specified time- and throughput- requirements. Moreover, CUP
is very effective. On each type of requirement, CUP always
significantly outperforms the variant of Dionysus which is
modified to handle that requirement type.

A. Implementation
We prototype CUP upon Ryu 3.26, and employ it to plan

traffic migrations for toy virtual networks on Mininet 2.2 [13].

Network setup. When switches start up, the controller installs
default routes and tunnel rules via OpenFlow 1.3. We let
end-hosts send UDP packets with each other in steady rates
to simulate the case of backbone traffic in WAN, and use
VLAN tags to implement tunnel-based forwarding for them.
We assume that the network adopts multi-path routing, in
which ingress switches split and assign a flow to its sub-
tunnels respecting to tunnel weights. Then, updating a flow

is only to reconfigure its tunnel weights at the ingress, so that
each update is consistent in essence [5, 6].

To carry out weighted traffic splitting on Open vSwitch,
the controller installs a group of exact-match rules specifying
the tunnel for each microflow.2 Unfortunately, this approach
makes rule management on ingress complex as the update of
a single flow might trigger the modification of a collection of
microflow rules. We address the problem by using the Multiple
Flow Table mechanism provided by OpenFlow switches (sup-
ports start from OpenFlow 1.1). Basically, rules in an ingress
switch are either stored in Table 0 or Table 1 depending on
their types. In normal, forwarding functional rules like tunnels
and default routes reside in Table 1, and these microflow rules
that realize traffic splits and tunnel selections, together with a
lower priority all-∗ whose action is “goto Table 1”, reside in
Table 0. When a flow’s splitting weights are to be updated,
the controller first installs microflow rules that implement the
new weights in Table 1, then installs a high-priority wildcard
rule with action “goto Table 1” into the first table to “guide”
involved packets to the new weights. After that, the controller
silently modifies the actions of those unmatched microflow
rules in Table 0 following the new weights, then deletes
the previously installed wildcard rule and microflow rules.
Following this, we make rules easy to manage and guarantee
the consistency property during weight reconfigurations.

Benchmark schemes. We implement CUP’s algorithm in
Python and employ Mosek as the backend solver for LPs.
As a benchmark, we implement the schedule algorithm of
Dionysus. Although it is designed for dynamic scheduling of
updates, under the situation that new rules are pre-installed and
ingress switches share the similar time cost on enabling new
configurations for flow, Dionysus would also derive a round
schedule together with a rate limiting scheme for each update
in advance [3]. If the obtained round number is larger than
the deadline requirement, we assume that Dionysus adopts its
deadlock-break mechanism for help—limit the rates of flows
whose scheduled time would miss the deadline to zeros, and
perform all their migrations in the last round.

B. Case study
To evaluate how transient congestion caused by unplanned

updates would influence the traffic, we first conduct experi-
ments for the toy update cases shown in Fig. 1. Note that all
virtual hosts and switches in Mininet use the shared CPU and
bandwidth resources for simulation [13]. To avoid resource
competition between them and to highlight the results, we
set link bandwidth to 5 Mbps with 100 ms delay, and let
port buffer size be large enough to hold all overloaded traffic.
Accordingly, in the case of no congestion, the transmission
delay of all old paths is about 200 ms, same to the network’s
maximum OWD, and that of the new paths is about 100 ms.

Fig. 7a shows the transmission delay of packets in each
flow when the controller sends the “activate the new path”
commands for {F1, F3, F4} in One Shot at the 0.4 s.

2In tests, the traffic from a host to another is equally dispersed over 20
UDP flows, and its ingress switch holds a corresponding number of microflow
rules for traffic splitting. Thus, the accuracy of traffic-splitting is 0.05.

16ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) Unplanned One-Shot update (b) Planed update (R(∗) ≥ amap)

Fig. 7: Transient congestion during unplanned updates.

About 150 ms later, receivers get packets through the new
paths. Obviously, the latency of packets in all flows increase
during the update process. That is to say, they all entered
queues because of transient congestion. In the test, we set
no artificial control delay between the controller and switches
(however, there is still a delay about 50 ms for each flow table
modification from CUP sending the command via REST API)
so that all flows enjoy their new paths almost at the same time.
As a result, the newly incoming packets of F1 together with the
in-flight packets of F3 and F4 overload Link S1-S3, while F1’s
in-flight packets together with the newly incoming packets of
F2 and F3 overload Link S4-S3. In practice, the activation time
of new rule might be distinct on switches; transient congestion
happens once a flow moves in the hot link before the old in-
flight packets exists. And these overloaded packets in high
speed network can be really huge, which would quickly eat
up switch buffers and result in heavy packet loss [3].

As a comparison, Fig. 7b shows the case of migrating flows
in order of [F4→F1→F3], which is the result planned by both
Dionysus and CUP under the policy of (R(∗) ≥ amap). In this
case, the controller triggers flow migrations round by round,
and waits the maximum OWD time (200 ms) between them.
Following the plan, the update process takes about 600 ms to
complete, but avoids all transient congestion.

Then, we look into the case of planning updates with time-
and throughput- requirements. Provided the update request
appear at the 0.4 s, and the operator wants all flows to enjoy
their new paths no later than 300 ms; that is to say, all
flow migrations must be carried out within one round,3 and
rate-limits are needed to avoid congestion. Fig. 8 and Fig. 9
show the results planned by CUP under user-specified policies
(T (∗) ≤ 1;R(∗) ≥ amap) and (T (∗) ≤ 1;R(mF2 ∨mF4) ≥
amap), respectively. In the case of Fig. 8, all flows share the
same importance and the operator prefers the total throughput
be reduced as less as possible. With the objective function
shown in Fig. 6, CUP’s Rate Manager lets the throughput
loss be shared by all flows in proportion as Fig. 8b shows,
where ∆y

∆x stands for the flow rates observed by the sender or
receiver—about { 5

14 ,
4
14 ,

5
14 ,

4
14}. Different from Fig. 8, Fig. 9

demonstrates the case that F1 and F4 are background traffic

3It takes about 200 ms to pre-install new rules and wait rate-limits coming
into force; then less than 100 ms is left for performing the updates.

while F2 and F4 are interactive whose throughput should be
keep as much as possible. As the results show, CUP finds the
update plan exactly following the operator’s wish. In contrast,
Dionysus will handle the requirements in a rough way—
completely kill F1 and F2 to avoid congestion.

C. CUP flexibility

To investigate the flexibility of CUP, we further employ it to
plan updates for a small WAN [3, 9], which involves 8 nodes
and 14 links as Fig. 10 illustrates. In this case, each link is
assumed to have the capacity of 10 Mbps and delay of 200 ms.
We consider the case of WAN optimization, where ingress
switches split the traffic to a destination among its 4-shortest
paths to pursue load balancing. Because of lacking real traffic
matrices, we assume that all the possible paths of a source-
destination share the equal weight initially, and use gravity
model [4] to synthesize the current traffic demands, which
make the maximum link load be 99% in the old configuration.
Then, the update scenario is to reconfigure traffic split weights
to the new one that reduces the maximum link load to the
minimized value, 78%. The longest path(s) in tests involves 4
links; accordingly, the network’s maximum OWD is 800 ms.
For each link e, we consider it as unchanged independently
for flow f , if f has more than one path going through e and
these paths hold distinct lengths (i.e., delays).

When no update deadline is required, CUP finds a
congestion-free plan involving 5 rounds without limiting flow
rates, while Dionysus obtains a 6-round plan that achieves the
same goal. Then, we artificially add deadline requirements to
all flows and compute the propitiation of network throughput
that CUP, as well as Dionysus, has to abandon for congestion
freedom. Numerical results indicate that CUP outperforms
Dionysus about 3× on reducing the impact of network
throughput as Fig. 11 shows. CUP is excellent because its
Rate Manager always obtains the optimal rate-limiting scheme
respecting to user’s requirements. On the contrary, Dionysus
just randomly kills some flows to move on. In addition,
Dionysus would never touch the rate of the un-updated flows.
But in some cases, slowing down some of them really helps.

We also study the cases that some traffic is background and
the operator wishes interactive traffic be less impacted during
the update. To this end, we assume that a certain percentage
of traffic between each source-destination pair is background,
then calculate how many round CUP, as well as Dionysus,
would need to perform congestion-free reconfiguration without
reducing the throughput of interactive traffic. Fig. 12 demon-
strates the results. It implies that, with the proportion of back-
ground traffic increasing, the round number required by CUP
rapidly decreases. And after the background traffic accounts
for half of the traffic, CUP always performs congestion-free
updates in one round without reducing the rates of interactive
flows. In contrast, Dionysus can not achieve this because of
its unawareness of user-specified requirements. If we pre-limit
the rates of background traffic to zeros, Dionysus then obtains
small update rounds as CUP does. However, similar to the
cases shown in Fig. 11, such a solution is far from good
because too many flows are killed unnecessarily.

17ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) Impact on transmission delay (b) Impact on flow rate

Fig. 8: Plan under policy: (T (∗) ≤ 1;R(∗) ≥ amap), i.e.,
all migrations should be finished within 1 round and the total
network throughput should be as-much-as-possible.

(a) Impact on transmission delay (b) Impact on flow rate

Fig. 9: Plan under (T (∗) ≤ 1;R(mF2∨mF4) ≥ amap), i.e.,
all migrations should be finished within 1 round and the total
throughput of F2 and F4 should be as-much-as-possible.

Fig. 10: WAN topology in [3]. Fig. 11: Throughput loss V.S. update speed. Fig. 12: Impact of background traffic.

V. CONCLUSION

As transient congestions are prone to occur during SDN
updates, controllers are in urgent need of a planner to handle
the trouble. We argue that planning the reconfiguration process
respecting to specified requirements is an import issue. In
this paper, we have analyzed the desired properties of such
planners and proposed a case design–CUP. CUP translates
high-level user-specific requirements into linear constraints
and formulates the planning problem as generic linear pro-
grams. By solving customized LPs, CUP is flexible to obtain
“best” plans for a large fraction of updates.

Acknowledgements. This work was supported in part by the
973 Program (2013CB329103), 863 Program (2015AA015702,
2015AA016102), NSFC (61271171, 61271165, 61571098), Ministry
of Education - China Mobile Research Fund (MCM20130131), China
Postdoctoral Science Foundation (2015M570778), Fundamental Re-
search Funds for the Central Universities (2682015CX072), Science
and Technology Program of Sichuan Province (2016GZ0138).

REFERENCES

[1] S. Raza, Y. Zhu, and C.-N. Chuah, “Graceful Network State Migrations,”
IEEE/ACM Trans. Netw, vol. 19, no. 4, pp. 1097–1110, Aug 2011.

[2] H. H. Liu et al., “zUpdate: Updating data center networks with zero
loss,” in SIGCOMM, Aug 2013, pp. 411–422.

[3] X. Jin el al., “Dynamic scheduling of network updates,” in SIGCOMM,
Aug 2014, pp. 539–550.

[4] L. Luo, H. Yu, S. Luo, and M. Zhang, “Fast lossless traffic migration
for SDN updates,” in IEEE ICC, June 2015, pp. 5803–5808.

[5] S. Luo, H. Yu, and L. Li, “Consistency is not easy: How to use two-phase
update for wildcard rules?” IEEE Communications Letters, vol. 19, no. 3,
pp. 347–350, March 2015.

[6] M. Reitblatt el al., “Abstractions for network update,” in SIGCOMM,
Aug 2012, pp. 323–334.

[7] T. Mizrahi, E. Saat, and Y. Moses, “Timed consistent network updates,”
in Proc. ACM SOSR, 2015, pp. 21:1–21:14.

[8] C.-Y. Hong el al., “Achieving high utilization with software-driven
WAN,” in SIGCOMM, Aug 2013, pp. 15–26.

[9] J. Zheng, H. Xu, G. Chen, and H. Dai, “Minimizing transient congestion
during network update in data centers,” in Proc. 23rd ICNP, Nov 2015.

[10] H. H. Liu el al., “Traffic engineering with forward fault correction,” in
SIGCOMM, Aug 2014, pp. 527–538.

[11] V. T. Lam el al., “Netshare and stochastic netshare: Predictable band-
width allocation for data centers,” SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 3, pp. 5–11, Jun. 2012.

[12] W. Zhou el al., “Enforcing customizable consistency properties in
software-defined networks,” in NSDI, May 2015, pp. 73–85.

[13] N. Handigol el al., “Reproducible network experiments using container-
based emulation,” in CoNEXT, 2012, pp. 253–264.

[14] S. Jain el al., “B4: Experience with a globally-deployed software defined
wan,” in SIGCOMM, Aug 2013, pp. 3–14.

[15] O. Gurewitz, I. Cidon, and M. Sidi, “One-way delay estimation using
network-wide measurements,” IEEE Trans. Inf. Theory, vol. 52, no. 6,
pp. 2710–2724, June 2006.

[16] A. Pathak el al., “A measurement study of internet delay asymmetry,”
in Proc. 9th PAM, 2008, pp. 182–191.

[17] S. Luo et al., “Arrange your network updates as you wish,” http://shouxi.
name/publication/cup-tr.pdf, Tech. Rep., Dec 2015.

[18] J. H. Han el al., “Blueswitch: enabling provably consistent configuration
of network switches,” in Proc. ACM/IEEE ANCS, May 2015, pp. 17–27.

[19] M. Kuzniar et al., “What you need to know about SDN control and data
planes,” Tech. Rep., 2014, EPFL-REPORT-199497.

[20] R. Bifulco and A. Matsiuk, “Towards scalable SDN switches: Enabling
faster flow table entries installation,” SIGCOMM Comput. Commun.
Rev., vol. 45, no. 5, pp. 343–344, Aug. 2015.

[21] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Can the production network be the testbed?”
in OSDI, 2010, pp. 1–14.

[22] Wikipedia, “Multi-objective optimization,” https://en.wikipedia.org/wiki/
Multi-objective optimization, 2015, [Online; accessed 23-Nov-2015].

18ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Action Computation for Compositional
Software-Defined Networking

Heng Pan∗†, Gaogang Xie∗, Peng He∗, Zhenyu Li∗, Laurent Mathy‡
∗ICT, CAS, China, †University of CAS, China, ‡University of Liége, Belgium

{panheng, xie, hepeng, zyli}@ict.ac.cn, laurent.mathy@ulg.ac.be

Abstract—Software-defined networking (SDN) envisions the
support of multiple applications collaboratively operating on the
same traffic. Policies of applications are therefore required to
being composed into a rule list that represents the union of
application intents. In this context, ensuring the correctness and
efficiency of composition for match fields as well as the associated
actions is the fundamental requirement. Prior work however fo-
cuses only on the composition of match fields and assumes simple
concatenation for action composition. We show in this paper that
simple concatenation can result in incorrect behavior (for parallel
composition) and inefficiency (for sequential composition) for
actions composition. To address this issue, we formalized the
action composition problem and prove a feasibility condition on
the composition of rule actions. We then propose a graph-based
approach that facilitates fast composition of action lists without
action redundancy. Our proposed approach has been integrated
into the CoVisor code base and the evaluation results show its
fitness for purpose.

Index Terms—Software-defined Networking, composition, ac-
tion

I. INTRODUCTION

Software-Defined Networking (SDN) decouples control log-
ic from the forwarding devices to simplify network manage-
ment and enable complex network applications [1]. Such a
separation allows the control plane software and data plane
hardware to evolve quickly and independently. Recent interest
in SDN has moved to the implementation of various SDN
applications upon controllers written in different programming
languages. The vision of SDN is to construct an SDN “App
Store” [2], [3], [4] for network management services. Similar
to the Android Market or the Apple Store, network adminis-
trators could download applications suited to their needs from
the SDN “App Store” and deploy them into the network. For
example, a single network could run simultaneously a firewall
written in Java on OpenDaylight [5], a routing application
written in Python on Ryu [6] or a monitoring application in
C on NOX [7].

To realize this vision, a mechanism that compiles different
processing logics of applications to cooperate correctly in the
data plane is essential. In general, there are two types of
approaches towards such a mechanism: top-down and bottom-
up. The top-down approaches use either domain specific pro-
gramming languages [8], [9], [10] or a specific programming
framework [11], [12], to express each application as a program
(module) or an expressive equivalent (e.g. graph in [11]).
These programs are then translated into a set of low-level

OpenFlow rules representing the union of the intents of the
applications. The bottom-up approaches on the other hand uti-
lize SDN hypervisors [13], [14], lying between the controllers
and the underlying forwarding devices, to compose policies1

into a prioritized list of (OpenFlow [15]) rules. Nonetheless,
both types of approaches essentially face the same challenge:
composing multiple policies, each representing the intent of
an application (program, module), into a single rule list that
represents the union of these intents.

In the context of composing multiple policies, two types of
composition operators have been proposed in existing SDN
programming frameworks: parallel (+) and serial (>>) [9],
[16], [10], [17], [18]. Parallel composition gives the illusion
that each member policy acts on its own separate copy of the
traffic while sequential composition enables multiple policies
to operate on traffic in sequence. For example, if the hypervisor
applies a composition configuration as follows: Firewall
>> (Monitoring + Routing), packets will be pro-
cessed first by Firewall, and then operated on by Monitoring
and Routing concurrently.

A policy consists of match fields and the associated atomic
actions, which enable programmers to design abundant ex-
pressive behaviour represented as a sophisticated action list.
A practical composition mechanism should ensure that the
composed rule of multiple policies is correct (in terms of ap-
plication intents) and efficient (in terms of packet processing)
for both match fields and action lists. Prior work on policy
composition [13], [19], [14], [11] however mostly discusses
how to merge the match fields of rules from different member
polices and how to calculate the priority of the composed
rules, leaving action composition much overlooked. Indeed,
the action composition essentially boils down to the “union”
of actions (often implemented as the concatenation of actions)
in the previous work. This observation was corroborated by
inspection of the released code of the CoVisor system [20]
and many language implementations such as Frenetic [21].

We show that simple concatenation for composing action
lists not only cannot preserve the semantics (or interests)
expected by the original member policies but also can result
in wasted compute cycles in the resource constrained for-
warding path environment of switches. For example, consider
one member policy rule’s action list is {push_vlan(1),

1To simplify our discussion, we use the terms “policy” and “application”
interchangeably.ISBN 978-3-901882-83-8 c⃝ 2016 IFIP

19ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

tcpdst ← 80, fwd(1)} while the other is {dstip
← 10.0.0.1, tcpdst ← 80, fwd(2)}. If the cor-
responding two rules are composed to operate on pack-
ets in parallel, and the actions lists are simply concate-
nated, the result becomes {push_vlan(1), tcpdst ←
80, fwd(1), dstip ← 10.0.0.1, tcpdst← 80,
fwd(2)}, which obviously violates the semantics of the
second original rule, since the packet appearing on port 2
are different from the one that would have been generated
by this second rule, had it been operating alone. This is
because the second rule forwards the input packets with
modified IP destination address 10.0.0.1 to port 2, while
the composed action list forwards the input packets with both
the appropriately modified IP destination address and an added
vlan header to port 2. Obviously, the second action of tcpdst
← 80 is redundant, which wastes the compute cycles of
underlying switches. Overall, to the best of our knowledge,
there is no mechanism to effectively compute action sequences
for composing SDN policies.

Motivated by our observations, we in this paper address the
challenge of correct and efficient action composition in the
context of policy composition. our contributions are four-fold:

1) We show and prove, feasibility conditions on the com-
position of rule actions in SDN networks. By extension,
this result also applies to the feasibility analysis of the
composition of the policies themselves;

2) We derive a feasibility test, which can be applied to the
“on-the-fly” composition of rules.

3) We propose a graph-based approach for fast computation
of the actions of a composed rule. The approach has
negligible effect on the performance of the composition
operation itself, while resulting in the minimum number
of actions to be performed in the data plane of switches;

4) We integrate our action composition algorithms in the
CoVisor code base2.

The rest of the paper is organized as follows: Section II
describes the background and motivation for our approach. We
present theoretical fundamentals and a model for action list
composition in Section III. In Section IV, we detail efficient
algorithms based on the model for the composition operators.
Section V presents experimental results of these algorithms.
We conclude with perspectives on our contributions in Sec-
tion VI.

II. BACKGROUND AND MOTIVATION

To set the scene, we first briefly present some features
of SDN policy, and then review the parallel and sequential
composition operations introduced in [14], [13], [19], [9].
Finally, we give examples to motivate our work.

A. SDN Policies

To fix ideas, one can think of OpenFlow [22] policies,
although our work is general and not limited to OpenFlow. A

2Our algorithms can be applied to other high-level programming frame-
works very easily.

policy is expressed as a set of prioritized rules. Each rule R is
a 3-tuple R = (p;m; a), where R.p is the rule’s priority, R.m
represents the match field patterns and R.a is a sequential
“program” (i.e. list) of the actions to be applied to packets
matching the rule (see Figure 1).

MatchPriority Actions
R1 1 0000 fwd(1)
R2 5 01** fwd(2)
R3 9 00** fwd(3)
R4 99 **** fwd(4)

Rule

Fig. 1. Example of policy as a rule table. Smaller priority values imply higher
priorities.

The match fields in R.m can, in all generality, consist
of any number of adjacent packet bits (although they are
usually limited to packet header fields) and ingress port. The
set of match fields is the same for each rule in the policy,
and their values can be any pattern including exact values,
ranges (including prefixes), wildcards (matching any value),
etc. If a packet potentially matches several rules, the rule with
the highest priority is selected as the actual match, and the
associated action list is applied to the packet. How a policy
is implemented inside a switch (e.g. hardware table, pipeline
of hardware tables, software hash, etc) is not relevant to the
considerations of this paper.

We consider that actions are of three types: modify actions,
whose effect is to modify packets or packet headers; forward-
ing actions, whose effect is to instantiate a packet on a port
(i.e. forward the packet through the port); and miscellaneous
(misc) actions, whose effect does not directly affect a packet
(e.g. count actions, action list modification actions, etc.) Note
that some of these misc actions have externally observable
side-effects (such as actions modifying counters), while others
do not (such as actions clearing the action list). To simplify,
in this paper, we only consider counters associated with rules
(one counter per rule) which count the number of packets for
which the corresponding rule was a “hit” (and thus a count
action simply increments such counter).

In this context, each rule of a policy is a function:

F (p)→ (p′, port)+|d

where (p′, port) is a forwarding pair representing the packet
p′ appearing on port port, and d represents some statistics data
side-effects. The (·)+-notation indicates that a rule can gener-
ate 0, 1 or more forwarding pairs for the given input packet
p, depending on the packet’s input port (which is part of the
rule’s matching pattern), and the packet itself. d is a positive
integer (possibly 0) that represents the increment to be applied
to the counter associated with the rule. Switches “implement”
these functions by “executing” the actions associated with the
rules3.

From this, we can simply define the notion of action list
equivalence: two action lists (i.e. two rule programs) are

3More precisely, switches select the highest priority rule matching the
packet and only execute the corresponding actions.

20ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

equivalent if and only if, for any packet p, F1(p) ≡ F2(p). In
other words, two action lists are equivalent, if they 1) produce
the same forwarding pairs, and 2) count the same packets.

B. Composition Operators
The composition operators fall into two major categories:

parallel composition and sequential composition. Here, we
give a simplified overview for these composition operators and
their compile algorithms presented in the prior art [13], [19].

Parallel Operator (+): The parallel operator compiles two
policies into a single one which behaves as though packets
were matched and processed by the two policies operating
concurrently on their own copy of the traffic. For example,
take a monitoring policy Monitor that counts packets with
source IP prefix 3.0.0.0/8 while dropping others. If a routing
policy Route forwards packets with destination IP 2.0.0.1 to
port 1 and drops others (see Figure 2), then, with the parallel
operator, we can generate a single policy Monitor + Route
shown in Figure 2.

IP_DSTPriority Actions
1 2.0.0.1 fwd(1)
2 **** drop

IP_SRCPriority Actions
1 3.0.0.0/8 count
2 **** drop

Rule
R1

R2

Rule
R1

R2

IP_SRCPriority Actions
1 3.0.0.0/8 count, fwd(1)

IP_DST
2.0.0.1

Rule
R1

+

2 3.0.0.0/8 count,drop****R2

3 **** fwd(1)2.0.0.1R3

4 **** drop****R4

Compositing

Fig. 2. Example of parallel composition, adapted from [16]

Next, we recall the existing compiler algorithms of the
parallel operator using the example in Figure 2. To compile
Monitor+Route, the compiler algorithms will calculate the
cross product of rules from Monitor and Route as follows:
any rule mi ∈ Monitor and rj ∈ Route, mi and rj can
generate a composed rule as long as mi.m∩ rj .m ̸= ∅, using
the intersection as its match fields and the concatenation of
mi.a and rj .a as its action list. For example, consider m1

and r1 (the first rule in Monitor and Route respectively).
As m1.m∩ r1.m is {srcip=3.0.0.0/8, dstip=2.0.0.1}, they can
generate a composed rule - the first rule in Monitor+Route.

Sequential Operator (>>): The sequential operator en-
ables multiple policies to operate packets in series by com-
bining those policies together. For example, suppose we have
a load balancer policy LB that distributes traffic to two back-
end servers by rewriting their IP destination address while
a routing policy Route forwards packets based on their IP
destination address (see Figure 3). Via the sequential operator,
the composed policy will first rewrite the IP destination
address and then forward these packets.

For the sequential composition of policies, the compiler
algorithms compute the cross product of rules from the two

Compositing

IP_SRCPriority Actions
1 0.0.0.0/1 IP_DST->2.0.0.1
2 ****

Rule
R1

R2

IP_DST

3 **** dropR3

3.2.1.1
3.2.1.1

IP_DST->2.0.0.2

IP_DSTPriority Actions
1 2.0.0.1 fwd(1)
2 2.0.0.2 fwd(2)

Rule
R1
R2

3 **** dropR3

>>
IP_SRCPriority Actions

1 0.0.0.0/1 IP_DST->2.0.0.1, fwd(1)
2 ****

Rule
R1

R2

IP_DST

3 **** dropR3

3.2.1.1
3.2.1.1

IP_DST->2.0.0.2, fwd(2)

Fig. 3. Example of sequential composition.

policies (LB >> Route) as follows: apply the associated
action list on the match fields of the rules from LB, and then
check, for any rule li ∈ LB and rj ∈ Route, whether the
intersection of li.m and rj .m is empty or not. A composed
rule is generated as long as li.m∩rj .m ̸= ∅, through merging
the match fields of li.m and rj .m as the match fields, and
concatenating li.a and rj .a as the action list.

C. Motivating Examples

Let us first consider two policies, say P1 and P2, to be
composed by parallel composition. From the very definition of
parallel composition, the parallel composition of these policies
should behave as though these policies operated in “parallel”
on their own copy of the traffic. In other words, the packets
generated by the parallel composition must be the union of
the packets that would be generated by each policy operating
on the traffic independently.

More formally, if L1(p), L2(p) and L//(p) denote the sets
of forwarding pairs respectively generated by P1, P2 and the
parallel composition of these policies, then

P//(p) ≡ P1(p) + P2(p)⇒ L//(p) = L1(p) ∪ L2(p)

It is trivial to prove that the parallel composition operator
is commutative, that is that P1(p) + P2(p) = P2(p) + P1(p),
since L1(p)∪L2(p) = L2(p)∪L1(p), confirming the intuition
that the order in which the policies are composed should not
affect the result of the parallel composition.

However, existing compositional systems all propose to
construct the action list of a rule resulting from parallel
composition as a simple concatenation of the action lists of
each composed rule (P//(p) ≡ P1(p) + P2(p) → a//(p) =
a1(p) ◦ a2(p)). Concatenation is obviously not commutative:
if, for instance, a1(p) = {dstip ← 8.0.0.2, fwd(2)}
and a2(p) = {fwd(1)}, then a1(p) ◦ a2(p) forwards the
same packet (whose destination address has been changed to
8.0.0.2) on both port 1 and 2, while a2(p)◦a1(p) forwards the
original input packet to port 1 and the packet with a modified

21ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

destination address to port 2. As parallel composition is a
commutative operation, it therefore cannot be realized through
simple action concatenation.

For sequential composition, which is not a commutative
operation by definition, simple concatenation of action lists is
also used. It is however, also easy to show that, while correct,
concatenation of actions can lead to redundant actions. Indeed,
consider, for instance, a1 = {vlan ← 1} and a2 ={vlan
← 2, fwd(1)}. P1 >> P2 yields a>> = {vlan ← 1,
vlan ← 2,fwd(1)}. Conceptually, the first modification in
the composed action list is redundant, leading to wastage in
the resource constrained switch fast path4.

We therefore see that simple concatenation for the compo-
sition of action lists cannot always preserve semantic equiv-
alence and correctness, or achieve optimal operations in the
data path. As a result, we conclude that action list composition,
in the context of policy composition operators, needs to be
revisited. We provide deeper analysis and solutions in the next
few sections.

III. ACTION COMPOSITION MODEL

Essentially, actions are used in rules to transform input
packets into output packets with specific properties, forward
these output packets to output ports, as well as keep statistics
on packets or rules. While other use of actions exists, such
as circumventing a switch’s lack of capabilities, it is the
above mentioned observable results of actions that matter for
compliance of the implemented policies.

The same is true for the composition operators: as long as
the observable forwarding pairs and statistics comply with the
intended compositional semantics, the result of the composi-
tion is correct.

A. Constructible Sequence and Graph-based Model
With the existence of set/write actions capable of

setting any sequence of bits and/or fields to any specified value
in the packet header, generating a packet with any specific
header may seem trivial. However, this is not the case.

Indeed, the composition of policies is computed by the
SDN hypervisor (a control plane component), using the policy
rules, while the specific packet headers are only known by the
switches (the data plane). In other words, the hypervisor can
only rely on the rule matching patterns to represent packets,
and the crux of the problem is that match patterns can contain
“don’t-care” bits (e.g. wild-cards, ranges, prefixes, etc.)

This is an issue, because once a part of a packet, correspond-
ing to a match pattern containing “don’t-care” bits, has been
set to any specific value by a set action, there is generally no
way to revert such change, as “don’t-care” bits always match
multiple values (see Figure 4).

The only way to revert a packet field, corresponding to a
rule match field containing “don’t-care” bits, is constructing
switches that can copy and save the original field value
from the input packet. However, current switch chipsets are

4Any (unnecessary) operation in the data plane potentially leads to a
decrease in forwarding rate.

F: Match pattern P: Packet
*: don`t care/wildcard

F1Priority Actions
1 0011 count

Rule
r

F2
000*

F1 F2

0011 0000p1
F1 F2

0011 0001P2

Hits

Fig. 4. Example of “don’t-care” bits. F2 in the rule contains one “don’t-care”
bit and thus matches two different values.

not willing to support such actions for three reasons. First,
recording packet values needs extra memory which is expen-
sive in resource limited switch chips; second, enabling copy
action causes race conditions because commodity switches
usually process packets in parallel; third, each revert needs
two memory copy operations (packet to memory and memory
to packet), leading to a lower performance. Thus, packet fields
fall into two categories:

1) Irreversible fields: packet fields that 1) cannot be copied
from the original (input) packet, and 2) correspond to
match fields that contain “don’t-care” bits in the policy
rule.

2) Reversible fields: packet fields that either can be copied
from the original (input) packet or that correspond to
match fields specifying an exact (unique) value (no
“don’t-care” in the bit pattern of the field, the exact
original value being thus available to the composing
hypervisor).

Consequently, in the presence of changes to irreversible
fields (see Figure 5), not every sequence of packets can be
generated by a switch, from a given input packet. In fact, a
set of output packets is said to be constructible from a given
input packet if there exists a sequence (i.e. permutation) of
those packets, starting with the input packet, such that no
change to an irreversible field must be reverted to progress
in the sequence. We now prove a fundamental theorem on
constructible sequences of packets.

We call ICi the set of irreversible fields that must change
to generate output packet pi from input packet pin. Note that
since changes to reversible fields can always be reversed (i.e.
undone), reversible fields can safely be ignored in feasibility
considerations.

Theorem 1. (CONSTRUCTIBLE SEQUENCE THEOREM): Giv-
en an input packet pin, n output packets pi and their set of
irreversible field changes ICi (1 ≤ i ≤ n), the sequence
< pin, p1, p2, . . . , pn > is constructible iff IC1 ⊆ IC2 ⊆
. . . ⊆ ICn.

Proof. We prove the forward direction by contradiction. As-
sume the sequence is constructible. Also assume that there
exists an irreversible field ifk that changes to generate pi, but
does not change to generate pj further in the sequence, that
is ∃ifk : ifk ∈ ICi, ifk ̸∈ ICj , with i < j.

Since ifk ̸∈ ICj , the value of ifk in pj is the original value

22ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

F1Priority Actions
1 0011 count

Rule
r

F2
00**

WildcardExact
Reversible

field
Irreversible

field

O(F): the input packet value
on the field F

Reversible changes
Irreversible changes

Packet header Packet header

O(F1)F1

F2

F1Å0010

e ts

O(F2)

0010

0111F2Å0111

F1

F2

Fig. 5. Example of reversible and irreversible field changes.

of that field in pin. Also, since i < j, pj is constructed after
pi in the sequence, and this can only be possible if the change
to irreversible field ifk, that was necessary to generate pi has
been reversed to generate pj . This is a contradiction, since ifk
is an irreversible field. We therefore have that in a constructible
sequence, (i < j, ∀ifk : ifk ∈ ICi) ⇒ ifk ∈ ICj , which
implies that ICi ⊆ ICj , i < j.

We prove the reverse direction by induction. Base case:
by definition of ICk, any packet pk can be constructed from
pin by changing the irreversible fields in ICk (along with
possibly changes to some reversible fields). In particular, p1
can always be generated from pin by changing the (irre-
versible) fields in IC1 (such operation is denote pin →ICi p1).
Inductive case: assume the prefix subsequence up to packet
pk (< pin, p1, p2, . . . , pk >) is constructible. We show that
pk+1 is constructible (can be generated) from pk, given that
ICk ⊆ ICk+1. Indeed, ICk+1 = (ICk ∩ ICk+1) ∪ (ICk+1 \
(ICk ∩ ICk+1)). But since ICk ⊆ ICk+1, we have that
ICk ∩ ICk+1 = ICk, so that pin →ICk∩ICk+1 pk. This
means that pk can be generated as a step in the construction
of pk+1. From this step, the remaining changes in ICk+1, that
is all the changes in ICk+1 \ (ICk ∩ ICk+1) can be applied
to yield pk+1 (pk →ICk+1\(ICk∩ICk+1) pk+1). We therefore
have pin →ICk∩ICk+1 pk →ICk+1\(ICk∩ICk+1) pk+1 =
pin →ICk+1 pk+1.

When an SDN hypervisor is composing policies, it does not
generally know the exact values of the fields of the packets that
will hit the resulting rules. Still, it can “simulate” the effects
of applying the actions associated with the rules (according
to the composition operators used), so that it can “compute”
the packets, in terms of which input packet fields get modified
or not, and on which ports these packets get forwarded. The
discussion and results describe above therefore suggest that the
problem for the hypervisor is thus to find the right sequence for
generating the output packets, given that as soon as an output
packet has been constructed, it can simply be forwarded to the
correct ports by issuing appropriate forward actions.

A convenient way to model the process of constructing
packets is thus as a graph, where vertices represent each unique
packet in the process (that is the input packet and each output
packet to be generated), and where there is an oriented edge
between two vertices if a series of actions can transform the
source packet into the destination packet. The important thing
to remember, is that reversible packet fields can always be
changed to any value in any order, while irreversible fields
can only be set to specific (known) values, but cannot be
reverted to their unknown original (input) value. The resulting
graph is thus not a “full mesh” (since some packets cannot
be constructed from others). Each edge in the graph can then
be labelled with the set of packet modification actions needed
to actuate the transformation from the source packet to the
destination packet (see Figure 6).

Reversible field: F1

Irreversible field: F2,F3,F4

F1 F2
O(F2)

F3
O(F3)O(F1)

{F1Å0010}
{F1Å0011}

{F2Å0011}

{F1Å0010,F2Å0011,F3Å0001}
{F1Å0010,F2Å0011}

{F2Å
0011,F3Å

0001}

O(F): the input packet value on the field F

Match Pattern
F1

0011
F2

000*
F3

00**
F4

0***

F4
O(F4)

F1 F2
0011

F3

00010010
F4

O(F4)

F1 F2
O(F2)

F3
O(F3)0010

F4
O(F4)

F1 F2
0011

F3
O(F3)0010

F4
O(F4)

P3

P4P2

Pin

{F1Å0001}

Fig. 6. Example of graph-based action composition. ICpin = ICp2 = ∅,
ICp3 = {F2, F3}, ICp4 = {F2}. An oriented edge from pi to pj exists
iff ICpi ⊆ ICpj . A path starting from the input packet pin and visiting
each vertex is pin → p2 → p4 → p3. The corresponding action list is
F1 ← 0010, F2 ← 0011, F1 ← 0001.

With such a graph, generating the required packets, and
computing the associated action list, reduces to finding a
Hamiltonian path [23], starting at the input packet, if such path
exists. Indeed, a Hamiltonian path through a graph visits each
vertex exactly once, corresponding to every output packets
being generated.

However, the Hamiltonian path problem is known to be NP-
complete [23], [24]. In section IV, we discuss algorithms to
find such a path, while aiming to minimize the number of
actions required to actuate the construction of output packets.

B. Misc Action Considerations
A misc action associated with a rule counts the number of

packets for which the corresponding rule was a “hit”. Let us
consider two policies P1 and P2 that need to be composed.
Suppose r1 ∈ P1 has a misc action to count C(r1) the number
of packets that hit r1. After composition of P1 and P2, we still
need to get C(r1) from the composed policy.

Let S(r1, P2) denote the set of composed rules that contain
the semantic of r1, i.e., S(r1, P2) = {r1.m ∩ ti.m|r1.m ∩
ti.m ̸= ∅, ti ∈ P2}. For each composed rule si ∈ S(r1, P2),

23ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

we associate one misc action to count the number of packets
that hit si. We then have the following Theorem for the
restoration of C(r1) from the composed policy.

Theorem 2. (QUERY STATISTICS): Given two policy P1 and
P2, policy M is composed of P1 and P2. The counter C(r1)
associated with the rule r1 ∈ P1 can be computed as:

C(r1) =
∑

C(si)

where si ∈ S(r1, P2) ⊆ M and S(r1, P2) = {r1.m ∩
ti.m|r1.m ∩ ti.m ̸= ∅, ti ∈ P2}.

Proof. On the one hand, for any packet that hits r1, it can hit
at least one rule of S(r1, P2): the rule composed by r1 and the
default rule of P2. On the other hand, due to the priorities
of composed rules, any packet can hit no more than one rule
of S(r1, P2). As such, any packet that hits r1 can hit exactly
one rule of S(r1, P2). In other terms, the number of packets
that hit r1 is equal to the number of packets that hit the rules
of S(r1, P2) ⊆M .

IV. ACTION COMPOSITION ALGORITHMS

We showed in section III that the problem of finding a con-
structible sequence of packets to implement the composition
of policies reduces to finding a Hamiltonian path in a graph.
While this problem is generally NP-complete, Theorem 1
states a fundamental property of such sequences that can be
exploited to efficiently find such sequence.

Indeed, Theorem 1 shows that, in a constructible sequence,
changes to irreversible fields must be applied “incrementally”,
due to the “nesting” of the set of irreversible fields that have
changed (compared with the input packet), from one packet
in the sequence to the next; in other words, packets further in
the sequence, can only be constructed by either “adding” more
changed irreversible fields or changing again (to specific know
values) some of these fields, compared with earlier packets in
the sequence.

This observation leads to a very simple, straightforward and
efficient algorithm (see Algorithm 1) to not only test for the
existence of a constructible sequence, but also obtain one such
sequence of packets (if it exists).

All we need to do is to represent all the irreversible fields
in a rule as a bitmap. Remember that what makes a header
field irreversible is the presence of “don’t care” bits in the
pattern of the rule representing that field and the lack of
switch capability to save the original value of this header
field in the input packet, both properties being known to
the compositional hypervisor. Then for each desired output
packets (again, these are know to the hypervisor), set to 1
the bits corresponding to changed irreversible fields (lines 1
to 4). Then sort the “output packets” by the number of bits
set in the bitmap (line 5), because irreversible field changes
must be applied incrementally. Then sweep across the or-
dered packets, checking if bitmap(k) & bitmap(k+1)
== bitmap(k), which is equivalent to checking that the
set of irreversible field changed in one packet is completely

Algorithm 1: SIMPLESEARCH(pin, {pout}, {IF})
Input: pin: input packet
Input: {pout}: set of (unique) output packets
Input: {IF}: set of irreversible fields in the rule
Output: path: Hamilton path “vector” (“empty” if no

such path exists)
1 path← newEmptyVector();
2 for p ∈ {pout} do
3 bm←BitMap(pin, p, {IF});
4 path.append((p, bm));

5 sort(path, ByNumberOfBitSet);
6 thisP ← path.first();
7 while (nextP ← path.next()) ̸= NULL do
8 if thisP .bm & nextP .bm ̸= thisP .bm then
9 return newEmptyVector();

10 thisP = nextP ;

11 return path;

contained in the set of irreversible fields changed in the next
packet (as required by Theorem 1). If this test succeeds for
each consecutive pair of packets, then not only a constructible
sequence of packets exists, but the ordered packets is one such
sequence (lines 6 to 11).

The complexity of this algorithm, given n output packets
to generate, is O(n) for generating the bitmaps; O(n lg n) for
sorting; and O(n) for testing the inclusion relation. Therefore
the overall complexity is O(n lg n).

From the returned sequence of packets (if it exists), the
compositional hypervisor can compute the action list for the
corresponding (composed) rule by simply concatenating the
modify actions required to generate each packet in the path,
from the preceding packet, and issuing the required forwarding
actions whenever the desired packets have been generated.

While Algorithm 1 finds a constructible sequence of packets
if such sequence exists, this sequence may not be optimal
in terms of the number of actions required to generate the
sequence. This is because packets that have the same set of
modified irreversible fields (and thus only differ from each
other by different sets of modified reversible fields) can appear
in any relative order in the sequence.

See, for instance, packets P3 and P4 in Figure 7. The
total cost of the path is 6 (1⃝ + 2⃝ + 3⃝ + 4⃝). But there
is another constructible sequence of packets, obtained by
exchanging packet P3 and P4 in the packet sequence, with
reduced cost 5. This is because the cost from P5 to P4

is 1 (F3 ← 0001) while P4 to P3 requires 2 modification
operations (F1 ← 0011, F3 ← 0011). The reason why we can
change the order of P3 and P4 to get a lower cost path is that
they contain identical sets of modified irreversible fields, i.e.
IC3 = IC4.

While Algorithm 1 actually worked on an implicit represen-
tation of the graph model for packets described in Section III,
finding optimal sequences will require an explicit representa-

24ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

O(F): the input packet value on the field F

Reversible field: F1

Irreversible field: F2,F3,F4

Match Pattern
F1

0011
F2

000*
F3

00**
F4

0***

F1 F2
0011

F3
00010010

F4
O(F4)

F1 F2
O(F2)

F3
O(F3)0010

F4
O(F4)

Pin
F1 F2

O(F2)
F3

O(F3)O(F1)
F4

O(F4)

F1 F2
0011

F3
O(F3)0010

F4
O(F4)

ICin={ }

IC2={ }
F1 F2

0011
F3

0011O(F1)
F4

O(F4)

P5

IC3={F2,F3}

IC4={F2,F3}

IC5={F2}

Input packet

A packet
sequence

ICin IC2 IC5 IC3 IC4 Sorting

P2

P3

P4

P4Pin P2 P5 P31 2 3 4

1 {F1Å0010} 2 {F2Å0011}
3 {F1Å0011,F3Å0011} 4 {F1Å0010, F3Å0001}

Fig. 7. Example of a Hamilton path. The packets sequence sorted by the
number of irreversible changes provides one Hamilton path.

tion of this graph.
The graph for packet generation as described in Section III

would have a directed edge between two packets if no modified
irreversible field has to be reverted to its original value (in
the input packet) to go from the “source” vertex to the
“destination” vertex. However, this is far too many edges:
indeed, because of the transitivity of the “subset” relationship
(i.e. “contain” operations) required of the modified irreversible
field subsets of the packets in a constructible sequence (The-
orem 1), a sub-sequence P1 ! P2 ! P3

5, would also
imply one directed edge P1 ! P3. However, the P1 ! P3

edge is completely useless, because it will never be part of a
Hamiltonian path in the graph: a sequence can never go back
to P2 from P3, as this would mean reverting (at least) one
irreversible change.

The output of the simple Algorithm 1 can here help avoid
generating these useless edges in the graph, and thus reduce
the space to be searched for optimality. Indeed, this simple
algorithm outputs packets ordered by their number of modified
irreversible fields. Any sub-sequence of adjacent packets with
the same number of such modifications thus forms a group of
packets whose order can be changed while still conserving a
constructible sequence. This is because packets in each group
form a “local full-mesh”, and they only differ from each other
by modifications to reversible fields. The simple algorithm
therefore also gives the sequence of groups, and there thus
only needs to be an edge from each packet in a group, to each
packet in the following group in the sequence (see Figure 8).

While finding an optimal path (in terms of the number
of actions needed) in such graph is still an NP-complete
Hamiltonian path search, we argue that in practical scenarios,
the number of distinct output packets to be generated will be

5We suppose IC1 ⊆ IC2 ⊆ IC3. ∀i ∈ [1, 3], ICi corresponds to Pi.

Irreversible field: F1, F2

ICin={ } IC2={F1} IC3={F1}

IC4={F1,F2} IC5={F1,F2}

Pin P2 P3

P4 P5 P6 IC6={F1,F2}

Pin

P2

P3

P4 P5

P6

Group 1 Group 2 Group 3

Fig. 8. Example of packet grouping.

kept relatively low (so the number of vertices in the graph
will be small). Furthermore, this graph only contains edges
that potentially belong to a constructible sequence (so the
number of edges has been reduced to a minimum). Because
of this “reduced” search space, we believe that a brute-force
algorithm, enumerating all the (Hamiltonian) paths in the
graph is a plausible solution to the optimal Hamiltonian path
finding problem at hand.

Nevertheless, should the search space become too big, the
compositional hypervisor can always decide to use a heuristic
algorithm (such as one based on a greedy approach) instead,
to trade running time for potential deviation from optimality6.

V. IMPLEMENTATION AND EVALUATION

We have implemented our model and the related algorithms
in CoVisor [13]. Using this implementation we evaluate its
performance.

More specifically, we replaced the core logic of action lists
composition for both the parallel and sequential operators.
Note that we implemented three Hamilton path searching
algorithms: the simple algorithm (Algorithm 1), the brute-
force (a.k.a. enumeration) algorithm and a greedy algorithm,
picking the less weighted edge whenever a choice is available
when searching for the Hamilton path: suppose the last added
vertex in the path is v, then the next vertex in the path is
u=argminu∈U(v) W (v, u), where W (v, u) is the weight (i.e.
the number of modification actions) of the edge from v to u
and U(v) is the set of destination vertices of edges from v.
This greedy algorithm works, because we ensure that the graph
only contains edges that are potentially part of a Hamilton path
(see Section IV).

A. Experimental Setup

We deployed our implementation on an octo-core
Intel R⃝Xeon R⃝E5506 CPU, clocked at 2.13GHz. The machine
is equipped with 16GB RAM and runs 64-bit Ubuntu Linux
10.04.3. We used two rulesets for our experiments:

1) D1 (real-life policies): L3 Router [26] and L3 Firewall
[27].

2) D2 (synthetic policies): rules are generated associated
with multiple types of actions (e.g. modification, for-

6As an extreme case, the hypervisor could even choose to use the output
of the simple algorithm.

25ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

warding and misc actions) to reflect more dynamic,
complex scenarios.

Each rule of D1 contains one forwarding action. Each
rule of D2 on the other hand contains multiple modifica-
tion/forwarding actions. To generate modification actions in
D2, we randomly select one packet header field as the field
that is modified by the action, whose value after modification is
also randomly assigned. The number of distinct output packets
for each rule is controlled through forwarding actions. In the
experiment, an action list can generate no more than 10 distinct
(different) output packets for one input packet – we believe
this value to represent an unrealistic value, chosen to illustrate
absolute worst case scenarios. The match pattern for IP address
is prefix-based, while for other match patterns (like port, MAC
address, vlan), we use exact match.

We are interested in four aspects of performance: 1) the
computation time; 2) factors that affect the computation time;
3) contribution of the various components to the computation
time; 4) comparison between the three path search algorithms
in terms of computation time and optimality.

B. Experimental Results

TABLE I
COMPUTATION TIME OVER TWO POLICIES (IN µS).

average minimum maximum
D1 85 72 95
D2 249 125 380

The average, minimum and maximum computation time
of the enumeration algorithm are reported in Table I. The
action lists of any rule in D1 can be computed within 95
µs. Computation of action lists for rules in D2 takes a longer
time and the average time is around 250 µs. This is because
rules in D2 have more complex actions and can generate more
distinct output packets. Nevertheless, the computation time is
relatively small, showing that our approach is practical.

7 8 9 10
0

50

100

150

200

250

300

350

The number of vertexes

The overhead

(a)

3 4 5 6
0

50

100

150

200

250

300

350

The number of groups

the overhead

(b)

Fig. 9. Variation of computation time with two factors: (a) the number of
vertices in a group, (b) the number of groups.

The computation time depends on both the number of
vertices in groups and also the number of groups in our
graph-based model. We first select the actions from D2 that
have 6 groups. Figure 9(a) plots the computation time when
varying the number of vertices. As expected, a larger number
of vertices leads to a higher computation time. But, even
with 10 vertices, the computation time is still within 320 µs.

We then select the actions from D2 that have 7 vertices.
The computation time with different number of groups is
reported in Figure 9(b). A larger number of groups leads
to a smaller number of vertices per group. Given that the
permutation within each group is one of the major contributors
on computation time, a smaller number of vertices in each
group in turn results in lower computation time.

3 4 5 6
0

50

100

150

200

250

300

350

the number of group

Simple algorithm
Greedy algorithm
Enumeration

(a)

7 8 9 10
0

50

100

150

200

250

300

350

The number of vertexes

Simple algorithm
Greedy algorithm
Enumeration

(b)

Fig. 10. Comparison of three algorithms in terms of computation time: (a)
varying the number of groups. (b) varying the number of vertices.

We then compare the three algorithms for the Hamilton
path search in terms of computation time. Figure 10 shows
the computation time of the three algorithms, where we vary
the number of groups while fixing the number of vertexes
(Figure 10(a)), and vary the number of vertexes while fixing
the number of groups (Figure 10(b)). Since the enumeration
and greedy algorithms use extra optimization (necessitating the
output of the simple algorithm to generate a “reduced” graph,
see Section IV), they requires to use more computation time.
Compared with enumeration algorithm, the greedy one can
save up to 50% of the computation time, and is less relevant
to the number of vertices and the number of groups.

Small rules Medium rules Big rules

Group 1 Group 1 Group 1

Group 2 Group 2 Group 2

Input packet

1/2 r. changes

1/2 r. change

2/3 r. changes

2/3 r. changes

3/5 r. changes

3/5 r. changes

Input packet Input packet

Fig. 11. The three scenarios. r. represents reversible fields.

Finally, we evaluate the amount of actions in the Hamilton
path generated by the three algorithms. To this end, we
construct three scenarios based on D2 (see Figure 11). In all
three scenarios, one input packet would generate two groups
of outputs. In the small rules scenario, each group contains
two packets which change 1 (out of 2) reversible field; in the
medium rules scenario, each group has three packets which
change 2 (out of 3) reversible fields; in the big rules scenario,

26ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Small rules Medium rules Big rules
0.8

0.9

1.0

1.1

1.2

N
or
m
al
iz
ed
#a
ct
io
ns

The type of rules

Enumeration
Simple search
Greedy search

Fig. 12. Number of actions generated by the three path search algorithms,
normalized by the number of actions in the path generated by the enumeration
algorithm.

each group has five packets which have 3 (out of 5) reversible
fields. We apply the three algorithms on each scenario and
plot the number of actions in the path generated by each
algorithm in Figure 12. We can see that, compared with the
enumeration algorithm (which is optimal), the simple search
algorithm generates up to 20% more actions, and the greedy
algorithm incurs up to 15% more actions.

In summary, given that the composition of policies is
performed in servers (like controllers) other than switches
themselves, we believe the enumeration algorithms is more
applicable in practice in order to obtain optimal results.

VI. CONCLUSION

Policy composition has been emerging as a powerful and
important tool for facilitating the creation and deployment of
complex network applications. As the developer or network
administrator requesting such composition may not master, or
even want to know, the details of each policy component being
composed, it is of paramount importance that compositional
operators be supported in as much a transparent and effi-
cient manner as possible. Previous work introduced important
headways in this direction by proposing efficient techniques
to compute the matching patterns for composed rules. Our
work complements this by tackling the problem of correct and
efficient action list computation, another important component
of policy rules.

In particular, we formalize an action composition model,
and prove a feasibility condition on the composition of rule
actions. We abstract the action composition as a Hamilton
path search problem in a directed weighted graph, while
exploiting fundamental properties specific to the resulting
graph to compute solutions, to this otherwise NP-complete
problem, efficiently. We show that our approach is not only
correct, but also efficient.

ACKNOWLEDGMENTS

We thank the IFIP Networking reviewers for their insightful
feedback. This work is supported in part by National High
Technology Research and Development Program of China
(Grant No. 2015AA016101 and 2015AA010201), National
Natural Science Foundation of China (Grant No. 61502458
and 61502462) and Beijing Municipal Natural Science Foun-
dation (Grant No. 4162057).

REFERENCES

[1] N. McKeown, “Software-defined networking,” INFOCOM keynote talk,
2009.

[2] D. Kreutz, F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[3] “The hp sdn app store.” http://h17007.www1.hp.com/us/en/networking/
solutions/technology/sdn/devcenter/#sdnAppstore.

[4] B. Nunes, M. Mendonca, X.-N. Nguyen, K. Obraczka, T. Turletti, et al.,
“A survey of software-defined networking: Past, present, and future of
programmable networks,” Communications Surveys & Tutorials, IEEE,
vol. 16, no. 3, pp. 1617–1634, 2014.

[5] “Opendaylight.” http://www.opendaylight.org/.
[6] “Ryu openflow controller.” http://osrg.github.io/ryu/.
[7] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and

S. Shenker, “Nox: towards an operating system for networks,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 3, pp. 105–
110, 2008.

[8] R. Soulé, S. Basu, P. J. Marandi, F. Pedone, R. Kleinberg, E. G. Sirer,
and N. Foster, “Merlin: A language for provisioning network resources,”
in ACM CoNEXT, 2014.

[9] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
in ACM SIGPLAN Notices, vol. 46, pp. 279–291, ACM, 2011.

[10] C. Monsanto, N. Foster, R. Harrison, and D. Walker, “A compiler and
run-time system for network programming languages,” ACM SIGPLAN
Notices, vol. 47, no. 1, pp. 217–230, 2012.

[11] Y. T. Chaithan Prakash, Jeongkeun Lee and J.-M. Kang., “Pga: Using
graphs to express and automatically reconcile network policies,” in
Proceedings of the 2015 ACM conference on SIGCOMM, ACM, 2015.

[12] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. Clark,
“Kinetic: Verifiable dynamic network control,” 2015.

[13] X. Jin, J. Gossels, J. Rexford, and D. Walker, “Covisor: A compositional
hypervisor for software-defined networks,” in Proc. USENIX NSDI,
2015.

[14] A. Dixit, K. Kogan, and P. Eugster, “Composing heterogeneous sdn
controllers with flowbricks,” in Network Protocols (ICNP), 2014 IEEE
22nd International Conference on, pp. 287–292, IEEE, 2014.

[15] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: enabling innovation in
campus networks,” ACM SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[16] C. Monsanto, J. Reich, N. Foster, J. Rexford, D. Walker, et al.,
“Composing software defined networks.,” in NSDI, pp. 1–13, 2013.

[17] N. Foster, A. Guha, M. Reitblatt, A. Story, M. J. Freedman, N. P. Katta,
C. Monsanto, J. Reich, J. Rexford, C. Schlesinger, et al., “Languages for
software-defined networks,” Communications Magazine, IEEE, vol. 51,
no. 2, pp. 128–134, 2013.

[18] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “Netkat: Semantic foundations for
networks,” ACM SIGPLAN Notices, vol. 49, no. 1, pp. 113–126, 2014.

[19] X. Jin, J. Rexford, and D. Walker, “Incremental update for a compo-
sitional sdn hypervisor,” in Proceedings of the third workshop on Hot
topics in software defined networking, pp. 187–192, ACM, 2014.

[20] “The opensource code of covisor.” https://github.com/CoVisor/CoVisor.
[21] “The code of frenetic language..” http://frenetic-lang.org/pyretic/.
[22] “Openflow switch specification.” https://www.opennetworking.org/.
[23] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson, Introduction

to Algorithms. McGraw-Hill Higher Education, 2nd ed., 2001.
[24] A. A. Bertossi, “The edge hamiltonian path problem is np-complete,”

Information Processing Letters, vol. 13, no. 4, pp. 157–159, 1981.
[25] “Openflow switch specification.” https://www.opennetworking.org/

images/stories/downloads/sdn-resources/onf-specifications/openflow/
openflow-switch-v1.5.0.noipr.pdf.

[26] “Routereview.” http://www.routeviews.org/.
[27] “The rules set of evaluation packet classification.” http://www.arl.wustl.

edu/∼hs1/PClassEval.html.

27ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Anomaly-Free Policy Composition in
Software-Defined Networks

Mohsen Rezvani, Aleksandar Ignjatovic, Maurice Pagnucco and Sanjay Jha
School of Computer Science and Engineering, UNSW Australia
{m.rezvani,a.ignjatovic,m.pagnucco,sanjay.jha}@unsw.edu.au

Abstract—Software Defined Networking (SDN) provides con-
siderable simplification of design and deployment of various
network applications for large networks. Each application has
its own view of network policy and sends its policy to a
network hypervisor in which a composed policy is generated
from the application policies and deployed into the data plane.
A significant challenge for the hypervisor is to detect and
resolve both intra and inter policy anomalies during the policy
composition. However, current SDN compilers do not consider the
policy anomalies well and generate large number of unnecessary
rules for the data plane. This leads to a considerable inefficiency
in both policy composition and policy deployment. In this paper,
we propose a novel framework for policy composition in a
SDN hypervisor which takes into account both inter and intra
policy anomalies. Moreover, we augment the framework with an
efficient insertion transformation mechanism which allows the
applications to issue rule insertion and priority change updates.
Our evaluation shows that our method is several orders of
magnitude more efficient than the state of the art in both policy
composition and compiling the rule insertion updates.

I. INTRODUCTION

Software Defined Networking (SDN) is transforming tra-
ditional network architectures to more flexible and pro-
grammable platforms by decoupling the control logic from
the forwarding (data) layer. A logical SDN architecture in-
cludes three distinct layers: application, control and forwarding
(data) [1]. Network applications at the top of this multi-layer
architecture can define network policies based on a global
view of the network provided by software-based controllers
in the control layer. The controllers enforce network policies
in the data layer by translating application defined policies
into low-level and identifiable rules in network devices. The
OpenFlow protocol [2] is one of the earlier and more popular
communication standards between the control and data layers.

The SDN multi-layer architecture allows multiple applica-
tions or even multiple administrators to specify the network
policy simultaneously. Each application can take advantage of
the global network view to effectively define its network policy
as a sequence of OpenFlow rules. The controller then, as a
hypervisor integrates the policies received from different ap-
plications based on a policy composition strategy. The strategy
specifies how to use three common binary operators: parallel
(two policies can be applied at the same time), sequential (the
second policy is processed after the first one) and override
(the second policy is applied only on the traffic which is not
matched by the first policy) to combine the policies [3]. As a
result of such policy composition, the controller generates a
set of prioritized OpenFlow rules, called composed policy and
installs such a policy into the data plane (as shown in Fig. 1).

Routing Load
Balancer Firewall

Network Applications

Network Hypervisor / Policy Composition

Data Plane

Fig. 1: Policy composition in a SDN hypervisor.
A naive policy composition method is to recompute and

reinstall the composed policy every time an application up-
dates its policy. Jin et al. [4] recently proposed CoVisor which
incrementally updates the policy without shifting existing
rules. CoVisor limits the policy updates to only two operations:
add a new rule and delete an existing rule. However, in many
applications, such as firewalls, an administrator can insert a
new rule in the middle of existing rules. Such insert rule
operation can lead to a shift of many rules if there is no
empty space for the priority of the new rule [5]. Accordingly,
applying a rule insertion in CoVisor needs in average n

2 delete
and n

2 add operations in the base policy, where n is the number
of rules in the policy. Note that a composition operator, such
as parallel operator, after such many updates in the application
policy may generate O(n2) updates in the composed policy.

Another important challenge in SDN policy management is
to detect and resolve policy anomalies, such as redundancies
and conflicts, in the application policies and then combine
them to make an anomaly-free composed policy. This not only
reduces the number of rules in the application-level policies
[6], but also considerably improves the efficiency of the policy
composition as it prevents cascading the anomalous rules into
the composed policy. Although the anomaly detection within
an individual application policy (intra-policy anomalies) has
been well investigated in the literature [6], [7], [8], [9], the
SDN multi-layer architecture makes the anomaly detection
more difficult. This is because existing anomalies among
policies (inter-policy anomalies) must be considered. Our
experiments show that the policy anomaly detection is more
significant in a SDN hypervisor as its policy composition
can quadratically propagate the existing intra-anomalies into
the composed policy. This can result in deploying many
unnecessary rules into the data plane which leads to not
only inconsistency in the network policy but also significant
inefficiency due to deployment of these rules.ISBN 978-3-901882-83-8 c⃝ 2016 IFIP

28ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

To address the above challenges, we first propose a novel
anomaly-free policy model which help us to efficiently detect
and resolve anomalies for policy updates. We maintain a
separate model for each application-level policy. Then, we
define the policy composition operators over our policy model
which helps us to generate a model for the composed policy.
Thus, the results of policy composition is a policy model
which is also an anomaly-free model. We then propose a
straightforward algorithm to translate the model to low-level
OpenFlow rules. Moreover, we leverage our policy model to
efficiently translate the rule insertion updates received from
the application policies. The policy model efficiently emits the
sequence of prioritized rules which reduces the complexity of
both anomaly detection and policy composition.

In summary, we make the following contributions.
• We propose a new model for OpenFlow-based policies

which allows to efficiently obtain the dependencies be-
tween OpenFlow rules;

• We develop a formal mechanism to detect and resolve
both intra and inter-application policy anomalies which
leverages our OpenFlow policy model to reduce the
complexity of the detection process;

• We develop a new algorithm to incrementally compose
inserting updates which eliminates unnecessary shifting
in both individual and composed policies.

We provide a comparative evaluation of the performance
of our algorithms with the state of the art in SDN policy
composition. The results show that our method significantly
improves the efficiency of the policy composition by reducing
the update length several orders of magnitude compared to
proposed method in [4]. Moreover, the proposed insertion
translation considerably increases the performance of the naive
approach for handing insertion updates.

The rest of this paper is organized as follows. Section II
presents the related work. Section III describes the details of
our policy model. Section IV presents our anomaly-free policy
composition system. Section V describes our experimental
results. Finally, the paper is concluded in Section VI.

II. RELATED WORK

Anomaly detection in traditional access control policies,
such as firewalls, has been extensively studied in the research
community [10], [6], [7], [8], [11]. Al-Shaer and Hamed
present a set of algorithms to discover simple pairwise anoma-
lies in centralized and distributed firewall rules [6]. Inconsis-
tencies and inefficiencies among multiple rules are treated in
[7], [9]. Adao et al. [11] propose Mignis, a declarative policy
language to specify a Linux firewall, Netfilter configurations.
The Mignis tool is tightly integrated with Netfilter and is hard
to use for the OpenFlow policies.

Several SDN policy languages, such as Frenetic [12],
NetKAT [13] and Pyretic [3], have been proposed. They
use different batch mechanisms for policy composition which
make a large number of updates for each update in an appli-
cation policy. Wen et al. [5] introduced an incremental policy
update for Frenetic policies. The proposed method maintains a
dependency graph and scattered priority distribution for each
policy. Our method, instead of a using a dependency graph,
maintains an anomaly-free model which efficiently handles the
priority updates, such as insertion, without maintaining any

priority distribution. Recently, Jin et al. [4] proposed CoVisor
which employs a simple algebra for priority assignment in
an incremental policy composition. However, CoVisor neither
considers policy anomalies nor rule insertion updates. While
our method uses the algebra proposed in CoVisor, it also takes
into account both policy anomalies and insertion updates.

Han et al. [14] proposed a multi-layer policy management
framework for SDNs. However, the proposed method for intra-
policy anomaly resolution makes the policy enforcement a
nondeterministic task which can affect the rules’ semantics
and change the intention of policy definition [8]. Moreover,
the proposed method for inter-policy anomaly detection does
not consider the priority assignment in the incremental policy
composition. Dwaraki et al. [15] proposed GitFlow, a conflict-
free flow repository management for SDNs. However, GitFlow
considers neither the total conflicts in the application policies
nor the conflicts during the policy composition. Shin et al. [16]
present FRESCO, a framework for developing and deploying
network security applications for OpenFlow networks. How-
ever, its conflict detection module only considers simple pair-
wise rule conflicts in the data plane level. Prakash et al. [17]
recently proposed policy graph abstraction (PGA), a high level
policy graph abstraction which provides a conflict detection
and resolution mechanism. However, PGA is a whitelisting
model while the OpenFlow policies in an SDN hypervisor
can contain blocking rules. Smolka et al. [18] proposed a fast
compiler for NetKAT which introduces forwarding decision
diagrams (FDDs) to improve the efficiency of BDDs for
encoding the packet headers. Although our experiments show
a promising performance with BDDs, in our framework one
can also use FDDs for conflict detection and resolution.

III. SDN POLICY MODEL

We assume that each application defines its policy as a set
of flows defined in OpenFlow specification [19]. In this paper,
the term rule refers to a flow in OpenFlow specification.

A. OpenFlow Rule

Without loss of generality, we represent an OpenFlow rule
r with three components: 1) a priority, denoted as r.priority,
is a non-negative integer value used for matching precedence
of the rule within a policy; 2) rule match, denoted as r.match
which is a set of matching fields for specifying a set of
packets; and 3) actions, denoted as r.actions which is a set
of instructions to apply on the packets. A rule r defines how a
set of packets specified in r.match is treated in the network.

In the basic model, the matching fields represent information
about source and destination of the matched packets. Thus,
we can simply divide these fields into two sets where each of
them is called a peer. A combination of these fields defines
the source (destination) of the matched packets and is called
source (destination) peer, denoted as r.speer (r.dpeer) for a
rule r. In other words, source (destination) peer is a generaliza-
tion to specify the source (destination) sides of the matched
packets. Specifically, r.speer (r.dpeer) is a combination of
matching fields including source (destination) MAC, source
(destination) IP, source (destination) port, and protocol. A
matching field x for a peer p is denoted as p[x]. Note that some
fields in OpenFlow, such as protocol and VLAN identifier, are
neither assigned to source nor destination as they are common

29ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

for both peers. Thus, we repeat their values in the specification
of both peers if a rule is defined by these fields.

In order to model a peer of a rule, we use the idea of binary
representation of packet headers proposed in [9], [20], [21].
To this end, we first encode each matching field as a bit stream
and a peer is then represented as a bit stream obtained from
a combination of bit streams of its matching fields. In the
basic model, the representation of a matching field in a peer
contains: a MAC address as a stream of 48 bits, a network
address as a stream of 32 bits, a port as a stream of 16 bits,
and a protocol as a with of 8 bits. Thus, a peer is encoded as
a stream of 48 + 32 + 16 + 8 = 104 bits.

Using the above encoding, a matching field x in a peer
p is represented as a propositional logic formula, denoted
as p[x].formula. We define n variables to make the for-
mula from a stream of n bits. The formula is conjunction
of the variables for every bit set 1, its negation for every
bit set zero, and nothing for every bit set don’t care [9].
Now rule r is represented by a conjunction of the formulas
obtained for its matching fields. Thus, r.match.formula =∧

x∈r.match x.formula and the match formula contains at
most 104 ∗ 2 = 208 variables.

A rule match can be defined based on conjunction of
matching fields. All fields but network addresses define either
all values using a wildcard or only one specific value. A
network address is represented by a CIDR domain which
defines an arbitrary set of IP addresses. Thus, a matching
field can be specified by a set of values. Now we show that
all the fields hold the DISJOINTORSUBSET property which is
employed to propose a hierarchy representation of different
matching fields in a policy. Note that OpenFlow proposes a
bitmask feature which allows matching single bits of a filed
[19]. DisjointOrSubset holds when there is no such bitmask
in the fields. Supporting the bitmask is our future work.

Proposition 1 (DISJOINTORSUBSET). Each two values in a
matching field are either disjoint or one is a subset of the
other. More formally, assume that p1 and p2 are two peers
and x is a matching field defined according to our OpenFlow
rule model. The following relation holds:

∀p1, p2 : (p1[x] ∩ p2[x] = ∅) ∨ (p1[x] ∩ p2[x] = p1[x])∨
(p1[x] ∩ p2[x] = p2[x]).

(1)

Proof. Since all matching fields but network address define
either wildcard or only one specific value, it is obvious that
they satisfy the property. A network address field is specified
as a masked CIDR domain which contains an IP address and a
mask which is an integer value in the range of [0,31]. Clearly,
if two network domains contain non-overlapping IPs, they are
disjoint and otherwise one with smaller mask is a subset of the
other one. Thus, all the matching field holds the property.
B. OpenFlow Policy

Our idea for modeling a network policy is the fact that
the main source of inefficiency in a SDN hypervisor is the
set operations, such as union and intersection of match rules,
needed during both policy composition and anomaly detection.
We propose a graphical model to represent an OpenFlow
policy which is inspired by PGA [17]. Since our solution
is deployed within a SDN hypervisor (as shown in Fig. 1),
our policy model is required to 1) specify prioritized rules

while PGA only supports a set of rules without any priority; 2)
specify different actions according to OpenFlow specification
[19] which includes conflicting actions, such as Forward and
Drop, while PGA is limited to a whitelisting policy containing
only permit rules; and 3) incrementally compose policies and
generate minimum updates for deploying into the data plane,
while PGA supports batch policy composition.

An OpenFlow policy is a set of rules P = {r1, r2, . . . rn},
where ri = (ri.priority, ri.speer, ri.dpeer, ri.actions), (1 ≤
i ≤ n) represents the ith rule in the set. Now we introduce the
Policy Semantics Graph (PSG) to model an OpenFlow policy.

Definition 1. (Policy Semantics Graph) A PSG is a directed
graph, generated from an OpenFlow policy P . The vertices
are the peers in the rules in P . Also, there is an edge between
two vertices corresponding to peers p1 and p2 if and only if
∃r ∈ P, r.speer = p1 ∧ r.dpeer = p2. An edge represents a
rule in the policy and consists of the priority and actions of
the corresponding rule.

Corollary 1. A PSG model has no multiple edges between
any two vertices (thus a PSG is not a multigraph).

Proof. Follows directly from the fact that PSG has one and
only one edge corresponding to each rule in the policy.

Corollary 1 shows that PSG is a replica-free policy model.
Thus, the model automatically eliminates the fully replicated
rules from the policy. Note that a policy may contain other
types of rule redundancy, described in Section IV-C. Fig-
ures 2(a) and 2(b) show an example of an OpenFlow policy
and its corresponding PSG model, respectively.

Priority Match Actions

2 proto=ssh drop
1 dstip=1.0.0.2 fwd(2)
1 dstip=1.0.0.3 fwd(3)
0 * drop

(a) An OpenFlow policy.

ANY

2;drop 1;fwd(2)

1;fwd(3)

0;drop

proto=ssh dstip=1.0.0.2

dstip=1.0.0.3

(b) A PSG model.

Fig. 2: An OpenFlow policy and its PSG model.
C. SDH Hypervisor

As shown in Fig. 1, each application maintains a network
policy specified as an OpenFlow policy. The hypervisor also
maintains a policy obtained from a combination of the appli-
cation policies, called composed policy. As each application
submits its policy updates, such as add/delete/insert rules, the
hypervisor accordingly updates the composed policy and in-
stalls the final updates into the data plane. Note that the details
of translating the composed policy into physical policies, in-
cluding mapping the virtual network to physical network is out
of scope of this paper. The network administrator configures
the composition between each two application policies using
three operators: sequential, parallel, and overriding [12]. In
this section, we briefly review these operators.

a) Parallel Composition: The parallel composition be-
tween policies P1 and P2 applies both policies over all
incoming packets and then computes the union of their output
packets. For example, one can combine the policies from
Monitoring and Routing applications using the parallel oper-
ator. Accordingly, the actions obtained from both policies are
applied on any incoming packet.

30ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

b) Sequential Composition: The sequential composition
between policies P1 and P2 applies P2 after P1 over the
incoming traffic. To this end, the hypervisor first applies policy
P1 on the traffic and it then applies policy P2 on the resulted
traffic. For example, and administrator can use the sequential
composition to combine the policies from Load Balancer and
Router applications. The incoming packets first pass the load
balancer policy which might manipulates the packet header.
The routing policy is then applied on the new packet headers.

c) Overriding Composition: Such composition of poli-
cies P1 and P2 applies policy P2 over the incoming traffic
which does not match P1. The overriding operator can be used
to define a default policy.

IV. ANOMALY-FREE POLICY COMPOSITION

A. Solution Overview
The main idea behind our policy composition is to model

the application policies using PSG and then combine the PSG
models to obtain a new PSG which specifies the composed
policy. We assume that each application sends a list of
OpenFlow rules as policy updates to our system. The updates
may request to add, delete, or insert rules into the application
policy. Our system compiles the updates and generates a new
list of rules for the data plane.

Fig. 3 shows our anomaly-free frameworkcontaining two
layers: in the upper layer there is a policy manager for each
application and in the lower layer there is one policy manager
for the composed policy. Each policy manager maintains a
PSG to specify its policy. The updates from an application
first enter into the corresponding policy manager in which the
updates are checked for intra-policy anomalies such as rule
redundancy. The updates passed from the anomaly detection
are considered for updating the PSG model in the manager
which generates updates for the lower layer. The composed
policy manager employs the application-layer PSG models
to apply a typical policy composition and obtain a list of
add/delete rules to update the composed policy. After that, the
updates are checked for both intra and inter policy anomalies,
the composed PSG is updated accordingly, and finally the
updates are sent to the data plane.

It is worth noting that we augmented the application policies
to submit updates including rule insertion. This provides an
opportunity for an application manager to either insert rules
in the middle of the policy or update the priority of rules.
This is a common requirement supported in traditional rule-
based security tools such as firewalls and VPNs. As one can
see in Fig. 3, an application can generate insertion updates
and the application policy manager efficiently transforms such
updates into several Add/Delete updates. Thus, the composed
policy manager only accepts Add/Delete updates. The detailed
insertion transformation is described in Section IV-E.
B. Policy Construction

As described, each policy in our solution is represented by
a PSG. Thus, the hypervisor maintains one PSG for every
application and one for the composed policy. It is clear that
the main operations with high time complexity in both policy
composition and anomaly detection are set theoretic opera-
tions, such as union and intersection, among rule matches.
Thus, we employ a multidimensional Patricia trie to maintain
the list of peers used in each policy. The multidimensional trie

Policy updates from network applications
(Add/Insert/Delete rules)

Update PSG

Anomaly detection

Generate updates
(Add/Del rules)

Compose the updates

Update PSG

Generate updates
(Add/Del rules)

Data Plane

Application Policy Manager

Composed Policy Manager

Anomaly detection

Update PSG

Anomaly detection

Generate updates
(Add/Del rules)

Application Policy Manager

Fig. 3: Our policy composition framework.
is widely used for packet classification [22] and SDNs [23].
We instead use a Patricia trie which is a compressed trie and
stores data in every node. Since all the matching fields hold the
DISJOINTORSUBSET property (as shown in Proposition 1),
we can efficiently store them in the trie. In our data structure,
each level in the trie is corresponding to a matching field. Also,
each node which contains data, has a link to the root node of
a lower-level trie specifying the next matching field. This data
structure helps us to obtain the union and intersection using
postfix and prefix functions in the tries. Note that each field is
represented by a bit stream which help us to make a trie for
all values of the field within a policy.

In order to build the PSG model, we employ an incremental
method in which for any new rule, the corresponding nodes
and edge are created in the model. We also use an adjacency
list to represent the PSG model while its nodes are stored in
a multidimensional trie.

As described in the previous section, in order to implement
the sequential composition, we need the intersection between
matching packets after applying the actions of rules. In order
to improve the computational complexity of the sequential
composition, we maintain another trie which specifies the
results of applying all the rules within the policy. Using
this idea, we sacrifice the space complexity to reduce the
time complexity of the sequential composition to same as the
complexity of the parallel composition.
C. Anomaly Detection

Al-Shaer et al. [6] introduced four types of pairwise anoma-
lies among rules in a policy: Shadowing, Correlation, Gen-
eralization and Redundancy. Basi et al. [24] also classified
the anomalies into two categories: conflict where a packet
is matched with multiple rules with conflicting actions, and
suboptimality where there is a rule such that its removal has
no effect on the policy. We extend these pairwise anomalies
to hidden anomalies between a rule and a set of other rules in
the policy, called total anomalies [9]. Now, we leverage the
PSG model to efficiently detect the anomalies in a policy.

We concentrate on redundancy anomalies as the detection
algorithms for other anomalies are mostly similar. Moreover,
this avoids adding the redundant rules into the policy which

31ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

reduces the number updates for the policy. Note that avoiding
the redundant rules in the application policies can quadratically
decrease both the number of rules in the composed policy and
the number of updates installed in the data plane.

Definition 2. (Simple Redundancy) An OpenFlow rule is
simply redundant in a policy if its rule match is overlapped
with an existing rule with a higher priority in the policy. More
formally, rule r is simply redundant in policy P if and only if

∃ri ∈ P : r.priority ≤ ri.priority ∧ r.speer ⊆ ri.speer∧
r.dpeer ⊆ ri.dpeer.

A naive algorithm for detecting simple redundancy of a new
rule is to traverse over all rules with a higher priority than
such rule. Thus its complexity would be in O(n), where n
in the number of rules in the policy. However, one needs to
investigate only rules whose both peers are supersets of the
peers of the new rule. We leverage the trie structure to obtains
such rules for checking the simple redundancy. Clearly, if the
new rule is redundant, it is ignored and the system generates
a message to notify the administrator of this redundancy.

Definition 3. (Total Redundancy) An OpenFlow rule is totally
redundant in a policy if its rule match is overlapped with a
set of existing rules with higher priority in the policy. More
formally, rule r is totally redundant in policy P if and only if
the following formula is a tautology.

r.match.formula →
∨

ri∈P
r.priority≤ri.priority

ri.match.formula (2)

Similarly to the detection algorithm for the simple redun-
dancy, one can search over all rules with a higher priority
than the new rule to construct the propositional formula
on the right hand side of the implication in Eq. (2). This
equation then is transformed into a propositional logic formula.
If the formula obtained from the equation is a tautology
(a proposition that is always true), the new rule is totally
redundant. Now the redundancy detection is transformed to
a theorem proving problem in propositional logic. A typical
method for theorem proving in propositional logic is using
Binary Decision Diagrams (BDDs) [25].

As we have shown, an OpenFlow rule can be encoded as
a propositional logic formula using maximum 208 variables.
This formula can be represented as a 208-variable BDD.
Accordingly, we can build a BDD to represent Eq. 2 for each
new rule. After that, the obtained BDD is checked to validate
the equation. Although the procedure seems straightforward,
the size of the BDD exponentially increases as the number
of rules in the policy increases [25]. This is because of many
variables used in the decoding of an OpenFlow rule match.

The idea for reducing the size of the BDD obtained from
Eq. (2) is to consider only effective rules for transforming
the equation to a propositional logic formula. Assume that the
hypervisor wants to add a new rule r to policy P . An existing
rule ri ∈ P is effective for the redundancy detection of rule r
if all of the following conditions are held:

• The priority of ri is greater than or equal to the priority
of r, ri.priority ≥ r.priority;

• There exists some packets matched by both rules.
In other words, the formula r.match.formula ∧

ri.match.formula is not a contradiction (a proposition
that is always false);

• Assume the current formula obtained for the right side of
Eq. (2), is denoted by f . Adding rule ri to f is effective
if formula ri.match.formula → f is not a tautology.

It is clear that if an existing rule ri satisfies the above
conditions, it certainly contributes to the right side of Eq. (2).
The last condition avoids adding rules which already over-
lapped with the obtained formula for the right side. By
combining the last two conditions, we only check if formula
(r.match.formula∧ri.match.formula) → f is a tautology.
Algorithm 1 shows the procedure for detecting total redun-
dancy of a new rule r with policy P .

Algorithm 1 Total redundancy detection.
1: procedure TOTALREDUNDANCY(PSG P , Rule r)
2: f ← BDD(False)
3: for all rule ri ∈ P do
4: if r.priority ≤ ri.priority then
5: f ′ ← BDD((r.match ∧ ri.match) → f)
6: if f ′ is not a tautology then
7: f ← BDD(f ∨ f ′)
8: end if
9: end if

10: end for
11: f ← BDD(r.match → f)
12: if f is a tautology then
13: return True
14: end if
15: return False
16: end procedure

D. Policy Composition
Jin et al. [4] proposed CoVisor, an incremental policy com-

position algorithm for making small changes to the composed
policy every time an application policy changes. Basically,
an incremental composition does not need to recompute and
reinstall all rules in the composed policy for every single
update in an application policy. Instead, it leverages a priority
assignment mechanism to generate and install only rules which
are related to the update. We employ the calculus proposed in
CoVisor for prioritizing the new rules in the composed policy
and show how our PSG model improves the efficiency of the
policy composition. Note that the overriding composition is
implemented using a straightforward algorithm as there is no
need to apply any set operators among rule matches. Thus, we
take advantage of our PSG model to implement the parallel
and sequential compositions.

a) Parallel Composition: In order to combine two poli-
cies P1 and P2 using the parallel composition, for any two
rules r1 ∈ P1 and r2 ∈ P2 we add a new rule rk along two
original rules r1 and r2 to the composed policy. The rule rk
is added into the composed policy if the rule matches of two
base rules are not disjoint and rk is thus obtained as

rk.match = r1.match ∩ r2.match

rk.actions = r1.actions ∪ r2.actions

rk.priority = r1.priority + r2.priority

32ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Without loss of generality, we assume that a request arrives
to add a new rule r1 to application policy P1 and the
hypervisor wants to obtain all corresponding updates in the
composed policy. A naive algorithm is to traverse all rules in
P2 and create all possible rules, such as rk described above.
However, we leverage the trie structure of peers in the PSG
model of P2 to efficiently obtained all rules in P2 which has
intersection with r1. To this end, we first obtain two sets
SP and DP which are overlapping peers with r1.speer and
r1.dpeer, respectively. Then, the edges in PSG from a node in
SP to a node in DP represent all the rules intersected with r1.
Note that the updates generated from the policy composition
are used to update the PSG model of the composed policy.
Clearly, some of the updates may be removed in the anomaly
resolution of the PSG model.

b) Sequential Composition: Similar to the parallel com-
position, we assume that new rule r1 is added to policy P1 and
the hypervisor can use a similar method to obtain the updates
for sequential composition of P1 and P2. The only difference
is that instead of r1.speer and r1.dpeer the hypervisor uses the
peers r1.speer′ and r1.dpeer′ which respectively correspond
to r1.speer and r1.dpeer after applying the actions of r1.

In the case that a new rule r2 is added to policy P2, the
hypervisor must obtain the rules in P1 which their matches
after applying their actions have intersection with r2.match.
As discussed in the model construction phase, the hypervisor
maintains two PSG models for each policy, one for the original
policy and another for modeling the peers after applying the
actions. We employ the second PSG model of P1 to obtain a
subset of rules in P1 must be sequentially combined with r2.

E. Insertion Transformation
The methods described in the previous sections implement

both add and delete rules to/from an application policy and
consequently to/from the composed policy in the hypervisor.
Since the flow tables in an OpenFlow switch support redundant
priority for the flow entries [19], adding a rule is implemented
without changing the priority of other rules in the policy. How-
ever, many rule-based security systems allow the administrator
to manipulate the priority of existing rules as well as inserting
a rule in a specific position with the policy.

For example, assume that the administrator of the policy
shown in Fig. 2 wants to forward all the packets coming from
source IP 2.0.0.5 to port number 5 except for the http packets
which must be dropped. Now, the administrator can simply
insert a rule “2;srcip=2.0.0.5;fwd(5)” between the
first two rules in the policy. To this end, the first rule must be
shifted in order to make a free space for the new rule. This is
because there is a rule with an identical priority and with an
overlapped rule match with the new rule in the policy.

It is worth noting that the inserting operation is a very
beneficial feature in rule-based applications as the adminis-
trator can locally decide about the position of a new rule
without checking whole of the rules in the policy. A naive
method to implement the insert operation is to first shift all
the higher priority rules in order to make free space for the
new rule. After that, the insert operation is transformed into an
add operation. Accordingly, if there are n rules with a higher
priority than the new rule, this method first removes these n
rules, adds them while increments their priority, and finally add

the new rule in the free space. Thus, the naive method needs
2n + 1 = O(n) update operations. Note that such number of
updates generated for updating an application layer policy can
lead to an update with a quadratic length, O(n2) for either a
parallel or sequentially composed policy.

It is clear that the main objective of the rule priorities is
to prioritize the overlapping rules in the match process as
the OpenFlow policy uses a first match mechanism. In other
words, such priority can be disregarded when the match rules
are disjoint. By leveraging this fact we formulate our approach
based on two propositions: 1) we can limit the propagation
of any priority update to only the rules intersected with the
updated rule; and 2) if the policy contains a free space for the
inserted rule, we need no rule shifting. Note that we augment
the application policy updates allows an administrator to insert
rules. The hypervisor uses our approach to transform the insert
operation into a list of add/delete updates for such policy. It
then sends these updates to the policy composition module to
generate corresponding updates for the composed policy.

Algorithm 2 shows our approach for transforming an insert
update requested for an application policy into a list of
add/delete updates. The method proposed for model con-
struction is used for applying the add/delete updates in the
application policy. Moreover, the composed policy is updated
for the updates based on the composition algorithms described
in the previous section.

Algorithm 2 Transforming an insert rule into add/delete rules.
Input: P : a PSG, r: a new rule to be inserted into P
Output: U : A set of add/delete updates

1: procedure TRANSFORMINSERT(PSG P , Rule r)
2: U ← {Add(r)}
3: if ̸ ∃r′ ∈ P, r′.priority = r.priority then
4: return U
5: end if
6: for all rule r′ ∈ P do
7: if r.priority ≤ r′.priority then
8: f ← BDD(r.match.formula ∧ r′.match.formula)

9: if f is not a contradiction then
10: U ← U ∪ {Del(r′)}
11: r′′ ← Clone(r′)
12: r′′.priority ← r′′.priority + 1
13: U ← U ∪ {Add(r′′)}
14: end if
15: end if
16: end for
17: return U
18: end procedure

F. PSG to Flow Table
Although we propose an incremental method for updating

the flow tables in the data plane, a hypervisor might regenerate
and reinstall the rules into the data plane. Thus, we need to
efficiently translate the PSG model into forwarding tables that
represent packet processing in the switches.

As we described, a path from root to a leaf node in the
multi-dimensional trie represents an existing peer in the policy.
Such a leaf node has an edge to another leaf node for each

33ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

rule in which the rule participates as a source peer. Thus,
in order to generate a set of forwarding rules from a PSG
model, one can use a DFS-like algorithm for traversing the
whole of the trie and generate the rules for each source peer.
Note that the PSG model contains the priority of the rules
and there is no need to sort the rules before deploying them
into the data plane. Moreover, the forwarding rules generated
using this approach from a PSG model is anomaly-free as we
resolves the anomalies during the model updating process.

V. EXPERIMENTAL EVALUATION

A. Experimental Environment
We implemented a prototype of our method on the top of

CoVisor1 which itself is a part of the OpenVirteX network hy-
pervisor [26]. We selected this platform for two reasons. First,
this allows us to conduct a comparative evaluation against
CoVisor, a recently proposed policy composition method [4].
Second, our policy composition works independently and is
compatible with the built-in virtualizations in both OpenVirteX
and CoVisor. We used the PatriciaTrie API2 to imple-
ment the trie for each matching field. We extended the library
to also give us a sorted map of objects that are not disjoint
by a key. This helps to efficiently detect both simple and total
anomalies. We also used the JavaBDD library3 to manipulate
BDDs needed for our anomaly detection mechanism.

We assume that the applications’ administrators generate
their policy update requests as a list of add/insert/delete rules.
Thus, in all experiments we evaluate the efficiency of the
hypervisor for generating and installing the corresponding
updates for the composed policy based on four types of
metrics: 1) update length which is the average number of
updated flows in the composed policy per each update in the
application policy; 2) total length which is the composed
policy length after compiling the updates in the application
policies; 3) compile time which is the average elapsed time
needed to compile one update from an application policy into
the composed policy; and 4) total time which is the total
elapsed time needed to compile one update and install the
corresponding generated updates into the data plane.

We conducted experiments to evaluate the performance of
the proposed policy compositions and insertion transformation.
In all these experiments, the application policies are obtained
based on the filter sets generated by ClassBench [27] and we
randomly create the rule updates. All the experiments were
conducted on an iMac PC with 2.00GHz Intel Core 2 Duo
processor and 4GB RAM running Ubuntu 12.04 LTS. The
program code was written in Java with JDK 1.7.

B. Policy Composition
In order to conduct a fair comparative evaluation of the

policy composition, we follow the evaluation method proposed
in [4]. Accordingly, in this section we consider a network with
two applications where the hypervisor composed their policy
using either a parallel, sequential or overriding composition
operator. To measure the efficiency metrics, we first install
the base policy of both applications into the hypervisor, and

1http://covisor.cs.princeton.edu/
2http://docs.oracle.com/javase/6/docs/technotes/guides/collections/
3http://javabdd.sourceforge.net/

then measure the performance of policy updating by adding 10
uniformly randomly selected rules into both applications. The
process is repeated 100 times and then results are averaged.
We also vary the number of rules in the base policies for both
application to investigate the performance of the composition
algorithms in different policy lengths. For all experiments,
we measure the performance metrics for both the proposed
method, called PSG and CoVisor proposed in [4].

Fig. 4 shows the performance results of both approaches
for a parallel composition between two applications such as
Monitor and Router. As one can see in Fig. 4(a), the rule
update overhead in CoVisor linearly increases as the number
of rules increases in the base policies while the overhead is
approximately steady for PSG. Moreover, the number of flows
generated per each update in PSG is always less than CoVisor.
This can be explained by the fact that the number of anomalous
rules increases in the larger base policies and consequently this
dramatically raises the number of unnecessary rules generated
in the composed policy. A similar trend can be observed in the
composed policy length shown in Fig. 4(b). As we expected,
the total number of flows in the composed policy generated by
PSG is considerably less than the policy generated by CoVisor.
This is because of many unnecessary flows in both base and
composed policies were not treated in CoVisor.

Figures 4(c) and 4(d) show the compile time and total time
of composition per rule update, respectively. The results show
that the policy compilation using PSG takes longer than CoVi-
sor. This is due to additional processing for anomaly detection
and resolution based on algorithms described in Section IV-C.
However, PSG is significantly faster than CoVisor according
to the total time of policy composition shown in Fig. 4(d).
This can be explained by the fact that PSG sacrifices a few
milliseconds to resolve the anomalies and consequently it
considerably reduces the number of updates needed to be
installed in the data plane. Since the hypervisor needs to
communicate with the switches to install the updates, reducing
the update length through eliminating the unnecessary rules
leads to a significant efficiency in the network.

In the second scenario, we assume a sequential composition
between two applications such as a Firewall and a Router.
Fig. 5 shows the performance results of this composition.
Again, PSG is several order of magnitude efficient than
CoVisor in terms of number of rules generated per each update
as well as the length of composed policy. Although that PSG
is slightly slower than CoVisor in compilation of a sequential
composition, it is significantly faster than CoVisor according
to the total composition time as it considerably filters the
anomalous rules.

Fig. 6 illustrates the performance results of an overriding
composition between two application policies. As one can see
in Fig. 6(a), CoVisor always generates one update rule for the
composed policy while the average number of update rules
generated by PSG is less than one. Note that the maximum
updates per one rule added in overriding composition is
one rule in the composed policy as we have employed an
incremental mechanism. Thus, since PSG is an anomaly-free
composition method, it eliminates the anomalous rules and
consequently its average update length is less than one.

34ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

500 1000 1500 2000 2500 3000

�
��
�
��

�

0

200

400

600
���

	�
����

(a) Update length.

500 1000 1500 2000 2500 3000
�

��
�
��

�
104

105

106

107
���

	�
����

(b) Total length.

500 1000 1500 2000 2500 3000

�
��

�
��

��

0

1

2

3

4
�	

������

(c) Compile time.

500 1000 1500 2000 2500 3000

�
��

�
��

�

0

1

2

3

4
�	

������

(d) Total time.

Fig. 4: Update performance for parallel composition.

0 1000 2000 3000

�
��
�
��

�

0

200

400

600
���

	�
����

(a) Update length.

0 1000 2000 3000

�
��
�
��

�

102

104

106

108
���

	�
����

(b) Total length.

0 1000 2000 3000

�
��

�
��

��

0

1

2

3
�	

������

(c) Compile time.

0 1000 2000 3000

�
��

�
��

�

0

1

2

3

4
�	

������

(d) Total time.

Fig. 5: Update performance for Sequential composition.

� � � �� ����
0.6 0.7 0.8 0.9 1

�
��

�
�
�

0

0.5

1

	
�

������

(a) Update length.

� � � �� ����
0 2000 4000 6000 8000

�
��

�
�
�

0

0.5

1

	
�

������

(b) Total length.

�� ���� ����
0 0.005 0.01 0.015 0.02

�
��

�
��

0

0.5

1
	
�

�����

(c) Compile time.

�� ���� ��� �10-3
3 4 5 6 7

�
��

�
��

0

0.5

1
	
�

�����

(d) Total time.

Fig. 6: Update performance for Override composition.

0 500 1000

�
��
�
��

�

102

103

104

105
����	
���

����

(a) Update length.

0 500 1000

�
��
�
��

�

103

104

105

106
����	
���

����

(b) Total length.

0 500 1000

�
��

�
��

��

0

200

400

600

800
��	�
����

����

(c) Compile time.

0 500 1000

�
��

�
��

�

0

100

200

300
��	�
����

����

(d) Total time.

Fig. 7: Update performance for rule insertion into parallel composition.

C. Rule Insertion

In this section, we evaluate the performance of our method
for translating insert operations for both single and com-
posed policies. In the first experiment, we consider a single
application policy and then randomly select a portion (2%,
5%, or fixed update length of 10) of rules and generate
updates for inserting these rules. The base policy in this
experiment is generated from firewall filter set by ClassBench
[27]. We measure the update size for our insert translation,
called Selective and the naive approach, called Naive for each
process. As described in Section IV-E, an insertion request
will be transformed into a set of add and delete rule requests.
Thus, we consider the total number of these requests as the
update length of insertion transformation. We also use the

PSG composition approach for both cases which help us to
eliminate anomalous rules. The process is repeated 100 times
and then results are averaged.

Table I shows the average update length generated for
insertions into a single policy. The results shows that the
update generated by the Selective approach is often more than
10 order magnitude smaller than that of the Naive method.

In the second experiment, we evaluate the performance of
rule insertion into a combined policy. To this end, we use
the settings of the experiment for parallel composition in the
previous section. Then, the updates is randomly generated
by 10 rule insertion into the application policies. Fig. 7
shows the performance results for insertion into a parallel
composition policy. As one can see in this figure, Selective

35ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE I: Average rule updates for inserting into a policy.

Base 2% 5% Fixed=10
Rules # Naive Selective Naive Selective Naive Selective

100 60.66 2.93 63.29 3.72 63.68 4.07
300 230.55 16.38 232.61 16.38 235.15 16.43
500 362.79 30.14 366.32 31.72 362.79 30.14
700 460.32 39.95 460.98 39.52 461.99 40.71
900 531.75 53.25 522.89 48.36 526.28 48.95
1100 614.15 60.87 559.30 52.08 585.98 62.40
1300 650.30 62.29 595.64 54.09 625.94 66.76
1500 695.12 64.10 610.86 57.22 657.91 67.46

usually generates updates with a length of around half of
the length of updates generated by Naive. Moreover, the total
length of composed policies generated by these two approach
are approximately in the same order.

Figures 7(d) and 7(d) illustrate that both the compilation
and total time of Naive considerably increase with the policy
size, because larger policies force more updates including both
deleting and adding rules. Since these updates need to be ap-
plied into the composition procedure, Naive is becoming much
slower. On the other hand, Selective has a slight growth in both
the compilation and total time, because it generates much less
updates in transforming the insertion for the composition.

VI. CONCLUSIONS

In this paper, we proposed a novel framework for policy
composition in a SDN hypervisor which considers both intra
and inter anomaly detection and resolution. Moreover, we
augmented the framework to efficiently transform priority
change updates, such as rule insertion, in the application-level
policies into the composed policy. We plan to extend the PSG
model for bitmask feature proposed in the recent OpenFlow
version. Moreover, supporting a network abstraction in PSG
can help us to detect and resolve run-time anomalies in the
network policies. We also plan to take advantage of multi-
table support in OpenFlow to improve the performance of the
policy composition.

ACKNOWLEDGMENT

This work was funded in part by the Google Faculty Award
2015 (Jha & Pagnucco).

REFERENCES

[1] O. N. Foundation, “Software-defined networking: The new norm for
networks,” ONF White Paper, Tech. Rep., April 2012.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., 2008.

[3] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker, “Com-
posing software-defined networks,” in Proceedings of the 10th USENIX
Conference on Networked Systems Design and Implementation, ser.
nsdi’13, 2013, pp. 1–14.

[4] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor: A compositional
hypervisor for software-defined networks,” in Proceedings of the 12th
USENIX Conference on Networked Systems Design and Implementation,
ser. NSDI’15, 2015, pp. 87–101.

[5] X. Wen, C. Diao, X. Zhao, Y. Chen, L. E. Li, B. Yang, and K. Bu,
“Compiling minimum incremental update for modular SDN languages,”
in Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’14, 2014, pp. 193–198.

[6] E. S. Al-Shaer and H. H. Hamed, “Discovery of policy anomalies in
distributed firewalls,” in INFOCOM 2004. Twenty-third Annual Joint
Conference of the IEEE Computer and Communications Societies.

[7] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and P. Mohapatra, “FIRE-
MAN: A toolkit for firewall modeling and analysis,” in Proceedings of
the 2006 IEEE Symposium on Security and Privacy, 2006, pp. 199–213.

[8] H. Hu, G.-J. Ahn, and K. Kulkarni, “Detecting and resolving firewall
policy anomalies,” Dependable and Secure Computing, IEEE Transac-
tions on, vol. 9, no. 3, pp. 318–331, May 2012.

[9] M. Rezvani and R. Aryan, “Analyzing and resolving anomalies in
firewall security policies based on propositional logic,” in IEEE 13th
International Multi Topic Conference, INMIC, 2009.

[10] R. Jalili and M. Rezvani, “Specification and verification of security
policies in firewalls,” in Proceedings of the First EurAsian Conference
on Information and Communication Technology, 2002, pp. 154–163.

[11] P. Adao, C. Bozzato, G. D. Rossi, R. Focardi, and F. Luccio, “Mignis:
A semantic based tool for firewall configuration,” in IEEE Computer
Security Foundations Workshop, July 2014, pp. 351 – 365.

[12] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto, J. Rexford,
A. Story, and D. Walker, “Frenetic: A network programming language,”
SIGPLAN Not., vol. 46, no. 9, pp. 279–291, Sep. 2011.

[13] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker, “NetKAT: Semantic foundations for
networks,” SIGPLAN Not., vol. 49, no. 1, pp. 113–126, Jan. 2014.

[14] W. Han, H. Hu, and G.-J. Ahn, “LPM: Layered policy management
for software-defined networks,” in Data and Applications Security and
Privacy XXVIII, ser. LNCS, 2014, vol. 8566, pp. 356–363.

[15] A. Dwaraki, S. Seetharaman, S. Natarajan, and T. Wolf, “GitFlow: Flow
revision management for software-defined networks,” in Proceedings of
the 1st ACM SIGCOMM Symposium on Software Defined Networking
Research, ser. SOSR ’15, 2015.

[16] S. Shin, P. Porras, V. Yegneswaran, M. Fong, G. Gu, and M. Tyson,
“FRESCO: Modular composable security services for software-defined
networks,” in Proceedings of the ISOC Network and Distributed System
Security Symposium, February 2013.

[17] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella, S. Banerjee,
C. Clark, Y. Ma, P. Sharma, and Y. Zhang, “PGA: Using graphs to
express and automatically reconcile network policies,” in Proceedings
of the 2015 ACM Conference on Special Interest Group on Data
Communication, ser. SIGCOMM ’15, 2015, pp. 29–42.

[18] S. Smolka, S. Eliopoulos, N. Foster, and A. Guha, “A fast compiler
for NetKAT,” in Proceedings of the 20th ACM SIGPLAN International
Conference on Functional Programming, 2015, pp. 328–341.

[19] “Openflow switch specification version 1.5.0,” https://www.
opennetworking.org/ , 2014.

[20] E. Al-Shaer and S. Al-Haj, “FlowChecker: Configuration analysis and
verification of federated openflow infrastructures,” in Proceedings of the
3rd ACM Workshop on Assurable and Usable Security Configuration,
ser. SafeConfig ’10. New York, NY, USA: ACM, 2010, pp. 37–44.

[21] P. Kazemian, M. Chang, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in Proceedings of the 10th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI’13, 2013, pp. 99–112.

[22] G. Varghese, Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices. Elsevier/Morgan Kaufmann, 2005.

[23] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in Proceedings of
the First Workshop on Hot Topics in Software Defined Networks, ser.
HotSDN ’12, 2012, pp. 49–54.

[24] C. Basile, A. Cappadonia, and A. Lioy, “Network-level access control
policy analysis and transformation,” IEEE/ACM Trans. Netw., vol. 20,
no. 4, pp. 985–998, Aug. 2012.

[25] R. E. Bryant, “Graph-based algorithms for boolean function manipula-
tion,” IEEE Trans. Comput., vol. 35, no. 8, pp. 677–691, Aug. 1986.

[26] A. Al-Shabibi, M. De Leenheer, M. Gerola, A. Koshibe, G. Parulkar,
E. Salvadori, and B. Snow, “OpenVirteX: Make your virtual SDNs
programmable,” in Proceedings of the Third Workshop on Hot Topics in
Software Defined Networking. ACM, 2014, pp. 25–30.

[27] D. E. Taylor and J. S. Turner, “ClassBench: A packet classification
benchmark,” IEEE/ACM Trans. Netw., vol. 15, no. 3, pp. 499–511, 2007.

36ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Resilience of Interdependent Communication and
Power Distribution Networks against Cascading

Failures
Wei Koong Chai, Vaios Kyritsis, Konstantinos V. Katsaros, George Pavlou

Department of Electronic and Electrical Engineering
University College London

London, WC1E 6BT, United Kingdom
Email: {w.chai, vaios.kyritsis.13, k.katsaros, g.pavlou}@ucl.ac.uk

Abstract—The operations of many modern cyber-physical
systems, such as smart grids, are based on increasingly interdepen-
dent networks. The impact of cascading failures on such networks
has recently received significant attention due to the correspond-
ing effect of these failures on the society. In this paper, we conduct
an empirical study on the robustness of interdependent systems
formed by the coupling of power grids and communication
networks by putting real distribution power grids to the test.
We focus on the assessment of the robustness of a large set
of medium-voltage (MV) distribution grids, currently operating
live in the Netherlands, against cascading failures initiated by
different types of faults / attacks. We consider both unintentional
random failures and malicious targeted attacks which gradually
degrade the capability of the entire system and we evaluate their
respective consequences. Our study shows that current MV grids
are highly vulnerable to such cascades of failures. Furthermore,
we discover that a small-world communication network structure
lends itself to the robustness of the interdependent system. Also
interestingly enough, we discover that the formation of hub
hierarchies, which is known to enhance independent network
robustness, actually has detrimental effects against cascading
failures. Based on real MV grid topologies, our study yields
realistic insights which can be employed as a set of practical
guidelines for distribution system operators (DSOs) to design
effective grid protection schemes.

I. INTRODUCTION

Our modern society is increasingly reliant on networks for
various aspects of life, ranging from basic needs (e.g., energy
supplies) to those contributing to better standard of living (e.g.,
transportation, information systems). The integration of these
increasingly intelligent and critical infrastructure networks, in
turn, has also made the various originally separate networks
dependent on each other (e.g., a cyber-network overlaying
a physical-network). While the strong coupling of networks
enhances their functionalities, it also significantly increases
the vulnerability of the system as a whole [1], [2]. This is
because failures in one network may cascade to the other
and vice versa, resulting in an iterative failure process. Hence,
robustness of such interdependent network systems (sometimes
known as network of networks (NoN)) has recently received
much attention (see for example [3]).

In this paper, we focus our study on the resilience of
interdependent networks consisting of an electric power grid
and a communication network against such cascading failures
since the energy and telecommunication sectors are found to

be the main sectors initiating such cascade of failures [4],
[5]. The symbiotic relationship between the two networks is a
result of the grid requiring the service from the communication
network for monitoring, control and management operations,
while the communication network depends on the grid for
electricity supply. A real-world example demonstrating such
interdependency and the corresponding vulnerability is the
national blackout in Italy in September 2003 [1]. This inter-
dependency is expected to increase with the advent of smart
grids introducing bi-directional communication patterns among
multiple entities.

Our work focuses on the medium-voltage (MV) distribution
grid domain, which is recently undergoing transformative
changes due to the advent of smart grid applications, but
have yet to receive the same level of attention as its high-
voltage (HV) counterpart (e.g., as highlighted in [6], [7]).
The introduction of multiple dynamic active components,
e.g., distributed (renewable) energy resources (DERs) such as
solar/wind farms and electric vehicles (EVs), at the distri-
bution level poses new significant challenges to the system
stability especially on protection and reliability of the grid.
The traditional assumptions of distribution networks being
mostly passive and static no longer apply as they evolve
towards the so-called Active Distribution Networks (ADNs)1

where increased fine-grained observability of the grid power
conditions, faster response and enhanced protection are needed
to manage the increased volatility of the system in a timely
fashion. The operation and, more importantly, the protection
of distribution grids are thus increasingly reliant on a robust
and efficient communication infrastructure that must provide
seamless and timely communication service, such that full
observability of power conditions is maintained at all times
[8]. In fact, to cater for the challenges of next generation
smart grids, there are already work in the literature to apply
the latest information-centric networking paradigm for smart
grid applications (e.g., [9], [10], [11]).

However, the communication network landscape in the
MV domain is far from clear [12]. The distribution grid (i.e.,
the MV domain) covers smaller geographical areas compared
to HV grids, as well as areas of different nature i.e., rural

1ADNs are distribution networks that have systems in place to control a
combination of DERs (e.g., generators, loads and storage). DSOs have the
possibility of managing electricity flows via a flexible network topology. DERs
take some responsibility for system support, depending on a suitable regulatory
environment and connection agreement.ISBN 978-3-901882-83-8 c� 2016 IFIP

37ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

but also denser (sub-)urban areas. As a result, the adoption
of technologies employed in the HV domain to our case is
not straightforward, mainly due to the associated deployment
costs [12]. Furthermore, distribution system operators (DSOs)
have multiple options for the communication network, such
as engaging the service of public Internet service provider(s)
(ISPs), deploying their own private communication infrastruc-
ture (e.g., investing in fibre optic and/or exploiting existing
powerline communication (PLC) technologies, such as that
proposed in [12]) or adopting a hybrid solution, using both
the private and public options above. In view of this still
evolving communication environment, we employ widely used
network topology models with different characteristics, as
the communication network component of the interdependent
system, to gain insights on the robustness of the overall NoN.

Our work aims to close the gap in the study on the vulner-
ability of interdependent systems against cascading failures,
which hitherto mainly focused on purely theoretical analysis
(cf. Section II for model descriptions). For instance, focusing
on a special case where the system consists of two totally
identical networks dependent on each other, the authors in
[13] studied the system using algebraic connectivity of an
interdependent system as the robustness indicator. In [1], the
robustness of the interdependent network system is studied
assuming totally uncorrelated networks using percolation the-
ory. Since it is known that such uncorrelated networks do not
exist in the real world and almost always the interdependent
networks do not share common topologies, we put real distri-
bution grids to the test i.e., we use a large set of real MV grid
networks currently operating live in the Netherlands by a major
Dutch DSO, engaging thus in an extensive empirical study
(cf. Section III) to quantitatively gain insights into the system
behaviour. Furthermore, we focus our study on the MV domain
which is increasingly becoming more dynamic and thus, more
prone to such cascading failures. While the communication
network landscape in the MV domain is still shaping, our
findings provide practical guidelines on the desirable topolog-
ical characteristics that can enhance system robustness when
designing / deploying the communication infrastructure over
the distribution grid. Moreover, our study broadens the set
of failure types encountered in the considered NoN. Namely,
Hines et al. reported that the majority of cascading failures
in power grids are results of natural disasters, but also high-
lighted the recent increase of cyber-attacks initiating blackouts
via hacking of the communication network [14]. Our study
covers a spectrum of different failure types, ranging from
unintentional faults to malicious attacks, each characterized by
specific node removal pattern (cf. Sections III-C1 and III-C2).
Additionally, instead of considering one single failure that
initiates a cascade of failures, we consider a more general
context where multiple cascading failures occur. We discuss
our observations and insights, providing a better understanding
of the system behavior under failures and thus, facilitating
the design of effective protection schemes against different
types of cascading failures (cf. Section IV). We summarize
and conclude our findings in Section V.

II. CASCADING FAILURES IN INTERDEPENDENT
SYSTEMS

We consider an interdependent system with two undirected
graphs, G

sg = (V sg

, E

sg) and G

com = (V com

, E

com),

representing the (smart) power grid and communication net-
work respectively. Let N

net be the network size where
net 2 {sg, com}. Then, V net = v

net

1 , . . . , v

net

N

net

and E

net =
e

net

1 , . . . , e

net

M

net

, where M

net is the number of edges / links
in the corresponding network. Further, let A

net denote the
N

net ⇥ N

net adjacency matrix with the elements, Anet

i,j

= 1
if there exists a link between nodes i and j and 0 otherwise.
The interdependency of the two graphs is represented by an
N

sg ⇥ N

com matrix A

dep with A

dep

v

sg

i

,v

com

j

= 1 if there exists
a link between v

sg

i

and v

com

j

and 0 otherwise.

A. Interdependent System Model

For this work, without loss of generality, we establish the
baseline interdependent system as follows:

• Both networks are equal in size, Nsg = N

com = N ,
but they do not necessarily possess the same topolo-
gies (as opposed to [13] where A

sg = A

com is
assumed).

• There is 1-to-1 dependency between nodes in G

sg and
G

com (i.e., there are N interdependency links in the
system). This can correspond to cases where each S-
SS is equipped with a communication network node
for the support of monitoring and control applications,
e.g., [8].

• The dependency is bi-directional (i.e., mutually depen-
dent). A node failure in G

sg will result in the failure of
the corresponding dependent node in G

com and vice
versa.

• Drawing on the observations of real-world interdepen-
dent systems reported in [15], we follow the positive

degree correlation method and create dependency be-
tween nodes with similar level of degrees (i.e., nodes
with high degree (nodes having many immediate
neighbors) in one network are coupled with nodes
having high degrees in the other network and vice
versa [16])2.

Real-world interdependent systems may not always have
such “balanced” interdependencies. Nevertheless, it is straight-
forward to accommodate unbalanced cases such as n-to-m
node inter-network connections and non-symmetric dependen-
cies (e.g., in [17]) in our methodology (cf. Section III). In this
case, we note system robustness may be enhanced with higher
number of interdependency links (i.e., a node may only fail
when all of its counterpart nodes in the other network fails).
However, as studied in [18], the cost to achieve the added
robustness must be carefully considered.

B. Cascading Failure Model

In this work, we follow the cascading failure model de-
scribed in [1] which has since been widely used in the literature
as the basis of several studies (e.g., [2], [19], [20], [21]). In
this model, a cascading failure begins with the failure (i.e.,

2We have also experimented with random and negative degree correlations
for creating interdependency between the two networks but insignificant
divergences are observed.

3We leave out specific practical details of power grid in the example such as
the switching of P-SS for power source or possibility of islanding operations.

38ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Gsg

Gcomm

Initial failure

✕
✕

✕
✕

✕

✕
✕

(a) (b) (c)

SS-1 SS-2 SS-3 SS-4 SS-1 SS-2 SS-3 SS-4 SS-1 SS-2 SS-3 SS-4

R-1 R-2 R-3 R-4 R-1 R-2 R-3 R-4 R-1 R-2 R-3 R-4

Fig. 1: (Color Online) An illustration of a cascading failure suffered by an interdependent system of size N

sg = N

com = N = 4
triggered by a failure at node SS-43.

removal) of a fraction, 1 � p of nodes from network A. All
the links connecting to these failed nodes in network A will
thus be down. Further, the nodes in network B depending on
these nodes will also fail. Any link connected to these failed
nodes in network B will also be removed. This process may
fragment both networks and form different network compo-
nents since the two networks are differently connected. The
nodes belonging to the largest mutually connected component
(i.e., the giant component) retain their functionality while the
smaller components fail.

Figure 1 illustrates a simple example of a cascading failure
triggered by the failure of one node (i.e., N(1 � p) = 1)
in an interdependent system consisting of N = 4 nodes in
each network. The initial failure occurs at node SS-4 in G

sg

causing its removal along with the link to node SS-3 and the
interdependent link to node R-4 in G

com. The loss of the
interdependent link causes the failure of node R-4 and of all the
links connected to it. This causes G

com to fragment whereby
only the giant component retains its functionality i.e., nodes R-
2, R-3 and the link connecting them. The fragmented smaller
clusters fail. This cascades back to G

sg causing the failure of
node SS-1 and of all links connected to it.

III. METHODOLOGY

A. Network Models

In practice, the complete knowledge of how the separate
networks are dependent on each other may not always be
possible since multiple stakeholders are often involved. In
our case, when DSOs rely on communication infrastructure
providers, the exact communication network information (e.g.,
the network topology) is confidential4. In our study, we create
the interdependent systems using real data for Gsg . However,
as the communication network environment in the MV do-
main still evolves, we resort to widely accepted theoretical
graph models for G

com. Within this context, our objective is
to investigate the key structural properties that improve the
resilience of the considered interdependent networks, deriving

4This non-disclosure is mutual as DSOs also do not offer information
regarding their own power grid.

practical guidelines for the design of communication networks
for the MV domain.

Smart grid network, Gsg – we use real data extracted from
16 MV distribution grids, covering an area of approximately
350km2 in central eastern Netherlands. They include a total
of 16 primary sub-stations (P-SSes) and 1,857 secondary sub-
stations (S-SSes). The grid topologies resemble that of tree
structures rooted at P-SS(es), which perform(s) the high-to-
medium voltage transformation. Each tree branch emanating
from the P-SS corresponds to a distinct feeder. Table I shows
the basic topological characteristics of these grids5 and Fig. 2
shows the aggregated degree distribution of all the sub-stations
(SSes) across the entire set of MV grids. Almost 90% of SSes
have low number of neighbors (i.e., degree of one or two)
while approximately 20% of SSes are leaf nodes (i.e., nodes
connected to only one other node).

Communication network, Gcom – we use three main the-
oretical graph models widely used in the literature to study
network robustness (e.g., [22]) to gain insights into the graph
properties that would deter/promote cascading failures.

• Erdős-Rényi (ER) model – Given N , a link ran-
domly connects a pair of nodes with probability p

r

independent of all other links. In our experiments,
we use p

r

= lnN

N

which is the sharp threshold of
connectedness to ensure connected graphs while at
the same time sufficiently small to avoid a highly
meshed topology [23]. ER graphs are characterized
by a short average path length and low clustering
coefficient, since a consequence of pure random edge
allocation is that the degree distribution converges to
a Poisson distribution. The simplicity of the model
has lent itself to many theoretical studies on network
resilience (e.g., [1]). In our case, the ER model can
be considered as an “unplanned” network layer that is
resulted from gradual ad hoc deployment of network
nodes to incrementally support the new requirements
from the grid over time.

• Small world (SW) model – We construct SW graphs
following the Watts and Strogatz model [24], with

5We “anonymize” the grids by removing location/power related information.

39ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

rewiring probability, � = 0.1 and mean degree,
k̄ = 0.05 ⇥ N . A low � value is used to avoid
creating SW graphs that closely resemble ER graphs
since when � = 1, the resultant graph’s average
path length converges to that of a random graph
(i.e., ln(N)/ln(k̄)). In addition, when � << 1, SW
graphs also form local clusters (i.e., having high
clustering coefficient) as opposed to graphs such as
lattices which exhibit the opposite characteristic (“big
world” graphs). Moreover, since our work focuses
on MV grids which usually do not span over large
spatial proximity, there is high probability that the
corresponding G

com will exhibit SW properties.

• Scale-free (SF) model – In our study, SF graphs are
constructed based on the Barabási-Albert (BA) model
[25], using a 3-node seed graph. In this model, each
new node is connected to an existing node with a
probability proportional to the existing nodes’ degree
(i.e., the more neighbors a node has, the more likely
it attracts a new node to attach to it). Owing to this
preferential attachment process, SF graphs result in
power law degree distribution. This property has been
observed in many real-world networks (e.g., [26])
which results in the forming of hubs within the graph.
Since there is no prevailing communication network
design for the support of smart grid applications in
the MV domain, we also investigate the effect of the
interdependent system when coupled with SF graph
topologies.

0 5 10 15

0.1

0.2

0.3

0.4

0.5

0.6

Probability density function (pdf)

5 10 15

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Cumulative density function (cdf)

Fig. 2: Aggregated degree distribution of sub-stations in the
dataset showing majority of sub-stations have low connectivity.

B. Metrics

To evaluate the impact of cascading failures, we follow the
literature to use the size of the giant component which mea-
sures the level of connectivity of a network as an evaluation
metric (e.g., [1], [2], [16]). In practice, the functional com-
ponent also depends on the actual power source (i.e., P-SS),
the re-configurability of the grid (e.g., locations of breakers)

6Link density = M

net

N

net(Nnet�1)/2
.

TABLE I: Properties of real MV grid topologies of a large
European DNO.6

Grid Nsg Msg Mean Clustering Link Mean
degree coefficient density path

length
Area 1 126 126 2.000 0.0039 0.0160 8.3194
Area 2 83 82 1.9759 0.0000 0.0241 6.5601
Area 3 191 192 2.0105 0.0035 0.0106 9.6177
Area 4 23 22 1.9130 0.0000 0.0870 5.5652
Area 5 178 177 1.9888 0.0000 0.0112 10.0176
Area 6 29 28 1.9310 0.0000 0.0690 8.0296
Area 7 51 51 2.0000 0.0000 0.0400 7.1529
Area 8 102 101 1.9804 0.0000 0.0196 9.3345
Area 9 99 98 1.9798 0.0000 0.0202 8.4684

Area 10 209 210 2.0096 0.0000 0.0097 11.6043
Area 11 47 47 2.0000 0.0156 0.0435 8.1082
Area 12 294 298 2.0272 0.0024 0.0069 11.8471
Area 13 85 84 1.9765 0.0000 0.0235 8.1815
Area 14 42 41 1.9524 0.0000 0.0476 4.7433
Area 15 146 147 2.0137 0.0000 0.0139 9.7879
Area 16 168 169 2.0119 0.0000 0.0120 10.5974

as well as the ability to perform islanding operations. In this
sense, the nodes in the system are not homogeneous and have
different resiliency in reality. For instance, nodes located near
breakers may be more easily switched to another power source
and thus, in certain cases, becoming less vulnerable. Due to
the fact that these specific cases are dependent on the distinct
operations of the network, we take a topological approach
to draw more general insights that should be applicable to
different interdependent systems.

In addition, to understand how the communication func-
tionality degrades, we measure the communication efficiency
of the G

com, ⌘ following [27]:

⌘ =

P
1i<jN

1/�
i,j�

N

2

� (1)

where �

i,j

is the shortest path length (in hopcount) between
node i and j. It measures how fast information spreads in a
network. A fully mesh network has ⌘ = 1 since all nodes are
reachable in one hop (i.e., all node pairs have 1-hop distance).
This metric is especially relevant to time-critical smart grid
applications such as synchrophasor-based monitoring where
the measurements taken at geographically distributed locations
are synchronized and must reach the phasor data concentrators
(PDCs) within very stringent time window [8], [12].

C. Failure Models

Our investigation of the considered NoN’s resilience prop-
erties is based on a sequential process where we remove one
node after another, with each removal triggering a cascading
failure each time. This results in a series of cascading failures.
Throughout this process, we track the gradual degradation
of the system functionalities in terms of both the above-
mentioned metrics. The order in which nodes are removed
from the system depends on the failure type. In the following,
we describe the different types of failures considered in this
work.

40ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

1) Unintentional Random Failures: Unintentional failures
include those caused by equipment failures, natural disasters
(e.g., earthquake, tsunami, etc.) or simply accidental human
errors (e.g., misconfigurations). For such failures, the sites
where they take place are usually non-determinable or fore-
casted. Such failures are modeled via random node removals.
We use random point (RP) node removals for failures caused
by equipment failures or human errors and random area (RA)
node removals for failures caused by natural disasters that
usually spread in a specific geographical area. Namely,

• Random Point (RP) failure – Given 1 � p, N(1 � p)
nodes are randomly selected for removal.

• Random Area (RA) failure – Given 1 � p, start
by removing a random node in the graph and then
proceed to remove a random neighbor of the removed
node that has survived the resulting cascading failure
due to the removal of the initial node. Repeat the
process of removing random neighbors of removed
nodes until N(1� p) nodes have been removed.

2) Malicious Targeted Attacks: Malicious attacks aim to
maximize damage to the interdependent system by targetting
parts of the system believed to be vulnerable. Such attacks
may come in physical form, via equipment tampering or
electronically via intentional misconfigurations or spreading of
computer viruses. To conduct such an attack, the perpetrator
must possess some prior intelligence regarding the targeted
system such as knowledge on the topologies and their interde-
pendencies. Logically, with the intention to cause maximum
damage, the attacker will attack nodes deemed to be most
important to the system operation. We assume that the attacker
ranks the nodes based on their importance in descending order
and attacks the system in that order.

To compute this ranking, we consider four centrality mea-
sures, widely used when studying network robustness [28],
[29]:

• Node degree (DC) – relates node importance with the
number of immediate neighbors i.e., local connectiv-
ity.

• Betweenness (BC) – measures the involvement of a
node in the set of shortest paths of all node pairs in
the network

• Closeness (CC) – measures the distance of a node to
all other nodes in a connected network

• Eigenvector (EC) – relates node importance to the
importance of its neighbors

Each centrality measure above deduce importance of nodes
based on different factor: DC – connectivity, BC – path, CC –
distance and EC – spectral structure of the topology. In [29], an
in-depth comparative assessment of these centrality measures
in the context of communication networks is conducted.

We extend the centrality concepts to account for the added
importance of each node with regards to its counterpart in
the other network. Specifically, for each node, v, we compute
the mean value of the normalized node centrality within its
own network and those node(s) in the other network that

TABLE II: Centrality indices used for targeted attacks.

Centrality Index Definition
Degree (DC) cDC(v) = deg(v)

N

↵�1

Betweenness cBC(v) = 2
(N↵�1)(N↵�2)

P
i 6=v 6=j2V

↵

�

i,j

(v)

�

i,j

(BC)
Closeness (CC) cCC(v) = N

↵�1P
j2V

↵

,i 6=j

�

i,j

Eigenvector (EC) cEC(v) = 1
�

P
j2V

↵

A↵

v,j

⇥ cEC(j)
N : graph size, ↵,�: indicates which network (either sg or com),
deg(v): number of neighbors of node v within its own network,

�: eigenvalue, �
i,j

: shortest path length from i to j,
�
i,j

(v): shortest path length via v

have a connection to it. Table II shows the original centrality
definitions and Eq. 2 gives the extended definitions.

For each centrality index, x 2 {DC,BC,CC,EC}, we
extend them to the coupled network system as follows:

c

x

ext

(v) =
c

x(v) +
P

j2V

�

A

dep

v,j

⇥ c

x(j)

1 +
P

j2V

�

A

dep

v,j

. (2)

The above equation assumes the importance of a node is
proportionally increased based on the (total) importance of the
node(s) depending on it (i.e., additive effect). Note that Eq. 2
is universally applicable to unbalanced interdependent systems
(cf. as discussed in Section II-A).

IV. VULNERABILITY ANALYSIS

We conducted an extensive simulation study across 16
real MV grids coupled with three types of communication
network models (i.e., {ER,SW,SF}) against six types of
failure trigger patterns (i.e., {RA,RP,DC,BC,CC,EC})
(cf. Section III). For each simulation setup, we obtained 95%
confidence intervals for all metrics. For each repeat simulation
run, we regenerated a new G

com since reusing the same one
results in exact same node ranking for targeted attacks. Due to
the large number of possible scenarios, we present selected
but representative results and discuss our observations and
findings.

A. Impact of Random Cascading Failures

We first show in Fig. 3 representative results of MV
grid coupling with different G

com models. From all sets of
results, we observe that MV grids coupled with SF networks
are the least robust against both types of random cascad-
ing failures (SF � ER � SW

7) with the size of the
giant component rapidly decreasing. This corroborates with
[1] where interdependent SF graphs with different power-
law degree distributions are found to be more vulnerable to
interdependent ER graphs. For the RA case, the degradation
of the system is close for MV grids dependent on ER and
SW networks. The distinction becomes less clear for small
distribution grids (see insets in Fig. 3). The observed order
of robustness, SF � ER � SW , is also observed in [22]

7To simplify discussion, we use X � Y (X � Y) to indicate that X is less
(more) robust against cascading failures than Y within the considered setup.

41ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

which considers failures in single layer network models with
no interdependency.

0 20 40 60
0

20

40

60

80

100

120

140

160

180

Number of cascading failure

S
iz

e
 o

f
g

ia
n

t
c
o

m
p

o
n

e
n

t

ER SW SF

0 10 20 30
0

20

40

60

80

100

120

140

160

180

Number of cascading failure

S
iz

e
 o

f
g

ia
n

t
c
o

m
p

o
n

e
n

t

ER SW SF

0 5 10
0

5

10

15

20

25

0 10 20
0

5

10

15

20

25

Fig. 3: (Color Online) The impact of cascading failures with
RP (left) and RA (right) failures for an MV grid with N > 30.
(Insets: Results for an MV grid with N < 30.)

We next show in Fig. 4 how the network degrades in
terms of the communication efficiency at Gcom and the size
of the giant component at G

sg . Both metrics suffer similar
deterioration for all cases. RP causes relatively less severe
functionality degradation (RA � RP). However, when 1 � p

increases, we observe consistently that at one point the reverse
trend (RA � RP) becomes true. This behavior is also observed
in small MV grids with N < 30 (see insets of Fig. 4). This
indicates that when the spreading effect of cascading failures
is limited (i.e., when the network system is small), randomized
failure points cause more detrimental impact than the gradual
failure of immediate neighbors of failed nodes.

B. Impact of Targeted Cascading Failures

To get a better understanding of the different types of
targeted cascading failures, as expressed by our extended
centrality (Eq. 2), we first investigate the extend to which
different centrality measures result in attacks on different
nodes. To this end, we use Spearman coefficients, as a full rank
correlation proxy, and the percentage of top-10% node overlap,
as a high rank-correlation proxy. Tables III and IV give a
sample Spearman coefficient and top-10% overlap respectively.
The Spearman coefficients across all the MV grids show that
the centrality pairs have low correlations. In fact, extended
EC often negatively correlates with others. The observation is
consistent for high rank nodes (top-10% overlap) where the
overlap tends to be low. As such, the actual targeted nodes
(both the set of nodes and the order) are different when based
on the different extended centrality rankings.

Interestingly, despite this, our results show that their impact
to the system is rather similar. Figure 5 shows the impact of the
different attacks on different network interdependencies where
we observe overlapping curves. This behavior is consistent
across all the MV grids, suggesting that the MV grid topology
structures are especially vulnerable to cascading failures in
general, regardless of the points of attack. This indicates that
simple protection schemes protecting nodes with high central-
ity are not sufficient to defend MV grids against cascading

failures. This observation agrees with the theoretical findings
in [2]. Our observations here generalize [2]’s conclusion to
include different types of attacks (i.e., not only for degree-
based attacks).

TABLE III: Sample Spearman coefficient for MV grid coupled
with different Gcom models.

DC BC CC EC Gcom

1 ER
DC 1 SW

1 SF
0.5120 1

BC 0.4636 1 -//-
0.8485 1
0.7100 0.5155 1

CC 0.5258 0.5234 1 -//-
0.3308 0.3851 1
-0.7854 -0.4488 -0.9162 1

EC 0.1728 -0.3482 -0.4642 1 -//-
-0.0622 -0.1734 0.2818 1

TABLE IV: Sample top-10% overlap (%) for MV grid coupled
with different Gcom models.

DC BC CC EC Gcom

1 ER
DC 1 SW

1 SF
0.3158 1

BC 0.4737 1 -//-
0.4211 1
0.5263 0.5790 1

CC 0.5790 0.6316 1 -//-
0.2105 0.4211 1

0 0 0 1
EC 0.3158 0 0.0526 1 -//-

0.4211 0.1579 0.2105 1

For all the three coupling cases, {ER, SW, SF}, we
found that the different targeted attacks are very effective
(i.e., the size of the giant component and communication
efficiency decrease rapidly after only approximately 10% of
nodes removed). This is attributed to two factors: (1) the
MV grids have (near-)zero clustering coefficient (see Table
I) and (2) high number of nodes with degree = 2 (⇡ 65% of
total nodes, see Fig. 2). The co-existence of these properties
results in high probability of network fragmentation as there
is very good chance that a failure involves a “bridge” node
that singularly connects the grid network. As only the giant
component survives, such fragmentation rapidly disintegrates
the system. Moreover, we note that the MV grids also have
low path diversity and exhibit relatively long mean path lengths
which further increase the importance of the “bridge” nodes
in maintaining connectivity.

For all types of targeted attacks, we observe the robustness
follows SF � ER � SW order which is consistent with
that observed for random failure cases. Therefore, for the case
of MV grids, they are most resilient against cascading fail-
ures when dependent on a communication network exhibiting
small-world properties such as low average path lengths and

42ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0 0.5 1
0

50

100

150

1−p

S
iz

e
 o

f
g
ia

n
t
co

m
p
o
n
e
n
t

RP RA

0 0.5 1
0

50

100

150

1−p

S
iz

e
 o

f
g
ia

n
t
co

m
p
o
n
e
n
t

RP RA

0 0.5 1
0

50

100

1−p

S
iz

e
 o

f
g
ia

n
t
co

m
p
o
n
e
n
t

RP RA

0 0.5 1
0

0.1

0.2

0.3

1−p

E
ff
ic

ie
n
cy

RP RA

0 0.5 1
0

0.1

0.2

0.3

0.4

1−p

E
ff
ic

ie
n
cy

RP RA

0 0.5 1
0

0.05

0.1

0.15

1−p

E
ff
ic

ie
n
cy

RP RA

0 0.5 1
0

0.1

0.2

0.3

0 0.5 1
0

0.1

0.2

0 0.5 1
0

0.05

0.1

0.15

0 0.5 1
0

10

20

0 0.5 1
0

10

20

0 0.5 1
0

5

10

15

Fig. 4: (Color Online) The impact of random cascading failures on the communication efficiency (top row) and the size of giant
component for an MV grid (bottom row) when 1� p fraction of nodes are removed based on RP and RA strategies for an MV
grid with N > 30 (Inset: grid with N < 30) coupled with ER (left column), SW (center column) and SF (right column) graph.

0 0.5 1
0

50

100

1−p

S
iz

e
 o

f
g

ia
n

t
co

m
p

o
n

e
n

t

Degree
Betweenness
Closeness
Eigenvector

0 0.5 1
0

50

100

1−p

S
iz

e
 o

f
g

ia
n

t
co

m
p

o
n

e
n

t

Degree
Betweenness
Closeness
Eigenvector

0 0.5 1
0

20

40

60

80

1−p

S
iz

e
 o

f
g

ia
n

t
co

m
p

o
n

e
n

t

Degree
Betweenness
Closeness
Eigenvector

0 0.5 1
0

0.1

0.2

0.3

1−p

E
ff

ic
ie

n
cy

Degree
Betweenness
Closeness
Eigenvector

0 0.5 1
0

0.1

0.2

0.3

0.4

1−p

E
ff

ic
ie

n
cy

Degree
Betweenness
Closeness
Eigenvector

0 0.5 1
0

0.05

0.1

0.15

1−p

E
ff

ic
ie

n
cy

Degree
Betweenness
Closeness
Eigenvector

Fig. 5: (Color Online) The impact of cascading failures on the communication efficiency, ⌘ (top row) and the size of giant
component (bottom row) when 1� p fraction of nodes are removed based on different targeted attacks for an MV grid coupled
with N > 30 interdependent on ER (left column), SW (center column) and SF (right column) graph.

high clustering coefficient. Conversely, MV grids coupled with
SF networks are always the least robust against cascading
failures. On one hand, this corroborates with past analysis
for targeted attacks (e.g., [30]) since simultaneous removal
of top well connected hubs rapidly fragments the network.
On the other hand, this finding is also counter-intuitive as

SF networks are known to be robust to random removals
[25] due to the fact that (1) most nodes have small degree
(non-hub) and (2) major hubs are usually connected to other
smaller hubs; forming a hierarchy of hubs that resists network
fragmentation. Tracking the system following our sequential
cascading failure simulations, we found that such vulnerability

43ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0 20 40 60
0

50

100

150

200

250

300

350

Number of cascading failures

N
u

m
b

e
r

o
f

co
m

p
o

n
e

n
ts

Random Point
Random Area
Degree
Betweenness
Closeness
Eigenvector

0 50 100
0

50

100

150

200

250

300

350

Number of cascading failures

N
u

m
b

e
r

o
f

co
m

p
o

n
e

n
ts

Random Point
Random Area
Degree
Betweenness
Closeness
Eigenvector

0 5 10 15
50

100

150

200

250

300

350

Number of cascading failures

N
u

m
b

e
r

o
f

co
m

p
o

n
e

n
ts

Random Point
Random Area
Degree
Betweenness
Closeness
Eigenvector

Fig. 6: (Color Online) Effect of cascading failures on the number of resulting components for MV grid coupled with ER (left),
SW (center) and SF (right) networks.

is due to the fact that cascading failures have a spreading effect
which in most cases, involves the removal of multiple hubs
in a single cascade. Hence, the existence of multiple hubs
surrounding a hub that “protects” the network from losing its
connectedness turns out to be the very reason why coupling
with SF networks is especially vulnerable, as cascading failures
have high probability of removing multiple hubs in the near
vicinity simultaneously.

For each type of theoretical graph model, we further experi-
mented with varying clustering coefficient and link density. We
found no direct relationship between clustering coefficient and
the impact of cascading failures (i.e., the size of giant compo-
nent / communication efficiency) – high clustering coefficient
does not necessarily provide better resilience. However, we
find that, for relatively sparse networks (i.e., at low link density
region), link density can be a good relative robustness indicator
with better system robustness found in systems with higher
link density. Nevertheless, this is not to be used singularly
as a determinant of system robustness as the robustness still
depends on the exact degree distribution of the networks. For
instance, an MV grid coupled with an SW graph with lower
link density may still be more robust than a system coupled
with an SF graph with high link density.

Next, we investigate the extreme case where we fail the
system gradually until all nodes fail. For this, we relax the
assumption that only the giant component retains functionality
but allow any component of size > 1 to be functional. This
allows us to gain insights into the change (if any) in the
disruptive power of individual cascading failures when the
networks are gradually disconnected. We show sample results
with N = 191 in Fig. 6. Systems coupled with SF networks re-
main to be the most vulnerable ones. The system is completely
disintegrated after only approximately 10 ⇠ 15 cascading
failures for SF networks while interdependent systems that

couple with ER and SW networks require approximately 40
and 90 cascading failures respectively. While most failure
types cause similar level of damage, RA failures seem to
be most effective when MV grids are dependent on ER and
SW networks. When MV grids couple with SF networks, RA
failure is the least effective (on average) but the confidence
interval indicates that the results differ significantly compared
against others.

Finally, we show in Fig. 7 the average number of cascading
failures required to complete the disintegration of the system
(i.e., all nodes disconnected) for the entire set of real MV
grids from our dataset. We observe that MV grids coupled
with SF networks are so vulnerable that an increase in N

does not result in increasing number of cascading failures
required. On the other hand, we see the gradual increase of the
number of cascading failures required for MV grids coupled
with SW networks when N increases, suggesting that small-
world properties are beneficial to protect an interdependent
system against cascading failures.

V. SUMMARY AND CONCLUSIONS

In this paper, we study the impact of cascading failures
on an interdependent system consisting of a communication
network and an MV distribution power grid, using real grid
networks that are currently operating in the Netherlands. We
evaluate the effect of such iterative failures on the MV grids
coupled with different types of communication networks (in-
cluding random, small world and scale-free network models)
and types of failures (both unintentional and intentional fail-
ures). Our study shows that MV grids are extremely vulnerable
to cascading failures, a finding of particular importance when
considering the advent of the smart grid with the increasing
interdependency of the grid and supporting communication
network. The tree-like structure of MV grids, featuring very

44ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

23 29 42 47 51 83 85 99 102 126 146 168 178 191 209 294
0

20

40

60

80

100

N

N
u
m

b
e
r

o
f
C

a
s
c
a
d
in

g
 F

a
il
u
re

s

ER
SW
SF

Fig. 7: (Color Online) Number of cascading failures to fully
disintegrate the interdependent system.

low clustering coefficient, high mean path lengths and mean
node degree close to two, is the main contributing factor to
this, since a high number of “bridge” nodes increases the
probability of fragmentation of the MV grids. The interde-
pendent system as a whole is almost equally susceptible to
catastrophic damage regardless of the nature of failures. Simple
protection schemes focusing on protecting specific “important”
nodes (e.g., high centrality nodes) will not be effective against
cascading failures. Furthermore, broad degree distribution of
the communication network topologies, known to strengthen
the resilience of network against single non-cascading failures,
is found to have the reverse effect on interdependent systems.
Specifically, the existence of multiple hubs (as in SF graphs) is
detrimental to the system against cascading failures. Coupling
with SW networks result in the most robust system, implying
small-world properties are beneficial for the robustness of
interdependent systems. Finally, we found that higher link
density in sparse networks (i.e., at low density region) provides
better robustness for the same type of network model.

ACKNOWLEDGMENT

The research leading to these results has received funding
from the European Commission’s Seventh Framework Pro-
gramme FP7-ICT-2011-8 under grant agreement no 318708
(C-DAX) and the CHIST-ERA / EPSRC UK project CON-
CERT (grant no. EP/L018535/1). The authors alone are re-
sponsible for the content of this paper.

REFERENCES

[1] S. V. Buldyrev, et. al., “Catastrophic cascade of failures in interdependent
networks,” Nature, vol. 464, no. 7291, pp. 1025-1028, 2010.

[2] X. Huang, et. al., “Robustness of interdependent networks under targeted
attack,” Physical Review E83, 065101 (R) 2011.

[3] G. D’Agostino and A. Scala, Eds., “Networks of Networks: The Last
Frontier of Complexity,” New York, NY, USA: Springer, 2014, (DOI)
10.1007/978-3-319-03518-5.

[4] E. Luiijf, et. al., “Empirical findings on critical infrastructure dependen-
cies in Europe,” in Critical Information Infrastructure Security, Lecture
Notes in Computer Science, Berlin, Germany, Springer, 2009.

[5] E. Zio and G. Sansavini, “Modeling interdependent network systems for
identifying cascade-safe operating margins,” IEEE Trans. Reliability, vol.
60, no. 1, March 2011.

[6] G. A. Pagani and M. Aiello, “Towards decentralization: A topological
investigation of the medium and low voltage grids,” IEEE Trans. Smart
Grid, vol. 2, no. 3, pp. 538-547, Sept. 2011.

[7] G. A. Pagani and M. Aiello, “The power grid as a complex network: A
survey,” Physica A 392 (2013) 2688-2700.

[8] W. K. Chai, et. al., “An Information-centric Communication Infrastruc-
ture for Real-time State Estimation of Active Distribution Networks,”
IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 2134-2146, July 2015.

[9] W. K. Chai, et. al., “Enabling Smart Grid Applications with Information-
centric Networking,” Proc. 2nd ACM Conference on Information-Centric
Networking (ICN 2015), San Francisco, USA, Sep. 30 - Oct. 2, 2015.

[10] K. V. Katsaros, et. al., “Supporting Smart Electric Vehicle Charging
with Information-Centric Networking,” Int’l Workshop on Quality, Reli-
ability, and Security in Information-Centric Networking, Greece, 2014

[11] K. V. Katsaros, et. al., “Information-centric Networking for Machine-
to-Machine Data Delivery - A Case Study in Smart Grid Applications,”
IEEE Networks Magazine, vol. 28, no. 3, pp. 58-64, May-June 2014.

[12] K. V. Katsaros, B. Yang, W. K. Chai and G. Pavlou, “Low Latency
Communication Infrastructure for Synchrophasor Applications in Distri-
bution Networks,” Proc. SmartGridComm 2014, Venice, Italy, Nov 2014.

[13] J. Martı́n-Hernández, H. Wang, P. Van Mieghem and G. D’Agostino,
“Algebraic Connectivity of Interdependent Networks”, Physica A, Statis-
tical Mechanics and its Applications, no. C, vol. 404, pp 92-105, 2014.

[14] P. Hines, K. Balasubramaniam and E. C. Sanchez, “Cascading failures
in power grids,” IEEE Potentials, vol. 28, no. 5, pp. 24-30, 2009.

[15] V. Rosato, et. al., “Modelling interdependent infrastructures using
interacting dynamical models,” International Journal of Critical Infras-
tructures, 4(1/2):63-79, 2008

[16] T. N. Dinh, et. al., “On new approaches of assessing network vulner-
ability: hardness and approximation,” IEEE/ACM Trans. Netw., vol. 20,
no. 2, pp. 609-619, April 2012

[17] G. Fu, et. al., “Interdependent networks: vulnerability analysis and
strategies to limit cascading failure,” European Physical Journal B,
87:148, July 2014.

[18] Z. Huang, C. Wang, M. Stojmenovic and A. Nayak, “Balancing system
survivability and cost of smart grid via modeling cascading failures,”
IEEE Transactions on Emerging Topics in Computing, June 2013.

[19] J. Guo, et. al., “Networks formed from interdependent networks,”
Nature Physics, vol. 8, Jan. 2012, pp. 40-48.

[20] D. T. Nguyen, et. al., “Detecting critical nodes in interdependent power
networks for vulnerability assessment,” IEEE Trans. Smart Grid, vol. 4,
no. 1, pp. 151-159, March 2013.

[21] M. Parandehgheibi, E. Modiano and D. Hay “Mitigating Cascading
Failures in Interdependent Power Grids and Communication Networks,”
in Proc. SmartGridComm 2014, Venice, Italy, Nov 2014.

[22] S. Trajanovski, J. Martı́n-Hernández, W. Winterbach and P. Van
Mieghem, “Robustness envelopes of network,” Journal of Complex
Networks (2013) 1, pp. 44-62.

[23] P. Erdős, A. Rényi, “On the evolution of random graphs”, Mathematical
Institute of the Hungarian Academy of Sciences, pp. 17-61, 1960.

[24] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks”, Nature 393 (6684); pp. 440-442, 1998.

[25] A. L. Barabasi and R. Albert, “Emergence of scaling in random
networks,” Science, vol. 286, no. 5439, pp. 509-512, Oct. 1999.

[26] G. Siganos, et. al., “Power laws and the AS-level internet topology,”
IEEE/ACM Trans. Netw. vol. 11, no. 4, pp. 514-524, Aug. 2003.

[27] V. Latora and M. Marchiori, “Efficient behavior of small-world net-
works,” Phys. Rev. Lett., vol. 87, no. 19, 5 Nov 2001.

[28] S. Wasserman and K. Faust, “Social network analysis: Methods and
Applications,” Cambridge: Cambridge University Press, 1994.

[29] G. Nomikos, P. Pantazopoulos, M. Karaliopoulos and I. Stavrakakis,
“Comparative assessment of centrality indices and implications on the
vulnerability of ISP networks,” 26th International Teletraffic Congress
(ITC), 2014.

[30] R. Cohen, K. Erez, D. ben-Avraham and S. Havlin, “Breakdown of the
Internet under intentional attack,” Phys. Rev. Lett. 86: 36825, 2001.

45ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Connectivity-aware Virtual Network Embedding
Nashid Shahriar⇤, Reaz Ahmed⇤, Shihabur Rahman Chowdhury⇤, Md. Mashrur Alam Khan⇤, Raouf Boutaba⇤,

Jeebak Mitra†, and Feng Zeng†
⇤David R. Cheriton School of Computer Science, University of Waterloo

{nshahria | r5ahmed | sr2chowdhury | mmalamkh | rboutaba}@uwaterloo.ca

†Huawei Technologies
{jeebak.mitra | zengfeng137140}@huawei.com

Abstract—The problem of ensuring virtual network (VN) con-
nectivity in presence of multiple link failures in the substrate net-
work (SN) is not well investigated in Network Virtualization (NV)
literature. We name this problem as Connectivity-aware Virtual
Network Embedding (CoViNE). Solving CoViNE will enable a VN
operator to perform failure recovery without depending on the
SN provider, similar to the IP restoration mechanisms in IP-
over-WDM networks. There are two steps in solving CoViNE: i)
finding the virtual links that should be embedded disjointly, and
ii) finding a substrate resource efficient embedding that ensures
the virtual link disjointness constraint. We present two solutions
to the CoViNE problem. The first solution uses a heuristic to
compute the disjointness constraint, while an optimization model
is used for VN embedding. The second solution, in contrast, uses
heuristic for both the steps, and thus can solve larger instances
of the problem. We compare our solutions with a cut set based
approach that ensures VN connectivity for a single substrate link
failure. Evaluation results show that our heuristics allocate ⇠15%
extra resources on average compared to the cut set based optimal
solution, and executes two to three orders of magnitude faster
on the same problem instances.

I. INTRODUCTION

Perceived as a key enabling technology for the future
Internet, Network Virtualization (NV) offers efficient resource
sharing by embedding multiple Virtual Networks (VNs) on a
single Substrate Network (SN). One of the major challenges
in NV is VN embedding (VNE) [1], i.e., to find a mapping
of the virtual nodes and links onto substrate nodes and paths,
respectively without violating physical resource constraints.

Substrate resources may fail. Surviving failures is of
paramount importance, since a single failure in SN may result
into multiple failures in the embedded VNs. Finding a VN
embedding that can survive failures in SN is known as the
Survivable Virtual Network Embedding (SVNE) problem [2].
Majority of the works on SVNE focus on link failures, as
they occur more frequently than node failures [3]. SVNE
approaches, in general, allocate redundant bandwidth for each
(or selected) virtual link(s), either proactively while computing
the embedding or reactively after a failure occurs [4].

In this paper, we focus on a different form of surviv-
ability than traditional SVNE, which we call Connectivty-
aware Virtual Network Embedding (CoViNE). Our goal is
to find a VN embedding that can ensure connectivity in a
VN topology in presence of multiple substrate link failures. In
contrast, SVNE approaches focus on guaranteeing virtual link
demand in presence of failure(s). SVNE approaches assume

that SN-providers hide physical failures by over-provisioning
a fraction of each virtual link’s bandwidth, which in turn
incurs additional cost to VN-operators. In contrast, we ensure
VN connectivity, which is a weaker form of survivability
incurring lesser resource overhead and reduced cost of leasing.
We intend to empower a VN-operator to handle link failures
according to its internal policy, e.g., customer priority. A VN-
operator can plan and over-provision different amounts of
bandwidth in each virtual link to handle failures according
to its needs, instead of blindly relying on the SN-provider that
over provisions fixed bandwidth for each virtual link as in
SVNE approaches. Connectivity aware embedding will enable
a VN-operator to reroute traffic on failed virtual links, which
can be done using any IP link restoration protocol.

Although our focus is NV, the CoViNE problem is
equally applicable in IP-over-Wavelength-division multiplex-
ing (WDM) domain. The problem of ensuring IP layer con-
nectivity in presence of a single WDM link failure is known as
link survivable mapping. Two variations of the problem have
been studied in IP-over-WDM literature [5]: i) weakly link
survivable mapping (WLSM) ensures IP-layer connectivity; ii)
strong link survivable mapping guarantees both connectivity
and bandwidth of the failed IP link(s) in presence of a single
WDM link failure. WLSM, which considers single link failure,
is merely a special case of CoViNE.

Despite being neglected in the literature, we focus on multi-
ple (more specifically up to double) link failures, since it is not
a rare event in large transport networks. First, repairing a failed
link (e.g., due to fiber cut) can take long time [3]. Chances of
a second link failure is not negligible given the high Mean-
Time-to-Repair (MTTR). Second, some inter-datacenter links
destined to different places may be physically routed together
for some distance, and a backhaul failure may cause multiple
physical links to fail [6]. It can be derived from the statistics
in [7] that ⇠12% of the failures in inter-datacenter transport
networks are double link failures in SN.

There are two conditions for surviving multiple (say, k)
substrate link failures: i) the VN topology must be k + 1

edge connected, and ii) the embedding algorithm must ensure
at least k + 1 edge-disjoint paths in SN between every pair
of virtual nodes. The first condition can be satisfied by
augmenting the VN with new links [8]. A naive way to satisfy
the second condition is to embed all the virtual links of a
k + 1 edge connected VN onto disjoint paths in the SN.
However, this is an NP-complete problem [9], and imposes anISBN 978-3-901882-83-8 c

� 2016 IFIP

46ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

unsatisfiable number of disjointness constraints. Existing cut
set based approaches suffer from poor scalability [10], [11].
Furthermore, most of the heuristic schemes either focus on
single link failure [12], [13], or fail to deal with arbitrary VN
topologies [14]. The approach in [8] proposes a generalized so-
lution for multiple link failures. This solution requires a large
number of virtual links to be embedded disjointly, hence, is not
resource efficient. Therefore, we propose novel solutions that
embed arbitrary VN topologies with near-optimal disjointness
constraints to survive in presence of multiple link failures.
Our solutions augment a VN with minimal number of virtual
links while preserving the topological structure of the VN. The
major contributions of this paper are:

1) We explore an alternate survivability model, CoViNE,
requiring significantly less backup resources than tradi-
tional survivability approaches in SVNE literature.

2) We present two generalized solutions to the CoViNE
problem dealing with multiple substrate link failures.
The first solution builds upon heuristic for augmenting
the VN and computing the virtual links that should be
embedded disjointly, and an optimization model for VN
embedding adhering to the disjointness requirement. The
second solution, in contrast, uses heuristic for both the
steps and thus can solve larger instances of the problem.

3) Through extensive simulations, we evaluate the optimal-
ity and the time-complexity of the proposed solutions. In
addition, we show how CoViNE can reduce the impact
of failure in single and double link failure scenarios.

The rest of this paper is organized as follows. We present the
related literature in Section II. In Section III, we present the
system model and problem statement. A theoretical foundation
of CoViNE is laid in Section IV. A heuristic algorithm for
computing disjointness constraint is presented in Section V.
An optimization model and a heuristic algorithm for VN
embedding are presented in Section VI and Section VII,
respectively. We present the simulation setup and evaluation
results in Section VIII. Finally, we conclude with future
research directions in Section IX.

II. RELATED WORKS

A number of approaches exist in the literature for survivable
VN Embedding. However, these approaches mostly focus
on ensuring the same end-to-end QoS guarantee after single
SLink failure [2], [15], [16], [17]. A number of research works
in IP-over-WDM literature focus on ensuring connectivity of
IP links under WDM link failures [10], [13], [14]. In this
section, we briefly describe the most prominent approaches in
literature, and contrast them with our solutions for CoViNE.

Modiano et al. [10] presented an ILP formulation for
survivable VLink routing on WDM SN in presence of single
SLink failure. Their formulation explores exponential number
of cut sets in the VN and routes all the VLinks of a cut set on
disjoint WDM paths. Todimala et al. [11] improved the ILP
formulation by identifying polynomial number of primary cuts
in a VN. The authors in [18] extended the Max-flow min-cut
theorem for multi-layer networks and proposed approximation

algorithms for VLink routing, while maximizing the minimum
cross layer cut. A major drawback of these approaches is
that they do not scale well with network size, because of the
inherent complexity of LP-solvers.

Several heuristic based approaches have been proposed
for survivable VN embedding in large networks. Kurant et
al. [14] proposed SMART, a framework for finding survivable
mapping of a VN by repeatedly picking cycles of a VN and
finding survivable mappings for the cycles. SMART can ensure
connectivity under double SLink failures for VNs having a
few special structures, hence, has limited applicability. An
extension to SMART has been proposed by [12] that exploits
the duality between circuits and cuts in the VN. Zhou et
al. [13] proposed an algorithm that identifies a set of spanning
trees of the VN and computes a shortest-path based routing of
the VLinks such that at least one of the spanning trees survives
after an SLink failure. In contrast, our solution is generic, i.e.,
does not assume any specific property of the VN and SN, and
can ensure connectivity in presence of multiple SLink failures.

Several research works from IP-over-WDM literature ensure
survivability through IP link augmentation [12], [13], [19],
[20]. However, all of these works focus on the single failure
resiliency and cannot be generalized to multiple failures. In
contrast, Thulasiraman et al. propose an augmentation strategy
for ensuring survivability under k SLink failures [8]. They
propose to augment VLinks until a complete subgraph of k+1

VNodes is constructed and the remaining VNodes are k + 1

edge connected to the subgraph. Their solution maps any k
of the VLinks incident to a VNode onto disjoint paths. This
approach requires higher number of VLinks to be augmented
and more disjointness constraints on the SN than our approach.

III. PRELIMINARIES

The subsequent sections build upon the background, defini-
tions, and assumptions presented in this section.

A. System Model

1) Substrate Network: We represent the Substrate Network
(SN) as an undirected graph, G = (V,E), where V and E
denote the set of Substrate Nodes (SNodes) and Substrate
Links (SLinks), respectively. The set of neighbors of an SNode
u 2 V is denoted by N (u). Bandwidth capacity of an SLink
(u, v) 2 E is b

uv

, while the cost of allocating one unit of
bandwidth in (u, v) is C

uv

.
2) Virtual Network: A VN is represented as an undirected

graph ¯G = (

¯V , ¯E), where ¯V and ¯E denote the set of Virtual
Nodes (VNodes) and Virtual Links (VLinks), respectively. The
neighbors of a VNode v̄ 2

¯V is denoted by N (v̄). Each VLink
(ū, v̄) 2 ¯E has bandwidth requirement b

ūv̄

. Each VNode ū 2

¯V has a location constraint, L(ū) ✓ V , that denotes the set of
SNodes where ū can be embedded.

B. Design Choices

The first condition for surviving k SLink failures is that a
VN must be k+1 edge connected. However, if the input VN
¯G does not have such connectivity, we will need to augment

47ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE I
NOTATION TABLE

G = (V,E) Substrate Network (SN)
Ḡ = (V̄ , Ē) Virtual Network (VN)

Ĝ = (V̂ , Ê) k-protected VN

Ĝ
k

= (V̂
k

, Ê
k

) k-protected component of a VN Ḡ

Ĝ
k

� v̂ An expansion of Ĝ
k

towards v̂

�ûv̂ Conflicting set of a VLink (û, v̂)

�ûv̂

� Conflicting set of a VLink (û, v̂) during expansion

�Ĝ Conflicting set of a VN Ĝ

Quv A path between SNodes u and v in G

P ûv̂ A path between VNodes û and v̂ in Ĝ

Pûv̂ Set of edge-disjoint paths between û and v̂ in Ĝ

pûv̂
i

ith edge-disjoint shortest path from û to v̂ in Ĝ

P

Ĝk v̂ Set of edge-disjoint shortest paths from v̂ to Ĝ
k

¯G with additional VLinks. This augmentation can be done
in two ways: i) VLinks can be augmented between arbitrary
pair of VNodes to ensure k + 1 edge connectivity, which is
a well studied problem [19], [20]; ii) the other way is to
augment only parallel VLinks between adjacent VNodes in
¯G [12], [13]. Arbitrary augmentation can ensure k + 1 edge
connectivity by introducing minimal number of VLinks, but
this approach will change the input VN topology. Although
parallel VLink augmentation may not be minimal in terms of
resource usage, it does not change the input VN topology.
From VN user perspective, it is very important to preserve the
input VN topology. Hence, we opt for the second alternative,
i.e., to augment parallel VLinks only.

We use the term k-protected VN, ˆG = (

ˆV , ˆE), to represent
a VN that is made k + 1 edge connected by adding parallel
VLinks to an input VN, ¯G = (

¯V , ¯E). Here, ˆV =

¯V and
ˆE =

¯E [

˜E where ˜E is the set of parallel VLinks to be
added. Determining the capacity of the parallel VLinks (in ˜E)
as well as the amount of spare capacity to be reserved for the
input VLinks (in ¯E) in order to guarantee full bandwidth of
a failed VLink is a separate problem of its own [21]. In this
work, we assume that the capacity of a parallel VLink will be
the same as the capacity of the input VLink it augments.

C. Definitions

Definition 1. k-protected component: A k-protected compo-
nent of a graph ¯G is a multi-graph ˆG

k

= (

ˆV
k

, ˆE
k

), where
ˆV
k

✓

¯V , ˆE
k

=

¯E
k

[

˜E
k

, ¯E
k

✓

¯E, ˜E
k

✓

˜E and ˜E
k

is a set of
parallel VLinks augmented in such a way that simultaneous
removal of k arbitrary VLinks in ˆG

k

will not partition ˆG
k

.

Definition 2. Conflicting VLinks: Two VLinks are considered
as conflicting if they must be embedded on edge-disjoint
substrate paths in order to ensure k + 1 edge connectivity.

Definition 3. Conflicting set: A conflicting set of a VLink
(û, v̂), denoted by �ûv̂ , is the set of VLinks in ˆE those are
conflicting with (û, v̂). A Conflicting set of a VN ˆG = (

ˆV , ˆE),
denoted by �Ĝ, is defined as �Ĝ

=

[

8(û,v̂)2Ê

�ûv̂ .

D. CoViNE Problem Statement

Given an SN G = (V,E), a VN ¯G = (

¯V , ¯E), and location
constraints L(ū) for all ū 2

¯V find an embedding that
• provides a function f :

¯V ! V to map every VNode
ū 2

¯V to exactly one SNode u 2 V while satisfying the
location constraint and without any overlap, i.e., 8ū, v̄ 2

¯V ^ū 6= v̄ =) f(ū) 6= f(v̄) and 8ū 2

¯V f(ū) 2 L(ū),
• provides a function g :

¯E ! 2

E to map each VLink
(ū, v̄) 2

¯E to a substrate path Qf(ū)f(v̄) with sufficient
bandwidth to satisfy the VLink demand b

ūv̄

,
• ensures the connectivity in ¯G in presence of up to k SLink

failures in G,
• minimizes the total cost of embedding in terms of sub-

strate bandwidth consumption.

(a) Single Failure (b) Double Failure

Fig. 1. CoViNE examples

We illustrate CoViNE examples for different failure scenar-
ios in Fig. 1. In these examples, xyz is the VN and ABCD
is the SN. The arrow from a VNode to an SNode defines
node mapping and the dotted lines between SNodes define link
mapping. To survive single (k = 1) failure, the VN must be 2

edge-connected. Since xyz VN is already 2 edge-connected,
no augmentation is required. Fig. 1(a) shows an un-survivable
embedding (on the left) and a survivable embedding (on the
right) of the xyz VN. They differ in satisfying disjointness
constraints. The embedding on the left satisfies no disjointness
constraint, hence VLinks (x, y) and (y, z) share an SLink
(A,B). Upon the failure of (A,B), both VLinks fail, and
VNode y is disconnected from the rest of the VN. The
embedding on the right adheres to the disjointness constraints,
hence no sharing of SLinks is possible. Even though SLink
(A,B) and correspondingly VLink (x, y) fail, the VN remains
connected.

Fig. 1(b) exhibits the double (k = 2) failure scenario for
the same VN and SN topology. To survive double failures,
the VN must have 3 edge-connectivity which is absent in
the xyz VN. The embedding on the left demonstrates that
even an edge-disjoint embedding of the VN results in an un-
survivable embedding for double link failures due to the lack
of necessary edge-connectivity in the VN. For the embedding
on the right, the VN has necessary edge-connectivity through
augmentation of green colored VLinks, and embedding is
done adhering to the disjointness constraints resulting in a
survivable embedding. It is to be noted that for the augmented
VN on the right, not all the VLinks need to be disjoint with
each other, hence there are some sharing of SLinks.

48ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

a d

b c

e f

Fig. 2. The VN with only solid edges is the input VN, Ḡ. The VN with
both solid edges (Ē) and dashed edges (Ẽ) is the 2-protected VN, Ĝ. Any
subgraph of Ĝ having 3 edge connectivity is Ĝ2.

IV. PROBLEM FORMULATION

In this section, we propose a simple but efficient mechanism
for computing Conflicting set of a VN (§ IV-A). We also show
that this mechanism helps to transform a given VN ¯G to a k-
protected VN ˆG by augmenting parallel VLinks only (§ IV-B).

A. Conflicting Set Computation

In this subsection, we assume that the VNs are k-protected,
while the mechanism for transforming an arbitrary VN to a
k-protected VN is discussed in the next subsection. In order to
remain connected in presence of k SLink failures, the embed-
ding algorithm must ensure k + 1 edge connectivity between
SNodes f(ū) and f(v̄) for every pair of VNodes û 2

ˆV and
v̂ 2

ˆV of the k-protected VN ˆG. This can be achieved if the
VLinks of every edge-cut in ˆG are embedded on at least k+1

edge-disjoint paths in G. Since there are exponential number of
edge-cuts in ˆG and there are combinatorial number of ways of
choosing k+1 conflicting VLinks from an edge-cut in ˆG, the
number of possibilities for computing a conflicting set of ˆG is
enormous. However, an optimal conflicting set of ˆG is one that
ensures k+1 edge connectivity of the embedding of ˆG while
minimizing disjoint path requirement in the embedding. This
can be achieved by finding the minimum number of partitions
of the VLinks of ˆE such that the VLinks in a partition are not
conflicting with each other. Since the VLinks in a partition do
not impose any disjointness constraint, minimizing the number
of partitions will yield optimal conflicting set. Computing the
optimal conflicting set of a VN is NP-complete since it can
be reduced to the the well-known Minimum vertex coloring
problem.1 The following results provide a basis of our heuristic
algorithm for computing the conflicting set of a VN ˆG.

Theorem 1. ([22]) The size of the minimum edge-cut for two
distinct VNodes û, v̂ 2

ˆG is equal to the maximum number of
edge-disjoint paths between û and v̂ in ˆG.

According to Theorem 1, also known as Menger’s Theorem,
any pair of VNodes û and v̂ in ˆG will remain connected in
presence of k SLink failures, if at least one of the edge-disjoint
paths P ûv̂

i

2 P ûv̂ remains intact. This can be achieved by
mapping any k + 1 paths in P ûv̂ into k + 1 edge-disjoint
paths in the SN. There are a combinatorial number of ways of
choosing these k + 1 edge-disjoint paths between û and v̂. If
P ûv̂

1 = P ûv̂

1 , P ûv̂

2 ,, P ûv̂

k+1 is one possible combination cho-
sen to have edge-disjoint mapping, two VLinks (x̂, ŷ) 2 P ûv̂

i

and (ŵ, ẑ) 2 P ûv̂

j

, s.t. x 6= w and y 6= z, cannot share an

1Minimum vertex coloring is to color the vertices of a graph with a
minimum number of colors so that adjacent vertices are of different colors.

SLink in their mappings. Therefore, a VLink (x̂, ŷ) 2 P ûv̂

i

is conflicting with all other VLinks present in the paths in
P ûv̂

1 \ P ûv̂

i

, leading to |�x̂ŷ

| =

P
P

ûv̂
i 2Pûv̂

1 ^(x̂,ŷ) 62P

ûv̂
i

|P ûv̂

i

|.
For example, in Fig. 2, VNodes a and b will remain connected
in presence of 2 SLink failures if the VLinks on paths
P ab

1 = (a, b), P ab

2 = {(a, d), (d, c), (c, b)}, and P ab

3 =

{(a, c), (c, e), (e, d), (d, b)} are mapped to disjoint SN paths.
Hence, �ab

= P ab

2 [P ab

3 .
We now discuss some heuristics to reduce the above com-

putation. First, we can ensure connectivity in ˆG by ensuring
connectivity in a minimum spanning tree ˆT of ˆG. In this
case, we need to compute k + 1 edge-disjoint paths only
for the |

ˆV | � 1 VLinks in ˆT , as opposed to considering
all the VLinks in ˆG. For the VN in Fig. 2, k + 1 edge-
disjoint path computations are required for the VLinks in
ˆT = {(a, b), (a, c), (c, d), (d, e), (e, f)} instead of all the 12

VLinks in ˆG. Second, instead of arbitrarily picking k + 1

edge-disjoint paths from P ûv̂ , we can pick the first k + 1

edge-disjoint shortest paths between û and v̂. Thus, the size
of the conflicting set of a VLink (û, v̂) in ˆT becomes |�ûv̂

| =P
ik+1
pûv̂
i 2Pûv̂^(û,v̂) 62pûv̂

i
|pûv̂

i

|, where pûv̂
i

is the ith edge-disjoint
shortest path between two adjacent VNodes û and v̂. This
method yields smaller conflicting set �ab

= pab2 [pab3 , where
pab2 = {(a, c), (c, b)}, and pab3 = {(a, d), (d, b)} in Fig. 2.

Definition 4. Expansion Operator �: Given a k-protected
component ˆG

k

of a VN ˆG and a VNode v̂ s.t., v̂ 2

ˆV \

ˆV
k

and
9û 2

ˆV
k

, v̂ 2 N (û), we define ˆG
k

� v̂ as an expansion of ˆG
k

generated by adding v̂ and all the incident VLinks on v̂ from
any VNode in ˆG

k

. Mathematically,
ˆG
k

� v̂ = (

ˆV
k

[{v̂}, ˆE
k

[{(û, v̂)|û 2

ˆV
k

, û 2 N (v̂)})

Definition 5. EDSP P

Ĝkv̂: We define EDSP as a set of Edge-
Disjoint Shortest Paths P

Ĝkv̂
= {px̂v̂

i

} between ˆG
k

and a
VNode v̂ 2

ˆV \

ˆV
k

s.t. x̂ 2

ˆV
k

and all px̂v̂
i

terminate as the
first VNode x̂ in ˆV

k

is encountered, i.e., the only VNode from
ˆV
k

that is on px̂v̂
i

is x̂.

Observation 1: Using the expansion lemma, it can be
shown that ˆG

k

� v̂ is a k-protected component if and only
if there exists k + 1 edge-disjoint paths from ˆG

k

to v̂ in ˆG
[8]. Furthermore, it can be intuitively observed that in ˆG

k

� v̂,
any k+1 EDSPs in P

Ĝkv̂ will not contain a VLink from ˆE
k

.

Lemma 1. In an expansion ˆG
k

� v̂, the size of the con-
flicting set of a VLink (û, v̂) 2

ˆE \

ˆE
k

is |�ûv̂

� | =P
ik+1

pûv̂
i 2PĜkv̂^(û,v̂) 62pûv̂

i

|pûv̂
i

|, where û 2

ˆV
k

and v̂ 2 N (û).

Proof. For the embedding of ˆG
k

�v̂ on G to remain connected
in presence of k SLink failures, we need to satisfy two
conditions: i) at least k + 1 edge-disjoint paths from v̂ to ˆG

k

exist (i.e., |P

Ĝkv̂
| � k + 1), and ii) all of these paths are

embedded on k + 1 edge-disjoint paths in G. Therefore, the
VLink (û, v̂) is conflicting with all the VLinks in the first k+1

edge-disjoint shortest paths in P

Ĝkv̂
\pûv̂

i

, where (û, v̂) 2 pûv̂
i

.
This leads to |�ûv̂

� | =

P
ik+1

pûv̂
i 2PĜkv̂^(û,v̂) 62pûv̂

i

|pûv̂
i

|.

49ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Theorem 2. In comparison to computing conflicting set �ûv̂

independently for a VLink (û, v̂) 2 ˆE, computing conflicting
set for (û, v̂) through the expansion ˆG

k

� v̂ will generate
conflicting sets of lesser or equal size.

Proof. Let’s consider two VNodes û 2

ˆV
k

and v̂ 2

ˆV \

ˆV
k

s.t. v̂ 2 N (û). When computed independently, the size of the
conflicting set of (û, v̂) is |�ûv̂

| =

P
ik+1
pûv̂
i 2Pûv̂^(û,v̂) 62pûv̂

i
|pûv̂

i

|.
On other hand, when we construct conflicting set through the
expansion, ˆG

k

� v̂, the size of the conflicting set of the VLink
(û, v̂) 2

ˆE \

ˆE
k

is |�ûv̂

� | =

P
ik+1

pûv̂
i 2PĜkv̂^(û,v̂) 62pûv̂

i

|pûv̂
i

| (as

proven in Lemma 1). In the beginning, when ˆG
k

contains only
one VNode i.e. | ˆV

k

| = 1, it is obvious that |�ûv̂

| = |�ûv̂

� |. For
|

ˆV
k

| > 1, consider x̂ 2

ˆV
k

s.t. 9pûv̂
i

2 P ûv̂ contains x̂ and
px̂v̂
j

2 P

Ĝkv̂ . Since pûv̂
i

contains x̂, according to the optimal
substructure property of shortest path, we get pûv̂

i

= pûx̂
i

||px̂v̂
j

,
assuming || is the path concatenation operator. Thus, |px̂v̂

j

| <
|pûv̂

i

| resulting into |�ûv̂

� | < |�ûv̂

|. If such an x̂ is not found,
we can assume x̂ = û and in that case px̂v̂

j

= pûv̂
i

yielding
|�ûv̂

� | = |�ûv̂

|. Hence, |�ûv̂

� | |�ûv̂

|.

As an example of Theorem 2, let us consider the VLink
(d, e) in Fig. 2 and the VN needs to survive against single
SLink failure. If we compute independently, we get �de

=

{(d, c), (c, e)}. When we compute through expansion ˆG1 � e
where ˆV1 = {a, b, c, d}, we get �de

= {(c, e)}.

B. VLink Augmentation

As described in § III-B, we may need to augment a given
VN ¯G with parallel VLinks in order to make it a k-protected
VN ˆG = (

ˆV , ˆE). Now, the challenge here is to minimize
the number of augmented parallel VLinks. We use Menger’s
Theorem [22] to find the pair of VNodes with less than k+1

edge connectivity and add parallel VLinks as needed. Assume
that for each pair of adjacent VNodes ū, v̄ 2

¯V there are at
least m edge-disjoint paths in ¯G. If m � k+1, ¯G is at least k+
1 edge-connected, hence no augmentation is needed. If m <
k+1, we need to add k+1�m parallel VLinks between ū and
v̄. In general, max(0, k+ 1�m) parallel VLinks are needed
for each pair of adjacent VNodes. For instance, a VN should
be 3 edge connected to survive 2 SLink failures. Since there
are 2 edge-disjoint paths between d and e in Fig. 2, we add a
parallel VLink. Similarly, we add two parallel VLinks between
e and f to make the VN 3 edge connected. No augmentation
is required for the rest of the adjacent pair of VNodes. It
can be easily shown that the number of parallel VLinks to be
augmented remains the same during the expansion, ˆG

k

� v̄. In
other words, if there are m̂ edge-disjoint paths from ˆG

k

to v̄
in ¯G, augmentation of max(0, k + 1� m̂) parallel VLinks is
needed to ensure the k + 1 edge connectivity between û and
v̄, where û 2

ˆV
k

and v̄ 2 N (û).

V. HEURISTIC ALGORITHM FOR CONFLICTING SET

Given the NP-complete nature of computing optimal con-
flicting set (§ IV), we propose a heuristic algorithm (Algo-
rithm 1) for computing conflicting sets within a reasonable

time. Algorithm 1 starts with a k-protected component, ˆG
k

,
containing an arbitrary VNode ū 2

¯V . The algorithm then
includes all of ū’s neighbors v̄ 2 N (ū) to ˆV

k

. This process
is repeated until all the VNodes of ¯G are added to ˆG

k

. For
each v̄, the algorithm computes k+ 1 EDSPs, PĜkv̄ between
ˆG
k

and v̄ using the procedure COMPUTE-EDSP (Line 8).
This procedure initially includes the VLink, (ū, v̄) as the
first shortest path pĜkv̄

1 to P

Ĝkv̄ . It then invokes Dijkstra’s
shortest path algorithm k times to compute pĜkv̄

i

, the ith
EDSP between ˆG

k

and v̄. After computing each pĜkv̄

i

, all
the VLinks present in pĜkv̄

i

are removed from ¯G in order to
ensure the edge-disjointness of the later paths. Although we
use Dijkstra’s shortest path algorithm repeatedly to compute
k+1 EDSPs, other algorithms from the literature can be used
for this purpose [9]. If the number of computed EDSPs is less
than k+1, Algorithm 1 adds k+1� |P

Ĝkv̄
| parallel VLinks

between ū and v̄ (Line 10). The ith parallel VLink is denoted
by (ū, v̄)i, and constitutes the (|P

Ĝkv̄
| + i)th EDSP between

ˆG
k

and v̄. Finally, Algorithm 1 updates the conflicting sets of
the corresponding VLinks as described in Lemma 1 (Line 13).

Algorithm 1 Compute Conflicting Sets
1: function COMPUTE-CONFLICTING-SETS(Ḡ)
2: 8(ū, v̄) 2 Ē: �ūv̄ �, Q �

3: 9v̄ 2 V̄ : Ĝ
k

 ({v̄},�) // v̄ is an arbitrary VNode
4: ENQUEUE(Q, v̄)
5: while Q is not empty do
6: ū DEQUEUE(Q)
7: for all v̄ 2 N (ū) and v̄ 62 Ĝ

k

do
8: PĜk v̄ COMPUTE-EDSP(Ḡ, Ĝ

k

, ū, v̄, k + 1)
9: for i = 1! (k + 1� |PĜk v̄|) do

10: Ē Ē [(ū, v̄)i, PĜk v̄ PĜk v̄ [(ū, v̄)i

11: end for
12: 8(x̄, ȳ) 2 p

Ĝk v̄

i

, p
Ĝk v̄

i

2 PĜk v̄ :

13: �

x̄ȳ �

x̄ȳ[{(s̄, t̄) 2 p
Ĝk v̄

j

|pĜk v̄

j

2 PĜk v̄^i 6= j}
14: Ĝ

k

 Ĝ

k

� v̄

15: ENQUEUE(Q, v̄)
16: end for
17: end while
18: return �

Ḡ

19: end function

The time complexity of the heuristic algorithm is dominated
by the COMPUTE-EDSP procedure, which invokes Dijkstra’s
shortest path algorithm k times. The time complexity of
Dijkstra’s shortest path algorithm based on a min-priority
queue is O(|

¯E| + |

¯V | log |

¯V |). Since COMPUTE-EDSP is
invoked O(|

¯V ||N (ū)|) times, the running time of Algorithm 1
becomes O(k| ¯V ||N (ū)|(| ¯E|+ |

¯V | log |

¯V |)).

VI. ILP FORMULATION FOR COVINE

In this section, we present an Integer Linear Programming
(ILP) formulation for CoViNE. The ILP minimizes the total
cost of provisioning bandwidth for the VLinks of a VN, ˆG.

50ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

We represent the location constraint L(û) ✓ V of û 2

ˆV
with the binary variable `

ûu

defined as follows:

`
ûu

=

⇢
1 if û 2

ˆV can be mapped to u 2 V,
0 otherwise.

A. Decision Variables

A VLink is mapped to a path in SN. The following decision
variable indicates the mapping between a VLink (û, v̂) 2

ˆE
and an SLink (u, v) 2 E.

xûv̂

uv

=

⇢
1 if (û, v̂) 2 ˆE is mapped to (u, v) 2 E,
0 otherwise.

The following variable represents VNode mapping:

y
ûu

=

⇢
1 if û 2

ˆV is mapped to u 2 V,
0 otherwise.

B. Constraints

1) VLink Mapping Constraints: Our VLink mapping con-
straints are as follows:

8(û, v̂) 2 ˆE :

X

8(u,v)2E

xûv̂

uv

� 1 (1)

8(u, v) 2 E :

X

8(û,v̂)2Ê

xûv̂

uv

⇥ b
ûv̂

 b
uv

(2)

8û, v̂ 2

ˆV , 8u 2 V :

X

8v2N (u)

(xûv̂

uv

� xûv̂

vu

) = y
ûu

� y
v̂u

(3)

(1) ensures that each VLink is mapped to a non-empty set
of SLinks and no VLink is left unmapped. (2) ensures that an
SLink is not assigned VLink demands that exceeds the SLink’s
capacity. Finally, (3) ensures that the in-flow and out-flow of
each SNode is equal except at the SNodes where the endpoints
of a VLink are mapped following the constraint in [23].

2) VNode Mapping Constraints: We map the VNodes ac-
cording to the location constraint as described in (4). We also
ensure that a VNode is mapped to exactly one SNode by (5).
Finally, (6) ensures that an SNode does not host more than
one VNode from the same VN. The VNode mapping follows
from the VLink mapping since we do not have any VNode
mapping cost.

8û 2

ˆV , 8u 2 V : y
ûu

 `
ûu

(4)

8û 2

ˆV :

X

u2V

y
ûu

= 1 (5)

8u 2 V :

X

û2V̂

y
ûu

 1 (6)

3) Disjointness Constraints: To ensure the desired surviv-
ability of CoViNE, a VLink (û, v̂) 2 ˆE should never share an
SLink with it’s conflicting VLinks in �ûv̂ in their mappings.
This disjointness requirement is ensured with the following
constraint 8(u, v) 2 E, 8(û, v̂) 2 ˆE, 8(â,ˆb) 2 �ûv̂:

xûv̂

uv

+ xûv̂

vu

+ xâb̂

uv

+ xâb̂

vu

 1 (7)

C. Objective Function

Our objective is to minimize the bandwidth provisioning
cost over all the SLinks used by the mappings of all the
VLinks of a VN, ˆG. Given that C

uv

is the cost of allocating
unit bandwidth on SLink (u, v) 2 E, we have the following
objective function for our ILP:

minimize

0

@
X

8(û,v̂)2Ê

X

8(u,v)2E

xûv̂

uv

⇥ C
uv

⇥ b
ûv̂

1

A

VII. HEURISTIC ALGORITHM FOR COVINE

The ILP formulation presented in § VI cannot solve larger
instances of the problem due to the limitation of LP solvers.
Hence, we propose a heuristic algorithm (Algorithm 2) to
produce near-optimal solutions within reasonable time limit.
Algorithm 2 embeds ˆG while ensuring the disjointness con-
straint imposed by �Ĝ and minimizing the total cost of
embedding according to the objective function in § VI-C.

Algorithm 2 computes two functions, nmap and emap,
which represent the VNode and VLink mapping of ˆG on G,
respectively. Since there is no cost associated with VNode
mapping, a VLink mapping that minimizes total cost deter-
mines the VNode mapping. Algorithm 2 first sorts the VNodes
û 2

ˆV in decreasing order of the sum of conflicting set sizes
of incident VLinks. This sorted list of VNodes is represented
by ˆ

V . A VNode with VLinks having larger conflicting sets
becomes too constrained to be mapped to a suitable SNode,
hence, Algorithm 2 tries to map VNodes in the order of ˆ

V .
For each VNode û 2

ˆ

V , Algorithm 2 searches for an

Algorithm 2 VN-Embedding
1: function VN-EMBEDDING(G, Ĝ)
2: V̂ Sort û 2 V̂ in decreasing order of

P
8v̂2N (û) |�

ûv̂|
3: for all û 2 V̂ do
4: Candidate �

5: for all l 2 L(û) do
6: Add mapping û! l to nmap

7: E Sort (û, v̂) 2 Ê in decreasing order of |�ûv̂|
8: 8(û, v̂) 2 E such that emap(û, v̂) = �

9: P [(û, v̂)] VLINK-MAP(G, Ĝ, (û, v̂))
10: if

X

8(u,v)2E

cost(P [(û, v̂)]) is minimum then

11: M P , Candidate l

12: end if
13: nmap(û) �, 8(û, v̂) 2 E : emap(û, v̂) �

14: end for
15: if Candidate 6= � then
16: Add mapping û! Candidate to nmap

17: 8(û, v̂) 2 E and nmap(û) 6= � and nmap(v̂) 6= �:
18: Add mapping (û, v̂)!M [(û, v̂)] to emap

19: else
20: return No Solution Found
21: end if
22: end for
23: return {nmap, emap}
24: end function

unallocated SNode in û’s location constraint set, L(û), which
yields a feasible mapping while minimizing the cost. To embed
û, Algorithm 2 loops through each candidate SNode l 2 L(û)
(Line 5 � 14), to first temporarily map û to l (Line 6). Then

51ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Algorithm 3 VLink-Map
1: function VLINK-MAP(G, Ĝ, (û, v̂))
2: p

ûv̂ �

3: 8(ŝ, t̂) 2 �

ûv̂ :
4: E E � {(a, b) 2 E|(ŝ, t̂) is mapped to (a, b)}
5: if nmap(û) 6= � ^ nmap(v̂) 6= � then
6: Q

nmap(û)nmap(v̂) MCP(G,nmap(û), nmap(v̂), b
ûv̂

)
7: else if nmap(x̂) = � ^ nmap(ŷ) 6= � s.t. x̂, ŷ 2 {û, v̂},

ŷ 6= x̂ then
8: Q

nmap(û)nmap(v̂)
9: min

8l2L(x̂)
{MCP(G,nmap(ŷ), l, b

ŷl

)}
10: end if
11: if Qnmap(û)nmap(v̂) 6= � then
12: Add mapping (û, v̂)! Q

nmap(û)nmap(v̂) to emap

13: end if
14: return Q

nmap(û)nmap(v̂)

15: end function

the algorithm tries to embed all the VLinks incident to û. The
VLINK-MAP (Algorithm 3) procedure is invoked to find the
mapping for each such VLink (Line 9). VLinks incident to
û are processed in the decreasing order of their conflicting
set sizes to maximize the chances of finding substrate paths
that can satisfy the disjointness constraint enforced by the
conflicting sets. Algorithm 2 finally embeds û to the l that
leads to a feasible mapping for all the VLinks incident to û
and yields the minimum embedding cost. The algorithm fails,
if no such feasible l is found. Once a VNode ū has been finally
mapped, Algorithm 2 creates the final mapping for only those
VLinks incident to û whose both endpoints are already finally
mapped (Line 17�18). The mappings of other VLinks incident
on û are finalized when their unmapped endpoints are mapped.
We now describe the VLINK-MAP (Algorithm 3) procedure
for finding the mapping of a VLink, (û, v̂). First we remove
all the SLinks used by the mapping of all the VLinks in �ûv̂

to satisfy the disjointness constraint (Line 3 � 4). Then, we
compute mapping for (û, v̂) by considering the following two
cases: (i) both endpoints of (û, v̂) have already been mapped
to some SNodes (Line 5). In this case, we find a minimum
cost path between nmap(û) and nmap(v̂) with capacity at
least b

ûv̂

in G; (ii) only û (or v̂) is mapped and the other
endpoint v̂ (or û) has not been mapped (Line 7). In this case,
we compute the minimum cost path between nmap(û) (or
nmap(v̂)) and all possible locations for the unmapped VNode
v̂ (or û), l 2 L(v̂) (or L(û)) with at least b

ûv̂

capacity.
(û, v̂) is temporarily mapped to this path and the mapping
is added to emap (Line 12). We modified Dijkstra’s shortest
path algorithm to consider link capacities while computing the
minimum cost path (MCP procedure call in Algorithm 3). The
cost for each SLink is set (u, v) 2 E to C

uv

⇥ b
ûv̂

, where b
ûv̂

is the bandwidth requirement of the VLink to be embedded.

The most expensive step of Algorithm 2 is the VLINK-MAP
function, which invokes Dijkstra’s shortest path algorithm on
the SN requiring O(|E|+|V | log |V |) time. Since VLINK-MAP
is invoked O(|

ˆV ||L(û)||N (û)|) times, the running time of
Algorithm 2 becomes O(|

ˆV ||L(û)||N (û)|(|E|+ |V | log |V |)).

VIII. EVALUATION

A. Compared Approaches

We compare six approaches (Table II) that combine differ-
ent strategies for computing disjointness constraint and VN
embedding. We have chosen single failure (k = 1) and double
failure (k = 2) scenarios, since the possibility of more than
two simultaneous link failures is very low [7], [3]. The first
four approaches in Table II are from our contributions, while
the last two are based on [10] and [24].

TABLE II
COMPARED ALGORITHMS

Notation Failures Disjointness Embedding
S-CoViNE Single Algorithm 1 Algorithm 2
D-CoViNE Double Algorithm 1 Algorithm 2
S-CoViNE-ILP Single Algorithm 1 § VI
D-CoViNE-ILP Double Algorithm 1 § VI
S-Cutset-ILP [10] Single Optimal Cut-set ILP
ViNE-ILP [24] None None MCUF ILP1

1. Multi-commodity Unsplittable Flow

B. Simulation Setup

We implement the ILP formulations using IBM ILOG
CPLEX C++ library. The simulations were performed on a
server with quad-core 3.4GHz processor and 8GB of RAM.
To demonstrate the scalability of our solutions, we consider
both small and large network topologies as summarized in
Table III. For each problem instance in this table, we perform
3 simulation runs and take the average. VNs for the small
scale scenario are 2-edge connected, since it is required by
the cut-set based approach [10]. We also vary the Link-to-
Node Ratio (LNR) to assess the robustness of our solution
for different VN connectivity levels. In addition to scalability
and robustness, we analyze the behavior of our approach under
different failure scenarios. Since our focus is VN connectivity,
we use enough bandwidth capacity in SN topologies.

TABLE III
SUMMARY OF SIMULATION PARAMETERS

Scenario Figure SNodes SLinks VNodes VLinks

Small Scale

Fig. 3(a)
Fig. 3(c) 150 310 4-20 5-37

Fig. 3(b)
Fig. 3(d) 50-250 105-494 10 17-24

Large Scale

Fig. 4(a) 500 2017 10-100 21-285
Fig. 4(d) 1000 4023 10-100 21-285

Fig. 4(b) 500 2017 10 11-31
1000 4023 10 11-31

Fig. 4(c) 500 1000-2000 10 21
1000 2000-4000 10 21

Failure Fig. 5 150 310 10 11-31

C. Results

1) Small Scale Scenarios:
a) Embedding Cost: Fig. 3(a) and Fig. 3(b) depict em-

bedding cost for different VN and SN sizes, respectively.
As expected, ViNE-ILP produces the lowest cost embedding,
since it neither augments any parallel VLinks nor satisfies any
disjointness constraint. The costs of embedding produced by
S-Cutset-ILP and S-CoViNE-ILP lie very close to that of ViNE-
ILP. Since the VNs are 2-edge connected in this experiment,

52ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 20

 40

 60

 80

 100

 120

 140

 160

 4 8 12 16 20

Co
st

 (
x1

04
)

Number of VNodes

S-Cutset-ILP
S-CoViNE-ILP
D-CoViNE-ILP

S-CoViNE
D-CoViNE
ViNE-ILP

(a) Cost Vs. VN Size

 40

 60

 80

 100

 50 100 150 200 250

Co
st

 (
x1

04
)

Number of SNodes

S-Cutset-ILP
S-CoViNE-ILP
D-CoViNE-ILP

S-CoViNE
D-CoViNE
ViNE-ILP

(b) Cost Vs. SN Size

 0.1

 1

 10

 100

 1000

 10000

 4 8 12 16 20

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of VNodes

S-Cutset-ILP
S-CoViNE-ILP
D-CoViNE-ILP

S-CoViNE
D-CoViNE
ViNE-ILP

(c) Time Vs. VN Size

 0.1

 1

 10

 100

 1000

 10000

 50 100 150 200 250

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of SNodes

S-Cutset-ILP
S-CoViNE-ILP
D-CoViNE-ILP

S-CoViNE
D-CoViNE
ViNE-ILP

(d) Time Vs. SN Size

Fig. 3. Small Scale Performance

no parallel augmentation is performed. The difference in S-
Cutset-ILP and S-CoViNE-ILP is only due the variation of
the disjointness computation methods. In contrast, S-CoViNE
employs heuristic algorithms for disjointness computation and
embedding, resulting in ⇠10% more cost than S-CoViNE-
ILP and ⇠15% more cost than the cut set based optimal
solution (S-Cutset-ILP). Both D-CoViNE-ILP and D-CoViNE
incur ⇠30% more cost than single failure approaches, since
they augment parallel VLinks to ensure 3-edge connectivity.
In general, cost increases almost linearly with increase in SN
size for a fixed VN, and vice versa.

b) Execution Time: Fig. 3(c) and Fig. 3(d) present exe-
cution times in logarithmic scale by varying VN and SN sizes,
respectively. Execution times of S-CoViNE and D-CoViNE
vary almost linearly with VN or SN sizes. When embedding a
VN of 18 VNodes on a 150 node SN, S-CoViNE-ILP and D-
CoViNE-ILP take ⇠ 285s and ⇠ 456s, respectively, which is
significantly slower compared to less than a second execution
time for S-CoViNE and D-CoViNE. ViNE-ILP runs faster than
S-CoViNE-ILP and D-CoViNE-ILP, since it does not satisfy
any disjointness constraint while embedding. S-Cutset-ILP is
the slowest since it computes an optimal solution.

c) Scalability: S-CoViNE and D-CoViNE can scale with
arbitrary VN and SN sizes, whereas the ILP-based approaches
can only scale up to 18 node VNs on 150 node SNs. Scalability
of S-Cutset-ILP is the worst as it cannot scale beyond 10 node
VNs on the same 150 node SNs. In summary, the higher costs
of S-CoViNE and D-CoViNE, compared to the corresponding
ILP-based approaches, are compensated by their higher scal-
ability and faster execution time.

2) Large Scale Scenarios:
a) Embedding Cost: Fig. 4(a) shows embedding cost by

varying VN sizes on SNs of 500 and 1000 nodes. On the other
hand, Fig. 4(b) and Fig. 4(c) show embedding cost for VN
and SN topologies with different LNRs, respectively. In this
scenario, embedding cost is mostly influenced by disjointness
constraint and parallel VLink augmentation. For double failure
scenarios, augmentation cost dominates for VN LNR 2.4,
hence the initial decrease in embedding cost. However for VN
LNR > 2.4, cost for ensuring disjointness constraint domi-
nates, which justifies the corresponding increase in Fig. 4(b).
On the other hand for S-CoViNE, disjointness constraint dom-
inates and embedding cost increases as higher number of
VLinks are embedded on the same SN for larger LNR. An
increase in SN LNR results into higher path diversity in SN.

S-CoViNE and D-CoViNE exploit this path diversity by finding
shorter paths while embedding a VLink. This accounts for the
decrease in cost with an increase in SN LNR.

b) Execution Time: Conforming to the running time
analysis in § V and § VII, the execution times for S-CoViNE
and D-CoViNE increase with both VN and SN sizes (Fig. 4(d)).

3) Impact of Failure: In this scenario, we assume three
traffic classes in VN, labeled as 1 (highest priority), 2 and
3 (lowest priority) demanding 20%, 30%, and 50% of each
VLink’s bandwidth, respectively. We handle failures by rerout-
ing traffic in the affected VLinks along alternate shortest paths
in VN. Bandwidth sharing along these paths follow fair sharing
policy between traffic from the same class and weighted fair
sharing across different traffic classes.

Fig. 5(a) and Fig. 5(b) present the percentage of restored
bandwidth for single and double failure scenarios, respectively.
On the other hand, Fig. 5(c) and Fig. 5(d) present the overhead
for ensuring connectivity in terms of embedding cost and
number of augmented VLinks, respectively. Fig. 5(a) and
Fig. 5(b) depict that performance of our embedding heuristics
(S-CoViNE and D-CoViNE) is very close to the optimal embed-
ding (S-CoViNE-ILP and D-CoViNE-ILP) for all three traffic
classes. The percentage of restored bandwidth by ViNE-ILP is
very poor at low VN LNR and increases with the increase in
VN LNR. A higher LNR induces higher path diversity in VN.
This has twofold impact. First, it reduces the chances of VN
partitioning. Second, there are more options for steering traffic
in the affected VLinks. Both of these reasons contribute to the
increase in restored bandwidth for VN with higher LNR.

As envisioned at the beginning of this paper, our approach
is able to successfully restore almost the full bandwidth for
the highest priority traffic in presence of single and double
failures as shown in Fig. 5(a) and Fig. 5(b). However, this
successful restoration is at the expense of penalizing the
lower priority traffic classes. The overall decrease in restored
bandwidth for all variants of CoViNE with increasing VN LNR
is counter-intuitive. This can be explained by observing the
overheads in Fig. 5(c) and Fig. 5(d). As VN LNR increases,
the number of augmented VLinks decreases. This results
into lower spare bandwidth in VNs with higher LNR, and
consequently reducing the percentage of restored bandwidth.

IX. CONCLUSION

In this paper, we have investigated the Connectivty-aware
Virtual Network Embedding (CoViNE) problem that ensures
VN connectivity in presence of multiple SLink failures. We

53ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 0

 100

 200

 300

 400

 500

 20 40 60 80 100

Co
st

 (
x1

04
)

Number of VNodes

S-CoViNE-SN-500
D-CoViNE-SN-500

S-CoViNE-SN-1000
D-CoViNE-SN-1000

(a) Cost Vs. VN Size

 60

 80

 100

 120

 140

 160

 1.2 1.6 2 2.4 2.8 3.2

Co
st

 (
x1

04
)

VLink to VNode Ratio

S-CoViNE-SN-500
D-CoViNE-SN-500

S-CoViNE-SN-1000
D-CoViNE-SN-1000

(b) Cost Vs. VN LNR

 50

 60

 70

 80

 90

 100

 110

 2 2.4 2.8 3.2 3.6 4

Co
st

 (
x1

04
)

SLink to SNode Ratio

S-CoViNE-SN-500
D-CoViNE-SN-500

S-CoViNE-SN-1000
D-CoViNE-SN-1000

(c) Cost Vs. SN LNR

 0

 50

 100

 150

 200

 250

 20 40 60 80 100

Ex
ec

ut
io

n
Ti

m
e

(s
)

Number of VNodes

S-CoViNE-SN-500
D-CoViNE-SN-500

S-CoViNE-SN-1000
D-CoViNE-SN-1000

(d) Time Vs. VN Size

Fig. 4. Large Scale Performance

 0
 20
 40
 60
 80

 100

 1.2 1.6 2 2.4 2.8 3.2%
 o

f
Re

st
or

ed
 B

/w

Ratio of VLinks to VNodes

ViNE-ILP-1
ViNE-ILP-2
ViNE-ILP-3
S-CoViNE-1
S-CoViNE-2

S-CoViNE-3
S-CoViNE-ILP-1
S-CoViNE-ILP-2
S-CoViNE-ILP-3

(a) Single Failure

 0
 20
 40
 60
 80

 100

 1.2 1.6 2 2.4 2.8 3.2%
 o

f
Re

st
or

ed
 B

/w

Ratio of VLinks to VNodes

ViNE-ILP-1
ViNE-ILP-2
ViNE-ILP-3

D-CoViNE-1
D-CoViNE-2

D-CoViNE-3
D-CoViNE-ILP-1
D-CoViNE-ILP-2
D-CoViNE-ILP-3

(b) Double Failure

 10

 20

 30

 40

 50

 60

 1.2 1.6 2 2.4 2.8 3.2

Co
st

 (
x1

04
)

VLink to VNode Ratio

S-CoViNE-ILP
D-CoViNE-ILP

ViNE-ILP

S-CoViNE
D-CoViNE

(c) Overhead

 0

 4

 8

 12

 16

1.1 1.3 1.5 1.7 1.9 2.1 2.3 2.5

N
um

be
r o

f P
ar

al
le

l V
Li

nk
s

Ratio of VLinks to VNodes

S-CoViNE
D-CoViNE

(d) Parallel VLink Augmention

Fig. 5. Impact of Failure

have addressed the two major challenges in solving CoViNE:
i) finding the conflicting VLinks that should be embedded
disjointly, and ii) computing a resource efficient embedding
that adheres to disjointness requirement. For the first chal-
lenge, we have coined the concept of conflicting set, and
have proven that computing optimal conflicting set is NP-
complete. We also provided a heuristic algorithm for find-
ing conflicting set efficiently. For the second challenge, we
provided an ILP formulation and a heuristic to tackle its
computational complexity. All of our solutions are generalized
to handle multiple SLink failures for any VN and SN topology.
Evaluation results show that solutions from our heuristics
use around 15% extra resources on average compared to the
optimal solution, whereas the execution time of our heuristic is
two to three orders of magnitude faster on the same problem
instances. We have also demonstrated that VN connectivity
can be successfully applied to restore high priority traffic in
presence of multiple SLink failures.

We believe that CoViNE can set the stage for further
research investigations. Among the possibilities, we want to
investigate the problem of ensuring different connectivity
levels for each VLink in a VN, which can empower a VN-
operator to offer a wide variety of Service Level Agreements
(SLAs) to its customers. We also want to extend our current
solutions by considering SLinks’ spare bandwidth allocation,
SNodes’ throughput, and substrate path length constraints in
a coordinated manner.

ACKNOWLEDGMENT

This work was supported in part by Huawei Technologies
and in part by an NSERC Collaborative Research and Devel-
opment Grant.

REFERENCES

[1] N. M. M. K. Chowdhury et al., “A Survey of Network Virtualization,”
Computer Networks, Apr 2010.

[2] M. R. Rahman et al., “SVNE: Survivable Virtual Network Embedding
Algorithms for Network Virtualization,” IEEE TNSM, 2013.

[3] A. Markopoulou et al., “Characterization of Failures in an IP Backbone,”
in INFOCOM, Mar 2004.

[4] S. Herker et al., “Survey on Survivable Virtual Network Embedding
Problem and Solutions,” in ICNS, 2013.

[5] Z. Zhou et al., “Cross-layer network survivability under multiple cross-
layer metrics,” IEEE/OSA J. of Optical Comm. & Net., 2015.

[6] H. Choi et al., “Loopback recovery from double-link failures in optical
mesh networks,” IEEE/ACM TON, Dec 2004.

[7] P. Gill et al., “Understanding Network Failures in Data Centers: Mea-
surement, Analysis, and Implications,” in ACM SIGCOMM, Aug 2011.

[8] K. Thulasiraman et al., “Logical topology augmentation for guaranteed
survivability under multiple failures in ip-over-wdm optical networks,”
Optical Switching and Networking, vol. 7, no. 4, pp. 206–214, 2010.

[9] J. M. Kleinberg, “Approximation algorithms for disjoint paths prob-
lems,” Ph.D. dissertation, Citeseer, 1996.

[10] E. Modiano et al., “Survivable lightpath routing: a new approach to the
design of wdm-based networks,” IEEE JSAC, 2002.

[11] A. Todimala et al., “A scalable approach for survivable virtual topology
routing in optical wdm networks,” IEEE JSAC, 2007.

[12] K. Thulasiraman et al., “Circuits/cutsets duality and a unified algorithmic
framework for survivable logical topology design in ip-over-wdm optical
networks,” in IEEE INFOCOM, Apr 2009.

[13] Z. Zhou et al., “Novel survivable logical topology routing in ip-over-
wdm networks by logical protecting spanning tree set,” in ICUMT, 2012.

[14] M. Kurant et al., “Survivable mapping algorithm by ring trimming
(smart) for large ip-over-wdm networks,” in BroadNets, Oct 2004.

[15] T. Guo et al., “Shared backup network provision for virtual network
embedding,” in IEEE ICC, 2011.

[16] J. Xu et al., “Survivable virtual infrastructure mapping in virtualized
data centers,” in IEEE CLOUD, 2012.

[17] M. M. A. Khan et al., “Simple: Survivability in multi-path link embed-
ding,” in IEEE CNSM, 2015, pp. 210–218.

[18] K. Lee et al., “Cross-layer survivability in wdm-based networks,”
IEEE/ACM TON, Aug 2011.

[19] C. Liu et al., “A new survivable mapping problem in ip-over-wdm
networks,” IEEE JSAC, Apr 2007.

[20] M. Kurant et al., “Survivable routing of mesh topologies in ip-over-wdm
networks by recursive graph contraction,” JSAC, 2007.

[21] D. D.-J. Kan et al., “Lightpath routing and capacity assignment for
survivable ip-over-wdm networks,” in IEEE DRCN, 2009.

[22] Menger’s theorem [online] http://math.fau.edu/locke/menger.htm.
[23] M. Melo et al., “Virtual network mapping–an optimization problem,” in

Mobile Networks and Management. Springer, 2012, pp. 187–200.
[24] Y. Zhu and M. H. Ammar, “Algorithms for assigning substrate network

resources to virtual network components,” in IEEE INFOCOM, 2006.

54ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Time-Aware Congestion-Free Routing
Reconfiguration

Shih-Hao Tseng, Chiun Lin Lim, Ning Wu, and Ao Tang
School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853, U.S.A.

Email: {st688, cl377, nw276}@cornell.edu, atang@ece.cornell.edu

Abstract—A general model is developed to study how network
routing can be reconfigured quickly without incurring transient
congestion. Assuming both initial and target configurations are
congestion-free, it is known that transient congestion may still
occur during the reconfiguration process if links contain a mix
of traffic flows following old and new routing rules, resulting
from variation of switch reaction time and propagation delay
differences among paths. We consider these factors by explicitly
incorporating timing uncertainty intervals into the model. The
model leads to an optimization problem whose solution represents
a fast (in terms of actual physical time) congestion-free routing
reconfiguration. Our formulation naturally reduces to existing
work of finding minimal number of algorithmic update steps
when the timing uncertainty intervals are very large, meaning
we have little prior knowledge about them. The optimization
problem is shown to be a Mixed Integer Linear Program (MILP)
with a polynomial-size constraint set, and is proved to be NP-
hard. We then further introduce an approximation algorithm
with performance guarantee to solve the problem efficiently.
Several numerical examples are provided to illustrate our results.
In particular, it is demonstrated that timing information can
possibly accelerate the update process, even if more steps are
involved.

I. INTRODUCTION

Network routes are frequently reconfigured to accomplish
tasks such as middlebox traversal constraint satisfaction, vir-
tual machine live migration, and scheduled network main-
tenance [1]–[5]. There are three key challenges for route
reconfiguration, namely optimality, consistency and swiftness.

An optimal update ensures the final routing configuration
is the targeted optimal solution. Network operators derive the
optimal solution from the new network conditions and traffic
demands by solving the well-known multi-commodity flow
problem [6]–[8]. In practice, we have various protocols at-
tempting to achieve the static solution of the multi-commodity
flow problem. Under a distributed setting, routes could be
reconfigured with switches choosing different per-destination
next-hops as in link-state routing protocols such as OSPF [9].
Alternatively, the routes could be predetermined and route
reconfiguration could be done by ingress switches individually
selecting different tunnels as in MPLS [10]. A drawback of
these distributed methods is that the achieved configuration is
not necessarily the desired one [11], [12]. However, having
a centralized controller with a global view, as in a Software
Defined Network (SDN), can guarantee optimality by directly
establishing the optimal routing configuration.

With a centralized controller guaranteeing optimality, the
concern moves on to the transient stages while getting to the
optimal solution, and this is where consistency and swiftness

requirements come in. A consistent update ensures certain
network properties of interest, such as in-order delivery, loop-
freedom or capacity constraint, are satisfied during all tran-
sient stages of the routing reconfiguration [13]–[16]. When
implemented incorrectly, an inconsistent update could be a
very costly exercise to the operator by causing severe service
disruptions that would take days to fully recover [17]. On the
other hand, swiftness refers to the ability to reconfigure the
network from the initial state to the target state in the least
amount of time possible. A swift update prevents the new
routing setup from becoming obsolete due to fast changing net-
work conditions. This becomes increasingly critical especially
for data center networks where traffic dynamics fluctuates very
fast [18].

Recently, several methods have been developed to acquire
timing information in the network [19]–[21], which enable us
to present our approach to achieve fast congestion-free routing
reconfiguration. Given an initial routing configuration and a
target one, our goal is to produce a series of update steps to
move from the initial to the target configuration as quickly
as possible while congesting no link during any update step.
The key problem is that congestion can still occur during the
transient even if both old and new routing configurations are
congestion-free, since traffic flows following the new config-
uration could enter the links containing some traffic flows
keeping the old one. We capture this behavior by explicitly
incorporating timing information such as propagation delay
and time variability into updates.

Our work differs from prior works [15], [22], [23] by
optimizing reconfiguration time instead of the number of
algorithmic update steps. The key motivation behind the
extension is that minimizing the number of update steps
does not necessarily translate to a faster update (Example
3). Timing information is useful for network operators to
achieve faster reconfiguration as it helps rule out the im-
possible scenarios which are still considered by worst-case
analysis [15]. Our framework reduces to SWAN [15] when the
uncertainty dominates the network and we have essentially no
prior timing knowledge. zUpdate [22] is also a special case
of our framework when we have perfect timing information
(zero uncertainty) and the network has layered structure.

II. BACKGROUND AND MOTIVATION

As discussed in Section I, even if initial and the target
configurations both obey capacity constraints, congestion may
still occur during transient stages. There are two main factors
that can lead to transient congestion: propagation delay and
timing uncertainty. In this section, we provide two examplesISBN 978-3-901882-83-8 c� 2016 IFIP

55ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) The initial configuration (b) The target configuration

(c) Transient congestion (d) A congestion-free update exists
when the bottom flow switches to the
top path

Fig. 1. Differences in propagation delay can cause congestion

(Example 1, 2) to intuitively illustrate how that can happen.
Furthermore, we also demonstrate how timing information can
help achieve faster reconfiguration (Example 3).

A. Causes of Transient Congestion

1) Propagation Delay: When switching traffics between
different paths, the differences between propagation delays of
the paths may incur transient congestion. We will illustrate
this phenomenon with the following example.

Example 1. Consider the network as shown in Fig. 1. The
flow along the top path (Fig. 1(a)) is directly rerouted to the
bottom one (Fig. 1(b)). Assume the bottom path has a shorter
delay, the new flow can arrive at the rightmost link before the
previous flow on the longer path clears there (Fig. 1(c)). The
shared link of the two paths may thus exceed its capacity and
cause congestion.

Propagation delay can cause congestion as Example 1
reveals. However, it also grants better performance. We will
discuss this opportunity in Section II-B with Fig. 1(d).

2) Timing Uncertainty: In practice, network operator can-
not precisely specify when each path reconfiguration is exe-
cuted. This can be due to imperfect synchronization among
different switches. Some other reasons include the inevitable
varying reaction time of different switches for an update
instruction [23] as well as varying processing time that cannot
be accurately predicted [24].

Although accurate prediction is practically hard, estimations
still help order the upcoming events. The arrivals and the
clearances of flows on a link can be depicted as intervals,
and the uncertainty is reflected by the length of the interval,
which converges to zero if the event timing is certain. The
overlapping intervals indicate that the link may consist of flows
in different configurations at the same time. In the extreme
case, all the intervals intersect with each other because of
uncertainty, and we call this scenario order-oblivious.

(a) The initial configuration (b) The target configuration

(c) A congestion-free update (d) Uncertainty causes congestion

Fig. 2. Timing uncertainty can cause congestion

Example 2. Fig. 2 shows a part of a network. The operator
shifts the flow along the top path (Fig. 2(a)) to somewhere
else and routes another flow to the bottom path (Fig.
2(b)). If the two source switches perform the update without
uncertainties, the reconfiguration is congestion-free (Fig. 2(c)).
However, uncertainty of the source switch on the top may
postpone the update and congest the rightmost link (Fig. 2(d)).

B. Benefits of Timing Information

Previous work considers only the order-oblivious worst-case
scenario, which assumes the arrivals of the new flows are
independent of the others [15]. However, better performance
is possible as the timing information reveals the arriving order.

To illustrate this, reversed update in Fig. 1 is considered:
moving the flow from the bottom path to the top one. The
clearance of the old flow finishes earlier than the arrival of the
new flow on the rightmost link (Fig. 1(d)), which suggests a
congestion-free one-shot update. Nevertheless, order-oblivious
scenario rejects this possibility if the shared link cannot
accommodate the two flows simultaneously.

In addition to enlarging the set of feasible update sequences,
timing information in general can help accelerate the reconfig-
uration process. We define the required time as the minimum
time needed to ensure the change has been fully deployed
to the network. For example, the required time for a flow
variation along a path is the maximum time needed for the
new flow to propagate through the path; the required time for
the clearance of an update step is the maximum required time
for the flows varied in the step (is zero if all the flows stay the
same); the required time for an update sequence is the sum of
the required time for the clearance of each step.

Adopting required time can expedite an update. Previous
work finds the least step update sequence without timing
information [15]. At each step, a long fixed period of time
should be waited to avoid the interference between consecutive
steps. Replacing the fixed time with the required time yields
a more aggressive update. Moreover, an update can achieve
shorter required time with more steps.

56ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE I
RELEVANT CONFIGURATIONS

Configurations Top Traffic Bottom Traffic
Initial 0 2 0 0 0 0 2 0
Target 0 0 2 0 0 2 0 0

Intermediate 1 1 0 0 1 0 0 0 2
Intermediate 2 1 1 0 0 0 1 1 0
Intermediate 3 1 0 1 0 0 2 0 0

(a) The initial configuration (b) The target configuration

Fig. 3. Minimizing the number of update steps does not necessarily minimize
the update time

Example 3. In Fig. 3, two traffics with the same rate 2 are
swapped in a network without uncertainty. Each traffic has four
candidate acyclic paths to flow through, and the capacities of
the paths are 1, 2, 2, 4 respectively from the top to the bottom.
Each link causes propagation delay 1 unit time except for
the bottom two 5-unit delay links. Table I lists the relevant
configurations. The columns under each traffic are the flows
on the paths. The leftmost column corresponds to the topmost
path, and the rightmost column refers to the bottommost one.

Clearly, one-shot update is infeasible, and thus we need to
stagger the update into multiple steps. Least step update in-
volves two steps by using the bottom spare path (Intermediate
1). The required time for the update is 11 + 11 = 22.

However, we can leverage the top path and shift half top
flow through it first. The bottom flow is also split half to its
target path (Intermediate 2). In the second step, we shift the
flows to the target except for the unit flow along the top path
(Intermediate 3). Clearing the flow on the top path serves as
the last step of the three-step update, which has the required
time 3 + 3 + 3 = 9 faster than the least step solution.

III. FORMULATION

Section II discloses the potential of timing information
to achieve a fast congestion-free reconfiguration. Similar to
[15], we are interested in congestion-free update in upper
bounded number of steps. In contrast to finding the least-
step solution as in [15], we seek the fastest solution. In this
section, we introduce the notations to model the centralized
routing scheme and express our model as an optimization
problem in Section III-B3.

A. Notations
A centralized controller controls a network consisting of

a set V of switches and a set L of directed links. N users
utilize the network, and each user n demands a traffic rate
dn from a source switch to a destination switch (or simply the
source/destination). A set of acyclic paths Pn is predetermined
and established for each user n to communicate between the
source and the destination. The controller performs routing by

TABLE II
DEFINITIONS OF THE MAJOR VARIABLES

For each link l 2 L

cl The capacity on the link l

fl The total flow on the link l

Pl The set of paths passing through the link l

P

⌥
l A P-partition (P�

l , P

+

l)
Pl The collection of all valid P-partitions of Pl

For each user n 2 N

d

n The demanded flow rate into the network for
the user n

P

n The set of acyclic paths for the user n
For each path p 2 P

xp The flow on the path p

zp The binary integer variable for the path p⇥
w

min

p , w

max

p

⇤
The time interval for the updated flow to clear
the path or subpath p

For each level 0 ⇡ ⇡

max (see Section IV)
r⇡ The level variable for the level ⇡

w

max

⇡ The required time for the level ⇡
Other variable

u The required time to finish an update step

specifying the split ratio among the paths in Pn for each user
n at its source. Define P =

S
n2N Pn as all acyclic paths.

For each link l in a path p 2 P , qpl denotes the subpath from
the source to the switch prior to link l. For example, if p =
(v1, l1, v2, l2, v3) connects the source v1 and the destination
v3, qpl

2

= (v1, l1, v2). Define Pl = {p 2 P : l 2 p} as the
paths passing through link l, which is a subset of P .

Define xp as the rate of the flow along a path p. fl
denotes the total flow injecting to link l. Due to the timing
issues discussed in Section II, we assume the delays to pass
through switches and links are interval-ranged. Those delays
are accumulated along the paths and encountered by the
flows. An interval-ranged delay is also assumed for an update
instruction between being issued and becoming effective.

The interval [wmin
p , wmax

p] specifies the time needed for
a packet to go through a path p. The lower bound wmin

p
is derived by adding all the lower bound of the delays for
the source-switch instruction update and the on-path device
transitions. Analogous computation gives the upper bound
wmax

p . Notice that wmax
p is the required time for the path p,

which is introduced in Section II-B. We can define the interval
[wmin

q , wmax
q] for a subpath q in the similar way.

An update sequence generally consists of multiple steps,
which are labeled by step numbers a in chronological order.
The parentheses enclosing a is attached behind a variable to
denote the value of the variable between step a and a + 1.
For example, xp(a) is the flow along path p after the network
applies update step a; u(a) is the required time for the update
to fully switch from step a to a+1 configuration. ta refers to
the time elapsed since the step a is applied to the network.

We may drop the subscript of path p or the step number a
to refer to a vector, such as x and u.

B. Model
1) Objective: Given an upper bound b, our objective is

to find the fastest update sequence in b steps to reconfigure
the network from a given initial state to a given target
state, both static feasible and congestion-free, while remaining

57ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

congestion-free during the whole transient stage. The initial
and the target routing configurations are denoted by xp(0) and
xp(b) for all p 2 P , respectively. Without loss of generality, we
assume there exists p 2 P such that xp(0) 6= xp(b). Finding
an update sequence in b steps involves deciding a series of
flows xp(a) for all p 2 P and a = 1, . . . , b� 1.

For simplicity, we impose the assumption that the user
traffic demands remain the same during the whole update,
although our framework can easily deal with general cases.
Extending the update mechanism in [15], we also assume the
centralized controller waits the required time u(a) between
consecutive steps a and a + 1 to ensure the full deployment
of the new update (a+1) before performing the next (a+2).

2) Constraints: According to the update mechanism as-
sumption in Section III-B1, each flow can only follow either
step a or a+1 configuration at an arbitrary time ta after each
step a. Congestion-free property requires that all the possible
combinations of the flows at each link do not exceed the
capacity. The number of potential combinations is exponential
to the number of flows [22], thus it is critical to identify the
essential ones. Example 4 shows how timing information helps
select the relevant constraints and avoid enumerating all the
unnecessary combinations.

Example 4. Consider a link l shared by two paths p1, p2 2 P .
For simplicity, we use q1 = qp

1

l and q2 = qp
2

l in this example.
Once updated from step a to a+1, the flow along pi arrives

at the link l within the time interval
⇥
wmin

qi , wmax
qi

⇤
for i = 1, 2.

When the time intervals overlap, such as wmin
q
1

 wmin
q
2

wmax

q
1

, either flow can arrive before the other. That results
in the order-oblivious scenario, and all possible combinations
should be covered by the following four constraints:

xp
1

(a) + xp
2

(a) cl, xp
1

(a+ 1) + xp
2

(a) cl,

xp
1

(a) + xp
2

(a+ 1) cl, xp
1

(a+ 1) + xp
2

(a+ 1) cl,

or we can represent them as

max(xp
1

(a), xp
1

(a+ 1)) + max(xp
2

(a), xp
2

(a+ 1)) cl.

When the two intervals are separated, assuming wmax
q
1

< wmin
q
2

without loss of generality, xp
1

(a + 1) always arrives earlier
than xp

2

(a+ 1). Instead of considering all four combinations
of flows, only three combinations are possible and they lead
to the less strict constraint set:

xp
1

(a) + xp
2

(a) cl,

xp
1

(a+ 1) + max(xp
2

(a), xp
2

(a+ 1)) cl.

To write down the congestion-free constraints, we define
a P-partition of Pl as a pair of subsets P⌥

l = (P�
l , P+

l)
such that P�

l \ P+
l = ; and P�

l [P+
l = Pl. With the

P-partition notation, we can express each of the 2|Pl| order-
oblivious constraints at each link l in the following form:

fl(P
⌥
l , a) =

X

p2P�
l

xp(a) +
X

p2P+

l

xp(a+ 1) cl

where fl(P
⌥
l , a) is the corresponding total flow on the

link. In Example 4, Pl = {p1, p2}, and four possible P-
partitions P⌥

l = (P�
l , P+

l) are ({p1, p2}, ;), ({p1}, {p2}),

({p2}, {p1}), and (;, {p1, p2}), corresponding to the four
fl(P

⌥
l , a) cl constraints respectively.

We then characterize the P-partitions P⌥
l which lead to

possible flow combinations fl(P⌥
l , a). A P-partition is valid if

there exists a time interval [ta, ta+✏] for some constant ✏ > 01,
such that all the flows in P+

l have its update propagated to link
l while those in P�

l still remain in the old configuration. We
define the collection Pl as the set of all the valid P-partitions
of Pl. As demonstrated in Example 4, we can decide the
validity of a P-partition by scrutinizing the arrival intervals
of the flows. In particular, there must exist ta � 0 and ✏ > 0
for a valid P-partition such that ta � wmin

qpl for every p 2 P+
l

and ta+ ✏ wmax
qpl , for every p 2 P�

l . Therefore, we have the
following equation:

max
qpl:p2P+

l

wmin
qpl < min

qpl:p2P�
l

wmax
qpl . (1)

Since |P | is finite, both sides of the inequality are attained
finite, which implies the existence of ✏ by setting it as the
gap. It is clear that a P-partition satisfies the condition (1) if
and only if it is valid.

3) Optimization Problem: Now we summarize the objective
in Section III-B1 and the constraints in Section III-B2 into
an optimization problem. Our objective can be expressed as
an optimization problem of minimizing the objective functionPb�1

a=0 u(a), which is the required time for the resulted update
sequence. At each step a, the required time can be written as

u(a) = max
�
wmax

p : xp(a+ 1) 6= xp(a)

.

By convention, we set the expression to zero if none of the
flows is updated. We create the artificial binary integer variable
zp(a) for each path p, which is one if and only if xp(a+1) 6=
xp(a), so that

u(a) = max
p2P

�
wmax

p zp(a)

. (2)

We name the optimization problem Fast Congestion-free
Reconfiguration problem in b steps (FCR(b), or simply FCR
for an arbitrary b), and formulate it in a form of Mixed Integer
Linear Programming (MILP):

min
b�1X

a=0

u(a)

s.t. fl(P
⌥
l , a) cl 8l 2 L,P⌥

l 2 Pl

0 a b� 1 (3)
X

p2Pn

xp(a) = dn 8n 2 N, 1 a b� 1 (4)

xp(a) � 0 8p 2 P, 1 a b� 1 (5)
xp(0), xp(b) are given 8p 2 P (6)
u(a) � wmax

p · zp(a) 8p 2 P, 0 a b� 1 (7)
zp(a) · ↵p � |xp(a+ 1)� xp(a)|

8p 2 P, 0 a b� 1 (8)
zp(a) 2 {0, 1} 8p 2 P, 0 a b� 1 (9)

1By requiring ✏ > 0, we exclude the case that the network congests for 0
time.

58ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

where the constant ↵p for path p is set as the bottleneck link
capacity minl2p cl so that zp(a) behaves as expected.

The constraints (3) - (6) are the feasibility constraints. x
satisfying these constraints gives a feasible congestion-free up-
date sequence. We introduce the constraints (7) - (9) to realize
the relationship (2). The optimal value of FCR(b) is written
as OPTFCR(b) for given step upper bound b. One important
observation is that if FCR is feasible in b steps, it is also
feasible for b+ 1 steps and OPTFCR(b+ 1) OPTFCR(b).
Conversely, if the problem is not feasible in b steps, there
exists no solution for fewer steps.

IV. MAIN RESULTS

In Section III-B, we formulate the reconfiguration problem
as an MILP problem FCR. In this section, we present a proof
sketch of the NP-hardness of FCR, which motivates us to
develop an approximation algorithm for FCR. In particular, we
provide a polynomial time relaxation-rounding based approx-
imation algorithm, which involves only the Linear Program
(LP) solutions. We start the section with Theorem 1.

Theorem 1. FCR is NP-hard.

Theorem 1 can be proved by showing that 3-SAT, a
well-know NP-complete problem, polynomial reduces to
FCR. For each 3-SAT instance, there exist a network and its
corresponding initial and target configurations such that the
optimal FCR solution meets the lower bound if and only if
the 3-SAT instance is satisfiable. We omit the details as they
are not the main focus of this work.

Since FCR is NP-hard, we develop an approximation algo-
rithm for FCR as the following. We first define the term kernel.
A kernel A(b) is an algorithm which gives a feasible solution
to FCR(b) when it is feasible; and FCR is not feasible in b steps
if A(b) finds no solution to it. We write SOLA(b) to denote
the objective value of the feasible solution given by the kernel
A(b), and we set SOLA(b) = 1 if the kernel A(b) declares
FCR(b) infeasible. We then propose the algorithm ALG[A](b)
(Algorithm 1) with respect to a kernel A(·), which essentially
picks the best solution from the feasible solutions generated
by A(1), A(2), · · · , A(b).

Algorithm 1 Algorithm ALG[A](b)

1: SOLALG[A](b) min1b̂b SOLA(b̂).
2: if SOLALG[A](b) =1 then
3: Output “no congestion-free solution in b steps.”
4: else
5: Output the solution corresponding to the minimum

SOLA(·).
6: end if

If the required time u(a) for each step given by the kernel A
is upper bounded by a constant Wmax and the required time
wmax

p for each path is lower bounded by a constant Wmin,
we have the following theorem to ensure that ALG[A](b) is a
Wmax

Wmin

-approximation algorithm.

Theorem 2. Let Wmax and Wmin be positive constants and
u belong to the feasible solution to FCR(b) given by a kernel

A(b). ALG[A](b) is a Wmax

Wmin

-approximation algorithm, if the
following conditions hold:

• 0 u(a) Wmax for all 0 a b� 1.
• wmax

p �Wmin for all p 2 P .

Proof. If FCR(b) is infeasible, the kernel algorithm gives
SOLA(b̂) = 1 for all 1 b̂ b and ALG[A](b) declares
infeasibility of FCR(b). If FCR(b) is feasible, there exists
1 b0 b such that OPTFCR(b

0) = OPTFCR(b) and
u(a) > 0 for all 0 a b0� 1. Since u(a) � wmax

p zp(a) for
all p 2 P , we know 9p0 2 P such that zp0(a) = 1, and hence
u(a) � wmax

p0 � Wmin. Denote this optimal u by uOPT. Let
the solution u corresponding to SOLA(b) be ub, we know

SOLALG[A](b) = min
1b̂b

SOLA(b̂)

 SOLA(b
0) =

b0�1X

a=0

ub0(a)

b0�1X

a=0

Wmax
b0�1X

a=0

WmaxuOPT(a)

Wmin
=

Wmax

Wmin

b0�1X

a=0

uOPT(a)

=
Wmax

Wmin
OPTFCR(b

0) =
Wmax

Wmin
OPTFCR(b).

There are generally more than one kernels satisfying the
first condition in Theorem 2. For instance, we have the
kernel RFCR(b), which solves the linear relaxation of
FCR(b), uprounds all the resulted non-zero zp(a) to 1 and
sets u(a) = maxp:zp(a)=1 w

max
p maxp2P wmax

p . In that
case, Wmax = maxp2P wmax

p and ALG[RFCR](b) is a
maxp2P wmax

p

minp2P wmax

p
-approximation algorithm.

Unlike the kernel-independent approximation ratio, the
complexity of ALG[A](b) depends on the complexity of its
kernel. If the kernel A(b) is a polynomial-time algorithm,
ALG[A](b) also terminates in polynomial time. LP-based
kernel, such as RFCR(b), is indeed polynomial-time when the
constraint set is also in polynomial size of its input variables.
Among the constraints of FCR, we only need to find an
polynomial-size expression of the constraint (3) to have a
polynomial-time LP-based kernel. Equivalently, we need to
consider all valid P-partitions P⌥

l and their corresponding total
flows fl(P

⌥
l , a). We develop a polynomial time constraint

set generation algorithm (Algorithm 2) and give a theorem
(Theorem 3) to prove that the generated constraint set is
equivalent to the one derived from all valid P-partitions.

Theorem 3. A solution x satisfies the constraint (3) if and only
if there exists s such that (x, s) is feasible for the constraints
generated by the Algorithm 2.

Theorem 3 is proved by showing that every valid P-
partition can be expressed as (⌃y [⌃�

c ,⌃
+
c [⌃u) and each

(⌃y [⌃�
c ,⌃

+
c [⌃u) is a valid P-partition, where ⌃y,⌃c

and ⌃u are obtained at some iteration of Algorithm 2 and
⌃�

c ,⌃
+
c is a partition of ⌃c. The proof is straightforward,

and we omit the details here because of the space limitation.

Besides the size of the constraint set, the number of input
variables also plays an important role in the time complexity

59ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Algorithm 2 Constraint Set Generation
1: for each path p 2 P and 0 a b� 1 do
2: Add a slack variable sp(a) and two slack constraints

sp(a) � xp(a), sp(a) � xp(a+ 1).

3: end for
4: for l 2 L and a = 0 to b� 1 do
5: Pl {p 2 P : l 2 p}
6: Set the updated set ⌃u ;.
7: Set the current set ⌃c ;.
8: Set the yet-updated set ⌃y Pl.
9: Collect wmax

qpl and wmin
qpl for all p 2 Pl to be a list.

10: for w in the list from the smallest to the largest do
11: while w = wmin

qpl for some p 2 ⌃y do
12: Remove p from ⌃y and add it to ⌃c.
13: end while
14: while w = wmax

qpl for some p 2 ⌃c do
15: Remove p from ⌃c and add it to ⌃u.
16: end while
17: Generate a constraint

X

p2⌃y

xp(a) +
X

p2⌃c

sp(a) +
X

p2⌃u

xp(a+ 1) cl.

18: end for
19: end for

of a kernel. RFCR(b) introduces b|P | more artificial variables
zp(a). There exist algorithms introducing fewer variables
while still giving a feasible solution to FCR(b). We now
introduce the concept of level in the following paragraphs and
show how it incorporates timing benefits with fewer additional
variables.

The concept of level is motivated by the constraint (7).
Notice that u(a) is determined by the flow variations on
the paths with the longest wmax

p . Hence, we can partition
P into several level sets and assign each path a level ⇡p

according to the level set it belongs to. Each level ⇡ associates
with a required time wmax

⇡ such that u(a) > wmax
⇡�1 while

any flow along a level ⇡ path changes between step a and
a + 1. In other words, each path p in level ⇡p = ⇡ satisfies
wmax

⇡�1 < wmax
p wmax

⇡ . We define the level of the paths with
the longest required time to be ⇡max and level 0 has wmax

0 = 0.
Without loss of generality, we can set wmax

⇡max

= maxp2P wmax
p

and by definition

0 = wmax
0 < wmax

1 < · · · < wmax
⇡max

= max
p2P

wmax
p .

We create the binary level variable r⇡(a) to indicate whether
the level ⇡ is the highest level involving flow change between
step a and a + 1. r⇡(a) = 1 if and only if a flow along
a level ⇡ path changes and all the flows along higher level
paths remain the same between step a and a + 1. We say
a level variable r depicts a FCR solution x if r⇡(a) = 1
implies xp(a) = xp(a + 1) for every path p with ⇡p > ⇡.
By definition, if the level variable r depicts a feasible solution
x, we can construct a feasible solution (x, u, z) by setting

zp(a) =

⇡maxP
i=⇡p

ri(a)

!
and u(a) =

⇡maxP
i=0

wmax
i ri(a) for all

p 2 P and 0 a b� 1. Hence, finding a feasible (x, u, z)
to FCR is equivalent to finding a feasible x and a level variable
r depicting x.

We can find a feasible x and its depicting level variable r
by the transformed FCR problem with ⇡max levels in b steps
(tFCRh⇡maxi(b)):

min
b�1X

a=0

u(a)

s.t. x 2 X (10)

u(a) =
⇡maxX

i=1

wmax
i · ri(a) 80 a b� 1

r0(a) +
⇡maxX

i=1

ri(a) = 1 80 a b� 1

0

@
⇡maxX

i=⇡p

ri(a)

1

A · ↵p � |xp(a+ 1)� xp(a)|

8p 2 P, 0 a b� 1

ri(a) 2 {0, 1} 80 i ⇡max,

0 a b� 1 (11)

where the constraint (10) represents the constraints (3) - (6).
Consider the subproblem tFCRsh⇡maxi(b) which assumes

u(a) > 0 (or r0(a) = 0) for all steps. We form
tFCRsh⇡maxi(b) by removing all r0(a) from tFCRh⇡maxi(b).
Then we propose the kernel RtFCRsh⇡maxi(b), which solves
the linear relaxation of tFCRsh⇡maxi(b) (relax the constraint
(11)), uprounds the non-zero ri(a) with the highest level to
1 (the other level variables are set to 0) and sets u(a) to its
corresponding wmax

i for each a. RtFCRs h⇡maxi (b) solves a
feasible r for every feasible x, and hence gives feasible u and
z to FCR(b). Theorem 2 suggests that ALG[RtFCRsh⇡maxi](b)

is also a maxp2P wmax

p

minp2P wmax

p
-approximation algorithm. Nevertheless,

we add only b⇡max more variables in RtFCRsh⇡maxi(b) instead
of b|P | in RFCR(b). In practice, kernel RtFCRsh⇡maxi(b) can
even perform near-optimal (much better than RFCR(b)) as
shown in Section V-A and V-B.

We know that ALG[RtFCRsh1i](b) gives the least-step solu-
tion. Under order-oblivious scenario, it gives the same update
steps as the SWAN solution [15]. SWAN considers no timing
information, so its solutions wait at least maxp2P wmax

p be-
tween steps, which equals to wmax

1 . Thus ALG[RtFCRsh1i](b)
performs at least the same as SWAN. Since a multilevel
solution can be truncated to a single level solution, we have
SOLALG[R

tFCRsh1i](b) � SOLALG[R
tFCRsh⇡i](b) if ⇡ > 1.

Thus, by considering multilevel ⇡ > 1, ALG[RtFCRsh⇡i](b)
outperforms SWAN.

V. SIMULATIONS

We have implemented Algorithm 1 and 2 with two different
kernels mentioned in Section IV and the two state-of-the-
art methods regarding transient congestion-free reconfiguration
on ns-3.24 [25]. Together with the optimal solution, they are
summarized below:

60ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

• OPTFCR: The optimal FCR solution obtained by solving
the MILP problem.

• ALG[RtFCRsh3i]: Algorithm 1 with the LP-based kernel
solving the linear-relaxed transformed FCR subproblem
involving 3 levels (set ⇡max = 3, delete r0(a) and relax
the constraint (11)).

• ALG[RFCR]: Algorithm 1 with the LP-based kernel solv-
ing the linear-relaxed FCR problem (relax the constraint
(9)).

• SWAN: The order-oblivious solution in [15] with the step
waiting time equal to the maximum path required time.

• zUpdate: The switch-based routing method proposed in
[22] for layered structured networks.

Those algorithms are installed on a controller which com-
municates with other OpenFlow switches via OpenFlow pro-
tocol 0.8.9 [26], which is the latest supported version in
ns-3.24, with Multiprotocol Label Switching (MPLS) exten-
sion. Controller conducts tunnel-based routing via extended
switches supporting Weighted Cost Multipath (WCMP). For
the algorithms, CBC-2.9.0 [27] serves as the LP/MILP solver.
All measurements are obtained from a 2.4GHz quad core
laptop with 8 GB memory on Fedora 20.

We compare the algorithms with the step upper bound b =
10. The initial and target configurations for the experiments in
Section V-B and V-C result from user and traffic generation.
Users are set by a Bernoulli process: each source-destination
pair can be selected as a user with a specified probability.
For each selected user, 2 acyclic paths are predetermined by
Yen’s k-shortest-path Algorithm [28] with k = 2 to send
traffic through. Each user uses UDP to send 1 kb packets at a
constant data rate which distributes uniformly between 0 and
1 Mbps. We vary the data rate to form the initial and target
configurations.

Each link capacity is set as 1/(1� �) times the maximum
traffic the link might carry under both configurations. As such,
a scratch capacity rate � for every link is guaranteed, and
hence a congestion-free update sequence exists as shown in
[15]. The scratch capacity rate results from the fact that the
backbone links are in general underutilized [29]. We alter � in
each case to compare the algorithms under different scenarios.

Table III shows some attributes of the algorithms we will
compare in this section. We first examine Example 3 in Section
V-A to compare the performance of the algorithms. In Section
V-B, we show how our algorithm helps a practical large
scale inter-data center network achieve faster reconfiguration
in reasonable time. Finally, we demonstrate how uncertainty
can cause congestion significantly in a data center network
with layered structure in Section V-C.

A. A Simple Example

We solve Example 3 by four applicable algorithms (zUpdate
is excluded because it requires equal delay between layers),
and the results are shown in Table IV.

ALG[RtFCRsh3i](10) attains the 3-step optimal solution
as given by OPTFCR(10). ALG[RtFCRsh3i](10) not only
introduces less variables but also achieves a better solution
than ALG[RFCR](10). By comparing ALG[RtFCRsh3i](10)

TABLE III
COMPARISON OF THE METHODS

Method ALG[R
tFCRsh·i] SWAN zUpdate

Applicable arbitrary arbitrary layered structureNetwork
Update minimum time minimum step minimum stepObjective

Applicable tunnel-based tunnel-based switch-basedRouting
Uncertainty yes yes noTolerance

TABLE IV
PERFORMANCE COMPARISON

Method Solution Update
Steps Time (unit)

OPT
FCR

(10) 10 9
ALG[R

tFCRsh3i](10) 3 9
ALG[R

FCR

](10) 2 22
SWAN 2 22

(a) The B4 topology

(b) The geographical distribution of the Google Data Centers

Fig. 4. The B4 topology of 12 data centers

with SWAN, we find that the update time can be shortened
with the help of the timing information.

By Theorem 2, the theoretical approximation ratio is 11
3 .

In this case, ALG[RtFCRsh3i](10) achieves the ratio 1 and
ALG[RFCR](10) achieves 22

9 .

B. WAN (Inter-Datacenter Network)
Our method is also applicable for wide area networks

(WANs), such as Google B4 [30]. Google implements B4
to connect their data centers [31]. We create a network
consisting of 12 nodes representing those data centers and
19 interconnected links based on the topology described in
[30] (Fig. 4(a)) with the link latency (ms) proportional to their
actual geographical distance as shown in [31] (Fig. 4(b)). We
assume the data centers perform packet switching within a
millisecond, which contributes to the uncertainty intervals.
100 random traffic patterns are generated for both � = 10%

and � = 5% by adding source-destination pair with 0.05
probability. We solve the patterns by ALG[RtFCRsh3i](10),
SWAN and OPTFCR(10). We know OPTFCR(10) gives the
shortest update time in 10 steps. Thus for each test case, we
normalize the results of ALG[RtFCRsh3i](10) and SWAN by
OPTFCR(10) if they have solutions (Fig. 5). We sort the test
cases by the normalized update time of ALG[RtFCRsh3i](10).

61ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0 20 40 60 80 100

1

2

3

Test Case

N
or

m
al

iz
ed

U
pd

at
e

Ti
m

e

(a) Scratch capacity rate � = 10%

0 20 40 60 80 100

1

2

3

Test Case

N
or

m
al

iz
ed

U
pd

at
e

Ti
m

e

(b) Scratch capacity rate � = 5%

Fig. 5. The resulted update time normalized by the shortest update time.
Dashed line: ALG[R

tFCRsh3i](10); normal line: SWAN; dotted constant 1
line: OPT

FCR

(10)

When � = 10%, ALG[RtFCRsh3i](10) updates strictly
faster than SWAN in 70 out of 100 cases. Also, we can find
that ALG[RtFCRsh3i](10) takes less than 2 times the shortest
update time given by OPTFCR(10) in general (Fig. 5(a)).

Whilst � = 5%, there exists no guarantee that we can find
a congestion-free update plan in 10 steps. We collect 100
solvable cases and 11 unsolvable ones. SWAN fails in all
11 unsolvable cases, while our method ALG[RtFCRsh3i](10)
and the optimal method OPTFCR(10) can still provide
congestion-free reconfiguration update plans for 7 cases be-
cause of the timing information. In 69% of the solvable
cases, ALG[RtFCRsh3i](10) strictly outperforms SWAN (Fig.
5(b)). Again, we can observe that the normalized update time
of ALG[RtFCRsh3i](10) is mostly less than 2, even though
Theorem 2 promises Wmax

Wmin

only2.
To verify the congestion-free property, we adjust the buffer

size of every network card interface to be only two packets in
ns-3 (one in progress and one arriving). For each solution, we
monitor the packet drop event. No packet is dropped during
the reconfiguration, which implies those methods are truly
congestion-free.

This simple example shows how timing information enables
us to expand the feasible solution set and update faster. In
fact, SWAN considers only the order-oblivious case when the
network is totally uncertain for the operator, which is just an
extreme case of our framework.

C. Layered Structure (Intra-Datacenter Network)
For a layered network, zUpdate [22] searches for a switch-

based least step congestion-free update sequence toward a
target set of configurations described by constraints, which
can be the target state. The flows from the same user do not
interfere with each other, resulting from the assumptions of

2The bound is actually tight for ALG[R
tFCRsh3i](10). The algorithm

tends to choose smaller latency/capacity ratio instead of shorter latency, and
hence we can construct an example showing that the bound is tight.

the layered structure and the absence of uncertainty. Hence,
it is another special case of our framework with uncertainty
issue eliminated. In practice, rule change will not take effect
immediately and thus the deviation can cause congestion
during the transient stage.

Fat-tree topology [32] is a layered network structure pro-
posed for data center networks. We implement a simple fat-tree
network with 1 ms delay links, as shown in Fig. 6(a), to verify
the uncertainty effect. Each circle mark represents a switch
and the users are located at the squares. We select source-
destination pairs as users with probability 0.1. The scratch
capacity rate is set to � = 17% and we find congestion-free
update plans in 5 steps.

We consider two timing uncertainty effects: rule-update pro-
cessing delay and packet switching delay. When we update the
rules of an user at a switch, we encounter a processing delay
uniformly distributed over [0, �d] (ms); as a flow arrives at a
switch v 2 V , it gets delayed by a time uniformly distributed
over [0, �v] (ms) before it leaves the output interface. We apply
both ALG[RtFCRsh3i](5) and zUpdate to solve for congestion-
free update plans under �d = 0.5 and �v = 10. Our method is
tunnel-based, while zUpdate reconfigures the network switch-
by-switch. We assume further that once a new rule-update
instruction is set to a switch, the switch discards the previous
in-progress update and starts adopting the new rules.

The time domain simulations are done in MATLAB. We do
not simulate the link congestion phenomenon, such as buffer-
ing or packet dropping, since those decisions are operator-
dependent. Instead, we simply allow flows to exceed the link
capacity and we define the utilization of a link as the total
flow on the link divided by its capacity. When the utilization
is greater than one, it implies congestion occurs in the network
(not necessarily on the corresponding link).

Both ALG[RtFCRsh3i](5) and zUpdate are examined under
three different network conditions: without uncertainty, low
uncertainty and high uncertainty. We simulate the zUpdate
solution without uncertainty, pick the most utilized link during
the reconfiguration and show its utilization along the time
under each scenario. The simulation results are shown in Fig.
6(b), 6(c) and 6(d). The left charts are the update results of
ALG[RtFCRsh3i](5), while the right ones belong to zUpdate.

Both ALG[RtFCRsh3i](5) and zUpdate are congestion-free
without uncertainty (Fig. 6(b)). However, uncertainty may
result in timing deviation and cause congestion for the zUpdate
solution (Fig. 6(c)). The less precise control we can achieve,
the more congested situation we will encounter. In all three
uncertainty scenarios, we can still update without congestion
by applying our algorithm ALG[RtFCRsh3i](5). It ensures
congestion-free property during the whole reconfiguration by
updating in a slower pace than zUpdate.

VI. CONCLUSION

We formulate a time-aware optimization model to find fast
congestion-free routing reconfiguration plans. Our approach
benefit from given timing information with any level of
uncertainty. Several existing models become special cases of
our formulation when we have perfect timing information or
no timing information at all. This framework helps determine

62ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) The fat-tree topology

0 20 40 60
0.7

0.8

0.9

1

Time (ms)

U
til

iz
at

io
n

0 5 10 15 20
0.7

0.8

0.9

1

Time (ms)

U
til

iz
at

io
n

(b) Without uncertainty (�d = 0, �v = 0): Both ALG[R
tFCRsh3i](5)

(left chart) and zUpdate (right chart) are congestion-free

0 20 40 60
0.7

0.8

0.9

1

Time (ms)

U
til

iz
at

io
n

0 5 10 15 20
0.7

0.8

0.9

1

Time (ms)

U
til

iz
at

io
n

(c) Low uncertainty (�d = 0.5, �v = 0.5): ALG[R
tFCRsh3i](5) (left

chart) is congestion-free while zUpdate (left chart) congests

0 20 40 60
0.7

0.8

0.9

1

Time

U
til

iz
at

io
n

0 5 10 15 20
0.7

0.8

0.9

1

Time

U
til

iz
at

io
n

(d) High uncertainty (�d = 10, �v = 0.5): ALG[R
tFCRsh3i](5) (left

chart) remains congestion-free and zUpdate (right chart) endures a long
congestion period

Fig. 6. The network topology and the timing charts of the busiest link
utilization

less conservative update schedule. We further provide an effi-
cient approximation algorithm to solve this new optimization
problem, which is proven to be NP-hard, with performance
guarantee. Extensive packet-level simulations confirm our pre-
dictions.

REFERENCES

[1] J. Sherry et al., “Making middleboxes someone else’s problem: Network
processing as a cloud service,” ACM SIGCOMM CCR, vol. 42, no. 4,
pp. 13–24, 2012.

[2] Z. A. Qazi et al., “SIMPLE-fying middlebox policy enforcement using
SDN,” ACM SIGCOMM CCR, vol. 43, no. 4, pp. 27–38, 2013.

[3] C. Clark et al., “Live migration of virtual machines,” in Proc. USENIX
NSDI, 2005, pp. 273–286.

[4] A. Strunk, “Costs of virtual machine live migration: A survey,” in IEEE
SERVICES, 2012, pp. 323–329.

[5] A. Markopoulou et al., “Characterization of failures in an operational IP
backbone network,” IEEE/ACM Trans. Netw., vol. 16, no. 4, pp. 749–
762, 2008.

[6] R. G. Gallager, “A minimum delay routing algorithm using distributed
computation,” IEEE Trans. Commun., vol. 25, no. 1, pp. 73–85, Jan
1977.

[7] L. Fratta, M. Gerla, and L. Kleinrock, “The flow deviation method:
An approach to store-and-forward communication network design,”
Networks, vol. 3, no. 2, pp. 97–133, 1973.

[8] B. Fortz, J. Rexford, and M. Thorup, “Traffic engineering with traditional
IP routing protocols,” IEEE Commun. Mag., vol. 40, no. 10, pp. 118–
124, 2002.

[9] J. Moy, “RFC 2328: OSPF version 2,” 1998.
[10] M. Meyer and J. Vasseur, “RFC 5712: MPLS traffic engineering soft

preemption,” 2010.
[11] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing

OSPF weights,” in Proc. IEEE INFOCOM, vol. 2, 2000, pp. 519–528.
[12] A. Pathak et al., “Latency inflation with MPLS-based traffic engineer-

ing,” in Proc. ACM IMC, 2011, pp. 463–472.
[13] M. Reitblatt et al., “Abstractions for network update,” in Proc. ACM

SIGCOMM, 2012, pp. 323–334.
[14] N. P. Katta, J. Rexford, and D. Walker, “Incremental consistent updates,”

in Proc. ACM SIGCOMM HotSDN Workshop, 2013, pp. 49–54.
[15] C.-Y. Hong et al., “Achieving high utilization with software-driven

WAN,” ACM SIGCOMM CCR, vol. 43, no. 4, pp. 15–26, 2013.
[16] L. Vanbever et al., “Lossless migrations of link-state IGPs,” IEEE/ACM

Trans. Netw., vol. 20, no. 6, pp. 1842–1855, 2012.
[17] Summary of the Amazon EC2 and Amazon RDS service disruption in

the US East region. [Online]. Available:
http://aws.amazon.com/message/65648/

[18] M. Alizadeh et al., “CONGA: Distributed congestion-aware load bal-
ancing for datacenters,” in Proc. ACM SIGCOMM, 2014, pp. 503–514.

[19] N. L. Van Adrichem et al., “OpenNetMon: Network monitoring in
OpenFlow software-defined networks,” in IEEE/IFIP NOMS, 2014.

[20] M. Azizi, R. Benaini, and M. B. Mamoun, “Delay measurement in
OpenFlow-enabled MPLS-TP network,” Modern Applied Science, vol. 9,
no. 3, pp. 90–101, 2015.

[21] C. Yu et al., “Software-defined latency monitoring in data center
networks,” in Passive and Active Measurement. Springer, 2015, pp.
360–372.

[22] H. H. Liu et al., “zUpdate: Updating data center networks with zero
loss,” ACM SIGCOMM CCR, vol. 43, no. 4, pp. 411–422, 2013.

[23] X. Jin et al., “Dynamic scheduling of network updates,” in Proc. ACM
SIGCOMM, 2014, pp. 539–550.

[24] C. L. Lim et al., “Packet clustering introduced by routers: Modeling,
analysis and experiments,” in Proc. IEEE CISS, 2014.

[25] ns-3. [Online]. Available: https://www.nsnam.org/
[26] OpenFlow switch specification 0.8.9. [Online]. Available:

http://archive.openflow.org/documents/openflow-spec-v0.8.9.pdf
[27] CBC (COIN-OR branch and cut). [Online]. Available:

https://projects.coin-or.org/Cbc
[28] J. Y. Yen, “Finding the k shortest loopless paths in a network,”

Management Science, vol. 17, no. 11, pp. 712–716, 1971.
[29] A. Hassidim et al., “Network utilization: The flow view,” in Proc. IEEE

INFOCOM, 2013, pp. 1429–1437.
[30] S. Jain et al., “B4: Experience with a globally-deployed software defined

wan,” ACM SIGCOMM CCR, vol. 43, no. 4, pp. 3–14, 2013.
[31] Google data center locations. [Online]. Available:

http://www.google.com/about/datacenters/inside/locations/index.html
[32] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data

center network architecture,” ACM SIGCOMM CCR, vol. 38, no. 4, pp.
63–74, 2008.

63ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Scalable, Self-Healing, and
Self-Optimizing Routing Overlays

Olivier Brun, Hassan Hassan and Josselin Vallet
LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

email: {brun, hhassan, jvallet}@laas.fr

Abstract—After Internet routing was shown in a number of

classic measurement papers to result in paths that are sub-

optimal with respect to a number of metrics, routing overlays

were proposed as a method for improving performance, without

the need to re-engineer the underlying network. In this paper,

we present SMART, a self-healing, self-optimizing and highly

scalable routing overlay, which has a number of advantages with

respect to existing solutions. First, SMART can run with off-the-

shelf applications and does not require any kernel modification.

In addition, SMART can be widely deployed over a sizable popu-

lation of routers, because it can quickly learn and efficiently track

the optimal path with a limited monitoring effort. We describe

the design objectives, the architecture and the implementation of

SMART, as well as the online decision methods used for learning

the optimal routes. Experimental results demonstrate significant

improvements over native IP routing, both in terms of latency

and throughput.

I. INTRODUCTION

Current Internet routing protocols may work reasonably
well when only ”best effort” delivery is required, but the
requirements of modern distributed services are typically far
more stringent, demanding greater performance and availabil-
ity of end-to-end routes than these protocols can natively
deliver. These services often require continuous operation
over time, always maintaining the response time below an
acceptable threshold, and even small degradations in their
performance can have a considerable business impact, in terms
of slowed-down service adoption, lost revenue or even damage
to brand reputation.

A number of classic measurement studies (see, e.g., [1],
[2]) have revealed that the performance of flows could be
significantly improved by choosing alternate paths to the
ones proposed by IP (Internet Protocol) routing protocols. In
addition, it was also shown that path outages are routine events
in the Internet, and that the inter-domain routing protocol BGP
(Border Gateway Protocol) reacts and recovers slowly from
link/node failures [3], [4], [5], causing path outages that can
last for several tens of minutes [6], [2], [7].

The ideal solution would be a complete rethink of the
Internet routing infrastructure, doing away with the existing
architecture and redesigning it with the benefit of hind-sight
about its deficiencies. Unfortunately, the so-called ossification

of the Internet prevents even changes that are unanimously
recognized as necessary to take place.

Routing overlays have been proposed as an alternative
solution that can potentially provide the desirable flexibility
and control over the routing infrastructure, without the need to
re-engineer the Internet [8], [9], [10], [11]. A routing overlay
is formed of end hosts, which are deployed in different spots
over the Internet. These nodes monitor the quality of the IP
routes between themselves and use this information to decide
whether to route packets directly over the IP route or by way
of other overlay nodes. A routing overlay therefore enables
controlling the path of data through the network without
modifying the underlying IP mechanism for computing routes,
but just by adding intermediate routing hops into the path
taken by packets. In a routing overlay, the endpoints of the
information exchange are unchanged from what they would
have been in the absence of the overlay, but the route through
the network that the data traverse may be quite different.

There are several advantages to the use of routing over-
lays. Firstly, they can be used to quickly recover from path
outages. Indeed, they can exploit the inherent redundancy
of the Internet to find an alternate path when an IP route
becomes unavailable, even if Internet routing protocols cannot.
In addition, routing overlays can also be used to improve
the quality of service of data flows by overriding the routes
determined by Internet protocols and routing traffic based on
metrics directly related to application performances.

In this paper, we present SMART1, a self-healing, self-
optimizing and highly scalable routing overlay that we de-
veloped. SMART is self-healing because it is able to quickly
detect and recover from path outages. It is self-optimizing
because it can discover the optimal routes within the over-
lay network for service-specific routing metrics. It is highly
scalable because it was designed to learn the optimal routes
in large overlays with a minimum monitoring effort. Last but
not least, SMART was designed to control the path of data of
an application through the overlay without the application even
being aware that its data flows are routed over the overlay, so
that it can work with off-the-shelf applications.

In the following, we describe the design objectives, the

1Self-MAnaging Routing overlayISBN 978-3-901882-83-8 c� 2016 IFIP

64ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

2

architecture and the implementation of SMART. Since one of
our essential design goals was to build a routing overlay that
can be widely deployed over a sizable population of routers,
we elaborate on the methods implemented in SMART for
discovering optimal routes in large overlay networks with a
minimum probing effort. Finally, we also present experimental
results obtained with real-world experiments over the Internet.
These results demonstrate that it is possible to significantly
improve over native IP routing with a modest monitoring
effort. Due to the lack of space, we do not present the methods
used for assessing the quality of overlay links, but interested
readers may refer to [12].

The rest of this paper is organized as follows. In Section
II, we discuss the similarities and differences of our routing
overlay with existing solutions. Section III is devoted to the
description of the architecture and components of our system.
In Section IV, we describe the technical mechanisms used
for forwarding a packet from its source to its destination.
Section V presents the methods used for discovering optimal
routes in the overlay with a minimum monitoring effort,
whereas experimental results are presented in Section VI.
Finally we conclude in Section VII with a brief summary and
a description of future work.

II. SIMILARITIES AND DIFFERENCES WITH RESPECT TO
EXISTING SOLUTIONS

Researchers have successfully used overlay networks to
solve problems in various areas. To name but a few of the
applications, overlays have been used for self-organization
in peer-to-peer networks [13], [14], [15], to implement
application-layer multicast [16], [17], [18], [19], and even to
provide countermeasures to DDoS attacks [20], [21]. Overlay
network technologies are also used by Akamai Inc. for dy-
namic content delivery [22], [23], [24], [25], [26]. Comprising
more than 61,000 servers located over 1,000 networks in 70
countries, the Akamai platform delivers 15-20% of all Web
traffic worldwide.

More recently, several frameworks have been proposed for
overlaying virtualized Layer-2 networks over Layer-3 net-
works, such as Virtual Extensible LAN (VXLAN) [27] and
Distributed Overlay Virtual Ethernet (DOVE) [28]. The main
difference between SMART and these technologies is that
they rely on the routes provided by Internet routing protocols,
without seeking to control how data flows are routed between
end hosts.

In that respect, our system is much more closer to the
solutions developed by the Detour and RON (Resilient Over-
lay Network) projects, which have clearly demonstrated the
benefits of moving some of the control over routing into the
hands of end-systems. The Detour framework [29] is an in-
kernel packet encapsulation and routing architecture designed
to support alternate-hop routing, with an emphasis on high
performance packet classification and routing. In contrast, the

developers of RON have opted for a tighter integration of the
application and the overlay network since RON is a software
library that programs link against [30]. This approach permits
”pure application” overlays with no kernel modifications, and
allows the use of application-defined routing metrics. Although
the objectives of SMART are similar to those of Detour and
RON, SMART has the advantage that it can work with off-the-
shelf applications an on standard operating systems. Another
major difference is that Detour and RON do not scale very
well: as the number of overlay nodes n increases, their costly
O(n2

) probing overhead becomes a limiting factor. In practice,
a reasonable RON overlay can support only about 50 routers
before the probing overhead becomes overwhelming [30].

The latter design objective is shared with a self-aware
routing protocol known as the Cognitive Packet Network
(CPN) [31], [32]. CPN provides QoS-driven routing, and
performs self-improvement in a distributed manner by learning
from the experience of special packets, which gather on-
line QoS measurements and discover new routes. The routing
decisions are made at each node of the network, and they are
based on adaptive learning techniques using random neural
networks. The application of CPN techniques to peer-to-peer
overlay networks has been considered in [33]. More recently,
the use of CPN-inspired learning techniques in SMART was
investigated in [34]. In the present paper, we describe in
much more details the architecture and implementation of
SMART, and investigate the relevance of a different approach
for learning the optimal overlay routes. In addition, whereas
only results related to the round trip delay were reported in
[34], we present here some experimental results on bandwidth
optimization.

III. ARCHITECTURE OF THE ROUTING OVERLAY

The overlay network is formed of software routers scattered
over the Internet. In our experiment, these routers were exe-
cuted in Virtual Machines (VM) running in cloud computing
platforms, but they can be ran on physical hosts as well.

Fig. 1. Architecture of the Autonomic Communication Overlay.

65ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

3

Two types of agents are used. Transmission (TA) and
Reception (RA) agents are local agents that are executed on
each VM running a task of the distributed application. They
represent the entry and exit points of the overlay network,
respectively. Each site also runs a single software router called
a Proxy. The Proxy is in charge of monitoring the quality of
the overlay paths towards certain destinations, selecting the
best paths and forwarding the packets of the application over
them. As shown in Figure 1, this enables to avoid congested
or failed parts of the Internet when a Proxy detects that the
IP route is subject to anomalies.

A. Transmission and reception agents

Let us recall that one of our design objectives is to control
the path of data of an application through the network, without
the application even being aware that its data flows are routed
over the overlay. To this end, we use packet interception and
encapsulation mechanisms operating in a transparent way for
the application. These mechanisms are implemented by two
software agents, which are activated automatically at start-up
of their respective VM:

• Transmission agent: the role of the Transmission Agent
(TA) is to intercept the packets sent by the application
running in the same VM and to forward them to the local
Proxy using IP-in-IP encapsulation.

• Reception agent: the role of the Reception Agent (RA)
is to receive the packets sent by the local Proxy and
to deliver the original packets to the local application
running in the same VM.

B. Proxy

An agent, called a Proxy, is executed in each site and acts
as an intermediary for communications with other sites. The
Proxy is in fact an entity constituted of three different software
agents:

• Monitoring agent: it monitors the quality of the Internet
paths between the local site and the other sites in terms of
latency, bandwidth, and loss rate. The monitoring agent
can be queried by the routing agent in order to discover
the quality of a given path according to a certain metric.

• Routing agent: it is configured to optimize a service-
specific routing metric towards certain destinations. To
this end, it drives the monitoring agent so as to discover
an optimal path (e.g., low-latency, high-throughput, etc.)
with a minimum monitoring effort (cf. Section V). For
each destination, the optimal path towards that destination
discovered by the routing agent is written in the routing
table of the forwarding agent.

• Forwarding agent: it is in charge of forwarding each
incoming packet to its destination on the path it was
instructed to use by the routing agent.

IV. PACKET INTERCEPTION, ENCAPSULATION AND
FORWARDING

The forwarding of a packet from its source to its destination
proceeds as shown in Figure 2.

Fig. 2. Forwarding process.

When a packet is sent by a source task to a destination task
located in a different site, it is first intercepted and forwarded
to the TA. The TA uses IP-in-IP encapsulation to forward an
altered packet to the local Proxy. The payload of the altered
packet, referred to as the SMART packet in the following,
is that of the original packet along with an additional header.
Upon reception of the SMART packet, the forwarding agent of
the Proxy looks-up its routing table in order to determine the
path to the destination. The choice of source routing is dictated
by scalability considerations (see Section V). The sequence
of intermediate Proxies is written in the SMART header, and
then the SMART packet is forwarded to the first one of these
Proxies. Each intermediate Proxy then forwards the packet to
the next hop on the path, until the final Proxy is reached.
When this occurs, the packet is forwarded to the RA of the
destination VM. The RA decapsulates the SMART packet and
forwards the original IP packet to the destination task using a
raw socket. We present below the technical details of each of
these operations.

A. Packet interception

The TA intercepts the packets sent by the application
running in the same VM and forwards them to the local Proxy.
We emphasize that the TA does not intercept all packets, but
only packets towards specific destinations located in a different
site. The list of destination IP addresses for which packet
interception has to be done is controlled dynamically by the
routing agent.

As shown in Figure 3, packet interception is realized using a
filtering mechanism known as NetFilter NFQUEUE. Netfilter
represents a set of hooks inside the Linux kernel [35]. It allows
specific kernel modules to register functions that are called
back for every packet that traverses the respective hook within
the network stack. NFQUEUE is an iptables target, which
delegates the decision on packets to user-space software (the
TA in our case).

66ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

4

Fig. 3. Forwarding process.

B. Packet encapsulation

Upon receipt of the packet sent by the local application, the
TA takes the entire content of the packet received and encapsu-
lates it into its own message format, adding a SMART header
that contains control information. It contains in particular the
IP address of the destination Proxy (which differs from that of
the local Proxy, in the outer IP header) as well as the complete
path to reach it, that is, the list of intermediate Proxies. The TA
leaves the latter field blank, since the path to the destination
Proxy will be determined by the forwarding agent of the source
Proxy. Once the header added, the SMART packet is sent to
the local proxy using UDP.

C. Processing by the forwarding agent

Upon receipt of a SMART packet, the forwarding agent
inspects its header to determine its precise role. There are
three cases:

1) The packet is at the source Proxy: this is the case if
the Proxy is not the final destination and if the field
describing the end-to-end path is blank. In that case, the
forwarding agent looks up for the path to the destination
Proxy in its routing table, writes this path in the header
of the SMART packet, and then forwards it to the next
hop on the path.

2) The packet is at an intermediate Proxy: the forwarding
agent then just forwards the incoming packet to the next
hop on the path, after having updated its destination IP
address.

3) The packet has reached the destination Proxy: the for-
warding agent then forwards the packet to the RA on
the destination VM.

D. Decapsulation and transmission to the destination

The RA decapsulates the Panacea packet and forwards
the original data packet to the destination task using a raw
socket, that is, an internet socket that allows the direct sending

and receiving of IP packets without any protocol-specific
transport layer formatting. The packet is directly delivered to
the recipient application because the destination IP address is
that of the destination VM. We note that there is an additional
difficulty when the public IP address of the destination VM is
different from its private IP address. In that case, the automatic
remapping of public IP addresses into private IP addresses
by the Network Address Translation (NAT) mechanism is
only possible for the SMART packet, and not for the inner
original packet. To overcome this difficulty, the RA uses a
configuration file containing translation table entries to convert
the public IP address of the packet into a private address. In
addition, IP header checksum and any higher-level checksums
that include the IP address are also changed by the RA.

E. Packet forwarding overhead

In order to evaluate the time overhead introduced by
SMART with respect to native IP routing in a controlled
environment, we have used the Common Open Research
Emulator (CORE). CORE is an open-source network emulator
developed by Boeings Research and Technology division and
supported, in part, by the US Naval Research Laboratory [36].
It consists of a GUI for drawing topologies of lightweight
virtual machines, emulating end hosts or networking devices
(e.g. routers, switches, etc.) running Internet protocols. We
have used CORE to emulate linear topologies of different sizes
n = 2, . . . , 5 as shown in Figure 4.

IP route

PROXY 1 PROXY 2 PROXY nSRC DST

SMART route

Fig. 4. Experiment to evaluate SMART forwarding overhead.

For each size, we have measured the end-to-end RTT with
and without SMART. When SMART is activated, it routes
all packets through all available proxies before reaching the
destination. We observed an additional end-to-end latency of
about 3ms with respect to native IP routing, regardless of the
size n of the topology (indicating that most of the overhead
is due to the processing done by the TA and RA).

Note also that there is a 28-Byte per-packet overhead for
adding the SMART header (20 Bytes) and sending the altered
packet with UDP (8 Bytes).

V. DISCOVERING THE OPTIMAL ROUTES

In this section, we assume for simplicity that there is a
single origin/destination (OD) pair and describe the algorithm
implemented by the source Proxy for learning an optimal route
to the destination Proxy. This algorithm is implemented by
the Routing Agent of the source Proxy. We assume that at

67ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

5

discrete time steps (say, every minute) the routing algorithm
measures the quality of some links and uses this information to
decide how to route packets between the source and destination
nodes. We define the monitoring effort of the routing algorithm
as the number of probed links per time slot. As mentioned
in Section II, existing routing overlays use all-pairs probing,
which has the advantage that it is guaranteed that an optimal
path is discovered; but the downside is that this approach does
not scale very well due to its costly O(n2

) monitoring effort
in an overlay of n nodes. Since we wish to build a routing
overlay that can be widely deployed over a sizable population
of routers, instead of requiring an optimal path to be found at
each time step, we look for an online decision algorithm that
uses a limited monitoring effort but achieves asymptotically
the same average (per round) end-to-end performance as the
best path. The idea is to design an algorithm that exploits past
observations so as to quickly learn and efficiently track the
optimal path.

We formulate this problem as a multi-armed bandit problem
[37] in which decisions correspond to paths between the source
and the destination, and consider it in the adversarial setting
where path costs can change arbitrarily from one time step to
the other. In this setting, no probabilistic assumption is made
regarding the costs of overlay paths, and in particular there
is no independence assumption made on these costs. To solve
this adversarial bandit problem, we use an algorithm directly
inspired from the well-known EXP3 algorithm [38]. At each
successive time slot, it chooses a subset of paths to probe,
and measures the quality of these paths (e.g., by summing
the edge delays if the metric to be optimized is the latency).
The algorithm then sends its packet over the minimum-cost
path among those it has probed. In other words, probing
does not cover all possible paths but only a few paths which
have been observed in previous probing steps to provide the
best performance. However, we have to widen our probing
at random over other paths, so that we do not miss out on
paths whose quality has substantially improved over recent
history. We first give some background information below on
the adversarial multi-armed bandit problem, and then present
the routing algorithm implemented in SMART.

A. Adversarial Multi-armed Bandit Problem

We represent the overlay network by a complete graph G
of n nodes, and we let s and d be the source and destination
nodes, respectively. A decision algorithm A for the multi-
armed bandit problem is given as input N paths in G from
s to d, indexed from 1 to N . For example, these paths may
correspond to the paths of at most two hops between s and
d (that is, the direct link and all paths with exactly one
intermediate node), in which case N = n � 1. The cost of
a path i (e.g., its latency, or the inverse of its throughput)
may vary arbitrarily over time, but it is assumed to be upper
bounded by some constant � > 0. At round t = 1, 2, . . .,
a cost `i(t) 2 [0,�] is assigned to each path i, but it is

not revealed to the algorithm. Then, the algorithm chooses a
path i(t) 2 {1, 2, . . . , N}, sends a message over this path and
observes its cost `i(t)(t). The cumulative cost of the algorithm
over T rounds is defined as

LT (A) =

TX

t=1

`i(t)(t), (1)

whereas the cumulative cost of path i over the T rounds is
LT (i) =

PT
t=1 `i(t). The normalized regret of the algorithm

A with respect to the best path is then

RT (A) =

1

T

✓
LT (A)� min

i=1,...,N
LT (i)

◆
. (2)

The goal is then to design an algorithm A that perform
asymptotically as well as the best path, i.e., such that RT (A)

converges to 0 as T grows to infinity, uniformly over all
outcomes sequences.

In [38], Auer et al. gave a randomized algorithm to solve
the adversarial multi-armed bandit problem. This algorithm is
known as EXP3 and it is based on exponential weighting with
a biased estimate of the gains (defined, in our case, as gi(t) =
� � `i(t) for path i), combined with uniform exploration.
The regret of this algorithm can be upper-bounded, for any
0 < � < 1, and a fixed time horizon T , with probability at
least 1� �, by

RT (EXP3) 11�

2

r
N log(N/�)

T
+

K log(N)

2T
. (3)

Note that the regret of this algorithm decreases in time
according to 1/

p
T . We have implemented in the routing agent

a slightly modified version of the EXP3 algorithm, which
is inspired from the ”power of two choices” technique in
randomized load-balancing [39]. In this version, precisely de-
scribed in Algorithm 1, the routing algorithm chooses a subset
I(t) = {i1(t), . . . , iK(t)} of paths to probe at each round. The
path i1(t) is the IP route from s to d, and the other paths are
chosen randomly according to a probability distribution p(t)
that depends on the weights w1(t), . . . , wN (t) of the paths.
This distribution is a mixture of the uniform distribution and
a distribution which assigns to each path a probability mass
exponential in the estimated cumulative gain for that path.
Once the paths probed by the Monitoring Agent, the algorithm
selects the path i⇤(t) with the best performance among those
in I(t), and informs the Forwarding Agent that it has to use
this path if i⇤(t) 6= i⇤(t � 1). Finally, the algorithm updates
the weights of the paths.

It is easy to show that when K > 1 this algorithms performs
at least as well as EXP3, so that its regret decreases at least as
fast as 1/

p
t. In practice, with K = 3, we often obtain negative

values of the regret, indicating that the algorithm performs

68ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

6

Algorithm 1 Learning optimal paths with the EXP3 algorithm.
1: Parameters: integer K � 1; real � 2 (0, 1].
2: Initialization: wi(1) = 1, i = 1, . . . , N .
3: for t = 1, 2, . . . do

4: Compute the probability of each path:

pi(t) = (1� �)
wi(t)PN
j=1 wj(t)

+

�

N

5: Set i1(t) to the IP route and choose randomly paths
i2(t), . . . , iK(t) according to p(t).

6: Probe the paths i 2 I(t) = {i1(t), i2(t), . . . , iK(t)}.
7: Compute the gains gi(t) = �� `i(t) for i 2 I(t).
8: Select the best path i⇤(t) = argmaxi2I(t) gi(t).
9: Update the weights:

wi(t+ 1) =

(
wi(t) exp

⇣
� gi(t)

Npi(t)

⌘
i 2 I(t),

wi(t) otherwise.

10: end for

even better than the best fixed path. If we restrict ourselves to
the N = n�1 paths of at most two hops, then the monitoring
effort of the algorithm is 2K � 1, independently of the size
of the overlay network. More generally, with m OD pairs the
monitoring effort is m(2K � 1), which is less than in the
all-pairs probing approach as long as m < n(n�1)

2K�1 .

VI. EXPERIMENTAL RESULTS

A. Latency minimization

We now describe the results that were obtained with the
proposed algorithm during an Internet-scale experiment done
in spring 2014, where we used 19 nodes of the NLNog
ring2 shown in Figure 5. Note that these overlay nodes are
interconnected by literally hundreds of Internet nodes which
are unknown to us or the overlay, and which support the
overlay itself.

We first measured the latency between all pairs of nodes
every two minutes, communicating through the Internet, for a
period of one week using the ICMP-based ping utility. Fur-
thermore, when five consecutive packets were lost between a
specific pair of nodes, we considered that the particular source
was disconnected from that destination. We thus collected
some 1.7⇥ 10

6 measurement data over the week, from which
we can compute the weighted adjacency matrix of the overlay
graph at each measurement epoch, and hence compare the
round trip delay of the IP route with that of the optimal overlay
route.

The analysis of collected data confirmed the deficiencies
of Internet routing observed in previous studies. There was
an outage of the IP route at least once in the week for 65%

2The NLNog ring is a network of 293 nodes scattered over 46 countries
(see https://ring.nlnog.net).

Fig. 5. Geographical location of the 20 nodes selected in the NLNog ring.

of OD pairs, and 21% of these outages lasted more than 4

minutes (and more than 14 minutes for 11% of them). This
analysis also revealed that, as shown in Figure 6, in 50% of
the cases it is possible to improve over the latency of the IP
route by adding one or more intermediate overlay nodes to the
path. Surprisingly enough, in 30% of the cases, the minimum
latency path is a path with only one intermediate overlay node,
that is, a two-hop path. This shows that a limited deviation
from IP actually produces much better QoS than IP itself.
Interestingly, even though in 20% of the cases the optimal
path is a 3 or 4 overlay-hop path, there is on the average
no significant gain (only 5.4%) in considering overlay paths
of more than two hops. This suggests that we can restrict
ourselves to paths with at most one intermediate overlay node
(this is true only on average, since, for instance, the RTT
between Narita/Paris can be more than halved if we use two
intermediate nodes instead of at most one).

!"

!#

!$"

!$#

!%"

!%#

!&"

!&#

!'"

!'#

!#"

!##

$ % & ' #

!"
#$
#"
%&#
'(
#)
(#
$%
&*
+,
("#
-%
./
(01

2

()*+,-!./!0.12

Fig. 6. Percentage of instances when the optimal path includes 1, 2, 3 or 4
hops.

As we will now show, SMART allows a significant de-
crease in round-trip delay, with a very modest monitoring and
computational effort. We consider a fixed OD pair, the other
overlay nodes serving just as relays. We restrict ourselves to
the N = 18 overlay paths of at most two hops and assume
that the routing algorithm probes K = 3 paths (including the
direct IP route) at each time slot, that is, every two minutes.

69ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

7

TABLE I
PERFORMANCE OF NATIVE IP AND SMART ROUTINGS ON THE WHOLE
SET OF NLNOG TRACES COMPARED TO OPTIMAL TWO-HOP ROUTING.

IP route SMART
Non optimal instants (%) 44.5 3.8

Gap to optimal latency(%) 14.4 0.39

TABLE II
AVERAGE RTT (MS) FOR SOME PATHOLOGICAL OD PAIRS.

IP route SMART OPT 2-hops
Melbourne/Gibraltar 390 274.7 273.5

Narita/Santiago 406.7 254.5 253.0
Moscow/Dublin 179.9 81.9 80.8

Honk Kong/Calgary 267.1 131.8 130.0
Singapore/Paris 322.3 154.9 153.2

Tokyo/Haifa 322.6 180.8 180.1

The algorithm therefore measures 5 links per measurement and
decision round (to be compared to the 342 links monitored in
the all-pairs probing approach). Our results are summarized
in Table I, which shows the average relative gap to the
minimum latency that can be achieved with two-hop routing
(the averaging is over time and over the 342 OD pairs). Note
that this minimum latency corresponds to what would be
obtained with a routing overlay using the all-pairs probing
approach. These results demonstrate that SMART uses the
optimal two-hop route in 96% of the cases, and that it provides
near-optimal latencies, with a clear improvement over native
IP routing (13.8% on average). However, these average values
do not truly measure the gains obtained in the pathological
routing situations we seek to improve. In Table II, we present
the results for some OD pairs, for which our system allows a
huge decrease in round-trip delay.

On the other hand, Figure 7 shows the RTT between Narita
(Japan) and Santiago (Chile) over 5 successive days. The RTT
of the direct IP route is about 400 ms, whereas the RTT of
the minimum latency path is about 250 ms. As can be seen,
SMART learns quickly which is the minimum latency path and
tracks this path until the end of the 5 days. Figure 8 shows the
same results over the first 3 hours. We notice that it takes only
25 measurement epochs (50 minutes) for SMART to learn the
optimal route.

B. Throughput maximization

We now describe the results obtained in an experiment
involving 9 AWS (Amazon Web Services) data centres located
as shown in Figure 9. In summer 2015, we measured the
available throughput between all pairs of data centres every
five minutes, communicating through the Internet, for a period
of four days. We thus collected some 8.3⇥ 10

4 measurement
data over the 4 days period. Assuming that the available
throughput over a path is the minimum of the throughputs
of its constituent links, the analysis of these data revealed that
the IP route is the maximum throughput route only in 23% of
the cases, and that most of the time, the maximum throughput

!"#$

!%$$

!%#$

!&$$

!&#$

!$!' !" !% !& !#

!
""
#$%

&'

()*+!,-./01

2345-!67)8!6)*+0!9.7)(.:;.5().<3

=8()*.>!734(+
? !734(+

=!+7>./!734(+

Fig. 7. RTT (ms) measured for the Narita(Japan)-Santiago(Chile) connection
in an experiment lasting 5 consecutive days.

!"#$

!%$$

!%#$

!&$$

!&#$

!$!"$!&$!'$!($!)$$!)"$!)&$!)'$!)($

!
""
#$%

&'

+,-!.,+/0-12

340/5!67+8!6+,-1!9:7+*:;<:/*+:=4!.>44,2

?8*+,: !740*-
!"!740*-

?#-7 :$!740*-

Fig. 8. RTT ms for the Narita(Japan)-Santiago(Chile) connection over the
first 3 hours of the experiment reported in Figure 7.

overlay route passes through 1 or 2 intermediate nodes (see
Figure 10).

Fig. 9. Geographical location of the 9 AWS data centres.

As in Section VI-A, we consider only the N = 8 overlay
paths of at most two hops and take K = 3. The monitoring
effort is therefore limited to 5 links, whereas the all-pair
probing measures the throughput of 72 links at each mea-
surement epoch. Our results are summarized in Table III. As

70ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

8

!"

!#

!$"

!$#

!%"

!%#

!&"

!&#

$ % & ' #

!"
#$
#"
%&#
'(
#)
(#
$%
&*
+,
("#
-%
./
(01

2

()*+,-!./!0.12

Fig. 10. Percentage of instances when the optimal path includes 1, 2, 3, 4
or 5 hops.

TABLE III
PERFORMANCE OF NATIVE IP AND SMART ROUTINGS ON THE WHOLE

SET OF AWS TRACES COMPARED TO OPTIMAL TWO-HOP ROUTING.

IP route SMART
Non optimal instants (%) 73.9 30.1

Gap to optimal latency(%) 31.3 6.6

for the RTT, we observe a clear improvement over native IP
routing, and the performance degradation with respect to a
routing overlay using the all-pairs probing approach is quite
limited (only 6.6%). Here again, we present in Table IV the
results obtained for some pathological OD pairs, for which the
available throughput is at least doubled.

On the other hand, Figure 11 shows the available throughput
between Sydney (Australia) and Virginia (USA) over the 4

successive days. The average throughput of the direct IP route
is 8.5 Mbps, whereas the average throughput of the optimal
path is 55.3 Mbps. Figure 12 shows the same results over
the first 3 hours. We notice that SMART discover an optimal
routes almost immediately, but that it is less effective at
tracking it than it was the case for the RTT.

VII. CONCLUSION

Internet routing works reasonably well most of the times.
Yet, our experimental results show that a routing overlay
that make measurement-based online routing decisions can
yield spectacular improvements over native IP routing in some

TABLE IV
AVERAGE THROUGHPUTS (MBPS) FOR SOME PATHOLOGICAL OD PAIRS.

IP route SMART OPT 2-hops
Dublin/Sydney 11.5 35.5 40.5

Singapore/Sao Paulo 12.8 39.5 43.6
Sydney/Virginia 8.5 50.7 55.3

Virginia/Singapore 7.4 31.2 36.1
Virginia/Sydney 6.9 32.2 36.7
Virginia/Tokyo 10.3 37.5 43.4

!"

!#"

!$"

!%"

!&"

!'""

!" !"() !' !'() !# !#() !* !*() !$

!"
#$
%&
"'
%(
)*+

,'
-.

+,-.!/01234

56789:6;9+!<78-!=20>.2!+8!?,7:,>,1

 ;+,-1!!789+.
"#!789+.

 $.7!12!789+.

Fig. 11. Throughput (Mbps) measured from Sydney (Australia) to Virginia
(USA) over 4 consecutive days.

!"

!#"

!$"

!%"

!&"

!'"

!("

!)"

!*"

!+"

!" !$" !&" !(" !*" !#"" !#$" !#&" !#(" !#*"

!"
#$
%&
"'
%(
)*+

,'
-.

,-./!0.-12,/34

5678296:2,!;78.!<=>1/=!,8!?-79-1- !0!88.4

":,-. #!782,/
$%!782,/

"&/7# =!782,/

Fig. 12. Throughput (Mbps) measured from Sydney (Australia) to Virginia
(USA) over the first 3 hours of the experiment reported in Figure 11.

cases. The issue is that it is not possible to measure the
quality of all overlay links in large overlays, implying that a
tradeoff between the quality of the routes discovered and the
monitoring effort to discover them is required. To the extend of
our knowledge, SMART is the first routing overlay to address
this issue.

The results we have obtained have essentially considered
paths of at most two overlay hops. Although considerable
improvements over native IP routing have been demonstrated,
this may not be sufficient for some source to destination
pairs. In order to increase the number of potential overlay
paths without impairing the convergence time of the learning
algorithm, we plan to investigate a different approach based
on the so-called Online Shortest Path Problem [40]. This
approach makes use of the following crucial observation: when
the latencies of the edges of some paths are measured, then this
also provides some information about the latency of each path
sharing common edges with probed paths. As future work,

71ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

9

we intend to study experimentally the performance of this
approach, as well as to investigate its generalization to non-
additive metrics for the Online Widest Path Problem.

ACKNOWLEDGEMENT

The research leading to these results has received fund-
ing from the European Community’s Seventh Framework
Programme [FP7/2007-2013] under the PANACEA Project
(www.panacea-cloud.eu), grant agreement no 610764.

We wish to thank the administrators of the NLNog ring for
providing us access to this platform.

REFERENCES

[1] S. Savage, A. Collins, E. Hoffman, J. Snell, and T. Anderson, “The
end-to-end effects of internet path selection,” SIGCOMM Comput.
Commun. Rev., vol. 29, no. 4, pp. 289–299, Aug. 1999. [Online].
Available: http://doi.acm.org/10.1145/316194.316233

[2] V. Paxson, “End-to-end routing behavior in the internet,” in in Proc.
ACM SIGCOMM’96, Stanford, CA, USA, August 1996, pp. 25–38.

[3] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed
internet routing convergence,” SIGCOMM Comput. Commun. Rev.,
vol. 30, no. 4, pp. 175–187, Aug. 2000. [Online]. Available:
http://doi.acm.org/10.1145/347057.347428

[4] M. Dahlin, B. Chandra, L. Gao, and A. Nayate, “End-to-end wan service
availability,” in In Proc. 3rd USITS, 2001, pp. 97–108.

[5] J. Han and F. Jahanian, “Impact of path diversity on multi-homed and
overlay networks,” in In Proceedings of IEEE International Conference
on Dependable Systems and Networks, 2004.

[6] C. Labovitz, R. Malan, and F. Jahanian, “Internet routing instability,”
IEEE/ACM Transactions on Networking, vol. 6, no. 5, pp. 515–526,
1998.

[7] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs,
“Locating internet routing instabilities,” in Proceedings of the ACM
SIGCOMM 2004 Conference (SIGCOMM), Portland, Oregon, USA,
August 2004.

[8] L. Peterson, S. Shenker, and J. Turner, “Overcoming the internet impasse
through virtualization,” in in Proceedings of the 3rd ACM Workshop on
Hot Topics in Networks (HotNets-III), November 2004.

[9] J. Touch, Y. Wang, L. Eggert, and G. Finn, “A virtual internet architec-
ture,” ISI, Tech. Rep. ISI-TR-2003-570, March 2003.

[10] N. Feamster, H. Balakrishnan, J. Rexford, A. Shaikh, and J. van der
Merwe, “The case for separating routing from routers,” in Proceedings
of the ACM SIGCOMM workshop on Future directions in network
architecture, A. Press, Ed., 2004.

[11] M. Beck, T. Moore, and J. Plank, “An end-to-end approach to globally
scalable programmable networking,” in in Proceedings of the ACM
SIGCOMM workshop on Future directions in network architecture,
A. Press, Ed., 2003.

[12] U. Ayesta, O. Brun, H. Hassan, and B. Prabhu, “D2.3 - autonomic
communication overlay,” Deliverable of the FP7 PANACEA project
(www.panacea-cloud.eu), Tech. Rep., 2015.

[13] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM’01, San Diego, California, USA., August 27-31 2001.

[14] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in In the Pro-
ceedings of the 18th IFIP/ACM International Conference on Distributed
Systems Platforms (Middleware 2001), 2001.

[15] B. Y. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, and J. Kubiatow-
icz, “Tapestry: A resilient global-scale overlay for service deployment,”
IEEE Journal on Selected Areas in Communications, 2003.

[16] Y. Chu, S. Rao, and H. Zhang, “A case for end system multicast,” in
ACM SIGMETRICS 2000, ACM, Ed., Santa Clara, CA, June 2000, pp.
1–12.

[17] S. Banerjee, B. Bhattacharjee, C. Kommareddy, and G. Varghese,
“Scalable application layer multicast,” in Proc. of the ACM SIGCOMM,
New York, USA, 2002.

[18] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel, “Almi: An applica-
tion level multicast infrastructure,” in Proc of the 3rd USNIX Symposium
on Internet Technologies and Systems (USITS), San Francisco, CA, USA,
March 2001.

[19] J. Liebeherr and T. K. Beam, “Hypercast: A protocol for maintaining
multicast group members in a logical hypercube topology,” in Proceed-
ings of the First International COST264 Workshop on Networked Group
Communication. Springer-Verlag, 1999, pp. 72–89.

[20] R. Stone, “Centertrack: An ip overlay network for tracking dos floods,”
in in Proc. USENIX Security Symposium ’00, August 2000.

[21] J. Wang, L. Lu, and A. Chien, “Tolerating denial-of-service attacks using
overlay networks - impact of overlay network topology,” in in Proc. First
ACM Workshop on Survivable and Self-Regenerative Systems, 2003.

[22] K. Andreev, B. M. Maggs, A. Meyerson, and R. Sitaraman, “De-
signing overlay multicast networks for streaming,” in Proceedings of
the Fifteenth Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA), San Diego, CA, USA, June 2003.

[23] H. Rahul, M. Kasbekar, R. Sitaraman, and A. Berger, “Towards realizing
the performance and availability benefits of a global overlay network,” in
Passive and Active Measurement Conference, Adelaide, Australia, March
2006.

[24] T. Leighton, “Improving performance on the internet,” Communications
of the ACM, vol. 52, no. 2, February 2009.

[25] E. Nygren, R. K. Sitaraman, and J. Sun., “The akamai network: A
platform for high-performance internet applications,” ACM SIGOPS
Operating Systems Review, vol. 44, no. 3, July 2010.

[26] R. K. Sitaraman, M. Kasbekar, W. Lichtenstein, and M. Jain, Overlay
Networks: An Akamai Perspective, ser. In Advanced Content Delivery,
Streaming, and Cloud Services, E. Pathan, Sitaraman, and Robinson,
Eds. John Wiley & Sons, 2014.

[27] J. Moy, “RFC 7348: Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks
over Layer 3 Networks,” Tech. Rep., 2014. [Online]. Available:
https://tools.ietf.org/html/rfc7348

[28] R. Moats, “Open dove,” https://wiki.opendaylight.org/view/Open
DOVE:Main, 2013.

[29] A. Collins, “The detour framework for packet rerouting,” Tech. Rep.,
1998.

[30] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris,
“Resilient overlay networks,” in Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles, ser. SOSP ’01. New
York, NY, USA: ACM, 2001, pp. 131–145. [Online]. Available:
http://doi.acm.org/10.1145/502034.502048

[31] E. Gelenbe, R. Lent, A. Montuori, and Z. Xu, “Towards networks
with cognitive packets,” in Proc. 8th Int. Symp. Modeling, Analysis
and Simulation of Computer and Telecommunication Systems (IEEE
MASCOTS), San Francisco, CA, USA, August 29-September 1 2000,
pp. pp 3–12.

[32] E. Gelenbe and Z. Kazhmaganbetova, “Cognitive packet network for
bilateral asymmetric connections,” IEEE Trans. Industrial Informatics,
vol. 10, no. 3, pp. 1717–1725, 2014.

[33] M. Gellman, “Qos routing for real-time traffic,” Ph.D. dissertation,
Imperial College London, 2007.

[34] O. Brun, L. Wang, and E. Gelenbe, “Big data for autonomic interconti-
nental overlays,” to appear in IEEE Jour. Selected Areas in Communi-
cations (special Issue on Emerging Technologies in Communications -
Big data), 2016.

[35] “Netfilter/iptables,” http://www.netfilter.org/, 2014.
[36] J. Ahrenholz, C. Danilov, T. Henderson, and J. Kim, “Core: A real-time

network emulator,” in In IEEE Military Communications Conference
(MILCOM 2008), November 2008, pp. 1–7.

[37] N. Cesa-Bianchi and G. Lugosi, Prediction, Learning and Games.
Cambridge University Press, 2006.

[38] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire, “The non-
stochastic multi-armed bandit problem,” SIAM Journal on Computing,
vol. 32, no. 1, pp. 48–77, 2002.

[39] M. D. Mitzenmacher, “The power of two choices in randomized load
balancing,” Ph.D. dissertation, University of California at Berkeley,
1991.

[40] A. Gyorgy, T. Linder, G. Lugosi, and G. Ottucsak, “The on-line shortest
path problem under partial monitoring,” Journal of Machine Learning
Research, vol. 8, pp. 2369–2403, 2007.

72ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

A Hierarchical Control Plane for Software-Defined
Networks-based Industrial Control Systems

Béla Genge and Piroska Haller
Department of Informatics

“Petru Maior” University of Tı̂rgu Mureş
N. Iorga, No. 1, Tı̂rgu Mureş, Mureş, Romania, 540088

Email: bela.genge@ing.upm.ro, phaller@upm.ro

Abstract—Modern Industrial Control Systems (ICS) integrate
advanced solutions from the field of traditional IP networks,
i.e., Software-Defined Networks (SDN), in order to increase the
security and resilience of communication infrastructures. Despite
their clear advantages, such solutions also expose ICS to common
cyber threats that may have a dramatic impact on the functioning
of critical infrastructures, e.g., the power grid. As a response
to these issues, this work develops a novel hierarchical SDN
control plane for ICS. The approach builds on the features
of a novel SDN controller named OptimalFlow that redesigns
the network according to the solutions delivered by an integer
linear programming (ILP) optimization problem. The developed
ILP problem encapsulates a shortest path routing objective
and harmonizes ICS flow requirements including quality of
service, security of communications, and reliability. OptimalFlow
exposes two communication interfaces to enable a hierarchical
control plane. Its northbound interface reduces a complete
switch infrastructure to an emulated (software) switch, while
its southbound interface connects to an OpenFlow controller to
enable the monitoring and control of real/emulated switches.
Extensive experimental and numerical results demonstrate the
effectiveness of the developed scheme.

Index Terms—Industrial Control Systems, Software-Defined
Networks, Resilience, Security, Reliability.

I. INTRODUCTION

THE massive proliferation of traditional Information and
Communication Technologies (ICT) into the architecture

of Industrial Control Systems (ICS) will constitute a turning
point in the operation and functioning of modern ICS. This
will provide the building blocks for novel infrastructural
paradigms, and will facilitate innovative applications such
as robust voltage control, renewable energy programs, and
electric vehicles. Despite these clear advantages, however, the
pervasive integration of commodity off the shelf ICT hardware
and software will also expose ICS to new threats [1], [2], [3].
These may have a significant impact on the functioning of
critical infrastructures, e.g., the power grid, and may lead to the
failure of services, to economic and, possibly, to human losses.
As a response, several recently developed techniques address
the security of ICS. Furthermore, the NIST Guide to Industrial
Control Systems Security [4] recommends integrating different
solutions into a defense-in-depth security strategy. On the
other hand, ICS require communication resilience solutions

that ensure their normal functioning even in the presence of
disturbances such as failure and disruptive cyber attacks.

To alleviate the aforementioned issues we develop a novel
hierarchical SDN control plane for ICS. The proposed scheme
provides a scalable solution for ICS distributed across large
geographical areas. The approach builds on the features of a
novel SDN controller named OptimalFlow, which monitors a
single SDN domain, and redesigns the network according to
the solutions delivered by an integer linear programming (ILP)
optimization problem. The developed ILP problem encapsu-
lates a shortest path routing objective and harmonizes ICS flow
requirements including quality of service, security, and relia-
bility. OptimalFlow exposes two communication interfaces to
enable a hierarchical control plane. Its northbound interface
reduces a complete switch infrastructure to an emulated (soft-
ware) SDN switch, which exposes the domain’s edge ports to
the upper tiers and can be monitored and controlled through
the OpenFlow protocol. We believe that this is a salient feature
of the developed scheme, since it facilitates OptimalFlow’s
adoption in any installation supporting the OpenFlow protocol.
OptimalFlow’s southbound interface connects to an OpenFlow
controller, to monitor and control a network of emulated or real
SDN switches. In order to minimize the impact of network
updates on ICS flows we further propose two algorithms.
Algorithm 1 dynamically reduces the set of variables in the
optimization problem such that only the flows that are affected
by a disturbance are optimally redistributed. Algorithm 2
constructs a dependency graph for network updates in order
to avoid link congestion. OptimalFlow is implemented in the
Python language and its effectiveness is verified through
experiments conducted with Mininet [5] and with the AIMMS
optimization software [6].

The rest of this paper is organized as follows. Related Work
is briefly discussed in Section II, while the proposed scheme
is presented in Section III. Experimental results are detailed
in Section IV and the paper concludes in Section V.

II. RELATED WORK

Several recent studies demonstrated the benefits of SDN-
enabled communication infrastructures and identified key chal-
lenges in adopting this emerging technology. Yonghong Fu
et al. [7] developed Orion, a hybrid hierarchical control
plane for large-scale networks. Orion defines three planes: theISBN 978-3-901882-83-8 c⃝ 2016 IFIP

73ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

domain physical network, the tier 0 control plane consisting
of area controllers, and the tier 1 control plane consisting of
a distributed set of domain controllers. While Orion addresses
the routing problem in large-scale multi-domain SDN infras-
tructures, OptimalFlow focuses on the requirements of ICS
communications including security, reliability and resilience
to disturbances. Therefore, similarly to Orion, OptimalFlow
proposes a hierarchical control plane architecture, but expands
the routing criteria from traditional ICT with those specific to
ICS. Tuncer et al. [8] developed an SDN-based management
and control framework for backbone networks. The approach
followed a hierarchical and modular structure to support
large-scale topologies and the simple integration of various
management applications. The work of Tuncer also proposed a
network planning algorithm based on the uncapacitated facility
location problem. In [9] the authors developed Dionysus, a sys-
tem for consistent network updates in SDN. Dionysus builds
the graph of network update dependencies and schedules these
updates by taking into account the performances of network
switches. To eliminate packet losses [10] proposed zUpdate,
a solution that uses packet labeling for zero packet losses
during network updates. In comparison to these works, we
believe that OptimalFlow, on one hand, and Dionysus and
zUpdate on the other hand expose complementary features.
Particularly, the hierarchical control plane and the network
optimization problem proposed in this work could be extended
with Dionysus and zUpdate and their ability to provision
network updates with minimum (zero) packet losses.

In the industrial sector, Goodney, et al. [11] showed the high
degree of network flexibility that can be achieved by adopting
SDN for phasor measurement unit (PMU) communications.
The benefits of industrial SDN were further demonstrated
in a test infrastructure comprising IEC61850-based electrical
system [12]. Finally, the work of Dorsch, et al. [13] analyzed
the advantages and the possible disadvantages of adopting
SDN in industrial networks. The authors of [13] acknowledge
the benefits of network management applications, quality of
service optimization and the enhancement in the system’s re-
silience, but raise serious concerns pertaining to the increased
risks of cyber attacks against SDN’s centralized controllers.

III. PROPOSED APPROACH

A. Architectural Overview
Nowadays, industrial operators are moving towards the

adoption of advanced networking solutions from the field of
traditional IP networking in order to increase the security
and resilience of communication infrastructures. Solutions
including Multi Protocol Label Switching (MPLS) [14] and
Software-Defined Networks (SDN) [15] have recently been
integrated into ICS and have replaced older implementations
based on Frame Relay and Asynchronous Transfer Mode
(ATM). Nevertheless, communications in large-scale ICS usu-
ally cross the boundaries of one administrative domain. In
fact, in order to deliver fault-tolerant communications, several
lines may be leased from different Internet Service Providers
(ISP). Traffic crossing an ISP’s networking infrastructure will

SDN
Domain1

FlowControl4

FlowControl5

FlowControl1

FlowControl2

FlowControl3

Fl C

SDN
Domain2

SDN
Domain3

SDN
Domain4

SDN
Domain5

FFF

wC tContC

Ti
er

 3
Ti

er
 2

Ti
er

 1

LEGEND
Real SDN switch
Emulated SDN switch

Real communication link
Emulated communication link

FlowControl6

Fig. 1. Architectural overview of the proposed scheme.

therefore be subject to the constraints and routing decision
specific to each domain. Based on these assumptions we
propose a hierarchical SDN controller scheme that embraces
the multi-domain characteristic of ICS networks by means
of an n-Tier controller architecture, as shown in Fig. 1. The
bottom tier represents the physical infrastructure and consists
of network switches and links. This represents the data for-
warding plane and can be structured in several domains. Each
SDN domain includes a FlowControl unit that: (i) monitors the
underlying domain for changes in network parameter values,
e.g., the status of switch ports; (ii) changes the set of installed
flows according to the solutions delivered by an optimization
problem aimed to preserve critical communication parameters;
and (iii) transparently exposes the edge ports of an entire SDN
domain to the upper tiers by means of an emulated SDN switch
accessible through the OpenFlow protocol.

B. The FlowControl Unit

The FlowControl unit (depicted in Fig. 2) includes two
software controllers: OpenFlow and OptimalFlow. The Open-
Flow controller is a traditional SDN controller that monitors
and controls an underlying SDN network using the OpenFlow
protocol. The OpenFlow controller configures the forwarding
plane of SDN switches and exposes a communication interface
that may be used to implement specially-tailored network
traffic control strategies. The main contribution of this work,
however, lies in the architecture and in the features exposed
by the OptimalFlow controller. OptimalFlow implements a
novel network traffic optimization problem that, as a response
to disturbances, computes a new optimal distribution of the
affected flows, while preserving the requirements of ICS
flows, e.g., security, reliability. Architecturally, it implements
four main modules: SDNStateHandler, OFControllerCommu-
nication, OptimalSolver, and OpenFlowSwitchEmulator. Its
main module is the SDNStateHandler, which maintains an
in-memory representation of the underlying SDN network
and repeatedly issues calls to the OFControllerCommunication
module to update its internal state. In the case a change
is detected, it issues a call to the OptimalSolver module

74ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

FlowControl Unit

FlowControl – Tk+1

OpenFlow
Controller

OptimalFlow Controllererererrr
OpenFlow

Switch Emulator

SDN State
Handler

Optimal
Solver

OpenFlow
Controller

OF Controller
Communication

Northbound
communication (OpenFlow protocol)

Southbound
communication

(OpenFlow protocol)

Ti
er

 k
+1

Ti
er

 k
Ti

er
 k

-1

Network status

Network
reconfiguration
commands

lFl CFl CFl CFlowC ttontrolllll – kTkTkTkTk++1111
FlowControl – Tk-1

SDN
networks

OR

Fig. 2. Detailed architecture of the FlowControl unit.

TABLE I
KEY NOTATIONS

Symbol Description

Se
ts I, J,B Flows, SDN switches, and links.

S Security features.

Pa
ra

m
et

er
s

di Demand of flow i.
ub
jl Capacity of link (j, l, b).

xA
ij , x

E
ji Access and egress flow connectivity.

psi Security property requirements for flow i.
ybsjl Security properties of link (j, l, b).
qi Minimum reliability requirement for flow i.
rbjl Link failure probability.
αi Penalty value for disconnected flow i.

Va
ri

ab
le

s tbijl Selection of flow i for routing on link (j, l, b).
wA

ij , w
E
ji Selection of flow i for routing betw. acc./egr. switch j.

oi Selection of flow i for disconnection.

to compute the optimal distribution of the flows affected
by the disturbance. The new network configuration is then
transmitted by the OFControllerCommunication module to
the OpenFlow controller via a set of static flows that are
installed in the SDN switches. The OptimalFlow controller
exposes an OpenFlow northbound communication interface
via its OpenFlowSwitchEmulator module. By doing so, the
OptimalFlow controller is connected to upper tiers as a regular
SDN switch that can be monitored and controlled via the
OpenFlow protocol. This represents an effective strategy to
build a hierarchical SDN network, where each tier adopts the
same FlowControl software units. Furthermore, we believe
that this is a salient feature of the proposed scheme, since
it facilitates the provisioning of FlowControl without the need
to change the OpenFlow protocol and the implementation of
SDN switches/controllers.

C. Network Model and Optimization Problem

We assume a demand matrix of flows routed between access
and egress switches. The routing needs to be performed in
such a way to reduce communication delays by means of
selecting the shortest paths and the largest capacity links.

Flows are assumed to be non-bifurcated multicommodity flows
such that each flow can only be routed on one path. This is
a fundamental requirement to ensure that flows may cross the
boundaries of one administrative domain. A summary of key
notations is tabulated in Table I.

We define I to be the set of flows and J to be the set of
switches. Network devices, especially in the industrial sector,
are usually connected by more than one link, i.e., by primary
and back-up links. Therefore, we define B to be the set of
possible links that may connect two switches, and we use
(j, l, b) to denote link b between switches j and l, where b ∈ B
and j, l ∈ J . Links between switches may implement various
security features such as basic packet filtering (traditional
firewalls), encrypted communication links, signature/anomaly
detection systems. At the same time, flows may require packets
to be forwarded on links with specific security features in
place. Therefore, we define S as the set of security features
and we use s ∈ S to denote a specific security feature.

Next, we define the ILP problem’s parameters. Let di denote
the demand of flow i and ub

jl the capacity of link (j, l, b).
We assume that if switches j and l are not connected, then
ub
jl = 0, ∀b ∈ B. Then, let xA

ij be a binary parameter with
value 1 if the access end-point of flow i is connected to switch
j, and xE

ji a binary parameter with value 1 if the egress end-
point of flow i is connected to switch j.

The security requirements of flow i are configured with
the help of the binary parameter psi . This is 1 if flow i
may be routed on a link with security property s, and is
0, otherwise. On the other hand, the security properties that
are actually installed on a particular link are defined with the
binary parameter ybsjl , which is 1 if link (j, l, b) implements
the security property s, and is 0, otherwise. In the problem at
hand we assume that flow i can be routed on link (j, l, b)
only if at least one of the security properties configured
for flow i is implemented on link (j, l, b). This means that,
for instance, a flow that requires only the integrity security
property (s1), may also be routed on a link that implements
other properties as well (s2, where s1 is included in s2), such
as integrity, confidentiality. The minimum required reliability
of a forwarding path for flow i is defined as parameter
qi, which is a real number bounded between 0 and 1. The
probability of link failure is defined as parameter rbjl, which
is a real number bounded between 0 and 1. Finally, we define
the αi parameter as a penalty associated with disconnecting
flows. In the problem at hand flows may be disconnected and
not routed in the case of significant network failures, which
effectively reduce the network’s resources and its ability to
route flows. The choice of αi values will lead to a ranking in
the significance of flows and it should be chosen significantly
larger than the maximum possible value of the objective
function’s first part, as discussed later in this section.

Next, we define the problem’s variables. Let tbijl be a binary
variable with value 1 if flow i is routed on link (j, l, b). Let
wA

ij be a binary variable with value 1 if the access end-point of
flow i is routed by switch j, and 0 otherwise, and the binary
variable wE

ji with value 1 if the egress end-point of flow i

75ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

is routed by switch j, and 0 otherwise. We further define the
binary variable oi with value 1 if flow i is not routed due to the
unavailability of communication resources, e.g., unavailable
bandwidth, and 0, otherwise.

The objective of the optimization is to select the shortest
routing path for each flow, while selecting the links with
the largest capacities. On one hand, this is accomplished by
adopting a minimization objective that selects the minimum
number of communication links needed to route flows across
an SDN domain, i.e., minimize

∑
di(tbijl + tbilj). On the other

hand, we assume the relative load on a particular link given by
the formula

∑
di(t

bi
jl+tbilj)

ub
jl

, which will ensure that the solution
includes the links with the maximum capacity. The objective
function’s second part controls the activation of penalty values
in the case of disconnected flows. Therefore, if oi = 1, it
activates the penalty value αi within the objective function.
Since αi is configured as a large integer, the minimization
objective will set oi = 1 only if flow i can no longer be
routed due to insufficient resources. The objective function is
thus defined as follows:

min
∑

j,l∈J,b∈B

(
F (j, l, b)

∑

i∈I

di(t
bi
jl + tbilj)

)
+
∑

i∈I

αioi, (1)

where F (j, l, b) is 0 if ub
jl = 0, and is 1

ub
jl

, otherwise. For the
LP at hand the following constraints are defined:

wA
ij ≤ xA

ij , w
E
ji ≤ xE

ji, ∀i ∈ I, j ∈ J (2)
∑

j∈J

wA
ij ≤ 1,

∑

j∈J

wE
ji ≤ 1, ∀i ∈ I (3)

∑

j∈J

wA
ij = 1− oi, ∀i ∈ I (4)

wA
ij − wE

ji −
∑

l∈J,b∈B

(
tbijl − tbilj

)
= 0, ∀j ∈ J, i ∈ I (5)

∑

i∈I

di(t
bi
jl + tbilj) ≤ ub

jl, ∀j, l ∈ J, b ∈ B (6)

∑

s∈S

psiy
bs
jl ≥ tbijl, ∀i ∈ I, j, l ∈ J, b ∈ B (7)

∏

j,l∈J,b∈B

(1− rbjlt
bi
jl) ≥ qi, ∀i ∈ I (8)

Constraints (2) enforce that access and egress end-points
are only routed by the possible switches, while constraints (3)
enforce that each flow end-point is routed by only one switch.
Constraints (4) ensure that in the case of insufficient resources
flows are disconnected, i.e., wA

ij = 0, oi = 1. Constraints (5)
denote classical multicommodity flow conservation constraints
[16], which impose the selection of a continuous path between
access and egress connection endpoints. Constraints (6) im-
pose that the bandwidth required to route flows on link (j, l, b)
does not exceed the link capacity. Constraints (7) ensure that
flow i is only routed on link (j, l, b) if there exists at least one
security property s configured in psi that is implemented on
link (j, l, b) and is configured in parameter ybsjl .

Constraints (8) are classical (serial) reliability conditions
imposing that the reliability of communication links on a
particular path satisfy the minimum reliability requirement qi.
However, we note that the multiplication of several t variables
in the reliability constraint (8) will yield a non-linear problem.
Therefore, we apply the transformations proposed in [17] to
derive a linear set of equations. We observe that since tbijl is a
binary variable, then (1−rbjlt

bi
jl) can be rewritten as (1−rbjl)

tbijl .
As a result, constraint (8) is redefined as:

∏

j,l∈J,b∈B

(1− rbjl)
tbijl ≥ qi, ∀i ∈ I (9)

By applying the natural logarithm function on both sides
of inequality (9) we obtain the following linear reliability
constraints, which are adopted in the proposed ILP problem:

∑

j,l∈J,b∈B

[
ln(1− rbjl)t

bi
jl

]
≥ ln(qi), ∀i ∈ I (10)

D. Flow Migration Reduction Algorithm
When first launched, OptimalFlow computes the optimal

mapping of flows on the complete network topology and
it configures these flows through an OpenFlow controller.
However, subsequent runs and most importantly, responses to
disturbances might yield a complete network reconfiguration.
In fact, such solutions would introduce significant communi-
cation disturbances and delays that might disrupt time-critical
services and could be easily exploited by attackers. To avoid
such scenarios, OptimalFlow solves the same optimization
problem with a reduced set of variables pertaining to the
affected flows. As such, OptimalFlow implements Algorithm
1 to reduce the set of variables to those that are affected by
disturbances. Initially, the algorithm assumes that all variables
are parameters with the value computed in the previous run.
Then, for a specific link (j′, l′, b′) on which a disturbance is
detected, OptimalFlow computes the set of flows AF that are
routed on (j′, l′, b′). For each flow i ∈ AF OptimalFlow adds
to the new subset (SV) the variables for the flow’s access and
egress switches (wA

ij , wE
ji), and for the flow’s disconnection

(oi). Then, the algorithm identifies all the communication
paths between the flow’s access and egress switches. The
switches from all the paths SWi will identify the tbijl variables,
which are added to SV .

While following the above procedure will significantly
reduce the impact on communications, after a number of exe-
cutions the network might require a complete re-organization
in order to accommodate all flows and to satisfy the problem’s
constraints. Therefore, Algorithm 1 is extended with the func-
tion CompleteOptimNeeded(sol) that verifies if a complete
network reconfiguration is needed. If so, then OptimalFlow
changes the status of all wA

ij , wE
ji, oi, and tbijl parameters

to variables and solves the complete network reconfiguration
optimization problem. The CompleteOptimNeeded(sol) may
be implemented in various ways. For instance, the function
might check if

∑
i oi > 0, or if

∑
i oiαi > β, where

β is a predefined limit above which a complete network
reconfiguration is executed.

76ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Algorithm 1 Flow Migration Reduction
Let (j′, l′, b′) be a failed link.
ChangeOptimizationAllParameters();
AF = GetAffectedFlows(j′, l′, b′);
for each i ∈ AF do

AddAccessVariable(i);
AddEgressVariable(i);
AddDisconnectVariable(i);
SWi = GetAccessEgressPaths(i);
AddSwitchVariables(SWi);

end for
sol = SolveOptimizationProblem();
if CompleteOptimNeeded(sol) then

ChangeOptimizationAllVariables();
sol = SolveOptimizationProblem();

end if

flow1

flow2 flow2

flow1

80Mbps

40Mbps
1

2

3 5

64

(a) Initial topology.

flow1

flow2

flow2
flow1

80Mbps

40Mbps

Overloaded link (ujl = 100Mbps)

1

2

3 5

64

(b) Intermediate topology.

Fig. 3. SDN topology reconfiguration with an overloaded link.

E. Network Update Dependency Graph Construction
The proposed optimization problem generates a new flow

configuration that must be provisioned across an SDN installa-
tion by the OptimalFlow controller. However, the migration of
flows from one path to another needs to be carefully planned
to ensure that the procedure does not introduce additional
disturbances. For example, let us assume the migration of two
flows, flow1 and flow2, with demands of dflow1 = 40Mbps
and dflow2 = 80Mbps, as depicted in Fig. 3. Let us further
assume that the capacity of links between switches is of
ub
jl =100Mbps, where the number of possible links between

switches is equal to one. Initially, the optimization problem
routes flow1 on links (1,3,1), (3,5,1), and flow2 on links (2,4,1),
(4,6,1). In the case of a disturbance, however, the migration
of any of the two flows before the other is removed may
overload links (see Fig. 3 (b)). As a solution, this work adopts
a flow migration strategy that relies on the assumption of
prioritized flows, which is particularly specific to ICS. For
instance, communications in the core of ICS encompassing
control hardware connected to critical physical processes may
have a higher priority than the communication between hu-
man machine interfaces and data servers. The proposed link
overload avoidance algorithm, therefore, adopts a priority-
based flow migration strategy and builds a network update
dependency graph according to the priority of flows. For each
flow the algorithm identifies the sequence of flows that need to
be deleted before this update can be performed. For instance,
by further expanding the previous illustrative scenario, we
assume that the priority of flow1 is higher than the priority
of flow2. As a result, before migrating flow1, flow2 needs to

Algorithm 2 Dependency Graph Construction
for each j, l ∈ J, b ∈ B do
rescapbjl = GetLinkResidualCapacity(j, l, b);
remf bi

jl = GetLinkRemoveFlows(j, l, b);
addf bi

jl = GetLinkAddFlows(j, l, b);
if rescapbjl ≤

∑
i∈I addf

bi
jl di then

depii′ = 1, ∀i ∈ I : addf bi
jl = 1, ∀i′ ∈ I : remf bi′

jl = 1
end if

end for
DEPG = InitializeGraph();
OI = GetOrderedFlows();
for each i ∈ OI do

if IsNotMigrated(i) then
@StepToNextFlow

end if
for each i′ ∈ I do

if depii′ = 1 and (i′,“REMOVE”) /∈ DEPG then
AddToGraph(DEPG,(i′,“REMOVE”));

end if
end for
if (i,“REMOVE”) /∈ DEPG then

AddToGraph(DEPG,(i,“REMOVE”));
end if
AddToGraph(DEPG,(i,“ADD”));

end for

be removed, since flow1 has a higher priority. Then, the new
paths of flow1 and finally of flow2’s can be configured in the
network switches.

A formal description of the above steps is given in Al-
gorithm 2. At first, the algorithm computes the residual link
capacity rescapbjl, it stores in the binary parameter remf bi

jl
the flows that will be removed from link (j, l, b), and it stores
in the binary parameter addf bi

jl the new flows that will be
routed on link (j, l, b). For each link (j, l, b), if the residual
capacity rescapbjl is lower than the sum of flow demands di to
be routed on this link, the algorithm adds to the dependency
matrix depii′ of each newly added flow i the flows i′ that will
be removed from this link. Based on the dependency matrix
depii′ , the algorithm then proceeds with the construction of
the dependency graph DEPG by first ordering the flows
descendingly according to their priorities (set OI). Then, for
each i ∈ OI if i needs to be migrated and a dependency is
found with flow i′, a REMOVE network update is added for
flow i′ to DEPG. Finally, a REMOVE update is added for
flow i and an ADD network update is inserted into DEPG.

F. Implementation Details
A prototype of the OptimalFlow controller was imple-

mented in the Python language. OptimalFlow integrates
part of the POX OpenFlow controller’s code [18] for emu-
lating an SDN switch. OptimalFlow extends three functions
in POX’s code: _rx_feature_request() sends back
to the OpenFlow controller the status of edge switch ports
from an underlying SDN domain; _flow_mod_add() calls

77ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

h2
h1

h3
Li
nk

1

Li
nk

2

Link3

Link6

Li
nk

7

Li
nk

8

s4

1,2
3,4

2,3,5

1,4,6

7,10,12

8,9,11

2,3,5,8,
9,11

s3
L L

s2

s1
5,6

h5
h4

h6

7,8
9,10
11,12

h8
h7

h9

7,8
9,10
11,12

h11
h12

1,2
3,4
5,6

h10

(a) Initial routing of flows.

h2
h1

h3

Li
nk

1

Li
nk

2

Link3

Link6

Li
nk

7

Li
nk

8

s4

1,2
3,4 s3

L L

s2

s1
5,6

h5
h4

h6

7,8
9,10
11,12

h8
h7

h9

7,8
9,10
11,12

h11
h12

1,2
3,4
5,6

h10

1,2,3,
4,5,6

7,10,12

8,9,11

1,2,3,4,5,6,
8,9,11

(b) Link4 down.

h2
h1

h3

Li
nk

1

Li
nk

2

Link3

Link6

Li
nk

7

Li
nk

8

s4

1,2
3,4 s3

L L

s2

s1
5,6

h5
h4

h6

7,8
9,10
11,12

h8
h7

h9

7,8
9,10
11,12

h11
h12

1,2
3,4
5,6

h10

1,2,3,4,5,
6,7,10,12

7,10,12

8,9,11

1,2,3,4,5,6,
8,9,11

(c) Link4 and link5 down.

h2
h1

h3

Li
nk

1

Li
nk

2

Link3

Link6

Li
nk

7

Li
nk

8

s4

1,2
3,4 s3

L L
s2

s1
5,6

h5
h4

h6

7,8
9,10
11,12

h8
h7

h9

7,8
9,10
11,12

h11
h12

1,2
3,4
5,6

h10

1,2,3,4,6,
7,8,9,10,
11,12

1,2,3,
4,6

7,8,9,
10,11,
12

(d) Link4, link5, and link6 down.

Fig. 4. Network topology and flow routing in the single domain experimental
scenario. Switches are connected to the same Floodlight controller and are
controlled by one OptimalFlow controller (not shown in figure).

OptimalFlow’s internal functions to add a new flow; and
_flow_mod_delete() calls OptimalFlow’s internal func-
tions to delete a flow. The OptimalSolver module generates an
ILP description of the optimization problem and calls the ex-
ternal SCIP (Solving Constraint Integer Programs) solver [19].
Finally, the OFControllerCommunication module uses
pycurl to communicate with the Floodlight [20] controller
via its REST API. OptimalFlow’s source code is available at
http://upm.ro/sereniti/optimalflow.html.

IV. EXPERIMENTAL RESULTS

In order to assess the performance of OptimalFlow in
various scenarios and problem sizes, we conduct a series of
tests including real and simulated settings. First, we perform
a qualitative assessment in a scenario with a single SDN
domain, which is followed by a scenario with two SDN
domains connected in a hierarchical controller scheme. Then,
we perform extensive simulations to evaluate the main fea-
tures and the solutions of the proposed optimization problem.
The qualitative tests are performed on an emulated network
topology recreated with the Mininet network emulator [5]
on Ubuntu LTS 14.04.3 64-bit OS, and a host with Pentium
Dual Core 3.00GHz CPU and 4GB of memory. Simulation
experiments are performed with the AIMMS software [6].

A. Single Domain Scenario
In the single domain scenario (see Fig. 4) we use Mininet

to create a topology of four SDN switches (s1, s2, s3, s4)
connected to one Floodlight controller. The network topology
is monitored and controlled by one OptimalFlow controller.
We assume that switches are inter-connected by two types
of links: 600Kbps (denoted by thicker links in Fig. 4) and
300Kbps (denoted by thinner links Fig. 4). We further assume
twelve hosts (denoted by h1, h2, ..., h12) and a total of twelve
ARP and TCP flows generated with the iperf tool. In Fig.
4 flows are numbered from 1 to 12 and are written on the

0 50 100 150 200 250
0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (K

bp
s)

Time (seconds)

(a) Flow1 (high priority).

0 50 100 150 200 250
0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (K

bp
s)

Time (seconds)

(b) Flow3 (low priority).

0 50 100 150 200 250
0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (K

bp
s)

Time (seconds)

(c) Flow5 (low priority).

0 50 100 150 200 250
0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (K

bp
s)

Time (seconds)

(d) Flow7 (high priority).

Fig. 5. A selection of flows in the single domain experimental scenario. Link4
is disabled at 46s, Link5 is disabled at 92s, and Link6 is disabled at 148s.

links on which they are routed. Even numbers denote ARP
flows, while odd numbers denote TCP flows. OptimalFlow is
configured to route twelve flows, where TCP flows have a
demand of 100Kbps and ARP flows have a demand of 1Kbps.
For the sake of simplicity we assume the same security and
reliability values on all links. We assume that flows 1, 2, 7 and
8 have a higher priority (200.000) than the others (100.000).

Based on the above-defined setting, OptimalFlow configures
the network with the routing paths depicted in Fig. 4a. Then,
at 46s we disable Link4 (Fig. 4b). OptimalFlow solves the
network optimization problem by using the variables associ-
ated to flows 1, 4 and 6 and by changing the status of the
remaining flow’s variables to parameters. Since the TCP flow
1 is routed on Link4, despite its high priority, flow 1 is briefly
interrupted (for approx. 1s), an effect, which is shown in Fig.
5a. In the next phase we disable Link5 at 92s (see Fig. 4c) and
then Link6 at 148s (see Fig. 4d). As shown in Fig. 5 when
Link5 is disabled flow 7 is successfully re-routed. However,
by further disabling Link6 OptimalFlow concludes that the
network does not have the capacity to route all flows. As a
result, a low priority flow, i.e., flow 5, is disconnected from
the network (Fig. 5c). It should be noted that in this scenario
Algorithm 1 reduced the number of re-routed flows since the
Link5 down event caused only flows 7, 10, and 12 to be re-
routed, while the path of the remaining flows was not affected.
On the other hand, the adoption of priority-based provisioning
of flows disconnected a low priority flow, preserving thus the
state of critical communication flows.

B. Multi-Domain Scenario

In the multi-domain scenario we create two SDN domains
(DomainA and DomainB) configured identically as the single-
domain scenario from the previous section (see Fig. 6). In

78ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

FlowControl1

h2
h1

h3
Li
n
k1

Li
n
k2

Link3

Link6

Li
n
k7

Li
n
k8

s4

1,2

3,4
2,3,5,6

1,4

7,10,12

8,9,11

2,3,5,8,
9,11

s3
L L

s2

L

s1
5,6

h5
h4

h6

7,8

9,10

11,12

h8
h7

h9

7,8

9,10

11,12

h11
h12

1,2

3,4

5,6

h10

Li
n
k1
'

Li
n
k2
'

Link3'

Link6'

Li
n
k7
'

Li
n
k8
'

s8

2,3,5,7,8,9,
10,11,12

1

4,6

5,3,2

s7

L L

s6

s5
5

6

7 1 2

3

4

1

2 3 4

1 25

6

7

3 41

2

5

6

5

6

5

6

5

6 1 2

1 23

4

3

4

5

6

7

3 4

1

2

3

4

1

2

3 4

5

6

7

Link9

Link12

h2
h1

h3

1,2

3,4

5,6

h5
h4

h6

7,8

9,10

11,12

1

FlowControl2

h8
h7

h9

7,8

9,10

11,12

h11
h12

1,2

3,4

5,6

h10

1
Emulated

switch
“se1”

Emulated
switch
“se2”

Domain A Domain B

Link9'

Link10'

Link11'

Link12'

1

2

3

4

5

6

7

8

9

10

7

8

9

10

1

2

3

4

5

6

FlowControl3

2,7,10,12

6

1,3,5,8,9,11

4

2,7,10,12

6

1,3,5,8,9,11

4

Ti
er

 1
Ti

er
 2

Ti
er

 3

Fig. 6. Network topology and flow routing in the multi-domain experimental scenario.

0 50 100 150 200 250
0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (K

bp
s)

Time (seconds)

(a) Flow1 (high priority).

0 50 100 150 200 250
0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (K

bp
s)

Time (seconds)

(b) Flow3 (low priority).

0 50 100 150 200 250
0

20

40

60

80

100

120

Th
ro

ug
hp

ut
 (K

bp
s)

Time (seconds)

(c) Flow5 (low priority).

0 50 100 150 200 250
0

20

40

60

80

100

120

140

Th
ro

ug
hp

ut
 (K

bp
s)

Time (seconds)

(d) Flow7 (high priority).

Fig. 7. Multi-domain experimental scenario: flow throughput. Link3’ is
disabled at 108s and Link9 is disabled at 155s.

each domain we configure one Floodlight controller and one
OptimalFlow controller. Each OptimalFlow controller starts an
emulated switch at Tier-2, exposing ten emulated switch (edge)
ports to the FlowControl3 at Tier-3. FlowControl3 includes
one Floodlight controller and one OptimalFlow controller. The
OptimalFlow controller’s configuration at Tier-3 includes two
switches interconnected by four virtual links. The mapping
of virtual links at Tier-2 to the real physical links at Tier-
1 is described in each FlowControl’s configuration file. Each
FlowControl unit is configured to route the twelve flows as
defined in the previous scenario.

First, we start FlowControl1 and FlowControl2. In the initial
configuration flows 7, 8, 9, 10 are routed from DomainA

10
1

10
2

0.5

0.6

0.7

0.8

0.9

1

Link utilization percentage (%)

C
D

F

50% probability
60% probability
70% probability
80% probability
90% probability
100% probability

(a) Distribution of link loads.

40 50 60 70 80 90 100
0

10

20

30

40

50

Th
e

nu
m

be
r

of
 d

is
co

nn
ec

te
d

flo
w

s

Switch connection probability

(b) The number of disconnected flows.

Fig. 8. Link load distribution and disconnected flows in the case of equal
link capacity (1000Mbps).

to DomainB via Link9, flows 11, 12 via Link10, flows 5,
6 via Link11, and flows 1, 2, 3, 4 via Link12. Next, we
start FlowControl3 to compute a new multi-domain optimal
solution. As depicted in Fig. 6, this results in significant
changes of routing decisions in the two domains. To start with,
flows 2, 7, 12 are migrated to Link9, flow 6 is migrated to
Link10, while flows 1, 3, 8, 9, 11 are migrated to Link11.
Next, we create two disturbances in the network topology.
At 108s we disable Link3’ in DomainB. Since the disturbance
does not affect the domain’s edge ports, the change is detected
by FlowControl2, which calculates a new optimal distribution
of the affected flows. The disruption is clearly visible in
Fig. 7, and more specifically on flow 3 (Fig. 7b), flow 5
(Fig. 7c) and flow 7 (Fig. 7b), which are briefly interrupted.
Nevertheless, since flow 1 is routed on Link4’, the disturbance
does not affect its throughput (see Fig. 7a). Finally, at 155s
we disable the inter-domain Link9, which briefly interrupts the
TCP flow 7 and the ARP flows 2, 10, and 12. The network
change is detected by FlowControl3, which solves a new
optimization problem and issues inter-domain routing changes.
These are received by FlowControl1 and FlowControl2, which
also compute a new optimal solution for the affected flows.

79ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

10
1

10
2

0.5

0.6

0.7

0.8

0.9

1

Link utilization percentage (%)

C
D

F

50% probability
60% probability
70% probability
80% probability
90% probability
100% probability

(a) Distribution of link loads.

40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

Th
e

nu
m

be
r

of
 d

is
co

nn
ec

te
d

flo
w

s

Switch connection probability

(b) The number of disconnected flows.

Fig. 9. Link load distribution and disconnected flows in the case of uniformly
distributed link capacity (200Mbps, 500Mbps, and 1000Mbps).

Nevertheless, despite the two-Tier decision-making process, as
depicted in Fig. 7, this does not have a significant impact on
flows, which successfully recover after only a brief, e.g., 1-2
second, interruption interval.

C. Quantitative Assessment

By using the AIMMS software we evaluate the solutions of
the proposed optimization problem. We assume a large-scale
network topology including 50 SDN switches and 100 flows.
Switches are structured sequentially in columns of 5; each
set of 5 switches is connected to the next set of 5 switches
with a certain probability. Flows are routed between the first
and the last set of 5 switches. In the first case we assume
that di = 50Mbps, ∀i ∈ I , |B| = 1 (one possible link), and
ub
jl = 1000Mbps. Links and flows are configured with the

same security and reliability properties. We test the impact of
switch connection probability on the link utilization rate and
on the number of disconnected flows. Each configuration is
run 50 times and average values are calculated. As shown by
results (see Fig. 8a), almost 60% of links are loaded less than
10%. This is a significant aspect in the proposed optimization
problem and in the design of a resilient infrastructure where
the availability of bandwidth provides the opportunity to
migrate flows. Nevertheless, the successful routing of flows
also depends on the number of links between switches. As
shown in Fig. 8b, with a 50% switch connection probability, on
average, we measure 20 disconnected flows (out of 100 flows).
However, by increasing the connection probability, at 90%
the average disconnected number of flows reduces to 0. Next,
we change the scenario and assume a uniform distribution of
link capacities of 200Mbps, 500Mbps, and of 1000Mbps. In
essence, compared to the first case, we decrease the overall
capacity of the communication infrastructure. This effect is
visible in Fig. 9a, where in approximately 70% of the cases
links are loaded less than 10%. Apparently, in this case only
10% of links exhibit a load higher than 50%, while in the
previous case links 15% showed a load higher than 50%.
This is explained by the results in Fig. 9b, where the average
number of disconnected flows increases to 60 for a 50% switch
connection probability, as opposed to the average of 20 in the
previous case. Furthermore, despite increasing the connection

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

N
um

be
r

of
 fl

ow
s

The number of disabled links

Migrated flows
Disconnected flows

(a) The number of migrated and dis-
connected flows.

0 20 40 60 80 100
20

25

30

35

40

45

50

A
ve

ra
ge

 li
nk

 lo
ad

 (%
)

The number of disabled links

(b) The average link load.

Fig. 10. Sequential disconnection of links and their impact on the number of
migrated flows, disconnected flows and the average link load.

probability to 100%, there are still flows that cannot be routed
due to the decrease in the capacity of paths.

Finally, by using the first configuration as described in this
section, we measure the number of migrated flows in the case
of randomly disabled links. As shown by the results in Fig.
10a, the number of migrated flows, that is, the number of
flows for which a new optimal solution is computed, exhibits
a slight increase from 1 to 20 for up to 80 disabled links.
This means that OptimalFlow only needs to solve the opti-
mization problem for a reduced set of variables, e.g., for the
affected flows and for the switches on the paths of access and
egress end-points. Nevertheless, after disconnecting 85 links
OptimalFlow determines that a number of 19 flows cannot
be routed, which triggers the execution of the optimization
problem on the complete network topology, as described in
Algorithm 1. As a result, this increases the number of migrated
flows to 80, but keeps the number of disconnected flows at 19,
which later increases to 22. By sequentially disabling links
we also measure an increase in the average link load. As
shown in Fig. 10b the average link load increases up to 40%
for 84 disabled links, and decreases down to 35% when the
optimization is executed on the complete network topology.
Inevitably, by further disabling links, the average link load
continues to increase up to 43% for 100 disabled links.

D. Execution Time
The execution time of OptimalFlow’s network reconfigura-

tion procedure depends on the size of the network. This trans-
lates to the number of variables in the network optimization
problem and the number of flows that need to be installed. We
generated several network topologies with a different number
of flows (Nf), switches (Ns), possible links between switches
(Nb), and switch connection probabilities. We measured the
time in which OptimalFlow solves the complete optimization
problem for each of these settings. As denoted by the results
in Table II, for Nf = 20, Ns = 30, Nb = 1 and a connec-
tion probability of 50% OptimalFlow solves the optimization
problem in 0.34s. However, by increasing Nb to 3, the solve
time also increases to 1.06s. A connection probability of 100%
further increases the solve time to 1.28s. At the other end, for
Nf = 100, Ns = 50, Nb = 3 and a connection probability of
100% the solver needs 20.20s to generate a solution. These

80ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE II
OPTIMIZATION PROBLEM SOLVE TIME.

Switch conn. probab=50% Switch conn. probab=100%

Nf Ns Nb = 1 Nb = 3 Nb = 1 Nb = 3

20 30 0.34s 1.06s 0.39s 1.28s
50 30 0.95s 2.85s 1.16s 3.59s

100 30 2.35s 6.53s 2.72s 7.48s

20 50 0.94s 2.92s 1.1s 3.47s
50 50 2.67s 7.79s 3.00s 9.69s

100 50 6.33s 17.25s 7.15s 20.20s

TABLE III
FLOW INSTALLATION TIME.

5 flows 20 flows 40 flows 80 flows 160 flows 240 flows

16.9ms 52.9ms 129.6ms 176.3ms 372.9ms 528.5ms

high execution times, however, are addressed by OptimalFlow
in several ways: (i) the full network optimization is only solved
at network start-up; (ii) a change in the network topology will
reduce the set of variables used in the optimization problem to
the affected flows and switches; and (iii) OptimalFlow’s hierar-
chical structure specifically targets large-scale infrastructures,
in which case network planning techniques [21], [22] may be
used to optimize the placement of OptimalFlow controllers.

Finally, we measured the time in which OptimalFlow builds
the dependency graph and pushes static flows to the Flood-
light controller. We assumed the single-domain scenario, as
presented in the previous sections, and that each flow is
configured on four switches. As denoted by the results in
Table III for 20 flows OptimalFlow runs the flow installation
procedure in 52.9ms, which increases to 176.3ms for 80 flows
and up to 528.5ms for 240 flows. It should be noted, however,
that the execution time is linear and can be further decreased
by a careful network planning strategy, as described earlier.

V. CONCLUSIONS

We developed a novel hierarchical SDN control plane for
ICS. The approach builds on the features of an SDN controller
named OptimalFlow that addresses various requirements of a
modern ICS communication infrastructure including scalabil-
ity, dynamic network redesign as a response to failure or cyber
attacks, harmonized routing decisions that encapsulate quality
of service, security and reliability properties of communica-
tions. The effectiveness of the developed scheme was tested
in various experimental and simulation-based scenarios. As
shown by results, OptimalFlow can be adopted in single and
in multi-domain SDN scenarios. To ensure a high performance,
however, the parameters of OptimalFlow need to be integrated
into network planning solutions, which would yield an optimal
distribution of OptimalFlow controllers.

ACKNOWLEDGMENT

This research was supported by a Marie Curie FP7 In-
tegration Grant within the 7th European Union Framework

Programme (Grant no. PCIG14-GA-2013-631128).

REFERENCES

[1] M. Hagerott, “Stuxnet and the vital role of critical infrastructure op-
erators and engineers,” International Journal of Critical Infrastructure
Protection, vol. 7, no. 4, pp. 244 – 246, 2014.

[2] B. Genge, F. Graur, and P. Haller, “Experimental assessment of network
design approaches for protecting Industrial Control Systems,” Interna-
tional Journal of Critical Infrastructure Protection, vol. 11, pp. 24–38,
2015.

[3] B. Genge and C. Enachescu, “Shovat: Shodan-based vulnerability as-
sessment tool for Internet-facing services,” Security Comm. Networks,
2015.

[4] V. M. K.Stouffer, S.Lightman and A.Hahn, “Guide to industrial control
systems (ics) security,” NIST Special Publication 800-82, Revision2,
National Institute of Standards and Technology, 2015.

[5] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown,
“Reproducible network experiments using container-based emulation,”
in Proceedings of the 8th International Conference on Emerging Net-
working Experiments and Technologies, CoNEXT ’12, (New York, NY,
USA), pp. 253–264, ACM, 2012.

[6] AIMMS, “Advanced Interactive Multidimensional Modeling System.”
http://www.aimms.com/aimms/, 2015. [accessed December 2015].

[7] Y. Fu, J. Bi, Z. Chen, K. Gao, B. Zhang, G. Chen, and J. Wu, “A hybrid
hierarchical control plane for flow-based large-scale software-defined
networks,” Network and Service Management, IEEE Transactions on,
vol. 12, pp. 117–131, June 2015.

[8] D. Tuncer, M. Charalambides, S. Clayman, and G. Pavlou, “Adaptive re-
source management and control in software defined networks,” Network
and Service Management, IEEE Transactions on, vol. 12, pp. 18–33,
March 2015.

[9] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan, M. Zhang,
J. Rexford, and R. Wattenhofer, “Dynamic scheduling of network
updates,” SIGCOMM Comput. Commun. Rev., vol. 44, pp. 539–550,
Aug. 2014.

[10] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. Maltz,
“zupdate: Updating data center networks with zero loss,” SIGCOMM
Comput. Commun. Rev., vol. 43, pp. 411–422, Aug. 2013.

[11] A. Goodney, S. Kumar, A. Ravi, and Y. Cho, “Efficient pmu networking
with software defined networks,” in Smart Grid Communications, 2013
IEEE International Conference on, pp. 378–383, Oct 2013.

[12] E. Molina, E. Jacob, J. Matias, N. Moreira, and A. Astarloa, “Using
software defined networking to manage and control IEC 61850-based
systems,” Comput. Electr. Eng., vol. 43, pp. 142 – 154, 2015.

[13] N. Dorsch, F. Kurtz, H. Georg, C. Hagerling, and C. Wietfeld, “Software-
defined networking for smart grid communications: Applications, chal-
lenges and advantages,” in Smart Grid Communications, 2014 IEEE
International Conference on, pp. 422–427, Nov 2014.

[14] IBM and Cisco, “Cisco and IBM provide high-voltage grid operator
with increased reliability and manageability of its telecommunication
infrastructure,” IBM Case Studies, 2007.

[15] West Nippon Expressway Company Limited, “Software-defined net-
working (SDN) solution.” http://www.nec.com/en/case/w-nexco/pdf/
brochure.pdf, 2015. [Online; accessed December 2015].

[16] C. Meixner, F. Dikbiyik, M. Tornatore, C. Chuah, and B. Mukherjee,
“Disaster-resilient virtual-network mapping and adaptation in optical
networks,” in Optical Network Design and Modeling (ONDM), 2013
17th International Conference on, pp. 107–112, April 2013.

[17] C. Chiang, M. Hwang, and Y. Liu, “An alternative formulation for certain
fuzzy set-covering problems,” Mathematical and Computer Modelling,
vol. 42, no. 34, pp. 363 – 365, 2005.

[18] “POX openflow controller.” http://www.noxrepo.org/pox/about-pox/,
2015. [Online; accessed December 2015].

[19] T. Achterberg, “Scip: solving constraint integer programs,” Mathemati-
cal Programming Computation, vol. 1, no. 1, pp. 1–41, 2009.

[20] “Project Floodlight.” http://www.projectfloodlight.org/floodlight/. [On-
line; accessed December 2015].

[21] B. Heller, R. Sherwood, and N. McKeown, “The controller placement
problem,” in Proceedings of the First Workshop on Hot Topics in
Software Defined Networks, HotSDN ’12, (New York, NY, USA), pp. 7–
12, ACM, 2012.

[22] B. Genge, P. Haller, and I. Kiss, “Cyber-security-aware network design
of industrial control systems,” Systems Journal, IEEE, vol. PP, no. 99,
pp. 1–12, 2015.

81ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

DISTTM: Collaborative Traffic Matrix Estimation
in Distributed SDN Control Planes

Rhaban Hark⇤, Dominik Stingl⇤, Nils Richerzhagen⇤, Klara Nahrstedt‡ and Ralf Steinmetz⇤
⇤Multimedia Communications Engineering Lab, Technische Universität Darmstadt, Germany

‡Department of Computer Science, University of Illinois – Urbana, USA
⇤{rhaban.hark|dominik.stingl|nils.richterzhagen|ralf.steinmetz}@kom.tu-darmstadt.de ‡klara@illinois.edu

Abstract—Recently, several works propose monitoring ap-

proaches for the emerged paradigm of Software-defined Net-

working. These provide a couple of ideas to retrieve various

information about the network state leveraging new concepts for

monitoring data collection at flow-level. As existing approaches

reduce their scope to networks with a single controller, even

sophisticated approaches ignore a potentially great efficiency gap,

due to redundant flow measurements by multiple controllers

in adjacent networks. To show a possibility how to close this

efficiency gap, we propose a solution for collaborative traffic

matrix estimation, termed DISTTM. It exploits the property

that flows traverse multiple networks and are monitored by

several controllers. Through collaboration, the resulting moni-

toring tasks are coordinated and distributed among participating

controllers to capture relevant information about all traversing

flows, omitting redundant data collection. Conducted simulations

reveal that DISTTM operates efficiently: the monitoring traffic

is significantly reduced, while the traffic matrix entry staleness

is slightly affected. Furthermore, DISTTM provides different

schemes for a fair load balancing on controllers and switches

while taking different influencing aspects into consideration.

I. INTRODUCTION

Traffic monitoring constitutes the basis for nearly all net-
work management functions. Since monitoring should always
be non-invasive, thus, rather passive, yet robust, accurate and
timely, a trade-off between performance and monitoring costs
is omnipresent. This makes monitoring an inevitable challeng-
ing, however, required task. With the utilization of Software-
defined Networking (SDN) [14], that provides a separation of
the control and data plane, new possibilities evolve to measure
traffic in the data plane. Using new techniques, the need for
additional intelligence at forwarding elements and additional
dedicated collection devices, as was required in traditional
monitoring solutions, such as sFlow1 or NetFlow [4], vanishes.
Lately, several approaches propose a variety of monitoring
tasks, leveraging these new techniques of SDN, in particular
flow-level counters. These approaches measure, for instance,
basic metrics, like link utilizations, delay, and packet loss [3],
[21], [22]. Sophisticated approaches collect aggregated infor-
mation (e.g. traffic matrices [19]) or execute more advanced
monitoring tasks, such as heavy hitter detection [7].

So far, current approaches limit the control and measure-
ment of networks to single controllers. However, to (i) avoid
a single point of failure, (ii) provide scalability and (iii) relieve

1sFlow Overview, http://www.sflow.org/about/ [Access: Oct 21, 2015]

a controller from frequent polling of the switches, relying
on single controllers is not recommended. As a consequence,
physically distributed control planes are taken into account.

This work proposes a first step towards controller collabo-
ration for monitoring in SDNs. The benefits of the controller
collaboration are shown at the example of distributed traffic
matrix estimation. Traffic matrices provide useful means for
network provisioning, route planning, and further management
tasks [20]. The proposed approach, called DISTTM, makes
use of the property that traffic flows most likely take paths
through multiple adjacent network portions. The system hin-
ders the networks to monitor the flows each. More precisely, it
avoids the redundant measurement of flows traversing through
multiple networks that are managed by different controllers.
Instead, using DISTTM, the controllers collaborate to coor-
dinate monitoring tasks and share information in the control
plane.

DISTTM can be utilized inside single-administrated do-
mains, such as data center networks (intra-domain collabora-
tion), as well as, competing, adjacent domains (inter-domain
collaboration) and is applicable in both scenarios. As discussed
later, controllers must expose only a minimal amount of
information to other controllers. In addition, domains are not
forced to provide capacity which is not equally provided in
return.

One further contribution of this work is a fair distribution
of load among controllers and switches. Since the system
determines traffic matrices collaboratively, we propose dif-
ferent load distribution schemes to assign responsibilities for
flows among participating controllers or switches in a fair
manner. As different scenarios require different schemes for
load distribution, we show three elementary fairness schemes
for different purposes and scenarios.

The conducted simulations of DISTTM show, that the
system significantly reduces the overall monitoring traffic
overhead. Thus, it lowers the load on the controllers, whereas
it affects the accuracy in terms of staleness of matrix entries
only slightly. Furthermore, simulations show that we attain a
fair distribution of the overhead for switches and controllers.

The remainder of the paper is structured as follows: Sec-
tion II discusses the relevant background and related ap-
proaches. Section III describes the design of DISTTM. Further
on, Section IV presents the preliminary evaluation while
Section V concludes the paper.ISBN 978-3-901882-83-8 c� 2016 IFIP

82ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

II. BACKGROUND AND RELATED WORK

This section gives an overview over helpful backgrounds
and relevant works which contribute to this paper. The first
subsection briefly introduces mechanisms to capture data
plane information in SDNs, before the second subsection
specifies traffic matrices of interest. Additionally, it gives a
short introduction to OPENTM, a traffic matrix estimation
approach for single-controller SDNs. Its basic concept of how
a traffic matrix can be determined is used as reference for
non-collaborating networks. Subsequently, the third subsection
describes selected works about collaboration between network
nodes. To the best of the authors’ knowledge, collaborative
monitoring for SDNs on controller level, as it is targeted in
this work, has not yet been investigated.

A. Data Capturing in Software-defined Networks
In OpenFlow [12], the widely accepted de-facto standard

for Ethernet-based SDNs, the data plane consists of dump
switches with flow tables managed by controllers in the control
plane. In addition to a number of management fields, these
flow tables comprise counter fields which are incremented
every time a packet is processed using the corresponding
entry. For every entry a packet as well as a byte counter
are available for monitoring use. These can be deactivated
individually to reduce the load on a switch. The controller
is supposed to fetch counters in multiple ways: (i) using
explicit statistic requests for single flow entries or aggrega-
tions; or (ii) implicitly when a flow entry is removed (e.g.
triggered by a timeout). The OpenFlow switch specification
version 1.52 introduces additional thresholds for counters,
providing push-based counter access. A related OpenFlow
extension that is denoted FLEXAM [16] provides additional
packet sampling capabilities. In contrast, approaches such as
OPENSKETCH [23] and DCM [24] implement a specialized
data plane which make it again necessary to customize the
protocol, yet yielding to efficient data collection mechanisms.

Anyway, most existing monitoring approaches, rely on
version OpenFlow protocol version 1.3 which is expected to
be a stable basis3. In order to reach applicability in non-custom
SDN environments, this work only uses features available in
the original protocol.

B. Traffic Matrices of interest
Traffic matrices are abstract data structures showing traffic

information for pairs of network nodes. As an example and
also used in this work, a traffic matrix can accumulate the
amount of traffic in terms of packets or bytes between all
ingress/egress switch pairs in the network. They are used for
management tasks like capacity planning, network provision-
ing, load balancing policies for route optimization, but can also
be used to detect traffic anomalies and other security related

2ONF: SDN Resources – Technical Library, https://www.opennetworking.
org/sdn-resources/technical-library [Access: Oct 22,2015]

3Sean Michael Kerner: OpenFlow Protocol 1.3.0 Approved,
http://www.enterprisenetworkingplanet.com/nethub/openflow-protocol-1.
3.0-approved.html [Access: Oct 26, 2015]

events [20]. They might contain different representations,
such as a maximum, minimum, average or a sum. Besides
traffic matrices, other types of matrices, like delay matrices,
presenting the node-to-node delay for all pairs, or loss matrices
exist. Further studies as well as a taxonomy can be found
in [13], [20].

Tootoonchian et al. propose OPENTM [19] to estimate
traffic matrices in the context of SDN. It takes advantage of
the logical centralization of the controller. More precisely, it
uses centrally available information given by the controllers
routing application to observe upcoming flows. Further on, it
queries a flows path in order to be able to select one switch on
the path and poll it for statistics. By accumulating flow level
byte counters of flows originating at the same node and ending
at the same node, it calculates all entries of the traffic matrix.
Aside traffic matrix estimation, OPENTMs main contribution
is an intelligent selection of polled switches on the path in
order to support a fair overhead distribution among switches
and yet perform well in terms of accuracy due to packet loss.
However, this work adopts the matrix estimation concept of
OPENTM based on available routing information.

C. Collaboration in SDN
In the context of network collaboration, Yu et al. [24] pro-

pose a memory efficient collaboration-enabled control plane
for SDNs. The work states that flows are often monitored
redundantly at different switches if flow aggregation is used
to reduce the number of rules. On the other side, if single
flows are selected to reach fine granular measurements, the
number of rules becomes too large. They tackle the problem
using two-stage Bloom filters on switches. These filters can
be defined in a way the switches monitor particular sets of
flows without the need to define one rule per flow. Thus, as
rules can be defined efficiently in alignment with monitoring
rules of other switches, DCM allows collaboration on switch
level. In contrast, we try to achieve collaboration on the
controller level. Terzis et al. [17] already proposed a model for
collaboration on a comparable level in 1999 in another context.
In their approach, bandwidth brokers of different domains
maintain agreements to cooperatively allocate resources for
inter-domain traffic.

In order to be able to collaborate with other controllers, re-
cent approaches introduce infrastructures for distributed SDN
control planes [2], [5], [9], [15], [18]. Their target is to give
controllers of the same control plane a shared view on the
whole network while distributed properties are abstracted as
good as possible for their applications. Those approaches do
not include monitoring as a potential controller application for
distributed control planes. However, DISCO [15] introduces
monitoring agents in controllers which are able to measure link
utilization. Actually, as the monitoring is limited to links be-
tween peering points to adjacent networks and each controller
measures the statistics individually, no collaboration is done in
this context. In this work it is assumed that the control plane
allows controllers to communicate with one another. Hence,
a distributed control plane infrastructure, such as DISCO,

83ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

would be a good basis to satisfy the need for a communication
possibility between controllers. Levin et al. [11] point out,
that trade-offs between staleness and optimality as well as
between application complexity and robustness turn up when
logically centralized control planes are mapped to physically
decentralized.

III. DISTTM

This section deals with the concept of the distributed col-
laborative traffic matrix estimation system, termed DISTTM.
DISTTM consists of collaborating modules that are installed
at multiple controllers and exchange messages among each
other for the estimation of traffic matrices at the controllers.
Therefore, a controller periodically interacts with its switches
to capture the data, as detailed in Section III-A. Given this
interaction pattern, the collaboration and coordination among
controllers for the distributed estimation of traffic matrices
are presented in Section III-B and Section III-C, respectively.
Finally, Section III-D introduces three schemes to influence
DISTTM’s coordination for a fair task distribution based on
different criteria.

A. Generation of Traffic Matrices
The problem of estimating a traffic matrix in an SDN

with a single controller can be tackled using, for instance,
OPENTM [19] as described in Section II-B. A controller
informs its traffic matrix estimation module whenever a new
flow is installed. Afterwards, the statistics for this flow are
periodically polled from a selected switch on the flow’s path.
The interval for the periodic polling is specified by the system
parameter T (polling request interval). To select a switch
along a flow’s path, OPENTM presents multiple strategies
for an intelligent and sophisticated switch selection. However,
DISTTM relies on a random selection of a switch along
the path for the sake of simplicity and directs to OPENTM
for questions relating the switch selection. The traffic matrix
module in a controller uses the gathered statistics from the
selected switch to generate the traffic matrix and update the
affected cell of the matrix. For the identification of the correct
cell, the controller uses the origin (ingress switch) and the
destination (egress switch) of the flow. Given the example in
Figure 1, C

A

polls statistics of flows f
A

, f
B

and f
C

. Regarding
f
A

, the statistics can be polled at switch S
A1, S

A3 or S
A2

along its path. The measurements are used to fill the cell of
pair (S

A1, SA2) = (ingress, egress). C
B

polls statistics of
f
B

and f
C

to fill the cell of pair (S
B1, SB2) as well as f

D

for (S
B3, SB2). CC

acts analogously in its network. A flow is
polled until the controller receives a message about its timeout
(FlowRemoved). In this work, DISTTM stores the total amount
of bytes for each cell. Other metrics, such as the throughput
or bandwidth consumption, may be calculated or derived as
well.

The described interaction between a controller and its
switches represents an easy-to-operate solution. However, the
simplicity of this approach comes at the expense of inevitable
excessive cost in terms of statistic requests at switches and

20.0.0.110.0.0.1

CA CC

CB

fA

SA2SA1

SA3

SB1

SB2

SB3

SC1

SC3

SC2

 fD

fB

fC

Fig. 1. Inter-network flows.

controllers, particularly questioning its scalability. To reduce
the overhead and improve scalability, DISTTM breaks up
with the necessity to measure each upcoming flow on each
controller. Instead, we introduce the concept of controller
collaboration, i.e. sharing of information, in the following.

B. DISTTM Controller Collaboration

Assuming the knowledge about peering points between
adjacent networks, flows which traverse through networks
of cooperating controllers can be identified. As an example,
C

A

detects, that f
B

and f
C

exit its network towards the
network of C

B

. Given this capability and knowledge about
traversing flows, DISTTM provides the functionality to coor-
dinate the monitoring. Hence, controllers are able to trigger
a coordination whenever considered necessary to distribute
responsibilities for redundantly measured flows like f

B

and
f
C

among the controllers. A coordination assigns each flow
to exactly one controller, which is subsequently exclusively
responsible to capture statistics of this flow (e.g. only C

A

captures f
B

and C
B

captures f
C

). So, DISTTM informs each
controller (i) about the flows it must monitor and (ii) about
other controllers that are interested in the collected statistics
of the corresponding flows. As a result of that coordination,
in addition to periodic polling of statistics, controllers must
transmit updates to a list of interested controllers. These
actions are periodically triggered depending on the system
parameter T .

Given the example in Figure 1, flow f
B

originates at
host 10.0.0.1 and has its destination at host 20.0.0.1,
traversing the network of controller C

A

, C
B

, and C
C

. In
the naive solution controller C

A

, C
B

, and C
C

would poll
statistics of flow f

B

from selected switches in their network
to update their traffic matrix with the resulting traffic of f

B

.
Using DISTTM, only one controller, for instance C

A

, would
fetch the statistics of f

B

and provide the information to C
B

and C
C

. In turn, other flows, such as f
C

and f
D

, may be
assigned to C

B

and C
C

, while the resulting measurements
are transmitted to all interested controllers. As flow f

D

only
traverses the network of C

B

and C
C

, C
A

is even not aware of
f
D

and will not be informed about updates of f
D

. Flow f
A

is
only monitored by C

A

as it only traverses the network of C
A

.

84ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

For this particular example the number of statistic requests
reduces from 9 (C

A

: [f
A

, f
B

, f
C

]+C
B

: [f
B

, f
C

, f
D

]+C
C

:
[f

B

, f
C

, f
D

] = 9) to 4 (C
A

: [f
A

, f
B

] + C
B

: [f
C

] + C
C

:
[f

D

] = 4).
A controller uses directly polled values and received values

from other controllers to update its traffic matrix. In the
example C

A

uses the polled values of f
A

to update the matrix
entry for pair (S

A1, SA2). To update the (S
A1, SA3) entry it

uses the directly polled values of f
B

and complements it with
the received values from C

B

about f
C

.
Among the collaborating controllers DISTTM identifies

redundantly monitored flows and controllers interested in
these flows. Based on these insights DISTTM selects one
controller out of the pool of interested controllers to assign
the flow to. The chosen controller is subsequently responsible
to poll statistic values about the flow and share them with all
interested controllers. Hence, only a fraction of all traversing
flows must be monitored per controller. Besides the reduction
of monitored flows, the controller collaboration also influences
the number of transmitted messages as well as of transmitted
bytes. Exchanged information about multiple flows between
two controllers can be batched into one so-called statistic
batch message, whereas direct polling of values from multiple
flows must be performed per flow. Furthermore, a controller
proactively transmits information to interested controllers at
the end of each polling interval. This proactive transmission
avoids unnecessary transmissions to request the statistics.

So far, DISTTM basically focuses on a distributed and fair
procedure for collaborative data collection. As a result, it
currently relies on static per-flow polling intervals as well as a
static information exchange intervals between controllers. For
future work, improvements concerning the polling of values by
a controller in its own network, such as flow aggregation [25]
or adaptive polling [3], are applicable to minimize the traffic
or improve the performance.

C. DISTTM Coordination
As described, the system shares responsibilities for flows

among collaborating controllers. For this task DISTTM dele-
gates the coordination to one controller which is denoted as
coordinator. In this work, a static configuration is used to
select the coordinator. Nevertheless, leader election algorithms
from other research areas (e.g. [1]) are applicable that deal
with this problem and allow an autonomous and distributed
election of a coordinator. Using a central coordinator simplifies
the distribution of flow responsibilities among the controllers,
as described hereafter.

1) Coordination trigger: The advantage of DISTTM comes
at the expense of coordination overhead. This overhead com-
poses of coordination requests, responsibility assignments and
statistic exchange messages. Although the evaluation will
show that the impact of additional messages is reasonable,
it still needs to be considered. In order to avoid too many
coordinations and limit the resulting coordination overhead
in networks and scenarios with strong flow fluctuations,
DISTTM introduces a counter in every participating controller

Controller installs

Inter-Network Flow

Threshold

reached?

Increment Threshold

Counter
No

Request Coordination

at Coordinator
Yes

Coordinator collects

Monitoring Interests

Coordinator

calculates

Responsibilities

Controllers apply

Responsibilities

Coordinator

transmits

Responsibilities

Fig. 2. Coordination mechanism flow diagram.

and a system parameter, referred to as coordination threshold
R. The threshold may be set dynamically by the controllers
based on other system parameters according to findings in
the evaluation. At each controller, this counter is incremented
every time a controller becomes aware of a new flow. For this,
a controller takes only flows into account which have their
destination in it’s network but do not originate inside of the
network. Based on this scheme, simultaneous coordination re-
quests from multiple controllers are avoided since only the last
network considers an upcoming flow. In the example given in
Figure 1, assuming f

B

, f
C

and f
D

leave the union of cooper-
ating networks at the network controlled by C

C

, the threshold
counter of C

C

would be set to three. If the incremented counter
reaches the specified coordination threshold R a coordination
procedure is triggered. The coordination procedure comprises
the transmission of a so-called coordination request message
from the controller to the coordinator. The counters are reset
every time a coordination procedure is performed.

2) Coordination procedure: As described above, the co-
ordinator executes a coordination procedure whenever it re-
ceives a coordination requests. As depicted in Figure 2, if
the coordinator receives a coordination request message it
collects the monitoring interests of all participating controllers.
Therefore, it sends a monitoring interest request message to
all participating controllers, asking for flows which occurred
since the last coordination and traverse their network. The
requested information is sent back to the coordinator, using
a monitoring interest response message. Subsequently, the co-
ordinator applies a responsibility calculation function based on
the received interests. This responsibility calculation function
is responsible to assign flows to the controllers. Furthermore, a
list of interested controllers per flow is appended to inform the
responsible controller about other interested controllers. The
flow assignments including the list of interested controllers are
transmitted to the corresponding controllers, using a coordi-
nation instruction message.

Concerning the example of Figure 1, the coordinator takes
the information that controller C

A

is interested in f
A

, f
B

and f
C

; C
B

and C
C

are interested in f
B

, f
C

and f
D

as
depicted as input in Figure 3. The function may distribute
the responsibilities, for instance, as follows: C

A

is responsible
to monitor its intra-network flow f

A

. Furthermore, C
A

is
responsible to measure f

B

and inform C
B

and C
C

about its

85ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

C
A

fA; fB: CB, CC

C
B

fC: CA, CC

C
C

fD: CB

C
A

fA; fB; fC

C
B

fB; fC; fD

C
C

fB; fC; fD

Fig. 3. Coordination function input and output.

updates. C
B

needs to monitor f
C

and inform C
A

and C
C

,
while C

C

is responsible for flow f
D

and to inform C
B

about
measurement updates. In this case, excluding intra-network
flows, the coordinator assigns one flow to each controller.
Hence, it shares the responsibilities fair among controllers.

D. Fairness schemes
In addition to the relevant flows of a controller, a monitoring

interest response message comprises further information. This
covers the number of intra-network flows inside of a single
network (e.g., f

A

in C
A

), the number of previously assigned,
still active flows and the number of switches in the controllers
network. The additional information is optional and may not be
included due to privacy constraints. However, if it is included,
the coordinator uses this information for the responsibility
calculation function in order to apply various fairness schemes
that influence the assignment of flows. DISTTM offers four
fairness strategies that are applicable to distribute the respon-
sibilities among controllers.

1) Fair Controller Distribution (FCD): The FCD scheme
distributes the responsibilities equally among all participating
controllers in terms of monitored flows in total. Hence, this
scheme makes sure that every controller is supposed to make
the same number of statistic requests to switches in its
network. This includes requests for intra-network flows not
traversing networks controlled by other controllers. However,
FCD leads to equal statistic request load among controllers
and might be preferred, for instance, by single-administrated
networks.

2) Fair Domain Distribution (FDD): As different con-
trollers may be part of competing domains, they are not
willed to respect intra-domain flows of other networks. As a
simplified scheme to support this, the FDD scheme distributes
the responsibilities equally among controllers while intra-
network flows are not taken into account. This scheme leads to
an equal distribution of flows to monitor for other controllers.
A more elaborated version of this scheme could consider
fairness between each controller pair. A controller C

A

, for
instance, does neither want to respect a flow only in the
network of C

B

, nor traversing only the networks of C
B

and
C

C

.
3) Fair Switch Distribution (FSD): So far, the issue that

networks may differ in size has been ignored. Consider two
collaborating networks: one consisting of only two switches,
while the other consists of an order of magnitude more
switches. If flows traverse both networks with the same proba-
bility, a distribution based on the statistic requests a controller

has to poll from a switch would lead to a disproportional load
on the two switches of the small network. To tackle this issue,
the FSD scheme assigns the responsibilities in a fair manner
based on the current requests per switch. This leads to a fair
load distribution among switches in the network, however,
potentially not among controllers.

4) Random (RD): As reference model, a random distribu-
tion among controllers is used. As it can be expected, for
large experiments, the scheme resembles the fair controller
distribution assuming equal flow occurrences per network.

The listed schemes optimize particular scenarios and sit-
uations. Hence, we propose to use dynamic combinations
based on the characteristics and requirements in real-world
scenarios. As a flow is assigned to a controller DISTTM does
not dictate which switch needs to be selected on a flow’s
path to fetch statistics from. Consequently, the controllers are
responsible to make a sensible selection. As already mentioned
in Section III-A, related approaches tackle this aspect and is
not taken into consideration in this work. However, it may be
an important aspect for future work.

IV. EVALUATION

This section describes the evaluation of DISTTM. The ma-
jor objectives of the evaluation are to show (i) that the system
is able to reduce monitoring costs, while the performance can
be maintained and (ii) to highlight the influence of the different
fairness schemes of the responsibility calculation function
on DISTTM. To be able to quantify this, we implemented
DISTTM as a Floodlight4 OpenFlow controller application as
which it is deployed on all controllers in a virtual simulation
network. In addition, we included a simplified routing appli-
cation based on a modest host detection extension, the ability
to detect peering points with other networks, and a straight-
forward westbound interface. The westbound interface enables
the communication between controllers through TCP connec-
tions using an out-of-band controller network in the control
plane. Using this small set of functionality, the distributed
traffic matrix estimation system – DISTTM – is implemented.

A. Evaluation Methodology and Scenario
We use Mininet [10] as evaluation testbed to generate virtual

OpenFlow-enabled networks. As sketched in Figure 4, for this
preliminary evaluation, we choose a synthetic, linear topology
with three individually controlled networks with three switches
each as default scenario. The first network, controlled by C

A

has a peering-point to the network controlled by C
B

, which
itself has a peering point at the other end to the network
controlled by C

C

. This topology allows a direct presentation
and measurement of the DISTTM principles.

For the evaluation, we use the parameters shown in Table I.
The first to two parameters represent DISTTM’s system pa-
rameters, as introduced in the previous section. The following
parameters except the last one configure the modeled flows
in the network and are detailed in the following paragraph.

4Project Floodlight: Floodlight OpenFlow Controller http:
//www.projectfloodlight.org/floodlight/, [Access: Nov 09, 2015]

86ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

CA CB CC

H1 H9

...

Fig. 4. Synthetic evaluation topology.

The last parameter F
max

represents the flow idle timeout. If
multiple values are listed for a parameter, the values for a
default configuration are underlined.

TABLE I
SCENARIO AND SIMULATION SETUP.

Parameter Values Description

T [ms] 500, 1000, 2000, 5000 Polling period
R 1, 2, 3, 5, 10, 20 Coordination threshold
r [pps] 100 Packet rate
� [s] 1 E[Flow inter-arrival time]
k 5 Pareto shape index
x

min

[pkts] 500 Min. packets per flow
F

max

[s] 5 Flow idle timeout

As only the duration of active flows instead of their size is
relevant for the conducted evaluation, flows have a constant
packet rate r and minimal packet size. For the inter arrival
time of flows in seconds, we use an exponentially distributed
stochastic variable with � = 1 [8]. Concerning the length
of a flow, a Pareto distributed stochastic variable is used. As
parameters, k = 5 and x

min

= 500 are set. Thus, most flows
are small (slightly larger than 500 packets) and only a few are
significantly large. A flow consisting of more than 500 packets
is alive for at least 5 seconds with the specified packet rate.
Assuming one second inter arrival time, if the system is in
equilibrium, at least (and most commonly) six flows intersect
at a time. We set the probability of a flow’s source (H

i

) and
destination (H

j

) being in one of the networks to 1
3 each, with

i 6= j. All simulations were repeated 50 times. Bar plots report
the mean with 95% confidence intervals. Box plots report the
median, lower and upper quartiles as well as whiskers for the
fifth and 95th percentiles. The simulations were executed on
a dedicated simulation machine5.

During the evaluation, we investigated three different met-
rics to quantify DISTTM’s behavior. At first, we measure
monitoring costs of DISTTM using the number of statistic
requests per controller per flow. This metric is independent
of the evaluation duration as the number of flows increases
linear with time if the system is in equilibrium. The second
metric quantifies the overhead which is additionally produced
by DISTTM. This overhead comprises the different types of
coordination messages as well as statistic batch messages,
which are exchanged between controllers. Similar to the first

5Ubuntu 14.04.3 LTS / 24x2.6GHz Intel(R) Xeon(R) CPU / 128GB RAM

Fig. 5. Cost reduction evaluation.

metric, the second one is measured per controller per flow.
To enable a reasonable aggregation of the two metrics, in
some cases the metric’s presentation is in bytes instead of the
number of messages or requests. Although one cannot compare
statistic requests and coordination messages directly due to
the fact that they do not share the same medium and lead
to different load on the controllers, this compromise allows
finding a comprehensible operating point for the trade-off
between cost reduction and introduced overhead. Note, that
the statistic requests with their replies are always of the same
size, so that the qualitative behavior is similar for message
counts as well as bytes. The resulting bytes of coordination
messages may vary depending on the type and amount of
shared information. To compare fairness, we selected the
portion of statistic requests a controller or switch is supposed
to trigger or answer, respectively, as metric. This is identical to
the portion of flows a controller must monitor. In addition to
these metrics that particularly quantify the costs of DISTTM,
it must be shown, that the performance for the generation
of the traffic matrices does not suffer using DISTTM. As
packet losses are not considered in the scope of this evaluation,
the performance is measured in terms of staleness of matrix
entries. The staleness is defined by the period between two
consecutive updates of a matrix entry for active flows.

B. Monitoring Cost Reduction

Figure 5 shows the main contribution of DISTTM . For
the default polling period of T = 2000ms, the leftmost plot
of Figure 5 shows the number of bytes used for the statistic
requests and replies for one controller per flow. The number
reaches its peak when DISTTM is not used (w/o). In that case,
the non-collaborative approach is applied and every controller
must monitor all flows it is interested in. Using DISTTM , the
plot shows a significant reduction of the number of bytes for
statistic requests. However, it becomes apparent that the traffic
grows if the coordination threshold R is increased. This results
from the fact that low coordination thresholds lead to frequent
re-configurations and fast assignments of inter-network flows
to single controllers. Consequently, redundant measurements
occur fewer. For large thresholds, the occurrences of redundant
measurements of flows increase, as each controller monitors
all flows before they are monitored only once. Thus, as visible

87ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 6. Statistic request distribution among controllers.

in the figure, the traffic from the transmitted statistic requests
and replies increases as well. The plot in the middle of
Figure 5 depicts the number of bytes needed for the different
coordination messages. Without the use of DISTTM this value
is zero since no coordination between the controllers occurs.
For a small threshold R this overhead is larger, while larger
thresholds, thus, rarer coordinations, lead to less coordination
control messages. The resulting coordination traffic in bytes
decreases with increasing threshold. Finally, the rightmost
plot of Figure 5 shows the total load in terms of bytes
comprising the statistic requests and replies plus the number
of bytes for coordination messages. As depicted, a trade-
off between the coordination threshold R and the total load
exists. Coordinating on every arising flow (R = 1), leads
to less monitoring costs (flows are always monitored only
by one controller instead of each), whereas the coordination
overhead is relatively high. Increasing the threshold R leads
to larger monitoring costs, whereas the coordination overhead
decreases. For the evaluated scenario with T = 2000ms, the
operating point is between R = 2 and R = 3.

Figure 6 depicts the distribution of statistic requests per
controller per flow for the different coordination threshold (R)
configurations. It can be seen that the total number of requests
is significantly lower using DISTTM. For R = 1 the system
must request the least statistics. Even for high thresholds,
the number is still lower than for the classical approach
without DISTTM. The reduced number of statistic requests
for a decreasing coordination threshold R originates from the
fact the frequency of redundant, thus, unnecessary requests
is reduced. As already mentioned, a lower R leads to more
frequent re-configurations and fast assignment of redundantly
measured flows to single controllers. In addition to the total
amount of requests, the cumulative distribution function (CDF)
depicts the distribution of the requests among the controllers.
Regarding the distribution without the use of DISTTM, we ob-
serve that the number of statistic requests has a shift after 2

3 of
the data points. In the given evaluation topology (cf. Figure 4)
controller C

B

must handle more flows in average than C
A

and C
C

, as it located in between. Due to this focal position
and an equal distribution of flow sources and destinations,

Fig. 7. Resulting traffic of the statistic requests and coordination control
messages.

it must monitor more flows than the other two controllers.
As a result, an unfair distribution occurs. DISTTM balances
the distribution more if responsibility for flows are shared
between the controllers. For large thresholds, the distribution
is still less balanced due to the larger number of redundantly
monitored flows. With a lower coordination threshold, the
negative impact of C

B

’s focal position nearly disappears due
to frequent re-configurations and the faster unique assignment
of flows to controllers. A more elaborated view on fairness
and load balancing is presented in Section IV-D.

C. Impact of the Polling Period
Figure 7 depicts the overall traffic (note the logarithmic

scale) comprising the statistic requests and replies plus the
coordination control messages for a varying statistic polling
period T and a varying coordination threshold R. As ex-
pectable, it can be observed that an increasing polling period
reduces the overall traffic. However, for shorter polling periods
the total savings are higher than for longer periods, whereas
relative savings are comparable, although hardly identifiable
in the figure. Apart from that, it is observable that the polling
period influences the operating point. For a short period, e.g.,
T = 500ms, the lowest total overhead is at R = 1. As the
period is extended, e.g., T = 5000ms, the operating point
shifts to larger thresholds (R ⇡ 3). Hence, for short polling
periods, the coordination overhead has less influence on the
total load. The other way around, lower frequencies lead to
larger influence of coordination control messages, thus min-
imizing the positive effect of DISTTM and the collaborative
estimation of traffic matrices.

D. DISTTM Fairness
In order to examine the fairness, Figure 8a depicts the share

of flows a controller has to monitor in relation to the total
number of flows monitored by all controllers. For the use of
DISTTM, three fairness schemes are applied and compared to
the classical approach (w/o DISTTM). The classical approach
and the RD scheme show rather unfair distributions. For the
classical approach, C

B

suffers from its central position in the
topology, as shown by the shift for 1

3 of all measurements.
In contrast, the FCD scheme and the FDD scheme (cf.

88ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) Flow responsibility distribution
among controllers.

(b) Statistic request distribution
among switches.

Fig. 8. Fairness evaluation results

Section III-D) lead to a steep curve indicating a balanced
distribution of responsibilities among the controllers. Thus, the
proposed schemes improve the load fairness on controllers.
Due to the fact that intra-network flows occur in all three
networks with the same probability, FDD and FCD behave
similarly.

For the next experiment, the network of controller C
C

is
enlarged and consists of four times more switches. However,
the probability for a flow starting or ending in one network
is unchanged. Hence, the switches in the small networks
may be polled more often in average when FCD is applied.
Figure 8b depicts the portion of statistic requests in relation
to all triggered requests that must be processed by a switch. It
becomes apparent that the fairness in terms of load on a switch
is improved using the FSD scheme. This results from the fact
that the FSD scheme is the only scheme, which considers the
current state of the switches.

f(x1, .., xn

) =
(
P

n

i=1 xi

)2

n
P

n

i=1 x
2
i

(1)

In order to capture the fairness by a single value, we
calculate the fairness index (FI) proposed by Jain [6]. Equation
(1) produces a single value between 0 and 1, where 1 reports
the highest fairness.

TABLE II
OBSERVED CONTROLLER AND SWITCH FAIRNESS.

Scheme Controller

Fairness

Switch Fair-

ness

6

RD 0.9510 0.5377
FCD 0.9893 0.5400
FDD 0.9907
FSD 0.6736
w/o DISTTM 0.9677 0.5413

6Adapted topology: the network of C
C

contains four times more switches;
equal probability of flow source and destination per network.

Fig. 9. Traffic matrix entry staleness.

Using the unmodified scenario, the FCD and FDD schemes
balance the load among the controllers in the fairest manner.
Both FIs are qualitatively equal, as listed in Table II and
already depicted in Figure 8a. For the modified scenario with
the adapted topology the second column of Table II outlines
the fairest load balance among the switches if the FSD scheme
is applied. A fair balancing of statistic requests between the
switches cannot be provided if fairness schemes are applied
that ignore the different number of switches in the network as
well as the current load on switches.

E. Impact of DISTTM on Performance
To examine potential trade-offs, it must be analyzed to

which extent the traffic matrix estimation performance is
influenced. We use the matrix entry staleness to represent the
performance. For the sake of simplicity, all controllers poll
statistics with the same frequency. In the classical approach,
the delay between the actual values and the available data in
the controller consists only of the statistic reply transmission
delay between the switch and the controller. Using DISTTM,
this delay is extended by two further delays. At first, the
delay between a received statistic reply and the end of the
measurement period, where a statistic batch message is ex-
changed between two controllers is added. Furthermore, the
transmission delay of this statistic batch message between the
controllers must be added. Since the statistic polling interval
is typically much larger than the transmission delay, they
can be neglected. Figure 9 depicts the CCDF of the traffic
matrix entry staleness for the default statistic polling rate of
T = 2000ms. It becomes apparent that about 90% of the
values are updated every 2000ms (note the logarithmic scale).
However, some values are staler using DISTTM. Whenever
a coordination is triggered and its instructions are sent to
a controller, the statistics of a flow which is assigned to
another controller are not polled anymore. The next update
for this flow arrives with the next statistic batch message
of the responsible controller. In the meantime the affected
entries are not updated. As the figure shows for a polling
period of T = 2000ms, most remaining entries are updated
in less than 2 · 2000ms = 4000ms. Shorter intervals are
also possible during the coordination procedure. Altogether,
DISTTM leads to an exponentially distributed excess staleness.

89ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

After a coordination the staleness is restored to T .

F. Summary
The results of the evaluation demonstrate that DISTTM sig-

nificantly reduces monitoring costs resulting from a reduced
number of required statistic requests per controller. However,
introduced coordination messages lead to a trade-off between
monitoring costs and additionally added overhead. We control
this trade-off through a coordination threshold which con-
trols the frequency of coordinations and improves the flow
assignment. Furthermore, the results reveal that the staleness
of matrix entries remains the same for approximately 90% of
all measurements. Apart from that, the evaluation shows that
the introduced fairness schemes allow an adjustable and fairer
load distribution among controllers and switches, respectively.

V. CONCLUSIONS

In this paper we show how the collaboration between SDN
controllers significantly reduces monitoring overhead while
sacrificing a negligible performance fraction. The key to this
reduction is a collaborative system in a distributed SDN
control plane denoted DISTTM that divides the monitoring
tasks such that redundant flow monitoring is eliminated. We
use DISTTM to exemplarily collect estimates of traffic matrix
information. We measure the performance of the monitoring
system using the traffic matrix entry staleness. The empirical
results show an exponentially distributed excess staleness
when DISTTM is utilized. We explore the assignment of
monitored flows to corresponding controllers based on dif-
ferent criteria. For example, we show the impact of different
fairness allocations on the respective controller and switch
load distributions. Note that the SDN controllers need not
to be in the same domain. We keep the investigation using
real world network traces and topologies for future work.
Further investigations will also explore adaptive polling rates
per controller and dynamic fairness schemes.

ACKNOWLEDGMENT

This work has been funded in parts by the German Research
Foundation (DFG) as part of project B1, C2 and C3 within
the Collaborative Research Center (CRC) 1053 – MAKI.
Parts of this work have been conducted within the SENDATE
project, a project funded by the German Federal Ministry of
Education and Research (BMBF). The authors would like to
thank Julius Rückert and Amr Rizk for their valuable input
and contributions.

REFERENCES

[1] B. Awerbuch, “Optimal Distributed Algorithms for Minimum Weight
Spanning Tree, Counting, Leader Election, and Related Problems,” in
ACM Annual Symposium on the Theory of Computing (STOC), 1987.

[2] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar,
“ONOS: Towards an Open, Distributed SDN OS,” in ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (HotSDN),
2014.

[3] S. Chowdhury, M. Bari, R. Ahmed, and R. Boutaba, “PayLess: A
low Cost Network Monitoring Framework for Software Defined Net-
works,” in IEEE/IFIP Network Operations and Management Symposium
(NOMS), 2014.

[4] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC
3954, October 2004.

[5] S. Hassas Yeganeh and Y. Ganjali, “Kandoo: A Framework for Efficient
and Scalable Offloading of Control Applications,” in ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking (HotSDN),
2012.

[6] R. Jain, The Art of Computer Systems Performance Analysis. John
Wiley & Sons, 1991.

[7] L. Jose, M. Yu, and J. Rexford, “Online Measurement of Large Traffic
Aggregates on Commodity Switches,” in USENIX Workshop on Hot
Topics in Management of Internet, Cloud, and Enterprise Networks and
Services (Hot-ICE), 2011, pp. 1–13.

[8] T. Karagiannis, M. Molle, M. Faloutsos, and A. Broido, “A nonstationary
Poisson view of Internet traffic,” in IEEE International Conference on
Computer Communications (INFOCOM), vol. 3, 2004, pp. 1558–1569.

[9] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama et al., “Onix: A Distributed
Control Platform for Large-scale Production Networks,” in USENIX
Symposium on Operating Systems Design and Implementation (OSDI),
2010.

[10] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid
Prototyping for Software-defined Networks,” in ACM Hot Topics in
Networks (HotNets), 2010.

[11] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann, “Log-
ically Centralized?: State Distribution Trade-offs in Software Defined
Networks,” in ACM SIGCOMM Workshop on Hot Topics in Software
Defined Networking (HotSDN), 2012.

[12] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, 2008.

[13] A. Medina, C. Fraleigh, N. Taft, S. Bhattacharyya, and C. Diot,
“Taxonomy of IP traffic Matrices,” in SPIE ITCom: The Convergence of
Information Technologies and Communications. International Society
for Optics and Photonics, 2002.

[14] Open Networking Fundation, “Software-Defined Networking: The New
Norm for Networks,” ONF White Paper, 2012.

[15] K. Phemius, M. Bouet, and J. Leguay, “DISCO: Distributed multi-
domain SDN controllers,” in IEEE/IFIP Network Operations and Man-
agement Symposium (NOMS), 2014.

[16] S. Shirali-Shahreza and Y. Ganjali, “FleXam: Flexible Sampling Exten-
sion for Monitoring and Security Applications in Openflow,” in ACM
SIGCOMM Workshop on Hot Topics in Software Defined Networking
(HotSDN), 2013.

[17] A. Terzis, L. Wang, J. Ogawa, and L. Zhang, “A Two-Tier Resource
Management Model for the Internet,” in IEEE Global Communications
Conference (GLOBECOM), 1999.

[18] A. Tootoonchian and Y. Ganjali, “HyperFlow: A Distributed Control
Plane for OpenFlow,” in USENIX Internet Network Management Work-
shop/Workshop on Research on Enterprise Networking (INM/WREN),
2010.

[19] A. Tootoonchian, M. Ghobadi, and Y. Ganjali, “OpenTM: Traffic Matrix
Estimator for OpenFlow Networks,” in Passive and Active Measurement,
A. Krishnamurthy and B. Plattner, Eds. Springer, 2010, vol. 6032, pp.
201–210.

[20] P. Tune and M. Roughan, “Internet Traffic Matrices: A Primer,” in ACM
SIGCOMM eBook: Recent Advances in Networking, H. Haddadi and
O. Bonaventure, Eds., 2013, vol. 1, pp. 108–163.

[21] N. van Adrichem, C. Doerr, and F. Kuipers, “OpenNetMon: Network
monitoring in OpenFlow Software-Defined Networks,” in IEEE/IFIP
Network Operations and Management Symposium (NOMS), 2014.

[22] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. Madhyastha,
“FlowSense: Monitoring Network Utilization with Zero Measurement
Cost,” in Passive and Active Measurement, M. Roughan and R. Chang,
Eds. Springer, 2013, vol. 7799, pp. 31–41.

[23] M. Yu, L. Jose, and R. Miao, “Software Defined Traffic Measurement
with OpenSketch,” in USENIX Symposium on Network Systems Design
and Implementation (NSDI), 2013.

[24] Y. Yu, C. Qian, and X. Li, “Distributed and Collaborative Traffic Mon-
itoring in Software Defined Networks,” in ACM SIGCOMM Workshop
on Hot Topics in Software Defined Networking (HotSDN), 2014.

[25] Y. Zhang, “An Adaptive Flow Counting Method for Anomaly Detection
in SDN,” in Conference on emerging Networking EXperiments and
Technologies (CoNEXT), 2013.

90ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

STEAN: A Storage and Transformation Engine
for Advanced Networking Context

Marc Werner⇤, Johannes Schwandke⇤, Matthias Hollick⇤,
Oliver Hohlfeld†, Torsten Zimmermann† and Klaus Wehrle†

⇤ Technische Universität Darmstadt, Secure Mobile Networking Lab (SEEMOO)
† RWTH Aachen University, Chair of Communication and Distributed Systems (COMSYS)

Abstract—Legacy Internet systems and protocols are mostly
static and keep state information in silo-style storage, thus mak-
ing state migration, transformation and re-use difficult. Software
Defined Networking (SDN) approaches in unison with Network
Functions Virtualization (NFV) allow for more flexibility, yet
they are currently restricted to a limited set of state migration
options. Impeding the sharing of networking and system state
severely limits the ability to optimally manage resources and
dynamically adapt to a desirable overall configuration. We
propose a generalized way to collect, store, transform, and
share context between NFs in both the legacy Internet and
NFV/SDN-driven systems. To this end, we design and implement
a Storage and Transformation Engine for Advanced Networking

Context (STEAN), which constitutes a shared context storage,
making network state information available to other systems
and protocols. Its pivotal feature is the ability to allow for state
transformation as well as for persisting state to enable future re-
use. By means of experimentation, we show that STEAN covers
a diverse set of challenging use cases in legacy systems as well
as in NFV/SDN-enabled systems.

I. INTRODUCTION

Network management currently undergoes massive changes
towards realizing a more flexible management of complex
networks. Recent efforts include 1) rethinking the control
plane design by applying operating system design principles to
realize Software Defined Networking (SDN), and 2) Network
Function Virtualization (NFV) inspired by the success of vir-
tualization in the server market. These advances aim at a more
flexible and dynamic service deployment, increased resource
utilization, improved energy efficiency, vendor independence,
and ,ultimately, decreased operational costs.

While these techniques advance packet processing and ser-
vice control, they do not address state management. However,
to achieve the true benefits of network and service virtualiza-
tion as well as control plane programmability, scalable state
sharing is of high importance—in particular when attempting
to virtualize stateful network functions (NFs). This require-
ment has lead to the development of various systems that allow
explicit state migration between NFs such as Split/Merge [1],
OpenNF [2] or StatelessNF [3].

Despite their success, current state sharing mechanisms are
customized solutions tailored to specific use cases and are
ignoring the fact that they continue to use closed “silo style”
storage as shown in Fig. 1 (a).

We advocate to break these silos open and allow state to be
shared within the entire ecosystem of a network, ranging from

Application
Application

Application

Context
1

Context
1 Context

2
Context

2

NF Group 1 NF Group 2 NF Group 1 NF Group 2

Base ContextBase Context

f
T1

f
T1 f

T2
f
T2

Application
Application

External Applications

STEAN

Application
Application

Application

Application
Application

External Applications

NF
1

NF
1 NF

2
NF

2 NF
1

NF
1 NF

2
NF

2

(a) (b)

Fig. 1. Current state sharing frameworks only allow sharing between functions
of the same group (a). We enable sharing context between different groups
by using a common base context and mapping the function specific context
using the transformation functions fT1 and fT2 (b).

SDN controllers over NFs to routers and protocol implemen-
tations (Fig. 1 (b)). By following this approach, we pave the
way for realizing a network state plane in which network state
is decoupled from the implementation of NFs similar to the
decoupling of the control and data plane introduced by SDN.
This decoupling of packet processing and network state will
lead to a more flexible and dynamic network management, and
further boost the deployment of new and innovative services.

New network management functions can use the state plane
to easily aggregate state of multiple functions operating at
different layers without requiring explicit support in each
function. The proposed state decoupling thus enables new
ways for network state cross-layering that is harder to achieve
in current isolated solutions. In a similar fashion, network
state can be migrated between functions more easily without
explicit support.

As state migration between NFs is challenged by different
state representations, we further advocate the use of state
transformation functions. Transformation functions allow us
to leave the internal state representation of the legacy systems
unaltered while still sharing state with other systems. Since
the transformation functions operate within the state plane
rather than in each network function, we limit the explicit
need for supporting state migrations. This approach surpasses
the flexibility of existing solutions and enables us to generalize
state management across multiple systems.

Extending the sharing and re-use of information between
systems and protocols beyond state information further opens
networks to a more flexible and dynamic management. We callISBN 978-3-901882-83-8 c� 2016 IFIP

91ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

this extended set of information the context of a networked
system. The context includes the internal state as well as the
metadata describing how to interpret the stored information.
Additionally, the context includes the current configuration
parameters, monitoring information and historical records.

We summarize our contributions as follows:
1) We propose a Storage and Transformation Engine for

Advanced Networking Context (STEAN). It provides a general-
ized way to share context in a diverse set of core functionality
such as routing, network processing, and dynamic protocol
adaptation. This relies on collecting and managing context
from different sources (e.g., NFs, protocols on all layers of
the network stack) using their preferred state representation,
thus replacing per-entity state storage with a shared context
management. It makes this dynamic information available to
other systems and protocols, and stores and persists the current
context to re-use at later points in time.

2) We introduce transformation functions that allow for
context sharing between systems that were not originally
built with sharing in mind. Transformations allow STEAN
to be integrated into legacy systems and to interoperate with
arbitrary protocols, which permits the seamless extension of
existing protocol stacks and network topologies. Furthermore,
transformation functions allow us to share context between
different NFs that are—until now—only designed to exchange
state between instances of the same implementation.

3) We demonstrate the functionality of STEAN and evalu-
ate its general applicability as well as its performance in two
selected use cases.

II. USE CASES

We provide several motivating use cases that show why
broader sharing of context is beneficial for NFs as well as
for existing systems such as routing protocols in Wireless
Multihop Networks (WMNs). Moreover, we show that explicit
support of context sharing is essential for the development of
future networks. To demonstrate the general applicability, we
discuss both abstract and specific use cases.

A. UC1. Migration of Network Functions: The migration
or sharing of context is a core enabler of employing virtualized
NFs. This allows NFs to not only scale dynamically but
keep per-flow information consistent across all instances. For
example, an IDS keeps state about each flow, and rerouting
the flow to a different IDS instance can significantly impact
the accuracy due to missing context. Thus, context sharing
improves the detection rate while still supporting dynamic
scaling and flow redirection.

B. UC2. Reconfigure Network Functions: NFs are cur-
rently unable to directly share context with other systems. All
information exchanged between groups of NFs flows via a
central controller, limiting the available context to a predefined
set that is known to the providing and consuming NF as well as
to the controller. An asset management system like PRADS [4]
might want to share information about hosts and services with
an IDS to allow event-to-host/service correlation, or an IDS

might wants to consent a firewall to access a list of malicious
flows in order to block them.

Direct sharing of context adds robustness as it enables a
decentralized context management, and avoids bottlenecks on
the control plane when the shared context is large.

C. UC3. Switching Routing Protocols: Wireless Multi-
hop Networks are a key technology in fifth generation (5G)
wireless networks [5]. Today WMNs are deployed in environ-
ments where wired infrastructure is either not available or too
expensive to deploy [6]. Currently, a variety of parameters and
environmental conditions have to be considered when planning
and deploying a WMN. These considerations determine a
choice of technology and protocols that are fixed over the
lifetime of the network as changing or adapting the networking
stack to varying conditions or usage patterns basically results
in deploying a completely new system configuration.

The dynamic adaptation of routing protocols provides an
exit route to this dilemma. The protocol change within a
WMN, however, must be seamless, without interruption of
end-to-end connectivity and transparent to the end user.

III. CONTEXT TRANSFORMATION

The support for context transformations is the core enabler
for sharing context between different network components.
STEAN implements transformation functions that enable con-
nected clients to share information without agreeing on a com-
mon context. Hence, a client might profit from the information
others have contributed without being explicitly aware of the
existence, or even the context, of other systems or protocols.

We use a running example throughout this section to
show how transformation functions can be employed to share
context between independent NFs: a network consisting of a
Network Address Translator (NAT), an SDN-enabled switch
that balances the traffic load between two firewalls, and an IDS
(Fig. 2). All NFs in this example are STEAN-enabled. The
SDN controller providing rules for the switch is connected
to STEAN, where it stores its state, including the SDN
rules. During normal operation, the different NFs operate
independently of each other.

Now, we consider the following failover scenario: Link 1
carrying the traffic assigned to Firewall A fails so all traffic is
re-routed to Firewall B. The traffic load exceeds the capacity
of a single firewall instance, thus traffic must either be dropped
or SDN rules must be dynamically generated to enable a pre-
filtering on the switch.

A. Concept
Transformations allow developers to create and use an

extensible set of functions that acts as an additional layer
between the client and the context storage. This layer is
responsible for translating between the client-specific context
and the common base context. It allows the client to store and
retrieve the information “as is” and “as needed” without adapt-
ing its internal representation to the one used in the context
management system. The client does not need any information
on how the context of other clients has to be interpreted. This

92ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

NAT

Firewall A

Firewall B

SDN Switch

Link 1

Link 2

IDS

Fig. 2. Simple network to show the advantages of sharing context between
different NFs. All NFs as well as the SDN controller are connected to a central
STEAN instance (omitted for clarity).

interpretation is provided by the transformation functions that
offer a client specific view on the base context.

In our example, the NFs can share state between each
other to allow for a flexible load balancing and dynamic
reconfiguration in case of failure. Each NF as well as the
SDN controller keep their internal state representation, and
STEAN provides transformation functions for each client. We
identified four different types of transformation functions:

1) Filter Functions are applied during data retrieval and
limit the results to the context information that is relevant to
the client. For example, filters allow the NAT to only select
the specific state relevant for the currently inspected packet
instead of retrieving a large information base for all active
translation rules.

2) Mapping Functions are applied to transform the client
specific context to the base context and vice versa. Addi-
tionally, these functions can be used to transform serialized
protocol objects within a request to the base context. This
allows for minimal modifications on the client side as all
mappings to the context definition are done within the context
management system. In our example, the firewall as well as
the SDN controller can continue to store context information
using their internal state representation. In case of failure, the
SDN controller is able to request additional rules from STEAN
that are generated from the firewall state using mapping
functions. The controller does not need to understand the state
representation of the firewall but is able to use the additional
information provided without adaptations.

3) Aggregation Functions allow for sub-context re-use.
They enable the context management to combine two or
more existing contexts to a single new context. Aggregations
can thus be compared to the JOIN operation in traditional
databases. After registration, clients can use complex queries
for data retrieval in the same way they do for standard
annotations. For example, the SDN rules generated from the
firewall state (as described above) can be aggregated with the
SDN rules stored by the controller to create a unified rule set
that can be directly installed on the switch.

4) Modifier Functions are called on (filtered) data items
retrieved from the storage. The functions can change the actual
data within the item, alter the metadata attached to the entry,
or modify custom metadata the client contributed. In our
example, a modifier function can be used to add additional
information from which state the SDN rules are generated.

Transformation of partial context, i.e., context information
not providing the complete state required by a client, is
explicitly supported. Partial context can occur when a new
client is connected and other clients only gathered parts of
the required state. When partial context is available, the client
can retrieve the stored state information using transformation
functions to convert the context but has to gather the missing
information using system or protocol specific mechanisms.
Then, the additional context can be contributed to the context
management system and, hence, made available to other
clients. For instance, one routing protocol might only be able
to contribute one-hop neighbors to the context storage while
another protocol also requires all two-hop neighbors of a node.
When switching protocols, the latter can retrieve the list of
one-hop neighbors from context management and start the
discovery of two-hop neighbors based on this information.

STEAN-side transformations allow us to make use of a
shared cache between clients when they connect in parallel
and query the same context information. This cache reduces
the load on the system and thus decreases the response time
for subsequent requests. Additionally, we are able to reduce
the communication overhead between STEAN and the clients
when filtered or aggregated context information is requested
as only the needed set of context information is returned to
the client. The firewalls in our example use the same state
representation and thus share a common cache. This results
in faster access times when packets matched by the same rule
are processed on either instance.

B. Features

STEAN allows clients to specify the transformation func-
tions between their context and the base context upon connec-
tion. Those functions are then called each time data a client
reads or writes data, and the base context is automatically
mapped to the client specific context and vice versa.

The mapping does not need to be a static function but
can be adaptive to runtime configuration changes. This allows
the client to dynamically adapt its context to the current
environment without the need for redefining annotations or
exchanging the transformation function. In our example above,
the IDS can dynamically adapt the information retrieved from
STEAN when a suspicious flow is detected and extend the
number of evaluated flow properties without reconfiguration.
This allows to faster detect attackers by looking for flow
context stored in STEAN—that is contributed by the firewall
systems—once a suspicious flow is identified.

Transformation functions are designed to be modular and
composable: functions can call other functions to create
complex transformations with minimal effort. Additionally,
transformation functions query external systems to retrieve ad-
ditional information. For example, the transformation between
an IP address and a MAC address requires to issue an ARP
request on the local network.

93ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

C. Limitations
Transformation functions are mainly limited by their com-

plexity and the resulting loss in performance. The complexity
of a transformation not only depends on the function itself
but also on the design of the base context. If the base context
efficiently supports the envisioned clients and thus the needed
transformations, the overhead can be kept minimal and the
performance loss is mostly negligible.

Furthermore, the client developer has to manually define
the required transformation functions. Currently, there is no
automatic system that generates transformation functions from
either existing implicit context representations within the
client (data structures, object relations), or from an explicit
description of the client specific context (annotations, mod-
els). Naturally, state transformations are further bound by
the available state. That is, state can only be transformed
but not inferred. For example, transforming state from a
routing protocol maintaining a 1-hop neighborhood to a 2-
hop neighborhood is only partially possible, as the missing
state needs to be inferred by the protocol itself.

D. Designing Transformation Functions
When designing and implementing new transformations, it

is important to keep the computational overhead as low as
possible since all information stored in and retrieved from
STEAN potentially passes the functions. Moreover, it is nec-
essary to evaluate the cost of using transformations against
the cost of locally retrieving or calculating the information
within the client without accessing the context management
system. In some cases, it might be more efficient to (re-
)generate the context in the client rather than extracting the
needed context from STEAN using a complex transformation
function. This is especially true for information with a short
lifetime which requires regular updates that prevent efficient
caching of transformation results.

As the complexity of the transformation functions depends
on the design of the base context, a close interaction while
building the base context and the transformation functions
might reduce computational overhead. This includes that
transformations should target a small scope of the overall
context and apply filter functions as early and as restrictive as
possible. Restrictive filtering limits the number of data items
processed by other, potentially more complex, functions to a
minimum, thus improving the response time of STEAN. This
also contemplates that functions exit as early as possible: if
the NAT in our example requests a single state item, the filter
function must be terminated after the item is found.

During a lookup operation, transformation functions should
be called in a specific order: 1) filter functions reduce the
amount of data retrieved from storage, 2) mapping functions
translate the base context to the client-specific context, and
3) aggregate functions then unify different data items to
provide a single context to the client.

While technically feasible, transformation functions should
not fetch information from external sources unless this infor-
mation is a direct transformation of stored context. Additional

functionality should be placed within the client as it is a feature
of the implemented system or protocol rather than a necessity
of sharing context. In general, transformation functions should
not generate new state but work on the existing context stored
by the clients. Additionally, in order to support concurrent
access, all transformation functions must not directly alter the
stored data but only transform the information received from
the storage subsystem.

IV. SYSTEM DESIGN

STEAN is designed as a node-local system that manages all
context information of connected clients. A node is not limited
to a physical system but can be any network entity with a
well-defined purpose. This can be instances of a virtualized
NF that form a cluster of Intrusion Detection Systems (UC1),
or a single wireless device that is forwarding traffic in a
WMN (UC3). A certain number of clients thus form a node.
The design is centered around the transformation functions as
the enabler for a generalized context management system.

A. Components
STEAN consists of five core components which are assigned

specific tasks within our architecture and can be exchanged
with other implementations. Fig. 3 gives an overview of the
components and their interaction.

Pub/Sub
Interface

Pub/Sub
Interface

Client
API

Client
API

Management
API

Management
API

Management
Handler

Management
Handler

Client
Handler

Client
Handler

ParserParser

Transformation
Module

Transformation
Module

Cache Component
(CC)

Cache Component
(CC)

Interaction
Component (IC)

Transformation Component (TC)

Management Base (MB)

Storage Component (SC)

Module BaseModule Base Type BaseType Base Library BaseLibrary Base

Transformation
Function

Transformation
Function

Transformation
Function

Transformation
Function

Fig. 3. Architectural overview of STEAN. The arrows show the interaction
between components.

1) Interaction Component: The Interaction Component
(IC) is responsible for handling incoming commands. These
commands can be either context requests from a client, or
updates to the state of STEAN itself such as adding new
transformation functions or registering additional annotations.

2) Storage Component: The Storage Component (SC)
holds the actual data that the clients add and query. Data
within the SC is grouped by annotations and organized in
several sets. These sets are used for efficient data retrieval
since only those sets using the requested annotations have
to be searched. In addition, metadata is attached to each
data item. This metadata can either be provided by the client,
by transformation functions that are called during the storage
process, or by STEAN itself.

94ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

3) Transformation Component: The Transformation Com-
ponent (TC) implements transformation functions as described
in Section III. The TC is invoked on every query and connects
to the SC. The TC either transforms the data retrieved by
the SC to match the context of the requesting client (lookup
request) or transforms the inserted data to the base context
(add or modify request).

4) Cache Component: To be better suitable for performance
critical NFs, STEAN makes intensive use of caching. The
Cache Component (CC) is placed between IC and TC. The
cache thus holds context information where the client specific
transformation functions are already applied. The placement
keeps the computational overhead of applying transformation
functions as low as possible but leads to a minimal reuse of
cached results across clients.

We opted against a shared cache placed between TC and IC
but for a cache holding an individual set of results for each
client. The diversity of clients would not allow for a wide reuse
of cached entries as each client specifies its own context. A
shared cache instead extend the number of entries per cache
set and thus lead to a higher retrieval time. Additionally, we
decided not to place a shared cache between SC and TC.
This placement would allow for a higher reuse of cached
information but the gains are much lower since transformations
have to be applied to each returned result.

The cache allows to reduce the retrieval costs for state
lookups, which is relevant for performance critical NFs (e.g.,
functions performing per-packet lookups at line rate). How-
ever, such high-speed NFs are out the of scope of this paper,
and we leave their evaluation for future work.

5) Management Base: The complete metadata and the state
of STEAN itself is represented in the Management Base (MB).
The Type Base within the MB stores information about known
annotations and possible attributes, while the Library Base
manages the transformation functions available. The Module
Base subcomponent holds a list of clients, and their registered
annotations and transformation functions.

B. Communication and Interaction

STEAN provides two interfaces for outside communication.
The Client API is used by the accessing systems and protocols
to store and retrieve context, and the Management API is
used to control the behavior of STEAN itself. While the first
interface is openly available to all clients, the second interface
is protected to prevent unauthorized reconfiguration.

1) Client API: STEAN supports multiple annotation sets
that are registered by clients. Upon connection, each client
has to register and provide the annotation (sub-)set it will
use, and specify the transformation functions to convert the
client-specific context to the base context and vice versa.
After successful registration, the client can access the specified
annotations and transformation rules while access to other an-
notations or transformations is denied. This initial registration
forces each client to completely model its environment and
describe its context compared to the base context before access

is granted. Changes to the set of annotations or transformation
functions require a full re-connect of the client.

STEAN also offers a publish-subscribe interface that notifies
connected protocols when changes to subscribed annotations
occur. This interface can notify connected clients such as
monitoring systems when the stored context changes.

2) Management API: The management interface provides
methods to alter the base context of the service, add and
remove annotations, and register new transformation functions.
Access limitations on the interface prevent clients from reg-
istering arbitrary annotations or transformation functions that
have no value to other clients (as they are unknown), or even
compromise the service itself as malicious functions might
leak sensitive data.

V. IMPLEMENTATION

STEAN is implemented in C++ and runs as an indepen-
dent service on the host system. We successfully tested the
functionality on Linux, FreeBSD and Apple OS X.

A. Storage System

The storage system is implemented on top of a XML
database using RapidXML [7], and the items in the database
are accessible via a management plane. The management plane
is implemented as a map of pointers that allows for direct
access to the requested annotation and handles the lifetime
of each data item. The database consists of several sets,
one per available annotation. Each data item can currently
only be tagged with one annotation and is thus associated
to exactly one set. To remove this limitation, the management
plane provides additional indices that allow for direct access
across annotation sets. These indices can be seen as virtual
annotations and can be accessed in the same way.

STEAN also supports a snapshot feature that can be used
to create a persistent copy of the stored information and the
current state of the service. The snapshots, however, do not
contain the shared libraries registered but assume that the
libraries are available at the same location.

B. Function Libraries

Transformations are implemented as Unix shared objects
and have to be loaded via the Management API. This enables
us to add functions on demand without shutting down or even
recompiling STEAN. After registering the library system wide,
each client needs to register the used transformation functions
together with the base context annotation and the mapping
annotation within its client context. This ensures that STEAN
calls the correct transformation function when an annotation
is requested without the need to specify the function on each
request, and prevents inconsistent mappings between requests
from the same client. Additionally, it keeps the size of request
messages low and thus increases the response time of STEAN.

95ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

C. Client Implementation

We designed and implemented a client library that provides
convenient access to STEAN without the need for the client
developer to handle the connection management and the XML
message building and parsing.

1) UC1. Migration of Network Functions: The PRADS
asset monitor [4] is a passive network monitor that allows
to map the services running in a network and detect changes
in real time. It uses TCP and UDP fingerprinting to identify
operating systems and service applications. PRADS also keeps
an internal state table to identify flows in the network and
provide information on the services offered and used by the
networked systems.

The STEAN support for PRADS is built on top of the
OpenNF [2] modifications that allow to migrate NF state
between different instances. Instead of migrating the state via
the controller, we directly share context information between
the PRADS instances using STEAN. We therefore modified
PRADS to be a STEAN client while still supporting the
OpenNF controller messages to initiate the migration of flows.

The PRADS instances share the complete internal state of
all observed flows using STEAN. Beside a unique identifier
per flow, the protocol 5-tuple and the IP protocol version,
the flow state also includes timestamps for the first and last
seen packets, the number of packets observed for the flow,
as well as the total size of transmitted data for each direction.
PRADS also includes the hardware protocol and any TCP flags
observed into the flow state along with a list of identified assets
for source and destination.

As we are only sharing information between instances
running the same implementation, the only transformation
functions required are filters to select specific flow entries
based on the unique flow identifier assigned by PRADS.

2) UC3. Switching Routing Protocols: We modified im-
plementations of the Ad hoc On-Demand Distance Vector
(AODV) routing protocol [8] as well as the Optimized Link
State Routing (OLSR) protocol [9] to support UC3. The pro-
tocols are implemented using the Click Modular Router [10]
framework and we extended the state handling elements to
connect to STEAN. Each protocol uses a special Click element
that is responsible for specifying the protocol context, and
registering annotations and transformation functions during
system startup. This element also handles the communication
with STEAN during protocol operation.

Accompanying the implementation changes, we designed
a base context that closely matches the requirements of the
routing protocols. Specifically, we share the list of one- and
two-hop neighbors as well as the list of multipoint relays and
the routing tables. The protocols do not hold any local context
but solely access information stored in STEAN.

We have implemented transformation functions for both
routing protocols that 1) filter entries in the routing table to
select only the specific route for a single packet and 2) map
the format of an entry to match the internal format of the
accessing routing protocol.

VI. EVALUATION

We evaluate STEAN in the use cases UC1 and UC3
from Section II since they represent the diversity of possible
operation scenarios for a context management system. Before
we present the results from the use case study, we show
the general applicability of STEAN and how the usage of
transformation functions influences the system behavior.

A. General applicability: Our goal is to understand the
performance of basic STEAN operations. We evaluate the
behavior of STEAN using a simple client that is able to
store and retrieve context information. The client inserts and
reads IPv4 addresses that are either represented as a string
with dots separating the octets or each octet represented as
an integer value. Additionally, transformation functions are
available in STEAN to convert between these two formats.
The evaluation is conducted on a single machine with a Quad-
core Intel Xeon CPU and 16 GB of memory. All caches are
disabled to show the raw performance of the transformation
engine and the context storage.

Fig. 4 shows the time per insert for inserting 1000 (a, d),
10.000 (b, e) and 100.000 (c, f) unique IPv4 addresses both
with and without applying the transformation function.

0

50

100

150

200

(a) (b) (c) (d) (e) (f)

tim
e

pe
r i

ns
er

t (
us

)

Socket Transformation Store

Fig. 4. Time per insert without calling a transformation function (a–c), and
with calling a transformation function to convert the representation (d–f).

Our results show that writing to STEAN takes constant time
regardless of the number of entries already stored. Saving
one context entry takes about 140µs when no transformation
function is employed and around 180µs when the simple
function described above is used to convert the representation.
Additionally, we see that at least 1/3 of the request completion
time is spent on socket communicatin. The time shown for
transformations, even when no function is executed, is due to
the overhead passing all requests through the transformation
engine and not interfacing with the storage directly. While we
focus on a single client in Fig. 4, we remark that additional
clients have a negligible performance impact and only increase
the variability of the insert time (not shown).

Fig. 5 depicts the results for reading one out of the
1000 (a, d), 10.000 (b, e) and 100.000 (c, f) addresses inserted
before. The address is selected by applying a filter function
for a random but fixed address per operation.

The experiments show that the time for retrieving context is
linear to the number of entries stored in STEAN. This is due
to the current implementation of the storage component that
is iterating over all entries for an annotation until a match is

96ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

1

10

100

1000

10000

100000

(a) (b) (c) (d) (e) (f)

re
tri

ev
e

tim
e

pe
r a

dd
re

ss
 (u

s)
Socket Transformation Lookup

Fig. 5. Time to retrieve an address without calling a transformation function
(a–c), and with calling a transformation function (d–f). The boxes represent
the median and the error bars show the first and third quartile.

found. This behavior is also represented in the timings for the
transformation engine as they include the time for applying the
filter function. Each item is passed through the filter to check
for a match and thus the transformation time also increases
with the number of entries. Concurrent lookup requests do
not influence the performance of STEAN as read operations
are executed in parallel.

B. UC1. Migration of Network Functions: Our goal is
to compare context sharing using STEAN with current state
migration systems for virtualized NFs such as OpenNF. We are
using a modified implementation of the PRADS asset monitor
that supports OpenNF and also includes our extensions for
STEAN support as described in Section V-C1. All experiments
were conducted inside a Mininet [11] instance.

The data network consists of two PRADS instances
(PRADS1 and PRADS2) that are connected to an Open
vSwitch, and a dedicated host in the data network replays a
university-to-cloud trace. The trace has an overall duration of
approx. 20 h and contains 70 k TCP flows, 2/3 of which are
HTTP(S) flows. On average, a flow has a duration of 35 s and
33.6 flows are active in parallel. For 13 % of the time, more
than 100 flows are active in parallel.

The PRADS instances are connected to STEAN using a ded-
icated management network that also hosts the NF controller.
The controller is responsible for initiating the migration of
flows between the two PRADS instances and for reconfiguring
the SDN switch during migration. The setup is depicted in
Fig. 6. The experiments are run on a single machine with a
Quad-core Intel Xeon CPU and 16 GB of RAM.

STEANSTEAN

Data Network

PRADS
1

PRADS
1

Open vSwitchOpen vSwitch
Replay HostReplay Host

PRADS
2

PRADS
2

NF ControllerNF Controller

Management Network

Fig. 6. Experimental setup for the evaluation of UC1.

We replay the trace at 500 packets per second and initially
send all traffic to PRADS1. Once it has created state for 250
and 400 flows, respectively, we initiate the migration of the
flow state to PRADS2.

The state is either migrated via the controller (OpenNF)
or by sharing the current context using STEAN and only
signalling the migration via the controller. All migrations are
executed with order preserving enabled and STEAN executes
filter transformations to select the context of the flow that is
currently migrated. Fig. 7 shows the migration time for one
TCP flow, comparing the OpenNF implementation to STEAN.

0
100
200
300
400
500
600
700
800
900

1000

250 400

m
ig

ra
tio

n
tim

e
pe

r f
lo

w
(m

s)

number of flows

OpenNF STEAN

Fig. 7. Total migration time per flow context between two PRADS instances.

We observe that employing STEAN for context migration
reduces the median migration time by 60 % per flow from
280 ms to 160 ms for the 400 flow case. This reduction,
however, comes with an increased variability that is due to
database locking of the current STEAN storage backend on
inserts, delaying some concurrent requests.

Increasing the number of flows to be migrated above 400
results in a large increase in time between storing the context
on PRADS1 and retrieving the context on PRADS2, while
the times for operations involving STEAN remain almost
constant as shown in Fig. 8. The overall performance decrease

0

1000

2000

3000

4000

5000

250 400 1000 1500

st
or

e
/ r

et
rie

ve
 ti

m
e

pe
r f

lo
w

 (u
s)

number of flows

Store Retrieve

Fig. 8. Store and retrieve time per flow for migrating flows using STEAN.

when more than 400 flows are migrated is therefore not due to
a bottleneck in STEAN but originates from either a congestion
in the management network, or an overload of the controller.

Our results show that sharing context using STEAN is faster
than migrating state employing OpenNF for the use case UC1,
proving that STEAN can compete with state-of-the-art systems
for migrating NF state.

C. UC3. Switching Routing Protocols: The main ob-
jective of this experiment is to demonstrate the applicability
of transformation functions by providing seamless transitions
between two routing protocols using STEAN.

We use a wireless mesh testbed in an office environment
to conduct our experiments. Each host runs an instance of
the modified AODV and OLSR implementations along with
a STEAN instance to manage context. The STEAN instance

97ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

is configured with the base context and the transformation
functions described in Section V-C2.

The experiments are conducted with a constant packet rate
of 250 packets per second and a packet size of 1000 Bytes.
The performance of STEAN does not depend on the absolute
throughput of the network but rather on the packet rate as the
number of requests to STEAN does not increase when using
larger packets. We enabled client-side as well as STEAN-side
caches for optimal forwarding performance.

First, we evaluate the behavior of OLSR when running
the original implementation as well as our modifications that
enable context sharing. Running OLSR with STEAN support
to manage the protocol context increases the average end-to-
end delay from 6.76 ms to 11.93 ms and the jitter from 1.76 ms
to 103.08 ms. However, this increase is still acceptable for
almost all applications running across a wireless mesh network
and even allows for Voice over IP calls [12]. Here we observed
that for 2/3 of all packets the forwarding time is equal for both
the standard and the STEAN-enabled implementation. The
higher delay for other packets is due to blocking updates of the
routing table that include packet counters and are thus altered
regularly. Additionally, 95 % of all packets arrive within 33 ms
and the high jitter comes from a few outliers.

Next, we execute a routing protocol transition from OLSR
to AODV during runtime. The transition is triggered using a
central controller and an out-of-band connection to each host
as described in [13]. In Fig. 9, we show that the transition is
executed without interruption in packet forwarding. The only
visible effect is that the jitter is reduced and thus a better
overall network performance is achieved.

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600

e2
e

de
la

y
(m

s)

time (s)

Transition / Migration

Fig. 9. End-to-end delay when migrating from OLSR to AODV during normal
network operation. The transition is executed after 295 s (dark blue line).

We conclude from the experiments shown above that a
common state store in conjunction with transformation func-
tions as implemented by STEAN is able to support seamless
protocol transition in WMNs with minimal overhead and
enables protocol transitions during run-time without loosing
end-to-end connectivity. The transition is transparent to end
systems as well as overlying protocols.

D. Implementation Overhead: To quantify the modifi-
cation required to support STEAN in the aforementioned
systems, we counted the Lines of Code (LoC) that were added
or changed in each implementation (Table I).

The results show that systems designed to share context
information only require minimal changes to support STEAN.
While the number of LoCs for AODV and OLSR might
indicate rather dramatic changes, the actual implementation

TABLE I
ADDITIONAL OR CHANGED CODE TO IMPLEMENT STEAN SUPPORT.

Implementation LoC added/changed Change in Code

AODV 542 21.4 %
OLSR 1289 49.9 %

Common Click Code 1243 n/a
PRADS w. OpenNF 144 0.7 %

STEAN shared library 972 n/a

overhead was minimal since only a few functions needed to
be changed. As these functions were largely scattered over the
code, they increased the overall LoC count.

VII. RELATED WORK

One approach of existing work to migrate NFs is moving
the complete virtual machine (VM) as done by Remus [14].
This guarantees seamless failure recovery without modifying
the function itself. However, migrating the VM comes at a sig-
nificant cost as not only the relevant state of the NF itself but
the state of the complete operating system is transferred to the
backup system on a regular basis. Depending on the load of the
actual VM, this checkpointing can cause a significant amount
of additional latency to the normal operation. Alternatively,
lightweight VMs such as specialized single-process containers
can be used to reduce the overall replication overhead as
shown by Tardigrade [15].

While migrating the complete (lightweight) VM suffices in
a failover scenario, the systems lack an efficient measure to
scale on different loads as the complete state of all flows needs
to be duplicated, which not only wastes memory but also might
result in a false behavior of the replicated NF.

Split/Merge [1] and Pico Replication [16] provide a frame-
work to copy, migrate and replicate the state of NFs. They
allow the migration of state from several instances of the
same NF when creating or destroying a copy, or in the case
of failover. In addition to the above, OpenNF [2] provides
coordinated control of forwarding state in SDN to avoid packet
loss or re-ordering, which can lead to a degraded performance
of NFs. Kothandaraman et al. [17] as well as Gember-Jacobson
and Akella [18] improve the performance of OpenNF by
exchanging the function state directly without involving the
control plane during migration. In contrast, Kablan et al. [3]
propose to keep the state externally, leaving the NF itself
stateless and centralizing all state management.

Statesman [19] introduces a network-wide state manage-
ment architecture that is tailored towards data centers. It
focuses on the collection and migration of states from multiple
network management applications. The goal is to manage the
configuration state of the complete network and to allow for a
coordinated network-wide state transition, while keeping track
of network invariants and offering several mechanisms for con-
flict resolving during state migration. Statesman focuses on the
network-wide configuration state of management applications,
but is not designed to handle the state of protocols or NFs.

98ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE II
OVERVIEW OF THE RELATED WORK.

Scope State Exchange Features Use Case
VM App. Direct Sharing Migration Persistence Transformations Decoupled State NFs Mgmt. WMN

Remus [14] ++ �� o � �� �� �� + o ��
Tardigate [15] ++ �� �� + �� �� �� + o ��

Split/Merge [1] �� ++ �� + �� �� �� ++ � ��
Pico Replication [16] �� ++ + o �� �� �� ++ � ��

OpenNF [2] �� ++ �� + o o �� ++ � ��
DiST [17] �� ++ � ++ �� �� �� ++ o ��

p2p OpenNF [18] �� ++ � ++ �� �� �� ++ o ��
Stateless NF [3] o ++ ++ � o �� ++ ++ o ��
Statesman [19] �� ++ + �� ++ � ++ � ++ ��

STEAN + ++ ++ o o ++ + + o ++

Table II gives an overview of the related work discussed
above. It specifically shows that existing solutions focus on
the migration of either the complete state of a VM (Remus,
Tardigate) or the state of the NF running within this machine
(Split/Merge, Pico Replication, OpenNF, Statesman).

STEAN separates the context from the actual functionality
and provides a backend store for state information. While
Stateless NF follows the same approach, our solution is also
capable of storing state information from different protocols
and applications across the network stack in a common base
context and is thus capable of sharing the complete virtual
machine state if required.

The current solutions provide state migration between sys-
tems of the exact same type as they directly extract the state
from within the NF (Split/Merge, OpenNF, Stateless NF) or
even require connecting applications to adopt to the state
model of the management system (Statesman). To overcome
this limitation, STEAN uses transformations to allow clients
to specify their context and share information across imple-
mentations without adapting to a specific state model.

Furthermore, the existing systems focus on a single use
case while STEAN specifically targets the complete network
environment and provides a generalized solution for managing
context information.

VIII. CONCLUSION

Sharing context information across components is essential
for a more flexible and dynamic network management, and
further boosts the deployment of new and innovative services.
With this, we are able to overcome the limitations of current
network functions and to include legacy systems such as rout-
ing protocols into new network architectures. Transformations
are a core enabler for this extensive sharing as they allow us to
support a large variety of network components and protocols
without the need to adapt the internal state of these systems
but with minimal changes to existing implementations.

We presented STEAN, a Storage and Transformation Engine
for Advanced Network Context, that enables us to not only
share state between instances of the same implementation
but to extend the sharing of networking context beyond
these boundaries. STEAN supports transformation functions

by design and the architecture is centered around this core
feature. Our evaluation shows that we are able to support a
wide range of use cases with an acceptable overhead.

ACKNOWLEDGMENT

We thank our shepherd Olivier Bonaventure and the anony-
mous reviewers for their insightful comments and suggestions.
This work has been co-funded by the DFG as part of the CRC
1053 MAKI and by LOEWE CASED.

REFERENCES

[1] S. Rajagopalan et al., “Split/Merge: System Support for Elastic Execu-
tion in Virtual Middleboxes,” in NSDI, 2013.

[2] A. Gember-Jacobson et al., “OpenNF: Enabling Innovation in Network
Function Control,” in SIGCOMM, 2014.

[3] M. Kablan et al., “Stateless Network Functions,” in HotMiddlebox, 2015.
[4] E. Fjellskål, “Passive Real-time Asset Detection System,”

http://gamelinux.github.io/prads/.
[5] A. Osseiran et al., “The Foundation of the Mobile and Wireless

Communications System for 2020 and Beyond: Challenges, Enablers
and Technology Solutions,” in VTC Spring, 2013.

[6] M. Afanasyev et al., “Analysis of a Mixed-Use Urban WiFi Network:
When Metropolitan becomes Neapolitan,” in IMC, 2008.

[7] M. Kalicinski, “RapidXML,” http://rapidxml.sourceforge.net/.
[8] C. Perkins, E. Belding-Royer, and S. Das, “RFC 3561: Ad hoc On-

Demand Distance Vector (AODV) Routing,” IETF, RFC, 2003.
[9] P. Jacquet and T. Clausen, “RFC 3626: Optimized Link State Routing

Protocol (OLSR),” IETF, RFC, 2003.
[10] E. Kohler et al., “The Click Modular Router,” ACM TOCS, vol. 18,

no. 3, 2000.
[11] B. Lantz, B. Heller, and N. McKeown, “A Network in a Laptop: Rapid

Prototyping for Software-Defined Networks,” in HotNets, 2010.
[12] M. Karam and F. Tobagi, “Analysis of the Delay and Jitter of Voice

Traffic Over the Internet,” in INFOCOM, 2001.
[13] M. Werner et al., “A Blueprint for Switching Between Secure Routing

Protocols in Wireless Multihop Networks,” in WoWMoM, 2013.
[14] B. Cully et al., “Remus: High Availability via Asynchronous Virtual

Machine Replication,” in NSDI, 2008.
[15] J. R. Lorch et al., “Tardigrade: Leveraging Lightweight Virtual Machines

to Easily and Efficiently Construct Fault-Tolerant Services,” in NSDI,
2015.

[16] S. Rajagopalan, D. Williams, and H. Jamjoom, “Pico Replication: A
High Availability Framework for Middleboxes,” in SOCC, 2013.

[17] B. Kothandaraman, M. Du, and P. Sköldström, “Centrally Controlled
Distributed VNF State Management,” in HotMiddlebox, 2015.

[18] A. Gember-Jacobson and A. Akella, “Improving the Safety, Scalability,
and Efficiency of Network Function State Transfers,” in HotMiddlebox,
2015.

[19] P. Sun et al., “A Network-state Management Service,” in SIGCOMM,
2014.

99ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Efficient Virtual Network Isolation in Multi-Tenant
Data Centers on Commodity Ethernet Switches

Heitor Moraes Marcos A. M. Vieira Ítalo Cunha Dorgival Guedes
Computer Science Department

Universidade Federal de Minas Gerais
Belo Horizonte, Brazil

Email: {motta, mmvieira, cunha, dorgival}@dcc.ufmg.br

Abstract—Infrastructure-as-a-Service providers need to provi-
sion and isolate their tenants’s virtual networks. Current network
isolation solutions either suffer from limited scalability, incur
encapsulation overheads, or require advanced (e.g., OpenFlow)
hardware switches. We propose LANES, a system that provides
isolation between billions of virtual machines using commod-
ity Ethernet switches without encapsulation overheads. LANES
virtualizes each tenant’s network address space and configures
rules on each server to translate (tenant) virtual addresses to
(infrastructure) physical addresses. Virtual address spaces give
tenants flexibility when configuring their virtual networks, and
physical addresses reduce demand on infrastructure switches.
We implement LANES in OpenStack, leveraging OpenStack’s
network description functionalities and using OpenFlow to con-
figure Open vSwitch on infrastructure servers. Our evaluation
shows LANES ensures network isolation with acceptable rule
configuration latency.

I. INTRODUCTION

Infrastructure as a Service (IaaS) providers have a growing
demand for solutions to allocate and manage the resources
offered to their customers (usually called tenants) [1]. Each
tenant requires network resources to interconnect a set of
virtual machines (VMs) in an arbitrary topology. Ideally,
except for specific interconnection agreements, traffic from one
tenant’s VMs should never be visible to other tenants’s VMs;
conversely, only that tenant’s traffic should be able to reach
his VMs. IaaS providers must provision network resources to
guarantee isolation between customer networks.

Simple solutions to provision and isolate tenant networks,
like Ethernet VLANs, do not scale to large datacenters [2].
Researchers, standards bodies, and industry have proposed
several scalable alternatives over the last few years. One
common approach is to virtualize the networking infrastructure
using tunneling [3], [4], which incurs encapsulation overhead,
or to use advanced (e.g., OpenFlow) hardware switches, which
results in additional costs.

Our goal is to provide efficient traffic isolation between
tenants in a datacenter environment on commodity Ethernet
switches. Since each tenant is oblivious to other tenants, ten-
ants’s VMs might use incompatible and overlapping network
configurations (e.g., using the same IP address). It is the
responsibility of the isolation solution to handle this situation
and properly deliver packets to the correct VMs.

To achieve this goal we present LANES, a platform to
provision virtual networks and ensure traffic isolation on
multi-tenant datacenters based on the paradigm of Software

Defined Networks (SDN) [5]. LANES provides flexibility and
extensibility through standard APIs.

LANES allows IaaS tenants to specify their (layer-2) net-
work topology using OpenStack’s network description lan-
guage [6]. The LANES SDN controller then uses OpenFlow [7]
to configure an Open vSwitch instance on each infrastructure
server to provision and isolate tenant networks. LANES was
designed to be compatible with existing datacenter infrastruc-
tures. LANES requires no modification to physical switches; in
particular, LANES runs Open vSwitch on infrastructure servers
but does not require OpenFlow-enabled network switches.

LANES virtualizes network address spaces and isolates
virtual networks using packet rewriting, and does not incur
encapsulation overhead. LANES uses a pair of OpenFlow rules
at each server’s Open vSwitch instance for each virtual link
between communicating virtual machines terminating at that
server. LANES’s address virtualization uses only the physical
servers’ MAC addresses in the physical network, which avoids
scalability issues associated with large layer-2 address domains
that arise when virtual machine MAC addresses traverse the
physical switches [8]. LANES provides flexibility to IaaS
customers and scales to large datacenters while incurring
minimum additional costs.

We evaluate our prototype and show that LANES induces
negligible additional latency when translating packets to vir-
tualize addresses, and that Open vSwitch rule configuration,
which happens only once for each VM pair, takes less than
200ms. We also show that VM traffic under LANES continues
responsive and can achieve full bandwidth utilization even
when under DoS attacks.

The remainder of this paper is organized as follows.
Sec. II presents the idea behind LANES and describes the
packet rewriting technique used, while Sec. III discusses the
implementation details of our prototype using OpenStack.
Sec. IV evaluates the performance of our LANES prototype.
Finally, Sec. V discusses related work and Sec. VI presents
final remarks and discusses possible future work.

II. LANES

LANES provisions and isolates layer-2 virtual networks
in multi-tenant datacenters. A virtual network interconnects
virtual machines (VM) that run on multiple hosts. LANES
runs a virtual switch on all datacenter servers to intercept
packets before they are forwarded. Interception allows LANES
to rewrite packets to virtualize network addresses and isolate
virtual networks (Sec. II-A). We also present the algorithms

100ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

LANES uses to configure packet rewriting and packet forward-
ing (Sec. II-B). LANES requires no modification to hosted
VMs, and puts no restrictions on what IP addresses VMs can
use. LANES also works on unmodified commodity learning
Ethernet switches and scales to datacenters with millions of
VMs and hundreds of thousands of servers. We describe
how we implement LANES’s address virtualization and packet
forwarding in OpenStack on top of existing standards using
Open vSwitch, POX, OpenFlow, and Neutron in Sec. III.

A. Network address virtualization using packet rewriting

Current Ethernet switches have tens of thousands of entries
in their MAC forwarding tables.1 A few hundred servers can
host tens of thousands of VMs and put significant pressure on
switch forwarding tables, causing severe network performance
degradation. In an unmanaged Ethernet segment, VMs can
spoof Ethernet MAC addresses to perform DoS attacks on
switch forwarding tables or sniff traffic.

LANES assigns a unique MAC address to each server
and VM in the infrastructure. We denote the MAC address
of a server (or VM) x as M

x

. When VM u in server s

sends a packet to VM w in server r, the virtual switch at
server s rewrites the original packet changing M

u

to M

s

and M

w

to M

r

. This rewriting allows packets to traverse
(from source to destination servers) a physical network made
of commodity learning Ethernet switches requiring a single
forwarding table entry per server in the infrastructure. No
VM MAC ever reaches the network infrastructure, preventing
VMs from spoofing MAC addresses. LANES requires a few
KB of memory at each server to store mappings from VMs
(attached to virtual networks that span that server) to servers
and mappings from servers to MAC addresses.

VMs may use multiple and arbitrary IP addresses. If a
server hosts VMs with identical (conflicting) IP addresses,
the virtual switch needs additional information to forward the
packet to the correct destination VM.

LANES associates one flow identifier F

uw

to the traffic
between each pair (u,w) of communicating IPs. Flow IDs
are generated on demand when VMs start communicating and
need be unique only between pairs of servers (different pairs
of servers may use the same flow IDs). As Ethernet switches
forward packets based on MAC addresses alone, LANES uses
the source and destination IP addresses to store flow identifiers.
Although the number of possible flows is up to 264, servers
need to store only one flow ID per pair of communicating IPs.
We note LANES creates one flow identifier for all connections
between a pair of communicating IP addresses. This reduces
the cases where a new identifier has to be created to when a
pair of IP addresses exchange their first packet.

As an example of LANES’s address virtualization, consider
the deployment scenario in Fig. 1 with two virtual networks,
two servers, and six VMs. We consider that servers are
configured with address mappings shown in Tab. I (we explain
how LANES generates mappings in Sec. II-B) and that VM i

uses a single IP address denoted by A

i

.

When VM u transmits a packet to VM w, server s’s virtual
switch intercepts a packet P = [M

u

M

w

| A
u

A

w

]. As this is an

1A Cisco Catalyst 4500-X switch has 55K MAC forwarding table entries.

Server r
Virt. net 2

VM
w

Virt. net 1

Mw

Mr

VM
z

Mz

VM
y

My

Virtual Switch

ETHERNET NETWORK

Server s
Virt. net 2

VM
u

Virt. net 1

Mu

Ms

VM
v

Mv

VM
x

Mx

Virtual Switch

LANES
CONTROLLER

Network
State

&
Config

Fig. 1: LANES perspective of an example deployment in a
multi-tenant datacenter.

TABLE I: An example flow identifier table for servers in Fig. 1.

OUTBOUND KEY INBOUND KEY
SRC MAC DST MAC SRC IP DST IP FLOW SRC MAC DST MAC

M

u

M

w

A

u

A

w

F

uw

M

s

M

r

M

w

M

u

A

w

A

u

F

wu

M

r

M

s

M

x

M

y

A

x

A

y

F

xy

M

s

M

r

M

y

M

x

A

y

A

x

F

yx

M

r

M

s

outbound packet,2 LANES looks up the MAC address of VM
w’s server (this table is not shown), matches packet P ’s header
against line 1 in Tab. I, and rewrites P into P

0 = [M
s

M

r

|
F

uw

]. When the packet enters the physical network, switches
learn which port to use to reach M

s

and switches that do not
yet have a entry for M

r

in their forwarding tables broadcast
the packet. When server r receives packet P 0, it identifies this
as an inbound packet and looks up F

uw

in Tab. I to rewrite
P

0 back into P and forward the original packet to VM w.

B. Packet forwarding

LANES intercepts all packets that VMs send to perform
address virtualization. If a packet matches an entry in the
flow identifier table, LANES forwards as indicated by its flow
identifier. We now describe how LANES creates flow identifiers
for packets with no matches.

LANES requires information about the infrastructure and
hosted virtual networks to identify which VMs can com-
municate and configure flow identifiers accordingly. LANES
requires a mapping of VMs to their virtual networks and
a mapping of VMs to the infrastructure server where they
run. These mappings can be pregenerated according to virtual
network configurations or generated on demand as VMs are
instantiated, shutdown, or migrated (e.g., when scaling to
variable workloads).

LANES also requires a database of which IP addresses are
configured in each VM. This database can be pregenerated
according to virtual network configurations, or inferred on de-
mand sending ARP packets to all VMs in the tenants’s virtual
network. Remember that LANES creates one flow identifier
for each pair of IPs communicating. To avoid VMs creating
arbitrary flow identifiers, the infrastructure provider can limit
the number of IPs that a VM can use, or charge for each IP
associated with a VM.

In cases where there are no mappings for a packet, LANES
determines the packet type, source, and destination. LANES

2Inbound and outbound packets can be identified by their input ports, or by
checking if the destination MAC address is the server’s MAC address.

101ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

confirms that source addresses (layers 2 and 3) belong to the
sending VM. LANES also checks if source and destination
are attached to the same virtual network or if the destination
is in an external network (e.g., the Internet). If any of the
checks fail, e.g., when VMs are sending packets to non-
existing destinations, LANES maps the packet to a special F

drop

flow identifier. LANES discards all packets that match to F

drop

.
If the packet is to be forwarded, LANES creates a mapping
according to the packet’s type, source, and destination, as we
describe next.

Traffic within a physical server. Authorized traffic between
VMs located on the same server is forwarded without modi-
fication and no packet rewriting is performed. When the first
packet of a flow between a pair of IPs belonging to local VMs
is intercepted at a server, LANES installs a mapping to a special
flow identifier F

local

.

Traffic between physical servers. When LANES identifies that
a packet’s destination VM runs on a different server, LANES
allocates any unused flow identifier F

uw

(between the pair
of communicating servers) to the pair of communicating IPs.
Packets mapping to this flow identifier are rewritten (Sec. II-A)
and forwarded to the physical network. LANES also configures
F

uw

at the destination server’s virtual switch. Later, when
packets reach the destination server, they are rewritten back
to their original form and forwarded to the destination VM.

ARP queries. Tenants may use identical, conflicting IP ad-
dresses in their VMs. Left unchecked, an ARP query could
get multiple answers. LANES not only contains ARP packets
to their VM’s virtual networks, it answers ARP requests on
behalf of VMs to reduce the number of broadcast packets.

IP broadcast traffic. Broadcasts are expensive in large dat-
acenters and can have significant negative performance im-
pact. IP broadcast packets must also be contained to their
virtual networks. Consider VM u running on server s sends
a broadcast packet P = [M

u

M

?

| A

u

A

?

], where M

?

and
A

?

denote broadcast MAC and IP addresses (A
?

has multiple
possible values in virtual networks with multiple IP subnets).
LANES forwards packet P , unmodified, to any other VM in
u’s virtual network that is running on server s (as for unicast
traffic within a physical server), then uses two mechanisms to
transmit broadcast packets between servers.

If the datacenter Ethernet network supports layer-2 multi-
cast, LANES can be configured to create multicast groups for
each virtual network. LANES generates a flow identifier F

u?

for
packet P as described for unicast packets in Sec. II-A, except
LANES (i) looks up the multicast group of u’s virtual network,
denoted M

0
u

, instead of the destination server’s MAC address,
and (ii) installs mappings for F

u?

on all servers that run VMs
attached to v’s virtual network. As an example, LANES rewrites
P into P

0 = [M
s

M

0
u

| F
u?

]. This solution requires one entry
in switch MAC forwarding tables for each virtual network’s
multicast group.

If the datacenter does not support multicast or if Ethernet
switch MAC forwarding tables cannot handle both server MAC
addresses and multicast addresses simultaneously, LANES emu-
lates broadcast using unicast packets. Again, LANES generates
a flow identifier F

u?

for packet P as described for unicast
packets in Sec. II-A, except LANES (i) looks up the MAC
addresses of all servers running VMs attached to u’s virtual

TABLE II: An example flow identifier table for broadcast and
external packets for servers in Fig. 1.

OUTBOUND KEY INBOUND KEY
SRC MAC DST MAC SRC IP DST IP FLOW ID SRC MAC DST MAC
Broadcast from VM u:

M

u

M

?

A

u

A

?

F

u?

M

s

M

0
s

External connections from VM u:
M

u

M

�

A

u

—- F

u�

M

s

M

�

M

�

M

u

—- A

u

F

�u

M

�

M

s

network, and (ii) installs mappings for F

u?

on all these
servers. LANES then configures servers to transmit multiple
unicast packets for each broadcast packet. Emulating broadcast
requires no additional entries in switch MAC forwarding tables
and avoids the overhead of configuring multicast groups; this
solution is preferable to multicast for virtual networks that span
a small number of servers.

Servers that receive broadcast packets from VMs in other
servers use the mappings for F

u?

to rewrite P

0 into P , then
forward P to all local VMs attached to u’s virtual network.
We show an example flow identifier mapping for broadcast
packets in Tab. II.

If LANES can map VMs to their IP subnets, then LANES
can reduce network load by creating multicast groups for each
IP subnet (at the cost of additional switch MAC forwarding
table entries) or send unicast packets only to servers running
VMs in that IP subnet. IP subnets could be specified in virtual
network configurations or inferred from DHCP messages in
virtual networks configured using DHCP.

Traffic to external networks. LANES allows VMs to commu-
nicate with the Internet or with VMs in other virtual networks
by placing layer-3 routers at virtual network boundaries. These
border routers serve as gateways. Packets to and from external
networks are identified by having the border router’s MAC
address, denoted M

�

.

Consider VM u in server s sends packet P = [M
u

M

�

|
A

u

A

�

] to an external host A
�

. LANES generates an external
flow identifier F

u�

for packets between VM u and A

�

. To
avoid generating one flow identifier whenever a VM connects
to a different external IP address, we note that LANES needs
to virtualize the VM’s MAC and IP addresses, but not the
gateway’s MAC address or the destination’s IP address. LANES
builds external flow identifiers F

u�

with 32 bits to virtualize
VM addresses. External flow identifiers overwrite the source IP
address of outbound packets and the destination IP address of
inbound packets. LANES keeps the external IP address A

�

un-
touched when rewriting inbound and outbound packets. As an
example, LANES rewrites packet P as P 0 = [M

s

M

�

| F
u�

A

�

].
Tab. II shows example external flow mappings.

LANES allows tenants with multiple virtual networks to
attach VMs to more than one virtual network and route packets
between their own virtual networks. As would be expected
in any network, unless a VM’s source IP address A

u

is
globally-reachable and routed to the infrastructure provider’s
datacenter, the tenant must provide the means for an address
to be translated (using NAT) or for the packet to be tunnelled
(e.g., in a VPN). In such cases, the NAT/VPN server would be
part of the tenant’s network and would be reachable through
LANES.

102ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 2: Applications that compose LANES and interaction forms between them and the IaaS platform.

III. IMPLEMENTATION

We implemented a LANES prototype on top of OpenStack,
using the POX SDN controller. OpenStack is one of the
most well known open IaaS platforms; it provides applications
and APIs that virtualize datacenter infrastructures, covering
tasks such as server allocation, network definition, access
control, firewalls, and high availability. OpenStack’s Neutron
acts as a network abstraction layer, providing APIs for tenants
to express their virtual network topologies, which can then
become accessible to other components.

We implemented LANES in three major modules as shown
in Fig. 2. LANES’s OpenStack driver implements the functions
necessary to connect to Neutron and obtain virtual network
topologies. LANES’s network controller executes on top of
the POX SDN controller and uses OpenFlow to control Open
vSwitch instances running on each server in the infrastructure.
LANES’s persistence module keeps all topology information in
a distributed database for efficient access and robustness.

Network changes such as VM instantiation or migration
are sent to Neutron. Neutron, in turn, propagates changes
to LANES, which can reconfigure Open vSwitch instances
as necessary to guarantee correct packet delivery. When a
virtualization server first boots, its Open vSwitch instance
contacts the LANES controller, which configures that instance
and adds it to its database. Open vSwitch instances inform the
LANES network controller of any changes to its ports (e.g.,
link up and link down events). This allows LANES to obtain
all information it needs to build flow identifiers: map VMs to
virtual networks, map VMs to servers, and map servers to their
MAC addresses.

IV. SYSTEM EVALUATION

This section describes the environment built to evaluate
LANES’s capabilities and performance. We show that LANES
achieves forwarding performance equivalent to existing tools
with negligible memory overhead while providing isolation
and reducing MAC address table pressure on switches.

A. Testing environment

A physical infrastructure corresponding to part of the
infrastructure of an IaaS provider was built to validate LANES’s
operation. Figure 3 presents the testing environment topology.
It shows three virtualization servers connected to two switches.
One switch is used for OpenStack control communications,
to access the datacenter network, to communicate with the
POX controller, and to exchange traffic with the Internet. The
second switch is exclusively used for traffic between virtual

Fig. 3: Physical topology of the testing environment.

machines, corresponding to the most probable configuration
of an IaaS provider. IaaS providers commonly have very big
infrastructures, where servers and controllers are spread across
the network. It is important to note that both switches are
commodity learning Ethernet switches, without any special
configuration.

We chose two switches to facilitate the understanding
and verification of the correct isolation behavior between
the physical and virtualized environment. The virtualization
servers are three Intel Xeon E5440. The POX controller runs
on an Intel Xeon E3-1240. All machines have 1 Gbps network
interfaces and are connected to 1 Gbps switches. The virtual
machines used in all the tests were configured with 1 processor,
1 Gbyte of RAM, 30 Gbytes of storage, and Ubuntu Linux
13.10.

On top of the physical structure, we deployed multiple
virtual networks, from different tenants. Each virtual network
contains multiple VMs and may span multiple servers. We
considered three different software stacks for the network
configuration:

1) LANES with POX module;
2) L2 switch from POX, which is offered as a reference,

indicated as POX+L2;
3) OvS switch. It only forwards packets in Ethernet. It

had no configured controller nor isolation between
virtual networks.

In the following we evaluate isolation properties, flow
establishment latency, forwarding bandwidth (in packets per
second), and load overhead.

103ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 4: Network topology during isolation tests.

TABLE III: Network isolation tests with LANES for the con-
figuration in Fig. 4: only VMs in the same network reply to
echo requests.

Received by
VM1 VM2 VM3 VM4 VM5 VM6

Se
nt

by

VM1 –
p p p

VM2
p

–
p p

VM3
p p

–
p

VM4
p p p

–
VM5 –

p

VM6
p

–

B. Isolation between virtual networks

The test for validating the isolation between virtual net-
works was carried out by sending ICMP packets from multiple
virtual machines of different tenants using the same IP address
block (10.0.0.0/24). The topology presented in Fig. 4 shows the
evaluation environment, which contains a six virtual machines
distributed between two tenant virtual networks. Since the
networks are independent, it is expected that even using the
same IP, a tenant’s packet does not reach VMs in the other
tenant’s network.

The test consists of each VM issuing ICMP ping (echo)
requests to the network broadcast address. In each column of
Tab. III, we mark the virtual machines that replied to the ICMP
echo request packet sent by the VM in each row. As we can
see, LANES allowed the requests to reach only the machines
that belong to the tenant’s virtual network.

While LANES provides isolation between tenant virtual
networks, POX+L2 and OvS do not. Tab. IV shows results for
the same test under POX+L2 and OvS network stacks. Both
mechanisms do not provide isolation and behave similarly,
with all VMs from both networks receiving and replying to
all ICMP echo requests.

To demonstrate the importance of isolation, we performed
a throughput test. We configured a TCP flow between VM

1

and VM
3

, and configured VM
6

to flood its own network
with broadcast packets. That might be the behavior of a
misconfigured application in its own network, or might even
be an intentional malicious DoS attach on the other tenant’s
network. Tab. V presents the observed throughput for the tested
tenant’s TCP flow under each configuration. Since LANES
limits the flood to that tenant’s network, within one server
in the infrastructure, LANES can provide better performance
to the other tenant than the other two configurations.

C. Latency

The objective of latency tests is to measure the time before
the start of communication between two virtual machines

TABLE IV: Network isolation tests with both POX+L2 and
OsS stacks for the configuration in Fig. 4: all VMs in the both
network reply to echo requests.

Received by
VM1 VM2 VM3 VM4 VM5 VM6

Se
nt

by

VM1 –
p p p p p

VM2
p

–
p p p p

VM3
p p

–
p p p

VM4
p p p

–
p p

VM5
p p p p

–
p

VM6
p p p p p

–

Fig. 5: Virtual network topologies used to evaluate MAC
address resolution. All logical networks were implemented
over the physical network in Fig. 3.

inside the infrastructure. During this phase many actions occur,
like MAC address discovery, installation of flow rules into
the OvS switches, packet rewriting (if necessary), and packet
forwarding.

All stages prior to the beginning of communication were
evaluated separately to provide a better understanding of the
system’s behavior. We measured the time required for MAC
resolution by the ARP protocol, the time required for installing
the flow rules and the time required for forwarding the packets
after the flow was established. We also measured the forward-
ing latency of broadcast packets over unicast packets, since this
type of transmission requires software processing by LANES.

MAC address resolution. Because LANES intercepts and
answers all ARP packets without contacting the destination
VM, this communication stage was measured separately. We
measured the time interval between a VM sending an ARP
Request and receiving an ARP Reply. All measurements were
done capturing traffic at the VM’s (virtual) network interface.
The following MAC resolution tests were done using the
topology presented in Fig. 5:

1) Normal operation: VM
1

requests the MAC address
of VM

2

on the same virtual network;
2) Attack on the local network: VM

1

requests the MAC
address of VM

2

while VM
3

is flooding the same local
network NET

1

;
3) Attack on remote network: VM

1

requests MAC ad-
dress of VM

2

while VM
5

is flooding network NET
3

;

TABLE V: TCP throughput between VM
1

and VM
3

in Fig. 4
while VM

6

floods its virtual network with broadcast packets.

Average Std.
Configuration Throughput Dev.
LANES 825 Mbps 2.1
POX+Switch L2 170 Mbps 5.3
OvS 295 Mbps 3.2

104ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100 1000

CD
F

Latency (ms)

Normal
Under attack

External attack
Isolated attack

(a) LANES

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100 1000

CD
F

Latency (ms)

Normal
Under attack

External attack
Isolated attack

(b) POX+L2

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100 1000

CD
F

Latency (ms)

Normal
Under attack

External attack
Isolated attack

(c) OvS

Fig. 6: ARP resolution latency.

4) Attack on isolated network: VM
1

requests MAC
address of VM

2

while VM
4

is flooding network
NET

2

. The difference between tests 3 and 4 is that in
test 4 the attack does not generate inter-server traffic.

Figure 6 shows the results of ARP resolution using LANES,
POX+L2, and OvS. Each figure contains four lines presenting
results for each test.

As expected and confirmed by Fig. 6, LANES had similar
response times in every type of test. This happens because
LANES intercepts the ARP traffic, generates the responses
internally, and prevents performance degradation due to the
flooding attacks. Compared to other scenarios, response times
are higher in the normal case, since the controller has to
participate in all ARP processing.

In the situation where the POX controller is used with
the L2 switch application, the system performance degrades

Fig. 7: Topology used to evaluate flow configuration time,
packet forwarding latency, and broadcast latency.

TABLE VI: Packet forwarding latency for established flows
between VM

1

and the other VMs in Fig. 7 (in ms).

Dest. Conf. Avg. Max Min Std.
VM2 LANES 0.35 1.19 0.26 0.078
VM2 POX+L2 0.36 0.99 0.25 0.079
VM2 OvS 0.37 0.95 0.27 0.080
VM3 LANES 0.32 0.89 0.21 0.070
VM3 POX+L2 0.32 0.74 0.21 0.063
VM3 OvS 0.31 0.70 0.21 0.064

significantly under flood attacks, because all traffic is reaching
all ports, and that must be processed by the L2 switch module.
For that reason, results in Fig. 6 show that POX+L2 has the
worst performance for the attacks tested.

Open vSwitch has the best results in all cases. That
is possible mainly because it executes within the operating
system kernel and also because no type of validation is done.
On the other hand, all switches and network connections
are overloaded during the attacks, because it unconditionally
forwards every packet that is generated during the flood.

Flow configuration latency. We also evaluate the time it takes
LANES to compute flow IDs and configure flow forwading
rules. As LANES rewriting rules require some computation
by the controller and are installed in both the source and
destination virtual switches, we expect some performance loss
relative to POX+L2. We evaluate flow configuration latency
on the topology shown in Fig. 7.

Figure 8 shows the results. In all situations, the use of
a controller that installs forwarding rules reactively causes
a longer delay when compared to an OvS switch without
a controller. Figure 8(b) shows that configuring rules for
inter-server communication has higher latency, as it requires
installing rules in two OvS instances. LANES has performance
similar to that of POX+L2 and we note that the latency
overhead is reasonable, since flow configuration is incurred
only once for each pair of communicating IP addresses (during
the VMs initialization process).

Packet forwarding latency. We evaluate packet forwarding
latency for established flows using the topology in Fig. 7. We
measure the latency between VM

1

and VM
2

as well as VM
3

.

Tab. VI shows average, maximum, minimum, and the
standard deviation of packet forwarding latency for all flows
and different configurations. We observe LANES forwarding
overhead is minimal compared to other networking stacks, with
the benefit of isolation between networks. This is relevant as
forwarding overhead is incurred on each packet, while ARP
resolution and flow configuration happen only once for each
pair of communicating IP addresses.

105ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100 1000

CD
F

Latency (ms)

LANES
POX+L2

OvS

(a) Same server

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100 1000

CD
F

Latency (ms)

LANES
POX+L2

OvS

(b) Different servers

Fig. 8: Latency for installing OpenFlow rules on switches

Broadcast latency. We also evaluate LANES’s performance for
broadcast traffic emulated using unicast packets in the network
topology in Fig. 7. The latency evaluation was performed
sending broadcast ping packets from VM

1

.

Fig. 9 shows broadcast latency for different tests. One
may observe the delays added by including an SDN controller
by comparing the POX+L2 and OvS lines. The reader can
also observe the broadcast of LANES’s software emulation of
broadcast packets by comparing the LANES and OvS lines. Our
current implementation in LANES emulates broadcasts using
unicast packets from userspace, which achieves an average
performance of 0.563 ms, while the SDN configuration using
POX+L2 is 0.035 ms. We note LANES’s performance could
be improved by implementing the emulation of broadcast
over unicast in kernel-space or by performing broadcast using
multicast. As the OvS without controller does not check
anything, its results were significantly better than the other
two, obtaining an average response 0.0056 ms.

Although slower to emulate, the emulation of broadcast
using unicast is worth considering in large environments,
where each tenant usually has few VMs relative to the size of
the datacenter. In these scenarios, emulating broadcast using
unicast packets prevents the tenant from flooding the entire
datacenter network. We also note that there may be only a
few reasons for broadcast packets left as LANES handles ARP
separately.

TABLE VII: Available bandwidth between VM
1

and the other
VMs in Fig. 7 (in Gbps).

Dest. Conf. Avg. Max Min Std.
VM2 LANES 0.94 0.95 0.63 0.02
VM2 POX+L2 0.93 0.94 0.74 0.02
VM2 OvS 0.93 0.94 0.93 0.00
VM3 LANES 0.94 1.05 0.84 0.01
VM3 POX+L2 0.94 1.14 0.76 0.03
VM3 OvS 0.94 0.95 0.92 0.00

D. Available bandwidth

We measured the maximum achievable TCP throughput
using the same topology as in Fig. 7. We use iperf to
generate synthetic traffic and measure bandwidth between
VM

1

and the other two virtual machines, VM
2

and VM
3

. The
TCP connection was tested for 10 hours.

Tab. VII shows achieved throughput in each scenario. The
results demonstrate that the use of an SDN controller does not
influence the results and that LANES’s (negligible) packet for-
warding latency has negligible impact on throughput. Observe
that for connections between VMs in the same virtualization
server, the maximum throughput is limited only in software
by OvS. Thus, the results in these cases can reach values
higher than the maximum expected throughput for connections
(1 Gbps).

E. Scalability evaluation

The last set of tests evaluates the system capacity, in
particular, how the POX controller deals with the demand
of new flow rules. The topology was composed of four
virtual machines distributed over two virtualization servers and
connected to the same virtual network (as in NET

1

in Fig. 4).

We configure VM
4

to generate an increasing rate of TCP
connections over consecutive 120-second rounds. We show the
connection generation rate and round start times in the vertical
bars in the upper graph in Fig. 10. TCP flows are established
with any other VM at random. LANES will then configure
rules for all connections so VMs can exchange traffic. We
measure the CPU utilization of the OvS process in VM

4

as it
handles the highest workload and show measurements using
green triangles in the upper graph of Fig. 10. The middle
graph shows aggregate TCP bandwidth. The bottom graph
shows ping latency, which represents flow configuration delay.
The x-axis of all graphs are aligned and cover the experiment
duration.

The measurement results for LANES, implemented on the
POX controller, are shown in Fig. 10. They show that the
developed system begins to suffer performance degradation
when the rate of TCP connections is about 200 connections
per second. Although it is only capable of handling well a low
amount of new connections, we must remember that LANES
performs several checks before deciding which flows need to
be configured. The use of a production-grade controller, like
ONOS, would certainly improve performance in this case.

Since LANES depends on the topology implemented in
OpenStack and also needs to access the database to query it,

106ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 0.0001

 0.001

 0.01

 0.1

 1

 0 20 40 60 80 100 120 140 160 180 200 220

La
te

nc
y

(m
s)

Test duration (s)

Broadcast packet latency

LANES
POX+L2

OvS

Fig. 9: Broadcast latency.

TABLE VIII: Comparison of SDN-based datacenter network
virtualization solutions (‘yes’ is preferable).

PROPERTY LANES NVP NetLord Diverter
No encapsulation Yes No [12] No [3] Yes [13]
No header modification No Yes Yes No
IP virtualization Yes Yes Yes No
Non-IP traffic No Yes Yes No
On demand config Yes No Yes Yes
No fragmentation Yes Yes No Yes
External flows Yes Yes No Yes

LANES has an overhead higher than other network configura-
tion stacks to handle OpenFlow messages. As LANES has not
been implemented with high performance as its main objective,
given POX has been implemented in Python, we believe that
LANES can be improved by adjusting the used components or
rewriting the functions with higher CPU usage.

V. RELATED WORK

GRE [9], and MPLS [10] require extra header fields to
encapsulate packets and to provide traffic isolation. Moreover,
these approaches have a limited network segment space. For
instance, VLAN fields have 12 bits and allow only 4096 VLAN
tags, severely limiting scalability. Another possible isolation
solution through encapsulation is Q-in-Q [11], which also
makes use of VLAN tags, but it uses two tags instead of
one. This solution allows a much larger amount of isolated
networks to run in parallel, but may still be insufficient for
large datacenters. In addition, as with VLANs, the number of
virtual machines in the datacenter can be so great that the
switches will be unable to store all network MAC addresses
in their forwarding tables. LANES does not require additional
header fields and provides significantly better scalability.

NetLord [3] adopted a solution similar to ours to reduce
the size of routing tables in switches inside a datacenter. Net-
Lord encapsulates packets leaving virtual machines, creating
a new packet header, addressing them to the final server in
which the destination VM is located. By encapsulating the
packet during transmission by the network, NetLord prevents
the MAC addresses of virtual machines to be registered by
switches on the way. Thus, only server addresses are stored in
switch forwarding tables. Traffic encapsulation was necessary
to enable one of the main features of NetLord, which is the use

Fig. 10: Load test results for LANES.

of multiple simultaneous routes between devices. SPAIN [14]
is an application by the same group that takes advantage of
multiple paths to route traffic more efficiently and improve
bandwidth. The main differences between LANES and NetLord
is that NetLord uses encapsulation, which increases packet
sizes and may cause fragmentation, and it requires changes
to the virtualization layer. NetLord also does not allow direct
communication between different virtual networks.

Diverter [13] is an application developed by HP Labs,
which has similar objectives to LANES, such as allowing
virtual networks to share the physical infrastructure while
ensuring isolation. An important difference between Diverter
and LANES is that Diverter assigns IP addresses to VMs; this
simplifies isolation as it prevents IP address collision between
different VMs. LANES allows tenants to configure arbitrary IP
addresses on VMs.

Some of the authors of the initial works on SDN [15]
presented NVP [12], a system to virtualize datacenter net-
works. The tool uses the SDN paradigm and uses network

107ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

topology information created by each customer to build a
traffic isolation solution between participants. Unlike LANES,
which works reactively, NVP precomputes all flow rules based
on virtual network topology configurations. The controller only
communicates with the switches when the topology changes,
which requires change to the configured rules. Flow rule
computation costs are significant, as it is necessary to cover
all possible communication possibilities, ignoring the fact that
VMs rarely establish all possible flows [16]. The authors
report that in a network with 3,000 virtualization servers and
more than 60,000 ports, flow rule computation took up to
one hour to complete. In NVP, isolation between clients on
the physical network is achieved using encapsulation. LANES
provides on-demand configuration of flow forwarding rules
and uses only packet rewriting. We summarize the trade-offs
between different SDN-based datacenter network virtualization
solutions in Tab. VIII.

Other previous works have proposed new traffic control
and resource (bandwidth) allocation solutions for datacenter
networks [17]–[20]. Those solutions allow an IaaS provider
to allocate resources to tenant virtual networks and guarantee
performance bounds. LANES is orthogonal to these solutions,
providing the network isolation they require, and it can be
combined with traffic control and resource allocation solutions
to provide a richer IaaS environment.

VI. CONCLUSIONS

In this work we presented LANES, a system designed to
provision and isolate virtual networks in datacenter environ-
ments. LANES rewrites packet headers to virtualize addresses,
providing flexibility to hosted VMs and preventing VMs from
directly impacting the physical network. LANES requires no
modification to hosted VMs, puts no restrictions on VM IP
addresses, does not incur encapsulation overhead, and scales
to millions of VMs and thousands of servers in a single
Ethernet segment. LANES also does not require advanced
features and works on top of commodity Ethernet switches.
LANES provides these benefits at the cost of memory utilization
on infrastructure servers (hundreds of KBs), increased latencies
during flow setup (hundreds of milliseconds, once per IP pair),
and compute overhead to rewrite packet headers.

We integrate LANES with OpenStack, a widely used IaaS
platform. LANES implements an SDN controller responsible
for orchestrating the use of network resources. LANES uses
Open vSwitch and standard OpenFlow rules to rewrite packets
at infrastructure servers and virtualize network addresses.

We evaluated our implementation of LANES in a physical
testbed. The results show that LANES effectively isolates
traffic between different virtual networks. We also quantified
system performance under heavy workloads. We showed that
LANES can be effective in protecting the network from DoS
attacks within the datacenter network. Finally, the results show
that LANES achieves performance similar to that of simpler
solutions after flow rules are installed.

In the future, we plan to evaluate the advantages of
proactively generating rules. Although such behavior has a
high flow computation cost, it has been advocated by SDN
creators as preferable whenever possible.

ACKNOWLEDGMENTS

This work was funded by FAPEMIG, CNPq, CAPES, and
by projects InWeb (MCT/CNPq 573871/2008-6), MASWeb
(FAPEMIG-PRONEX APQ-01400-14), and EUBra-BIGSEA
(H2020-EU.2.1.1 690116, Brazil/MCTI/RNP GA-000650/04).

REFERENCES

[1] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The Cost of a
Cloud: Research Problems in Data Center Networks,” ACM SIGCOMM
CCR, vol. 39, no. 1, pp. 68–73, 2008.

[2] M. Yu, J. Rexford, X. Sun, S. Rao, and N. Feamster, “A survey of
virtual lan usage in campus networks,” IEEE Comm. Mag., vol. 49,
no. 7, pp. 98–103, 2011.

[3] J. Mudigonda, P. Yalagandula, J. Mogul, B. Stiekes, and Y. Pouffary,
“NetLord: A Scalable Multi-tenant Network Architecture for Virtualized
Datacenters,” in Proc. ACM SIGCOMM, 2011.

[4] T. Sridhar, L. Kreeger, D. Dutt, C. Wright, M. Bursell, M. Mahalingam,
P. Agarwal, and K. Duda, “VxLAN: A Framework for Overlaying
Virtualized Layer 2 Networks over Layer 3 Networks,” IETF, Tech.
Rep., 2014.

[5] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker, “Virtualizing
the Network Forwarding Plane,” in Proc. Workshop Programmable
Routers for Extensible Services of Tomorrow, 2010.

[6] OpenStack, OpenStack Networking Administration Guide, OpenStack
Foundation, 2013.

[7] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” ACM SIGCOMM CCR, vol. 38, no. 2, pp. 69–74,
2008.

[8] T. Narten, M. Karir, and I. Foo, “Address resolution problems in large
data center networks,” RFC 6820, IETF, 2013.

[9] D. D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, “Generic
Routing Encapsulation (GRE),” RFC 2784, IETF, 2000.

[10] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switch-
ing Architecture,” RFC 3031, IETF, 2001.

[11] T. Jeffree, “IEEE Standard for Local and Metropolitan Area Networks—
Virtual Bridged Local Area Networks—Amendment 4: Provider
Bridges,” 2006.

[12] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, N. Gude, P. Ingram, E. Jackson, A. Lambeth,
R. Lenglet, S.-H. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ra-
manathan, S. Shenker, A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt,
A. Yip, and R. Zhang, “Network Virtualization in Multi-tenant Data-
centers,” in Proc. USENIX NSDI, 2014.

[13] A. Edwards, A. Fischer, and A. Lain, “Diverter: A New Approach to
Networking Within Virtualized Infrastructures,” in Proc. ACM Work-
shop Research on Enterprise Networking, 2009.

[14] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul, “SPAIN:
COTS Data-center Ethernet for Multipathing over Arbitrary Topolo-
gies,” in Proc. USENIX NSDI, 2010.

[15] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking Control of the Enterprise,” ACM SIG-
COMM CCR, vol. 37, no. 4, pp. 1–12, 2007.

[16] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, “The
Nature of Data Center Traffic: Measurements & Analysis,” in Proc.
ACM IMC, 2009.

[17] H. Rodrigues, J. R. Santos, Y. Turner, P. Soares, and D. Guedes, “Gate-
keeper: Supporting Bandwidth Guarantees for Multi-tenant Datacenter
Networks,” in Proc. Usenix Workshop on I/O Virtualization, 2011.

[18] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker, “Applying NOX
to the Datacenter,” in Proc. ACM HotNets, 2009.

[19] B. Heller, D. Erickson, N. McKeown, R. Griffith, I. Ganichev, S. Whyte,
K. Zarifis, D. Moon, S. Shenker, and S. Stuart, “Ripcord: a modular
platform for data center networking,” ACM SIGCOMM CCR, vol. 40,
no. 4, pp. 457–458, 2010.

[20] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Ratnasamy,
and I. Stoica, “FairCloud: Sharing the Network in Cloud Computing,”
in Proc. ACM SIGCOMM, 2012.

108ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

FLOWer – Device Benchmarking Beyond 100 Gbit/s

Paul Emmerich, Sebastian Gallenmüller, and Georg Carle
Chair of Network Architectures and Services

Department of Informatics

Technical University of Munich

{emmericp|gallenmu|carle}@net.in.tum.de

Abstract

The growth of bandwidth in computer networks fuels the
constant adoption of measurement equipment and method-
ologies. Networking equipment offers processing capacity
in the Terabit/s range nowadays. However, test equipment
in academia lags behind. We propose FLOWer, a novel and
cost effective approach capable of testing such high-speed
devices. FLOWer combines an inexpensive software packet
generator with an OpenFlow-enabled switch to amplify the
bandwidth while sustaining the flexibility of the software
solution. By utilizing OpenFlow, FLOWer is able to provide
the required bandwidths the software solution cannot gener-
ate on its own. We demonstrate a proof-of-concept with ex-
ample measurements at bandwidths of multiple 100 Gbit/s.

1. Introduction

With data centers deploying 10 GbE as standard equip-
ment and with the increasing availability of succeeding stan-
dards like 40 GbE and 100 GbE the demand for bandwidth
in network devices is rising. At the same time, technologies
like OpenFlow and network function virtualization introduce
new possibilities to configure these devices. However, this
increased flexibility comes with a price, as there is a tradeoff
between performance and flexibility. This situation creates
the need for new benchmarking and testing methodologies
to enable an accurate assessment of these devices.

We propose a new way to efficiently test devices with
bandwidths in the Terabit/s range with little effort. To
achieve this FLOWer uses a combination of a packet gener-
ator with an OpenFlow switch. This combined system offers
the flexibility of a software packet generator and at the same
time the performance of a hardware solution through the
OpenFlow-enabled switch. The software-generated packets
are fed into an OpenFlow-enabled switch which can multi-
ply them manifold via OpenFlow and generate high band-
widths in a simple and elegant way. OpenFlow capabilities
also allow modification or the measurement of the traffic.

Our evaluation is based on modern 10 Gbit/s OpenFlow
hardware. Relevant features and limitations of these devices
are discussed further in Section 3. The most basic test
setup uses the capabilities of FLOWer to perform self-tests
on OpenFlow-enabled devices by connecting the FLOWer

switch with itself. We show this setup with example mea-
surements in Section 4. More complex test setups can be
achieved by connecting the FLOWer switch to other devices.
A sample setup is discussed in Section 5. All results and
code used for the experiments presented here are publicly
available [5], cf. Section 6.

2. Related Work

Packet generators face a trade-off between flexibility and
performance. Software packet generators are typically slow
and unreliable [2]. Hardware packet generators offer high
precision, speed, and number of ports [21]. However, they
lack the flexibility of modern software packet generators
that can be configured with scripts [7]. Specialized hardware
is always expensive compared to the commodity hardware
required for software tools (cf. Section 3.3). The software
packet generator MoonGen [7] solves this problem to some
extent by using hardware features found on commodity
server network interface cards (NICs) to provide high pre-
cision. However, the speed and number of ports still lags
behind commercial hardware offerings as it is restricted to
server hardware.

Professional hardware packet generators offer a large
number of ports and even multiple 100 GbE ports [22].
The need for higher speeds is apparent in the literature.
E.g., Rotsos et al. present OFLOPS, a framework to test
OpenFlow switches with a NetFPGA [20]. Their original
framework was limited to 100 Mbit/s on GbE ports and
later extended to 20 Gbit/s [19] with the OSNT packet gen-
erator [1]. However, the devices they are testing offer speeds
beyond 100 Gbit/s. FLOWer is not an alternative to existing
packet generators, but an addition: it can be combined with
a framework like OFLOPS to solve this discrepancy.

A technique similar to FLOWer was used by Mahadevan
et al. in 2009 [11]. They wired a switch in a way that all
ports were connected back to the switch itself. Broadcast
traffic sent over this configuration loads the switch without
requiring a high performance traffic generator. We use a
similar wiring approach for self testing the FLOWer switch
(cf. Section 4) However, our approach is more precise as
it uses OpenFlow features to shape unicast traffic to our
specific requirements and to measure throughput.

109ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Kuźniar et al. discuss characteristics of OpenFlow flow
table implementations on different switches [10]. The results
like the flow table size and costs of modification operations
are important for us to select a suitable OpenFlow switch.

3. Test Hardware and Software

In the following the hard- and software is presented
which we used for our proof of concept. However, FLOWer
does not depend on these specific devices. It is rather a
methodology and can be transferred to other OpenFlow-
enabled hardware and other packet generators.

3.1. OpenFlow Switches

OpenFlow specifies programmable switches: they can
be configured to match packet headers based on flows.
These flows are also referred to as rules in this paper. The
packets matching against these flows can be modified via
modification actions and can then be sent out on one or more
ports. Traffic can be accounted through statistics associated
with flows. [13]

We use an Edge-Core Networks AS5712-54X 10 GbE
switch which is based on Broadcom BCM56854 Trident II
switch ASICs with 48 10 GbE ports and 6 40 GbE ports [4]
for our proof of concept. This switch is a design approved
by the Open Compute Project, several switches with similar
designs are available on the market [12]1. The standardized
design allows for multiple choices of operating systems
while keeping the hardware costs low. We selected the Pic-
OS operating system as it features a mature implementation
of OpenFlow 1.4 [18].

This hard- and software allows for benchmarking speeds
of up to 720 Gbit/s. However, we did not have 40 GbE cables
in stock, so we were restricted to 480 Gbit/s here. Even this
speed and port density is beyond the capabilities of packet
generators that are usually available in the academic field.

3.2. MoonGen Packet Generator

We use our packet generator MoonGen [6], as it is a
highly flexible software packet generator: it crafts all packets
in real-time with user-provided Lua scripts. It also features
latency measurements with sub-microsecond precision by
using timestamping features on commodity NICs. [7]

High-speed packet generation is not required for
FLOWer, but it simplifies some test setups if the packet
generator can keep up with the fastest port on the switch.
We use MoonGen with two 10 GbE interfaces, which it is
able to saturate on a low-end Xeon E3-1230 v2 with a dual
port Intel X520-T2 NIC. MoonGen is capable of generating
bandwidth of up to 180 Mpps at 120 Gbit/s on commodity
hardware, so it is scalable to 100 GbE switches. Readers
interested in more details about MoonGen are referred to
our full evaluation. [7]

1. This switch is listed as “Accton AS5712-54X” in the specification;
Edge-Core Networks is a subsidiary of Accton.

Moon-
Gen

SwitchSwitch

BG traffic outgoing

BG traffic incoming

RT traffic

Figure 1. Self-flooding test setup

3.3. Cost Effectiveness

The total cost of the test setup (without the device under
test (DuT)) to benchmark devices at 710 Gbit/s with this
switch was less than e 10 000. A test setups for several
Tbit/s using newer 100 GbE switches can be built for less
than e 30 000.

These prices are based on quotes from 2015 and are
expected to drop even further below prices for hardware
packet generators2 as OpenFlow switches and 40/100 GbE
networks become more commonplace.

4. Self-testing SDN Devices

OpenFlow can be used for self-tests of devices. This
allows testing an OpenFlow-enabled switch at maximum
rate, without requiring any additional hardware beside the
device under test, in this case the switch itself, and a
software packet generator running on commodity hardware.

We present possible configurations and example mea-
surements here. A switch can be wired and programmed
such that it sends traffic to itself. We connected port 47 and
48 to our packet generator and port 1 with port 2, port 3
with port 4, etc.

4.1. Evaluating Quality of Service Features

Switches can define multiple queues per port with dif-
ferent priorities to implement quality of service (QoS). Such
hardware features on switches enable modern implementa-
tions of QoS in data centers, e.g. by using IEEE 802.1Q [9]
service classes mapped to queues on a switch [8]. FLOWer
allows us to test hardware features like this under extreme
circumstances as this example measurement demonstrates.

4.1.1. Test Setup. We generate two network flows of
minimum-sized UDP packets with different destination UDP
ports at our packet generator. Figure 1 merely illustrates

2. A search on eBay suggests that a second-hand Spirent TestCenter
packet generator, without any software licenses, with a comparable number
of ports and speeds costs far more than e 100 000.

110ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

wiring and traffic flow not the actual setup. This sketch has
a reduced number of ports and does not represent the full
duplex transmission.

The first network flow, the real-time (RT) flow, is to
be prioritized and sent with a constant rate of 1 Gbit/s. This
flow is matched by a rule on switch port 48 and sent directly
back to the packet generator on switch port 47 via a high-
priority queue (cf. the solid line in Figure 1).

The rate of the second network flow, the background

(BG) flow, is varied in this experiment. The switch is con-
figured to send it out on ports 1 to 46, as depicted with
dotted lines in Figure 1. From there it flows back to these
ports via the external cabling (cf. the slash dotted line in
Figure 1). This amplifies the traffic 46-fold. All incoming
traffic from these ports is sent back to the packet generator
via a low-priority queue. This tests the behavior of a pri-
oritized network flow under increasing load of unimportant
background traffic.

The packet generator then measures the latency of both
network flows. Note that the packet generator receives up to
46 copies for each packet it sends in the background which
is a potential challenge for timestamping. MoonGen uses
sequence numbers for timestamping and defines the latency
as the time until the first copy of a packet arrives back
at the packet generator. Subsequent packets with the same
sequence number are ignored, this is therefore the best-case
latency of the background traffic.

Our repository [5] contains the script selftest/

qos.sh which was used to install the OpenFlow flows on
the DuT.

4.1.2. Test Results. Figure 2 shows the latencies of the two
network flows with the QoS queue enabled and disabled. It
demonstrates that the QoS features work with hundreds of
Gbit/s BG traffic.

The deviation of about 700 ns between background and
real-time traffic for low rates in both tests is a result of
the test setup: the background traffic flows through an
additional hop during the amplification step while the real-
time traffic is forwarded directly back to the packet generator
(cf. Figure 1).

Another result of this test is that the RT traffic is affected
by the presence of BG traffic even with QoS enabled.
Inspecting the histograms of the RT traffic’s latency reveals
that it follows a bimodal distribution. Figure 3 shows the
latency under a background load of 8 Gbit/s with two clearly
visible peaks. As the switch operates in cut through mode,
the left peak represents the immediate transfer of a packet.
The right peak shows delayed transfer due to ongoing BG
traffic transmission, resulting in this bimodal distribution.

Figure 4 on the next page shows the latency distributions
for other ratios of RT to BG traffic as cumulative distribution
functions (CDFs). The amount of packets that must be
queued increases with the BG traffic, i.e., the ratio of the
peaks in the distribution changes with the ratio of the traffic.
All packets must be queued once the link is saturated, so the
QoS features works best when the link is not overloaded.

1

10

100

1,000

L
a
t
e
n
c
y
[
µ
s
]

1 2 4 8 16 32 64 128 256 512

1

10

100

1,000

Background tra�c [Gbit/s]

L
a
t
e
n
c
y
[
µ
s
]

BG tra�c, x Gbit/s (median lat.)

BG tra�c, x Gbit/s (min/max lat.)

RT tra�c, 1 Gbit/s (median lat.)

RT tra�c, 1 Gbit/s (min/max lat.)

QoS disabled

QoS enabled

Figure 2. Forwarding latencies with and without QoS

4.2. Forwarding Performance and Latency

Another self-test scenario is forwarding packets in a
loop (Figure 5). The packet generator sends on both ports
to generate a total bidirectional load of 480 Gbit/s on the
switch. All internal connections are realized with OpenFlow
flows.

4.2.1. Forwarding Performance. We added OpenFlow
rules that match addresses from layer 1 (switch ports) to
layer 4 (UDP ports) with modifications of all supported
header fields from layer 2 to 4 for all packets to maximize
the system load.

The switch achieved line rate in all tested configurations.
Some OpenFlow switches perform a fallback to a software
implementation for operations not supported in hardware
at the expense of performance [20]. PicOS only accepts
OpenFlow flows supported in hardware in line rate [18].

4.2.2. Forwarding Latency. This setup can also be used
to measure the forwarding latency of the switch under full
bidirectional load of up to 480 Gbit/s. Load on the switch
due to processing can influence the observed latency. For
example, RFC 2544 requires measuring the latency of the
DuT under full load [3]. The following test loads all 10 GbE
ports of our switch to quantify this effect on our switch.

111ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

1 1.5 2 2.5 3 3.5 4

0

1

2

3

4

5

6

Latency [µs]

R
e
l
a
t
i
v
e
P
r
o
b
a
b
i
l
i
t
y
[
%
]

Figure 3. Latency distribution of 1 Gbit/s RT traffic with 8 Gbit/s BG
traffic, QoS enabled

The total forwarding latency l consists of the delay
introduced by the connection from the packet generator to
the switch lgen, the forwarding latency lswitch of the switch,
and the number of hops n:

l = 2 · lgen + n · lswitch

We measured the forwarding latency through the switch with
various loop lengths from n = 0 (sending the traffic back
directly) to n = 23. Figure 6 shows the CDFs of different
loop lengths up to n = 15 to improve the readability of
the graph as the remaining CDFs look similar. We can
calculate the following median latencies from these results:
lgen = 480ns and lswitch = 729ns. These values include
propagation delay due to varying cable lengths, we used
copper cables with various lengths between 0.5 and 3 meter.
This introduces an additional error of 12 ns (assuming a
propagation speed of 0.7c [7]) in addition to the granularity
of 12.8 ns of the packet generator [7].

Note that these results are crucial for FLOWer: The
latency of the switch is important for further tests using
the switch to amplify traffic for a separate DuT. In such
a setup, the switch is part of the measurement equipment,
and its accuracy therefore limits the total accuracy of the
experiment.

These results show that forwarding latency does not
depend on the switch ports. This indicates the high accuracy
of the packet generator and that latency is independent from
the used switch port. We did not test all combinations of
ports, one should repeat this test with the appropriate set of
ports to verify this before relying on a switch to run latency-
critical experiments. There may be differences in the latency
between ports on a switch due to the internal architecture
of the switch.

The difference between the minimum and maximum
observed forwarding latency was only 217.6 ns (cf. the
steep CDFs in Figure 6, each based on 48 000 timestamped

1 1.5 2 2.5 3 3.5

0

20

40

60

80

100

1Gbit/s BG tra�c

2Gbit/s BG tra�c

4Gbit/s BG tra�c

8Gbit/s BG tra�c

16 - 414Gbit/s BG tra�c

Latency [µs]

C
u
m
u
l
a
t
i
v
e
p
r
o
b
.
[
%
]

Figure 4. Latency distributions of 1 Gbit/s RT traffic with varying BG
traffic, QoS enabled

Switch

Moon-
Gen

Switch wiring
OpenFlow connection
Packet generator wiring

Figure 5. Loop forwarding test setup

0 2 4 6 8 10 12

0

20

40

60

80

100

n
=
0

n
=

1

n
=
2

n
=

3

n
=

4

n

=

5

n
=

6

n
=
7

n
=

8

n
=

9

n

=
1
0

n
=
1
1

n
=

1
2

n
=
1
3

n
=

1
4

n

=
1
5

Latency [µs]

C
u
m
u
l
a
t
i
v
e
p
r
o
b
.
[
%
]

Figure 6. Latency distributions traffic forwarded through the switch n times

packets over 48 seconds3). This is important when the switch
is used to amplify traffic while also measuring latency, the
inaccuracy of the switch affects the measurement. OpenFlow
switches with a far lower jitter exist [23] and can be used
if a better precision is required.

5. Amplifying Traffic

After evaluating the suitability of an OpenFlow Switch
for our testing purposes in Section 4 we apply the FLOWer

3. MoonGen cannot timestamp all packets, only random samples.

112ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Moon-
Gen

SwitchSwitch

DuT logic

Load config

DuTDuT

SwitchSwitch

DuT logic
Switch wiring
OpenFlow connection
Packet generator wiring

Figure 7. Testing arbitrary devices

approach to testing arbitrary networking devices. Therefore,
we extend the original two-device-setup by another switch
as shown in Figure 7. Both MoonGen and the DuT are
connected to the switch which amplifies MoonGen’s traffic
and measures the throughput of the DuT. Standard tests
like MoonGen’s RFC 2544 [3], [24] implementation can be
performed with only small modifications while increasing
the bandwidth by more than an order of magnitude.

5.1. Generating Different Flows

OpenFlow flows amplify the traffic by sending incoming
packets to multiple ports. Additionally, the switch can mod-
ify header fields to generate different traffic which would not
be possible with traditional switches. This allows for more
realistic test cases (different traffic on each port) with a mul-
titude of network flows on different ports despite the limited
output bandwidth of the packet generator. OpenFlow defines
modification actions for header fields of all commonly used
protocols [13] and PicOS supports most of them [18].

OpenFlow applies actions to packets, one of these ac-
tions is processing the packet via a group as depicted in
Figure 8. Packets arrive on a port to the left, are matched
via a rule and assigned to a group. Groups are meant to
implement multicast and load-balancing efficiently. A group
consists of multiple buckets, each defines a set of actions to
be executed for packets sent to this bucket. These actions are
the same that can be applied by regular rules, i.e., a group
essentially clones a packet and applies different rules to each
clone. Packets forwarded to the group can then be configured
to be sent to either one (via hashing) or all buckets [13].
We can define a group with one bucket for each switch
port and thus define modification actions that are specific to
that switch port. For example, the following group table
definition (in Open vSwitch syntax) shows a group that
changes the IP address for each switch port, loading the
DuT with completely different IP flows.

Group

Flow Modifications

Figure 8. OpenFlow group with buckets sending to multiple output ports

group_id=1,type=all,

bucket=mod_nw_dst:10.0.0.1,output:1,

bucket=mod_nw_dst:10.0.0.2,output:2, ...

There are no restrictions for the output ports in a Open-
Flow group or flow [13]. This means that a group or flow can
send out a packet to a single switch port more than once
by using it multiple times. This trick allows for different
ratios of network flows created by the packet generator on
different switch ports.

The packet generator only needs to send archetypes
for various network flows which are then amplified and
modified by the switch. For instance, a packet generator
like MoonGen can be configured to send 5 Gbit/s TCP and
5 Gbit/s UDP traffic.

The switch can modify additional header fields to gen-
erate different traffic on different switch ports. It can even
change the composition from 50:50 TCP/UDP to another
ratio on some ports. For example, there can be two buckets
in a group for UDP packets and none for TCP packets.

5.2. Measuring Throughput

OpenFlow counts the number of packets and bytes
processed by each rule. This can be used to measure the
throughput of the DuT by installing OpenFlow flows that
match the traffic sent from the DuT and periodically polling
their statistics. The traffic coming back from the DuT can
be dropped explicitly to only count the throughput.

Statistics can be counted for multiple traffic flows by
creating multiple OpenFlow flows that match on the required
header fields analogous to how the switch can be used to
amplify traffic flows. For example, if the switch is config-
ured to modify the destination IP addresses for each switch
port, analogous OpenFlow flows can be installed for the
incoming traffic. One OpenFlow flow for each destination
IP address can be installed to measure the throughput of the
DuT.

Another way to measure throughput is by using Open-
Flow meters. Meters are used to implement rate limiting and
they also measure traffic directed to them [13]. However, a
OpenFlow flow is required to send traffic to the meter and
the traffic could as well be measured by the OpenFlow flow
statistics. There is one scenario where this can be useful:
Multiple OpenFlow flows can map to a single meter to
aggregate network flows in hardware. Reading statistics can
be slow, especially on switches with older CPUs [20], so
this aggregation step can improve performance.

113ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

1.5 2 2.5 3 3.5 4

0

20

40

60

80

100

Latency [µs]

C
u
m
u
l
a
t
i
v
e
p
r
o
b
.
[
%
]

Figure 9. Latency incurred by an OpenFlow meter

Traffic can also be forwarded back to the packet gen-
erator to count it there. However, the link back is usually
comparatively small here. OpenFlow meters can be used
to give each network flow a fair share of the available
bandwidth. This is useful to sample packets, e.g. to see if
all traffic flows (e.g. wildly varying UDP ports that cannot
all be installed in the hardware) get forwarded.

5.3. Measuring Latency

Latency can be measured by forwarding the packets back
to the packet generator. In Section 4.2.2 we showed that
the switch we used here introduces additional jitter, limiting
the precision of the timestamping to ±217 ns while other
switches can achieve a jitter of below 100 ns [23].

It is important to ensure no queuing happens on the
amplification switch to keep the jitter at this level. The
critical path is the path from the DuT back to the packet
generator. Naı̈vely forwarding all incoming traffic to the
packet generator causes queuing delay in the millisecond-
range (cf. Section 4.1). The simplest solution is to filter
out the timestamped packets (only a subset of the packets
is timestamped) on the amplification switch and send only
them back to the packet generator. A critical property of
latency measurement via sampling is that the DuT cannot
distinguish timestamped packets from other packets. E.g.,
MoonGen uses a single byte in the payload to identify times-
tamped packets. OpenFlow cannot match on this. However,
the DuT often does not look at all header fields like the IP
TTL, ECN or DSCP flags. For example, we implemented a
MoonGen script4 that marks timestamped packets by setting
their TTL to 63 instead of 64. OpenFlow supports matching
TTL and its exact value is usually not relevant to the DuT.
Unfortunately, the switch we used does not support matching
the TTL field [18], so we could not evaluate this. The actual
field to hide the flag in depends on the DuT, the test case,
and the capabilities of the amplification switch.

If this is not possible, e.g. due to lack of hardware
support, then the only solution is using an OpenFlow meter
to limit the traffic sent back to the packet generator to
avoid queuing delays. Sending the traffic through a meter
adds latency. Figure 9 shows the latency added by sending

4. Available in our repository at [5]

traffic through an OpenFlow meter which was loaded with
460 Gbit/s traffic. The difference between the minimum and
maximum latency is 2.8µs, so meters do add queuing delay,
but not as much as overloading the port (cf. Section 4.1).
This limits the precision of the timestamping to the µs-
range.

It is of course always possible to attach the packet
generator directly to some of the DuT ports, restricting the
flexibility of timestamped packets. For example, MoonGen
can saturate multiple 10 GbE ports, so it could load both the
amplification switch and some ports of the DuT directly.

5.4. Hardware Limits

OpenFlow switches only have a limited OpenFlow flow
table size. The switch we are using supports 2048 OpenFlow
flows [15]. FLOWer only needs a single OpenFlow flow
table entry to generate traffic and one per port to count
traffic in the simplest case. More interesting scenarios need
two OpenFlow flows per port and modification action: one to
modify and send the packet, the other to match the modified
packet and count it.

Note that the total number of different OpenFlow flows
is the product of the number of modifications on the switch
and the number of network flows generated by the packet
generator. Modern packet generators like MoonGen allow
crafting each packet in real-time through a user-controlled
script, i.e., every packet can be made unique. The switch
only needs one rule per output port to make every packet
sent to the DuT completely unique.

The switch used here is not able to count packets on a
per-flow or meter basis, only bytes. This is not a major
disadvantage of this switch as the packet size is often
constant or its distribution is known.

Reading statistics from the switch can also be an expen-
sive operation on older OpenFlow switches [20]. We did not
notice a significant performance degradation or CPU load
when polling the statistics multiple times per second as our
switch features a powerful x86 CPU.

5.5. Example: Flow Table Insertion Times

The only DuT available for this research was a second
switch of the same model. A good test case for this DuT with
this test setup is measuring the performance of flow table
modifications under load. Using a separate DuT is a better
scenario for this test than the previous self-test as the self-
test requires OpenFlow flows for both the traffic generation
and the tested OpenFlow flows to be on the same device.
This may cause undesired interferences when attributes like
insertion time or flow table size are tested. Therefore, we
use the second switch as DuT here.

PicOS uses Open vSwitch to implement OpenFlow [17],
so one has to understand its architecture in order to under-
stand why this test is of particular interest.

5.5.1. Open vSwitch Architecture. Open vSwitch pro-
cesses packets in two main modules: the switch daemon and

114ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

the datapath. The former runs on the CPU of the switch
and manages all OpenFlow rules. The latter performs the
actual forwarding through specialized datapath rules derived
on demand from the OpenFlow rules. [14]

The datapath is implemented as a kernel module in the
software-version of Open vSwitch on commodity PC hard-
ware. PicOS replaces this datapath with a specialized version
that installs the rules directly in the switching ASIC [17].

This means that an installed OpenFlow flow is not auto-
matically and instantly available as a rule in the hardware.
A packet not matching any rule on the switching ASIC is
forwarded to the CPU where it is processed by the switching
daemon. This daemon creates a rule for the datapath (derived
from an OpenFlow flow which may contact an external
controller) to match future packets of the same network
flow. [14]

5.5.2. Test Setup. We connected the second switch with
32 cables to the amplification switch as shown in Figure 7.
The DuT was configured with OpenFlow flows matching
on all combinations of the 32 switch ports and 100 differ-
ent UDP ports or addresses in separate tests, i.e., a total
of 3200 network flows, that forwarded the packets back
to the amplification switch where they were counted via
OpenFlow flow statistics (cf. Section 5.2). MoonGen was
used to generate minimum-sized UDP packets alternating
between 100 different UDP ports/IP addresses. This traffic
was amplified 32-fold (476 Mpps at 320 Gbit/s).

We initially forwarded samples of the packets via Open-
Flow meters (cf. Section 5.3) back to MoonGen to measure
the point at which a rule became active with µs-level pre-
cision. However, we noted that such a high precision was
not necessary for this test as the insertion times were in the
order of milliseconds per OpenFlow flow. We counted the
installed OpenFlow flows with two different methods: via
reading the OpenFlow statistics on the amplification switch
to pinpoint the time at which the first packet arrived and
via reading the hardware flow table entries directly from
the switching ASIC with the ovs-appctl pica/dump-

flows command. Both methods yielded the same results
in separate experiments, eliminating potential performance
impacts of the dump-flows command and potential delays
in the OpenFlow statistics.

5.5.3. Test Results. Figure 10 shows the number of Open-
Flow flows installed in the switching ASIC after sending
the OpenFlow commands to add the flows. Adding all of
the 3200 OpenFlow flows to the flow table in the switching
daemon took only 1.5 s. The number of OpenFlow rules
that can actually be realized in hardware depends on the
fields used by the rule. The hardware we use features 2048
TCAM entries [15]. However, each flow table entry requires
two entries if all OpenFlow features are enabled. Restrict-
ing matches to layer 1 to 3 allows using 2048 OpenFlow
flows [16]. No packets were forwarded for the OpenFlow
flows not present in the switching ASIC as we inserted 3200
OpenFlow flows – more than the switching ASIC supports.

0 10 20 30 40 50 60 70 80 90 100

0

500

1,000

1,500

2,000

Max. fully-featured flows

Max. flows

Time [s]

I
n
s
e
r
t
e
d
fl
o
w
s

Matching IPv4 addresses (decreasing or same priority)

Matching IPv4 addresses (increasing priority)

Matching UDP ports (any order)

Figure 10. Flows installed in hardware over time

The insertion time may depend on the priorities of the
inserted OpenFlow rules, inserting in decreasing priority is
the best case and increasing the worst case [10]. We could
reproduce this for rules matching on IPv4 addresses but
without a significant difference between decreasing order
and rules with the same priority. The insertion time was
not affected by the insertion order and relatively slow for
OpenFlow flows matching UDP ports. The load on the
switch had no effect: We tested rates of 3.2 Gbit/s, 32 Gbit/s,
and 320 Gbit/s.

The insertion time suddenly increases once the TCAM
is half full at 512 or 1024 entries depending on the matched
headers. Our interpretation of this result is that the hardware
uses a double-buffering algorithm to speed up the required
re-shuffling operations if enough space is available.

The worst-case insertion time we found was about 90 ms
per OpenFlow flow for flows requiring two TCAM entries
above 512 inserted flows. The best case was approximately
3 ms for IPv4 matches inserted in decreasing priority or
into a half empty TCAM (6 ms for UDP port OpenFlow
flows). These insertion times are significantly faster than
results from older switches: Rotsos et al. found a smoothly
increasing insertion time ranging from 1 s to 10 s per Open-
Flow flow at 1000 flow table entries for different 1 GbE
OpenFlow switches in 2012 [20]. Kuźniar et al. measured
33 to 83 ms on 1 GbE switches in 2015 [10], similar to our
results.

6. Conclusions and Future Work

The results of the measurements we presented only offer
incremental results over existing studies [10], [20] by using
10/40 GbE switches and vastly higher data rates. We rather
introduce FLOWer as a novel approach for testing high
performance network devices with minimal effort and high
flexibility. This allows building high performance measure-
ment platforms in a more cost efficient manner for either
evaluating existing devices or to aid in the development of
new packet processing hardware. Taking our measurement
results into account, we derive the following requirements
for a switch to be used with FLOWer.

115ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

• Features comparable to OpenFlow modifications in-
cluding groups at line rate (some OpenFlow switches
implement layer 3 or 4 matches and modifications
in software, cf. [20])

• Large number of ports
• Low jitter, independent from the used port and in-

ternal packet path
• Low per-port costs, i.e., commodity hardware

Our methodology can be used with different packet gen-
erators. It is not necessarily in competition with expensive
hardware packet generators. A low-end hardware packet
generator can be used together with FLOWer to amplify
its bandwidth while using its extensive analysis features for
thousands of simultaneous network flows in hardware [21]
without paying for a high-end model.

We encourage you to reproduce our measurements on
your hardware. All scripts used for the experiments de-
scribed in this paper and all collected data are available on
GitHub [5].

In the future, we plan to use this methodology to evaluate
and benchmark different devices. For this paper, only a
simple SDN switch was available as DuT. More complex
devices present a more interesting challenge for our method-
ology. In particular, we are planning to test a high-end
Arbor Networks DDoS mitigation middlebox. Such DuTs
are of particular interest because they are black-box software
devices with high bandwidth capabilities that are beyond the
reach of cheap packet generators. FLOWer puts everyone in
the position to evaluate the performance of such devices
without relying on expensive test equipment or vendor’s
promises.

Acknowledgments

This work was supported by the EUREKA-Project
SASER (01BP12300A). The authors thank First Colo
GmbH for providing the test hardware, Yaron Ekshtein at
Pica8 for insightful discussions, and our colleagues Florian
Wohlfart and Daniel Raumer for valuable contributions to
this paper.

References

[1] G. Antichi, M. Shahbaz, Y. Geng, N. Zilberman, A. Covington,
M. Bruyere, N. McKeown, N. Feamster, B. Felderman, M. Blott,
et al. OSNT: open source network tester. Network, IEEE, 28(5):6–
12, 2014.

[2] A. Botta, A. Dainotti, and A. Pescapé. Do you trust your software-
based traffic generator? IEEE Communications Magazine, 48(9):158–
165, 2010.

[3] S. Bradner and J. McQuaid. Benchmarking Methodology for Network
Interconnect Devices. RFC 2544 (Informational), March 1999.

[4] Edge-Core Networks. AS5712-54X Datasheet. http://www.edge-core.
com/temp/ec download/1555/AS5712-54X%20ONIE%20%20DS%
20add%20Cumulus%20Ready%20Logo%20R02%20.pdf. Visited:
2015-11-23.

[5] P. Emmerich. FLOWer Scripts. https://github.com/emmericp/
FLOWer-scripts.

[6] P. Emmerich. MoonGen. https://github.com/emmericp/MoonGen.

[7] P. Emmerich, S. Gallenmüller, D. Raumer, F. Wohlfart, and G. Carle.
MoonGen: A Scriptable High-Speed Packet Generator. In Internet

Measurement Conference 2015 (IMC’15), Tokyo, Japan, Oct. 2015.

[8] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. M. Watson, A. W.
Moore, S. Hand, and J. Crowcroft. Queues don’t matter when you
can jump them! In 12th USENIX Symposium on Networked Systems

Design and Implementation (NSDI 15), pages 1–14, Oakland, CA,
May 2015. USENIX Association.

[9] IEEE. Virtual LANs. IEEE 802.1Q-2011, 2011.

[10] M. Kuźniar, P. Perešı́ni, and D. Kostić. What you need to know about
sdn flow tables. In Passive and Active Measurement, pages 347–359.
Springer, 2015.

[11] P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan. A Power
Benchmarking Framework for Network Devices. In IFIP Networking,
pages 795–808. Springer, 2009.

[12] Open Compute Project. Networking Specs and Design. http://www.
opencompute.org/wiki/Networking/SpecsAndDesigns. Visited: 2015-
11-23.

[13] Open Networking Foundation. OpenFlow Switch Specification Ver-
sion 1.4.0, October 2013.

[14] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado.
The Design and Implementation of Open vSwitch. In 12th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

15), pages 117–130, Oakland, CA, May 2015. USENIX Association.

[15] Pica8. Flow Scalability per Broadcom Chipset. http://www.pica8.
com/document/v2.6/html/hardware-guides/#6914398. Visited: 2015-
11-23.

[16] Pica8. Optimizing TCAM Usage. http://www.pica8.com/document/
v2.6/html/ovs-configuration-guide/#6914964. Visited: 2015-11-23.

[17] Pica8. PicOS Overview. http://www.pica8.com/documents/
pica8-whitepaper-picos-overview.pdf. Visited: 2015-11-23.

[18] Pica8. Supported OpenFlow Protocol 1.4 Features. http://www.pica8.
com/document/v2.6/html/ovs-configuration-guide/. Visited: 2015-11-
23.

[19] C. Rotsos, G. Antichi, M. Bruyere, P. Owezarski, and A. Moore.
OFLOPS-Turbo: Testing the Next-Generation OpenFlow Switch. In
European Workshop on Software Defined Networks (EWSDN), 2014.

[20] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W. Moore.
OFLOPS: An Open Framework for OpenFlow Switch Evaluation.
In Passive and Active Measurement, pages 85–95. Springer, 2012.

[21] Spirent. HyperMetrics FX 2/4/8 Port 10 Gigabit Ethernet Test
Module. http://www.spirent.com/⇠/media/Datasheets/Broadband/
PAB/SpirentTestCenter/STC HyperMetrics fX 2-4-8-Port 10G
Ethernet Test Module.pdf.

[22] Spirent. HyperMetrics FX 40/100 Gigabit Test Modules. http://www.
spirent.com/⇠/media/Datasheets/Broadband/PAB/SpirentTestCenter/
STC HyperMetrics\%20 fX 40-100G Module datasheet.pdf.

[23] Tolly Enterprises, LLC. Mellanox SwitchX-2 (SX1036) vs.
Broadcom StrataXGS Trident II (Arista DCS-7050QX) – Perfor-
mance Evaluation. http://www.mellanox.com/related-docs/products/
Tolly-215111-Mellanox-SwitchX-2 Performance.pdf, 2015.

[24] P. Werneck. RFC 2544 Tests for MoonGen. https://github.com/
emmericp/MoonGen/pull/98.

116ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

On Time-Stamp Accuracy of Passive Monitoring in
a Container Execution Environment

Farnaz Moradi, Christofer Flinta, Andreas Johnsson, Catalin Meirosu
Cloud Technologies, Ericsson Research, Sweden

Email: {farnaz.moradi,christofer.flinta,andreas.a.johnsson,catalin.meirosu}@ericsson.com

Abstract—Passive monitoring of network performance pa-

rameters is experiencing a revival due to widespread adoption

of virtualization and software-based implementation of network

functions. Timestamping is one of the most challenging operations

needed for passively monitoring network traffic performance

parameters such as latency and jitter. We develop a setup whereby

functions that monitor the network traffic are deployed in

monitoring containers adjacently to, and interconnected through

a virtual switch with the monitored Virtual Network Function

instance. In this scenario, we evaluate the effects of container

virtualization and virtual switch mirroring of traffic on the

measurement of latency. The evaluation results indicate very

low measurement errors (a few microseconds in our testbed)

which are consistent over different measurement scenarios, thus

validating the feasibility of this technique for passively monitoring

latency.

I. INTRODUCTION

Advances in virtualization have led to the emergence of
network function virtualization (NFV) which decouples net-
work functions from dedicated hardware to software-based ap-
plications that can run on commercial off-the-shelf hardware.
Accurate, timely, and non-intrusive monitoring of network
performance metrics of such virtual network functions (VNFs)
is critical for identifying and avoiding violation of performance
guarantees. In recent years, container-based virtualization has
received considerable attention and has become a candidate
for running VNFs. Container execution environments provide
lightweight virtualization with much lower overhead com-
pared to hypervisor-based virtualization with Virtual Machines
(VMs), since rather than running a full operating system
containers share the same kernel with the operating system of
the host machine [19], [21]. Moreover, containers are created
and removed much faster compared to VMs, and container-
based virtualization provides better resource utilization since
idle containers do not use any resources.

In Linux containers, the kernel-level namespaces are used
for resource isolation and the Control groups (cgroups) [13] are
used for managing and limiting resources. Cgroups also expose
resource usage metrics such as memory, CPU, and block I/O
which can be used for monitoring purposes. Such metrics for
the containers running in a host machine can be collected by
a separate container in the host, e.g., cAdvisor1.

Existing tools for monitoring containers only provide com-
pute resource utilization statistics as well as counters for

1https://github.com/google/cadvisor

packets and bytes on the interfaces of the containers. Network-
related metrics, such as per-flow metrics can be measured
by for example enabling sFlow [16] on the virtual switch
infrastructure that interconnects the containers. SFlow is a
general purpose monitoring tool for sampling packets and
interface counters on packet forwarding devices. However,
sFlow does not provide end-to-end measurements of metrics
such as delay, jitter, and packet loss [2].

End-to-end measurements of network performance can be
performed using active or passive measurement methods. In
active measurements, test packets are injected from a probe
in the network and are received in another probe. In passive
measurements, in contrast, actual network traffic is being
observed without injecting probe packets. In addition to net-
work performance monitoring, passive measurement methods
are also used for example to perform traffic analysis for
traffic profiling, classification, and characterization, anomaly
and intrusion detection, and debugging.

One option for measuring end-to-end network performance
metrics in containers is to run monitoring functions inside
the same container in which the VNF application is being
executed. This requires the monitoring code to be added to
the image of the VNF or executed inside the container after
instantiation of the VNF container. Another option, which we
investigate in this paper, is to execute monitoring functions
in separate and adjacent monitoring containers. The monitor-
ing container receives a copy of packets originated from or
destined to the VNF instance and calculates different network
performance metrics.

Running the monitoring functions in a separate container
instead of running them inside the VNF container has many
advantages. Some of these advantages are as follows:

1) The monitoring can be done transparently without a
need to run any process inside the VNF container or
instrument the VNF image with required software.

2) A single monitoring container can be used to monitor
multiple VNF containers in contrast to running a
monitoring process in each VNF container.

3) Using a monitoring container enables separation of
the monitoring process from the VNF processes by
assigning them to different CPU cores.

4) Monitoring is isolated from VNF so failure of the
monitoring process will not adversely affect the VNF
container.

5) A separate container for monitoring allows more
flexibility in running different monitoring functions
so that they can be updated, re-configured, or changedISBN 978-3-901882-83-8 c� 2016 IFIP

117ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

on-the-fly transparently to the VNFs.
6) Migration of the VNF instance can be done indepen-

dently and without affecting the monitoring.
7) The monitoring container can be controlled and man-

aged by the infrastructure provider who may be
different from the VNF provider.

8) The monitoring container can create log files from
the VNF traffic which can be used for debugging the
application instead of the application itself generating
the logs.

Despite many advantages of running monitoring functions
in separate monitoring containers, the effect of such setup
on the accuracy of timestamps required for passive network
monitoring is not known. Previous studies have shown that
hypervisor-based virtualization affects the timestamping and
performance measurement accuracy [5] [14]. However, none of
the previous studies have looked into the effects of container-
based virtualization on the accuracy of measurements, par-
ticularly the accuracy of the timestamps required for passive
network performance monitoring.

In this paper, our contributions are as follows. We develop a
setup for passive monitoring of network traffic by introducing
standalone monitoring containers which are interconnected
through a virtual switch with the monitored VNF containers.
We study the effect of container virtualization and packet
copying in virtual switches on the accuracy of timestamps
obtained by the monitoring functions running inside the mon-
itoring containers. Moreover, we evaluate the accuracy of
passive latency monitoring using different methods in our
setup. Our measurement results indicate low and consistent
timestamping errors over different measurement scenarios,
therefore confirming that our monitoring setup is suitable for
passive monitoring in container execution environments.

The remainder of this paper is organized as follows.
Section II presents the related work. Section III describes our
measurement system for passive container-based monitoring
and Section IV presents our testbed and experimental settings.
In Section V the evaluation method is described and the exper-
imental results are presented. Section VI presents a discussion
of our findings. Finally, Section VII concludes the paper.

II. RELATED WORK

Existing tools for monitoring containers only gather metrics
such as CPU, memory, and block I/O usage for containers
running in a host machine. These metrics can be obtained from
cgroups in Linux [13]. Network metrics which can be collected
by existing tools are limited to the number of packets and bytes
received/transmitted from an interface. Although sFlow [16]
can be used for sampling packets and interface counters, it
does not provide network metrics such as latency.

Active and passive measurements of network perfor-
mance metrics can be performed using OpenFlow messages
in OpenFlow-enabled virtual and physical switches in the
network. Examples of such methods are latency measure-
ments [17] and link utilization monitoring [23], however these
methods are not in the scope of this paper since they are not
designed for passive measurements for traffic analysis.

The effects of virtualization on network measurements
have been previously studied. In [14] the authors studied how

timestamping variability is affected by hypervisors and showed
that only under certain conditions timestamping performance
in virtualized environments gives good results. In [5] the
effects of Kernel-based Virtual Machine (KVM) virtualization
on active round trip time measurements have been evaluated.
The results show that the measurements are affected by both
CPU load in the host and load in the network. Although
different studies have investigated the effects of virtualization
on timestamp accuracy of measurements, to the best of our
knowledge effects of container-based virtualization on passive
measurements have not been investigated before.

A passive network monitoring function which requires
accurate timestamping is latency. In the rest of this section
we mention some related work for passive latency monitoring.
Note that none of these methods have been designed or
evaluated in virtual platforms such as VMs and containers.

A naı̈ve way to passively measure latency is to store packet
hashes together with timestamps at both the sender and receiver
side and periodically exchange and compare the hash and
timestamp values. However, such an approach enforces high
storage and communication overhead. In order to overcome
the problems of the naı̈ve approach, a variety of efficient
passive latency measurement methods have been proposed in
the literature. These methods can be roughly divided into three
categories: aggregate, per-flow, and per-packet methods.

In [9] an aggregate method has been proposed, where a
Lossy Difference Aggregator (LDA) data structure is created
at both the sender and the receiver side and at the end of each
measurement interval is exchanged for calculating loss and
latency. LDA requires synchronization packets to be sent over
the same channel as the data traffic and makes an assumption
that the packets arrive in FIFO order. FineComb [12] also cal-
culates aggregate latency but rather than making an assumption
about packet ordering proposes a stash data structure to recover
from packet reordering.

Aggregate latency measurements cannot capture the latency
experienced by different flows, therefore more fine-grained
latency measurement methods have been proposed in the
literature. Reference Latency Interpolation (RLI) [10] obtains
per-flow latency measurements, however it requires injecting
reference packets (probe packets). MAPLE [11] presents an
architecture for latency monitoring where the granularity of
the measurements can be selected. In MAPLE the focus is on
delay storage and query and it is assumed that the packets
can carry timestamps. In [18] COLATE, a counter-based
per-flow latency estimation scheme for latency monitoring
without using any probes or timestamps inside packets has
been proposed. COLATE can achieve accurate results with
low overhead compared to previously existing methods. More
details about this method can be found in Section V-B3.

In addition to per-flow measurements more fine-grained
results can be achieved using per-packet methods in exchange
for extra costs. For example, in [22], an approach for per-
packet delay and loss measurements has been proposed which
first uses an order preserving aggregator (OPA) data structure
to transmit ordering information for recovering from packet
reordering and then sends the compressed packet timestamps
to be used for estimating delay.

In this paper, rather than proposing a new latency monitor-

118ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Background
Containers

Physical
Switch

Virtual Switch

Sender host

Sender
VNF

Container

Sender
Monitor
Container

eth1 eth1 eth2

veth1 SPAN veth2

eth0

Background
Containers

ethX

vethX

Virtual Switch

Receiver host

Receiver
VNF

Container

Receiver
Monitor
Container

eth1 eth1 eth2

veth1 SPAN veth2

eth0

ethX

vethX

ଵݐଵ′ݐ

ଶݐଶ′ݐ
gre0 gre0

ସݐସ′ݐ

ଷݐଷ′ݐ

Fig. 1: Experimental setup with two host machines with Open
vSwitch and Docker containers.

ing algorithm, we investigate how existing methods perform in
a container execution environment. As part of the evaluations
presented in our paper, we use the data structures proposed by
COLATE to implement a passive latency monitoring tool run-
ning inside monitoring containers adjacently to the monitored
VNF container instances.

III. MEASUREMENT SYSTEM AND CHALLENGES

In this section, we present our setup for passive monitoring
of VNFs and applications running in a container execution en-
vironment. In this setup, a monitoring container is instantiated
and attached to the same virtual switch to which the VNF is
connected. The virtual switch is then configured to duplicate
the packets originated within or destined to the VNF container
and send the copies to the monitoring container.

In general, duplicating and copying packets for passive
network monitoring can be performed in two different ways:
in-line mode and mirroring mode [7]. In the in-line mode,
a network tap (a.k.a. Test Access Port (TAP)) is used to
duplicate all traffic passing through it and provide a connection
to the capturing device. In mirroring mode, a network switch
duplicates the packets from one or more ports and sends the
replicates to a single monitoring port (a.k.a. Switched Port
analyzer (SPAN) port) to be captured for analysis.

The monitoring function which is executed inside the
monitor container receives the copy of VNF packets on its
interface. The monitoring function can then perform filtering
and sampling of packets before using them for estimating
different network performance metrics. In our setup, the mon-
itoring functions in different hosts can also communicate with
each other via a separate interface in order to exchange control
and synchronization messages which are required for different
types of measurements such as packet loss and latency.

The copying of packets can affect the accuracy of the
packet timestamps. Our main focus in this paper is to in-
vestigate the accuracy of packet timestamps observed at the
monitoring containers in comparison to what is observed inside
the VNF containers. Therefore, we calculate timestamping
error as the difference of a packet timestamp observed in
the VNF and monitor containers. Figure 2 shows how the
timestamping errors on the sender and the receiver hosts are
calculated. Further, the effect of loading different resources on

the host machines on the accuracy of the timestamps observed
in the monitoring containers is investigated.

Additionally, we evaluate the effect of timestamp accuracy
on latency measurements between different hosts. Latency
can be passively measured by either round trip time (RTT)
or one-way measurements. In passive RTT measurements,
the request and reply packets of a flow are matched with
each other and their timestamps are compared in order to
estimate the RTT. However, passive RTT measurement is not
always possible, e.g., for UDP communications. Passive one-
way latency measurements can be used for any type of traffic
where the timestamps of packets at the sender and the receiver
sides are compared against each other.

A common assumption made by passive one-way latency
measurement methods, is that the clocks at the sender and the
receiver hosts are tightly synchronized, since unsynchronized
clocks lead to errors in the measured values. In this paper we
study the effect of running passive latency functions in separate
containers and compare the results with the latency values
which could be obtained from inside the VNF containers as
shown in Figure 2. Errors caused by synchronization problems
are not part of this study. More information about general
synchronization issues and achieving high precision can be
found in [3] and [20], respectively.

IV. TESTBED SETUP

Figure 1 shows the testbed used for evaluating the
container-based passive monitoring setup presented in this
paper. This testbed is comprised of two physical host machines
that are connected with a physical switch. Each host runs a
VNF container and a monitoring container as well as a number
of background containers. The virtual switches on the host
machines are connected to each other with a Generic Routing
Encapsulation (GRE) tunnel and each switch is responsible
for tapping or mirroring the VNF packets to the SPAN port,
so that a monitoring function which runs in the monitoring
container can capture and analyze the packets. The background
containers are used for testing purposes such as generating
background CPU and network load.

In our measurements, we have used Docker containers2

and Open vSwitch (OVS)3 virtual switches. When a Docker
container is created, a pair of peer interfaces is created where
one peer becomes the interface for the container and the other
one is bound to the virtual switch. OVS is an OpenFlow
switch which uses flow classification and caching techniques
to provide high performance forwarding [15].

In OVS, the data plane is implemented in kernel space
while the control plane is in user space. OVS manages packets
as flows where the first packet of a flow is sent to the controller.
The controller determines how the packet should be handled
and passes the packet back to the data plane. Additionally,
the controller updates the cache in the kernel module so that
the rest of the packets of the flow can only go through the
data plane following the given instruction. This means that
the first packet of a flow which has to cross the boundary
of kernel and user space and be classified by the controller

2https://www.docker.com/
3http://openvswitch.org/

119ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

copy
OVS to
Mon

VNF to
OVS

copy OVS to VNF
OVS to
Mon

ଵݐ ଶݐ ଶ′ݐ ଵ′ݐ

inside OVS

ଷݐ ଷ′ݐ ସ′ݐ

inside OVS

…
ସݐ

OneͲway latency perceived by VNFs ሺݐସ െ ଵሻݐ

OneͲway latency measured by Monitor (ݐ′ସ െ ᇱଵሻݐ

Transmission time
SenderͲReceiver

Sender side error�ሺݐᇱଵ െ ଵሻݐ Receiver side error
ሺݐᇱସ െ ସሻݐ

Fig. 2: Timestamp errors on sender and receiver sides.

experiences longer processing time in the switch compared to
the rest of the packets. The flows in the kernel cache that have
been idle for a configured amount of time are then removed
by the controller [15].

Using OVS allows us to perform both tapping and mir-
roring of traffic. Tapping can be done by adding a flow to
the OpenFlow switch to perform two actions on each packet
coming from the VNF port. One action is to forward the packet
normally, and the second action is to send it to the monitoring
port (e.g., ovs-ofctl in port=1,actions=NORMAL,output:2).
Mirroring is supported by OVS which is implemented in user
space through modification of the same flow table exposed
through OpenFlow and can be used by adding a mirror to the
virtual switch and defining the input and output ports.

In order to evaluate the effects of container-based virtu-
alization and packet duplication on timestamp accuracies, we
have used the tcpdump tool for obtaining packet timestamps
on different capture points. Figure 1 shows the capture points,
i.e., interfaces on which we used tcpdump. On the sender
side, tcpdump is executed inside the VNF container to obtain
timestamp t1, on the host machine to obtain timestamps t2
and t02, and inside the Monitor container to obtain t01. The
timestamps on the receiver side are obtained similarly, i.e., t3
and t03 on the host machine and t4 and t04 in the VNF container
and the monitor container, respectively.

In our experiments, different tools have been used to study
the effects of loading resources on the measurements. The
CPU, I/O, and virtual memory loads are generated using the
stress tool [1], where we start multiple background containers
running the tool. The network load on the virtual switches
has been emulated by using the tcpreplay tool and replaying
random pcap files from inside the background containers. We
have also used tcpreplay to cause network congestion on the
path between the host machines.

V. EVALUATION

In this section we present our evaluation method and the
experimental results. The measurements are divided into two
subsections: (V-A) Timestamping errors, and (V-B) Passive
latency measurements. In subsection V-A we present mea-
surement results for three scenarios: (1) measurements with
no background load, (2) measurements with loading different
resources such as CPU, I/O, and virtual memory, and (3)
measurements with network load on the virtual switch. In
subsection V-B results for (1) passive round trip time mea-
surements, (2) passive one-way measurements, and (3) passive
one-way measurements using COLATE [18] are presented.

A. Timestamping errors

In this section we present our measurement results on
comparing the timestamps of packets sent by a VNF container
with the timestamps of the copy of the packets captured in the
corresponding monitor container. The goal is to investigate the
effects of container-based virtualization as well as switch pro-
cessing and packet copying on the accuracy of the timestamps.

For each measurement, we emulate the VNF traffic by
running the ICMP ping tool with different frequencies inside
the sender VNF container which allows us to also measure
RTT between the VNFs. The tcpdump tool is used both in the
VNF and in the monitor container to capture the echo request
messages. In our experiments, the main focus is on measuring
the errors caused by container and switch virtualization, which
are not dependent on the type of VNF traffic. For each packet,
we calculate and report the timestamping errors. During our
measurements we observed that when ping is running with
higher packet send rates, it returns lower RTT values regardless
of where it is running, i.e., inside the host or inside a container.
For example, we observed that pinging the receiver VNF
container from inside the sender VNF container with frequency
of one packet per second with packet size of 64 bytes returns
an average RTT of 485 µs compared to 331 µs for 1000 packet
per second rate. This is in line with results observed in [5].

1) Measurements with no load:

The first set of experiments is performed with no back-
ground container and no extra network load. The main goal
of these measurements is to study the errors caused by the
container virtualization and virtual switch processing including
packet mirroring/tapping.

Figure 3 shows the timestamping errors on the sender
host comparing tapping and mirroring. The y-axis shows the
measurement error, where for each packet we calculated the
error as the difference between the timestamps reported by
tcpdump in the VNF and in the monitor, i.e., t01� t1 as shown
in Figure 2. The x-axis shows the send rates given as input
to the ping tool running inside the VNF container. We have
observed that the ping does not send the exact number of
packets with the input send rate, e.g., for input send rates
100 and 10000 packets per second, ping sent around 84 and
27000 packets per second, respectively. However, in the figures
the input parameter for ping is shown, indicating the order of
magnitude for the send rates.

It can be seen that the time it takes for the first packet
(Figure 3a) to be received by the monitoring container is

120ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0

100

200

300

1 10 100 1000 10000

Rate (packets per second)

Er
ro

r (
m

ic
ro

se
co

nd
s)

Mirroring

Tapping

(a) First flow packet

0

10

20

30

1 10 100 1000 10000

Rate (packets per second)

Er
ro

r (
m

ic
ro

se
co

nd
s)

Mirroring

Tapping

(b) Mean for the rest of the flow packets

Fig. 3: Comparison of the error caused by tapping versus
mirroring packets to the monitoring container on the sender
side for different send rates with no background load (t01� t1).

significantly higher than the average value for the rest of the
packets (Figure 3b). On average the error was 328 µs and 375
µs for the first packet using tapping and mirroring respectively,
with standard deviation of 28 µs and 25 µs. For the rest of
the packets in each flow the error was on average 16 µs and
26 µs with standard deviation of 2 µs and 4 µs using tapping
and mirroring respectively. As mentioned in Section IV, for
each new flow OVS sends the first packet to the controller
in the user space and the rest of the packets are forwarded
in the data plane in the kernel space. Moreover, it can be
seen that the timestamps obtained from tapping of packets
are slightly closer to the timestamps perceived by the VNF
container compared to mirroring, i.e., smaller error values. In
the rest of our measurements we only use tapping because of
the lower error rate. The figure also shows that the error for
lower send rates, particularly one packet per second, is higher
than the measurements with higher send rates. As mentioned
above, ping returns higher RTT values for low send rates which
also affects the measurement results and is the reason for
higher errors shown in the figure.

Figure 4 shows the timestamping error on the sender and
the receiver hosts for different send rates. It can be seen that
the errors on the sender side are much higher than the errors
on the receiver side. The main reason for the differences, as
shown in Figure 2, is that on the sender side each packet
is first observed in the VNF (t1) and then enters the switch
(t2) where it is processed and then is duplicated and its copy
is sent to the monitor interface (t02) and is observed by the
monitoring function (t01), while on the receiver side the switch
processing time affects each packet and its copy similarly.

10

20

30

40

50

1 10 100 1000 10000
Rate (packets per second)

E
rr

or
 (m

ic
ro

se
co

nd
s)

(a) Sender host (t01 � t1)

0

3

6

9

1 10 100 1000 10000
Rate (packets per second)

E
rr

or
 (m

ic
ro

se
co

nd
s)

(b) Receiver host (t04 � t4)

Fig. 4: Comparison of the error on sender and receiver side
for different send rates (excluding the first flow packet).

Additionally, in the receiver the time it takes for the packets
to be observed inside the VNF (from t3 to t4) and the receiver
monitor container (from t03 to t04) are equal, and the main factor
that causes errors is the packet duplication time in the switch
which is required for both tapping and mirroring.

In our measurements, we observed that running tcpdump in
all the four capture points inside the sender host increases the
errors compared to the experiments where tcpdump was only
executed inside the containers. For example, we observed that
when tcpdump was capturing traffic on all the measurement
points on the sender side, the total timestamping error was
around 14 µs higher than the measurements where tcpdump
was only running inside the containers. This observation shows
that tcpdump also affects the accuracy of our measurements.

In order to estimate the time it takes for packets to reach
the OVS interface from the interface inside the container and
vice versa without running tcpdump in all four capture points,
we performed the following measurements. We calculated the
values for t02� t2 when tcpdump was only running on the host
as well as the values for t01�t1 when tcpdump was only running
inside the containers. The values obtained from the capture
points in the host were subtracted from the values obtained
from the containers to estimate the time (t2 � t1) + (t01 � t02).
The results indicate that the time it takes for packets to arrive
from the VNF container to the OVS and from the OVS to the
monitor container is less than 0.8 µs in average with standard
deviation 0.5.

2) Effect of Resource load:

In this section we study the effect of loading physical

121ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0

25

50

75

No load CPU I/O Virtual Memory OVS
Load

E
rr

or
 (m

ic
ro

se
co

nd
s)

(a) Sender host (t01 � t1)

0

10

20

30

No load CPU I/O Virtual Memory OVS
Load

E
rr

or
 (m

ic
ro

se
co

nd
s)

(b) Receiver host (t04 � t4)

Fig. 5: The effect of high loads on host resources on per-packet
timestamping errors excluding the first packet.

resources on the host machines on the accuracy of the packet
timestamps obtained by the monitoring containers. In order
to load the resources on the host machine, we started eight
background containers running the stress tool to load different
resources. We used the stress tool to spawn a given number
of workers spinning on sqrt() to load the CPU, sync() to load
I/O, and malloc()/free() to load the virtual memory.

Figure 5 shows the results of loading CPU, I/O, and virtual
memory. It can be seen that loading memory increases the error
caused by copying packets on both the sender and the receiver
sides, while loading CPU or I/O in average reduces the time
compared to measurements with no background load.

The main reason for reduced error when physical resources
including CPU are loaded is due to CPU auto scaling which
happens when the system is under load. By default the CPU
governor is set to “ondemand” which allows CPU to achieve
maximum clock frequency when the load is high and achieve
minimum frequency when the system is idle which allows the
system to adjust power consumption according to system load.

3) Effect of network load in virtual switch:

In this section we study the effect of network load in the
virtual switch on the accuracy of the packet timestamps. We
used the tcpreplay tool to load the virtual switch with network
traffic. In the measurements, eight background containers were
attached to the OVS and replayed traffic from a given pcap file
with maximum possible speed. The traffic was forwarded to a
9th background container by the OVS in the host where the
packets were received and dropped. During these experiments,
the CPU on the host machine also reached maximum load but
we did not observe any ICMP packet loss.

Figure 5 shows the results for this scenario with network
load in the virtual switch (OVS). It can be seen that the error
caused by copying packets is very similar to the experiments
with CPU loading.

B. Passive latency measurements

Latency monitoring requires accurate timestamping. In this
section we evaluate the effect of our passive container-based
monitoring setup on the accuracy of round trip time (RTT)
measurements and one-way latency measurements.

For RTT measurements, we use the values obtained from
ICMP pings, which were sent from inside the sender VNF
container to the receiver VNF container, as the ground truth
since it is the actual RTT experienced by the VNFs. Then
we evaluate the measurement results from both inside the
VNF container and the monitor container on the sender side.
For passive latency measurements, we use the latency values
perceived by VNF containers as the ground truth and evaluate
the accuracy of the latency values reported by the monitoring
containers. Even though the ground truth one-way latency
values are affected by the precision of time synchroniza-
tion, the synchronization affects the latency calculated by the
monitor containers similarly, and therefore it does not affect
the reported error values. Moreover, we compare the values
obtained from the above naı̈ve approach with the latency values
measured by a state-of-the-art passive monitoring algorithm
which is implemented by using the data structures and the
average latency estimation method presented in [18].

The measurements are done for two scenarios: with no
background traffic and with network load which causes con-
gestion on the path between the host machines. In these
measurements a background container in the sender host sends
packets with a high rate and the traffic is received and dropped
by the receiver host. The high send rate causes network
congestion and leads to VNF packet loss. However, the loss
rates did not change with different VNF send rates.

1) Passive Round Trip Time:

The RTT for each packet as perceived by the VNF contain-
ers is calculated by comparing the timestamps of each echo
request and echo reply packets with the same sequence number,
(i.e., RTTVNF = t1(reply) � t1(request)) where t1(request)
is the time when an echo request packet was sent from the
sender VNF container and t1(reply) is the time that the
echo reply packet corresponding to that request is received
by the sender VNF container. Similarly the RTT values as
perceived by the sender monitor container are calculated as
RTTMon = t01(reply)� t01(request). In our measurements, the
average RTT reported by ping for different send rates was
359.8 µs compared to 346.8 µs and 334.2 µs as reported by
the VNF and the monitor containers, respectively.

Figure 6 shows the measurement errors of the RTT mea-
surements for VNF and monitor container versus the ground
truth, i.e., values returned by ping. It can be seen that even
the RTT values reported by the VNF container using tcpdump
are underestimated compared to the ground truth. The reason
for underestimation is the delay for the request packet to be
sent from the ping application to the interface where tcpdump
records a timestamp, as well as the delay for the arriving reply

122ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0

10

20

30

1 10 100 1000 10000

Rate (packet per second)

Er
ro

r (
m

ic
ro

se
co

nd
s)

VNF error

Monitor error

(a) No load

0

10

20

30

40

50

1 10 100 1000 10000

Rate (packet per second)

Er
ro

r (
m

ic
ro

se
co

nd
s)

VNF error

Monitor error

(b) Network Congestion

Fig. 6: Error of RTT measurements calculated from inside the
VNF and monitor containers compared to the ground truth
values reported by ping, i.e., VNF error (RTTping�RTTVNF)
and monitor error (RTTping � RTTMon).

that is first timestamped by tcpdump and then by the ping tool.
It should be noted that the errors of the values reported by the
monitoring container compared to the ground truth also include
the VNF errors. Overall, it can be seen that the errors of the
measurements in the monitoring container are consistent for
different measurements. Moreover, even though in experiments
with network congestion 63% of packets were lost and the RTT
reported by ping was increased to 28.5 ms, the error values
were only slightly increased.

2) Passive latency:

The one-way latency for each packet as perceived by the
VNF containers is calculated as LVNF = t4 � t1 and is
used as the ground truth. The latency values as perceived by
the monitor containers are calculated as L

Mon

= t04 � t01.
The actual values reported by one-way latency measurements
are not accurate due to drifting clocks (we have used NTP
for time synchronization which does not provide the required
microsecond synchronization precision for our measurements).
Nevertheless, the obtained passive one-way measurement val-
ues can be used for identifying latency changes over time and
detecting congestion in the network.

Figure 7 shows the error values for one-way latency
measurements. Our measurements show that the latency values
calculated from inside the VNF containers and from inside
the monitor containers are very close to each other and the
measured latency is only slightly underestimated, in average
around 15 µs. These results are in line with what was observed
for RTT measurements, where the absolute average error for

0

5

10

15

20

1 10 100 1000 10000

Rate (packets per second)

Er
ro

r (
m

ic
ro

se
co

nd
s)

Monitor error

Sender error

Receiver error

(a) No load

0

10

20

30

1 10 100 1000 10000

Rate (packets per second)

Er
ro

r (
m

ic
ro

se
co

nd
s)

Monitor error

Sender error

Receiver error

(b) Network Congestion

Fig. 7: Error of latency measurements calculated from inside
the VNF containers and from inside the monitor containers
(LVNF � LMon) in comparison with the timestamping errors
on the sender side (t01 � t1) and the receiver side (t04 � t4).

values reported from the monitor and the VNF was around
13 µs. The figure also shows the sender and the receiver side
timestamping errors. It can be seen that the errors on the sender
side are much higher than the errors on the receiver side. As
depicted in Figure 2, the total error of monitored one-way
latency values are caused by the error which happens due
to packets arriving in the sender monitor after the copying
and processing times on the sender side and the error which
happens due to packets arriving in the receiver monitor after
being copied in the switch.

In the measurements with network overload, the heavy load
on the link caused in average 62% packet loss for the VNF
traffic in our measurements. The loss rates were caused by the
background traffic and did not change for different VNF send
rates. Figure 7 shows that the increase in network load causes
the average per packet latency error to only slightly increase
compared to the tests with no background network load.

3) Passive latency measurements with COLATE:

In the measurements presented in the previous sections,
every single packet has been compared on the sender and
receiver side. However, such naı̈ve approach is not suitable
for automatic and continuous passive latency measurements
due to high storage and communication cost.

COLATE [18] is a counter-based per-flow latency esti-
mation scheme which “allows noise in recording times for
minimizing storage space, and then statically de-noises the
recorded information for obtaining accurate latency estimates”.
The COLATE scheme consists of two phases: recording and

123ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

querying. In the recording phase, for each packet at the
measurement point, a timestamp is recorded using a vector
called counter vector. Moreover, each unique flow is mapped
to a unique subset of these counters called counter subvectors.
In other words, each packet is first mapped randomly to a
counter in the counter subvector of its corresponding flow, and
then the current time is added to that counter.

The average latency for flow f in COLATE is esti-
mated as µ̃

f

= 1/p
f

(t̃
f,R

� t̃
f,S

), where t̃
f,X

= 1/(n �
m){n⌃m

j=1S
f

X

[j] � mt
X

} is the estimated sum of all times-
tamps of the packets in flow f which is calculated both at the
sender (t̃

f,S

) and the receiver (t̃
f,R

). In these equations, Sf

X

denotes the counter subvector of flow f , n denotes the number
of counters in the counter vector C

X

, m denotes the number
of counters in Sf

X

, t
X

denotes the sum of all counters in C
X

,
and p

f

denotes the number of packets in flow f .

In [18], it is shown that COLATE achieves high accuracy
compared to other existing methods using simulations and real
network traffic. In this study we use COLATE as an example
of an accurate and low-overhead passive latency measurement
method and investigate the effect of our monitoring setup on
its accuracy.

We have implemented the COLATE method to be executed
in measurement sessions instead of the original design with
two separate recording and querying phases. In the start of each
session, the sender monitor function sends a start message to
the receiver and starts collecting packets using libpcap library.
The receiver side similarly starts passive data collection after
receiving the start message. At the end of the interval, the
sender sends a stop message, together with the estimated sum
of all timestamps t̃

f,S

. Upon arrival of the stop message, the re-
ceiver compares its estimated sum of all timestamps t̃

f,R

with
the value received in the message. The difference gives us the
estimated average latency over the measurement session. In our
experiments we only run tests for a single flow measurement in
the container-based setup. In the original design of COLATE,
the number of packets per flow p

f

is obtained from a separate
tool. In our implementation this value is also calculated by
the monitor function itself. Moreover, in our implementation
the stop message also carries an incremental stream digest
value, i.e., a hash value created from all the packets in the
measurement session, which allows us to make sure that the
same set of packets are being compared in each session.

Figure 8 shows the one-way latency errors for different
measurements with different session lengths. The x-axis shows
the number of packets that were collected in each session. The
bars in the figure show the errors between the average latency
value calculated by COLATE and the average latency from
per-packet measurements from inside the monitor container
(LCOL�LMon). It can be seen that the error of measurements
performed by COLATE depends on the number of packets
in each measurement session. Our measurements show that
COLATE slightly overestimates the latency values compared
to per-packet values obtained from the monitoring container.
Overall, one should take into consideration that the total error
of measurements using this algorithm is the sum of the over-
estimation of COLATE and underestimation caused by using
our monitoring setup with adjacent monitoring containers.

0

10

20

30

40

10 50 100 500 1000 5000
Packets per session

E
rr

o
r

(m
ic

ro
se

co
n

d
s)

Fig. 8: Error values for average latency by using COLATE
compared to a naı̈ve method with different session lengths.

VI. DISCUSSION

The monitoring setup presented in this paper can be used
for different types of measurements. Some measurements such
as packet loss detection do not require accurate timestamping.
Other types of measurements such as available capacity mea-
surements [4] require calculating the time difference between
packets. Further, passive latency calculation is a challenging
problem which also requires accurate timestamping. In this
study we have evaluated a container-based measurement setup
and how it affects the accuracy of passive latency estimation.

In this paper, we have performed different measurement
experiments to evaluate the accuracy of measurements in a
setup corresponding to real-world deployment of VNFs. In
the measurements, ICMP ping was used to emulate VNF
traffic. We also observed similar measurement results when the
VNF containers where sending UDP traffic. This observation
confirms that the type of traffic being passively monitored does
not affect the accuracy of the timestamps in our monitoring
setup. A future study could be performed with different packet
sizes and random send intervals to get a more detailed view
on the impact from packet size and send patterns on the
timestamping accuracy. We have also shown that the main
cause of error in timestamping information is due to switch
packet processing on the sender side. It is expected that by
continuous enhancement and optimization of virtual switch
implementations, these errors caused by switch processing
will be reduced. Our measurements have also shown that
under heavy CPU loads, the timestamping errors caused by
both container and switch virtualization are reduced. The load
on the CPU has also caused the ping tool to report lower
RTT values compared to experiments with no background
load. These observations are due to CPU auto scaling which
increases the clock frequency of CPU on the host machine.
This means that by increasing the clock frequency of CPU,
it is possible to reduce the timestamping errors and achieve
more accurate results in expense of losing power saving
benefits. Additionally, we observed that pinning the monitoring
container to a CPU core can reduce the measurement errors,
particularly in measurement scenarios where virtual memory
is loaded.

In previous studies it has been shown that port mirroring
has a number of drawbacks such as adding additional burden
on the CPU of the switch [8]. In our experiments the extra CPU
burden added by packet duplication was negligible. Moreover,
it was shown in [24] that mirroring may introduce delay, loss,

124ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

and reordering of packets due to buffering of packets before
forwarding them. In our measurements we did not observe any
packet loss due to mirroring or tapping. However, we observed
re-ordering of the packets received by the monitoring container
compared to the packets sent from a VNF container both
for the tapping and mirroring experiments. The re-ordering
happens among the packets that belong to different flows and
not the packets that belong to the same flow. Therefore, if
the monitoring function or the traffic analysis tool requires
accurate ordering of the packets for different flows, using
mirroring/tapping in OVS can lead to inaccurate results.

An interesting future direction would be to evaluate the
performance of different types of virtual switches. Initial
experiments comparing OVS with original Docker bridge has
shown that although the time it takes for the first packet to be
processed is higher than the rest of the packets in both of the
switches, the processing time for OVS is much higher. Overall,
the average processing time it takes for all packets of a flow
to be processed by the Docker bridge is lower that the OVS.
Additionally, Docker allows a container to share the network
stack of another container instead of directly connecting to the
bridge. This means that a monitoring container can be con-
nected to the network stack of a VNF container and perform
passive measurements. The advantage of such implementation
is that the errors caused by processing and copying packets
by virtual switch are eliminated. However, this approach to
implementation has many disadvantages including violating
isolation and separation of containers.

Overall, the timestamping error caused by our setup is
very low compared to the latency values reported in real
datacenters. The latency values reported in [6] show that in
a normal working day without any network incidents, the
50th percentile intra-pod and inter-pod round-trip latencies
(from physical servers and not through virtualization layers)
are around 216 µs and 268 µs, respectively. These observations
also confirm the feasibility of using our setup for passive
latency monitoring.

VII. CONCLUSIONS

In this paper we presented and evaluated a container-based
monitoring setup for passive monitoring of VNF traffic. Our
main focus has been on the timestamping accuracy which is re-
quired for passive monitoring of different network performance
metrics such as latency. The key finding of our study is that the
main source of error for passive container-based monitoring
is caused by the switch processing time on the sender side.
Moreover, we observed that the errors are quite stable and are
not affected much by the load on the host machines and by
congestion on the network. The results indicate that by doing
initial tests and obtaining error estimates, one can calibrate a
monitoring system.

REFERENCES

[1] Stress tool, [online]http://people.seas.harvard.edu/⇠apw/stress/.
[2] Internet protocol data communication service-ip packet transfer and

availability performance parameters, itu-t recommendation Y.1540,
2011.

[3] T. Broomhead, L. Cremean, J. Ridoux, and D. Veitch. Virtualize
everything but time. In Proceedings of the 9th USENIX Conference
on Operating Systems Design and Implementation, pages 1–6, 2010.

[4] S. S. Chaudhari and R. C. Biradar. Survey of bandwidth estimation tech-
niques in communication networks. Wirel. Pers. Commun., 83(2):1425–
1476, July 2015.

[5] R. Dantas, D. Sadok, C. Flinta, and A. Johnsson. Kvm virtualization
impact on active round-trip time measurements. In IFIP/IEEE Inter-
national Symposium on Integrated Network Management (IM), pages
810–813, May 2015.

[6] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien. Pingmesh:
A large-scale system for data center network latency measurement and
analysis. In ACM SIGCOMM Conference, pages 139–152. ACM, 2015.

[7] R. Hofstede, P. Celeda, B. Trammell, I. Drago, R. Sadre, A. Sperotto,
and A. Pras. Flow monitoring explained: From packet capture to data
analysis with netflow and ipfix. Communications Surveys Tutorials,
IEEE, 16(4):2037–2064, Fourthquarter 2014.

[8] W. John, S. Tafvelin, and T. Olovsson. Review: Passive internet
measurement: Overview and guidelines based on experiences. Comput.
Commun., 33(5):533–550, Mar. 2010.

[9] R. R. Kompella, K. Levchenko, A. C. Snoeren, and G. Varghese. Every
microsecond counts: Tracking fine-grain latencies with a lossy differ-
ence aggregator. In Proceedings of the ACM SIGCOMM Conference,
pages 255–266. ACM, 2009.

[10] M. Lee, N. Duffield, and R. R. Kompella. Not all microseconds
are equal: Fine-grained per-flow measurements with reference latency
interpolation. In Proceedings of the ACM SIGCOMM 2010 Conference,
pages 27–38. ACM, 2010.

[11] M. Lee, N. Duffield, and R. R. Kompella. Maple: A scalable architecture
for maintaining packet latency measurements. In Proceedings of the
2012 ACM Conference on Internet Measurement Conference, pages
101–114. ACM, 2012.

[12] M. Lee, S. Goldberg, R. R. Kompella, and G. Varghese. Fine-
grained latency and loss measurements in the presence of reordering.
SIGMETRICS Perform. Eval. Rev., 39(1):289–300, June 2011.

[13] P. Menage. Cgroups, [online]https://www.kernel.org/doc/
Documentation/cgroups/cgroups.txt.

[14] R. Mutia, N. Sadeque, J. Andersson, and A. Johnsson. Time-stamping
accuracy in virtualized environments. In 13th International Conference
on Advanced Communication Technology, pages 475–480, Feb 2011.

[15] B. Pfaff, J. Pettit, T. Koponen, E. J. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar, K. Amidon, and M. Casado.
The design and implementation of open vswitch. In Proceedings of the
12th USENIX NSDI Conference, pages 117–130, 2015.

[16] P. Phaal. sflow version 5, july 2004, [online]http://sflow.org/sflow
version 5.txt.

[17] K. Phemius and M. Bouet. Monitoring latency with openflow. In
Network and Service Management (CNSM), 2013 9th International
Conference on, pages 122–125, Oct 2013.

[18] M. Shahzad and A. X. Liu. Noise can help: Accurate and efficient per-
flow latency measurement without packet probing and time stamping.
In the ACM SIGMETRICS Conference, pages 207–219. ACM, 2014.

[19] Soltesz, Stephen and Pötzl, Herbert and Fiuczynski, Marc E. and
Bavier, Andy and Peterson, Larry. Container-based operating system
virtualization. ACM SIGOPS Operating Systems Review, 41:275, 2007.

[20] I. Song. IEEE 1588 and PTP, [online]http://events.linuxfoundation.org/
sites/events/files/slides/elc insop 2015.pdf.

[21] W. Felter, A. Ferreira, R. Rajamony, and J. Rubio. An updated
performance comparison of virtual machines and linux containers. In
IEEE International Symposium on Performance Analysis of Systems and
Software (ISPASS), 2015.

[22] J. Wang, S. Lian, W. Dong, Y. Liu, and X.-Y. Li. Every packet
counts: Fine-grained delay and loss measurement with reordering. In
Proceedings of the IEEE 22nd International Conference on Network
Protocols (ICNP), pages 95–106. IEEE, 2014.

[23] C. Yu, C. Lumezanu, Y. Zhang, V. Singh, G. Jiang, and H. V.
Madhyastha. Flowsense: Monitoring network utilization with zero
measurement cost. In Proceedings of the 14th International Conference
on Passive and Active Measurement, pages 31–41, 2013.

[24] J. Zhang and A. Moore. Traffic trace artifacts due to monitoring via
port mirroring. In Workshop on End-to-End Monitoring Techniques and
Services, pages 1–8, Yearly 2007.

125ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Congestion Aware Priority Flow Control
in Data Center Networks

Serhat Nazim Avci, Zhenjiang Li, Fangping Liu
Futurewei Technologies

{serhat.avci,andy.z.li,julius.f.liu}@huawei.com

Abstract—The data center bridging (DCB) protocols enable
Ethernet to become the leading unified fabric for a converged
data center. As a part of DCB, priority flow control (PFC) is a
control mechanism that provides the losslessness feature required
by certain applications such as Fibre Channel over Ethernet.
Quantized congestion notification (QCN) is also a DCB protocol
and provides congestion control functionality to complement PFC.
However, in today’s practical data center networks, QCN is not
feasible and PFC is not efficient against congestion. We propose
a new link layer mechanism called congestion aware priority flow
control (CaPFC) that equips PFC with better congestion control
capability in the absence of QCN. Changes brought by CaPFC
on top of PFC are lightweight. By conducting simulations in
NS-3, we demonstrate that CaPFC handles persistent and flash
congestion much better than PFC. For the short messaging traffic
and the query traffic, which are sensitive to tail latencies, CaPFC
consistently outperforms PFC in terms of tail flow completion
time.

I. INTRODUCTION

One of the major trends in data center networking is the
fabric convergence, which helps to eliminate separate networks
for servers, storage and computing, thereby reducing the costs
related to maintenance, management, training, equipment, ca-
bling, power and space [1]. Data center bridging (DCB) is an
effort by the IEEE 802.1 working group to promote Ethernet
as the unified fabric of data center networks by expanding
its networking and management capabilities, which is also
called as Converged Enhanced Ethernet. DCB requires per-
priority link level flow control, traffic differentiation, con-
gestion management and transmission scheduling features to
make Ethernet a candidate for unified data center networking
fabric [2]. For that purpose, DCB includes four different
protocols, namely priority-based flow control (PFC), enhanced
transmission selection (ETS), congestion notification (QCN)
and data center bridging exchange protocol.

Although the other two protocols are also important to
DCB, only PFC and QCN play a role in the congestion
control of the flows, which is the focus of this paper. The
goal of PFC is to push the congestion from inside the network
to the edges by recursively propagating this congestion to
upstream nodes. In theory, PFC is envisioned to keep flow
control for different priorities independent and hence create
virtual lanes. Congestion created by one priority pauses only
the traffic of that specific priority and does not affect the
traffic of other priorities. QCN is developed to carry out large
scale persistent congestion management in Ethernet-based data
center networks.

PFC and QCN have proved to be successful to a certain

extent. However, they have practical issues that limit their
deployment. In one hand, even though PFC manages to pre-
vent packet losses under certain assumptions, it has certain
drawbacks such as congestion spread, head of the line (HOL)
blocking,and potential deadlocks.

In another hand, despite the necessity of a congestion
control mechanism that will complement PFC in datacenter
networks and the proven performance of QCN in testbeds,
QCN has serious issues that prevent its wide deployment. First
of all, the scope of QCN is restricted to a single VLAN.
It cannot pass through network borders [3] in data centers
or Fibre Channel Forwarders (FCF) in Fibre Channel over
Ethernet networks [4]. Second, QCN increases the switch and
adapter complexity [2]. In a DCB switch, hundreds of con-
gestion points are needed in addition to the tens to thousands
rate limiter units in the adapters. They put a burden on the
network devices in terms of complexity, power and cost. Third,
QCN lacks application control, which is also pointed by [2].
As increasingly more applications prefer to control the rate at
end-hosts, the QCN reaction point is disabled by default in
order to prevent conflict with the rate control of applications.

This paper has three main contributions.

• We show how some overlooked assumptions about
PFC fail in most merchant silicon data center switches.
We show how PFC fails to prevent packet drops be-
tween ingress and egress queues in a typical merchant
silicon switch. When trying to fix this issue with
the current architecture of PFC, we also demonstrate
that backpressure caused by PFC results in congestion
spread not only among different ports and switches but
also within ideally independent priorities.

• We propose congestion aware priority flow control
(CaPFC) as a novel link layer mechanism that incorpo-
rates congestion control functionality in PFC. CaPFC
is designed to address the shortcomings of PFC in the
absence QCN. It employs a joint ingress and egress
queue monitoring mechanism to handle congestion
proactively.

• We demonstrate that two versions of CaPFC consis-
tently outperforms two versions of PFC in terms of
tail flow completion time. For that purpose, we build
a simulation setup in NS-3 to evaluate the performance
of the proposed CaPFC compared to PFC.

In the next section, we provide the technical details on the
research problem and describe the proposed CaPFC mecha-
nism. Next, we discuss how to tune the parameters in CaPFCISBN 978-3-901882-83-8 c⃝ 2016 IFIP

126ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

!"#$%&'()*+()+$"+$,-(./*/*

01!(2'"%3$4#

01!(2'"%3$4#

01!(2'"%3$4#

01!(2'"%3$4#

!"#

!"#

!"#

!
"
#
$
%
&
&
'
(
)
*
%
+
,
-
.
"
#

Fig. 1. The switch architecture and the HOL blocking

in Section III. The simulation setup and the simulation results
are presented in Section IV. In Section V, a brief summary of
the related work is presented before concluding the paper.

II. CONGESTION AWARE PRIORITY FLOW CONTROL

In this section, we present the proposed CaPFC mechanism
and how it is integrated into the legacy PFC architecture.
Before that, a typical merchant silicon architecture is presented
to define the research problem and the motivation.

A. Problem Definition

The architecture of the switches that are commonly de-
ployed in today’s data center networks has a critical impact on
the design and performance of the flow and congestion control
mechanisms. One of the key insights behind this paper is the
inefficient propagation of congestion from the egress ports to
the ingress ports of a network device. The way PFC messages
propagated from inside the network to the edge hosts is not
very clearly analyzed. The usual assumption is that when an
egress buffer of a paused port gets filled up, the packets starts
to fill ingress buffers, hence PFC messages are created to the
upstream device. However, there is no clear mechanism in PFC
standards on how to stop switching packets from ingress to
egress if there is no space left at the egress.

The reference merchant silicon switch architecture has a
pipelined packet processor and a traffic manager. Whenever
a packet is admitted from an ingress port, first, its header is
extracted. The header is sent to a pipeline to decide what to
do with the packet while the payload is stored in the ingress
buffers or in shared memory buffers depending on the type
of the switch. At the ingress ports, even though packets are
processed on a FIFO order, we logically implement a separate
queue per priority by keeping per-priority packet counters.
PFC generates pause (XOFF) and unpause (XON) messages
per-priority with respect to counter of each priority. When
admitting packets to the pipeline, round robin scheduling is
implemented between different input ports.

Unlike crossbar type of architectures, the packets are put
into the egress queue whenever a forwarding decision is made,
which is only after the packet processing phase. Therefore,
once a forwarding decision is made for a packet, it will either
will be placed at the corresponding egress queue if there is
any empty space or it will be dropped. This has a sinister
effect on the data transmission between ports when one of the
egress queues for a single priority is completely full. The only
way to prevent packet drop is to stop packet processing which
will halt the data transmission towards any egress port for any
priority. In this case, the packet belonging to other priorities or

designated to different ports will suffer from the HOL blocking
as shown in Fig. 1. In most of the merchant silicon switches, it
is not feasible to stop packet processing [5] which means PFC
cannot completely prevent packet drops. Dropping packets
results in lengthy timeouts and retransmission and aggravates
the latency and the congestion in the network. In Section IV,
congestion spread, packet drops, and HOL among different
priorities are empirically observed to cause high tail latencies
for short flows.

This issue exists also in shared memory merchant silicon
switches. In these switches, the payload is buffered only once,
therefore moving a packet from ingress to egress does not
occupy extra buffer space. However, the header of the packet
is queued at the corresponding egress port when a decision is
made. In most merchant silicon switches, the egress queues
have queuing and scheduling policies to satisfy the quality
of service which limit the capacity of the queues [5]. When
an egress queue reaches that limit, a packet is dropped from
ingress to egress even in shared memory switches.

Even though PFC is envisioned to keep flow control for
different priorities independent and hence create virtual lanes,
in typical switches, egress buffer overflow in one priority
causes either HOL at all ingress ports for every priority
or results in packet drops at the end of packet processing.
Eventually, it causes a saturation tree inside the network in
less than a few round-trip times, [6], which makes software
solutions too slow to succeed forcing the adoption of hardware
solutions. Both of these scenarios dramatically increase the tail
completion time of short and time-sensitive flows. To prevent
these scenarios, the key idea behind CaPFC is to develop a
proactive congestion aware flow control mechanism which will
keep the buffers on the egress ports from being completely
occupied. In CaPFC, the virtual lanes for each priority are
preserved by preventing congestion in one priority spreading
to other priorities.

B. CaPFC Introduction

In typical PFC, ingress queue states are taken into account
when deciding the state of flow control. CaPFC also monitors
egress queues in order to add congestion control awareness on
top of PFC. CaPFC employs per-input-port counters at each
egress buffer to measure the congestion contribution of each
input port to that specific egress buffer. It is important that
these measurements are fresh and do not increase complexity
as we describe in Section II-D.

In Fig. 2, it is shown that different ingress queues may
send packets to a single egress queue of the same priority. If
the buffer occupancy of an egress queue for a specific priority
passes a certain threshold, the queue starts to count the number
of packets newly arriving from each input interface. If the
buffer occupancy passes the congestion threshold (explained in
Section II-D), CaPFC finds the highest contributor or highest
contributors of that congestion among ingress interfaces. After
identifying those culprit ingress interfaces, the egress queue
ask those ingress interfaces to issue PFC-XOFF messages to
their corresponding upstream devices. It should be noted that
CaPFC never pauses ingress scheduling for any ingress queue
instead it asks them to pause the traffic from their upstream
devices. The details of the CaPFC operation is explained in
the following subsections.

127ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

!"#$%"&$'(')*+*#*+,

!
"
#
$
%
&
&
'&
(
)
%
*
+
,
%
$

!-.+'/

0&1.$22'34'!."4'5

61.$22'34'!."4'5

!-.+'7

0&1.$22'34'!."4'5

!-.+'8

0&1.$22'34'!."4'5

!-.+'5

0&1.$22'34'!."4'5

!-.+'9

1,4
3E

0,4
3E

2,4
3E
3,4

3E

Fig. 2. An egress queue of a priority receives packets from ingress queues
of other ports with that priority. In return, it sends congestion state signals
per-ingress queue per-priority.

C. Ingress Congestion Management

CaPFC ingress queue management is the same as it is in
PFC. CaPFC monitors the buffer occupancy of ingress queues
which are PFC-enabled. Per-priority ingress buffer state keeps
track of the ingress congestion behaviour. Buffer occupancy
over time of an ingress queue of port i for priority p is Bi

p
and it is shown in Fig. 3. MAX threshold is the maximum
capacity of the queue. The variable Ip

i keeps ingress queue
congestion state of port i for priority p. It is equal to 1 in
congestion (XOFF) state and 0 in non-congestion (XON) state.
In the beginning, XON is the default state. In Fig. 3, when
the buffer occupancy passes the XOFF threshold, this queue
switches to XOFF state which is shown by dashed red line.
The queue turns back to XON state once the buffer occupancy
drops below the XON threshold.

!"#$

!
"
#
#
$
%
&'
(
(
"
)
*
+
(
,

%&'

'())

'(*

0=i
pI

1=i
pI

0=i
pI

i
pB

Fig. 3. Buffer occupancy over time for ingress queue buffers.

D. Egress Congestion Management

Buffer occupancy of the egress queues are monitored as in
QCN. The goal is to detect congestion in the egress queues
and identify the heavy flows that contribute most to the
congestion. In Fig. 4, the buffer occupancy over time graph
of an egress queue is depicted. In addition to the MAX,
XOFF, and XON thresholds, the WARN threshold is added.
As in the ingress queues, XOFF and XON thresholds are used
to detect congestion and the lack thereof. MAX threshold is
the absolute capacity of the buffer. If it is reached, the new
packets are dropped. Before explaining the WARN threshold,
we introduce a new variable Ci,o

p which keeps the arrival
count of the packets in egress queue of port o of priority p
from input port i. These counters are used to identify the
heaviest contributors to the congestion at the egress queues.
However, they bring additional complexity since they need to

be updated every time a new packet comes in to an egress
queue. In addition, the freshness of these counters is also
important to accurately identify the congestion contributors.
Therefore, CaPFC introduces the WARN threshold to trigger
those counters only in the congestion state. If the buffer
occupancy is below the WARN threshold, the counters are
reset to 0. When the buffer occupancy passes the WARN
threshold, the counters are activated to keep the number of
packets arriving from each ingress port for a specific egress
queue. WARN threshold helps to reduce complexity and keep
counters fresh and accurate. In Section III, we discuss how to
tune these thresholds to optimize the performance.

!"#$

!
"
#
#
$
%
&'
(
(
"
)
*
+
(
, %&'

'())

*&+,

'(,

o
pB

Fig. 4. Buffer occupancy over time for egress queue buffers.

!
"
#
$
%
&
&
'&
(
)
%
*
+
,
%
$

!"#$%&

'()#*++%,-%!#.-%/%0%%%%1

2)#*++%,-%!#.-%/

2)#*++%,-%!#.-%/

2)#*++%,%!#.-%/

2)#*++%,-%!#.-%/

!"#$%/

!"#$%3

!"#$%4

!"#$%5

0,1
3E

!.6*7.(*%8%9:$:6:$;

0,2
3E

0,3
3E

0,4
3E

0
3D

0
3I

Fig. 5. Packets from a single ingress queue are forwarded to all egress
queues per-priority. In return, the ingress queue receives a congestion state
signal from each egress queue per-priority.

CaPFC introduces the variable Ei,o
p to keep the congestion

state of an egress port o for input port i and for priority
queue p. These congestion state values are fed back to the
corresponding input ports as shown in Fig. 5. These state
variables are then used to determine to send XON or XOFF
messages out of those input ports to the upstream devices. In
CaPFC, egress queues do not pause the traffic coming out of
ingress queues to avoid HOL which helps to preserve virtual
parallel lanes for each priority.

Stop-Max is the name of the first algorithm that is used
to calculate the congestion states where only the maximum
contributor of the congestion is identified and the egress
congestion signal Ei,o

p is set to 1 only for that input port. If the
congestion persists, the counter of other input ports continue to
increase and the max contributor index changes. At that point,
the new maximum counter input port is also put in congestion
state and asked to pause upstream traffic. Input ports are put
into congestion state one-by-one as long as congestion persists.
The pseudocode of this algorithm is given in Algorithm 1.

The second algorithm is named Stop-Calibrate Policy.
When the buffer occupancy is above the XOFF threshold, it

128ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Algorithm 1 Stop-Max Algorithm
Require: Bo,+

p = Bo
p + size of the new packet

Require: Bo,−
p = Bo

p - size of the dequeued packet
1: if Enqueue a packet at port o with priority p then
2: if Bo,+

p ≥MAX threshold then
3: Drop the packet
4: else
5: Accept the packet
6: Bo

p ← Bo,+
p

7: if Bo
p ≥WARN threshold then

8: Ci,o
p ← Ci,o

p + 1
9: if Bo

p > XOFF threshold then
10: Detect the heaviest contributor i∗
11: i∗ ← argmaxi C

i,o
p

12: Put it into congestion state
13: Ei∗,o

p ← 1

14: else if Dequeue a packet from port o with priority p then
15: Remove the packet
16: Bo

p ← Bo,−
p

17: if Bo
p ≤WARN threshold then

18: Ci,o
p ← 0 ∀i

19: if Bo
p ≤ XON threshold then

20: Ei,o
p ← 0 ∀i

first sorts the congestion counters of the egress queue. Then
starting from the highest, it sets the congestion signal for
the input ports whose cumulative counter percentages pass
a predefined cut-off threshold ratio. This threshold can be
calibrated between 0 and 1 defining the aggressiveness of
the CaPFC technique. If the threshold ratio is set as 1, then
congestion signal of every input port with a packet inside the
egress queue is set to 1. In Algorithm 2, we only reflect the
differences from the Algorithm 1. The steps 10 and 13 in
Algorithm 1 are replaced by the steps in Algorithm 2. CUT
is the calibrated cut-off threshold, the ratio of the congestion
contribution that is determined to be heavy.

Algorithm 2 Changes for Stop-Calibrate Policy
1: Detect the heaviest contributors ◃ In place of Step 10
2: Sort congestion counters Ci,o

p based on i
3: Find the set of input ports IP whose cumulative conges-

tion contribution ratio passes the CUT threshold
4: Ei,o

p ← 1 ∀i ∈ IP ◃ In place of Step 13

E. Combined Congestion Reaction

In PFC, if the ingress queue of a certain priority gets into
a congestion state, it sends a PFC-XOFF message to pause the
incoming traffic. CaPFC incorporates both ingress queue state
and egress queue states to pause and unpause the incoming
traffic. An ingress queue may send packets to different egress
queues of the same priority as depicted in Fig. 5. Likewise, it
receives an egress state signal Ei,o

p destined for this input port.
If any of the egress ports sees the traffic coming from ingress
queue i is responsible for the congestion at egress queue o,
they will notify the ingress queue with the Ei,o

p signal set to
1. Therefore, the decision to send an XOFF or XON message
to the upstream device is based on the congestion state of the

XONPFCDi
p −= /0

XOFFPFCDi
p −= /1

!"## !"$ 0=i
pD1=i

pD

Fig. 6. The decision logic behind CaPFC, which is very similar to that of
PFC except Iip is replaced by Di

p.

ingress queues and the congestion state signals received from
all egress queues. In input port i, for priority p, the combined
congestion state variable Di

p is calculated by

Di
p = Iip ∨

∨

o∈P,
o ̸=i

Ei,o
p ∀i ∈ P, 1 ≤ p ≤ 8,

where P is the set of ports. For example, if we assume the
switch has five input/output ports indexed as 0, 1, 2, 3, 4, then
the CaPFC decision variable for port 0 for priority 3 will be
equal to

D0
3 = I03 ∨ E0,1

3 ∨ E0,2
3 ∨ E0,3

3 ∨ E0,4
3 .

In order to reduce complexity and overhead, we assume
that congestion state signals Ei

p are only sent when there is a
change of state. The ingress queue stores the latest updates of
these signals and recalculates Di

p only if at least one of the
state signals change. The XOFF/XON behaviour of a receiving
port based on variable Di

p is highlighted with a finite state
machine in Fig. 6. Compared to PFC, the only difference is
the CaPFC messages are triggered by combined congestion
state signals Di

p instead of just ingress congestion state signals
Iip. In short, the traffic incoming at port i with priority p is
paused if the ingress queue is in congestion state or the ingress
queue is deemed responsible for congestion at any of the egress
queues, for that priority. The traffic for priority p is unpaused
only if both the ingress queue is out of congestion state for
that priority and is not responsible for the congestion in any
of the egress queues for that priority.

F. Shared Memory Switches

In shared memory merchant silicon switches, every priority
queue at every port has a small dedicated memory. The
rest of the memory is assigned to a common pool. There
are per-priority-queue, per-port, per-all-ingress-ports, per-all-
egress-ports thresholds on the buffer usage from this shared
memory pool. When admitting a packet from an ingress queue
to an egress queue, the buffer occupancy counters of that
egress queue, counters of that egress port and the total buffer
occupancy of all egress ports are checked. If any of those
counters are equal to the capacity threshold, this packet cannot
be admitted. When an ingress queue admits a packet, it also
checks the buffer occupancy counter of total shared memory
usage in that switch. If there is no space left in the shared
memory pool, the packet is not admitted. In our CaPFC
implementation, setting XOFF, XON, and WARN thresholds
for each buffer usage counter would be complex. Therefore,
we implement CaPFC only on per-priority-queue buffer usage
and set those thresholds with more safety margin to mitigate
the buffer overflow with respect to other counters.

129ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

G. CaPFC Implementation Requirements

The goal behind CaPFC is to design a congestion aware
flow control scheme with maximum added functionality but
with minimum extra complexity. It is crucial that CaPFC
is easily integrated to the legacy hardware in which PFC
has already been deployed. As depicted in Fig. 7, CaPFC
assumes no change on top PFC from a network perspective.
The transmitter and receiver mechanisms of PFC is intact
whereas the decision logic behind XOFF and XON messages
is modified. Therefore, CaPFC does not require any change
in the network interface cards (NICs) but requires monitoring
of the egress queues, signaling between the ingress and egress
queues and a modified logic in the ingress queues. All of these
changes are easy to adapt in practical switches.

CaPFC introduces per-input-port per-priority counters at
egress ports. CaPFC is envisioned to be used only for lossless
traffic services. In a network, typically few of eight classes
of services will use lossless services. Therefore, the counters
for this purpose will be typically lower end of O(P 2), where
P is the number of ports. In popular commodity switches
with 48 ports, that corresponds to maximum 18432 counters
for 8 priorities, which is manageable in those switches. If
each counter occupies 2 bytes of memory, it corresponds to
approximately 36 KB extra memory, which is easily affordable.
In high-radix switches with 128 ports, the CaPFC service
would be enabled for a small number of lossless priorities,
which keeps the number of total counters around 10K’s.

The computational complexity brought by CaPFC is updat-
ing the congestion counters every time a new packet comes in
and goes out of an egress queue and calculating the heaviest
ingress ports. This complexity is significantly simplified after
the introduction of the WARN threshold since only the lossless
queues which observe high levels of buffer occupancies need
to update their counters at the line rate. A software solution
may not scale in the cases when multiple queues observe high
occupancy levels, therefore a hardware solution is a better fit.
A dedicated FPGA can keep the counters in a table per egress
port and update them in line rate if the corresponding queue
occupancy is over the WARN threshold. Once the occupancy
of an egress queue passes the XOFF threshold, the FGPA
module is responsible to sort the per-ingress-port counters,
which has O(PlogP) complexity. In Stop-Max algorithm, the
congestion signal of the index of the maximum counter is set to
1. In Stop-Calibrate algorithm, the minimum set of the indexes
whose counter contributions exceed the CUT threshold are
found. It is carried out by cumulating the counters in the
decreasing order until the threshold ratio is passed. It has
a O(P) complexity. Overall, CaPFC has a limited memory
requirement and requires a small die space with O(PlogP)
computational complexity in an FPGA.

On the other hand, CaPFC mitigates the disadvantages of
QCN. Unlike QCN, CaPFC can cross VLAN borders since it
uses the same network interface of PFC as shown in Fig. 7.
Second, it incurs much less complexity compared to QCN. In
Stop-Max algorithm, it introduces only the WARN threshold.
For simplicity, the WARN threshold is a virtual register which
is represented by the XON threshold in the switch ASIC.
In Stop-Calibrate algorithm, the cut-off parameter is also
introduced. On the other hand, a typical QCN implementation
introduces 12 extra parameters [7]. The tuning complexity of

those parameters are also much higher. In addition, CaPFC
works per-input port whereas QCN works per-flow, which
also increases the complexity of the operation. Finally, unlike
QCN, CaPFC does not require any change in the end-hosts.
In conclusion, CaPFC adds significant congestion control
functionality to flow control without introducing compatibility
issues and significant complexity concerns.

!"#$

%&'(&

#)!"#

*+,-.

/$$$$$$0

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

%&'(&

!"#$

*+,-.

/$$$$$0
i
pI

i
pD

Fig. 7. CaPFC does not change the transceiver structure already deployed for
PFC. CaPFC only replaces the decision logic of PFC by incorporating egress
queue states along with the ingress queue state per-priority per-input port. The
ingress decision variable Iip of PFC is replaced by combined decision variable
Di

p = Iip ∨
∨

o∈P,
o ̸=i

Ei,o
p of CaPFC.

H. Cross Layer Interaction

We believe a comprehensive solution should come from
a multi-layer approach which integrates different techniques.
Therefore, we built CaPFC on the cross-layer architecture of
DeTail [8]. In DeTail, besides a lossless fabric and hierarchical
prioritization, there are changes in the network layer and
transport layer. In network layer, it proposes a per-packet adap-
tive load balancing scheme which dominates Flow Hashing
and Lossless Packet Scatter in terms of reducing congestion
hotspots [8]. In addition, the transport layer is modified to be
reorder-resistant since packets can take different routes due
to Adaptive Load Balancing. The transport layer of DeTail
uses explicit congestion notification (ECN) protocol to detect
congestion. CaPFC interacts with TCP in the same way PFC
does as explained in [8]. CaPFC redesigns the link layer
portion of DeTail but requires no change in the network and
transport layers except tuning of the parameters.

III. PARAMETER SELECTION ANALYSIS

Setting parameters in PFC is limited to finding XOFF and
XON thresholds assuming the MAX threshold is given by the
hardware specs. It is clear that XON must be smaller than
XOFF. In selecting the XOFF threshold, the idea is to put
the minimum amount of headroom buffer that will absorb all
of the traffic that was received after a PFC pause message
is sent to the upstream device [9]. To calculate this value,
maximum transmission unit (MTU) on the transmitting end
of receiver, length of the cable, speed of the wire, transceiver
latency, response time of sender, and MTU on the transmitting
end of sender are taken into account. To simplfiy, the headroom
buffer must be approximately equal to maximum link capacity
times RTT between two links. The XOFF threshold is set
by subtracting the headroom buffer from the MAX threshold.
Setting XON threshold is more challenging than the setting
the XOFF threshold. Setting it too low causes buffer underflow,
low link utilization and congestion spreading [8]. Setting it too
high causes too many PFC messages which creates too much
overhead in return [8]. We tuned the value of XON threshold
according to the on simulation results.

130ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

In CaPFC, XOFF and XON thresholds of the ingress
buffers are set the same as in PFC. At the egress buffers, setting
XOFF threshold requires a deeper analysis. Even if the egress
queue sends congestion state signals to trigger a pause message
at all input ports, it needs to take the packets already in the
ingress buffers and on the links into account. However, taking
the worst case into account may end up with an extremely large
headroom buffer which makes CaPFC unfeasible. Therefore,
a statistical multiplexing approach is adopted since egress
buffer overflow is not desirable but tolerable. The cost of
egress overflow with very low probability is usually less than
under utilization of buffer and link capacities. We tuned to the
optimal value by simulations. XON threshold in egress buffers
is set with the same idea in the ingress buffers.

The WARN threshold is set less than the XOFF threshold
to have a fresh picture of the congestion contribution before
asking the input ports to send pause messages. However, it
should not be set less than the XON threshold because in
persistent congestion states, the buffer occupancy may not
drop well below the XON threshold. Therefore, the counters
may be not be reset for a long time if the WARN threshold
is set lower than the XON threshold. It results in expired
statistics about the contributors of congestion. We set the
WARN threshold the same value as the XON threshold at
the egress buffers because it enables using the existing XON
threshold in hardware for the purposes of the WARN threshold
to simplify the implementation.

IV. PERFORMANCE EVALUATION

A. NS-3 Simulation Setup

The NS-3 simulation setup is built using the code base
of DeTail [8] work to evaluate the performance of CaPFC
compared to PFC. Even though it is missing in [8], the code
base uses Network Simulation Cradle (NSC), a framework that
embeds real Linux code in the NS-3 simulation. It enables to
get more realistic results and it has ECN functionality. We
also adopted the topology based on the input from Section
5.4 of [10] which is larger than the one in [8]. The simulated
switch has a pipeline based packet processor as presented in
Section II-A. It employs FIFO and ETS for ingress and egress
scheduling, respectively. The parameters of this switch are
taken from [8] which assumes 25µs switch delay. We vary the
packet processing speed of the pipeline-based switch from 1M
packets/s to 0.5M packets/s. ECN is implemented using NSC’s
TCP stack. ECN threshold is set to 20KB as optimized by the
simulations. The adaptive load balancing thresholds explained
in [8] are set to 16KB and 32KB, respectively.

B. Traffic Characterization

In data center networks, traffic can be characterized by
mainly three different traffic types namely real-time query traf-
fic, latency-sensitive short messaging traffic and throughput-
oriented long background traffic [3]. Query traffic is also
sensitive to latency in addition to having a risk of throughput
collapse named as TCP Incast [11]. We simulate all three traffic
patterns concurrently inside the network. Inter-arrival times
of the long traffic and short traffic flows are exponentially
distributed with a mean of 5000 and end-nodes of the flows
are uniformly selected. Query traffic consists of randomly
selected 40 source nodes sending a fixed size of flow to a

TABLE I. DIFFERENT TRAFFIC SIMULATION SCENARIOS

Long Traffic Short Traffic Query Traffic
Scenario No PS Size Queue Type Size Queue Type Size Queue Type

1 1Mpps 1MB WDRR 64KB SP 16KB WDRR
2 1Mpps 1MB WDRR 16KB SP 16KB WDRR
3 1Mpps 1MB WDRR 64KB SP 32KB WDRR
4 1Mpps 1MB WDRR 64KB WDRR 16KB SP
5 1Mpps 1MB WDRR 64KB WDRR 16KB WDRR
6 0.5Mpps 1MB WDRR 64KB SP 16KB WDRR

randomly selected common aggregation node simultaneously.
The inter-arrival time of the query traffic is also exponentially
distributed with the expected arrival rate of 100. These traffic
types are differentiated from each other by setting different
priorities. Some of these priorities may use Strict Priority
(SP) Queues, whereas some others can go over Weighted
Deficit Round Robin (WDDR) scheduling. We created six
traffic simulation scenarios for the dedicated buffer memory
and one for shared buffer memory setup to test the proposed
techniques in different conditions. The traffic scenarios for the
dedicated memory setup are given in Table I. PS is the packet
processing speed of the pipeline in terms of packets per second.

C. Simulation Results

In this section, we investigate the performance of two ver-
sions of CaPFC compared to two versions of PFC used in De-
Tail in terms of tail (maximum) flow completion time (FCT).
CaPFC max implements the Stop-Max algorithm whereas
CaPFC cal implements the Stop-Calibrate algorithm. In PFC
with drop (PFC wdrop), a packet is dropped at the end of
pipeline if the destination egress queue has no space, whereas
PFC with stop (PFC wstop) pauses packet processing in that
case to prevent any packet drop.

The test network is a Fat-Tree topology with 8-port 128
servers and 80 switches from [10]. Since the simulation em-
ploys NSC, it is not easy to try larger networks. The capacity
of the links are 1Gbs and the packet processing speed is either
1M packets/s or 0.5M packets/s depending on the simulation
scenario in Table I. Total subscription ratio is 4, two from ToR
to aggregate and two from aggregate to core. The values of
parameters are given in Table II. We note that MAX, XOFF,
and XON thresholds are per-port per-priority.

TABLE II. SIMULATION PARAMETERS

Parameter Value Parameter Value
Pipeline speed 0.5Mpps or 1Mpps Ingress XON thres. 40KB
Switch delay 25µs Egress MAX thres. 60KB
ECN thresh. 20KB Egress XOFF thres. 25KB
ALB thresh. (min/max) 16KB/32KB Egress XON thres. 20KB
Ingress MAX thresh. 60KB Egress WARN thres. 20KB
Ingress XOFF thres. 50KB CUT thresh. 80%

We take the simulation scenario 1 as the base case and
observe the effect of different parameters on the performance
by changing them one-by-one in each scenario. In the base
scenario, short message traffic has higher priority than the rest
of the traffic. In Fig. 8(a), tail FCT of four different techniques
are shown with a breakdown in terms of traffic type. The major
observations are detailed in the following sections.

1) CaPFC provides high burst absorbtion for query traffic:
Both versions of CaPFC reduces the maximum FCT of the
query traffic approximately 6 times and 3 times compared to
PFC wdrop and PFC wstop, respectively. CaPFC absorbed
the traffic bursts in a much better way than both versions
of PFC. Query traffic experiences TCP incast most severly

131ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

!"#$$

%$#$$

%"#$$

&$#$$

&"#$$

'$#$$

!""!

!"#$!%&"'

!"#$!%(")

#$!%*+,-.

$#$$

"#$$

!$#$$

!"#$$

()*+,-./*01 234+5-6+7889:

#$!%*+,-.

#$!%*/0-.

(a)

!"#$$

%$#$$

%"#$$

&$#$$

&"#$$

'$#$$

!""!

!"#$!%&"'

!"#$!%(")

#$!%*+,-.

!"#$

!"%!

!"#&

$#$$

"#$$

!$#$$

!"#$$

()*+,-./*01 234+5-6+7889:

#$!%*+,-.

#$!%*/0-.

(b)

!"#$$

%$#$$

%"#$$

&$#$$

&"#$$

'$#$$

!""!

!"#$!%&"'

!"#$!%(")

#$!%*+,-.

$#$$

"#$$

!$#$$

!"#$$

()*+,-./*01 234+5-6+7889:

#$!%*+,-.

#$!%*/0-.

(c)

!"#$$

%$#$$

%"#$$

&$#$$

&"#$$

'$#$$

!""!

!"#$!%&"'

!"#$!%(")

#$!%*+,-.

$#$$

"#$$

!$#$$

!"#$$

()*+,-./*01 234+5-6+7889:

#$!%*+,-.

#$!%*/0-.

(d)

!"#$$

%$#$$

%"#$$

&$#$$

&"#$$

'$#$$

!""!

!"#$!%&"'

!"#$!%(")

#$!%*+,-.

$#$$

"#$$

!$#$$

!"#$$

()*+,-./*01 234+5-6+7889:

#$!%*+,-.

#$!%*/0-.

(e)

!"#""

$"#""

%"#""

&""#""

!""!

!"#$!%&"'

!"#$!%(")

#$!%*+,-.

"#""

'"#""

!"#""

()*+,-./*01 234+5-6+7889:

#$!%*+,-.

#$!%*/0-.

(f)

Fig. 8. Comparison of different versions of CaPFC and PFC in terms of tail FCT (unit of y-axis is miliseconds) in (a) simulation scenario 1, (b) simulation
scenario 2, (c) simulation scenario 3 (d) simulation scenario 4, (e) simulation scenario 5, and (f) simulation scenario 6.

under PFC wdrop mechanism since sudden bursts lead to
synchronous packet drops.

2) CaPFC satisfies low latency for the short message flows:
In terms of tail latency of the short message flows, both
versions of CaPFC resulted in approximately 5 fold savings
compared to both versions of PFC. PFC wdrop suffers from
fast retransmissions and timeouts whereas PFC wstop suffers
from HOL blocking and congestion spread.

In the rest of the evaluation, we change some of the
simulation and traffic parameters one-by-one to see their effect
on the performance of techniques. These scenarios are outlined
in Table I from scenario 2 to 6.

3) CaPFC is efficient in different flow sizes: In scenario
2, the size of the short flows are decreased from 64KB to
16KB. Similarly, in scenario 3, the size of the query traffic
flows are doubled to 32KB compared to the base case. In
Fig. 8(b) and Fig. 8(c), the tail FCT of the query and the short
messaging traffic are shown for simulation scenario 2 and 3.
Interestingly, in Fig. 8(b), PFC wdrop incurs approximately 17
times more tail FCT for short flows whereas PFC wstop incurs
approximately 6 times more tail FCT for the query traffic. The
results in Fig. 8(b) and Fig. 8(c) are consistent with the results
in Fig. 8(a), which means both versions of CaPFC performs
good for different flow sizes.

4) CaPFC is efficient in different prioritization configura-
tions: In scenarios 4 and 5, we change the queue types of the
short and query flows. Originally, short message traffic has the
highest priority. In simulation scenario 4, the query traffic has
the highest priority whereas in scenario 5, all traffic types go
through separate WDRR queues. The results are presented in
Fig. 8(d) and Fig. 8(e). These results are also consistent with
the results in scenario 1.

5) CaPFC is efficient in different packet processing speeds:
Lastly, we decrease the processing speed of the pipeline to

TABLE III. LONG BACKGROUND TRAFFIC TAIL FCT

Tail FCT (ms) Based on Scenario
Technique Sce. 1 Sce. 2 Sce. 3 Sce. 4 Sce. 5 Sce. 6

CaPFC max 52.56 51.08 55.13 58.55 50.87 58.32
CaPFC cal 53.21 55.34 51.77 57.80 49.32 55.55
PFC wdrop 50.67 49.80 62.42 56.78 51.57 56.08
PFC wstop 55.22 55.87 52.17 53.46 61.02 59.75

half. It puts the pressure more on the ingress buffers therefore
egress buffer occupancy becomes less important. According
to the results in Fig. 8(f), changing the speed of the pipeline
does not curb the advantage of CaPFC over PFC wstop but
amplifies over PFC wdrop.

6) CaPFC offers high throughput for the long background
flows: The tail FCT of the long background flows are given in
Table III for every scenario. Even though CaPFC resulted in
significant savings in terms of tail latencies of the query traffic
and short message traffic, it did not compromise the bandwidth
requirement of the long background flows. Both versions of
CaPFC had similar results compared to both versions of PFC.
In the worst case scenario, CaPFC results in 4% increase in the
tail FCT compared to PFC wdrop in Scenario 6. It improves
the tail FCT up to 11.7% and 16.6% compared to PFC wdrop
and PFC wstop, respectively.

7) CaPFC is efficient in shared memory architectures:
We modify the switch architecture to observe the performance
of both versions of CaPFC in shared memory switches. Each
priority queue has 8KB dedicated memory and there is total
350KB available memory in the shared pool. The maximum
shared buffer capacity that can be used by each priority queue
and by each port are 80KB and 100KB, respectively. In the
egress queues, we set the XOFF, XON, and WARN thresholds
to 50KB, 35KB, and 35KB, respectively. In the ingress
queues, XOFF threshold is set to 30KB whereas XON thresh-
old is set to 20KB. The traffic scenario is given as scenario 1

132ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

in Table I. The tail FCT of query traffic and short messaging
traffic are given in Fig. 9. Even though both versions of CaPFC
perform significantly better than both versions of PFC for the
query traffic, CaPFC cal is 3 times better then CaPFC max.
Shared memory architecture helps both versions of PFC in
terms of tail FCT of the short messaging traffic. However,
PFC wdrop doubles the tail FCT of short messaging traffic
compared to both versions of CaPFC and PFC wdrop.

!"#$$

%$#$$

%"#$$

&$#$$

&"#$$

'$#$$

!""!

!"#$!%&"'

!"#$!%(")

#$!%*+,-.

!"#$
!"#%

!"#&
&"!!

$#$$

"#$$

!$#$$

!"#$$

()*+,-./*01 234+5-6+7889:

#$!%*+,-.

#$!%*/0-.

Fig. 9. Tail FCT (ms) results for all techniques in a shared memory switch.
V. RELATED WORK

Flow control and congestion control are addressed in
different layers and in different places in the network. Recently,
limitations of PFC, such as HOL blocking and unfairness,
are highlighted in [12]. Authors propose DCQCN a new
congestion protocol based on QCN and DCTCP. DCQCN
is an end-to-end protocol that involves higher layers. As an
alternative, we propose a purely link-layer-based hop-by-hop
solution. In [13], limitations of PFC are also listed as large
buffering delays, unfairness, HOL blocking, and deadlock.
Similarly, PFC is combined with DCTCP [3] and a deadlock-
free routing scheme is proposed in [13]. In this paper, we
assume no changes to TCP and propose a solution based on
the link layer, which can react faster to flash congestion. A
different approach is taken in [14], a modified QCN technique
is proposed to reduce the side effects of PFC. It complements
per-port per-priority granularity of PFC with the per-flow
granularity of QCN. However, it inherits all three limitations
of QCN described in Section I.

In [7], the impacts of PFC and QCN over different TCP
mechanisms are investigated. The results suggest that PFC
improves the TCP performance in every case and emphasize on
the deficiencies of QCN as burst sensitivity, lack of adaptivity
and unfairness. The performance of PFC over different traffic
scenarios is investigated in [15], which elaborates the limita-
tions of PFC, which are starvation and unfairness, arising due
to interactions of different flows. Compared to these works,
CaPFC improves the benefits of PFC by alleviating some of
these limitations utilizing from both ingress and egress queue
statistics to take proactive action earlier.

Infiniband uses a credit based flow control algorithm to
ensure lossless service [16]. A receiver advertises to the sender
the free capacity in its buffers and the sender does not exceed
that limit while transmitting data. However, Infiband is much
less ubiquitous than Ethernet. Virtual output queueing (VOQ)
is also used to alleviate HOL blocking when there is an
association between ingress and egress queues, which is not
possible at the switch architecture we take reference in Section
II-A. VOQ is a costly operation but more importantly, it does

not differentiate between heavy and light flows. Therefore, it
leads to long queueing delays for light short flows, when the
egress queue is full.

Congestion management has been a popular topic in data
center networks for some time. Most of the recently proposed
techniques address this problem at the network or transport
layer. The survey in [17] breaks down the techniques dealing
with this problem into four subcategories, reducing queue
length, accelerating retransmission, prioritizing mice flows,
and exploiting multipath. DCTCP [3] is acknowledged to be a
seminal work in this field. DeTail [8] is one of those techniques
and is unique for utilizing both prioritization and multipath. It
is also unique because it implements PFC to provide lossless
link layer operation to complement the per-packet adaptive
load balancing algorithm that reduces tail flow completion
times in data center networks. However, in [8], the main
switching mechanism is characterized as a crossbar rather than
a pipeline mechanism, which is taken as the main reference in
this paper. Also in [8], analysis about different switch types is
shallow.

Finally, the lack of fairness in QCN is pointed out by
[11] and [18] and its effect on the network performance for
the TCP incast scenarios are shown and a modified version
of QCN is proposed, namely FQCN in [11], to mitigate this
drawback. [18] also proposes a modification to QCN, namely
AF-QCN, which provides faster fairness convergence and
enables weighted fairness. Even though these modifications
improve the performance of QCN, they could not help it to
gain widespread adoption.

VI. CONCLUSION

PFC and QCN are proposed as parts of DCB to enhance the
capabilities of Ethernet. However, they have certain limitations
that bars their wide deployment. First, PFC only relies on
monitoring ingress queues, therefore, it is not protected against
saturation trees and HOL. Second, QCN has multiple issues but
most importantly it cannot pass VLAN borders. As a remedy
to the shortcomings of PFC and QCN, we propose CaPFC as
a congestion aware flow control mechanism. CaPFC monitors
both ingress and egress queues and takes proactive action to
prevent egress buffer overflow which causes congestion spread
and HOL blocking.

By implementing CaPFC, we achieve four features of low
latency data center networks. First, we use prioritization and
use SP queueing for latency-sensitive flows. Also, we provide
parallel lanes for each type of traffic by preventing congestion
in one type of traffic to spread to other types of flows.
Second, by proactively monitoring both ingress and egress
queues, we minimize HOL blocking and retransmissions due to
packet drops. This in turn increases link utilization and reduces
average queue length, which also reduces latency.

We carried out simulations in NS-3 to evaluate the per-
formance of CaPFC compared to PFC. The results show that
CaPFC is able to reduce maximum FCT of the query traffic
up to 6 times. It also reduces the maximum FCT of the short
messaging traffic up to 17 times. In addition, CaPFC keeps
the performance improvement on various traffic scenarios and
switch parameters. On the other hand, it does not sacrifice
the bandwidth requirement of the long background traffic at

133ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

the expense of dramatic performance of the latency-sensitive
traffic. For future work, we plan to implement CaPFC with
different transport protocols, such as DCTCP, and different
load balancing schemes, such as [10].

As a future work, we also consider to test CaPFC in a
realistic topology with real network loads to observe tighter
queue limits as the number of ports in the switch and the
number of senders in query traffic increase. We expect that
CaPFC would still provide low latency for short and query
traffic flows at the cost of little bandwidth loss for large flows.

REFERENCES

[1] K. Won, “Trends reshaping networks,” http://www.networkworld.com/
article/2198766/tech-primers/trends-reshaping-networks.html, 2011.

[2] D. Crisan, “Optimized protocol stack for virtualized converged en-
hanced ethernet,” Ph.D. dissertation, ETH Zurich, 2014.

[3] M. Alizadeh et. al., “Data center TCP (DCTCP),” in Proc. SIGCOMM
’10, vol. 1, New York, 2010, pp. 63–74.

[4] “Quantized congestion notification and todays fibre channel over ether-
net networks,” Cisco Systems, Inc, Cisco Website, Tech. Rep., 2014.

[5] “High capacity StrataXGS R⃝ Trident II ethernet switch
series,” http://www.broadcom.com/products/Switching/Data-
Center/BCM56850-Series, 2014.

[6] M. Gusat, C. Minkenberg, and G. J. Paljack, “Flow and congestion
control for datacenter networks,” IBM, Tech. Rep., 2009.

[7] D. Crisan et. al., “Short and fat: Tcp performance in CEE datacenter
networks,” in Proc. HOTI 2011, Santa Clara, CA, August 2011.

[8] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz, “DeTail:
reducing the flow completion time tail in datacenter networks,” in Proc.
SIGCOMM ’12, vol. 1, New Delhi, 2012, pp. 139–150.

[9] “Priority flow control: Build reliable layer 2 infrastructure,” Cisco
Systems, Inc, Cisco Website, Tech. Rep., 2009.

[10] J. Cao et. al., “Per-packet load-balanced, low-latency routing for clos-
based data center networks,” in Proc. CoNEXT ’13, Santa Barbara, CA,
December 2013.

[11] Y. Zhang and N. Ansari, “On mitigating TCP incast in data center
networks,” in Proc. INFOCOM 2011, Shangai, April 2011.

[12] Y. Z. et. al., “Congestion control for large-scale RDMA deployments,”
in Proc. SIGCOMM ’15, vol. 1, London, 2015, pp. 523–536.

[13] B. Stephens et. al., “Practical DCB for improved data center networks,”
in Proc. IEEE INFOCOM 2014, Toronto, April 2014, pp. 1824–1832.

[14] F. D. Neeser et. al., “Occupancy sampling for terabit CEE switches,”
in Proc. HOTI 2012, Santa Clara, CA, August 2012.

[15] M. Haggen and R. Zarick, “Performance evaluation of DCBs priority-
based flow control,” in Proc. 10th International Symposium on Network
Computing Applications (NCA), Cambridge, MA, August 2011.

[16] “Infiniband FAQ, rev 1.3,” Mellanox Technologies, Mellanox Website,
Tech. Rep., December 2014.

[17] S. Liu, H. Xu, and Z. Cai, “Low latency datacenter networking: A short
survey,” http://arxiv.org/abs/1312.3455, 2014.

[18] A. Kabbani et. al., “Approximate fairness with quantized congestion
notification for multi-tenanted data centers,” in Proc. HOTI 2010,
Mountain View, CA, August 2010.

134ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Overlaying Delay-Tolerant Service using SDN

Patrick Maillé
Telecom Bretagne

Rennes, France
patrick.maille@telecom-bretagne.eu

Shyam Parekh
AT&T Labs

San Ramon, USA
shyam.parekh@att.com

Jean Walrand
University of California

Berkeley, USA
walrand@berkeley.edu

Abstract—Telecommunication networks are generally dimen-

sioned to provide services with small delays and high throughput

during peak-periods. Due to the sizable difference in the network

utilization between the peak and off-peak periods as well as

the requirements of robust performance in face of both traffic

burstiness and various types of network failures, these networks

are significantly over-dimensioned for the average network loads.

In this paper, we propose to use this extra capacity for

supporting a deferrable traffic class with some guarantees on

its end-to-end delays. Using the Software-Defined Networking

(SDN) capabilities for controlling the network ingress rates of the

deferrable traffic class in real time, we ensure that such a service

would remain transparent to existing delay-sensitive traffic. To

estimate the available capacities for the deferrable service, we

analyze large deviations for the proposed traffic model.

Starting from an initial network designed for delay-sensitive

traffic, one can readily “overlay” a new network for the deferrable

service at no extra cost. This overlaid network has the same

topology as the original one, and its link capacities can be directly

computed from the characteristics of the existing traffic, the

original link capacities, and the end-to-end delay tolerances.

I. INTRODUCTION

Telecommunication networks have been witnessing an ex-
ponential increase in traffic volumes since the 1990s, driven in
the last years by the widespread adoption of cloud services, the
generalization of 4G mobile usage, and the user consumption
changes from television to video streaming. This trend is very
likely to continue with the advent of 5G and the higher defini-
tion of videos viewed online, putting again more pressure on
the infrastructure owners to increase transmission capacities.

A comparable increase in demand is observed in electric
power distribution networks. There, many solutions are envi-
sioned to reduce infrastructure, production, and/or environment
costs by smoothing out the (also highly variable) demand.
Those solutions include deferring part of the demand in
exchange for a lower unit price, and quantitative analyses show
how much can be saved, for example when different types of
demand have different deadlines [4], [5].

Telecommunication network features differ from electric
distribution, including faster variations over time and the ab-
sence of alternative sources of supply. (Note that [4], [5] focus
on the use of renewable energy, but assume that grid power is
always available.) Nevertheless, we believe the idea of deferred
traffic–treatable within a deadline with high probability–is
worth investigating also there. A typical example is for video
on demand: consumers could be asked to select a movie in
advance, which would then be “pushed” through the network
within a deadline, using only the capacity left unused by other

flows instead of being downloaded or streamed as a delay-
sensitive flow. Such a new service would then be transparent to
existing traffic, and could help postpone capacity investments
through a more efficient use of the existing infrastructure.

In this paper, we use large deviations analysis [16], [18]
to estimate the amount of capacity that could be used by
deferrable traffic. The idea is to control the probability that the
average capacity available over some duration T is insufficient
to carry some amount of deferrable traffic: given T and a target
failure probability, we compute a corresponding capacity for
deferrable traffic. While the analysis only provides results for
the rate at which that probability decreases with T , simulation
results show that ignoring smaller-order terms leads to very
good estimates of the available capacity for deferrable traffic.

In terms of implementation, our approach relies on the
current Software-Defined Networking (SDN) efforts [1], [11],
in that it can leverage the use of logically centralized con-
trollers, aware of the current network conditions, to inject
deferrable traffic so as to remain transparent to delay-sensitive
flows. Beyond the controller, some other management tools can
also be applied, ranging from lower prioritization of deferrable
traffic to more elaborate methods aimed at reducing the need
for buffering in intermediate nodes, such as the Fastpass
approach proposed in [15]. Since deferrable traffic will use
the volatile resource left available by non-deferrable flows, we
can also imagine that the routing applied to deferrable traffic be
subject to rapid changes in order to optimize the instantaneous
throughputs; this again implies the knowledge of the current
network states, and the capacity to impact rapidly the behavior
of routers through interfaces such as OpenFlow [13].

We are not the first ones to apply large deviations to analyze
delays. In [17] the focus is on scheduling jobs in a multi-class
queue so that out-of-time probabilities decrease at target rates
for each class when the tolerated delay increases. Considering
the network aspect, the large deviations of a network of G/G/1
(single-class) queues are analyzed in [3], also at the job (or
packet) level. With regard to those references, our interpreta-
tion of delays here is for fluid-like models (continuous flows),
not jobs. Additionally, our methodology focuses on estimating
the throughput that can be offered to a low-priority service
for a given tolerated delay, while the references focus on
the performance for high-priority jobs: in [17] the objective
is to minimize out-of-time probabilities, and [3] analyzes the
waiting times and queue lengths (two notions we do not have
in this paper for nondeferrable traffic given our “session”
modeling for non-deferrable flows).
Large deviations are also applied, again in the power grid
context, in [14] to control the risks of delaying some part of

135ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

the energy demand from specific devices (pool pumps) with
specific constraints (e.g., at least one cycle per device per
24 hours). In this paper we consider a steady-state setting
of demand (e.g., during the peak hour) instead of relying
on partially predictable (daily) cycles in demand, and we
concentrate on providing some deferrable service at a constant
perceived rate, the delay being a consequence of variations in
the primary use of the network.
Our approach is close to stochastic network calculus [6],
[7]; the main differences being twofold. First, most stochastic
network calculus models consider random arrival flows served
by a (non-random) network node, while here the service
provided is the capacity left unused by nondeferrable traffic,
hence randomness on the service side. Second, while the
goal in network calculus is to provide conservative bounds
(e.g., on usable capacity for delay to be below a threshold
with high probability), we intend here to estimate the actual
value, and for that we treat the large-deviation results (giving
the speed for deviation probabilities) as “direct” estimates.
Extensive simulations highlight the accuracy of this method.
In stochastic network calculus, the closest notion to what we
are investigating is that of leftover capacity, studied in [2],
where the focus is still on obtaining bounds rather than on
approaching the actual value. The contribution of this paper is
then a method to estimate the usable capacity for given quality
constraints given the characteristics of the nondeferrable traffic
using it, and its extension in a very simple manner to the
network case: it is indeed sufficient to apply the single-link
method independently on each link of a network.

Our work is also related to the literature on delay-tolerant
networks [8], [19], but the paradigm is sensibly different.
Indeed, delay-tolerant networks are generally studied in a
wireless context, the changes in connectivity coming from
node mobility, hence a focus on routing [20] and buffering [12]
strategies. In contrast, here the topology is assumed fixed
and the instantaneous “connectivity” (the available capacity)
results from demand variations over time of the non-deferrable
service, which can be studied with a specific stochastic model.
Studying that stochastic model to infer delay guarantees for the
deferrable traffic is the main focus of this paper.

For any tolerable delay T , our method provides an estimate
for the available capacities on a global network, obtained
from a per-link analysis. The outcome of the analysis is
a possibly simple exploitation of those unused resources in
the near future, through the coordination possibilities offered
by the SDN paradigm. Numerical examples show that even
for networks optimized for delay-sensitive traffic, capacity
utilization can be raised to 95% by adding deferrable traffic,
while in current practice it is limited to at most 75-80%, and
quite often in the vicinity of 50% due to the time-of-day
and day-of-year traffic variations as well as inherent traffic
burstiness and the provision of backup paths to be used in
the event of failures. Hence, we think our proposition has the
potential to enable new types of services without incurring any
cost for additional capacity.

The remainder of the paper is organized as follows.
The general model considered in the paper is presented in
Section II, while Section III treats the special case of one
communication link. A simple network case is detailed in
Section IV, highlighting the key difficulties in the extension

to more complex topologies, in particular insisting on the
necessity of caching deferrable traffic in intermediate nodes.
Section V summarizes the implications of our results for the
“deferrable service network” that can be defined on an existing
network, by explaining how to estimate the capacity of each
link of this overlay network to satisfy delay constraints while
remaining transparent to the non-deferrable traffic. Conclu-
sions and directions for future work are given in Section VI.

II. GENERAL MODEL

We consider a peak period during which the non-deferrable
traffic is assumed in steady-state. We focus on links that
carry the traffic of many users, such as backbone links (as
schematized in Figure 1) and possibly backhaul links. Those
links are now facing congestion issues because of the demand
increase but also because of the increase in last-mile capacities.
We nevertheless assume that access capacities are still the
bottleneck for users most of the time, i.e., the network is
designed so that users use all of their access capacities when
active. We use the term sessions to refer to user flows, assumed
with a constant throughput equal to their access link capacity.
Thus, we consider that the network is dimensioned to offer
a throughput limited only by the access rate, with a high
probability. In that sense, we neglect sessions (flows) that
are too short to reach the access transmission rate. A way
to include those “mice” in our model is to average, for each
given link, their throughputs and to subtract them from the link
capacity. This corresponds to assuming that those sessions are
such that their aggregate rate is approximately constant at the
scale of the acceptable delays for deferrable services.

We also assume that all users have the same access rate,
denoted by b. Therefore, when a number X of users have their
sessions use a given link (considering fixed routing per flow),
the used capacity is simply Xb. If the link has capacity C,
there consequently remains some bandwidth C �Xb that can
be used for our new (deferrable) service. In the rest of the
paper, b will be taken as the capacity unit.

C1

C2

C3

C4

C5

C6

C7

U
se

rs

b
b
b

b
b

U
sersb

b
b

b
b

U
sersb

b
b

b
b

Users

b b bbb

Figure 1. The type of backbone network considered (in black): individual
rates are limited by user access rates. Grey parts schematize the access
network, nodes in black can be entry points (for users and/or content providers)
or simply intermediate nodes. All links are labeled by their capacity.

136ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

We consider large numbers of users connected to each
entry point, that behave independently. As a consequence,
we assume that user sessions arrive according to independent
Poisson processes. We moreover model session durations as
exponentially distributed random variables with a common
average duration denoted by 1/µ. Finally, we assume session
routing is fixed, as least statistically: for each session route,
arrivals follow a Poisson process. In practice, routes may adapt
to network conditions, but since we consider networks that are
dimensioned to keep saturation rare, we ignore that effect.

The question we now ask regards the use of the remaining
capacity for deferrable service: given backbone link capacities,
session arrival rates and average duration, we intend to offer
a service based on that capacity, with looser delay constraints.
More specifically, we want to choose a deadline T and offer
a service for which delay is guaranteed to be below T with
some high probability. In this paper we show how to compute
the amount of such deferrable traffic that can be carried by the
network, as a function of T , of the network capacities, and of
the non-deferrable traffic characteristics.

We are aware that some of the assumptions we make are
a considerable simplification of reality, but we believe the
model we build on them provides useful insights regarding
the potential offered by resources temporarily left idle by non-
deferrable traffic.

III. THE CASE OF ONE LINK

In this section, we consider the case of a single (backbone)
link, and detail the reasoning that will be applied in later
sections to more complex topologies.

A. Setting and mathematical formulation

We denote the request arrival rate–assumed constant over
the considered period–by � (arrivals per time unit). Each
session uses the same bandwidth b due to last-mile capacity
limits, and goes through a single backbone link with capacity
C. As stated in Section II, the service duration of each request
is assumed to follow an exponential distribution with parameter
µ, so that if we assume that requests arriving while the link
is full are rejected, the process describing the evolution of
the number of active requests over time is an M/M/C/C
queue [10], with C := bC/bc.

Then the blocking probability for a non-deferrable re-
quest is simply given by the Erlang-B formula B(⇢, C) =

⇢

C

/C!P
C

k=0 ⇢

k

/k!

with ⇢ := �/µ. This formula can be used either to
dimension the link (decide the value of C) for a given demand
level ⇢, or to decide how many users to route through this link
(decide the value of �).

In practice, the requests arriving while the link is fully
used may not be rejected but rather be re-routed, or have to
share the link capacity with existing sessions (although we can
imagine an admission control scheme actually rejecting those
requests). But we assume the decisions (on C or �) are such
that this occurs with small probability, so that the M/M/C/C
model would still be a good approximation.

We consider providing deferrable service at an effective
throughput represented by D, the equivalent number of access

links with capacity of b bit/s each. For example, D = 3

corresponds to a effective throughput of 3b bit/s. The question
is: depending on T and on the target probability of delay
remaining below T , what value of D can the network handle?
Equivalently, for given D and T , what is the probability that
the amount DT of deferrable traffic is carried before the
deadline T ? The network controller will limit the amount
of deferrable traffic to a value for which that probability is
acceptably large, say 99%.

To address the question, let us consider a deferrable bit
that enters the network at time t. If the network provides a
first-come-first-served service for deferrable demand, that bit
will be served after all the deferrable bits that arrived in the
time interval [t � T, t), since the value of D is chosen so
that the delay does not exceed T . The probability that our
considered bit can be served before t + T at least equals the
probability that the capacity left unused by the non-deferrable
traffic during [t, t+ T] exceeds DT , i.e.,

P
 Z

t+T

t

(C �X

⌧

)d⌧ � DT

!
=1�P

1

T

Z
t+T

t

X

⌧

d⌧ > C �D

!
,

(1)
where X

⌧

is the number of active users of the non-deferrable
service at time ⌧ .

The situation is illustrated in Figure 2 for a given re-
alization of non-deferrable traffic: the network can offer an
equivalent throughput D to a delay-T deferrable traffic if the
average idle capacity over a duration T exceeds D with a
sufficiently high probability.

surface � DT ?

nominal usage (non-deferrable flows)

t t+ T
0

C

Time

Li
nk

us
ag

e

Figure 2. A trajectory for nominal (non-deferrable) usage, and the corre-
sponding instantaneous available capacity (C=65, � =50, µ=1, T=5).

In the following, we will therefore look for the relation
between A > 0, T , and the “failure” probability

P

A,T

:= P

1

T

Z
T

0

X

⌧

d⌧ > A

!
(2)

where (X

⌧

) is a continuous-time Markov chain corresponding
to the number of clients in an M/M/C/C queue with offered
load ⇢, and X

0

is assumed to be distributed according to the
stationary distribution of X , i.e., P(X

0

= x

0

) =

⇢

x0
/x0!P

C

k=0 ⇢

k

/k!

for x

0

= 0, 1, . . . , C. We call P

A,T

the failure probability,
since for A = C �D it gives the probability that the average
available capacity for deferrable traffic over T is below D, as
indicated in (1).

137ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

B. Large deviations analysis

For delay durations that are large (e.g., with respect to the
mean session duration 1/µ), the probability P

A,T

in (2) can
be studied using large deviations [16], [18], and should then
verify

P

A,T

= e

�TI(A)+o(T) (3)

where
I(A) := sup

✓2R
[✓A� ⇤

✓

] , (4)

with ⇤

✓

the principal eigenvalue (eigenvalue with largest real
part) of the matrix Q+✓V , V a diagonal matrix with V (i, i) =

i for i = 0, ..., C (assuming matrix indices start at 0), and
Q the infinitesimal generator matrix for the process X . The
function I(·) is called the large deviations rate function, and
is continuous and convex.

Figure 3 displays examples of the objective function in (4),
and of the large deviation rate I(A) when A varies. Note that

0 0.2

�1

0

✓

✓A
�

⇤
✓

A = 51

A = 53

A = 55

A = 57

50 52 54 56 58

0

0.2

0.4

0.6

A

I
(
A
)

Figure 3. Some values of ✓A�⇤✓ (left), and corresponding large deviation
rates (right) for the average occupancy during T , when � = 50, µ = 1,
C = 65 (blocking rate for non-deferrable demand: 0.0064).

the large deviation analysis only provides the rate I(A) > 0

at which the probability tends to 0 as T increases. In this
paper we nevertheless intend to ignore the o(T) in (3), or
more precisely to ignore its variations with T , and directly use
Ke

�TI(A) (for an appropriate constant K) as an approxima-
tion for the probability of the average occupancy over a period
T to exceed A. This will allow us to look for combinations
of T and A such that P

A,T

is small enough. We choose the
value of the constant K such that the formula gives a correct
response when T tends to 0, hence we will consider that

P

A,T

⇡ P

A,0

e

�TI(A)

, (5)

with P

A,0

approximating the probability that the instantaneous
bandwidth used by non-deferrable traffic exceeds A. For our
session model this probability is simply

1

P
C

k=0

⇢

k

/k!

CX

i=dAe

⇢

i

i!

, (6)

which is not continuous in A. For later convenience we will
preferably use for P

A,0

an approximation that is continuous
in A, for example by taking P

A,0

as in (6) for integer values
of A and piecewise linear between (our choice for the curves
plotted in this paper), keeping the difference very small.

The approximation (5) gives us a relationship between T

and A: the minimum T such that we can offer some capacity
C�A to deferrable service with “failure” probability below ✏

would be
T ⇡ logP

A,0

� log ✏

I(A)

.

Inverting that function in A, the difference C�A is the amount
of capacity that can be offered for deferrable service with
probability 1� ✏ within delay T during the peak hour, which
we denote by D(T, ✏):

D(T, ✏) ⇡ C � inf

⇢
A :

log(P

A,0

/✏)

I(A)

< T

�
. (7)

As expected, that capacity increases with the guaranteed delay:
the rate I(A) increases with A (see Figure 3) while P

A,0

decreases from (6), hence the inf in (7) decreases with T .
Moreover, since I(A) and P

A,0

vary continuously with A, the
right-hand side of (7) is continuous in T , as the inf describes
the inverse of the continuous and strictly decreasing function
A 7! log(P

A,0/✏)

I(A)

.

An example is displayed in Figure 4, together with sim-
ulation results to illustrate that the large deviations theory
very accurately predicts the throughput that can be offered to
deferrable service as a function of the delay T . More evi-

0 20 40 60 80 100 120 140
0

10

20

Delay T

A
va

ila
bl

e
%

of
lin

k
ca

pa
ci

ty

Large deviations
Simulations
Upper bound

Figure 4. Available capacity for deferrable demand (proportion of the link
capacity), with out-of-time probability less than 0.01 (C=65, � =50, µ=1,
blocking probability=0.00645, non-deferrable usage=76%)

dence of this accuracy is given in Figure 5, suggesting that the
large deviations approach slightly underestimates the available
capacity, with a relative error below 5% (for reasonable link
loads) that decreases when the link capacity increases.

Figure 4 shows the case of a link for which the offered
non-deferrable traffic (in number of sessions) is 50, but that is
dimensioned to C = 65 to keep a blocking rate below 0.8%.
This results in only 76% of the link capacity being used on
average, hence some margin (up to 24% of the link capacity)
to offer deferrable service. Both simulation and large-deviation
results indicate that we could use 15% of the link capacity–
thus reaching 91% link utilization–by proposing a service with
delay below 15/µ and a 99% guarantee.

More stringent delay constraints could be preferred: with
the same 99% guarantee but for the delay 4/µ we can use
10% of the total link capacity, thus reaching a 86% usage for
that link. Alternatively, for very large delays (around 90/µ)
the link usage rate can get as high as 96%.

138ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0.5 0.55 0.6 0.65 0.7 0.75 0.8

�6

�4

�2

·10�2

Link load �/µ
C

R
el

at
iv

e
er

ro
r

C=30
C=50
C=65
C=80

Figure 5. Relative error of (7) to predict deferrable supply with respect to
simulations for delay T = 10, with out-of-time probability less than 0.01,
µ=1.

C. Offering different delay guarantees

Before extending our results to the network case, let
us briefly evoke the possibility of proposing simultaneously
different “deferrable traffic” offers, with distinct delays and
likely with different prices. This provides the network manager
with even more flexibility, to segment demand and reach a
higher social welfare (and/or higher revenues).

A way to provide that service in practice is to use priorities,
traffic with tighter delay constraints having higher priority (and
of course, non-deferrable traffic having the highest priority).
For the example of Figure 4, as much as 10% of the link
capacity can be sold for a “4/µ-delay” service. If that amount
is sold, then the network manager can still devote an additional
5% of the link capacity to a “15/µ-delay” service, and even
another additional 5% to a “90/µ-delay” service.

This option, and in particular the revenue-maximization
possibilities it offers, are not developed in this paper: in the
following sections we still consider a unique delay T . But the
same simple reasoning as done here is applicable to our next
results as well.

IV. A SIMPLE NETWORK CASE

In this section we consider the simplest generalization of
our results, to a 2-link network topology. We explain how the
large-deviation results obtained for one link can be applied for
multiple-link transfers, insisting on the importance of caching
data in intermediate nodes.

A. Model

Let us consider the simple network topology depicted in
Figure 6, with three nodes, two links, and three types of flow:
we denote by X

i

(t) the number of ongoing non-deferrable
sessions using link i only for i = 1, 2 at time t, and by X(t) the
number of ongoing non-deferrable sessions using both links.
Mirroring the previous section, we denote by �, �

1

and �

2

the arrival rates for sessions using both links, link 1 only, and
link 2 only, respectively. We assume as before that all sessions
use the same bandwidth b, so that the capacity C

i

of link i

can be expressed as the maximum number of sessions that can
simultaneously use that link. Recall that we assume sessions

for the three types of flows have the same duration distribution
(namely, exponential with parameter µ).

C1 C2

X1(t) X2(t)

X(t)

Figure 6. A simple network topology with three types of non-deferrable
sessions (represented by arrows). Arc are labelled with their capacity.

B. Available capacity on one link

Under our assumptions, the number of sessions using a
given link i is not exactly an M/M/C

i

/C
i

queue since some
requests of two-link connections can be blocked because of
the other link. Hence treating X(t) +X

i

(t) as an M/M/C
i

/C
i

queue will be over-pessimistic, but will yield a lower bound
of what can be offered as deferrable traffic on that link.
Additionally, we can expect this lower bound to be close to the
actual value when the blocking probability of non-deferrable
flows is low, which is the case in properly dimensioned
systems.

Therefore we will take, as an estimate of the available
capacity on each link, the result obtained from the analysis
in Section III, taking for the arrival rate the sum of the arrival
rates of all paths using that link (hence, for our 2-link example,
taking ¯

�

i

= � + �

i

as the arrival rate on link i, i = 1, 2).
Figure 7 provides an illustration, where for each link we
observe results similar to the one-link case: the large deviation
approach provides a very accurate estimation of the available
capacity on each link. The gap is a bit larger than in Figure 4,
though, especially for link 1, because of the blocking of some
two-link sessions due to saturation of link 2 (link 2 has a
larger blocking rate than link 1), an aspect neglected in our
large deviation approach as explained above.

0 20 40 60 80 100 120

0

5

10

15

Delay T

A
va

ila
bl

e
ca

pa
ci

ty
(in

nb
of

se
ss

io
ns

)

Large dev. (link 1) Simul. (link 1) Upper bound (link 1)
Large dev. (link 2) Simul. (link 2) Upper bound (link 2)

Figure 7. Available capacity for deferrable demand, with out-of-time proba-
bility less than 0.01 (C1 = 58, C2 = 60, � = 27, �1 = 15, �2 = 20, µ=1,
blocking probabilities⇡(0.0035,0.01), non-deferrable usage⇡ (72%, 78%)).

C. Available capacity on a path

Now consider the “long” path in Figure 6. To quantify the
amount of bandwidth that could be offered on that path for

139ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

deferrable service, we distinguish two cases, according to the
possibility or not of caching (storing) data in the middle node.

1) Without caching at the middle node: When no data
caching is possible at the middle node, deferrable traffic on
the path should be controlled by the source, to send data only
when there is capacity available on the whole path, i.e., at an
instantaneous rate equal to the minimum of the available rates
on the traversed links as proposed in [15]. We leverage here
the fact that an SDN architecture can be aware of the usage
of each link, and use that knowledge to control the sending
rate of each deferrable traffic source. Hence for our two-link
path, we are looking for the maximum capacity D such that,
assuming the system in stationary regime at time 0,

P

1

T

Z
T

t=0

min(C

1

�X

1

�X , C

2

�X

2

�X)dt<D

!
 ✏, (8)

where we omit the dependence on t of X
1

, X

2

, and X: at time
t, X

i

(t) is the number of non-deferrable sessions using link i

only, and X(t) the number of non-deferrable sessions on the
two-link path. The left-hand side of (8) being continuous in
D, we actually have equality in (8) for the optimal D, that we
denote by Dpath.

We can now state a result lower-bounding Dpath to the value
obtained when no non-deferrable traffic uses the two-link path.

Proposition 1: The available capacity Dpath on the two-
link path is lower-bounded by the one obtained when only
one-link sessions arrive, with arrival rate ¯

�

i

= �

i

+ � on link
i = 1, 2.

The proof is provided in Appendix A.
Proposition 1 is illustrated by simulations in Figure 8, where
we plot the available transmission rates on the two-link path
when arrival rates of non-deferrable sessions on link-1, link-2,
and the two-link paths are respectively �

1

+��, �
2

+��, and
(1� �)�, for � varying in [0, 1]. As stated in the proposition,

0 0.2 0.4 0.6 0.8 1

22

24

26

28

�

A
va

ila
bl

e
ca

pa
ci

ty

T=2
T=5
T=10
T=20

Figure 8. Available capacity for deferrable demand, with out-of-time proba-
bility less than 0.01 when �1 = 10+10�, �2 = 15+10�, � = 10(1� �),
µ = 1, C1=40, C2=45 (simulation results).

the available rates are the lowest when � = 1.

Unfortunately, we do not have a large-deviation derivation
for that case for a general delay T . However we think that
a networked version of the deferrable service should involve
caching in intermediate nodes to reach a significant use of
network links. As an illustration, consider a chain of M

links behaving as independent and identical M/M/C/C queues

with offered traffic ⇢ on each link. Then, without caching,
the steady-state probability that at least some capacity D is
available on the whole path equals U(D)

M , with

U(D) =

C�dDeX

i=0

⇢

i

/i!

P
C

k=0

⇢

k

/k!

< 1,

and therefore decreases exponentially in M . When T ! 1,
the maximum capacity that could be offered on the M -link
path equals the average minimum available capacity among
the M links, that can be computed as

P
C

D=1

U(D)

M . For
T < 1 we can of course offer even less.
Figure 9 plots this upper bound for some example values,
showing that the available bandwidth for the deferrable service
decreases very fast with M , hence a very limited service offer
even for numbers of hops around 5, a reasonable value [9].
Therefore, we think a network application of the deferrable

0 2 4 6 8 10 12 14 16

5

10

15

M

A
va

ila
bl

e
ca

pa
ci

ty
fo

r
T

!
1 �/µ=30, C=42

�/µ=50, C=64
�/µ=75, C=91
�/µ=100, C=117

Figure 9. Available capacity on an M -link path (multiple of the session rate
b) without caching, when all links behave as independent M/M/C/C queues.
Link capacity C is optimized to maintain blocking rate below 0.01.

service is worth considering only when caching is available at
intermediate nodes. This is also illustrated later, in Figure 10.

2) With caching at the middle node: With the possibility
of caching data in the middle node, the deferrable service does
not need to limit instantaneous data rates to the minimum
of the instantaneous available rates on the path links: data
can be sent on a per-link basis, just being constrained by
the currently used link instantaneous available capacity, and is
then possibly cached at the next hop. The capacity of interest
then becomes the minimum (over links) average (over time)
available capacity on a period of length T . Mathematically,
while without caching we were looking for Dpath such that

P

1

T

Z
T

t=0

min(C

1

�X

1

�X , C

2

�X

2

�X)dt<Dpath

!
= ✏,

with caching we are looking for Dc
path such that

P

1

T

min

(Z
T

t=0

C

1

�X

1

�Xdt,

Z
T

t=0

C

2

�X

2

�Xdt

)
<D

c
path

!
=✏,

(9)
which will give larger available capacities, i.e., Dc

path � Dpath,
since the minimum of averages is larger than the average of
minimums.

More specifically, we claim that with caching, the available
capacity on the two-link path is very close to the minimum of

140ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

the available capacities along the path, computed separately
with the common delay target T .
The reasoning is as follows: the principle of large deviations
not only gives the rate at which the probability of “excep-
tionally large average occupancy” on each link decreases with
the considered duration T , but also indicates how such large
occupancies can be attained. Specifically, only the most likely
behaviors leading to such large average occupancies should be
considered.
In an M/M/C/C queue, one can show that due to the convexity
of the rate function, the most likely trajectories yielding to
a given high average occupancy are those with a (almost)
constant occupancy, equal to that average. The intuition is
that trajectories going below that level must also have periods
with even higher occupancy (to reach the same average value),
which have a high “likelihood cost” since the likelihood of
having an extra client (i.e., an arrival rather than a departure)
decreases with the occupancy.
Going back to our two-link path, the most likely way to have
“exceptionally bad” performance on the path is to have only
one link with “exceptionally large average occupancy”, more
specifically, the one for which such occupancy is the most
likely. But when the target probability of those exceptional
events is ✏, this is precisely the link i with the smallest available
capacity D

i

computed from (7) for link i. Then, the most likely
behavior for the other link is to have more than D

i

available.
This reasoning leads to the simple method below.

Method 1: To estimate the available capacity on the two-
link path with caching, take the minimum available capacity
of both links, computed independently from (7), with a session
arrival rate ¯

�

i

= �+ �

i

on link i = 1, 2.

Figure 10 displays an example for a symmetric (C
1

= C

2

and �

1

= �

2

) and “pessimistic” case (� = 0), showing that
our large-deviation results applied separately to each link still
capture very accurately the variations of what can be offered
end-to-end with the tolerable delay. Figure 10 also shows the

0 20 40 60 80 100 120 140
0

5

10

15

Delay T

A
va

ila
bl

e
ca

pa
ci

ty

Large deviations (each link)
Simulations (each link)
Simulations (end-to-end, no caching)
Simulations (end-to-end, caching, backlog)
Simulations (caching, ignoring backlog effect)
Upper bound (each link)

Figure 10. Available capacity for deferrable demand, with out-of-time
probability less than 0.01. (Parameters: C1=C2=65, �=0, �1=�2=50, µ=1,
blocking probabilities⇡ 0.0064, non-deferrable usage⇡ 76%)

importance of caching: without caching, Method 1 does not
apply and the available capacity on the path is significantly
below the available capacity on each link. Note that for that
case the upper bound as T increases is consistent with the
observations in Figure 9 for M = 2.

A direct consequence of Method 1 is that the use of the
available “delay-T ” capacity on the links can be on any path,
leading to a straightforward method to check feasibility of a
deferrable-traffic matrix:

Method 2: To check whether a deferrable traffic through-
put profile R

1

, R

2

, R (on the link-1, the link-2, and the two-
link paths respectively) can be served with the delay guarantee
T and the out-of-time probability ✏, verify that the link capacity
constraints R

1

+ R D

1

and R

2

+ R D

2

are satisfied,
with D

i

, i = 1, 2, obtained as in Method 1.

3) Possible loss of efficiency: The expression (9) actually
forgets a part of the problem, by just focusing on the average
bandwidth available along the path: there may indeed be
cases when some bandwidth is available on link 2 before the
equivalent amount is available on link 1. In that case, even
if link 2 is the bottleneck in the sense of Method 1, not all
the capacity of link 2 can be used, hence some possible loss
with respect to the proposition due to this “backlog effect”, as
simulation results show in Figure 10.
However, we think this effect should be minor in practice
because of the pipelining that occurs: recall that we have been
pessimistic in Section III by considering that no deferrable
data received for treatment in the interval [t�T, t] was treated
in that interval. This is how we reached (1), and which is
simulated in Figure 10. Additionally, Figure 10 considers a
worst-case situation, where both links have the same avail-
able capacity: this maximizes the likelihood of data being
backlogged by link 1 among situations where link 2 is the
bottleneck. Even with those two pessimistic assumptions the
effect is not so salient, we expect it to be even less important in
practice and therefore ignore it in the remainder of this paper.

V. BUILDING A “DELAY-T NETWORK”

In this section, we propose to extend the results of the
two previous sections over a whole network. More specifically,
we suggest that the manager of an existing network decide
on a delay T for the deferrable service, and we provide a
methodology to estimate the capacities that could be offered
with that delay constraint. We first extend Method 1 to claim
that an analysis on a per-link basis is sufficient: the delay
guarantee on each link will still be satisfied end-to-end. Hence
we can just represent a “delay-T network” as a network with
the same topology as the original one, with some “delay-T
capacity” on each link.

Note that while our “delay-T network” comes at no costs
in terms of transmission capacities, there may be some storage
costs at the network nodes to provide caching as described in
the previous section. We expect the storage amounts to remain
small because of pipelining of data treatment, but quantifying
the amount of storage space needed is of interest and should
be studied in future work. Here, we assume that storage is
cheap and focus on transmission capacities.

141ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

A. Lower-bounds: assuming independence among links

In the rest of this section we assume sufficient caching
is available within the network. As in Method 1, we target
delay guarantees on an end-to-end basis. The reasoning is
exactly the same: given a path, considering all traversed links
as independent (with arrival rates equal to the sum of the arrival
rates of all flows using that link), should leave less capacity
than the initial setting. We will use the lower bound obtained
this way as an estimate of the available capacities on links.

Then, as in the previous section, we exploit the properties
of large deviations as depending only on the most likely
trajectories, to claim it is sufficient to consider the minimum
available capacity (for the chosen delay T and guarantee level
✏) among the path links. Indeed, again the most likely way to
get bad average performance over a sufficiently long period
T is through the “weakest” link in the path, i.e., the most
saturated. And for that path, the most likely trajectory leaving
a capacity D on average is one leaving a (almost) constant
capacity D; for the other links the most likely behavior would
not be far away from the average, hence leaving at least D

except for very short durations (managed through caching, and
only slightly affecting the delay for deferrable service).

Method 3: Assume that there are sufficiently large caching
capacities in intermediate nodes in the network, and consider
a single path on that network. Then, to estimate the available
capacity on any path, take the minimum available capacity of
the links on that path, computed independently from (7), with
an arrival rate equal to the sum of all arrival rates for sessions
using that link.

B. How much capacity to offer?

Treating all links as independent has the advantage of
removing complex delay constraints due to multi-link paths:
to get some delay-T capacity D over a path, one just needs
to ensure to get delay-T capacity on each link over that path,
i.e., exactly as in the initial network for non-deferrable traffic.
We therefore have the counterpart of Method 2:

Method 4: To check whether a deferrable-traffic through-
put profile (on all possible paths on the network) can be served
with the delay guarantee T and the out-of-time probability ✏,
verify that the link delay-T capacity constraints on all links are
satisfied, where those capacities are obtained independently on
each link from (7), taking for the arrival rate the sum of all
arrival rates for non-deferrable flows using that link.

A simple way of representing the delay-T service is there-
fore to keep the network topology, and display the available
capacity on each link for the chosen delay T . An example is
provided in Figure 11, for two different values of the delay.

VI. CONCLUSION AND PERSPECTIVES

Telecommunication networks are over-dimensioned with
respect to the average traffic they carry, because of traffic
demand variations. In this paper, we propose to leverage
these extra capacities to provide a new service, using only
the resources left available by the non-deferrable traffic. We
show that we can still provide guarantees for the delay ex-
perienced by such traffic, and provide a methodology based
on large deviations analysis to estimate the capacities of the

C1 = 55

C2 = 45
C3 = 45

C4 = 65

C5 = 30

C6 = 40

C7 = 35�1 = 20
�2 = 20

�3 = 25

�4 = 30 �5 = 20

5.6

11
6

5.2

3.6

6.7

7

Delay-2 network

9.2

15
9.7

9

6

10

10

Delay-10 network

Figure 11. An example of network topology with existing non-deferrable
demands (top), and the associated delay-T network for T = 2 and T = 10,
when ✏ = 0.01 and µ = 1. Arcs are labeled with their capacities; all link
blocking rates are below 1%.

corresponding deferrable-service network, a “new” network
that does not imply any capacity expansion costs but possibly
some in-network storage costs. Even if a new external service
is not offered, the ideas discussed in this paper can be
used for internal purposes by a large operator. For example,
large operators periodically have to perform some synchro-
nization or backup of large distributed databases, which is
very bandwidth-consuming. Although we suspect they already
perform those operations using low-priority traffic, our results
help understand the type of delays that could be guaranteed,
or reciprocally the maximum loads of such low-priority traffic
that could be supported while keeping delays reasonable.

Possible future work includes a quantitative study of the
amount of in-network storage needed to make the most of
such a system: we have assumed that there is sufficient
caching space in the network, and would be able to estimate
the associated costs to gain even more insight regarding the
realizability of our proposition. Another interesting extension
is to consider heterogeneous access rates among users: our
model (with equal access capacities for all users) provides
useful insights, but given the diversity of available access
technologies it would be more realistic to study different types
of sessions, with different capacities and probably different
duration distributions. A first step could be to assume an access
rate that depends only on the entry node: in Figure 1 we would
have a common b

j

for all users accessing the network through
entry point j. The case of routing (for non-deferrable traffic)
that would depend on the current network conditions is also
worth considering: we have ignored it here for simplicity, so
that we have Poisson arrivals for each type of route, but in
practice we may have spill-over sessions on secondary routes.

142ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

APPENDIX A
PROOF OF PROPOSITION 1

Proof: Let us consider the process (X

1

+ X,X

2

+ X),
and consider a slightly different Markov process (˜X

1

,

˜

X

2

) such
that arrivals of one-link sessions are unchanged but arrivals of
2-link sessions are “duplicated” into a one-link session on each
link. Mathematically, for arrivals we have transitions
• (

˜

X

1

,

˜

X

2

) ! (min(C

1

,

˜

X

1

+ 1), X

2

) with rate �

1

,
• (

˜

X

1

,

˜

X

2

) ! (X

1

,min(C

2

,

˜

X

2

+ 1)) with rate �

2

,
• (

˜

X

1

,

˜

X

2

) ! (min(C

1

,

˜

X

1

+1),min(C

2

,

˜

X

2

+1)) with rate �.

In terms of departures, all sessions of (˜X
1

,

˜

X

2

) leave after
independent exponentially distributed times with parameter µ

(i.e., the “duplicated” sessions are then independent).

Then min(C

1

� ˜

X

1

, C

2

� ˜

X

2

) is stochastically smaller than
min(C

1

� (X

1

+X), C

2

� (X

2

+X)), since the differences are:
i) in the original case more sessions are blocked: when a link

is saturated and a 2-link session arrives, the state is unchanged
while in the new case there is a new session on one link.

ii) in the original case, two-link sessions leave after an
exponentially distributed time with parameter µ, freeing one
“server” (the space for one session) simultaneously on both
links. In contrast, in the new case the duplicated sessions leave
one by one, each one with an exponentially distributed time
with parameter µ.
Hence there tends to be more active sessions in the new case
than in the original one, thus less space for deferrable flows.

Finally, consider another process (

¯

X

1

,

¯

X

2

), that only dif-
fers from (

˜

X

1

,

˜

X

2

) in that the “duplicated” sessions now arrive
independently (hence we have independent arrivals on each
link according to two independent Poisson processes with
rate � for those specific sessions). In summary, ¯

X

1

and ¯

X

2

are simply two independent processes, each ¯

X

i

(i = 1, 2)

corresponding to an M/M/C
i

/C
i

queue with arrival rate ¯

�

i

and
service rate µ.
Now remark that in both cases, for any fixed i 2 {1, 2}
the “marginal” processes ¯

X

i

and ˜

X

i

both correspond to an
M/M/C

i

/C
i

with the same arrival rate ¯

�

i

and service rate
µ, hence are stochastically equivalent. But because of some
joint arrivals (the duplicated ones) in the case of (

˜

X

1

,

˜

X

2

),
the processes ˜

X

1

and ˜

X

2

are positively correlated.
It results that (C

1

� ¯

X

1

, C

2

� ¯

X

2

) and (C

1

� ˜

X

1

, C

2

� ˜

X

2

) also
have marginal processes that are stochastically equivalent, but
C

1

� ˜

X

1

and C

2

� ˜

X

2

are positively correlated while C

1

� ¯

X

1

and C

2

� ¯

X

2

are independent.

Let us now define, for i = 1, 2, p
i

(�) := P(C
i

� ¯

X

i

< �).

Then for any � > 0:
• because of the independence between ¯

X

1

and ¯

X

2

we have
P
�
min(C

1

� ¯

X

1

, C

2

� ¯

X

2

) < �

�
= p

1

(�) + p

2

(�)� p

1

(�)p

2

(�);

• now since ˜

X

i

is stochastically equivalent to ¯

X

i

for i = 1, 2,
we have at each instant
P
⇣
min(C

1

� ˜

X

1

, C

2

� ¯

X

2

) < �

⌘

= p

1

(�) + p

2

(�)� P
⇣
{C

1

� ˜

X

1

< �} \ {C
2

� ˜

X

2

< �}
⌘
.

But because of the positive correlation between C

1

� ˜

X

1

and
C

2

� ˜

X

2

, the probability that both C

1

� ˜

X

1

and C

2

� ˜

X

2

exceed � is larger than if those processes were independent:

P
⇣
{C

1

� ˜

X

1

< �} \ {C
2

� ˜

X

2

< �}
⌘
� p

1

(�)p

2

(�).

Hence min(C

1

� ¯

X

1

, C

2

� ¯

X

2

) is stochastically smaller than
min(C

1

� ˜

X

1

, C

2

� ˜

X

2

), which yields

P

1

T

Z
T

t=0

min(C

1

� ¯

X

1

(t) , C

2

� ¯

X

2

(t))dt < Dpath

!

� P

1

T

Z
T

t=0

min(C

1

� ˜

X

1

(t) , C

2

� ˜

X

2

(t))dt < Dpath

!

� P

1

T

Z
T

t=0

min(C

1

�X

1

�X,C

2

�X

2

�X)dt<Dpath

!
=✏,

thus we cannot offer more than Dpath to the system with arrival
rates �

1

=

¯

�

1

,�

2

=

¯

�

2

,� = 0. Hence the proposition.

REFERENCES

[1] S. Agarwal, M. Kodialam, and T. V. Lakshman. Traffic engineering in
software defined networks. In Proc. of IEEE INFOCOM, 2013.

[2] K. Angrishi. An end-to-end stochastic network calculus with effective
bandwidth and effective capacity. Computer Networks, 57(1):78–84,
2013.

[3] D. Bertsimas, I. C. Paschalidis, and J. N. Tsitsiklis. On the large
deviations behavior of acyclic networks of G/G/1 queues. The Annals
of Applied Probability, 8(4):1027–1069, 1998.

[4] E. Bitar and S. Low. Deadline differentiated pricing of deferrable
electric power service. In Proc. of IEEE CDC, 2012.

[5] E. Bitar and Y. Xu. Deadline differentiated pricing of delay-tolerant
demand. http://arxiv.org/abs/1407.1601, 2015.

[6] C.-S. Chang. Performance Guarantees in Communication Networks.
Springer, 2000.

[7] F. Ciucu, A. Burchard, and J. Liebeherr. Scaling properties of statis-
tical end-to-end bounds in the network calculus. IEEE/ACM Trans.
Networking, 14(6):2300–2312, 2006.

[8] K. Fall. A delay-tolerant network architecture for challenged internets.
In Proc. of ACM SIGCOMM, 2003.

[9] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law relation-
ships of the Internet topology. In Proc. of ACM SIGCOMM, 1999.

[10] Bolch. G., S. Greiner, H. de Meer, and K. S. Trivedi. Queueing
Networks and Markov Chains: Modeling and Performance Evaluation
with Computer Science Applications. Wiley, 2006.

[11] H. Kim and N. Feamster. Improving network management with software
defined networking. IEEE Comm. Mag., 51(2):114–119, 2013.

[12] A. Krifa, C. Barakat, and T. Spyropoulos. Optimal buffer management
policies for delay tolerant networks. In Proc. of IEEE SECON, 2008.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. Openflow: Enabling innovation in
campus networks. ACM SIGCOMM Comp. Comm. Rev., 38(2):69–74,
2008.

[14] S. Meyn, P. Barooah, A. Bušić, and J. Ehren. Ancillary service to
the grid from deferrable loads: the case for intelligent pool pumps in
Florida. In Proc. of IEEE CDC, 2013.

[15] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal.
Fastpass: A centralized “zero-queue” datacenter network. In Proc. of
ACM SIGCOMM, 2014.

[16] A. Shwartz and A. Weiss. Large Deviations for Performance Analysis.
Chapman & Hall, 1995.

[17] A. L. Stolyar and K. Ramanan. Largest weighted delay first scheduling:
Large deviations and optimality. The Annals of Applied Probability,
11(1):1–48, 2001.

[18] S. R. S. Varadhan. Large deviations. The Annals of Probability,
36(2):397–419, 2008.

[19] A. V. Vasilakos, Y. Zhang, and T. Spyropoulos. Delay Tolerant
Networks: Protocols and Applications. CRC Press, 2011.

[20] Z. Zhang. Routing in intermittently connected mobile ad hoc networks
and delay tolerant networks: overview and challenges. IEEE Commu-
nications Surveys & Tutorials, 8(1):24–37, 2006.

143ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Demand-Aware Centralized Traffic Scheduling
in Wireless LANs

Sangyup Han
KAIST

Myungjin Lee
University of Edinburgh

Myungchul Kim
KAIST

Abstract—A heavy deployment of IEEE 802.11 Wireless LANs
and limited number of orthogonal channels make lots of Access
Points (APs) overlap their interference regions, which greatly
increases interferences between APs and stations. In order to
cope with the performance degradation caused by the inter-
ferences, we propose CO-FI, a centralized Wi-Fi architecture
that effectively coordinates downlink transmissions by APs and
improves network performance in terms of throughput and end-
to-end delay. CO-FI adaptively allocates time slots for APs and
stations based on both traffic demands on the stations and a
conflict graph that represents interference relationships among
the devices. The scheme allows APs in exposed node relationship
to use the channel simultaneously by setting the same backoff
time. It also effectively avoids downlink conflicts created by
hidden node and non-hidden/non-exposed node, by allocating
non-overlapping time slots to interfering stations. To implement
these adaptive traffic schedules, we design CoMAC, a hybrid
MAC protocol at APs. Our evaluation results show that when
APs are densely deployed and the network is highly loaded, the
scheme achieves 3-5 times more throughput gain than Centaur,
a state-of-the-art scheme while its end-to-end delays are 10-90%
lower than those of Centaur and CSMA/CA.

I. INTRODUCTION

IEEE 802.11 Wireless LAN (WLAN) is one of the most
popular wireless communication technologies developed so
far. Its tremendous success has led to the dense deployment of
WLANs almost everywhere. However, the high density also
incurs interferences more frequently among wireless Access
Points (APs) and devices (or stations) [1]. Hence, more APs
may do more harm than good, and hamper the optimal
performance of WLANs [2].

In fact, the interference problem in WLANs is one of
well-studied topics in the literature. A large body of research
work [3], [4], [5] has focused on reducing interference level
to improve stations’ throughput. In [5], it is seen as a channel
allocation problem, and several graph coloring algorithms
are explored. In [3], dynamic transmission range control is
attempted. However, the heavy deployment of WLANs still
creates various interference situations and makes those ap-
proaches less effective. Consequently, recent approaches [6],
[7], [8] explore centralized traffic scheduling in order to
fundamentally minimize the degree of interference.

However, centralized scheduling in general entails high
scheduling complexity. Existing solutions therefore trade
scheduling granularity for reduced complexity. For instance,
Centaur [6], one of the state-of-the-art approaches, performs

centralized scheduling only for traffic of hidden and ex-
posed nodes whereas it delegates the scheduling of traffic
for non-hidden/non-exposed nodes to Distributed Coordination
Function (DCF) of CSMA/CA. Thus, contentions can hurt
throughput for traffic destined to the non-hidden/non-exposed
nodes. Worse, in the presence of automatic rate adaptation [9],
[10], contentions may force selection of lower rates more
often, which may further exacerbate performance.

Such trade-off of the state-of-the-art solution eliminates the
possibility of improved throughput through precise scheduling.
As such, we take into account all of the interference types
including non-hidden/non-exposed node for traffic scheduling.
To amortize the increased complexity, we only focus on batch-
scheduling of high-volume traffic as scheduling low-volume
traffic well does little for overall performance improvement.

In this paper, we present Coordinated Wi-Fi (CO-FI) that
achieves high throughput and low scheduling complexity in
WLANs administered by a single authority. CO-FI is de-
signed in a way that a centralized controller computes frame
transmission schedules for each AP, and APs run a hybrid
MAC protocol called CoMAC that can select DCF and Time
Division Multiple Access (TDMA) modes flexibly. CoMAC
runs in TDMA mode to transmit traffic in a batch fashion
scheduled by the controller whereas it runs in DCF mode for
transmitting low-volume traffic. Our scheme only schedules
downlink traffic as the volume of downlink traffic takes a
dominant portion in WLANs [11], [12], [13]. That is, stations
access wireless medium in a typical CSMA/CA manner for
uplink transmission.

In summary, this paper makes the following contributions:
• We present CO-FI, a novel centralized traffic schedul-

ing mechanism for WLANs that effectively coordinates
downlink transmission of frames to stations. The scheme
employs demand-aware traffic scheduling. In the scheme,
traffic to bandwidth-hungry stations is precisely sched-
uled while transmission of low-volume traffic takes place
opportunistically. This allows CO-FI to keep scheduling
overhead low as a small number of stations need to be
scheduled on average.

• We design CoMAC, a hybrid MAC scheme that can
elastically switch between DCF and TDMA. CoMAC
works in TDMA mode when the transmission of high-
volume traffic strictly follows the schedule of the cen-
tralized scheduler. In contrast, DCF mode is activated
for opportunistically scheduling the transmission of low-ISBN 978-3-901882-83-8 c� 2016 IFIP

144ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

A

BAP1 AP2

(a)

A B
AP1 AP2

(b)

AP1 AP2
B

A

(c)

Fig. 1: Types of interferences: (a) Hidden-Node (HN), (b)
Exposed-Node (EN) and (c) Non-Hidden/Non-Exposed Node
(NHNEN). Stations A and B are associated with AP1 and AP2,
respectively.

volume traffic, which prevents starvation. Because the
scheme supports both modes, potential schedule conflicts
in TDMA mode can be addressed using DCF. This not
only allows our scheme to avoid complex rescheduling
but also makes it robust to errors in time synchronization
and traffic demand estimation.

• Our extensive simulation results demonstrate that CO-FI
outperforms Centaur, the most well-known solution, and
CSMA/CA when APs are densely deployed and the
network is highly loaded. Specifically, CO-FI achieves
3-5⇥ higher throughput than both schemes and its end-
to-end delays are 10-90% lower than those of Centaur
and CSMA/CA.

The remainder of this paper is organized as follows. Sec-
tion II introduces the basic concepts necessary when dis-
cussing the design of CO-FI in Section III. In Section IV, we
present evaluation results. Section V discusses related work
before we conclude in Section VI.

II. PRELIMINARIES

In this section, we discuss three primary concepts—
interference types, time window and time slot—that are the
basis in devising our scheme.
Interference types. We first explore different characteristics
of interferences between wireless links. For this, we adopt
a well-known data structure called Conflict Graph [14]. A
vertex in a conflict graph represents an AP or a station, and a
directed edge between two vertices means a wireless link. If
there is a wireless link (same as an edge in a conflict graph),
it means that a signal from an AP (or station) can successfully
be transmitted to the other AP (or station).

Figure 1 illustrates three types of interferences. Stations
A and B in the figure are associated with AP1 and AP2,
respectively. In addition, the wireless links outgoing from the
APs are only shown in Figure 1 since we only consider the
interferences caused by downlink transmissions. A wireless
link from node i to node j is denoted as Lij . For instance,
L1A represents the wireless link from AP1 to Station A; other
wireless links are denoted in the same manner.

Although the concepts of hidden-node and exposed-node
problems are well known, the way to identify them from
a conflict graph varies across studies [14], [15]. Thus, we
slightly modify them and use the following equations when
the edge set, E, of a conflict graph is given:

• Hidden-Node (HN) interference:

{L12, L21} 6⇢ E and {L1A, L2B} ⇢ E

and (L1B 2 E or L2A 2 E),
(1)

• Exposed-Node (EN) interference:

(L12 2 E or L21 2 E) and {L1A, L2B} ⇢ E

and (L1B 62 E and L2A 62 E),
(2)

• Non-Hidden/Non-Exposed Node (NHNEN) interference:

(L12 2 E or L21 2 E) and {L1A, L2B} ⇢ E

and (L1B 2 E or L2A 2 E).
(3)

Note Luv represents an edge from vertex u to vertex v. We
use number for u and v to denote APs and use alphabets
to denote stations. In addition, further notice that Eqs. 1, 2,
and 3 cover the case that only one of the two APs senses
the other AP, which is caused by the asymmetric nature of
wireless medium. If edges meet none of the above conditions,
we treat them as if there is no interference among them. These
definitions are applied to more complex WLANs through pair-
wise comparisons of edges iteratively.
Issues with these interferences: The HN and NHNEN in-
terferences result in collision at APs when simultaneous
transmissions take place from APs to stations. This therefore
causes retransmissions and even frame drops. While DCF may
mitigate the impact of these interferences, not all collisions
can be avoided. Moreover, frame collisions may make the
APs decrease their PHY transmission rate, which results in
performance degradation. On the other hand, if stations expe-
rience EN interference, their associated APs can benefit from
simultaneous transmissions and achieve improved throughput.
However, if an AP senses the signal of other APs, it defers its
transmission and fails to exploit the EN interference.
Time window and slot. A time window is a basic unit of
scheduling frame transmissions, and a time slot is a constituent
of a window. Note that a frame transmission can span multiple
consecutive time slots due to a low transmission rate. In our
paper, the duration of a window, �, is set to 20 ms, and
each window consists of 800 slots. Thus, one slot corresponds
to 25 µs. Whilst both variables are flexibly configurable, we
choose them empirically while running simulations.

III. CO-FI DESIGN

We now design CO-FI, a centrally-coordinated WLAN
architecture. In CO-FI, a centralized controller coordinates
traffic transmission schedules of APs in order to maximize
throughput and to minimize end-to-end delay in the WLANs.
We first present an overview of CO-FI, and then describe each
component that constitutes the architecture.

A. Overview

CO-FI adopts a centralized coordination model where a
controller precisely schedules traffic transmission timings of
APs. Under this model, APs communicate with the controller
to form a control loop for traffic transmission coordination.

145ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Time Slot
Allocator

Station
Group

Manager

A

B
D

Internet
Controller

Router

AP1

E
Traffic

Demand
Estimator

CoMAC

AP

C

1

2

3

4

5

AP2

AP3

Fig. 2: Overview of CO-FI. The overall procedure is to: (1)
estimate future traffic demands to stations; (2) inform the
controller of the traffic estimates for stations; (3) compute
time slot allocation schedule for the traffic among interfering
stations; (4) distribute the schedule to APs from the controller;
(5) transmit frames either based on time slots allocated or
opportunistically if no time slot is allocated.

Specifically, the controller dictates when each AP can transmit,
and the APs abide by the controller’s instruction. CO-FI
adaptively allocates time slots for APs while being aware of
the amount of workloads that arrive at each AP. In addition,
CO-FI addresses potential schedule conflicts by leveraging
existing CSMA/CA. We call this strategy CoMAC which is
discussed in Section III-D.

We describe CO-FI’s working mechanism through a simple
scenario illustrated in Figure 2. Suppose that the amount
of traffic to Stations A and B is 120 Kbits and 60 Kbits,
respectively, over a window �. AP1 and AP2 estimate future
traffic demands by combining the size of existing packets in
their buffer with the amount of incoming traffic (Step 1 in
Figure 2). The APs next ship these estimates to the controller
(Step 2). The controller then allocates time slots in proportion
to these estimates as the two APs compete for the same wire-
less medium (Step 3). In Figure 2, because the two links are
in an HN relationship, the controller allocates non-overlapped
time slots in proportion to each AP’s demand (i.e., 533 slots to
A and 267 slots to B). This prevents the APs from simultaneous
transmission. In addition, if the estimated traffic volume to
a station is lower than a threshold, (further discussed in
Section III-D), the station is excluded from scheduling and
allowed to do the typical opportunistic medium access via
CSMA/CA. This effectively reduces scheduling complexity.
The controller distributes the allocation information to APs
(Step 4). The APs then take one of the following two actions
(Step 5): i) if a destination station is allocated to some time
slots, a frame to the station can only be transmitted within its
time slots; ii) for those stations without allocated time slots
frames are transmitted opportunistically via CSMA/CA.

One key advantage of our scheme is that it requires no
modification of the stations, which renders it practical in
deploying it into the existing and future wireless networks.
In the rest of this section, we discuss how we design each
component of CO-FI in Figure 2.

B. Traffic Demand Estimator at APs

APs estimate how much amount of traffic the APs should
transmit for a given station at the next time window. At the end
of every time window, the APs conduct the process for each
station associated with them. They then send the estimates to
the controller for a centralized time slot allocation process.

The APs maintain a table that consists of the following
column elements: (Wi, dstMAC, Ti) where Wi denotes time
window i, dstMAC means the MAC address of a destination
station, and Ti is a total of traffic demand (in bytes) to the
destination in Wi. Whenever the APs see a new frame, APs
extract dstMAC and frame size f and update Ti with f . (i.e.,
Ti Ti+f). For a given dstMAC, we refer to the information
stored in the table and estimate the future demand as follows:

FDdstMAC
i = min(MAi +Di, Txi ⇥�), (4)

where MAi is an exponential moving average of incoming
traffic to the station at Wi, Di is the traffic amount (in bytes)
in the buffer for the station at Wi, and Txi is the current PHY
transmission bitrate for the station at Wi. Note that in (4), �
is converted from millisecond to second. These three variables
(MAi, Di, Txi) are maintained on a per-station basis.

In the min function of the equation, the left-hand side term
indicates the amount of traffic that the AP should transmit
at the next time window. However, when Txi is low, the AP
cannot transmit all the traffic within the next time window.
Therefore, we put the right-hand side term as an upper bound.
MAi is calculated using the following equation:

MAi =

⇢
↵ · Ti + (1� ↵) · MAi�1, if Ti 6= 0

(1� ↵) · MAi�1, otherwise

, (5)

where Ti is the amount of traffic received during time window
i, and ↵ is the coefficient that represents the degree of
weighting the current traffic. We set ↵ to 0.8 in this paper.

While in principle APs can report the computed demands at
every window (� = 20ms), in practice we have APs report
max(FDdstMAC

i , FDdstMAC
i�1) every other window (so, 40 ms).

We do this because we found that reporting the traffic demand
at every window sometimes became unstable, and reporting at
every other window achieved the highest throughput (always
3% greater than the former in our test scenarios).

C. Controller functions

The CO-FI controller has two core functions: time slot
allocation and station grouping. In addition, the controller
synchronizes time among APs by using Network Time Pro-
tocol (NTP). This protocol is known to make a few mil-
lisecond synchronization precision possible in the wired local
networks [16]. To tolerate that level of synchronization error,
in our design we use a large (i.e., 20ms) window.
Time Slot Allocator. Figure 3 illustrates the time slot allo-
cation procedure. At first, APs estimate traffic demands for
stations and send them to a controller every 2 ·� (Step 1 in
the figure). The controller receives the estimates, as the form
of (station’s MAC address, traffic estimate), from the APs for

146ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Controller

AP1

2 3 4 5

AP2

APn

...

Time

2 x Δ

1

Δ = 20ms Δ Δ

Wi-2Wi-3 Wi-1

Fig. 3: Slot allocation scheduling procedure: (1) APs estimate
traffic demand for stations for 2·� period, (2) the controller
receives traffic demand estimates from the APs for ⌧ ms,
(3) the controller retrieves station groups via station group
manager module, (4) it allocates time slots for stations on a
per-group basis, and (5) it sends slot allocations to the APs.

a fixed period of ⌧ (Step 2). We empirically set ⌧ = 2 ms
to keep high responsiveness and network performance. The
demand estimation that arrives later than 2ms is ignored. This
is a reasonable value in local area networks where the end-to-
end delay between the controller and APs can be on the order
of a few hundreds of microseconds. In our campus network,
we observe round-trip times are almost always less than 1ms.

The allocator then hands over the MAC addresses of the
stations to station group manager. Next, the manager clusters
stations into groups based on the interference types presented
in a conflict graph (Step 3). For instance, when a wireless link
from an AP to a station is in a relationship of interference with
another link, two stations belong to the same station group.
Transmissions to the stations should be scheduled with non-
overlapped time slots. If stations do not belong to a group, they
do not interfere with any other stations; such stations acquire
full access to medium within that window.

The allocator sorts the station groups in a decreasing order
of their total demands (i.e., the sum of the traffic demands of
all stations in a group) and allocates time slots to stations
on a per-group basis (Step 4). Hence, time slots are first
allocated to the group with maximum traffic demand. This
allows the wireless network to maximize the total throughput.
The detailed algorithm for allocating time slots to the sorted
groups is given in Algorithm 1. Note that a station can be a
member of multiple groups. If time slots for the station were
already allocated, it is excluded from time slot allocation (at
line 8 in Algorithm 1). As a final step (Step 5), the allocation
information is disseminated to the APs which work in TDMA
mode for the next two window times (i.e., 40ms in our paper).
During TDMA mode, APs stick to current allocations until a
new allocation is fetched from the controller.

Station Group Manager. The controller determines the group
to which a station should belong, by leveraging interference
relationships among stations in a conflict graph in Section II.
The manager constructs a conflict graph using an algorithm
in [15] during a booting time of the controller. Note that our
system does not rely on a particular conflict graph construction
algorithm, and thus other techniques, such as [17], can also
be used as an alternative.

Algorithm 1 Time slot allocation
1: procedure ALLOCATOR(⌦)
2: . ⌦: a set of sorted station groups
3: . W : no. of total slots per window
4: if ⌦ is equal to � then
5: return
6: G PickNextGroup(⌦) . G: a group
7: for all s 2 G do . s: a station
8: if IsAlreadyAllocated(s) then
9: Go to line 7

10: k s.Demand / G.Demand⇥W
11: n 0

12: A APof(s) . A: AP that s is connected to
13: while n k do
14: m GetFirstUnallocatedSlot(G)

15: Link(A to s).add(m)

16: n n+ 1

17: ALLOCATOR(⌦�G) . Call recursively

The procedure for grouping stations is simple. (a) Given
edge ei (i.e., a downlink or a link from an AP to a station)
from a conflict graph, the algorithm selects another edge
ej (i 6= j) from the graph and checks the interference
relationship between the two, based on the definitions of
interferences in Section II. (b) If the links create either the
HN or NHNEN interference, they are grouped together. (c)
The manager chooses a next edge and repeats this process
until all other edges are tested against ei. These three steps
((a)-(c)) are executed for all edges in the conflict graph. Due
to the asymmetric nature of wireless medium, the interfering
station set can be a subset of another one, and we discard such
a set. The resulting station groups therefore are not a subset
of any other sets. However, some stations can belong to more
than one groups because they can have different interference
relationships with other stations. As already discussed, the
controller prevents such stations from getting time slots more
than once (see Algorithm 1). The complexity of our station
grouping procedure is O(n2

) where n is the number of
wireless downlinks in the conflict graph.

The overall overhead of the controller system is low as
updating the conflict graph can be done incrementally during
Step 1 in Figure 3 and the allocation algorithm at Step 4 is
straightforward. For EN interference, we exploit the Centaur’s
mechanism [6]; i.e., APs use the same backoff time for the
EN stations to them while keeping CSMA/CA being enabled.
The controller informs the APs of a list of those EN stations.

D. CoMAC at APs

We design CoMAC that can elastically support TDMA
and CSMA/CA while keeping it backward compatible with
CSMA/CA. Specifically, CoMAC at APs runs atop CSMA/CA
and informs CSMA/CA when and to which station the APs can
transmit frames. Therefore, except for selecting a destination
station, the underlying CSMA/CA is unmodified. Note that an
AP enables TDMA mode only if it has at least one associated
station for which some time slots are allocated.

147ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Group 2

Group 1

Station Associations

AP1 Station A

Station B

Station C

Station D

AP2

AP3 Station E

Traffic Est.

120 Kbits

60 Kbits

10 Kbits

100 Kbits

100 Kbits

Time Slot Allocation
0 532 799

0 799

0 799

0 799

0 399 799

400

533

Fig. 4: An example of time slot allocation. A dark region
represents allocated time slots.

Upon receiving a time slot allocation schedule from the
controller, the APs begin to transmit frames as dictated in
the schedule. However, there is a possibility that an AP may
have a conflicting schedule for its stations or needs to share
time slots with unscheduled stations that wish to receive a
low volume of traffic. The AP handles such cases by selecting
stations in a round-robin fashion.

To understand how the round robin strategy works, consider
a scenario in Figure 4 where Station A is associated with AP1,
Stations B, C and D with AP2, and Station E with AP3. The
controller places A and B into Group 1 and D and E into
Group 2 because each pair of the stations has an HN inter-
ference relationship (see Figure 2). Next, it computes a slot
allocation schedule on a per-group basis (see Section III-C),
which leads to an overlap of time slots for B and D. C has
no allocated time slot because the estimated traffic volume for
the station within � is less than = 13 Kbits. Note that
the value of is empirically chosen and can be easily tuned
depending on �. Given the scenario, since B and D own time
slots within the window, and C does not, AP2 can send frames
to C in its round-robin turn between slot 0 and 799. On the
other hand, D can occupy time slots 400-532 whereas B and
D should take turns to share slots 533-799.

Once a station is selected, CoMAC calculates transmission
duration for the first frame of that station in the buffer. If the
transmission duration resides in the allocated time slots for the
station, CoMAC dispatches the frame to CSMA/CA module
for transmission. Otherwise, CoMAC reselects another station.

E. Implementation Issues

We base our evaluation on simulations, and leave a real
implementation as future work. Hence, we here briefly discuss
how to implement CO-FI. We envision that implementing our
controller functions on an OpenFlow controller [18] is feasible.
Implementing CoMAC at APs can be done through modifying
the source of wireless device drivers. The MadWiFi driver is
a sensible starting point, which is a widely used driver in
the literature [7], [19]. MAClets [20] can also be a viable
platform as it supports modification of medium access control
operation. Another implementation issue is in constructing a
conflict graph. We can use the active probing method in [15]
or the passive method in [17]. The controller can instantly
update a conflict graph using the probing method; however, it
can be more complex than the passive method.

IV. EVALUATION

We now evaluate CO-FI in this section. To demonstrate
its benefits, we comprehensively perform simulations using
QualNet [21] and present the results. The evaluation mainly
consists of two parts: i) case 1: impact of each interference
type on performance in simple WLANs; and ii) case 2:
performance in a realistic large-scale WLAN setup. We begin
our discussion with simulation setup.

A. Basic Simulation Setup

Approaches. To evaluate the efficacy of CO-FI, we compare
CO-FI with CSMA/CA and Centaur.
Traffic workloads. We first use two application-level proto-
cols (HTTP that uses TCP and Constant Bit Rate (CBR) that
uses UDP). The HTTP traffic is generated using the generation
model based on the trace-driven packet analysis [22]. These
traffic sources are used for investigating the impact of each
interference type. For more realistic simulations, we generate
TCP sessions by modeling their arrivals as a Poisson process.
The exact number of TCP sessions per second is controlled
by an arrival rate. Every time a TCP flow is created, its
size is determined probabilistically by exploiting empirical
measurement data on flow size distribution (see the CDF curve
on download size in Fig. 3(a) in [11]).
Interference types. We take into account all three kinds of
interferences in our simulations: HN, EN and NHNEN. For
simulations in Section IV-B, we generate these interferences
one by one in an isolated fashion. In contrast, all three types
coexist in a realistic setting in Section IV-C.
MAC protocols. As a wired MAC protocol, we employ a
Gigabit Ethernet to connect all APs and controller, and use the
propagation delay of 0.5 µs. As for a wireless MAC protocol,
we use IEEE 802.11n and enable Auto Rate Fallback (ARF),
a rate adaptation algorithm used by CSMA/CA [9]. Finally,
all the APs and stations use the same channel in the 2.4 GHz
band across all simulations.

B. Influence of Each Interference Type

Configuration: We first identify what kinds of interferences
our scheme can handle well. We create three controlled scenar-
ios (NHNEN interference only, HN interference only, and EN
interference only) as shown in Figure 5. For all the scenarios,
the carrier-sense regions of all APs are illustrated in a reduced
scale; but, all the interference relationships are preserved.
The association relationships between APs and stations are
presented as arrows in the figure.

Each application across all the scenarios was simulated
50 times by varying the random seed value in the QualNet
simulator. The random seed affects not only the characteristics
of applications, such as the number of items per Web page,
but also the characteristics of a wireless environment.
Results: We evaluate the performance of our scheme in terms
of throughput and end-to-end delay.

1) Throughput performance. Figure 6 shows the average
throughput of HTTP traffic over 50 simulation runs. Under

148ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

20 m

AP1

B

AP2

30 m

A

D

C

(a) Non-Hidden/Non-Exposed Node
(NHNEN)

100 m

A
AP1 AP2

B

 40 m 40 m

(b) Hidden-Node (HN)

60 m

A
AP1 AP2

B

AP3

C

60 m60 m

(c) Exposed-Node (EN)

Fig. 5: Basic simulation scenarios.

Fig. 6: Average throughput of HTTP (TCP) downlink traffic
for each basic scenario.

the NHNEN scenario, CO-FI achieves the highest throughput
because it makes sure that frame collisions at stations occur
less than other schemes. Thus, less collisions prevent ARF
from slowing down a PHY transmission rate. On the other
hand, other schemes face more collisions, and ARF cannot
help but reduce the Tx rate, resulting in poor performance. Fur-
thermore, Centaur obtains lower throughput than CSMA/CA.
Because the Centaur controller does not forward the frames
that require more time than the remaining time in a time
window, frames are not often scheduled at the fringe of the
current window and the next, leading to a throughput loss.

In the HN scenario, CSMA/CA achieves only about
190 KB/s as CSMA/CA is susceptible to the HN problem.
In contrast, CO-FI and Centaur achieve at least 1.68⇥ higher
throughput than CSMA/CA. Between the two, Centaur slightly
works better than CO-FI. As CO-FI does not schedule low
volume traffic in a TDMA fashion, this may cause HN inter-
ferences to other stations. We trade this level of throughput
loss for low scheduling complexity in CO-FI.

Under the EN scenario, there is no much performance
difference among all three schemes. The main cause of this
result is that TCP generates two-way packet streams (one for
data from AP to station and the other for ACK and HTTP GET
from station towards AP), and uplink streams interfere with
the other downlink streams. For example, the uplink stream
by station B and the downlink stream by AP1 collide with
each other at AP2 due to the omnidirectional characteristic
of wireless signals. Therefore, the HTTP server sends data

Fig. 7: Average throughput of CBR (UDP) downlink traffic
for each basic scenario.

traffic to each station sequentially; hence, there is little chance
for APs to simultaneously transmit data packets in order to
leverage the EN relationship.

Figure 7 shows the average throughput of CBR traffic under
each controlled interference scenario. For each scenario, we
use different CBR rates. Across all scenarios, both CO-FI and
Centaur perform better than CSMA/CA. As opposed to the
HTTP case, CO-FI and Centaur provide a clear performance
benefit under the EN scenario. As already discussed, TCP
generates traffic in both directions, and ACK and HTTP GET
traffic can be a major source of interference. On the other
hand, UDP does not face such an issue. In most cases, the
performance of CO-FI is comparable to that of Centaur.

2) End-to-End delay performance. Figure 8 shows the aver-
age end-to-end delay of HTTP traffic for each scenario. CO-FI
achieves the lowest end-to-end delays under the NHNEN sce-
nario and obtains an end-to-end delay similar to that Centaur
under the HN case. On the other hand, there is no visible
difference in end-to-end delay in the EN case.

The simulation results with CBR traffic is somewhat differ-
ent from those of HTTP traffic (see Figure 9). Before further
discussion, note that in the figure, the offered CBR rates are
different across interference types. The reason we vary the
CBR rate is because the impacts of different interference types
on delay (and throughput too) are indistinguishable among
different schemes without increasing the traffic rate in the
sequence of HN, NHNEN and EN. Thus, absolute delays

149ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 8: Average end-to-end delay of HTTP (TCP) downlink
traffic for each basic scenario.

Fig. 9: Average end-to-end delay of CBR (UDP) downlink
traffic for each basic scenario.

among them should not be directly compared with one another.
Under the NHNEN case, we observe that CO-FI achieves

the smallest average end-to-end delay among all schemes.
Centaur performs worst because it cannot properly schedule
the NHNEN traffic. In the HN case, the delays of CO-FI and
Centaur are negligible whereas CSMA/CA’s delay is over 5
seconds. The low end-to-end delay of CO-FI and Centaur is
attributed to the fact that these two schemes completely avoid
the HN interference through allocating non-overlapping time
slots and the offered traffic rate is relatively low. The result
clearly demonstrates that a centralized traffic scheduler like
CO-FI and Centaur can dramatically reduce end-to-end delays.
Under the EN case, the end-to-end delay of CO-FI is almost
three times higher than Centaur’s.

C. Simulation under a Realistic WLAN Environment

Configuration: We create a WLAN environment in QualNet
based on the WLAN environment of one of our campus
buildings as illustrated in Figure 10. The created simulation
environment has three floors, and all floors have the same
layout and dimension (i.e., 120m length and 40m width). In
addition, we place APs at the same locations where the actual
APs are located in the building whilst we distribute stations
randomly within the space. Because each AP uses one of

Fig. 10: Floor plan of a campus building. For simulations,
stations distributed at random within the dimension of the floor
plan. The characteristics of wireless medium in the simulations
are set as closely to those of the building as possible. The
height of a floor is around 5 meters.

the three orthogonal channels in 2.4 GHz, we conduct our
simulations under this multi-orthogonal channel environment.

We vary the number of stations (from 2 to 5 stations per
AP) that are associated with each AP. Because there are
24 APs (8 APs on each floor) in total, the total number
of stations varies from 48 to 120 stations, which accurately
reflects WLAN environments ranging from sparse one to dense
one. In addition, we use the shadowing mean of 8 dB since the
wireless condition of the campus building is highly obstructed
by walls and obstacles.

Results: We first evaluate average per-flow throughput. We
cluster flows into groups based on their size and compute
average throughput in each group. Figure 11 highlights that
CO-FI outperforms Centaur and CSMA/CA across all flow
size groups under the three different load conditions. As
expected, there is no much gain for scheduling small flows. In
contrast, for TCP flows larger than 500 KB, CO-FI achieves
3-5⇥ higher throughput than Centaur as the load increases.

Figure 12 demonstrates cumulative distributions of averaged
aggregate throughput per station. When the network is lightly
loaded (i.e., 48 stations), while CO-FI works better than
Centaur and CSMA/CA; however, the amount of throughput
improvement is marginal. As the network becomes more
crowded (96 stations), CO-FI experiences a slight throughput
degradation compared to the 48 stations case, but Centaur
and CSMA/CA face a significant performance drop as they
cannot handle a high degree of NHNEN interference (2.01
times more number of NHNEN interferences than the 48
stations case). In case of 120 stations, CO-FI still obtains the
best result, but it loses almost 47% of throughput compared
to its performance in the moderately-loaded case (c.f., the
median throughput in Figure 12(b) is about 7.5 Mbps and the
throughput in Figure 12(c) is roughly 3.5 Mbps). Thus, the
throughput difference between CO-FI and the others reduces
due to the increased traffic load.

From Figures 11 and 12, we can conclude that centralized
traffic scheduling mechanisms are not needed much if the net-
work is lightly loaded. A noticeable observation is that as the
network load increases, Centaur performs slightly worse than
the regular CSMA/CA mechanism. This is mainly because its
scheduling complexity becomes too high to bring any gain. In
contrast, CO-FI sustains such a high load because the overhead

150ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) 48 stations (lightly-loaded case) (b) 96 stations (moderately-loaded case) (c) 120 stations (heavily-loaded case)

Fig. 11: Average per-flow throughput depending on different flow sizes.

(a) 48 stations (lightly-loaded case) (b) 96 stations (moderately-loaded case) (c) 120 stations (heavily-loaded case)

Fig. 12: Cumulative distribution of averaged aggregate throughput per station.

of enforcing traffic schedule is distributed across APs.
The results of end-to-end delay also exhibit similar trends

to those of throughput. As demonstrated in Figure 13, CO-FI
reduces end-to-end delay by 10% to 90%, compared to
other schemes. CO-FI always obtains the smallest end-to-end
delay regardless of flow sizes and total loads. In contrast,
Centaur brings marginal delay gains over CSMA/CA across
the simulation cases. As the network becomes denser, the
level of NHNEN interference also becomes more intensive.
Centaur’s lack of support for NHNEN interferences blocks
further delay improvement. These results showcase that the
reduced end-to-end delay of CO-FI can be particularly useful
for delivering real-time (multimedia) services even in densely
deployed WLAN environments.

V. RELATED WORK

In this section, we briefly cover centralized scheduling and
overlay MAC approaches that are most relevant to our work.

Centralized scheduling schemes, such as Centaur [6], Shuf-
fle [7], and DPS [8], use a central controller to schedule
the downlink traffic that passes through an edge router. In
common, their controllers schedule every downlink frame
and receives feedback from APs whenever a frame is trans-
mitted to stations. Therefore, these schemes incur a lot of
computational overhead at the controller. Further, they do
not appropriately utilize the today’s powerful APs because
the APs strictly adhere to the transmission timing decided
only by the controller. Compared to those approaches, our
scheme introduces less overhead at the controller because

it delegates the enforcement of time slot schedules to APs.
Because Centaur is one of the most well-known centralized
scheduling schemes, we did a thorough comparison of our
scheme and Centaur in this work. In contrast, DOMINO [23]
schedules both uplink and downlink traffic in a centralized
fashion, but requires modification in PHY and MAC layers at
both AP and station.

Another research topic pertaining to our scheme is overlay
MAC protocols. A large body of research has focused on
implementing a TDMA protocol on the 802.11-based hard-
ware [19], [24], [25], [26]. These schemes however completely
replace CSMA/CA with their own TDMA protocols. Thus,
they are unfortunately incompatible with existing 802.11 de-
vices. As the most relevant work to our hybrid MAC protocol,
there exist several approaches [27], [28], [29] that implement
a TDMA protocol on top of CSMA/CA without disabling
it. However, these schemes have different uses of TDMA,
such as fairness [27], power consumption [28], and Quality
of Service (QoS) [29]. Another overlay MAC for multi-hop
sensor networks switches its behavior according to the level
of contention [30]. The scheme relies on a static scheduling
that is determined in a distributed manner.

VI. CONCLUSION

There has been an escalated level of interference among
wireless access points and stations due to dense deployment of
IEEE 802.11 Wireless LANs. We introduced a coordinated Wi-
Fi architecture, CO-FI, that alleviates interferences and hence
boosts up wireless network performance for downlink traffic.

151ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) 48 stations (lightly-loaded case) (b) 96 stations (moderately-loaded case) (c) 120 stations (heavily-loaded case)

Fig. 13: Average per-flow end-to-end delay depending on different flow sizes.

In CO-FI, a controller orchestrates access points depending on
offered loads and interference types. CO-FI effectively reduces
its scheduling complexity and mitigates the effect of time
synchronization errors by letting a hybrid MAC protocol—
CoMAC in the access points use CSMA/CA and TDMA
protocols selectively. Our evaluation results demonstrate sig-
nificantly improved throughput and end-to-end delay gain
over existing approaches, especially when wireless devices are
densely deployed and the networks are heavily loaded.

ACKNOWLEDGMENTS

This work was supported in part by a grant from the Royal
Society.

REFERENCES

[1] A. Patro, S. Govindan, and S. Banerjee, “Observing Home Wireless
Experience Through WiFi APs,” in Proceedings of ACM MobiCom,
2013.

[2] M. A. Ergin, K. Ramachandran, and M. Gruteser, “Understanding
the effect of access point density on wireless lan performance,” in
Proceedings of ACM MobiCom, 2007.

[3] V. Mhatre, K. Papagiannaki, and F. Baccelli, “Interference mitigation
through power control in high density 802.11 wlans,” in Proceedings of
IEEE INFOCOM, 2007.

[4] R. Gummadi, D. Wetherall, B. Greenstein, and S. Seshan, “Understand-
ing and mitigating the impact of rf interference on 802.11 networks,” in
Proceedings of ACM SIGCOMM, 2007.

[5] Y. Lee, K. Kim, and Y. Choi, “Optimization of ap placement and channel
assignment in wireless lans,” in Proceedings of IEEE LCN, 2002.

[6] V. Shrivastava, N. Ahmed, S. Rayanchu, S. Banerjee, S. Keshav, K. Pa-
pagiannaki, and A. Mishra, “CENTAUR: Realizing the Full Potential
of Centralized Wlans Through a Hybrid Data Path,” in Proceedings of
ACM MobiCom, 2009.

[7] J. Manweiler, N. Santhapuri, S. Sen, R. Choudhury, S. Nelakuditi,
and K. Munagala, “Order matters: Transmission reordering in wireless
networks,” IEEE/ACM Transactions on Networking, vol. 20, no. 2, pp.
353–366, Apr. 2012.

[8] D. Zhao, M. Zhu, M. Xu, and J. Cao, “Downlink packets scheduling in
enterprise wlan,” in Proceedings of IEEE WCNC, 2013.

[9] A. Kamerman and L. Monteban, “Wavelan-ii: A high-performance
wireless lan for the unlicensed band,” Bell Labs Technical Journal,
vol. 2, no. 3, pp. 118–133, 1997.

[10] M. Lacage, M. H. Manshaei, and T. Turletti, “IEEE 802.11 Rate
Adaptation: A Practical Approach,” in Proceedings of ACM MSWiM,
2004.

[11] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin,
“A First Look at Traffic on Smartphones,” in Proceedings of ACM IMC,
2010.

[12] A. Gupta, J. Min, and I. Rhee, “Wifox: Scaling wifi performance for
large audience environments,” in Proceedings of ACM CoNEXT, 2012.

[13] “Ericsson mobility report,” http://www.ericsson.com/mobility-report,
Nov. 2012.

[14] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of inter-
ference on multi-hop wireless network performance,” in Proceedings of
ACM MobiCom, 2003.

[15] N. Ahmed and S. Keshav, “Smarta: A self-managing architecture for
thin access points,” in Proceedings of ACM CoNEXT, 2006.

[16] J. Elson and D. Estrin, “Time synchronization for wireless sensor
networks,” in Proceedings of the 15th International Symposium on
Parallel and Distributed Processing, Apr. 2001, pp. 1965–1970.

[17] V. Shrivastava, S. Rayanchu, S. Banerjee, and K. Papagiannaki, “PIE in
the Sky: Online Passive Interference Estimation for Enterprise WLANs,”
in Proceedings of USENIX NSDI, 2011.

[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Computer Communication Review,
vol. 38, no. 2, pp. 69–74, Mar. 2008.

[19] P. Djukic and P. Mohapatra, “Soft-TDMAC: A Software TDMA-Based
MAC over Commodity 802.11 Hardware,” in Proceedings of IEEE
INFOCOM, 2009.

[20] G. Bianchi, P. Gallo, D. Garlisi, F. Giuliano, F. Gringoli, and I. Tin-
nirello, “MAClets: Active MAC Protocols over Hard-coded Devices,”
in Proceedings of ACM CoNEXT, 2012.

[21] “Qualnet – scalable network technologies,” http://web.scalable-
networks.com/.

[22] B. A. Mah, “An empirical model of http network traffic,” in Proceedings
of IEEE INFOCOM, 1997.

[23] W. Zhou, D. Li, K. Srinivasan, and P. Sinha, “DOMINO: Relative
Scheduling in Enterprise Wireless LANs,” in Proceedings of ACM
CoNEXT, 2013.

[24] D. Koutsonikolas, T. Salonidis, H. Lundgren, P. LeGuyadec, Y. C. Hu,
and I. Sheriff, “TDM MAC Protocol Design and Implementation for
Wireless Mesh Networks,” in Proceedings of ACM CoNEXT, 2008.

[25] W.-Z. Song, R. Huang, B. Shirazi, and R. LaHusen, “TreeMAC:
Localized TDMA MAC Protocol for Real-time High-data-rate Sensor
Networks,” Pervasive and Mobile Computing, vol. 5, no. 6, pp. 750–
765, Dec. 2009.

[26] C. Li, H.-B. Li, and R. Kohno, “Reservation-based dynamic tdma
protocol for medical body area networks.” IEICE Transactions, vol. 92-
B, no. 2, pp. 387–395, 2009.

[27] A. Rao and I. Stoica, “An overlay mac layer for 802.11 networks,” in
Proceedings of ACM MobiSys, 2005.

[28] J. Snow, W. chi Feng, and W. chang Feng, “Implementing a low power
tdma protocol over 802.11,” in Proceedings of IEEE WCNC, 2005.

[29] J. Lee, M. Uddin, J. Tourrilhes, S. Sen, S. Banerjee, M. Arndt, K.-H.
Kim, and T. Nadeem, “meSDN: Mobile Extension of SDN,” in Proceed-
ings of the 5th International Workshop on Mobile Cloud Computing &
Services, 2014.

[30] I. Rhee, A. Warrier, M. Aia, J. Min, and M. L. Sichitiu, “Z-mac: A hybrid
mac for wireless sensor networks,” IEEE/ACM Trans. Netw., vol. 16,
no. 3, pp. 511–524, Jun. 2008.

152ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

A Stochastic Frame Based Approach to

RFID Tag Searching

Ann L. Wang1, Muhammad Shahzad2, Alex X. Liu1

1CSE Dept., Michigan State University; 2CS Dept., North Carolina State University

Email:{liyanwan, alexliu}@cse.msu.edu, mshahza@ncsu.edu

Abstract—This paper addresses the fundamental problem of
RFID tag searching: given a set of known tag IDs and a
population of RFID tags with unknown IDs, where the tags may
be passive or active, we want to know which tag IDs are in the
tag population. RFID tag searching has many applications such
as product recall, inventory balancing, and stock verification.
Previous RFID tag searching protocols cannot achieve arbitrarily
high accuracy and are not C1G2 compliant. In this paper,
we propose a protocol called RTSP, which satisfies the four
requirements of C1G2 compliance, arbitrary accuracy, privacy
preserving, and multiple-reader capability. RTSP is easy to
deploy because it is implemented on readers as a software module
and does not require any implementation on tags. Furthermore,
it does not require any modifications either to tags or to the
communication protocol between tags and readers and works
with the commercially available off-the-shelf RFID tags. We
implemented RTSP along with the fastest tag identification
protocol and compared them side-by-side. Our experimental
results show that RTSP always achieves the required accuracy
and is 22.73% faster than the fastest RFID identification protocol.

I. INTRODUCTION

A. Background and Motivation

As the cost of commercial RFID tags has become negligible

compared to the prices of the products to which they are

attached [1], RFID systems have been increasingly used in

various applications such as supply chain management [2],

indoor localization [3], inventory control, and access control

[4]. For example, Walmart uses RFID tags to track expensive

clothing merchandize [5] and Honeywell Aerospace uses RFID

tags to track its products from birth to repair and retirement

[6]. An RFID system consists of tags and readers. A tag is

a microchip with an integrated antenna in a compact package

that has limited computing power and communication range.

There are two types of tags: passive tags and active tags.

Passive tags do not have their own power source, are powered

up by harvesting the radio frequency energy from readers,

while the active tags have their own power sources. A reader

has a dedicated power source with a significant amount of

computing power. RFID systems work in a query-response

fashion where a reader transmits queries to a set of tags and

the tags respond with their IDs over a shared wireless medium.

This paper addresses the fundamental problem of RFID tag

searching: given a set of known tag IDs and a population of

RFID tags with unknown IDs, where the tags may be passive
or active, we want to know which tag IDs are in the tag

population, i.e., search in a population of unknown tags for

a set of known IDs. RFID tag searching finds applications

in product recall, inventory balancing, stock verification, and

many other such settings. For product recall, if a manufacturer

suspects that some of its products, which have already been

distributed in different warehouses, are defective, they can use

a tag searching protocol to quickly locate defective products,

where the known tag IDs are defective products and the tag

population are the products in a warehouse. For inventory

balancing, if a large retailer, such as Amazon, wants to balance

the quantity of different products among its warehouses across

the country to reduce shipping time and costs, they can use

a tag searching protocol to determine the quantity of any

given product in each warehouse and then balance the quantity

among warehouses accordingly, where the known tag IDs are

the ones in inventory and the tag population are the ones in

a warehouse. For stock verification, if a large retailer wants

to check the quantity of each requested product sent to it in

a large consignment, they can use a tag searching protocol

to determine whether the consignment contains all requested

products, where the known tag IDs are the ones that they

are expecting and the tag population are the ones in the

consignment. In this paper, we use the three terms, a tag, a tag

ID, and the product that a tag is attached to, interchangeably.

B. Problem Statement

Now we formally define the tag searching problem. Given
a set A, which is a set of known tag IDs, a set B, which

is a population of RFID tags with unknown IDs, a required

confidence interval β, a tag searching protocol outputs C̃
so that C ⊆ C̃ ⊆ A and |C̃| − |C| ≤ β|C|, where

C = A ∩ B. Confidence interval β represents the maximum

tolerable fraction of tags in A that are not in C but are declared

as members of C by a tag searching protocol. A tag searching

protocol should satisfy three additional requirements. First,

it should comply with the EPCGlobal Class 1 Generation 2

(C1G2) RFID standard [7], which is a stable RFID standard

and followed by the commercial RFID devices. Otherwise, it

will be extremely difficult to be practically deployed.Second,

it should preserve the privacy of the RFID tags in set B by not

reading their tag IDs. Many RFID tag searching applications

need to satisfy this privacy requirement. For example, if a

policeman searches for some items with known tag IDs in a

private house with a population of tags with unknown tag IDs,

the home owner may prefer not to read the IDs of all tags in

the house. Third, it should work with both a single-reader and

multiple-reader environments. As the communication rangeISBN 978-3-901882-83-8 c⃝ 2016 IFIP

153ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

between a tag and a reader is limited, a large population of tags

is often covered by multiple readers with overlapping regions.

C. Limitations of Prior Art

Previous RFID tag searching protocols (i.e., [8]–[10] have

two key limitations. First, they cannot achieve arbitrarily high

accuracy. They are all probabilistic in nature, but none of

them takes the confidence interval β as an input. Second,

they do not comply with the C1G2 standard as they require

the tags to receive, interpret, and act either according to pre-

frame Bloom Filters or other protocol specific parameters.

It is critical for RFID protocols to be compliant with the

C1G2 standard because the cheap commercially available off-

the-shelf (COTS) tags follow the C1G2 standard. A protocol

that does not comply with the C1G2 standard will require

custom tags, which will cost significantly more and have

limited applications. Previous RFID identification protocols

(such as TH [11], STT [12], MAS [13], and ASAP [14])

can be used to read all IDs of the tags in B and then calculate

C = A ∩ B. However, this straightforward solution has two

key limitations. First, it does not preserve the privacy of the

tags in B as it needs to read the IDs of all tags in B. Second,

this is inefficient. We want an RFID tag searching protocol

that is much faster than reading all tags in B.

D. Proposed Approach

In this paper, we propose a protocol called RFID Tag

Searching Protocol (RTSP), which satisfies the following four

requirement: (1) C1G2 compliance, (2) arbitrary accuracy,

i.e., C ⊆ C̃ ⊆ A and |C̃| − |C| ≤ β|C| for any required

confidence interval β, (3) privacy preserving, and (4) multiple-

reader capability.

To satisfy the requirement of C1G2 compliance, RTSP

uses the frame slotted Aloha protocol specified in the C1G2

standard as its MAC layer communication protocol. In Aloha,

the reader first tells the tags a frame size f and a random

seed number R. Each tag within the transmission range of

the reader then uses f , R, and its ID to select a slot in

the frame by calculating a hash function h(f,R, ID) whose

result is uniformly distributed in [1, f]. Each tag has a counter

initialized with the slot number that it chose to reply. After

each slot, the reader first transmits an end of slot signal and

then each tag decrements its counter by one. In any given

slot, all the tags whose counters equal 1 respond with a

random sequence called RN16. The reader uses this sequence

to determine whether one or more than one tags are replying

in that slot. If no tag replies in a slot, it is called an empty slot.

If one or more tags reply in a slot, it is called a nonempty slot.
Using 0 to denote an empty slot and 1 to denote a nonempty

slot, after we execute the Aloha protocol on a population A
of tags using frame size f and random seed R, we obtain a

binary array of f bits, denoted as S(A, f,R).
To satisfy the requirement of arbitrary accuracy, RTSP

executes n runs of the Aloha protocol where each run uses

a different seed. For the ith run with frame size f and random

seed Ri, RTSP executes the Aloha protocol on both sets A
and B, and thus obtains two binary arrays S(A, f,Ri) and

S(B, f,Ri). Note that RTSP executes the Aloha protocol on

A virtually as it knows all tag IDs in A. After n runs,

for each tag ID t ∈ A, if for all 1 ≤ i ≤ n, we have

S(A, f,Ri)[h(f,Ri, t)] = S(B, f,Ri)[h(f,Ri, t)], (i.e., for all

n runs, the two bits corresponding to tag t in both S(A, f,Ri)
and S(B, f,Ri) are 1), then RTSP outputs t ∈ C̃ . Clearly

RTSP satisfies C ⊆ C̃ ⊆ A. RTSP chooses a value of n so

that |C̃|− |C| ≤ β|C|.
To satisfy the requirement of privacy preserving, RTSP

checks if a slot is empty or nonempty using the RN16 sequence

and never asks tags to transmit their IDs. In C1G2, tags do

not transmit their IDs unless the reader specifically asks them.

To satisfy the requirement of multi-reader capability, RTSP

uses a central controller for all readers to use the same values

for frame size f and seed R across all readers. The central

controller uses a reader scheduling protocol [15] to ensure that

two readers with overlapping regions do not transmit at the

same time. When a reader transmits seed Ri in its ith frame,

it does not generate Ri on its own, rather, it uses the ith seed

Ri issued by the central controller. Thus, for a tag t ∈ B
that is covered by multiple readers, it chooses the same slot

h(f,Ri, t) for all readers. Once a reader completes its frame,

it sends its binary array to the central controller. The controller

applies the bit-wise logical OR operation on the binary arrays

returned from all readers. The resulting binary array is the

same as if there is one reader that covers all tags. RTSP uses

this binary array to compute C̃ .

E. Technical Challenges and Proposed Solutions

There are two key technical challenges in RTSP. The

first technical challenge is to minimize tag searching time

under the constraint that RTSP satisfies the required accuracy.

To address this challenge, we use the accuracy requirement

|C̃| − |C| ≤ β|C| to derive a confidence condition, which

the system parameters such as frame sizes and execution

rounds must satisfy. We then use the confidence condition to

derive a duration condition, which system parameters must

satisfy to minimize tag searching time. We then solve both

conditions simultaneously to calculate the optimum system

parameters that minimize tag searching time while achieving

the required accuracy. The second technical challenge is to

estimate the number of tags in set |C|, which is required to

calculate the optimal values of system parameters. To address

this challenge, RTSP counts the number of bits that are 1s

in both S(A, f,Ri) and S(B, f,Ri). We call such bits dual-

nonempty bits. The number of such dual-nonempty bits is a

monotonically increasing function of |C|. By observing the

number of dual-nonempty slots, RTSP estimates the value of

|C| while executing the Aloha protocol.

F. Advantages over Prior Art

The key novelty of this paper is in proposing a tag searching

protocol that statistically guarantees to achieve any required

accuracy and complies with the C1G2 standard. The key

technical depth of RTSP lies in its mathematical development

to guarantee any required accuracy and to minimize tag

searching time. The key advantages of RTSP over prior tag

154ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

searching protocols are that RTSP can achieve arbitrarily high

accuracy and RTSP complies with the C1G2 standard. RTSP

is easy to deploy because it is implemented on readers as

a software module and does not require any implementation

on tags. Furthermore, it does not require any modifications

either to tags or to the communication protocol between

tags and readers and works with the commercially available

off-the-shelf RFID tags. RTSP can be implemented as a

software module on readers. We have extensively evaluated

the performance of RTSP. Our results show that for a scenario

with |A| = 5000, |B| = 5000, and |C| = 500, and a required

confidence interval of 0.1%, RTSP takes 15 seconds to search

the tags whereas the fastest prior tag identification protocol

(TH [11]) takes 22 seconds.

II. RELATED WORK

To the best of our knowledge, there are four tag searching

protocols [8]–[10], [16]. Zheng and Li proposed the first RFID

tag searching protocol namely CATS [8]. CATS works in two

phases. In the first phase, a server first constructs a Bloom

filter by applying multiple hash functions in conjunction with

a random seed on each tag ID in set A. Second, an RFID reader

broadcasts the Bloom filter generated by the server along with

the random seed to all tags in the population B. Using the

received Bloom filter of set A, each tag in B checks if it is

a candidate in C. Specifically, if all bits for a tag are 1s, the

tag is a candidate in C; otherwise, it must be in B − A. Let

B′ denote all these candidates. Thus, due to false positives,

C ⊆ B′ ⊆ B. Then, the tags in B′ distributively constructs

another Bloom filter using the Framed Slotted Aloha protocol.

The reader uses this Bloom filter to exclude the IDs in A−B.

Thus, the reader obtains the searching result A− (A −B) =
A ∩B. Unfortunately, C1G2 compliant tags can not interpret

or generate Bloom filters, which makes CATS non-compliant

with the C1G2 standard.

Chen et al. proposed another tag searching protocol called

ITSP, which is an improved version of CATS [9]. In ITSP,

the reader first generates a k = 1 Bloom filter on set

A. Then, the reader broadcasts the Bloom filter along with

the parameters used for constructing the Bloom filter to all

tags in B. After a tag receives the Bloom filter, it checks

whether it is in the Bloom filter. If a tag is in the Bloom

filter, the tag will remain active; otherwise, it will become

inactive. For the active tags, they collaboratively construct

another k = 1 Bloom filter by executing the Framed Sloted

Aloha protocol. ITSP repeats the above filtering process for

multiple rounds until the false positive probability is below a

certain threshold. Unfortunately, C1G2 compliant tags can not

interpret or generate Bloom filters, which makes ITSP non-

compliant with the C1G2 standard.

Zhang et al. proposed another tag searching protocol called

TSM [10]. TSM extends CATS for use with multiple readers.

It first executes CATS using each reader and then aggregates

results from all readers to identify the tags in A that are present

in B. Unfortunately, due to similar reasons as for CATS, TSM

is also non-compliant with the C1G2 standard. In contrast, our

proposed protocol, RTSP, is C1G2 compliant.

Liu et al. proposed BKC to count the number of tags in A
that are present in B [16]. BKC first pre-computes a frame

using IDs in set A and then executes a frame on population

B to determine how many times the slots that were 1 in the

pre-computed frame turned out to be 1 in the executed frame.

It then uses the number of such slots to obtain the estimate of

the number of tags in A that are present in B. BKC falls short

because it can only estimate the number of tags in A that are

present in B, but it can not determine exactly which tags of

A are present in B. In contrast, our proposed protocol RTSP

can identify such tags.

III. SYSTEM MODEL

A. Architecture

For searching RFID tags, RTSP uses a central controller

connected with a set of readers that cover the area where

the tags in set B are located. The use of a central controller

ensures that all readers use consistent values of frame sizes and

seeds when executing frames, which helps in efficiently aggre-

gating and processing information returned by the readers. The

readers use the standardized frame slotted Aloha protocol to

communicate with tags and never ask the tags to transmit their

IDs. The use of multiple readers with overlapping coverage

regions introduces following two problems: (1) scheduling the

readers such that no two readers with overlapping regions

transmit at the same time, and (2) alleviating the effect of

some tags responding to multiple readers due to overlap in

the coverage region of those readers. For the first problem, the

controller uses one of the several existing reader scheduling

protocols [15] to avoid reader-reader collisions. For the second

problem, we propose solution in Section IV-A. RTSP does not

require any modifications to tags or readers. It only requires

the readers to receive system parameters from the controller

and communicate the responses in the frames back to the

controller.

B. C1G2 Compliance

RTSP does not require any modifications to tags or read-

ers. It only requires the readers to receive the frame size,

persistence probability, and seed number from the controller

and communicate the responses in the frames back to the

controller. Persistence probability p is the probability with

which a tag decides whether it will participate in a frame or

not before selecting a slot in that frame. Later in the paper, we

will show how we use p to handle frame sizes that exceed the

C1G2 specified upper limit of 215. Such large frame sizes

are required when the size of tag population is large and

required confidence interval β is small. With the use of p,

the reader reduces the number of tags that participate in each

frame, which in turn reduces the optimal frame size at the

expense of increased number of frames. As the C1G2 standard

does not specify the use of p, COTS tags do not support

it. To avoid making any modifications to tags, in RTSP, the

reader implements p by announcing a frame size of f/p but

terminating the frame after the first f slots and sending a

command to tags to reset their counters, which can be done

as per the C1G2 standard.

155ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

C. Communication Channel

We assume that the communication channel between readers

and tags is reliable i.e., tags correctly receives queries from

the readers and the readers correctly detect transmission of

RN16 sequence in a slot if one or more tags in the population

transmit in that slot. If the channel is unreliable, the solution

proposed in [11] can be easily adapted for use with RTSP.

D. Independence Assumption

To make the formal development tractable, we assume that

instead of picking a single slot to transmit at the start of ith

frame of size f , a tag independently decides to transmit in

each slot of the frame with probability 1/f regardless of its

decision about previous or forthcoming slots. Vogt first used

this assumption for the analysis of Aloha protocol for RFID

and justified its use by recognizing that this problem belongs

to a class of problems called occupancy problem, which deals

with the allocation of balls to urns [17]. Ever since, the use

of this assumption has become a norm in the formal analysis

of all Aloha based RFID protocols [17]–[19].

The implication of this assumption is that a tag can end

up choosing more than one slots in the same frame or even

not choosing any at all, which is not in accordance with the

C1G2 standard that requires a tag to pick exactly one slot in a

frame. However, this assumption does not create any problems

because the expected number of slots that a tag chooses

in a frame is still one. The analysis with this assumption

is, therefore, asymptotically the same as that without this

assumption [20]. Bordenave et al. further explained in detail

why this independence assumption in analyzing Aloha based

protocols provides results just as accurate as if all the analysis

was done without this assumption [20]. This independence

assumption is made only to make the formal development

tractable. In our simulations, tag chooses exactly one slot at

the start of frame.

IV. RFID TAG SEARCH PROTOCOL

A. Protocol Description

To search which tags in set A are present in the population

B, in RTSP, the central controller executes n Aloha frames

using the RFID readers. There are five steps involved in

executing each frame. First, before executing any frame i,
the controller calculates the optimal values of frame size

fi, persistence probability pi, and generates a random seed

number Ri. We will derive the expressions to calculate the

values of fi and pi in the next section. Second, as the controller

knows the IDs in set A, it virtually executes the Aloha protocol

on set A and obtains the binary array S(A, fi, Ri). Thus, the

controller knows which bits in the binary array S(B, fi, Ri)
resulting from executing ith frame on population B should be

1 if all the tags in A were present and a single reader covered

the entire population. Third, it provides each reader with the

parameters fi, pi, and Ri and asks each of them to execute

the ith frame using these parameters. The motivation behind

using the same values of fi, pi, and Ri across all readers

for the ith frame is to enable RTSP to work with multiple

readers with overlapping regions. As all readers use the same

values of fi, pi, and Ri in the ith frame, the slot number

that a particular tag chooses in the ith frame of each reader

covering this tag is the same i.e., h(fi
pi
, Ri, ID) evaluated

by the tag results in same value for each reader. Fourth,

each reader executes the frame on its turn as per the reader

scheduling protocol and sends the responses in the frame back

to the controller. Fifth, after the controller has received the

ith frame of each reader, it applies logical OR operator on

all the received ith frames and obtains the resultant bit array

S(B, fi, Ri). This resultant bit array S(B, fi, Ri) is the same

as if generated by a single reader covering all the tags. After

obtaining the n bit arrays, S(B, fi, Ri) for 1 ≤ i ≤ n, for

each tag t ∈ A, if h(fi
pi
, Ri, t) ≤ fi the controller checks

whether S(A, fi, Ri)[h(
fi
pi
, Ri, t)] = S(B, fi, Ri)[h(

fi
pi
, Ri, t)]

for all n frames, i.e., for all n frames, whether the two bits

corresponding to tag t in both S(A, fi, Ri) and S(B, fi, Ri)
are 1s. If true, RTSP declares that the tag t is present in B.

Note that RTSP can have false positives, i.e., it can declare a

tag in set A to be present in population B, when the tag is

actually not present. RTSP does not have false negatives.

B. Estimating Number of Tags in Set C
Recall from the previous section that before executing any

frame i, the controller calculates the optimal values of frame

size fi and persistence probability pi. To calculate these

optimal values for ith frame, the controller needs estimate

of |C| at start of the ith frame, which it obtains using the

responses from the tag population in the previous i−1 frames.

We represent the estimate of |C| at the start of ith frame by

|C̃i|. As the controller executes more and more frames, i.e., as

i increases, the estimate |C̃i| asymptotically becomes equal to

|C|. Next, we present a method to estimate the value of |C|
at start of any frame i.

The intuition behind our estimation method is that as the

number of tags in set C increases, the number of correspond-

ing bits that are 1s in both S(A, fi, Ri) and S(B, fi, Ri)
also increases. We call such bits as dual-nonempty bits. The

number of dual-nonempty bits for any given frame is a

function of |C| and can, therefore, be used to estimate the

value of |C|. Next, we derive an expression that relates the

number of dual-nonempty bits with the value of |C|, i.e., we

derive an expression for E[N 11
i] as a function of |C|, where

N 11
i is random variable for number of dual-nonempty bits

in the pair of arrays S(A, fi, Ri) and S(B, fi, Ri). To derive

the expression for E[N 11
i], we need the probability that any

given pair of bits in the arrays S(A, fi, Ri) and S(B, fi, Ri) is

dual-nonempty. We calculate this probability in the following

lemma.

Lemma 1. Let A be the set of IDs of tags that we want to

search for in a population. Let B be the set of IDs of tags in
the population in which we search for tags in set A. Let C be

the set of IDs of those tags that are present in both sets A and
B. Let Xij be an indicator random variable for the event that

the j th bit in ith pair of arrays is a dual-nonempty bit. For

frame size fi and persistence probability pi, the probability
distribution of Xij is given by the following equation.

156ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

P {Xij = 1} = 1−(1−
pi
fi
)|A|−(1−

pi
fi
)|B|+(1−

pi
fI

)|A|+|B|−|C|

(1)
Proof. Probability that any given bit j in a pair of arrays is

a dual-nonempty bit can be obtained by first calculating the

probability that this bit is not a dual-nonempty bit, and then

subtracting it from 1. The j th bit is not dual-nonempty when

one of the following three cases happens.

1) None of the tags in set A select the j th slot in frame

i.e., the j th bit in S(A, fi, Ri) is 0, and none of the tags

in population B select the j th slot in corresponding executed

frame i.e., the j th bit in S(B, fi, Ri) is 0. We represent this

event by an indicator random variable Y00. The probability

distribution of Y00 is given by the following equations.

P {Y00 = 1} =
(
1−

p

f

)|A|+|B|−|C|
(2)

2) One or more tags in set A − C select the j th slot in

frame i.e., the j th bit in S(A, fi, Ri) is 1, and none of the tags

in population B select the j th slot in corresponding executed

frame i.e., the j th bit in S(B, fi, Ri) is 0. We represent this

event by an indicator random variable Y10. The probability

distribution of Y10 is given by the following equations.

P {Y10 = 1} =

(
1−

(
1−

p

f

)|A−C|
)(

1−
p

f

)|B|
(3)

3) None of the tags in set A select the j th slot in frame

i.e., the j th bit in S(A, fi, Ri) is 0, and one or more tags in

population B−C select the j th slot in corresponding executed

frame, i.e., i.e., the j th bit in S(B, fi, Ri) is 1. We represent

this event by an indicator random variable Y01. The probability

distribution of Y01 is given by the following equations.

P {Y01 = 1} =

(
1−

(
1−

p

f

)|B−C|
)(

1−
p

f

)|A|
(4)

The distribution of Xij is given by the following equation.

P {Xij = 1} = 1−P {Y00 = 1}−P {Y10 = 1}−P {Y01 = 1}
(5)

Substituting the expressions for the probability distributions of

Y00, Y10, and Y01 from Equations (2) to (4), respectively, into

Equation (5) and simplifying, we get Equation (1).

Following theorem derives the expression for E[N 11
i] as a

function of |C|.

Theorem 1. Let A be the set of IDs of tags that we want to

search for in a population. Let B be the set of IDs of tags in

the population in which we search for tags in set A. Let C
be the set of IDs of those tags that are present in both sets

A and B. Let N 11
i be the random variable for the number of

dual-nonempty bits in a pair of arrays of size fi each. When

persistence probability is pi, the expected value of N 11
i is

given by the following equation.

E[N 11
i] = fi ×

(
1−

(
1−

pi
fi

)|A|
−
(
1−

pi
fi

)|B|

+
(
1−

pi
fi

)|A|+|B|−|C|
)

(6)

Proof. It is straight forward to see that N 11
i =

∑fi
j=1 Xij . As{

Xi1, Xi2, . . . , Xifi)

}
forms a set of identically distributed

random variables, E[N 11
i] is given by

E[N 11
i] = E[

fi∑

j=1

Xij] = fi × E[Xij]

As expected value of an indicator random variable equals its

probability of being 1, E[Xij] = P {Xij = 1}. Substituting

value of E[Xij] in equation above with value of P {Xij = 1}
from Equation (5), we get the equation for E[N 11

i].

Fig. 1 plots E[N 11
i] as a function of |C| using Equation (6).

This figure is obtained using |A| = 200, |B| = 300, fi = 300
and pi = 1. We observe from this figure that E[N 11

i] is a

monotonically increasing function of |C|.

To estimate the value of |C|, let Ñ 11
i represent the observed

value of number of dual-nonempty bits for ith pair of bit

arrays. Replacing E[N 11
i] in Equation (6) with Ñ 11

i and

solving for |C| gives an estimate of |C|. Using the well known

identity (1 + x)y ≈ exy for small x and large y, Equation (6)

can be written as follows.

E[N 11
i] ≈ fi×

(
1− e−

pi
fi

|A| − e−
pi
fi

|B| + e−
pi
fi

(|A|+|B|−|C|)
)

Replacing E[N 11
i] in the equation above with Ñ 11

i and solving

for |C|, we get the following equation to obtain the estimate

|C̃| of |C|.

|C̃| ≈ |A|+ |B|+
fi
pi

ln

{
Ñ 11

i

fi
− 1 + e−

pi
fi

|A| + e−
pi
fi

|B|

}

This estimate is obtained by utilizing the information from

the ith frame only. While this estimate may not be accurate,

if we use the information from more frames, the estimate

will become more accurate. Specifically, we leverage the well

known statistical result that the variance in the observed value

of a random variable reduces by x times if we take the average

of x observations of that random variable. Therefore, to obtain

the estimate |C̃i| of |C| at the start of the ith frame, we obtain

an estimate from each of the previous i − 1 frames and take

their average. Solving Equation (6) for |C| and averaging over

past i− 1 frames, the formal expression for |C̃i| becomes

|C̃i| ≈ |A|+|B|+

∑i−1
l=1

fl
pl
ln
{

Ñ 11
l

fl
− 1 + e−

pl
fl

|A| + e−
pl
fl

|B|
}

i− 1
(7)

Note that |B| can be obtained using existing RFID estimation

schemes such as ART [18]. Further note that the controller

obtains this estimate without executing any additional frames.

It gets this estimate from the frames it was already executing

to search for tags.

V. PARAMETER OPTIMIZATION

In this section, we will derive equations that the controller

uses at the start of ith frame to calculate the optimal values

of frame size fi and persistence probability pi to minimize

the execution time of RTSP while ensuring that its actual con-

fidence interval is less than the required confidence interval.

At the start of ith frame, the controller uses the estimate |C̃i|
along with the values of |A|, |B|, and β to calculate the optimal

values of fi and pi. Before asking the readers to execute the ith

frame, the controller also calculates the minimum number of

frames that it should execute, represented by ni. Recall from

157ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0 25 50 75 100 125 150 175 200

80

100

120

140

160

No. of present tags

Ex
pe

ct
ed

 v
al

ue
 o

f N
i1

1

Fig. 1. E[N 11
i] vs. |C|

200 300 400 500
0

1

2

3

4 x 10−3

|B|

Fa
ls

e
po

si
tiv

e
pr

ob
ab

ili
ty

Theoretical
Simulations

Fig. 2. Theoretical vs. experimental Pfp

0 100 200 300 400 500600

700

800

900

1000

1100

Frame size f

To
ta

l n
um

be
r o

f s
lo

ts

Fig. 3. Total number of slots S vs. frame size f

Section IV-B that as the number of executed frames increase,

the estimate of |C| becomes more accurate. Consequently, ni,

fi, and pi asymptotically become equal to constants n, f ,

and p, respectively. When the estimate of |C| changes by less

than 2 in 10 consecutive frames, the controller considers the

estimate to be close enough to |C|. At this point, the controller

calculates the values of ni, fi, and pi one last time and puts

f = fi, p = pi, and n = ni, and uses these fixed values of f
and p to execute subsequent frames until the total number of

frames executed since the first frame become equal to n. For

the first frame, i.e., when i = 1, the controller uses n1 = ∞,

f1 = max {|A|, |B|}, and p1 = 1. The choices of the values of

n1, f1, and p1 are arbitrary and do not really matter because as

the controller executes more frames, number of frames, frame

size, and persistence probability converge to constants n, f ,

and p, respectively.

In subsequent calculation of ni, fi, and pi, we will drop

the subscript i to make the presentation simple. Next, we

first derive the expression for false positive probability i.e.,
probability with which RTSP declares a tag in set A to be

present in population B, when it actually is not. Second,

using the expression for false positive probability, we derive a

confidence condition that the values of n, f , and p must satisfy

to ensure that the observed confidence interval is smaller

than the required confidence interval β, i.e., the requirement

|C̃| − |C| ≤ β|C| is satisfied. Third, we derive a duration

condition, which the values of f and p must satisfy to

ensure that the execution time of RTSP is minimized. The

controller solves these two conditions simultaneously to obtain

the optimal values of n, f , and p. Last, we describe our

strategy to bring the value of f within limit when the optimal

frame size exceeds the C1G2 specified upper limit of 215.

A. False Positive Probability
A false positive occurs when all the bits that a particular

tag in A that is not present in B selects in the n bit arrays

S(A, fi, Ri) for 1 ≤ i ≤ n, turn out to be nonempty in

corresponding bit arrays S(B, fi, Ri) because some other tags

in the population made those bits 1. Lemma 2 gives the

expression to calculate the false positive probability.

Lemma 2. Let B be the set of IDs of tags in the population in

which we search for tags. With persistence probability p, frame
size f , and number of frames n, the false positive probability,

Pfp, is given by Pfp =

[
1−

(
1− p

f

)|B|
]n

.

Proof. Consider a tag t such that t ∈ A ∧ t /∈ B. The proba-

bility that the bit tag t selects in S(A, fi, Ri) is selected by at

least one tag in population B in S(B, fi, Ri) is 1−(1− p
f
)|B|.

The probability that all n bits tag t selects in the n bit arrays

S(A, fi, Ri) for 1 ≤ i ≤ n, are also selected by some other

tags in population B in corresponding bit arrays S(B, fi, Ri)
is [1− (1− p

f)
|B|]n, which is the expression for Pfp, given in

the lemma statement.

Figure 2 shows the theoretically calculated false positive

probability from equation of Pfp in Lemma (2) represented

by the solid line and experimentally observed values of false

positive probability represented by the dots. To obtain this

figure, we use f = 600, p = 1, and n = 10. Each dot

represents the false positive probability calculated from 200
runs of simulation. We observe that the theoretically calculated

values match perfectly with experimentally observed values,

showing that our independence assumption that we stated in

Section III-D does not cause the theoretical analysis to deviate

from practically observed values.

B. Confidence Condition
Theorem 2 states the confidence condition, which the values

of n, f , and p must satisfy to achieve the required confidence

interval β.

Theorem 2. Let A be the set of IDs of tags that we want to
search for in a population. Let B be the set of IDs of tags in

the population in which we search for tags in set A. Let C be
the set of IDs of those tags that are present in both sets A and

B. To ensure that RTSP satisfies the requirement |C̃|− |C| ≤
β|C|, the controller must use the values for number of frames
n, frame size f , and persistence probability p that satisfy the

confidence condition given in the following equation.

n =
ln
(

β×|C̃|
|A|−|C̃|

)

ln
(
1− (1− p

f)
|B|
) (8)

Proof. Let E[|C̃|] represent the number of tags that RTSP

declares as belonging to set C after executing n frames of

size f with persistence probability p. Replacing |C̃| in |C̃|−
|C| ≤ β|C| by E[|C̃|], the confidence requirement is given

by E[|C̃|] − |C| ≤ β|C|. Next, we derive the expression for

E[|C̃|]. Recall from Section IV-A that RTSP can have false

positives, but it cannot have false negatives i.e., it will always

identify the tags of A present in B and in addition, it may

158ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

also declare some tags in A that are not in B to be present in

B. Thus, E[|C̃|] = |C|+ (|A − C|) × Pfp. As C ⊆ A, thus,

E[|C̃|] = |C| + (|A| − |C|) × Pfp Substituting this value of

E[|C̃|] into the confidence requirement, we get the following

equation: |C|+(|A|−|C|)×Pfp−|C| ≤ β|C|. Substituting the

value of Pfp from Lemma 2 into this equation and rearranging,

we get n ≥
ln(β×|C|

|A|−|C|)
ln(1−(1− p

f)|B|)
. As we do not know the exact value

of |C|, rather we know the estimate |C̃| of |C|, replacing |C|
in this equation with |C̃| and using the smallest value for

n allowed by the equation above to ensure that confidence

requirement is always met, we get Equation (8) in theorem

statement.

C. Duration Condition

Theorem 3 states the duration condition that the values of

f and p must satisfy to minimize the execution time of RTSP.

Theorem 3. Let A be the set of IDs of tags that we want to

search for in a population. Let B be the set of IDs of tags in
the population in which we search for tags in set A. Let C be

the set of IDs of those tags that are present in both sets A and
B. To ensure that the execution time of RTSP is minimum, the

controller must use the values for frame size f and persistence

probability p that satisfy the duration condition given in the
following equation.

p× |B| = f ×
(
1− e

p
f |B|

)
× ln

{
1− e−

p
f |B|

}
(9)

Proof. Execution time is directly proportional to the total

number of slots because the duration of each slot is the same,

typically 300µs for Philips I-Code RFID reader [21]. Let S
represent the total number of slots. Thus, S = f×n. To ensure

that RTSP achieves the required confidence interval, we use

the value of n from Equation (8). Thus,

S =
f ln

(
β×|C̃|
|A|−|C̃|

)

ln
(
1− (1− p

f
)|B|
) (10)

Figure 3 plots S as a function of f using the equation above.

This figure is made using |A| = 100, |B| = 100, |C̃| = 52,

p = 1, and β = 0.05. We observe from this figure that S is a

convex function of f . Therefore, optimum value of f exists,

represented by fop, that minimizes the total number of slots

S. To find optimal value of f , we differentiate the equation

above w.r.t f and equate the resulting expression to 0, and get

the following:
[

ln

(

β × |C̃|

|A|− |C̃|

)]

[

p|B|− f
(

1− e
p
f
|B|

)

ln

{

1− e
− p

f
|B|

}]

= 0

Note that ln
(

β×|C̃|
|A|−|C̃|

)
̸= 0, which means that the following

must hold true: p|B| − f
(
1− e

p
f |B|

)
ln
{
1− e−

p
f |B|

}
= 0

Rearranging the equation above, we get the duration condition

in the theorem statement.

The controller solves Equations (8) and (9) simultaneously

using p = 1 and gets the optimal values of n and f represented

by nop and fop, respectively. It calculates fop numerically from

Equation (9) using Brent’s method. Then it puts f = fop and

p = 1 in Equation (8) to calculate nop. Next, we study the

effect of |A|, |B|, |C|, and β on execution time of RTSP.

Execution Time vs. |A|: Intuitively, as the number of tags

in A increases, the execution time of RTSP should increase

because the greater number of tags in A implies the higher

chances of false positives. Thus, to ensure that the number

of false positives stays small enough so that the required

confidence interval is achieved, RTSP executes more frames,

i.e., the value of nop increases, which increases the overall

execution time. Figure 4(a) confirms our intuition. This figure

plots the expected execution time of RTSP for multiple values

of |A| while fixing |B| at 5000 and |C| at 500. We calculated

the execution time as nop × fop × Ts, where Ts is the time

of each slot and is equal to 300µs as per the specifications of

Philips I-Code RFID reader [21]. We observe from Figure 4(a)

that as the number of tags in A increases, the execution time

of RTSP increases. The stairway behavior that RTSP shows in

this and subsequent figures is due to the ceiling operation on

the non-integer values of nop and fop.

Execution Time vs. |B|: Intuitively, as the number of tags

in B increases, the execution time of RTSP should increase

because greater number of tags in B also imply higher chances

of false positives. Thus, to ensure that the number of false

positives stays small enough so that the required confidence

interval is achieved, RTSP increases the frame size, i.e.,

the value of fop increases according to Equation (9), which

increases the overall execution time. Figure 4(b) confirms our

intuition. This figure plots the expected execution time of

RTSP for multiple values of |B| while fixing |A| at 5000 and

|C| at 500. We observe from Figure 4(b) that as the number

of tags in B increases, the execution time of RTSP increases.

Execution Time vs. |C|: Intuitively, as the number of tags

in C increases, the execution time of RTSP should decrease

because greater number of tags in C means RTSP has greater

margin of error i.e., β|C|. Thus, RTSP reduces the value of

nop, which decreases the overall execution time. Figure 4(c)

confirms our intuition. This figure plots the expected execution

time of RTSP for multiple values of |C| while fixing |A| at

5000 and |B| at 5000. We observe from Figure 4(c) that as the

number of tags in C increases, the execution time of RTSP

decreases.

Execution Time vs. β: Intuitively, as the required confidence

interval β increases, the execution time of RTSP should de-

crease because larger required confidence interval means RTSP

has greater margin of error. Thus, RTSP reduces the values of

nop, which decreases the overall execution time. Figure 4(d)

confirms our intuition. This figure plots the expected execution

time of RTSP for different values of β while fixing |A| at 5000,

|B| at 5000, and |C| at 500. We observe from Figure 4(d) that

as the required confidence interval increases, the execution

time of RTSP decreases.

D. Handling Large Frame Sizes

For large populations and/or small required confidence

interval, it is possible for the value of fop to exceed the C1G2

specified upper limit of 215. Next, we describe how we use p

159ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

2000 4000 6000 8000 10000
5

10

15

20

25

|A|

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

beta=0.01
beta=0.05
beta=0.1
beta=0.2

(a) Execution time vs. |A|

2000 4000 6000 8000 10000
0

10

20

30

40

|B|

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

beta=0.01
beta=0.05
beta=0.1
beta=0.2

(b) Execution time vs. |B|

500 1000 1500 2000
5

10

15

20

25

30

|C|

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

beta=0.01
beta=0.05
beta=0.1
beta=0.2

(c) Execution time vs. |C|

0.05 0.1 0.15 0.2
12

14

16

18

20

22

24

β

E
xe

cu
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

(d) Execution time vs. β

Fig. 4. Effect of |A|, |B|, |C|, and β on execution time of RTSP

to bring the frame size within limits. Bringing the frame size

within limits comes at a cost of increased number of slots;

greater than the minimum value of S that would have been

achieved if the controller could use fop > 215.

When we decrease the value of p, the number of tags that

participate in a frame decreases. Therefore, the required value

of f also decreases. Participation by fewer tags means that

participation by the tags belonging to both the sets A and B
decreases. This increases the chances that a given tag in A that

is present in B will not select any slot in a given pre-computed

frame, which means that chances of identifying its presence

decrease. Therefore, the overall uncertainty in identifying tags

in A increases. To reduce this uncertainty, the n increases

when p decreases to achieve the required confidence interval.

We use these two observations to reduce the value of f
whenever fop > 215. When fop > 215, the controller uses

f = fmax = 215 in Equation (8), which leaves two unknowns,

p and n, in the resulting equation. The controller solves the

resulting equation simultaneously with Equation (9) to get new

values of p and n. The new value of p is less than 1 and the

new value of n is greater than nop (we represent n with nop

only when we use f = fop to calculate it). The controller uses

these new values of n and p along with f = fmax to compute

the bit array S(A, fi, Ri). Although the total number of slots

S = fmax × n > fop × nop, this is still the smallest under the

constraints that the required confidence interval is achieved

and the frame size does not exceed fmax.

VI. PERFORMANCE EVALUATION

We implemented and simulated RTSP in Matlab. We also

implemented and simulated the fastest existing tag identifica-

tion protocol, TH [11], to compare the execution time of RTSP

with it. We choose tag ID length of 64 bits as specified in the

C1G2 standard. Note that the distributions of the IDs of tags

in A and B do not matter because RTSP is independent of

ID distributions. Next, we first evaluate the accuracy of RTSP

and then compare its execution time with the execution time

of TH. All results reported in this section are obtained from

averaging over 200 independent runs of RTSP.

A. Accuracy

To evaluate the accuracy of RTSP, we study its confidence

interval for different values of |A|, |B|, and |C|.
1) Observed Confidence interval vs. |A|: Our experimental

results show that RTSP always achieves the required confi-
dence interval regardless of the size of set A. Figures 5(a),

5(b), 5(c), and 5(d) plot the actual confidence interval RTSP

achieved for different sizes of set A when the required values

of confidence interval are β = 0.2, β = 0.1, β = 0.05,

β = 0.01, respectively. To plot these figures, we fixed number

of tags in set B at 5000 and number of tags in A that

are in B, i.e., number of tags in set C at 500. The dashed

horizontal line in each of these figures shows the required

value of confidence interval and the solid line shows the

observed values of confidence interval achieved by RTSP.

We observe from these figures that the observed values of

confidence interval are always smaller than the required values

of confidence interval.

2) Observed Confidence interval vs. |B|: Our experimental

results show that RTSP always achieves the required confi-
dence interval regardless of the number of tags in population

B. We have not included figures due to lack of space.

3) Observed Confidence interval vs. |C|: Our experimental
results show that RTSP always achieves the required con-

fidence interval regardless of the number of tags in set C.

Figures 6(a), 6(b), 6(c), and 6(d) plot the actual confidence

interval RTSP achieved for different sizes of set C when the

required values of confidence interval are β = 0.2, β = 0.1,

β = 0.05, β = 0.01, respectively. To plot these figures, we

fixed number of tags in sets A and B at 5000 each. Again,

we observe from these figures that the solid lines are always

below their corresponding dashed lines, which means that

RTSP always achieves the required confidence interval.

B. Execution Time

Execution time of RTSP is smaller than TH. Figure 7(a)

plots the execution times of TH and RTSP vs. |A| for β =
0.1, |B| = 3000, and C = 500. We observe from this figure

that RTSP is up to 22.73% faster compared to TH. Similarly,

Figure 7(b) plots the execution times vs. |B| for β = 0.1,

|A| = 1000, and |C| = 500 and Figure 7(c) plots the execution

times vs. |C| for β = 0.1, |A| = 5000, and |B| = 5000
. Again, we observe from these figures that RTSP is always

faster compared to TH. Finally, Figure 7(d) plots the execution

times vs. β for |A| = 5000, |B| = 5000, and |C| = 500. We

observe that RTSP is faster compared to TH as long as required

confidence interval is > 0.01. When the required confidence

interval < 0.01, TH is faster. Thus, if privacy is not a concern,

a user should use TH whenever β < 0.01. If, however, privacy

is a concern, the user should always use RTSP.

160ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

2000 4000 6000 8000 10000
0

0.1

0.2

0.3

0.4

|A|

O
be

se
rv

ed
 c

on
fid

en
ce

 in
te

rv
al

(a) required β = 0.2

2000 4000 6000 8000 10000
0

0.05

0.1

0.15

0.2

|A|

O
be

se
rv

ed
 c

on
fid

en
ce

 in
te

rv
al

(b) required β = 0.1

2000 4000 6000 8000 10000
0

0.02

0.04

0.06

0.08

0.1

|A|

O
be

se
rv

ed
 c

on
fid

en
ce

 in
te

rv
al

(c) required β = 0.05

2000 4000 6000 8000 10000
0

0.005

0.01

0.015

0.02

|A|

O
be

se
rv

ed
 c

on
fid

en
ce

 in
te

rv
al

(d) required β = 0.01

Fig. 5. Observed confidence interval vs. |A| when |B| = 5000, and |C| = 500

500 1000 1500 2000
0

0.1

0.2

0.3

0.4

|C|

O
be

se
rv

ed
 c

on
fid

en
ce

 in
te

rv
al

(a) required β = 0.2

500 1000 1500 2000
0

0.05

0.1

0.15

0.2

|C|

O
be

se
rv

ed
 c

on
fid

en
ce

 in
te

rv
al

(b) required β = 0.1

500 1000 1500 2000
0

0.02

0.04

0.06

0.08

0.1

|C|

O
be

se
rv

ed
 c

on
fid

en
ce

 in
te

rv
al

(c) required β = 0.05

500 1000 1500 2000
0

0.005

0.01

0.015

0.02

|C|

O
be

se
rv

ed
 c

on
fid

en
ce

 in
te

rv
al

(d) required β = 0.01

Fig. 6. Observed confidence interval vs. |C| when |A| = 5000, and |B| = 5000

2000 4000 6000 8000 10000
5

10

15

20

25

|A|

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

RTSP
TH

(a) Execution time vs. |A|

2000 4000 6000 8000 10000
0

10

20

30

40

|B|

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

RTSP
TH

(b) Execution time vs. |B|

500 1000 1500 2000
5

10

15

20

25

30

|C|

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

RTSP
TH

(c) Execution time vs. |C|

0.05 0.1 0.15 0.2
0

5

10

15

20

25

β

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

RTSP
TH

(d) Execution time vs. β

Fig. 7. Comparison of execution times of RTSP and TH

VII. CONCLUSION

The key technical contribution of this paper is in proposing

a protocol to search tags in a population of RFID tags. This

paper represents the first effort on addressing this important

and practical problem for C1G2 compliant RFID systems.

The key technical depth of this paper is in the mathematical

development of the theory that RTSP is based on. The solid

theoretical underpinning ensures that RTSP always achieves

the required confidence interval. We have proposed a technique

to handle large frame sizes to ensure the compliance with the

C1G2 standard. We have also proposed a method to implicitly

estimate the number of tags in set C.We implemented RTSP

and conducted side-by-side comparisons with TH, the fastest

prior tag identification protocol. Our experimental results show

that RTSP always achieves the required confidence interval and

significantly outperforms TH in terms of search time.

REFERENCES

[1] M. Roberti, “A 5-cent breakthrough,” RFID Journal, vol. 5, no. 6, 2006.

[2] C. H. Lee and C.-W. Chung, “Efficient storage scheme and query

processing for supply chain management using RFID,” in Proc. ACM
Conf. on Management of data, pp. 291–302, 2008.

[3] L. M. Ni, Y. Liu, Y. C. Lau, and A. P. Patil, “Landmarc: Indoor location

sensing using active RFID,” Wireless networks, vol. 10, 2004.

[4] K. Finkenzeller, RFID Handbook: Fundamentals and Applications in
Contactless Smart Cards, Radio Frequency Identification and Near-Field
Communication. Wiley, 2010.

[5] M. Roberti, “Wal-mart relaunches EPC RFID effort, starting with men’s

jeans and basics,” RFID Journal, 2010.

[6] Swedberg, “Honeywell aerospace tags parts for airbus,” RFID Journal.

[7] E. Inc, Radio-Frequency Identity Protocols Class-1 Generation-2 Pro-
tocol for Communications at 860 MHz–960 MHz. EPCGlobal Inc.

[8] Y. Zheng and M. Li, “Fast tag searching protocol for large-scale RFID

systems,” IEEE/ACM Transactions on Networking (TON), vol. 21, no. 3,

pp. 924–934, 2013.

[9] M. Chen, W. Luo, Z. Mo, S. Chen, and Y. Fang, “An efficient tag search

protocol in large-scale RFID systems,” in Proc. IEEE INFOCOM, 2013.

[10] S. Zhang, X. He, H. Song, and D. Zhang, “Time efficient tag searching

in multiple reader RFID systems,” in Proc. Green Computing and
Communications (GreenCom), IEEE, 2013.

[11] M. Shahzad and A. X. Liu, “Probabilistic optimal tree hopping for RFID

identification,” in Proc. ACM SIGMETRICS, 2013.

[12] L. Pan and H. Wu, “Smart trend-traversal: A low delay and energy tag

arbitration protocol for large RFID systems,” in Proc. INFOCOM, 2009.

[13] V. Namboodiri and L. Gao, “Energy-aware tag anticollision protocols for

RFID systems,” in Proc. 5th IEEE Int. Conf. on Pervasive Computing
and Communications, pp. 23–36, 2007.

[14] C. Qian, Y. Liu, H. Ngan, and L. M. Ni, “ASAP: Scalable identification

and counting for contactless RFID systems,” in Proc. 30th IEEE Int.
Conf. on Distributed Computing Systems, pp. 52–61, 2010.

[15] S. Tang, J. Yuan, X.-Y. Li, G. Chen, Y. Liu, and J. Zhao, “Raspberry:

A stable reader activation scheduling protocol in multi-reader RFID

systems,” in Proc. IEEE ICNP, 2009.

[16] X. Liu, K. Li, H. Qi, B. Xiao, and X. Xie, “Fast counting the key tags

in anonymous RFID systems,” in Proc. IEEE ICNP, 2014.

[17] H. Vogt, “Efficient object identification with passive RFID tags,” Per-
vasive Computing, vol. 2414, pp. 98–113, 2002.

[18] M. Shahzad and A. X. Liu, “Every bit counts: fast and scalable RFID

estimation,” in Proc. ACM MobiCom, 2012.

[19] B. Zhen, M. Kobayashi, and M. Shimizu, “Framed ALOHA for multiple

RFID objects identification,” IEICE Transactions on Communications,

vol. 88, pp. 991–999, 2005.

[20] C. Bordenave, D. McDonald, and A. Proutiere, “Performance of ran-

dom medium access control, an asymptotic approach,” in Proc. ACM
SIGMETRICS, 2008.

[21] P. Semiconductors, http://www.advanide.com/datasheets/sl2ics11.pdf.

161ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Centralized Multi-Cell Resource and Power
Allocation for Multiuser OFDMA Networks

Mohamad Yassin‡∗, Samer Lahoud‡, Marc Ibrahim∗, Kinda Khawam§, Dany Mezher∗, Bernard Cousin‡
‡University of Rennes 1, IRISA, Campus de Beaulieu, 35042 Rennes, France

∗Saint Joseph University of Beirut, ESIB, Campus des Sciences et Technologies, Mar Roukoz, Lebanon
§University of Versailles, PRISM, 45 Avenue des Etats-Unis, 78035 Versailles, France

Abstract—Multiuser Orthogonal Frequency Division Multiple
Access (OFDMA) networks, such as Long Term Evolution net-
works, use the frequency reuse-1 model to face the tremendous
increase of mobile traffic demands, and to increase network
capacity. However, inter-cell interference problems are generated,
and they have a negative impact on cell-edge users performance.
Resource and power allocation should be managed in a manner
that alleviates the negative impact of inter-cell interference
on system performance. In this paper, we formulate a novel
centralized multi-cell resource and power allocation problem for
multiuser OFDMA networks. The objective is to maximize system
throughput while guaranteeing a proportional fair rate for all
the users. We decompose the joint problem into two independent
problems: a resource allocation problem and a power allocation
problem. We prove that each of these problems is a convex
optimization problem, and that their optimal solution is also an
optimal solution to the original joint problem. Lagrange duality
theory and subgradient projection method are used to solve the
centralized power allocation problem. We study the convergence
of our centralized approach, and we find out that it reduces inter-
cell interference, and increases system throughput and spectral
efficiency in comparison with the frequency reuse-1 model,
reuse-3 model, fractional frequency reuse, and soft frequency
reuse techniques.

Index Terms—Convex optimization, resource and power allo-
cation, inter-cell interference, ICIC, OFDMA.

I. INTRODUCTION

Multiuser Orthogonal Frequency Division Multiple Access
(OFDMA) networks, such as the Third Generation Partnership
Project (3GPP) Long Term Evolution (LTE) [1] and LTE-
Advanced (LTE-A) [2] networks, are able to avoid the negative
impact of multipath fading and intra-cell interference, by
virtue of the orthogonality between subcarrier frequencies.
Nevertheless, Inter-Cell Interference (ICI) problems arise in
dense frequency reuse networks due to simultaneous transmis-
sions on the same frequency resources. System performance
is interference-limited, since the achievable throughput is
reduced due to ICI.

Fractional Frequency Reuse (FFR) [3] and Soft Frequency
Reuse (SFR) [4] were introduced to avoid the harmful impact
of ICI on system performance, by applying static rules on
Resource Block (RB) usage and power allocation between cell
zones. Heuristic Inter-Cell Interference Coordination (ICIC)
techniques are proposed to achieve ICI mitigation without
severe degradation of the overall system throughput. In [5],
a heuristic power allocation algorithm is introduced to reduce

energy consumption and to improve cell-edge UEs through-
put. It has been proven that the proposed algorithm reduces
power consumption without reducing the achievable through-
put. Moreover, it mitigates ICI and increases the achievable
throughput for cell-edge UEs.

Beside heuristic resource and power allocation algorithms
[6], convex optimization is used to improve the performance
of multiuser OFDMA networks, and to alleviate the negative
impact of ICI on UE throughput. Resource and power alloca-
tion problems are usually formulated as nonlinear optimization
problems, where the objective consists in maximizing system
throughput, spectral efficiency, or energy efficiency, with con-
straints on the minimum throughput per UE or other Quality
of Service (QoS) parameters [7].

The majority of state-of-the-art contributions formulate the
resource and power allocation problem for a single cell
network [8–10]. Moreover, low-complexity suboptimal algo-
rithms are proposed to perform resource and power allocation
[10]. Therefore, the optimal solution is not always guaranteed.

In this paper, we formulate the joint resource and power
allocation problem for multiuser OFDMA networks, as a
centralized optimization problem. We demonstrate that the
original problem is separable into two independent optimiza-
tion problems: a resource allocation problem and a power
allocation problem. Our objective is to maximize system
throughput while guaranteeing proportional fair rate among
the UEs, under constraints related to resource usage, Signal-
to-Interference and Noise Ratio (SINR), and power allocation.
Our major contributions are summarized as follows:

• Propose an original formulation of the centralized joint
resource and power allocation problem: instead of con-
sidering a single cell OFDMA network, we formulate our
problem for a multi-cell OFDMA network. Moreover, ICI
problems are taken into account.

• Maximize the mean rate per UE, and ensure a propor-
tional fair rate for all the active UEs.

• Prove the convexity of our centralized problem by apply-
ing an adequate variable change.

• Decompose the joint resource and power allocation prob-
lem into two independent problems.

• Solve the centralized power allocation problem using La-
grange duality theory and subgradient projection method.

• Validate the convergence of our proposed approach and
evaluate its performance in comparison with the fre-

162ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

quency reuse-1 model, reuse-3 model, FFR, and SFR
techniques.

The remainder of this paper is organized as follows. In
section II, we describe the limitations of the existing state-
of-the-art approaches. In section III, system model is pre-
sented followed by our joint resource and power allocation
problem formulation. The joint problem is decomposed into
two independent problems in section IV: a resource allocation
problem and a power allocation problem. We also demonstrate
the convexity of the formulated problems. In section V, we
solve both resource and power allocation problems. Then we
investigate the convergence of the centralized approach in
section VI, where we also provide comparisons with state-
of-the-art ICIC approaches. Section VII concludes this paper
and summarizes our main contributions.

II. RELATED WORK

For a given multiuser OFDMA network, resource and power
allocation problem is formulated as a centralized optimiza-
tion problem. Centralized inter-cell coordination is therefore
required to find the optimal solution, where the necessary
information about SINR, power allocation, and resource usage
are sent to a centralized coordination entity.

In [11], the multi-cell optimization problem is decomposed
into two distributed optimization problems. The objective
of the first problem is to minimize the transmission power
allocated for cell-edge UEs, while guaranteeing a minimum
throughput for each UE. RB and power are allocated to cell-
edge UEs so that they satisfy their minimum required through-
put. The remaining RBs and the remaining transmission power
are uniformly allocated to cell-center UEs. At this stage, the
second problem finds the resource allocation strategy that
maximizes cell-center zone throughput. An improved version
of this adaptive ICIC technique is proposed in [12], where
resource allocation for cell-edge UEs is performed depending
on their individual channel conditions. However, the main
disadvantage of this adaptive ICIC technique and the proposed
improvement is that they do not consider the impact of ICI
between adjacent cells when power allocation is performed.

Resource and power allocation for a cluster of coordinated
OFDMA cells are studied in [13]. Energy efficiency is maxi-
mized under constraints related to the downlink transmission
power. However, noise-limited regime is considered, and ICI
is neglected. Moreover, energy-efficient resource allocation for
OFDMA systems is investigated in [14], where generalized
and individual energy efficiencies are defined for the downlink
and the uplink of the OFDMA system, respectively. Properties
of the energy efficiency objective function are studied, then a
low-complexity suboptimal algorithm is introduced to reduce
the computational burden of the optimal solution. Subcarrier
assignment is made easier using heuristic algorithms. Authors
of [15] consider the joint resource allocation, power allocation,
and Modulation and Coding Scheme (MCS) selection problem.
The joint optimization problem is separated into resource
allocation and power allocation problems, and suboptimal
algorithms are proposed. Another low complexity suboptimal

resource allocation algorithm is proposed in [16]. The objec-
tive consists in maximizing the achievable throughput, under
constraints related to resource usage in the different cells.
Cooperation between adjacent cells is needed.

The majority of state-of-the-art contributions that formulate
spectral efficiency or energy efficiency problems as centralized
optimization problems, neglect the impact of ICI on sys-
tem performance [8–10], or introduce suboptimal approaches
to solve resource and power allocation problems [17–19].
Moreover, performance comparisons are not made with other
distributed heuristic ICIC algorithms with a lower complexity.
In the next section, we formulate our multi-cell resource and
power allocation problem that takes inter-cell interference into
account.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider the downlink of a multiuser OFDMA system
that consists of I adjacent cells and K active UEs. Let I =
{1, 2, ..., I} denote the the set of cells, and K = {1, 2, ...,K}
the total set of active UEs. We also define K(i) as the number
of UEs served by cell i. Thus, we have

∑I
i=1 K(i) = K.

The set of available RBs in each cell is denoted by N =
{1, 2, ..., N}.

In OFDMA networks, system spectrum is divided into
several channels, where each channel consists of a number of
consecutive orthogonal OFDM subcarriers [20]. An RB is the
smallest scheduling unit. It consists of 12 consecutive subcar-
riers in the frequency domain, and seven OFDM symbols with
normal cyclic prefix in the time domain [21] (or six OFDM
symbols with extended cyclic prefix). Resources are allocated
to UEs each Transmit Time Interval (TTI), which is equal to
1 ms. When the frequency reuse-1 model is applied along with
homogeneous power allocation, each RB is allocated the same
downlink transmission power Pmax

N
, where Pmax denotes the

maximum downlink transmission power per cell. The signal
to interference and noise ratio for a UE k attached to cell i
and allocated RB n is given by:

σk,i,n =
πi,nGk,i,n

N0 +
∑

i′ ̸=i πi′,nGk,i′,n
, (1)

where πi,n is the downlink transmission power allocated by
cell i to RB n, Gk,i,n denotes channel gain for UE k attached
to cell i and allocated RB n, and N0 is the thermal noise
power. Indexes i and i′ refer to useful and interfering signals
respectively. Notations, symbols, parameters, and variables
used within this paper are reported in Table I.

B. Problem Formulation

1) Centralized Multi-Cell Optimization Problem: We de-
fine θk,n as the percentage of time during which UE k is
associated with RB n. θk,n and πi,n are the optimization
variables of the joint resource and power allocation problem.
Our objective is to manage resource and power allocation in
a manner that maximizes system throughput and guarantees

163ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE I: Sets, parameters and variables in the paper

i Index of cell
k Index of UE
n Index of RB
I Set of cells
K Total set of UEs
K(i) Set of UEs associated to cell i
N Set of RBs
ρk,i,n Rate of UE k associated with RB n on cell i
πi,n Transmit power of cell i on RB n
Gk,i,n Channel gain for UE k over RB n on cell i
N0 Thermal noise density
θk,n Percentage of time RB n is allocated to UE k
σk,i,n SINR for UE k over RB n on cell i
Pmax Maximum DL transmission power per cell
πmin Minimum DL transmission power per RB
I ′(i) Set of neighboring cells for cell i

throughput fairness between the different UEs. The peak rate
of UE k when associated with RB n on cell i is given by:

ρk,i,n = log

(
1 +

πi,nGk,i,n

N0 +
∑

i′ ̸=i πi′,nGk,i′,n

)
. (2)

Then, the mean rate of UE k is given by:
∑

n∈N

(θk,n.ρk,i,n) . (3)

Our centralized resource and power allocation problem seeks
rate maximization. We make use of the logarithmic function
that is intimately associated with the concept of proportional
fairness [22]. Our problem is formulated as follows:

maximize
θ,π

η =

∑

i∈I

∑

k∈K(i)

log

(
∑

n∈N

θk,n. log

(
1 +

πi,nGk,i,n

N0 +
∑

i′ ̸=i πi′,nGk,i′,n

))

(4a)

subject to
∑

k∈K(i)

θk,n ≤ 1, ∀n ∈ N , (4b)

∑

n∈N

θk,n ≤ 1, ∀k ∈ K(i), (4c)

∑

n∈N

πi,n ≤ Pmax, ∀i ∈ I, (4d)

πi,n ≥ πmin, ∀i ∈ I, ∀n ∈ N , (4e)
0 ≤ θk,n ≤ 1, ∀k ∈ K(i), ∀n ∈ N . (4f)

The objective function η ensures a proportional fair rate for all
UEs in the network. Constraints (4b) ensure that an RB is used
at most 100% of the time, and constraints (4c) ensure that a UE
shares its time on the available RBs. Constraints (4d) guarantee
that the total downlink transmission power allocated to the
available RBs does not exceed the maximum transmission
power Pmax for each cell i, and constraints (4e) represent the

minimum power constraint of the transmit power allocated to
each RB. θk,n, ∀k ∈ K, ∀n ∈ N , and πi,n, ∀i ∈ I, ∀n ∈ N
are the optimization variables of the joint resource and power
allocation problem.

2) Upper Bound of the Objective Functions Difference: In
order to reduce the complexity of the joint resource and power
allocation problem (4), we prove that this problem is separable
into two independent problems: a resource allocation problem
and a power allocation problem. Given Jensen’s inequality and
the concavity of the log function, we have:

log

(∑
n∈N θk,n.ρk,i,n

|N |

)
≥

∑
n∈N log (θk,n.ρk,i,n)

|N |

(5a)

⇒ log

(
∑

n∈N

θk,n.ρk,i,n

)
≥

∑
n∈N log (θk,n.ρk,i,n)

|N |

+ log (|N |) , (5b)

Since 1
|N | and |K|. log (|N |) are constant terms, maximizing

the objective function of problem (4) is achieved by maximiz-
ing the following term:

∑

i∈I

∑

k∈K(i)

∑

n∈N

(log (θk,n) + log (ρk,i,n)) . (6)

IV. PROBLEM DECOMPOSITION

We tackle ICIC as an optimization problem, where we
intend to maximize the mean rate of UEs in a multiuser
OFDMA system. We consider a system of I cells, having K(i)
UEs per cell i. According to (6), and due to the absence of
binding constraints, the optimization problem (4) is linearly
separable into two independent problems: a power allocation
problem and a resource allocation problem.

A. Centralized Multi-Cell Power Allocation Problem

In the first problem, the optimization variable π is consid-
ered, and the problem is formulated as follows:

maximize
π

η1 =

∑

i∈I

∑

k∈K(i)

∑

n∈N

log

(
log

(
1 +

πi,nGk,i,n

N0 +
∑

i′ ̸=i πi′,nGk,i′,n

))

(7a)

subject to
∑

n∈N

πi,n ≤ Pmax, ∀i ∈ I, (7b)

πi,n ≥ πmin, ∀i ∈ I, ∀n ∈ N . (7c)

Problem (7) consists in finding the optimal power allocation.
In the following, we introduce a variable change that allows
to formulate problem (7) as a convex optimization problem.

The power allocation problem (7) can be written as follows:

164ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

maximize
ρ

η1 =
∑

i∈I

∑

k∈K(i)

∑

n∈N

log (ρk,i,n) (8a)

subject to ρk,i,n ≤ log

(
1 +

πi,nGk,i,n

N0 +
∑

i′ ̸=i πi′,nGk,i′,n

)
,

∀i ∈ I, ∀k ∈ K(i), ∀n ∈ N , (8b)
∑

n∈N

πi,n ≤ Pmax, ∀i ∈ I, (8c)

πi,n ≥ πmin, ∀i ∈ I, ∀n ∈ N . (8d)

Let us consider the following variable change:

ρ̂k,i,n = log (exp (ρk,i,n)− 1) , ∀ i ∈ I, ∀ k ∈ K(i), ∀n ∈ N ,
(9a)

π̂i,n = log(πi,n), ∀ i ∈ I, ∀n ∈ N . (9b)

To show that the optimization problem (8) is a convex opti-
mization problem, we need to show that the objective function
is concave and the inequality constraint functions define a
convex set. After applying the variable change on UE peak rate
constraints (8b), these constraints can be written as follows:

log(exp (ρ̂k.i.n − π̂i,n)
N0

Gk,i,n
+

∑

i′ ̸=i

exp (ρ̂k.i.n + π̂i′,n − π̂i,n)
Gk,i′,n

Gk,i,n
) ≤ 0,

which are the logarithmic of the sum of exponential functions.
Therefore, they are convex functions [23]. When we apply
the variable change on power constraints (8c), we get the
following:

∑

n∈N

πi,n ≤ Pmax, ∀i ∈ I

⇒ log

(
∑

n∈N

exp (π̂i,n)

)
− log (Pmax) ≤ 0, ∀i ∈ I.

Since log(
∑

exp) is convex [23], the constraints at hand
are therefore convex. Using the variable change, the power
allocation problem (8) can be written as follows:

maximize
ρ̂

η1 =
∑

i∈I

∑

k∈K(i)

∑

n∈N

log (log (exp (ρ̂k,i,n) + 1))

(10a)

subject to log(exp (ρ̂k.i.n − π̂i,n)
N0

Gk,i,n
+

∑

i′ ̸=i

exp (ρ̂k.i.n + π̂i′,n − π̂i,n)
Gk,i′,n

Gk,i,n
) ≤ 0,

∀i ∈ I, ∀k ∈ K(i), ∀n ∈ N , (10b)

log

(
∑

n∈N

exp (π̂i,n)

)
− log (Pmax) ≤ 0, ∀i ∈ I,

(10c)
π̂i,n ≥ log (πmin) , ∀i ∈ I, ∀n ∈ N . (10d)

The objective function of problem (10) is concave in ρ̂,
and constraints (10b), (10c), and (10d) are convex functions.
Thus, the power allocation problem is a convex optimization
problem.

B. Centralized Resource Allocation Problem

The optimization variable θ is considered in the second
optimization problem that is given in the following:

maximize
θ

η2 =
∑

i∈I

∑

k∈K(i)

∑

n∈N

log (θk,n) (11a)

subject to
∑

k∈K(i)

θk,n ≤ 1, ∀n ∈ N , (11b)

∑

n∈N

θk,n ≤ 1, ∀k ∈ K(i), (11c)

0 ≤ θk,n ≤ 1, ∀k ∈ K(i), ∀n ∈ N . (11d)

As demonstrated for the power allocation problem (7),
we prove that problem (11) is indeed a convex optimization
problem in θ. The objective function (11a) of the resource
allocation problem (11) is concave in θ, since the log function
is concave for θ ∈]0; 1]. Moreover, constraints (11b), (11c),
and (11d) are linear and separable constraints. Hence, the
resource allocation problem (11) is a convex optimization
problem, and it is separable into I subproblems. For each
cell i, the ith optimization problem is written as follows:

maximize
θ

(η2)i =
∑

k∈K(i)

∑

n∈N

log (θk,n) (12a)

subject to
∑

k∈K(i)

θk,n ≤ 1, ∀n ∈ N , (12b)

∑

n∈N

θk,n ≤ 1, ∀k ∈ K(i), (12c)

0 ≤ θk,n ≤ 1, ∀k ∈ K(i), ∀n ∈ N . (12d)

V. CENTRALIZED MULTI-CELL RESOURCE AND POWER
ALLOCATION

As proven in the previous section, the joint resource and
power allocation problem (4) is separable into two independent
convex optimization problems: a power allocation problem,
and a resource allocation problem. In this section, we solve
the resource and power allocation problems using Lagrange
duality theory and subgradient projection method.

A. Solving the Centralized Power Allocation Problem

1) Lagrange-Based Method: Since the power allocation
problem (10) is a convex optimization problem, we can
make use of Lagrange duality properties, which also lead
to decomposability structures [24]. Lagrange duality theory
links the original problem, or primal problem, with a dual
maximization problem. The primal problem (10) is relaxed
by transferring the constraints to the objective in the form
of weighted sum. The Lagrangian is formed by relaxing the

165ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

coupling constraints (10b) and (10c) in problem (10):

L (ρ̂, π̂,λ,ν) =
∑

i∈I

∑

k∈K(i)

∑

n∈N

log (log (exp (ρ̂k,i,n) + 1))

−
∑

i∈I

∑

k∈K(i)

∑

n∈N

λk,i,n(log(exp(ρ̂k.i.n − π̂i,n)
N0

Gk,i,n

+
∑

i′∈N
i′ ̸=i

exp(ρ̂k.i.n + π̂i′,n − π̂i,n)
Gk,i′,n

Gk,i,n
))

−
∑

i∈I

νi

(
log

(
∑

n∈N

exp (π̂i,n)

)
− log (Pmax)

)
.

(13)
The optimization variables ρ̂ and π̂ are called the primal
variables. λk,i,n and νi are the Lagrange multipliers or prices

associated with the (k, i, n)th inequality constraint (10b) and
with the ith inequality constraint (10c), respectively. λ and ν
are also termed the dual variables.

After relaxing the coupling constraints, the optimization
problem separates into two levels of optimization: lower level
and higher level. At the lower level, L(ρ̂, π̂,λ,ν) is the
objective function to be maximized. ρ̂k,i,n and π̂i,n are the
optimization variables to be found, and the primal problem is
given by:

maximize
ρ̂,π̂

L (ρ̂, π̂,λ,ν) (14a)

subject to π̂i,n ≥ log(πmin), ∀i ∈ I, ∀n ∈ N . (14b)

In order to solve the primal optimization problem (14), we
use the subgradient projection method. It starts with some
initial feasible values of ρ̂k,i,n and π̂i,n that satisfy the con-
straints (14b). Then, the next iteration is generated by taking
a step along the subgradient direction of ρ̂k,i,n and π̂i,n. For
the primal optimization variables, iterations of the subgradient
projection are given by:

ρ̂k,i,n(t+ 1) = ρ̂k,i,n(t) + δ(t)×
∂L

∂ρ̂k,i,n
,

∀k ∈ K(i), ∀i ∈ I, ∀n ∈ N , (15a)

π̂i,n(t+ 1) = π̂i,n(t) + δ(t)×
∂L

∂π̂i,n
, ∀i ∈ I, ∀n ∈ N .

(15b)

The scalar δ(t) is a step size that guarantees the convergence of
the optimization problem (14). At the higher level, we have the
master dual problem in charge of updating the dual variables λ
and ν by solving the dual problem:

minimize
λ,ν

max
ρ̂,π̂

(L (ρ̂, π̂,λ,ν)) (16a)

subject to λ ≥ 0, (16b)
ν ≥ 0. (16c)

The dual function g (λ,ν) = max
ρ̂,π̂

(L (ρ̂, π̂,λ,ν)) is differen-

tiable. Thus, the master dual problem (16) can be solved using

the following gradient method:

λk,i,n(t+ 1) = λk,i,n(t) + δ(t)×
∂L

∂λk,i,n
,

∀k ∈ K(i), ∀i ∈ I, ∀n ∈ N , (17a)

νi(t+ 1) = νi(t) + δ(t)×
∂L

∂νi
, ∀i ∈ I, ∀n ∈ N , (17b)

where t is the iteration index, and δ(t) is the step size at
iteration t. Appropriate choice of the step size [25] leads to
convergence of the dual algorithm. π̂⋆

i,n and ρ̂⋆k,i,n denote
the solution to the primal optimization problem (14). When
t → ∞ the dual variables λ(t) and ν(t) converge to the
dual optimal λ∗ and ν∗, respectively. The difference between
the optimal primal objective and the optimal dual objective,
called duality gap, reduces to zero at optimality, since the
problem (10) is convex and the KKT conditions are satisfied.
We define ∆ρ̂,∆π̂,∆λ, and ∆ν as the differences between
the optimization variables obtained at the current iteration and
their values at the previous iteration. They are given by:

∆ρ̂(t+ 1) = ∥ρ̂(t+ 1)− ρ̂(t)∥, (18a)
∆π̂(t+ 1) = ∥π̂(t+ 1)− π̂(t)∥, (18b)
∆λ(t+ 1) = ∥λ(t+ 1)− λ(t)∥, (18c)
∆ν(t+ 1) = ∥ν(t+ 1)− ν(t)∥. (18d)

2) Iterative Power Allocation Algorithm: The procedure
for solving the centralized power allocation problem is de-
scribed in Algorithm 1. Initially, the primal optimization vari-
ables ρ̂k,i,n and π̂i,n as well as the dual variables λk,i,n and νi
start with some initial feasible values. t, tprimal, and tdual
denote the number of rounds required for the centralized power
allocation problem to converge, the number of iterations for
the primal problem, and the number of iterations for the dual
problem, respectively. At each round t, we start by updating
the primal optimization variables, using the PRIMALPROBLEM
function given in Algorithm 2. The solution to the primal
optimization problem at the current round t is denoted by
π̂⋆
i,n(t+1) and ρ̂⋆k,i,n(t+1). The PRIMALPROBLEM function

updates π̂i,n(tprimal + 1) and ρ̂k,i,n(tprimal + 1), and incre-
ments tprimal until ∆π̂(tprimal + 1) and ∆ρ̂(tprimal + 1)
become less than ϵ.

Then, the solution to the dual optimization problem at the
current round t, denoted by ν⋆i (t + 1) and λ⋆

k,i,n(t + 1)
is calculated using the DUALPROBLEM function given in
Algorithm 3. νi and λk,i,n are updated using the primal
solution π̂⋆

i,n(t + 1) and ρ̂⋆k,i,n(t + 1), until ∆ν(tdual + 1)
and ∆λ(tdual + 1) become less than ϵ. An additional round
of calculations is performed, and t is incremented as long as
∆π̂

⋆(t + 1) or ∆π̂
⋆(t + 1) or ∆ν⋆(t + 1) or ∆λ⋆(t + 1) is

greater than ϵ. Otherwise, the current solution is the optimal
solution to the centralized power allocation problem.

B. Solving the Resource Allocation Problem

In this subsection, we search for the optimal solution to
the resource allocation problem (12). For each cell i, the
problem (12) is a convex optimization problem.

166ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Algorithm 1 Dual algorithm for centralized power allocation

1: Parameters: L(ρ̂, π̂,λ,ν), Pmax, and πmin.
2: Initialization: set t = tprimal = tdual = 0, and πi,n ≥

πmin, ∀i ∈ I, ∀n ∈ N , such as
∑
n∈N

πi,n ≤ Pmax, ∀i ∈ I.

Calculate π̂i,n(0) and ρ̂k,i,n(0) accordingly.
3: Set λk,i,n(0) and νi(0) equal to some non negative value.
4: (π̂⋆(t+1), ρ̂⋆(t+1))← PRIMALPROBLEM(ν⋆(t),λ⋆(t))

5: (ν⋆(t + 1),λ⋆(t + 1)) ← DUALPROBLEM(π̂⋆(t +
1), ρ̂⋆(t+ 1))

6: if (∆π̂
⋆(t+1) > ϵ) or (∆ρ̂

⋆(t+1) > ϵ) or (∆ν⋆(t+1) >
ϵ) or (∆λ⋆(t+ 1) > ϵ) then

7: t← t+ 1
8: go to 4
9: end if

Algorithm 2 Primal problem function

1: function PRIMALPROBLEM(ν⋆(t),λ⋆(t))
2: for i = 1 to |I| do
3: for n = 1 to |N | do
4: π̂i,n(tprimal + 1) ←

max
(
log (πmin) ; π̂i,n (tprimal) + δ (t)× ∂L

∂π̂i,n

)

5: for k = 1 to |K(i)| do
6: ρ̂k,i,n(tprimal + 1) ← ρ̂k,i,n(tprimal) +

δ(t)× ∂L
∂ρ̂k,i,n

7: end for
8: end for
9: end for

10: if (∆π̂(tprimal + 1) > ϵ) or (∆ρ̂(tprimal + 1) > ϵ)
then

11: tprimal ← tprimal + 1
12: go to 2
13: end if
14: return π̂(tprimal + 1), ρ̂(tprimal + 1)
15: end function

Theorem 5.1: For each cell i, the optimal solution to
the resource allocation problem (12) is given by: θk,n =

1
max(|K(i)|,|N |) , ∀k ∈ K(i), ∀n ∈ N .

The proof of Theorem 5.1 is given in Appendix I. When
the number of active UEs is less than the number of available
resources, θk,n = 1

|N | , ∀k ∈ K(i), ∀n ∈ N . Thus, the
available resources are not fully used over time, and each UE
is permanently served. Otherwise, when |K(i)| > |N |, the
optimal solution is: θk,n = 1

|K(i)| , ∀k ∈ K(i), ∀n ∈ N . In
this case, each RB is fully used over time, while UEs are not
permanently served over time.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the convergence and the perfor-
mance of our proposed centralized joint resource and power
allocation problem.

A. Centralized Resource and Power Allocation

To verify the convergence of the centralized solution, we
consider a multi-user OFDMA network, such as LTE/LTE-A

Algorithm 3 Dual problem function

1: function DUALPROBLEM(π̂⋆(t+ 1), ρ̂⋆(t+ 1))
2: for i = 1 to |I| do
3: νi(tdual + 1)← max(0; νi(tdual) + δ(t)× ∂L

∂νi
)

4: for n = 1 to |N | do
5: for k = 1 to |K(i)| do
6: λk,i,n(tdual +1)← max(0;λk,i,n(tdual)+

δ(t)× ∂L
∂λk,i,n

)
7: end for
8: end for
9: end for

10: if (∆ν(tdual + 1) > ϵ) or (∆λ(tdual + 1) > ϵ) then
11: tdual ← tdual + 1
12: go to 2
13: end if
14: return ν(tdual + 1),λ(tdual + 1)
15: end function

networks, that consists of seven adjacent hexagonal cells, with
one UE served by each cell. UE positions and radio conditions
are randomly generated, and the initial power allocation for
each RB equals πmin. System bandwidth equals 5 MHz. Thus,
25 RBs are available in each cell. The maximum transmission
power per cell Pmax is set to 43 dBm or 20 W. At the first
iteration, the dual variables λk,i,n(0), ∀k ∈ K(i), ∀i ∈ I, ∀n ∈
N , and νi(0), ∀i ∈ I, are assigned initial positive values. The
evolution of π̂i,1 along with the number of iterations is shown
in Fig. 1, where π̂i,1 is the logarithm of the transmission power
allocated by the cell i to the RB 1. In addition, the number of
primal iterations and the number of dual iterations per round
are shown in Fig. 2.

0 1000 2000 3000 4000 5000 6000
−2.35

−2.3

−2.25

−2.2

−2.15

−2.1

Number of Iterations

π̂
i,
n

π̂1,1

π̂2,1

π̂3,1

π̂4,1

π̂5,1

π̂6,1

π̂7,1

1120 1140 1160 1180 1200 1220
−2.262

−2.26

−2.258

−2.256

−2.254

Fig. 1: Primal variables π̂i,n

We notice that for the centralized power allocation approach,
the primal problem requires approximately 6000 iterations to
converge. As shown in Fig. 2, 1100 rounds are required to
reach the optimal values of the primal and the dual variables.
The zoomed box within Fig. 1 shows π̂i,n versus the number
of primal iterations for a given round t. The values of π̂i,n are
calculated using the dual variables obtained at the round (t−

167ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0 200 400 600 800 1000 1200
0

20

40

60

80

100

120

Round Number

N
u
m
b
e
r
o
f
It
e
ra
ti
o
n
s

Primal problem
Dual problem

Fig. 2: Primal and dual iterations per round

1). We also notice that the number of primal iterations and the
number of dual iterations decreases with the number of rounds.
When t increases, the impact of Lagrange prices λk,i,n(t) and
νi(t) on the primal variables calculation is reduced, and the
number of primal iterations required for convergence becomes
lower. The same behavior is noticed for the number of dual
iterations when the number of rounds increases.

0 1000 2000 3000 4000 5000 6000 7000 8000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Iterations

λ
k
,i
,n

λ1,1,1

λ1,2,1

λ1,3,1

λ1,4,1

λ1,5,1

λ1,6,1

λ1,7,1

350 400 450

0.51

0.515

0.52

0.525

0.53

0.535

0.54

Fig. 3: Lagrange prices λk,i,n

For the same simulated scenario, we also show the dual
variables λk,i,n and νi versus the number of dual iterations in
Fig. 3 and Fig. 4, respectively. We notice that approximately
8000 iterations are required for the dual problem to converge.
At a given round t, the Lagrange prices λk,i,n and νi are
updated using the most recent values of the primal variables.
The zoomed boxes within Fig. 3 and Fig. 4 show the evolution
of λk,i,n and νi versus the number of iterations, respectively.
These values are updated until ∆λk,i,n and ∆νi become
less than ϵ. Convergence of the centralized power allocation
problem occurs when two conditions are satisfied: first, the
difference between the updated primal variables at round t
and their values at round (t − 1) is less than ϵ. Second, the

0 1000 2000 3000 4000 5000 6000 7000 8000
19.5

19.6

19.7

19.8

19.9

20

Number of Iterations

ν
i

ν1
ν2
ν3
ν4
ν5
ν6
ν7

2820 2830 2840 2850 2860 2870

19.7385

19.739

19.7395

19.74

19.7405

19.741

19.7415

19.742

Fig. 4: Lagrange prices νi

difference between the updated primal variables at round t and
their values at round (t− 1) is less than ϵ.

B. Comparison with State-of-the-Art Approaches

We also compare the performance of our proposed central-
ized resource and power allocation approach with that of state-
of-the-art resource and power allocation approaches such as
the frequency reuse-1 model, the frequency reuse-3 model,
FFR, and SFR techniques [26]. The frequency reuse-1 model
allows the usage of the same frequency spectrum simultane-
ously in all the network cells. Moreover, homogeneous power
allocation is performed.

In the frequency reuse-3 model, one third of the available
spectrum is used in each cell in a cluster of three adjacent
cells. Interference problems are eliminated, but the spectral
efficiency is reduced. FFR and SFR techniques divide each cell
into a cell-center and a cell-edge zones, and set restrictions
on resource usage and power allocation in each zone. For
all the compared techniques, resource allocation is performed
according to Theorem 5.1.

1) System Throughput: For several simulation runs, we
show the total system throughput for our proposed centralized
resource and power allocation approach, for the frequency
reuse-1 model, reuse-3 model, FFR, and SFR techniques under
the same simulation scenarios. Simulation results, including
the 95% confidence interval, are illustrated in Fig. 5.

It is shown that the centralized resource allocation approach
offers the highest system throughput among all the compared
techniques. In fact, it searches for the optimal resource and
power allocation while taking into account restrictions on
resource usage between the active UEs and on the downlink
transmission power allocation. The achievable throughput is
greater than that of the frequency reuse-3 model, FFR, and
SFR techniques. Although the restrictions made on resource
usage by these techniques mitigate ICI, the achievable through-
put is reduced since the available spectrum in each cell or in
each cell zone, is reduced.

168ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Reuse−1 Reuse−3 FFR SFR Cent.
0

1

2

3

4

5

6

7

S
y
s
t
e
m

T
h
r
o
u
g
h
p
u
t
[M

b
it
/
s
]

Fig. 5: System throughput

Reuse−1 Reuse−3 FFR SFR Cent.
0

0.2

0.4

0.6

0.8

1

1.2

1.4 x 10−6

S
p
e
c
t
r
a
l
E
ffi
c
ie
n
c
y
[M

b
it
/
s
/
H
z
]

Fig. 6: Spectral efficiency

2) Spectral Efficiency: We also investigate the impact of
the compared techniques on the spectral efficiency. Simulation
results are shown in Fig. 6. Our proposed centralized resource
allocation approach offers the highest spectral efficiency, since
the optimal resource and power allocation is guaranteed. In
fact, the static resource allocation between cell zones, and the
quantified transmission power levels do not allow to perform
flexible resource allocation in a manner that satisfies UE needs
in each cell.

VII. CONCLUSION

Resource and power allocation problem is a challenging
problem for present and future wireless networks. Several
state-of-the-art techniques consider the joint resource and
power allocation problem, and formulate it as nonlinear opti-
mization problems. However, the main disadvantage of these
techniques is that they do not consider the impact of inter-
cell interference. Indeed, each cell solves its own resource and
power allocation problem without taking into account resource
usage and power allocation in the neighboring cells.

In this paper, we formulated the multi-cell joint resource and
power allocation problem for multiuser OFDMA networks as
a centralized optimization problem, where the objective is to
maximize system throughput while guaranteeing throughput
fairness between UEs. The joint problem is then decomposed
into two independent problems: a resource allocation problem
and a power allocation problem. Contrarily to the majority
of the state-of-the-art approaches, inter-cell interference is not
neglected, and the impact of the simultaneous transmissions
in the neighboring cells is taken into account when managing
the resource and power allocation. Simulation results prove
the convergence of the optimization variables, and show the
positive impact of our proposed centralized resource and
power allocation approach on system performance.

APPENDIX I

Proof of Theorem 5.1

The objective function (12a), can be written as follows:

(η2)i = log

⎛

⎜⎜⎝
∏

k∈K(i)
n∈N

θk,n

⎞

⎟⎟⎠ . (19)

Since the logarithmic function is monotonically increasing, the
maximization of (η2)i is equivalent to the maximization of the
term

∏
k∈K(i)
n∈N

θk,n. We consider the following cases:

1) Let us assume that:
∑

k∈K(i)

θk,n<
∑

n∈N

θk,n, ∀ k ∈ K(i), ∀ n ∈ N . (20)

We suppose that θk,n, ∀ k ∈ K(i), ∀ n ∈ N is an opti-
mal solution to the resource allocation problem (12) i.e.,
this solution maximizes the objective function (12a). For
this solution, we assume that:

∃ k ∈ K(i) /
∑

n∈N

θk,n < 1. (21)

We define ϵ > 0 as follows:

ϵ = 1−
∑

n∈N

θk,n,

and we demonstrate that this solution is not an optimal
solution to problem (12) using the proof by contradic-
tion. In fact, we define a set of θ′k,n variables as follows:

θ′k,n =

{
θk,n,
θk,n + ϵ,

∀ n ∈ N , n ̸= n1, ∀ k ∈ K(i),
if n = n1, ∀ k ∈ K(i).

Therefore, we have:
∏

k∈K(i)
n∈N

θ′k,n =
∏

k∈K(i)
n∈N

θk,n + ϵ ·
∏

k∈K(i)
n∈N

θk,n>
∏

k∈K(i)
n∈N

θk,n,

and the assumption made in (21) is false, since it
does not maximize the objective function (12a). Con-

169ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

sequently, we have:
∑

n∈N

θk,n = 1, ∀ k ∈ K(i),

⇒
∑

k∈K(i)

∑

n∈N

θk,n = |K(i)|.

Since the sum of all the θk,n variables is constant, the
term

∏
k∈K(i)
n∈N

θk,n reaches its maximum when all the

variables θk,n are equal i.e.,

θk,n =
|K(i)|

|K(i)| · |N |
=

1

|N |
, ∀ k ∈ K(i), ∀ n ∈ N ,

which is an optimal solution to the resource allocation
problem (12).

2) Similarly, when:
∑

n∈N

θk,n<
∑

k∈K(i)

θk,n, ∀ k ∈ K(i), ∀ n ∈ N . (22)

In this case, the optimal solution is given by:

θk,n =
|N |

|K(i)| · |N |
=

1

|K(i)|
, ∀ k ∈ K(i), ∀ n ∈ N .

REFERENCES

[1] 3GPP, “Physical Layer Aspects for Evolved Universal Terrestrial Radio
Access (UTRA) (Release 7),” 3GPP TR 25.814 V7.1.0, Tech. Rep.,
2006.

[2] ——, “Evolved Universal Terrestrial Radio Access (E-UTRA): Physical
Layer Procedures,” 3GPP TS 36.213 V11.11.0, Technical Specification,
December 2013.

[3] N. Hassan and M. Assaad, “Optimal Fractional Frequency Reuse (FFR)
and Resource Allocation in Multiuser OFDMA System,” in Int. Conf.
Information and Communication Technologies, Karachi, August 2009,
pp. 88–92.

[4] Huawei, “Soft Frequency Reuse Scheme for UTRANLTE (R1-050507),”
3GPP RAN WG1 no. 41, Athens, Greece, Technical report, May 2005.

[5] M. Yassin, S. Lahoud, M. Ibrahim, and K. Khawam, “A Downlink
Power Control Heuristic Algorithm for LTE Networks,” in 21st Int.
Conf. Telecommunications, Lisbon, May 2014, pp. 323–327.

[6] M. Yassin, S. Lahoud, M. Ibrahim, K. Khawam, D. Mezher, and
B. Cousin, “Non-Cooperative Inter-Cell Interference Coordination Tech-
nique for Increasing Through Fairness in LTE Networks,” in IEEE 81st

Vehicular Technology Conf., Glasgow, May 2015.
[7] M. Chiang, C. W. Tan, D. Palomar, D. O’Neill, and D. Julian, “Power

Control By Geometric Programming,” IEEE Trans. Wireless Commun.,
vol. 6, no. 7, pp. 2640–2651, July 2007.

[8] J. Tang, D. So, E. Alsusa, and K. Hamdi, “Resource Efficiency: A New
Paradigm on Energy Efficiency and Spectral Efficiency Tradeoff,” IEEE
Trans. Wireless Commun., vol. 13, no. 8, pp. 4656–4669, Aug 2014.

[9] R. Loodaricheh, S. Mallick, and V. Bhargava, “Energy-Efficient Re-
source Allocation for OFDMA Cellular Networks with User Cooperation
and QoS Provisioning,” IEEE Trans. Wireless Commun., vol. 13, no. 11,
pp. 6132–6146, Nov. 2014.

[10] C. Xiong, G. Li, S. Zhang, Y. Chen, and S. Xu, “Energy and Spectral-
Efficiency Tradeoff in Downlink OFDMA Networks,” IEEE Trans.
Wireless Commun., vol. 10, no. 11, pp. 3874–3886, November 2011.

[11] T. Quek, Z. Lei, and S. Sun, “Adaptive Interference Coordination in
Multi-Cell OFDMA Systems,” in IEEE 20th Int. Symp. Personal, Indoor
and Mobile Radio Commun., September 2009, pp. 2380–2384.

[12] Y. Umeda and K. Higuchi, “Efficient Adaptive Frequency Partitioning
in OFDMA Downlink with Fractional Frequency Reuse,” in Int. Symp.
Intelligent Signal Processing and Commun. Systems, December 2011,
pp. 1–5.

[13] L. Venturino, A. Zappone, C. Risi, and S. Buzzi, “Energy-Efficient
Scheduling and Power Allocation in Downlink OFDMA Networks with

Base Station Coordination,” IEEE Trans. Wireless Commun., vol. 14,
no. 1, pp. 1–14, January 2015.

[14] C. Xiong, G. Li, S. Zhang, Y. Chen, and S. Xu, “Energy-Efficient
Resource Allocation in OFDMA Networks,” IEEE Trans. Commun.,
vol. 60, no. 12, pp. 3767–3778, December 2012.

[15] J. Yu, G. Li, C. Yin, S. Tang, and X. Zhu, “Multi-Cell Coordinated
Scheduling and Power Allocation in Downlink LTE-A Systems,” in
IEEE 80th Vehicular Technology Conf., Vancouver, September 2014,
pp. 1–5.

[16] M. Aboul Hassan, E. Sourour, and S. Shaaban, “Novel Resource
Allocation Algorithm for Improving Reuse One Scheme Performance
in LTE Networks,” in 21st Int. Conf. Telecommunications, Lisbon, May
2014, pp. 166–170.

[17] D. T. Ngo, S. Khakurel, and T. LeNgoc, “Joint Subchannel Assignment
and Power Allocation for OFDMA Femtocell Networks,” IEEE Trans.
Wireless Commun., vol. 13, no. 1, pp. 342–355, Jan. 2014.

[18] J. Zheng, Y. Cai, Y. Liu, Y. Xu, B. Duan, and X. Shen, “Optimal Power
Allocation and User Scheduling in Multicell Networks: Base Station
Cooperation Using a Game-Theoretic Approach,” IEEE Trans. Wireless
Commun., vol. 13, no. 12, pp. 6928–6942, Dec. 2014.

[19] S. Sadr and R. Adve, “Partially-Distributed Resource Allocation in
Small-Cell Networks,” IEEE Trans. Wireless Commun., vol. 13, no. 12,
pp. 6851–6862, Dec. 2014.

[20] J. S. Wang, J. H. Lee, J. C. Park, I. Song, and Y. H. Kim, “Combining
of Cyclically Delayed Signals: A Low-Complexity Scheme for PAPR
Reduction in OFDM Systems,” IEEE Trans. Broadcasting, vol. 56, no. 4,
pp. 577–583, December 2010.

[21] E. Dahlman, S. Parkvall, and J. Skold, 4G LTE and LTE-Advanced for
Mobile Broadband, 1st ed., Elsevier, Ed. Oxford: Elsevier, 2011.

[22] F. Kelly, “Charging and Rate Control for Elastic Traffic,” European
Trans. Telecommunications, vol. 8, no. 1, pp. 33–37, 1997.

[23] S. Boyd and L. Vandenberghe, Convex Optimization, 7th ed., Cambridge
University Press, Ed. Cambridge: UK: Cambridge University Press,
2009, vol. 7.

[24] D. Palomar and M. Chiang, “A Tutorial on Decomposition Methods for
Network Utility Maximization,” IEEE J. Selected Areas in Commun.,
vol. 24, no. 8, pp. 1439–1451, August 2006.

[25] M. Chiang, “Geometric Programming for Communication Systems,”
Foundations and Trends of Commun. and Information Theory, vol. 2,
no. 1-2, pp. 1 – 156, August 2005.

[26] M. Yassin, M. AboulHassan, S. Lahoud, M. Ibrahim, D. Mezher,
B. Cousin, and E. Sourour, “Survey of ICIC Techniques in LTE
Networks under Various Mobile Environment Parameters,” Accepted for
publication in Springer Wireless Networks, 2015.

170ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Content-Centric Networking
Using Anonymous Datagrams

J.J. Garcia-Luna-Aceves1,2 and Maziar Mirzazad Barijough2
1Palo Alto Research Center, Palo Alto, CA 94304

2Department of Computer Engineering, University of California, Santa Cruz, CA 95064
Email: jj@soe.ucsc.edu, maziar@soe.ucsc.edu

Abstract—Using Interests (requests that elicit content) and
maintaining per-Interest forwarding state in Pending Interest
Tables (PIT) are integral to the design of the Named Data
Networking (NDN) and Content-Centric Networking (CCNx)
architectures. However, using PITs makes the network vulnerable
to Interest-flooding attacks, and PITs can become very large. It
is shown that in-network caching eliminates the need for Interest
aggregation and obviates the use of PITs. A new approach
to content-centric networking (CCN-GRAM) is introduced that
provides all the benefits of NDN and CCNx, eliminates the use
of PITs by means of anonymous datagrams, and is immune
to Interest-flooding attacks. Routers maintain routes to the
anonymous origins of Interests using an on-demand routing
approach in the data plane that can also be used to provide
native support for multicasting in the dat a plane. Simulation
experiments show that the number of forwarding entries required
in CCN-GRAM is orders of magnitude smaller than the number
of PIT entries.

I. INTRODUCTION

The leading approach in content-centric networking consists
of: populating forwarding information bases (FIB) maintained
by routers with routes to name prefixes denoting content,
sending content requests (called Interests) for specific content
objects (CO) over paths implied by the FIBs, and delivering
data packets with content objects along the reverse paths
traversed by Interests.

The main advantages that such Interest-based content-
centric networking approach offers compared to the IP Internet
are that: (a) content providers and caching sites do not know
the identity of the consumers requesting content; (b) content
can be obtained by name from those sites that are closer to
consumers; (c) data packets carrying content cannot traverse
loops, because they are sent over the reverse paths traversed
by Interests; and (d) content-oriented security mechanisms can
be implemented as part of the content delivery mechanisms.

Named data networking (NDN) [18] and CCNx [5] are
the two prominent Interest-based content-centric networking
approaches. Routers in NDN and CCNx maintain a “stateful
forwarding plane” [27] (i.e., per-Interest forwarding state) by
means of Pending Interest Tables (PIT). The PIT of a router
maintains information regarding the incoming interfaces from
which Interests for a CO were received and the interfaces
where the Interest for the same CO was forwarded.

Since the inception of CCNx and NDN, PITs have been
viewed as necessary in order to maintain routes to the origins
of Interests while preserving the anonymity of those sources,
aggregate Interests requesting the same content in order to
attain efficient Interest and content forwarding, and support
multicasting without additional support in the control plane.

However, using PITs at Internet scale comes at a big price.
PITs grow very large [8], [21], [22] as the number of Interests
from users increases, which results from PITs having to store
per-Interest forwarding state. Furthermore, PITs make routers
vulnerable to Interest-flooding attacks [16], [23], [25], [26] in
which adversaries send malicious Interests aimed at making
the size of PITs explode. Known countermeasures to these
attacks [2] attempt to reduce the rates at which suspected
routers can forward Interests. However, these solutions cannot
prevent all flooding attacks and can actually be used to mount
other types of denial-of-service attacks.

Section II analyzes the effectiveness of Interest aggregation
in NDN by means of simulations based on the implementation
of NDN in ndnSIM [1] without modifications. The results
show that the percentage of Interests that are aggregated is
negligible when in-network caching is enabled, even when
Interests exhibit temporal or spatial correlation.

Given that in-network caching obviates the need for Interest
aggregation, and given the vulnerability of NDN and CCNx
to Interest-flooding attacks, it is clear that a new Interest
forwarding approach is needed for content-centric networking.

We present CCN-GRAM (Gathering of Routes for Anony-
mous Messengers), which provides all the benefits of content-
centric networking, including native support for multicasting in
the data plane, and eliminates the need to maintain per-Interest
forwarding state by forwarding Interests and responses to them
using anonymous datagrams.

Section III describes the operation of CCN-GRAM. Like
NDN and CCNx, CCN-GRAM uses Interests, data packets,
and replies to Interests. Similar to IP datagrams, the messages
sent in CCN-GRAM specify a source and a destination. For an
Interest, the source of an Interest is an anonymous identifier
with local context and the destination is the name of a content
object. For data packets and replies to Interests, the source
is the name of a content object and the destination is an
anonymous identifier. A novel on-demand routing approach
is used to maintain routes to the anonymous routers thatISBN 978-3-901882-83-8 c� 2016 IFIP

171ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

originate Interests for specific content on behalf of local
content consumers. Only the local router serving a user knows
the identity of the user; no other router, content provider, or
caching site can determine the consumer that originated an
Interest, without routers collaborating along the path traversed
by the Interests to establish the provenance of the Interest.

In contrast to NDN and CCNx in which Interests may
traverse forwarding loops [11], [12], [14], forwarding loops
cannot occur in CCN-GRAM for either Interests or responses
sent to Interests, even if the FIBs maintained by routers contain
inconsistent forwarding state involving routing-table loops.
Furthermore, the anonymous datagram forwarding of CCN-
GRAM is much simpler than the label-swapping approach we
have advocated before [13], [15].

Forwarding of Interests and responses to them in CCN-
GRAM uses four tables: a LIGHT (Local Interests GatHered
Table), a FIB, an ART (Anonymous Routing Table) and a
LIST (Local Interval Set Table). The LIGHT of a router is
an index listing content that is locally available and content
that is remote and has been requested by local users. The
FIB of each router states the next hops to each name prefix
and the distance to the name prefix reported by each next
hop. The ART is maintained using Interests and states the
paths to destinations denoted with local identifiers from which
routers cannot discern the origin of Interests. The LIST states
the intervals of local identifiers that a router assigns to its
neighbors and that each neighbor assigns to the router.

Section IV compares the performance of CCN-GRAM with
NDN when routes to name prefixes are static and loop-free,
which is the best case for NDN. The network consists of 150
routers, with 10 being connected to content producers and 50
being connected to consumers. CCN-GRAM attains similar
end-to-end latencies than NDN in retrieving content. However,
depending on the rate at which Interests are submitted, CCN-
GRAM requires an average number of forwarding entries per
router that is 5 to more than150 times smaller than the number
of PIT entries needed in NDN.

II. INTEREST AGGREGATION IN NDN
A. Elements of NDN Operation

Routers in NDN use Interests, data packets, and negative
acknowledgments (NACK) to exchange content. An Interest
is identified in NDN by the name of the CO requested and
a nonce created by the origin of the Interest. A data packet
includes the CO name, a security payload, and the payload
itself. A NACK carries the information needed to denote an
Interest and a code stating the reason for the response.

A router r uses three data structures to process Interests,
data packets, and NACKs: A content store (CS), a forwarding
information base (FIB), and a pending Interest table (PIT).
A CS is a cache for COs indexed by their names. With on-path
caching, routers cache the content they receive in response to
Interests they forward.

A FIB is populated using content routing protocols [10],
[17] or static routes and a router matches Interest names stating
a specific CO to FIB entries corresponding to prefix names

using longest prefix match. The FIB entry for a given name
prefix lists the interfaces that can be used to reach the prefix.
In NDN, a FIB entry also contains additional information [18].

The entry in a PIT for a given CO consists of one or
multiple tuples stating a nonce received in an Interest for the
CO, the incoming interface where it was received, and a list of
the outgoing interfaces over which the Interest was forwarded.

When a router receives an Interest, it checks whether there
is a match in its CS for the CO requested in the Interest.
The Interest matching mechanisms used can vary, and for
simplicity we focus on exact Interest matching only. If a match
to the Interest is found, the router sends back a data packet
over the reverse path traversed by the Interest. If no match is
found in the CS, the router determines whether the PIT stores
an entry for the same content.

In NDN, if the Interest states a nonce that differs from
those stored in the PIT entry for the requested content, then
the router “aggregates” the Interest by adding the incoming
interface from which the Interest was received and the nonce
to the PIT entry without forwarding the Interest. If the same
nonce in the Interest is already listed in the PIT entry for the
requested CO, the router sends a NACK over the reverse path
traversed by the Interest. If a router does not find a match in
its CS and PIT, the router forwards the Interest along a route
(or routes) listed in its FIB for the best prefix match. In NDN,
a router can select an interface to forward an Interest if it is
known that it can bring content and its performance is ranked
higher than other interfaces that can also bring content.

B. Likelihood of Interest Aggregation in NDN

We analyze the likelihood that interest aggregation occurs
in the presence of in-network caching in NDN using simu-
lations carried out with the NDN implementation in ndnSIM
[1]without modifications. A more detailed analysis is presented
in [7]. Our study is independent of the Interest retransmission
strategy, and uses the percentage of aggregated Interests in the
network as the performance metric. For simplicity, we assume
that routers use exact Interest matching to decide whether an
Interest can be answered.

1) Scenario Parameters: We consider the average latencies
between routers, the capacity of caches, the Interest request
rates from routers, the popularity of content, and the temporal
correlation of content requests. The scenarios we use consist
of random networks with 200 nodes corresponding to routers
distributed uniformly in a 100m⇥100m area. Routers with
12m or shorter distance are connected to each other with a
point-to-point link, which results in a topology with 1786
edges. Each router acts as a producer of content and also has
local consumers generating Interests.

Producers are assumed to publish 1,000,000 different con-
tent objects that are uniformly distributed among routers. For
simplicity, we assume that all routers have the same storage
capacity in their caches, which depending on the experiment
ranges from 0 to up to 100,000 cache entries per router, or
10% of the published objects.

172ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

The distribution of object requests determines how many
Interests from different users request the same content. It has
been argued [9] that Internet traffic follows a Zipf distribution
with a parameter (↵) value close to 1. A smaller Zipf parameter
value results in a lower Interest aggregation amount. Accord-
ingly, we model object popularity using a Zipf distribution
with values of ↵ equal to 0.7 and 1.

We considered different values of the total Interest rate per
router, corresponding to the sum of Interests from all local
users. Increasing values of Interest rates can be viewed as
higher request rates from a constant user population of local
active users per router, or an increasing population of active
users per router. For example, 50 to 500 Interests per second
per router can be just 10 Interests per second per active user
for a local population of 5 to 50 concurrently active users per
router. The Interest rates we assume per router are not large
compared to recent results on the size that PITs would have
in realistic settings [8], [22], [23], [21].

The percentage of Interests that benefit from Interest aggre-
gation is a function of the RTT between the router originating
the Interest and the site with the requested content, as well as
the PIT entry expiration time when the Interest is not answered
with a data packet or a NACK. Recent Internet latency
statistics [3] show that Internet traffic latency varies from
11ms for regional European traffic to 160ms for long-distance
traffic. Accordingly, we consider point-to-point delays of 10ms
between neighbor routers in many of our simulations, which
leads to RTTs of about 200ms. We also carried experiments
varying the RTT of the network below and above 200ms.

2) Simulation Results: The following simulation results can
be viewed as applicable to the steady-state behavior of a
network using NDN.

Figure 1 shows the effect of the ↵ parameter and RTTs
when the request rate per router is 50 Interests per second.
The latencies between neighbor routers are set to 5 and 15
ms, which produce RTTs of 66 to 70 ms and 193 to 200
ms, respectively. It is clear that Interest aggregation is far less
important when consumers are less likely to request similar
content (↵ = 0.7). Furthermore, the benefits of Interest ag-
gregation vanish as caches are allowed to cache more content.
When caches can store up to 1% of the total number of objects
published, the percentage of Interests that are aggregated is
less than 2% for ↵ = 1 and less than 0.8% for ↵ = 0.7.

In theory, Interest aggregation is most useful when Interests
exhibit temporal correlation, such as when popular live events
take place. Figure 2 shows the impact of caching on Interest
aggregation when Interests have temporal correlation and
either no caching is used or caches with capacity for only 0.1%
of the objects published in the network are used. Interests are
generated using the model proposed by Dabirmoghaddam et al
[6] with a Zipf parameter value of ↵ = 0.7 and results for three
total Interest rates per router and four temporal localization
factors for Interests are shown. A higher temporal locality
factor indicates a higher degree of popularity of objects in
the same time period. The results in Figure 2 show that,
without caching, Interest aggregation is very important for all

values of temporal locality of Interest popularity, and is more
important when Interest locality is high (large localization
factor). However, once caching is allowed and even if caches
can store only up to 0.1% of the published objects, the
percentage of aggregated Interests is minuscule and actually
decreases with the temporal correlation of Interests.

Fig. 1. Interest aggregation as a function of values of Zipf parameter, caching
capacity, and RTTs

Fig. 2. Percentage of Interest aggregation under temporal locality

III. CCN-GRAM
We assume that Interests are retransmitted only by the

consumers that originated them. We assume that routers use
exact Interest matching, and that a router that advertises being
an origin of a name prefix stores all the content objects
associated with that prefix at a local content store. Routers
know which interfaces are neighbor routers and which are
local users, and forward Interests on a best-effort basis. For
convenience, it is assumed that a request for content from a
local user is sent to its local router in the form of an Interest.
A. Information Exchanged and Stored

The name of content object (CO) j is denoted by n(j) and
the name prefix that is the best match for name n(j) is denoted
by n(j)⇤. The set of neighbors of router i is denoted by N i.

An Interest forwarded by router k requesting CO n(j) is
denoted by I[n(j), AIDI(k), DI(k)], and states the name of
the requested CO (n(j)), an anonymous identifier (AIDI(k))
used to denote the origin of the Interest, and the distance from
k to the requested content.

A data packet sent by router i in response to an Interest is
denoted by DP [n(j), AIDR(i), sp(j)], and states the name of

173ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

the CO being sent (n(j)), an anonymous identifier (AIDR(i))
that states the intended recipient of the data packet, and a
security payload (sp(j)) used optionally to validate the CO.

A reply sent by router i in response to an Interest is denoted
by REP [n(j), AIDR(i), CODE] and states the name of a
CO (n(j)), an anonymous identifier (AIDR(i)) that states the
intended recipient of the reply, and a code (CODE) indicating
the reason why the reply is sent. Possible reasons for sending
a reply include: an Interest loop is detected, no route is found
towards requested content, and no content is found.

Router i maintains four tables for forwarding: an optional
Local Interests Gathered Table (LIGHT i), a forwarding in-
formation base (FIBi), an anonymous routing table (ART i),
and a Local Interval Set Table (LIST i).

LIGHT i lists the names of the COs requested by router i
or already stored at router i. It is indexed by the CO names that
have been requested by the router on behalf of local customers.
The entry for CO name n(j) states the name of the CO (n(j)),
a pointer to the content of the CO (p[n(j)]), and a list of
zero or more identifiers of local consumers (lc[n(j)]) that have
requested the CO while the content is remote.

FIBi is indexed using known content name prefixes. The
entry for prefix n(j)⇤ states the distance reported by each
next-hop neighbor router for the prefix. The distance stored
for neighbor q for prefix n(j)⇤ in FIBi is denoted by
D(i, n(j)⇤, q). Each entry in FIBi is stored for a maximum
time determined by the lifetime of the corresponding entry in
the routing table of the router.

LIST i maintains the intervals of anonymous identifiers
used by router i. It states the local interval of identifiers
accepted by router i (denoted by LIi(i)), and the local interval
of identifiers accepted by each neighbor router k (denoted by
LIi(k)) . Clearly, LIi(k) = LIk(k). All local intervals have
the same length |LI|.

ART i is indexed using the anonymous identifiers taken
from LIi(i). Each entry states an anonymous identifier of
a destination (AID(ART i)), a next hop to the destination,
(s(ART i)), and an identifier mapping used to handle identi-
fier collisions (map(ART i)). ART i[AID, s,map] is used to
denote a given entry in ART i.

Routers can exchange local intervals with their neighbors in
a number of ways. The exchange can be done in the data plane
using Interests and data packets. An example would be having
a router send an Interest stating a common name denoting
that a local interval is requested, and an empty AID. Given
the succinct way in which local intervals can be stated (an
identifier denotes its interval), the exchange can also be easily
done as part of the routing protocol running in the control
plane. Routers could exchange interval identifiers in HELLO
messages, link-state advertisements or distance updates. To
simplify our description of CCN-GRAM, we assume that
routers have exchanged their local intervals with one another
and have populated their LISTs accordingly. We also assume
that local intervals do not change for extended periods of time
after they are assigned.

B. Eliminating Forwarding Loops
Let Si

n(j)⇤ denote the set of next-hop neighbors of router i
for prefix n(j)⇤. The following rule is used to ensure that
Interests cannot traverse routing loops, even if the routing
data stored in FIBs regarding name prefixes is inconsistent
and leads to routing-table loops.
Loop-Free Forwarding Rule (LFR):
Router i accepts I[n(j), AIDI(k), DI(k)] from router k if:

9 v 2 Si
n(j)⇤(D

I(k) > D(i, n(j)⇤, v)) (1)

LFR is based on the same invariants we have proposed pre-
viously to eliminate Interest looping in NDN and CCNx [11],
[14] and avoid forwarding loops in more efficient forwarding
planes for content-centric networks [13]. As we explain in
[11], [13], [14], the approach is a simple application of
diffusing computations that ensures loop-free forwarding of
Interests with or without aggregation.

C. Forwarding to Anonymous Destinations
The header of a datagram needs to denote its origin and

destination, so that the datagram can be forwarded to the
intended destination and responses to the datagram can be
forwarded back to the source. Since the introduction of data-
gram packet switching by Baran [4], the identifiers used to
denote the sources and destinations of datagrams have had
global scope, and routers maintain FIBs with entries towards
those sources. However, this need not be the case!

It is trivial to add information in Interests about the paths
they traverse (e.g., see [20]) to allow responses to be sent back
without the need for FIBs maintaining routes to the sources
of Interests. However, this would negate the anonymity of
Interests advocated in NDN and CCNx.

CCN-GRAM uses local identifiers to denote the sources of
Interests in a way that responses to Interests (data packets
or replies) can be forwarded correctly to the sources of
Interests, without their identity being revealed to relaying
routers, caching sites, or content producers.

Given that all local intervals have the same length |LI|,
the local interval LIi(i) is uniquely defined by the smallest
identifier of the interval, which we denote by LIi(i)[s].

If router p sends Interest I[n(j), AIDI(p), DI(p)] to router
i, AIDI(p) must be in LIp(i) = LIi(i). Similarly, if
router i forwards Interest I[n(j), AIDI(i), DI(i)] to router
n, AIDI(i) must be in LIi(n) = LIn(n). Hence, to forward
an Interest from p to n, router i must map the AID received
in the Interest from p to an AID that belongs to the local
interval accepted by its neighbor n. Router i can accomplish
this mapping with the following bijection, where ✏ is a constant
known only to router i:
AID

I(i) = ✏+AID

I(p)� LI

i(i)[s] + LI

i(n)[s] mod |LI| (2)

We denote the mapping of identifiers from LIi(i) to LIi(n)
by fi(n) : LIi(i) ! LIi(n). The image of identifier
a 2 LIi(i) under fi(n) is denoted by fi(n)[a] and fi(n)[a] 2
LIi(n). The reverse mapping from LIi(n) to LIi(i) is de-
noted by f�1

i (n) and of course f�1
i (n)[fi(n)[a]] = a.

174ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Algorithms 1 to 4 specify the steps taken by routers to pro-
cess and forward Interests, and return data packets or replies.
We assume that each router is initialized properly, knows
the identifiers used to denote local consumers, knows all its
neighbors, and knows the local identifier intervals associated
with each neighbor. We assume that a routing protocol (e.g.,
DCR [10], NLSR [17]) operating in the control plane updates
the entries of routing tables listing one or multiple next hops
towards name prefixes. Routers populate their FIBs with routes
to name prefixes based on the data stored in their routing
tables. How long FIB entries are maintained is determined by
the operation of the routing protocol.

We assume that router i uses a single anonymous identifier
in LIi(i) to denote itself in its ART i, and denote it by AIDi.

Algorithm 1 Processing Interest from user c at router i
function Interest Source
INPUT: LIGHT i, LIST i, FIBi, ART i, AIDi, I[n(j), c, nil];
if n(j) 2 LIGHT i then

if p[n(j)] 6= nil (% CO is local) then
retrieve CO n(j); send DP [n(j), c, sp(j)] to consumer c

else
p[n(j)] = nil; lc[n(j)] = lc[n(j)] [c (% Interest is aggregated)

end if
else

if n(j)⇤ 2 LIGHT i (%All content in n(j)⇤ is local and n(j) is not) then
send REP [n(j), c, no content] (% n(j) does not exist)

else
if n(j)⇤ 62 FIBi then

send REP [n(j), no route, c] to c (% No route to n(j)⇤ exists)
else

create entry for n(j) in LIGHT i: (% Interest from c is recorded)
lc[n(j)] = lc[n(j)] [c; p[n(j)] = nil;
if AIDi = nil then

select identifier a 2 LIi(i) that is not used in any entry in ART i;
AIDi = a; create entry ART i[AIDi, i, AIDi]

end if
for each v 2 Ni by rank in FIBi do

AIDI(i) = fi(v)[AIDi]; DI(i) = D(i, n(j)⇤, v);
send I[n(j), AIDI(i), DI(i)] to v; return

end for
end if

end if
end if

Algorithm 1 shows the steps taken by router i to process
Interests received from local consumers. For convenience,
content requests from local consumers are assumed to be
Interests stating the name of a CO, the name of the consumer,
and an empty distance to the content assumed to denote
infinite. Similarly the same format of data packets and replies
used among routers is used to denote the responses a router
sends to local consumers.

After receiving an Interest from a local consumer, router i
first searches its LIGHT to determine if the content is stored
locally or a request for the same content is pending. If the
content is stored locally, a data packet is sent back to the user
requesting the CO. If a request for the same content is pending,
the name of the user is simply added to the list of users that
have requested the CO.

In our description of CCN-GRAM, a router that advertises
being an origin of a prefix must have all the COs associated
with the prefix stored locally. If router i states that it is an
origin of the name prefix n(j)⇤ and a specific CO with a
name that is in that prefix is not found locally, a reply must
be sent back to the consumer stating that the content does not

exist. Additional steps could be taken to address the case of
Interests sent maliciously for content that does not exist.

If the CO is remote and no FIB entry exists for a name prefix
that can match n(j), a reply is sent back stating that no route
to the CO could be found. Otherwise, router i forwards the
Interest through the highest ranked neighbor v in its FIB for
the name prefix matching n(j), which is denoted by n(j)⇤.
How such a ranking is done is left unspecified, and can be
based on a distributed or local algorithm [10], [17], [19].

When router i originates an Interest on behalf of a local
consumer and forwards Interest I[n(j), AIDI(i), DI(i)] to
neighbor router n towards name prefix n(j)⇤, router i selects
an identifier a 2 LIi(i) that is not used to denote any other
source of Interests in ART i, sets AIDI(i) = fi(n)[a] 2
LIi(n), and stores the entry ART i[a, i, a]. Router i can use
the same anonymous identifier for all the Interests it originates
on behalf of local consumers and forwards to neighbor n.

If no ART entry exists with router i as the origin of Interests
(AIDi = nil), AIDi is selected from the set of AIDs in
LIi(i) that are not being used for other Interest sources, and a
new ART entry is created for AIDi. The Interest is forwarded
to the selected next hop for the Interest by first mapping AIDi

into an AID in LIi(v) using the bijection in Eq. 2.

Algorithm 2 Processing Interest from router p at router i
function Interest Forwarding
INPUT: LIGHT i, LIST i, FIBi, ART i, I[n(j), AIDI(p), DI(p)];
AIDR(i) = AIDI(p);
if n(j) 2 LIGHT i then

if p[n(j)] 6= nil then
retrieve CO n(j); send DP [n(j), AIDR(i), sp(j)] to p

end if
else

if n(j)⇤ 2 LIGHT i then
send REP [n(j), AIDR(i), no content] to p (% n(j) does not exist)

else
if n(j)⇤ 62 FIBi then

send REP [n(j), AIDR(i), no route] to p (% No route to n(j)⇤

exists)
else

for each s 2 Ni by rank in FIBi do
if DI(p) > D(i, n(j)⇤, s) (% LFR is satisfied) then

SET = ;; AIDI(i) = nil; collision = 0;
for each entry ART i[AID, s,map] do

SET = SET [{AID};
if AID(ART i) = AIDI(p) then

if s(ART i) = p then
AIDI(i) = fi(s)[AID(ART i)]

else
collision = 1

end if
end if
if map(ART i) = AIDI(p) ^ s(ART i) = p then

AIDI(i) = fi(s)[AID(ART i)]
end if

end for
if collision = 0 ^ AIDI(i) = nil then

create entry ART i[AIDI(p), p, AIDI(p)];
AIDI(i) = fi(s)[AIDI(p)]

end if
if collision = 1 ^ AIDI(i) = nil then

select a 2 LIi(i) � SET ;
create entry ART i[a, p, AIDI(p)]; AIDI(i) = fi(v)[a]

end if
DI(i) = D(i, n(j)⇤, s);
send I[n(j), AIDI(i), DI(i)] to s; return

end if
end for (% LFR is not satisfied; Interest may be traversing a loop)
send REP [n(j), AIDR(i), loop] to p

end if
end if

end if

175ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Algorithm 2 shows the steps taken by router i to process
an Interest received from a neighbor router p. The main
differences in the steps taken by router i compared to Interests
received from local users are that no Interest aggregation is
done for Interests received from neighbor routers, and router
i maps the AID it receives in the Interest from the previous
hop to the AID it should use in the Interest it sends to the
next hop using a simple mapping function.

When router i forwards Interest I[n(j), AIDI(p), DI(p)]
from predecessor router p to successor router n towards name
prefix n(j)⇤, router i makes sure that AIDI(p) 2 LIi(i) is not
listed in an ART i entry with a next hop other than p. If that
is the case, router i stores ART i[AIDI(p), p, AIDI(p)], and
sets AIDI(i) = fi(n)[AIDI(p)] 2 LIi(n). Otherwise, router
selects an AID b 2 LIi(n) that is not used to denote any other
source of Interests in ART i, stores ART i[b, p, AIDI(p)], and
sets AIDI(i) = fi(n)[b] 2 LIi(n).

If the requested content is cached locally, a data packet is
sent back. If router i is an origin of n(j)⇤ and the CO with
name n(j) is not found locally, a reply is sent back stating
that the content could not be found. Additional steps can be
taken to address the case of malicious Interests requesting non-
existing content. If the CO is remote and no FIB entry exists
for n(j)⇤, then router sends a reply stating that no route could
be found for the CO.

Router i tries to forward the Interest to a next hop s for
the best prefix match for n(j) that satisfies LFR. The highest-
ranked router satisfying LFR is selected as the successor for
the Interest and router i. If no neighbor is found that satisfies
LFR, a reply is sent stating that a loop was found.

Algorithm 3 Processing data packet from router s at router i
function Data Packet
INPUT: LIGHT i, LIST i, ART i, DP [n(j), AIDR(s), sp(j)];
[o] verify sp(j);
[o] if verification with sp(j) fails then discard DP [n(j), AIDR(s), sp(j)];
a = f�1

i (s)[AIDR(s)]; retrieve entry ART i[a, p,m];
if ART i[a, p,m] does not exist then drop DP [n(j), AIDR(s), sp(j)];
if p = i (% router i was the origin of the Interest) then

for each c 2 lc[n(j)] do
send DP [n(j), c, sp(j)] to c; lc[n(j)] = lc[n(j)] � {c}

end for
else

if p 2 Ni then
AIDR(i) = m; send DP [n(j), AIDR(i), sp(j)] to p

end if
end if
if no entry for n(j) exists in LIGHT i then

create LIGHT i entry for n(j): lc[n(j)] = ;
end if
store CO in local storage; p[n(j)] = address of CO in local storage

Algorithm 3 outlines the processing of data packets. If local
consumers requested the content in the data packet, it is sent to
those consumers based on the information stored in LIGHT i.
If the data packet is received in response to an Interest that
was forwarded from router p, router i forwards the data packet
doing the proper mapping of AIDs. Router i stores the data
object if edge or on-path caching is supported.

When router i receives DP [n(j), AIDR(n), sp(j)] from
neighbor n, it obtains the AID of of the destination where the
packet should be forwarded by computing f�1

i (n)[AIDR(n)].
Router i uses entry ART i[f�1

i (n)[AIDR(n)], p,m] to deter-

mine the next-hop neighbor p that should receive the data
packet, and sets AIDR(i) = m.

Algorithm 4 Process reply from router s at router i
function REPLY
INPUT: LIGHT i, LIST i, ART i, REP [n(j), AIDR(s),CODE];
a = f�1

i (s)[AIDR(s)]; retrieve entry ART i[a, p,m];
if ART i[a, p,m] does not exist then drop REP [n(j), AIDR(s),CODE];
if p = i (% router i was the origin of the Interest) then

for each c 2 lc[n(j)] do
send REP [n(j), c,CODE] to c

end for
delete entry for n(j) in LIGHT i

else
if p 2 Ni then

AIDR(i) = m; send REP [n(j), AIDR(i),CODE] to p
end if

end if

Algorithm 4 states the steps taken to handle replies, which
are similar to the forwarding steps taken after receiving a data
packet. Router i forwards the reply to local consumers if it was
the origin of the Interest, or to a neighbor router p if it has
an ART entry with p as the next hop towards the destination
denoted by the AID stated in the reply.

D. Example

Fig. 3. Forwarding of Interests and responses to them in CCN-GRAM

Figure 3 illustrates the swapping of AIDs used by routers
to forward Interests and responses to them. The local intervals
used in the figure are small for simplicity, and the figure
focuses on the forwarding state needed to forward Interests
from p to name prefixes announced by router y, as well as the
responses to such Interests. Interests are forwarded based on
FIB entries, and responses to Interests (data packets or replies)
are forwarded based on ART entries.

As illustrated in Figure 3, router i takes into account the
possibility of collisions in the AIDs stated in Interests received
from different neighbors by means of the identifier-mapping
filed of ART entries. The bijection in Eq. 2 is used to map
either the AID specified in the Interest received from neighbor
p or the AID created by router i to handle collisions to the
AID stated by router i in the Interest it forwards to a next-
hop router s. In the example, router i has an exiting entry
ART i[15, q, 15] when it receives Interest I[n(j), 15, 3] from
router p 6= q. Accordingly, router i selects AID = 40, creates
entry ART i[40, p, 15], and sets AIDI(i) = fi(s)[40] = 550
before forwarding Interest I[n(j), 550, 2] to router s. When

176ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

router i receives data packet DP [n(j), 550, sp(j)] from router
s, it computes f�1

i (s)[550] = 40. Using AID = 40 as the key
in ART i, router i obtains the next hop p, sets AIDR(i) = 15,
and forwards DP [n(j), 15, sp(j)] to router p.

It is clear from the example that a router sending an Interest
is unaware of collisions of AIDs at the next hop. The identifier
mapping field of ARTs allows routers to multiplex Interests
from different neighbors stating the same AID values.

Even when a very small number of routers is involved, only
the router that originates an Interest is able to determine that
fact, because the identifiers used for Interest forwarding are
assigned by the next hops.

E. Native Support for Multicasting

Support of multicast communication in the data plane with
no additional signaling required in the control plane is viewed
as an important benefit derived from maintaining per-Interest
forwarding state using PITs. In short, multicast receivers
send Interests towards the multicast source. As Interests from
receivers are aggregated in the PITs on their way to the
multicast source, a multicast forwarding tree (MFT) is formed
and maintained in the data plane. Multicast Interest are for-
warded using the same FIB entries used for unicast traffic, and
multicast data packets are sent using reverse path forwarding
(RPF) over the paths traversed by aggregated Interests. Using
PITs is appealing in this context; however, as we show below,
native support of multicasting in the data plane can be easily
done with no need for per-Interest forwarding state!

1) Information Stored and Exchanged: We assume that the
name stated in an Interest created to request content from
a multicast source denotes a multicast source uniquely, and
call such an Interest a multicast Interest. We also assume
that consumers and routers differentiate between a multicast
Interest and an Interest originated from a single consumer
(unicast Interest).

A multicast Interest MI[g(j), DI(i),mcI(i)] sent by router
i to router n states: the name of a multicast group g(j), the
distance from router i to the source of the multicast group
DI(i), and a multicast counter (mcI(i)) used for pacing.

A multicast data packet MP [g(j), sp(j),mcR(i)] states the
name of the multicast group g(j), a security payload sp(j),
a multicast counter mcR(i), plus the content payload. A
multicast reply MR[g(j), CODE,mcR(i)] states the reason
for the reply and the current value of the multicast counter.

Router i maintains a multicast anonymous routing table
(MART i) that contains the forwarding state to the receivers of
multicast groups. Each entry in MART i specifies a multicast
group name, the value of the multicast counter (mc), and a list
of next hops to the group of receivers who have sent Interests
for the group. If router i has local receivers for group g(j),
the entry for the group in MART i includes router i as a next
hop to the receivers of the group.

Router i also maintains a group membership table (GMT i)
that lists the mappings of multicast group names to the lists
of local receivers that requested to join the groups. The GMT

entries allow the router to deliver multicast content to local
receivers of specific groups.

2) Multicast Content Dissemination: The key difference
of the way in which CCN-GRAM forwards multicast traffic
compared to NDN or CCNx is that a MART maintains per-
group forwarding state, while a PIT maintains per-Interest
forwarding state. Figure 4 illustrates the forwarding of multi-
cast Interests and multicast content in CCN-GRAM. There
is no need for anonymous identifiers for multicast content
forwarding, because all consumers of a group must receive
the same multicast COs, which are forwarded using multicast
group names.

Fig. 4. Native multicast support in CCN-GRAM

A content consumer c requests to join a multicast
group g(j) as a receiver by sending a multicast Interest
MI[g(j), DI(c),mcI(c)] with DI(c) = nil.

If router i has multiple local receivers or neighbor routers
requesting to join the same multicast group g(j), router i
forwards multicast Interest MI[g(j), DI(i),mcI(i)] only once
towards the source of the multicast group g(j) based on
the information in its FIB. Router i simply adds new local
consumers to the entry for g(j) in GMT i or new next hops
to multicast receivers in MART i.

Router i forwards multicast data packets based on the group
names stated in the packets and the next hop stored in its
MART entries, and discards the data packet if no MART entry
exists for the multicast group. A similar approach is used for
replies to Interests regarding multicast groups.

The dissemination of multicast data packets over the MFT
of a multicast group can be of two types. A multicast source
can push multicast data towards the receivers, or the receivers
can pull data from the source by submitting Interests.

Push-based dissemination: The only forwarding state
needed in CCN-GRAM for push-based multicast dissemina-
tion consists of the name of a multicast group and the names of
the next hops towards the group receivers. In this mode, the mc
value of an entry in a MART is updated with each multicast
data packet forwarded by the router towards the receivers.

Pull-based dissemination: CCN-GRAM can also support
pull-based multicast dissemination with no need for per-
Interest forwarding state. An exemplary approach consists of
a source-pacing algorithm based on the mc values carried in
Interests and data packets. Each receiver increments the mc

177ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

value of Interests it sends for the group asking for the next
piece of multicast content from the source. When router i
receives multicast Interest MI[g(j), DI(p),mcI(p)] from a
neighbor router or a local content consumer p, it forwards
the Interest only if mc = 1 + v, where v is the current mc
value stored in MART i for the multicast group. Router i
updates the mc value in MART i as it forwards the Interest,
and subsequent Interests with the same mc value of 1+ v are
simply dropped. As a result, each router in an MFT forwards
a single copy of any Interest asking for the next multicast
content object towards the source. This is like aggregating
Interests for a multicast group over the MFT of the group, but
with no need to store per-Interest forwarding state.

IV. PERFORMANCE COMPARISON

We compare the forwarding entries needed to forward
Interests and responses in NDN and CCN-GRAM, as well as
the end-to-end delays incurred, using simulation experiments
based on implementations of NDN and CCN-GRAM in the
ndnSIM simulation tool [1]. The NDN implementation was
used without modifications, and CCN-GRAM was imple-
mented in the ndnSIM tool following Algorithms 1 to 4.

The network topology consists of 150 routers distributed
uniformly in a 100m ⇥ 100m area and routers with distance
of 15m or less are connected with point-to-point links of delay
15ms. The data rates of the links are set to 1Gbps to eliminate
the effects that a sub-optimal implementation of CCN-GRAM
or NDN may have on the results. Only 10 routers chosen
randomly are connected to local content producers of multiple
name prefixes, 50 other routers are connected to local content
consumers, and all routers act as relays. This choice was made
to illustrate the existence of a “network edge” and the fact that
only a relatively small number of sites host content producers.
Interests are generated with a Zipf distribution with parameter
↵ = 0.7 and producers are assumed to publish 1,000,000
different COs. Each cache can store up to 1000 objects, or
0.1% of the content published in the network. This caching
capacity was selected to compare on-path caching with edge
caching when Interests must be forwarded in the network,
rather than being answered with locally cached content.

We considered total Interest rates per router of 50, 100,
500, and 2000 objects per second corresponding to the sum of
Interests from the local consumers connected to a router. The
increasing values of total request rates can be viewed as higher
request rates from a constant user population of local active
users per router, or an increasing population of active users
per router. The Interest rates we assume are actually very low
according to recent results addressing the size that PITs would
have under realistic Internet settings [8], [22], [23], [21].

We considered on-path caching and edge caching. For the
case of on-path caching, every router on the path traversed by
a data packet from the producer to the consumer caches the
CO in its local cache. On the other hand, with edge caching,
only the router directly connected to the requesting consumer
caches the resulting CO. All caches are LRU.

A. Size of Forwarding Tables
Figure 5 shows the average size and standard deviation of

the sizes of PITs, ARTs and LIGHTs on a logarithmic scale
as functions of Interest rates. The size of LIGHTs corresponds
only to the number of local Interests pending responses. The
number of entries corresponding to content cached locally can
be up to 1000 for both NDN and CCN-GRAM.

Fig. 5. Average size of forwarding tables

Fig. 6. Average end-to-end delays

As the figure shows, the size of PITs grows dramatically as
the rate of content requests increases, which is expected given
that PITs maintain per-Interest forwarding state. By contrast,
the size of ARTs, which is the only forwarding state stored
by relay routers, is only a small fraction of the total number
of routers and remains fairly constant with respect to the
content request rates, which is always one or multiple orders
of magnitude smaller than the average PIT size. The size of
LIGHTs is a function of the number of COs requested locally
or cached on path, but the average size of a LIGHT is an order
of magnitude smaller than the average size of a PIT. The size
of a ART is independent of where content is being cached,
given that an ART entry is stored independently of how many
Interests traverse the route. Interestingly, edge-caching renders
only slightly larger PIT sizes than on-path caching in NDN.

B. Average Delays
Figure 6 shows the average end-to-end delay for NDN and

CCN-GRAM as a function of content request rates for on-
path caching and edge caching. As the figure shows, the

178ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

average delays for NDN and CCN-GRAM are comparable
for all values of the content request rates. This should be
expected, given that the static, loop-free routes in the FIBs
prevent Interests to “wait to infinity” in PITs, the signaling
overhead incurred by NDN and CCN-GRAM is similar, and
in-network caching obviates the need for Interest aggregation.

V. CONCLUSIONS AND FUTURE WORK

We presented simulation results showing that Interest ag-
gregation rarely occurs when in-network caching is used. Our
analysis is limited; however, our detailed characterization of
Interest aggregation via analytical modeling and simulation
analysis [7] renders the same conclusion.

We introduced CCN-GRAM to eliminate the performance
limitations associated with PITs. CCN-GRAM is the first
approach to Interest-based content-centric networking that
supports the forwarding of Interests and responses to them
using datagrams that do not reveal the identity of their origins
to forwarding routers, caching sites, or content providers.

Simulation experiments were used to show that end-to-end
delays incurred in CCN-GRAM and NDN are similar when
either edge caching or on-path caching is used, but the storage
requirements for CCN-GRAM are orders of magnitude smaller
than for NDN. The results for CCN-GRAM indicate that it
could be deployed with only routers at the edge maintaining
LIGHTs and caches. Additional work is needed to make the
forwarding of Interests in CCN-GRAM as efficient as the
forwarding of responses to Interests using ARTs. The goal
is to enable Interest forwarding at Internet scale that does not
require routers to look up FIBs with billions of name-prefix
entries as is the case in NDN and CCNx.

Both ARTs and PITs must be updated when the paths
traversed by Interests and their responses must change due to
congestion, topology changes, or mobility of consumers and
providers. Yi et al [27] argue that per-Interest forwarding state
enables faster response to topology changes and congestion,
because local repair mechanisms can be used. However, mul-
tipath routing, and dynamic load balancing schemes based on
datagram forwarding have been shown to attain results very
close to optimal routing [24] and can be easily applied to
CCN-GRAM in the future.

CCN-GRAM can use the same content security features
adopted in CCNx and NDN to limit or eliminate cache
poisoning attacks, because it makes no modifications to the
way in which content is protected in data packets or how a
name can be securely linked to the payload of a CO. However,
CCN-GRAM enjoys an enormous advantage over CCNx and
NDN in that it eliminates the ability for malicious users to
mount Interest-flooding attacks aimed at overwhelming the
forwarding tables of routers [16], [23]. An ART entry can
be added only for valid local identifiers at each router and for
routes that satisfy the ordering constraint imposed with LFR.
Given that both conditions are managed in the control plane,
mounting attacks on ARTs is much more difficult than simply
having users send Interests for COs corresponding to valid
name prefixes.

REFERENCES

[1] A. Afanasyev et al., “ndnSIM: NDN simulator for ns-3”, University of
California, Los Angeles, Tech. Rep, 2012.

[2] A. Afanasyev et al., “Interest-flooding Attack and Countermeasures in
Named Data Networking,” Proc. IFIP Networking ‘13, May 2013.

[3] AT&T, “The Quality of Internet Service: AT&T’s Global IP Network
Performance Measurements,” 2003.
http://ipnetwork.bgtmo.ip.att.net/pws/paper.pdf

[4] P. Baran, “On Distributed Communications: I. Introduction fo Dis-
tributed Communication Networks,” Memorandum RM-3420-PR, The
RAND Corporation, Aug. 1964.

[5] Content Centric Networking Project (CCN) [online].
http://www.ccnx.org/releases/latest/doc/technical/

[6] A. Dabirmoghaddam et al., “Understanding Optimal Caching and Op-
portunistic Caching at The Edge of Information Centric Networks,”
Proc. ACM ICN ‘14, Sept. 2014.

[7] A. Dabirmoghaddam, M. Dehghan, and J.J. Garcia-Luna-Aceves, “Char-
acterizing Interest Aggregation in Content-Centric Networks,” Proc.
IFIP Networking 2016, May 2016.

[8] H. Dai el al., “On Pending Interest Table in Named Data Networking,”
Proc. ACM ANCS ‘12, Oct. 2012.

[9] C. Fricker et al., “Impact of traffic mix on caching performance in a
content-centric network,” Proc. IEEE NOMEN Workshop ‘12, 2012.

[10] J.J. Garcia-Luna-Aceves, “Name-Based Content Routing in Information
Centric Networks Using Distance Information,” Proc. ACM ICN ‘14,
Sept. 2014.

[11] J.J. Garcia-Luna-Aceves, “A Fault-Tolerant Forwarding Strategy for
Interest-based Information Centric Networks,” Proc. IFIP Networking
‘15, May 2015.

[12] J.J. Garcia-Luna-Aceves and M. Mirzazad-Barijough, “Enabling Correct
Interest Forwarding and Retransmissions in a Content Centric Network,”
Proc. ACM ANCS ‘15, May 2015.

[13] J.J. Garcia-Luna-Aceves, “A More Scalable Approach to Content Centric
Networking,” Proc. IEEE ICCCN ‘15, Aug. 3-6, 2015.

[14] J.J. Garcia-Luna-Aceves, “Eliminating Undetected Interest Looping in
Content Centric Networks,” Proc. IEEE NOF ‘15, Sept. 30-Oct. 2, 2015.

[15] J.J. Garcia-Luna-Aceves and M. Mirzazad-Barijough, “A Light-Weight
Forwarding Plane for Content Centric Networks,” Proc. IEEE ICNC ‘16,
Feb. 2016.

[16] P. Gasti et al., “DoS and DDoS in Named Data Networking,” Proc. IEEE
ICCCN ‘13, 2013.

[17] A.K.M. Mahmudul-Hoque et al., “NSLR: Named-Data Link State Rout-
ing Protocol,” Proc. ACM ICN ‘13, 2013.

[18] NDN Project [online]. http://www.named-data.net/
[19] J. Raju et al., “System and Method for Information Object Routing in

Computer Networks,” U.S. Patent 7,552,233, June 23, 2009
[20] M. Spohn and J.J. Garcia-Luna-Aceves, “Neighborhood Aware Source

Routing,” Proc. ACM MobiHoc 2001, Oct. 2001.
[21] C. Tsilopoulos et al., “Reducing Forwarding State in Content-Centric

Networks with Semi-Stateless Forwarding,” Proc. IEEE INFOCOM ‘14,
April 2014.

[22] M. Varvello et al., “On The Design and Implementation of a Wire-
Speed Pending Interest Table,” Proc. IEEE Infocom NOMEN Workshop
‘13, April 2013.

[23] M. Virgilio et al., “PIT Overload Analysis in Content Centric Networks,”
Proc. ACM ICN ‘13, Aug. 2013.

[24] S. Vutukury and J.J. Garcia-Luna-Aceves, “A Simple Approximation to
Minimum-Delay Routing,” Proc. ACM SIGCOMM ‘99, Aug. 1999.

[25] M. Wahlisch et al., “Lessons from the Past: Why Data-driven States
Harm Future Information-Centric Networking,” IFIP Networking ‘13,
May 2013.

[26] M. Wahlisch et al., “Backscatter from The Data Plane? Threats to
Stability and Security in Information-Centric Network Infrastructure,”
Computer Networks, Vol. 57, No. 16, Nov. 2013.

[27] C. Yi et al., “A Case for Stateful Forwarding Plane,” Computer Com-
munications, pp. 779-791, 2013.

[28] L. Zhang et al., “Named Data Networking,” ACM SIGCOMM Computer
Communication Review, Vol. 44, No. 3, July 2014.

179ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

BEAD: Best Effort Autonomous Deletion in
Content-Centric Networking

Cesar Ghali⇤ Gene Tsudik⇤ Christopher A. Wood+
University of California, Irvine

Email: {cghali, gene.tsudik, woodc1}@uci.edu

Abstract—A core feature of Content-Centric Networking
(CCN) is opportunistic content caching in routers. It enables
routers to satisfy content requests with in-network cached copies,
thereby reducing bandwidth utilization, decreasing congestion,
and improving overall content retrieval latency.

One major drawback of in-network caching is that content
producers have no knowledge about where their content is stored.
This is problematic if a producer wishes to delete its content. In
this paper, we show how to address this problem with a protocol
called BEAD (Best-Effort Autonomous Deletion). It performs
content deletion via small and secure packets that resemble
current CCN messages. We discuss several methods of routing
BEAD packets from producers to caching routers with varying
levels of network overhead and efficacy. We assess BEAD’s
performance via simulations and provide a detailed analysis of
its properties.

Keywords—Content-Centric Networking, Information-Centric

Networking, caching, best-effort content deletion, controlled flood-

ing, forwarding histories, accounting.

I. INTRODUCTION

Content-Centric Networking (CCN) is a relatively recent
internetworking paradigm touted as an alternative current IP-
based Internet architecture. While IP traffic consists of packets
between communicating end-points, CCN traffic is comprised
of explicit requests for, and responses to, named content
objects.

An important feature of name-based content retrieval is
decoupling of content from its producer. This enables more
natural content distribution by allowing routers to opportunis-
tically cache content within the network. Cached content can
be returned in response to future requests, called interests. This
reduces the need to forward interests to content producers, thus
lowering network congestion and content retrieval latency.

However, router caches are not mandatory in CCN. In some
cases, caching content might not be beneficial, e.g., for routers
with high content processing speeds, since high arrival rates
translate to less time spent in cache. If the content’s cache
lifetime is very short, the probability of cache misses increases
and the cache’s utility decreases commensurately. Indeed,
some prior literature shows (via simulations and experiments)
that caching at the edges of the internetwork, i.e., at consumer-
facing routers, is most beneficial and more cost-effective than
doing so in the core, i.e., in transit routers [1].

⇤Supported by NSF award: “CNS-1040802: FIA: Collaborative Research:
Named Data Networking (NDN)”.

+Supported by NSF Graduate Research Fellowship DGE-1321846.

To help caching routers determine the lifetime of cached
content, the latter includes an optional ExpiryTime field.
Routers are expected to flush content once this time elapses.
However, a router can choose to keep content cached beyond
its lifetime. Lifetime of content in a particular router’s cache
depends entirely upon that router’s implementation and policy.
This uncertainty (or freedom) means that content may linger
in the network for a very long time.

One notable drawback of this libertarian approach to
caching is that some content may need to be deleted before
ExpiryTime elapses. Consider content that frequently (yet
sporadically) evolves over time, e.g., news articles. The appear-
ance of breaking-news articles is unscheduled. As situations
develop, updates and corrections to the content occur at unpre-
dictable times. Such updates supersede previously distributed
content by rendering it stale. Thus, in this case, producers need
a way to remove old content. Another example is content
(that has released and subsequently cached) which contains
erroneous information. As errors are detected and corrected, a
producer needs to flush the incorrect older version.

The deletion problem occurs because ExpiryTime is
the only way for a producer to communicate anticipated
content lifetime to the network. However, a producer can
not change its mind after content has been published and
distributed. Thus, there is a need for a safety mechanism
for in-network content deletion. For this reason, we design
such a technique called BEAD: Best-Effort and Autonomous
Deletion. In the process, we encounter and address several
challenges, including efficacy, performance, and security. We
also experimentally assess the proposed technique.

The rest of this paper is organized as follows. Section II
overviews CCN. Related work is summarized in Section III.
Section IV presents minimal requirements for content deletion.
Sections V and VI describe authentication and routing of
deletion requests in BEAD, respectively. The BEAD technique
is analyzed in Section VII and its performance is assessed
in Section VIII. The paper ends with a discussion of BEAD
optimizations and practical factors in Section IX. Future work
is summarized in Section X.

II. CCN OVERVIEW

We now summarize the current CCN architecture [2].
Given familiarity with CCN, it can be skipped without loss
of continuity.

Unlike IP, which focuses on addressable end-hosts, CCN
emphasizes named and addressable content. A consumer issues
a request, called an interest, specifying the name of desiredISBN 978-3-901882-83-8 c� 2016 IFIP

180ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

content. CCN names are structured similar to URIs. For
example, a content produced by the NSA might be named:
ccnx:/us/gov/DoD/NSA/Snowden-Diary. An inter-
est for a particular content named N is routed towards an
authoritative producer for that content, based on N itself. In
CCN, both interest and content messages have general-purpose
Payload fields. Consumers can use an interest’s Payload
field to push information to producers, while producers use a
content’s Payload field to carry actual application data.

As an interest traverses the network, each router determines
if a copy of requested content is cached in its Content Store
(CS). If a cache hit occurs, the router satisfies the interest by
sending the matching content on the interface on which the
interest arrived. Otherwise, the router (1) records some state
derived from the interest in its Pending Interest Table (PIT)
in order to provide a backwards path for the future content,
and (2) forwards the interest to the next hop(s) specified
in its Forwarding Information Base (FIB). State retained in
the PIT contains the content name and the interface(s) on
which interests for that name have been received. A FIB
is a routing table that maps hierarchical name prefixes to
outbound interfaces. Longest-Prefix Matching (LPM) is used
to determine the matching FIB entry.

A router R can collapse multiple interests into the same
PIT entry whenever all of the following holds:

1) R receives an interest for name N
2) R does not have content N in its cache
3) R’s PIT already contains an entry for N

When interest collapsing occurs, R only records the interface
on which the new interest arrived and drops that interest.
Whenever requested content arrives, R forwards it on all
interfaces listed in the corresponding PIT entry. Afterwards,
the PIT entry is flushed.

If no router can find a locally cached copy of requested
content, the interest eventually reaches the producer that re-
sponds with the matching content, if possible. If the producer
can not provide it (e.g., content does not exist) a NACK is
generated [2], [3]. As content traverses the reverse path to the
consumer, routers may choose to cache it in anticipation of
future requests. As mentioned earlier, each content includes a
producer-set ExpiryTime field. This value is content- and
application-specific. However, each router can use any cache
management algorithm, e.g., LRU or LFU.

III. RELATED WORK

Lack of on-demand content deletion is a well-known prob-
lem in CCN [4]–[9]. The problem of unsafe replicas or stale
content in CCN was first considered in [10]. Analytical and
experimental assessment showed that: “...the more frequently
content is requested the higher is the chance of one request
ending up in between a revocation and the eviction [of the
stale key].” The proposed method relies on a monotonically
decreasing cache lifetime enforced by cooperating routers. This
does not allow a producer to change the lifetime after content
is published; it only seeks to minimize the time window when
stale or unsafe replicas can be accessed.

[4] proposed a mechanism to implement revocation of con-
tent without input from the consumer. The proposed approach

uses the ccnx-sync protocol to perform OCSP-like [11] syn-
chronization of key data, i.e., determine content that has been
revoked. This requires proactive behavior by each participating
repository. [5] suggests using ChronoSync [12] to synchronize
revoked key endorsements among group members. Revocation,
however, is not the same as cache deletion. Revoked content,
if still cached, can be inadvertently accessed by malicious or
benign consumers.

[13] discussed a new caching technique allowing routers
to proactively share content with downstream peers which
did explicitly request that content. The suggested multicast
forwarding strategy serves to increase the number of replicas
in the network. However, unsolicited content objects can be
seen as a form of attack similar to cache poisoning [7].

The concept of cost-aware caching in CCN was introduced
in [14]–[18]. Various economic incentives for ISPs and ASs
to cache content on behalf of producers have been explored.
Cost-aware routers that cache based on popularity and eco-
nomic incentives are studied in [19]. In general, the economic
problem of supporting prioritized caching in the network is
addressed without any attention to the inverse problem: how
is content removed from caches?

IV. BEAD REQUIREMENTS

Our motivation stems from the need to remove stale or erro-
neous content from the network, i.e., from routers’ caches. One
intuitive way of doing this is through the use of versioning,
whereby the content naming format includes a component that
explicitly reflects the current version. For example, the content
of BBC’s World News web-page could be named: ccnx:
/bbc/news/world/v2.4. Alternatively, timestamps could
be used. In that case, the same BBC page could be named
ccnx:/bbc/news/world/1449187200.1 However, in
either case, is unclear how a consumer would determine (in
advance) the current timestamp or version number, without
which an interest can not be formed.2

The main problem with versioning and timestamps is that
they can not handle unpredictable content updates. In current
CCN design, producers are oblivious to where and for how
long their content is stored in the network. Although this
opportunistic caching is one of the biggest CCN advantages, it
greatly complicates deletion of stale content. We believe that,
in order to address the problem, producers need:

1) A way to communicate a single deletion request to all
routers that might have cached offending content.

2) A way to efficiently secure deletion requests (allowing
routers to quickly authenticate them) while avoiding triv-
ial Denial of Service (DoS) attacks.

The first requirement is reminiscent of IP traceback – a class
of techniques for identifying the original source of a (usually
malicious) packets. In the context of IP, this is often framed as
a mechanism to mitigate Denial of Service (DoS) attacks. In
this paper, the goal is to learn where content was previously
forwarded so that deletion requests can be routed along the
same paths. These paths correspond to the original sources

11449187200 is 12/04/2015 at 12:00am UTC.
2There is one trivial way: a consumer contacts the producer directly and

asks for the most recent version number or timestamp. However, this would
incur an extra round-trip delay per content retrieval.

2

181ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

of interests for that content. Thus, ideas from IP traceback
based on packet logging (e.g., [20]) and (deterministic or
probabilistic) packet marking (e.g., [21], [22]) influence the
design and forwarding strategies of BEAD messages.

We now show how to address these requirements with the
BEAD technique.

V. AUTHENTICATING DELETION REQUESTS

Producers must prove content ownership to routers that
receive deletion requests. Otherwise, an adversary can imper-
sonate a producer and induce content deletion, resulting in
another form of DoS. One way to attain authentication is by a
producer-generated digital signature on each deletion request.
However, besides being inefficient, forcing routers to verify
signatures on deletion requests can be itself parlayed into DoS
attacks [7], [23]. Moreover, it involves public key retrieval,
certificate handling and other messy (for routers) issues.

Our approach uses a light-weight token that proves content
ownership. When a producer P creates a content object C, it
generates a random �-bit string x

C

, called the deletion token.
P then computes the digest of this token using a suitable
cryptographic hash function3, y

C

= H(x
C

), and includes y
C

in C. Later, if and when P wishes to delete C from the
network, it includes x

C

in the deletion request. (We assume
that P can route these requests to any router caching C.) Upon
receipt, each R verifies that y

C

(cached alongside the content)
matches H(x

C

). If so, R knows that P must have issued the
request and deletes C from the cache.4

VI. ROUTING DELETION REQUESTS

The remaining (though major) issue is how to route dele-
tion requests from the producer to each caching router. This
can be viewed as a multicast problem where producers must
distribute a message (deletion request) to only a subset of
nodes which could have cached the content.

Let Int[N] and C[N] be the interest and content messages
referring to name N . The hash of C[N] is a �-bit string d, i.e.,
d = H(C[N]). Let E[N, d] be a deletion request for content
named N and hash digest d. Let R

N

be the set of routers
which cached C[N]. Finally, let the FIB of router R 2 R

N

be
FIBR.

From here on, we use the term erase to refer to deletion
requests. Also, we assume that erase messages are authenti-
cated using the method described in Section V.

A. Flooding

We begin by considering the simplest approach: reverse-
path controlled flooding [24] of deletion requests. When R 2
R

N

receives E[N, d], it forwards it on all interfaces except
those which have a matching FIB entry.

Flooding offers some advantages, the most important of
which is the ability to reach network edges even if routers on
the producer-to-consumers paths no longer cache the content to
be deleted. This is important since routers do not cache content

3Suitable hash functions include those with pre-image resistance, which
means that, given y, it is difficult to find an x such that y = H(x).

4This is due to the randomness of xC and the collision-resistance of H(·).

uniformly and some may not even have caches. On the negative
side, the volume of traffic generated from a single deletion
request is very high and most deletion requests would be
forwarded to routers that never even cached the target content.

B. Forwarder Histories for Content Traceback

In the optimal case, routers would only forward erase
messages on interfaces on which the referenced content had
been previously forwarded. In other words, erase messages
should only be forwarded along the content distribution span-
ning tree where the producer is the root and leaves are the
consumers who requested the content. One way to forward
erase messages along the edges of this tree is for each router
R 2 R

N

to maintain a forwarding history of C[N]. There are
several places where this history can be kept, including: (1) in
the cache where C[N] is stored, (2) in a forwarding log (similar
to [20], as a form of IP traceback) at each router, and (3) in
the packets themselves. In each case, historical information
constitutes a form of traceback that allows routers to identify
where content was previously forwarded. We now describe
each approach in more detail.

1) In-Cache Forwarding Histories: When a router caches
C[N] it can also remember the downstream interfaces where
the cached copy was forwarded. We denote the set of these
interfaces as F

N

. When a router receives an interest Int[N]
on interface F

i

, it responds with C[N] and adds F
i

to F
N

. For
a router with K interfaces, this additional state costs O(K) bits
per cache entry. When a router caching C[N] receives E[N, d],
it forwards it on all interfaces in F

N

.

In-cache forwarding histories are only effective for routers
with large caches, since the lifetime of forwarding information
is bound to the lifetime of cache entries, which can be small or
even zero (if a router has no cache at all). Since a forwarding
history F

N

is deleted whenever C[N] is flushed from the
cache, this can lead to a future E[N, d] not being forwarded
to downstream routers which might still cache C[N].

2) Local Forwarding Logs: Long-term packet logs have
their roots in IP traceback techniques from the early 2000-
s, e.g., [20], [25]. The problem here is similar: routers need
long-term histories of packets (content) that were previously
processed and forwarded. In this context, a history is a set-
like data structure that allows content objects to be inserted
and then later queried for membership. There are two types
of histories: lossless and lossy. The former always return
“yes” for content objects that have previously been inserted.
In contrast, a lossy history might return false positives or
negatives. Routers use these structures by associating one
history to each interface. When a router receives E[N, d] and
C[N] is not cached, it forwards E[N, d] on each interface for
which the corresponding forwarding interface history has a
record of C[N], i.e., all histories for which membership query
returns “yes”. This procedure is outlined in Figure 1.5

We now describe some ways of implement lossless and
lossy histories that vary in their computation and memory
requirements.

Lossless Forwarder Histories require a unique identifier
to be kept after a content object has been forwarded. We

5Similar to the flooding algorithm, this check is not performed for interfaces
via which the content producer can be reached.

3

182ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

F0
F1
F2

CS

F3
F4
F5
F6
F7

C[/a/b], {F0, F2}

E[/a/b, d]E[/a/b, d]

E[/a/b,d]

H0
H1
H2

(1) check
cache

(2) check
forwarding
histories

(3) forward
erase message

for matches

Fig. 1. E[N, d] forwarding strategy based on per-interface forwarding
histories. Upon receipt of an erase message a router searches the cache for the
respective content. If the content is not present then the histories are examined
and the history is forwarded as needed.

assume that content hash d serves as such an identifier (with
collision probability negligible in �). Implementing this type of
forwarder history can be done trivially with a hash set HS

R

as
follows: to insert a content object into the history, compute and
store d in HS

R

. To query the history, return “yes” if d 2 HS
R

and “no” otherwise. Insertion and lookup each require constant
time.

Lossy Forwarder Histories are intended to store historical
information in memory-constrained systems at the cost of false
positives and false negatives. Similar to SPIE traceback [20],
we use Bloom Filters (BFs) [26] to implement lossy forwarder
histories. BFs enable probabilistic set membership queries.

The choices of BF properties, e.g., size and hash functions,
impact efficacy of this technique. Filters that saturate too
quickly result in high false positive rates. If all interface
filters become saturated then erase is effectively broadcast.
Therefore, it is important to eventually remove stale elements
from filters. Unfortunately, a regular BF does not provide
element removal. However, so-called Counting Bloom Filters
(CBFs) [27] support set membership queries with removal.
Instead of using bits to indicate set membership, CBFs use
counters. When loading an element into CBF, the counters
corresponding to the output of the hash functions are increased
by one. Consequently, removing an element is done by decre-
menting the same counters. The problem with CBFs is that
one must know the element to delete. Since routers would
discard content after inserting them into these filters6, they
have no way of knowing what content is in the filter, and
thus what elements to eventually delete. Their only recourse
is to remove elements by decrementing counters at random.
Intuitively, a router would delete random elements from the
filter (the history) at a frequency which reflects the average
ExpiryTime of received content. This can increase the false
negative probability and reduce the possibility of delivering
erase messages to their corresponding destination.

Variants of the CBF, such as Time-Decaying (TDBFs) [28],
[29] and Stable (SBFs) [30] BFs can also be used. TDBFs
have the property that elements are slowly removed from the
filter over time, thereby keeping the rate of false positives
minimized. However, the natural decay property may lead to

6This is because content is only added to histories upon its removal from
the cache.

false negatives. SBFs on the other hand are dynamically self-
resized to keep the false probabilities minimized. Similar to
CBFs and TDBFs, SBFs also suffer from false negatives.

3) Interest Marking for Content Traceback: Packet mark-
ing is a standard technique for IP traceback [21]. In the
context of this work, marking is performed on interests to
indicate sources of content requests. This information can be
later used to learn the interface to which an erase needs to
be sent. Specifically, erase messages can carry this marking
information in order for routers to identify the appropriate
downstream interfaces without storing any local state.

One trivial marking method is to append the arrival inter-
face to each interest. Specifically, when R receives Int[N] on
face F

i

, R prepends (R,F
i

) to a list contained in the header of
the interest. Producers record these traces upon receipt. In the
event that an erase needs to be generated, P includes the trace
in the erase and forwards it on the appropriate downstream
interface. When R receives an erase with a trace it pops the
last element (R,F

i

) off the trace list and forwards it on the
specified interface F

i

.

This technique distributes the forwarding history among
messages in the network. Therefore, this information must
be secure. To illustrate this requirement, assume router R

i

receives E[N, d] with the sequence of hops

[(R
i

, F
i

), (R
i�1, Fi�1), . . . , (R2, F2), (R1, F1)]

from interface F
i+1. R

i

needs a way to securely guarantee
that (R

i

, F
i

) was previously prepended, by itself, to the
subsequence:

[(R
i�1, Fi�1), . . . , (R2, F2), (R1, F1)].

Otherwise, the adversary can forge unsolicited erase messages
with apparently correct routing sequences. Alternatively, one
can modify existing sequences in erase messages to prevent
them from being routed towards their destination.

One way of authenticating hop-sequence traces is for R
i

to compute a Message Authentication Code (MAC) [31],
[32] tag t

i

over the (relevant) interest details, e.g., the name
and previously present traces in the hop-sequence. R

i

then
adds the tuple (R

i

, F
i

, t
i

) to the interest before forwarding it.
Since erase messages carry the name of the content to be
deleted, each router will be able to verify its pre-computed
tag before forwarding erase messages downstream. Since
routers compute and verify tags locally, a key management and
distribution protocol is not required. We do, however, assume
that routers are able to generate and maintain cryptographic
keys of sufficient length necessary for MAC computation. As
an added feature, hop-sequence information can also be used
for detecting both interest and erase loops [33].

Although this technique of marking interest is effective to
deliver erase messages to all routers on the path between
consumers and producers, it has several drawbacks. One of this
is that interest traces received by producers need to be stored
so that they can be included in erase messages. This is due
to the fact that (1) each trace corresponds to only one path in
the network, and (2) interests issued by multiple consumers
are most likely to traverse different paths to the producer.
Producers can attempt to compile all collected traces in a
data structure forming a spanning tree. This structure would

4

183ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

be included in erase message headers, allowing routers to
forwarder erase messages correctly. The main disadvantage
of this approach is that the size of the data structure grows
linearly with the number of consumers and is most likely to
be greater than average allowed MTU. This means that erase
messages will be fragmented (and possibly re-fragmented), and
hop-by-hop reassembly is not avoidable. Another alternative
is for producers to send multiple erase messages one for
each set of traces correlated to a hop-sequence. In Section
VII, we compare and evaluate the performance and resource
consumption of these two techniques.

VII. ANALYSIS

We now assess some routing strategies for erase messages.
Let nR

t

be the total number of content objects forwarded by
R at time t and let µR

F

be R’s content forwarding rate. Note
that nR

t

grows monotonically as a function of µR

F

.

A. Flooding Analysis

Recall that the reverse path flooding algorithm works by
only sending broadcast messages to interfaces through which
the producer is not reachable. Though very effective, this is
highly unscalable. If all routers flooded erase messages then
they would certainly be delivered to every R 2 R

N

. However,
the number of routers receiving a specific erase message is
much larger than |R

N

|. Therefore, flooding should always
be the last resort for erase messages. We assess the actual
overhead of this technique in Section VIII.

B. Forwarding History Analysis

We now analyze performance of lossless and lossy for-
warding histories described in Section VI-B.

1) Lossless Histories: The memory (and possibly computa-
tional) cost of a lossless forwarder history grows as a function
of t. Thus, history collection will inevitably saturate memory
at some point. Let nR

max

be the total size (in entries) of the
history memory for R. Saturation is reached at time t such
that nR

t

� nR

max

. We compute the time required to saturate
a lossless forwarder history in two scenarios. We assume that
each content object is 4, 096 bytes and hash digests are 32
bytes.

• Consumer-facing router: We assume a caching
consumer-facing router (e.g., an access point) with 4GB
of history storage and data rate of 100 Mbps. This
data rate is equivalent to a content forwarding rate of
µR

F

= 30200 Cps (content packets per second). If R
operates at full capacity with a full cache – i.e., storing
every forwarded content requires eviction of an already
cached one – it will take 41, 943 secs. for history storage
to be saturated. This is roughly 12 hours. This window of
time might be longer than the ExpiryTime of content
objects that are subject to be erased. For instance, news
feed pages are likely to be updated with a frequency faster
than 1/12 hours.

• Core router: We assume a non-caching CCN core router
with 1TB of flash history storage and data rate of 10
Tbps, i.e., equivalent to µR

F

= 335 MCps. If R always
operates at full capacity (i.e., forwards at 10 Tbps),
lossless forwarder history can be saturated in 102 secs.

In this case producers have a time window of less than 2
minutes to issue an erase message for content C after it
was last served.

R’s saturation time can be lengthened by increasing the size
of the forwarder history. However, at this rate, the cost of
adding more memory to make saturation time useful is far too
expensive: 1TB for 2 minutes of history.

A very natural question arises: what happens when R’s
history storage is saturated? R can evict old history entries
randomly, or according to some policy, e.g., LRU. However,
keeping track of history entries’ ages might lead to reduced
performance. Another alternative is to divide history storage
into smaller chunks, each corresponding to a set time window
of history entries. Once history storage is saturated, the oldest
chunk is erased to provide space for new entries. Using
the consuming-facing router example above, 4GB of history
storage can be divided into 12 chunks, each corresponding to
one hour. The router could then erase the history recorded 12
hours ago in order to store history entries for the coming hour.

2) Lossy Histories: Lossy histories are useful when lossless
ones are too expensive, e.g., in core network routers. Our
approach to lossy forwarder history is based on Bloom Filters
(BFs) – probabilistic data structures with tunable performance.
Given an m-bit BF that stores n elements, the number of
input hash functions k can be optimized and false positive
probability can be estimated using Equation 1 [34]. Note that
optimal value of k is also given as a function of m an n.

f(m, ·, n) ⇡ (0.6185)
m
n , k = ln(2) · m

n
(1)

In practice, a router can optimize the number of hash functions
in order to lower false positive probability. An upper bound of
k can be set to limit hashing overhead.

As mentioned above, standard BFs do not support entry
deletion, which is necessary to deal with the saturation prob-
lem. As indicated in [20], historical information for Internet-
scale traffic (IP packets) can not last beyond a few minutes,
which might still be less than what we needed for BEAD.

We now analyze lossy forwarder histories in the context of
two scenarios mentioned above with the same history storage
and data rates. We also assume that each content object added
to a BF changes the value of new distinct k bits from 0 to
1. Clearly, this is unrealistic, since we do not consider the
possibility of overlapping of hash function outputs for different
input elements. However, this assumption captures the worst-
case scenario.

• Consumer-facing router: To maintain a maximum false
positive probability of 10�32, a BF of size 4 GB can fit
n 2 ⇥ 108 elements. Based on Equation 1, it requires
k = 120 hash functions. Thus, it will take 890478 secs.
(a little over one day) for the forwarder history to be
saturated.

• Core router: To maintain the same false positive proba-
bility, a BF of size 1 TB can accommodate n 5.7⇥ 108

elements, which corresponds to k = 107 hashes. The
forwarder history will be saturated in 245 secs.

One major drawback of using BFs for lossy forwarding histo-
ries is that history saturation is more difficult to resolve. Recall
that, with lossless histories, a router can remove old entries in

5

184ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

order to add new ones. A router could also delete the oldest
chunk of the history once it is saturated. However, with lossy
histories, a router can either: (1) flush the entire lossy history
and start over, or (2) use CBFs which support element deletion
with the use of counters. Unfortunately, this introduces false
negative probabilities.

3) Packet Marking Analysis: Packet marking is compu-
tationally inexpensive since it requires a single MAC com-
putation per (either interest or erase) packet. However, its
drawback is increased memory footprint of the interest along
every hop. Recall that traces in the hop-sequence consist of: (1)
router identifier, (2) interface identifier, and (3) tag. Assuming
a 2-byte interface identifier and a SHA-256-based MAC, the
total size of each trace is 38 bytes. This corresponds to extra
608 bytes for each interest, assuming a 16-hop router-level
path.7

We now compare two hop-sequence techniques described
in Section VI-B3. Assume a tree topology with: (1) producer
P at the root with height h, (2) 2h consumers at the leaves
with height 0, and (3) 2h�2 routers. We assume all consumers
request content C and all routers append hop-sequence traces
to the corresponding interests. In this case, P receives 2h

interests, each with h � 1 traces. If P includes all these
traces in a single erase message, its size would grow by�
2h · (h� 1)

�⇥ 38 bytes. This grows to 35 MB for h = 16,
which is clearly impractical.8 On the other hand, if P decides
to send a separate erase to each consumer it would generate
2h erase messages. The same overall volume of traces (35
MB) will be sent from P to consumers. However, it would
be split into numerous erase messages. One advantage is that
erase messages size will likely not exceed the path MTU and
therefore not require fragmentation.

C. Summary of BEAD

As follows from the above, BEAD is not a single protocol.
It is a set of techniques for generating erase messages and
distributing them to routers which may have cached offending
content. We presented several alternatives, each of which
are practical in different network locations. For instance,
consumer-facing (caching) routers can keep lossless or lossy
histories for at least a day. Meanwhile, interest marking is bet-
ter suited for core network routers. Therefore, we believe that
all aforementioned techniques can be used, in combination, for
routing erase messages. Our specific recommendations are as
follows:

1) If R supports interest marking, the first tuple in the hop-
sequence traces is valid and appended by the router itself,
then information in the tuple is used to route the erase
downstream.

2) If the content is in R’s cache, then in-cache history is
used to route the erase.

3) If the content is not in R’s cache, but R keeps lossless
or lossy histories, then they are used for erase message
routing.

4) Otherwise, R floods received erase messages.

7The average Internet hop-count is currently 16 [35].
8We defer designing a more efficient scheme for combining hop-sequence

traces to future work.

Recommendation 1 is most appropriate for core network
routers, 2 and 3 for less busy edge network routers, and 4 as a
failover mechanism. Most routers would likely prefer to drop
erase messages instead of flooding them. This is why BEAD
is best-effort: it does not guarantee that each erase message
will be delivered to all entities caching the target content.

As mentioned before, not all published content is subject
to future deletion. If routers can make this distinction, there
is no need to record history entries about content that will
not be deleted. Such distinction can be achieved by adding an
optional CanERASE flag to content object headers. If this flag
is not present, the default behavior is to assume that no erase
messages will ever be sent for the corresponding content.
Moreover, interests requesting content that will not be deleted
are not required to be marked by routers. Producers could tell
consumers what content is subject to deletion (i.e., an erase)
by overloading catalogs or manifests. As described in [7] and
[36], catalogs and manifests contain lists of Self-Certifying
Names (SCNs) of content to be requested. This list is provided
by the producer and can contain the CanERASE flag alongside
each SCN. In this case, the interest header format should
be modified to include this optional flag. Moreover, since it
is not guaranteed that all content objects will be requested
using SCNs, the default behavior of (core) routers should be
to append hop-sequence traces to interests if the CanERASE

flag is missing.

VIII. SIMULATION RESULTS

Our simulations focused on two properties of BEAD:
network overhead (in terms of additional bytes added for
erase messages) and forwarder overhead for processing erase
messages, i.e., the average amount of time it takes to process
each erase.

A. Network Overhead

To assess network overhead due to generating and forward-
ing erase messages we study the most costly scenario next to
broadcasting: BEAD with lossless histories and routers with
lossless links. To do so, we extended ndnSIM 2.0 [37] – an
implementation of NDN architecture as a NS-3 [38] module for
simulation purposes – to support erase messages. With this
modified architecture, we ran two sets of experiments using
the following topologies (shown in Figure 2):

• The DFN network, Deutsches ForschungsNetz (German
Research Network) [39], [40]: a German network devel-
oped for research and education purposes which consists
of 30 connected routers positioned in different areas of
Germany. The blue dots in the figure represent group of
consumers (10 consumers per blue dot) connected to edge
routers (red dots), while the green dots represent core
network routers.

• The AT&T backbone network [41]. This consists of
over 130 routers. Each logical consumer in the figure
represents multiple (5) physical consumers connected to
an edge router.

In all experiments, consumers issue requests at a rate of
10 interests per second for content with the name prefix
/prefix/A and monotonically increasing sequence number
suffix. Every router uses a lossless history to record previously

6

185ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Consumer
Edge Router
Core Router

(a) The DFN topology.

C0

C1

C2

C3

C4

C5

C6

C7

C8
C9

C10

C11

C12
C13

C14

C15

R0 R1

R2

R3
R4

R5

R6

R7

R8

R9

R10
R11

R12

R13

R14
R15

R16

R17

R18

R19
R20

R21

R22

R23

R24

R25

R26

R27

R28

R29
R30

R31

R32

R33

R34

R35

R36

R37

R38
R39

R40

R41

R42

R43
R44 R45

R46

R47

R48

R49

R50
R51

R52

R53

R54

R55

R56R57
R58

R59

R60
R61
R62

R63R64

R65

R66

R67
R68

R69

R70 R71

R72

R73 R74

R75

R76
R77

R78

R79

R80

R81
R82

R83

R84

R85
R86

R87
R88

R89

R90
R91

R92

R93
R94

R95

R96
R97

R98
R99

R100

R101

R102

R103

R104 R105

R106

R107
R108

R109
R110R111

R112R113
R114
R115

R116

R117
R118

R119
R120

R121 R122

R123
R124

R125
R126

R127
R128
R129
R130
R131

(b) The AT&T topology. Blue nodes represent clusters of consumers and black
nodes represent routers.

Fig. 2. The DFN and AT&T topologies.

forwarded content objects for erase forwarding. Routers com-
municate over lossless links. Lastly, producers issue erase
messages for 50% of their content every 1 second. (This
may cause a producer to send a BEAD more than once.)
Under these conditions, we measure router packet processing
overhead with respect to content objects and erase messages.
Figures 3(a) and 3(b) compare the overhead of processing
content objects and erase messages in the DFN topology with
160 consumers. Similarly, Figures 3(c) and 3(d) show the same
type of overhead in the AT&T topology with the same number
of consumers. Comparatively, we find that erase messages
contribute very little overhead to the network with respect to
the bandwidth consumed by content objects. Specifically, the
total amount of erase message traffic in the DFN topology
is 1.8% of the total content objects traffic, whereas it is only
0.09% in the AT&T topology. To understand these differences,
consider Figures 3(c) and 3(d). In Figure 3(c), core routers
receive and forward more content packets than those not in
the core. In Figure 3(d), those same core routers receive erase
messages but do not forward all of them since they have were
not in the history. This means that the content had previously
been deleted. This is why the amount of egress traffic is less
than the amount of ingress traffic.

We also assessed the actual computational overhead in-
curred by each router in these scenarios. The average time
to process a single erase message for the DFN and AT&T
scenarios are shown in Figures 4(a) and 4(b). We see that only
a subset of the routers incur greater than 1.0ms to process an
erase. These are the routers closest to the producer since they
almost always receive, store, and forward erase messages.

IX. MONETIZING CONTENT DELETION

We now discuss potential economic incentives for routers
and ISPs to support content deletion and implement BEAD.

A. BEAD & Accounting

So far, we discussed how the network routes erase mes-
sages towards routers that possibly cache corresponding con-
tent. The main challenge is that producers do not know where

such content is cached. We also acknowledge that BEAD is
best-effort, unless flooding is used, which is undesirable.

However, if producers knew exactly where content is
cached, then erase messages could be routed efficiently. For
example, if a producer knew that a particular AS had a copy
of the content cached by some node in the system, then the
producer could specifically ask the AS to distribute an erase
internally. This is far superior to routing erase messages in
the core of the network in hopes that they might reach this AS
(and any others with a cached copy).

We believe that it is possible to distribute content caching
location information along with accounting information. A
scheme for secure accounting in CCN [42], suggests that
routers should notify producers of content they serve from
caches by sending a so-called “push interest” or pInt. This
approach can be modified such that: (1) AS gateways send pInt
messages when content is cached in their domain and (2) pInt
messages carry the prefix of an AS accounting management
server within the AS.9 Whenever a producer wants to delete
certain content, it sends an erase message to each accounting
management server (one per AS) that previously reported
caching corresponding content. Then, the latter distribute the
erase message within their ASs. Intra-AS distribution can
be achieved via techniques described in Section VI. In fact,
flooding might well be appropriate for that purpose since erase
messages would not traverse AS boundaries.

The relationship between accounting and BEAD is natural.
This is because one of the important applications of accounting
is to bill for cache space. From an economic perspective, it
would not be surprising for in-network caching to become a
paid service. Routers and ASs could offer caching services for
producers. A reasonable extension to this service would be to
also offer a deletion service via BEAD.

9Accounting management servers are centralized entities that manage ac-
counting activities inside the AS.

7

186ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) Data processing overhead in the DFN topology with 160 consumers. (b) erase message processing overhead in the DFN topology with 160 con-
sumers.

(c) Data processing overhead in the AT&T topology with 160 consumers. Not
all routers are present in the image.

(d) erase message processing overhead in the AT&T topology with 160
consumers. Not all routers are present in the image.

Fig. 3. Network overhead from processing erase messages. Routers are identified by integers in the range [160..189]. InData (OutData) and InErase (OutErase)
correspond to the amount of content object and erase traffic received from (sent to) an upstream (downstream) node, respectively. Ingress data is shown in red
and egress data is shown in blue.

B. BEAD in the Core

Flooding in the network core is not viable as a means
of distributing erase messages. Moreover, forwarder histories
and packet marking are (relatively) expensive operations and
too costly for the fast path in the core. ISPs will likely just
drop these messages due to a lack of economic incentive to
forward them. Thus, in any plausible CCN network – where
producers and consumers are at the edges of a network, while
most traffic is routed through the core – erase messages are
most likely to be propagated along only half of producer-to-
consumer path(s). This is troublesome since content is most
likely to be cached near consumers in edge (or near-edge)
routers, and erase messages might never reach these routers.

To address this issue, core routers must be incentivized
to carry and forward erase messages from producers to con-
sumers. Since erase messages will typically amplify traffic,

producers should be expected to pay for this increase. As
before, this effectively turns BEAD into a service provided
by ISPs that complements monetized caching; producers who
pay for cache space may also have the choice to pay for on-
demand deletion via BEAD.

X. CONCLUSION

We proposed BEAD – a technique for best-effort au-
tonomous deletion in CCN. BEAD is designed to solve the
problem of stale or unsafe content in CCN. We described
an efficient and lightweight form of authenticator for BEAD
deletion requests and discussed several ways in which they
could be routed from producers to consumers. We assessed
the performance of each technique and verified the network
overhead using simulations. For future work, we will expand
the set of experiments to study the penetration impact due to
erase message forwarding based on lossy histories. We will

8

187ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) DFN topology with 160 consumers. (b) AT&T topology with 160 consumers.

Fig. 4. Forward erase processing overhead in the DFN and AT&T topologies. The results are captured for each of the routes assessed in the bandwidth
overhead experiments. Routers are identified by integers in the range [160..189] and correspond to the routers in Figure 3.

also study this metric in the presence of lossy links. Finally,
we will formalize the integration of accounting and BEAD to
form a comprehensive platform for premium caching in CCN.

REFERENCES

[1] A. Dabirmoghaddam et al., “Understanding optimal caching and oppor-
tunistic caching at the edge of information-centric networks,” in ICN,
2014.

[2] M. Mosko and I. Solis, “CCNx semantics,” 2015, https://www.ietf.org/
id/draft-irtf-icnrg-ccnxsemantics-00.txt.

[3] A. Compagno et al., “To NACK or not to NACK? negative acknowl-
edgments in information-centric networking,” in ICCCN, 2015.

[4] G. Mauri and G. Verticale, “Distributing key revocation status in named
data networking,” in Advances in Communication Networking, 2013.

[5] Y. Yu et al., “An endorsement-based key management system for
decentralized NDN chat application,” Technical Report NDN-0023,
2014.

[6] C. Ghali et al., “Interest-based access control for content centric
networks,” in ICN, 2015.

[7] C. Ghali et al., “Network-layer trust in named-data networking,” ACM
CCR, vol. 44, no. 5, 2014.

[8] Y. Yu et al., “Schematizing trust in named data networking,” in ICN,
2015.

[9] C. Wood et al., “Flexible end-to-end content security in ccn,” in CCNC,
2014.

[10] F. Angius et al., “Drop dead data,” https://users.soe.ucsc.edu/⇠cedric/
papers/angius2015drop.pdf.

[11] M. Myers et al., “RFC 2560: X.509 internet public key infrastructure
online certificate status protocol-ocsp,” Internet Engineering Task Force,
1999.

[12] Z. Zhu and A. Afanasyev, “Let’s ChronoSync: Decentralized dataset
state synchronization in named data networking,” in ICNP), 2013.

[13] R. Ishiyama et al., “On the effectiveness of diffusive content caching
in content-centric networking,” in APSITT, 2012.

[14] P. K. Agyapong and M. Sirbu, “Economic incentives in information-
centric networking: implications for protocol design and public policy,”
IEEE Communications Magazine, vol. 50, no. 12, 2012.

[15] A. Araldo et al., “Cost-aware caching: optimizing cache provisioning
and object placement in ICN,” in GLOBECOM, 2014.

[16] C. Wang and J. W. Byers, “Incentivizing efficient content placement in
a global content oriented network,” Technical Report BUCS-TR-2012-
012, Boston University, Tech. Rep., 2012.

[17] A. Araldo et al., “Cost-aware caching: Caching more (costly items) for
less (ISPs operational expenditures),” TPDS, 2015.

[18] K. Suksomboon et al., “On incentive-based inter-domain caching for
content delivery in future internet architectures,” in AINTEC, 2012.

[19] A. Araldo et al., “Design and evaluation of cost-aware information
centric routers,” in ICN, 2014.

[20] A. C. Snoeren et al., “Hash-based IP traceback,” in ACM CCR, vol. 31,
no. 4, 2001.

[21] M. T. Goodrich, “Efficient packet marking for large-scale IP traceback,”
in CCS, 2002.

[22] A. Belenky and N. Ansari, “IP traceback with deterministic packet
marking,” IEEE communications letters, vol. 7, no. 4, 2003.

[23] P. Gasti et al., “Dos and ddos in named data networking,” in ICCCN,
2013.

[24] F. Baker and P. Savola, “RFC 3704: Ingress filtering for multihomed
networks,” Tech. Rep., 2004.

[25] R. Stone et al., “CenterTrack: An IP overlay network for tracking DoS
floods.” in USENIX, 2000.

[26] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Communications of the ACM, vol. 13, no. 7, 1970.

[27] L. Fan et al., “Summary cache: a scalable wide-area web cache sharing
protocol,” TON, vol. 8, no. 3, 2000.

[28] L. Zhang and Y. Guan, “Detecting click fraud in pay-per-click streams
of online advertising networks,” in ICDCS, 2008.

[29] G. Koloniari et al., “One is enough: distributed filtering for duplicate
elimination,” in CIKM, 2011.

[30] F. Deng and D. Rafiei, “Approximately detecting duplicates for stream-
ing data using stable bloom filters,” in SIGMOD/PODS, 2006.

[31] H. Krawczyk et al., “RFC 2104: HMAC: Keyed-hashing for message
authentication,” 1997.

[32] P. Gutmann, “RFC 6476: Using message authentication code (MAC)
encryption in the cryptographic message syntax (CMS),” 2012.

[33] J. Garcia-Luna-Aceves and M. Mirzazad-Barijough, “Enabling correct
interest forwarding and retransmissions in a content centric network,”
in ANCS, 2015.

[34] A. Broder and M. Mitzenmacher, “Network applications of bloom
filters: A survey,” Internet mathematics, vol. 1, no. 4, 2004.

[35] F. Begtasevic and P. Van Mieghem, “Measurements of the hopcount in
internet,” in PAM, 2001.

[36] J. Kurihara et al., “An encryption-based access control framework for
content-centric networking,” in IFIP Networking, 2015.

[37] S. Mastorakis et al., “ndnSIM 2.0: A new version of the NDN simulator
for NS-3,” Technical Report, 2015.

[38] “Network simulator 3 (NS-3),” http://www.nsnam.org/.
[39] “DFN-Verein,” http://www.dfn.de/.
[40] “DFN-Verein: DFN-NOC,” http://www.dfn.de/dienstleistungen/

dfninternet/noc/.
[41] A. Compagno et al., “Poseidon: Mitigating interest flooding DDoS

attacks in named data networking,” in LCN, 2013.
[42] C. Ghali et al., “Practical accounting in content-centric networking,” in

NOMS, 2016.

9

188ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

stiller
Typewritten Text

stiller
Typewritten Text

Improving the Freshness of NDN Forwarding States
Jianxun Cao∗, Dan Pei∗, Zhelun Wu∗, Xiaoping Zhang∗, Beichuan Zhang†, Lan Wang‡, Youjian Zhao∗

∗Tsinghua University †University of Arizona ‡University of Memphis
∗Tsinghua National Laboratory for Information Science and Technology (TNList)

Abstract—Named Data Networking (NDN) is a new Internet
architecture that replaces today’s focus on where – addresses
and hosts – with what – the content that users and applications
care about. A unique advantage of NDN over IP is the adaptive
forwarding plane, which, by observing the performance of
Interest/Data exchange, can dynamically select the best perform-
ing forwarding path, detect and recover from failures, load-
balance across multiple paths, and mitigate attacks such as prefix
hijacking and DDoS. A key component of adaptive forwarding is
interface ranking, namely when and how to update the interfaces’
metrics and rank them.

As we will point out in this paper, however, the existing
interface ranking scheme suffers from the problem of outdated
forwarding states. Using two concrete problems, SRTT slow-
convergence and probing oscillation, we illustrate how outdated
forwarding states can impact the forwarding performance. We
propose new forwarding strategies with Adaptive SRTT Update
(ASU) and Proactive Probing to achieve up-to-date forwarding
states, and evaluate how these strategies are able to address the
two problems. Both theoretical analysis and simulation results
show that the new strategies can reduce SRTT convergence time
by 37.9% and the loss rate by 75% to 94.75%, compared to the
existing interface ranking strategies.

I. INTRODUCTION

Named Data Networking (NDN) [1] is a new Internet
architecture that emphasizes the content itself rather than its
container (e.g., host) or channel (e.g., connection). In NDN,
the consumer sends an Interest packet into the network to
request a Data packet. The Interest carries the name of the
data being requested instead of the destination address, and
the matching Data packet can be retrieved from anywhere.
By shifting the network service abstraction from “delivering a
packet to the destination” to “retrieving a named data”, NDN
brings benefits such as in-network caching, native multicast,
data-centric security and many others.

A unique feature of NDN is its adaptive forwarding
plane [2], [3]. When an NDN router forwards an Interest
packet out via a particular interface, it records this Interest
in the Pending Interest Table (PIT) and starts waiting for
a matching Data packet to return on the same interface. If
the Data does return, the content retrieval is a success and
the round-trip time (RTT) can be recorded to reflect the
performance of using that interface. If the Data does not return
in time or a Negative Acknowledgement (NACK) packet is
received, the router knows that this interface does not work
in retrieving this content and can record this information as
well. This forms a forwarding-plane feedback loop that allows
the router to detect any network fault, e.g., link failures and

congestion, and take an alternative path to resolve the problem
without relying on the control plane, i.e., routing convergence.
Thus compared with IP’s forwarding plane, NDN’s is more
intelligent, more resilient to network faults, and more effective
in using multiple paths.

The decision process at the adaptive forwarding plane is
called a “forwarding strategy,” which considers the recorded
performance metrics of multiple interfaces and chooses the
most suitable one to forward an incoming Interest packet.
A key component of forwarding strategies is the interface
ranking, which updates the interfaces’ metrics and ranks
all the outgoing interfaces, so that the strategy can choose
the best interface to use. Without a good interface ranking
scheme, forwarding states may be outdated, leading to reduced
forwarding efficiency. In this paper, we focus on designing
interface ranking schemes that can keep forwarding states
up to date. We analyze two key parts of interface ranking:
periodical measurement and color classification. The existing
interface ranking schemes suffer from two problems: SRTT
slow-convergence and Probing oscillation, which illustrates
the impact of outdated forwarding states on forwarding per-
formance. We propose new schemes for interface ranking to
achieve up-to-date forwarding states, and show the effective-
ness of our proposed solution via theoretical analysis and
simulations.

The contributions of our work are twofolds. First, to the
best of our knowledge, this paper is the first to study in
depth interface ranking strategies and report two specific
problems, SRTT slow-convergence and probing oscillation,
which affect the accuracy of forwarding states. Second, we
propose two new schemes, the Adaptive SRTT Update (ASU)
algorithm and Proactive Probing approach, to achieve up-to-
date forwarding states. Both theoretical analysis and NDNSim
simulation results show that our new schemes reduce SRTT
convergence time by 37.9% and the loss rate by 75% to
94.75%, compared to existing interface ranking strategies.

The remainder of the paper is organized as follows. Sec-
tion II introduces basic concepts in NDN’s adaptive forward-
ing, especially interface ranking. Limitation of current adaptive
forwarding strategies is shown in Section III. SRTT slow-
convergence and probing oscillation problems are described in
Section IV and Section V, respectively. We introduce our new
strategies and carry out the analysis theoretically in Section VI
and Section VII, respectively. In Section VIII, we evaluate
our new strategies using ndnSIM 2.0 simulator and analyze
the results. Section IX briefly reviews related work. Finally,
Section X presents our conclusion.ISBN 978-3-901882-83-8 c⃝ 2016 IFIP

189ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

II. ADAPTIVE FORWARDING IN NDN

In NDN, routers maintain state information of pending
Interests, which brings adaptive forwarding plane to observe
data retrieval performance and explore multiple forwarding
paths. Interface ranking [3] is the key component of adaptive
forwarding1 to help routers find the current best outgoing
interface to fetch data. Color classification and periodical mea-
surement are introduced to help implement interface ranking.

Based on interface ranking, there are two major adaptive
forwarding strategies in the literature2: Best-Route [3] and NC-
C [5]. These two approaches are similar in interface ranking
and only differ slightly in the number of probed interfaces in
color classification.

A. Name prefix

In NDN, Data names instead of IP addresses are hier-
archically structured. For routing aggregation, router’s FIB
(Forwarding Information Base) contains name prefixes, and
network routing protocols will distribute name prefixes in a
way similar to distributing IP prefixes in todays Internet. A
FIB entry records the working status of each interface. Please
note that interface status is per-name-prefix-per-interface.

B. Periodical measurement and color classification

Detailed interface metrics (e.g. SRTT) are used for ranking
interfaces. For a given prefix, to maintain the ranking metrics
for interface ranking, the router periodically sends a copy of
the Interest packet to all the interfaces to measure various
metrics (such as SRTT) used in forwarding policies, and we
name this probing as periodical measurement.

Besides ranking with interface metrics, color classifica-
tion [3] is used to record an outgoing interface’s working status
for each prefix: GREEN means that the interface can bring
the data back, YELLOW means that it is unknown whether
the interface can bring the data back, and RED shows that the
interface cannot bring the data back. The color classification
are updated based on various feedbacks (whether to get the
data successfully or not) from the network. Please note the
periodical measurement can only change the ranking metrics,
and it does not change the color of the interfaces regardless
of the measurement results.

With periodical measurement and color classification, the
interface ranking for a given prefix works as follows.

1Adaptive forwarding consists of NACK, interface ranking, congestion
control, and so on. In this paper, we just focus on interface ranking, and
our study does NOT influence the strategy of NACK and congestion control.

2In this paper, we omit the impractical broadcast approach [1], which
floods the Interest packet to all available interfaces when a router receives
any incoming Interest packet. Obviously, for each Interest packet, broadcast
approach can guarantee fetching the data from the optimal path, but it will
tremendously add extra overhead. Furthermore, broadcast strategy breeds the
Interest flooding attack [4] and causes trouble for network security in NDN.
Thus, broadcast strategy has little practical application value except in some
extreme cases.

1) Ranking rules: For choosing the best path, GREEN
interfaces are preferred over YELLOW ones. RED interfaces
are not used in forwarding, and can change color only by
the routing protocol. When ranking interfaces of the same
color, NDN supports a wide variety of forwarding policies
(or ranking metrics), such as “follow routing” based on OSPF
cost, “the sooner the better” based on SRTT, and so on.

2) Forwarding based on ranking: For a specific Interest
prefix, all the Interest packets destined to the same prefix
will be transmitted through the best GREEN interface until
the router receives a NACK or Timeout. The router will then
degrade the currently used GREEN interface to YELLOW. If
there still exists any GREEN interface, the router will switch
to the highest ranked GREEN interface. Otherwise, the router
will probe the YELLOW outgoing interfaces in the order of
their ranking. We call the process of probing the YELLOW
interfaces as triggered probing. We will explain the triggered
probing in detail in the following.

C. Triggered Top-N probing

In Best-Route, once the probing process is triggered, the
router will keep forwarding Interests along the current for-
warding interface, which was just degraded from GREEN to
YELLOW, and send a probing Interest to the highest ranked
YELLOW interface to test whether it can bring Data back.
When it receives NACK or Timeout for the probing packet, it
will start trying the second-ranked YELLOW interfaces, and
so on. On the other hand, if a Data comes back from the
probed YELLOW interface, the router will change the color
of this interface from YELLOW to GREEN, and this GREEN
interface will be used as the best path, by now the triggered
probing process is finished.

NCC is implemented in CCNx 0.7.2 as the default strategy.
In NCC strategy, once the probing process is triggered, the
router probes the top 2 YELLOW interfaces together if there
are more than one YELLOW interfaces. Otherwise, it probes
the only YELLOW interface. All other mechanisms are the
same as in Best-Route. We unify these two approaches as
Triggered Top-N probing approaches, where N = 1 in best-
route, and N = 2 in NCC.

D. Benefits of interface ranking in adaptive forwarding plane

The periodical measurement and color classification with
triggered probing in NDN’s adaptive forwarding plane help
a router maintain the information for all its interfaces. It
allows the forwarding plane to quickly detect link fault through
NACK mechanism and path probing. When a NACK arrives or
any Interest packet is timed out, the router can freely explore
the alternative path to find an available path to continue the
forwarding work.

Compared with the routing plane, the forwarding plane can
handle the link failure more quickly and solve the problem
more flexibly. The forwarding plane can deal with the link
failure without too much additional overhead as soon as
possible when discovering any network fault.

190ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

III. LIMITATIONS OF INTERFACE RANKING

Interface ranking can help routers detect link fault more
quickly, handle the link failure more promptly and solve the
problem more flexibly. In ideal conditions, to choose outgoing
interface, routers should make the decision to forward packets
according to the global network status, because, for routers,
the global network status can provide the optimal decision
in real time to help routers optimize the outgoing packets
flow. Specially, when the routers detect link fault, the global
real-time network status can help routers ensure the essential
network problem and figure out the most efficient solution.
However, with the network measurement in the forwarding
plane, the routers can just obtain the local information. Unlike
the global information in routing plane, the local information
in the forwarding plane limits the efficiency of forwarding
packets and dealing with the link failure.

To approximate the global network status as far as possible,
the network measurement for interface ranking metrics in
forwarding plane and the ranking rules should be adaptive
enough. However, the existing simple periodical measurement
and color classification cannot work well enough.

A. Periodical measurement
With the in-network cache, the uncertainty of location where

Interest packets are satisfied leads to the frequent changing
of network metrics. Thus, in NDN, the simple periodical
measurement will lead to some outdated network metrics. In
this paper, we focus on the important network metric for
interface ranking: SRTT (Smoothed Round-Trip Time). In
Section IV, we will introduce a new problem caused by SRTT
measurement: SRTT slow-convergence.

B. Triggered Top-N probing approach for color classfication
From Section II, we note that Triggered Top-N probing

approach is reactive, which is illustrated in the following two
key details. First, The probing is triggered after the NACK or
Timeout, and YELLOW interfaces are probed in the order of
their rankings. However, the ranking is based on periodical
measurement, which can be quite outdated when there are
bursty congestions along the path. Second, the change of
interface color is done at the packet-level feedback for each
prefix: NACK or Timeout for GREEN interfaces, and Data
for YELLOW interfaces. When faced with burst congestions,
the colors might frequently change between GREEN and
YELLOW back and forth. In fact, later in Section V, we
will show that, with the outdated ranking information under
burst congestions, color oscillation will result from the packet-
level action and will cause a new problem in NDN forwarding
plane: probing oscillation.

IV. SRTT SLOW-CONVERGENCE

In this section, we will focus on the measurement of SRTT
and introduce a new problem: SRTT slow-convergence. SRTT
reflects the network situation and is used for calculating RTO
(Retransmission Time-Out) value. The reason why SRTT is
used instead of RTT, is to eliminate as much as possible the

TABLE I
THE FIB ENTRY OF Rc

prefix interface
ID OSPF RTT COST COLOR

/prefix

R2 0.55 0.7 1.27 GREEN
R3 0.67 0.73 1.4 YELLOW
R1 0.69 0.75 1.44 YELLOW
R4 0.75 0.8 1.55 YELLOW

TABLE II
SOME NOTATIONS

Con The consumer
Pro The producer
Ri The routers
r The loss rate of Rp

k The number of sent Interest packets per second
tdata The RTT of each outgoing interface
tout The timeout value

impact of the network jitter which is caused by the instable
network state such as the queue buffer congestion. In this
paper, we adopt the typical algorithm: Exponential weighted
moving average in TCP/IP to update the SRTT:

SRTTi = α · SRTTi−1 + (1− α) ·RTTi (1)

Where α is the constant weighting factor (0 < α < 1).
Usually, α is between 0.8 and 0.9. In this paper, we let α = 0.8
for the analysis and evaluation.

Fig. 1. A sub-topology of Tsinghua University Campus Network

Here is an example to describe SRTT slow-convergence.
We use the sub-topology of Tsinghua University as shown in
Fig 1 and give the COST3 for interface ranking as shown in
Table I. Some notations are defined in Table II.

We assume that at some time the consumer fetches the data
along the path Con−Rc−R2−Rp−Pro. Here is a simple
simulation to illustrate the problem. At the start, there is no
cache in R2 and Rp, so the consumer gets the data from the
producer, which needs 150ms. From 5s to 10s, we assume that
R2 caches the needed data4 and the consumer can just get the

3We specify COST to be OSPF +RTT and the value of OSPF and RTT
are both normalized linearly.

4For example, another consumer connected to R2 fetches the same data
from 5s to 10s.

191ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 2. A case to describe SRTT Slow-Convergence. In this case, the initial
RTT is 150ms. From 5s, the RTT is reduced to 50ms and is recovered to
150ms after 10s.

data from R2 directly during this 5s. We assume this RTT
equals 50ms. If the first consumer sends 100 Interest packets
per second and the interval between two adjacent probing
equals 100, then the RTT and SRTT perform as shown in
Fig. 2. We can see that after 5s, SRTT cannot reflect the real
RTT. We call this problem as SRTT Slow-Convergence.

SRTT slow-convergence just exists in NDN while not in IP.
In IP routing plane, the network metrics are nearly constant
when the network works stably. Thus, SRTT filters the varia-
tion of RTT that are just caused by network jitter. However,
in NDN, the variation of RTT cannot completely represent
the network faults because of in-network cache. With the
additional overhead, the frequency of periodical measurement
cannot be very high, while the low measurement frequency
will cause the SRTT value to not converge to the rapidly
variational RTT timely, which makes SRTT often outdated.
The outdated SRTT will deeply influence the judgement and
lead to the above-mentioned SRTT Slow-Convergence.

V. PROBING OSCILLATION

In this section, we introduce a new problem existing in NDN
forwarding plane but not in IP: Probing Oscillation.

A. Problem description
Here is a simple example to illustrate what probing oscilla-

tion is. In Fig 1, the router Rc has four next hops R1, R2, R3

and R4. According to the interface ranking in FIB Table I, we
see that firstly Rc will choose R2 as the top choice to forward
all the Interest packets.

Now we assume that Rp − Pro congests, then, for Rc,
the next actions of choosing the forwarding interface oscillate
between the next two situations:

1) Situation 1: R2 → R3: When congestion occurs, some
Interest packets along Rc − R2 − Rp − Pro cannot fetch
the corresponding data before the timer expires. But Rc

just considers that R2 now is not suitable to fetch data,
so according to interface ranking, Rc will probe the second
highest ranked interface R3 to forward Interest packets along
Rc−R3−Rp−Pro. It is worth noting that the link Rp−Pro is
the shared common sub-path of both paths (Rc−R2−Rp−Pro
and Rc−R3−Rp−Pro), thus for Rc, R3 is still not the good

choice. However, because congestion just causes packet loss
instead of failure, even if the loss rate of Rp − Pro reaches
up to 10%, the success rate of probing is as high as 90%.
Thus, there is a very low possibility that a simple probing
packet detects congestion, while for a given period of time,
there is a very high possibility that congestion leads to timer
expiration of some Interest packets. So, if the router probes
R3 successfully, R3 then becomes GREEN to forward Interest
packets and R2 changes to YELLOW.

2) Situation 2: R3 → R2: Once the choice for Rc changes
from R2 to R3, this choice is still instable and may change
from R3 to R2. There are two possible reasons. First, the
path Rc − R3 − Rp − Pro also congests (including the
congested pathRp − Pro), then Rc will check the highest
ranked YELLOW interface, namely R2, and may switch back
to R2. Second, as illustrated in Fig. 3, we suppose at time t0,
Rc sends an Interest packet I1 to R2 which is lost later. So
after tout time, Rc does not receive the corresponding Data
packet and mark the interface as YELLOW (Situation 1). But
during this tout tentative-sending time period, Rc has sent
out k · tout Interest packets to R2 and some of these Interest
packets, such as I2, I3, are satisfied after t0 + tout. This will
cause R2 to become GREEN again and R2 replaces R3 as the
forwarding interface.

In conclusion, Rc will switch its outgoing interface back
and forth between R2 and R3, and we name this phenomenon
as probing oscillation.

Fig. 3. A simple illustration of Probing Oscillation

The essential reason why probing oscillation occurs is the
high-frequency color variation between GREEN and YEL-
LOW caused by multipath forwarding with a shared congested
common link and packet-level triggered probing, which makes
that probing oscillation is unique in NDN while not in TCP/IP.
In NDN, probing oscillation commonly happens and greatly
influences the benefit of multipath forwarding according to
our experiments. When the router detects the network failure,
with the influence of probing oscillation, it cannot recover
from the network failure, which may bring a high loss of
packets. Although we just chose a simple topology to explain
the problem, in a more large and complex network, probing

192ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

oscillation still continues to appear as long as there exists a
shared common link, especially when there is a bottleneck
link. Experiments in Section VIII prove the above claims.

VI. ADAPTIVE SRTT UPDATE (ASU) ALGORITHM FOR
PERIODICAL MEASUREMENT

In this section and the next section, we propose some
new strategies to improve the freshness of forwarding states
to essentially solve the SRTT slow-convergence and probing
oscillation. In this section, for periodical measurement, we
firstly propose an Adaptive SRTT Update (ASU) algorithm
to calculate SRTT more accurately with dynamic sample fre-
quency instead of the simple periodical measurement. Then we
will analyze the theoretical efficiency of solving the probing
oscillation.

A. Adaptive SRTT Update (ASU) algorithm

Unlike IP, the forwarding plane in NDN can gain the
dynamic network congestion status in real time, so that any
router can update the cost of each outgoing interface per prefix
according to the RTT of the pending Interest packets. Thus,
all the interfaces need to update the SRTT value to reflect the
network situation more exactly, which means routers need to
flood a probing Interest packet periodically to all the interfaces.
However, the probing frequency is hard to be set. On the
one hand, low probing frequency will cause SRTT slow-
convergence as described in Section IV. On the other hand,
high probing frequency will cause too much extra overhead.
In fact, in the most situation, SRTT tends to be constant
except when the current RTT varies widely, e.g, cache hit.
We hope to adopt dynamical sample frequency to make sure
that the probing frequency can get lower when the RTT is
approximately constant and get higher with the great variation
of RTT.

Thus, we propose a new Adaptive SRTT Update (ASU)
algorithm to calculate SRTT more accurately with dynamical
sample frequency and improve SRTT slow-convergence. We
use ∆n to denote the number of Interest packets between two
adjacent probing. The initial value of ∆n is denoted as ∆n0

and the minimum or the maximum of ∆n is denoted as ∆nmin

or ∆nmax. We define the Changing Factor of RTT to be η
which is calculated as follows:

η =

∣∣∣∣
RTT − SRTT

RTT + SRTT

∣∣∣∣ (2)

From Equation 2, we can see that:

0 ≤ η < 1 (3)

Obviously, η is a normalized value to describe the distance
between the real RTT and SRTT. The greater RTT changes,
the bigger η will be. Based on the Changing Factor η, we
propose the stretch ∆n:

∆ni =

{
max(∆nmin, (1− ηi)∆ni−1) η ≥ ηthreshold
min(∆nmax, (1 + β)∆ni−1) η < ηthreshold

(4)

In the above formula, ηthreshold denotes the critical value
for distinguishing RTT changing greatly from RTT tending
to SRTT. If η is larger than ηthreshold, ∆n should become
smaller to increase the probing frequency. Otherwise, ∆n
should become bigger to decrease the probing frequency.

B. Analysis for solving SRTT slow-convergence

There are two cases when calculating SRTT: 1) When RTT
changes little and 2) When RTT changes greatly. In case 1,
no matter whether the ASU algorithm is used or not, SRTT
will still be close to the real RTT, that is, all the strategies
perform perfectly. However, by using the ASU algorithm, the
Extra Overhead Ratio (EOR) will be lower:

EOR =
1

∆nmax
(5)

In case 2, according to the definition of η in Equation 2, great
variation of RTT means η ≥ ηthreshold. We assume that at
0 time, RTT changes from one value to another. Let SRTT0

denote the initial SRTT at 0 time. We define m as:

m =
RTT

SRTT0
(6)

Obviously, when ηi < ηthreshold, SRTTi approximately
converges to RTT. From Equation 1, we can get the general
term formula of SRTT:

SRTTi = RTT ·
[
1−

(
1− 1

m
αi

)]
(7)

Let ηi < ηthreshold, then the probing number of quitting the
SRTT-convergence ic equals:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ic =

⌈
lgα

2ηthreshold
(1− ηthreshold)(

1
m − 1)

⌉
,m < 1

ic =

⌈
lgα

2ηthreshold
(1 + ηthreshold)(1− 1

m)

⌉
,m > 1

(8)

Assume that m = 3, ηthreshold = 0.1, α = 0.8, we can work
out ic = 6, which means, SRTT will converge to RTT after
sampling for only 6 times. Thus, ASU algorithm is efficient
for SRTT slow-convergence.

VII. PROACTIVE PROBING APPROACH FOR COLOR
CLASSIFICATION

In this section, for color classification, we introduce Proac-
tive Probing approach as a new triggered probing approach,
including introducing path backup and probability-based for-
warding, to improve interface ranking and analyze the theo-
retical efficiency of solving probing oscillation.

A. Proactive Probing approach

The Proactive Probing approach contains two sides: 1) con-
stant Multi-GREEN-Interface strategy to maintain several
path backups, and 2) probing based on Probing Probability
Function (PPF) algorithm for YELLOW interfaces to avoid
probing strictly by interface ranking.

193ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

1) Constant Multi-GREEN-Interface strategy: The basic
idea of constant Multi-GREEN-Interface strategy is that, for
all the routers of which outgoing interfaces number is larger
than 2, we set more than one GREEN interface to ensure some
backup paths. The router will keep the number of GREEN
interfaces as a constant Minimal Number of GREEN Inter-
faces (MNGI). Constant Multi-GREEN-Interface strategy will
start when an Interest packet comes to check the number of
GREEN interfaces. While the number of GREEN interfaces
is less than MNGI, the probing based on PPF mentioned in
the following part will be triggered to choose one YELLOW
interface to explore an available path. When this trying suc-
ceeds, the router will mark it as a GREEN interface. In order
to prevent an extra cost, the value of MNGI should not be too
large. We suggest that MNGI value does not exceed half the
number of total interfaces.

2) Probing based on Probing Probability Function algo-
rithm: As the above description, probing will be triggered
when constant Multi-GREEN-Interface strategy discovers that
the GREEN interfaces number is less than MNGI. However,
how to probe will affect the performance directly. It is not
smart enough that the router chooses the probing interface
only based on the Interface Ranking. There are two reasons
for this: 1) For each YELLOW outgoing interface, with the
introduction of router cache, the OSPF value from the routing
algorithm cannot reflect the actual time of fetching the data.
2) Because SRTT will not be updated since this interface was
remarked as YELLOW, the SRTT similarly cannot reflect the
actual efficiency of fetching the data, which means that the
SRTT may be outdated. For example, in Fig. 1, the OSPF
value of R4 is the highest, but when the requested data is
cached in R4, choosing R4 to fetch data is the optimal choice.

Thus, at this time, the COST attribute is not effective
enough to rank all the YELLOW interfaces. But we can
assume that the smaller the COST is, the higher the probability
of the optimal choice will be. Based on this thought, we
come up with the Probing Probability Function (PPF) to help
probability-based probing. PPF should satisfy the decreasing
monotonicity:

COSTi > COSTj ⇔ PPF (i) < PPF (j) (9)

In this paper, we choose the following formula as PPF:

PPF (i) =
1/COSTi∑
(1/COSTi)

(10)

PPF ensures that each outgoing interface has a chance
to be selected for probing. The probability is due to the
history information of the COST calculated by both the routing
algorithm and SRTT. Based on PPF, the router has a high
probability of choosing the interface which performed well in
the past, which guarantees the fairness for all interfaces.

B. Analysis of solving probing oscillation
The topology in Fig. 1 is selected for analysis. With Proac-

tive Probing strategy, we choose the Best-Route (Triggered
Top-1 probing) strategy for theoretical analysis. We try to

analyze how many probing times the loss rate of Rc will
converge to 0.

We assume that, at first, Rc chooses R2 to fetch the data.
When the first packet loss occurs, only if Rc doesn’t choose
R3 as its next outgoing interface, then Rc jumps out of
the probing oscillation. Thus, the probability of loss rate
convergence equals 1− PPF (3). Similarly, when the second
packet loss occurs, the probability of quitting the probing
oscillation equals 1 − PPF (2). Now we assume that the ith

packet loss occurs, then the probability of quitting the probing
oscillation equals:

p =

{
1− PPF (2) if i%2 = 1
1− PPF (3) if i%2 = 0

(11)

We can approximatively consider it as Geometric distribution
G(p) while p ≃ [(1 − PPF (2)) + (1 − PPF (3))]/2. Thus,
the expectation of the number of quitting probing oscillation
(nq) equals:

E(nq) =
1

p
=

2

2− PPF (2)− PPF (3)
(12)

Even if we assume that PPF (2) and PPF (3) are as high as
0.8, E(nq) just equals 5. We can see that with Proactive Prob-
ing approach, limited probing times is enough to theoretically
help routers jump out of probing oscillation.

VIII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of both ASU
algorithm and Proactive Probing approach for interface rank-
ing in NDN using modified NDNSim 2.0 simulator [6]. The
new version of NDNSIM integrates ndn-cxx library (NDN
C++ library with eXperimental eXtensions) and the NDN
Forwarding Daemon (NFD) to enable experiments with real
code in a simulation environment. Our evaluation contains two
parts. All the network parameters are set as follow:

• tdata = 100ms, tout = 120ms
• k = 100
• ηthreshold = 0.1

A. Evaluation on sub-topology of TUNET
We use the sub-topology of Tsinghua University Campus

Network shown in Fig. 1 to verify the effectiveness of solving
SRTT slow-convergence and probing oscillation.

1) Adaptive SRTT update algorithm for slow-convergence:
Given the two different variations of generated Gaussian
distributed RTT data, we use SRTT calculated by Equation 1 to
see how the ASU algorithm has ameliorated the performance
of RTT detection. Firstly: As shown in the Fig. 4(a), we
set the distribution of RTT to be N(100, 2) designed as a
variable with very small variation. We see that no matter
whether using ASU algorithm, SRTT can converge to real
RTT as well. But paying attention to the overhead, we can
find that in 15 seconds, with the advent of ASU algorithm,
the total number of probing decreases from 30 to 16 and the
average interval increases from 0.5s to 0.94s, which means
that the Extra Overhead Ratio (EOR) is decreased by 46.7%.

194ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) SRTT comparison when RTT variation is small

(b) SRTT comparison when RTT is suddenly reduced by half

Fig. 4. SRTT comparison when RTT variation is small or s suddenly reduced
by half.

So this proves that in the flat phase of RTT, probing with ASU
algorithm performs as well as the periodical measurement but
brings a lower extra overhead. Secondly: In this case, SRTT
slow-convergence occurs. In the Fig. 4(b), we assume that
there is a striking decline at around the time 6s. Before that,
the distribution of RTT is N(100, 2) and later is N(50, 2).
The figure illustrates that the SRTTs with ASU algorithm are
more sensitive to the change. With ASU algorithm, the time
from when RTT declines to it’s convergence (η < ηthreshold)
is just 3.6 seconds, while on the other hand without ASU
algorithm it’s time is about 5.8 seconds. Thus, the response
time is decreased by 37.9%. With ASU algorithm, although
a little extra probing is generated during [6,10]s, the total
overhead (average probing interval) in 15 seconds is also close
to the plain probing. Thus, we conclude that ASU algorithm
can alleviate SRTT slow-convergence with little extra overhead
as compared to the simple periodical measurement.

2) Proactive Probing approach for probing oscillation:
To verify the performance of solving probing oscillation, we
investigate two parameters: the loss rate of Rc and the extra
overhead.

First, we analyze the loss rate of Rc in two occasions – one
when the loss rate of Rp is 0.01 and the other is when the loss
rate of Rp is 0.1. Both of the two cases will cause the probing
oscillation of Rc. As shown in Fig. 5(a), when the loss rate
of Rp is 0.01, we see that due to the very limited probability

(a) The loss rate of Rc when r = 0.01

(b) The loss rate of Rc when r = 0.1

Fig. 5. The loss rate of Rc when r = 0.01 or r = 0.1. In a), the loss rate
with NCC strategy and Best-route strategy nearly coincide while the loss rate
with Proactive Probing strategy decreases to 0 at about 10 seconds. In b), the
loss rate with Best-route strategy still performs the worst. The loss rate with
NCC strategy converges to 0 after about 18s while the loss rate with Proactive
Probing strategy decreases to 0 after only about 3 seconds.

of packet loss, these three approaches perform closely to each
other except that Proactive Probing approach slumps down to
0 at around 12s, while the other two keep on oscillating and
do not reveal any trend to converge to 0. But as shown in
Fig. 5(b), when the loss rate Rp is 0.1, things become more
obvious. Proactive Probing approach leads to zero loss rate in
only 3 seconds, which is about 1/5 of the time as NCC falls
to 0 loss rate. Best-route, however, does not show any trend of
converging to 0. Therefore, we conclude from the experiments
that Proactive Probing approach performs the best in solving
the probing oscillation as compared to both the Best-Route
and NCC.

Second, we see that the overhead of Rc is strongly related
to the loss rate of Rc, because when the current path fails,
each of the three strategies requires spontaneous probing of
other pathes, and inevitably this incurs a detection overhead.
Accordingly, from Fig. 6(a), we observe that when Rp = 0.01,
the overhead of NCC is approximately 2 times as large as
the loss rate of Best-route since NCC needs to find the first
2 available GREEN paths with the lowest cost. Best-Route
and Proactive Probing approach, however, only need to find
the cheapest GREEN path. And Proactive Probing approach
performs as well as the Best-Route before it drops to 0 at

195ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) Extra Overhead Ratio (EOR) when r = 0.01

(b) Extra Overhead Ratio (EOR) when r = 0.1

Fig. 6. Extra Overhead Ratio (EOR) when r = 0.01 or r = 0.1.

around the same time as the loss rate drops to 0. When Rp =
0.1, from Fig. 6(b) we still see that they almost copy the shape
of the loss rate except for the 2-time-magnification of NCC.

B. Evaluation on a replica of the actual NDN testbed topology

Fig. 7. A replica of the actual NDN testbed topology which contains 22
nodes and 50 links.

We use a replica of the actual NDN testbed topology which
contains 22 nodes and 50 links shown in Fig. 7. The node
”SystemX” is set as a server/producer and the other nodes are
set as clients/consumers. The size of an Interest packet and a
Data packet equals 25 Bytes and 1KB respectively. Each client
initializes the sending rate of Interest packets as 10Kpps and
randomly increases the sending rate by 5%-15% per second
until the client detects the congestion which is defined in this

section when the loss rate rises to 5%. Then the client will
decrease the sending rate by half and repeat the increasing
method. All the link bandwidth equals 1Gbps except for the
bandwidth of MICH-LIP6 it is set as 100Mbps. Because of
the significantly lower bandwidth, the link MICH-LIP6 may
become the bottleneck of this topology.

We analyze the loss rate of the node MICH and the node
CSU with the Best-Route and Proactive Probing approach
respectively shown in Fig. 8. Because the link MICH-LIP6
is the bottleneck, it will get congested easily. Thus, it will
cause one of its downstream nodes, CSU, to have probing
oscillation. Fig. 8(a) shows that since the link MICH-LIP6
becomes congested, the node CSU begins to fall into probing
oscillation and cannot handle this problem effectively with
the Best-Route. Hence, the loss rate of CSU is almost as high
as MICH’s. While, in Fig. 8(b), with our Proactive Probing
approach, although the congestion of MICH-LIP6 occurs, we
can see that the loss rate of CSU decreases to 0 quickly. It
means that CSU chooses another path to get data bypassing
the link MICH-LIP6. We notice that after several seconds, the
loss rate of CSU appears again and still returns to 0 in seconds.
This is because that when the loss rate of MICH becomes low,
CSU will reselect the path with MICH-LIP6 to get data until
MICH-LIP6 seriously congests again. It’s also worth noting
that with Proactive Probing approach, the congestion level
of MICH-LIP6 is significantly lower than that of Best-Route.
With Proactive Probing approach, when CSU detects probing
oscillation, it will finally unselect the congestion link MICH-
LIP6, which will reduce the network flow via MICH-LIP6 and
bring down the congestion level. Fig. 8(c) illustrates CDF of
the loss rate with two approaches.

IX. RELATED WORK

In TCP/IP, the stateless forwarding plane limits the network
forwarding ability. Thus, multipath forwarding with which
networks can provide end-hosts with multiple path choic-
es are argued in [7] and [8] to perform better based on
their experiments. Path Splicing [9], Pathlet routing [10] and
Routing deflection [11] are designed to implement this idea.
Multipath TCP [12] are introduced to set up multiple sub-TCP
connections between the two ends. But all these improvement
for TCP/IP forwarding plane is limited to the end-to-end
transmission mode. Therefore, the increased adaptability of
the forwarding plane are very limited. In TCP/IP, based on
Fast reroute (FRR) mechanism [13], improved mechanisms
such as MPLS FRR [14] and IPFRR [15] cannot efficiently
handle multiple concurrent failures. For handling congestion
control, Active Queue Management (AQM) mechanisms, such
as Random Early Detection (RED) [16], have been introduced.

As an architecture of Information-Centric Networking (IC-
N), NDN supports multipath forwarding intrinsically. Adaptive
forwarding plane [3] provide great performance in handling
link failures and network congestion. Also, other congestion
control mechanisms are studied. Hop-by-hop congestion con-
trol such as HR-ICP [17] and HIS [18] can take full advantage

196ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) With Best-route strategy. (b) With Proactive Probing strategy. (c) The CDF of loss rate.

Fig. 8. The loss rate comparison between the node MICH and CSU in network testbed when using different strategies respectively.

of NDN adaptive forwarding plane, while all these mecha-
nisms cannot effectively handle the dynamics in returning Data
traffic. With AIMD algorithm liked in TCP/IP, Interest window
size is presented to avoid excessive Interest packets [19], [20].

X. CONCLUSION

Adaptive forwarding plane is a key component for NDN
architecture, but its existing strategies can suffer from outdated
forwarding states, namely interface coloring and ranking. For
the first time in the literature, in this paper we illustrate the
impact of outdated forwarding states in the existing interface
ranking mechanism through two concrete problems, SRTT
slow-convergence and probing oscillation.

In order to efficiently achieve up-to-date forwarding states,
the key challenge is to design metric measurement and color
classification mechanism to balance the measurement over-
head and the freshness of the forwarding states. Towards
this goal, we propose adaptive SRTT update approach and
proactive probing approach to improve the freshness of the
forwarding states in NDN. Both theoretical analysis and
NDNSim simulation results show that our new strategies
reduce SRTT convergence time by 37.9% and the loss rate
by 75% to 94.75% with little extra overhead, compared to the
existing interface ranking strategies. We believe that this paper
is an important first step towards up-to-date NDN adaptive
forwarding plane.

ACKNOWLEDGEMENT

This work has been supported by two National Natural Sci-
ence Foundations of China (NSFC) under Grant No.61472210
and No.61472214, the Sate Key Program of National Science
of China under Grant No.61233007, the National Key Ba-
sic Research Program of China (973 program) under Grant
No.2013CB329105, the Tsinghua National Laboratory for
Information Science and Technology Key Projects.

REFERENCES

[1] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, kc cllaffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named Data Networking,”
ACM SIGCOMM Computer Communication Review (CCR), vol. 44,
no. 3, July 2014.

[2] C. Yi, J. Abraham, A. Afanasyev, L. Wang, B. Zhang, and L. Zhang, “On
the role of routing in named data networking,” ICN(14): Proceedings
of the 1st international conference on Information-centric networking,
2014.

[3] C. Yi, A. Afanasyev, I. Moiseenko, L. Wang, B. Zhang, and L. Zhang, “A
case for stateful forwarding plane,” Computer Communications, vol. 36,
no. 7, April 2013.

[4] A. Afanasyev, P. Mahadevan, I. Moiseenko, E. Uzun, and L. Zhang, “In-
terest flooding attack and countermeasures in named data networking,”
IFIP Networking Conference, May 2013.

[5] J. Shi, “ccnd 0.7.2 forwarding strategy,” http://redmine.named-
data.net/projects/nfd/wiki/CcndStrategy, University of Arizona, 2014.

[6] S. Mastorakis, A. Afanasyev, I. Moiseenko, and L. Zhang, “ndnsim 2.0:
A new version of the ndn simulator for ns-3,” NDN Technical Report,
vol. NDN, no. 0028, January 2015.

[7] D. Wendlandt, I. Avramopoulos, D. G. Andersen, and J. Rexford, “Dont
secure routing protocols, secure data delivery,” 2006.

[8] M. Caesar, M. Casado, T. Koponen, J. Rexford, and S. Shenker,
“Dynamic route recomputation considered harmful,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 2, pp. 66–71, 2010.

[9] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala, “Path splicing,”
in ACM SIGCOMM Computer Communication Review, vol. 38, no. 4.
ACM, 2008, pp. 27–38.

[10] P. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet routing,”
ACM SIGCOMM Computer Communication Review, vol. 39, no. 4, pp.
111–122, 2009.

[11] X. Yang and D. Wetherall, “Source selectable path diversity via routing
deflections,” in ACM SIGCOMM Computer Communication Review,
vol. 36, no. 4. ACM, 2006, pp. 159–170.

[12] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath tcp.”
in NSDI, vol. 11, 2011, pp. 8–8.

[13] P. Pan, G. Swallow, A. Atlas et al., “Fast reroute extensions to rsvp-te
for lsp tunnels,” 2005.

[14] T. Nadeau, K. Koushik, and R. Cetin, “Multiprotocol label switching
(mpls) traffic engineering management information base for fast reroute,”
RFC 6445, Tech. Rep., 2011.

[15] A. K. Atlas and A. Zinin, “Basic specification for ip fast-reroute: loop-
free alternates,” 2008.

[16] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” Networking, IEEE/ACM Transactions on, vol. 1,
no. 4, pp. 397–413, 1993.

[17] G. Carofiglio, M. Gallo, and L. Muscariello, “Joint hop-by-hop and
receiver-driven interest control protocol for content-centric networks,” in
Proceedings of the second edition of the ICN workshop on Information-
centric networking. ACM, 2012, pp. 37–42.

[18] Y. Wang, N. Rozhnova, A. Narayanan, D. Oran, and I. Rhee, “An
improved hop-by-hop interest shaper for congestion control in named
data networking,” ACM SIGCOMM Computer Communication Review,
vol. 43, no. 4, pp. 55–60, 2013.

[19] S. Braun, M. Monti, M. Sifalakis, and C. Tschudin, “An empirical study
of receiver-based aimd flow-control strategies for ccn,” in Computer
Communications and Networks (ICCCN), 2013 22nd International Con-
ference on. IEEE, 2013, pp. 1–8.

[20] L. Saino, C. Cocora, and G. Pavlou, “Cctcp: A scalable receiver-
driven congestion control protocol for content centric networking,” in
Communications (ICC), 2013 IEEE International Conference on. IEEE,
2013, pp. 3775–3780.

197ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Performance Evaluation of JT CoMP Approach:
Tractable Model using Spatial Fluid Modeling

Lynda Zitoune1,2, Stefan Cerovic1, Danilo Cerovic1, Véronique Vèque1, Jean-Marc Kelif3
1Signals and Systems Laboratory, CentraleSupelec
3, Rue Joliot-Curie, 91192 Gif sur Yvette, France.

{lynda.zitoune,veronique.veque}@l2s.centralesupelec.fr

{stefan.cerovic,danilo.cerovic}@supelec.fr

2Department of Systems Engineering, ESIEE-Paris
2, boulevard Blaise Pascal, 93162 Noisy le Grand, France.

lynda.zitoune@esiee.fr

3 Orange-Labs
38-40, rue du Général Leclerc, 92794 Issy Les Moulineaux, France.

jeanmarc.kelif@orange.com

Résumé—Inter-cell interference is a major issue in OFDMA
networks, due to the increasing density of Low Power Nodes
(LPN) used to offload the macro base stations. Coordination
between these nodes also called Coordination MultiPoint (CoMP),
is identified as a promising solution to improve the signal quality
and the achievable throughput while ensuring spectral efficiency
over the network. Joint Transmission (JT) mode of CoMP consists
to jointly transmit the useful signal from more than one BS,
typically the best serving one, and one or several other base
stations. In dense networks, the performance evaluation and
the analysis of JT CoMP approach become a hard task which
needs lot of time and huge resources to conduct simulations.
In this paper, we present a new mathematical framework based
on spatial fluid modeling which reduces the analysis complexity
and provides a macroscopic evaluation of the performance, quite
faithful to those obtained using Monte Carlo simulations. The
key idea is to consider a continuum of nodes rather than a fixed
finite number, and to derive the mean impact of a density of nodes
in a certain region of the network. The closed-form formulas of
the downlink interference factor are defined for three scenarios
depending on the number of coordinated nodes. Then, they are
used to evaluate the signal quality improvement, particularly at
the cell edge.

Keywords—Interference mitigation, joint transmission, coordi-
nation multipoint, OFDMA network, spatial fluid modeling.

I. INTRODUCTION

Today wireless networks become more and more dense in
terms of the number of base stations (BSs), access points (APs)
and mobile systems (MSs). Increasing the density of BSs and
APs is one of solutions to face the exponential growth of
wireless data traffic, to improve the critical application QoS
(Quality of Service), and to fulfill the increasing demand of
users [1]–[4].

Dense cellular networks are of two types [1]–[3]. In urban
areas, operators often resort to additional cellular infrastructure
to fulfill the users demand and to ensure application QoS,
making the already existing cellular network more dense [5].
Furthermore, heterogenous networks are also considered as
dense where macro BSs are used together with several Low

Power Nodes (LPN) such as, pico or femto BSs, to form
a k-tier network [6], [7]. Small cells are used to offload
macro BSs and hence enhance the coverage and the capacity
of the overall network and improve the throughput of the
end users [8]. However, due to the limited radio resources,
the interference is unavoidable and leads to neutralize the
benefits of densification by decreasing the quality of the signal
received by the MSs mainly at the cell edge [9]–[12], and
consequently reducing the network throughput.

Many solutions are used to resolve the interference impact
between adjacent cells, also called inter-cell interference [9],
[13]–[15]. For example ICIC technique (Inter-Cell Interference
Coordination) (release 8 of LTE) and its enhanced version (e-
ICIC) (release 10) are based on some resource scheduling,
frequency reuse or power control to reduce the interference
at the cell edge in homogeneous and heterogeneous networks
respectively. Nevertheless, these approaches present some li-
mitations in case of saturation, i.e. when the terminal number
grows, and induce a serious issue on throughput reduction.
Recently, Coordinated MultiPoint approach (CoMP), under
standardization by 3GPP for LTE-Advanced technology (re-
lease 11), is considered as a promising solution to provide high
spectral efficiency where destructive interference is turned to
constructive one. Some projects have dealt with the practical
CoMP schemes in both downlink and uplink communications,
and assessed their performance using simulations and field
trials to demonstrate the maturity of such approaches as in
[9], [13]. Joint Transmission (JT) and Coordinated Beamfor-
ming/Scheduling (CB/CS) are two ways to mitigate interfe-
rence using coordination [9], [12], [16]. In the former, the
coordination is performed based on data sharing/exchanging
between coordinated BSs. In the last one, coordination is based
on the channel state information exchange in order to select
the appropriate beams avoiding interference.

In this paper, we focus on the Joint Transmission method of
CoMP when applied in OFDMA network where no intra-cell
interference exists. Radio resources in OFDMA are parallel
and orthogonal. Technically, a User Equipment (UE) receives
multiple signals of the same information from several eNodeBs
(denoted eNBs in this paper) together with its serving eNB.ISBN 978-3-901882-83-8 c� 2016 IFIP

198ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

All these eNBs form a coordinated set. As a consequence, JT
coordination improves the cell throughput since all resource
blocks are used to transmit only useful information. It enhances
the signal quality, mainly at the cell edge, and extends the BS
coverage [17]. A new control plan is defined to integrate the
coordination, also called CloudRAN, to design the coordinated
set, and to deal with issues related to synchronization and
resource scheduling on the backhaul network between involved
eNBs. Some results related to these issues can be found in [9],
[13], [18].

To model the operation of JT CoMP, we develop a fluid
modeling framework to evaluate its performance on the down-
link, in terms of interference factor decrease and its impact
on the signal quality received at the UE. The key idea we
consider here, is that a continuum number of eNBs, rather
than a fixed finite one, is spatially distributed in the network.
We derive a tractable model of the downlink interference factor
[19] when JT CoMP is used in three different scenarios. We
use the underlying model to compute the mean of interference
for different UEs placed randomly in the network and also to
evaluate the SINR, the main gain metric of JT CoMP. This
spatial fluid model, provides a coarse-grained characterization
of the network, by considering eNBs density rather than an
exact distance that separates each eNB from each UE. Unlike
works based on stochastic geometry modeling, which give the
average of the performance (like SINR, outage/coverage and
throughput) in a typical position, at a given cell [20]. Moreover,
stochastic geometry models are most often not tractable, when
others point processes rather than PPP (Poisson Point Process)
are used to describe the node positions.

The paper contributions are as follow :
– We provide a mathematical model of JT CoMP using

a spatial fluid framework, which is tractable making
the evaluation of the signal quality easier using simple
expression, whatever the location of a UE.

– We investigate the gain of the JT CoMP approach using
the obtained model, by considering different number of
eNBs in the coordinated set and environment parameters.

– We prove the effectiveness of the spatial modeling as
a mathematical framework for dealing with the interfe-
rence and as a performance evaluation tool even when
the eNBs density decreases due to the coordination. We
compare the obtained results to those of Monte Carlo
simulations of an equivalent hexagonal grid model.

The resulting model of JT CoMP is a powerful tool
to investigate the impact of the coordination on the whole
network, and not only on a given cell, since the coordination
induces more than one cell and enables UEs in neighboring
cells to benefit from coordination. So, the model can be easily
used by the network operator as a dimensioning/planning tool
for coordination between the BSs. We point out that the
computational complexity of the model is out of the paper
scope, as well as the comparison to the spatial Poisson process.
In the latter case, some results can be found in [21].

The paper is organized as follows. In section II we present
some related work on JT CoMP modeling using mainly spatial
point processes. Next, we introduce a background on the
fluid modeling paradigm and the interference factor in section
III. Afterwards, the system model of JT CoMP is explained
and analytical expressions are detailed for three scenarios

depending on the size of the coordinated set in section IV. In
section V, we present the numerical results of the underlying
analytical expressions and discuss the accuracy of the model
toward Monte Carlo simulations of an equivalent hexagonal
one. Finally, conclusions and some perspectives are presented
in section VI.

II. RELATED WORK

CoMP is a coordination technique which involves multiple
nodes or BSs to reduce interference at the cell edge and hence
increases the network throughput and the spectral efficiency
of the radio channel. The coordination is performed between
BSs by exchanging data in Joint Transmission (JT) or channel
state information in Coordination Beamforming/Scheduling
(CB/CS) [9], [14]. In JT, a UE receives the same data from
multiple eNBs in the coordinated set defined beforehand. The
eNBs in the coordinated set use the same radio resources and as
a consequence improve the received signal quality. Commonly,
the coordinated set is formed by neighboring eNBs closer
to the UE or which provide strongest signal. Moreover, the
number of coordinated eNBs is limited in order to address the
technical and practical challenges of the backhaul network [9],
[13].

Several works dealt recently with the interference issue
in both homogeneous and heterogeneous cellular networks,
using different modeling approaches and methodologies, for
example : game theory [22], simulation and trials [9], [13], and
stochastic geometry [5]–[7]. A concise overview on stochastic
geometry can be found in [20], [23]. To be inline with the
contributions of our work, we present some works on the
modeling and the performance evaluation of CoMP using
mainly stochastic geometry. In [18], the authors characterize
the SINR distribution when coordination multipoint is used
and discuss some practical design problems. The main result
of this work is that the SINR is increasingly improved, when
the number of BSs increases in a ball with a fixed radius.
Therefore the gain of cooperation, in terms of coverage,
increases with the path-loss exponent. An evaluation of the
coverage probability of an heterogeneous network described
by a Poisson Point Process is presented in [24]. Two different
connectivity models are considered for coordination, 1) n-
strongest BS connectivity model where the coordinated set
is composed of BSs which provide strongest signal. 2) n-
nearest BS connectivity model, where the coordinated set is
composed of BSs close in each tier. The analysis shows that
the n-strongest model is better than the n-nearest one. In [25],
the authors consider CB/CS method of CoMP and show that
the performance metrics decrease linearly in case of a non ideal
backhaul with a large delay. In [26], it is demonstrated that JT
is more powerful than CB/CS in terms of performance. The
improvements in the network performance are approved in [17]
using a realistic urban scenario. Depending on the difference
between the received signal strength of the serving cell and
the coordinated cells an interference map is constructed. The
CoMP gain is then derived using the interference map.

A common remark is that all these studies are carried out
considering a Poisson Point Process [11], [20], [23], substan-
tiated by the fact that the nodes location is often random and
leads to irregular networks. Tractable models are consequently
provided for the SINR distribution, coverage/outage ratio and

199ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

the average rate over the network, where different propagation
models (fading/shadowing) are considered. However, when
other Point Processes are assumed, mainly regular one [27]–
[29], the performance models like SINR and its derivatives are
not analytically tractable due to the non-independent nature of
points. In this case, either approximations are used to bound
the performance parameters [20], or intensive simulations are
conducted to validate the models [30], [31].

Motivated by the spatial fluid modeling developed in [19]
and [32], we propose here to use this mathematical framework
in order to investigate the benefits of JT CoMP in a dense
cellular network, and at the same time, the accuracy of the yiel-
ding solutions. To meet this objective, we consider a downlink
channel of OFDMA network and derive explicit, numerically
tractable integral expressions of the interference factor for three
different scenarios of coordination. The interference factor
in this case depends on several parameters : position to the
serving base station, density of BSs in the vicinity and the
path-loss function which is distance-dependent. We compute
SINR, the key metric, more precisely the SIR as we neglect
the noise effect.

III. BACKGROUND MATERIALS

Let us consider a single frequency OFDMA wireless net-
work composed of B base stations (BS) (denoted eNodeB
(eNB) in this paper), which covers a urban area. We focus on
the downlink. The radio resources of a base station are divided
in a number of parallel, orthogonal, non-interfering channels
(subcarriers), each one transmitting at power P . Therefore,
only inter-cell interference is considered. The User Equipments
are randomly distributed over the network.

A. Interference Factor

As defined in [19], the interference factor at the user
equipment u is defined as the ratio of total power received
from other base stations p

ext,u

, to the power it receives
from its serving BS b, p

int,u

, such as : f
u

= p

ext,u

p

int,u

. Since
in OFDMA the sub-carriers are assumed to be orthogonal,
therefore intra interference does not exist, so p

int,u

= P
b

g
b,u

is the useful power, P
b

is the power transmitted by the eNB
b, and g

b,u

is the inverse of the path-loss between the serving
eNB and the UE u. The interference factor can be expressed
as : f

u

= 1
P

b

g

b,u

P
B

j 6=b

P
j

g
j,u

, where P
j

denotes the power
transmitted by eNB j, and g

j,u

the inverse of the path-loss
between the eNB j and the UE u. B represents the number of
eNBs considered in the cellular radio system.

As a consequence, the quality of the received signal charac-
terized by the Signal to Interference plus Noise Ratio defined
as :

SINR =
P
b,u

P
ext,u

+N

At the UE u, the SINR can be expressed as :

SINR =
1

f
u

+ �
(1)

Where N is the Gaussian noise and � = N

P

b,u

. Let notice that
since all subscribers transmit at the same power P, we can

FIGURE 1. The network fluid model and the equivalent hexagonal model.

write for each subscriber :

f
u

=
1

g
b,u

BX

j 6=b

g
j,u

(2)

In the case of an homogeneous network, f
u

depends only on
the number of base stations, their positions, the positions of
UEs, and their corresponding path-losses [19].

B. Short overview of fluid model

In fluid network modeling [19], [32], the main assumption
is that a fixed finite number of eNBs is replaced by an
equivalent continuum of eNBs which are spatially distributed
in the network. So basically, the transmitting power of all
the eNBs is considered as a continuum field all over the
network, and in the case of a uniform eNB distribution and a
uniform traffic, the network is considered to be homogeneous.
Considering a path-loss model given by [33], g

b,u

is expressed
as Kr�⌘ where K is a constant, r represents the distance
between a UE u and its serving BS, and ⌘ > 2 is the path-
loss exponent. To reduce the complexity of the model, we
neglect the effect of the shadowing and focus our analysis on
the other parameters (the shadowing will be considered in a
future paper). Therefore, f

u

also depends on distance r. So
f
u

in the equation (2) can now be written as a function of r
and not anymore as a function of u. A new parameter ⇢

eNB

is
introduced which represents the density of BSs. It is constant
since the network is assumed to be homogeneous, so that all
the eNBs j have the same output power P

j

. As in [19], we will
consider a circle shaped network around the cell of interest,
where half of the distance to the nearest base station is R

c

, as
shown on the Figure 1. We will assume that the whole network
radius is R

nw

, and that there are no transmitters at the distance
greater than that.

The following distances of interest will be used throughout
this paper, and they are represented on the Figure 1 : 1) R the
hexagonal cell radius, 2) R

c

half of the distance to the nearest
eNB, 3) R

e

the radius of an equivalent disc (i.e. a disc with
the same area as the hexagon).

200ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

C. Network without coordination : fluid model

As the assumption of a continuum BS is considered in the
fluid paradigm, to calculate the amount of external power at
certain location in a cell, we can sum up the influence of each
small subsurface, zdzd✓, in the area of interest in the network.
In other words, the external power received at the UE u located
at the distance r

u

from its serving eNB, can be calculated by
the integration of ⇢

eNB

zdzd✓P
b

Kz�⌘ over the ring with inner
radius of 2R

c

�r
u

, and the outer radius of R
nw

�r
u

, as shown
on the Figure 1 (see [19] for more details).

p
ext,u

=

Z 2⇡

0

Z
R

nw

�r

u

2R
c

�r

u

⇢
eNB

P
b

Kz�⌘zdzd✓ (3)

=
2⇡⇢

eNB

P
b

K

⌘ � 2
[(2R

c

� r
u

)2�⌘ � (R
nw

� r
u

)2�⌘]

The useful power received by the UE u can be calculated
as

p
b,u

= P
b

Kr�⌘

u

(4)

because in this case the only serving base station is b. So, com-
bining the last two equations, we can calculate the interference
factor as :

f
u

=
2⇡⇢

eNB

r⌘
u

⌘ � 2
[(2R

c

� r
u

)2�⌘ � (R
nw

� r
u

)2�⌘] (5)

We notice that the interference factor depends only on the
distance r from base station b, so it can be written as a function
of r, like :

f(r) =
2⇡⇢

eNB

r⌘

⌘ � 2
[(2R

c

� r)2�⌘ � (R
nw

� r)2�⌘] (6)

Note that in the last expression we assumed that ⇢
eNB

=
(3
p
3R2/2)�1, so that, it is constant in every point of the

network, because of the assumption that traffic is uniform. We
can conclude that the interference factor does not depend on
the output power of the eNB (homogeneous network), but only
on the density of eNBs ⇢

eNB

, the radius of a cell R
c

, the size
of the considered network R

nw

, and the path-loss parameter
⌘, which means it can be easily calculated.

We consider coordination between the serving BS b and
eNBs of the first ring, since they are the potential nodes which
entail the signal quality received by UEs.

IV. SYSTEM MODEL OF A NETWORK WITH JT-COMP

In this part, we propose the application of the fluid model
when the cooperation between base stations exists in the
network, i.e. when JT CoMP technique is used. The issues
related to data sharing and synchronization on the backhaul
are not considered here. Let f

0

u

denote the interference factor
when JT CoMP is used, so that :

f
0

u

=
P

0

ext

P
0
int

(7)

The impact of JT CoMP on the calculation of the interference
factor is given through the reduction of the external power p

ext

given in (3), by the amount of power P
CoMP

that UE receives

from the eNBs which are in cooperation with its serving eNB
b. This power amount P

CoMP

is added to the internal power
given in (4).

f
0

u

=
P
ext

� P
CoMP

P
b

+ P
CoMP

(8)

We define a new factor G
CoMP

= P

CoMP

P

int

as the gain of JT
CoMP using the fluid model. The interference factor f

0

u

in
this case, depends on the f

u

without coordination and can be
defined as follows :

f
0

u

=
f
u

1 +G
CoMP

� G
CoMP

1 +G
CoMP

(9)

As in fluid model there are no exact borders between
different cells, in order to express the impact of the coordinated
eNBs on the UE u, we have to define the area of the
cooperation, mainly the integration domain and to sum up the
influence of each small subsurface, zdzd✓ over it. We define
the boundaries of the first ring as 2R

c

� r
u

and 4R
c

� r
u

as
depicted in Figure 1 for the polar axis, since closest eNBs are
at the distance 2R

c

from serving eNB.
The polar angle depends on the number of eNBs in the
coordination set. Since in hexagonal lattice model there are
six eNBs neighbors around the serving eNB, we propose to
divide the first ring into six equal areas, and suppose that
each area has the same impact on the UE because of the
assumption of homogeneous network. Therefore, we define
the integration boundaries of the polar angle from 0 to n⇡

3
(because 2⇡/6 = ⇡/3), n is the number of coordinated eNBs
considered in the first ring. As given in the following formula,
the power of coordinated stations b1,··· ,n is expressed as :

p
b1,··· ,n,u =

Z n⇡

3

0

Z 4R
c

�r

u

2R
c

�r

u

⇢
eNB

P
b

Kz�⌘zdzd✓

and is equal to :

p
b1,··· ,n,u =

n⇡

3

⇢
eNB

P
b

K

⌘ � 2
[(2R

c

� r
u

)2�⌘ � (4R
c

� r
u

)2�⌘]

(10)
Three different scenarios are considered in the following to
evaluate the JT CoMP gain when one, two, three eNBs are in
the coordinated set.

A. Scenario 1 : cooperation with one base station in the first
ring

As the simplest case, cooperation between the serving eNB
b and one base station in the first ring, b1, is considered. In
order to express the impact of the eNB b1 on the UE, we must
do the integration over the one sixth of the first ring, because
there are six base stations in the first ring, assuming that each
one of them has the same impact on the UE (Figure 2).

As given in the following formula, the power of the
coordinated station b1 is :

p
b1,u =

⇡

3

⇢
eNB

P
b

K

⌘ � 2
[(2R

c

� r
u

)2�⌘ � (4R
c

� r
u

)2�⌘] (11)

201ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

FIGURE 2. Scenario 1 : coordination with one eNB from the 1st ring

So, in this scenario, the total external power is :

p
e1=2⇡

⇢
eNB

P
b

K

⌘ � 2
[(2R

c

� r
u

)2�⌘ � (R
nw

� r
u

)2�⌘]

�⇡

3

⇢
eNB

P
b

K

⌘ � 2
[(2R

c

� r
u

)2�⌘ � (4R
c

� r
u

)2�⌘] (12)

The total internal power is :

p
i1 = P

b

Kr�⌘

u

+
⇡

3

⇢
eNB

P
b

K

⌘ � 2
[(2R

c

�r
u

)2�⌘�(4R
c

�r
u

)2�⌘]

(13)

We can calculate the interference factor by dividing p
e1

defined in (12) by p
i1 of equation (13). The improvement

compared to the default case in terms of interference factor
is obvious since we increase the nominator and decrease the
denominator with the same fraction.

B. Scenario 2 : Cooperation with two eNBs in the first ring

In this case cooperation between serving eNB b and two
eNBs (n = 2), b1 and b2, in the first ring is considered,as in
Figure 3. So, the reasoning is the same like in the previous
case, with the only difference that now two base stations out
of six are included in the calculation of the useful power :

p
b1,2,u =

Z 2⇡/3

0

Z 4R
c

�r

u

2R
c

�r

u

⇢
eNB

P
b

Kz�⌘zdzd✓ (14)

This will give us the following expressions for the external
power p

e2 and the internal power p
i2, respectively :

p
e2=

2⇡⇢
eNB

P
b

K

⌘ � 2
[(2R

c

� r
u

)2�⌘ � (R
nw

� r
u

)2�⌘](15)

�2⇡

3

⇢
eNB

P
b

K

⌘ � 2
[(2R

c

� r
u

)2�⌘ � (4R
c

� r
u

)2�⌘]

p
i2 = P

b

Kr�⌘

u

+
2⇡

3

⇢
eNB

P
b

K

⌘ � 2
[(2R

c

�r
u

)2�⌘�(4R
c

�r
u

)2�⌘]

(16)
In this case the interference factor, which we can get by
dividing (15) by (16), is even higher than in previous case.

FIGURE 3. Scenario 2 : coordination with two eNBs from the 1st ring

FIGURE 4. Scenario 3 : coordination with three eNBs from 1st ring

C. Scenario 3 : cooperation with 3 BSs in the first ring

In this scenario, we consider the cooperation between
serving the eNB b and three eNBs in the first ring (b1, b2
and b3) as shown in Figure 4. Now, the external interference
is reduced and the internal one is increased by the following
amount :

p
b1,2,3,u =

Z
⇡

0

Z 4R
c

�r

u

2R
c

�r

u

⇢
eNB

P
b

Kz�⌘zdzd✓ (17)

because three base stations out of six make an angle of
exactly ⇡. The external and the internal interference are given
with following formulas in this case :

p
e3=

2⇡⇢
eNB

P
b

K

⌘ � 2
[(2R

c

� r
u

)2�⌘ � (R
nw

� r
u

)2�⌘](18)

�⇡
⇢
eNB

P
b

K

⌘ � 2
[(2R

c

� r
u

)2�⌘ � (4R
c

� r
u

)2�⌘]

p
i3 = P

b

Kr�⌘

u

+⇡
⇢
eNB

P
b

K

⌘ � 2
[(2R

c

�r
u

)2�⌘�(4R
c

�r
u

)2�⌘]

(19)

As expected, the interference factor grows even more
compared to previous cases.

V. SIMULATION AND NUMERICAL RESULTS

The objective of this section is twofold. First, we aim to
validate the model of JT CoMP for the three scenarios exposed
earlier. We compare numerical results of the fluid interference
factor to those obtained by Monte Carlo simulations of an
equivalent hexagonal model. The second objective is to eva-
luate the gain of the coordination by computing the SINR and
comparing its variation to the case where no coordination is
applied between eNBs.

For Monte Carlo simulation, we consider 10 rings of
hexagonal cells around a central hexagon of interest such that
R

nw

= 21R
c

. 50 UEs are generated uniformly in the central

202ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Parameters Values
R 50 m (femtocell network)
R

c

43.30 m (R
c

= R

p
3

2)
⌘ 2 {2.5, 3, 3.5, 4}
p

t

250 mW
Bandwidth 10 MHz

TABLE I. SIMULATION PARAMETERS.

FIGURE 5. Interference factor variation without JT CoMP

hexagon and we suppose that they are attached to the eNB
located at the center of this hexagon. We sort all these UEs
depending on the distance to their serving eNB, and we average
the interference factor for all the UEs at the same distance. To
simulate the coordination, the coordinated eNBs are chosen
uniformly out of 6 possible eNBs from the first ring depending
on each scenario.

The numerical results of fluid modeling are obtained using
equations, (6) (without coordination), (12) and (13) for sce-
nario 1, (15) and (16) for scenario 2 and (18) and (19) for
scenario 3, over a network of radius R

nw

. The eNBs density is
⇢
eNB

= [3
p
3

2 .R2]�1 in a central circle of radius R (cf Figure
1, R is drawn in blue arrow). The other simulation parameters
common with hexagonal model, are summarized in the table
I.

The plot of the interference factor as a function of distance
from the serving eNB for the default case, without coordina-
tion, is shown in Figure 5. The curves of this figure prove
the accuracy of the fluid model towards hexagonal lattice one.
These results are pretty similar to those in [19] and [32], and
show an obvious result that is, near the serving base station,
the interference factor is lower than at the edge. For example
for ⌘ = 2.5, the interference factor is about 0.25 at 20m from
the serving eNB, and reaches 2.1 at 20m further. f

u

increases
exponentially with the distance whatever the exponent values,
and it is inversely proportional to the path-loss exponent, i.e.
f
u

is higher for a lower loss path exponent ⌘ = 2.5.
Furthermore, in the default case (Figure 5), we can notice
that there is a slight difference between fluid and hexagonal
model. This difference is bounded and does not exceed 8%.
The difference is related to the circular symmetry around the
serving eNB, and the circular shaped form considered in fluid
model. So, whatever the position of the UE in the inner circle,

FIGURE 6. Interference factor variation in scenario 1

no CoMP Scenario 1 Scenario 2 Scenario 3
⌘ = 2.5 4.48 2.84 2.40 1.4
⌘ = 3 3.16 2.00 1.60 0.92
⌘ = 3.5 2.55 1.61 1.23 0.70
⌘ = 4 2.25 1.42 1.04 0.60

TABLE II. NUMERICAL RESULTS OF fu AT THE CELL EDGE, ru=50M.

the average of the external power of all neighboring eNBs is
the same. However in the hexagonal model, this assumption is
no longer valid.

When eNBs of the first ring are used together with the
serving one, the interference factor decreases significantly as
shown in Figures 6, 10 and 12. In the table II, we give the fluid
numerical results of f

u

at 50m, at the cell edge for different
path-loss exponent. For example for ⌘ = 2.5, we observe that
the interference factor decreases by a factor of 3.1 when three
eNBs are added to the coordinated set.

The plots of SIR (Signal to Interference Ratio) in dB, in
Figures 7, 11 and 13 show that fluid model of JT CoMP match
very well with Monte Carlo simulations of Hexagonal model.
Moreover, the gain of coordination is highlighted in Figures 8
and 9. The gain is increasingly important at the cell edge, and

FIGURE 7. SIR variation in case of scenario1

203ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

FIGURE 8. SIR improvement, ⌘ = 2.5

FIGURE 9. SIR improvement, ⌘ = 4

we notice that it is quite related to the coordinated BSs number
and to the distance from the serving eNB than the path-loss
exponent ⌘. For example at the distance of 46 m from the
serving eNB, the SIR gain is about 4.2 dB for ⌘ = 2.5, and
about 4.5 dB for ⌘ = 4. This gain is observed considering
the default scenario without CoMP and the scenario3. At the
same distance, comparing curves of scenario without CoMP
and scenario 2, we observe that the CoMP gain is around 2 dB,
in Figures 8 and 9, whatever the value of ⌘. More generally,
the gain of cooperation is two times more important every time
a new eNB joins the coordination process, whatever ⌘.

In the second scenario, 2 eNBs from the first ring cooperate
with the serving eNB. They are picked uniformly out of 6
possible eNBs from the first ring around the serving eNB. The
plot of the interference factor for this scenario in Figure 10,
shows that there is a difference between fluid and hexagonal
models, mainly for UEs which are further away from the
serving eNB. The difference here is quite higher than that
observed for the first scenario in the Figure 6 which is around
12%.

In the third scenario, 3 BSs from the first ring cooperate
with the serving BS. They are also picked uniformly out of 6
possible BSs from the first ring around serving BS, as can be

FIGURE 10. Interference factor variation : scenario2

FIGURE 11. SIR variation in case of scenario2

seen in the Figure 4. The plot of the interference factor for this
scenario is shown in Figure 12. We notice that there is also
a distinction between fluid and hexagonal model for the UEs
which are further away from the serving BS. In both scenarios
2 and 3, the difference between the fluid and hexagonal models
is quite higher than the scenario 1, which is around 12%.

In case of cooperation with one, two or three eNBs of
the first ring, the impact of these BSs is subtracted from
the external power and added to internal power as shown
in the previous section. In the fluid model, the impact of
the cooperation is not related to only the eNB or eNBs
involved in the cooperation, and the distance separating this
or these BSs to the UE. The impact of coordination in fluid
modeling is related to a density of eNBs over the sub-area
around the UE, which is constant. Moreover, fluid modeling
inherently assumes a circular symmetry around the UE in
case of coordination. Consequently, whatever the UE position,
removing the impact of one, two or three sub-areas from the
first ring remains the same. However, in the hexagonal model
exact distances between coordinated eNBs and the UE are
considered. Furthermore, since coordinated eNBs are picked
uniformly out of 6 possible BSs, the coordination gain of far
BSs is insignificant compared to the remaining external power.
Another point which can explain the difference between the

204ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

FIGURE 12. Interference factor variation : scenario3

FIGURE 13. SIR variation in case of scenario3

fluid an the hexagonal models, is related to the difference
between the area of the hexagon of radius R and the equivalent
circle of radius Re. So that, the fluid model does not catch the
extreme parts of the hexagon.

Indeed, the fluid model gives analytical expressions which
do not take into account probability that user will be positioned
differently from the CoMP eNB. This is a very interesting fea-
ture, since the UE is not compelled to perform measurements
to define the best coordinated eNBs, and thus simplifies the
multipoint association procedure.

VI. CONCLUSION

The Joint Transmission of Coordinated MultiPoint ap-
proach is used to deal with the inter-cell interference, the
main issue emphasized by the increased number of BSs and
LPNs (Low Power Nodes). In this paper, we developed a
new mathematical framework based on spatial fluid modeling
to investigate the gain of this approach on the downlink of
an OFDMA network. We considered a continuum number
of eNBs spatially distributed in the network rather than a
fixed finite number. We derived closed-form formulas of the
interference factor for three scenarios depending on the number
of coordinated eNBs. These tractable expressions allow us to
rapidly compute the SINR of UEs in an OFDMA network.

Numerical results show that the gain of JT coordination
is related to the coordinated BSs number and to the distance
from the serving eNB than to the path-loss exponent ⌘. The
gain is two times more important every time a new eNB
joins the coordination process. Furthermore, the proposed
framework reduces considerably the analysis complexity and
provides a macroscopic evaluation of the performance, faithful
to those obtained using Monte Carlo simulations. Indeed, fluid
modeling inherently assumes a circular symmetry around the
UE in case of coordination, and gives analytical expressions
which do not take into account probability that user will be
positioned differently from CoMP eNB. The last result is
very interesting, since the UE is not compelled to perform
measurements to define the best coordinated eNBs, and thus
simplifies the multipoint association procedure.
Future work will focus on the characterization of this diffe-
rence between the fluid and the hexagonal models mainly in
the cell edge, by finding an expression for an upper bound of
the difference. We aim also to develop expressions of the other
metrics like the throughput and the coverage probability, and to
investigate the effectiveness of the fluid framework considering
the shadowing effect.

ACKNOWLEDGEMENT

This work is part of the French project LCI4D of the
Systematic Cluster, Paris Region Systems & ICT Cluster
(http://www.systematic-paris-region.org/).

RÉFÉRENCES

[1] C.-X. Wang and al, “Cellular architecture and key technologies for 5G
wireless communication networks,” IEEE Communications Magazine,
vol. 52, no. 2, pp. 122–130, Feb. 2014.

[2] S. Yuas, M. Valkama, and J. Niemela, “Spectral and energy efficiency
of ultra-dense networks under different deployement strategies,” IEEE
Communications Magazine, vol. 53, no. 1, Jan. 2015.

[3] B. Soret, K. Perdersen, N. Jorgensen, and V. Fernandez-Lopez, “Interfe-
rence coordination for dense wireless networks,” IEEE Communications
Magazine, vol. 53, no. 1, Jan. 2015.

[4] M. Bennis, M. Simsek, A. Czylwik, W. Saad, S. Valentin, and M. Deb-
bah, “When cellular meets WiFi in wireless small cell networks,”
Communications Magazine, IEEE, vol. 51, no. 6, 2013.

[5] J. Andrews, F. Baccelli, and R. Ganti, “A tractable approach to coverage
and rate in cellular networks,” IEEE Transactions on Communications,
vol. 59, no. 11, pp. 3122–3134, Oct. 2011.

[6] H. Dhillon, R. Ganti, and J. Andrews, “A tractable framework for
coverage and outage in heterogeneous cellular networks,” in Information
Theory and Applications Workshop (ITA), Feb. 2011, pp. 1–6.

[7] H. Wang, X. Zhou, and M. Reed, “Analytical evaluation of coverage-
oriented femtocell network deployment,” in International Conference
on Communications (ICC), June 2013, pp. 5974–5979.

[8] V. Chandrasekhar, J. Andrews, and A. Gatherer, “Femtocell networks :
A survey,” CoRR, vol. abs/0803.0952, 2008.

[9] R. Irmer, H. Droste, P. Marsch, S. Brueck, H.-P. Mayer, L. Thiele, and
V. Jungnickel, “Coordinated multipoint : Concepts, performance, and
field trial results,” IEEE Communications Magazine, Feb. 2011, iMT-
Advanced and Next-Generation Mobile Networks.

[10] A. Daeinabi, K. Sandrasegaran, and X. Zhu, “Survey of intercell interfe-
rence mitigation techniques in LTE downlink networks,” in Australasian
Telecommunication Networks and Applications Conference (ATNAC).
IEEE, Nov. 2012, pp. 1–6.

[11] H. Dhillon, R. Ganti, F. Baccelli, and J. Andrews, “Modeling and
analysis of K-Tier downlink heterogeneous cellular networks,” IEEE
Journal on Selected Areas in Communications, vol. 30, no. 3, pp. 550–
560, April 2012.

205ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

[12] D. Lee, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata, and
K. Sayana, “Coordinated multipoint transmission and reception in LTE-
Advanced : Deployment scenarios and operational challenges,” IEEE
Communications Magazine, pp. 148–155, Feb. 2012.

[13] V. Jungnickel and al, “Field trials using coordinated multi-point trans-
mission in the downlink,” 21st International Symposium on Personal,
Indoor and Mobile Radio Communications Workshops, 2010.

[14] S. Singh, A. Kumar, S. Khurmi, and S. Tanvir, “Coordinated multipoint
(CoMP) reception and transmission for LTE-Advanced/4G,” Internatio-
nal Journal of Computer Science And Technology, vol. 3, June 2012.

[15] A. S. Hamza, S. S. Khalifa, H. S. Hamza, and K. Elsayed, “A survey
on inter-cell interference coordination techniques in OFDMA-based
cellular networks,” IEEE Communications Surveys Tutorials, vol. 15,
no. 4, pp. 1642–1670, 2013.

[16] W. Yu, T. Kwon, and C. Shin, “Multicell coordination via joint
scheduling, beamforming and power spectrum adaptation,” in IEEE
INFOCOM 2011, April 2011, pp. 2570–2578.

[17] S. Berger, Z. Lu, R. Irmer, and G. Fettweis, “Modelling the impact of
downlink CoMP in a realistic scenario,” in IEEE Wireless Communica-
tions and Networking Conference (WCNC), April 2013, pp. 3932–3936.

[18] R. Tanbourgi, S. Singh, J. Andrews, and F. Jondral, “A tractable model
for non-coherent joint-transmission base station cooperation,” pp. 4959–
4973, Sept. 2014.

[19] J.-M. Kelif and E. Altman, “Downlink fluid model of CDMA networks,”
in Proc. of IEEE VTC Spring, May 2005.

[20] R. Heath and M. Kountouris, “Modeling heterogeneous network in-
terference using poisson point processes,” in Information Theory and
Applications Workshop (ITA), Feb. 2012, pp. 17–22.

[21] J.-M. Kélif, S. Senecal, C. Bridon, and M. Coupechoux, “Quality of
service and performance evaluation : A fluid approach for poisson
wireless networks,” in IEEE International Conference on Network of
the Future (NoF), Paris, France, Dec. 2014.

[22] K. Khawam, A. A. S. Lahoud, J. Cohen, and S. Tohme, “Game theoretic
framework for power control in intercell interference coordination,” in
IFIP Networking Conference, June 2014, pp. 1–8.

[23] B. Blaszczyszyn and H. Keeler, “Studying the SINR process of the ty-
pical user in poisson networks by using its factorial moment measures,”
CoRR, vol. abs/1401.4005, 2014.

[24] G. Nigam, P. Minero, and M. Haenggi, “Coordinated multipoint in
heterogeneous networks : A stochastic geometry approach,” in IEEE
GLOBECOM Workshop on Emerging Technologies for LTE-Advanced
and Beyond 4G, Atlanta, GA, Dec. 2013.

[25] P. Xia, C.-H. Liu, and J. Andrews, “Downlink coordinated multi-point
with overhead modeling in heterogeneous cellular networks,” CoRR,
vol. abs/1210.5503, 2012.

[26] Y. Yifan, R. Yun, L. MingQi, S. Bin, and S. RongFang, “Achievable
rates of coordinated multi-point transmission schemes under imperfect
CSI,” In Proc. IEEE ICC, pp. 1–6, 2011.

[27] M. Haenggi, “Mean interference in hard-core wireless networks,” IEEE
Communications Letters, vol. 15, no. 8, pp. 792–794, Aug. 2011.

[28] M. Abdelrahman, T. ElBatt, and A. El-Keyi, “Coverage probability
analysis for wireless networks using repulsive point processes,” in
Personal Indoor and Mobile Radio Communications (PIMRC), Sept
2013, pp. 1002–1007.

[29] I. Nakata and N. Miyoshi, “Spatial stochastic models for analysis
of heterogeneous cellular networks with repulsively deployed base
stations,” Performance Evaluation, vol. 78, pp. 7–17, 2014.

[30] A. Busson, L. Zitoune, V. Vèque, and B. Jabbari, “Outage analysis of
integrated mesh LTE femtocell networks,” in IEEE Global Communi-
cations Conference GLOBECOM, Austin, United States, Dec. 2014.

[31] I. L. Cherif, L. Zitoune, and V. Vèque, “The r-l square point process :
The effect of coordinated multipoint joint transmission,” in International
Wireless Communications & Mobile Computing Conference (IWCMC),
Dubrovnik, Croatia, Aug. 2015.

[32] J.-M. Kelif, M. Coupechoux, and P. Godlewski, “A fluid model for per-
formance analysis in cellular networks,” EURASIP Journal on Wireless
Communications and Networking, 2010.

[33] “Guidelines for evaluation of radio interface technologies for IMT-
advanced,” Report ITU-R M.2135-1, Tech. Rep., 2009.

206ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

AMONET: A Method for Detecting and Mitigating
the Data Rate Degradation due to Interference Over

Wireless Networks
Guohao Lan, Sangyup Han, Il-Gu Lee, and Myungchul Kim
School of Computing, KAIST, Daejeon, Republic of Korea

{guohao, ilu8318, iglee9, mck}@kaist.ac.kr

Abstract—Recently, wireless networking technologies have
been evolving to support wider bandwidth, and longer radio
range in denser networks. Therefore, there is a high probability
that two or more networks will overlap and result in more co-
channel interferences. To mitigate the interference, the central-
ized network system is a promising solution which is based on
the conflicts information provided by the interference detection
methods. However, in this paper, we reveal that the existing
Passive Interference Detection method (PIE) is not accurate
and may cause dramatic throughput decrease in dynamically
interfered networks because it is based on a single data rate
criterion. Moreover, we propose and implement AMONET, which
is a centralized detection method considering the data rate
degradation due to interference (DRDI). Our simulation results
demonstrate that the proposed scheme can improve aggregate
throughput by 2.68x gains in the interfered wireless links over
distributed coordination function (DCF), while PIE achieves 1.8x
gains over DCF.

I. INTRODUCTION

Within the last decades, we have witnessed the rapid growth
of the IEEE 802.11 based wireless networks, as known as
Wi-Fi. According to a recent report [1], in the year of 2018,
the Wi-Fi traffic will account for 61 percent of the IP traffic
and 76 percent of the Internet traffic. This trend of traffic
growth results from the increase of mobile station (MS) and
the dense deployment of Wi-Fi Access Point (AP). And we
can expect that, the current Wi-Fi networks are becoming
denser. Unfortunately, due to the limited number of available
Wi-Fi channels, a dense network will cause more co-channel
interference and result in lower system throughput [2].

To optimize the performance of the Wi-Fi networks, many
works have been proposed, such as utilizing multiple anten-
nas [10], [11], controlling transmit power to adjust the interfer-
ence range of mobile stations [3], [4], applying channel assign-
ment to mitigate the co-channel interference between adjacent
APs [5], [6], or using centralized system to schedule packet
transmissions [7]–[9]. Other than the adoption of multiple
antennas, the other works assume the existence of an accurate
data structure which provides the information of interference
relations between links in the wireless network. Such a data
structure is known as the Conflict Graph (CG) [13]. In the
literature, methods for building the conflict graph for a given

wireless network can be briefly classified into either active
or passive methods. Active interference estimation methods
such as, the Interference maps [14] and Micro-probing [15]
use active probing to infer the interference relation. Although
such approaches are accurate in identifying the interference,
their measurement and computing overheads are large when
they are applied to a network containing a large number of
links. In addition, active methods can hardly be efficient in
dynamic environment, in which the network topology changes
frequently [16].

On the other hand, the passive methods infer the interference
relation mainly based on the passively collected packet traces
(either using the off-line packet traces [17], or using on-line
monitoring data [16]). Although passive methods have been
proven to be efficient to create the conflict graph, they are
not accurate in detecting the Data Rate Degradation due to
Interference (DRDI), which forces a victim wireless link to
degrade its transmission data rate to endure the interference.
For instance, the Passive Interference Estimation (PIE) [16]
infers the links’ interference relation by using the Link In-
terference Ratio (LIR) [18] at a single data rate only. How-
ever, current Wi-Fi networks provide various Modulation and
Coding Schemes (MCSs) to enable the trade-off between the
transmission efficiency and link reliability. While a high data
rate is more efficient in data transmission, a low data rate is
more robust against channel noise and co-channel interference.
Accordingly, APs can apply the data rate adaptation algorithm
[19] to adjust the link’s transmission data rate depending on the
interference level. When a link is suffering the DRDI, though
no packets can be successfully delivered at a high data rate,
it can still maintain a high packet delivery rate using a low
data rate. In this circumstance, the existing passive detection
methods [16], which using the LIR value calculated at a single
data rate, can’t detect the DRDI due to the dynamic rate
adaptation. However, an MS with a lower data rate requires
more time to transmit a packet than the MSs with higher data
rates. Thus, if there is one ‘slow’ MS contending the wireless
channel with some ‘fast’ MSs, it will induce the well-known
performance anomaly problem in 802.11 networks [20], such
that the throughput of all the ‘fast’ mobile stations will degrade
as low as the ‘slow’ one. Therefore, without precisely detecting
the DRDI, existing passive interference estimation methods areISBN 978-3-901882-83-8 c� 2016 IFIP

207ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

unreliable. In this paper, we present AMONET to solve the
shortcoming in existing passive interference estimation. This
paper makes the following contributions:

• Through extensive measurement studies, we demonstrate
that the existing work in passive interference estima-
tion performs poorly in dynamically interfered networks
and leads to throughput degradation because it cannot
detect the DRDI. To address this problem, we propose
AMONET: a passive interference estimation method to
detect and mitigate the DRDI.

• We implement the AMONET in QualNet [21] and in-
tegrat it to a centralized scheduling system, the Centaur
[7]. We compare the improvement in system throughput
of Centaur when using the conflict information from
AMONET and PIE. The results indicate that AMONET
can achieve a system throughput gain of 1.30⇥ and a
throughput gain of 2.60⇥ on the victim links, over the
Distributed Coordination Function (DCF) while providing
better link fairness, in the dense wireless network. In
comparison, PIE can achieve a throughput gain of 1.12⇥
and 1.80⇥ over DCF, respectively.

The rest of this paper is organized as follows. In Section II,
we discuss related works in passive interference estimation.
In Section III, we present the experiment result in a real
testbed, which shows the throughput degradation due to the
DRDI. And, we present our measurement study to demonstrate
the shortcomings in current passive interference estimation. In
Section IV, we present the detailed design of AMONET. In
Section V, we show a comprehensive evaluation of AMONET
by simulation. We conclude our work in Section VI.

II. RELATED WORK

There are many works that focus on interference measure-
ment in the network research community, either active or
passive methods. In this section, we briefly survey the related
works in the branch of passive interference estimation.

A. Existing approaches in passive interference estimation
Earlier studies in this field, such as Jigsaw [17] and WIT

[22] collect off-line data to analyze network performance.
WIT analyzes the performance of the IEEE 802.11 MAC
protocol using the data traces collected by several sniffers.
Similarly, Jigsaw also uses sniffers to collect data traces to
study link performance. The most recent study of the passive
method is the PIE. PIE is a centralized system which infers
the interference relation across the entire Wi-Fi networks using
the data traces collected at different APs. A central controller
is used to merge the traffic traces and analyze the LIR (will
be described in Section 2.2) and packet overlapping relation,
then the controller can accurately infer the APs’ Carrier Sense
and Hidden Terminal relation.

B. The Link Interference Ratio (LIR)
LIR is a widely used metric in current passive interference

detection to infer the interference relation between any two
links [18], [20]. For a pair of links, LIR is the ratio of the

transmission performance when they transmit simultaneously,
to the performance when they transmit individually. Its value
ranges from 0 to 1. LIR of 1 indicates the two links do
not interfere, whereas, LIR of 0 indicates there is heavy
interference between the two links. In practice, a threshold of
0.8 is widely used to judge the existence of interference [18],
[20]. Note that, we use the notation L

APi,MSj to represent a
wireless link from AP

i

to MS
j

.
LIR can be calculated in both passive and active ways. The

active way is the Unicast Bandwidth Test (UBT) [18] which
uses the measured throughputs of links when they transmit
unicast data. The LIR estimated using UBT is given by:

LIR UBT
AP3MS4!AP1MS2 =

U
AP3MS4!AP1MS2

U
AP1MS2

(1)

where U
AP1MS2 is the unicast throughput of L

AP1,MS2 when
it transmits individually, and U

AP3MS4!AP1MS2 is the unicast
throughput of L

AP1,MS2 when it transmits simultaneously
with L

AP3,MS4 . The LIR UBT directly shows the decrease
of transmission efficiency on L

AP1,MS2 when it transmits
together with L

AP3,MS4 . UBT is widely regarded as the
reference of interference estimation [17], [18], [20]. However,
it requires an overhead of O(n4) to estimate the interference
relation for an n node network, which is not applicable in
practice. According to the experiment result given in [23], the
running time of UBT in a 20 nodes topology is more than one
hour.

On the other hand, a passive way to calculate the LIR is to
use the overlapping packets delivery rate [16], which shows the
probability of a wireless link to successfully transmit its packet
at a certain data rate when it transmits simultaneously with
the potential interferer. The LIR calculated using the Packet
Delivery Rate (PDR) is defined as:

LIR PDR
AP3MS4!AP1MS2,r =

R
AP3MS4!AP1MS2,r

R
AP1MS2,r

(2)
where R

AP1MS2,r is the packet delivery rate of L
AP1,MS2

when it transmits individually at the data rate r, and
R

AP3MS4!AP1MS2,r is the delivery rate of L
AP1,MS2 when

it transmits simultaneously with L
AP3,MS4 at the data rate r.

In summary, in addition to detecting the well-studied Carrier
Sense and the collision induced interference in the hidden
terminal problem, the AMONET is able to detect the Data
Rate Degradation which is also caused by the hidden terminal
problem.

III. PROBLEM DEFINITION AND MOTIVATION

In this section, we first introduce the types of interference
that we are focusing in this paper. After that, we present
an experiment in a real testbed to study the DRDI. Then,
a measurement study on the interference estimation in a
multiple rates environment is presented, in which we analyze
the interference detection result of PIE, and demonstrate that
the existing passive interference detection methods can’t detect
the DRDI.

208ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

A. Types of interference
In this paper we focus on the interferences among the down-

link transmissions, from APs to MSs, because the downlink
traffic occupies around 85% of the entire traffic in the Wi-
Fi networks [24]. In the downlink case, the interference can
be broadly classified into two categories: 1) the Carrier Sense
(CS) interference between two APs, which determines how
the APs can share the wireless channel; and 2) the collision
induced interference at the MSs, due to the hidden terminal
problem.

For any two APs sharing the same wireless channel, AP
i

and AP
j

, there are four cases of CS interference: 1) AP
i

$
AP

j

: if AP
i

and AP
j

can carrier sense the transmission of
each other; 2) AP

i

 AP
j

: if AP
j

can carrier sense the
transmission of AP

i

, but AP
i

can’t sense AP
j

; similarly we
have 3) AP

i

! AP
j

; 4) AP
i

= AP
j

: if AP
i

and AP
j

can’t
carrier sense each other. If at least one of the two APs can’t
carrier sense the other one, their simultaneous transmissions
will cause the collision induced interference on the MSs. This
is widely known as the hidden terminal problem. Although the
concept of hidden terminal problem is widely used in current
literature [13], [15], we still lack of a detailed definition of
it in multiple rates scenario, in which APs can still transmit
their packets successfully after degrading the data rates, if
the interference from the hidden terminal is not severe. Note
that a wireless link may degrade its transmission data rate
due to various reasons, such as the increase of transmission
distance, the channel noise, or the interference from non-Wi-Fi
devices. The problem we are focusing in this paper arises from
the collision induced interference due to the hidden terminal
problem. We define and use the following definitions in this
paper:

Definition 1. Hidden Terminal Interference (HTI). If 1)
the simultaneous transmission of L

AP3,MS4 causes packets
collisions on MS2 and 2) the Packet Delivery Rate of
L
AP1,MS2 is below 0.8 (more than 20% packet loss) even

if L
AP1,MS2 has degraded its transmission data rate to the

lowest one. Then, we say L
AP3,MS4 causes the HTI on

L
AP1,MS2 .

Definition 2. Data Rate Degradation due to Interference
(DRDI). If 1) the concurrent transmission of L

AP3,MS4

causes packets collisions on MS2 but 2) L
AP1,MS2 can still

achieve a Packet Delivery Rate over 0.8 by using a lower data
rate. Then, we say L

AP3,MS4 causes the DRDI on L
AP1,MS2 .

Both HTI and DRDI can be regarded as the symptoms of the
hidden terminal problem, but they will cause different results.

B. Experiments in real testbed
We set up an indoor testbed to investigate the significant

throughput degradation caused by the DRDI in a practical Wi-
Fi networks. As shown in Fig. 1, the testbed consists of two
Cisco WRT610N series APs, AP1 and AP2, that have wired
connection to the PCs running the Iperf [25]. We have three

AP1 AP2

MS2MS1

MS3

PC1 PC2

Room 1

Room 2

Scale: 1 meter

Fig. 1: The topology of the testbed consists of two APs and
three mobile stations.

0

10

20

30

40

50

60

70

80

90

100

0 200 400 600 800 1000 1200
Pe

rc
en

ta
ge

 o
f t

ot
al

 p
ac

ke
ts

Time (second)

Low Rates

Medium Rates

High Rates

Fig. 2: Percentages of packets transferred from AP1 to
MS2 at different data rate groups during the 20 minutes
experiment.

mobile stations, MS1 is a laptop with the Realtek RTL8188CE
wireless card, MS2 is a laptop with the Ralink RT3090 card
and MS3 is a laptop using the Intel Dual Band Wireless-AC
7260 wireless card. MS1 and MS2 are associated with AP1

and MS3 is associated with AP2. The APs are configured to
use the same channel in the 2.5GHz band. Moreover, we fixed
the network mode as IEEE 802.11n and used the default auto-
rate adaptation algorithm [19] in the APs to support data rate
adaptation. In all the experiments we disabled the RTS/CTS
handshake and fixed the transmission power to ensure those
two APs can’t carrier sense each other. We put MS1 inside
Room 1 which was three meters away from AP1, so that it
would not suffer any interference from the transmission of
AP2. On the other hand, we put MS2 at the corridor between
Room 1 and Room 2, and it was also three meters away from
AP1. But the transmission from AP2 would cause the DRDI
on MS2. We used the Iperf running on both PC1 and PC2

to generate the downlink UDP traffic from APs to mobile
stations. The offered traffic load was configured as 30 Mbps.

We set up a 20 minutes experiment. In the first 10 minutes,
only AP1 was activated, after that we also activated AP2, so
that the transmission from AP2 to MS3 would cause the DRDI
on MS2. During the experiment, we collected the traces of
the wireless network traffic and analyzed the adaptation of the
data rates. Because of the rate diversity, we simply classify the
data rates into three groups: the data rates of 6.5, 13 and 19.5

209ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ro

ug
hp

ut
 (

M
bp

s)

Time (minute)

MS2

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Th
ro

ug
hp

ut
 (M

bp
s)

Time (minute)

MS2
MS1

Fig. 3: The throughputs of both MS1 and MS2 during
the 20 minutes experiment.

Mbps serve as the Low Rates group; 26 and 39 Mbps serve
as the Medium Rates group; 52 Mbps and higher rates serve
as High Rates group. Fig. 2 shows the percentages of packets
transferred from AP1 to MS2 using each of those three data
rate groups during the 20 minutes experiment. We can see
that in the first 600 seconds, the percentage of the packets
transmitted using ‘High’ data rates is about 50 percent, and
only around 10 percent of packets were transmitted using a
‘Low’ data rate. However, after 600 seconds, when the DRDI
happened, the percentage of High Rates decreased below 10
percent, whereas, the percentage of Low Rate increased and
was above 50 percent. This data rate degradation happened
on MS2 caused the performance anomaly problem on MS1.
As shown in Fig. 3, in the first 10 minutes, the throughputs of
MS1 and MS2 are around 10 Mbps and 6 Mbps, respectively.
After 10 minutes, the throughput of MS2 decreased to 1 Mbps
due to the DRDI from AP2, and the throughput of MS1

also decreased to 3 Mbps due to the performance anomaly
problem caused by the DRDI on MS2. Thus, it is essential
to detect and provide the DRDI information to the upper-
layer applications, such as the centralized scheduling system,
to resolve the interference. In the next section, we present
our measurement study of the existing passive interference
estimation method, which shows that the existing method can’t
accurately detect the DRDI.

C. A measurement study of passive interference estimation in
dynamic environments

Previous studies [4], [23] have shown that the interfer-
ence relation between wireless links is affected by the link’s
physical data rate. Although previous study on passive in-
terference estimation, PIE, has been proven to be accurate
in estimating the LIR PDRs for different data rates, it only
uses the LIR PDR calculated at a single data rate to judge
the interference relation. Without showing how to apply the
LIR PDRs calculated at different data rates to infer the
interference relations in multi-rates environment, it may result
in a misjudgement of interference relation.

AP1 AP3
MS2 MS4

110 m

distance between
MS2 and AP3

Fig. 4: A simple Hidden Terminal topology consists of two
802.11n wireless links.

To understand the above problem, we conduct extensive
simulations in QualNet using a simple hidden terminal topol-
ogy shown in Fig. 4. The topology consists of two APs and two
MSs sharing the same channel in 802.11n. We use the Two-ray
pathloss model and the lognormal shadowing model with 8dB
shadowing mean in all the simulations in this paper. The solid
lines with arrow represent the association relations between
AP and MS, while the dashed line with arrow represents the
potential interference relation. Transmission ranges of the APs
are configured as 80 meters. The dash circles indicate the
carrier sensing ranges of AP1 and AP3. The distance between
AP1 and AP3 is around 110 meters and they can’t sense each
other. Thus, those two links are in the hidden terminal problem
and the transmission of L

AP3,MS4 may cause interference on
L
AP1,MS2 . However, according to our previous definitions,

depending on the distance between MS2 and AP3 and the
offered traffic load, it may result in either HTI or DRDI.

We construct a number of scenarios by adjusting the dis-
tance from MS2 to its potential interferer AP3. We estimate
the interference level of L

AP3,MS4 on L
AP1,MS2 for every

three meters when the distance changes from 110 meters
to 65 meters. In addition, we adjust the offered traffic load
on those two links among 3, 6 and 9 Mbps, to take the
influence of traffic load into account. Every scenario was
simulated more than 20 times by varying the random seed
value used in the QualNet, which will affect the feature of
both signal propagation and wireless environment. We also
disable the Request-to-Send/Clear-to-Send (RTS/CTS) hand-
shake for all the nodes, and apply the Auto Rate Fallback
(ARF) implemented in the QualNet to support rate adaptation.
We use both unicast throughput and packet delivery rate,
defined in Eq. (1) and Eq. (2), to calculate the LIR UBT
and LIR PDR, respectively. Note that, in case of deciding
interference relation, the LIR Threshold of 0.8 is applied.
If the LIR UBT is less than the LIR Threshold, the UBT
[18] will infer the links are in an interference relationship.
Similarly, if the LIR PDR of the lowest data rate (6.5 Mbps
in case of 802.11n, notated as LIR PDR6.5Mbps

) is less than
LIR Threshold, PIE will judge them as interference. Like
the previous works in the literature [18], [20], we regard the
interference relation measured by the UBT as the ground truth.

Fig. 5 shows the distributions of the LIRs of L
AP3,MS4

210ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0

0.2

0.4

0.6

0.8

1

110 107 104 101 98 95 92 89 86 83 80

L
IR

 v
al

ue

distance to the interferer (meter)

LIR_PDR at
6.5Mbps

LIR_PDR at
13Mbps

LIR_PDR at
19.5Mbps

LIR_UBT

LIR Threshold

match

(a) Light traffic load: 3 Mbps.

0

0.2

0.4

0.6

0.8

1

110 107 104 101 98 95 92 89 86 83 80

L
IR

 v
al

ue

distance to the interferer (meter)

LIR_PDR at
6.5Mbps
LIR_PDR at
13Mbps
LIR_PDR at
19.5Mbps
LIR_UBT

LIR Threshold

Gap > 12m

(b) Medium traffic load: 6 Mbps.

0

0.2

0.4

0.6

0.8

1

110 107 104 101 98 95 92 89 86 83 80

L
IR

 v
al

ue

distance to the interferer (meter)

LIR_PDR at
6.5Mbps
LIR_PDR at
13Mbps
LIR_PDR at
19.5Mbps
LIR_UBT

LIR Threshold

Gap > 18m

(c) Heavy traffic load: 9 Mbps.

Fig. 5: The LIRs of L
AP3,MS4 on L

AP1,MS2 when MS2 moves forward to AP3.

0

500

1000

1500

2000

2500

110 107 104 101 98 95 92 89 86 83 80

N
um

be
r o

f p
ac

ke
ts

 d
el

iv
er

ed
 su

cc
es

sf
ul

ly

Distance to the interferer (meter)

Total

6.5 Mbps

13 Mbps

19.5 Mbps

Fig. 6: The number of packets successfully delivered by
L
AP1,MS2 at three different data rates (6.5, 13 and 19.5

Mbps) under the interference from L
AP3,MS4 and with a

6 Mbps traffic load.

on L
AP1,MS2 . Three data rates (6.5, 13 and 19.5 Mbps) are

used by L
AP1,MS2 during the experiment. Thus, we estimate

the LIR PDR based on the packet delivery rate of L
AP1,MS2

at each of those data rates (following Eq. (2)), denoted as
LIR PDR6.5Mbps

, LIR PDR13Mbps

and LIR PDR19.5Mbps

,
respectively. Fig. 5 also shows the LIR UBT calculated based
on the unicast throughput of L

AP1,MS2 (following Eq. (1)).
As we expected, when MS2 moves closer to AP3, all the
three LIR PDRs and LIR UBT are decreased. Moreover, the
decrease of LIRs (both LIR PDR and LIR UBT) start earlier
in the case when the offered traffic load is heavy (9 Mbps),
than in the cases when traffic load is either light (3 Mbps)
or medium (6 Mbps). This is because, with the increase of
the offered traffic load, the collision happens more frequently
on MS2. In case of light traffic load, shown in Fig. 5(a),
the LIR UBT indicates that L

AP1,MS2 suffers interference
from L

AP3,MS4 when the distance between MS2 and AP3

is less than 83 meters. Moreover, the LIR PDR19.5Mbps

and
LIR PDR13Mbps

decrease below the LIR Threshold much
earlier than LIR UBT, due to their poor robustness against
the interference. However, the value of LIR PDR6.5Mbps

de-
creases below the LIR Threshold not until the distance reduces

to 83 meters. In this case, the estimation result of PIE using
the LIR PDR6.5Mbps

matches the result of the UBT which
we regarded as the reference of interference. Both of them
infer the interference on L

AP1,MS2 starts when the distance
is less than 83 meters. In case of medium traffic load,
shown in Fig. 5(b), with the increasing of the traffic load,
more collisions happen at MS2. Thus, the LIR UBT shows
that L

AP3,MS4 will cause heavy interference on L
AP1,MS2

from a position much earlier than that in the light traffic
load case. From Fig. 5(b), we can see that the LIR UBT
drops below the LIR Threshold when the distance is around
95 meters. However, LIR PDR6.5Mbps

still maintains above
the LIR Threshold until the distance decreases to 83 meters.
The UBT estimates that L

AP1,MS2 suffers interference from
L
AP3,MS4 when the distance is 95 meters, whereas, the PIE

shows the interference starts from 83 meters, which is a 12
meters difference. Thus, there is a gap area in which the
estimation results of the UBT and PIE are different. In case of
heavy traffic load, as shown in Fig. 5(c), the result is similar
to that in the medium traffic load. We can notice that the
LIR UBT drops below the LIR Threshold when the distance
is around 101 meters. But, the value of LIR PDR6.5Mbps

can
maintain above the LIR Threshold until the distance is smaller
than 83 meters. In this case, the range of the gap area increases
to 18 meters.

An interesting question is: what causes the gap between
the estimation results between the UBT and PIE? And what
happens on the link L

AP1,MS2 within the gap area?
To answer the above question, let’s analyze the gap area

shown in Fig. 5(b) and the measurement result of L
AP1,MS2

shown in Fig. 6, which shows the number of successful packets
delivered at each of the data rates that L

AP1,MS2 used. In
Fig. 5(b), the gap area starts from 95 meters to 83 meters: the
LIR UBT drops below the LIR Threshold when the distance
is around 95 meters, whereas, the LIR PDR6.5Mbps

drops
below the LIR Threshold not until 83 meters. Fig. 6 shows
that the total number of successful packets drops dramatically
when the distance decreases from 98 meters to 95 meters.
Moreover, when the distance is between 95 meters and 86
meters (the gap area), nearly all the successful packets are sent
at the data rate of 6.5 Mbps. Again, this is because AP1 de-

211ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

AP1 AP3MS2 MS4

Central ControllerTransmission Information
(TI) for MS2

TI for packet #1

TI for packet #2

TI for packet #3

TI for packet #n

TI for packet #4

TI for packet #3

Start Time
End Time
Data Rate

Reception Status

Access Point ID
Mobile Station ID

TI report for MS2 TI report for MS4

Fig. 7: An example of the AMONET architecture which
consists of a central controller, two APs and two MSs.

grades its transmission data rate to resist the interference from
L
AP3,MS4 . According to the distribution of LIR PDR6.5Mbps

shown in Fig. 5(b), L
AP1,MS2 can still achieve a high packets

delivery rate at 6.5 Mbps until the distance reaches 83 meters.
However, due to the decrease of total successful packets and
the degradation of transmission data rate, the throughput of
link L

AP1,MS2 decreases dramatically within the gap area,
as the LIR UBT indicates in Fig. 5(b). The interference
L
AP3,MS4 on L

AP1,MS2 within the gap area is the DRDI
which we defined previously. Lastly, when the distance is
smaller than 83 meters, even the lowest data rate can’t resist
the interference, both the LIR UBT and LIR PDR6.5Mbps

decrease to 0. From Fig. 6, we can notice that nearly no
packets can be received at MS2 when the distance is smaller
than 83 meters. In this case, the interference L

AP3,MS4 on
L
AP1,MS2 is the HTI. Note that, using the LIR PDR at a

single rate in PIE can detect the HTI but fails to detect
the DRDI. Because the DRDI happens in the gap area as
shown in Fig. 5, in which the LIR PDR6.5Mbps

is still above
the LIR Threshold. On the other hand, though the UBT can
clearly detect both the HTI and DRDI using the LIR UBT, it is
not applicable in practice due to its large computing overhead,
as mentioned before.

IV. THE DESIGN OF AMONET
In this section, we present the design of AMONET. We out-

line the architecture of AMONET and introduce the algorithms
to detect the Carrier Sense, HTI, and DRDI.

A. System overview
Following the trend in the existing passive interference

estimation, AMONET is a centralized system consisting of
a central controller, and with all the APs connected to the
controller through wired networks, where the main function of
interference estimation is implemented. The APs are required
to record the Transmission Information (TI) for every packet
they have transmitted. The information includes: 1) an accurate
timestamp showing the start time and end time of the packet;
2) the data rate the packet has been transmitted; 3) the
reception status showing if the packet has been successfully
delivered; and 4) the IDs of the AP (source) and MS (des-
tination). As an example shown in Fig. 7, for every packet
AP1 sends to MS2, AP1 creates a timestamp for that packet

and records the data rate it used for transmission. In order
to achieve this, AMONET requires a slightly modification
on the APs. After receiving the corresponding ACK from
MS2, AP1 will update the packet’s reception status. APs will
report the collected TIs to a central controller periodically.
The length of the report period can be configured empirically.
While a short period can ensure a lower computation overhead
and faster update, a long period can enable higher detection
accuracy. In our setting, the report period is configured as
three seconds, which ensures both low computation overhead
and high detection accuracy.

B. Detection of the Carrier Sense (CS) interference
Corresponding to each of the four Carrier Sense relations

we introduced in Section 3, for any two APs, AP
i

and AP
j

,
their packet transmissions can have four kinds of overlapping
relation: 1) Non-Overlapping: if their CS relation is AP

i

$
AP

j

, according to the IEEE 802.11 CSMA/CA mechanism,
both of the two APs will defer their transmissions to avoid
packet collisions whenever they sense the other AP is sending
packets. Thus, the controller will not find any overlapped
packet between those two APs; 2) One-way-Overlapping:
in case of AP

i

 AP
j

, the controller can observe that the
packets from AP

i

overlap with the packets from AP
j

. Because
AP

i

will keep sending its packets even if AP
j

is using the
channel. However, AP

j

will defer its transmission while AP
i

is occupying the channel. Similarly, we have the relation
AP

i

! AP
j

; 3) Two-way-Overlapping: if AP
i

= AP
j

,
neither AP

i

nor AP
j

will not defer its transmission even if
the other AP is sending, thus the controller will observe their
packets overlap with each other.

To infer the CS interference, the controller will merge and
sort the collected TIs in the order of the transmission start-
time based on the same timeline. Note that, this requires
the times at both the APs and controller are synchronized,
which can be achieved using the Precision Time Protocol [26].
After sorting, the controller analyzes the overlapping relation
between the APs’ packet transmissions. Then, based on the
packets overlapping relationship, the controller can infer the
APs’ Carrier Sense relation.

The details are shown in Algorithm 1. The controller takes
merged and sorted TI list, LIST

TI

, as the input and analyze
their overlapping relation. In order to check the overlapping
relation of two TIs from two different APs, TI

i

and TI
j

, the
controller compares their timestamps. If the start-time of TI

i

(denoted as TS
i

) is later than the start-time of TI
j

(TS
j

), but
earlier than TI

i

’s end-time (TE
i

), we infer that TI
j

overlaps
with TI

i

. On the other hand, if TS
j

< TS
i

< TE
j

, we
can infer that TI

i

overlaps with TI
j

. For every two TIs in the
LIST

TI

, the controller analyzes their overlapping relation and
records the overlapping times into the result set, LIST

overlap

.
Then, using the records in the LIST

overlap

, the controller can
judge the CS relation between two APs, AP

i

and AP
j

. As
recorded in LIST

overlap

, if the number of packets from AP
i

overlapped the packets from AP
j

is more than the threshold
� (equals to 50 in our configuration to assure the accuracy),

212ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Algorithm 1 Detection of the Carrier Sense (CS) Interfer-
ence
Require: 1) LIST

TI

; 2) LIST
AP

.
Ensure: 1) CS Result; 2) LIST

overlap

.
1: function CSRELATION(LIST

TI

, LIST
AP

)
2: LIST

overlap

 empty, CS Result empty
3: for any TI

i

and TI
j

in LIST
TI

do
4: if TI

i

.AP
ID

6= TI
j

.AP
ID

then
5: CHECKOVERLAP(TI

i

, T I
j

, LIST
overlap

)
6: for any AP

i

and AP
j

in LIST
AP

do
7: if !LIST

overlap

.T ime(AP
i

, AP
j

) > � then
8: CS Result.Add(AP

i

, AP
j

)

9: return CS Result

then the controller infers that AP
i

can’t carrier sense AP
j

,
otherwise, AP

i

can carrier sense AP
j

. Finally, the detection
result of CS relation is recorded in the result set, CS Result.

C. Detection of the HTI and the DRDI

The prerequisite for any two links in the HTI or DRDI
relation is that at least one of APs can’t carrier sense the
other one. Therefore, to detect the links’ interference relation,
the controller gets the Carrier Sense relations between all the
APs, CS Result, from Algorithm 1. The pseudo code for
detecting the HTI and DRDI is given in Algorithm 2. The
controller maintains a list which stores the information for all
the links, LIST

link

. For any two links in LIST
link

, Link
i

and
Link

j

, the controller checks APs’ Carrier Sense relation by
using CS Result. If their APs can’t carrier sense each other,
the controller will analyze their interference relation based on
LIR PDR. The algorithm for calculating the links’ LIR PDR
is given in Algorithm 3.

Based on Eq. (2), for two links, Link
i

and Link
j

,
LIR PDR

i!j,r

shows the performance loss on Link
j

when
it transmits at data rate r simultaneously with Link

i

. As shown
in Algorithm 3, R

i!j,r

indicates the packet delivery rate
of Link

j

at rate r when transmitting together with Link
i

.
To calculate R

i!j,r

, the controller measures the overlapping
information between those two links. The value of O

i!j,r

is the number of packets from Link
j

transmitted at rate
r overlapped by the packets from Link

i

. Correspondingly,
OL

i!j,r

is the number of overlapping packet loss at Link
j

when overlap with the transmission from Link
i

. Similarly, the
controller can measure the R

j,r

, which is the packet delivery
rate of Link

j

at rate r when transmitting without Link
i

. I
j,r

is the number of packet from Link
j

transmitted at rate r
isolated with the transmission from Link

i

. Accordingly, IL
j,r

is the number of packet lost among those isolated transmission.
Then, based on R

i!j,r

and R
j,r

we can get LIR PDR
i!j,r

.
The controller will repeatedly calculate LIR PDR

i!j,r

for
every data rate r used by Link

j

lately. LIR PDR will be
used in Algorithm 2 to compute the interference relation
between two links.

Similar with PIE, the accuracy of AMONET in interference
detection is affected by the network scale and transmission
diversity. In a large network consisting of multiple interferers,

Algorithm 2 Detection of the HTI and DRDI
Require: 1) LIST

Link

; 2) LIST
overlap

; 3) CS Result.
Ensure: Interference Result.

1: function DETECTIONIR(LIST
Link

)
2: for any Link

i

and Link
j

in LIST
Link

do
3: AP

i

 Link
i

.AP,AP
j

 Link
j

.AP,
4: if !CS Result.Has(AP

i

, AP
j

) then
5: Relation

i!j

 COMPUTEIR(Link
i

, Link
j

)
6: Interfernce Result.Add(Relation

i!j

)

7: return Interfernce Result
8: function COMPUTEIR(Link

i

, Link
j

)
9: LIR PDR

i!j

 COMPUTELIR(Link
i

, Link
j

)
10: /*ComputeLIR is given in Algorithm 3*/
11: if LIR PDR

i!j

[0] < Threshold then HTI

12: if LIR PDR
i!j

[1] < Threshold then DRDI

13: if LIR PDR
i!j

[2] < Threshold then DRDI

Algorithm 3 Calculate the LIR
Require: 1) LIST

Link

; 2) LIST
overlap

; 3) CS Result.
Ensure: LIR PDR

i!j

.
1: function COMPUTELIR(Link

i

, Link
j

)
2: Overlap

i!j

= LIST
overlap

.Get(Link
i

, Link
j

)
3: for any r in Overlap

i!j

.Rate() do
4: R

j,r

 1� IL
j,r

/I
j,r

5: R
i!j,r

 1�OL
j,i,r

/O
j,i,r

6: LIR PDR
i!j

[r] = R
i!j,r

/R
j,r

7: return LIR PDR
i!j

the accuracy of validating the interferer depends on a high
transmission diversity. In order to identify the actual interferer
from a group of potential interferers, AMONET needs to
calculate the exact packet delivery rates of the victim link
when transmitting together and isolated with each of the
potential interferers, which assumes that the transmission of
different links should not highly overlapped. AMONET is
able to identify the actual interferer when the transmission
overlaps between two links are less than 60%. In practice,
the measurement result [17] achieved in a real WLAN shows
that around 90% of the wireless transmissions overlap less
than 20% of the time. This transmission diversity enables
AMONET to be accurate in the real environment.

V. EVALUATION OF AMONET

In this section, we conducted extensive simulations in the
QualNet simulator in order to provide that the interference
information provided by AMONET can benefit the centralized
scheduling algorithm more than previous works.

A. Experimental setup

We compare AMONET with the PIE and integrate both
of them to the centralized scheduling algorithm, Centaur [7].
Using the conflict information provided by either AMONET
or PIE, Centaur can avoid the downlink interference by allo-
cating conflicted links to non-overlapping time slots, and thus
improve the aggregate throughput. Different from AMONET,
PIE can’t detect the DRDI. Thus, the system throughput
of Centaur will decrease due to the performance anomaly

213ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

AP3 AP1MS4 MS11

MS12

MS2

MS10

(0, 0) (50, 0) (200, 0)
(140, 0)

Y

X

DRDI

Fig. 8: A two-APs scenario consists of five wireless links.
The distance between two APs is 150 meters, and the
distance between AP3 and MS2 is 90 meters.

0

1

2

3

4

5

6

MS2 MS4 MS10 MS11 MS12

Th
ro

ug
hp

ut
(M

bp
s)

Mobile Station

AMONET (UDP)
PIE (UDP)
DCF (UDP)

0

1

2

3

4

5

6

MS2 MS4 MS10 MS11 MS12

Th
ro

ug
hp

ut
(M

bp
s)

Mobile Station

AMONET (TCP)
PIE (TCP)
DCF (TCP)

Fig. 9: The throughput of the mobile stations in the Two-
APs topology with 6 Mbps traffic load.

problem induced by the DRDI. We evaluate the performance of
AMONET in both simple and complex scenarios. First, we use
a simple scenario to show the DRDI can cause the aggregate
throughput decrease. Second, we use a more complex scenario
includes both HTI and DRDI. We evaluate the performance of
all scenarios in terms of the aggregate throughput and fairness.
The well-known Jain’s fairness index [27] is used to evaluate
the fairness, the fairness index with a value of 1 indicates the
system is 100% fair, whereas, a value of 0 indicates unfairness.

Note that, in all scenarios, we employ IEEE 802.11n and
enable the ARF and with RTS/CTS disabled. We assume the
APs have the same transmission range and are configured to
send saturated traffic to their MSs. Both TCP and UDP traffic
are used in all scenarios, with the packet size fixed at 1,400
bytes. The experiments are repeated more than 25 times using
different random seeds in the QualNet, that will affect the
characteristics of the traffic and wireless environment.

B. Simple scenario: two-APs topology with the DRDI only

In this section, we construct a simple two-APs scenario
which only includes the DRDI. We evaluate the performance
using both UDP and TCP traffic, with a 6 Mbps traffic load
for each mobile station. As shown in Fig. 8, AP1 and AP3

AP1

AP2

AP3

AP4

AP5

AP6

(Channel 1)

(Channel 1)

(Channel 6)

(Channel 6)

(Channel 11)

(Channel 11)

(0, 150)

(0, 0)

(100, 150)

(100, 0)

(200, 150)

(200, 0)

Y

X

Fig. 10: A complex scenario consists of 6 APs and 14 MSs.

TABLE I: Normalized system throughput gains of Centaur
integrate with AMONET and PIE over DCF and the
system fairness.

Traffic Method Gains Fairness
Index

UDP AMONET 1.30⇥ 0.91
UDP PIE 1.12⇥ 0.86
TCP AMONET 1.28⇥ 0.91
TCP PIE 1.12⇥ 0.85

can’t carrier sense each other, and the transmission from AP3

will cause the DRDI on link L
AP1,MS2 .

Simulation results. Fig. 9 shows the throughput for each of
the MSs, due to the DRDI caused by the interference from link
L
AP3,MS4 on link L

AP1,MS2 , the throughput of MS2 is less
than 2 Mbps. Moreover, the performance anomaly problem
induced by the rate degradation affected all the other three
MSs that associate to AP1, and made the throughputs of those
MSs are as low as that of MS2. In case of Centaur integrated
with PIE (PIE-Centaur), because PIE can’t detect the DRDI,
Centaur performs no better than DCF. On the other hand,
when integrated with AMONET, Centaur can allocate different
time slots to the transmissions of L

AP3,MS4 and L
AP1,MS2 ,

which mitigates the interference occurs on MS2. As a result,
L
AP1,MS2 will be free from the DRDI from L

AP3,MS4 , and
thus, will increase the throughput on all the other MSs.

C. Complex scenario: multi-APs topology with both HTI and
DRDI

In this subsection, we evaluate AMONET in a complex
scenario which includes both HTI and DRDI. As shown in
Fig. 11, our topology consists of six APs and their positions
are denoted as (x, y). Besides, every two adjacent APs use
one of the three orthogonal channels (Channel 1, 6 and 11) in
2.4 GHz, and with a distance of 100 or 150 meters, so that
they are out of the carrier sensing range of each other. We
distribute 14 MSs and associate them to each of the APs, as
shown in Fig. 10, each of the APs may have one to three MSs.
Note that, in each of the scenarios we used, the ratio of links
suffering either the HTI or DRDI is about 25%, which means
around four links among those 14 links are suffering one of
those two interferences. This ratio matches the measurement
result presented in [16], that about 10% to 30% of links in a
Wi-Fi network suffering those two interferences.

Simulation results. Table 2 shows the throughput gains
of Centaur over DCF for the complex scenario, when using

214ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE II: Aggregate throughput gains of Centaur with
AMONET and PIE on the interfered wireless links over
DCF.

Traffic Mechanism Gains
UDP AMONET 2.68⇥
UDP PIE 1.80⇥
TCP AMONET 2.59⇥
TCP PIE 1.82⇥

the interference information generated by AMONET and PIE,
respectively. Because the scenario consists of both HTI and
DRDI, the conflict graph created by PIE is not accurate enough
to help Centaur to avoid the DRDI. However, comparing with
DCF, PIE-Centaur can improve the aggregate throughput by
avoiding the HTI and achieve a throughput gain of 1.12⇥ over
DCF. On the other hand, using the HTI and DRDI information
provided by AMONET, Centaur can effectively resolve both
of those conflicts by allocating the conflicted transmissions
into different transmission timeslots. As shown in the results,
AMONET-Centaur can achieve a throughput gain of 1.30⇥
over DCF. Table 3 shows the aggregate throughput gains of
Centaur on the interfered links. The results indicate that, with
AMONET, Centaur can achieve a throughput gain more than
2.50 on those interfered AP-to-MS links over DCF, while with
PIE, Centaur can only achieve a 1.80 gain over the DCF. This
clearly shows that Centaur can largely increase the throughput
of the interfered links by using AMONET. In addition, in
all the cases, Centaur can achieve better fairness when using
AMONET, compare with PIE and DCF.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a detailed measurement study
of the passive interference estimation in multi-rate Wi-Fi net-
works. We found that the existing works are not able to detect
the DRDI, which will cause dramatic throughput degradation.
To address this problem, we presented the AMONET and
integrated it with a centralized scheduling system to detect and
mitigate the interferences. The results showed that AMONET
can greatly benefit the centralized scheduling system and
achieved higher throughput than the previous works in in-
terference estimation. As a part of our future work, we will
implement our AMONET system in real testbed to evaluate
its performance and accuracy in interference detection.

VII. ACKNOWLEDGMENTS

This research was supported by the MSIP (Ministry of
Science, ICT and Future Planning), Korea, under the Human
Resource Development Project for Brain scouting program
(IITP-H7106-15-1011) supervised by the IITP (Institute for
information & communications Technology Promotion).

REFERENCES

[1] Cisco, “The zettabyte era: trends and analsis,” 2015.
[2] M. A. Ergin, K. Ramachandran, and M. Gruteser, “Understanding

the effect of access point density on wireless lan performance,” in
Proceedings of ACM MobiCom, 2007, pp. 350–353.

[3] V. P. Mhatre, K. Papagiannaki, and F. Baccelli, “Interference mitigation
through power control in high density 802.11 wlans,” in Procceedings
of IEEE INFOCOM, 2007, pp. 535–543.

[4] J. Huang, G. Xing, and G. Zhou, “Unleashing exposed terminals in
enterprise wlans: A rate adaptation approach,” in Proceedings of IEEE
INFOCOM, 2014, pp. 2481–2489.

[5] A. Mishra, V. Brik, S. Banerjee, A. Srinivasan, and W. Arbaugh, “A
client-driven approach for channel management in wireless lans,” in
Proceedings of IEEE INFOCOM, 2006, pp. 1–12.

[6] E. Rozner, Y. Mehta, A. Akella, and L. Qiu, “Traffic-aware channel
assignment in enterprise wireless lans,” in Proceedings of IEEE ICNP,
2007, pp. 133–143.

[7] V. Shrivastava, N. Ahmed, S. Rayanchu, S. Banerjee, S. Keshav,
K. Papagiannaki, and A. Mishra, “Centaur: realizing the full potential of
centralized wlans through a hybrid data path,” in Proceedings of ACM
MobiCom, 2009, pp. 297–308.

[8] J. Manweiler, N. Santhapuri, S. Sen, R. R. Choudhury, S. Nelakuditi,
and K. Munagala, “Order matters: transmission reordering in wireless
networks,” Networking, IEEE/ACM Transactions on, vol. 20, no. 2, pp.
353–366, 2012.

[9] W. Zhou, D. Li, K. Srinivasan, and P. Sinha, “Domino: relative schedul-
ing in enterprise wireless lans,” in Proceedings of ACM CoNEXT, 2013,
pp. 381–392.

[10] D. S. Chan, T. Berger, and L. Tong, “Carrier sense multiple access com-
munications on multipacket reception channels: theory and applications
to ieee 802.11 wireless networks,” Communications, IEEE Transactions
on, vol. 61, no. 1, pp. 266–278, 2013.

[11] F. Babich, M. Comisso, A. Crismani, and A. Dorni, “On the design of
mac protocols for multi-packet communication in ieee 802.11 hetero-
geneous networks using adaptive antenna arrays,” Mobile Computing,
IEEE Transactions on, vol. 14, no. 11, pp. 2332–2348, 2015.

[12] K. C.-J. Lin, S. Gollakota, and D. Katabi, “Random access hetero-
geneous mimo networks,” ACM SIGCOMM Computer Communication
Review, vol. 41, no. 4, pp. 146–157, 2011.

[13] K. Jain, J. Padhye, V. N. Padmanabhan, and L. Qiu, “Impact of interfer-
ence on multi-hop wireless network performance,” Wireless networks,
vol. 11, no. 4, pp. 471–487, 2005.

[14] D. Niculescu, “Interference map for 802.11 networks,” in Proceedings
of ACM IMC, 2007, pp. 339–350.

[15] N. Ahmed and S. Keshav, “Smarta: a self-managing architecture for thin
access points,” in Proceedings of ACM CoNEXT, 2006, p. 9.

[16] V. Shrivastava, S. Rayanchu, S. Banerjee, and K. Papagiannaki, “Pie
in the sky: online passive interference estimation for enterprise wlans,”
in Proceedings of USENIX NSDI. USENIX Association, 2011, pp.
337–350.

[17] Y. C. Cheng, J. Bellardo, P. Benkö, A. C. Snoeren, G. M. Voelker,
and S. Savage, “Jigsaw,” ACM SIGCOMM Computer Communication
Review, vol. 36, no. 4, pp. 39–50, 2006.

[18] J. Padhye, S. Agarwal, V. N. Padmanabhan, L. Qiu, A. Rao, and B. Zill,
“Estimation of link interference in static multi-hop wireless networks,”
in Proceedings of ACM IMC. USENIX Association, 2005, pp. 28–28.

[19] D. Halperin, W. Hu, A. Sheth, and D. Wetherall, “Predictable 802.11
packet delivery from wireless channel measurements,” ACM SIGCOMM
Computer Communication Review, vol. 41, no. 4, pp. 159–170, 2011.

[20] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda, “Perfor-
mance anomaly of 802.11 b,” in Proceedings of IEEE INFOCOM, vol. 2,
2003, pp. 836–843.

[21] QualNet, http://web.scalable-networks.com/.
[22] R. Mahajan, M. Rodrig, D. Wetherall, and J. Zahorjan, “Analyzing

the mac-level behavior of wireless networks in the wild,” in ACM
SIGCOMM Computer Communication Review, vol. 36, no. 4. ACM,
2006, pp. 75–86.

[23] N. Ahmed, U. Ismail, S. Keshav, and K. Papagiannaki, “Measuring
multi-parameter conflict graphs for 802.11 networks,” ACM SIGMO-
BILE Mobile Computing and Communications Review, vol. 13, no. 3,
pp. 54–57, 2010.

[24] J. Eriksson, S. Agarwal, P. Bahl, and J. Padhye, “Feasibility study of
mesh networks for all-wireless offices,” in Proceedings of ACM MobiSys,
2006, pp. 69–82.

[25] Iperf, http://iperf.fr.
[26] D. L. Mills, “Internet time synchronization: the network time protocol,”

Communications, IEEE Transactions on, vol. 39, no. 10, pp. 1482–1493,
1991.

[27] R. Jain, D.-M. Chiu, and W. R. Hawe, A quantitative measure of fairness
and discrimination for resource allocation in shared computer system.
Eastern Research Laboratory, Digital Equipment Corporation Hudson,
MA, 1984, vol. 38.

215ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

On the Delay Performance of Interference Channels
Sebastian Schiessl§, Farshad Naghibi§, Hussein Al-Zubaidy§, Markus Fidler‡, James Gross§

§School of Electrical Engineering, KTH Royal Institute of Technology, Stockholm, Sweden
‡Institute of Communications Technology, Leibniz Universität Hannover, Germany

Abstract—A deep understanding of the queuing performance
of wireless networks is essential for the advancement of future
wireless communications. The stochastic nature of wireless chan-
nels in general gives rise to a time varying transmission rate. In
such an environment, interference is increasingly becoming a key
constraint. Obtaining an expressive model for offered service of
such channels has major implications in the design and optimiza-
tion of future networks. However, interference channels are not
well-understood with respect to their higher layer performance.
The particular difficulty for handling interference channels arises
from the superposition of random fading processes for the signals
of the transmitters involved (i.e., for the signal of interest and
for the signals of the interferers). Starting from the distribution
of the signal-to-interference-plus-noise ratio (SINR), we derive
a statistical characterization of the underlying service process
in terms of its Mellin transform. Then, we adapt a recent
stochastic network calculus approach for fading channels to
derive measures of the queuing performance of single- and multi-
hop wireless interference networks. Special cases of our solution
include noise-limited and interference-limited systems. A key
finding of our analysis is that for a given average signal and
average sum interference power, the performance of interfered
systems not only depends on the relative strength of the sum
interference with respect to the signal-of-interest power, but also
on the interference structure (i.e., the number of interferers) as
well as the absolute levels.

I. INTRODUCTION

Over the last decade interference has become the key bottle-
neck for the further evolution of wireless networks. With the
advent and proliferation of broadband wireless communication
services, this interference limitation is apparent in multiple
ways. For unlicensed bands, the interference limitation is
due to the constantly increasing number of deployed wireless
systems, running heterogeneous technologies and not under-
going a deployment planning. This has led to quite crowded
frequency bands which are facing a significant coexistence
problem [1]. On the other hand, the need for higher commu-
nication rates has forced cellular network providers to operate
advanced packet-switched networks with a frequency reuse
of one, i.e., potentially introducing a significant interference
coupling between neighboring cells of the same system. Con-
sequently, (mitigating) the impact of interference in wireless
communication networks has become an intense area of re-
search recently [2], [3]. Despite the large research interest with
respect to interference channels on the physical layer, little is
known with respect to the impact of interference regarding the
higher layers. In particular, from a fundamental point of view

This work was supported in part by the European Research Council (ERC)
under Starting Grant UnIQue (StG 306644).

only few attempts have been made to characterize the inter-
ference channel from a queuing-theoretic perspective. Hence,
models to study the performance of wireless (interfered) store-
and-forward networks are lacking.

For instance, a higher-layer queuing analysis of wireless net-
works under the impact of interference is presented in [4] for
sensor networks. However, the considered interference model
relates to the so-called protocol model, where nodes avoid
interference for example based on CSMA/CA coordination.
Furthermore, the authors studied only average performance
metrics by mapping the transmission behavior to standard
G/G/1 queuing models. A related analysis in the context of
multi-hop networks is presented in [5]. Here, the authors also
study the protocol interference model and analyze multi-hop
packet transmissions based on the G/G/1 open queuing net-
work model, providing average performance metrics like the
delay. However, the more subtle effects of interference on the
physical layer due to fading are not taken into account, while
the analysis also falls short of providing a characterization
of the end-to-end delay distribution. The concept of effective
capacity can address these issues, in particular it provides
bounds on the tail of the delay of a single-hop communication
systems. However, typically interference is characterized in
this context only as an additional constant contribution to the
noise, ignoring the fading characteristic of interference [6], [7].
Finally, [8] analyzes the interference channel with respect to
scheduling stability in larger ad-hoc networks under the well-
known Lyapunov stability framework. While stability is an
important aspect of queuing networks, further relevant metrics
like the delay distribution cannot be addressed by this analysis.

In summary, most of the above works make a significant
contribution towards understanding the average queuing per-
formance of wireless networks under interference. However,
they cannot provide a more fine-grained analysis especially
of the delay distributions. Furthermore, a common assumption
among these works is the transmission of a single constant rate
traffic stream over a single interference channel. The charac-
terization of multi-hop performance of interference channels
for variable rate traffic streams, in particular with respect to
delay distributions, is an open challenge. This is especially true
when it comes to precise models of the physical layer that also
take into account the fading of the interference signals. This
clearly limits these approaches in terms of their expressibility
with respect to fading profiles or transmit power settings.

In this work, we provide a network-layer performance
analysis of interference channels in terms of their fading pa-
rameters. To our knowledge, this aspect has not been addressedISBN 978-3-901882-83-8 c

� 2016 IFIP

216ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

before. To enable such analysis, we utilize recent results from
the literature, namely (i) the fading distribution of interference
channels [9], and (ii) the (min,⇥) network calculus for
wireless network analysis [10]. A key step in such analysis
is the characterization of the service element (in this case
the interference channel) which then enables the determination
of the desired performance bounds. Our main contribution is
to provide such mathematical characterization of the service
offered by the interference channel, i.e., a fading channel in
the presence of multiple (fading) interferers, in terms of the
Mellin transform of the cumulative service process of the
channel. Computing this particular Mellin transform involves
the solution of an integral transform of a ratio distribution
which is known to be notoriously difficult to handle. We then
use the resulting service process to obtain probabilistic bounds
on the delay performance and provide the corresponding delay
performance for some special cases.

This contribution has four main and novel implications:
First, our analysis revealed that when the interference power is
time-varying due to channel fading, then for a given total aver-
age interference power, the performance of interfered wireless
systems depends heavily on the structure of the interference
rather than just the average interference power. In particular,
characterizing the interference as constant noise leads to
wrong performance assumptions of the system. Second, the
mathematical treatment of wireless systems with interference
channels that we propose here can serve as the basis for
a system-level, cross-layer optimization. Third, due to the
network calculus approach used in this work, the obtained
results can be easily extended to multi-hop settings, as we
show in Section III-C. Finally, the capacity expression for
many other interesting channels, e.g., the secrecy channel, have
similar structure to that of the interference channel. Hence, one
can use our proposed approach and results to investigate the
performance of such channels.

The rest of the paper is structured as follows: In Section II,
we provide the required background on the stochastic network
calculus. The network calculus model of the interference chan-
nel is derived in Section III. Our numerical investigations are
presented in Section IV. Finally, we provide brief conclusions
in Section V.

II. STOCHASTIC NETWORK CALCULUS FOR WIRELESS
CHANNELS

In this section, we provide a brief description of the stochas-
tic network calculus and its application to fading channels.
We then adapt this network calculus to interference channels
in the following section. The reader may refer to [10]–[18]
for more details on the network calculus and to [19]–[23] for
applications to wireless, fading, and Gilbert-Elliott channels.

Stochastic network calculus considers queuing systems and
networks of systems with stochastic arrival, departure, and ser-
vice processes, where the bivariate functions A(⌧, t), D(⌧, t)
and S(⌧, t) for any 0 ⌧ t denote the cumulative arrivals
to the system, departures from the system, and service offered
by the system, respectively, in the interval [⌧, t). We consider

a discrete time model, where time-slots have a duration T and
t � 0 denotes the index of the respective time-slot.

A lossless system with service process S(⌧, t) satisfies the
input/output relationship D(0, t) � A ⌦ S (0, t), where ⌦ is
the (min,+) convolution operator given by x ⌦ y (⌧, t) =

inf⌧ut {x(⌧, u) + y(u, t)}. A network service process of an
H-hop path can be obtained using the (min,+) convolution,
i.e., S

net

= S
1

⌦S
2

⌦· · ·⌦SH . In general, we are interested in
probabilistic bounds of the form Pr [W (t) > w"

] ", which
is also known as the violation probability for a target delay
w", under stable system operation.

Modeling wireless links in the context of network calculus
however is not a trivial task. A particular difficulty arises
when we seek to obtain a stochastic characterization of the
cumulative service process of a wireless fading channel, as
also witnessed in the context of the effective capacity of
wireless systems [24]. A promising, recent approach for wire-
less networks has been proposed in [10] where the queuing
behavior is analyzed directly in the “domain” of channel
variations instead of the bit domain [10], [25]. This can be
interpreted as the SNR domain (thinking of bits as “SNR
demands” that reside in the system until these demands can
be met by the channel).

To start with, the cumulative arrival, departure, and service
processes in the bit domain, i.e., A, D, and S, are related to
their SNR domain counterparts (represented in the following
by calligraphic capital letters A, D, and S) respectively,
through the exponential function. Thus, we have A(⌧, t) ,
eA(⌧,t), D(⌧, t) , eD(⌧,t), and S(⌧, t) , eS(⌧,t). Due to
the exponential function, these cumulative functions become
products of the increments in the bit domain. Assuming
Shannon capacity

ct = log g (�t) = N log

2

(1 + �t) , (1)

where ct is the random service offered by the system in time-
slot t, N is the number of transmitted symbols per time-slot,
and �t is the instantaneous SNR, we obtain the cumulative
service process in the SNR domain as

S(⌧, t) =
t�1Y

u=⌧

ecu =

t�1Y

u=⌧

g (�u) =
t�1Y

u=⌧

(1 + �u)
N
, (2)

where N = N/ log 2. To simplify notation, we consider the
case N = 1 in the following. Performance bounds for the
general case can be obtained by appropriately scaling the
obtained results. Furthermore, in case of first-come first-served
order, the delay at time t is obtained as follows

W (t) = W(t) = inf{u � 0 : A(0, t)/D(0, t+ u) 1}. (3)

A bound " for the delay violation probability Pr [W (t) > w"
]

can be derived based on a transform of the cumulative arrival
and service processes in the SNR domain using the moment
bound. In [10], it was shown that such a violation probability
bound for a given w" can be obtained as

" = inf

s>0

{K(s, t+ w", t)} . (4)

217ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

We refer to the function K (s, ⌧, t) as the kernel defined as

K(s, ⌧, t) =

min(⌧,t)X

u=0

MA(1 + s, u, t)MS(1� s, u, ⌧), (5)

where the function MX (s) is the Mellin transform [26] of a
random process, defined as

MX (s, ⌧, t) = MX (⌧,t) (s) = E

⇥
X s�1

(⌧, t)
⇤
, (6)

for any s 2 C, where we restrict our derivations in this work
to real valued s 2 R. We note that by definition of X (⌧, t) =
eX(⌧,t), the Mellin transform MX (s, ⌧, t) = E

⇥
e(s�1)X(⌧,t)

⇤

after substitution of parameter s = ✓+1 implies also a solution
for the moment-generating function (MGF), that is the basis
of the effective capacity model [24] and of an MGF network
calculus [15].

In the following, we will assume A (⌧, t) and S (⌧, t) to
have stationary and independent increments. We denote them
by ↵ for the arrivals (in SNR domain) and g (�) for the service.
Hence, the Mellin transforms become independent of the time
instance, which we account for by denoting MX (s, ⌧, t) =

MX (s, t� ⌧). In addition, as we only consider stable queuing
systems in steady-state, the kernel becomes independent of the
time instance t and we denote K (s, t+ w, t)

t!1
= K (s,�w).

The strength of the Mellin-transform-based approach be-
comes apparent when considering block-fading channels. The
Mellin transform for the cumulative service process in SNR
domain is given by

MS (s, ⌧, t) =

t�1Y

u=⌧

Mg(�) (s) = Mt�⌧
g(�) (s) = MS (s, t� ⌧) ,

where Mg(�) (s) is the Mellin transform of the stationary and
independent service increment g (�) in the SNR domain. The
function g (·) represents here the modification of the SNR
due to the Shannon formula Eq. (1). However, it can also
model more complex system characteristics, most importantly
scheduling effects.

Assuming the cumulative arrival process in SNR domain
to have stationary and independent increments and denoting
the corresponding Mellin transform by MA (s, t� ⌧) =Qt�1

i=⌧ M↵(s), the steady-state kernel for a fading wireless
channel is given by [10]

K (s,�w) =
Mw

g(�) (1� s)

1�M↵ (1 + s)Mg(�) (1� s)
(7)

for any s > 0, under the stability condition

M↵ (1 + s)Mg(�) (1� s) < 1. (8)

Assuming Rayleigh fading, i.e., an exponentially distributed
SNR with average �; at the receiver, the Mellin transform
results into [10]

Mg(�) (s) = e
1
�; �;

s�1

�

�
s, ��1

;
�
. (9)

where �(x, y) =

R1
y

tx�1e�t
dt is the incomplete Gamma

function. Then the steady-state kernel for a Rayleigh-fading
wireless channel turns out to be

K (s,�w) =

⇣
e1/�;�;

�s
�

�
1� s, 1

�;

�⌘w

1�M↵ (1 + s) e1/�;�;�s
�

�
1� s, 1

�;

� (10)

for any s > 0 and under the stability condition in Eq. (8). By
substitution of the kernel Eq. (10) into Eq. (4), a bound of the
delay violation probability " for a given w" can be obtained.

III. PERFORMANCE OF INTERFERENCE CHANNELS

We first introduce a characterization of interference channels
assuming independent block-fading processes for a trans-
mitter/receiver pair and an arbitrary number of interferers.
We then use this channel model to compute probabilistic
performance bounds for interference channels in terms of their
fading parameters.

A. Block-Fading Interference Channel

Consider a wireless communication scenario with one trans-
mitter/receiver pair that is subject to interfering signals from
a set I of interferers. Index i |I| denotes the link between
interferer i and the receiver, while i = 0 denotes the link
between the transmitter and the receiver (i.e., the signal of
interest). Denote by Pi the transmit power per link, i.e., P

0

denotes the transmit power of the signal of interest, P
1

denotes
the transmit power of interferer 1, and so on.

The received power varies from time slot to time slot
due to randomly varying channel gains of all links. Denote
the random channel gain of link i during slot t by hi,t.
We focus in the following on random variations due to
independent Rayleigh-distributed block-fading processes for
all links i. Hence, the received signal strength of link i is
given by Pi|hi,t|2 and is exponentially distributed with mean
pi = Pi · E

⇥
|hi|2

⇤
. The fading is assumed to stay constant

during one slot but varies independently from slot to slot.
Furthermore, the fading between different links is assumed to
be statistically independent. Based on the above definitions, the
instantaneous signal-to-interference-plus-noise ratio (SINR) at
the receiver during slot t is a random variable and given as

�t =
P
0

|h
0,t|2P

i Pi|hi,t|2 + �2

, (11)

where �2 denotes the power of the additive white Gaussian
noise (AWGN) process at the receiver. Depending on the
SINR, which is assumed to be known at the transmitter, the
amount of information that can be conveyed changes in each
time slot. In this work, we consider that for an SINR �t the
transmitter is able to transmit ct bits correctly to the receiver
during slot t, where ct is defined by Eq. (1).

B. Derivation of Mg(�)(s)

Based on the system model in Section III-A, we proceed
to present the main contributions of the paper. Initially, we
concentrate on deriving the Mellin transform of the service
process for the interference channel. Then, we use the result
to compute the kernel in Eq. (7). Recall that we assume, apart
from the signal of interest, |I| interferers to be present. The

218ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

resulting SINR �t is given by the ratio of exponentially dis-
tributed random variables in Eq. (11). Considering stationary
and independent �t for all t, we omit the index t. For � we
have the distribution function [27]

Pr [� x] = F� (x) = 1� e
�x

�;
Y

8i2I

ai
ai + x

, (12)

where ai =
p0

p
i

denotes the ratio of the average received power
from the signal of interest and interferer i. Furthermore, �; =

p0

�2 is the noise-limited average SNR of the signal of interest.
Based on partial fractions decomposition [28], it was shown
[9] that the CDF in Eq. (12) can be reorganized as

F� (x) = 1� e
�x

�;
X

8i2I

ui

ai + x
, (13)

where ui =

Q
8s2I as

⇣Q
8t2I\{i} (at � ai)

⌘�1

if there are
multiple interferers |I| � 2, and u

1

= a
1

if there is only
one interferer |I| = 1. Note that the above representation only
holds for interferers with different interference strengths, that
is ai 6= aj for all i 6= j.

First, we determine the Mellin transform for g(�), where �
is the instantaneous SINR distributed according to Eq. (13).
The Mellin transform is given by

Mg(�) (s) = E

⇥
g(�)s�1

⇤
=

Z 1

0

(1 + x)s�1

dF� (x) (14)

for s < 1. To solve the integration above, we need the
following lemma.

Lemma 1.
1Z

0

(1 + x)s�2

ai + x
e

�x

�;
dx = e

1
�;

⇣
I1
1

(s) + I�(s) + I1
2

(s)
⌘
,

for any small � > 0, where

Ik
1

(s)=
kX

n=0

(�1)

n�s+n�1

;
(ai � 1)

n+1

"
�

✓
s+ n� 1,

1

�;

◆

� �
✓
s+n�1,

ai�1��)

�;

◆#
, (15)

for ai > 2 + � and Ik
1

(s) = 0, otherwise;

I�(s) =

max(1,a
i

�1+�)Z

max(1,a
i

�1��)

zs�2

z + ai � 1

e
�z

�;
dz (16)

and

Ik
2

(s) =
kX

n=0

(1�ai)
n
�s�n�2

; �

✓
s�n�2,

max(1, ai�1+�)

�;

◆

(17)

for k � 0.

Proof: To solve the integral in Lemma 1, we start by
performing a change of variable and letting z = x+ 1. Then,

1Z

0

(1 + x)s�2

x+ ai
e

�x

�;
dx = e

1
�;

1Z

1

zs�2

z + ai � 1

e
�z

�;
dz. (18)

Note that since ai > 0 by definition and z 2 [1,1), we have
z + ai � 1 > 0.

For the integral in the right hand side of Eq. (18), we use
the following series representation

1

b+ 1

=

1X

n=0

(�1)

nbn, for |b| < 1. (19)

To ensure that |b| < 1, we partition the integral in Eq. (18)
into three parts given as

1Z

1

f(z)dz =

max(1,a
i

�1��)Z

1

f(z)dz +

max(1,a
i

�1+�)Z

max(1,a
i

�1��)

f(z)dz +

1Z

max(1,a
i

�1+�)

f(z)dz.

(20)
In the expression above, the second term, which is Eq. (16),
diminishes when � ! 0. Depending on the range of values of
ai, we identify three cases: (i) ai 2 (0, 2��], then the first term
and the second term will evaluate to zero and the integral in
the third term will start at one; (ii) ai 2 (2��, 2+�], then the
first term will again evaluate to zero, the integral in the second
term will start at one, while the integral in the third term will
start at ai� 1+ �; and the last case (iii) ai 2 (2+ �,1), then
the first term will have a value greater than zero, the integral
in the second term will start at z = ai�1� � and the integral
in the third term will start at z = ai � 1 + �.

We can now apply the series expansion to the first and third
term of Eq. (20) above. Starting with the integral in the first
term, after multiplication with ai�1 and considering the non-
trivial case ai > 2 + �, we have
a
i

�1��Z

1

zs�2

z
a
i

�1

+ 1

e
� z

�;
dz =

a
i

�1��Z

1

1X

n=0

✓
�z

ai�1

◆n

zs�2e
� z

�;
dz

=

1X

n=0

(�1)

n�s+n�1

;
(ai � 1)

n

(a
i

�1��)/�;Z

1/�;

ys+n�2e�y
dy

= (ai � 1)I1
1

(s), (21)

where in the second line we used the change of variables
y =

z
�;

. The last equality follows from the definition of the
incomplete Gamma function.

For the third term in Eq. (20), we compute
1Z

max(1,a
i

�1+�)

zs�3

1 +

a
i

�1

z

e
� z

�;
dz

=

1Z

max(1,a
i

�1+�)

1X

n=0

✓
1� ai

z

◆n

zs�3e
� z

�;
dz

219ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

=

kX

n=0

(1� ai)
n
�s�n�2

;

1Z

max(1,a
i

�1+�)/�;

ys�n�3e�y
dy

= I1
2

(s). (22)

Again we used the change of variables y =

z
�;

in the third
line and the definition of the incomplete Gamma function in
the last line. The lemma follows by substituting Eq. (21) and
Eq. (22) in Eq. (20) and by considering the range of ai.

In Lemma 1, we decompose the integral into three terms
in order to be able to handle the evaluation of the otherwise
intractable integral. The second term (I�(s)) diminishes when
� approaches 0 and may be ignored for � ⌧ 1. The first term
(I

1

(s)) has a value only when ai > 2, i.e., when p
0

> 2pi and
is zero otherwise. The third term contributes to the solution
for the entire range of ai and represents the complete solution
when ai < 2, i.e., p

0

< 2pi.

Theorem 1. For the interference channel, we have

Mg(�) (s) =

1 +

X

8i2I

ui

⇣
(s� 1)e

1
�;

⇣
I1
1

(s)+ I�(s)+I1
2

(s)
⌘⌘

,

for any s < 1.

Proof: The Mellin transform of g(�) is given by Eq. (14)
as

Mg(�) (s) =

Z 1

0

(1 + x)s�1

dF� (x) . (23)

Using integration by parts, we obtain for s < 1 that

Mg(�)(s) =(1 + x)s�1F� (x)
���
1

0

� (s� 1)

Z 1

0

(1 + x)s�2F� (x) dx

=� (s� 1)

Z 1

0

(1 + x)s�2

dx

+ (s� 1)

X

8i2I

ui

1Z

0

(1 + x)s�2

ai + x
e

�x

�;
dx

=1 + (s� 1)

X

8i2I

ui

1Z

0

(1 + x)s�2

ai + x
e

�x

�;
dx,

where in the second step we inserted Eq. (13).
Lemma 1 gives the exact solution of the individual terms of

Theorem 1 expressed by infinite sums of incomplete Gamma
functions. For numerical evaluation this may pose a com-
putational problem. The following corollary provides easily
computable bounds through truncation of these sums.

Corollary 1. For any even k > 0, ai > 1, and s < 1,

k+1

i (s)
1Z

0

(1 + x)s�2

ai + x
e

�x

�;
dx k

i (s), (24)

where

k
i (s) = lim

�!0

e
1
�;

⇣
Ik
1

(s) + I�(s) + Ik
2

(s)
⌘
.

The approximation error is bounded by | k+1 � k|.

Proof: The proof follows directly from the monotonicity
of the series expansion in Eq. (19) that has a limit of zero and
the Leibniz alternating series test. The approximation error of
the partial sum for n = 0, . . . , k, where k is an even integer,
is upper bounded by the (k + 1)

th element of the series.
The corollary above provides a practical way to bound the

integral in Lemma 1. In general, we are interested in an upper
bound on the Mellin transform of the service Mg(�)(s) for
s < 1 which provides an upper bound on the delay violation
probability. Thus, truncation of the series at an even k always
leads to valid delay bounds. The truncation error can be made
arbitrarily small by choosing larger k. For the case ai < 1 the
series expansion of Lemma 1 uses the geometric series, where
a truncation provides an approximate solution for the Mellin
transform of the service. Again due to the convergence of the
series, the truncation error can be made arbitrarily small by
the choice of k.

Network layer performance bounds, e.g., a probabilistic
delay bound, for a network of nodes with interference channels
can be readily obtained from the Mellin transform of the
service process of the channel which is characterized by
Theorem 1 and results from the network calculus presented in
Section II. The numerical results are presented in Section IV.

C. Asymptotes, Special Cases, and Multi-Hop Networks

In this subsection, we consider special cases, such as the
noise-limited and the interference-limited channels. Also, we
provide a solution of multi-hop networks.

a) Noise-Limited Channel: In this case p
0

� pi so that
ai = p

0

/pi ! 1. It follows that Eq. (12) evaluates to

F� (x) = 1� e
�x

�; ,

which is the CDF of the Rayleigh fading channel.
Considering Theorem 1 and the case of a single interferer

with ui = ai the Mellin transform evaluates to

Mg(�) (s) =
⇣
1 + (s� 1)e

1
�; aiI

1
1

(s)
⌘
,

where we used that Eq. (16) and Eq. (22) tend to zero for ai !
1. The term aiI

1
1

(s), where I1
1

(s) is given by Eq. (15),
evaluates for ai ! 1 to

aiI
1
1

(s) = �s�1

; �

✓
s� 1,

1

�;

◆
,

where we used that only the summand at n = 0 does not tend
to zero. The Mellin transform follows as

Mg(�) (s) = 1 + (s� 1)e
1
�; �s�1

; �

✓
s� 1,

1

�;

◆
. (25)

Using the recurrence relation �(s, x) = (s� 1)�(s� 1, x) +
xs�1e�x we find that Eq. (25) is equivalent to the Mellin
transform of the Rayleigh fading channel that was previously
found in [10], i.e., Eq. (9) is recovered.

220ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

s
10

-2
10

-1
10

0
10

1
10

2
10

3

E
ff
e
c
ti
v
e
c
a
p
a
c
it
y

0

0.5

1

1.5

2

2.5

γ∅=0 dB, noise-limited

γ∅=0 dB, |I| = 1, a1 = 1

γ∅=4 dB, noise-limited

γ∅=4 dB, |I| = 1, a1 = 1

γ∅=8 dB, noise-limited

γ∅=8 dB, |I| = 1, a1 = 1

γ∅=10 dB, noise-limited

γ∅=10 dB, |I| = 1, a1 = 1

Fig. 1. Effective capacity (defined as �1
s logMg(�)(1 � s)) as a function

of s for �; 2 {0, 4, 8, 10} dB, for an interference channel with a single
interferer and identical average received power compared to noise-limited
channel, assuming Rayleigh fading.

b) Large Number of Interferers: For a large number
of interferers |I| with independent fading, the central limit
theorem predicts that the combined interference power at the
receiver becomes a Gaussian random variable. Consequently,
when the total power of the interference is split between
infinitely many interferers, the variance of that random variable
goes to zero and the total interference power at the receiver
will have constant power pI. This has the same effect as
an additional noise term with constant power pI, and thus
the channel will behave like a noise-limited channel whose
average SNR is equal to the average SINR p0

�2
+pI

of the
interference channel.

c) Identical Average Received Power: We consider the
special case where the average received power of the signal of
interest and the signal of interferer i are identical, i.e., p

0

= pi
so that parameter ai evaluates to ai = 1. By insertion of ai = 1

into Lemma 1, we obtain I1
1

(s) = 0. Letting � ! 0, it follows
that I�(s) ! 0 diminishes. Finally, the first factor of I1

2

given
by Eq. (17), i.e., (1 � ai)

n, is defined to be one for n = 0

and zero otherwise, so that Lemma 1 evaluates to the simpler
form

1Z

0

(1 + x)s�2

ai + x
e

�x

�;
dx = e

1
�; �s�2

; �

✓
s� 2,

1

�;

◆
.

For this special case, the above integral can also be solved
directly without using the series expansion of Lemma 1,
resulting in the same solution.

Considering a single interferer, the Mellin transform from
Theorem 1 becomes

Mg(�) (s) = 1 + (s� 1)e
1
�; �s�2

; �

✓
s� 2,

1

�;

◆
, (26)

which closely resembles the form of the Rayleigh fading
channel in Eq. (25).

Fig. 1 depicts the effective capacity, computed as the
normalized log Mellin transform of the service process defined
as �1

s logMg(�)(1�s), against parameter s > 0 for the special
case (c) and compared to the noise-limited channel in case (a).
As expected, when s approaches zero, the effective capacity
approaches the average channel capacity. As we increase s
(i.e., when a flow demands better QoS than mere average
guarantees), the effective capacity diminishes and approaches

the minimal capacity, that is zero. As expressed by Eqs. (25)
and (26), the general shape of the effective capacity is the same
for the case with and without interference. While the effective
capacity of the noise-limited channel improves significantly
as the channel SNR (i.e., �;) increases, the improvement is
much smaller for the case with interference, and the effect of
interference becomes more prominent with increasing SNR.

d) Interference-Limited Channel: We characterize the
interference-limited case by considering �; ! 1, i.e., the
noise power diminishes against the signal of interest as well
as the interfering signals. Consequently, the distribution in
Eq. (13) reduces to

F� (x) = 1�
X

8i2I

ui

ai + x
. (27)

This leads to a structurally simpler solution. The exponential
term in the integral of Lemma 1 disappears. The following
lemma provides the solution for the new integral.

Lemma 2.
1Z

0

(1 + x)s�2

ai + x
dx =

ˆI1
1

(s) + ˆI�(s) + ˆI1
2

(s),

for any small � > 0, where

ˆIk
1

(s)=
kX

n=0

(�1)

n

(ai � 1)

n

(ai � 1� �)

s�1+n � 1

s� 1 + n

!
, (28)

for ai > 2 + � and ˆIk
1

(s) = 0, otherwise;

ˆI�(s) =

max(1,a
i

�1+�)Z

max(1,a
i

�1��)

zs�2

z + ai � 1

dz (29)

and

ˆIk
2

(s) =

kX

n=0

(1� ai)
n (ai � 1 + �)

s�2�n

s� 2� n
(30)

for k � 0.

The proof follows very closely the one of Lemma 1 except
that we consider Eq. (21) and Eq. (22) with respect to the
new distribution given in Eq. (27). We omit the detailed proof
due to space constraints. The corresponding Mellin transform
can then be obtained by applying Theorem 1 using Lemma 2
instead of Lemma 1.

e) Multi-Hop Interference Networks: Stochastic network
calculus allows the representation of a multi-hop network by
a single network service process S

net

, which is obtained by
concatenating the service processes for all H nodes along the
traversed path, i.e.,

S
net

(⌧, t) = S
1

⌦ S
2

⌦ · · ·⌦ SH(⌧, t), (31)

where ⌦ is the (min,⇥) convolution operator defined in
Section II.

221ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

A bound on the convolution of two independent service
processes S

1

(⌧, t) and S
2

(⌧, t) can be obtained using the
Mellin transform, for any s < 1, as

MS1⌦S2(s, ⌧, t)
tX

u=⌧

MS1(s, ⌧, u)MS2(s, u, t). (32)

For a cascade of H independent and identically distributed
(i.i.d.) fading channels, we obtain for s < 1 [25],

MSnet(s, ⌧, t)
✓
H � 1 + t� ⌧

t� ⌧

◆⇣
Mg(�)(s)

⌘t�⌧

, (33)

where Mg(�)(s) is given by Theorem 1. When ai > 1 and to
simplify the computation of the desired performance bound,
we use Corollary 1 to bound Mg(�)(s), then Eq. (33) becomes

MSnet(s, ⌧, t)
✓
H � 1 + t� ⌧

t� ⌧

◆

·

1 +

X

8i2I

ui

�
(s� 1)

k
i (s)

�
!t�⌧

,

for any s < 1. Substituting the above in Eq. (5) gives the
desired network performance bound. For a cascade of channels
that are independent but have different distributions, the joint
Mellin transform can still be obtained from the individual ones,
however the expressions are more complex [29].

IV. NUMERICAL INVESTIGATION

In this section, we conduct numerical investigations of
the interference channel performance based on the analysis
presented in the previous section. We first validate our ana-
lytical results using simulations. Then we use the analytical
model to address several important questions regarding the
structure of the interference channel and its impact on the
system performance. In particular, we focus on the number
of interferers as well as their absolute strengths, i.e., their
average powers. We define the ratio of average received signal
power to average interference-plus-noise power at the receiver
as � =

p0

�2
+

P
i

p
i

, which is equivalent to the average SINR of
a system where the total interference power is considered as
an additive contribution to the noise.

In all of the following investigations, we choose the arrival
model to be a constant rate process with rate ⇢ measured in
bits per time slot. The Mellin transform of the arrival process
is then given by MA (s, t� ⌧) = e⇢(s�1)(t�⌧). Using this
Mellin transform and that of the service process derived in
Section III for the interference network, we obtain the kernel in
Eq. (7) and consequently the bound on the delay and violation
probability based on Eq. (4).

A. Validation of the Analytical Bounds
We validate our computed bounds using simulation. We

simulate a queuing system with service process given by the
channel capacity of the interference channel, an arrival process
with constant rate ⇢ and with FIFO service discipline. In order
to estimate the target delay violation probabilities in the order
of 10

�6, we run the simulation for 10

10 slots. In Fig. 2a

Violation probability ε

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

D
e
la
y
w

ε
[s
lo
ts
]

0

10

20

30

40

50

60

Bound: γ̄=0 dB, |I|=1

Sim.: γ̄=0 dB, |I|=1

Bound: γ̄=0 dB, |I|=5

Sim.: γ̄=0 dB, |I|=5

Bound: γ̄=4 dB, |I|=1

Sim.: γ̄=4 dB, |I|=1

Bound: γ̄=4 dB, |I|=5

Sim.: γ̄=4 dB, |I|=5

(a)

Arrival rate ρ [bit/symb.]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

D
e
la
y
w

ε
[s
lo
ts
]

0

5

10

15

20

25

30

35

40

45

50

Bound: γ̄=0 dB, |I|=1

Sim.: γ̄=0 dB, |I|=1

Bound: γ̄=0 dB, |I|=5

Sim.: γ̄=0 dB, |I|=5

Bound: γ̄=4 dB, |I|=1

Sim.: γ̄=4 dB, |I|=1

Bound: γ̄=4 dB, |I|=5

Sim.: γ̄=4 dB, |I|=5

(b)

Fig. 2. Validation of the analysis and delay performance with simulations for
the parameter �̄ 2 {0, 4} and number of interferers |I| 2 {1, 5} with fixed
average SNR �; = 15 dB: (a) Delay bound (w") in slots versus violation
probability (") with fixed arrival rate ⇢ = 0.85 bit/symbol. (b) Delay bound
(w") in slots versus arrival rate (⇢) in bit/symbol with fixed " = 10

�6.

we show the delay bound (w") measured in transmission
slots versus the violation probability (Pr[W (t) > w"

] ")
and compare it to the simulated delay. We study the delay
performance for different combinations of � and number of
interferers (|I|), while we keep the arrival rate and the average
SNR �; = 15 dB constant for all curves. These combinations
reflect a wide delay performance range. As expected, we
observe that the analytical results (solid curves) indeed are
upper bounds for the performance of their corresponding
simulated systems (dotted curves). Furthermore, we observe
that the bounds are tight enough for a reasonable estimation
of the system performance. It also shows that bounds grow
tighter as the system becomes less utilized. More importantly,
in all cases the slope (i.e., the exponential decay) of the
analytical and simulated curves match, therefore the relative
gap diminishes as the delay grows larger.

In Fig. 2b, we show the delay bound (w") measured in trans-
mission slots versus the arrival rate for a violation probability
of " = 10

�6 and using the same parameter combinations as in

222ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Number of interferers |I|
1 2 3 4 5 6 7 8

D
e
la
y
w

ε
[s
lo
ts
]

5

10

15

20

25

30

35

40

ρ=1.8 bit/symb.

ρ=2.0 bit/symb.

ρ=2.2 bit/symb.

noise-limited

noise-limited

noise-limited

Fig. 3. Delay bound (w") in slots versus the number of interferers (|I|) for
different arrival rates ⇢ 2 [1.8, 2.0, 2.2] with fixed �̄ = 8 dB, average SNR
�; = 15 dB, and " = 10

�6. The delay for the noise-limited case with
average SNR �; = 8 dB is also shown.

Fig. 2a. Again, we observe that the analytical results provide a
reasonable bound for the simulated system performance. The
figure also shows that the bound accurately predicts the system
stability region. Therefore, we conclude that w" is a reasonable
upper bound for the system’s delay performance. In the rest
of this section, we focus only on the analytical delay bounds
to study different trends of the system performance.

B. Effect of the Number of Interferers
Compared to state-of-the-art networking models that view

interference as an additional constant contribution to the
noise [6], [7], our explicit consideration of the individual
random fading processes of the interferers enables us to
address more fundamental questions. One interesting question
is the following: Given an average total interference power,
what is the impact of the number of interferers on the system
performance?

To answer the question above, we show in Fig. 3 the delay
as a function of the number of interferers (|I|) in the network
for different arrival rates. In this scenario, the average SNR
is set to �; = 15 dB and the delay violation probability to
" = 10

�6. We fix the parameter � = 8 dB, i.e. the sum of
the average interference powers stays constant. When there are
multiple interferers, the total interference power is distributed
among the interferers almost equally without violating the
constraint ai 6= aj in Eq. (13). However, when the number
of interferers grows to infinity, then the combined interference
can be modeled as additive noise with constant power as it was
demonstrated in [6], [7]. This corresponds to the noise-limited
case with average SNR �; = 8 dB, which we also show for
comparison. The figure clearly reveals the importance of the
structure of the interference that a certain transmitter/receiver
pair is exposed to. In general, if the sum of the average
interference powers is kept constant, the more interferers are

Average SNR γ∅ [dB]

10 12 14 16 18 20 22 24

M
a
x
.
A
rr
iv
a
l
R
a
te

[b
it
s/
sy
m
b
.]

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55
γ̄ = 8 dB, |I| = 1

γ̄ = 9 dB, |I| = 1

γ̄ = 8 dB, |I| = 3

γ̄ = 9 dB, |I| = 3

γ̄ = 8 dB, |I| = 8

γ̄ = 9 dB, |I| = 8

(a)

Average SNR γ∅ [dB]

10 12 14 16 18 20 22 24

A
v
e
ra
g
e
C
a
p
a
c
it
y
[b
it
s/
sy
m
b
.]

2.4

2.5

2.6

2.7

2.8

2.9

3

3.1

3.2

3.3

γ̄ = 8 dB, |I| = 1

γ̄ = 9 dB, |I| = 1

γ̄ = 8 dB, |I| = 3

γ̄ = 9 dB, |I| = 3

γ̄ = 8 dB, |I| = 8

γ̄ = 9 dB, |I| = 8

(b)

Fig. 4. Effect of average SNR �; for different values of �̄ 2 {8, 9} and
number of interferers |I| 2 {1, 3, 8}: (a) Maximum constant arrival rate
versus average SNR (�;) so that delay bound still satisfies w"

= 10 and
" = 10

�6. (b) Average capacity versus average SNR (�;)

present, the worse the system performance gets. This happens
because in the case of only few interferers, the variance of
the SINR is higher, i.e., occasionally the interference is very
small, leading to very high transmission rates. In contrast, the
higher the number of interferers, the lower is the variance of
the SINR, leading a decreasing performance.

C. Effect of Main Signal Power

Next, we study the effect of the SNR of the signal-of-interest
on the system performance. For a system that is operating at
a fixed arrival rate and for a given number of interferers, we
would like to study the effect of increasing the average signal
strength and the interference strength simultaneously, such that
the average signal to the average interference plus noise (�)
remains constant.

Fig. 4a confirms the observation that the performance de-
creases when there are more interferers, despite keeping the
summed average interference power constant. Although this
was already shown in Fig. 3, we now want to study how
this depends on the average SNR (�;) of the basic signal-
of-interest. When the average SNR is small, the disturbance
comes mostly from the noise rather than from the interference,

223ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

such that the number of interferers has little impact. At high
SNR, the noise becomes relatively small, and the performance
is limited by the interference. Fig. 4b indicates that the increase
in performance for fewer interferers is most likely due to a
large increase in the average capacity, which occurs because
sometimes the interference-plus-noise can become close to
zero, such that there is some probability that the SINR is
extremely high. Under delay constraints, it seems that more
interferers still decrease the system performance, as seen in
Fig. 4a. However, when comparing both figures at high SNR
�; for different values of �̄, it can be seen that higher average
capacity does not always mean better performance under
delay constraints. Fewer interferers lead to a large increase
in average capacity, but only to a small or moderate increase
in performance under delay constraints.

V. CONCLUSIONS

In this paper, we considered interference channels, where
the signal of interest and the signals of an arbitrary number
of interferers experience independent Rayleigh fading. We
provided a fundamental stochastic characterization of the time-
varying channel capacity by its Mellin transform. Using the
transform domain and network calculus queuing relations, we
contributed the first higher layer performance evaluation of
such channels which enabled us to reveal key aspects of inter-
ference channels. We showed that even for a fixed summed in-
terference power, the interference channel has relevant degrees
of freedom that impact the delay performance significantly,
namely strength and number of interfering transmitters. While
our evaluations have shown this result for scenarios where
the average sum interference power has been kept constant,
similar conclusions can be drawn if the average SINR of the
scenario is kept constant. Even in this case, the structure of
the interference has a significant impact on the performance
of the system. As future work, we consider in particular the
coupling of wireless systems as key next step that result from
the work presented in this paper.

REFERENCES

[1] Mass Consultants Ltd., “Estimating the utilisation of key
license-exempt spectrum bands.” Ofcom, 2009. [Online]. Avail-
able: http://stakeholders.ofcom.org.uk/binaries/research/technology-
research/wfiutilisation.pdf

[2] V. Cadambe and S. Jafar, “Interference alignment and degrees of
freedom of the k-user interference channel,” IEEE Trans. Inf. Theory,
vol. 54, no. 8, pp. 3425–3441, Aug. 2008.

[3] D. Gesbert, S. Hanly, H. Huang, S. Shamai, O. Simeone, and Y. Wei,
“Multi-cell MIMO cooperative networks: A new look at interference,”
IEEE J. Sel Areas on Commun., vol. 28, no. 9, pp. 1380–1408, Dec.
2010.

[4] B. Zhang, W. Cheng, L. Sun, X. Cheng, T. Znati, M. A. Al-Rodhaan,
and A. Al-Dhelaan, “Queuing modeling for delay analysis in mission
oriented sensor networks under the protocol interference model,” in
Proc. ACM MiSeNet, 2013, pp. 11–20.

[5] N. Bisnik and A. A. Abouzeid, “Queuing network models for delay
analysis of multihop wireless Ad Hoc networks,” Ad Hoc Networks,
vol. 7, no. 1, pp. 79–97, 2009.

[6] L. Musavian, S. Aissa, and S. Lambotharan, “Effective capacity for
interference and delay constrained cognitive radio relay channels,” IEEE
Trans. on Wireless Commun., vol. 9, no. 5, pp. 1698–1707, May 2010.

[7] M. Elalem and L. Zhao, “Effective capacity and interference analysis in
multiband dynamic spectrum sensing,” Communications and Network,
vol. 5, no. 2, pp. 111–118, May 2013.

[8] L. B. Le, E. Modiano, C. Joo, and N. B. Shroff, “Longest-queue-first
scheduling under SINR interference model,” in Proc. ACM MobiHoc,
Sept. 2010, pp. 41–50.

[9] D. Parruca and J. Gross, “On the interference as noise approximation
in ofdma/lte networks,” in Proc. IEEE ICC, Jun. 2014.

[10] H. Al-Zubaidy, J. Liebeherr, and A. Burchard, “A (min, ⇥) Network
Calculus for Multi-Hop Fading Channels,” in Proc. IEEE INFOCOM,
2013, pp. 1833–1841.

[11] R. L. Cruz, “A calculus for network delay. I. network elements in
isolation,” IEEE Trans. Inf. Theory, vol. 37, no. 1, pp. 114–131, Jan.
1991.

[12] C.-S. Chang, Performance Guarantees in Communication Networks.
Springer-Verlag, 2000.

[13] J.-Y. Le Boudec and P. Thiran, Network Calculus. A Theory of Deter-
ministic Queuing Systems for the Internet. Springer-Verlag, 2001.

[14] F. Ciucu, A. Burchard, and J. Liebeherr, “Scaling properties of statistical
end-to-end bounds in the network calculus,” IEEE Trans. Inf. Theory,
vol. 52, no. 6, pp. 2300–2312, Jun. 2006.

[15] M. Fidler, “An end-to-end probabilistic network calculus with moment
generating functions,” in Proc. of IEEE IWQoS, Jun. 2006, pp. 261–270.

[16] Y. Jiang and Y. Liu, Stochastic Network Calculus. Springer, 2008.
[17] F. Ciucu and J. Schmitt, “Perspectives on network calculus - no free

lunch but still good value,” in Proc. ACM SIGCOMM, Aug. 2012, pp.
311–322.

[18] M. Fidler and A. Rizk, “A guide to the stochastic network calculus,”
IEEE Commun. Surveys Tuts., vol. 17, no. 1, pp. 92 – 105, Mar. 2015.

[19] Y. Jiang and P. J. Emstad, “Analysis of stochastic service guarantees in
communication networks: A server model,” in Proc. IEEE IWQoS, Jun.
2005, pp. 233–245.

[20] M. Fidler, “A network calculus approach to probabilistic quality of
service analysis of fading channels,” in Proc. IEEE GLOBECOM, Nov.
2006, pp. 1–6.

[21] C. Li, H. Che, and S. Li, “A wireless channel capacity model for quality
of service,” IEEE Trans. Wireless Commun., vol. 6, no. 1, pp. 356–366,
Jan. 2007.

[22] K. Mahmood, A. Rizk, and Y. Jiang, “On the flow-level delay of a
spatial multiplexing MIMO wireless channel,” in Proc. of IEEE ICC,
Jun. 2011.

[23] M. Fidler, R. Lübben, and N. Becker, “Capacity-delay-error-boundaries:
A composable model of sources and systems,” IEEE Trans. Wireless
Commun., vol. 14, no. 3, pp. 1280–1294, Mar. 2015.

[24] D. Wu and R. Negi, “Effective capacity: a wireless link model for
support of quality of service,” IEEE Trans. Wireless Commun., vol. 2,
no. 4, pp. 630–643, Jul. 2003.

[25] H. Al-Zubaidy, J. Liebeherr, and A. Burchard, “Network-layer perfor-
mance analysis of multihop fading channels,” IEEE/ACM Trans. Netw.,
vol. 24, no. 1, pp. 204–217, Feb. 2016.

[26] B. Davies, Integral Transforms and Their Applications. Springer-Verlag,
1978.

[27] S. Kandukuri and S. Boyd, “Optimal power control in interference-
limited fading wireless channels with outage-probability specifications,”
IEEE Trans. Wireless Commun., vol. 1, no. 1, pp. 46–55, Jan. 2002.

[28] A. Polyanin and A. Manzhirov, Handbook of Mathematics for Engineers
and Scientists. CRC Press, 2006.

[29] N. Petreska, H. Zubaidy, R. Knorr, and J. Gross, “On the recursive
nature of end-to-end delay bound for heterogeneous wireless networks,”
in Proc. IEEE ICC, Jun. 2015.

224ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Investigating Packet Loss in Mobile Broadband
Networks under Mobility

Džiugas Baltrūnas, Ahmed Elmokashfi, Amund Kvalbein⇤, Özgü Alay
Simula Research Laboratory, Oslo, Norway

⇤Nexia, Oslo, Norway

Abstract—Mobile broadband (MBB) connections are often
exposed to varying network conditions under mobility scenarios,
which can result in packet loss and higher end-to-end delays.
Such performance degradation in turn can adversely impact the
user experience. In this paper, we study packet loss characteristics
of MBB networks under mobility using six measurement nodes
that are placed on regional and inter-city trains in Norway for
a period of seven months. Our findings show that packet loss
is significantly higher for mobility scenarios compared to the
stationary. In order to understand the cause of packet loss, we
investigate Radio Access Technology (RAT) changes, temporary
loss of service, and changes in cells and location area codes (LAC).
We surprisingly find that almost all periods with RAT changes
involve packet loss. We also observe that 70% of the overall
loss happens in periods with RAT changes or temporary loss of
service. Further, one third of RAT changes involve connection
termination. Our findings highlight the importance of radio
access network (RAN) planning and configuration, and provide
guidelines to alleviate packet loss in MBB networks.

I. INTRODUCTION

Mobile broadband is becoming the primary Internet access
method for a large number of people and services. All types
of Internet applications (office, games, video, web, cloud) are
now accessed over MBB. According to the Cisco VNI Global
Mobile Data Traffic Forecast, global mobile traffic grew by
69% in 2014 and is expected to grow almost tenfold by
2019 [7]. This tremendous growth in MBB demand has put un-
derstanding and improving its performance high on the agenda
of both decision makers and industry. Several governments
have launched activities to measure MBB performance [1, 8].
Measuring and understanding MBB performance is, however,
a challenging task. The plethora of scenarios an MBB con-
nection typically experiences requires context-specific studies.
Further, there is a lack of measurement methodologies and
metrics that are tailored specifically for assessing MBB [4].

The ability to deliver data packets as reliably as possible is
arguably one of the most important quality metrics in MBB
networks. Excessive and even sporadic packet loss worsens
the user experience significantly. It degrades the performance
of reliable transport protocols, increases retransmissions, and
ultimately degrades application performance. Assessing and
mitigating packet loss is an important step for improving MBB
performance. There are, however, many potential causes of
loss, which makes characterizing and understanding loss a
non-trivial task [5]. This task becomes particularly daunting
under mobility. Moving connections experience varying signal

quality, cellular handovers, potential changes in radio technol-
ogy, just to name a few.

In this work, we perform a longitudinal practical inves-
tigation of packet loss under mobility in operational MBB
networks using end-to-end measurements. To this end, we use
over half a year’s worth of measurements from six measure-
ment nodes that are placed on board regional and inter-city
trains in Norway. We use this data to compare and characterize
loss under mobility to stationary scenarios. We further leverage
connection state information to identify the underlying causes
of loss. Our measurements and analysis give insights into the
characteristics and causes of packet loss under mobility. In
summary, this work makes the following contributions:
1) We present the most comprehensive study of loss in MBB
networks under mobility. Using over half a year’s worth
of measurements and data points from diverse geographic
locations, we are able to pinpoint causes of loss under mobility
and derive a classification methodology.
2) We demonstrate that performing end-to-end active measure-
ments in conjunction with collecting connections’ metadata
can help dissecting the most complex MBB scenarios.
3) Our results single out technology handovers and coverage
holes as the main causes of loss under mobility. We use
these insights and other findings to identify potential areas
for improvement.

The rest of this paper is organized as follows. Section
II presents the measurement scenario and data. Section III
discusses basic statistics of loss under mobility and proposes
a classification methodology to link loss to its likely causes.
Sections IV and V analyzes loss in periods with and without
connection technology changes respectively. We highlight the
related work in Sec. VI and conclude in Sec. VII.

II. SCENARIO AND DATA

A. Measurement Setup

The measurement setup used in this study consists of six
measurement nodes placed on six regional and inter-city trains
operating in Norway. This paper is based on data collected by
these nodes from July 2014 until February 2015. Figure 1
shows the routes covered by these trains, which includes a
reasonable mix of urban and rural areas.

This measurement setup is the mobile subset of the NorNet
Edge (NNE) [13], which is a country-wide measurement
infrastructure that consists of several hundreds nodes forISBN 978-3-901882-83-8 c� 2016 IFIP

225ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 1: Map of the train routes

!!!!!!3G! !!!!!3G! No!
Connec*on!

4G! !3G! !!
!3G! !3G!

b1 b2 b3 b4 b5 b6
Fig. 2: Typical sequence of connectivity and coverage conditions that MBB
connections experience as they move.

measuring the performance and reliability of MBB networks.
NNE nodes are single board computers that run a standard
Linux distribution and connect to up to four Universal Mobile
Telecommunications System (UMTS) operators and one Code-
Division Multiple Access (CDMA) 1xEV-DO operator. Like
other NNE nodes, train nodes connect to up to four UMTS op-
erators via Huawei E392-u12 modems that support up to Long
Term Evolution (LTE) Category 3, and one CDMA 1xEV-DO
operator. In this study, however, we limit ourselves to studying
two UMTS operators, Telenor and Netcom, because these op-
erators are the only operators that provide LTE service and run
their own radio access and core networks. Software running on
NNE nodes ensures that MBB connections are always alive,
and collects connection state information. In particular, we
monitor and record the RAT, which can be No service, 2G, 3G
or LTE; different signal quality indicators (e.g., RSSI, Ec/Io,
and RSRQ); network attachment information (e.g., serving
cell identifier, location area code, and tracking area code);
and Radio Resource Control (RRC) state. To measure packet
loss, we send a 20-byte UDP packet every second over each
connection to an echo server that is part of NNE backend
and then record a reply packet from the server. A packet
is considered lost if we do not receive a reply within one
minute. Further, we aggregate the data into five minute bins
and calculate loss percentage for each bin. Both measurement
data and metadata are periodically transferred to a server
and imported into a database. We also use the GPS location
data from the train’s fleet management system to identify the

location of NNE measurement nodes and trains speed during
the measurements. The GPS locations are updated every 10 to
15 seconds in the fleet management system.

B. Measurement scenario

Figure 2 shows a typical sequence of connectivity and cover-
age conditions that MBB connections experience as they move.
RAT can be constant during a whole bin or several consecutive
bins as in b1. A bin may involve several horizontal handovers,
that is changes of the serving cell. Some bins involve inter-
RAT handovers (e.g., handover from 4G to 3G in b2). All types
of handovers are well defined procedures that should normally
last a couple of seconds and degrade the user experience
negligibly. Connections may suffer from lack of coverage,
which leads to a complete loss of connectivity for several
minutes (e.g., no connection period extends from the mid of
b3 to the end of b4). In these periods, a connection looses its
Packet Data Protocol (PDP) context (3G) or Evolved Packet
System (EPS) bearer (LTE), which is a tunnel that connects the
user equipment (UE) to the core network (CN). Consequently
the connection looses its IP address. When a connection
breaks, software on the nodes immediately checks if there
is coverage and tries to reconnect. Otherwise it waits until
coverage becomes available. Connections may also experience
temporary loss of connectivity that is immediately rectifiable
e.g., the short disconnection during b6. These episodes can be
caused by temporary lack of coverage (i.e., coverage holes) or
due to the interplay between mobility patterns and handover
procedure decision and duration. For example, the modem
may start a handover to a new cell, a procedure that involves
current and neighbor cells, but it looses connectivity to the
current cell before completing the handover. Another cause
can be failures during inter-RAT handovers, which are known
to happen [14]. Finally, connections also experience periods
with brief lack of service that are immediately followed by
a service restoration without inter-RAT handover or context
reset like the shaded area during b5. Note that during periods
with lack of service, connections typically remain attached to
the network and appear to have a PDP context (EPS bearer).

In this paper, we are interested in measuring users experi-
ence as nodes move and have connectivity. Accordingly, we
divide the measurement bins into two groups. 1) bins where
users experience lack of coverage, and 2) bins where users
have coverage but may experience brief lack of connectivity
that is restored by an immediate reconnection attempt. All
bins in the first category (58% and 54% of bins in Telenor
and Netcom, respectively) are discarded in the remainder of
this study.

C. Data curation

UE and connection managers always try to cope with
the varying coverage and connectivity conditions by quickly
detecting lack of connectivity, attempt to reconnect, or reset
the wireless device altogether. The interplay between varying
signal conditions and UE hardware is non-trivial and it may
sometimes render the connection unusable. We believe that

226ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

some failure situations are caused by specific measurement
and system artifacts; a different system or hardware may cope
better or worse. Next we describe these artifacts in more
details.

Sometimes modems become unresponsive and are eventu-
ally ejected by the operating system, resulting in a disconnect
and probably packet loss before the ejection. In some other
cases, the PDP context (EPS bearer) might seem to be op-
erational, but IP packets cannot be sent or received until the
connection is re-established. We refer to these connections as
stale connections. We verify that connections become stale
when the network attempts to reset long-lived PDP contexts
(EPS bearers), and it fails half-way through the process
without actually reseting the context (bearer). As a result,
the operator’s firewall drops all incoming packets from these
connections, causing 100% packet loss during these periods.

Other artifacts include server-side failures and measure-
ments with misreported metadata. For example, the modem
reports that it is on LTE while at the same time reporting
3G-specific metadata such as Ec/Io or RSCP. This typically
happens when the modem delays sending metadata because it
is busy with processing control traffic.

To be able to cope with the aforementioned anomalies, we
impose a number of filters to the dataset. This leaves us with
only measurement data that is supported by clean metadata.
Next, we describe our filters:
1) We remove all 5-minute bins with 100% packet loss to
avoid stale connections and cases where the modem is stuck
and yet appears operational to the OS. By doing that, we
risk excluding some legitimate loss events that are caused by
equipment failures and maintenance activity [5]. These events
are, however, outside the scope of this study since we are
interested in what users experience on a daily basis and not
rare or scheduled events.
2) We look only at bins where the train was moving, and we
require at least one available GPS reading in a 5-minute bin
in order to determine this. We impose the average speed of
the available readings to be > 0. To check for the cases when
the train was predominately still during a 5-minute period, we
imposed larger average speed thresholds and observed similar
results.
3) We remove all 5-minute bins that coincide with known
server-side maintenance.
4) We keep only 5-minute bins where we have metadata reports
for at least 4 of the 5 minutes These reports are acquired by
polling the modem at the beginning of each minute.
5) We keep only bins with known RATs and valid combination
of RAT and RAT-specific metadata.

After curating the initial data set, we have 63837 five minute
bins, 38417 from Telenor and 25420 from Netcom.

III. LOSS UNDER MOBILITY

In this section, we give a general overview of loss char-
acteristics in mobile networks. We investigate the effect of
mobility, and establish the very different loss rates in a mobile
vs stationary scenario. We also look at loss in different RATs,

before we proceed to classify loss under mobility and relate
it to handover events.

 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100

Fr
ac

tio
n

of
 5

-m
in

ut
e

bi
ns

Loss percentage

Telenor-mobile
Telenor-stationary

Netcom-mobile
Netcom-stationary

Fig. 3: Overall loss rate and the effect of mobility. Much higher loss rates
observed when mobile in both networks.

A. The effect of mobility
Figure 3 shows the overall loss rate for the two measured

networks, when the nodes are stationary and moving. It is
clear from the figure that loss is much higher when mobile
than when stationary. When the nodes are stationary, only 2
% (Telenor) to 12 % (Netcom) of 5-minute bins involve packet
loss. In the mobile case we observe loss in 30% (Telenor) to
50% (Netcom) of bins, and 5% (Telenor) to 10 % (Netcom) of
bins have a loss rate above 10%. This large difference in loss
rate between mobile and stationary nodes largely motivates
this study. In our previous work [5], we analyzed loss in
a stationary scenario. We concluded that loss rates are low
in general and that causes are related to misconfiguration of
the radio access controller or lie beyond the RAN. In the
remainder of this paper, we will dissect and seek to explain
what causes loss to be so much higher under mobility. In most
of our analysis, we do not differentiate between movement at
different speeds, since we observe that this has a limited effect
on packet loss (see Sec. V). Only less than 4% of our 5-minute
bins have the average speed of 100 km/h or more, whereas it
has been shown that the effect of speed alone on packet loss
is negligible for train speeds below 150 km/h [14].

B. Loss in different RATs
The measurement nodes used in this study will always try

to connect to the highest available RAT. That is, they will
prefer LTE over 3G over 2G. To investigate loss in different
RATs, 5-minute bins are divided into 3G, LTE and mixed.
Mixed bins are bins where the node was connected to more
than a single RAT. We do not include bins spent fully on 2G
in our analysis, since there are relatively few such bins, and
both loss rates and connection stability are much worse in this
RAT. 2G bins are experienced mostly in challenged areas (with
limited coverage), and that our measurements are therefore
not representative for normal 2G behavior. In particular, our
dataset contains only 190 and 148 2G bins for Telenor and
Netcom, respectively. In these bins, the average loss rate is
between 17% and 18.4%, while the median loss rate varies
from 11.6% to 13%.

Figure 5 shows loss for different RATs when the measure-
ment nodes are moving. We first observe that loss rate is higher
in 3G than in LTE. Less than 4 % of LTE-only bins experience

227ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

All 5 min bins
63837 bins

Constant RAT
30%

LAC change
21%

No LAC change
79%

CID change
72%

No CID change
28%

Varying RAT
70%

RAT change
54%

Connection reset
49%

No conn. reset
51%

No RAT change
46%

Connection reset
40%

No conn. reset
60%

Fig. 4: Classification of loss. The numbers given are percentages of lost packets relative to the parent category. In total, there are 63837 5-minute bins in the
dataset. About 229992 packets were lost during these bins.

 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100

Fr
ac

tio
n

of
 5

-m
in

ut
e

bi
ns

Loss percentage

Telenor 3G
Telenor LTE

Telenor mixed
Netcom 3G

Netcom LTE
Netcom mixed

Fig. 5: Loss rate for 3G, LTE and when a RAT change is involved (mixed).
Most loss happens in mixed category, LTE performs the best.

loss, while 14 % (Telenor) to 40 % (Netcom) of 3G-only bins
experience loss.

The most striking observation from Fig. 5 is, however, the
much higher loss rate in mixed bins. 86% (Telenor) to 94%
(Netcom) of bins with RAT changes also have packet loss. In
16 % (Telenor) to 33% (Netcom) of bins, the packet loss is
over 10%. This indicates that inter-RAT handovers is a major
source of loss in MBB networks. We perform an in-depth
analysis of this loss in Sec. IV.

C. Classification of loss under mobility

In order to structure our investigation of loss, we start by
classifying all 5-minute bins according to the state of the
connection in that bin. We perform this classification in a
hierarchical fashion, as shown in Fig. 4. This classification
captures the connectivity states shown in Fig. 2 and isolates
independent conditions, thus reducing the complexity of iden-
tifying potential causes of loss.

The root of the tree contains all bins where the measurement
nodes have radio coverage as discussed in Sec. II. Inspired by
the observation in Fig. 5 that loss is much higher when there
is a RAT change, we first split the bins into constant and
varying RAT. Constant RAT bins are characterized by a single
RAT throughout their duration. Varying RAT bins, however,
involve more than one RAT or a short lack of service. 30%
of all loss occurred during bins with a constant RAT, while in
70% of loss occurred during bins where the RAT changed at
least once. Loss rate is on average seven times higher in bins
with varying RAT.

Figure 6 shows the distribution of lossy and non-lossy bins
for constant and varying RAT cases. The percentage values
shown are relative to all bins (they add up to 100%). We
observe that a clear majority (more than 3/4) of bins with

Constant RAT & Loss

17.0%Constant RAT & No loss

58.0%

Varying RAT & Loss

21.8%
Varying RAT & No loss

3.1%

Fig. 6: The percentages of lossy and non-lossy 5-minute bins for constant and
varying RATs.

constant RAT experience no loss. On the other hand, almost
all bins with varying RAT involve packet loss.

Bins with varying RAT are further divided into bins where
the connection is attached to at least two RATs, and those
where we only observe one RAT. Note that a bin might still
be classified as varying even if we only observe one RAT:
this means that the modem reported no available RAT at least
once during the bin. This behavior is a normal part of a RAT
transition, but it also sometimes appears without a resulting
RAT change.

Recall from Sec. II that we only include 5-minute bins
without connection resets, or where a single reconnection at-
tempt immediately restores connectivity. The varying bins with
and without RAT changes are further subdivided according to
whether there is a connection reset in the bin. We separate
bins with connection resets because we believe that they are
characteristically different from the rest of the varying bins.
These resets are likely caused by small coverage holes and
failures of the handover procedure. We observe from Fig. 4
that all varying RAT categories are responsible for a significant
share of the overall loss. Loss in bins with varying RAT is
further explored in Sec. IV.

The constant RAT bins are further classified according to
whether there is a LAC change in the bin, and if not so,
whether there is a cell ID (CID) change. The intuition behind
this classification is a hypothesis that horizontal handovers
(change of LAC or CID) is an important source of loss in
constant RAT periods. The numbers in Fig. 4 confirms that
this is the case: 78% of loss in constant RAT periods happen
in bins with either LAC or CID changes. Section V provides a
more detailed investigation of causes of loss in constant RAT
periods.

228ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

IV. VARYING RAT

In this section, we analyze loss in bins with varying RAT,
which constitutes 25% of all bins and are responsible for 70%
of the overall loss. As mentioned in Sec. III, bins with varying
RAT come in two forms. First, bins with one or more inter-
RAT handovers; that is, we observe more than a single RAT
in the bin. Second, bins with no handovers but a glitch in
the service. The second class of bins are characterized by one
predominant RAT (2G, 3G or LTE), but with the presence of
one or more No service episodes throughout the bin. Figure 7

RAT change & Loss

55.6%

RAT change & No loss
4.9%

No RAT change & Loss

32.0%
No RAT change & No loss

7.7%

Fig. 7: The percentages of lossy and non-lossy 5-minute bins with varying
RATs split by whether more than one RAT is observed.
divides bins with varying RAT according to the presence of
RAT changes and loss. A large majority of bins with inter-
RAT handovers, about 92%, involve packet loss. This fraction
is slightly smaller, about 80%, for bins with no RAT change.
In the following subsections, we will look at both scenarios
and investigate possible causes of loss.

A. Loss during periods with RAT changes
The modems in the setup are configured to automatically

select the highest available RAT. In large cities, LTE is almost
always available, while outside the metro areas, 3G is the
predominant RAT. Inter-city trains cross rural areas where
conditions can vary from strong 3G to weak 2G signal to no
coverage. RAT changes, or inter-RAT handovers are based on
the UE neighbor cell measurement reports, which are regularly
sent to the network. Based on these reports, the network can
initiate a handover from one RAT to the other. This typically
happens when measurements show that the signal and the
interference levels from the current cell in RAT A are worse
compared to levels of RAT B. It can also happen when the
UE moves into the range of a new cell or cell sector that
supports RATs different from the current RAT. The handover
process involves multiple steps both in the UE, the RAN
and in the CN. These steps vary depending on the type of
handover, e.g., from 3G to 2G, from LTE to 3G, etc. Further,
inter-RAT handovers are not always seamless. For example,
sometimes we observe RAT changes that lead to a connection
reset. Moreover, it is quite common to lose several packets
right before the connection breaks.

Figure 8 shows the split of bins containing an inter-RAT
handover, according to the presence of loss and connection
resets. The main observation is that bins with inter-RAT
handovers involve packet loss independent of whether there
is a connection reset or not. Almost all (99%) bins with RAT

Conn. reset & Loss

36.2%

Conn. reset & No loss
0.3%

No conn. reset & Loss

55.8%
No conn. reset & No loss

7.7%

Fig. 8: The percentages of lossy and non-lossy 5-minute bins for varying RAT
with a RAT change split by the presence of connection resets.

change and connection resets include packet loss compared to
88% of the bins with RAT changes but no connection resets.
The majority of RAT changes, about two thirds, complete
without a connection reset. Overall, inter-RAT handovers are
patently lossy and involve a short loss of connectivity in over
one third of the bins.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100

Fr
ac

tio
n

of
 5

-m
in

ut
e

bi
ns

Loss percentage

Telenor 3G,LTE
Telenor 2G,3G

Netcom 3G,LTE
Netcom 2G,3G

Fig. 9: Involved RATs for the 5-minute bins with a RAT change and no
connection resets. Clear differences between networks. More loss during
2G/3G handovers.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 10 100

Fr
ac

tio
n

of
 5

-m
in

ut
e

bi
ns

Loss percentage

Telenor 3G,LTE
Telenor 2G,3G

Netcom 3G,LTE
Netcom 2G,3G

Fig. 10: Involved RATs for the 5-minute bins with a RAT change and
one or more connection reset. Much more loss compared scenario without
disconnects, minimal differences between networks, least lossy are bins with
3G/LTE handovers.

To further analyze loss related to RAT changes, we identify
all distinct RATs present in each 5-minute bin with an inter-
RAT handover 1. Figures 9 and 10 shows the distribution of
loss in bins with RAT changes split by the involved RATs.
Figure 9 shows bins without connection resets, while Fig. 10
shows bins with connection resets.

The plots highlight three interesting facts:
1) We only observe minor difference between Netcom and
Telenor in both plots. This suggest that the same underlying
causes lead to this loss in both networks.
2) The majority of bins with RAT changes include packet loss
regardless of the involved RATs. Loss is, however, much higher

1There can be more than one handover in a 5-minute bin, which means
that there is no one to one mapping between the number of distinct RATs and
the number of handovers.

229ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

when 2G is among the distinct RATs. Bins where 2G is
involved occur in poorly covered areas that are characterized
by coverage gaps and the dominance of 2G.
3) Packet loss in bins with connection resets is markedly
higher; loss is over 3% in 90% of the bins. We believe that
this loss is a consequence of unsuccessful handovers, which
initially result in packet loss followed by the connection reset.

To quantify the impact of loss in bins with RAT changes, we
count the number of consecutively lost packets in each loss
episode. This captures the burstiness of packet loss and we
term such consecutively lost packets a loss run. We observe
that for the bins without connection resets, most loss runs
are of size one. However, loss run size is characteristically
different for the bins that involve one or more connection reset.
Figure 11 shows the probability density function of the loss
run size distribution for different RAT combinations for bins
with connection resets.

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3

 0 5 10 15 20 25 30

PD
F

Lost replies in a row

Telenor 2G,3G
Telenor 3G,LTE

Netcom 2G,3G
Netcom 3G,LTE

Fig. 11: Loss runs for involved RATs when there is a RAT change and one
or more connection reset. Several modes around 10 packets in both networks.
Different modes for different sets of involved RATs.

While a sizable fraction of loss is still random regardless of
the network or involved RATs, there are some modes at loss
runs of size 5 to 13. Since these modes are present in both
networks and in the two sets of RATs, we believe that they are
caused by the response of the specific UE to weak or failing
coverage.

The loss runs in bins with connection resets consist of
two components. First, loss that happens right before the
connection reset; we often experience degraded performance
before a connection reset. Second, loss that happens between
the actual loss of PDP context (EPS bearer) and until PPPd
discovers the loss of IP address. We typically detect the loss of
connectivity immediately. This detection, however, may take
much longer if the modem stops communicating with the PPPd
by not responding to PPP echo requests regularly sent by the
daemon. These cases can occur when the modem is busy with
trying to exchange signaling messages with the network. PPPd
on the measurement nodes responds to the lack of echo replies
by tearing down a stuck connection after six seconds. This
partially explains the mode around six in Fig. 11.

B. Loss during periods with RAT glitches

In case RAT becomes unavailable, the modems report a
special RAT called No service. In some cases this RAT is also
reported during the inter-RAT handover procedure. No service
periods mostly happen during the temporary loss of coverage
and/or unsuccessful inter-RAT or horizontal handovers. In this

subsection, we investigate loss in bins that include strictly one
RAT and at least one No service period.

Conn. reset & Loss

37.5%

Conn. reset & No loss
0.7%

No conn. reset & Loss

43.1%

No conn. reset & No loss

18.8%

Fig. 12: The percentages of lossy and non-lossy 5-minute bins for varying
RATs with no RAT change split by the presence of connection resets.

As for the periods with inter-RAT handovers, some of the
bins with no RAT changes have one or more connection resets.
Figure 12 shows the split of varying RAT bins with no RAT
change according to the presence of loss and connection resets.
The overall percentage of lossy bins is slightly smaller (81.6%)
compared to the scenario with RAT changes, but it is still
high. There are also more (18.8%) non-lossy bins without
connection resets compared to the scenario with RAT changes.

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100

Fr
ac

tio
n

of
 5

-m
in

ut
e

bi
ns

Loss percentage

Telenor 3G
Netcom 3G

Fig. 13: Individual varying RATs for the 5-minute bins when RAT does not
change and there are no connection resets. Less loss in 3G bins with varying
RAT in Telenor compared to Netcom.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100

Fr
ac

tio
n

of
 5

-m
in

ut
e

bi
ns

Loss percentage

Telenor 3G
Netcom 3G

Fig. 14: Individual varying RATs for the 5-minute bins when RAT does
not change and there is one or more connection reset. Differences between
networks are minimal, but there is slightly less loss in 3G bins with varying
RAT in Telenor compared to Netcom.

Next, we look at loss rate distributions for bins with No
service. Figure 13 and 14 show the loss rate for the bins
without or with one or more connection resets, respectively.

Here we focus on 3G bins only, since the number of 2G
and LTE bins is very low in both networks. This can be
explained by the fact that 3G is the dominant RAT country-
wide and therefore most handovers happen on 3G. Telenor
exhibits much less loss compared to Netcom in bins without
connection resets, hinting that coverage problems that lead to
No service are less prevalent in Telenor. This matches well

230ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

our out-of-band understanding of the coverage of these two
operators; Telenor has a denser deployment of cell towers than
Netcom. Loss in bins with connection resets is, however, much
higher and very similar across the two networks. We believe
this similarity is a product of the non-trivial response of UE
to the loss of coverage as explained in Sec. IV-A.

To quantify the impact of loss in bins with RAT changes,
we now look at the distribution of loss runs sizes. Figure 15

 0
 0.02
 0.04
 0.06
 0.08

 0.1
 0.12
 0.14
 0.16
 0.18

 0 5 10 15 20 25 30

PD
F

Lost replies in a row

Telenor 3G
Netcom 3G

Fig. 15: Loss runs for individual varying RATs when there is no RAT change,
but one or more connection reset in a 5-minute bin intersecting with the loss
run. All modes in a shorter range from 11 to 16, with a peak at 13 packets
for both networks.
shows the PDF of the loss run size distribution for the two
networks. These distributions clearly differ from the loss run
size distribution for bins with RAT changes and connection
resets in two respects. First, there is no random loss. Second,
loss run sizes are confined to a narrow range between 10
and 15. These observations indicate that these loss runs must
be triggered by temporary lack of coverage followed by the
connection resets.

Summary of findings. This section has shown that the loss
rates are high in periods with varying RAT, independent of
whether there is an actual inter-RAT handover or not. About
40% of bins with varying RAT also contain a connection reset.
If connection resets are involved, we normally also see packet
loss, and the loss episodes are more severe.

V. CONSTANT RAT
This section investigates bins that are characterized by con-

stant RATs (i.e., no inter-RAT handovers), which are located
on the left most subtree in Fig. 4. During these periods a
connection may experience LAC and cell changes as well as
channel quality degradation.

As shown in Sec. III, about 30% of packet loss during
mobility takes place in bins with Constant RAT. Most of
this loss, 72%, coincides with changes of serving cells (CID
change).

Figure 16a divides Constant RAT bins based on whether
there is a LAC change or not and shows the percentage of
bins that fall into four different categories that describe LAC
change and loss. The fraction of bins with LAC changes is
small (6.3%), which is expected since one LAC mostly covers
large geographical areas and LAC changes happens when
crossing the boundaries between areas. Connections used in
this study experience loss in 88% of the bins with a LAC
change. For a smooth handover, the UE needs to be able to
communicate with both the current and the candidate cells
upon starting the handover procedure. Once the handover is

LAC change & Loss
5.2%

LAC change & No loss
0.7%

No LAC change & Loss

17.5%

No LAC change & No loss

76.6%

(a) LAC change

Cell change & Loss

13.9%

Cell change & No loss

46.7%

No cell change & Loss

4.7%

No cell change & No loss

34.7%

(b) Cell change

Fig. 16: The percentages of lossy and non-lossy 5-minute bins for constant
RATs split by the LAC and cell changes.

completed, in-flight packets will be re-routed to the new cell.
Inter-LAC handovers are slightly more challenging, since they
involve additional coordination between several RNCs 2, i.e.,
the handover procedure takes longer to complete compared to
cell changes within the same LAC.

Figure 16b divides Constant RAT bins without LAC changes
into four categories that capture both cell changes and loss.
The connections experience a cell change in 60% of all bins
without LAC changes. These handovers are usually smooth,
with 77% completing without a single packet lost. Loss in bins
with cell changes is, however, three times higher compared to
those without. Figure 17 shows loss rate distribution for bins
with LAC changes, cell changes, and no changes when the
connections are on 3G or LTE.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.1 1 10 100

Fr
ac

tio
n

of
 5

-m
in

ut
e

bi
ns

Loss percentage

Telenor LTE no-ch
Telenor LTE cid-ch

Telenor 3G no-ch
Telenor 3G lac-ch
Telenor 3G cid-ch

Netcom LTE no-ch
Netcom LTE cid-ch

Netcom 3G no-ch
Netcom 3G lac-ch
Netcom 3G cid-ch

Fig. 17: Loss rate in a 5-minute bin for 3G and LTE RATs split by the presence
of one or more LAC change or cell change, or none of them. In both networks
the highest loss occurs when there is a LAC change involved. In Telenor, bins
with LAC changes are more lossy compared to Netcom, whereas in Netcom
there is much loss during cell changes. When there is no LAC or cell change
or the LTE cell changes, the loss is minimal in both networks.

Loss rates are evidently higher in bins with LAC changes
with clear differences between operators. Almost all LAC

2In theory, an RNC may serve more than one LAC. Private communications
with the measured operators confirmed that is not the case in the networks
we measure.

231ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

changes in Telenor involve packet loss, while for Netcom,
LAC changes seem to be smooth in 40% of the cases. Hence,
this loss appears to be dependent on the network configuration.
We also observe that Netcom 3G connections experience
significantly higher loss when switching cells compared to
Telenor 3G connections. Loss is minimal during LTE cell
changes with no clear differences between operators. We
believe that loss during handovers can happen due to one of
the following three reasons:
1) Short coverage gaps between adjacent cells.
2) Misconfigured neighbor cell list, which makes affected cells
not aware of their neighbors and thus unable to complete
handovers successfully.
3) A complex interplay between the timing of the handover
decision and trains speed. When deciding to handover, the UE
performs an attachment procedure during which it becomes
attached to two cells; the current cell and the candidate cell.
The handover will break, if the UE looses sight of the old
towers during the movement while the procedure is ongoing.
[labelindent=0pt,itemindent=0pt]

Scenario S<10 10<S<50 50<S<100 100<S
CID-3G 0.48 0.45 0.60 0.72
CID-LTE 0.10 0.21 0.67 NA
LAC-3G 0.85 0.75 0.90 0.79

TABLE I: Fraction of lossy bins for Netcom cell and LAC changes for
different speed (S) categories. The speeds are in km/h.

Table I shows the fraction of 5-minute bins in Netcom that
involve loss for different train speed categories and different
horizontal handover scenarios. We choose Netcom because it
demonstrates significantly more loss during CID changes. The
likelihood of experiencing loss during CID changes evidently
increases as the speed increases over 50 km/h. LAC changes,
however, involve loss independent of the speed, suggesting that
the root cause of loss is perhaps related to inter-LAC handover
procedure configuration. Note that we have not measured LTE
cell changes when the speed is higher than 100 km/h. Trains
reach high speeds outside the metro-area and Netcom seem
not to have LTE coverage in these areas.

Summary of findings. Loss is significantly lower in bins
where the RAT type is stable. With a stable RAT, cell han-
dovers, and in particular those involving also a LAC handover,
is a main cause of loss. There are clear differences in how
handovers affect loss between operators.

VI. RELATED WORK

There has been a growing interest in performance and relia-
bility measurements of MBB networks. Regulators need mea-
surements to monitor how operators fulfill their obligations,
and as a baseline for designing regulatory policies. On the
other hand, operators are interested in operational instability
and anomalies to identify problems in their networks. There
are mainly three approaches for measuring the performance
and reliability of MBB networks: (i) crowd-sourced results
from a large number of MBB users [2, 15, 19, 23] , (ii)
measurements based on network-side data [10, 11, 21, 22]

and (iii) measurements collected using dedicated infrastruc-
ture [4, 12, 20]. In this paper, we collect data from a ded-
icated infrastructure in order to have full control over the
measurement nodes, allowing us to systematically measure the
reliability over a long period of time. The long-term end-to-end
measurements lead to a better quality dataset without requiring
access to network-side logs, which are typically only available
to operators.

Several studies focused on the causes of packet loss in
MBB networks. Different groups blamed RRC state transi-
tions [5, 6, 16–18] and showed that the operators do not
always configure their RRC state machines according to the
standard guidelines leading to significant loss during state
demotions. Gember et al. compared packet loss on idle and
near active devices and found loss rates on idle devices to be
26% higher and likely to be caused by differences between
cell sectors [9]. Xu et al. discussed the effect of bursty packet
arrivals and drop-tail policies employed by the operators [25].
RNC-level performance analysis of UMTS networks identified
correlations between RTTs and loss and their dependency
on diurnal patterns and overloaded NodeBs [6]. One study
showed that most transport-layer packet loss is related to
physical layer retransmissions and can be reduced by buffering
[11]. Another study presented a framework for measuring the
user-experienced reliability in MBB networks, and showed
how both radio conditions and network configuration play
important roles in determining reliability [4]. Both of these
studies consider only stationary scenarios, while in this paper
we focus on mobility scenarios where signal quality is varying
as well as handovers are present.

Packet loss has also been investigated for mobility scenarios.
Li et al. [14] studied TCP performance in HSPA+ networks on
high-speed rails and showed that the number of handovers is
proportional to the increased loss rates for high speeds. Similar
observations were made in a study by Balachandran et al. [3],
showing that most HTTP sessions with inter-RAT handovers
are abandoned. Tso et al. [24] measured HSPA performance
on the move to be greatly different from static HSPA per-
formance. In particular, they observed that the final results of
handovers are often unpredictable and that UDP packet loss at
least doubles during handover periods. Although these studies
considered different aspects of packet loss for stationary and
mobility scenarios, to the best of our knowledge, there has
been no comprehensive study that characterizes packet loss
in 3G and LTE networks and compares the mobility and
stationary scenarios. Along with the end-to-end measurements
used in this work, we further leverage connections’ metadata
and state information to identify the underlying causes of loss.

VII. DISCUSSION AND CONCLUSIONS

This paper has analyzed the causes of loss in MBB networks
under mobility. The observed loss rates are much higher
than in the stationary case [5]. In particular, disturbances or
handover between different RATs is a main cause of loss,
accounting for about 70% of the total. Such RAT changes also
often involve a reset of the data connection between the UE

232ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

and the network, which mostly involves heavy packet loss.
Cell changes are also an important source of loss, and cell
changes that also involve a LAC change are the worst.

The observed dominance of loss during RAT changes high-
lights such handovers as an area that warrant particular atten-
tion from mobile operators. The inter-RAT handover procedure
is complex, and involves interaction between the UE, the RAN
and the CN. The most efficient way to reduce packet loss is to
improve the procedures for how such handovers are performed.
The number of such handovers should be limited, and packets
in transit should be buffered or retransmitted to avoid loss.

There are significant differences between the two networks
measured in this study with respect to loss during cell changes.
While Telenor experiences significantly more loss during LAC
changes, Netcom sees more loss during normal cell changes.
These differences indicate that operators still have a significant
potential for reducing loss through better configuration settings
in their network.

To verify some of our findings, we conducted a drive test
in Oslo area by placing the measurement node in a car. In
total, we have collected over 5 hours of measurements for the
two networks. These measurements confirmed that in Telenor,
almost all (92%) packets were lost during the periods with
varying RAT. In Netcom, around one half of loss happened in
bins with varying RAT too, while the second half was during
periods with cell or LAC changes. As expected, we have not
observed any case with varying RAT and a temporary loss of
service, as it is very unlikely to have coverage holes in the
city. In other words, results from the drive test confirm and
highlight that inter-RAT handovers are prone to high packet
loss even in well covered areas.

End-to-end measurements used in this study are useful
for quantifying and characterising the problem. However, to
localise the root causes of packet loss, this might not always
be sufficient. We therefore acknowledge that network side data
or measurements from the RAN could give more insights into
the potential causes and assist in improving the network.

VIII. ACKNOWLEDGEMENTS

This work was partially supported by the European Union’s
Horizon 2020 research and innovation program under grant
agreement No. 644399 (MONROE) and by by the Norwegian
Research Council under grants 209954 (Resilient Networks 2)
and 208798 (NorNet). The views expressed are solely those
of the author(s). We would like to thank NSB for hosting
measurement nodes aboard their operational passenger trains.

REFERENCES

[1] Annual report of the Communications Regulatory Authority
(RTT) of the Republic of Lithuania, 2012.

[2] Mobiperf. http://www.mobiperf.com, 2014.
[3] A. Balachandran, V. Aggarwal, E. Halepovic, J. Pang, S. Se-

shan, S. Venkataraman, and H. Yan. Modeling Web Quality-of-
Experience on Cellular Networks. In Proc. of MobiCom, 2014.

[4] D. Baltrūnas, A. Elmokashfi, and A. Kvalbein. Measuring the
Reliability of Mobile Broadband Networks. In Proc. of IMC,
2014.

[5] D. Baltrūnas, A. Elmokashfi, and A. Kvalbein. Dissecting
Packet Loss in Mobile Broadband Networks from the Edge.
In Proc. of INFOCOM, 2015.

[6] Y. Chen, N. Duffield, P. Haffner, W. ling Hsu, G. Jacobson,
Y. Jin, S. Sen, S. Venkataraman, and Z. li Zhang. Understanding
the Complexity of 3G UMTS Network Performance. In Proc.
of IFIP Networking, 2013.

[7] Cisco visual networking index: Global mobile data traffic fore-
cast update, 2014 - 2019. Cisco Systems, Inc., February 2015.

[8] FCC. 2013 Measuring Broadband America February Report.
Technical report, FCC’s Office of Engineering and Technology
and Consumer and Governmental Affairs Bureau, 2013.

[9] A. Gember, A. Akella, J. Pang, A. Varshavsky, and R. Cac-
eres. Obtaining In-Context Measurements of Cellular Network
Performance. In Proc. of IMC, 2012.

[10] E. Halepovic, J. Pang, and O. Spatscheck. Can you GET me
now?: Estimating the time-to-first-byte of HTTP transactions
with passive measurements. In Proc. of IMC, 2012.

[11] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen,
and O. Spatscheck. An In-depth Study of LTE: Effect of
Network Protocol and Application Behavior on Performance.
In Proc. of SIGCOMM, 2013.

[12] Z. Koradia, G. Mannava, A. Raman, G. Aggarwal, V. Ribeiro,
A. Seth, S. Ardon, A. Mahanti, and S. Triukose. First Impres-
sions on the State of Cellular Data Connectivity in India. In
Procs. of ACM DEV-4, ACM DEV-4 ’13, 2013.

[13] A. Kvalbein, D. Baltrūnas, J. Xiang, K. R. Evensen,
A. Elmokashfi, and S. Ferlin-Oliveira. The Nornet Edge plat-
form for mobile broadband measurements. Elsevier Computer
Networks special issue on Future Internet Testbeds, 2014.

[14] L. Li, K. Xu, D. Wang, C. Peng, Q. Xiao, and R. Mijumbi. A
Measurement Study on TCP Behaviors in HSPA+ Networks on
High-speed Rails. In Proc. of INFOCOM, 2015.

[15] A. Nikravesh, D. R. Choffnes, E. Katz-Bassett, Z. M. Mao, and
M. Welsh. Mobile Network Performance from User Devices:
A Longitudinal, Multidimensional Analysis. In Procs. of PAM,
2014.

[16] P. Perala, A. Barbuzzi, G. Boggia, and K. Pentikousis. Theory
and Practice of RRC State Transitions in UMTS Networks. In
IEEE GLOBECOM Workshops, 2009.

[17] F. Qian, Z. Wang, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck. Characterizing Radio Resource Allocation for
3G Networks. In Proc. of IMC, 2010.

[18] S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake,
and K. Lau. Discovering Fine-grained RRC State Dynamics
and Performance Impacts in Cellular Networks. In Proc. of
Mobicom, 2014.

[19] J. P. Rula, V. Navda, F. Bustamante, R. Bhagwan, and S. Guha.
”No One-Size Fits All”: Towards a principled approach for
incentives in mobile crowdsourcing. In Proc. of IMC, 2014.

[20] S. Sen, J. Yoon, J. Hare, J. Ormont, and S.Banerjee. Can
they hear me now?: A case for a client-assisted approach to
monitoring wide-area wireless networks. In Proc. of IMC, 2011.

[21] M. Z. Shafiq, L. Ji, A. X. Liu, and J. Wang. Characterizing
and Modeling Internet Traffic Dynamics of Cellular Devices.
In Proc. of SIGMETRICS, 2011.

[22] M. Z. Shafiq, L. Ji, A. X. Liu, J. Pang, S. Venkataraman, and
J. Wang. A first look at cellular network performance during
crowded events. In Proc. of SIGMETRICS, 2013.

[23] J. Sommers and P. Barford. Cell vs. WiFi: On the Performance
of Metro Area Mobile Connections. In Proc. of IMC, 2012.

[24] F. P. Tso, J. Teng, W. Jia, and D. Xuan. Mobility: A Double-
Edged Sword for HSPA Networks. In Proc. of MobiHoc, 2010.

[25] Y. Xu, Z. Wang, W. Leong, and B. Leong. An End-to-End
Measurement Study of Modern Cellular Data Networks. In
Proc. of PAM, 2014.

233ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

“Infect-me-not”: A User-centric and Site-centric Study of web-based malware

Huy Hang⇤, Adnan Bashir†, Michalis Faloutsos⇤, Christos Faloutsos‡, and Tudor Dumitras§

⇤ University of California, Riverside
Department of Computer Science and Engineering

Riverside, CA 92521
{hangh, michalis}@cs.ucr.edu

† University of New Mexico, Albuquerque
Department of Computer Science

Albuquerque, NM 87131
abashir@cs.unm.edu

‡ Carnegie Mellon University
Department of Computer Science

Pittsburg, PA 15213
christos@cs.cmu.edu

§ University of Maryland, College Park
ECE Department

College Park, MD 20742
tdumitra@umiacs.umd.edu

Abstract

Malware authors have been using websites to distribute their
products as a way to evade spam filters and classic anti-virus
engines. Yet there has been relatively little work in modeling
the behaviors and temporal properties of websites, as most
research focuses on detecting whether a website distributes
malware. In this paper we ask: How does web-based malware
spread? We conduct an extensive study and follow a website-
centric and user-centric point of view. We collect data from
four online databases, including Symantec’s WINE Project,
for a total of more than 600K malicious URLs and over 500K
users. First, we find that legitimate but compromised websites
constitute 33.1% of the malicious websites in our dataset.
In order to conduct this study, we develop a classifier to
distinguish between compromised vs. malicious websites with
an accuracy of 95.3%, which could be of interest to studies on
website profiling. Second, we find that malicious URLs can
be surprisingly long-lived, with 10% of malicious sites staying
active for three months or more. Third, we observe that a
significant number of URLs exhibit the same temporal pattern
that suggests a flush-crowd behavior, inflicting most of their
damage during the first few days of appearance. Finally, the
distribution of the visits to malicious sites per user is skewed,
with 1.4% of users visiting more than 10 malicious sites in
8 months. Our study is a first step towards modeling web-
based malware propagation as a network-wide phenomenon
and enabling researchers to develop realistic assumptions and
models.

I. INTRODUCTION

Distributing malware indirectly via web-pages has become
a very popular way for spreading malware in the last 8
years. In 2012, Google reported that they identify 9,500 of
malware-spreading websites each day [1]. These websites
infect their visitors, but we can identify two different types:
(a) the born-malicious, which are registered and operated by

the malicious entities, and (b) the compromised, legitimate
websites infiltrated by hackers and injected with malware.

“How does web-based malware spread?” is the key question
that motivates this work. We consider a site-centric and a
user-centric point of view: (a) what is the behavior and the
lifecycle of the website that spreads malware, and (b) what is
the behavior of the users that visit such websites. Our goal is
three-fold: (a) investigate the composition of the websites to
find out how many of them are born-malicious and how many
compromised, (b) understand the life of a malicious URL and
its impact, and (c) identify patterns in the way users visit
malicious URLs. For the remainder of this paper, we use the
term malware to refer to web-based malware. In our work,
we focus on the spatiotemporal patterns of how malware is
distributed from malicious sites to users.

Most previous work has focused more on identifying mali-
cious websites, and less on their propagation patterns. In more
detail, we identify four areas of focus in the literature: (a)
the identification of websites vulnerability to infiltration, (b)
the detection of websites actively distributing malware, (c) the
study of the ecosystem and the techniques used by hackers,
and (d) the analysis of the web-based malware themselves. We
describe research efforts in these areas in section V.

Our key contribution is an extensive study of user exposure
to web-based malware following both a site-centric and user-
centric point of view. We use two data sets: (a) DODB, with
roughly 66K malicious URLs collected from four online
databases between December 2013 to September 2014, and
(b) DWINE, which captures visits to malicious websites from
roughly 530K users from January 2011 to August 2011 col-
lected by the Symantec’s WINE Project. Note that Symantec’s
data captures the exposure of the users to malware as seen by
its anti-virus products, as we explain in section II.

Our work can be summarized into the following major
observations.

a) Compromised websites play a significant role in
malware dissemination. We find that among all the
domains in our DODB dataset, 33.1% of them belong to
compromised websites. For our study, we developed aISBN 978-3-901882-83-8 c

� 2016 IFIP

234ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Machine Learning-based method to distinguish compro-
mised websites from born-malicious sites. Our approach
exhibits a 95.3% accuracy. We want to stress that the ML
method we developed is strictly for a forensics purpose:
we want to measure how prevalent the phenomenon of
compromised websites is and raise awareness about the
danger that they may pose. We did not intend the method
to be a detection tool for compromised sites.

b) A malicious URL often distributes many different
malware binaries but each malicious binary is typ-
ically distributed by one URL. We find that 33% of
the URLs with at least 5 visits in DWINE distribute two
or more different binaries (different MD5 hash values).
This percentage increases to 46% among all websites
with more than 20 visitors. These website are either:
(a) distributing completely different malware, (b) using
polymorphism to distribute the mutated versions of the
same malware to escape detection. In contrast, most
malicious binaries (94.6%) are distributed by one URL
in our data set.

c) Most malicious URLs are short-lived, but 10% of
them are active for more than three months. Although
71.6% of URLs in DWINE appear for only one day during
the 8 months, roughly 10% stay active for at least three
months and a much smaller number have been active for
four years. This suggests there may not be an efficient
technical and/or legal process to clean up or take down
a malicious website.

d) The “Space-needle” pattern: Many URLs exhibit
the same bursty temporal pattern aligned with a
campaign-like behavior. Here, we focus on Highly Ac-
tive URLs in DWINE, which have lifespans of at least 30
days and have at least 100 visitors each. We find that the
time series of the visits to 45.6% of those URLs follow a
bursty pattern, which we refer to as “space-needle” due
to its shape. URLs following this pattern usually peak
within the first two days of their life, and the maximum
number of daily visits is at least an order of magnitude
larger than the median, as we discuss in section IV.

e) The distribution of the visits to malicious sites per
user is skewed and can be described by a power law
of exponent � 1

2 . A small percentage of users in DWINE

are highly susceptible to visiting malicious URLs. For
example, we find that 1.4% of all users (close to 7500
users!) in our data set visited at least 10 malicious URLs
during the 8 months.

Data Archive and Acknowledgment. The data is available
for follow-up research as reference data set WINE-2014-002 in
Symantec’s WINE repository. We are grateful to Drs. Matthew
Elder and Daniel Marino of Symantec Research Lab for their
support and feedback.

II. OUR DATA SETS AND BACKGROUND

We present the sources of information and data sets that we
use in our work.

A. Sources for URL characterization

We rely mostly on two sources of information regarding the
status of a URL. First, VirusTotal is a popular online service
where a user can submit a binary or a URL or a domain so
it can be scanned by at least 50 anti-virus engines. Once the
scan concludes, the user can retrieve a report that shows, in the
case of a domain, the number of AV engines that considered
the domain to be of a malicious website. We call this value the
VirusTotal Malicious Score of a domain. Second, the Web of
Trust (WoT) Reputation Score is a numerical value between
0 and 100, inclusively, given to a website by WoT [2], which
relies on its user community to rate the websites the users came
across. The higher score a website has, the more trustworthy.
A poor reputation score does not imply a website is malicious.

B. Our data sets

We use the following sources to build our data sets.
1) Online databases: We collected malicious URLs from

four different online databases: Cybercrime Tracker [3],
Malc0de [4], Malware Domain List [5], and VX Vault [6].
These online databases are maintained by communities and
publish new malicious URLs on a regular basis. We began
collecting the URLs in March 2014 and continued to do so
every day until September 2014. This data set, which we call
DODB from this point onward, will be used to build a classifier
to distinguish born-malicious from compromised websites.

URLs Domains Clients MD5s
O.D.B. 71,542 8,724 - -
WINE 626,472 106,026 530,061 504,324

TABLE I
DATA FROM ONLINE DATABASES (O.D.B.) AND WINE

This dataset is used exclusively to train and test our classifier
of born-malicious and compromised websites, as will be
shown in section III.

2) Symantec’s WINE data: Symantec’s Worldwide Intelli-
gence Network Environment (WINE) [7] is a massive corpus
of telemetry data sampled from more than 120 million ma-
chines, both enterprise and consumer, and made available to
the research community. This dataset was also used in the
analysis of zero-day attacks in [8] as well as the study to
expose the change in cyber threat landscape and the emergence
of new attack surfaces [9].

The WINE database is divided into five datasets, each
containing data from different aspects of the data collection
process. The data that we collected from WINE belong to two
specific datasets:

1) AV Telemetry: data collected from all clients any time
a Symantec AV product detected that a malicious binary
executable was downloaded.

2) Binary Reputation: data collected on binary executables
downloaded by users in Symantec’s reputation-based se-
curity program. Even though this dataset contains infor-
mation on both malicious and benign binaries, it does

235ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

not contain information on whether a specific binary is
malicious.

We use the machine ID identifier to distinguish users.
This is a unique ID that each Symantec software installation.
This way, we eliminate the “noise” that can be introduced by
using IP addresses, which are dynamically assigned and often
obfuscated by Network Address Translators (NATs).

C. Modeling the exposure to malware

The WINE data we collected focuses exclusively on visits to
malicious URLs. Every entry in the dataset represents a report
any time a user downloaded a malicious binary from a URL.
However, we do not make a claim as to whether the user was
infected or not. In fact, we believe that the malicious binaries
were detected and the users would have been protected, unless
they explicitly overrode the antivirus warning.

Each data point in our data set, which we will call DWINE,
contains: (a) the timestamp of the receipt of the report at a
Symantec server, (b) the URL from which the binary was
downloaded, (c) the MD5 hash of the binary, and (d) the ID
of the client machine.

We begin with collecting the information about malicious
URLs from AVs Telemetry from January to August 2011. We
then correlate with Binary Reputation to obtain the information
about the URLs from before Symantec determines that the
URLs were distributing malware so that we get the complete
history about each URL (including which binaries they dis-
tributed and who downloaded from them).

We use this dataset to conduct analysis of the spatiotemporal
characteristics and malicious websites and study the behaviors
of the users who visit the malicious sites, the details of which
will be shown in section IV.

Representativeness. The classic question for any real mea-
surement data is how representative is the data. We rely on
users that have Symantec AV products installed, and this may
be introducing some bias, though we don’t have any reason
to believe that users of other anti-virus solutions will have
an i ntrinsically different behavior. At the same time, DWINE is
data collected from roughly 550K users spanning eight months
and WINE is drawn from more than 120 million machines
worldwide, so our dataset consist of a reasonably wide cross-
section of users.

III. PROVENANCE OF MALICIOUS WEBSITES

Given a malicious website, we would like to determine if
it is born-malicious or compromised (which we defined in
the introduction). We present our Machine Learning-based
method that accomplishes this with high accuracy. Note that
we use the dataset DODB exclusively in building the classifier
and performing testing.

Why do we want to study malware-spreading websites,
after they have been identified as such? There are two
reasons. First, compromised websites are not very well studied,
to the best of our knowledge despite the fact that alarms had
been raised about them. In their 2014 Threat Report [10],
Symantec discovered that one in eight legitimate websites have

unpatched critical vulnerabilities, making them ripe for an
attack. Second, hackers try to infect their victims by abusing
the trust that legitimate sites have established over time instead
of getting around domain or IP blacklists by creating new
websites or constantly switching to new IPs via fast-fluxing.

The proposed technique is arguably the first that focuses on
this problem. As such, we would offer it as a publicly-available
tool for studying the provenance of websites (whether they
are created for malicious purposes or hijacked) and providing
a first-level forensics capability. Note that the course of
action for stopping the spread of malware depends on this
classificiation. In the case of a born-malicious site, the site
needs to be taken down and possibly have the hosting entity
notified.

A. Building the classifier.

We present the steps that we took for developing our
classifier.

1) Data Preprocessing: Even though the DODB dataset in-
cludes 8,724 domains in total, we run the classifier on only
3,975 of them. We do not include in our study the domains
that belonged to any of the following categories:

a) Domains not resolving to IPs. These 1,550 domains no
longer provide valid DNS records, because there was
a time gap between when the domain was reported as
malicious and when we attempted to crawl them. A
close examination of such domains shows most have poor
reputation scores and created recently. It is likely these
domains were deactivated for distributing malware.

b) Domains returning 40X codes or no content.
c) Domains belonging to known Content Delivery Net-

works, file-sharing sites (e.g. mediafire) and websites
hosting free software (e.g. softpedia). By nature,
these websites allow the posting of user content, which
can often point to malicious websites or even contain
malware.

2) Our training and testing data: From the remaining 3,975
domains (which we call Dclassify), we randomly selected 609
domains and split them into two used for training and then
testing our binary classifier:

a) Dtrain has 200 domains, 139 labeled as compromised and
61 born-malicious

b) Dtest has 409 domains, 280 labeled compromised and 129
malicious.

We label the domains manually and carefully: we visit each
domain in a browser in a virtual machine, carefully examine
each landing page we come across, and explore each link on
the landing page to see if we can reach other pages that may
contain legitimate content. The richer the content is, the more
confident we are that the website is a legitimate website that
was compromised.

3) Features: We first present the features that our classifier
uses, and later we discuss other features that we considered
but did not ended up using. We use the following features:

a) Number of URLs embedded in the landing page.

236ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

b) Number of images on the landing page.
c) Age (days) of domain since registration.
d) Web of Trust’s reputation score for domain.
e) VirusTotal’s malicious score for domain.
Intuitively, a legitimate but compromised website tends to

bear the following characteristics:
a) Its landing page is much more complex than that of

a website created to deliver malware, meaning that it
has richer content, more hyperlinks that lead to its other
pages, and more images in general.

b) It has been around for longer than a born-malicious
website, as malware authors stage new websites very
often, knowing that it is likely that a malicious site could
be taken down or blacklisted quickly. The older a website
is, the more trustworthy it is.

c) Compromised websites have relatively higher Web of
Trust’s score.

These aforementioned characteristics are covered by fea-
tures (1), (2), and (3), which are not enough, as using only
these three means that we run the risk of classifying a newer,
simple website as malicious or classifying an older and more
complex malicious site as benign. To avoid this, we also make
use of features (4) and (5), which allows the classifier to factor
into its classification decision how many anti-virus engines
consider the site to be malicious and how good a reputation a
site may have.

To obtain relevant statistics for each domain in DODB, we
created an automatic web crawler using Selenium [11] and
connected the Selenium-driven browser to a proxy to keep
track of every image downloaded by the browser.

4) Other features: We have also considered other features
to use in our classifier such as: the total number of pages
hosted by a website, the total number of images and links
that could be found on all of the pages, etc. We opted to
not use these features. First, we want to create a light-weight
classifier, so we avoid features that intense in computation and
resource utilization. Using a feature such as the total number
of pages on a website would mean that our crawler would have
to crawl the entire website and explore every single link that
can be discovered while making sure that the crawler would
not follow a link that leads out of the website. Further, as
we show below, we were able to achieve good classification
accuracy using the selected light-weight features.

We also considered using IP blacklists as an additional
means of pre-filtering to quickly identify a malicious website.
We also decided against using the black-lists because a single
IP address may be home to multiple websites and we run the
risk of labeling as malicious a benign website hosted on the
same server.

B. Training the classifier.

We use Dtrain to train our classifier, and we select the
Random Tree method, because it gives the best performance
among all others included in the WEKA Machine Learning
framework [12]. We tried to create single-feature classifiers to
test the accuracy of each feature but none of the classifiers

exceeded 85% in accuracy (as seen in Table II) when applied
on Dtrain, where we define accuracy as the ratio of the number
of correctly labeled domains and the total number of domains.
Applying a classifier built from all features on Dtrain yields no
misclassified instances. Note that we define accuracy as the
number of correctly labeled instances over the total number
of instances.

Feature name Accuracy
Number of URLs on landing page 82.3%
Number of images on landing page 83.7%

Age since registration 84.7%
Web of Trust score 77.4%
Virus Total score 73.5%

TABLE II
ACCURACY USING A CLASSIFIER WITH ONLY ONE FEATURE

We also performed cross-validation of our training set
using the 10-fold cross validation function of the WEKA suite,
and the result (using all five features) is just as good in that
there is no instance misclassified.

C. Testing the classifier.

For testing, we use the Dtest dataset.
1) Achieving a classification accuracy of 95.3%: We find

that the number of correctly classified instances is 390 out
of 409. We investigated the misclassifications to understand
the limitations of our approach. Among the 19 misclassi-
fied domains, we find: 9 compromised that were labeled as
born-malicious and 10 malicious domains that were labeled
as compromised. Our careful investigation shows that some
misclassifications happened due to several reasons: (a) the
domains were hosted by dynamic DNS services, so the age
values reported, which are very high, are of the DNS services
themselves, (b) some compromised websites have extremely
simple home pages with few images and embedded URLs.

2) 33.1% of malicious domains are compromised: With
our classifier, we classify all the domains in Dclassify. We find
2,885 compromised and 1,090 born-malicious. This means that
roughly 33.1% of the domains from DODB are benign websites
infiltrated by hackers and used to distribute malware. We will
revisit the phenomenon of compromised domains again in the
next section.

IV. PROFILING MALICIOUS URLS & THEIR VISITORS

We present our findings on the temporal properties of
malicious URLs and the browsing behavior of the users.

A. Malicious URLs distribute many different malware binaries
but each binaries is usually distributed from one URL.

In DWINE, we observed many instances where the same URL
yielded binaries with different MD5 hashes, often within the
same hour. This phenomenon can be observed in Figure 1,
where the each data point represents a single binary executable
(X-axis) and the number of distinct URLs (Y-axis) from which
it can be downloaded.

237ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 1. Distribution of the number of unique MD5 hashes seen per URL.
For example, the datapoint (x, y) indicates that there are x binaries each of
which can be downloaded from exactly y URLs.

In this paper, we will call this phenomenon URL-centric
polymorphism. Note that malware polymorphism, in general,
refers to distributing the same malware in many different ver-
sions. We choose a different name to stress that we only focus
on MD5-hash-based similarity: we were not given access to
the malware itself to determine if two MD5 hashes correspond
to the same malware.

Fig. 2. URL-centric polymorphism observed more clearly on highly-active
URLs.

1) One website many MD5s: In Figure 2, we show the
distribution of unique MD5 hashes for each URL. Each curve,
represented by a k value, shows the distribution of MD5 count
per URL where the URLs have at least k visitors. We can
see for 94% of URLs, each is associated with only one MD5
(k = 1). Most of these low-access URLs have one or two
visitors, which makes it difficult to observe MD5 variations.
The polymorphism becomes more evident for URLs with more
visitors. For the URLs with at least k = 5 visitors, 33%
of them distributed more than one binary, but this number
increases to 46% when for URLs with at least k = 20 visitors.

2) Each MD5 is typically distributed from one website.:
Reversing the question, we examine how many websites
distribute the same MD5 malicious binary in DWINE. Towards
this goal, we look at each MD5 hash value in our DWINE dataset
and count the number of distinct malicious URLs from where
the binary with the MD5 was observed to be downloaded. In
Figure 3, we plot the distribution of MD5s according to the
number of URLs that distribute them. We observe that 92.2%
(more than 464K binary executables) are distributed by only
one single URL.

Fig. 3. Distribution of the number MD5s that are distributed by a certain
number of distinct URLs (x-axis).

3) A few MD5s are widely distributed by more than 100
URLs.: There are some binary executables that appeared on
more than a hundred URLs, which we did not expect. To
investigate, we randomly picked 600 of these binaries and
examined the related URLs. We observed:

1) The majority of these binaries (76.2%) appeared on
multiple born-malicious domains, which seemed “dis-
posable”: the domains typically had random sequences
of characters, pointing to an automated name-generation
process.

2) A relatively small percentage (14.5%) of these binaries
appeared on multiple domains that belong to popular
file-sharing websites or well-known software distributors.
This means malware authors rely on the many free file-
sharing services or embed malicious code into popular
and often pirated software to distribute the files. Note
that although we filtered out such domains from DODB

(as noted in section III-A1, we did not do so for DWINE

because our goal is to study how malicious binaries are
distributed at large.

3) 9.3% appeared on what seem like compromised sites,
many of them active and containing legitimate content.
These binaries were distributed by URLs that have sim-
ilar structure. For example, one such binary was dis-
tributed by URLs of the form: http://{D}/images/
facebook-pic-{X}.exe, where {D} represents dif-
ferent domain names and {X} a sequence of random
digits. This suggests that the sites were compromised:
(a) through the use of the same hacking toolkit, and/or
(b) by the same hacker.

Fig. 4. Cumulative distribution of URLs according to their lifespan (x-axis)

238ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

B. Malicious URLs exihibit short lifespans and the number of
visitors who visit them follow a skewed distribution

1) Most malicious URLs have short lifespan, but a small
percentage live for more than three months: In Figure 4, we
study the distribution of the lifespan of websites. We find
that 70.6% of all malicious URLs are what we call single-
day URLs as they appear for only one day in our dataset.
Surprisingly, 10% of these websites managed to stay “alive”
and actively distributed malware for more than three months
and there are 194 malicious URLs that were around for four
years. Furthermore, a small percentage (2,427 URLs, making
up 0.4% of all URLs) attracted at least a hundred users during
their lifespan.

Fig. 5. Cumulative distribution of URLs according to their visitor count (x-
axis)

2) The number of visitors per URL follows a skewed distri-
bution: In Figure 5, we plot the distribution of unique visitors
per URL. We find that this distribution is highly skewed with
57.4% of the URLs having one visitor, while 11.2% have
least three visitors. It can be observed from the Figure that
there are malicious URLs whose visitor counts exceed one
thousand visitor apiece. We then investigated the top five URLs
with the highest number of visitors and observed that they
are URLs whose first appearances date back as far as 2010,
individually spanning at least a year and a half. One such
URL, for example, was distributing a screen-saver program
that was flagged by Symantec as distributing Trojan viruses.
This observation (a) explains why they managed to attract such
a high number of visitors and (b) underscores the fact that
even though they have been distributing malicious content,
they were never shut down in a timely fashion.

Fig. 6. CCDF of clients with respect to malicious URLs encounter

3) The distribution of the visits to malicious sites per user
is skewed and can be described by a power law of exponent

-1/2: In Figure 6, we plot the CCDF of the number of visits to
malicious sites for each user. We find that the distribution of
the number of malicious URL encounter per person seems to
follow a power law distribution with exponent ↵ = � 1

2 . Thus,
the good news is that most users in DWINE encounter malicious
URLs very infrequently. In Figure 7, we plot the CDF of
the same distribution and show that 63% of all users visited
a malicious URL only once during the entire eight months.
However, 1.4% (roughly 7,500 users) visited malicious URLs
at least ten times during the same amount of time. This in
general suggests that a small group of users were far less
cautious than others in their browsing activities.

Fig. 7. CDF version of Figure 6

4) Outliers: users with more than 400 visits to malicious
URLs: In both Figures 6 and 7, we see that a few data points
are well separated from the rest of the distribution (to the left
of the dotted vertical lines). Each of these points represents
users who visited roughly 400 distinct malicious URLs during
the eight-month period, averaging to at least two malicious
URLs a day. We want to stress that each time one of these
users visited one such malicious URL, a malicious file was
downloaded by their browser and blocked from execution
by the Symantec anti-virus product and the user would be
subsequently notified. The most active user in our dataset
visited a total of 1042 distinct malicious URLs for a duration
of 242 days, averaging at least 4 a day. This behavior seems
unlikely for a human, so we rule out this possibility.

Upon further investigation, we arrived at two possible
explanations for these outlier points.

(i) These behaviors were generated by automated programs,
for example a crawler whose purpose is to measure the uptime
or downtime of a website or to seek out malicious domains.
These programs could have been deployed by researchers.

(ii) Recall that each user in the DWINE dataset is identified by
a unique Machine ID, which is given by the Symantec software
(think product number). It is possible for a user to install the
AV product in a Virtual Machine and clone it, thereby allowing
multiple Virtual Machines to report their activities to Symantec
with the same Machine ID.

C. Space-needle: Many highly active URLs exhibit the same
bursty temporal pattern that suggests a campaign-like behav-
ior.

We discover that the visits to many URLs exhibit a bursty
behavior, as can be seen in Figure 8. This temporal pattern,

239ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 8. One example of the space-needle propagation pattern

which we will call “space-needle”, could be the result of an
active campaign, staged by the hacker, to drive traffic to a
newly infected or created site. Consequently, most of their
visits take place during the first few days when the site appears,
since after the first few days, the spam filters and black lists
catch up and reduce the number of visitors.

We want to study the extent of the “space-needle” phe-
nomenon in more detail. We start with focusing on URLs with
a lifespan of 30 days or more and at least 100 visitors. Having
at least 100 visitors alone does not qualify a URL to be highly
active, a URL may just have that many visitors on the first few
days since its appearance and is taken down afterwards. What
we would like to study is, after all, the interesting malicious
URLs that are both long-lived and had attracted substantial
amounts of visitors.

We identify 2,402 URLs in DWINE that meet these criteria.
We will refer to these URLs from this point on as Highly
Active URLs. We then do the following analysis to jointly
define the “space-needle” pattern and quantify its presence
with a technique that is commonly used in data mining and
the steps of which are described below.

Given the set U of Highly Active URLs mentioned above,
we begin with the following preprocessing steps with each
u 2 U :

1) We represent the user-visit pattern of each u during the
first thirty days of its lifespan with the ordered sequence
V

u

= {(i, vu
i

)} where i is the i

th day since u’s first
appearance and v

i

u

is the number of distinct users who
visited u on that same day.
We only preserve the user visits during the first thirty
days because (i) they are sufficient to capture most of the
user visits to the URLs and (ii) we need to make sure that
the activities that were captured from each URL span a
uniform amount of time for the purpose of comparison.

2) For each V

u

, we proceed to create the time series T

u

by using linear interpolation to fill in any existing “gap”
(which can be any day that there is no recorded user visit
to the URL).

Once we have T = {T
u

8u 2 U}, we:
1) Select a representative time series T

r

that intuitively cap-
tures the essence of the “space-needle” (seen in Figure 8)
shape and remove it from T

2) Compute the Euclidean distance between each T

u

2 {T�
T

r

} to T

r

.

3) Sort each T

u

2 {T � T

r

} so that if T

u

precedes T

u

0 ,
E(T

u

, T

r

) E(T
u

0
, T

r

) where E denotes the Euclidean
distance function.

4) Manually inspect the “shape” of each time series from
the beginning of the sorted list until we come across a
time series that no longer visually resembles that of the
representative time series T

r

.
At the end of this process, we find 1,095 URLs or 45.6%

of the 2,402 highly-active URLs, which we will call Space-
Needle URLs.

Fig. 9. Distribution of which day the URLs gained the maximum number of
visitors

Fig. 10. Distribution of the fraction of total number of visitors each URL
accumulated by the third day

The next step is to quantify the properties of the Space-
Needle URLs. We can see from Figures 9 and 10 that 60% of
these URLs achieved their peak number of daily visitors either
on their first day of appearance, or the very next day. By the
end of the third day, 50% of all the Space-Needle URLs have
seen at least half of their total number of visitors. Moreover,
for 80% of the Space-Needle URLs, the peak number of daily
visitors is at least one order of magnitude larger than the
median value of daily visitors. Note that we only consider
days with at least one visitor to compute the value of the
median.

D. Where do malicious domains end up?

When we performed DNS queries on all of the domains of
the malicious URLs reported in DWINE, we found that roughly a
third of the malicious domains (35.9%) continue to be active
(by which we mean that doing DNS queries on them yield
IP addresses). We were intrigued as to why these domains
(presumably of malicious websites) are still active even though
they were first reported in 2011. To further investigate, we

240ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

randomly selected 600 still-active domains and accessed them
in a browser in a virtual machine and we identified the
following categories.

1) Recovered: 36.7% of the domains seem to be benign,
bearing legitimate content. We believe they might have
been compromised when Symantec detected malicious
binaries being distributed by their servers. This suggests
that compromised websites seem to have also played a
significant role in malware delivery in 2011.

2) File and content sharing: 23.0% of the domains are file-
sharing websites and software distributors. This suggests
that malware had been uploaded to these sites and long
since removed.

3) Parked: 20.2% of the domains are now under control of
domain parkers and serving as advertisement space.

4) Not accessible: 20.1% of the domains were not accessible
when we tried them, e.g. they returned 40X error codes
or blank pages.

E. Some users are more prone to careless surfing behavior.

We tried to estimate the probability of a user visiting a
malicious URL given their history by executing the following
steps.

1) Select one month from January to July of 2011.
2) Calculate how many URLs each client encountered dur-

ing that month.
3) Let C

i

x

be the set of clients who visit x URLs during
month i, and let V i+1 be the set of the visitors to mali-
cious URLs during the following month. We compute the
percentage of users in C

i

x

who will be repeat offenders:
P

i!i+1
x

= |Ci

x

\ V

i+1|/|Ci

x

|.
4) Repeat the steps above for every other month.
5) Compute the average P

i!i+1
x

8x across all months.

Fig. 11. Probability of a user visiting a malicious URL given the number of
malicious URLs visited during previous month

In Figure 11, we plot the average probability of a user
visiting a malicious URL within a month given the number
of such visits (x) the month before. The average probability is
computed across all users with the same number of visits to
malicious sites for all pairs of consecutive months. We observe
significant increase in the average probability as the number
of URLs visited grows, indicating that there are indeed users
who are prone to careless surfing behaviors even though they
have anti-virus products installed on their computers.

We noted above in section IV-B4 that there are cases
where a single machine ID visited thousands of sites. We do
not believe that these outliers contribute meaningfully to the
phenomenon we described in Figure 11, as there are very few
outlier machine IDs and there are more than half a million
machine IDs that are observed for this part of the study.

V. RELATED WORK

The aim of our work is different from that of the majority
of URL classification methods [13] [14], which focus on
distinguishing malicious URLs from non-malicious ones while
we focus on identifying whether a site identified as malicious
are born-malicious or in fact compromised by hackers.

The most related work to profiling the behaviors of binary
distribution by Papelaxakis et al. [15] focuses on benign
binaries and presents a model called SHARKFIN that describes
the propagation pattern of popular software. A recent work
by Kuhrer et. al. [16] evaluates the completeness of black
lists and presents a method to identify parked domains and
sink holes. In recent work, Li et. al. [17] describe a method
to identify a website that is compromised by re-direct script
injection. Although this is relevant to our work, the proposed
method targets a very specific type of compromised websites,
while we need a general method to distinguish compromised
websites at large from born-malicious ones.

Overall, there are four areas that touch on various aspects
of web-based malware study.

A. Investigating the landscape of web-based malware distri-
bution.

This first area then is split into two smaller ones: (a)
how to actively seek out new malicious sites [18][19][20]
and (b) the detection of malicious URLs [21][22], drive-by-
downloads website [14][23], or malware-infected machines
[13]. In [14], the authors statically analyze the content of
websites to accomplish the goal of detection of drive-by-
download sites and in [23], the authors attempt to detect when
a user is redirected multiple times and eventually delivered
to a website managed by malware distribution networks by
analyzing the URLs in the redirect chains themselves.

In [13], Invernizzi et. al. invest their effort into the detection
of machines in large-scale networks that meet the following
criteria: (i) the machines have already been infected by drive-
by-download attacks and (ii) the small piece of code dropped
into each machines is sending HTTP requests to remote hosts
to down- load the full payload for the installation of the
malware. This work is unlike ours in that the goal of the
work is to identify the infected hosts and, consequently, can be
used for identify malicious websites that provide the malware
payload. The author, however, never put a focus on identifying
compromised websites.

B. Detecting vulnerable sites.

This area focuses more on the identification of websites
that may be at risk of infiltration [24][25]. In this work [25],
the authors created a classifier that identifies websites that may

241ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

become compromised in the future by automatically extracting
content-based features from a large corpus of labeled websites
as well as using out-of-band information such as Alexa ranking
the Amazon Web Information Service. In [24], Canali et.
al. hosted vulnerable websites on many hosting providers
and tried to compromise the sites themselves. They showed,
alarmingly, afterwards that the providers are unable to detect
simple signs of malicious activities.

C. Studying the malware ecosystem.

This area studies the ecosystem that supports the malware
distribution, providing insights on the attacks carried by ma-
licious websites on the users [26] or on the infrastructure that
supports malware authors [14][27], enabling them to spread
their malicious software for monetary gains.

D. Malware binary analysis and classification.

This area focuses on the analysis of the web-based malware
binaries [28][29][30]. In [28], the authors extracted features
from the HTTP traffic traces generated by the malware in-
stalled on safe environments and used those features (which
included total number of requests, average number of param-
eters, etc.) to cluster the malware samples. From the clusters,
signatures can be generated to detect when a computer may
be infected. Rossow et. al. monitored more than 100,000
malware samples at runtime in their Sandnet environment [29]
and observed their network behaviors, thereby showing that
DNS and HTTP are the two protocols most common among
those used by the malware. In [30], Rossow et. al. extended
their work to 23 different malware downloaders, most of
which were yet documented. The authors characterized them
according to their communication models, investigated their
resilience, and analyzed how they they used DNS and fast-
flux techniques to carry out their operations.

The work in this fourth area, while dealing directly with
network-based malware, is of little help to us as they are
malware-centric, as never got access to the binaries.

VI. CONCLUSION

In this paper, we focus on modeling the user exposure
to web-based malware by analyzing more than 500K users
accessing roughly 600K URLs from a data set collected from
Symantec’s WINE Project. We find that:

a) Compromised websites play a significant role in malware
dissemination, as 33.1% of them in DODB dataset are
compromised websites. In section III, we showed the
different ways in which a compromised websites are
fundamentally different from a born-malicious one.

b) A malicious URL often distributes many different mal-
ware binaries but each malicious binary is typically
distributed by one URL.

c) Most malicious URLs (71.6%) are short-lived, but 10%
of them are active for more than three months in DWINE.

d) The number of visitors of many malicious website exhibit
a bursty campaign-like temporal pattern, which we refer
to as the “Space-needle" pattern.

e) The distribution of the visits to malicious sites per user is
skewed and can be described by a power law of exponent
� 1

2 .
Our study is a first step towards modeling web-based

malware exposure and could help us understand malware
distribution as a network-wide phenomenon.

REFERENCES

[1] E. Mills, “Google finds 9,500 new malicious Web sites a day,”
www.cnet.com/news/google-finds-9500-new-malicious-web-sites-a-
day/, June 2012.

[2] “WoT Reputation API,” https://www.mywot.com/wiki/API.
[3] “Cybercrime Tracker,” http://cybercrime-tracker.net/.
[4] “Malc0de Database,” http://malc0de.com/database/.
[5] “MDL,” http://www.malwaredomainlist.com/.
[6] “Vx vault,” http://vxvault.siri-urz.net/ViriList.php.
[7] T. Dumitras and D. Shou, “Toward a standard benchmark for computer

security research: The worldwide intelligence network environment
(wine),” in BADGERS 2011. ACM.

[8] L. Bilge and T. Dumitras, “Before we knew it: an empirical study of
zero-day attacks in the real world,” in CCS 2012. ACM, pp. 833–844.

[9] K. Nayak, D. Marino, P. Efstathopoulos, and T. Dumitras, “Some
Vulnerabilities Are Different Than Others: Studying Vulnerabilities and
Attack Surfaces in the Wild ,” RAID 2014.

[10] “Symantec’s 2014 Security Threat Report,” http://www.symantec.com/
security_response/publications/threatreport.jsp.

[11] “Selenium, Web Browser Automation,” http://www.seleniumhq.org/.
[12] I. H. Witten, E. Frank, L. E. Trigg, M. A. Hall, G. Holmes, and S. J. Cunningham,

“WEKA: Practical machine learning tools and techniques with Java implementa-
tions,” 1999.

[13] L. Invernizzi, S.-J. Lee, S. Miskovic, M. Mellia, R. Torres, C. Kruegel, S. Saha,
and G. Vigna, “Nazca: Detecting malware distribution in large-scale networks,” in
NDSS 2014.

[14] D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler: a fast filter for the
large-scale detection of malicious web pages,” in WWW 2014. ACM.

[15] E. E. Papalexakis, T. Dumitras, D. H. P. Chau, B. A. Prakash, and C. Faloutsos,
“Spatio-temporal mining of software adoption & penetration,” in ASONAM 2013.
ACM.

[16] M. Kührer, C. Rossow, and T. Holz, “Paint it black: Evaluating the effectiveness
of malware blacklists,” in RAID 2014.

[17] Z. Li, S. Alrwais, X. Wang, and E. Alowaisheq, “Hunting the red fox online:
Understanding and detection of mass redirect-script injections,” in S&P 2014.

[18] Z. Li, S. Alrwais, Y. Xie, F. Yu, and X. Wang, “Finding the linchpins of the dark
web: a study on topologically dedicated hosts on malicious web infrastructures,”
in S&P 2013. IEEE.

[19] C. Seifert, I. Welch, P. Komisarczuk, C. U. Aval, and B. Endicott-Popovsky,
“Identification of malicious web pages through analysis of underlying dns and
web server relationships.” in LCN 2008.

[20] J. W. Stokes, R. Andersen, C. Seifert, and K. Chellapilla, “Webcop: Locating
neighborhoods of malware on the web,” in LEET 2010.

[21] A. Le, A. Markopoulou, and M. Faloutsos, “Phishdef: Url names say it all,” in
INFOCOM 2011. IEEE.

[22] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker, “Beyond blacklists: learning to
detect malicious web sites from suspicious urls,” in SIGKDD 2009.

[23] J. Zhang, C. Seifert, J. W. Stokes, and W. Lee, “Arrow: Generating signatures to
detect drive-by downloads,” in WWW 2011.

[24] D. Canali, D. Balzarotti, and A. Francillon, “The role of web hosting providers in
detecting compromised websites,” in WWW 2013.

[25] K. Soska and N. Christin, “Automatically detecting vulnerable websites before
they turn malicious,” in Usenix Security 2014.

[26] N. P. P. Mavrommatis and M. A. R. F. Monrose, “All your iframes point to us,”
in Usenix Security 2008.

[27] C. Grier, L. Ballard, J. Caballero, N. Chachra, C. J. Dietrich, K. Levchenko,
P. Mavrommatis, D. McCoy, A. Nappa, A. Pitsillidis et al., “Manufacturing
compromise: the emergence of exploit-as-a-service,” in CCS 2012. ACM.

[28] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of http-based malware
and signature generation using malicious network traces.” in NSDI 2010.

[29] C. Rossow, C. J. Dietrich, H. Bos, L. Cavallaro, M. Van Steen, F. C. Freiling,
and N. Pohlmann, “Sandnet: Network traffic analysis of malicious software,”
in Proceedings of the Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS). ACM, 2011, pp. 78–88.

[30] C. Rossow, C. Dietrich, and H. Bos, “Large-scale analysis of malware download-
ers,” DIMVA 2013.

242ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Securing the Private Realm Gateway
Hammad Kabir, Jesús Llorente Santos, Raimo Kantola

Department of Communications and Networking
Aalto University
Helsinki, Finland

{hammad.kabir, jesus.llorente.santos, raimo.kantola}@aalto.fi

Abstract—The traditional mechanisms to traverse Network
Address Translators (NAT) do not scale well to battery powered
mobile-hosts: the majority of Internet users today. Private Realm
Gateway (PRGW) aims to replace NATs at network edges and
overcome the drawbacks of the NAT traversal mechanisms. The
solution does not require changes in end-hosts or protocols, and
hosts in the private realm can remain globally reachable without
polling. PRGW handles incoming connections based on domain
resolution of the served hosts. Incoming DNS queries create
connection state in PRGW for subsequent packet forwarding. The
connection state provides means for access control on the Internet-
originated flows. This paper analyses the security of PRGW and
introduces mechanisms that protect the served hosts and networks
against Internet-borne attacks, in particular: address spoofing and
Distributed Denial of Service (DDoS). The paper contributes to
establish PRGW as an incrementally deployable network function
that offers light-weight NAT traversal and protects the private
realm against the inherent Internet threats.

Keywords— Security; Gateway; NAT Traversal; PRGW; DNS;
NAT; Denial of Service; DDoS; Internet threats; Network;

I. INTRODUCTION
 According to ITU-T, mobile broadband subscriptions have

reached 3.2 billion individuals connected to the Internet [1].
This growing number of mobile users raises challenges for the
Internet and further aggravates the IPv4 address space depletion
problem. The adoption of NAT at network edges alleviated the
IPv4 address space exhaustion at the cost of introducing the
reachability problem, which prevents the Internet hosts from
unilaterally initiating a connection to hosts in the private realm.
The mobile hosts typically reside in the private address space;
however the IETF recommended methods for NAT traversal [2]
scale poorly to battery-powered hosts [3] and communication
applications: 1) device has to periodically wake-up to keep its
NAT binding alive; and 2) session setup requires exchanging
hundreds of overhead messages per application that seeks
global reachability, leading to extra power consumption on the
device and delays in the session setup.

In [4], we address these drawbacks of the classical NAT
traversal mechanisms and propose the Private Realm Gateway
(PRGW) solution. The solution does not require any changes in
end-hosts, i.e. clients and servers in the private network can stay
globally reachable without applications having to run the code
for NAT traversal or to maintain their NAT binding. PRGW can
be deployed either as a standalone replacement of NATs or as
a component of a customer edge switching [5-6] node, at the
network edge.

However, as PRGW makes end hosts reachable in the private
realm, it will open new opportunities for the hackers to target the

private hosts and their network. The increasing reliance of users
on their smart phones and mobile apps have presented mobile
networks and their hosts as lucrative targets to Internet hackers.
As a result, they are subject to a wide variety of threats possible
in the Internet.

The paradigm of Internet security can be viewed as an arms
race between attackers and defenders. The possibility of source
address spoofing, distributed denial of service (DDoS), traffic
floods and network/port scans is inherent in the Internet. Today,
hackers often abuse free services, e.g. Google DNS, and employ
compromised hosts as reflectors/amplifiers in launching their
attacks. The outcome of these attacks may lead to excessive
network usage, computing downtime, service unavailability, and
ultimately waste of human capital [7]. Societies heavily rely on
the Internet, and use it for mission-critical activities. Therefore,
the networks shall deploy mechanisms that protect their hosts
and resources against Internet-borne attacks, in particular source
address spoofing, network scans and DoS, which are often used
as launch point for more advanced attacks. Consequently, our
threat model in the paper spans to the above attack types.

In this paper, we seek to provide mechanisms that protect
PRGW and make it a feasible function in modern IP-networks.
As a result, PRGW emerges as a network function that besides
overcoming the drawbacks of the NAT traversal solutions [4] is
hardened against the inherent Internet threats, i.e. traffic floods,
source address spoofing and DoS. The mechanisms adhere to
the basic principles of PRGW design and limit all the changes
to network edges. This keeps the deployment of PRGW simple,
as the upgrade only takes place at the edge nodes, and can be
performed one network at a time. We argue that it may possible
to take a clean-slate approach, and design a better architecture
free of any security weaknesses, at the cost of a huge
deployment difficulty. Contrary to this, we take the deployment
constraints as the corner stone of our work.

The rest of the paper is structured as follows. Section II
discusses the related work. Section III presents vulnerabilities of
PRGW in handling the inherent Internet threats. Section IV
establishes the basis of our security solutions. Section V and VI
describe the security mechanisms and heuristics. Section VII
evaluates the security. Section VIII presents the discussion, and
Section IX concludes the paper.

II. RELATED WORK
The introduction of NAT at network edges extended the IPv4

address space lifetime. NAT effectively hides the private realm,
such that hosts in the private network share a set of public IP
address(es) towards the Internet. By default, NAT devices allow
outbound connections towards the Internet and create a state to
admit subsequent inbound packets of the flow. The connection
state enables address translation on packets traversing across the ISBN 978-3-901882-83-8 © 2016 IFIP

243ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

public and private realm, and at minimum contains a 5-tuple: IP
and port pair towards public Internet; IP and port pair in the
private network; and the transport protocol. Inbound packets that
do not have a state in NAT are dropped [8]. As a consequence,
connection attempts from the Internet hosts towards the private
realm fail, raising the reachability challenge. The current NATs
thus employ static port forwarding, or complex NAT traversal
mechanisms to admit new connections in the network.

The traditional NAT traversal mechanisms do not scale well
to mobile devices [3, 4]. While, static forwarding in NATs can
be vulnerable to ills of the Internet, in particular: spoofed flows,
network/port scans, and traffic floods from botnets.

Many proposals have attempted to tackle address spoofing
and DoS floods. Ingress filtering [9] is a typical solution to the
problem of source address spoofing. However, the solution has
not been globally adopted, possibly because costs and benefits
of ISPs are not well aligned: the receiver or its ISP benefit from
spoofing elimination while the other entities bear the expense of
configuring and executing the ingress filtering.

IETF proposed the use of SYN Cookies [10] during TCP
handshake, to protect the victim host against resource exhaustion
from spoofed SYNs. SYN cookie delays the allocation of TCP
resources in the host until the sender is verified as non-spoofed.

Besides eliminating spoofing, IP puzzles [11] dis-incentivise
spurious connection attempts from hosts. The mechanism slows
an aggressive host, by requiring the sender to process a received
challenge with certain computational effort before it can
establish a connection. Similarly, Hop-Count Filtering [12] aims
to protect against SYN floods, by comparing the statistics of the
received traffic with traffic observed during normal periods.
However, these techniques are not in wide use.
 Today, an advanced attacker often tricks a large number of
hosts to unknowingly participate in launching a DDoS. The
compromised hosts are mostly bot controlled by the hacker, in a
master-slave configuration. Networks typically detect attacks
using a set of security approaches, categorized into: Signature
detection, Anomaly detection, or a hybrid of both approaches.
Upon detecting a DDoS, DoS mitigation proposals typically
react by rate limiting the accepted traffic [13]. While it affects
the legitimate traffic as well, trace-back techniques are used to
locate the malicious entities. An identified attacker is blacklisted
and eventually filtered in the admitted traffic.
 The research in [14] leverages this understanding of network
security to propose a cooperative Feecod architecture. Under this
architecture, when a host detects DoS, i.e. from overloading of
its resources, the edge router of its ISP rate limits the admitted
traffic, so that the total workload for the victim is below its upper
bound. A log of each forwarded packet is then sought from the
outbound edge to ascertain if no attack originated from its
network, upon which the rate-limit is removed. The architecture
however requires many changes in end-hosts, as well as in the
sender and destination networks, detrimental to its adoption.
 The research in [15] tackles DoS through an overlay network
that registers the inbound requests before forwarding them to the
destination. The proposed indirection infrastructure aims to
tackle DoS using P2P networks. The paper in [16] presents
various server specific DoS mitigation techniques that require
changes in end hosts.

 Mobile networks rate availability as the top concern due to
high volume of DoS and network/port scans, and typically rate-
limit or reset the connections from aggressive hosts [13, 17].
 PRGW presents an architecture to overcome the drawbacks
of classical NAT traversal solutions. It follows the behaviour of
NATs for outgoing connections, such that private hosts connect
to Internet sharing a set of public IP addresses. But unlike NATs,
it allows Internet hosts to unilaterally initiate connection towards
the private hosts using a circular pool of public IP addresses
(CPPA). Upon receiving a DNS query for fully qualified domain
name (FQDN) of the private host, it temporarily allocates a
public IP address from the pool to represent the host in the
Internet and creates a temporary half connection state that allows
forwarding of the subsequent inbound flow to the private host.
The client typically initiates the data flow, upon resolving the
domain. Upon receiving the first inbound packet from the client,
PRGW creates a full connection state for the flow and returns
the allocated public address to CPPA for future allocations. In
this manner, by dynamically assigning an address from CPPA,
PRGW protects the private network from direct exposure to the
Internet, compared to port forwarding possible in NATs. The
half connection state in PRGW applies endpoint independent
filtering [18] relative to the client, while in the full connection
state the filtering is upgraded to address and port dependent
relative to the client. Since PRGW does not require any changes
in end-hosts or remote edge, it avoids the deployment challenge.

III. SECURITY VULNERABILITIES
This section analyses the impact of Internet’s weaknesses in

handling address spoofing and network floods on PRGW. We
argue that PRGW does not introduce any explicit security
weakness in comparison to the current Internet model, or how
NAT allows inbound connections. Like NATs, it also filters to
drop the packets that do not have an ongoing connection or a
valid state. In addition, 1) the CPPA prevents the private hosts
from direct exposure to the Internet, compared to static NATs;
and 2) hosts in the private realm are only accessible through
their FQDNs, which provides defence-in-depth, in combination
with a set of mechanisms that we will introduce in this paper.

Fig. 1 identifies a set of hazardous scenarios where PRGW
and the hosts located behind it could be vulnerable to Internet
abuses, i.e. in the absence of security mechanisms.

Here we adopt the filtering classification developed in RFC 4787 related
to the servers, and use the terms in relation to the clients.

Fig. 1. RGW vulnerabilities to inherent Internet threats

244ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

1) Denial of Service: Fig. 1.a illustrates DoS attack from an
aggressive Internet host that forces PRGW into blocking state,
by issuing flood of DNS requests for the served hosts. In this
state, the CPPA is depleted due to allocation of all its addresses,
leaving PRGW unable to accept new incoming connections.
The exhaustion of circular pool could also happen due to poor
provisioning of the public IP address pool.

2) Connection hijacking: The attacker in Fig. 1.b floods an
address R1 of PRGW. PRGW would drop any packet unrelated
to an ongoing connection or valid inbound state. However, on
the event that a public host initiates a connection and address
R1 is allocated, there is a window of opportunity when the
attacker can claim the connection state. This will result in DoS
to the host that originally requested access to the service.
Unfortunately, IP address filtering is not a fail proof solution
due to the possibility of source address spoofing in the Internet.

IV. PRINCIPLES OF SECURITY MECHANISMS
Attackers often exploit the best effort nature of the current

Internet to launch attacks. Disguising under a spoofed identity,
the attackers can successfully inject the traffic in the destination
network and yet escape the network auditing. Therefore, the key
to improve Internet security comes from deploying mechanisms
that eliminate spoofing, authenticate the sender, detect malicious
hosts, thwart hijacking attempts and thereby grant access only to
the legitimate hosts. We define that PRGW must comply with
the following principles to tackle the inherent Internet threats:

1) Flow acceptance must be limited to verifiable sources to
tackle address spoofing and prevent resource exhaustion.

2) UDP flow initiations are admitted only after a connection
has been signalled through a secure channel e.g. SIP(S) [19].

3) To favor deployment, security algorithms and operations
shall not require changes to end-hosts, protocols, or application.

4) Under the network stress, resource access should be
granted based on the source reputation.

V. PREVENTING DNS ABUSE/EXPLOITATION
PRGW allows unilateral connection initiation to the private

realm using CPPA. Since CPPA relies on the inbound domain
resolutions, the architecture of PRGW carries a DNS leaf node
that is authoritative for the domains located in its private realm.

The state of the art with DNS is such that it uses UDP as
transport protocol for majority of its operations. As connection-
less protocol, UDP is open to possibility of address spoofing.
Attackers often exploit this vulnerability to launch DNS floods,
and yet avoid the network audits. Alternatively DNS floods may
originate from non-spoofed hosts, under bot control. In addition
hackers often use freely-accessible open DNS resolvers, such
as Google DNS, as DNS reflectors in launching their attacks.

PRGW is susceptible to this abuse of DNS that can lead to
exhaustion of the CPPA resources. To trace aggressive host, the
current practice in public name servers is not to serve recursive
domain requests. As a result, source address of the actual DNS
resolver is revealed to the destination. However, the possibility
of address spoofing hinders the ability of the destination, i.e. in
our case PRGW, to protect itself from DNS floods initiated by
the invisible attacker.

The resource [20] describes best practices and existing state
of the art in the DNS security. Among others, it recommends

DNS resolvers/servers to rate limit the domain requests from a
source, handle malformed packets, filter requests to not-hosted
domains, apply ingress filtering, detect dictionary DNS attacks
from hackers i.e. scanning their targets, use of DNSSEC, access
control lists (ACL) to filter DNS requests from un-allocated or
reserved address spaces, and to drop domain requests originated
outside of its network to avoid becoming a DNS reflector.

While these recommendations aim to improve the Internet’s
resilience against DNS abuses, the ultimate outcome depends
on their global adoption by all the network administrators and
operators. Realizing this, we attempt PRGW security against
the DNS abuses and exploitations by defining set of heuristics
and mechanisms, limiting all the changes to the network edges.

A. DNS Relay
We implemented DNS-Relay as a frontend to protect PRGW

from direct exposure to the Internet. This is to prevent the CPPA
exhaustion from malicious domain resolutions, e.g. inbound
DNS floods and spoofed requests. Under this model, PRGW is
protected by virtue of delegating the DNS security to its ISP.

The DNS relay implementation draws upon the use of DNS
reverse proxies in ISP networks and security solutions that aim
to secure networks against DNS abuses. In our implementation,
we leverage this approach such that the DNS relay forwards an
incoming domain request to PRGW and identifies the original
sender in the DNS extensions or additional records. The sender
tuple identifies: source IP and source port, besides the transport
protocol and transaction-ID of the inbound query message. This
allows PRGW to identify the original sender, and thus apply its
security mechanisms, such as the address allocation model and
name server classification. These mechanisms are defined in the
subsequent sections. The corresponding DNS response message
from PRGW is forwarded by DNS Relay to the actual source,
after removing the sender-identification tuple.

The mechanism only requires a few alterations in the edge
network, i.e. the ISP name server forwards the inbound domain
queries with DNS source information to PRGW. We argue that
the changes in the edge network can be motivated by benefits
possible from adoption of PRGW, e.g. deployment of servers in
private address space, and less-complex session setups. But we
consider these aspects beyond the scope of this paper.

The delegation of security to a dedicated DNS-Relay element
offers multiple opportunities: 1) it lessens the load of executing
the complex DNS security algorithms from PRGW; and 2) the
dedicated relay element can independently leverage the existing
state-of-the-art and future research in DNS threat detection, to
serve the PRGW with legitimate traffic only. As a result,
PRGW stays protected against DNS attacks and can allocate the
CPPA resources to legitimate hosts.

B. Name Server Classification
When the aforementioned DNS Relay is in attack detection

phase, and has not mitigated the DNS attack yet, it is possible
that some share of DNS flood is received at PRGW. To prevent
the consequent resource depletion, PRGW leverages from the
classification of external name servers and allocates the CPPA
resources following an Address Allocation Model.

245ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Under this model, PRGW classifies the external DNS servers
into: whitelist, greylist and blacklist. Servers on each list are
treated differently in PRGW and are promoted/demoted in the
classification dynamically, based on the influx of attack traffic.

Whitelisting can be based on business contracts and service
level agreements (SLAs) between service providers, where the
networks that seek priority access meet a set of pre-conditions.
A whitelist server can meet the specific SLA, by employing the
best DNS practices, e.g. active ingress filtering of DNS requests
originated in its network, and disabling recursive resolution for
external sources. The DNS resolver can also transport domain
queries towards PRGW over TCP connection. This eliminates
the possibility of spoofing in DNS requests, and on the event
that an attack is reported it enables tracing an aggressive host
back to its network. The terms of whitelisting can be agreed in
peering agreements between mobile operators, administrators
of the ISPs, or trusted networks, and may stress the networks to
employ mechanisms such as DNS/TCP, DNSSEC and ingress
filtering to receive whitelist/preferred access.

The whitelist servers are specifically configured in PRGW.
By default, the rest of the name servers are greylist. This also
includes open DNS resolvers and name servers that are freely
accessible to Internet hosts, and often serve as DNS reflectors
in launching DoS. A greylist name server is therefore offered
less resources in PRGW than a corresponding whitelist server.

PRGW actively maintains these lists based on the influx of
attack traffic. A name server is demoted to a lower category if
states reserved by it repeatedly expire in PRGW. A state expires
in the PRGW if it is not claimed by an inbound flow in time T0.
When the state expiration rate for a name server meets threshold
RT, the server undergoes a time penalty TD in demoted category.
A name server that repeatedly exceeds its SLA is blacklisted for
time TB, during which it is barred from accessing the circular
pool resources.

C. Circular Pool Address Allocation Model
The CPPA address allocation model responds to an incoming

DNS query based on the circular pool load conditions. The
model rate limits the number of simultaneous states reserved to
a DNS server or for a private host, and manages total allocations
of CPPA such that DNS requests from multiple greylist servers
only take a portion of the circular pool. For this, the address
allocation model operates in conjunction with the name server
classification. The model primarily attempts to tackle the DNS
floods from less secure greylist servers. By prioritizing whitelist
servers in address allocation over greylists, the model ensures
that whitelist servers always have preferred access to PRGW,
particularly under the attack/load conditions.

VI. FILTERING MALICIOUS INTERENT FLOWS
Internet hackers distribute malicious packets, initiate traffic

floods and perform network/port scans to launch their attacks.
A hacker can either employ a spoofed identity or hire bots from
bot-rental business to launch these attacks. In this section, we
introduce a set of mechanisms that attempt to ensure that only
a legitimate host gains access to the private realm.

A. TCP-Splice Mechanism
The mechanism ensures that PRGW is secured against hijack

attempts from spoofed sources. Fig. 2 presents the mechanism,
where an inbound SYN that corresponds to a temporary state is
challenged by PRGW with a cookie. Since the TCP handshake
only completes on arrival of an ACK bearing the sent cookie, it
ensures that the sender is non-spoofed. Next, the PRGW assigns
the state to the sender followed by the connection setup with the
private host.

Since TCP connection does not complete with spoofed host,
PRGW is protected against spoofed sources. PRGW employs a
slightly tailored SYN cookie algorithm [10] for computing the
initial sequence number (ISN), which is used as a cookie to
eliminate address spoofing in the inbound packets.
 ISN = time mod-32[5-bits]+MSS encoding[3-bits]+hash{source-IP,
destination-IP, source-port, destination-port, SECRET} [24-bits] (1)

The use of the SYN cookie requires that TCP flow is relayed
across PRGW. The relay itself must adjust the SEQuence and
the ACKnowedgement number on both sides of the PRGW, to
maintain the end-to-end semantics of the TCP connection. This
is necessary due to the selection of random initial sequence
numbers by the private host and PRGW. The translation of SEQ
and ACK numbers effectively splices the connection on both
sides of the PRGW. By keeping the SEQ number of the SYN to
the private host the same as that of the inbound SYN, PRGW
saves translation cost on one TCP sequencing.

B. Bot-detection Scheme
Attacks to PRGW could also originate from non-spoofed, i.e.

bot hosts. In this section, we present a bot-detection method that
attempts to protect PRGW against SYN floods from botnets,
and thus complements the limitations of TCP-Splice.

In contrast to the networking elements that simply filter the
packets mismatching to a flow or a connection state, PRGW can
carry bot-detection on the dropped packets. Fig. 3 illustrates the
mechanism where PRGW seeks to ascertain if the sender of the
repeatedly mismatching SYNs is a non-spoofed entity. When
the mismatching packets exceed a threshold in time TO, PRGW
handles the next inbound SYN failing to claim a state as per the
SYN cookie algorithm. The subsequent arrival of an ACK
bearing the sent cookie establishes the sender as non-spoofed.
The history of dropped packets together with the non-spoofing
check hints at a high likelihood of the sender as a bot-controlled
host. Following which, the PRGW refuses any state to this host.

1) Implementation Considerations

Fig. 2 TCP-Splicing in PRGW

246ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

An attacker meets the detection threshold, when mismatched
packets reach a threshold in time TO. Attackers typically initiate
SYN floods at higher rates than a normal host, which only re-
attempts if the previous packet is not responded within a
retransmission timeout (RTO). RTO is typically an operating
system defined parameter, and we choose a value below it as
measurement interval TO, since it significantly differentiates the
legitimate behaviour from an attack. For TCP, UNIX domain
sockets and Windows define RTO as 3 seconds [21]. Hackers
can also initiate slow-rate SYN floods from various addresses,
and thus bypass the bot-detection threshold. This will reveal the
lower bound of PRGW security, where PRGW is secure against
spoofed flows only. Bot-detection is executed only after an
attacker meets the detection threshold, because a continuous
monitoring for bot-detection would be too costly.

To realize the impact of our design choices, we classify the
source of a mismatching packet into: 1) spoofed host; 2) non-
spoofed attacker; or 3) a legitimate host. A packet may arrive
from a host whose corresponding state was previously hijacked.
However, a legitimate host does not re-attempt (or would not
re-attempt x times) within RTO, and thus it would not meet the
detection threshold. Similarly, a spoofed address cannot reply
to SYN/ACK with the sent cookie, and hence is not blacklisted
as attacker. Thus, only a bot-operated host is susceptible to this
mechanism after it replies with an ACK bearing the sent cookie.

2) Caveats and Considerations
We realize that Bot-detection is not a fail proof solution and

is vulnerable to abuse. Thus, we suggest to dynamically adjust
the detection threshold and measurement interval TO, to prevent
the exploitation of the protection mechanism. Despite all the
countermeasures, the possibility of a false alarm exists, and thus
a bot-suspected host is blacklisted for temporal time TD.

Since both the TCP-splice and Bot-detection could co-exist
in the PRGW, there is a need to differentiate an inbound ACK
under Bot-detection from an ACK that is part of TCP handshake
with a public host. For this, SYN cookies of TCP-Splice and
Bot-detection must differ, e.g. in SECRET value of equation 1.

C. Security by Deployment
A carrier-grade realm gateway (CGRG) can improve security

of the private realm from a variety of resources at its disposal.
For instance, the traffic from white and greylist sources can be
accepted over separate sets of interfaces. This is often possible
e.g. in mobile networks, where the traffic from other operators
or corporate networks is processed on separate interfaces than
those for public Internet [13]. This ensures dedicated access for

whitelist networks and enables pursuing rather aggressive
security on the greylist interfaces.

D. Enhancing the Circular Pool Algorithm
In [22], we present a new algorithm for allocating the public

IP addresses of the circular pool, enabling fine-grained access
control to flows arriving from the Internet. The new algorithm
significantly improves the scalability and security of PRGW.

The underlying idea is to address the services and endpoints
simultaneously. To that end, we leveraged the concept of the
SRV DNS records and created Service FQDN (SFQDN) to
address services on end-hosts. Currently, the use of SRV is only
limited to a few applications, whereas the DNS A records are
widely in use. SFQDN bridges this gap between DNS A records
and the SRV records, and defines simple domain names linked
to a specific service. For example, an SSH service at Host A –
a.foo can be represented as ssh.a.foo or it can arbitrarily
be defined as a combination of port number and transport
protocol as in tcp22.a.foo. For aesthetic/security purposes,
hosts can hide their SFQDN naming in favour of a more user
friendly name, e.g. using CNAME records in DNS as a pointer
to other domain names. The SFQDN and its mapping to a port
can stay inside the PRGW while the CNAME to PRGW
mapping is stored at a DNS server in the ISP network.

Since the SFQDN includes both the endpoint and the service,
using the RFC defined terminology, SFQDN resolution allows
endpoint independent but port dependent filtering in the half
connection state relative to the remote host. The more specific
half state allows reusing a public IP address for several different
services, improving the scalability of CPPA. Theoretically, it
implies that a single IP address can be reused as many times as
the combination of available ports and protocols. Meanwhile,
forcing the blocking state on PRGW becomes more difficult
because the hacker must send significantly larger number of
DNS requests to reserve the address pool for all the ports. In
addition, the hackers must also target the allocated port besides
simply flooding the public IP addresses for state hijacking. The
temporary half connection state (RX:oPH, H:iPH, Pproto, Ttimeout)
is unique and carries the IP address and port of the private host
(H:iPH), IP address and port on the public side of the PRGW
(RX:oPH), the protocol (Pproto) and lifetime (Ttimeout) of the entry.
Upon the arrival of the first packet of the flow, PRGW upgrades
the filtering to address and port dependent.

SFQDN contributes to security due to its more specific
address allocation. This increases the attack surface, such that a
hacker has more opportunities to meet the detection threshold,
as a hacker must scan the entire port range to discover the active
services and compromise respective allocations. The increased
scalability also makes it more difficult to force the blocking
state. Since PRGW solely admits inbound connections based on
the domain queries, it becomes simple to temporarily block a
service under attack and collect the evidence of misbehaviour.

VII. SECURITY EVALUATION
This section evaluates the security of PRGW in tackling the

inherent Internet threats: source address spoofing, network/port
scans and DNS floods. We implemented the above mechanisms
in our PRGW prototype and subjected them to a set of attacks
to determine the bounds of the PRGW security. The prototype
runs in our test network, which is built in Linux environment
using standard Linux networking capabilities: linux containers

Fig. 3 Bot-detection method on SYN floods from a bot-operated host

247ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

and switches. The PRGW node in the testbed attends hosts and
services located in its private realm, whereas legacy hosts in the
testbed either initiate inbound connections or attacks towards
the PRGW. The legacy nodes use virtual network interfaces to
provide an illustration of many hosts participating in the traffic
towards the PRGW.

We utilize Scapy [23] to craft malicious packets and launch
attacks on PRGW. For our testing, this enables the legacy nodes
to: 1) initiate spoofed traffic; and 2) emulate network floods
from non-spoofed hosts, i.e. bots. The attack load is measured
in SYNs per second from the hacker, whereas the network delay
between the nodes is artificially generated. The outcome of the
testing reveals the effectiveness and cost of the PRGW security,
in terms of the ratio of the hijacked connections and processing
delay introduced in the PRGW, respectively.

Fig. 4 demonstrates the PRGW security against DNS abuses.
Having pre-configured the whitelist servers, we submit PRGW
to DNS flood from multiple greylist servers. In the absence of
security, the DNS flood would reserve all the CPPA resources
and thus force PRGW in blocking state. However, the address
allocation model notes that the DNS source is greylist and limits
the resource allocations to a portion of the circular pool.

In this manner, the allocation model prevents the exhaustion
of CPPA under DNS floods and ensures that whitelist servers
have access to PRGW even under load conditions. A similar
resource depletion attack using SFQDN is more challenging,
since the high flood rate and amount of domain queries required
to force blocking state increases likelihood of attack detection.
Moreover, the rate limits on simultaneous domain queries from
a DNS server and to a host, hinders the attacker ability to launch
DNS floods from a few name servers or open resolvers.

We tested the CPPA enhancement algorithm by designing
different inbound traffic patterns that evaluate the improvement
in PRGW security due to SFQDN, especially against network
and port scan attacks. We designed the following tests:

x Test1: 100% of the inbound traffic has the FQDNs of the
destination hosts. On the event that hacker’s packet meets
an allocated address, the half connection state is claimed.

x Test2: 50% of the inbound traffic is generated using FQDN
and the rest employs SFQDN. Hacker must target the right
IP and port pair to claim the SFQDN allocation.

x Test3: 75% of inbound traffic is SFQDN; the rest FQDN.
x Test4: 100% of the inbound traffic is SFQDN.

Fig. 5 shows the result of stressing the prototype with above
traffic patterns at network delay of 200 msec and a constant load

of 4 connections per second. The connection load is distributed
among private hosts and follows an exponential distribution. In
parallel, a network scan attack at 40 SYNs/sec from the legacy
nodes targets the CPPA. The figure reveals that for test1: FQDN
initiations only, nearly all the connections are hijacked. This is
because the hacker constantly scans the CPPA at high rate and
beats the legitimate host in claiming the end point independent
state. However, as the share of SFQDN grows and nears 100%
in total inbound DNS queries, the ratio of hijacked connections
declines and nears zero for an all SFQDN traffic. This is due to
the fact that besides scanning the public IP addresses, a probing
attacker also has to randomly scan for the allocated port out of
216 possible ports to claim the state. The more specific address
allocation for SFQDN enables more opportunities for a hacker
to meet the detection threshold, which leads it to blacklisting in
Bot-detection and subsequent rise in the legitimate connections.

Next, we evaluate the PRGW security against spoofed flows
and network scans. We subjected PRGW to 3 connections (i.e.
DNS requests) per second and in parallel launched 40 spoofed
SYNs per second from the legacy nodes to CPPA, for hijacking
the states. The testing reveals that spoofed SYNs failed to claim
the half states due to better filtering enabled by the SFQDN.
However, the spoofed SYNs could hijack the FQDN allocations
in the absence of security mechanisms, because a hacker would
scan the network at a high rate and can compromise states if its
packet meets an IP address, allocated in the FQDN state.

In contrast, TCP-Splice successfully thwarts hijack attempts
from spoofed sources and prevents leaking of spoofed packets
into the private realm. Fig. 6 summarizes the PRGW’s delay in
assigning the half state to legacy hosts, not considering the link
latency. The figure shows that TCP-Splice obviates spoofing in
the admitted flows, at the cost of delaying the claim to the half

Fig. 6 Delay in assigning TCP half-connection state, before and after security

Fig. 4 Allocation model limiting the DNS flood from greylist servers

Fig. 5. Impact of inbound traffic type on security, versus network scans

248ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

connection state. This is because to its SYN the sender receives
a cookie from PRGW, which must be relayed back in the next
inbound ACK to establish the connection, causing the delay.

In terms of performance, this limits the reusability of the
public IP address and the port combination by the same duration
for the next inbound connection. In a real network, the end-to-
end latency for TCP messages would be added to compute the
total delay in assigning the half-state. It is possible to reduce the
average delay penalty caused by TCP Splice by using it
selectively, i.e. on privileged ports, or under network attacks.

Fig. 7 presents an overview of PRGW security against SYN
floods from bot hosts, which are non-spoofed sources under a
botnet. Without security, an attacker can constantly scan the
CPPA at high rate and on the event that its packet meets a half
connection state, it will claim the allocation. In comparison, the
Bot-detection would constantly track the dropped packets and
once they exceed a threshold, the source is blacklisted following
a non-spoofing test. As a result, states reserved by legacy clients
are protected against the hijacking attempts. The figure shows
that Bot-detection is more reactive to high flood rates and filters
them earlier, as they quickly meet the detection threshold.

Fig 8 expands on the same result and shows the impact of
stressing PRGW with a SYN flood sourced from eight hosts
participating in the attack. In parallel, the public hosts initiate 3
connections/second towards the CPPA of three addresses, the
network delay is 200 msec and the bot-detection threshold for a
source is 12 dropped SYNs in 2 second interval. In practice, this
threshold could be chosen during network planning phase, i.e.
based on peaks in the traffic statistics graph. The figure reveals
that the ratio of hijacked connections decreases as the attack
load increases, since an attack with more active bots is filtered
earlier, contributing to rise in the legitimate connections. Fig. 9
shows the impact of network delay, where the network delay is

time elapsed from creating a half connection state to the arrival
of first packet from the client host.

The outcome of Bot-detection depends on multiple factors.
From attack perspective, these are: number of flooding sources;
choice of network/port scan strategies, i.e. targeting the known
services or random port scans; and flooding rates for attacks or
avoiding the detection threshold. On the other hand, the PRGW
can improve its defense by dynamically adjusting the detection
threshold, allocating more circular pool addresses and allowing
SFQDN only. These strategies can provide more opportunities
to hackers to meet the detection threshold and get blacklisted.

The paper obviously cannot present the PRGW security as a
function of all the parameters. But, the testing generally reveals
that Bot-detection reacts the best when attack volume is shared
by few hosts. This means that to succeed a hacker must sacrifice
rather large number of bots that do not use spoofing, and hence
are likely to be identified by the target network’s PRGW. The
use of Bot-detection together with TCP-Splice guarantees that
only legitimate hosts gain access to the private realm.

Fig. 10 compares the security of FQDN initiated connections
in PRGW, in presence and absence of the security algorithms.
Again,-we subject the PRGW to a load of 3 connections/sec at
a network delay of 200 msec, while 8 non-spoofed sources
flood CPPA with 40 SYNs/sec. Fig. 10.b shows that the ratio of
hijacked connections decreases significantly after the security.
The figure also reveals the impact of increasing CPPA address
space, which contributes to security by increasing the overall
attack surface. This shows that careful network planning and
proper dimensioning of the CPPA resources can have positive
impact on the PRGW security.

To deeply analyse the security of SFQDN states, we divide
the Internet hackers into: 1) probing/scanning hackers; and 2)
advanced hackers. A probing hacker scans the entire CPPA
address space and port range to discover the available services,
IP addresses or NAT mappings. It is quite likely that such an
attacker due to its limited victim’s knowledge, and thus random
network scanning will fail to attack PRGW as shown for Test 4
in Fig. 5. In comparison, an advanced hacker may already know
services/ports in the target network, via knowledge sharing
among hackers or using botnets that perform the service
discovery process. As a result, the hacker can target the SYN
floods to the specific ports. We analysed the security of SFQDN
allocations against such attacks and depict it in Fig. 11. We use
the same test parameters as for Fig. 10. The result in Fig. 11.b
shows a rise in the legitimate connections after security. This is
because Bot-detection filters the hosts that initiate the floods

Fig. 8 Securing states against SYN floods from bot-controlled hosts

Fig. 7 Mitigating DDoS (SYN flood) via Bot-Detection method

Fig. 9. Impact of network delay on PRGW security

249ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

towards PRGW, however it is possible that a flood hijacks some
states before it is entirely mitigated, as shown in the figure.

Clearly PRGW attains best-case security, when the hacker is
unaware and simply scans the network for vulnerable services
or IPs, i.e. a probing attacker, while the PRGW accepts SFQDN
requests only. Under the premise that the attacks are directed to
the served ports, it is perhaps best that SFQDN naming is
changed to new service ports. This will force attacker to restart
its service/port discovery cycle and help PRGW regain its best
case security. Such use of SFQDN is possible in cases where a
single administration owns or manages both the remote hosts
and the PRGW. For example, Internet of Things (IoT) can
emerge as one such use case where the communicating nodes
and gateway will fall under single administration. In absence of
such a scheme, Fig.11 shows the security of SFQDN allocations
against an advanced hacker.

It is pertinent to mention that in our testing no state allocation
was compromised by spoofed flows. However, few allocations
were hijacked by the packets from the bot-hosts. This is because
before a traffic flood is mitigated, some of its packets can beat
a legitimate host in claiming the allocated state, and cause DoS
to the actual client. Thus the security of PRGW can exhibit false
negatives during attack. However, these false negatives reduce
as the attack progresses, since the more active bots will be
filtered upon exceeding the detection threshold.

The ratio of false negatives can further reduce by: 1) network
dimensioning that presents an attacker more opportunities to
meet the detection threshold; and 2) dynamically adjusting the
detection threshold to prevent exploitation of the protection
mechanisms. Though our testing identified few false negatives,
PRGW did not exhibit any false positives, i.e. classifying a
valid client as attacker. We argue that in the PRGW networks,
a false negative is not as severe as a false positive; since a client
that suffers hijacks can always re-attempt to access the desired
service in the private realm.

Table-I summarizes the mechanisms deployed for securing
PRGW against Internet threats and their impact on the PRGW’s
performance. Whereas, Table-II presents the duration that a
received packet is processed in the PRGW security before a
decision is reached. The delay values in Table II are computed
within PRGW at algorithmic level, i.e. they do not include the
time spent in acquisition, packetizing and forwarding of the
packet. These values nicely fit with the delay requirements of
the end-to-end connection. Hence, PRGW and its hosts can be
protected at the cost of minute processing delay.

The current PRGW prototype employs a minimalistic set of
rules, i.e. rate-limiting, to provide the firewall functions. The
deployment of PRGW at the network edges would require
integrating PRGW with a commercial firewall. We argue that
integrating a firewall would further reduce and nearly eliminate
the false negatives during an attack, besides hardening the
security of PRGW against well-known attacks.

VIII. DISCUSSION
The security testing shows promising results. Though, the

implemented mechanisms exhibit false negatives, the proposed
firewall integration will present PRGW as a feasible network
function. For HTTP, which can set up many flows after a single
DNS query, PRGW employs an HTTP reverse proxy to serve
the inbound requests. Besides lessening the load on the circular
pool, it offers advantages in terms of offloading SSL encryption
and load balancing to the proxy [4]. Compared to proxy-server
operations in SOCKS [24], TCP-Splice offers an efficient
redirection mechanism for admitting the flows, and moves the
processing load from caching at application-layer to mere
sequence number translation at the transport layer.

TABLE I. SECURITY MECHANISMS AND THEIR PERFORMANCE

Security threats Mechanisms Cost of Security

Source address spoofing TCP-Splice Extends duration of
assigning the state

Bot-controlled flows Bot-detection Possible False
Negatives

Malformed ACK segments cookie verification -

DNS-floods
Rate limit simultaneous
DNS allocations to hosts

and greylist server(s)

Less trusted servers
face congestion, under

load

Spoofed DNS requests DNS/TCP, DNS Relay
and Ingress filtering

SLA negotiations, and
sender’s effort

TABLE II. PROCESSING OF INBOUND PACKET/FLOW IN THE PRGW SECURITY
 Processing delay Outcome

Inbound TCP SYN segment < 0.1 msec Respond with cookie
TCP-Splice (on non-spoofed) ~1 msec Eliminates spoofing

Packet not matching any state ~0.01 msec Processing in bot-
detection method

Malformed ACK segments < 0.1 msec Accept/Drop

DNS/TCP request Connection-setup
delay for 1st query

Spoofing elimination
in the DNS queries

(Greylisted) DNS/UDP request ~ 1 msec Accept if the load
< threshold

Fig. 10. Security of FQDN allocations, (a) without and (b) with security

Fig. 11. Security of SFQDN allocations against advanced hackers, (a)

without and (b) with PRGW security

250ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

In [4], we introduced PRGW to address the challenges in the
Internet and offer a reachability solution that overcomes the
drawbacks of the classical NAT traversals. The contribution of
this paper is in presenting PRGW as a feasible function in the
edge nodes that is well protected against the Internet attacks.

For end host security we can compare PRGW to the case that
the application is using the cumbersome but functional IETF
NAT traversal mechanisms [2]. To prevent attacks to the hosts
that use SFQDNs and to identify the host application, we see
the need to integrate an application policy database in PRGW
that will link SFQDNs to application parameters, such as proxy
name or addresses that can communicate with this SFQDN, and
timeouts that will be used to monitor the application traffic, etc.
PRGW can consult this database for making address allocation
decisions. The idea would be to allow flows only from known
entities or allocate most CPPA resources to known entities. The
time parameter in the database can also rate limit an application
that assumes connection initiation from unknown entities. We
believe this would work for example for Peer-to-Peer SIP.

By tying the use of communication service proxies to PRGW
via an application policy database, and by monitoring and rate
limiting the application traffic, we reach the same level of host
protection as in the case of application-specific NAT traversal.

IX. CONCLUSION
PRGW offers better than NAT service to hosts in the private

address space. Unlike NAT, it presents a scalable way to initiate
flows from other networks to hosts in the private address space.
At the same time, no application-layer NAT traversal code is
needed. Private hosts can stay reachable without need for keep-
alive signalling to maintain their state, thus reducing the battery
consumption. It offers shorter session setup delays, and eases
configuring and managing of the port forwarding compared to
how it is implemented in NATs, since PRGW can dynamically
establish it upon the domain resolution.

This paper complements these advantages of PRGW through
a security analysis that presents it as a feasible Internet function.
The presented heuristics and mechanisms harden the PRGW
against the inherent Internet weaknesses, such as source address
spoofing, network/port scans and DNS floods. The mechanisms
limit all the changes to network edges to favour the deployment
and prevent the resource exhaustion in PRGW, by limiting flow
acceptance to verifiable sources only.

PRGW admits inbound connections towards private hosts
based on the domain name resolutions. We briefly discuss the
current state of the art with DNS and leverage it for securing
PRGW against Internet DNS abuses. Besides employing the
best practices, we also present a new Bot-Detection algorithm
that together with TCP-Splice attempts PRGW security against
flows from spoofed and non-spoofed sources.

The security evaluation reveals that PRGW can be protected
against the inherent Internet threats, at the cost of minimal
processing delay. We briefly discuss the impact of different
factors, such as attack strategy and inbound traffic pattern on
the effectiveness of PRGW security. By addressing the security
limitations of PRGW, this paper further adds to the claim of
deploying PRGW at the network edges to address the Internet

challenges [4]. We argue this further by briefly comparing NAT
and PRGW, and the security of end hosts under both solutions.
The adoption of PRGW to networks is simple, since it does not
require any changes in end hosts, protocols or applications.

REFERENCES
[1] ITU-T ICT STATISTICS. Free statistics. [Retrieved on Oct.2015]

Available: https://www.itu.int/en/ITU-D/Statistics/Documents/facts/
ICTFactsFigures2015.pdf

[2] L. Daigle, IAB Considerations for UNilateral Self-Address Fixing
(UNSAF) Across Network Address Translation, RFC 3424, Nov 2002

[3] G. Camarillo, J. Mäenpää, A. Keränen and V. Andersson, ”Reducing
Delays Related to NAT Traversal in P2PSIP Session Establishments,” in
Proc. IEEE Consumer Communications and Networking Conference,
CCNC 2011, pp.549-553, Las Vegas, NV, USA, 9-12 Jan. 2011.

[4] J. Llorente, R. Kantola, N. Beijar, and P. Leppäaho, "Implementing NAT
Traversal with Private Realm Gateway", Communications (ICC), 2013
IEEE International Conference, 2013, pp. 3581-3586.

[5] R. Kantola, “Implementing Trust-to-Trust with Customer Edge
Switching,”, AMCA in connection with AINA 2010, Perth, Australia, 20-
23 April 2010.

[6] H. Kabir, R. Kantola, and J. Llorente, "Security Mechanisms for a
Cooperative Firewall," in Internatinal Symposium on Cyberspace Safety
and Security (CSS), Paris, 2014.

[7] "2014 Cisco Annual Security Report," CISCO, 2014.
[8] Guha, S., Biswas, K., Ford, B., Sivakumar, S., and P. Srisuresh, "NAT

Behavioral Requirements for TCP", BCP 142, RFC 5382, October 2008.
[9] P. Ferguson and D. Senie, "Network Ingress Filtering: Defeating Denial

of Service Attacks which employ IP Source Address Spoofing," RFC
2827, May 2000.

[10] W. Eddy, "TCP SYN Flooding Attacks and Common Mitigations," RFC
4987, August 2007.

[11] M. Ma, "Mitigating Denial of Service Attaks with Password Puzzles," in
Information Technology: Coding and Computing, 2005, pp. 621-626.

[12] H. Wang, C. Jin, and K. G. Shin, "Defense Against Spoofed IP Traffic
using Hop-Count Filtering," in IEEE/ACM, Transactions on Networking,
Volume 15, 2007, pp. 40-53.

[13] "SRX Series AS Gi/SGi Firewall for Mobile Network Infrastructure
Protection," Juniper Networks, Whitepaper.

[14] H. Beitollahi and G. Deconinck, "A Cooperative Mechanism to Defense
Against Distributed Denial of Service Attacks," in 10th IEEE
International Conference on Trust, Security and Privacy in Computing
and Communications (TrustCom) 2011, 2011.

[15] R. Lua and K. C. Yow, "Mitigating DDoS Attacks with Transparent and
Intelligent Fast-Flux Swarm Network," in IEEE Networks, Volume: 25,
Issue:4, 2011, pp. 28-33.

[16] R. R. Robinson and C. Thomas, "Evaluation of Mitigation Methods for
Distributed Denial of Service Attacks," in 7th IEEE Conference on
Industrial Electronics and Applications (ICIEA), 2012, pp 713-718.

[17] ”DEFEATING DDOS ATTACKS,” CISCO Systems, Inc., White Paper,
2014.

[18] F. A. Ed. and C. Jennings, ”Network Address Translation (NAT)
Behavioral Requirements for Unicast UDP,” RFC 4787, 2007

[19] J. Rosenberg, et al., "SIP: Session Initiation Protocol," RFC 3261, 2002
[20] ”DNS Best Practices, Network Protections, and Attack Identification,”

CISCO Systems, White Paper, 2015.
[21] MICROSOFT. TCP/IP and NBT configuration parameters for Windows.

[Online]. http://support.microsoft.com/kb/314053 {On: 22.07. 14}
[22] J. Llorente and R. Kantola, "Transition to IPv6 with Realm Gateway 64,"

IEEE International Conference on Communications (ICC), London, June,
2015.

[23] (2015, Mar.) SCAPY. http://www.secdev.org/projects/scapy/
[24] M. Leech, M.Ganis, Y. Lee, R. Kuris, D Koblas, L. Jones , "SOCKS

Protocol Version 5," RFC 1928, March 1996.

251ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Verified iptables Firewall Analysis

Cornelius Diekmann, Julius Michaelis, Maximilian Haslbeck, and Georg Carle
Technische Universität München

Email: {diekmann�carle}@net.in.tum.de, {michaeli�haslbecm}@in.tum.de

Abstract—We present a fully verified firewall ruleset analysis

framework. Ultimately, it computes minimal service matrices,

i. e. graphs which partition the complete IPv4 address space

and visualize the allowed accesses between partitions for a fixed

service. Internally, we are working with a simplified firewall

model and a core contribution is the translation of complex

real-world iptables firewall rules into this model. The presented

algorithms and translation are formally proven correct with the

Isabelle theorem prover. A real-world evaluation demonstrates

the applicability of our tool. Both the iptables-save datasets

and the Isabelle formalization are publicly available.

I. INTRODUCTION

Firewall rulesets are inherently difficult to manage. It is
a well-studied but unsolved problem that many rulesets show
several configuration errors [1]–[3]. Tools were designed to
help uncover configuration errors and verify a ruleset. We
focus on tools for the static analysis of rulesets. They have
the benefit that the analysis can be carried out offline, without
any negative effects on the network. In contrast to testing,
static analysis can achieve a full coverage (e.g. the results
hold for all packets) and thus are able to uncover all errors
and give strong guarantees for the absence of certain classes
of errors. However, in practice, static ruleset analysis tools
fail for various reasons: They do not support the vast amount
of firewall features, they require the administrator to learn a
complex query language which might be more complex than
the firewall language itself, the analysis algorithms do not scale
to large firewalls, and the output of the verification tools itself
cannot be trusted.

To overcome these issues and to foster static analysis
and verification of real-world firewall rulesets, we present
the first fully verified and large-scale tested Linux/netfilter
iptables firewall analysis and verification tool. In detail, our
contributions are:

● A simple firewall model, designed for mathematical
beauty and ease of static analysis (Section III)● A series of translation steps to translate real-world firewall
rulesets into this simple model (Section IV)● Static and automatic firewall analysis methods, based on
the simple model, featuring○ IP address space partitioning (Section V)○ Minimal service matrices (Section VI)● Full formal and machine-verifiable proof of correctness
(Section Availability)● Evaluation on large real-world data set (Section VII)

The Linux iptables firewall is wide-spread, has evolved
over a long time, and is well-known for its vast amount of
features. In addition, in production networks, huge, complex,

and legacy firewall rulesets have evolved over time. Therefore,
iptables poses a particular challenge. Naturally, our methodol-
ogy can also be applied to firewalls with simpler semantics,
or younger technology with yet fewer features, e.g. Cisco IOS
Access Lists or OpenFlow.

We outline related work in Section II. The real-world and
simplified firewall models are presented in Section III. We
detail on the translation between these models in Section IV.
Afterwards, we present the IP address space partitioning (Sec-
tion V) and service matrices (Section VI). In Section VII, we
evaluate our algorithms on a large set of real-world iptables
rulesets.

II. RELATED WORK

We will call the features a firewall can use to match
on packets primitives. For example, among others, iptables
supports the following primitives: src IP address, layer 4 port,
inbound interface, conntrack state, entries and limits in the
recent list, . . .

Popular tools for static firewall analysis include FIRE-
MAN [4], Capretta et al. [5], and the Firewall Policy Advi-
sor [6]. They support the following primitives: IP addresses,
ports, and protocol. This corresponds to (a subset of) our
simple firewall model, hence, these tools would not be ap-
plicable to most firewalls from our evaluation. The tools focus
on detecting conflicts between rules and can consequently
not offer service matrices. The work most similar to our IP
address space partitioning is ITVal [7]: It supports a large
set of iptables features and can compute an IP address space
partition [8]. Unfortunately, ITVal is not formally verified
and its implementation has several errors. For example, ITVal
produces spurious results if the number of significant bits
in IP addresses in CIDR notation [9] is not a multiple of
8. It does not consider logical negations which may occur
when RETURNing prematurely from user-defined chains, which
leads to wrong interpretation of complement sets. It does
not support abstracting over unknown primitives but simply
ignores them, which also leads to spurious results. For rulesets
with more than 1000 rules, ITVal requires tens of gigabytes
of RAM. Finally, ITVal neither proves the soundness nor the
minimality of its IP address range partitioning. Nevertheless,
ITVal demonstrates the need for and the use of IP address range
partitioning and has demonstrated that its implementation
works well on rulesets which do not trigger the aforementioned
errors. Building on the ideas of ITVal (but with a different
algorithm), we overcome all presented issues.

Exodus [10] translates existing device configurations to a
simpler model, similar to our translation step. It translates
router configurations to a high-level SDN controller program,
which is implemented on top of OpenFlow. Exodus supportsISBN 978-3-901882-83-8 © 2016 IFIP

252ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

many Cisco IOS features. The translation problem solved by
Exodus is comparable to this paper’s problem of translating to
a simple firewall model: OpenFlow 1.0 only supports a limited
set of features (comparable to our simple firewall) whereas IOS
supports a wide range of features (comparable to iptables); A
complex language is ultimately translated to a simple language,
which is the ‘hard’ direction.

Complementary to our verification tool, and well-suited
for debugging, is Margrave [11]. It can be used to query
firewalls and to troubleshoot configurations or to show the
impact of ruleset edits. Margrave can find scenarios, i.e. it can
show concrete packets which violate a security policy. Our
framework does not show such information. Margrave’s query
language (which should be learned by a potential user) is based
on first-order logic.

III. FIREWALL SEMANTICS

All facts presented in this work are formally verified with
the Isabelle theorem prover [12]. All executable algorithms are
also implemented in Isabelle and formally proven correct.

Isabelle is an LCF-style theorem prover: A proposition
is only accepted by Isabelle if it can be explained to its
mathematical inference kernel. That kernel is very small and
well-understood by the formal methods community which
makes it very unlikely that Isabelle allows proving false
statements. The last 20 years of Isabelle in practice underline
this statement. In general, the formal methods community
treats facts machine-verified with Isabelle as well-founded
truth. Also, the real-world firewall reference model we will
use in this work (Section III-B) has been previously evaluated
by said community [3]. Our formalization, implementation,
and proofs are publicly available (cf. Section Availability).
An interested reader can replay the proofs and results of the
evaluation on her system. For brevity, in this paper, we omit
all technical proof details and only outline the intuition of the
correctness proofs. For further mathematical details, we refer
the interested reader to our proof document. We use Isabelle’s
standard Higher-Order Logic (HOL). This means, all proofs
can be reduced to the axioms of HOL. We stick closely to
the formalization and do not sweep any assumption under the
carpet.

Our notation is close to Isabelle, Standard ML, or Haskell:
Function application is written without parentheses, e.g. f a
denotes function f applied to parameter a. For lists, we denote
cons and append by ‘∶∶’ and ‘∶∶∶’, e.g. ‘x ∶∶ [y, z] ∶∶∶ [a]’. Linux
shell commands are set in typewriter font. Executable
functions are set in sans serif font. We will write firewall rules
as tuple (m, a), where m is a match expression and a is the
action the firewall performs if m matches for a packet. The
firewall has two possibilities for the filtering decision: it may
accept () the packet or deny () the packet. There is also an
intermediate state (?) in which the firewall did not come to
a filtering decision. Note that iptables firewalls always have a
default policy and the ? case cannot occur as final decision.

A. Simple Firewall

First, we present a very simple firewall model. This model
was designed to feature nice mathematical properties but it
is too simplistic to mirror the real world. Therefore, we will

afterwards present a model for real-world firewalls. Section IV
will show how rulesets can be translated between these two
models. This preprocessing step simplifies all future static
firewall analysis. The model is a simple recursive function.
The first parameter is the ruleset the firewall iterates over, the
second parameter is the packet.

simple-fw [] p = ?

simple-fw ((m, Accept) ∶∶ rs) p =
if match m p then else simple-fw rs p

simple-fw ((m, Drop) ∶∶ rs) p =
if match m p then else simple-fw rs p

A function match tests whether a packet p matches the
match condition m. The match condition is an 7-tuple, con-
sisting of the following primitives:

(in, out, src, dst, protocol, src ports, dst ports)
In contrast to iptables, negating matches is not supported. In
detail, the following is supported:

● in/out interface, including support for the ‘+’ wildcard● src/dst IP address range in CIDR notation, e.g.
192.168.0.0/24● protocol (Any, tcp, udp, icmp, or any numeric protocol
identifier)● src/dst interval of ports, e.g. 0:65535

For example, we obtain an empty match (a match that does
not apply to any packet) iff an end port is greater than the start
port. The match which matches any packet is constructed by
setting the interfaces to “+”, the ips to 0.0.0.0/0, the ports
to 0:65535 and the protocol to Any. With this type of match
expression, it is possible to implement a function conj which
takes two match expressions m1 and m2 and returns exactly
one match expression being the conjunction of both.

Theorem 1 (Conjunction of two simple match expressions).

match m1 p ∧match m2 p ←→ match (conj m1 m2) p
Computing the conjunction of the individual match expres-

sions for port intervals and single protocols is straightforward.
The conjunction of two intervals in CIDR notation is either
empty or the smaller of both intervals. The conjunction of two
interfaces is either empty if they don’t share a common prefix,
otherwise it is the longest of both interfaces (non-wildcard
interfaces dominate wildcard interfaces).

The type of match expressions was carefully designed such
that the conjunction of two match expressions is only one
match expression. If features were added to the match ex-
pression, for example negated interfaces, this would no longer
be possible. Of all common features found in a firewall, we
only found that it would further be possible to add TCP flags
to the match expression without violating the aforementioned
conjunction property.

B. Semantics of Iptables

We now outline the model of a real-world iptables firewall.
Most firewall analysis is concerned with the access control
rules of a firewall, therefore the model focuses on the filter

253ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

table. This implies, packet modification (e.g. NAT, which must
not occur in this table) is not considered in this work. We rely
on our previous work [3]. The model supports the following
common actions: Accept, Drop, Reject, Log, Calling to and
Returning from user-defined chains, as well as the “empty”
action. The model is defined as an inductive predicate with the
following syntax:

�,�, p � �rs, s�⇒ t

The ruleset of the firewall is rs and the packet under ex-
amination is p. The states s and t are in { , , ? }. The
starting state of the firewall is s, usually ? . The filtering
decision after processing rs is t, usually or . User-
defined chains are stored in �, which corresponds to the
background ruleset. A primitive matcher � (a boolean function
which takes a primitive and the packet as parameters) decides
whether a certain primitive matches for a packet. Note that
the model and all algorithms on top of it are proven correct
for an arbitrary �, hence, this model supports all iptables
matching features. Obviously, there is no executable code
for an arbitrary �. However, the algorithms which transform
rulesets are executable.

We make use of these algorithms, in particular: An al-
gorithm which unfolds all calls to and returns from user-
defined chains and rewriting of further actions. This leaves
a ruleset where only the following actions occur: Accept
and Drop. Thus, a large step for translating the real-world
model to the simple firewall model is already accomplished.
Translating the match expressions remains. The real-world
model allows a match expression to be an arbitrary proposi-
tional logic expression. However, iptables only accepts match
expressions in negation normal form (NNF). A Boolean for-
mula is in NNF iff all occurring negations are on primi-
tives, i.e. there are no nested negated expressions. For ex-
ample, iptables can load -s 10.0.0.0/8 ! -p tcp but
not ! (-s 10.0.0.0/8 -p tcp). However, such negated
expressions may occur as a result of the unfolding algorithm.
An algorithm to translate a ruleset to a ruleset where all match
conditions are in NNF is already available [3].1 However, there
is an additional constraint imposed by iptables, not solved by
the algorithm: A primitive must only occur at most once. This
problem will be addressed in this paper.

We have implemented a subset of �, namely for all
primitives supported by the simple firewall and some further
primitives, detailed in Section IV. Previous work provides
an algorithm to abstract over all ‘unknown’ primitives which
are not understood by our subset implementation of �. This
algorithm leads to an approximation of the ruleset. It can either
be an overapproximation which results in a more permissive
ruleset, or an underapproximation, which results in a stricter
ruleset. For the sake of example, we will only consider the
overapproximation in this paper, the underapproximation is
analogous and can be found in our formalization.

Since firewalls usually accept all packets which belong to
an ESTABLISHED connection, the interesting access control
rules in a ruleset only apply to NEW packets. We only consider
NEW packets, i.e. --ctstate NEW and --syn for TCP

1NNF normalizing may create additional rules.

packets. Our first goal is to translate a ruleset from the real-
world model to the simple model. We have proven that the set
of new packets accepted by the simple firewall is a superset
(overapproximation) of the packets accepted by the real-world
model. This is a core contribution and we detail on the
translation in the following section.

Theorem 2 (Translation to simple firewall model).

�p. new p ∧ �,�, p � �rs, ? �⇒ �
⊆

{p. new p ∧ simple-fw (translate-oapprox rs) = }
Any packet dropped by the translated, overapproximated

simple firewall ruleset is guaranteed to be dropped by the real-
world firewall, for arbitrary �, �, rs . Similar guarantees for
certainly accepted packets can be given by considering the
translated underapproximation. Given the simple and carefully
designed model of the simple-fw, it is much easier to write
algorithms to analyze and verify the translated rulesets.

Example: We consider a FORWARD chain with a default policy
of DROP and a user-defined chain foo.

-P FORWARD DROP
-A FORWARD -s 10.0.0.0/8 -j foo
-A foo ! -s 10.0.0.0/9 -j DROP
-A foo -p tcp -j ACCEPT

This ruleset, though it only consist of three rules and a default
policy, is complicated to analyze. Our translation algorithm
translates it to the simple firewall model, where the ruleset
becomes remarkably simple. We use * to denote a wildcard:

(∗ , ∗ ,10.128.0.0/9, ∗ , ∗ , ∗ , ∗) DROP

(∗ , ∗ , 10.0.0.0/8 , ∗ ,TCP, ∗ , ∗) ACCEPT

(∗ , ∗ , ∗ , ∗ , ∗ , ∗ , ∗) DROP

No over- or underapproximation occurred since all primitives
could be translated. Note the 10.128.0.0/9 address.

IV. TRANSLATING PRIMITIVES

A firewall has the same behavior for two rulesets rs1 and
rs2 iff for all packets, the firewall computes the same filtering
decision for rs1 and rs2. Formally,

∀p s t. �,�, p � �rs1, s�⇒ t ←→ �,�, p � �rs2, s�⇒ t

In this section, we present algorithms to transform an arbitrary
rs1 to rs2 without changing the behavior of the firewall. In
the resulting rs2 , all primitives will be normalized such that
the translation to the simple-fw is obvious. We continue by
describing the normalization of all common primitives found
in iptables rulesets.

A. IPv4 Addresses

“Modeling IP addresses efficiently is challenging.” [11]
First, we present a datatype to efficiently perform set oper-
ations on intervals of machine words, e.g. 32-bit integers. We
will use this type for IPv4 addresses, but it can be generalized
to machine words of arbitrary length, e.g. IPv6 addresses or
L4 ports. We call it word interval (wi), and WI start end

254ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

describes the interval with start and end inclusive. The Union

of two wis is defined recursively.

datatype wi =WI word word � Union wi wi

Let set denote the interpretation into mathematical sets, then
wi has the following semantics: set (WI start end) ={start ..end} and set Union wi1 wi2 = set (wi1)∪ set (wi2).

An IP address in CIDR notation or IP addresses specified
by e.g. -m iprange can be translated to one WI. We have
implemented and proven the common set operations: ‘∪’,
‘{}’, ‘�’, ‘∩’, ‘⊆’, and ‘=’. These operations are linear in
the number of Union-constructors. The result is optimized
by merging adjacent and overlapping intervals and removing
empty intervals. We can also represent ‘UNIV’ (the universe of
all IP addresses). Since most rulesets use IP addresses in CIDR
notation or intervals in general, the wi datatype has proven to
be very efficient. Recall that the intersection of two intervals,
constructed from addresses in CIDR notation, is either empty
or the smaller of both intervals.

wi is an internal representation and for the simple firewall,
the result needs to be represented in CIDR notation. For this
direction, one WI may correspond to several CIDR ranges.
We describe an algorithm to split off one CIDR range from
an arbitrary word interval r. The output is a CIDR range and
r′, the remainder after splitting off this CIDR range. split is
implemented as follows: Let a be the lowest element in r.
If this does not exist, then r corresponds to the empty set
and the algorithm terminates. Otherwise, we construct the list
of CIDR ranges [a�0, a�1, ..., a�32]. The first element in the
list which is well-formed (i.e. all bits after the network prefix
must be zero) and which is a subset of r is the wanted element.
Note that this element always exists. It is subtracted from r to
obtain r′. To convert r completely to a list of CIDR ranges,
this is applied recursively until it yields no more results. This
algorithm is guaranteed to terminate and the resulting list in
CIDR notation corresponds to the same set of IP addresses as
represented by r. Formally, �map set (split r) = set r.

For example, split (WI 10.0.0.0 10.0.0.15) =[10.0.0.0/28] and split (WI 10.0.0.1 10.0.0.15) =[10.0.0.1/32,10.0.0.2/31,10.0.0.4/30,10.0.0.8/29].
With the help of these functions, arbitrary IP address

ranges can be translated to the format required by the simple
firewall. The following is applied to matches on src and dst
IP addresses: First, the IP match expression is translated to
a word interval. If the match on an IP range is negated, we
compute UNIV � wi . All matches in one rule can be joined
to a single word interval, using the ∩ operation. The resulting
word interval is translated to a set of non-negated CIDR ranges.
Using the NNF normalization, at most one match on an IP
range in CIDR notation remains. We have proven that this
process preserves the firewall’s filtering behavior.

We conclude with a simple, synthetic worst-case ex-
ample. The evaluation shows that this worst-case does not
prevent successful analysis: -m iprange --src-range
0.0.0.1-255.255.255.254. Translated to the simple
firewall, this one range blows up to 62 ranges in CIDR
notation. A similar blowup may occur for negated IP ranges.

B. Conntrack State

If a packet p is matched against the stateful match condition
ESTABLISHED, conntrack looks up p in its state table. When
the firewall comes to a filtering decision for p, if the packet
is not dropped and the state was NEW, the conntrack state
table is updated such that the flow of p is now ESTALISHED.
Similarly, other conntrack states are handled.

We present an alternative model for this behavior: Before
the firewall starts processing the ruleset for p, the conntrack
state table is consulted for the state of the connection of p. This
state is added as a (phantom) tag to p. Therefore, ctstate can
be modeled as just another header field of p. When processing
the ruleset, it is not necessary to inspect the conntrack table
but only the virtual state tag of the packet. After processing,
the state table is updated accordingly.

We have proven that both models are equivalent. The latter
model is simpler for analysis purposes since the conntrack state
can be considered an ordinary packet field.2

In Theorem 2, we are only interested in NEW packets.
In contrast to previous work, there is no longer the need to
manually exclude ESTABLISHED rules from a ruleset. The
alternative model allows us to consider only NEW packets: all
state matches can be removed (by being pre-evaluated for an
arbitrary NEW packet) from the ruleset without changing the
filtering behavior of the firewall.

C. Layer 4 Ports & TCP Flags

Translating singleton ports or intervals of ports to the
simple firewall is straightforward. A challenge remains for
negated port ranges and the multiport module. However,
the word interval type is also applicable to 16 bit machine
words and solves these challenges. For ports, there is no need
to translate an interval back to CIDR notation.3

Iptables can match on a set of L4 flags. To match on flags,
a mask selects the corresponding flags and c declares the flags
which must be present. For example, the match --syn is a
synonym for mask = SYN,RST,ACK,FIN and c = SYN. For
a set f of flags in a packet, matching can be formalized as(f ∩mask) = c. If c is not a subset of mask , the expression
cannot match; we call this the empty match. We proved that
two matches (mask1, c1) and (mask2, c2) are equal if and
only if (if c1 ⊆ mask1 ∧ c2 ⊆ mask2 then c1 = c2 ∧mask1 =
mask2 else (¬c1 ⊆ mask1) ∧ (¬c2 ⊆ mask2)) holds. We also
proved that the conjunction of two matches is exactly (if c1 ⊆
mask1∧c2 ⊆mask2∧mask1∩mask2∩c1 =mask1∩mask2∩
c2 then (mask1 ∪mask2, c1 ∪ c2) else empty). If we assume
--syn for a packet, we can remove all matches which are
equal to --syn and add the --syn match as conjunction to
all other matches on flags and remove empty matches. Some
matches on flags may remain, e.g. URG, which need to be
abstracted over later.

2This holds because the semantics does modify a packet during filtering.
3As a side note, OpenFlow (technically, the Open vSwitch) defines CIDR-

like matching for L4 ports. With the small change of converting ports to CIDR-
like notation, our simple firewall can be directly converted to OpenFlow and
we have the first (almost) fully verified translation of iptables rulesets to SDN.

255ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

D. Interfaces

The simple firewall model does not support negated inter-
faces, e.g. ! -i eth+. Therefore, they must be removed. We
first motivate the need for abstracting over negated interfaces.

For whitelisting scenarios, one might argue, that negated
interfaces is bad practice anyway. This is because new (virtual)
interfaces might be added to the system at runtime and a
match on negated interfaces might now also include these new
interfaces. Therefore, it can be argued that negated interfaces
correspond to blacklisting, which is not recommended for most
firewalls. However, the main reason why negated interfaces
are not supported by our model is of technical nature: Let set
denote the set of interfaces that match an interface expression.
For example, set eth0 = {eth0} and set eth+ is the set of
all interfaces that start with the prefix eth. If the match on
eth+ is negated, then it matches all strings in the complement
set: UNIV � (set eth+). The simple firewall model requires
that a conjunction of two primitives is again at most one
primitive. This can obviously not be achieved with such sets.
In addition, working with negated interfaces can cause great
confusion. Note that the interface match condition ‘+’ matches
any interfaces. Also note that ‘+’ ∈ UNIV�(set eth+). In the
second equation, ‘+’ is not a wildcard character but the name
of an interface. The confusion introduced by negated interfaces
becomes more apparent when one realizes that ‘+’ can occur
as both wildcard character and normal character. Therefore, it
is not possible to construct an interface match condition which
matches exactly on the interface ‘+’, because a ‘+’ at the end
of an interface match condition is interpreted as wildcard.4

Correlating with IP Ranges: Later, in Section V, we will
compute an IP address space partition. For best clarity, this
partition must not be ‘polluted’ with interface information.
Therefore, for the partition, we will assume that no matches on
interfaces occur in the ruleset. In this subsection, we describe
a method to get rid of both, negated and non-negated input
interfaces while preserving their relation to IP address ranges.

Interfaces are usually assigned an IP range of valid source
IPs which are expected to arrive on that interface. Let ipassmt

be a mapping from interfaces to an IP address range. This
information can be obtained by ip route and ip addr.
We will write ipassmt[i] to get the corresponding IP range of
interface i. For the following examples, we assume

ipassmt = [eth0� {10.8.0.0/16}]
The goal is to rewrite interfaces with the corresponding IP
range. For example, we would like to replace all occurrences
of -i eth0 with -s 10.8.0.0/16. This idea can only be
sound if there are no spoofed packets; we only expect packets
with a source IP of 10.8.0.0/16 to arrive at eth0. Once
we have assured that the firewall blocks spoofed packets, we
can assume in a second step that there are no spoofed accepted
packets left. By default, the Linux kernel offers reverse path
filtering, which blocks spoofed packet automatically. In this
case we can assume that no spoofed packets occur. In some
complex scenarios, reverse path filtering needs to be disabled
and spoofed packets should be blocked manually with the help
of the firewall ruleset. In previous work [13], we presented

4We greatly discourage the use of “ip link set eth0 name +” in
production. Please fix your VM startup scripts with untrusted input now!

an algorithm to verify that a ruleset correctly blocks spoofed
packets. This algorithm is integrated in our framework, proven
sound, works on the same ipassmt and does not need the
simple firewall model (i.e. supports negated interfaces). If
some interface i should accept arbitrary IP addresses (es-
sentially not providing spoofing protection), it is possible to
set ipassmt[i] = UNIV. Therefore, we can verify spoofing
protection according to ipassmt at runtime and afterwards
continue with the assumption that no spoofed packets occur.

Under the assumption that no spoofed packets occur, we
will now present two algorithms to relate an input interface
i to ipassmt[i]. Both approaches are valid for negated and
non-negated interfaces. Approach one provides better results
but requires stronger assumptions (which can be checked at
runtime), whereas approach two is applicable without further
assumptions. These approaches could be generalized to output
interfaces (-o), which requires the routing table instead of
ipassmt . Because a routing table may change frequently, even
triggered by external malicious routing advertisements, we
refrain from this rewriting in this work.

Approach One: In general, it is considered bad prac-
tice [1], [14] to have zone-spanning interfaces. Two interfaces
are zone-spanning if they share a common, overlapping IP
address range. Mathematically, absence of zone-spanning in-
terfaces means that for any two interfaces in ipassmt , their
assigned IP range must be disjoint. Our tool emits a warning
if ipassmt contains zone-spanning interfaces. If absence of
zone-spanning interfaces is checked, then all input interfaces
can be replaced by their assigned source IP address range. This
preserves exactly the behavior of the firewall. The idea is that
in this case a bidirectional mapping between input interfaces
and source IPs exists. Interestingly, our proof does not need
the assumption that ipassmt maps to the complete IP universe.

Approach Two: Unfortunately, though considered bad
practice, we found many zone-spanning interfaces in many
real-world rulesets and hence cannot apply the previous al-
gorithm. First, we proved that correctness of the described
rewriting algorithm implies lack of zone-spanning interfaces.
This leads to the conclusion that it is impossible to perform
rewriting without this assumption. Therefore, we present an
algorithm which adds the IP range information to the ruleset
(without removing the interface match), thus constraining the
match on input interfaces to their IP range. The algorithm
computes the following: Whenever there is a match on an
input interface i, the algorithm looks up the corresponding IP
range of that interface and adds -s ipassmt[i] to the rule. To
prove correctness of this algorithm, no assumption about zone-
spanning interfaces is needed, ipassmt may only be defined
for a subset of the interfaces, and the range of ipassmt may
not cover the complete IP universe. Consequently, there is no
need for a user to specify ipassmt , but having it may yield
more accurate results.

E. Abstracting Over Primitives

Some primitives cannot be translated to the simple model.
Previous work already provides the function pu which removes
all unknown match conditions [3]. This leads to an approxima-
tion and is the main reason for the ‘⊆’ relation in Theorem 2.
We found that we can also rewrite any known primitive at

256ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

any time to an unknown primitive. This can be used to apply
additional knowledge during preprocessing. For example, since
we understand flags, we know that the following condition
is false, hence rules using it can be removed: --syn ∧
--tcp-flags RST,ACK RST. After this optimization, all
remaining flags can be treated as unknowns and abstracted over
afterwards. This allows to easily add additional knowledge and
optimization strategies for further primitive match conditions
without the need to adapt any algorithm which works on the
simple firewall model. We proved soundness of this approach:
The ‘⊆’ relation in Theorem 2 is preserved.

V. IP ADDRESS SPACE PARTITION

In the following sections, we will work on rulesets trans-
lated to the simple-fw model. In this section, we will com-
pute a partition of the IPv4 address space. All IP addresses
in the same partition must show the same behavior w.r.t
the firewall ruleset. We do not require that the partition is
minimal. Therefore, the following would be a valid solution:{{0} , {1} , . . . , {255.255.255.255}}. However, we will need
the partition as starting point for a further algorithm and a
partition of size 2

32 is too large for this purpose. In this
section, we will present an algorithm to compute a partition
which behaves roughly linear in the number of rules for real-
world rulesets. First, we motivate the partitioning idea with the
following observation.

Lemma 1. For an arbitrary packet p, we write p(src � s)
to fix the src IP address to s. Let X be the set of all src IP
matches specified in rs , i.e. X is a set of CIDR ranges. If

∀A ∈X. B ⊆ A ∨B ∩A = {}
then let s1 ∈ B and s2 ∈ B then

simple-fw rs p(src� s1) = simple-fw rs p(src� s2)
Reading the lemma backwards, it states that all packets

with arbitrary source IPs picked from B are treated equally by
the firewall. Therefore, B is a member of an IP address range
partition. The condition imposed on B is that for all src CIDR
ranges specified in the ruleset (called A in the lemma), B is
either a subset of the range or disjoint. The lemma shows that
this condition is sufficient for B, therefore we will construct an
algorithm to compute B. For an arbitrary set X , this condition
is purely set-theoretic and we can solve it independently from
the firewall theory.

For simplicity, we use finite sets and lists interchangeably.
We will write an algorithm part and reuse the common list
algorithm from functional programming foldr. For X , the fol-
lowing algorithm computes a partition: foldr part X {UNIV }.
In addition, it is guaranteed that the union of the resulting
partition is equal to the universe. For our scenario, this means
that the partitioning covers the complete IPv4 space. The
algorithm part is implemented as follows: The first parameter
is a set S ∈ X , the second parameter TS is a set of
sets and corresponds to the remaining set which will be
partitioned. In the first call TS = {UNIV }. For a fixed S,
part S TS iterates over TS and splits the set such that the
precondition of Lemma 1 holds: Written as recursive function:
part S ({T}∪TS) = (S ∩ T)∪ (T �S)∪ (part (S � T) TS)

The result size of calling part once can be up to two times
the size of TS . This means, the partition of a complete firewall
ruleset is in O(2�rules �). However, the empirical evaluation
shows that the resulting size for real-world rulesets is much
better. This is because IP address ranges may overlap in a
ruleset, but they do not overlap in the worst possible way
for all pairs of rules. Consequently, at least one of the sets
S ∩ T or T � S is usually empty and can be optimized away.
For example, for our largest firewall, the number of computed
partitions is 10 times smaller than the number of rules. Table I
confirms that the number of partitions is usually less than the
number of rules.

Our algorithm fulfills the assumption of Lemma 1 for arbi-
trary X . Because IP addresses occur as source and destination
in a ruleset, we use our partitioning algorithm where X is the
set of all IPs found in the ruleset. The result is a partition
where for any two IPs in the same partition, setting the src or
dst of an arbitrary packet to one of the two IPs, the firewall
behaves equally. This results in a stronger version of Lemma 1,
which holds without any assumption and also holds for both
src and dst IPs simultaneously. In addition, the partition covers
the complete IPv4 address space.

VI. SERVICE MATRICES

The IP address space partition may not be minimal. That
means, two different partitions may exhibit exactly the same
behavior. Therefore, for manual firewall verification, these
partitions may be misleading. Marmorstein elaborates on this
problem [8]. ITVal’s solution is to minimize the partition.
We suggest to minimize the partition for a fixed service. The
evaluation shows that the result is smaller and thus more clear.
A fixed service corresponds to a fixed packet with arbitrary IPs.
For example, we can define ssh as TCP, dport 22, arbitrary
sport ≥ 1024. A service matrix describes the allowed accesses
for a specific service over the complete IPv4 address space. It
can be visualized as graph, for example Figure 1. The matrix
is minimal if it cannot be compressed any further.

First, we describe when a firewall exhibits the same behav-
ior for arbitrary source IPs s1, s2 and a fixed packet p:

∀d. simple-fw rs p(src� s1, dst� d) =
simple-fw rs p(src� s2, dst� d)

We say the firewall shows same behavior for a fixed service if,
in addition, the analogue condition holds for destination IPs.

We present a function groupWIs, which computes the mini-
mal partition for a fixed service. For this, the full access control
matrix for inbound and outbound connections of each partition
member is generated. This can be done by taking arbitrary
representatives from each partition as source and destination
address and executing simple-fw for the fixed packet with those
fixed IPs. The matrix is minimized by merging partitions with
equal rights, i.e. equal rows in the matrix. This algorithm is
quadratic in the number of partitions. The evaluation shows
that it scales surprisingly well, even for large rulesets, since
the number of partitions is usually small.

Theorem 3 (Service Matrix is Sound and Minimal). For any
two IPs in any member of groupWIs, the firewall shows the
same behavior for a fixed service.

257ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

For any two arbitrary members A and B in groupWIs, if
we can find two IPs in A and B respectively where the firewall
shows the same behavior for a fixed service, then A = B.

VII. EVALUATION

We obtained real-world rulesets from over 15 firewalls.
Some are central, production-critical devices. They are written
by different authors, utilize a vast amount of different features
and exhibit different styles and patterns. Publishing the com-
plete rulesets itself is an important contribution (c.f. [1], [2]).
To the best of our knowledge, this is the largest, publicly-
available collection of real-world iptables rulesets. Note: some
administrators wish to remain anonymous so we replaced their
public IP addresses with public IP ranges of our institute,
preserving all IP subset relationships.

Table I summarizes the evaluation’s results. The first col-
umn (Fw) labels the analyzed ruleset. Column two (Rules) con-
tains the number of rules (only the filter table) in the output of
iptables-save. We work directly and completely on this
real-world data. Column three describes the analyzed chain.
Depending on the type of firewall, we either analyzed the
FORWARD (FW) or the INPUT (IN) chain. For a host firewall,
we analyzed IN; for a network firewall, e.g. on a gateway or
router, we analyzed FW. In parentheses, we wrote the number
of rules after unfolding the analyzed chain. The unfolding also
features some generic, straight-forward optimizations, such as
removing rules where the match expression is False. Column
four (Simple rules) is the number of rules when translated
to the simple firewall. In parentheses, we wrote the number
of simple firewall rules when interfaces are removed. This
ruleset is used subsequently to compute the partitions and
service matrices. In column five (Use), we mark whether the
translated simple firewall is useful. We will detail on the metric
later. Column six (Parts) lists the number of IP address space
partitions. For comparison, we give the number of partitions
computed by ITVal in parentheses. In Column seven (ssh)
and eight (http), we give the number of partitions for the
service matrices for ssh and http. In column nine, we give the
overall runtime of our analysis in seconds, minutes, or hours.
For comparison, we put the runtime of the partitioning by
ITVal in parentheses. When translating to the simple firewall,
to accomplish support for arbitrary matching primitives, some
approximations need to be performed. For every firewall, the
first row states the overapproximation (more permissive), the
second row the underapproximation (more strict).

In contrast to previous work, there is no longer the need
to manually exclude certain rules from the analysis [3]. For
some rulesets, we do not know the interface configuration. For
others, there were zone-spanning interfaces. For these reasons,
as proven in Section IV-D, in the majority of cases, we could
not rewrite interfaces. This is one reason for the differences
between over- and underapproximation.

We loaded all translated simple firewall rulesets (without
interfaces) with iptables-restore. We used iptables
directly to generate the firewall format required by ITVal
(iptables -L -n). Our translation to the simple firewall is
required because ITVal cannot understand the original complex
rulesets and produces flawed results for them.

Fw Rules Chain Simple rules Use Parts
(ITVal)

ssh http Time
(ITVal)

A 2784 FW (2376) 2381 (1920) 3 246 (1) 13 9 14min (3h∗)
- FW (2376) 2837 (581) 7 r 1 (1) 1 1 3min (9h∗)

A 4113 FW (2922) 3114 (2862) 3 334 (2) 11 11 75min (27h∗)
- FW (2922) 3585 (517) 7 r 490 (1) 1 1 5min (8h)

A 4814 FW (4403) 3574 (3144) 3 364 (2) 9 12 105min (46h∗)
- FW (4403) 5123 (1601) 7 r 1574 (1) 1 1 12min (3h∗)

A 4946 FW (4887) 4004 (3570) 3 371 (2) 9 12 94min (53h∗)
- FW (4887) 5563 (1613) 7 r 1585 (1) 1 1 11min (4h∗)

B 88 FW (40) 110 (106) 3 50 (4) 4 2 15s (2s)
- FW (40) 183 (75) 3 40 (1) 1 1 9s (1s)

C 53 FW (30) 29 (12) 3 8 (1) 1 1 7s (1s)
- FW (30) 27 (1) 3 1 (1) 1 1 1s (1s)
- IN (49) 74 (46) 3 38 (1) 1 1 6s (1s)
- IN (49) 75 (21) 3 6 (1) 1 1 2s (1s)

D 373 FW (2649) 3482 (166) 3 43 (1) 1 1 29s (3s)
- FW (2649) 16592 (1918) 7 67 (1) 1 1 4min (33min∗)

E 31 IN (24) 57 (27) 3 4 (3) 1 2 4s (1s)
- IN (24) 61 (45) 7 r 3 (1) 1 1 2s (1s)

F 263 IN (261) 263 (263) 3 250 (3) 3 3 11min (2min)
- IN (261) 265 (264) 3 250 (3) 3 3 10min (3min)

G 68 IN (28) 20 (20) 3 8 (5) 1 2 1s (1s)
- IN (28) 19 (19) 7 8 (2) 2 2 1s (1s)

H 19 FW (20) 10 (10) 7 9 (1) 1 1 1s (1s)
- FW (20) 8 (8) 7 r 3 (1) 1 1 1s (1s)

I 15 FW (5) 4 (4) 3 4 (4) 4 4 1s (1s)
- FW (5) 4 (4) 3 4 (4) 4 4 1s (1s)

J 48 FW (12) 5 (5) 3 3 (2) 2 2 1s (1s)
- FW (12) 8 (2) 3 1 (1) 1 1 1s (1s)

K 21 FW (9) 7 (6) 3 3 (1) 1 1 1s (1s)
- FW (9) 4 (3) 3 2 (1) 1 1 1s (1s)

L 27 IN (16) 19 (19) 3 17 (3) 2 2 1s (1s)
- IN (16) 18 (18) 3 17 (3) 2 2 1s (1s)

M 80 IN (92) 64 (16) 3 2 (2) 1 2 2s (1s)
- IN (92) 58 (27) 7 11 (1) 1 1 1s (1s)

N 34 FW (14) 12 (12) 3 10 (6) 6 6 1s (2s)
- FW (14) 12 (12) 3 10 (6) 6 6 1s (2s)

O 8 IN (7) 9 (9) 3 3 (3) 1 2 1s (1s)
- IN (7) 8 (8) 3 3 (3) 1 2 1s (1s)

∗ ITVal memory consumption, in order of appearance:
84GB, 96GB, 94GB, 95GB, 61GB, 98GB, 96GB, 21G

Table I. SUMMARY OF EVALUATION ON REAL-WORLD FIREWALLS

Performance: The code of our tool is automatically
generated by Isabelle. Isabelle can translate executable al-
gorithms to SML. For verifiable correctness, Isabelle also
generates code for many datastructures which are already in
the standard library of many programming languages. Usually,
the machine-generated code by Isabelle can be quite inefficient.
For example, lookups in Isabelle-generated dictionaries have
linear lookup time, compared to constant lookup time of
standard library implementations. In contrast, ITVal is highly
optimized C++ code. We benchmarked our tool on a commod-
ity i7-2620M laptop with 2 physical cores and 8 GB of RAM.
In contrast, we gave ITVal a server with 16 physical Xeon E5-
2650 cores and 128 GB RAM. The runtime measured for our
tool is the complete translation to the two simple firewalls,
computation of partitions, and the two service matrices. In
contrast, the ITVal runtime only consists of computing one
partition.

These benchmark settings are extremely ‘unfair’ for our
tool. Indeed, exporting our tool to a standalone Haskell appli-
cation, replacing some common datastructures with optimized
ones from the Haskell std lib, enabling aggressive compiler
optimization and parallelization, and running our tool on the

258ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Xeon server, the runtime of our tool improves by orders
of magnitude. Nevertheless, we chose the ‘unfair’ setting
to demonstrate the feasibility of running fully verified code
directly in a theorem prover. In addition, we preserve the
property of full verification; even for the results of executable
code.5

Table I shows that our tool outperforms ITVal for large
firewalls. We added ITVal’s memory requirements to the table
if they exceeded 20GB. ITVal requires an infeasible amount
of memory for larger rulesets while our tool can finish on
commodity hardware. The overall numbers show that the
runtime for our tool is sufficient for static, offline analysis,
even for large real-word rulesets.

Quality of results: The main goal of ITVal is to
compute a minimal partition while ours may not be minimal.
Since a service matrix is more specific than a partition, a
partition cannot be smaller than a service matrix. ITVal may
produce spurious results (and it did in certain examples) while
ours are provably correct. For firewall A, it can be seen
that ITVals’s results must be spurious. However, comparing
the number of partitions for other rulesets, we can see that
ITVal often computes better results. Our service matrices are
provably minimal and can improve on ITVal’s partition.

In column five, we show the usefulness of the translated
simple firewall (including interfaces). We deem a firewall
useful if interesting information was preserved by the ap-
proximation. Therefore, we manually inspected the rulesest
and compared it to the original. For the overapproximation,
we focused on preserved (non-shadowed) DROP rules. For the
underapproximation, we focused on preserved (non-shadowed)
ACCEPT rules. If the firewall features some rate-limiting for all
packets in the beginning, the underapproximation is naturally
a drop-all ruleset because the rate-limiting could apply to all
packets. According to our metric, such a ruleset is of no use
(but the only sound solution). We indicate this case with an r.
The table indicates that, usually, at least one approximation
per firewall is useful.

For brevity, we only elaborate on the most interesting
rulesets and stories.

Firewall A: This firewall is the core firewall of our
lab (Chair for Network Architectures and Services). It has
two uplinks, interconnects several VLANs, hence, the firewall
matches on more than 20 interfaces. It has around 500 direct
users and one transfer network for an AS behind it. The traffic
is usually several Mbit/s. The dumps are from Oct 2013,
Sep 2014, May 2015, Sep 2015 and the changing number
of rules indicates that it is actively managed. The firewall
starts with some rate-limiting rules. Therefore, its stricter
approximation assumes that the rate-limiting always applies
and transforms the ruleset into a deny-all ruleset. The more
permissive approximation abstracts over this rate-limiting and
provides a very good approximation of the original ruleset.
The ssh service matrix is visualized in Figure 1. The figure
can be read as follows: The vast majority of our IP addresses
are grouped into internal and servers. Servers are reachable
from the outside, internal hosts are not. ip1 and ip2 are two
individual IP addresses with special exceptions. There is also a

5There are methods to improve the performance and provably preserve
correctness, which are out of the scope of this paper.

internal

servers

multicast
INET

localhost

ip1

ip2

AS routers

INET’

Figure 1. TUM ssh Service Matrix

group for the backbone routers of the connected AS. INET is
the set of IP addresses which does not belong to us, basically
the Internet. INET’ is another part of the Internet. With the
help of the service matrix, the administrator confirmed that
the existence of INET’ was an error caused by a stale rule.
The misconfiguration has been fixed. Figure 1 summarizes
over 4000 firewall rules and helps to easily visually verify the
complex ssh setup of our firewall. The administrator was also
interested in the kerberos-adm and ldap service matrices. They
helped verifying the complex setup and discovered potential
for ruleset cleanup.

Firewall D: This firewall was taken from a Shorewall
system with 373 rules and 65 chains. It can be seen that unfold-
ing increases the number of rules. This is due to linearizing the
complex call structures generated by the user-defined chains.
The transformation to the simple firewall further increases the
ruleset size. This is, among others, due to rewriting several
negated IP matches back to non-negated CIDR ranges and
NNF normalization. However, the absolute numbers tell that
this blow up is no problem for computerized analysis. The
firewall basically wires interfaces together, i.e. it heavily uses
-i and -o. This can be easily seen in the overapproximation.
There are also many zone-spanning interfaces. As we have
proven, it is impossible to rewrite interface in this case. In
addition, for some interfaces, no IP ranges are specified.
Hence, this ruleset is more of a link layer firewall than a
network layer firewall. Consequently, the service matrices are
barely of any use.

Firewall E: This ruleset was taken from a NAS device
previously analyzed [3]. The ruleset first performs some rate-
limiting, consequently, the underapproximation corresponds
to the deny-all ruleset. In contrast to previous analysis, we
obtained a more recent version of the ruleset after a system
update. Our ssh service matrix reveals a misconfiguration: ssh
was accidentally left enabled after the update. The service
matrix for the services provided by the NAS (not listed in
the table) verifies that these services are only accessible from
the local network.

Firewall F: This firewall is running on a publicly acces-
sible server. The firewall first allows everything for localhost,
then blocks IP addresses which have shown malicious behavior
in the past and finally allows certain services. Since most rules
are devoted to blocking malicious IPs, our IP address space

259ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

partition roughly grows linear with the number of rules. The
service matrices, however, reveal that there are actually only
three classes of IP ranges: localhost, the blocked IPs, and all
other IPs which are granted access to the services.

Firewall G: For this production server, the service
matrices verified that a SQL daemon is only accessible from a
local network and three explicitly-defined public IP addresses.

Firewall H: This ruleset from 2003 appears to block
Kazaa filesharing traffic during working hours. In addition,
a rule drops all packets with the string “X-Kazaa-User”. The
more permissive abstraction correctly tells that the firewall may
accept all packets for all IPs (if the above conditions do not
hold). Hence, the firewall is essentially abstracted to an allow-
all ruleset. According to our metric, this information is not
useful. However, in this scenario, this information may reveal
an error in the ruleset: The firewall explicitly permits certain
IP ranges, however, the default policy is ACCEPT and includes
all these previously explicitly permitted ranges. By inspecting
the structure of the firewall, we suppose that the default
policy should be DROP. This possible misconfiguration was
uncovered by the overapproximation. The underapproximation
does not understand the string match on “X-Kazaa-User” in
the beginning and thus corresponds to the deny-all ruleset.
However, a manual inspection of the underapproximation still
reveals an interesting error: The ruleset also tries to prevent
MAC address spoofing for some hard-coded MAC/IP pairs.
However, we could not see any drop rules for spoofed MAC
addresses in the underapproximation. Indeed, the ruleset allows
non-spoofed packets but forgets to drop the spoofed ones. This
firewall demonstrates the worst case for our approximations:
one set of accepted packets is the universe, the other is the
empty set. However, manual inspection of the simplified ruleset
helped revealing several errors.

VIII. CONCLUSION

We have demonstrated the first, fully verified, real-world
applicable analysis framework for firewall rulesets. Our tool
supports the Linux iptables firewall because it is widely used
and well-known for its vast amount of features. It directly
works on iptables-save. We presented an algebra on
common match conditions and a method to translate complex
conditions to simpler ones. Further match conditions, which
are either unknown or cannot be translated, are approximated
in a sound fashion. This results in a translation method for
complex, real-world rulesets to a simple model. The evaluation
demonstrates that, despite possible approximation, the simpli-
fied rulesets preserve the interesting aspects of the original
ones.

Based on the simplified model, we presented algorithms to
partition the IPv4 address space and compute service matrices.
This allows summarizing and verifying the firewall in a clear
manner.

The analysis is fully implemented in the Isabelle theorem
prover. No additional input or knowledge of mathematics
is required by the administrator. A stand-alone Haskell tool
can perform the analysis automatically, only requiring the
following input: iptables-save.

The evaluation demonstrates applicability on many real-
world rulesets. For this, to the best of our knowledge, we

have collected and published the largest collection of real-
world iptables rulesets in academia. We demonstrated that
our approach can outperform existing tools with regard to:
correctness, supported match conditions, CPU time, and RAM
requirements. Our tool helped to verify lack of or discover
previously unknown errors in real-world, production rulesets.

AVAILABILITY

The collection of firewall rulesets can be found at
https://github.com/diekmann/net-network

Our Isabelle formalization can be obtained from
https://github.com/diekmann/Iptables_Semantics

REFERENCES

[1] A. Wool, “A quantitative study of firewall configuration errors,” Com-
puter, IEEE, vol. 37, no. 6, pp. 62–67, Jun. 2004.

[2] ——, “Trends in firewall configuration errors: Measuring the holes in
swiss cheese,” Internet Computing, IEEE, vol. 14, no. 4, pp. 58–65, Jul.
2010.

[3] C. Diekmann, L. Hupel, and G. Carle, “Semantics-preserving simpli-
fication of real-world firewall rule sets,” in Formal Methods (FM).
Springer, Jun. 2015, pp. 195–212.

[4] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su, and P. Mohapatra,
“FIREMAN: a toolkit for firewall modeling and analysis,” in Symposium
on Security and Privacy. IEEE, May 2006, pp. 199–213.

[5] V. Capretta, B. Stepien, A. Felty, and S. Matwin, “Formal correctness
of conflict detection for firewalls,” in Workshop on Formal Methods in
Security Engineering. ACM, Nov. 2007, pp. 22–30.

[6] E. Al-Shaer and H. Hamed, “Discovery of policy anomalies in dis-
tributed firewalls,” in INFOCOM, vol. 4. IEEE, Mar. 2004, pp. 2605–
2616.

[7] R. M. Marmorstein and P. Kearns, “A tool for automated iptables
firewall analysis.” in USENIX Annual Technical Conference, FREENIX
Track, 2005, pp. 71–81.

[8] ——, “Firewall analysis with policy-based host classification.” in
Large Installation System Administration Conference (LISA), vol. 6.
USENIX, Dec. 2006, pp. 41–51.

[9] V. Fuller and T. Li, “Classless Inter-domain Routing (CIDR): The
Internet Address Assignment and Aggregation Plan,” RFC 4632 (Best
Current Practice), Internet Engineering Task Force, Aug. 2006.

[10] T. Nelson, A. D. Ferguson, D. Yu, R. Fonseca, and S. Krishnamurthi,
“Exodus: Toward automatic migration of enterprise network config-
urations to SDNs,” in SIGCOMM Symposium on Software Defined
Networking Research, ser. SOSR ’15. ACM, 2015, pp. 13:1–13:7.

[11] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and S. Krishnamurthi,
“The Margrave tool for firewall analysis.” in Large Installation System
Administration Conference (LISA). USENIX, Nov. 2010.

[12] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: A Proof
Assistant for Higher-Order Logic, ser. LNCS. Springer, 2002, last
updated 2016, vol. 2283. [Online]. Available: http://isabelle.in.tum.de/

[13] C. Diekmann, L. Schwaighofer, and G. Carle, “Certifying spoofing-
protection of firewalls,” in 11th International Conference on Network
and Service Management, CNSM, Barcelona, Spain, Nov. 2015.

[14] A. Wool, “The use and usability of direction-based filtering in firewalls,”
Computers & Security, vol. 23, no. 6, pp. 459–468, 2004.

ACKNOWLEDGMENTS

Lars Hupel commented on early drafts of this paper.
We thank all (anonymous) administrators who donated their
firewall configs. This work has been supported by the German
Federal Ministry of Education and Research, project SURF,
grant 16KIS0145, and by the European Commission, project
SafeCloud, grant 653884.

260ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Does Scale, Size, and Locality Matter? Evaluation of
Collaborative BGP Security Mechanisms

Rahul Hiran
Linköping University, Sweden

Niklas Carlsson
Linköping University, Sweden

Nahid Shahmehri
Linköping University, Sweden

Abstract—The Border Gateway Protocol (BGP) was not de-
signed with security in mind and is vulnerable to many attacks,
including prefix/subprefix hijacks, interception attacks, and im-
posture attacks. Despite many protocols having been proposed
to detect or prevent such attacks, no solution has been widely
deployed. Yet, the effectiveness of most proposals relies on large-
scale adoption and cooperation between many large Autonomous
Systems (AS). In this paper we use measurement data to evaluate
some promising, previously proposed techniques in cases where
they are implemented by different subsets of ASes, and answer
questions regarding which ASes need to collaborate, the impor-
tance of the locality and size of the participating ASes, and how
many ASes are needed to achieve good efficiency when different
subsets of ASes collaborate. For our evaluation we use topologies
and routing information derived from real measurement data.
We consider collaborative detection and prevention techniques
that use (i) prefix origin information, (ii) route path updates,
or (iii) passively collected round-trip time (RTT) information.
Our results and answers to the above questions help determine
the effectiveness of potential incremental rollouts, incentivized or
required by regional legislation, for example. While there are
differences between the techniques and two of the three classes
see the biggest benefits when detection/prevention is performed
close to the source of an attack, the results show that significant
gains can be achieved even with only regional collaboration.

I. INTRODUCTION

The Internet is highly susceptible to routing attacks [4],
[12]. In almost all types of routing attacks, the attackers rely on
vulnerabilities in the Border Gateway Protocol (BGP) to attract
traffic that was not intended for them. Often this is achieved
through a prefix attack or subprefix attack, in which the attacker
announces itself as the origin of a prefix with the intention
of attracting some of the traffic intended for IP addresses
belonging to this prefix. Sub-prefix attacks are particularly
dangerous as the longest-prefix routing rules implemented on
routers always route to the most specific (sub)prefix.

An attack’s severity and the complexity of detecting the
attack is, to a large extent, determined by the attacker’s actions
when receiving the hijacked traffic. For example, black-holing
attacks in which the traffic terminates at the attacker network
are relatively easy to detect, as the traffic source may not obtain
expected end-to-end responses. In contrast, imposture attacks,
in which the attacker also impersonates the destination, or
interception attacks, in which the attacker re-routes the traffic
to the destination, are much more difficult to detect.

Unfortunately, despite an increasing number of observed
routing attack occurrences [1], [6], [12], [13], it has proven dif-
ficult to incentivize operators to invest in existing solutions [4],

TABLE I. EXAMPLES OF SYSTEMS, THE INFORMATION THEY

SHARE/USE, AND THE ATTACKS THEY CAN HELP DETECT/PREVENT.

Information Prefix Subprefix Inter- Impos- Example
shared hijack hijack ception ture solutions
Prefix
origin

✓ ✓ ✗ ✗ Route filtering [3],
[4], RPKI [21],
ROVER [8]

Route path
updates

✓ ✓ ✗ ✗ PHAS [20],
PrefiSec [15],
PG-BGP [16]

Passive
measure-
ments

✗ ✗ ✓ ✓ CrowdSec [14]

Active
measure-
ments

✗ ✗ ✓ ✓ Zheng et al. [30],
PrefiSec [15]

and there is currently no universally deployed solution that
prevents hijacking of Internet traffic by third parties [12]. For
example, the deployment of crypto-based efforts [18], [21],
[27] has been hampered by high deployment costs for network
operators [4], [12]. Instead, monitoring of path announcements
and the data paths taken by data packets are typically used to
identify potential hijacks and other suspicious data paths [14],
[16], [20], [28]. With routing paths being determined by the
individual routing decisions of many involved operators and
other organizations running their own Autonomous Systems
(AS) [1], [16], [28], such techniques benefit greatly from
information sharing between ASes.

Different types of information can be helpful in the detec-
tion of routing attacks. Table I summarizes some of the most
commonly proposed information sources for such systems, as
well as some example systems and the types of attacks these
systems propose to protect against. In this paper, we focus on
the first three types and only briefly discuss the fourth type.

A number of important questions arise when considering
cooperative information sharing across ASes and other network
entities/organizations for the purpose of detecting or preventing
routing attacks. For example, how do the detection/prevention
rates of the different techniques scale with the number of
participants? What is the impact of the size of each participant,
or the information available to the participant? And, what
is the impact of the location of the participants sharing the
information? The latter question may be particularly important
as it may help provide insights into the effectiveness of
regional government-issued legislation or regional agreements.
For example, the United States (US) government or the Euro-
pean Union (EU) may push to have ASes and organizations
under their respective jurisdictions share information in order
to protect the common interests of each region.

While some of the papers introducing the above example
systems have used data-driven analysis to illustrate the powerISBN 978-3-901882-83-8 c⃝ 2016 IFIP

261ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

of large-scale information sharing between large ASes, little at-
tention has been paid to the effect of the geographic locality of
each participant. Although many ASes have points-of-presence
in many geographic regions, ASes operated by organizations
from the same country or geographic region may be more
likely to openly or through legislation, for example, share
information with each other. Ongoing geographical and polit-
ical polarization may further contribute to potential location-
based participation and sharing restrictions. Motivated by these
observations, in addition to analyzing each of the above three
questions on their own, this paper places particular focus on the
impact of the locality of the participants. Locality is considered
both on its own, and also with regards to size-based inclusion
within and across regions, as well as with regards to the scale
of the (local or global) information sharing alliance.

The main contribution of this paper is a systematic data-
driven evaluation of some promising-previously proposed hi-
jack prevention and routing attack detection techniques. In
particular, we consider the above outlined questions in the
context of three example techniques that share (i) prefix origin
information, (ii) route path updates, or (iii) passively collected
round-trip time (RTT) information. For our evaluation, we
develop a data-driven methodology for each information shar-
ing approach which takes into account the geographic locality
(e.g., the region in which the AS is registered) and the relative
size (e.g., measured by the number of neighboring ASes) of
each of the potential participants. Using real-world topologies
and routing information derived from measurement data we
then systematically evaluate the impact of each factor, either
on its own, or accounting for the geographic locality of the
participants, attackers, and victims.

Our results provide insights into the tradeoffs between
global and local deployment. While the results highlight the
value of detection and prevention close to the source of
an attack, we also find cases where regional collaboration
may achieve many of the benefits achievable through global
deployment. Other interesting findings include the observation
that the largest ASes are not always the best at hijack detection
when the attacks are from other regions. Instead, collaboration
with mid-sized ASes may be beneficial. This is in contrast
to the deployment of hijack prevention mechanisms, which
benefit significantly from large ASes participating, regardless
of whether the deployment is global or regional. Our scale-
and size-based evaluation also provides insights into other
deployment related issues, including the relative deployment
benefits during different phases of an incremental rollout.

Paper outline: Section II provides background and sets the
context. The following three sections present our evaluation
results for three general classes of collaborative prevention and
detection systems. In Section III we evaluate (sub)prefix attack
prevention techniques that use prefix origin information, in
Section IV we evaluate hijack detection mechanisms that use
path announcements, and in Section V we evaluate interception
and imposture detection techniques that use passively collected
RTT measurements. Finally, related work and conclusions are
presented in Sections VI and VII, respectively.

II. BACKGROUND

BGP works well in normal circumstances. However, inher-
ent vulnerabilities with the protocol enable routing attacks.

Old path

New path

VictimDetector

Attacker

Old path

New path

VictimDetector

Attacker

(a) Imposture attack (b) Interception attack
Fig. 1. Imposture and interception examples.

A. Routing attacks

A major vulnerability in BGP is its inability to validate the
allocation of prefixes to ASes. This makes it difficult to detect
when an attacker AS announces one or more prefixes allocated
to other network(s). In a prefix hijack the attacker announces a
prefix (e.g., a.b.c.d/16) that is actually allocated to a different
AS. Depending on ASes’ relationships and how the AS-PATH
is propagated between ASes such attacks may attract (hijack)
more or less traffic. In a subprefix hijack the attacker announces
a subprefix (e.g., a.b.c.d/24) of a larger prefix (e.g., a.b.c.d/16).
Due to the longest-prefix matching rule used by routers, these
attacks may be particularly effective in hijacking traffic.

All the above types of attack may lead to one of several
outcomes. For example, in a blackholing attack the attacker
simply drops the traffic that it attracts. Figure 1 illustrates two
more difficult attacks to detect. In an imposture attack (Figure
1(a)), the attacker impersonates the intended destination for the
traffic and in an interception attack (Figure 1(b)) the attacker
redirects the traffic to its intended destination, possibly after
making a copy or modifying the data, for example. These
attacks are particularly stealthy when the users originating the
traffic receive uninterrupted service.

B. Collaborative information sharing

Various systems have been proposed to detect, mitigate, or
prevent routing attacks and other unwanted routing incidents.
These systems typically rely on collaborating ASes sharing
different information. For our analysis we focus on three broad
classes of techniques that share and/or use the first three types
of information in Table I. They correspond to prefix origin
information, route path updates, and passively collected RTTs.
Route path updates can easily be collected at individual routers
or at the AS level, and then shared with other ASes. RTTs can
easily be passively collected and shared by almost any network
entity [14]. In the following we describe how the different
systems that we evaluate here use the shared information.

C. Hijack prevention using prefix origin

Ideally, a hijack prevention mechanism should prevent an
AS from accepting and propagating bogus route announce-
ments. If implemented widely, such mechanisms could then
prune away bogus route announcements close to the source
and prevent an attacker from reaching more ASes and users.

Previously proposed mechanisms that can provide hijack
prevention include prefix filtering [4], PG-BGP [16], RPKI [8],
and ROVER [17]. Many of these techniques build a trusted and
formally verifiable database of prefix-to-AS pairings between
the IP prefixes and the ASes that are allowed to originate
them. If used correctly, routers implementing RPKI [8] and

262ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

ROVER [17] can be assumed to pick the right origin and avoid
propagating the wrong origin for prefixes. To achieve this, two
conditions must be satisfied. First, the AS that wants to defend
itself against route hijacks on its prefixes, or its provider AS,
must register a prefix-to-AS mapping with RPKI or ROVER.
Second, as part of their validation of prefix-to-AS mappings,
relying ASes must successfully retrieve and check these AS-
to-prefix mappings from the RPKI or ROVER records.

With PG-BGP [16], the acceptance of suspicious routes is
delayed, and routes are accepted and propagated only after a
certain threshold time duration has passed. Since suspicious
routes are typically short-lived [25], the performance of PG-
BGP is usually similar to that of RPKI and ROVER. Therefore,
for the purpose of our evaluation, we only simulate the
performance of RPKI and ROVER.

D. Control-plane based anomaly detection

There are several works that are based on control-plane
data for the detection of anomalies in BGP routing, including
PHAS [20], PrefiSec [15], and PG-BGP [16]. While PHAS
and PG-BGP aggregate all information centrally, PrefiSec
distributes computing and detection across participants. Oth-
erwise, the approaches are relatively similar. For each pre-
fix, these protocols track the origin ASes observed by its
participants and raises alerts when there are changes. The
common idea leveraged by all these protocols is that an IP
prefix should be originated by a single AS. An IP prefix
originated by more than one AS results in a Multiple Origin AS
(MOAS) conflict. While some MOAS are legitimate and can be
observed over long time periods [29], a newly-detected MOAS
conflict can be an indication of a potential prefix hijack. By
keeping track of the AS-to-prefix mappings observed in AS-
PATH announcements, these protocols can flag new potential
MOAS cases. Naturally, as more ASes participate and share
their observed path announcements, the system will have more
complete AS-to-prefix mappings.

E. Route anomaly detection using passive measurements

The examples in Figure 1 illustrate why imposture and in-
terception attacks may be particularly difficult to detect without
observing the actual data path or the impact these changes have
on the RTTs. Both active traceroute-based anomaly detection
techniques [15], [30] and passive RTT-based anomaly detection
techniques [14] have been proposed. While we will focus on
the use of passive measurements, we note that the approaches
in general are fairly similar. For example, Zheng et al. [30]
use changes in the number of hops in the traceroute paths to
identify potential hijacks, while Hiran et al. [14] use changes
in the RTTs to identify potential anomalies.

In both types of systems measurement information from
multiple sources is shared to provide stronger evidence and
more accurate flagging of suspicious events. For example, in
CrowdSec [14] clients or other network entities (e.g., mid-
dleboxes) share RTT outlier information and collaboratively
identify prefixes with many affected clients, so as to identify
potential routing anomalies. For collaborative detection the
system uses statistical tests based on binomial hypothesis
testing. One of the main advantages of using passive mea-
surements is that, in contrast to active measurements such as
traceroutes, they do not add additional traffic overhead.

III. EVALUATING HIJACK PREVENTION TECHNIQUES

Several studies have suggested that there are significant
benefits to deploying hijack detection and prevention mech-
anisms on several large ASes across the world. However,
global deployment that spans multiple geographic regions and
jurisdictions is non-trivial and may not be practical due to
political and economic reasons. It may be more practical
to push or incentivize the deployment within a geographic
region such as the US or EU. For example, governmental
legislation or other regional mechanisms may be used to push
or incentivize agreements between ASes within a region.

In this paper, we evaluate and compare the benefits and
drawbacks of deploying three different general classes of
prevention and detection techniques regionally versus globally.
For each class of techniques we simulate the effectiveness
of the general technique when different subsets of potential
candidate participants employ the technique and share in-
formation between each other. Within this context, we then
answer questions related to the impact of locality and size
of the participants, as well as the number of participants. For
example, what is the impact of the number of ASes that deploy
the hijack prevention mechanisms, either from a specific region
(e.g., North America or Europe) or globally? And, what is the
impact of size of the ASes that deploy the hijack prevention
mechanisms from a specific region or globally?

In this section we answer the above questions in the
context of hijack prevention mechanisms such as route filter-
ing [3], [4], RPKI [21], and ROVER [8].

A. Simulation-based Evaluation Methodology

For our simulation-based evaluation, we modified and
extended the existing BSIM [16] simulator. BSIM simulates
route propagation using the standard Gao-Rexford model [7],
which captures the behavior of the economy-driven poli-
cies used in practice [11]. The model distinguishes between
customer-provider relationships (where the customer AS pays
its provider) and peer-peer relationships (where two ASes
often agree to transit each other’s traffic for free). In particular,
the model assumes that ASes use a routing policy in which
customer routes may be exported to all neighboring ASes, but
routes learned from peers or providers are exported only to
the customers. In addition, the policy prefers customer routes
over peer routes (since they bring revenue) and peer routes
over provider routes (since provider routes cost money). In
cases of multiple tied routes, the routes with the shortest AS
paths are chosen. Finally, for the purpose of the simulations, if
there are still ties, these ties are broken (arbitrarily) by picking
the route over the AS with the lowest AS number.

We extracted the Internet AS-level topology and AS rela-
tionship information for every pair of neighboring ASes from
public data [5]. We use a snapshot from August 2015, which
contains 51,507 ASes and 199,540 AS relationships.

For evaluating hijack prevention mechanisms, we simulate
how the routes would propagate in the presence of hijack
prevention mechanisms compared to the case when these
mechanisms are not present. We measure the fraction of ASes
that end up forwarding packets along the correct path in both
scenarios and report the percentage increase in the number of

263ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

ASes that choose the correct origin. To calculate the percent-
age increase we first simulate each example attack when no
ASes deploy the prevention mechanism and when a random
subset of ASes deploy the mechanism, respectively, and then
report the average increase in the number of ASes that route to
the correct destinations when the prevention mechanism was
deployed. In each example scenario, we perform simulations
by randomly choosing victim and attacker ASes from selected
example regions. Across all scenarios, we randomly picked
N ASes to deploy the mechanism from the set of ASes with
at least X neighboring ASes, and reported the average over
500 simulations per scenario (with 95% confidence intervals
for the average). The use of threshold is in part motivated by
larger ASes (with many neighbors) being more likely to have
the resources to deploy hijack prevention mechanisms [10].
Here, the degree threshold X is used to bias the size of the
individual participants and the parameter N captures the size
(scale) of the alliance as a whole.

To compare different deployments, we use locality-, size-,
and scale-based criteria to randomly pick subsets of the nodes
on which to implement the mechanism. In all simulations,
victim nodes are selected at random and the reported metrics
are calculated over all nodes in the network.

As is common practice, for our evaluation we varied one
parameter at a time, while keeping all the other parameters
constant. Our default degree threshold X = 20 was selected
to map to an intermediate value in the range of interest (0-50),
and the default alliance size N was selected to be equal to the
number of ASes with at least 50 neighbors.

Before presenting our results, it should be noted that the
simulations have limitations. First, the AS relationship data
used for the simulations is not perfect and does not take into
account more complex AS-to-AS relationships. For example,
two ISPs may interconnect at multiple peering points and have
different types of relationships at each point [5]. Second, not
all network operators follow the standard rules for route export.
However, it is believed that there are few exceptions [11].

B. Global Baseline: Scale and Size

For reference, we first present results when the participating
ASes are selected from the global set of ASes. Figure 2
summarizes these results. Figure 2(a) shows the percentage
improvement in the number of ASes that chose the correct
origin, as a function of the number of participating ASes. With
our default threshold X = 20, the right-most points correspond
to the case when all 2,626 ASes with at least 20 neighbors
participate. In comparison, Figure 3 shows the same plot for
ASes in North America (NA), the European Union (EU), and
the rest of the world (all ASes excluding those in NA and
EU).

Referring to the global deployment results (Figure 2(a)),
all regions observe significant advantages from higher par-
ticipation. For example, with 500 random participants we
observe an average improvement of more than 15% across
all victim-attacker pair scenarios. In comparison, hen all ASes
with degree of at least 20 participate the improvements are
consistently above 45%. While overall numbers are lower
when only local ASes participate (Figure 3), we note that
local deployment is important when protecting against attacks

from within the region. This is demonstrated by the higher
percentage of improvements when the attacker is in the region
deploying the security mechanism.

Figure 2(b) shows the percentage improvement as a func-
tion of the threshold degree X . With our default alliance size
N = 1, 093, the righ-most points correspond to the case when
all ASes with a degree of at least 50 participate.

From these results it is clear that the high-degree ASes
are the ones that offer the most protection. For example, if all
the 1,093 top-ASes with more than 50 neighbors participate
we observe improvements of more than 40% for all victim-
attacker scenarios. This shows the importance of getting the
large ASes onboard in these deployment efforts. The general
observation that collaboration by a few large ASes can provide
much of the protection is not new. Similar observations have
been made by Gersch et al. [9] and Karlin et al. [16], for
example. In this work, we take this analysis one step further
and consider the impact of regional deployment.

Figure 4 presents location-based results for when only
ASes in a certain region deploy the prevention mechanism,
and where ASes deploying the mechanism are selected based
on their degree. We note that regional deployment can provide
similar improvements as in a global deployment when the
attacker is local. The improvements are noticeably lower
when the attackers are located in other regions. For example,
the percentage gain in ASes choosing the correct origin for
attackers in NA is greater when ASes in NA deploy the
prevention mechanisms compared to the gains when ASes in
other regions deploy the mechanisms. These results illustrate
that enforced deployment of these mechanisms may be a good
way for regions to clean up their own networks.

The locations of victim networks play a smaller role.
Although all networks would benefit from such a deployment,
the local networks would not gain much more protection
than external networks. These mechanisms should perhaps
best be seen as mechanisms for the greater good, with the
results showing that there is great incentive for governments
and network operators to come together to help ensure that
prevention mechanisms are deployed on a large scale.

C. Location-based Discussion: Key Findings

It is often stated that you should keep your friends close
and your enemies closer. Our results highlight that this is also
an important lesson in today’s networks. First, starting with
our friends, our results show that there are substantial gains
from local deployment, regardless of where the attacks come
from. For example, if all ASes with a degree of at least 20
deploy these mechanisms we observe a 30% gain for the NA-
based victims regardless of attacker region (e.g., Figure 3(a)).
In EU (Figure 3(b)) the corresponding gain is 20%.

Second, considering the attackers, our regional results
clearly show that detectors close to the attackers help the
most. For example, when ASes in NA deploy hijack prevention
schemes, the damage from hijack attacks originating from
ASes in this region can be significantly controlled in all
regions. These results show that the largest benefits come
with global deployment, and that there may be benefits to
subsidizing or otherwise incentivizing international partners to
implement these mechanisms too.

264ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 0

 10

 20

 30

 40

 50

 60

 0 500 1000 1500 2000 2500
%

 i
n

c
re

a
s
e

 i
n

 #
 o

f
A

S
e

s
 t

h
a

t
c
h

o
o

s
e

 t
h

e
 c

o
rr

e
c
t

o
ri
g

in
Number of ASes

Vic:Att
All:All

All:NA
All:EU

All:Rest
NA:All
EU:All

Rest:All
 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50

%
 i
n

c
re

a
s
e

 i
n

 #
 o

f
A

S
e

s
 t

h
a

t
c
h

o
o

s
e

 t
h

e
 c

o
rr

e
c
t

o
ri
g

in

Degree of ASes

Vic:Att

All:All

All:NA

All:EU

All:Rest

NA:All

EU:All

Rest:All

(a) Number of participating ASes (b) Size of participating ASes
Fig. 2. The average percentage improvement in the number of ASes that choose the correct origin when different subsets of the global set of ASes participate.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 100 200 300 400

%
 i
n

c
re

a
s
e

 i
n

 #
 o

f
A

S
e

s
 t

h
a

t
c
h

o
o

s
e

 t
h

e
 c

o
rr

e
c
t

o
ri
g

in

Number of ASes

Vic:Att
All:All

All:NA
All:EU

All:Rest
NA:All
EU:All

Rest:All

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 200 400 600 800 1000

%
 i
n

c
re

a
s
e

 i
n

 #
 o

f
A

S
e

s
 t

h
a

t
c
h

o
o

s
e

 t
h

e
 c

o
rr

e
c
t

o
ri
g

in

Number of ASes

Vic:Att
All:All
All:NA
All:EU

All:Rest
NA:All
EU:All

Rest:All

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 200 400 600 800 1000

%
 i
n

c
re

a
s
e

 i
n

 #
 o

f
A

S
e

s
 t

h
a

t
c
h

o
o

s
e

 t
h

e
 c

o
rr

e
c
t

o
ri
g

in

Number of ASes

Vic:Att
All:All

All:NA
All:EU

All:Rest
NA:All
EU:All

Rest:All

(a) North America (NA) (b) European Union (EU) (c) Rest of the world
Fig. 3. Impact of number of participating ASes, when ASes are selected from a particular geographical region or the “rest of the world”.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50

%
 i
n

c
re

a
s
e

 i
n

 #
 o

f
A

S
e

s
 t

h
a

t
c
h

o
o

s
e

 t
h

e
 c

o
rr

e
c
t

o
ri
g

in

Degree of ASes

Vic:Att

All:All

All:NA

All:EU

All:Rest

NA:All

EU:All

Rest:All

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50

%
 i
n

c
re

a
s
e

 i
n

 #
 o

f
A

S
e

s
 t

h
a

t
c
h

o
o

s
e

 t
h

e
 c

o
rr

e
c
t

o
ri
g

in

Degree of ASes

Vic:Att

All:All

All:NA

All:EU

All:Rest

NA:All

EU:All

Rest:All

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50

%
 i
n

c
re

a
s
e

 i
n

 #
 o

f
A

S
e

s
 t

h
a

t
c
h

o
o

s
e

 t
h

e
 c

o
rr

e
c
t

o
ri
g

in

Degree of ASes

Vic:Att

All:All

All:NA

All:EU

All:Rest

NA:All

EU:All

Rest:All

(a) North America (NA) (b) European Union (EU) (c) Rest of the world
Fig. 4. Impact of the degree threshold of the participating ASes, when all are selected from a geographic region or the “rest of the world”. For these figures,
we choose N = 207, N = 571, and N = 315, respectively.

Overall, the percentage gain when hijack prevention mech-
anisms are deployed by all (roughly 2,500) ASes around the
world with a degree of at least 20 varies between 40% and
50% for different combinations of victim-attacker regions (Fig-
ure 2(a)). If only 500 random ASes around the world deploy
the mechanism, the gain is roughly 15%. By comparison, when
the 431 ASes with a degree of at least 20 in NA deploy
the hijack prevention mechanisms, the percentage gain varies
between 23% to 43%, depending on which victim-attacker pair
combination is considered (Figure 3(a)). The higher numbers
partially reflect the big impact of the NA-based ASes, many
of which are high-degree ASes with peering points around the
globe, but also demonstrate the value of regional deployment
to help protect against hijack attacks.

IV. EVALUATING HIJACK DETECTION MECHANISMS

A. Methodology and Datasets

To evaluate hijack detection mechanisms based on AS-
PATH updates we have extended and modified a framework
that was previously used to evaluate alert rates for PrefiSec [15]
to account for ASes and their locality. While the evaluation
framework is designed for PrefiSec, the results presented here
also apply to PHAS [20] and PG-BGP [16]. Given the same

information, these systems’ detection rates are the same. The
main differences between these systems are their communica-
tion overhead and where the processing is performed.

For our analysis, we collected the RIB files and AS-PATH
announcements observed at all six routeviews servers active
during the time of the China Telecom incident [13], on April
8, 2010, when China Telecom announced origin for 50,000
prefixes originated by other ASes. Using announcements from
around the time, we compare differences and similarities of
the detection rates during an actual attack.

Focusing on a two-week window around the time of the
incident, we first used the RIB files from April 1 and a warm-
up period to initialize the AS-to-prefix mappings seen by
different selected subsets of ASes. Of particular interest here
is the degree (size) and locality of the collaborating ASes. In
our evaluation, we consider sets of collaborating ASes selected
from NA, EU, the “rest of the world” (reference point, rather
than a region), and from the global set. In contrast to the
original evaluation frameworks, which treated the routeviews
servers as the participants [15], we use the AS information of
the ASes contributing announcements to the routeviews servers
and AS-to-region mappings to identify subsets of information
seen by different subsets of collaborating ASes.

265ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

In total, the six routeviews servers have 100 vantage points
that belong to 73 unique ASes. Of these, 38 are NA-based, 21
EU-based, and 14 map to other geographic regions.

For each of the subsets of collaborating ASes that we
chose, we then look at each day in the time window and simu-
late and report the number of prefixes and origins, respectively,
that the ASes in the subset would not have seen prior to that
day. These two metrics directly measure the number of cases
that must be flagged (and further investigated) as potential
prefix and sub-prefix attacks, respectively.

B. Global Baseline

As a baseline, we first present results for when the col-
laborating ASes are selected globally. Figure 5(a) shows the
number of alerts raised for both “new prefixes” (possible
subprefix hijacks) and “new prefix origins” (possible prefix
hijacks) announced during the incident (on April 8) as a
function of number of collaborating ASes. We also include
separate lines for the number of alerts of these two types raised
due to announcements made by China Telecom.

We see that the number of alerts for possible prefix hijacks
increases with the number of collaborating ASes, and that
40,575 alerts (for both prefix and subprefix hijacks) are raised
during the day of the attack if all the nodes collaborate. With
the exception of a few “new prefixes” and “new prefix origins”,
almost all alerts are due to the China Telecom announcements
associated with the incident, which caused traffic for these
prefixes and subprefixes to be hijacked.

Only a few ASes are needed to detect the majority of
the subprefix hijacks (“new prefixes”). This result can be
explained by subprefixes being propagated to almost all ASes
due to more specific prefixes being preferred. For prefix attacks
(“new origin”) additional ASes are much more beneficial,
with some diminishing returns after reaching 40 ASes. This
happens because ASes during these instances become divided
into two groups: ASes that continue routing to the victim
network and ASes that choose to route to the attacker network.
Thus, additional collaborating ASes increases the chance that
conflicting origins are detected and hijack alerts are raised.

Figure 6 puts the above numbers in perspective, showing
the number of alerts for the days before and after the attack.
In addition to being orders of magnitude lower than during the
day of the incident, the flatter “new origin” curves suggest that
the “new origin” announcements during these days propagated
somewhat further than the China Telecom announcements.

Figure 5(b) shows the number of alerts as a function of
the degree threshold to be included in the alliance. For every
threshold, 10 ASes with a degree of at least X are selected
at random. Here, the right-most displayed threshold is picked
so that the selection set include exactly 10 ASes, and the
following points (moving to the left) are picked so as to
roughly double the selection set for each point. The degree
threshold of 1 is included as a reference point.

The figure shows that the number of alerts for the China
Telecom incident is higher when the degree threshold is small,
and the number of alerts is quite low when large ASes
collaborate. This is a very interesting observation as much prior
work has suggested collaboration between the largest ASes,

but it can be partially1 explained by most of the high degree
ASes being NA-based. For example, of the ASes with a degree
greater than 1,174, all but one (i.e., 9 of 10) are NA-based,
and when the threshold is 646, there are 18 NA-based and
2 EU-based. However, these NA-based ASes do not have as
good a vantage point of the China-based incident, with only a
subset of the paths propagating to these ASes. With a lower
degree threshold more ASes from outside NA and EU will be
included, improving the results. This illustrates that the vantage
points offered by global collaboration can be more valuable
to the prefix hijack detection than having only the large ASes
collaborate. Similarly, multi-hop BGP peering can also help.
The detection numbers for subprefix attacks (“new prefixes”)
are less dependent of the AS degree (size) and locality; again,
indicating their wider propagation.

C. Location-based Analysis

We now discuss the benefits of regional collaboration for
hijack detection. Figure 7 shows the number of alerts as a
function of number of ASes for different regions. For all of
the three regions (NA, EU, and “rest of the world”), the number
of alerts increases as more ASes share information. If all NA-
based ASes collaborate there are 22,178 alerts (13,214 “new
origin” and 8,964 “new prefix”). Sharing among all EU-based
ASes raises 10,829 (3,620+7,209) alerts and sharing among all
the ASes in the “rest of the world” category would raise 36,328
(27,280+9,048) alerts. Whereas the sub-prefix detection (“new
prefix”) is similar for the different regions, the differences in
total alerts are substantial. For example, despite there being far
fewer ASes in the “rest of the world” category, this category
has the highest detection rate. The main reason for this is
that many of these ASes have more vantage points closer to
China Telecom than NA-based and EU-based ASes may have,
and therefore have better visibility of the route announcements
made by China Telecom. This observation mirrors the insights
provided by our hijack prevention results (Section III) that
show that ASes deploying protection mechanisms close to the
attacker provide the best protection.

While none of the regional collaborations performs as
good as global collaboration, the value of regionally deployed
solutions should not be underestimated, especially as there is
no solution that has seen widespread deployment yet. These
results show that careful regional deployment, possibly with a
few complementing ASes from other regions, may provide a
significant step in the right direction.

Figures 8(a) and 8(b) show the number of alerts as a
function of the degree threshold for regional collaborations
in NA and EU, respectively. As for the global results, for each
degree threshold, we randomly pick 10 ASes per alliance.

We again observe stronger degree (size) dependence for
prefix hijack detection (“new origins”) than for subprefix hi-
jack detection (“new prefixes”). While the large ASes in NA in
general provide more alerts than the smallest ASes in NA, it is
very interesting that the very top ASes see a drop in the number
of alerts they raise. It is also interesting that the large ASes in
EU detect fewer attacks than the smaller ASes in EU. As the
above ASes are in the same region, our previous explanations
(in Section IV-B) regarding the relative differences in coverage

1Additional explanation will be provided in the next subsection.

266ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 10 20 30 40 50 60 70 80

N
u

m
b

e
r

o
f

a
le

rt
s

Number of ASes

New prefix, Total

New origin, Total

New prefix, China Telecom

New origin, China Telecom

 7000

 8000

 9000

 10000

 11000

 12000

1 22 108 204 369 646 1174

N
u

m
b

e
r

o
f

a
le

rt
s

Degree of ASes

New prefix, Total

New origin, Total

New prefix, China Telecom

New origin, China Telecom

(a) Number of participating ASes (b) Size of participating ASes
Fig. 5. Average number of alerts raised when global ASes collaborate the day of the China Telecom
incident.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 10 20 30 40 50 60 70 80

N
u

m
b

e
r

o
f

a
le

rt
s

Number of ASes

 New prefix, 7th

 New origin, 7th

 New prefix, 9th

 New origin, 9th

Fig. 6. Average number of alerts raised when
global ASes collaborate the day before (April 7)
and after (April 9) the incident.

 5000

 7000

 9000

 11000

 13000

 15000

 5 10 15 20 25 30 35 40

N
u
m

b
e
r

o
f
a
le

rt
s

Number of ASes

New prefix, Total

New origin, Total

New prefix, China Telecom

New origin, China Telecom

 0

 2000

 4000

 6000

 8000

 4 6 8 10 12 14 16 18 20 22

N
u
m

b
e
r

o
f
a
le

rt
s

Number of ASes

New prefix, Total

New origin, Total

New prefix, China Telecom

New origin, China Telecom

 8000

 12000

 16000

 20000

 24000

 28000

 5 6 7 8 9 10 11 12 13 14

N
u
m

b
e
r

o
f
a
le

rt
s

Number of ASes

New prefix, Total

New origin, Total

New prefix, China Telecom

New origin, China Telecom

(a) North America (NA) (b) European Union (EU) (c) Rest of the world
Fig. 7. Number of alerts during the day of the incident (April 8, 2010) for different sizes of regional collaborations.

seen by ASes in different regions no longer apply here. In the
same region, the size-based differences may instead be related
to the standard route export policy. In particular, malicious
routes (learnt from a peer or provider) are typically exported
only to customers. Therefore, malicious routes learnt by mid-
tier ASes may not reach their providers (typically large ASes).

V. INTERCEPTION AND IMPOSTURE DETECTION

A. Methodology and Datasets

To provide insights into the impact of regional collabo-
ration for detecting interception and imposture attacks, we
have extended the evaluation of CrowdSec [14] to account
for locality of the collaborating network entities. CrowdSec
is designed to raise alerts about RTT anomalies and help
detect interception and imposture attacks. In the case of an
interception attack (Figure 1(b)) the RTTs typically increase
during an attack, whereas the RTTs during an imposture attack
(Figure 1(a)) can either increase or decrease, depending on the
relative locality of the attacker, victim, and detector.

In CrowdSec the end clients passively collect RTT mea-
surements while in contact with different candidate victim IP
addresses (or prefixes). The client applies an outlier detection
test to raise an alert if the new RTT measurement deviates
significantly from previously observed RTT measurements.
These alerts are shared with other CrowdSec clients, and the
individual alerts are combined using statistical test methods
such as a binomial test that takes into account the likelihood
of N clients observing significant deviations in RTT measure-
ments to the same prefix, given past observations [14].

For the evaluation presented here, passively collected RTT
values are simulated by extracting RTTs from (active) tracer-
oute measurements performed by PlanetLab2 nodes as part

2PlanetLab, https://www.planet-lab.org/

of the iPlane [23] project. In particular, we use daily RTT
measurements associated with 106 NA-based nodes, 79 EU-
based nodes, and 36 nodes located in other parts of the world.
For the most part we use a month’s worth of training data
(e.g., 278,690 successful traceroutes during July 2014) and
evaluate the performance of different detection techniques for
the following week, during which we simulate different attack
combinations. In total, we simulate 15,279 interception attacks
and 62,576 imposture attacks per set of sample detectors,
and report results averaged over 10 such sample sets. While
we only present interception results, the results for imposture
attacks are similar. In each simulation, detector nodes and
affected nodes are selected randomly within each region.

B. Global and location-based evaluation

Figure 9 shows a comparison of tradeoffs in detection
rate during a simulated attack (y-axis) and the false alert rate
under normal circumstances (x-axis), when all global vantage
points are collaborating (Global) and when only those in North
America (NA) or Europe (EU) collaborate. We include results
for when all (100%), half (50%), or none (0%) of the potential
detector nodes are affected. The case when no nodes (0%) are
affected is included only as a reference point, and captures the
false positive rates during normal circumstances.

Interestingly, the 106 NA-based nodes achieve a tradeoff
that is almost as good as the larger global collaboration (with
221 nodes). For example, a global collaboration that allowed
a false alert rate of 10−2 would achieve a detection rate of
80%, if 50% of the nodes were affected. In the same scenario,
the NA-based nodes achieve a 70% detection rate and the EU-
based nodes achieve a 40% detection rate.

Note, however, that the size of the collaboration may play
a big role. In Figure 10 we present a regional comparison
while keeping the number of detector nodes fixed at 20 and

267ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 6000

 7000

 8000

 9000

 10000

 11000

1 2 16 94 155 290 688

N
u

m
b

e
r

o
f

a
le

rt
s

Degree of ASes

New prefix, Total

New origin, Total

New prefix, China Telecom

New origin, China Telecom

 1000

 2000

 3000

 4000

 5000

 6000

 7000

1 5 54 158 280 369 485

N
u

m
b

e
r

o
f

a
le

rt
s

Degree of ASes

New prefix, Total

New origin, Total

New prefix, China Telecom

New origin, China Telecom

(a) North America (NA) (b) European Union (EU)
Fig. 8. Impact of the size of the participating ASes on the number of alerts. For each degree threshold
we choose 10 ASes with a degree equal to or greater than the applied threshold.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
tt

a
c
k
 d

e
te

c
ti
o

n
 r

a
te

Alert rate normal circumstances

% affected

0:NA

50:NA

100:NA

0:EU

50:EU

100:EU

0:All

50:All

100:All

Fig. 9. Detection tradeoff for detection rate during
attack and false alert rate during normal circum-
stances for varying percentages of affected nodes.

30. It turns out that NA-based nodes provide much better
detection than EU-based nodes, even when taking alliance
size into account, and in fact outperform a global alliance.
Part of the reason for these differences may be differences in
the variability of RTTs. Another possible contributing factor
that we have discovered is that some EU-based routes (even
between two EU-based nodes) go through NA even under
“normal” circumstances. In such cases, attacks by networks
outside EU may not result in noticeable changes in the RTTs.

C. Scale of collaboration

In general, regardless of the locality of the alliance, we
have observed significant advantages to larger alliances. This
is illustrated in Figure 11. Here, we show the alert-rate tradeoff
for collaborations of different sizes when including nodes that
are randomly selected from all global nodes (Figures 11(a))
vs. only North America (Figures 11(b)). Related to scale, it
should also be noted that there are benefits to larger numbers
of RTT measurements, as this helps to filter out anomalies.
While region-based analysis of this aspect is omitted here, we
refer the interested reader to our global results [14].

VI. RELATED WORK

A large number of security mechanisms have been pro-
posed to secure Internet routing. As described in Section II, this
includes prefix hijack prevention mechanisms based on prefix
filtering [3], [4], crypto-based solutions such as RPKI [21] and
ROVER [8], hijack detection mechanisms based on changes
in prefix origins observed in AS-PATH announcements (e.g.,
PHAS [20], PrefiSec [15], and PG-BGP [16]), and route hi-
jack detection mechanisms using either passive RTT measure-
ments [14] or active traceroute measurements [15], [30]. Rather
than proposing new mechanisms, we evaluate the effectiveness
of three broad classes of such mechanisms when they are only
partially deployed. We place particular focus on the geographic
locality of the collaborating ASes or network entities, while
also considering the impact of the collaboration scale and the
size of participating ASes.

While partial deployment of BGP security mechanisms has
been considered in prior literature [2], [10], [16], [22], the
geographic location of participants is almost always ignored.
Instead, carefully selected ASes have typically been used to
demonstrate the potential of the individual techniques. For
example, Avramopoulos et al. [2] demonstrate good protection
of a participant’s outgoing and incoming traffic using only the
top-5 tier-1 ASes in the world. Others have relied on the top-
tier ASes to demonstrate the effectiveness of PG-BGP [16],

path validation protocols such as S-BGP and BGPSec [22],
and incentive strategies for deployment of S*BGP [10]. None
of these works consider the impact of locality of the ASes that
are deploying the security mechanisms.

We are not the first to study the impact of the number of
participating ASes [9] or their node degree [24]. For example,
Suchara et al. [24] analyze security gains as a function of
increasing the node degree of the ASes that use a BGP security
mechanism that filters malicious routes. Similarly to our re-
sults, they find significant benefits to deploying the mechanism
at high-degree ASes at the core of the Internet. Gersch et
al. [9] analyze the effect of increasing the number of ASes
using attack prevention techniques. Their results nicely show
how the average number of polluted ASes decreases as the
number of participating ASes (with higher degrees) increases.
Again, none of these works consider which geographic region
each AS maps to. This can be an important factor when it
comes to legislation and other political incentives.

Much work has also been done to understand the slow
adoption of RPKI and other solutions [10], [26]. Other or-
thogonal but interesting work in this domain has designed
AS reputation systems that use control-plane information to
capture short-lived routes often used by malicious ASes [19].

Finally, the original simulation framework used in Sec-
tion III has also been used by Karlin et al. [16]. For this part,
we extend the simulator to take into account the geographic
locations of the attackers, victims, and collaborating partici-
pants. In Sections IV and V we extend and generalize our prior
evaluation frameworks for PrefiSec [15] and CrowdSec [14].
Again, neither of these systematically evaluates the value of
scale and size in the context of locality-restricted collaboration.
This paper evaluates three such broad classes of mechanisms.

VII. CONCLUSIONS

Despite BGP’s vulnerabilities and increasingly many rout-
ing attacks, no universally deployed security solution to such
attacks exists. Using simulations based on real measurement
data we have presented a systematic evaluation of three
broad classes ofprevention and detection techniques. We have
focused on the impact that regional, rather than global, de-
ployment could have on their ability to prevent/detect at-
tacks, as well as the impact of AS size of the (regional or
global) participants and the number of ASes that deploy the
techniques. While prefix hijack prevention (Section III) and
detection (Section IV) benefit greatly from deployment close
to the source of an attack, it is encouraging to see cases with

268ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
tt

a
c
k
 d

e
te

c
ti
o

n
 r

a
te

Alert rate normal circumstances

detectors

20-NA

30-NA

20-EU

30-EU

20-Global

30-Global

Fig. 10. Detection tradeoff, when keeping the
number of detectors fixed. Here, 50% of the nodes
are assumed to be affected.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
tt

a
c
k
 d

e
te

c
ti
o

n
 r

a
te

Alert rate normal circumstances

detectors
10
20
30
40
50
60

 0.2

 0.4

 0.6

 0.8

 1

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

A
tt

a
c
k
 d

e
te

c
ti
o

n
 r

a
te

Alert rate normal circumstances

detectors

10

20

30

40

(a) Global (b) North America (NA)
Fig. 11. Detection tradeoff for detection rate during attack and false alert rate during normal
circumstances for varying numbers of detectors. Here, 50% of the nodes are assumed to be affected.

all three classes of techniques where regional deployment
provides substantial benefits. We even find some cases where
regional deployment achieves most of the benefits achievable
through global deployment, and note that regional deployment
with carefully selected participants (e.g., based on AS size) can
outperform global deployments that are less carefully planned.
Another interesting observation is that the largest ASes can
provide worse detection than mid-sized ASes, which may see a
richer set of bogus announcements. This contrasts to deploying
hijack prevention mechanisms, for which large ASes appear
to provide the greatest benefit. The best AS selection may
therefore depend on if the system is designed for prevention
or detection. We have focused on one class of techniques
at a time. Interesting future work could weigh the benefits
of the different approaches against each other for different
collaboration constellations.

ACKNOWLEDGEMENTS

The authors are thankful to our shepherd Ignacio Castro
and the anonymous reviewers for their feedback, which helped
improve the clarity of the paper.

REFERENCES

[1] ARNBAK, A., AND GOLDBERG, S. Loopholes for circumventing the
constitution: Unrestrained bulk surveillance on Americans by collecting
network traffic abroad. In Proc. HOTPETS (Jul. 2014).

[2] AVRAMOPOULOS, I., SUCHARA, M., AND REXFORD, J. How small
groups can secure interdomain routing. Tech. rep., Princeton University,
Nov. 2007.

[3] BATES, T., GERICH, E., JONCHERAY, L., JOUANIGOT, J.-M., KAR-
RENBERG, D., TERPSTRA, M., AND YU, J. Representation of IP
routing policies in a routing registry. RFC 1786 (Informational), Mar.
1995.

[4] BUTLER, K., FARLEY, T., MCDANIEL, P., AND REXFORD, J. A survey
of BGP security issues and solutions. Proc. IEEE 98, 1 (Jan. 2010),
100–122.

[5] DIMITROPOULOS, X., KRIOUKOV, D., FOMENKOV, M., HUFFAKER,
B., HYUN, Y., CLAFFY, K., AND RILEY, G. As relationships: Inference
and validation. SIGCOMM CCR 37, 1 (Jan. 2007), 29–40.

[6] DYN RESEARCH. Pakistan hijacks YouTube, 2008.

[7] GAO, L., AND REXFORD, J. Stable Internet routing without global
coordination. ACM SIGMETRICS 28, 1 (Jun. 2000), 307–317.

[8] GERSCH, J., AND MASSEY, D. ROVER: route origin verification using
DNS. In Proc. IEEE ICCCN (Jul/Aug. 2013).

[9] GERSCH, J., MASSEY, D., AND PAPADOPOULOS, C. Incremental
deployment strategies for effective detection and prevention of BGP
origin hijacks. In Proc. IEEE ICDCS (Jun. 2014).

[10] GILL, P., SCHAPIRA, M., AND GOLDBERG, S. Let the market drive
deployment: A strategy for transitioning to BGP security. In Proc. ACM
SIGCOMM (Aug. 2011).

[11] GILL, P., SCHAPIRA, M., AND GOLDBERG, S. A survey of interdo-
main routing policies. SIGCOMM CCR 44, 1 (Jan. 2014), 28–34.

[12] GOLDBERG, S. Why is it taking so long to secure Internet routing?
ACM Queue 12, 8 (Oct. 2014), 327–338.

[13] HIRAN, R., CARLSSON, N., AND GILL, P. Characterizing large-scale
routing anomalies: A case study of the China telecom incident. In Proc.
PAM (Mar. 2013).

[14] HIRAN, R., CARLSSON, N., AND SHAHMEHRI, N. Crowd-based
detection of routing anomalies on the Internet. In Proc. IEEE CNS
(Sep. 2014).

[15] HIRAN, R., CARLSSON, N., AND SHAHMEHRI, N. PrefiSec: A
distributed alliance framework for collaborative BGP monitoring and
prefix-based security. In Proc. ACM CCS WISCS (Nov. 2014).

[16] KARLIN, J., FORREST, S., AND REXFORD, J. Pretty good BGP:
Improving BGP by cautiously adopting routes. In Proc. IEEE ICNP
(Nov. 2006).

[17] KENT, S. An infrastructure supporting secure Internet routing. In Public
Key Infrastructure, vol. 4043. 2006, pp. 116–129.

[18] KENT, S., LYNN, C., AND SEO, K. Secure Border Gateway Protocol
(S-BGP). IEEE Journal on Selected Areas in Communications 18, 4
(Apr. 2000), 582–592.

[19] KONTE, M., PERDISCI, R., AND FEAMSTER, N. ASwatch: An
AS reputation system to expose bulletproof hosting ASes. In ACM
SIGCOMM (Aug. 2015).

[20] LAD, M., , PEI, D., WU, Y., ZHANG, B., AND ZHANG, L. PHAS: A
prefix hijack alert system. In Proc. USENIX Security (Jul/Aug. 2006).

[21] LEPINSKI, M., AND KENT, S. An infrastructure to support secure
Internet routing. RFC 6480 (Informational), Feb. 2012.

[22] LYCHEV, R., GOLDBERG, S., AND SCHAPIRA, M. BGP security in
partial deployment: Is the juice worth the squeeze? In Proc. ACM
SIGCOMM (Aug. 2013).

[23] MADHYASTHA, H., ISDAL, T., PIATEK, M., DIXON, C., ANDERSON,
T., KRISHNAMURTHY, A., AND VENKATARAMANI, A. iPlane: An
information plane for distributed services. In Proc. OSDI (Nov. 2006).

[24] SUCHARA, M., AVRAMOPOULOS, I., AND REXFORD, J. Securing BGP
incrementally. In Proc. ACM CoNEXT (Dec. 2007).

[25] VERVIER, P.-A., THONNARD, O., AND DACIER, M. Mind your blocks:
On the stealthiness of malicious BGP hijacks. In Proc. NDSS (Feb.
2015).

[26] WAHLISCH, M., SCHMIDT, R., SCHMIDT, T. C., MAENNEL, O., UH-
LIG, S., AND TYSON, G. RiPKI: The tragic story of RPKI deployment
in the Web ecosystem. In Proc. ACM HotNets (Nov. 2015).

[27] WHITE, R. Securing BGP through secure origin BGP. The Internet
Protocol Journal 6, 3 (Sep. 2003), 15–22.

[28] ZHANG, Z., ZHANG, Y., HU, Y. C., MAO, Z. M., AND BUSH, R. iSPY:
Detecting IP prefix hijacking on my own. ACM CCR 38, 4 (Aug. 2008),
327–338.

[29] ZHAO, X., PEI, D., WANG, L., MASSEY, D., MANKIN, A., WU, S. F.,
AND ZHANG, L. An analysis of BGP multiple origin AS (MOAS)
conflicts. In Proc. IMW (Nov. 2001).

[30] ZHENG, C., JI, L., PEI, D., WANG, J., AND FRANCIS, P. A light-
weight distributed scheme for detecting IP prefix hijacks in real-time.
In Proc. ACM SIGCOMM (Aug. 2007).

269ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Measurement-Based Coalescing Control for 802.3az
Angelos Chatzipapas⇤ and Vincenzo Mancuso+

⇤Universidad Carlos III de Madrid, Madrid, Spain, +IMDEA Networks Institute, Madrid, Spain
Email: {angelos.chatzipapas, vincenzo.mancuso}@imdea.org

Abstract—IEEE 802.3az standard (EEE), is the energy-aware
alternative to legacy Ethernet. To save energy by extending the
sojourn in the Low Power Idle state of EEE, packet coalescing
has been proposed. While coalescing improves by far the energy
efficiency of EEE, it is still far from achieving energy consumption
proportional to traffic. Moreover, coalescing can introduce high
delays. In this work, we use sensitivity analysis to evaluate
the impact of coalescing timers and buffer sizes, and to shed
light on the delay incurred by adopting coalescing schemes.
Accordingly, we design and study measurement-based coalescing
control solutions that tune the coalescing parameters on-the-fly,
thus adapting the link to the instantaneous load and controlling
the coalescing delay experienced by the packets. Our results
show that, by relying on run-time delay measurements, simple
and practical adaptive coalescing schemes outperform traditional
static and dynamic coalescing. Notably, our schemes double the
energy saving benefit of legacy EEE coalescing and allow to
control the coalescing delay.

Index Terms—IEEE 802.3az; Coalescing; Data Centers; Effi-
ciency; Sensitivity; Simulation.

I. INTRODUCTION

More than 20% of the energy consumption in data centers
is due to the network operation, which establishes network as
the second biggest energy consumer in data centers [1]. While
high-speed Ethernet cards constantly absorb a considerable
part of a server’s consumption—e.g., 10 Gbps cards consume
⇠15 W [2]—recent studies have shown that network links are
underutilized: ⇠40% are “comatose” and another ⇠40% of the
links are loaded no more than 10% [3]. Hence, there is a clear
need for introducing a network-wide energy saving mechanism.

To this goal, IEEE 802.3az [4], known as Energy Efficient
Ethernet (EEE), introduces a Low Power Idle state (LPI) for
unutilized links. However, in terms of energy saving, EEE
underperforms even under low traffic conditions due to LPI
transitioning delays [5], [6] and thereby more advanced solu-
tions are needed. Packet coalescing [7], [8] has been proposed
to enforce longer sojourns in LPI state, thus improving the
energy proportionality of EEE. However, coalescing has a cost,
i.e., additional queueing delay for packets.

Using sensitivity analysis, this paper discusses the properties
of coalescing techniques for EEE gigabit links, and proposes
the design of delay-controlled adaptive coalescing schemes
that effectively trade off energy saving and delay guarantees.
Specifically, the work (i) analytically studies the performance
of gigabit EEE links with coalescing using real data traces that
have been captured in an operational web hosting center, (ii)
proposes measurement-based coalescing control algorithms

(MBCC) that almost halve the energy consumption of EEE
links with respect to legacy coalescing, while maintaining the
coalescing delay bounded and (iii) shows that significant econ-
omy can be achieved in a typical data center (⇠$1.7M/year).

Our goal is to design a new class of adaptive coalescing
algorithms for EEE links, namely MBCC. To achieve this
goal, we analytically build on top of the analysis we presented
in [6], which accurately models the behavior of coalescing
buffers in gigabit EEE links with static coalescing parameters.1
Specifically, our prior work [6] accounts for the fact that
energy saving features of gigabit EEE links are triggered
by the traffic activity in both link directions simultaneously.
Namely, gigabit EEE links exhibit a bidirectional behavior.
On the one hand, the model of [6] allows to estimate both the
potential energy saving and the coalescing delay, but, on the
other hand, it does not show how to configure the coalescing
parameters optimally. Here, we derive a sensitivity analysis
of the coalescing delay and energy saving with respect to
the coalescing timer duration and the coalescing buffer size,
and use it to design measurement-based control schemes that
outperform legacy coalescing schemes.

Our new analytical study reveals the importance of coa-
lescing parameters in different scenarios, and unveils that by
adjusting the sole coalescing timer duration, it is possible
to tune the link performance to achieve near-optimal energy
saving, while incurring controlled coalescing delay.

Exploiting our analytical findings, we design a simple
measurement-based delay-controlled distributed adaptive coa-
lescing scheme in which network cards at the edge of the link
coordinate by running a simple distributed algorithm to sense
the delay incurred by packets. Our proposal uses the sensed
delay as control signal to trigger the dynamic adaptation of the
coalescing timer in the direction identified through the analysis.

Notably, our study goes beyond existing results on dy-
namic/adaptive coalescing [6], [9], [10]. Indeed, the key and
novel feature of MBCC proposal, which makes it different
from the class of dynamic algorithms studied in [6], is that
we explicitly account, through measurements, for the delay
experienced by packets in the EEE link.

With our approach, adaptive coalescing can outperform static
coalescing by a large factor. We validate the superiority of our
MBCC schemes with respect to other existing solutions by

1We focus on gigabit links because they present the most challenging
behavior for both modeling and implementation of coalescing strategies, as
explained in Section II, and they are the most commonly deployed links in
data centers. However, the algorithms presented in this paper can be used for
the whole EEE link speed range.ISBN 978-3-901882-83-8 c� 2016 IFIP

270ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

using real traffic traces that we have captured in an operational
web hosting center.

The rest of the paper is organized as follows. Section II
describes the basic functionality of EEE, with and without
coalescing, and explains the basic results available for the
modeling of gigabit EEE links. Section III presents a sensi-
tivity analysis of the parameters of EEE with coalescing. In
Section IV we design MBCC. In Section V we benchmark our
schemes and legacy ones. In Section VI we discuss related
work. Finally Section VII concludes the paper.

II. BACKGROUND

A. EEE Gigabit links

The goal of EEE is to achieve energy proportionality, i.e.,
that energy consumption be proportional to link load. EEE
introduces (i) a low power state (namely Low Power Idle -
LPI), in which the link does not serve traffic and consumes
about 10% of the energy consumed by legacy Ethernet, (ii)
an Active state (state A) which performs like legacy Ethernet
serving the traffic, (iii) a Sleep state (state S), which is the
transition of the link from state A to state LPI, and (iv) a
Wake Up state (state W) which is the transition from state
LPI to state A. In LPI, a “Refresh” message is sent every
T
q

time units, in order to check the condition of the link
(e.g., connection, interference level, synchronization, etc.) and
therefore to save time and resources when the link resumes its
activity. For different Ethernet speed, e.g., 100 Mbps, 1 Gbps,
and 10 Gbps, EEE has different specifications and transition
mechanisms among states. Next, we describe the interesting
and most deployed case of 1 Gbps links where, unlike in the
other cases, the traffic in both link directions has to be taken
into consideration in order to switch between states.

In Fig. 1 we can see the specific EEE state transition graph
for gigabit links, in which states L and C are introduced to
differentiate pure idle and idle-with-coalesced-packets during
LPI, as described later in Section II-B for the case of coalescing
operation. The gigabit EEE link can start the transition to state
LPI (state S) only when both link directions are inactive. If
there is no arrival during an interval T

s

(time to switch-off
part of the electronics and go to sleep) the link successfully
enters state LPI. In contrast, if there is an arrival during the
transition in either of the two directions, the link switches back
to state A in order to serve the packet. The link remains in state
LPI as long as there is no packet arrival. As soon as a packet
arrives, the link transits back to state A, which takes T

w

time
units, i.e., the time required to switch on all electronic parts
(state W). For gigabit EEE links, the minimum values (which
are typically implemented) for T

s

, T
w

and T
q

are 182 µs, 16 µs
and 20 ms, respectively. Note that energy-saving operations of
gigabit EEE links are equally affected by arrivals in any link
direction, so we refer to such a behavior as bidirectional.

B. EEE links with coalescing

Studies of EEE [5], [6] have shown that it is very inefficient
and it does not provide any significant energy saving benefit
for network loads that exceed a few percents (>5%). The

A S

LPI

W

L

C

Queues Empty
Both

Arrival

After
Ts

After
Tw

Arrival

every
Tq

1st p
acket "Refresh"

message

Fig. 1: State transitions for 1 Gbps links with coalescing.

main reasons for this behavior are that (i) the interarrival time
between packets may prevent the link to enter state LPI (inter-
packet spacing less than T

s

) and (ii) packet arrivals do not
allow long sojourns in state LPI, and thus most of the time is
spent in transitioning. For instance, gigabit links spend 12 µs
to serve a 1500-byte packet, against the 182 µs plus 16 µs
required for the transition from state A to state LPI and back
to state A passing through states S and W.

To face the above described issues, packet coalescing has
been proposed. Coalescing prolongs the duration of state LPI
since it introduces (i) two buffers of N

c

packets, one for each
link direction, where packets can be stored while the link is in
state LPI and (ii) a timer of duration T

c

which counts down
from the arrival of the first packet in state LPI.

As depicted in Fig. 1, coalescing introduces two new states,
which detail coalescing operations within state LPI: (i) state
L, where the link enters after state S and in which it remains
until it receives a packet in either of the two link directions,
and (ii) state C, during which multiple packets are coalesced.
Both in state L and state C, the link behaves (and absorbs low
power) like in state LPI of a legacy EEE link.

The packet that triggered the transition from state L to state
C starts the timer T

c

, and the transition from state C to state
W occurs after the timer T

c

expires or when one of the two
coalescing buffers fills up. We denote with ⌧

c

the variable-size
interval during which the link remains in state C.

C. Performance of Gigabit EEE links with coalescing

For the analysis presented in this paper, we build on the
model presented in our prior work [6], which is the only
accurate model that considers the bidirectional behavior of
gigabit EEE links. For ease of presentation, here we report
from [6] the expressions for the energy saving factor ⌘

LPI

and the average delay D
i

for packets transmitted in direction
i, where i 2 {1, 2} indicates the two possible link directions:

⌘
LPI

=

1

�1+�2
+ E[⌧

c

]

E[T
cycle

]

; (1)

D
i

=

P
↵2{A,S,L,C,W} n

(i)

↵

D(i)

↵

�
i

E[T
cycle

]

, i 2 {1, 2}. (2)

In the above expressions, the parameters �
i

represent the packet
arrival rates in the two link directions, E[⌧

c

] is the average
time that the link spends in state C, E[T

cycle

] is the average
time spent between two consecutive transitions to state L (i.e.,

271ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

a system cycle), n(i)

↵

corresponds to the number of packets
received in link direction i in state ↵ (denoting one of the
states A, S, L, C, W), D(i)

↵

is the average delay that the packets
suffer in state ↵ and direction i. From the results in [6], it is
also possible to see that �

1

>�
2

)D
2

>D
1

, so that the least
loaded link suffers the highest delay. As concerns the duration
of state C, we elaborate on the results of [6] and obtain the
following expression for E[⌧

c

]:

E[⌧
c

] =

Nc�2X

k=0

Nc�2X

j=0

�k

1

�j

2

k!j!

Z
Tc

t=0

tk+je�(�1+�2)tdt. (3)

As it is clear from the above expression, E[⌧
c

] increases with
both T

c

and N
c

, and so does E[T
cycle

], which strongly depends
on E[⌧

c

]. Below we report an approximation for E[T
cycle

]

from [6], expressed as a function of loads and arrival rates
in the two link directions, i.e., ⇢

i

and �
i

, respectively:

E[T
cycle

] =(T
w

+E[⌧
c

])

1+

1

�
1

+�
2

✓
�
1

⇢
1

1�⇢
1

+

�
2

⇢
2

1�⇢
2

◆�

+

e(�1+�2)Ts

�
1

+�
2

⇢
1

1�⇢
1

+

⇢2
1

(2� ⇢
1

)(�
1

⇢
2

+ �
2

)

2�
1

(1� ⇢
1

⇢
2

)(1� ⇢
1

)

2

+

⇢
2

1�⇢
2

+

⇢2
2

(2� ⇢
2

)(�
2

⇢
1

+ �
1

)

2�
2

(1� ⇢
1

⇢
2

)(1� ⇢
2

)

2

+ 1

�
. (4)

By defining two positive coefficients a and b, that only depend
on arrival rates, loads, and EEE parameters T

w

and T
s

, the
previous result can be expressed as a linear function:

E[T
cycle

] = a+ b E[⌧
c

], (5)

where a and b are constants that can be computed by compar-
ing (4) and (5). In the above formulas, the dependency on T

c

and N
c

is concentrated in the term E[⌧
c

], therefore E[T
cycle

]

grows with both T
c

and N
c

.
The analysis of D(i)

↵

and n(i)

↵

can be found in [6]. Here it
is sufficient to recall that D(i)

L

, D(i)

C

, D(i)

W

, n(i)

C

and n(i)

A

can
be expressed as a constant plus a term proportional to E[⌧

c

],
and thus they also grow with T

c

and N
c

.

III. SENSITIVITY ANALYSIS OF EEE WITH COALESCING

We now proceed with a novel study on the sensitivity
analysis of EEE performance with respect to the coalescing
parameters. Specifically, we want to study the change of both
energy saving and average packet delay when we modify either
T
c

or N
c

. Thus, we apply the method of partial derivatives with
respect to T

c

and N
c

.
The partial derivatives with respect to either T

c

or N
c

for both ⌘
LPI

and D
i

show a dependence on the partial
derivative of E[⌧

c

] as can be seen from the analysis presented
in Section II-C. Thus, next we report the partial derivative of
E[⌧

c

] (and E[T
cycle

]), the rest is mere calculation.

A. Partial derivatives with respect to T
c

The partial derivative of E[⌧
c

] with respect to T
c

is

@E[⌧
c

]

@T
c

=

Nc�2X

k=0

Nc�2X

j=0

�k

1

�j

2

k!j!
T k+j

c

e�(�1+�2)Tc >0, 8T
c

>0; (6)

and the partial derivative of E[T
cycle

] with respect to T
c

is
given by the following expression:

@E[T
cycle

]

@T
c

=

@

@T
c

⇢
E[⌧

c

]

1 +

1

�
1

+�
2

✓
�
1

⇢
1

1�⇢
1

+

�
2

⇢
2

1�⇢
2

◆��

=

1+

1

�
1

+�
2

✓
�
1

⇢
1

1�⇢
1

+

�
2

⇢
2

1�⇢
2

◆�
@E[⌧

c

]

@T
c

(7)

= b
@E[⌧

c

]

@T
c

> 0, 8T
c

>0. (8)

Finally, we get the partial derivative of the energy saving
⌘
LPI

with respect to T
c

as follows:

@⌘
LPI

@T
c

=

@E[⌧c]

@Tc
E[T

cycle

]� @E[Tcycle]

@Tc

⇣
1

�1+�2
+ E[⌧

c

]

⌘

E2

[T
cycle

]

=

a� b

�1+�2

(a+ b E[⌧
c

])

2

@E[⌧
c

]

@T
c

. (9)

From the above expressions, it is clear that the energy saving is
a monotonic function of T

c

, and moreover @⌘LPI

@Tc
> 0, 8T

c

>
0. Therefore the delay monotonically increases with T

c

.
Similarly, the partial derivative of the delay D

i

with respect
to T

c

is:

@D
i

@T
c

=

⇣
⇢i

2µi(1�⇢i)
�D

i

⌘
@E[Tcycle]

@Tc
� ⇢i

2µi(1�⇢i)

@E[⌧c]

@Tc

E[T
cycle

]

+

⇣
1

�1+�2
+ T

w

+ E[⌧
c

]

⌘
(1 + ⇢

i

)

@E[⌧c]

@Tc

E[T
cycle

]

. (10)

Also in this case it is possible to show that @Di
@Tc

> 0, 8T
c

> 0

as far as loads are not extremely high.In practice, high loads
prevent any EEE benefit [6], [7], [8], and therefore we can
safely assume that the delay monotonically increases with
T
c

under the circumstances in which energy saving can be
achieved.

B. Partial derivative with respect to N
c

Regarding the partial derivative of E[⌧
c

] with respect to N
c

,
since N

c

takes only integer values (it refers to packets) we
consider the forward difference between E[⌧

c

] computed at
N

c

+ 1 and at N
c

:

@E[⌧
c

]

@N
c

⇡�

Nc [E[⌧
c

]](N
c

) =

E[⌧
c

](N
c

+ 1)� E[⌧
c

](N
c

)

1

=

Nc�2X

j=0

g
�1�2(Nc

� 1, j) +
Nc�2X

k=0

g
�1�2(k,Nc

� 1)

+ g
�1�2(Nc

� 1, N
c

� 1) > 0, 8N
c

� 2; (11)

where g
�1�2(k, j) =

�

k
1�

j
2

k!j!

R
Tc

t=0

tk+je�(�1+�2)t>0, 8T
c

>0.
With the above, the partial derivatives of E[T

cycle

], ⌘
LPI

,
and D

i

with respect to N
c

have the same form as their partial
derivatives with respect to T

c

. Therefore, we can conclude that
energy saving and delay grow monotonically with N

c

as well.

272ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 0
 0.005

 0.01
 0.015

 0.02
 0.025 0

 20
 40

 60
 80

 100
 120

 140
 160

 0

 0.004

 0.008

 0.012

D
e

la
y
 [

s
]

Tc [s] Nc [packets]

D
e

la
y
 [

s
]

(a) D2.

 0
 0.005

 0.01
 0.015

 0.02
 0.025 0

 20
 40

 60
 80

 100
 120

 140
 160

 0.5

 0.6

 0.7

 0.8

 0.9

 1

η
L

P
I
[%

]

Tc [s] Nc [packets]

η
L

P
I
[%

]

(b) ⌘LPI .

 0
 0.005

 0.01
 0.015

 0.02
 0.025 0

 20
 40

 60
 80

 100
 120

 140
 160

 0

 2e-05

 4e-05

 6e-05

 8e-05

 0.0001

Tc [s] Nc [packets]

(c) @D2
@Nc

.

 0
 0.005

 0.01
 0.015

 0.02
 0.025 0

 20
 40

 60
 80

 100
 120

 140
 160

 0

 0.1

 0.2

 0.3

 0.4

 0.5

Tc [s] Nc [packets]

(d) @D2
@Tc

.

 0
 0.005

 0.01
 0.015

 0.02
 0.025 0

 20
 40

 60
 80

 100
 120

 140
 160

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

Tc [s] Nc [packets]

(e) @⌘LPI
@Nc

.

 0
 0.005

 0.01
 0.015

 0.02
 0.025 0

 20
 40

 60
 80

 100
 120

 140
 160

 0

 50

 100

 150

 200

Tc [s] Nc [packets]

(f) @⌘LPI
@Tc

.

Fig. 2: Coalescing delay, energy saving, and their partial derivatives with respect to T
c

and N
c

. Since the delay due to coalescing
is higher in the least loaded link direction, we show only the delay for packets transmitted in that direction (D

2

).
TABLE I: Maximum ⌘

LPI

for D
target

 1 ms (⇢
1

, ⇢
2

, �
1

, �
2

are taken from real traffic traces)
⇢1 [%] ⇢2 [%] �1 [pkts/s] �2 [pkts/s] Max{⌘0

LPI} [%] T

0
c [ms] N

0
c [packets] Max{⌘00

LPI} [%] T

00
c [ms] N

00
c [packets]

0.11 5.25 2186 4343 82.09 � 3 � 32 82.09 =2 100
10.54 0.66 10410 5324 62.84 � 7 � 22 60.02 =2 100
0.57 32.68 10051 27459 15.34 � 9 = 205 8.74 � 5 100
1.01 40.52 17091 34042 1.80 � 10 = 255 0.75 � 4 100
5.06 0.5 5409 3809 77.50 � 5 � 15 66.55 = 1 100
1.14 17.93 9639 17320 37.59 � 7 � 75 31.17 = 3 100
0.20 0.06 310 268 92.72 = 1 � 15 92.72 = 1 100

C. Discussion

The partial derivatives with respect to either T
c

or N
c

show
the strong dependency of D

i

and ⌘
LPI

on E[⌧
c

] (and on
E[T

cycle

] but this also depends on E[⌧
c

]). Furthermore, the
value of E[⌧

c

] grows with T
c

and N
c

, and we have shown that
both ⌘

LPI

and D
i

monotonically grow with T
c

and N
c

.
To graphically see the impact of T

c

and N
c

on the delay,
D

i

, and the energy saving, ⌘
LPI

, we plot in Fig. 2 an example
of partial derivatives, representing the behavior of ⌘

LPI

and
D

i

for different T
c

and N
c

values when the offered load is
⇢
1

= 5.06% and ⇢
2

= 0.5%. These loads correspond to a load
profile of a traffic trace we collected on a gigabit link in a large
web hosting center. Moreover, this is a representative link load
since, according to [3], about 80% of the links operate with
less than 10% of load, so that the selected case represents a
medium load case.

Specifically, Fig. 2a illustrates the behavior of the delay
experienced in the most loaded link direction (which is the
highest of the two average delays). The figure shows that the
delay quickly grows to unacceptable values with both T

c

and
N

c

. The energy saving ⌘
LPI

also grows, but it does it faster
with small values of T

c

and N
c

, and afterwards it saturates.
Overall, the impact of T

c

and N
c

seems similar. However, the
study of the partial derivatives presented in Fig. 2 unveils that
both delay and energy saving are more sensitive to changes in
T
c

rather than in N
c

. Indeed, Figs. 2c, 2d, 2e, and 2f point

out that the partial derivatives with respect to T
c

are up to
three orders of magnitude higher than the ones with respect
to N

c

. We have observed the same behavior for a large range
of load combinations, although the results are not shown here
due to space limitations. Therefore, we can say that T

c

is more
important than N

c

in the control of delay and energy saving
in EEE. Another important observation is that the impact of
N

c

saturates for relatively small values of the coalescing buffer
size, i.e., implementing buffer sizes of 100 packets allows to
achieve the highest possible energy saving.

To validate the above observations, we report in Table I
a few representative case studies corresponding to different
combinations of average loads ⇢

1

and ⇢
2

as observed in real
traffic traces for the two link directions. In the table, for
each case, we report the maximum energy saving that can be
achieved by manually varying T

c

and N
c

subject to an average
delay below 1 ms (we denote with ⌘0

LPI

the energy saving
factor that can be achieved subject to a given delay contraint).
Additionally, we report the values T 0

c

and N 0
c

at which ⌘0
LPI

is
maximized. Moreover, for the case without delay constraints
but still the delay is below 1 ms, we fix the value of N

c

to
N 00

c

=100 packets (larger values do not improve the energy
saving gain) and we check again the maximum value of the
energy saving factor, which we denote as ⌘00

LPI

, achievable by
varying T

c

only. In the table, we report the value T 00
c

of the
coalescing timer which maximizes the energy saving.

273ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

From Table I, we can observe that energy saving in the
two cases is very close, so that we can think of fixing the
size of the coalescing buffer and using an adaptive coalescing
algorithm that, by adjusting the sole coalescing timer T

c

, is able
to achieve near optimal energy savings while keeping bounded
the average delay of the packets due to coalescing. Noticeably,
Table I also shows that small values of T

c

are needed to
achieve optimal (or near-optimal) performance figures, so that
the optimal value of T

c

can be searched in a small range. We
next use the results of this section to design a novel adaptive
coalescing algorithm based on run-time delay measurements.

IV. MEASUREMENT-BASED COALESCING CONTROL

Differently from existing approaches, we use analytical
results on the sensitivity of D

i

and ⌘
LPI

to make run-time
educated decisions on how to adapt the coalescing parameters
to meet a maximum target delay D

target

.
The analysis tells that T

c

and N
c

behave qualitatively in
a similar way. Specifically, fixing one of the two parameters
limits the maximum achievable energy saving, although, by
tuning the other parameter, it is possible to adjust the energy
saving from zero to the maximum while increasing the delay
monotonically. Therefore, to implement an adaptive coalescing
algorithm, it is enough to fix one parameter between T

c

and N
c

to a sufficiently high value (which guarantees that
near-maximal energy saving can be achieved), and adapt the
remaining parameter.

The analysis also unveils that ⌘
LPI

and D
i

values are more
sensitive to T

c

rather than toN
c

. With the above consideration,
jointly to the fact that N

c

is limited to integer values, T
c

results
to be a better candidate for the fine tuning of energy and delay
tradeoff when coalescing is adopted.

Therefore, we design an adaptive coalescing algorithm in
which only T

c

is adjusted. Moreover, in our algorithm, we
implement a simple yet effective mechanism to detect when the
coalescing is causing excessive delay and timely react. What
we include in the algorithm is a low-pass filter to estimate the
average coalescing delay D

i

. When the link switches to state
W, the dynamic timer algorithm tunes T

c

2 [Tmin

c

, Tmax

c

] based
on the experienced (measured) average delay and D

target

. The
pseudocode of our heuristic is reported in Algorithm 1.

The analysis says that increasing T
c

increases both ⌘
LPI

and
delay at any load, so when the average delay is below or above
the target, the algorithm increments or decrements the T

c

value,
respectively. The advantages of our approach are twofold: (i)
given that T

c

is tuned after exiting state C, the delay adaptation
procedure is almost immediate (a few milliseconds), which
allows to instantly react to changes in packet delay; (ii) our
adaptive algorithm adapts quickly to any changes in traffic load
simply by estimating the packet delay. Load variations occur
very often in the daily patterns and so our simple T

c

adaptation
mechanism can produce great benefit for EEE.

With the above, we have defined not one but an entire class
of delay-controlled MBCC algorithms, which differ in the way
the value of T

c

is tuned. For example, additive or multiplicative
increases and decreases can be used. In the following, we

Algorithm 1: MBCC: Adaptive Coalescing Timer
1 Input: run-time average estimate of delays D

1

and D
2

2 while C ! W do
3 if (D

1

&&D
2

) D
target

then
4 if T

c

< Tmax

c

then
5 T

c

= max{T
c

+ �, Tmax

c

}
6 else
7 if T

c

> Tmin

c

then
8 T

c

= max{T
c

� �, Tmin

c

} or
T
c

= max{(1� �)T
c

, Tmin

c

}

simply use either (i) an additive increase/decrease approach
with fixed step � or (ii) an additive increase/multiplicative
decrease approach with fixed additive step � and multiplicative
decrease percentage �. We only focus on those two schemes
because, first, multiple increase schemes provide less fairness
than additive increase schemes and second, multiple increase
schemes wildly oscillate and are a source of instability, thus
leading to poor performance [11], [12]. Note that, due to the
high sensitivity of delay and energy saving with respect to
variations of T

c

, the possible values of � and � have to be
small enough to cause small changes in the adaptive timer.

Note that, in gigabit EEE links, the two directions are
correlated and therefore the algorithm has to run distributed
over the two network cards at the edge of the link, although
this requires only a few overhead messages to be transmitted
from one card to the other to signal state transition events.
However, such messages can be piggybacked by regular EEE
state control messages, since each link edge just needs to send
one bit to tell the other edge whether the measured delay is
exceeding D

target

or not.

V. PERFORMANCE EVALUATION

In this section we evaluate MBCC by implementing a delay-
controlled adaptive coalescing timer algorithm. We benchmark
MBCC against legacy static coalescing algorithms, for which
it is known that dynamic adaptation based on coalescing events
(such as buffer overflows or timer timeouts) does not improve
performance if a target delay has to be guaranteed [6]. In
the following, we first evaluate the achievable energy savings
obtained by different configurations of legacy coalescing and
MBCC for a set of representative traffic traces. Afterwards, we
illustrate the behavior of energy savings and delays over time,
when the load keeps changing. For our experiments, we use
the real traffic traces we have been allowed to collect in Satec,
a large web hosting center in Madrid, Spain.

A. Experimental setup

For our performance evaluation we monitored a typically
low loaded link (⇢

i

10%) and a backbone link (⇢
i

�10%)
for a few minutes every one hour during a period of one
year. Moreover, we modified the NS-3 simulator in order
to (i) import the collected traces and (ii) simulate EEE
with those traces as input, with both legacy coalescing and
MBCC. Furthermore, we picked a few traffic traces, with loads

274ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 5

 10

 15

 20

 25

 30

 35

 0 50 100 150 200 250

η
L

P
I [

%
]

Sample number

MBCC
Legacy

(a) ⇢1 = 1.14%, ⇢2 = 18%.

 16

 18

 20

 22

 24

 26

 28

 30

 32

 34

 36

 0 50 100 150 200 250

η
L

P
I [

%
]

Sample number

MBCC
Legacy

(b) ⇢1 = 0.57%, ⇢2 = 32.7%.

 45

 50

 55

 60

 65

 70

 75

 0 50 100 150 200 250

η
L

P
I [

%
]

Sample number

MBCC
Legacy

(c) ⇢1 = 0.11%, ⇢2 = 5.3%.

Fig. 3: Achievable energy saving for MBCC vs. Legacy coalescing with D
target

 1 ms.

TABLE II: Legacy Coalescing: list of T
c

and N
c

combinations
Parameter Value
Tc [µs] 200/500/700/1000/1200/1300/1400/1500/1700/2000

Nc [packets] 2/5/10/11/13/15/17/20/25/30/40/50/60/70/80/90/100

spanning from low to high, to further compare the achieved
⌘
LPI

using MBCC or legacy coalescing with bounded delay.
In our study, legacy coalescing schemes require the calibra-

tion of T
c

and N
c

based on the expected traffic characteristics
or based on, e.g., the peak traffic. However, to guarantee low
delay under low load conditions, both T

c

and N
c

have to be
tuned to values well below the ones that achieve the best energy
performance under medium or high traffic. In particular, since
our criterion is to regulate the average coalescing delay of the
packets crossing the EEE link under all traffic conditions, a
(T

c

, N
c

) combination with small values has to be universally
adopted to cope with the delay under scarce traffic conditions
(⇠0.1% in the less loaded direction). Therefore, legacy coa-
lescing has the disadvantage that it needs to be tuned on the
off-peak traffic conditions. Apparently, so far, this has not been
considered a great disadvantage for EEE links. In fact, energy
savings are expected to be harvested only under low to medium
traffic conditions. However, we argue that even though low
loaded links represent about 40% of a data center links, there
is still another 60% of the links from which additional energy
savings could be potentially obtained.

To evaluate legacy coalescing, we test a range of values
for T

c

and N
c

, as reported in Table II, under different traffic
conditions. In contrast, for MBCC with our delay-controlled
adaptive timer heuristic (Algorithm 1), we consider a fixed N

c

value, such as the one selected based on the results reported
in Table I (i.e., we could select the value N

c

=100 packets),
whereas the T

c

value is automatically adapted according to
the traffic. We assign D

target

as initial value for the timer T
c

.
Other configuration parameters for MBCC are the adaptation
coefficients � and �. The range of values for N

c

, � and � can
be read in Table III.

All tested parameters span over large intervals, to thoroughly
explore their impact by means of our simulations.

B. Achievable energy saving

Here we compare legacy coalescing and MBCC under a
variety of configuration choices, as reported in Tables II and III.
In particular, we report our results for energy saving subject

TABLE III: MBCC with Adaptive Coalescing Timer (Algo-
rithm 1): list of parameters

Parameter Value
� [µs] 10/30/100/300/1000
� [%] 10/25/50/75

Nc [packets] 2/5/10/20/50/75/100/200/500/1000

to average coalescing delay, D
target

, not exceeding 1 ms. We
think that this is a reasonable upper bound for the average delay
in a point-to-point link. Indeed, according to [13] a connection
between East and West coast in the US has at least four hops
that create 28.4 ms of average delay. Thus, we consider that
adding 1 ms due to the use of EEE in a data center connected
to such a network is acceptable.

In Fig. 3 we plot ⌘
LPI

for three different load combinations
(⇢

1

, ⇢
2

). For legacy coalescing we run the simulation of
a trace with a given combination (T

c

, N
c

) and we get the
average delay of the packets in both directions and ⌘

LPI

. The
delay can be higher or lower than D

target

but we report the
energy saving only for those combinations that give average
coalescing delay below D

target

(Table II). For MBCC, since it
guarantees that the delay is below D

target

, we report all points
corresponding to all the tested combinations of parameters
(Table III). Notably, the best results achieved with legacy
coalescing in any of the depicted scenarios are very far from
the best results of MBCC. Indeed, MBCC practically doubles
the gain achieved by legacy coalescing.

Moreover, in our experiments we have observed that a
particular combination performs best for legacy coalescing
under any of the tested load combinations, i.e., (T

c

=1300 µs,
N

c

=10 packets), reported in boldface in Table II. In contrast,
for the case of MBCC, we have observed high variability in the
configuration that achieves the best results in the various cases.
In particular, considering that in each subfigure of Fig. 3 the
first 50 samples for MBCC use only the parameter � to adapt T

c

(additive increase/decrease), while the remaining 200 samples
use both � and � (additive increase, multiplicative decrease)
for the adaptation of T

c

, we can conclude that using both �
and � is slightly more convenient. However, we have also
observed that many configurations are equivalent, in particular
when N

c

is small (below 20), the performance is determined
by N

c

only, and changing � and � does not affect the results.
In contrast, with higher N

c

values � and � can be responsible
for a fluctuation of 10-15% of energy saving. More in general,

275ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 20 30 40 50 60 70

L
o

a
d

 [
%

]

Time [s]

Load (dir1)
Load (dir2)

(a) Load.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 10 20 30 40 50 60 70

η
L
P

I [
%

]

Time [s]

No coalescing
Legacy coalescing

MBCC

(b) Energy saving (Legacy and MBCC overlap).

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70

D
e

la
y

[m
s]

Time [s]

No coalescing
Legacy coalescing

MBCC

(c) Higher delay of the two directions.
Fig. 4: Low load (⇢

1

=0.2%, ⇢
2

=0.06%). MBCC and legacy coalescing practically save the same amount of energy.

 0

 1

 2

 3

 4

 5

 6

 7

 10 15 20 25 30 35 40

L
o

a
d

 [
%

]

Time [s]

Load (dir1)
Load (dir2)

(a) Load.

 0

 10

 20

 30

 40

 50

 60

 70

 10 15 20 25 30 35 40

η
L
P

I [
%

]

Time [s]

No coalescing
Legacy coalescing

MBCC

(b) Energy saving.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 15 20 25 30 35 40

D
e

la
y

[m
s]

Time [s]

No coalescing
Legacy coalescing

MBCC

(c) Higher delay of the two directions.
Fig. 5: Medium load (⇢

1

=0.11%, ⇢
2

=5.3%). MBCC largely outperforms legacy coalescing at the expenses of delay (without
exceeding the available delay budget).

 0

 5

 10

 15

 20

 25

 30

 35

 40

 50 52 54 56 58 60

L
o

a
d

 [
%

]

Time [s]

Load (dir1)
Load (dir2)

(a) Load.

 0

 5

 10

 15

 20

 25

 30

 35

 50 52 54 56 58 60

η
L
P

I [
%

]

Time [s]

No coalescing
Legacy coalescing

MBCC

(b) Energy saving.

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 52 54 56 58 60

D
e

la
y

[m
s]

Time [s]

No coalescing
Legacy coalescing

MBCC

(c) Higher delay of the two directions.
Fig. 6: Highly variable load (⇢

1

=1.44%, ⇢
2

=18.0%). MBCC doubles energy savings with respect to legacy coalescing.

our results indicate that bigger values of � and N
c

allow bigger
energy saving. Instead, a bigger value of � reduces the energy
benefit. The topmost points in all the cases correspond to the
combination (N

c

= 1000 packets, � = 1000 µs, � = 10%),
which is reported in boldface in Table III.

Now we select a near-optimal configuration for MBCC, and
we compare its performance with the best configuration of
the legacy coalescing scheme. We use an additive increase,
additive decrease scheme with � =100 µs, and N

c

=100
packets for MBCC, and T

c

= 1300 µs, and N
c

=10 packets
for legacy coalescing. With those configurations, in Figs. 4, 5,
and 6 we plot the behavior over time of ⌘

LPI

and the higher
of the two delays D

i

for three different load combinations.
In these figures, in addition to the performance MBCC and
legacy coalescing, we also report the performance of EEE
links without coalescing. Fig. 4 illustrates the case of low
load. Specifically, as shown in Fig. 4a, the load in either link

direction does not exceed 1%, and energy saving of 90-95%
can be achieved with or without coalescing (see Fig. 4b).
As concerns delay, Fig. 4c shows that coalescing introduces
considerable delay with respect to the case of plain EEE
without coalescing. However, the delay, D

target

, is below
1 ms. The medium load case of Fig. 5 shows how MBCC
manages to tradeoff delay for energy saving, while keeping
the delay below 1 ms. Indeed, Fig. 5b shows the huge energy
saving gain due to the delay-controlled coalescing operation of
our proposal. In Fig. 6 we show a very dynamic case which
combines high load with frequent and rapid load changes.
We can still observe that our MBCC approach achieves a
sevenfold gain with respect to plain EEE and a twofold gain
with respect to legacy coalescing, while retaining the caused
delay well below 1 ms. The impact of traffic variability is
clear in the behavior of ⌘

LPI

and in the experienced delay.

276ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Interestingly, the performance comparison shows that MBCC
is able to maintain a constant gain over time with respect to
the other schemes.

In conclusion, the energy benefit due to delay-aware MBCC
is remarkable under any traffic condition, including un-
der quickly variable traffic conditions. Configuring MBCC
schemes is easy, since it only requires to make reasonably
simple decisions on the maximum size of the coalescing buffer
(in the order of 100 packets) and on the � parameter (in the
order of milliseconds). The � parameter is optional and, if used,
has to be chosen as a small factor (in the order of 10%).

C. Economical impact

The importance of EEE with MBCC can be seen in the
following simple economical analysis. Let us consider a large
data center, e.g., the one of OVH2. This data center contains
360,000 physical servers, and each server has on average 3
connected network ports [14]. Assuming that all network ports
have gigabit links, each port may consume between 2 W and
13 W using legacy Ethernet [2]. Typical load distributions are
⇠ 40% of the links at almost zero load (0.1%), ⇠ 40%
between 0.1% and 10% of load, and the rest of the links operate
at higher loads [3]. Therefore we can use the results of Figs. 4,
5 and 6 for an approximated economical analysis. Moreover,
considering that the average cost of electricity in USA is about
$0.1/KWh, we can roughly estimate the cost of electricity for
the network equipment of the servers of the aforementioned
data center, using legacy Ethernet, plain EEE, EEE with legacy
coalescing, or EEE with MBCC.

Thus, we will consider that on average an Ethernet card
consumes 5 W and we further consider as averaged load values
the ones we have in Figs. 4, 5 and 6. With our calculations,
the annual electricity bill of data center servers just due
to the network would be ⇠$4.73M using legacy Ethernet.
This amount could be reduced almost by half accounting to
⇠$2.23M by adopting EEE. EEE with legacy coalescing could
further deduct another ⇠$133K from the bill and, finally,
MBCC could allow to save another ⇠$400K resulting in a
final bill of ⇠$1.7M per year. Therefore, the adoption of
MBCC could potentially reduce the electricity cost of a data
center by ⇠ 65% if compared with legacy Ethernet and by
⇠ 25% if compared with plain EEE. Practically, MBCC would
quadruplicate the cost saving attainable with legacy coalescing.

In this simple estimate we exclude switches and other equip-
ment such as air conditioning, CPU processing or server fans
which could further contribute to the electricity cost reduction.
Moreover faster Ethernet cards, i.e., 10, 40 and 100 Gbps,
consume even more energy (at least two, three and five times
more, respectively), so that the potential for energy saving is
greater for higher data rates.

The cost of implementing coalescing is just adding a buffer
to the NIC to support the packet aggregation but this might
not be a problem since NICs have already integrated memory
buffers and thus all we need is to reserve some space for

2OVH.com presentation: http://www.youtube.com/watch?v=4e97g7 qSxA

coalescing. The cost of measurement-based coalescing control
is negligible since it only requires software modifications on
the driver side in order to apply the timer adaptation. Therefore,
we believe that EEE with MBCC adjusting the coalescing timer
is worth further research interest.

VI. RELATED WORK

Since the standardization of 802.3az in 2010 a few works
appeared in the literature that try to model its behavior and
predict accurately the amount of energy saving and the expe-
rienced delay both for EEE and EEE with coalescing.

1) EEE modeling: There are works which model EEE with
a good accuracy, although they do not consider the effect
of coalescing. Among them, [15], [16], [17] are the most
representative. In [15] the authors present an M/G/1 model
for 1 Gbps links with unidirectional traffic. In [16] a two
state model is proposed for unidirectional traffic and transition
times are assumed to be multiples of the frame transmission
time. Bolla et al. [17] present a complete framework for EEE
links, from 100 Mbps to 10 Gbps, that takes into account the
bidirectional nature of 1 Gbps links.

As already discussed, packet coalescing techniques promise
the largest energy saving gain, and thus analytical models
exist to predict their behavior. The first work that showed
the outperformance of EEE with coalescing over the legacy
EEE is [7]. The authors analyze the energy consumption
improvement of the link using a buffer of 10 or 100 packets
at the cost of limited additional delay. In [18] the authors
develop a GI/G/1 model which approximates the energy
saving and the delay that the packets suffer due to coalescing.
The authors of [19] develop a D/D/1 model to estimate the
energy consumed and the corresponding average delay of the
packets, although they evaluate their model only with synthetic
Poisson traffic. Kim et al. [20] present a similar mathematical
analysis and evaluation based on synthetic traffic but using
an M/G/1 queueing system. In [21] Meng et al. show a
markovian model for 10 gigabit links and only big 1500-byte
packets which estimates the energy saving and the average
maximum delay of the first packet. In all the above mentioned
models, the dependency of EEE operations on the traffic in both
link directions is neglected, so that they cannot be realistically
used for gigabit links with coalescing.

Differently from other proposals mentioned above, in [6]
the authors propose a model specifically designed for gigabit
links with coalescing. The model is based on the correlated
behavior of two M/G/1 queues. Using simple parameters such
as average packet size and average load, the model is able
to estimate the energy consumption and the coalescing delay
when coalescing parameters are static. The results of [6] also
show that static coalescing offers performance levels as high
as dynamic coalescing algorithms. However, that paper does
not consider the class of measurement-based algorithms for
the control of coalescing parameters that we propose in this
paper. Indeed, here we have extended the analytical results
of [6] to show the advantages of MBCC schemes for dynamic
coalescing.

277ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

2) Dynamic Coalescing: This research area, i.e., EEE with
dynamic coalescing is very new and quite active. Google has
recently patented a series of adaptive algorithms in [9] for 10
gigabit links. In particular they suggest a modified version
of EEE in which states A and LPI have fixed intervals and
those intervals can only be adapted by a term � based on
the type of data traffic to be transmitted. In [10] the authors
propose a dynamic coalescing queue algorithm that adapts the
buffer size N

c

according to the difference between an ideal
energy proportional saving model and the one proposed in their
paper, but it lacks of complete performance evaluation using
different parameters for the dynamic queue part. Moreover the
results they provide show that static coalescing outperforms or
at least achieves results similar to the dynamic scheme. The
authors in [6] proposed two dynamic coalescing algorithms
that adapt the coalescing timer T

c

and the coalescing buffer
size N

c

, respectively. The event that triggers the adaptation
of the corresponding parameter is either the timer expiration,
or the fill-up of the buffer, with no further considerations on
the network performance. For instance, T

c

is always increased
after a timer expiration, while N

c

is always incremented if
the coalescing buffer N

c

fills up. That paper studies various
parameters for timer and buffer size increase and decrease and,
differently from our new work, [6] concludes that dynamic
schemes do not outperform legacy coalescing. In [22] the
authors propose an adaptive scheme to adapt the duration of the
coalescing timer for passive optical networks which adopt EEE,
based on a neural network-based algorithm which optimizes the
duration of the state LPI versus the Wake-Up time. However,
this scheme does not consider delay, which is the key factor
for the applicability of EEE.

VII. CONCLUSION

In this paper we have used sensitivity analysis to understand
the impact of coalescing parameters, such as timer T

c

and
buffer size N

c

, on the energy saving and the delay experienced
over Energy Efficient Ethernet (EEE) links with coalescing.
The analysis reveals that optimizing energy saving subject to
delay constraints is possible by simply adapting T

c

. Therefore,
based on the coalescing properties analytically studied, we have
designed MBCC, a class of adaptive coalescing algorithms
which adapts T

c

according to the delay sensed by the link.
MBCC achieves dramatic gain with respect to legacy coa-
lescing algorithms, for which dynamic adaptation has been
proven unnecessary and unfruitful. Specifically, we validated
the superiority of MBCC with real traffic traces collected in a
large web hosting center, and we showed that our proposal can
even double the energy saving benefit with respect to legacy
coalescing schemes. Moreover, from a purely economical point
of view, MBCC can reduce the electricity cost of a data center
by 65%. Notably, if compared to EEE with legacy coalescing,
MBCC would quadruplicate cost savings on large data centers’
electricity bill.

ACKNOWLEDGMENTS

This work was supported by the Spanish Ministry of Econ-
omy and Competitiveness under the Ramon y Cajal Grant
(ref: RYC-2014-01335), and under Grant TEC201455713-R
(HyperAdapt).

REFERENCES

[1] J. Arjona Aroca, A. Chatzipapas, A. Fernández Anta, and V. Mancuso,
“A measurement-based analysis of the energy consumption of data center
servers,” in ACM e-Energy ’14, Jun. 2014, pp. 63–74.

[2] R. Sohan, A. Rice, A. Moore, and K. Mansley, “Characterizing 10 Gbps
network interface energy consumption,” in IEEE LCN 2010, Oct. 2010.

[3] T. Benson, A. Anand, A. Akella, and M. Zhang, “Understanding data
center traffic characteristics,” ACM SIGCOMM Computer Communica-
tion Review, vol. 40, no. 1, pp. 92–99, Jan. 2010.

[4] IEEE Std. 802.3az, “Energy Efficient Ethernet,” 2010.
[5] P. Reviriego, K. Christensen, J. Rabanillo, and J. A. Maestro, “Initial

evaluation of Energy Efficient Ethernet,” IEEE Communications Letters,
vol. 15, no. 5, pp. 578–580, May 2011.

[6] A. Chatzipapas and V. Mancuso, “Modelling and real-trace-based eval-
uation of static and dynamic coalescing for Energy Efficient Ethernet,”
in ACM e-Energy ’13, May 2013, pp. 161–172.

[7] K. Christensen, P. Reviriego, B. Nordman, M. Bennett, M. Mostowfi, and
J. A. Maestro, “IEEE 802.3az: The road to Energy Efficient Ethernet,”
IEEE Communications Magazine, vol. 48, no. 11, pp. 50–56, Nov. 2010.

[8] P. Reviriego, J. A. Maestro, J. A. Hernandez, and D. Larrabeiti, “Burst
transmission for Energy Efficient Ethernet,” IEEE Computer Society,
vol. 14, no. 4, pp. 50–57, Jul. 2010.

[9] W.-C. Chang, W.-C. Lo, C.-S. Li, and M. Chang, “Adaptive pause time
Energy Efficient Ethernet PHY,” Jan. 2015, uS Patent 8,942,144.

[10] S. Herrerı́a-Alonso, M. Rodrı́guez-Pérez, M. Fernandez-Veiga, and
C. López-Garcı́a, “Bounded energy consumption with dynamic packet
coalescing,” in IEEE NOC 2012, Jun. 2012, pp. 1–5.

[11] V. Jacobson, “Congestion avoidance and control,” in ACM SIGCOMM
computer communication review, vol. 18, no. 4, 1988, pp. 314–329.

[12] D.-M. Chiu and R. Jain, “Analysis of the increase and decrease al-
gorithms for congestion avoidance in computer networks,” Computer
Networks and ISDN systems, vol. 17, no. 1, pp. 1–14, 1989.

[13] B.-Y. Choi, S. Moon, Z.-L. Zhang, K. Papagiannaki, and C. Diot,
“Analysis of point-to-point packet delay in an operational network,”
Computer networks, vol. 51, no. 13, pp. 3812–3827, Sep. 2007.

[14] S. Bapat, “The future of data centers (... and the stuff that goes in them),”
in 1st Berkeley E3S Symposium, Jun. 2009.

[15] M. Ajmone Marsan, A. Fernandez Anta, V. Mancuso, B. Rengarajan,
P. Reviriego Vasallo, and G. Rizzo, “A simple analytical model for
Energy Efficient Ethernet,” IEEE Communications Letters, vol. 15, no. 7,
pp. 773–775, Jun. 2011.

[16] D. Larrabeiti, P. Reviriego, J. A. Hernandez, J. A. Maestro, and M. Uru-
ena, “Towards an energy efficient 10 Gb/s optical Ethernet: Performance
analysis and viability,” Optical Switching and Networking, vol. 8, no. 3,
pp. 131–138, Mar. 2011.

[17] R. Bolla, R. Bruschi, A. Carrega, F. Davoli, and P. Lago, “A closed-form
model for the IEEE 802.3az network and power performance,” IEEE
JSAC, vol. 32, no. 1, pp. 16–27, Jan. 2014.

[18] S. Herrerı́a-Alonso, M. Rodrı́guez-Pérez, M. Fernández-Veiga, and
C. López-Garcı́a, “A GI/G/1 model for 10Gb/s Energy Efficient Ethernet
links,” IEEE Transactions on Communications, vol. 60, no. 11, pp. 3386–
3395, Nov. 2012.

[19] M. Mostowfi and K. Christensen, “An energy-delay model for a packet
coalescer,” in IEEE Southeastcon, Mar. 2012.

[20] K. J. Kim, S. Jin, N. Tian, and B. D. Choi, “Mathematical analysis of
burst transmission scheme for IEEE 802.3az Energy Efficient Ethernet,”
Elsevier Performance Evaluation, vol. 70, no. 5, pp. 350–363, May 2013.

[21] J. Meng, F. Ren, W. Jiang, and C. Lin, “Modeling and understanding burst
transmission algorithms for Energy Efficient Ethernet,” in IEEE/ACM
IWQoS 2013. IEEE, 2013, pp. 1–10.

[22] S. Lee and K.-Y. Li, “Adaptive state transition control for energy-
efficient gigabit-capable passive optical networks,” Photonic Network
Communications, Apr. 2015.

278ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Consolidating Flows with Implicit Deadlines for
Energy-Proportional Data Center Networks

Xiaoda Zhang⇤, Zhuzhong Qian⇤, Sheng Zhang⇤, Kui Wu†, Sanglu Lu⇤
⇤State Key Laboratory for Novel Software Technology, Nanjing University, China

†Department of Computer Science, University of Victoria, Canada
Email: zhangxiaoda@dislab.nju.edu.cn, {qzz, sheng, sanglu}@nju.edu.cn, wkui@cs.uvic.ca

Abstract—To reduce the energy consumption of a large number
of network devices in a data center, energy-efficient schemes use
various heuristics to consolidate traffic to fewer switches. Most of
these works, however, ignore the flow-level performance, which is
one of the most critical requirements in production data centers.
Hence, flow rate allocation should be considered together with
flow path selection to guarantee flow-level performance and in
the meantime save energy of network devices. For this reason,
we present a framework to ensure that the energy consumption
for data center network (DCN) is proportional to the traffic and
to guarantee the flow-level performance. Our solution consists
of two components: (i) flow rate allocation to meet flows’
deadlines and (ii) flow path selection to use fewer switches.
We compare our framework with existing techniques under
synthetic traffic patterns. Results show that our framework could
save, on average, 20% of network energy than the always-on
baseline, while maintaining the better flow-level performance, and
achieving good running time and fault tolerance simultaneously.

I. INTRODUCTION

High energy consumption has become a central issue for
large-scale data centers as computing and networking infras-
tructures scale out in response to growing requests in clouds.
It is shown in [1] that the energy used in U.S. data centers
in 2013 was estimated 91 billion kwh and is projected to
increase to roughly 140 billion kwh annually by 2020. Various
techniques, including Dynamic Voltage Frequency Scaling
(DVFS), virtualization and efficient power supplies, have been
explored to reduce the energy consumed by servers which
accounts for the largest component of a data center’s total
power. The network devices, which could account for 10-20%
of a data center’s total power [9], [13], also need energy saving
schemes.

DCNs are usually provisioned for the peak workload, and
this load exceeds their long-term utilizations by a large margin.
Therefore, significant energy could be saved if the energy
consumption of a DCN could be proportional to its actual
rather than peak workload. We call a DCN with this feature
an energy propoertional DCN. A power measurement [16]
studied several data center switches under a variety of traffic
patterns. The study showed that keeping a switch always on
consumes most energy, while increasing the traffic from zero
to full load via a switch only increases the switch’s power
by less than 10%. This phenomenon implies that to achieve
DCN energy proportionality, we could mainly focus on the

number of power-on switches instead of the traffic load going
through the switches. DCN topology designs, e.g., Fat-tree [2],
VL2 [10], BCube [11] provide more network components and
more paths between arbitrary pairwise servers. This advantage
brings opportunities to improve DCNs energy-proportionality,
because turning off a subset of switches would not disconnect
servers.

While traffic consolidation has been an effective way to
achieve energy-efficiency by consolidating flows to fewer
switches [13], [19], [21], they heavily depend on the accurate
prediction of traffic [7]. On the other hand, most of the traffic
engineering based solutions are agnostic to the network flow
performance, which results in delaying flows and slowing
down responses to requests. This degradation is not acceptable
for applications requiring high quality of services (QoS).

An important class of data center applications, called Online
Data-Intensive (OLDI) applications, e.g., web search and on-
line retail, employ algorithms where every query operates on
data spanning thousands of servers. Latencies in this request-
response process would heavily affect users experiences. To
avoid the performance degeneration and keeping DCNs en-
ergy efficient, we avoid monitoring traffic flows frequently
but instead obtain the flows’ deadlines implicitly with the
TCP AIMD mechanism. Quantitatively, we measure the flow
performance in terms of its flow completion time (FCT), as the
previous works did [14], [17], [18], [22]. Our objective is to
design state changing (on/off) schemes for switches where the
DCN energy consumption is minimized and the flow deadlines
are met.

In order to reduce a DCN energy consumption, the optimal
solution should meet the following goals:

• Work Conservation (WC): the principle to keep active
switches with high utilization.

• Performance Guarantee (PG): the criterion for energy
saving schemes that should not affect network FCTs.

• Network Agility (NA): the ability to dynamically grow and
shrink the DCN capacity to meet traffic loads.

In this paper, we formulate this DCN Energy Saving (DES)
problem and prove its NP-completeness. To address the DES
problem, we propose a framework to optimize the energy
consumptions while maintaining the network performance. To
find the most suitable network subset, we present multiple al-
gorithms to select paths for flows such that the flow bandwidth
demands are satisfied and the number of required switchesISBN 978-3-901882-83-8 c� 2016 IFIP

279ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

is minimized. Each algorithm achieves different tradeoffs be-
tween efficiency and optimality. To keep the flow performance,
the transmission rates are allocated in a way which meets the
flow deadlines and efficiently utilizes the bandwidths. Using
flow rate allocation and flow path selection, our framework
could dynamically adjust the active set of network elements to
satisfy changing traffic loads. Experiments show that compared
to existing works, our solution on average, could save 20% of
the network energy in data centers, while holding the better
flow performance.

The rest of the paper is organized as follows: Section II
formulates the DES problem and analyzes its hardness. Section
III describes the framework where the rate allocation and path
selection algorithms are proposed. Section IV presents the
simulation results. We review the related works in Section V
and conclude the paper in Section VI.

II. THE DCN ENERGY SAVING PROBLEM

In this section, we first analyze the characteristics of DCN
switch and the power-down strategy. Based on the prelim-
inaries, we formulate the DES problem as a constrained
optimization problem, and analyze its complexity.

A. Preliminaries
A network switch is commonly composed with chassis,

line-cards, switching fabric, and ports. The chassis usually
consumes a constant power. The line-card buffers packets
and the switching fabric maintains the switching table. Ports
consume dynamic power according to their speeds. The DES
problem critically relies on the nature of the speed-power
curve f (s), a function mapping the switch’s processing speed
s to its power. In [4], [5], [20], the authors calculate f (s)
only by switch ports. In this work, f (s) is more general and
includes a constant plus a dynamic speed-related component.
This model meets the real statistics [16] and supports our idea
that, powering down the unused switches can save more energy
than speed scaling [4]. Equivalently, we transfer the port power
consumption to its associated link power consumption.

Advanced architectures (e.g., Fat-tree [2], VL2 [10], BCube
[11]) enrich the connectivities among servers in data centers.
But the measurements from [7] show that, the utilization of
aggregation switch links is 8% at 90% running time, while
the average utilizations of edge layer switches and core layer
switches are around 20% and 40%, respectively. This enables
us to combine flows from several low utilization switches.
As Fig. 1 illustrates, flows could be consolidated onto fewer
switches when the DCN is at low utilization. In this example,
after flow consolidation, six idle switches could be turned off,
reducing network power by nearly 30%.

B. Problem Formulation
We assume that flows K1, K2, ..., K

n

are transmitted among
the DCN. We denote the i-th flow, K

i

= {s
i

, t
i

, d
i

}, where
s

i

is the source, t
i

is the sink, and d

i

is the flow size. The
DCN is abstracted as a graph G = (V, E), where V is the set
of nodes, including hosts and switches, and E is the set of

active switch

idle switch

idle link

CSW0 CSW1

ToR4 ToR5 ToR6 ToR7

Fig. 1. An example of consolidating flows onto fewer switches in a Fat-tree
topology using 4-port switch

links connecting them. Each link (u,v) 2 E has the capacity
c(u,v). We do not allow flows to get split due to the fact that
the reordering packets would degrade TCP performance, as
previous works did [3], [13]. f

i

(u, v) is the size of the i-th
flow along link (u,v), which is either d

i

or 0. An assignment
of flows is a mapping from flows to paths in the DCN, such
that the following constraints are satisfied.

8(u, v) 2 E ,
nX

i=1

f

i

(u, v) c(u, v) (1)

8i,
X

r2V
f

i

(u, r) = 0,when u 6= s

i

and u 6= t

i

(2)

8i,
X

w2V
f

i

(s

i

, w) =

X

w2V
f

i

(w, t

i

) = d

i

(3)

The constraint (1) restricts the total flows along each link
not exceeding the capacity. The flow conservation constraint
expressed in (2) means that flows should not be created or
destroyed at intermediate nodes. Equality (3) means that the
sink receives the same amount of data as that the source sends.

Next, we define the following notations:
• S: the set of all switches;
• P

u

: the power of switch u, including the constant com-
ponent plus the dynamic component;

• P

cons

u

: the constant power component of switch u;
• P

link

u,v

(x

u,v

): the dynamic power component consumed by
link (u,v), which is related to the flow rate x

u,v

on it;
• X

u

: the indicator deciding whether the switch u is on;
• Y

u,v

: the indicator deciding whether the link (u,v) is on;
• R

i

(u, v): the indicator deciding whether the i-th flow uses
link (u, v).

The objective function can be formulated as follows:

min

X

u2S
X

u

· P
u

, (4)

where

P

u

= P

cons

u

+

1

2

X

v2Su

Y

u,v

· P link

u,v

(x

u,v

), (5)

x

u,v

=

nX

i=1

f

i

(u, v). (6)

A factor of 1
2 in Equation (5) is to eliminate the double

counting of each link. For the link power consumption model

280ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

P

link

u,v

(x

u,v

), we adopt the power function from [4], a widely
used version in the literature:

P

link

u,v

(x

u,v

) = � + µx

↵

u,v

, (7)

where �, µ and ↵ are constants, and usually ↵ � 1. To avoid
the stability problem incurred by frequently togging on and off
links, we assume that a link can be powered off only when
it carries no traffic, thus the constraint (1) can be augmented
with binary variable Y

u,v

:

8i, 8(u, v) 2 E ,
nX

i=1

f

i

(u, v) Y

u,v

· c(u, v). (8)

Actually, when all links from a switch are powered off, the
switch can be powered off too:

8u 2 S, X
u

= 1�
Y

v2Su

(1� Y

u,v

). (9)

Since we do not allow flow splitting, we have:

8i, 8(u, v) 2 E , f
i

(u, v) = R

i

(u, v) · d
i

. (10)

Data center network Energy Saving (DES) Problem:
Given flows K1, K2, ..., K

n

, decide X

u

(8u2S), where (4)
is minimized and constrains (1)(3)(8)(9)(10) are satisfied.

C. The Hardness of DES Problem

Theorem 1: The DES problem is NP-complete.
Proof: First we consider the adapted-DES problem, where

we assume the constant component of the power of switch
P

cons

u

could be evenly partitioned to the active links, and the
power of link P

link

u,v

(x

u,v

) = � + x

u,v

, with µ = 1, ↵ = 1, and
� = P

cons

u

/|S
u

|. Hence, the objective function of this adapted-
DES is: X

(u,v)2E

(� + x

u,v

),

which is equal to
X

(u,v)2E

x

u,v

+

X

u2S
P

cons

u

.

The Multi-Commodity Flow (MCF) problem is to minimize
X

(u,v)2E

a(u, v) · x
u,v

,

while satisfying constraints (1)(2)(3). Any MCF problem
instance could be reduced to the adapted-DES instance in
polynomial time, by letting a(u, v) = 1 and adding an
additional constant. As the MCF problem is NP-complete for
integer flows [8], the adapted-DES problem is NP-complete.
Any additional constraints like P

cons

u

cannot be shared by
links or ↵ > 1, making the DES problem not easier than the
adapted-DES problem.

Due to the hardness of DES problem, we explore practical
and efficient schemes to improve DCN energy-efficiency and
flow performance.

Data Center

Network

flows

Initial route

allocator Monitor

Scheduler

flows &net.
stat.

flows &net.
adjust

Fig. 2. System framework overview

III. ENERGY SAVING SCHEMES FOR DCNS

First we introduce our system framework, as shown in Fig.
2. Typically, flows are initialized by initial route allocator. As
flows arrive and depart, the monitor periodically detects the D-
CN configurations, and when the network gets suboptimal, the
scheduler adjusts flow routes and the network configurations.
In this adjusting process, we decouple rate1 allocation and
path selection for flows, aiming at satisfying flow rate demands
and minimizing the occupied network simultaneously. For rate
allocation, we first apply a simple method to label implicit
deadlines to deadline-agnostic flows, and use them to calculate
the bandwidth demands (III.A). Based on the bandwidth de-
mands, linear programming and simulated annealing methods
are proposed to select flow paths, and to output the minimum
subset of the DCN (III.B). The actual rate that a flow obtains is
the minimum allocated bandwidth along the selected path. We
also extend the methods for practical considerations (III.C).

A. Flow Rate Allocation

1) Bandwidth demand calculation: One of the main metrics
of the flow performance is its duration time, in other words,
the flow completion time. For applications in data centers,
especially OLDI applications, flows need to meet their dead-
lines to be useful. Nevertheless, deadlines are hard to explicitly
acquire from the packet headers. Since the sizes of flows are
easy to obtain, we can exploit the sizes of flows to estimate the
implicit deadlines for flows, and then use them in bandwidth
allocations. The method of calculating deadlines is based on
the TCP AIMD mechanism.

When the network is lightly loaded, the TCP (Reno version)
congestion window shows the sawtooth wave shape (Fig. 3).
The area between the wave and the x-axis can be considered
as the amount of data a flow sends. In a sawtooth wave (the
gray region), the amount of data is around 3

4WL (L · W

2 + 1
2 ·

L · W

2). We assume that the window size starts from W

2 , and
increases linearly until congestion occurs. Given the flow size
A, it is easy to approximate the flow duration time by a simple
formula:

D =

A

3
4WL

· L =

4A

3W

.

We regard D as the implicit deadline, and this value would
be tighter than the time it really takes when transmitting in
DCNs, due to the assumption on light network traffic. Given

1We use the term rate and bandwidth interchangeably.

281ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0 2 3 4 5 6 7 8 9 10

CWNDTL

Time

C
o
n
g
es

ti
o
n
 w

in
d
o
w

1

W/2

W

Fig. 3. TCP congestion window

a flow with remaining size f

i

.a and the remaining time until
its deadline expires f

i

.r, the demand bandwidth is estimated
as f

i

.de = fi.a

fi.r
.

2) Rate allocation: The bandwidth demand request travels
along the selected path to its destination, along which the
nodes allocate bandwidths accordingly. The actual bandwidth
flow f

i

gets is the minimum of the allocated bandwidths. We
apply the Greedy Bandwidth Allocation (GBA, Algorithm 1)
for each node, which receives bandwidth requests from flows.
If the node has sufficient capacity, each flow will acquire
bandwidth f

i

.al = f

i

.de + b, where b is the spare bandwidth
capacity shared with other flows. When the node does not
have enough capacity to satisfy all the requests, GBA will try
to satisfy requests as many as possible. The way we calculate
f

i

.al respects PG goal and outperforms original TCP in terms
of FCTs, as shown in Section IV.

Algorithm 1 Greedy Bandwidth Allocation
Input: f [1...N]: flows to be allocated, B: bandwidth capacity
Output: flows f [1...N] with bandwidth allocations
1: Sort f [1...N] by f.de in a non-decreasing order;
2: i = 1, R = B;
3: while i N and R > 0 do
4: f

i

.al = min{R, f
i

.de};
5: R = R � f

i

.al;
6: end while
7: if R > 0 then
8: b = R/N , i = 1;
9: while i N do

10: f

i

.al = f

i

.al + b;
11: end while
12: end if
13: Return f [1...N];

B. Flow Path Selection
Based on the flow bandwidth demands, we have developed

two methods to compute a minimum-power network subset
in DCNs. The first is based on linear programming, with a
randomized rounding scheme for minimizing active switches.
Inspired by [3], the second method uses simulated annealing
technique to get the solution by efficiently searching solution

space. Each method includes both initial route allocator and
scheduler algorithms.

1) Linear programming method: First we introduce our
initial route allocator in this method. Energy-Efficient Routing
(EER, Algorithm 2) counts the number of active switches in
each path and sorts the paths in a non-increasing order. Next,
EER checks the remaining bandwidths of the ordered paths
(p

i

.re) successively and allocates them to the candidate flow
until satisfying its demand (f.de). The divisor (⇤ � N[i]) (line
13) is small when there are many active switches in this path,
and in this case the probability of choosing this path is high .
We set ⇤ = 6 in Fat-tree, since there are 5 switches between
inter-pod hosts. For example, f.de = 20, N[1] = 5, N[2] = 2,
A[1] = 10 and A[2] = 10, after Normalize(), the probability
of choosing p1 and the probability of choosing p2 are 0.8 and
0.2, respectively. EER tends to allocate flows to paths which
have more active switches and to meet WC goal.

Algorithm 2 Energy-Efficient Routing
Input: f : flow to be allocated, p: the set of M possible paths
Output: an ideal path chosen for f
1: for i: 1 to M do
2: N[i] = CountActiveSW(p

i

);
3: end for
4: Sort p by number of active switches in decreasing order;
5: for i: 1 to M do
6: if p

i

.re 0 or f.de 0 then
7: continue;
8: end if
9: N[i] = CountActiveSW(p

i

);
10: A[i] = min{p

i

.re, f.de};
11: p

i

.re = p

i

.re � A[i];
12: f.de = f.de � A[i];
13: A[i] = A[i] / (⇤ � N[i]);
14: end for
15: Normalize(A[1...M]);
16: Return p

i

with probability A[i];

As flows arrive and depart, the network utilization may
become suboptimal. The scheduler takes the network con-
figuration and the flows as inputs and recomputes the paths
for flows in nearly real-time, such that the active switches
are minimized and the NA goal is respected. For scheduler
algorithm in this method (LP, Algorithm 3), LP solves the
MCF problem with fractional linear programming, and then
extracts candidate paths for each flow. With the fractional
results, we use a natural randomized rounding scheme, where
the paths are chosen with the probabilities depending on their
weights. Similarly to EER, we measure the weight of the j-th
candidate path for the i-th flow by the assigned bandwidths
P
i

[j].as and the number of active switches N[j], giving that
LP respects WC.

2) Simulated annealing method: Directly computing the
flow assignment needs exhaustive search in the solution space,
which is exponential to the number of flows. We introduce

282ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Algorithm 3 Linear Programming Based Path Selector
Input: f [1...N]: flows to be allocated, G = (E ,V): the DCN
Output: routing path p

i

for f [i]
1: Solve MCF problem by linear programming;
2: For each flow f [i], extract a set of candidate paths P

i

;
3: for i : 1 to N do
4: for P

i

[j] 2 P
i

do
5: N[j] = CountActiveSW(P

i

[j]);
6: w[i][j] = P

i

[j].as / (⇤�N[j]);
7: end for
8: Normalize(w[i]);
9: Choose p

i

with probability w[i];
10: end for
11: Return p1, p2, ..., p

N

;

a novel method which can significantly reduce the solution
space. The key insight is that a core switch can handle multiple
flows destined to specific hosts. In Fig. 1, CSW0 handles flows
destined to hosts under ToR4 and ToR6, while CSW1 handles
flows destined to hosts under ToR5 and ToR7. That is, we
shift from choosing paths for flows to choosing core switches
for hosts. Once the mapping from hosts to core switches
is determined, so are the paths for flows. Both initial route
allocator and scheduler algorithm in this method depend on
this mapping, since initial route allocator could initialize paths
for flows by simply searching in this mapping in terms of their
destinations, and scheduler updates this mapping by calling SA
(Algorithm 4).

SA is to find the optimal state in the state space, where a
state is a particular mapping. In each iteration, we generate
a neighboring solution from current state and accept it as the
new state with a probability depending on the energy of current
and neighboring state, and current temperature. SA proceeds
the iterations, with a decreased temperature each round, and
it stops when the temperature reaches 0.

Algorithm 4 Simulated Annealing Based Path Selector
Input: s: initial state, n: iteration count
Output: s

B

: beat state of the mapping
1: e = Energy(s);
2: s

B

= s, e
B

= e;
3: for T : n to 0 do
4: s

N

= Neighbor(s);
5: e

N

= Energy(s);
6: if e

N

< e

B

then
7: s

B

= s

N

, e
B

= e

N

;
8: end if
9: if Pr(e

N

�e, T) > Rand() then
10: s = s

N

, e = e

N

;
11: end if
12: end for

With the flow assignment determined by SA, we could
easily find whether the flow demands in a link exceed its ca-

pacity. The Energy() function is defined by the total exceeded
bandwidth demands and the number of active switches in s:

Energy(s) = (s.ex band+ 1) · (s.active sw + 1).

An extra 1 is necessary to ensure that the energy is always pos-
itive and comparable. Pr() defines the probability of accepting
neighboring state as the new state:

Pr(�E, T) =

(
1 �E > 0
e

c�E/T

�E 0

where c is a adjustable parameter.
Initial state: Particularly, the number of core switches is

equal to the number of hosts in a pod in the Fat-tree. We
restrict our first initial state to one-to-one mapping, which
implies each host in a pod is mapped to a unique core switch.
In subsequent scheduling phases, we set the initial state as the
best state from the previous phase. This configuration could
reduce the disruption of existing flows.

Neighbor state generator: Our neighbor state generator
directs SA to appropriate mappings which saves more energy
and tries to meet the capacity constraints. Our strategies are: (i)
powering off a randomly-chosen core switch and remapping
the involved hosts to other randomly-chosen core switches, (ii)
swapping the mapping relationships of two randomly-chosen
hosts, (iii) remapping a randomly-chosen host to another core
switch, and (iv) powering on a core switch and remapping
a randomly-chosen host from other switches to this switch.
The first strategy is for energy-saving, while the last three
strategies are for fine placements of flows with less exceeded
capacity bandwidths. These four strategies are chosen with
equal probability.

Energy function: The energy function we define involves
both energy and bandwidth allocation information. Less ener-
gy indicates either less energy consumptions or less exceeded
bandwidths, either of which would be accepted as a good state.
Given a fixed traffic, less energy consumption mean less active
switches, and then higher switch utilizations, giving that SA
respects WC.

C. Practical Considerations

Stability consideration: The algorithms we have proposed
are to find the minimum subset of switches, which achieve
the three goals presented in Section I. However, these may
go too far and result in unstable load. Unstable load will lead
to different subsets of switches in the contiguous scheduling
phases, meaning that the states of several switches change fre-
quently. For stability consideration, we extend our algorithms
with a Hit mechanism.

After applying the scheduler algorithm (LP or SA), we
extract the path for each flow, with which the subset of
switches is determined to run until next schedule phase. For
a switch not in the subset, (i.e., the switch would be turned
off), if the number of requests for powering off this switch in
the scheduling interval is greater than a given threshold, we
actually power off this switch, otherwise, we keep the switch

283ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

on and randomly choose flows from geographically neighbor
switches to adjust their paths to go through this switch. We
correspondingly call the algorithms with Hit mechanism as
LP-hit and SA-hit.

Fault tolerance consideration: The framework could cer-
tainly minimize the network energy consumption, but may
hurt the performance regarding fault tolerance of the origi-
nal system that always keeps switches on. We refer to the
original system as always-on baseline in our later evaluation.
In current data centers, failures are quite common due to
hardware, software, and power outage problems [6], [12]. We
thus improve our algorithms for fault tolerance with minor
modifications. For LP, we modify the Normalize() (Algorithm
2, line 8) function. For example, assume that there are two
possible candidate paths for flow 0, whose weights are w[0][0]

= 10, and w[0][1] = 2.5, respectively, and other candidate paths
are with weight w[0][i] = 0, for i � 2. In LP-FT, we make the
impossible paths join the candidate path set by modifying their
weights, (in this example, let w[0][2] = 2). This leads to the
probabilities of choosing path 0, 1, and 2 are 69.0%, 17.2%
and 13.8%, respectively. This method activates more paths,
and powers on more switches for fault tolerance. For SA-FT,
we let additional new core switches join the best mapping
computed by SA, and change a randomly-chosen host to map
to the new core switch.

Our framework combines GBA with LP and SA, respective-
ly. The LP based method and its variants run fast, while the
SA method and its variants achieve more energy savings and
maintain better FCTs, as demonstrated in the next section.

IV. SIMULATION EVALUATIONS

This section describes evaluations of our system framework.
The goal of these tests is to determine the energy-efficiency
and flow performance under various traffic patterns and various
network utilizations. The efficiencies and fault-tolerance of
algorithms are also evaluated.

A. Simulation Setups
We simulated our system framework on a laptop with an

Intel Core i5-2410M 2.30Ghz CPU and 4GB RAM. All of
the algorithms are implemented in Java.

Our simulator captures the flow-level events like flow ar-
rivals, departures and transmission rate calculations. Existing
packet-level simulators such as ns-2 become extremely slow or
even impossible when the number of network nodes becomes
huge. The traffic is generated for a range of communication
patterns at the granularity of network flow which follows
Pareto distribution with mean size 50KB. In our simulations,
time is split into slices. At each time slice, it updates flow rates
and generates new flows if needed. Periodically it calls the
scheduler to reassign flows to new paths and changes switch
states. For comparison, we also implement the Greedy Bin
Packing (GBP) method [13], which evaluates possible paths
and chooses the leftmost one with sufficient capacity for each
flow. When calling the scheduler algorithm (LP, SA or GBP),
the simulator also calls GBA for bandwidth allocation. When

updating flow rates, we also implement the TCP with slow start
and AIMD, and D3 [22] for flow performance comparisons.
Our simulator has similar implementation as that in [3], which
matches testbed performance very well.

We use Fat-tree topology with 320 switches and 1024
servers. Similar to previous works [2], [3], our synthetic traffic
patterns include:

• Random: Each server sends to a random destination.
Multiple servers can send to the same receiver.

• Random bijection: Each server sends to a random desti-
nation. Each host receives data from only one sender.

• Random nonpod: Each server sends to a random destina-
tion not in the same pod as itself. Multiple servers can
send to the same receiver.

• Stride-512: We number the servers in our Fat-tree topolo-
gy from left to right, as the leftmost is 0 and the rightmost
is 1023. By Stride-512, we mean the server i sends to
server (i+512) mod 1024.

For a single switch power function (Equation (5)), we set
P

cons

u

= 200 watts, and for each link power function � = 0,
µ = 2 ⇥ 10

�6 watts/(Mbps)2 and ↵ = 2, which are adopted
from [19]. Consequently, the maximum power consumption of
each switch is 232 watts.

B. Simulation Results
We now explore the efficiency of our framework. The

primary metrics include (i) FCTs, and (ii) the ratio of energy
consumption with our algorithms over the energy consumption
with the always-on baseline.

1) Synthetic demands, varying loads: Energy savings and
flow performance heavily depend on the traffic patterns and
network utilizations.

Energy saving evaluations: Figs. 4(a), (c), (e), (g) show
the energy savings in the Random, Random bijection, Random
nonpod, Stride-512 traffic patterns, respectively. In each traffic
pattern, we vary the network utilization from 10% to nearly
100% by adding more flows. And for each utilization and
each traffic pattern, we run the simulation for 60 seconds,
and measure the average energy consumptions during the
middle 40 seconds. In all four traffic patterns, SA saves more
energy than GBP and LP. In detail, 25% and 8% more energy
(at least) can be saved by SA compared with GBP and LP
model at low utilization (10% � 30%), respectively. While the
gaps in energy saving between different algorithms decrease
as the utilizations grows, SA could save 18% and 7% (on
average) more energy than GBP and LP model at medium
utilization (30% � 60%), respectively. When the utilization
is close to 100%, all the switches must remain active, and
thus all algorithms have similar performance. From another
point of view, traffic patterns also affect energy savings. At
20% utilization, SA achieves 42% and 35% energy savings
in Random and Random nonpod traffic patterns, respectively,
implying that at the same network utilization, the less flows
through core switches, the more energy saving.

Flow performance evaluations: In this section, we evaluate
the flow performance of different algorithms under synthetic

284ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Utilization

%
 o

f
O

r
ig

in

GBP

LP

SA

(a) Energy under Random traffic

0

20

40

60

80

100

E
C

M
P

G
B
P

D
3

L
P S

A

10% Utilization

F
C

T
(u

n
it

s
o

f
ti

m
e)

0

50

100

150

200

40% Utilization

F
C

T

0

50

100

150

200

250

70% Utilization

F
C

T

E
C

M
P

G
B
P

D
3

L
P S

A

E
C

M
P

G
B
P

D
3

L
P S

A

(b) FCTs under Random traffic

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Utilization

%
 o

f
O

r
ig

in

(c) Energy under Random bijection traffic

0

20

40

60

80

100

E
C

M
P

G
B
P

D
3

L
P S

A

10% Utilization

F
C

T
(u

n
it

s
o

f
ti

m
e)

0

50

100

150

200

40% Utilization

F
C

T

0

50

100

150

200

250

70% Utilization

F
C

T

E
C

M
P

G
B
P

D
3

L
P S

A

E
C

M
P

G
B
P

D
3

L
P S

A

(d) FCTs under Random bijection traffic

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Utilization

%
 o

f
O

r
ig

in

(e) Energy under Random nopod traffic

0

20

40

60

80

100

E
C

M
P

G
B
P

D
3

L
P

S
A

10% Utilization

F
C

T
(u

n
it

s
o
f

ti
m

e)

0

50

100

150

200

40% Utilization

F
C

T

0

50

100

150

200

250

70% Utilization
F

C
T

E
C

M
P

G
B
P

D
3

L
P S

A

E
C

M
P

G
B
P

D
3

L
P S

A

(f) FCTs under Random nopod traffic

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Utilization

%
 o

f
O

r
ig

in

(g) Energy under Stride-512 traffic

0

10

20

30

40

50

E
C

M
P

G
B
P

D
3

L
P S

A

10% Utilization

F
C

T
(u

n
it

s
o
f

ti
m

e)

0

10

20

30

40

50

40% Utilization

F
C

T

0

20

40

60

80

100

70% Utilization

F
C

T

E
C

M
P

G
B
P

D
3

L
P S

A

E
C

M
P

G
B
P

D
3

L
P S

A

(h) FCTs under Stride-512 traffic

Fig. 4. Energy consumptions and FCTs under synthetic traffic patterns

traffic patterns. Here, we choose three utilizations of 10%,
40% and 70% to represent low, medium and high utilizations,
respectively, and focus on the FCTs. The ECMP and D3
schemes run within the always-on network configuration,
while SA, LP and GBP run within subsets of the network.
Figs. 4(b), (d), (f) and (h) plot the percentiles FCTs (1st-
25th-50th-75th-99th) at different traffic patterns and network
utilizations. At low utilization, the median FCTs for all ap-

proaches are comparable, while for the 99th percentile FCT,
SA and GBP are comparable, but LP performs worse than the
two algorithms. As network utilization increases, LP model
becomes worse than SA and GBP, because its probabilistic
path selection leads to aggressive flow congestions. At medium
load, the median FCT of SA is, on average, 11% higher than
that of GBP, while the 99th percentile of SA is at least 33%
lower than that of GBP. The gaps between SA and GBP

285ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0 100 200 300 400 500 600 700 800 900 1000 1100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Time

U
ti

li
z
a
ti

o
n

(a) Utilization

0 100 200 300 400 500 600 700 800 900 1000 1100
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Time

%
 o

f
O

r
ig

in

GBP

LP

SA

LP−hit

SA−hit

(b) Energy consumptions

0 100 200 300 400 500 600 700 800 900 1000 1100
0

50

100

150

200

250

300

350

400

450

500

Time

C
o
u

n
t

o
f

s
w

it
c
h

 s
ta

te
 c

h
a
n

g
in

g

LP

SA

LP−hit

SA−hit

(c) Count of switch state changing

Fig. 5. Energy consumptions with sine-wave utilization

TABLE I
THE RATIOS OF ENERGY CONSUMPTION WITH SA BY VARYING ITERATIONS

SA Iteration Random Random bijection Random nopod Stride-512
10% 40% 70% 10% 40% 70% 10% 40% 70% 10% 40% 70%

50 0.594 0.726 0.860 0.581 0.720 0.828 0.618 0.781 0.913 0.557 0.681 0.856
100 0.570 0.703 0.840 0.562 0.703 0.819 0.609 0.766 0.887 0.557 0.673 0.832
500 0.573 0.695 0.831 0.560 0.708 0.820 0.605 0.770 0.878 0.550 0.690 0.827
1000 0.563 0.702 0.838 0.554 0.696 0.822 0.610 0.765 0.891 0.564 0.668 0.831
5000 0.567 0.691 0.834 0.562 0.695 0.821 0.604 0.772 0.875 0.551 0.678 0.823

10000 0.565 0.695 0.830 0.551 0.691 0.825 0.605 0.761 0.871 0.560 0.670 0.818

50 100 500 1000 5000 10000
10

2

103

104

105

Iterations

T
im

e
(m

s
)

SA−40% Uti

SA−70% Uti

LP−10% Uti

LP−40% Uti

LP−70% Uti

SA−10% Uti

Fig. 6. Time consumptions by varying iterations

become larger in terms of the 99th percentile, but become
closer in terms of the median at high utilization.

2) Diurnal variation demand: As the network utilization
varies with time in product data centers, we capture this
demand by simulating a sine-wave utilization which is inspired
by [13]. As Fig. 5(a) shows, the highest utilization is 90%,
while the lowest is 10%. The simulation runs for 40 seconds
and 80 seconds at low and high utilization, respectively, to
imitate the diurnal utilization pattern. We compare energy-
efficiency of LP and SA, together with LP-hit and SA-hit.
From measurements of the half of the wave length, we record
and calculate the energy consumptions from the 200th time
tick to the 550th time tick, which demonstrate that SA and
LP save 18.4% and 5.6% more energy than GBP, respectively.
While SA-hit consumes more energy than SA, which is about
3% in this load decreasing phase, it consumes almost equal
energy as SA in the load increasing phase. This phenomenon
also appears in LP-hit, as illustrated in Fig. 5(b). Since Hit
mechanism indeed incurs more energy, it could reduce the
number of switch state changing (Fig. 5(c)). We also note that
SA leads to more state changing times than LP, which we
believe, is the expense for higher energy savings.

0.2 0.4 0.6 0.8 1

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Utilization

GBP

LP

SA

LP−FT

SA−FT

%
 O

f
O

r
ig

in

(a) Varying utilizations

20 80 320 1280 5120

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Switches number

LP

SA

LP−FT

SA−FT

(b) Varying scales

Fig. 7. Energy consumptions with fault tolerance

3) Iterations and running times: To explore the energy
savings of SA under different iterations, we conduct the
experiments using synthetic traffic patterns and various uti-
lizations as before. These results (Table I) conform with our
expectation that more iterations create better state that can be
used to save more energy. Fortunately, most of the performance
improvements appear in the first few iterations. Next, Fig.
6 shows the running times of SA for different iterations,
compared with LP under various utilizations. These results
report that the running times of SA with few hundreds of
iterations are not much longer than LP.

4) Fault tolerance: We use the Fat-tree topology as before,
and the Random traffic pattern as the underlying traffic. For
LP-FT, we add two more possible paths into the candidate path
set for each flow, while adding one more core switch (if exists)
for each pod to the best state for SA-FT. Fig. 7(a) shows that
additional energy required by fault tolerance decreases as the
utilization grows. Furthermore, as the network scale increases,
the cost of fault tolerance decreases, which is confirmed by
the results of Fig. 7(b) where the number of switches changes
from 20 to 5120.

In summary, our SA and LP methods together with GBA
show better energy-efficiency than GBP algorithm under the
synthetic traffic patterns. In terms of flow performance, LP

286ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

impacts the FCT aggressively. In contrast, SA shows compa-
rable median FCTs but lower 99th percentiles compared with
GBP. Besides, the running time of SA is not much longer
than LP since its improvements almost always appear in the
first few iterations. We also demonstrate that our methods can
be easily extended for fault tolerance and the incurred energy
consumptions are controllable.

V. RELATED WORKS

Energy-efficient DCNs: Many approaches have been pro-
posed on improving the energy-efficiency of DCNs. The first
type of these works is to design novel architecture. [15]
proposed a server-centeric data center structure that conserves
energy by varying bandwidth availability based on traffic
demand. The second type is to optimize energy-efficiency
of DCNs by traffic engineering methods. Heller et al [13]
presented ElasticTree, a network-wide power manager, which
dynamically adjusted the set of active network elements.
But ElasticTree assumes that a complete prior knowledge of
incoming traffic is known. Wang et al [21] proposed CARPO,
a correlation-aware power optimization algorithm that dynam-
ically consolidates traffic flows onto a set of switches and
shuts down unused network devices. Andrews et al exploited
speed scaling [4] and power-down [5] techniques to route and
schedule continuous flows, but the transmission speed for each
flow was given as a constant.

Flow-level optimization: The performance of OLDI appli-
cations heavily depends on FCTs. There is abundant work that
deals with the subject of data center transport designs. D3 [22]
first introduced deadline information combined with explicit
rate control. PDQ [14] showed that minimizing FCTs requires
preemptive flow scheduling.

There are few works that improve DCN energy-efficiency
and performance simultaneously. Wang et al [20] proposed
a novel energy-saving model for data center networks by
scheduling and routing deadline-constrained flows, based on
speed scaling and power-down strategies. But the power
function of switches they used was only based on links (or
ports). We use the general switch power function and propose
approaches that could make energy consumptions of DCNs
approximately in proportion to their traffic loads, while the
flow-level performance degradation is guaranteed.

VI. CONCLUSION

In this paper, we studied the energy-efficiency of DCNs,
where the flow-level performance was guaranteed. The key
idea of our framework was that we decoupled the path
selection and rate allocation for flows. In path selection, we
assigned flows to paths with fewer switches to minimize
network energy consumptions. In rate allocation, we efficiently
utilized link bandwidth to satisfy flow demands which were
estimated with implicit deadlines. With these approaches, we
were able to achieve both energy efficiency and better flow
performance compared with existing works.

ACKNOWLEDGMENT

This work is partially supported by the National Natural
Science Foundation of China under Grant No. 61472181,
61321491, 61502224, 91218302; China Postdoc Science Fund
under Grant No. 2015M570434; Jiangsu Natural Science
Foundation under Grant No. BK20151392; Jiangsu Key Tech-
nique Project (industry) under Grant No. BE2013116; EU FP7
IRSES MobileCloud Project under Grant No. 612212. And this
work is also partially supported by Collaborative Innovation
Center of Novel Software Technology and Industrialization.

REFERENCES

[1] America’s data centers consuming and wasting growing amounts of en-
ergy. http://www.nrdc.org/energy/data-center-efficiency-assessment.asp.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. ACM SIGCOMM 2008, pages 63–74.

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat.
Hedera: Dynamic flow scheduling for data center networks. In NSDI
2010, pages 19–19.

[4] M. Andrews, A. F. Anta, and L. Zhang. Routing for power minimization
in the speed scaling model. IEEE/ACM TON, 20(1):285–294, 2012.

[5] M. Andrews, A. Fernández Anta, L. Zhang, and W. Zhao. Routing and
scheduling for energy and delay minimization in the powerdown model.
Networks, 61(3):226–237, 2013.

[6] L. Barroso, J. Dean, and U. Holzle. Web search for a planet: The google
cluster architecture. Micro, IEEE, 23(2):22–28, March 2003.

[7] T. Benson, A. Anand, A. Akella, and M. Zhang. Understanding data
center traffic characteristics. ACM SIGCOMM 2010, pages 92–99.

[8] S. Even, A. Itai, and A. Shamir. On the complexity of time table and
multi-commodity flow problems. In FOCS 1975, pages 184–193.

[9] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a
cloud: research problems in data center networks. ACM SIGCOMM
2008, pages 68–73.

[10] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta. Vl2: a scalable and flexible data
center network. In ACM SIGCOMM 2009, pages 51–62.

[11] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu. Bcube: a high performance, server-centric network architecture
for modular data centers. ACM SIGCOMM 2009, pages 63–74.

[12] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu. Dcell: A scalable
and fault-tolerant network structure for data centers. In ACM SIGCOMM
2008, pages 75–86.

[13] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiakoumis, P. Sharma,
S. Banerjee, and N. McKeown. Elastictree: Saving energy in data center
networks. In NSDI 2010, pages 249–264.

[14] C.-Y. Hong, M. Caesar, and P. Godfrey. Finishing flows quickly with
preemptive scheduling. ACM SIGCOMM 2012, pages 127–138.

[15] L. Huang, Q. Jia, X. Wang, S. Yang, and B. Li. Pcube: Improving power
efficiency in data center networks. In CLOUD 2011, pages 65–72.

[16] P. Mahadevan and P. Sharma. A power benchmarking framework for
network devices. In NETWORKING 2009, pages 795–808.

[17] A. Munir, I. A. Qazi, Z. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S.
Iqbal, and B. Khan. Minimizing flow completion times in data centers.
In INFOCOM 2013, pages 2157–2165.

[18] B. Vamanan, J. Hasan, and T. Vijaykumar. Deadline-aware datacenter
tcp (d2tcp). ACM SIGCOMM 2012, pages 115–126.

[19] L. Wang, F. Zhang, J. Arjona Aroca, A. V. Vasilakos, K. Zheng, C. Hou,
D. Li, and Z. Liu. Greendcn: a general framework for achieving energy
efficiency in data center networks. IEEE JASC, 32(1):4–15, 2014.

[20] L. Wang, F. Zhang, K. Zheng, A. V. Vasilakos, S. Ren, and Z. Liu.
Energy-efficient flow scheduling and routing with hard deadlines in data
center networks. In ICDCS 2014, pages 248–257.

[21] X. Wang, Y. Yao, X. Wang, K. Lu, and Q. Cao. Carpo: Correlation-
aware power optimization in data center networks. In INFOCOM 2012,
pages 1125–1133.

[22] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never
than late: Meeting deadlines in datacenter networks. In ACM SIGCOMM
2011, pages 50–61.

287ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Blending photons with electrons to reduce the
energy footprint of IPTV networks

Fernando M. V. Ramos⇤, Jon Crowcroft†, Ian H. White†

LaSIGE, Faculdade de Ciências, Universidade de Lisboa, Portugal⇤ University of Cambridge, UK†

Abstract—The rapid growth of IPTV services and the resulting
increase in traffic volumes is raising concerns over energy
consumption. In this paper we propose to save energy by shifting
particular IPTV traffic from power-hungry electronic routing
to greener optical switching. The traffic profile of IPTV results
in such a hybrid switching approach to allow both energy and
bandwidth efficiencies. To achieve this goal we designed a novel
protocol that allows the use of optical bypass in IPTV networks.
By means of a trace-driven analysis of a large dataset we demon-
strate the energy efficiencies obtained to be substantial, reaching
power savings of over 40% under normal load conditions. This
result represents a four-fold increase in energy efficiency when
compared with recent proposals.

I. INTRODUCTION

The past few years have witnessed the rapid roll-out of
IPTV services. IPTV has been launched by major service
providers worldwide [1] and its popularity is on the rise. Ac-
cording to the most recent report from Digital TV Research [2],
in the period from 2011 to 2013 the number of IPTV customers
has increased from 36 to over 90 million, and is expected to
reach 191 million by the end of 2020.

IPTV is a resource intensive service with stringent quality
of service requirements. Each video stream is encoded at a bit
rate that can vary from around 4Mbps (SDTV) to 20 Mbps
(HDTV). In the future this figure may increase by one or two
orders of magnitude, with the advent of ultra high definition
video standards (4K, UHDTV). Besides the resulting increase
in bandwidth requirements, the number of TV channels offered
is also expected to grow. Current IPTV operators already
offer near one-thousand TV channels [3] to its customers.
But recent trends anticipate the likely growth of the number
of TV channels in the near future. Narrowcasting services –
broadcasting to a very small audience [4] –, for example, are
growing in importance.

The increase in bandwidth required to support an increasing
number of users and of TV content has led to concerns about
the energy consumed by the infrastructure. Various studies
have highlighted the effects of GreenHouse Gases (GHG)
emissions and their consequences on climate change [5] and
on the economy. ICT represents an important source of energy
consumption and of GHG emissions, with 37% of the total ICT
emissions due to the network infrastructure [6].

In this paper we focus our attention in the energy consump-
tion of traditional (push-based) linear TV over IP networks. In
this type of system TV programs are broadcast on the different
channels according to a known schedule (content is therefore

pushed to users). This type of service is fundamentally differ-
ent from pull-based approaches such as time-shifted TV1 or
VoD. Linear TV broadcasts do not have the natural scaling
properties of time-shifted TV [7], increasing the challenge
of improving the efficiency of these networks. For instance,
the intrinsic nature of linear TV services precludes the use of
energy optimisation approaches based on caching techniques,
as recently-proposed for time-shifted TV [7], [8]. Alternative
techniques are therefore needed.

Today, IPTV systems2 are inefficient. In current deploy-
ments all TV channels are distributed to all local routers,
despite particular channels having no viewers at particular
time periods. Considering this inefficiency problem, we have
proposed a scheme [9] – selective pre-joining – where only
a selection of TV channels is distributed in the network,
instead of all. We have shown, based on real data, that by
using this scheme it is possible to save bandwidth and energy
while affecting a very small number of channel switching
requests. For instance, we have demonstrated that if core
routers pre-joined only the channels that have viewers the
effect in the quality of service would be residual (less than
0.1% channel requests would be affected) while achieving
important efficiency gains.

In this paper we propose to go further in terms of energy-
efficiency by following a different approach. The technique
we propose is based on the introduction of optical switching
in the network. The rationale is the fact that optical switch-
ing techniques are more energy-efficient than their electronic
counterpart [10]. In particular, we assess the opportunities for
performing optical bypass in IPTV networks, and propose a
novel protocol for this purpose. With optical bypass, traffic not
destined for a given network node is not processed electroni-
cally by that node. This traffic is all-optically switched.

By avoiding electronic processing and performing optical
switching instead, energy savings are to be expected. We
demonstrate in this paper this hypothesis to be true. For
this purpose, we evaluated our protocol by means of trace-
driven analyses using a dataset from an operational IPTV
service provider. The dataset scales up to 150 TV channels, six
months, and 255 thousand users. We demonstrate that by using
the proposed scheme IPTV service providers can significantly
reduce the energy consumption of their networks. For instance,
for normal traffic load conditions our proposal presents a
four-fold increase in energy-efficiency when compared with
selective pre-joining [9].

1On-demand access to previously broadcast TV content, also known as
catch-up TV.

2We will henceforth use IPTV to refer to linear TV services distributed over
an IP network.ISBN 978-3-901882-83-8 c� 2016 IFIP

288ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

II. BACKGROUND

A. IPTV networks

A traditional “walled garden” IPTV network can be split
logically into three main domains – the access network, the
metropolitan network, and the IP network. The IP network
usually has a two-level, hierarchical structure [11]: the regional
network (sometimes called edge) and the core (Figure 1).

core IP network

IPTV
head-end

core
network

regional
network

metro
network

TV
channels

STB

access
network

router

DSLAM

Fig. 1. IPTV network

In an IPTV system, live TV streams are encoded in a
series of IP packets and delivered through the network to
the residential broadband access network. The core network
comprises a small number of large routers in major population
centres. The core routers are often highly meshed, with high-
capacity WDM fibre links interconnecting them. In the regional
network, routers are normally lower-end routers with high port
density, where IP customers get attached to the network. These
routers aggregate the customer traffic and forward it toward
the core routers. The metro network serves as the interface
between the regional network and the access network. The
access network connects each home to one of the edge switches
in the provider’s network. There is a wide variety of access
technologies: from ADSL (Asymmetric Digital Subscriber
Line) to fibre-based solutions (FTTx). Inside the household,
a residential gateway connects to a modem and one or more
Set Top Boxes (STBs). Finally, each STB connects to a TV.

The TV channels are distributed from the TV head-end
to edge nodes (DSLAMs in Figure 1) through bandwidth-
provisioned multicast trees. Current networks use static IP
multicast within a single network domain. By static multicast
we mean all receivers are known beforehand, and no new group
members are allowed to join – we have a static set of receivers
for all TV content. Again referring to Figure 1, this means all
DSLAMs join all multicast groups (thus receive content from
all TV channels). This occurs despite the fact that particular
channels have no viewers at particular time periods [9].

B. Core optical IP networks

An optical IP network can be seen as being made up of
two layers, the IP layer and the optical layer. This is shown
in Figure 2. In the first generation of optical networks, all
the lightpaths incident to a node had to be terminated, i.e.,
all the data carried by the lightpaths would be processed and
forwarded by IP routers. This is represented in the figure
by lightpath 1. This wavelength is OEO (Optical-Electrical-
Optical) converted at each node. In contrast, the new genera-
tion of optical networks includes elements such as the Optical
Cross Connect (OXC) which allow some lightpaths to bypass
the node. This approach allows IP traffic whose destination is
not the intermediate node to directly bypass the intermediate
router via a cut-through lightpath. This is represented by
lightpath 2. This wavelength bypasses all nodes.

core
router

low end
routers

OEO
converters

WDM links

IP
layer

optical
layer

lighpath 1 (no bypass)

lighpath 2 (optical bypass)

OXC
DEMUX MUX

Fig. 2. Optical network employing optical bypass techniques

Several researchers have pointed out that optical bypass
technology is one important method to reduce the power con-
sumption of IP networks [10], [12], [13]. This technique can
save energy because it can reduce the total number of active
IP router ports, and these play a major role in the total energy
consumption of an optical IP network [13]. Shifting traffic
from power-hungry routers to low-power optical switches by
means of optical bypass is therefore an effective technique to
save energy in optical networks.

III. OPTICAL BYPASS OF POPULAR TV CHANNELS

With the goal of reducing energy consumption, in this
paper we consider the introduction of energy-friendly optical
switching techniques in the core of optical IPTV networks.
In particular, we propose the introduction of optical bypass.
With optical bypass traffic not destined for a given IP router is
placed onto a wavelength that is not processed by that router.
Instead, this traffic is all-optically switched. Due to the circuit-
switching nature of optical networks, however, only long-lived
flows can be considered realistic targets for optical bypass.

Conveniently, some IPTV traffic is in this category. Some
TV channels are very popular, having viewers everywhere in
the network, at any particular time. Optically switching such
long-lived flows can therefore be advantageous energy-wise.
Other less popular and niche channels have periods without
any viewers in particular locations, so it is wasteful to dis-
tribute them continuously everywhere. The dynamic nature of
electronic packet-switching nodes is therefore ideal to switch
this type of traffic. This guarantees the network is bandwidth
efficient, by allowing these TV channels to be quickly removed
from or added to the network as needed.

289ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

A. Protocol for optical bypass in IPTV

Considering the above, we propose a protocol to be used
in the core of IPTV distribution networks, blending electronic
routing with all-optical switching. We assume the network
core to be composed of hybrid nodes, each including a
multicast-capable WDM optical cross connect (OXC) and a
multicast-enabled IP router, as illustrated in Figure 2. The
inclusion of the OXC between the input ports and the router
allows optical bypass to be performed. We further assume
these nodes to be GMPLS-capable. A unified control plane
such as GMPLS allows the integration of optical circuit-
switching techniques with electronic packet-switching. The
main idea of the scheme is for popular TV channels to be
all-optically switched (switched at the optical layer), while the
rest are electronically routed (switched at the IP layer). The
network distributes the two different groups of channels in two
(disjoint) sets of wavelengths. The wavelengths from one set
optically bypass the nodes, whereas the other wavelengths are
sent to the routers for processing. We restrict the use of the
proposed scheme to the optical network core, as this is the
only location where it is realistic to assume the presence of
OXC equipment in the medium-term.

Algorithm 1 Processing at the IPTV source
1: while true do
2: sleep(�⌧)
3: send to core-reg nodes(ACTIVE CHANNELS REQ)

{Wait until all requests are received...}
4: CPop ALL TV CHANNELS
5: CNonPop ;
6: for i = 1 to NUMBER OF NODES do
7: CPop CPop \ActiveCh[i]
8: end for

{CPop now includes all popular TV channels}
9: for i = 1 to NUMBER OF NODES do

10: CNonPop CNonPop [(ActiveCh[i] /2 CPop)
11: end for

{CNonPop now includes the other TV channels with
viewers}

12: �o [Wavelengths filled with CPop channels]
13: �e [Wavelengths filled with CNonPop channels]
14: send to all nodes(SWITCH CHANGE REQ, �o, �e)
15: end while

Algorithm 2 Processing at each core-regional node
1: while true do
2: MESSAGE = msg rcv from source()
3: if MESSAGE == ACTIVE CHANNELS REQ then
4: ActiveCh get(McastFwdTable)
5: send to source(ActiveCh)
6: end if
7: end while

The protocol for optical bypass in IPTV networks consists
of three algorithms. Algorithm 1 runs at the IPTV source,
Algorithm 2 runs at core-regional nodes (Figure 1), and
Algorithm 3 runs at the core nodes (including core-regional
ones). The details of the proposed protocol follows.

Step 1. After a specified time interval, �⌧ , the source
transmits a message requesting all hybrid core-regional nodes

Algorithm 3 Processing at each core node
1: while true do
2: MESSAGE = msg rcv from source()
3: if MESSAGE == SWITCH CHANGE REQ then
4: for all � 2 �o do
5: switch optically(�)
6: end for

{Wavelengths in the set �o are optically bypassed}
7: for all � 2 �e do
8: route electronically(�)
9: end for

{Wavelengths in the set �e are sent to the router}
10: end if
11: end while

to submit their active channels (algorithm 1, lines 2-3). An
active channel is a channel for which there is at least one
viewer. This message sent by the source serves as a trigger
for all core-regional routers to send this information back to
the source as soon as possible. Considering that all nodes are
GMPLS-capable, this information can be sent as a TE Notify
message. RSVP-TE Notify messages were added to RSVP-TE3

to provide general event notification to nonadjacent nodes.
Step 2. Each regional-core node then sends information on its
active channels to the IPTV source. As the active channels
are those being distributed by the regional-core router to its
region, the multicast forwarding table of this router contains
a line with their multicast group addresses and the interfaces
used to forward packets to. The information requested can thus
be easily retrieved and sent back to the source (algorithm 2,
lines 3-6). Again, an RSVP-TE Notify message can be used.
Step 3. Once the source receives these sets from all routers, it
checks which TV channels should be optically switched (the
popular ones), and which should be electronically routed (the
remainder channels with viewers). The popular channels are
those which have viewers everywhere. Their multicast group
addresses are present in the multicast forwarding tables of
every core-regional router. The intersection of all sets received
by the source thus results in a new set with the list of popular
channels4 (algorithm 1, lines 6-8). The union of the active
channels of each set which are not popular results in a set
with the non-popular TV channels (algorithm 1, lines 9-11).
Step 4. The TV channels are distributed, from the source,
in two distinct sets of wavelengths: �o and �e. The popu-
lar channels are distributed using N different wavelengths:
�o = N⇥�. The others are sent in a disjoint set of M different
wavelengths: �e = M⇥�. The number of wavelengths in each
set depends on the number of TV channels and its bit rate, and
on the capacity of each wavelength. The IPTV source decides
the composition of each set of wavelengths and informs all
core nodes of its decision (algorithm 1, lines 12-14). This
information can be sent in the form of an RSVP-TE PATH
message. This is one of the messages used to allocate resources
in the network. In multicast scenarios, only one PATH message

3As its name implies, the Resource Reservation Protocol - Traffic Engineer-
ing (RSVP-TE) is an extension of the resource reservation protocol (RSVP)
for traffic engineering, and is used as part of the GMPLS control plane for
this purpose.

4We are abusing the term “popular” in this paper. If one TV channel has
a single viewer in each region then it is included in the popular set. We use
this term to ease the understanding of the scheme.

290ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

needs to be sent to multiple receivers, thus conserving network
bandwidth.
Step 5. Each core node then sets up its switching state to
optically switch the �o group (these wavelengths will therefore
optically bypass the routers), and electronically route the �e

group (algorithm 3, lines 3-10).

IV. METHODOLOGY AND DATASET

The research community working on IPTV systems has
relied upon hypothetical user models which are sometimes
different from reality and can lead to incorrect estimation
of system performance. Constant-rate Poisson models are
generally used as workload model for these systems. Exam-
ples include [14], [15], among several others. Unfortunately,
these models does not capture IPTV user behaviour well. For
instance, users switch channels more frequently than these
simple models predict. This fact was proved by Qiu et al. [3].
The authors made a comprehensive analysis of real data from
an operational nationwide IPTV system (AT&T) where they
show that the simple mathematical models generally used are
not good. Faced with this concern, the solution we propose in
this paper is evaluated by means of trace-driven analysis of a
large dataset from an IPTV provider.

The analysis of our dataset led us to the same conclusions
as in [3]. In Figure 3 we exemplify one of the problems
of using a simple Poisson distribution as a mathematical
model to represent the behaviour of IPTV users. The figure
presents the Cumulative Distribution Function of the number of
channel switches during one-minute periods (a zapping period,
according to [1]). The analysis was done on the entire dataset
we describe in Section IV-A. In the figure we compare the
empirical data with a Poisson distribution with parameter �

equal to 1.948 (the one that fits better the empirical data).

0.0

0.2

0.4

0.6

0.8

1.0
Poisson model

Empirical data

10 20 30 40 50 60
Number of channel switches during zapping

CD
F

Fig. 3. Number of channel switches in zapping mode

As can be seen, the Poisson model is conservative in
terms of the number of channel switches a user performs
during zapping periods. For example, the probability of a user
making five channel switches or more in a one-minute period
is negligible when using the Poisson distribution. But in fact
by observing the empirical data one can conclude that there is
a 20% probability of a user switching channels five times or
more during a zapping period.

A. Dataset

We obtained a collection of IPTV channel switching logs
from an IPTV service offered by an operational backbone

TABLE I. DATASET STATISTICS

Trace duration 6 months
Number of users 255 thousand
Number of DSLAMs 680
Average number of daily channel switching events 13 million
Size of the dataset 700 GB

provider. This is a commercial, nationwide service, offering
150 TV channels over an IP network. The access links
use ADSL technology and the network is composed of 680
DSLAMs distributed along 11 regions. To give an idea of
the scale of the dataset, the 700GB trace spans six months
and records the IGMP messages on the channel changes of
around 255 thousand users. The number of daily channel
switchings clocks 13 million on average. Table I summarises
these statistics.

B. Validation of the dataset

To assure the representativeness of our dataset and the
evaluation that ensues, we compared the results from Qiu et
al [3] with the results from the analysis of our dataset (the two
datasets are from different IPTV services offered in different
countries). For validation we analysed the number of online
users during the course of representative weeks, and found
the same very strong diurnal patterns as Qiu et al. [3]. We
also examined the long term distribution of channel popularity
and found the same high skewness of popularity, which can
be modelled using Zipf-like distributions. Finally, we also
conclude that IPTV users switch channels very similarly in
both studies. By analysing the entire dataset we observed that
55% of all channel switching was linear, up or down to the
next or previous TV channel (in constrast to more targetted
switching). Qiu et al. [3] reported 56% in the AT&T dataset.
The full detail of this validation is out of scope of this paper.
We leave an in-depth analysis as future work.

V. EVALUATION

For the reasons explained before, the scheme we propose
is evaluated by means of a trace-driven analysis. The IPTV
trace detailed in Section IV-A is used as input to the analysis
performed. All results we present next arise from the analysis
of the entire data set (6 months, 255 thousand users). The
evaluation is threefold. First, we investigate the scalability of
the protocol. Second, we analyse the opportunities for optical
bypass when running the proposed protocol in the network
under study. Finally, we analyse the impact the use of this
protocol has in power consumption of the IPTV network.

A. Scalability

For a network protocol to be scalable it is important that
it does not impose a significant processing overhead to the
network nodes and that it does not add a great amount of
signalling traffic to the network. By guaranteeing a relatively
long update interval for the control information (the �⌧

variable in the proposed protocol) it is possible to guarantee a
low overhead to the nodes and to the network as a whole. On
the other hand, to assure the best performance it is important
that the network state5 is consistent with network usage (in this

5In this context, the network state consists of the wavelength switching
configuration at each node, and the set of TV channels transported in each
wavelength group, �

o

and �
e

.

291ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

particular case, it should reflect channel popularity). Having a
short update interval marries with this objective.

It is known that channel popularity is relatively stable over
short time frames, and that it becomes more dynamic when
longer time frames are considered [16]. Regular updates may
therefore not be needed. We analyse the henceforth called
TV channel churn rate in the 11 core-regional nodes of this
network to attest this. We compare the active TV channels at
time ⌧ with the active channels at time ⌧ +�⌧ , for different
values of �⌧ . The number of channels that are different
between the two sets in two consecutive periods is the TV
channel churn rate. The results are shown in Figure 4, for each
region, and for five values of �⌧ . The median of the channel
churn rate over the whole period of the trace (6 months) is
presented, with the lower and upper error bars representing
the 5th- and 95th-percentile, respectively.

Region 11
Region 10
Region 9
Region 8
Region 7
Region 6
Region 5
Region 4
Region 3
Region 2
Region 1

Region 11
Region 10
Region 9
Region 8
Region 7
Region 6
Region 5
Region 4
Region 3
Region 2
Region 1

Region 11
Region 10
Region 9
Region 8
Region 7
Region 6
Region 5
Region 4
Region 3
Region 2
Region 1

Region 11
Region 10
Region 9
Region 8
Region 7
Region 6
Region 5
Region 4
Region 3
Region 2
Region 1

Region 11
Region 10
Region 9
Region 8
Region 7
Region 6
Region 5
Region 4
Region 3
Region 2
Region 1

●
●
●
●
●
●
●
●
●
●
●

●
●
●
●
●
●
●
●
●
●

●

●
●
●

●
●
●
●
●
●
●

●

●
●
●

●
●
●

●
●
●
●

●

●
●
●

●
●
●

●
●

●
●

●

∆T=30 sec
∆T=15 m

in
∆T=1 hour

∆T=6 hours
∆T=1 day

0 5 10 15 20 25 30 35
TV channel churn rate

Fig. 4. TV channel churn rate for all eleven regions, for five values of the
update interval

By analysing the results in Figure 4, we conclude that
the churn rate is usually quite low, particularly for values
of �⌧ below 1 hour. A long update interval of 15 minutes,
for instance, seems a good compromise. It does not represent
a significant overhead to the network, while at the same
time guarantees that the network state changes with channel
popularity dynamics.

B. Opportunities for optical bypass

The protocol proposed divides the TV channels into three
groups: the popular channels, the unpopular channels, and
the channels without viewers. The channels from the former
group optically bypass the routers. Those from the second
group are sent for the router for electronic processing. Finally,
those from the latter group are not distributed by the IPTV
source (when a user switches to a channel without viewers a
request is sent to the source for its quick distribution and the
channel becomes part of the group of unpopular channels). To

understand the opportunities for optical bypass in the core of
the IPTV network, we need to quantify how many channels
would be included in each group, at regular intervals. For
this purpose, we retrieve the number of channels in each set
(popular, unpopular, and channels with no viewers), for the
entire trace. We consider for the analysis an update interval
equal to 15 minutes, for the reasons explained above. This is
the periodicity with which we retrieve the number of channels
in each set. In Figure 5 we present the results obtained
(median, 5th-, and 95th-percentile) from the analysis of the
entire dataset.

Not distributed

Electronically routed

Optically bypassed

●

●

●

20%

30%

50%

0 20 40 60 80 100
Number of TV channels

Fig. 5. Average number of TV channels that are optically bypassed,
electronically routed and not distributed, respectively

We start the analysis from the bottom of the figure. On
average, one fifth of the TV channels do not need to be
distributed by the IPTV source. Recall that not distributing this
traffic has a negligible impact on the service [9]. The remaining
80% TV channels are distributed to the network core. Around
50% of the TV channels can be optically bypassed. This means
that, on average, at any one time, half of the channels have
at least one viewer in each region. The number of channels
requiring electronic processing can thus be reduced to around
30%.

C. Impact on energy consumption

After understanding that by using the proposed protocol
there are clear opportunities to introduce optical bypass in
IPTV networks we now analyse the impact this has on energy
consumption. By employing this technique energy savings are
expected for two reasons. First, some traffic flows (the popular
TV channels) bypass some routers. This reduces the number
of bits requiring electronic processing, thus avoiding energy-
expensive OEO conversions, buffering, and forwarding table
lookups. The work is shifted to optical switches, which are
at least two orders of magnitude more energy efficient when
compared to its electronic equivalent [10]. Second, as TV
channels without viewers are not distributed, network load is
reduced and even less bits require electronic processing in the
routers.

1) Selective pre-joining in core optical networks: Before
presenting results from our proposal, we return to the scheme
proposed in [9], selective pre-joining, and use it as our base-
line. However, we consider an optical network scenario, which
was not considered by the original study. As in this work we
consider a core optical network, we need to integrate the power
consumption of the optical layer components into the model.
This will allow a fair comparison with the proposal made by
Ramos et al. [9]. In fact, this refined model will reinforce the
effectiveness of selective pre-joining.

Several factors affect the power consumption of a core
network node [17]. First, the base chassis power. This is the

292ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE II. LINECARD POWER PROFILE

Energy component and description Estimate from [18].
Power consumed by unconnected linecard card (Pc) 6.936 W
Power consumed per connected Ethernet port (PE) 1.102 W
Per-packet processing energy (Ep) 197.2 nJ
Per-byte energy (Eb) 3.4nJ

power to maintain the chassis on. It is a fix amount independent
of load, including the power consumed by components such
as fans, memory, etc. Second, the number of active linecards.
A linecard is the electronic circuit that interfaces with the
network. Third, the number of active ports in each linecard.
Fourth, port capacity. This is the line rate forwarding capacity
of individual ports. Fifth, port utilisation. This is the actual
throughput flowing through a port, relative to its capacity.
Sixth, power consumption of the transponders. In optical net-
works, associated with each wavelength (port) is a transponder
(OEO converter), as was shown in Figure 2. The transponder
interfaces the router to a fibre optic cable. Its main function
is to perform the required OEO conversions. Considering this,
the power consumption model is presented in Equation 1.

P = Pch +
LX

i=0

Pli +KTPT (1)

In this equation Pch refers to the power consumption of the
chassis. L is the number of linecards that are active, and Pli is
the power consumption of linecard i. The power consumption
of each linecard is calculated based on the model proposed by
Sivaram el al. [18] for a NetFPGA card, and is presented as
Equation 2. By using a high-precision hardware-based traffic
generator and analyser, and a high-fidelity digital oscilloscope,
the authors devised a series of experiments allowing them to
quantify the per-packet processing energy and per-byte energy
consumption of such linecard.

Pl = Pc +KPE +NIEp +REb (2)

In this equation Pc is the constant baseline power con-
sumption of the NetFPGA card (without any Ethernet ports
connected); K is the number of Ethernet ports connected; PE

is the power consumed by each Ethernet port (without any
traffic flowing); NI is the input rate in packets per second
(pps); Ep is the energy required to process each packet; R is
the traffic rate in bytes per second (we assume the input rate is
equal to the output rate); Eb is the total per-byte energy (this
includes the energy required to receive, process and store a
byte on the ingress Ethernet interface, and the energy required
to store, process and transmit a byte on the egress Ethernet
interface). The inputs to this model are presented in Table II,
again based on the measurements reported in [18].

Finally, returning to Equation 1, KT is the number of
transponders (one per port) and PT is the power per transpon-
der. Every time a new port needs to be turned on, a new
transponder is also activated. We assume the power consump-
tion for each transponder to be 73 W, based on Alcatel-Lucent
WaveStar OLS 1.6T ultra-long-haul systems [19]. This figure
has been used in related work [13], [20].

For evaluation we consider the three scenarios presented
in Table III: 150SD, an IPTV service offering of 150 SDTV

TABLE III. DESCRIPTION OF THE THREE SCENARIOS

Scenario Media format Bit rate TV channels Bandwidth savings
150SD SDTV 4 Mbps 150 0.3 Gbps
700HD HDTV 20 Mbps 700 7 Gbps
3kUHD 4K 200 Mbps 3000 300 Gbps

channels; 700HD, 700 HDTV channels; and 3kUHD, 3000
UHDTV channels. The first two scenarios represent current
IPTV service offerings, whereas the latter is a futuristic sce-
nario. For the first scenario, we assume a router with four
linecards with 4x1Gbps Ethernet ports each. For the second
scenario we scale up the node to sixteen linecards of the
same type, for it to be able to handle the increased aggregate
throughput. The capacity of each node is now assumed to
be equal to 64Gbps. The capacity of the nodes of the third
scenario has to scale up to the Tbps range. We assume fourteen
4x40Gbps linecards for an aggregate capacity of 2.2Tbps. This
is a different type of linecard from the one measured by
Sivaram et al. [18]. We therefore assume a 4x40Gbps linecard
presents the same power profile as fourty 4x1Gbps.

The results we present first illustrate the relative power
savings of using the selective pre-joining scheme as a factor of
the baseline traffic load, according to equation 3. The baseline
traffic load is the load of a node that does not use the scheme.
This load obviously includes IPTV traffic.

P (baseline)� P (selective joining)

P (baseline)
⇤ 100 (3)

In Equation 3, P (baseline) is the power consumption at
baseline traffic load, whereas P (selective joining) is the
power consumption when using the proposed scheme (a lower
value due to the decrease in IPTV traffic). In the figures we
present results for baseline load values varying from 25% to
75%.

In accordance to the results presented in the previous
section (Figure 5), we assume that only 20% of the channels
are not distributed to the core. The results we present in Figure
6 thus correspond to a reduction of IPTV traffic in the network
core to 80%. In this figure the lines labeled (IP only) are the
results without considering optical components in the power
consumption model (as per [9]), whereas (IP + opt) are the
results using our augmented model, considering the optical
transponders.

0%

5%

10%

15%

20%

25%

linecard turned on
in baseline scenario

transponder activated in
selective joining scenario

25% 35% 45% 55% 65% 75%
Baseline traffic load (%)

Po
w

er
 sa

vi
ng

s (
%

)

3kUHD_ep (IP + opt) 3kUHD_ep (IP only)

3kUHD (IP + opt) 3kUHD (IP only)

700HD (IP + opt) 700HD (IP only)

150SD (IP + opt) 150SD (IP only)

Fig. 6. Power savings of using the selective pre-joining scheme proposed by
Ramos et al [9] considering an optical IP network (core network)

293ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

As can be seen, by considering the optical ports the
results change significantly. The main reason is the fact that
the transponders are power-hungry equipment. This results
in an increased advantage in using the selective pre-joining
scheme in some scenarios, as reducing traffic load decreases
the number of active transponders. It is particularly relevant to
mention scenario 700HD, which is typical in current networks
(this scenario is based on AT&T’s IPTV service offering [3]).
The use of the scheme proposed in [9] increases the power
savings to around 10% under normal traffic loads [11] when
we consider optical components.

One aspect that deserves explanation is the lines in the plots
not being completely smooth (the little “steps”). This is partic-
ularly evident in the first two scenarios, 150SD and 700HD.
The reason is that the x-axis represents the baseline traffic load
in the node (without selective pre-joining), while the power
savings arise from the new traffic load (with selective pre-
joining) being lower. The power saving peaks that appear in the
graph represent transition points, when a particular event that
increases significantly the energy consumption occurs: when
an additional linecard needs to be turned on or the activation of
another transponder (as this component consumes more power
than a linecard, the peaks are more pronounced). For instance,
in the 150SD (IP only) scenario there is a peak precisely in
the middle of the plot. This is because a 50% load in that
scenario represents a data rate equal to 4Gbps. At this point, the
network node has to turn on a new linecard (recall that we are
assuming 4x1Gbps linecards). With selective pre-joining the
network load would be lower than the baseline traffic load, a
bit under 4Gbps. So the linecard does not need to be turned on
yet. While the traffic load does not increase over that transition
point the proposed scheme therefore presents a higher-than-
average power saving advantage. In the 700HD scenario the
same occurs, but more frequently. This is due to the fact that
in this scenario the network nodes have eight times more
linecards, so the effect occurs eight times more than in the
150SD case. A similar effect occurs in the futuristic scenario.
But, as the baseline power consumption is much higher than
in the first two, the bumps are less pronounced, and are hence
imperceptible in the figure.

We now turn to the line in the plot we have not mentioned
yet: 3kUHD_ep. As is well known, current network equipment
is not energy proportional [21]. The baseline power (from
maintaining the chassis powered on) is very high and is,
by a large margin, the main component of router power
consumption. In the future it is expected network equipment to
increasingly present a more energy proportional profile, so in
the plots we also include, for the futuristic scenario 3kUHD,
the situation where all routers are energy-proportional (EP)
(3kUHD_ep). As can be observed, using the selective pre-
joining scheme leads to a higher relative gain considering that
different starting point in the analysis (i.e., the use of EP
routers).

2) Energy consumption model of the hybrid nodes: To
quantify the energy savings achieved by introducing optical
bypass in an optical IPTV network, in this section we construct
a power consumption model of the hybrid node of our solution.

Three factors affect the power consumption of a hybrid
node. First, the power consumption of the router. Second, the
power consumption of the OXC. Third, the power consumption

of the OEO converters (transponders). Note that in this analysis
we do not consider the power consumption of other optical
equipment that is necessary in an optical network, such as the
optical amplifiers, multiplexers and demultiplexers. Previous
work [13], [12] has shown that switching equipment and
transponders (OEO converters) are the main contributors for
power consumption of optical IP networks (responsible for
over 97% of total power consumption according to [13]), so
we consider switching equipment and OEO converters only.
Based on these three variables, we use the following model
for the power consumption P of a hybrid node:

P = PR + POEO + POXC (4)

In Equation 4 PR is the power consumption of the router,
POEO is the power consumption of the OEO converters
(transponders), and POXC is the power consumption of the
optical cross connect. For PR + POEO we use the model
represented by Equation 1. The power consumption of the
OXC is given by Equation 5.

POXC = KopPop (5)

In this equation, Kop is the number of input/output optical
switch ports and Pop is the power per input/output switch
port. We assume the OXC switching fabric to be based on
micro-electro-mechanical systems (MEMS [22]). In a MEMS
optical switch, a micro-mirror is used to reflect a light beam.
The direction in which the light beam is reflected can be
changed by rotating the mirror to different angles, allowing the
input light to be connected to any output port. These MEMS
have switching times of the order of milliseconds or hundreds
of microseconds and for this reason can be used only for
slow switching (i.e., circuit switching). For faster switching
Semiconductor Optical Amplifiers (SOAs) could be used. But
as MEMs consume less power [23], and as the OXC is not to
be used for fast switching, MEMS are the option we consider
here. We assume 3D-MEMS [24] in particular. The power
per input/output switch port of the OXC corresponds to the
power consumption for its continuous control, which is equal
to 107 mW per input/output port. This value is based on the
power consumption of the MEMS controller circuitry of an
80 ⇥ 80 3D-MEMS switch implementation, reported in [24].
We are therefore assuming power consumption is proportional
to the number of active input/output ports6. The experimental
figure and this assumption were considered in previous related
work [23], [22] and are also in agreement with studies from
other researchers [25], [10].

3) Results: We now analyse how the introduction of optical
bypass techniques in the IPTV network translates into energy
savings. We consider the same three scenarios as before:
150SD, 700HD and 3kUHD. For the router model we also
make the same assumptions. For the first scenario, we assume
a router with 4 linecards with 4x1Gbps Ethernet ports each. For
the other scenarios we just scale up the model by increasing the
number and changing the type of linecards. This implies that

6If we assume an on/off behaviour, i.e., a switch consuming its 8.5 W of
total power independently of the number of active ports, all results we present
change by less than 1%. This stems from the fact that the OXC is the node
component with the lowest power consumption by a good margin, in any case.

294ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

each wavelength can carry 1Gbps in the first two scenarios,
but it scales to 40 Gbps in the third. Note that in this scheme
two sets of wavelengths are needed: one for the traffic that
optically bypasses the routers, and another for the rest. This
is considered in the analysis to calculate the number of active
OXC ports. The number of active OEO converters is equal to
the number of active ports in the router.

In accordance with the results presented in Figure 5, we
assume that 50% of the IPTV traffic optically bypasses the
routers, 30% is sent to the router for electronic processing, and
20% of the TV channels are not distributed. Considering this,
the power savings for all three scenarios (and the 3kUHD_ep
scenario) are presented in Figure 7. The dashed lines represent
the results from using selective pre-joining only (the solid lines
in Figure 6). The solid lines in the current figure represent the
power savings using the optical bypass protocol proposed.

0%

10%

20%

30%

40%

50%

60%

25% 35% 45% 55% 65% 75%
Baseline traffic load (%)

Po
w

er
 sa

vi
ng

s (
%

)

3kUHD_ep (bypass) 3kUHD_ep (no bypass)

3kUHD (bypass) 3kUHD (no bypass)

700HD (bypass) 700HD (no bypass)

150SD (bypass) 150SD (no bypass)

Fig. 7. Power savings achieved by optically bypassing popular TV channels
in the network core

When compared with selective pre-joining [9], the intro-
duction of optical bypass in the optical IPTV network core
increases power savings substantially. At baseline traffic loads
of around 30%, the power savings increase from 10% to over
40%, a significant four-fold increase. Considering EP routers,
power consumption is halved. We conclude that the use of this
technique is very effective in reducing power consumption,
including in current IPTV service scenarios (such as 700HD).

D. Discussion: on the value of electronics

We have just showed how optically switching popular
IPTV traffic reduces power consumption significantly. How
about optically switching all IPTV traffic? To answer, we
invite the reader to Figure 8. This graph shows the result
of optically switching all IPTV traffic in the network core
(solid lines), against optically switching only the popular TV
channels (dashed lines). As can be observed, by optically
switching all IPTV traffic the power savings increase even
further. Considering a baseline traffic load of 30%, in most
scenarios an additional 15% power saving is achievable by all
TV channels bypassing the routers.

So why not moving completely to optics in the future?
In a scenario where all IPTV traffic is optically bypassed, to
guarantee their availability for IPTV users all TV channels
need to be distributed continuously in the network core. This
is because OXCs allow slow switching only. The advantage of
maintaining the electronic routing option is that, contrary to
circuit-switched optical networks, with electronic routing it is

0%

20%

40%

60%

80%

25% 35% 45% 55% 65% 75%
Baseline traffic load (%)

Po
w

er
 sa

vi
ng

s (
%

)

3kUHD_ep (all) 3kUHD_ep (pop)

3kUHD (all) 3kUHD (pop)

700HD (all) 700HD (pop)

150SD (all) 150SD (pop)

Fig. 8. Power savings achieved by optically bypassing all TV channels in
the network core (compared to popular TV channels only)

possible not to distribute all TV channels. This added capabil-
ity increases bandwidth efficiency. This can be seen in Table
III, where we have included the bandwidth savings achieved by
not distributing all TV channels. With the increased popularity
of narrowcasting services and niche channels, the number of
unpopular channels (as per our definition in this paper) may
plausibly increase to the several hundreds or thousands in
the near future. This trend offers an important argument for
the maintenance of electronic routing as an option. A hybrid
scheme as the one proposed therefore offers a compromise
between energy and resource efficiency.

VI. RELATED WORK

IPTV measurement. With the recent deployment of IPTV
networks a number of papers measuring and characterising
IPTV traffic has been published [1], [3]. The analysis of real
IPTV workloads led to a clearer understanding of how people
watch TV and how this impacts the network. The findings
from these studies and the analysis of our own dataset offered
indications that led to the technique proposed in this paper.

Optics meet electronics. Optical switching techniques
such as optical bypass – the technique we propose in this
paper for IPTV – have been proposed as an interesting option
to reduce the energy footprint of networks [26]. The problem,
as explained before, is that due to its coarse granularity, bulk
transport in optics can be bandwidth inefficient, especially
for bursty traffic. With electronic switching the packets or
flows can be processed at a much finer granularity. Smartly
combining the strengths of optics and electronics has there-
fore been considered before [23]. For instance, Huang and
Copeland [27] proposed a hybrid routing scheme that can
preserve the benefits of optical bypass for large traffic flows
and still provide multiplexing gain for small traffic flows. This
technique is similar to the one we propose here for IPTV.

Green networking. Since the seminal paper by Gupta and
Singh [28] the subject of green networking has received con-
siderable attention. Several approaches have been considered to
reduce energy consumption in networks, including performing
resource consolidation by means of traffic engineering [28]
or by putting components to sleep during periods of low
traffic activity [29]. The literature in this subject is already
substantial, so we refer the interested reader to a more detailed
survey on green networking by Bianzino et al. [30].

Green IPTV. Recently, caching techniques for reducing
energy consumption for time-shifted IPTV systems have been

295ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

proposed. By considering the particular properties of this
type of traffic (which is in several aspects radically different
from the live TV broadcasts we consider here), Nencioni
et al. [7] proposed to cache content on local user storage
thereby offloading traffic that would result from subsequent
catch-up access. Osman et al. [8] also propose a caching
strategy to store the most popular programs at nodes closer
to the user, considering an IP-over-WDM network. The main
differentiating factor of these works against ours is the fact
that the IPTV services they consider are VoD or time-shifted
broadcasts – not linear TV. Indeed, caching techniques are not
suited for this type of service. In our previous worket al. [9],
we have proposed a scheme that pre-joins only a selection of
TV channels, instead of all, to save bandwidth and energy.
The protocol we propose in this paper is based on a different
technique that goes further in energy efficiency by considering
the introduction of optical switching. As a consequence, we
significantly improve the energy-efficiency of IPTV networks
when compared to [9].

VII. CONCLUSIONS

In this paper we considered the introduction of energy-
friendly optical technologies to reduce the energy consumption
of IPTV distribution networks. We proposed an energy and
resource-friendly protocol for the IPTV network core, blending
electronic routing with all-optical switching. The main idea is
to optically switch popular TV channels. This IPTV traffic by-
passes the routers and therefore does not require any electronic
processing (it is switched at the optical layer). The rest of the
channels are sent to the routers for electronic processing (to be
switched at the IP layer). By analysing a large dataset from an
IPTV operator, we observed that with the proposed protocol it
is possible to switch 50% of the IPTV traffic all-optically. The
energy savings obtained from optically bypassing this traffic
are substantial, reaching power savings of over 40% under
normal load conditions. The scheme is also bandwidth efficient
as channels without viewers are not distributed.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for
their feedback. This project has received funding from the
European Union’s FP7 research and Innovation programme
under grant agreement No FP7-607109 (SEGRID) and from
the Portuguese State through funds assigned by Fundação para
a Ciência e a Tecnologia (FCT) to LaSIGE Research Unit, ref.
UID/CEC/00408/2013.

REFERENCES

[1] M. Cha et al. Watching television over an IP network. In IMC,
Vouliagmeni, Greece, October 2008.

[2] Digital TV Research. Global IPTV Forecasts report. Technical report,
Digital TV Research, 2014.

[3] T. Qiu, Z. Ge, S. Lee, J. Wang, J. Xu, and Q. Zhao. Modeling user
activities in a large IPTV system. In IMC, Chicago, IL, November
2009.

[4] F. Legendre et al. Narrowcasting: an empirical performance evaluation
study. In CHANTS, San Francisco, CA, September 2008.

[5] IPCC. Climate Change 2014: Synthesis Report. Technical report, The
Climate Group, 2014.

[6] M. Webb. SMART 2020: Enabling the low carbon economy in the
information age. Technical report, M. Webb, 2008.

[7] Gianfranco Nencioni et al. Understanding and decreasing the network
footprint of catch-up tv. In Proceedings of the 22Nd International
Conference on World Wide Web, WWW ’13, 2013.

[8] N.I. Osman et al. Energy-efficient future high-definition tv. Lightwave
Technology, Journal of, 32(13), July 2014.

[9] F. M. V. Ramos et al. Reducing energy consumption in IPTV networks
by selective pre-joining of channels. In SIGCOMM workshop on green
networking, New Delhi, India, August 2010.

[10] J. Baliga et al. Energy consumption in optical IP networks. Journal of
Lightwave Technology, 27(13):2391–2403, 2009.

[11] C. Fraleigh et al. Packet-level traffic measurements from the Sprint IP
backbone. IEEE Network, 17(6):6–16, 2003.

[12] Y. Zhang et al. Energy efficiency in telecom optical networks. IEEE
Communications Surveys and Tutorials, 12(4):441–458, 2010.

[13] G. Shen and R. S. Tucker. Energy-minimized design for IP over
WDM networks. IEEE/OSA Journal of Optical Communications and
Networking, 1(1):176–186, 2009.

[14] C.-H. Gan, P. Lin, and C.-M. Chen. A novel prebuffering scheme for
IPTV service. Computer Networks, 53(11):1956–1966, 2009.

[15] C. Y. Lee, C. K. Hong, and K. Y. Lee. Reducing channel zapping time
in IPTV based on user’s channel selection behaviors. IEEE Transactions
on Broadcasting, 56(3):321–330, 2010.

[16] T. Qiu et al. Modeling channel popularity dynamics in a large IPTV
system. In SIGMETRICS, Seattle, WA, June 2009.

[17] P. Mahadevan et al. A power benchmarking framework for network
devices. In IFIP, Buenos Aires, Argentina, June 2009.

[18] V. Sivaraman et al. Profiling per-packet and per-byte energy consump-
tion in the NetFPGA Gigabit router. In INFOCOM Workshop on Green
Communications and Networking, Shanghai, China, April 2011.

[19] Alcatel. Alcatel-Lucent WaveStar OLS 1.6T product specification. http:
//tinyurl.com/AlcatelWavestar. [Online; accessed 01-12-2015].

[20] W. Hou et al. Green multicast grooming based on optical bypass
technology. Optical Fiber Technology, 17(2):111–119, 2011.

[21] L. A. Barroso and U. Holzle. The case for energy-proportional
computing. IEEE Computer, 40(12):33–37, 2007.

[22] M. Fiorani, M. Casoni, and S. Aleksic. Performance and power
consumption analysis of a hybrid optical core node. IEEE/OSA Journal
of Optical Communications and Networking, 3(6):502–513, 2011.

[23] S. Aleksic. Analysis of power consumption in future high-capacity
network nodes. IEEE/OSA Journal of Optical Communications and
Networking, 1(3):245–258, 2009.

[24] M. Yano, F. Yamagishi, and T. Tsuda. Optical MEMS for photonic
switching-compact and stable optical crossconnect switches for simple,
fast, and flexible wavelength applications in recent photonic networks.
IEEE Journal of Selected Topics in Quantum Electronics, 11(2):383–
394, 2005.

[25] R. S. Tucker. The role of optics and electronics in high-capacity routers.
Journal of Lightwave Technology, 24(12):4655–4673, 2006.

[26] K. Hinton et al. The future Internet – an energy consumption
perspective. In OECC, Hong Kong, China, July 2009.

[27] H. Huang and J. A. Copeland. Optical networks with hybrid routing.
IEEE Journal on Selected Areas in Communications, 21(7):1063–1070,
2003.

[28] M. Gupta and S. Singh. Greening of the Internet. In SIGCOMM,
Karlsruhe, Germany, August 2003.

[29] S. Nedevschi et al. Reducing network energy consumption via sleeping
and rate-adaptation. In NSDI, San Francisco, CA, April 2008.

[30] A. P. Bianzino et al. A survey of green networking research. IEEE
Communications Surveys and Tutorials, 14(1), 2012.

296ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Pin it!
Improving Android Network Security At Runtime

Damjan Buhov⇤, Markus Huber†, Georg Merzdovnik⇤, and Edgar Weippl⇤
⇤SBA Research, Vienna, Austria

E-mail: {dbuhov, gmerzdovnik, eweippl}@sba-research.org
† St. Pölten University of Applied Sciences, St. Pölten, Austria

E-mail: markus.huber@fhstp.ac.at

Abstract—Smartphones are increasingly used worldwide and
are now an essential tool for our everyday tasks. These tasks are
supported by smartphone applications (apps) which commonly
rely on network communication to provide a certain utility such
as online banking. From a security and privacy point of view a
properly secured (encrypted) communication channel is impor-
tant in order to protect sensitive information against passive and
active attacks. Previous research outlined that developers often
fail to implement proper certificate validation in their custom
SSL/TLS implementations and thus fail to secure the network
communication. Previous research however proposed solutions
for developers and not for the affected users. This global growth
introduced drastic changes to the network utilization.

In this paper we discuss this issue on the basis of Android
apps. We analyzed over 50,000 Android apps, collected during
two consecutive years, regarding the correct use of SSL/TLS
protocols. Furthermore, we discuss the current situation. We
propose dynamic certificate pinning, a device-based solution that
overcomes the problem of broken SSL/TLS implementations in
Android apps. To the best of our knowledge, we are the first
to solve this problem by combining established techniques such
as certificate pinning with dynamic instrumentation techniques
to tackle one of the major security challenges in the network
communication of smartphone applications.

I. INTRODUCTION

The increased use of smartphones also means more risks.
People tend to part with the traditional desktop computers,
even notebooks, and satisfy their requirements and needs with
smartphones. This is possible, because all web services essen-
tial for personal and business use are rapidly transforming to
meet the requirements of the mobile domain. The vast majority
of those applications rely on network communication for data
transfer, implying that applications that deal with sensitive
user information are required to provide secure (encrypted)
communication. Although there are multiple concepts that
provide secure communication, Android applications most
commonly use SSL (Secure Sockets Layer) and its successor
TLS (Transport Layer Security) [16]. These two protocols are
used to securely connect the client with a legitimate server. In
Android, the security of SSL/TLS is in close interdependence
with the client application. This means that the client (ap-
plication) should employ proper verification methods for the
server certificate, the hostname and deal with the SSL/TLS
errors correctly. Hence, the verification logic is completely

controlled by the application, or in other words the application
developers are responsible for implementing the SSL/TLS
certificate validation correctly. If such a validation scheme is
not correctly employed, users face the risk of a Man-in-the-
Middle (MITM) attack [28]. Such attacks can have significant
implications especially in the financial sector, which increases
the importance in the mobile domain. By default, the An-
droid applications trust only certificates validated against the
internal trust store, however, there are certain cases in which
the developers need to implement custom validation of the
certificates. Whether developers add custom implementation
due to the need of applying additional protection measures
such as certificate pinning or just because of problems they
encounter with their self-signed certificates, the networking
part of the application could easily become a vulnerable spot as
a result of mistakes in these implementations. Since Android is
the most dominant market share holder [15], such vulnerability
will affect millions of users.

Recent research outlined that particular measures have to
be taken in order to solve this issue. There have been many
attempts, however, the situation has not changed. Tendulkar et
al. [37] proposed that all the SSL/TLS configuration including
pinned certificates etc. should be stated in the manifest file as a
part of the application package. Back in 2012, Fahl et al. [26]
examined the state of more than 13,000 applications regarding
their SSL implementation. Using their script Mallodroid [12]
they discovered that more than 1,000 applications from the
data set were vulnerable to MITM attacks. All of the previous
research efforts, however, propose instructions and solutions
that are aimed towards the developers and not the affected
users. This implies that even if there is a solution for the
problem, developers might ignore this fact for various reasons.
Another major drawback of using certificate pinning is the
update interval of the applications, since it has been proven
that from the time the update has been released by the
vendor, until it reaches the users, makes the application totally
unsuitable from a security point of view [31]. Thus, the goal
of this paper is to detect and resolve this problem on a large
scale and in real time, focusing on the affected users instead
of the developers. For a single application or a very small set
of applications it is possible to detect and fix this issue using
static instrumentation. However, we aim for a dynamic device-
based solution that overcomes the SSL/TLS issue and reachesISBN 978-3-901882-83-8 c� 2016 IFIP

297ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

a large number of users. In summary, the contributions of this
paper are:

• We analyzed the most popular 50,000 Android applica-
tions gathered over the period of two years and discovered
that the SSL/TLS issue still exists and, more importantly,
we found an increase of nearly 6% in terms of vulnerable
applications from 2014 compared to 2013.

• We present a novel approach for patching Android appli-
cations during runtime that solves the SSL/TLS problem
without any user interaction. Our solution employs es-
tablished techniques such as certificate pinning combined
with dynamic instrumentation techniques and provides a
tool that can be installed on every Android device.

• To the best of our knowledge, we are the first to actually
provide a solution that combines these techniques and
directly affects the user, unlike most of the research effort
that is aimed towards the developers.

The remainder of this paper is organized as follows. Sec-
tion II provides the background and threat model of our work.
Section III briefly describes our methodological approach. In
Section IV we present a detailed explanation of the imple-
mentation of the proposed tool while Section V presents the
results from the static analysis as well as evaluation of our tool.
Section VI is reserved for discussion about the advantages,
limitation and future work for the proposed solution. In
Section VII we revise existing approaches that tackle this
problem. Finally, Section VIII concludes the findings of our
paper.

II. BACKGROUND AND MOTIVATION

In this section we provide a brief overview on the security
of Android with an emphasis on providing secure network
communication. We furthermore discuss our threat model.

A. Android Security
Smartphones and tablets continue to replace the traditional

desktop computer; Android has the biggest share of the overall
smartphone market. The ongoing transition from desktop op-
erating systems to mobile operating systems such as Android
brings along a number of security improvements for the aver-
age user. Android relies on the concept of multilevel security
[30] and, compared to traditional desktop operating systems,
each Android application is executed in an isolated sandbox.
In combination with Google’s firm control over available
applications with their Play Store1, the impact of common
security threats such as malware has been limited. While the
overall security of Android outlines a number of security
improvements, users still face security and privacy risks. These
risks emerge from the ever growing amount of third-party ap-
plications. The development of third-party applications relies
on the capability and knowledge of the developer. Their lack
of knowledge or ignorance of security issues introduces grave
implementation bugs in applications, which have an overall
negative impact on the security of mobile users. Security of

1https://play.google.com

these applications is achieved through the use of the Android
permission model and sandboxing which defines a particular
memory space for the application to execute. This way the
system ensures that only allowed resources will be available
to the particular application. In most of the cases the requested
resources by applications include permission to access the
network/Internet. Hereby, the actual implementation within
the application dictates the level of security for the network
communications. In Android, SSL/TLS are the standards that
enable secure communication and are widely used among the
Android applications. Because of the fact that the security of
SSL/TLS relies on certificates, proper implementation of the
validation procedure for the server certificate is essential. By
default, every Android device comes pre-shipped with 150+
root certificates.2 These 150+ root certificates are used to
ensure that applications can verify that they are communicating
with legitimate servers. This basic network security model
requires that application developers buy legitimate certificates
from Certification Authorities (CAs). Nowadays, there are
numerous Certificate Authorities that issue verified certificates,
however, just 15 of them hold more than 95% of the market
shares [2], [17]. There are cases in which the developers are
using self-signed certificates. The use of self-signed certificates
puts an obligation on the developer to ensure that proper
security mechanisms are put in place to achieve the same level
of security as with officially signed certificates.

B. SSL in Android

The implementation of SSL in Android is achieved through
certain packages provided by the Android SDK [1]. Usu-
ally, developers make use of the javax.net.*, java.net.*, an-
droid.net.*, java.security,*, org.apache.* modules which pro-
vide them with all the important interfaces such as TrustMan-
ager and HostnameVerifier. Furthermore, the TrustManager
interface contains a method called checkServerTrusted through
which the validation of the certificates is performed. Develop-
ers can choose whether to use the default configuration of the
SSL/TLS or to implement their own custom version. Usually,
the default configuration is used when the application is using
trusted certificates, whereas custom implementation is required
for any other case. In both cases, they must ensure that the
validation of the certificates is properly implemented. This
procedure can be described as follows:

• Certificate verification The server sends the chain of
certificates to the application. At this point the application
tries to validate the chain using the bottom-up approach,
i.e. starting from the end certificate (also known as leaf
certificate) and continue to the intermediate and root cer-
tificate. The validation of the certificates includes checks
for the expiration date of the certificate and whether it
is signed from its successor in the list or from a trusted
root certificate. In this setup the last certificate is usually
signed by one of the certificates that came with the device.

2Location of the Root CAs: Settings ! Security ! Trusted credentials

298ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

If the validation succeeds, the connection is established;
otherwise it is immediately terminated.

• Hostname Verification Another very important check is
the hostname verification. Every certificate has its desig-
nated destination so the application has to check whether
the certificate is issued for the desired destination. This
information is usually found in the Common Name (CN)
field or the subjectAltName. According to the newer
standard [14], the subjectAltName should be checked first
and if it exists, the CN field should not be checked at all.

Although this validation procedure works for certificates
that are signed by some of the root certificates that are pre-
shipped with Android, there are certain cases in which the
developers need to implement their own logic. The most
common reason behind this is the fact that most of the
Android developers make use of self-signed certificates for
various reasons, such as testing the product before official
release, or simply because of financial reasons. When using
this kind of certificates, developers are obligated to perform
custom implementation of the validation procedure to make
the application immune to the most common threat described
in II-D Threat Model.

C. Certificate Pinning
Among all available advanced protection measures, certifi-

cate pinning [10], [11], [24], [29], [33] stands out as the most
recommended one. With proper implementation, it reduces
the risk of Man-in-the-Middle attacks to a minimum. This
technique is the most common representative of the advanced
concepts with respect to the custom use of SSL/TLS protocols
that was previously mentioned. There are a lot of publicly
available solutions that could be directly applied in order to
secure the network communication and in particular Android
applications. Certificate pinning works by bundling the server
certificates with the application. Hereby, the application ver-
ifies the security of the network communication based on
its included Pins (server certificates). Therefore, developers
do not need to buy third-party certificates from CAs, and
applications can, moreover, detect attacks in which trusted
certificates are forged.

Since the application receives the whole chain of certificates
from the server side, developers are left with the choice of
which certificate to pin. Accordingly, pinning different certifi-
cates from the entire trust chain brings its own advantages as
well as disadvantages:

• Pinning the end certificate (leaf) reduces the attack sur-
face to a minimum since there are no certificates that
are or could be signed from it; however, it is potentially
subjected to a major drawback when it comes to change.
These types of certificates are subjected to a change more
often than the intermediate certificate, which implies that
with every change of the leaf certificate the application
has to be updated with the new pins, otherwise it will not
be usable in terms of network connectivity.

• Pinning the intermediate certificate has a reasonably
larger attack surface in comparison with the previous

category, but it requires less updates since this certificate
is not changed very often.

• Pinning the root certificate leaves the biggest attack sur-
face compared to the previous two categories, however,
in this case the update frequency is the lowest.

Furthermore, this technique could be applied both to the
whole certificate as well as just to the public key of the
certificate. Although it is the easier solution and in general it
seems natural to pin the whole certificate, it is not the optimal
one. The reason behind this is the fact that certificates can
be reissued multiple times. This means that we can encounter
multiple certificates with the same public key, but with differ-
ent attributes, e.g. expiration date. Based on this assumption,
we can conclude that it is more convenient to pin the public
key of the certificate. Although the implementation of this
approach is more difficult due to some extra steps regarding the
key extraction, in the end, this approach significantly reduces
the need for frequent updates of the application.

D. Threat Model

Our threat model regarding the network security of Android
applications focuses on Man-In-The-Middle (MITM) attacks.
MITM attacks describe a category of network-based attacks
during which an adversary places himself between a client
and a server. The adversary can then perform either passive or
active attacks on the observed network traffic. Active attacks
include hijacking active user session to perform malicious
actions on behalf on the targeted users. Passive attacks in-
clude the collection of sensitive information such as account
credentials or personal information. Proper use of certificates
can prevent such attacks. If applications do not protect the
communication between mobile devices and their backend
servers, attackers can easily perform active/passive MITM
attacks by e.g. monitoring users on public Wi-Fi hotspots.
Our particular threat model focuses on applications that aim
to protect their users with a secure communication channel
(SSL/TLS), but fail to implement this protocol properly. In
particular, our threat model accounts for the following network
security challenges:

• Broken Certificate Verification: If an Android applica-
tion uses certificates issued from one of those certificate
authorities, which are shipped in with the device, it relies
on the standard implementation of the SSL/TLS protocol
and provides therefore basic security. The problem arises
with the use of self-signed certificates. In this case, the
developers should implement proper validation proce-
dures in order to secure the connection. These custom
implementations tend to leave the application insecure
by implementing a broken certificate validation. The
issue of a broken custom certificate validation remains
a major problem of current Android applications and
leaves applications as vulnerable to MITM attacks as if
no encryption was used at all.

• Compromised Certification Authorities: Even in cases
in which developers rely on certificates issued by trusted

299ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

certification authorities and the default verification mech-
anisms of Android, powerful adversaries might still per-
form MITM attacks. The Diginotar case [9] clearly
showed the risk of trusted certificate authorities (CAs)
being compromised by adversaries. If an attacker is able
to compromise one of the 150 CAs trusted by Android,
he can perform MITM attacks on applications with the
standard SSL/TLS protection.

To account for the attack vectors of our threat model, we
propose a solution to dynamically pin application certificates.
Hereby, we rely on the Trust on First Use (TOFU) principle.
Since we do not have any previous information about the
certificate that is going to be pinned, we use this approach
to get the first certificate that the application will receive
during the establishing of the SSL/TLS connection. Therefore,
our threat model assumes that the first connection between a
given mobile application and their corresponding servers is not
compromised. Based on our threat model we aim to overcome
the following challenges regarding the network security of
Android applications:

• Dynamically upgrade applications to use certificate
pinning. If the implementation of the pinning is not
correct, the user faces grave security and privacy conse-
quences. Users become an easy target for adversaries to
steal sensitive information such as banking credentials,
social security numbers, etc. We attribute the lack of
proper SSL/TLS implementations to a knowledge gap
of the developers. Previous research showed e.g. that
the vast majority of developers are not familiar with
the concept of certificate pinning [31]. Most of the time
they are guided by random forum posts and discussions
on popular online forums such as stackoverflow.3 It so
happens that a number of posts related to the use of
SSL/TLS on Android actually advise developers to handle
the SSL/TLS errors by accepting all certificates. By doing
this, they actually remove any security on the network
level, even the (secure) default setting, because most
of the posted solutions suggest to use custom imple-
mentations of the TrustManager [18] which overrides
the default one. Therefore, we aim at overcoming this
knowledge gap by proposing a solution that focuses on
the affected users instead of developers.

• Providing the users with detailed information for ev-
ery certificate change. In order not to significantly lower
the usability of the Android applications by immediately
terminating the connection when a certificate change
occurs, we have provided the users with a notification
containing detailed description for the change that just
occurred. At this point, users are left with the possibility
to accept this change and continue to use the application,
or to reject it, which would imply that the connection will
be terminated immediately.

3http://stackoverflow.com

III. METHODOLOGY

A. Number of vulnerable applications

Generally speaking, Android can be divided into two main
parts: The first part is the Android operating system, and the
second one are the Android applications. We do not focus
on the overall security of the Android operating system, but
rather on applications and the not-so-obvious threats presented
by them. Nowadays, there are more than 1.5 million available
applications in the official Android market place [13]. Taking
in consideration the popularity of the Android OS, we firstly
analyzed the top 50,000 applications from all categories over
two consecutive years. This allowed us to determine to what
extend SSL/TLS issues are present in these two sets of ap-
plications. These analyses are focusing directly on the correct
implementation of the HTTPS protocol, namely the TrustMan-
ager. The cases in which the applications are using pure HTTP
are not taken into consideration and are immediately classified
as applications that do not have any issues. To perform our
analysis, we rely on the Mallodroid tool which explicitly
targets the implementation of the TrustManager. In detail, we
performed an indicative experiment in order to determine if the
SSL/TLS errors still exist. Detection of other network flaws
or tracking the evolution of particular applications is out of
the scope of this work.

The applications were already crawled by Playdrone [39]
and are publicly available at archive.org. We selected the
top 25,000 applications from late 2013 and resp. from late
2014. According to [39], crawled applications originate from
different categories. Finally, this experiment should help to
understand if SSL/TLS implementation errors continue to put
user data at risk or if the situation improved.

B. Fixing a broken trust manager

Since Android applications are packages stored across
servers (market place), we do not have access to nor are we
permitted to perform any changes to them. The situation is
however different when the applications are downloaded and
installed on a certain device, since the user has already agreed
on all of the previously presented terms, known as Android
permissions. In general, our approach does not interact or
change the code of the application as static instrumentation
would. We tackle the problem of broken SSL/TLS imple-
mentations dynamically, leaving the apk4 intact. We are able
to achieve this by leveraging the functionality of the Cydia
Substrate framework [35]. We chose to use Cydia because of
two reasons:

• It is available for other smartphone operating systems
which increases the chances of a widespread use of our
approach.

• It is the only framework that supports the Android per-
mission model. This means that even though it requires
ROOT access, its use must be explicitly specified in the
Android manifest file.

4Android application package

300ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

The overall goal of our approach is to evaluate a proof-of-
concept solution of our dynamic approach to fix the SSL/TLS
issue from the users’ perspective.

IV. DESIGN

Our proof-of-concept implementation is based on the dy-
namic instrumentation of mobile applications [19], [35]. These
dynamic instrumentation frameworks are especially popular
among the users of custom ROMs such as CyanogenMod [4].
Today, the most common use of these frameworks consists in
the creation of customized widgets and other GUI elements.
The only requirement that has to be met for proper use of these
frameworks is the available ROOT access to the device. This
unleashes the full power of the frameworks, expressed through
the possibility of interception, hooking and modification of
functions, system calls and class loading, interpreted both
through Java and native code. The fact that they operate at
runtime enables us to intercept and modify all networking
calls. Furthermore, the wide use of these frameworks in
communities that rely on custom ROMs renders our tool as a
promising candidate for securing the network communication.
Recent statistics [5] [3] show that there are currently more than
50 million people using CyanogenMod on their smartphones.
The vast majority of those users are strongly focused on pri-
vacy and security enhancements, especially after the Edward
Snowden revelations.

In our previous research [22] we identified the most suitable
candidates to achieve our goal. We thus decided to use
the Cydia Substrate framework [6], [35] for our dynamic
approach. We chose this framework because it is the only
framework that is available for the two leading smartphone
operating systems – Android and iOS. In contrast to previous
research – which is mostly focused on the developers – our
focus group are the users. Furthermore, our solution presents
itself as an OS extension, so it could be easily included as a
factory feature. Cydia Substrate (formerly known as Mobile
Substrate) serves as a base for the development of particular
tools/modules. It provides a set of different APIs which can
be adapted according to the specific needs. In general, these
APIs make it possible to get a reference to a particular class
of the applications with the MSJavaHookClassLoad and then
search inside that class for the desired method or function
that should be hooked with the MSJavaHookMethod. The last
step would be to replace the code of the hooked function
or method with our custom implementation. This procedure
could be easily applied to all generic calls, however, in some
cases static instrumentation of the code might be needed
in order to detect the hooking point. Our implementation
consists of two classes, one for the implementation of the
hooking functionality, and the other for the pinning trust
manager. Since SSL/TLS implementations in Android apps
are dependent on certain API calls that are provided in the
tutorial itself [20], we do not have to perform any static
instrumentation to distinguish these calls. Instead, we can
directly interact with those API calls. Using the previously
mentioned MSJavaHookClassLoad function, we wait for the

javax.net.ssl.TrustManagerFactory to load and search for the
getTrustManagers method to be hooked. Upon hooking, the
current implementation of the getTrustManagers is overridden
by our custom implementation. This set of instructions di-
rectly influences the current implementation by substituting
it with our version. Furthermore, additional changes have
to be made for the application to work properly. We then
override the setSSLSocketFactory method upon loading of the
javax.net.ssl.HttpsURLConnection and setting it to use our
implementation of the trust manager. Last but not least, we
override the init method from the javax.net.ssl.SSLContext
class to use our TrustManager. This way we ensure that
every established connection will be pinned. Although there
are different ways to verify the hostname, we are using strict
verification. This means that every pin is associated with its
designated host. By using the TOFU principle, we pin every
connection upon the first encounter. Therefore, every pin is
associated with the designated host, and when the connection
is trying to be established later on, the hostname along with
the pin for that particular connection is checked. Whenever
there is a mismatch in any of the fields, whether it would
be the hostname or the pin itself, a notification will alert the
user immediately. Instead of terminating the connection if the
certificate changes, which can happen without any malicious
intent, we enable the user to decide whether to approve the
change and pin the new certificate or to reject the change
and terminate the connection. The users are included in this
process, because if we directly terminate the connection, it
will render the applications unusable.

V. RESULTS

We conducted a static analysis of 50,000 Android applica-
tions. The static analysis is solely focused on the TrustMan-
ager implementation within the applications. The applications
dated from two consecutive years. One set of top 25,000
applications was crawled in late 2013 and the second set in late
2014. For our analysis we used the Mallodroid script [12] and
the results are categorized according to the following criteria:
Broken TrustManager, Possibly Broken TrustManager, Broken
hostnameVerifier, Possibly Broken hostnameVerifier, Broken
SSLError Handling and Possibly Broken SSLError Handling.
The results confirmed that the applications rely more and more
on network communication. The results are presented in Table
I and Table II.

Trust Manager Hostname Verifier SSL Error
Broken 17% 7% 0.08%

Possibly Broken 6% 1% 15%
No issues 54%

TABLE I: Classification of applications that contain Broken
and Possibly broken TrustManager, Hostname Verifier and
SSL Errors for the set of 25,000 applications from late 2013

It is evident that the situation is just getting worse. The
top 25,000 applications from late 2013 contained 3,834 ap-
plications or nearly 17% that had no implementation or a
broken custom implementation of the validation procedure.

301ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) Screenshot from the no-
tification in the Notification
Bar

(b) Screenshot from the
body of the notification
showing the change of the
certificate that occurred

(c) Example of terminated
network connection due to
key mismatch

(d) Example of terminated
network connection due to
hostname mismatch

Fig. 1: Screenshots of the notification and the error messages produced by a mismatch of the public keys and the hostnames
– simulation of MITM attack

Trust Manager Hostname Verifier SSL Error
Broken 23% 13% 0.05%

Possibly Broken 10% 4% 29%
No issues 21%

TABLE II: Classification of applications that contain Broken
and Possibly broken TrustManager, Hostname Verifier and
SSL Errors for the set of 25,000 applications from late 2014

Usually, such a set of applications also contains the other two
categories, i.e. broken hostname and no handling of SSL/TLS
errors. Rather surprisingly for us, the applications from 2014
turned out to have more broken SSL/TLS implementations. As
seen in Table II, 23% resp. 4,804 applications have a broken
SSL/TLS implementation or are set to accept every certificate
that is presented to them. This increase of nearly 6% is a clear
indication that the problem still exists among the Android
applications that make use of the SSL/TLS protocols for
securing their network communication. Although it is evident
that the problem still exists, moreover we notice an increase in
the applications that contain broken SSL/TLS implementation
from the set of 2014, it could be an indication that the
awareness towards this issue has finally raised. This is because
of the functionality of the Mallodroid script which targets
just the applications that are using SSL/TLS, specifically the
TrustManager implementation, while the applications that use
just HTTP are immediately classified as applications that
contain no issues. Due to the design of this script, additional
network flaws are also not registered. This indicates that all of
the applications that use just HTTP or do not use Internet are
classified under the No Issues category. Moreover, this increase
could be classified as mixture of fast adoption of the concepts
providing additional SSL/TLS security combined with the lack
of knowledge with regard to the actual implementation of these

public TrustManager(){

return;

}

public void

checkServerTrusted(java.security.cert.

X509Certificate[]s1, String s2){

return;

}

Listing 1: Example code for Broken TrustManager that would
accept all certificates

concepts. The lack of a centralized body (such as Google
Play is for testing the applications regarding all additional
threats) that is capable of testing the actual implementation of
the networking part of the application could easily introduce
such increase in the results, since Google itself has a quite
open approach towards the process of becoming a developer
without assessing their actual qualifications. This implies that
even with increased awareness, there is no guarantee that
the implementation will be correct. Finally, we handpicked
a very small set of already identified applications with broken
SSL/TLS implementation for further analysis. In this set
of apps, we encountered classes named FakeTrustManager,
AcceptAllTrust etc. and found copied chunks of code directly
from the forums that advice users to trust all certificates in
order to solve the SSL/TLS errors in their applications. An
example of a detected broken implementation is outlined in
Listing 1.

After having presented the design of our tool, we assess its
effectiveness. In order to be able to test our tool, we did a
setup that includes Android devices with root access, Cydia
Substrate installed and our tool, which in turn was installed

302ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 2: Screenshot from the file that contains the public key
pins and the hostnames

as an extension to the framework. As specified by the Cydia
Substrate framework, after installation of a new module the
phone has to be rebooted. From the point when the phone is
booted, the public key of every certificate for every connection
is automatically pinned. Figure 2 shows the pinned public
keys.

Our implementation of the pinning is based on the sugges-
tions from the OWASP guide [33]. Although it might require
frequent updates, we decided to pin the end certificate in
order to reduce the attack surface as much as possible. By
pinning the public key of the certificate, we introduced the
user with a little bit more flexibility compared to pinning the
whole certificate. This means that the applications that use
our approach will eliminate the need for an update when the
certificate is reissued, since the public key will be the same.

We manually verified our solution against a number of
applications that had a completely broken use of SSL/TLS
protocols. Upon applying our solution, all of the tested ap-
plications were functioning as expected and their public keys
were successfully pinned. In order to simulate a MITM attack,
we manually changed the pinned keys in the file. This means
that next time when the application tries to establish a network
connection, our solution should send an alert to the user. After
successfully changing the key and reopening the application,
we received an alert that the key had been changed (shown in
Figure 1a and Figure 1b). Here the user can decide whether he
accepts this change and pin the new certificate or just reject it.
If the user pins the new key, the application will continue to
work normally, since in our case the certificate that is received
is the valid one from the application, because we performed
the change directly in the file that contain the pins. In general,
if the user rejects the change of the certificate, the connection
will be immediately terminated. An example of this case can
be seen in Figure 1c and Figure 1d. Furthermore, the tests
performed against the set of applications showed no decrease
in the overall performance of the applications.

VI. DISCUSSION

Our approach improves the network security of broken/de-
fault SSL implementations in Android applications by dynam-
ically pinning server certificates. Hereby, we directly improve
the security of affected users instead of focusing on the
developers of the applications. We also managed to shift
the pinning strategy from an application-based approach to
a broader device-based solution. Furthermore, we do not have
any limitations regarding the number of applications, because
our approach works with all Android applications that are
using network communication.

A. Security Challenges

Besides all the benefits presented throughout this paper, our
current proof-of-concept implementation has open challenges.
Since we are relying on the TOFU principle, our tool works
only if the first connection is benign. Although there is still a
risk that the first connection might be malicious, it is definitely
significantly lower in comparison to the risk of MITM attacks
on a totally insecure application. Furthermore, our approach
could be easily adapted to overcome the TOFU issue in future
work. As proposed by Wendlandt [41], we plan to implement
a third-party notary service to ensure that applications use the
correct pin, even when the first connection has already been
tampered with. This solution enables the possibility to provide
pins in advance and, more importantly, offers a distributed
infrastructure to detect MITM attacks. By implementing such
an extension, the application will directly receive the pins
while the risk of a first malicious connection is eliminated,
because the provided pins are verified against our third-party
notary service. Furthermore, it also overcomes the limitation
presented by the certificate updates, because new certificates
will be verified and the user will be accordingly informed
whether the certificates are malicious. An other alternative
approach to overcome the limitation presented with the use of
the TOFU approach is to use the DNS-based Authentication of
Named Entities (DANE) [7]. This alternative would, however,
also require the support of DANE by applications developers.

Our approach requires root privileges to work. Therefor, an
attacker would also need root privileges to subvert our security
improvements by e.g. tampering with the pin storage of our
tool. In scenarios where attackers are able to gain root access
to a device, they can already access any information stored on
the device directly and would likely not focus on subverting
our protection mechanisms. It is also important to state that our
approach is not directly exposing the system to any additional
risks apart from the ones already presented with the use
of the root mode in Android operating system. Finally, to
address the cases in which applications already have a correct
implementation of the SSL/TLS protocols, we will introduce
application whitelisting. This means that applications with a
correct implementation of SSL/TLS could be excluded and not
obligated to use our implementation of the TrustManager.

303ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

B. Usability Challenges
Our proof-of-concept implementation requires user interac-

tion and can thus be compared with the current implementation
of common web browser warnings, during which users are
explicitly asked to decide whether to proceed or terminate the
connection to the desired web service. Due to the specific
nature of real-world usability testing of our module, a large-
scale long-term usability test would provide additional insights
regarding the user acceptance of our approach. In addition, an
adaption of the previously mentioned notary-based or DANE-
based pinning approach would also minimize the requirement
for users to decide if a given certificate is valid or not. Our
work touches upon another important issue related to secure
network communication that is still present in the Android OS:
the lack of visual indicators. Unlike browsers, where the user is
notified with the lock in the address bar when HTTPS is used,
in Android there is no way for the user to distinguish whether
the user is using a secure channel to transmit sensitive data or
not. Our approach could therefor be used to inform the user
when secure network communication is used for a specific app.
Finally, we plan to make our approach even more accessible
by porting our proof-of-concept implementation to iOS.

VII. RELATED WORK

Taking into consideration the market share of Android, it is
obvious that any vulnerability would affect a large number
of users. From the start, researchers put a lot of effort in
discovering bugs and proposing solutions. It is the same with
the networking part of the applications that are currently on
the official market. Trummer et al. [38] and Onwuzurike
et al. [32] recently showed that some of the most popular
applications currently available are still vulnerable to MITM
attacks. This underlines that the problem still exists and
according to [27], lack of knowledge is one of the reasons
for this issue. While not being able to directly influence this
matter, researchers turn to proposing tools for static analysis
that could help developers and researchers to detect broken
SSL/TLS implementations. Sounthiraraj et al. [36] proposed
SMV-Hunter, a tool that combines static and dynamic analysis
to detect incorrect use of SSL/TLS protocols. Zuo et al. [42]
presented a hybrid approach to discover these vulnerabilities.
They analyzed 13,820 applications and found out that 1,360
are potentially vulnerable. The drawback of all those solutions
is that they are focused on the developers. In contrary, our
approach is aiming at a more scalable solution: we developed
a module for dynamic certificate pinning which scales the
common application-based approach to a broader device-based
and user-focused solution. Instead of limiting the certificate
pinning to just one app, our module is able to implement this
approach for every single application installed on the device.
Furthermore, all of the past research is performed over a fixed
set of applications, whereas our focus is put on the users, i.e.
without having a limitation for the application set. This means
that we are able to apply our solution to any application that
is utilizing the network. This way we directly influence the
user instead of the developers.

Network security is just a part of the whole Android security
model, therefore we refer the interested user to Enck et al. [25]
for a detailed explanation of the Android operating system as
well as its overall security concept. Currently a number of
researchers focus on discovering applicable attack vectors for
the Android operating system. Bugiel et al. [21] and Davi et al.
[23] present privilege escalation attack vectors that underline
weaknesses in the Android operating system. Finally, the
Android permission has received considerable attention from
the research community. Information regarding the evolution
and effectiveness of the permission system as well as detailed
studies regarding over-privileged applications can be found in
[34], [40].

VIII. CONCLUSION

In this paper we discuss a major security and privacy issue
of Android applications: weak protection of the network com-
munication between devices and backend servers. To this end
we performed a static analysis on 50,000 Android applications
gathered over a period of two years. Our analysis showed
that the broken implementation of SSL/TLS communication
remains a serious issue for popular Android applications. Our
analysis suggests that this issue did not improve over time. We
furthermore present a novel approach to overcome the issue
of broken SSL/TLS use in Android applications. Hereby, we
proposed a tool that provides dynamic pinning of certificates
during runtime. To the best of our knowledge, we are the
first to tackle this major security challenge from the users’
perspective. Our approach is based on a popular dynamic
instrumentation framework which is available for the great
majority of Android devices and, thus, makes our proposed
implementation a suitable candidate for future custom ROMs.
Therefore, we made the source code of our proof-of-concept
implementation publicly available [8] to spur adaption of
our approach in popular custom Android ROMs such as
CyanogenMod.

ACKNOWLEDGMENT

This research was funded by COMET K1, FFG – Austrian
Research Promotion Agency. Moreover, this work has been
carried out within the scope of “u’smile”, the Josef Ressel
Center for User-Friendly Secure Mobile Environments, funded
by the Christian Doppler Gesellschaft, A1 Telekom Austria
AG, Drei-Banken-EDV GmbH, LG Nexera Business Solutions
AG, NXP Semiconductors Austria GmbH, and Österreichische
Staatsdruckerei GmbH.

REFERENCES

[1] Android sdk. [Online]. Available: http://developer.android.com/sdk/
index.html

[2] Certificate authority. [Online]. Available: https://en.wikipedia.org/wiki/
Certificate authority

[3] Cyanogen usage statistics. [Online]. Available:
http://www.androidcentral.com/cyanogen-now-has-more-users-
windows-mobile-and-blackberry-combined

[4] Cyanogenmod. [Online]. Available: http://www.cyanogenmod.org
[5] Cyanogenmod statistics. [Online]. Available: http:

//www.digitaltrends.com/mobile/does-cyanogen-really-have-more-
users-than-windows-mobile-and-blackberry-combined/

304ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

[6] Cydia substrate apk. [Online]. Available: https://play.google.com/store/
apps/details?id=com.saurik.substrate

[7] Dns-based authentication of named entities (dane). [Online]. Available:
https://tools.ietf.org/html/rfc6698

[8] “Dynamic pinning solution.” [Online]. Available: https://github.com/
dbuhov/pinningTrustManager

[9] Final report on diginotar hack shows total compromise of ca servers.
[Online]. Available: https://threatpost.com/final-report-diginotar-hack-
shows-total-compromise-ca-servers-103112/77170/

[10] M. marlinspike. tack - trust assertions for certificate keys. [Online].
Available: http://tack.io/draft.html

[11] M. marlinspike. your app shouldn’t suffer ssl’s problems. [Online].
Available: http://www.thoughtcrime.org/blog/authenticity-is-broken-in-
ssl-but-your-app-ha/

[12] Mallodroid script - https://github.com/sfahl/mallodroid. [Online].
Available: https://github.com/sfahl/mallodroid

[13] Number of available applications in the google play store.
[Online]. Available: http://www.statista.com/statistics/266210/number-
of-available-applications-in-the-google-play-store/

[14] Representation and verification of domain-based application service
identity within internet public key infrastructure using x.509 (pkix)
certificates in the context of transport layer security (tls). [Online].
Available: https://tools.ietf.org/html/rfc6125

[15] Smartphone os statistics 2015. [Online]. Avail-
able: https://www.netmarketshare.com/operating-system-market-share.
aspx?qprid=8&qpcustomd=1&qpsp=2015&qpnp=1&qptimeframe=Y

[16] The transport layer security (tls) protocol version 1.2. [Online].
Available: https://tools.ietf.org/html/rfc5246

[17] Usage of ssl certificate authorities. [Online]. Available: http://w3techs.
com/technologies/overview/ssl certificate/all

[18] X509trustmanager. [Online]. Available: http://developer.android.com/
reference/javax/net/ssl/X509TrustManager.html

[19] Xposed framework. [Online]. Available: http://repo.xposed.info
[20] Android. Security with https and ssl. [Online]. Available: http:

//developer.android.com/training/articles/security-ssl.html
[21] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A. Sadeghi, and

B. Shastry, “Towards taming privilege-escalation attacks on android,”
in 19th Annual Network and Distributed System Security Symposium,
NDSS 2012, San Diego, California, USA, February 5-8, 2012. The
Internet Society, 2012. [Online]. Available: http://www.internetsociety.
org/towards-taming-privilege-escalation-attacks-android

[22] D. Buhov, M. Huber, G. Merzdovnik, E. Weippl, and V. Dimitrova,
“Network security challenges in android applications,” in Availability,
Reliability and Security (ARES), 2015 10th International Conference
on, Aug 2015, pp. 327–332.

[23] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy, “Privilege
escalation attacks on android,” in Proceedings of the 13th International
Conference on Information Security, ser. ISC’10. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 346–360. [Online]. Available: http://dl.acm.
org/citation.cfm?id=1949317.1949356

[24] N. Elenkov. Certificate pinning in android 4.2. [Online]. Available:
https://github.com/nelenkov/cert-pinner

[25] W. Enck, M. Ongtang, and P. McDaniel, “Understanding android secu-
rity,” Security Privacy, IEEE, vol. 7, no. 1, pp. 50–57, Jan 2009.

[26] S. Fahl, M. Harbach, T. Muders, L. Baumgärtner, B. Freisleben,
and M. Smith, “Why eve and mallory love android: An analysis
of android ssl (in)security,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 50–61. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382205

[27] S. Fahl, M. Harbach, H. Perl, M. Koetter, and M. Smith, “Rethinking
ssl development in an appified world,” in Proceedings of the 2013 ACM
SIGSAC Conference on Computer & Communications Security,
ser. CCS ’13. New York, NY, USA: ACM, 2013, pp. 49–60. [Online].
Available: http://doi.acm.org/10.1145/2508859.2516655

[28] M. Georgiev, S. Iyengar, S. Jana, R. Anubhai, D. Boneh, and
V. Shmatikov, “The most dangerous code in the world: Validating ssl
certificates in non-browser software,” in Proceedings of the 2012 ACM
Conference on Computer and Communications Security, ser. CCS ’12.
New York, NY, USA: ACM, 2012, pp. 38–49. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382204

[29] M. Marlinspike. Android pinning. [Online]. Available: https://github.
com/moxie0/AndroidPinning

[30] J.-S. Oh, M.-W. Park, and T.-M. Chung, The Multi-level Security for
the Android OS, B. Murgante, S. Misra, A. Rocha, C. Torre, J. Rocha,
M. Falcão, D. Taniar, B. Apduhan, and O. Gervasi, Eds. Springer
International Publishing, 2014, vol. 8582.

[31] M. Oltrogge, Y. Acar, S. Dechand, M. Smith, and S. Fahl,
“To pin or not to pin—helping app developers bullet proof their
tls connections,” in 24th USENIX Security Symposium (USENIX
Security 15). Washington, D.C.: USENIX Association, 2015,
pp. 239–254. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/oltrogge

[32] L. Onwuzurike and E. De Cristofaro, “Danger is my middle
name: Experimenting with ssl vulnerabilities in android apps,”
in Proceedings of the 8th ACM Conference on Security &
Privacy in Wireless and Mobile Networks, ser. WiSec ’15. New
York, NY, USA: ACM, 2015, pp. 15:1–15:6. [Online]. Available:
http://doi.acm.org/10.1145/2766498.2766522

[33] OWASP. Certificate and public key pinning. [Online]. Available:
https://www.owasp.org/index.php/Certificate and Public Key Pinning

[34] B. P. Sarma, N. Li, C. Gates, R. Potharaju, C. Nita-Rotaru, and
I. Molloy, “Android permissions: A perspective combining risks
and benefits,” in Proceedings of the 17th ACM Symposium on
Access Control Models and Technologies, ser. SACMAT ’12. New
York, NY, USA: ACM, 2012, pp. 13–22. [Online]. Available:
http://doi.acm.org/10.1145/2295136.2295141

[35] Saurik. Cydia substrate. [Online]. Available: http://www.cydiasubstrate.
com

[36] D. Sounthiraraj, J. Sahs, G. Greenwood, Z. Lin, and L. Khan, “Smv-
hunter: Large scale, automated detection of ssl/tls man-in-the-middle
vulnerabilities in android apps,” in Proceedings of the 19th Network
and Distributed System Security Symposium, 2014.

[37] V. Tendulkar and W. Enck, “An application package configuration
approach to mitigating android SSL vulnerabilities,” CoRR, vol.
abs/1410.7745, 2014. [Online]. Available: http://arxiv.org/abs/1410.7745

[38] T. Trummer and T. Dalvi. The savage curtain: Mobile ssl failures,
black hat - https://www.blackhat.com/docs/ldn-15/materials/london-15-
trummer-dalvi-the-savage-curtain-mobile-ssl-failures-wp.pdf.

[39] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google
play,” SIGMETRICS Perform. Eval. Rev., vol. 42, no. 1, pp. 221–233,
Jun. 2014. [Online]. Available: http://doi.acm.org/10.1145/2637364.
2592003

[40] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos, “Permission
evolution in the android ecosystem,” in Proceedings of the 28th
Annual Computer Security Applications Conference, ser. ACSAC ’12.
New York, NY, USA: ACM, 2012, pp. 31–40. [Online]. Available:
http://doi.acm.org/10.1145/2420950.2420956

[41] D. Wendlandt, D. G. Andersen, and A. Perrig, “Perspectives: Improving
ssh-style host authentication with multi-path probing,” in USENIX
2008 Annual Technical Conference, ser. ATC’08. Berkeley, CA,
USA: USENIX Association, 2008, pp. 321–334. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1404014.1404041

[42] C. Zuo, J. Wu, and S. Guo, “Automatically detecting ssl error-handling
vulnerabilities in hybrid mobile web apps,” in Proceedings of the
10th ACM Symposium on Information, Computer and Communications
Security, ser. ASIA CCS ’15. New York, NY, USA: ACM, 2015,
pp. 591–596. [Online]. Available: http://doi.acm.org/10.1145/2714576.
2714583

305ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

End-to-end transparent transport-layer security for
Internet-integrated mobile sensing devices

Jorge Granjal
DEI/CISUC, University of Coimbra

Polo 2, Pinhal de Marrocos, 3030-290
Coimbra, Portugal
jgranjal@dei.uc.pt

Edmundo Monteiro
DEI/CISUC, University of Coimbra

Polo 2, Pinhal de Marrocos, 3030-290
Coimbra, Portugal

edmundo@dei.uc.pt

Abstract—End-to-end communications with Internet-
integrated sensing devices will contribute to the enabling of many
of the envisioned IoT applications. Communication technologies
with this purpose are currently being designed based on the
6LoWPAN adaptation layer, and of particular interest is CoAP
(Constrained Application Protocol). The support of security in
end-to-end CoAP communications with mobile
Internet-integrated sensing devices is currently a challenge, in
particular because of the high cost of performing ECC
computations in constrained wireless sensing devices. Other
important aspects to consider are the incompatibility of end-to-end
security with CoAP proxies and the usage of mobile sensing
devices.

The mechanisms described in the article offer a practical
solution to the previous challenges. We propose a transparently
mediated DTLS handshake with mutual authentication and
mobility support, with the goal of releasing constrained sensing
devices from the burden of having to support costly ECC
computations. We employ pre-shared key authentication in
sensing devices, together with an authentication protocol for
mutual authentication and confidentiality in the WSN side of end-
to-end communications. From our experimental evaluation on the
impact of the proposed mechanisms on the energy and
computational effort required from sensing devices, we are able to
verify that the proposed approach is viable in various usage
scenarios. Overall, the proposed approach works transparently
for the applications running on the Internet clients and sensor
devices. It is our goal that, with the proposed mechanisms,
distributed IoT applications may benefit from pervasive and
transparent end-to-end security, irrespective of the static or
mobile nature of the sensing devices employed. Ours is, as far as
our knowledge goes, the first proposal with such goals.

Keywords—End-to-end transport-layer security, DTLS mobility,
delegated public-key authentication, ECC, 6LoWPAN, DTLS, CoAP

I. INTRODUCTION
Most of the applications envisioned for the Internet of

Things (IoT) are critical in respect to security, either of its users
or of the data stored and transferred between devices. On the
other hand, researchers know very well that the constraints in
resources of sensing devices difficult the employment of

traditional security approaches and mechanisms. This remains
true if we focus on end-to-end communications with Internet-
enabled devices employing 6LoWPAN-based communication
technologies. In fact, technologies such as 6LoWPAN [1-3] and
CoAP [4,5] are being designed precisely to enable the usage of
constrained sensing devices as full Internet citizens, but
challenges remain in what concerns security, in particular for
end-to-end communications with such devices and when such
communications are with devices that by nature are mobile.

In this article we start by proposing a model for the
interconnection of low-energy wireless communication domains
with the Internet, and in the context of this model we propose a
set of mechanisms designed with the purpose of supporting end-
to-end security with mobile sensing devices. The proposed
mechanisms allow us to offer practical and effective solutions to
three aspects currently representing research challenges in the
area: the high cost of end-to-end transport-layer security for
constrained wireless sensing devices, the incompatibility of end-
to-end security with the usage of proxies, and the lack of
mechanisms to abstract end-to-end communications and
security from the movement of sensing devices. Our proposals
address the previous challenges, while guaranteeing total
compatibility with the mechanisms already adopted.

The article is structured as follows. In the next Section we
discuss our motivations, and Section III presents the proposed
integrated model for end-to-end security with mobile devices.
The mechanisms proposed in the context of this model are
discussed in Section IV and experimentally evaluated in Section
V. Section VI discusses related work and Section VII finally
concludes the article.

II. MOTIVATION

Contrary to the perception of researchers a few years ago, the
emergence of 6LoWPAN-based communication technologies
[1-3] is enabling Internet communications with constrained
sensing platforms. Distributed IoT applications may employ
CoAP [4,5] at the application-layer, in order to retrieve resources
from sensing devices, or for autonomous communications
between WSN and Internet devices. CoAP is being designed to
enable application-layer RESTful communications with such
sensing platforms, and it promises to be a cornerstone for the
support of future IoT applications. The addressing of security in

ISBN 978-3-901882-83-8 © 2016 IFIP

306ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

the context of CoAP is thus of major importance although, as we
discuss next, various issues still complicate effective security.

The current CoAP specification adopts DTLS (Datagram
Transport Layer Security) [6] at the transport-layer security with
the goal of transparently securing CoAP communications at the
application-layer. DTLS provides security that, by nature, is
end-to-end, but in reality conflicts with another functionality
designed in CoAP: the usage of proxies to assist
communications between the Internet and WSN communication
domains. Another aspect currently motivating research efforts is
that DTLS, as adopted for CoAP, requires the usage of public-
key authentication using ECC (Elliptic Curve Cryptography) for
authentication and key agreement. ECC is well know to be too
resource demanding in constrained sensing devices, further
complicating the adoption of DTLS in practical applications.
Another aspect is that many IoT applications may employ
devices that by nature move from one WSN domain to another,
even if between WSN domains under the same administrative
control. Thus, mechanisms are also required to support inter-
WSN mobility in the context of end-to-end communications and
security, as we address in this article. We address the previous
aspects in an integrated fashion, proposing a coherent solution
to address the limitations of CoAP security.

As already discussed, DTLS is currently mandatory for
CoAP, the same applying to the support of ECC public-key
cryptography. It is well accepted that ECC is still too costly for
sensing platforms such as the TelosB [7], and this aspect
currently motivates various research proposals, as we discuss in
Section VI. Our proposal consists in the offloading of costly
computations related with the handshake to a more capable
device, at the same time guaranteeing total transparency from
the point of view of the communicating entities and applications.
In particular, we extend our previous proposal on DTLS
authentication with mediation [8] to include support for mobile
sensing devices. The costliest phase of DTLS is the initial
authentication and key agreement handshake, and our proposal
not only supports the offloading of ECC computations to a
router, but also works side-by-side with our mobility model,
allowing for inter-WSN movement of CoAP sensing devices.

As previously referred, DTLS as currently considered for
CoAP conflicts directly with the usage of CoAP proxies, either
in reverse or forward mode. This is in fact a concern, as CoAP
proxies are useful and a necessity in many scenarios. By
intercepting and mediating the DTLS handshake our model
offers an effective solution to the support of CoAP proxies, since
the same entity can support all functionalities.

Regarding the mobility of sensing devices, our goal is to
propose mechanisms that can abstract IoT applications, and also
end-to-end communications and security, from the actual
position of a device inside a WSN administrative domain. A
device may roam between different WSN domains inside a
given administrative domain (e.g. in medical applications, where
patients in an hospital carry a sensing platform and may move
between different networks, or in industrial monitoring and
control applications), while applications still are able to establish
end-to-end communication and secure sessions with the device.
We note that mobility will be in fact an important requirement
of many IoT applications, for example, sensors may be attached
to moving machinery in a factory or building, or to a vehicle
moving around in a plant, or even used for biometric purposes

and attached to persons. Our proposal considers that mobility is
a reality, and also that end-to-end communications between
Internet hosts and CoAP devices must be maintained for sensing
devices moving in the same administrative domain. Thus, even
with security such devices are able to keep serving CoAP
requests from Internet hosts, in the context of the application.

Overall, the contributions in this article belong in the context
communication and security technologies based on 6LoWPAN,
that are already contributing to the formation of an IoT
communications stack as analysed in [9]. More precisely, our
aim is to contribute to security in the context of this stack, and
offer what we believe are effective solutions to the problems
previously identified.

III. AN INTEGRATION MODEL FOR END-TO-END SECURITY WITH
MOBILE SENSING DEVICES

The model considered throughout the article for the support
of end-to-end communications and security with mobility is
illustrated in Figure 1. In this model we consider the existence
of two or more 6LoWPAN WSN under the same administrative
domain, interconnected with the Internet via 6LoWPAN border
routers (6LBR). As illustrated, sensing devices are free to move
between WSN in the same administrative domain.

Figure 1 – An integration model for transparent end-to-end transport-layer

security with Internet-integrated mobile sensing devices

As illustrated in Figure 1, end-to-end communications and
security sessions can be established at the transport-layer,
between external (Internet) entities and a mobile sending device,
via any of the 6LBR in the scenario. As we discuss in detail in
the next Section, a 6LBR is able to transparently intercept and
mediate the DTLS authentication and key negotiation phase, at
the same time supporting the role of CoAP proxy. As is visible
in the previous figure, we consider the usage of different
authentication strategies, in the context of a single end-to-end
session. From the perspective of an external entity this session is
being authenticated using the CoAP security mode providing the
highest security: public-key authentication with certificates

Sensor

6LBR

AC1

WSN1

6LBR

WSN2

Sensor

AC1

CA

External
host

External
host

INTERNET

AC

CoAP	public-key	
authentication	

CoAP	pre-shared	
key		

authentication

307ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(using the CoAP Certificates [4] security mode). On the other
hand, mobile sensing devices may employ a much lighter and
realistic authentication strategy: based on pre-shared keys (using
the PreSharedKey CoAP security mode). We must note that our
goal is to be able to this with total transparency to the
communicating parties, and thus, neither the sensing device nor
the Internet client are aware that the other party doesn’t support
the same authentication strategy.

Another important aspect of the proposed integration model
can be found in the support of mobility, which works in tandem
with a protocol we introduce to support authentication in the
WSN domain. For the purpose of supporting authentication and
mobility, we consider the usage of a Certification Authority
(CA) and of Access Control (AC) entities. The CA attests the
validity of the various communicating entities by issuing
certificates, while AC servers assist in mobility and
authenticating the WSN communicating parties, in the context
of end-to-end Internet communications. Although in the
previous figure AC servers apply to a particular WSN domain,
we can also consider multihoming, with a single AC server
supporting authentication and mobility for the various WSN in
the administrative domain.

In order to provide effective security, we need to address the
trust model considered in the integration scenario. Trust is
established between AC servers on different WSN domains, in
order to support end-to-end security with mobility, as we discuss
later in the article. We also assume that a 6LBR trusts its AC
server, the same applying to the mobile sensing device. Trust is
configured in the form of shared cryptographic keys during the
configuration or network bootstrap phase, as we discuss later in
the context of the proposed authentication and mobility
procedures. Finally, we also assume that the 6LBR, AC and CA
devices are without the constrains in resources of mobile sensing
platforms, and thus are able to support the proposed end-to-end
security, authentication and mobility mechanisms. Regarding
the threat model considered, we note that our focus is on
providing security against external attacks, and in particular in
enabling fundamental security properties as confidentiality,
integrity, authentication and non-repudiation to end-to-end
communications with constrained sensing devices, using the
mechanisms we proceed to describe.

IV. MECHANISMS TOWARDS TRANSPARENT END-TO-END
SECURITY WITH MOBILITY

As per the goals of this article, in the context of the
interconnection model previously discussed we propose a
mechanism to assist in the support of effective end-to-end
security, in the presence of mobile sensing devices. We begin by
describing our approach to DTLS transparent interception and
mediation, and later we present the protocol responsible for the
support of authentication and confidentiality in the WSN part of
the end-to-end security session. Finally, we address the support
of mobility between WSN domains. Overall, it is our goal that
the proposed mechanisms work in tandem to provide effective
end-to-end security with mobility, in a completely transparent
fashion to communicating parties and applications, and at the
same time with total compatibility with CoAP security as current
defined for the IoT.

A. DTLS transparent interception and mediation
The first challenge we address is to release constrained

sensing devices from the burden of having to support costly
ECC computations in the context of the initial DTLS
handshake. We must note that the handshake is the problematic
part of end-to-end security, as after authentication and key
negotiation end-to-end security may be addressed in the sensing
device efficiently, if AES/CCM encryption is employed. As we
also note later in the article, the transparent interception and
mediation of DTLS also provides advantages other than the
enabling of ECC encryption to support high security with
CoAP.

The DTLS handshake is an important part of end-to-end
security, as it allows for mutual authentication and key
agreement between both communicating parties. Not only we
want to offload such costly computations, we want to do it in a
completely transparent fashion to such parties and applications.
We also need to support sensing devices that may freely move
between different WSN domains, as previously discussed and
illustrated in Figure 1. We guarantee that, in the context of a
given IoT application, CoAP resources residing on sensing
devices are reachable securely, irrespective of the current
position of the device, and at the same time not requiring any
modification to CoAP and DTLS as supported on such devices.
The preservation of total compatibility with DTLS and CoAP
specifications is of cornerstone importance in our proposal.

The proposed mediated DTLS handshake supports
delegated ECC public-key mutual authentication between
mobile sensing devices and other external (Internet entity), as
illustrated in Figure 2. We note that the interception of the
DTLS handshake at the 6LBR allows us to control how the
handshake is performed with the two end parties, in a
completely transparent fashion to such entities. Thus, from the
point of view of the Internet client and CoAP server (as
considered in Figure 2), the handshake is performed
accordingly to the rules defined for DTLS [6], which basically
adapts TLS (Transport Layer Security) [10] for performing over
UDP (as employed in 6LoWPAN environments).

Considering the integration model illustrated in Figure 1,
the interception and mediation of messages is performed in the
6LBR, which also supports Internet communications between
the WSN and Internet domains and, if required, a CoAP proxy
in either reverse or forward mode. On the Internet side, a CoAP
client wants to retrieve information from the CoAP server
running on the sensing device and connects via the 6LBR. Such
communications are intercepted at the 6LBR and the router is
able to expose authentication and key negotiation differently
towards the WSN side, in communications with the sensing
device. We also allow the opposite usage scenario, meaning
that the client may be on the WSN domain connecting to a
CoAP server on another WSN network or on the Internet. As
illustrated, AC servers are also part of the handshake for the
purpose of supporting authentication between the 6LBR and the
sensing device.

308ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Figure 2 – Transparently mediated DTLS handshake with mutual
authentication and mobility support

On the Internet side we allow for the usage of authentication

using ECC cryptography and certificates, thus supporting the
Certificates CoAP security mode [4,5], while on the WSN we
employ the much lighter PreSharedKey CoAP security mode,
certainly more aligned with the real capabilities of constrained
sensing devices. In line with the CoAP security modes
supported, on the Internet side we consider the usage of
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8, while on
the WSN domain we employ pre-shared key authentication
with TLS_PSK_WITH_AES_128_CCM_8.

A DTLS security session requires the two communicating
parties to agree on the cipher suite and encryption keys
employed. The DTLS handshake transports the information
required to derive such secret keying material. The encryption
keys required to secure transport-layer communications are
obtained from a master key that the client and server must share
after the completion of the handshake and, on the other hand,
this master key is obtained by both parties using a pair of client
and server random values plus a pre-master secret key. We must
note that client and server random values are exchanged during
the handshake, while the way the pre-master shared key is
obtained depends on the cipher suite employed. With cipher
suites employing public-key authentication, the client is
allowed to generate the pre-master shared key and send it to the
server encrypted with the server’s public-key. Thus, this is true
for TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8, which
we support in communications with the Internet side, while for
pre-shared key suites (TLS_PSK_WITH_AES_128_CCM_8)
this is not supported, mainly because at an initial stage the two
entities are unable to support the secure transmission of the pre-
shared secret. In order to circumvent this limitation,
TLS_PSK_WITH_AES_128_CCM_8 is modified in our
proposal in order to allow the 6LBR to transmit the pre-master

secret to the sensing device. The pre-master secret key received
from the Internet client is forwarded to the CoAP server, and in
order to guarantee appropriate security for WSN
communications, we introduce an authentication and
encryption protocol, described later in the article.

Referring again to Figure 2, the following are the main
phases or message flights of the mediated DTLS handshake:

1) The initial ClientHello is intercepted by the 6LBR, and

the router answers with a ClientHelloVerify as a
measure of protecting the WSN domain against DoS
attacks [6]. The ClientHello message returned by the
Internet client transports the client random value,
together with the protocol version and the list of
supported cipher suites.

2) Using the proposed WSN authentication protocol
(discussed later in the article) the 6LBR obtains an
initial ticket from the AC server together with
information about the AC to contact for the purpose of
obtaining access to the destination sensing device. Here
the AC in the same WSN domain as the 6LBR is
identified as the “local AC”, whereas the AC in the
domain to which the sensing device is currently
attached to is the “remote AC”. From the remote AC
the 6LBR obtains a ticket for the CoAP service,
information about the cipher suites supported by the
sensor, as well as its digital certificate and current IPv6
address.

3) The original ClientHello message is forwarded to the
destination CoAP device with a request for pre-shared
key-based authentication. The ServerHello response is
forwarded back to the Internet client, this time
acknowledging public-key authentication. The
ServerKeyExchange message forwarded in this flight
transports the server random value.

4) In order to guarantee mutual authentication as per our
goals, the 6LBR client is authenticated by requesting its
certificate. The ClientKeyExchange message sent by
the client transports the random value and the pre-
master secret key generated by the client.

5) The WSN authentication protocol allows us to obtain a
secret key to be shared between the 6LBR and the
destination CoAP sensing device. We use this key to
secure the transmission of the pre-master secret key to
the server. The next message flight allows to finalize
the handshake between the client and device. After this
stage end-to-end communications proceed normally,
and the 6LBR is also in possession of the required
cryptographic material to support other security
mechanisms, as we address at the end of the article.

The WSN authentication and confidentiality protocol is of
major importance in the proposed mediated DTLS handshake.
This protocol not only supports mobility by informing the
6LBR of the current position and of the AC responsible for the
destination sensing device, but also guarantees appropriate high
security for WSN communications between the 6LBR and that

CoAP
server 6LBR

Internet
client

ClientHello

ClientHelloVerify
ClientHello

Certificate

ChangeCipherSpec
Finished

ClientHello

ServerHello
ServerHello

ClientKeyExchange

ChangeCipherSpec

ChangeCipherSpec

ServerHelloDone
Certificate

CertificateRequest
ServerHelloDone

ClientKeyExchange
CertificateVerify

Finished

ChangeCipherSpec
Finished Finished

DTLS protected communications

Establish
secure

capabilities

Server
authentication

and key
exchange

ServerKeyExchange

Client
authentication

and key
exchange

Time

Finish

ServerKeyExchange

PMSK agreement

AC
local

Request to AC

AC
local or
remote

Access to current AC

TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8 TLS_PSK_WITH_AES_128_CCM_8

1)

2)

3)

4)

5)

309ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

device, in the context of the handshake. After the destination
sensing device has received the ClientKeyExchange message,
both communicating parties are now in possession of the same
pair of random values and pre-master secret key. This is the
information required for both parties to compute the DTLS
master key as in the current specification [6], and from this
master key to obtain the secret material for DTLS security.

B. WSN authentication and confidentiality
The authentication and confidentiality protocol proposed is

responsible for guaranteeing appropriate security in the WSN
domain, during communications between the 6LBR and the
destination sensing device in the context of the handshake. This
protocol also plays an important part in the support of mobility.
We illustrate the proposed protocol in Figure 3, noting that it
inherits characteristics from the Kerberos authentication
protocol [11], while supporting other characteristics designed
to support our end-to-end mediation approach, as well as
mobility.

As in Kerberos, this protocol considers the usage of two
security-related data structures: tickets and authenticators. In
generic terms, considering a client named c and a destination
service named s, a ticket Tc,s and an authenticator Ac are defined
as follows:

Tc,s = { s, c, addrc, timestamp, life, Kc,s }Ks

Ac = { c, addrc, timestamp }Kc,s

A ticket authenticates a client to a service, in our
authentication protocol to authenticate the 6LBR to the remote
AC server and to the final CoAP service running on the sensor.
As the ticket is opaque to the client, it is transmitted as is to its
destination. An authenticator is generated by the client and
allows security against replay attacks. The following are the
main phases of the authentication protocol:

1) The 6LBR requests, from its local AC server, a ticket

and information about the remote AC. The remote AC
is the server to contact to request a new ticket for the
destination CoAP service.

2) The 6LBR contacts the remote AC server and requests
a ticket for the destination CoAP service. This reply, in
addition to the ticket itself, transports information on
the capabilities of the sensor, its certificate and the
current IPv6 address.

3) Finally, the 6LBR authenticates with the destination

CoAP service. After authentication, the 6LBR and the
sensor share a secret key that they use to secure the
transmission of the pre-master shared key, in the
context of the DTLS handshake.

As already referred, we assume that trust is established
between the various communicating parties previously to
communications and end-to-end security. As illustrated in
Figure 3, secret keys are shared and used to secure

communications between the 6LBR and the AC server (Kc,ac)
and between the AC server and the constrained sensing device
(Ks). Trust relationships are also established between AC
servers on different WSN domains. This is required to extend
the trust model and security from one WSN domain to another,
as required to support mobility. Such keys allow a client to
obtain, from its local AC server, a key to request, from a remote
AC, a ticket for the destination CoAP device. We also assume
that, contrary to communications to and from sensing devices,
communications between 6LBR, AC and CA entities run over
a communications medium without the limitations of the WSN.
For each registered sensor the AC servers store its X.509 ECC
certificate, the list of supported ciphers and compression
methods, the name of the AC server for the WSN domain where
the sensing device is currently located, and its current IPv6
address.

Figure 3 - Authentication protocol for mutual authentication and

confidentiality in the WSN domain

The list of supported ciphers allows our model to be applied

with other ciphers on the WSN side, although we are currently
considering, in this article, the usage of
TLS_PSK_WITH_AES_128_CCM_8, as previously
discussed. The certificate represents the device and this model
alleviates the device from the burden of having to store it in its
memory, given that we are performing ECC computation on the
6LBR via delegation. Compression negotiation is supported by
the DTLS handshake and also with the mediated DTLS
handshake. The name of the AC server of the network to which
the sensing device is currently attached to, together with its
current IPv6 address, allow any 6LBR to remotely contact the
device and activate end-to-end security, as required for devices
that are mobile.

C. Support for inter-WSN mobility

One main motivation of our proposal is to address mobility
in the context of transparent end-to-end security. In this context,
we consider the mobility model illustrated in Figure 4. In this
model a sensing device is free to move between different WSN
domains (inside the same administrative domain) while being
able to accept and maintain active end-to-end security

{{Tc,s}Ks,Kc,s,Caps,Certs,addrs}Kc,tgs

6LBR
(CoAP proxy)

Local
AC

CoAP server
(sensor)

{time+1}Kc,s

s,{Tc,tgs}Ktgs,Ac,tgs

Ti
m

e

s,{Tc,s}Ks,Ac,s

{PMSKInternet client,S}Kc,s (DTLS ClientKeyExchange)

Local or
remote AC

c,tgs

{{Tc,tgs}Ktgs,Kc,tgs,addrtgs}Kc,ac

1)

2)

3)

310ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

associations at the transport-layer, transparently from the point
of view of applications.

For the purpose of dealing with security, we consider the
support of mobility side-by-side with network configuration
and ND (Neighbor Discovery) procedures, as currently defined
for 6LoWPAN [12]. In this context, a change in the IPv6
address of a sensing device, either due to movement, or when
the device wakes up in a different WSN, is fired up by the
procedures defined in the context of ND. Such procedures may
be related with Neighbor Unreachability Detection (NUD), the
reception of a Router Advertisement (RA), or in consequence
of a Router Solicitation (RS) message sent. In all situations, the
IPv6 address of the sensor is updated, based on its link-local
address. The mobility model illustrated in Figure 4 consists of
the following main phases:

1) A change in the IPv6 address of the device takes place,
based on its link-local address and according to ND
procedures optimized for 6LoWPAN [12]. In this
context, ND messages are exchanged between the
device and the 6LBR, in particular RS, RA, Neighbor
Solicitation (NS) and Neighbor Advertisement (NA).

2) The 6LBR is responsible for updating information on
the new location of the sensor in the local AC server.

3) The 6LBR is also responsible for informing other
6LBR on the new location of the device. For this
purpose, we assume the usage of a broadcast-capable
shared communications medium.

4) AC servers in the remaining WSN domains under the
same administrative domain see their information on
the sensor updated by its local 6LBR.

Figure 4 – Mobility and update of information regarding the sensor’s current

network of attachment

As per the mobility model and the authentication protocol
previously discussed, the information on the current position of
the sensing device is updated and stored in the various AC
servers of the domain. We note again that such procedures also
apply in case a multi-homed AC server is employed.

V. EXPERIMENTAL EVALUATION
We evaluate the previously described security and mobility

mechanisms experimentally, looking in particular for two
aspects we consider critical for the effectiveness of any
proposal on security for constrained wireless sensing
environments: the impact on energy and computational effort.

A. Experimental evaluation setup
The integration model illustrated in Figure 1 is considered

again, this time for the purpose of evaluating the proposed
mechanisms. For this purpose, we employ TelosB [7] sensing
devices running the TinyOS operating system [13], and also
Linux hosts, for the roles of 6LBR, AC, CA, and Internet client.
We employ TinyOS with support for the 6LoWPAN stack,
CoAP and also the proposed security and mobility-related
procedures. For the purpose of symmetric encryption, we also
benefit from the usage of standalone AES/CCM encryption
available at the hardware in the TelosB, using code appropriate
for this purpose [14]. ECC cryptography is supported using
code based on TinyECC [15], and the Internet CoAP client uses
libcoap [16] integrated with DTLS. Measurements on energy
were obtained by measuring the voltage across a current
resistor, placed in series with the battery pack of the sensor,
while the computational effort was derived directly from the
system clock of the sensing device.

B. Lifetime of sensing applications
Our first goal is to evaluate the impact of the proposed

mechanisms on energy, as this may directly dictate the potential
lifetime of the device and consequently any IoT application
depending on it. We measured the energy required to support
applications employing the mediated DTLS handshake with
sensing devices moving between different WSN domains. For
both aspects, we measure energy required for processing
headers, security and communications, considering the
employment of 102-bytes 6LoWPAN packets. As per our
evaluation, the proposed mediated DTLS handshake requires a
total of 20 6LoWPAN messages (including the messages
required for the WSN authentication protocol) and a total of
0.0013 mJ (millijoules) from the energy available in the TelosB.
As expected, the original DTLS handshake is much more
demanding, as it requires a total of 39 6LoWPAN messages and
54.4 mJ of energy from sensing devices. Regarding DTLS
encryption with standalone AES/CCM on the sensing device, it
requires 0.0002 mJ, in deep contrast with 10.89 mJ required to
support public-key ECC digital signing, as required with
TLS_ECDHE_ECDSA_WITH_AES_128_CCM_8. We may
clearly observe the impact of ECC on constrained sensing
devices with the characteristics of the TelosB. We note that the
previous values are total, measured from the reception of a
6LoWPAN packet to the time when cryptography finished
processing the packet on the sensor. As such, we are capturing
the total energetic effort to process end-to-end security for a
packet. We also consider the energy required for the processing
of a packet and related security headers, measured as 0.007 nJ
(nanojoules).

6LBR

AC1

Old	WSN	domain

6LBR

New	WSN	domain

Sensor

AC2

1)
NUD,
RS,RA2)

Update	IP	for	S,	
AC	for	S

3)
Update	IP	for	S,	

AC	for	S

4)
Update	IP	for	S,	

AC	for	S

311ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Another important aspect considered in our evaluation is the
impact of the proposed mobility model and procedures on the
energy available on sensing devices. For this purpose, mobility
is conjugated with ND mechanisms as previously discussed,
and we evaluate the energy required for ND, reception of
information from the 6LBR and derivation of a new IPv6
address from the link-local address of the device. Regarding
security in the context of ND, we consider the usage of
AES/CCM encryption to protect ND-related messages, as
defined in [12]. Overall, the total energy cost of supporting
communications and security on the TelosB was measured as
0.001mJ.

The previously discussed values obtained experimentally
allow us to derive analytically the predictable lifetime of an
application using the proposed security and mobility
mechanisms. Without considering mobility, it is clear that the
proposed mediated DTLS handshake always provides greater
lifetime values [8], given that in the original DTLS handshake
sensing devices are required to support costly ECC
computations during session establishment.

Figure 5 - Impact of end-to-end security on the lifetime of sensing

applications, with mobility

We next evaluate the impact of the delegated DTLS
handshake in conjugation with mobility, as illustrated in Figure
5. In this figure we illustrate the predictable lifetime (in hours)
in respect to the number of DTLS sessions established with a
sensing device, and also to the number of movements of the
device between WSN domains. We also consider that a CoAP
request (consisting of two 102-bytes 6LoWPAN packets, one
containing a confirmable request and the other the
corresponding reply) is served every time the sensor moves to
a new WSN. The values represented in Figure 5 consider the
usage of the TelosB sensing device powered by two new AA
LR-6 batteries.

Even for the worst scenario (in this case 19 DTLS sessions
per hour, 10 movements between WSN domains per session
and 1 CoAP request per visited WSN) the expected lifetime
remains above 8500 hours. It is clear that for less demanding
scenarios in respect of mobility, we are able to obtain much

better values. For example, when considering 14 DTLS
sessions per hour and 5 movements between WSN domains, the
predictable lifetime is around 23 thousand hours, thus 3 times
over the previous calculation. We also observe an expressive
decline in the expected lifetime when mobility requires more
changes in the WSN, during the lifetime of a DTLS session.
This is due to the fact that we are securing mobility-related
communications with AES/CCM, and as the number of
movements increases the impact of AES/CCM security is larger
than that of supporting the DTLS handshake. Overall, from our
previous evaluation, we are able to confirm that the proposed
security and mobility mechanisms are able to provide viable
lifetime values is all of the considered usage scenarios.

C. Maximum communications rate
Wireless sensing devices as the TelosB don’t possess

mechanisms such as multi-threading, and as such the
computational time required to support security directly
influences the maximum communications rate that a sensing
device may support. IoT applications may thus suffer if security
is too resource demanding, also from the perspective of its
computational requirements.

As for energy, we experimentally measure the
computational time required to support the proposed
mechanisms. As expected, the time required to support the
mediated DTLS handshake (15.39ms) is much lower than to
support the original handshake (10.09s), again due to the
computational impact of ECC [8]. We are able to analytically
derive the maximum number of CoAP requests per hour that a
device is able to sustain, in the presence of end-to-end security
and mobility, as illustrated in Figure 6.

Figure 6 - Impact of end-to-end security and mobility on the communications

rate of sensing applications

We must note that mobility also impacts on CoAP

communications, as while processing mobility-related
procedures the sensing device is unable to accept and serve
CoAP requests. As we may observe in Figure 6, the proposed
security and mobility mechanisms are able to still guarantee
appropriate communication rates. We may note that for

1

3

5

7
9

2500

22500

42500

62500

82500

102500

122500

142500

162500

10 11 12 13 14 15 16 17 18 19

Nu
m
be
r	o

f	m
ov
em

en
ts
	b
et
w
ee
n	
W
SN

	d
om

ai
ns

Li
fe
tim

e	
of
	se

ns
in
g	
ap
pl
ic
at
io
n	
(h
ou

rs
)

Number	of	DTLS	sessions	per	hour

1 50 100 150 200 250 300 350

486600

486800

487000

487200

487400

487600

487800

10

40

70

100

M
ov
em

en
t	

be
tw

ee
n	

W
SN

	p
er
	

ho
ur

Ex
pe
ct
ed
	li
fe
tim

e	
of
	a
pp

lic
at
io
ns
	(h

ou
rs
)

DTLS	sessions	per	
hour

312ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

example in the worst case scenario (as considered, for 350
DTLS sessions established per hour, or around 10 sessions per
second, and 100 movements of a device to a new WSN
domain), a sensing device would be able to still serve over 480
thousand requests during one hour, or over 133 per second. We
may objectively consider this to be well above what would be
required from a sensing device constrained in terms of energy,
in a real application scenario. If one compares end-to-end
security with mobility against the usage of DTLS as currently
proposed we observe that, even with the added cost of dealing
with mobility, the solution proposed in this article performs
better. Due to the cost of supporting ECC encryption, the
original DTLS handshake as proposed for CoAP is only viable
up to 356 DTLS sessions per hour.

VI. RELATED WORK
The employment of DTLS to secure CoAP communications

raises various issues, as addressed throughout the article, that
are also recognized and the focus of research. As previously
discussed, ECC as proposed to provide security to CoAP is too
resource demanding, and in this context alternatives approaches
are being proposed. The impact of ECC cryptography, as well
as the efficiency of AES/CCM to support pre-shared key
authentication, is also verified in other works [17][18][19].
Other aspects complicating the adoption of DTLS are the need
to store and process public-keys and certificates on constrained
sensing devices, and the inadequateness of the protocol when
CoAP proxies are employed. As previously observed, those are
aspects that also contribute to motivate our approach.

Some authors address the proposal of usage profiles for
DTLS, in order to better cope with the employment of
6LoWPAN and the characteristics of constrained wireless
sensing platforms, as in [20]. Others propose modifications to
the standard itself, for example the adoption of 6LoWPAN
IPHC compression as a way to reduce the size of DTLS headers
[21]. An alternative proposal in this context consists in the
usage of CoAP communications to support costly DTLS
handshake operations [22]. Overall, such proposals to do not
solve the problem of effectively supporting ECC-based
authentication and key negotiation on constrained sensing
devices, nor address the need to cope with mobility.

More close to our approach in this article, authors in [23]
propose a mechanism based on a proxy to support sleeping
devices. In this work a mirroring mechanism is employed to
serve data on behalf of sleeping smart objects. We also note that
this proposal does not offer a solution to address true end-to-
end security, the same applying to mobility. In [24] an end-to-
end architecture supporting mutual authentication with DTLS
is proposed, employing specialized trusted-platform modules
(TPM) supporting RSA cryptography on sensing devices. Thus,
RSA is adopted with the help of specialized hardware devices,
rather than supporting ECC public-key cryptography as
currently required for CoAP. Although this proposal addresses
end-to-end security, it does not provide compatibility with the
current CoAP specification nor does it address mobility.

Overall, we observe that none of the previous proposals
offers a solution to effectively support ECC cryptography in the
context of end-to-end DTLS security with Internet-integrated
sensing devices, in a transparent fashion to the communicating
entities and applications, and also supporting mobile devices.

VII. CONCLUSIONS AND FUTURE WORK
In this article we propose mechanisms for the support of

end-to-end security with Internet-integrated mobile sensing
devices, in the context of an integration model that, in practice,
supports various usage scenarios and applications. As
previously discussed, we focus on addressing three important
aspects that, in the context of real applications, difficult the
employment of CoAP with end-to-end DTLS security. One is
to offer an effective and transparent solution to the problem of
supporting ECC authentication and key agreement, one
important goal to support CoAP communications with a high
degree of security. Other aspect is the incompatibility of DTLS
with the usage of CoAP proxies, which may be supported at the
security gateway (6LBR) in our model, while also
implementing other security policies. Finally, we also address
mobility, and propose a way to abstract end-to-end
communications and security from the movement of sensing
devices.

The proposed mechanisms were evaluated experimentally
considering two main aspects: the impact of such mechanisms
on the energy of sensing devices, and also the computational
cost. We consider such two aspects to be fundamental in
evaluating the effectiveness of any proposal on security for
constrained wireless sensing platforms.

It is our goal that the proposed security and mobility
mechanisms may provide useful contributions, in the context of
the communications and security stack currently being formed
to support future IoT applications. As future research
objectives, we will target the design of additional security
mechanisms based on the integration model considered in this
article. One aspect we plan to focus on in the near future is that
of intrusion detection or content filtering for CoAP
communications. From the proposed mediated DTLS
handshake we note that, after the handshake has finalized, the
6LBR may also be in possession of the security data required to
compute the cryptographic material used for end-to-end
security with DTLS. This opens to door to the design of filtering
or intrusion detection mechanisms for CoAP, based on 6LBR
devices that, by nature, are placed strategically to protect
Internet-integrated WSN domains from abusive CoAP requests
or other external threats.

REFERENCES

1. Kushalnagar N et al. IPv6 over Low-Power Wireless Personal Area

Networks (6LoWPANs): Overview, Assumptions, Problem Statement,
and Goals. RFC 4919, 2007.

2. Montenegro G et al. Transmission of IPv6 Packets over IEEE 802.15.4
Networks. RFC 4944, 2007.

313ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

3. Hui J et al. Compression Format for IPv6 Datagrams over IEEE 802.15.4-
Based Networks. RFC 6282, 2011.

4. Shelby Z et al. Constrained Application Protocol (CoAP). draft-ietf-core-
coap-13, 2012.

5. Shelby Z. Constrained RESTful Environment (CoRE) Link Format. RFC
6690, 2012.

6. Rescorla E et al. Datagram Transport Layer Security Version 1.2. RFC
6347, 2012.

7. TelosB Mote Platform,
http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datashe
et.pdf (accessed Mar 2016).

8. Granjal J, Monteiro E and Silva J. "End-to-end transport-layer security for
Internet-integrated sensing applications with mutual and delegated ECC
public-key authentication." IFIP Networking Conference, 2013. IEEE,
2013.

9. Granjal J, Monteiro E and Silva J. "Security in the integration of low-
power Wireless Sensor Networks with the Internet: A survey." Ad Hoc
Networks 24 (2015): 264-287.

10. Dierks T, Rescorla E. The Transport Layer Security (TLS) Protocol,
Version 1.2. RFC 5246, 2008.

11. Neuman B, Ts’o T. Kerberos: an authentication service for computer
networks. IEEE Communications Magazine, 1994, 32(9), 33-38, DOI:
10.1109/35.312841.

12. Shelby Z et al. Neighbor Discovery Optimization for IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs). RFC 6775, 2012.

13. TinyOS Operating System, http://www.tinyos.net/ (accessed Mar 2016).
14. Standalone hardware AES Encryption using CC2420,

http://cis.sjtu.edu.cn/index.php/The_Standalone_AES_Encryption_of_C
C2420_(TinyOS_2.10_and_MICAz) (accessed Mar 2016).

15. Liu A, Ning P. TinyECC: A Configurable Library for Elliptic Curve
Cryptography in Wireless Sensor Networks. Proceedings of the 7th h

international conference on Information processing in sensor
networks (IPSN ’08), 2008.

16. LibCoAP, http://sourceforge.net/projects/libcoap/ (accessed Mar 2016).
17. De Meulenaer, G. et al. On the energy cost of communication and

cryptography in wireless sensor networks. Networking and
Communications, 2008. WIMOB'08. IEEE International Conference on
Wireless and Mobile Computing,. IEEE, 2008.

18. M. Botta, M. Simek and N. Mitton, "Comparison of hardware and
software based encryption for secure communication in wireless sensor
networks," Telecommunications and Signal Processing (TSP), 2013 36th
International Conference on, Rome, 2013, pp. 6-10. doi:
10.1109/TSP.2013.6613880

19. Raza, Shahid, et al. "Secure communication for the Internet of Things—a
comparison of link-layer security and IPsec for 6LoWPAN." Security and
Communication Networks 7.12 (2014): 2654-2668.

20. Tschofenig H, Fossati T. TLS/DTLS Profiles for the Internet of Things.
Constrained Application Protocol (CoAP). draft-ietf-dice-profile-17.txt,
2015.

21. Shahid R, Daniele T and Voigt T. 6LoWPAN compressed DTLS for
COAP, 8th IEEE International Conference on Distributed Computing in
Sensor Systems (DCOSS), 287-289 2012 doi: 10.1109/DCOSS.2012.55.

22. Brachmann M et al. End-to-end transport security in the IP-Based Internet
of Things. 21st International Conference on Computer Communications
and Networks, 1-5 2012 doi: 10.1109/ICCCN.2012.6289292.

23. Sethi M, Jari A and Ari K. End-to-end security for sleepy smart object
networks, 37th IEEE Local Computer Networks Workshops, 964-962
2012 doi: 10.1109/LCNW.2012.6424089.

24. Kothmayr T et al. DTLS based Security and Two-Way Authentication for
the Internet of Things, Ad Hoc Networks, 11 (8) 2710-2723 (2013) doi:
10.1016/j.adhoc.2013.05.003.

314ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

User Location Tracking Attacks for LTE Networks
Using the Interworking Functionality

Silke Holtmanns
Bell Labs - Nokia Networks

Espoo, Finland
Email: silke.holtmanns@nokia.com

Siddharth Prakash Rao
Department of Computer Science, Aalto University

Espoo, Finland
Email: siddharth.rao@aalto.fi

Ian Oliver
Bell Labs - Nokia Networks

Espoo, Finland
Email: ian.oliver@nokia.com

Abstract—User location tracking attacks using cellular net-
works have been known since 2008. In 2014, several Signalling
System No 7 (SS7) protocol based location tracking attacks were
demonstrated, which particularly targeted the cellular roaming
in GSM networks. Currently, the mobile network operators are
in a gradual process of upgrading to Long Term Evolution (LTE)
networks, in addition to replacing SS7 by its successor - Diameter
protocol. Though Diameter seems to be an improvement over SS7
in terms of security with the use of IPsec/TLS and certificate
based authentication, they still need to communicate with their
roaming partners who use less secure SS7. In this paper,
we will briefly present the translation of existing SS7 attacks
into Diameter-based attacks in LTE networks (under certain
assumptions) using Interworking Functions(IWF) - which allows
communication between networks that use different protocols.
The key contribution of this paper is the the detailed explanation
of novel attack vectors to obtain the user location information
using IWF and hence, the proof that even new LTE network can
be vulnerable to legacy attacks. Furthermore, we will outline
some of the potential protection approaches for the attacks that
we discuss.

Keywords—Signalling System No.7 (SS7), Diameter, Interwork-
ing Funcation (IWF), Location Tracking, Privacy

I. INTRODUCTION

Cellular network technologies require some degree of track-
ing of user location – specifically user equipment tracking,
as part of their fundamental mechanism of working. Without
this basic function, features such as hand-over between cells
would not work and it is not possible to provide seamless user
experience (i.e. no dropped calls or connections) when the user
is moving. Furthermore, the aforementioned user tracking by
Mobile Network Operators (MNOs) helps to provide cellular
services to subscribers of partner MNOs, which indeed is the
generic scenario of ”roaming”. In such scenarios, the inter-
operator network connection which is used for exchanging
information is often termed as the interconnection. Recently,
these interconnections have been exploited to track individual
subscribers by hackers, especially when the interconnections
are bound by Signalling System No.7 (SS7) protocol. In this
paper, we describe attack scenarios again targeting such inter-
connection networks, however, instead of exploiting the GSM
networks like the previously found attacks, we exploit the
newer generation of mobile telecommunications technology
i.e Long Term Evolution(LTE) or 4G. The fundamental idea

of this paper is that – an attacker poses as a roaming partner
having an old network (SS7) and therefore, forces the new LTE
network to use less secure legacy communication messages.
We will first walk through the existing attacks and the related
work that use SS7, followed by extending those attacks against
LTE networks using the Interworking Functions (IWF). We
describe this so-called downgrading attack for illegitimate
location tracking. This is the first attack published which
downgrades the LTE Diameter security to the level of SS7
security over the interconnection.

II. ROAMING INTERCONNECTION

Signalling System No.7 (SS7) is a mobile backend protocol
used for interconnectivity between mobile operator networks,
which enables roaming and cellular services across operator
domains. The protocol is mainly used for communication
between the network elements and the networks themselves.
It has served its purpose successfully over four decades being
a substantial source of income for the service providers and
MNOs. In spite of its age, SS7 and its IP version called
SIGTRAN continue to be the most commonly used protocols
for roaming interconnections till date. In order to provide
seamless services to the roaming partners who might have
interconnections only over SS7, irrespective of generation of
mobile technology (such as GSM, UMTS and LTE), operators
are expected to support SS7 protocol. In that sense, all the
operators in the world who offer roaming of any type are
connected to the older SS7 interconnection network (refer
figure 1). Older in this context means that the nodes deployed
use the 3rd Generation Partnership Project (3GPP) standards
which are older than Release 8.

Fig. 1. Two pre-release 8 networks connected via SS7ISBN 978-3-901882-83-8 c� 2016 IFIP

315ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

The Message Application Protocol (MAP) is one of the key
applications of SS7 protocol stack which is mainly respon-
sible for the communication between the elements of core
network, mobility management and supplementary services.
The following elements or nodes of the core network interacts
with each other using MAP protocol: (1) Home Location
Register (HLR), which contains the subscriber keys and user
profile information, (2) Mobile Switching Center (MSC),
which manages the user mobility and (3) Visitor Location
Register (VLR), which takes care of a user in roaming. Due
to the evolution of network technologies and the continuous
addition of new services, the MAP specification has grown
substantially to support a vast range of services [1].

Unlike the older generation of roaming networks in which
subscriber’s Home Public Mobile Network (HPMN) (i.e. home
network) and Visited Public Mobile Network (VPMN) (i.e.
visited network) are connected with SS7 interconnection, the
newer LTE networks replaces the SS7 with IP interconnection
via the IPX/GRX roaming exchange network. As shown in
figure 2, the traffic coming from IPX/GRX interconnection is
routed through Diameter Edge Agents (DEA).

As an evolution of HLR, the Home Subscriber Server (HSS)
contains the subscriber profiles and it is definitely one of
the most important nodes in an LTE network. The Mobility
Management Entity (MME) can be seen as the evolution of
the MSC, which takes care of the user’s mobility management.
The home Policy Charging and Rule Function (hPCRF) is the
entity that enables billing and thereby collects the charging
records for a user. When the subscriber is in a visited network,
the same functionality is handled by the visited Policy Charg-
ing and Rule Function (vPCRF). The Serving GPRS Support
Node (SGSN) handles packet switched data within the network
and enables data roaming.

Fig. 2. Diameter roaming implementation between two LTE networks

As mentioned earlier, the upgrade of network (and the
supporting infrastructure underneath) from SS7 to Diameter
is a gradual process. Most operators update their network
infrastructure gradually to avoid service interruption and op-
timize the return of investment of their infrastructure. During
such updates the old equipment are often sold to operators
in developing countries, where the capital expenditure is
limited and the turnover per user is low. The figure 2 shows
the simple direct connection between two operators, both

running Diameter. However, the real-life situation is much
more complex as shown in figure 3. The number of partners
in these cases may scale to around thousand, whose nodes
are from different software and hardware releases. The reason
for such complex inhomogeneous set-up found in the global
interconnection network is either due to the aforementioned
gradual update process of supporting network infrastructure
or due to limited capital of the operators from developing
economies. Irrespective of the reason, such this inhomoge-
neous set-up provides some interesting attack vectors from
security perspective. We describe the exploits using those
attack vectors in the subsequent sections.

Fig. 3. Roaming hubs and interconnection network

The inhomogeneous set-up simply implies the possibility of
existence of nodes within a network that are from different
releases and therefore support different protocols. It also
implies that the networks towards each other on the roaming
interface may use either SS7 or Diameter or the combination
of both, depending on the node and the network as outlined
in figure 4.

Fig. 4. SS7-Diameter interworking with roaming hubs

For interoperability reasons with their partners, the edge
nodes and the nodes themselves have often the ability to
translate between Diameter and MAP protocols. Diameter is
specified to be secured with NDS/IP [2] (Network Domain
Security) security and most commonly IPSec is used as a
security protocol. Nevertheless, even the Diameter nodes have

316ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

to support partners who run legacy SS7 nodes, where crypto-
graphic security in terms of authentication, confidentiality and
integrity is absent.

III. INTERWORKING FUNCTION

Usually 3GPP standardizes the functionalities and specifi-
cations for communication between nodes belonging to same
release. But there are cases, where specific functionality has
been standardized to enable interoperability between different
releases and technologies. In this realm, the Technical Specifi-
cation (TS) 29.305 [3] and the non-binding Technical Report
(TR) 29.805 [4] describe how Attribute Value Pairs (AVPs)
of Diameter and SS7-MAP messages can be mapped to each
other. AVPs can be considered as variables which often change
during cellular communication such as user identity, source of
messages etc. Even though this is specified as a feature of
mainly edge nodes (e.g. DEA) called Interworking Function
(IWF), the way-of-translation is practically deployed on other
types of nodes directly to enable interoperability within the
operator network, where nodes from different releases are
deployed. In such case, where the interworking functionality
is used directly at the node, it is often called a multi-domain
support scenario. Due to the gradual upgrading within an
operator domain, this is a quite common setup as illustrated
in figure 5.

Fig. 5. Three networks with different protocol support

IV. RELATED WORK

Recent successful attacks on SS7 as per [5][6][7][8] and
[9] have proven that an attacker with access to the SS7
interconnection network can take control over personal in-
formation of the users such as location tracking, billing data
and Short Message Service (SMS) messages, in addition to
eavesdropping. A detailed explanation about different types of
SS7 based attacks can be found in [10] and [11]. We will
briefly present only the location-based attacks in this section,
followed by investigating in the subsequent sections whether
they can be performed on a Diameter network using IWF.
On the conceptual level, the idea is to validate whether the
Diameter networks are vulnerable to SS7 location attacks by
using the IWF for attack translation. For all attacks presented

in this section we assume that the attacker has access to an
SS7 network.

The following location tracking attacks using SS7 are
known at the time of writing:
Attack 1: Location disclosure using call setup messages
An attacker here uses the general message flow of a call set
up to determine the approximate location of the victim. The
attacker with SS7 access pretends to be GMSC (Global MSC),
potentially of a partner of the victim’s operator, however, the
attack may also work with a random GT. The Global Title
(GT) uniquely identifies a node in the SS7 network, similar to
MAC address in an IP network. The target is a Home Location
Register (HLR), the node holding crucial subscriber data.

1) The attacker posing as a GMSC and executes the routine
call set up procedure from the point where the GMSC is
supposed to receive the Initial Address Message (IAM).
At first, he encloses the victim’s MSISDN (phone num-
ber) in a MAP Send Routing Information (SRI) message
to the HLR in victim’s home network, provided he learns
the GT of HLR (It is often found using brute force
requests to the GT range an operator holds).

2) The HLR maps the MSISDN sent by the attacker to
the International Mobile Subscriber Identity (IMSI), fol-
lowed by querying the Visitor Location Register (VLR)
of victim’s visited network by sending MAP Provide
Roaming Number (PRN) Request to facilitate the call
setup. The IMSI is quite important as it is the network
internal subscriber identity required by most of the MAP
and Diameter commands.

3) The legitimate VLR answers via MAP Provide Roaming
Number ACK message which in turn contains the IMSI
of the victim and the global title of the serving VLR to
the HLR.

4) This information is returned via MAP Routing Informa-
tion ACK to the attacker who is impersonating GMSC.
The GT of VLR learned here can be used to spot the
approximate location of the victim in context.

This attack gives only a rough estimate of the location
of a victim, but serves to identify whether he is travelling.
Depending on the intention, the travel trajectories could be
sufficient for the attacker.

Attack 2: Location disclosure using SMS protocol mes-
sages
Similar to the previous attack, the attacker impersonates a
Short Message Service Center (SMSC). He pretends to have
an SMS waiting for the victim and hence, he requests the
MSC/VLR location information in order to deliver it.

1) Pretending to be an SMSC, the attacker sends the MAP
Send Routing Information for SM (SRI SM) message to
the HLR by enclosing the MSISDN of victim.

2) The HLR assumes that the SMSC needs to send an SMS
to the provided MSISDN, and thus it replies with the
MAP Send Routing Information for SM ACK message,
which contains the IMSI of the victim along with GT
of the MSC/VLR that is currently serving the victim.

317ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Usually, an operator has several MSCs deployed in his
network, where each MSC is responsible for a large region.
Therefore, this attack allows to identify the region where the
victim is currently located, similar to the previously described
attack scenario.

Attack 3: Location disclosure using CAMEL location
management function messages
The attacker in this scenario exploits the fact that, many
network nodes do not check whether a message over the
interconnection is internal to the network or otherwise. The
MAP Any Time Interrogation (ATI) message is usually used
within the operator network (i.e. internally), thus, it is not
intended to be received over the interconnection network.
Nevertheless, Positive Technologies [12] and Tobias Engel [9]
showed that the ATI command is often successfully answered
by an operator even when it is sent via the interconnection.
In spite of the fact that many operators started to block
ATI commands coming via interconnection after the public
revelation of the aforementioned attacks, it is most likely that
not every operator in the world would do the same. In the
previously described attacks, the attacker at most can learn the
GT of victim’s MSC/VLR and hence, the attacker can track
down the approximate location of the victim. However, using
CAMEL protocol [13] messages, the attacker can narrow down
the victim’s location accurately to a cell ID, which in densely
populated areas can be as accurate as to a street address.

1) The attacker impersonates the GSM Service Control
Function (gsmSCF) node and sends a MAP Any Time
Interrogation Request (ATI) message by encapsulating
MSISDN of the victim to the HLR.

2) The HLR considers this as a legitimate message and
carries it further by sending MAP Provide Subscriber
Information Request (PSI) message to MSC/VLR of the
victim.

3) The MSC/VLR will initiate the Paging Request to re-
ceive the Cell ID of the victim.

4) This information is handed over to the HLR via MAP
Provide Subscriber Information Response, and then back
to the attacker via ATI response message.

Due to increased risk, many operators started to filter the
ATI command as mentioned in the attack in context. However,
an attacker can bypass such filters by performing a hybrid
attack by executing the SMS protocol based attack to know
the MSC GT of the victim, followed by sending MAP Provide
Subscriber Information Request (PSI) message directly to that
MSC as described in the ATI based attack. Since the PSI
command has a legitimate usage over the interconnection, it
is difficult to filter it.

Attack 4: Location disclosure emergency location service
messages
Mobile operators are lawfully bound to provide accurate loca-
tion information of their subscribers during emergency situa-
tions such as accidents (initiated by the subscribers themselves
e.g. emergence number 911) or criminal tracking (initiated by
the operators on behalf of law-enforcement officials. In case

of the latter, the operator initiates an internal network com-
mand called MAP Provide Subscriber Location (PSL). This
command can be exploited for illegitimate location tracking
as per the following attack:

1) The attacker needs to know the victim’s IMSI and
MSC/VLR GT. He can discover those identifiers through
SMS protocol or call setup message based attack as
described attack 1 or 2 respectively.

2) Now the attacker queries the MSC/VLR in the visited
network for the accurate location information of the
victim by sending MAP Provide Subscriber Location
Request (PSL). In order to do so, the attacker should
bypass the Location Service client (LCS) client (in
regular circumstances, law-enforcement authorities are
the legitimate LCS clients) authentication at the Gateway
Mobile Location Center (GMLC), by directly sending
the aforementioned PSL message to MSC/VLR. In turn
it leaves the MSC/VLR in context with no means of
verifying the actual occurrence of the authentication.

3) The MSC/VLR detects the location of victim’s mobile
station using one of the various possible methods (e.g.
RRLP Request [14]).

4) The MSC/VLR then responds to the attacker with the
MAP Provide Subscriber Location Response message,
which contains the Cell ID of the location of the
subscriber.

The Cell ID can be mapped to a real location in terms of
geographic coordinates of the victim, using publicly available
web services such as [15]. In some cases, the LCS message
might also reveal the closest GPS coordinates of the victim
along with the serving cell ID. However, it is not guaranteed to
be as accurate as the GPS information provided by the mobile
stations themselves (e.g. using any GPS app on the mobile).
It should be noted that the aforementioned attack works only
when an operator supports the emergency localization feature.

V. ASSUMPTIONS FOR THE TARGET LTE NETWORKS

We assume that an attacker has access to the roaming
interconnection network. For an attacker, there are several
ways to gain access to the interconnection network:

• Most operators have a wholesale department or subsidiary
which rents out access to third parties and various service
providers.

• The roaming network is global and it covers countries
or regions where having legal access to subscriber data
is allowed due to less strict enforcement of the privacy
regulations.

• Compromised or misconfigured nodes that are visible on
the Internet (e.g. via Internet-connected database such
as Shodan.io [16]), could act as the potential points of
entry for the evil hackers. Caskun showed the practical
feasibility of attacking nodes of a GRX at the DefCon
2015 [17].

• Insider attack (e.g. via social engineering or bribing) can
lead to unauthorized access by criminals.

318ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Further details about how an attacker gains illegitimate SS7
interconnection is beyond the scope of this paper. However,
we assume that an attacker, depending on skills, resources and
motivations, finds a way in. On the technical side, we make
some general assumptions especially on the configuration of
the operator who is under attack as follows:

• IPSec (as per [2]) is not used between the SS7 and Diam-
eter supporting nodes. In other words, the messages are
sent in clear text without any cryptographic protection.

• No IP address filtering is done. It should be noted that,
even with white and blacklisting filtering methods, some
attacks where the attacker uses a compromised partner
node, obtains a valid partner IP or uses messages that do
not require an answer, may still work.

• No layer matching (comparison and cross/checking of
sender and return addresses of different protocol layers) is
done on HSS or DEA. In some cases, a direct connection
between the roaming partners is absent; instead, the
interconnection is mediated by one or several IPX/GRX
providers (see figure 3). It should be noted that, in such
cases the layer matching cannot be performed. Even if
the layer matching is implemented, some attacks still
would work because spoofing at different layers could be
possible, which eventually allows an attacker to bypass
the controls put in place.

• No sanity check is made at the receiving node e.g. check
for a preceding message that would be there in a normal
message flow.

• The attacker knows the MSISDN (phone number) of the
victim and address of the edge node (e.g. DEA).

To many readers, especially those with IT background, the
aforementioned assumptions may sound too wide and unlikely
to be realistic. However, in the cellular industry where SS7
interconnection with absolutely no security has been working
quite well for more than 30 years, those assumptions are
confirmed to be realistic: Indeed, they can be found in many
operator networks, if not all. Initially when the SS7 network
was designed, the interconnection network was intended to
be used only by the trustworthy government owned operators
and hence, there was no obligation to provide any security.
However, at present, due to changes in regulations and opening
of the telecommunication backend to new entrants, the number
of stakeholders who are connected to the interconnection
network is increasing day by day. In this real, the question who
will finance the additional costs and overhead for certificate
management is highly debatable.

There are no statistics or public information about the num-
ber of operator networks that would fall under the assumptions
that we have made, as it is more likely that most of the
operators are hesitant to disclose whether they are vulnerable.
Furthermore, lack of internal network monitoring and security
audits, and the recent revelation of the attacks [17] [12]
where the similar configurations were exploited, strengthens
our assumptions.

In our attack scenario, the operator that is under attack has
a LTE network within which he may use NDS/IP security [2].
However, on the interconnection edge, he has a Diameter Edge
Agent (DEA), which is collocating an Interworking Function
(IWF) corresponding to [3]. Another scenario that works in the
similar manner is where the operator does not deploy a DEA.
Instead, he connects the nodes directly to the interconnection
link and implements the interworking functionality at that
node. Such ”direct connection” of important core network
nodes are not often, but we speculate that, in future, with
Network Function Virtualization the international operators
attempt to optimize the usage of their nodes and eventually
end up setting the aforementioned direct connections due to
ignorance.

VI. INTERWORKING ATTACK SCENARIO

The attacks that we describe in this section are the typical
downgrading attacks where the the attackers intentionally
lower the strong security of a particular protocol or system to
that of a much less secure legacy system. Even though such
types of attacks are common in the radio access networks [18],
they rarely seen in the core signalling systems. As mentioned
before, the general idea is that an attacker pretends to a
legacy SS7 network or node, thereby forcing the more secure
LTE Diameter network to use SS7 MAP protocols for further
communication.

The first step for an attacker is to obtain the IMSI of the
victim, as the IMSI is one of the primary user identifier needed
for majority of the communication within the interconnection
network. There are several ways to obtain the IMSI, but, we
present an attack vector which use the IWF and describe the
procedure to obtain IMSI based on the knowledge of MSISDN
in Diameter-based network.

The attacker starts his attack by querying the targeted
victim’s network using the MAP SRI SM command. However,
the success of this attack is guaranteed only in absence of home
routing and if the Diameter interconnection of the targeted
operator is established over the S6c interface with additional
support for IWF. The IWF of the targeted network translates
the MAP SRI SM to Diameter Send Routing Info For SM
Request (SRR) as depicted in figure 6.

The attacker impersonates as a partner SMSC or an IWF (for
the two IWFs scenario) in the querying network and claims
only to support legacy SS7 MAP by sending the MAP SRI
SM request over the interconnection network.

1) The attacker sends a MAP SRI SM request containing
the MSISDN to the targeted victim’s network. On the
underlying protocol layer that facilitates routing (routing
is usually facilitated by the Signalling Connection Con-
trol layer i.e. SCCP layer of SS7 protocol stack), the
attacker can use his own Global Title Calling Party Ad-
dress (CgPA), since no layer matching is done between
SCCP and rest of the MAP layers. In addition to the
aforementioned parameters such as victim’s MSISDN
and cgPA, the attacker requires Service Centre Address
(SCA) and set the SM-RP-PRI priority flag in order to

319ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 6. IMSI disclosure attack using SRI SM

craft the MAP SRI SM request command. The attacker
can spoof the SCA to hide his identity, whereas the SM-
RP-PRI flag enables him to receive relevant information
from the HSS of the targeted network even when the
victim is not being served by the network in context.

2) The targeted network’s IWF receives the MAP SRI
SM request and converts it into the Diameter SRR by
mapping the received MAP parameters to the corre-
sponding Diameter AVPs. For instance, Diameter AVPs
such as SC-Address, MSISDN, and SM-RP-PRI are
directly populated based on the corresponding MAP
parameters. Whereas the Origin Host/ Realm and Desti-
nation Host/Realm AVPs are mapped from the received
SCCP CgPA and called party address (CdPA) parameters
respectively. More information about these mapping
procedures can be found in Annex A.3.5.1 of [3].

3) Once the mapping as described in the previous step
is done, the IWF routes the SRR towards HSS of the
targeted network via DEA/ DRA. The HSS responds
with the Diameter Send Routing Info For SM Answer
(SRA) command, which contains the IMSI in the User-
Name AVP (refer section 5.2.1.1 of [19] for more
details) and the nodes currently serving the victim in
context. The SRA command is routed back to the IWF
again via DEA/DRA.

4) The targeted network’s IWF receives the Diameter SRA
and converts it into MAP SRI SM response by mapping
the received AVPs to the corresponding MAP parame-
ters. The IWF routes the MAP SRI SM response towards
the roaming interconnection. If the attack in context is
successful, the SRA command contains all the AVPs
that an attacker is expecting. In such cases, the IWF
populates the MAP SRI SM response by mapping the
received AVPs to the corresponding MAP parameters as
follow (only the most important parameters are listed):

• IMSI is populated with the value contained in the
SRA User-Name AVP.

• Network-Node-Number is populated with the
value contained in either of SRA MME Number
for MT SMS, MSC-Number, SGSN-Number, or
IP-SM-GW-Number AVPs. This field contains the
nodes which are currently serving the victim and
hence, it can be used by the attacker to launch
further attacks or to estimate the rough location
either based on MSC or MME number.

• Origin and destination Host/Realm AVPs are
mapped to SCCP CgPA of the targeted network’s
HSS address and SCCP CdPA of the attacker’s
network address (i.e. the actual GT which enables
the attacker to receive the response) respectively.

5) Furthermore, the IWF of the targeted network will send
the MAP Inform Service Center message to the attacker
to confirm the completion of the requested information
delivery. However, from the point of view of the attacker,
this message is rudimentary, since he would have already
received the desired information such as the targeted
victim’s IMSI, serving node address and possibly the
address of the HSS

The aforementioned IMSI retrieval attack is crucial, as the
IMSI is used a priori to launch the actual location tracking
attacks. This is mainly due to the extensive use of IMSI in
Diameter based communication, instead of just the MSISDN
or Mobile Station Roaming Number (MSRN) in SS7 based
networks. There exist several other ways of obtaining the
IMSI, such as using false base station, WLAN access point
and EAP-AKA protocol. However, we omit further description
about those methods, as they are beyond the scope of this
paper.

We now investigate how the four SS7 based location track-
ing attacks can be extended over a Diameter based network
using the Interworking Functions.

Attack 1: Location disclosure using call setup messages
The MAP SRI has no direct mapping to Diameter, as is there
is no specific entry in the 3GPP standards regarding how
the IWF should handle it. This in turn forces the attacker to
directly submit the request command in context to the HSS,
hoping that the HSS would support a multi-domain scenario.
However, the operators rarely connect their HSS directly to
the interconnection network, and hence, the success chances
of this attack is very unlikely.

Attack 2: Location disclosure using SMS protocol mes-
sages using SRI SM

As mentioned before in the preparation step of an attacker to
retrieve IMSI of the victim, the MAP SRI SM message sent
to an IWF node retrieves the information about the serving
node along with IMSI. Since this attack follows the exact
same set of steps of the IMSI disclosure attack, we would
skip the repetition of the same. The serving node information
in terms of the SRA MME Number for MT SMS in the
network configuration of our presumed scenario provides a
coarse-grained estimate of the victim’s location, specifically
at the granularity of MME serving area.

320ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Attack 3: Location disclosure using CAMEL location
management function messages
Diameter has no direct mapping of the MAP Any Time
Interrogation (ATI) command in IWF related specifications.
However, an attacker can perform the hybrid attack of using
MAP PSI command as described below, provided he has
successfully retrieved the IMSI and serving node information.

1) An attacker poses as an IWF himself (say IWF2) and
opens a MAPv2 channel by sending a MAP PSI request
to the target network’s IWF (say IWF1). This request
contains the IMSI and serving node information (i.e.
the destination MME serving the victim) which he has
previously obtained. In addition to that, the attacker
must include the parameters such as Invocation identity
(which can be a random value) and Requested Infor-
mation (which is set to retrieve Location information)
[20] [13] in the MAP PSI command that he uses for the
attack.
Optionally, the Requested Information parameter can
include sub-parameters like Active Location Retrieval
requested and Location Information in EPS supported,
to obtain more fine-grained location details from the
targeted network. The attacker can also request infor-
mation such as subscriber state, the International Mobile
Station Equipment Identity (IMEI), and software version
of the victim. For many attackers, the IMEI along with
software version is probably one of the most interesting
information to have, as they might enable the attackers
to launch device specific targeted attacks.

2) The receiving IWF1 of the attacked network converts the
MAP PSI request into a Diameter Insert Subscription
Data Request (IDR) as per the mapping guidelines
provided in [4] and [3]. During this mapping, the IWF
populates User-Name AVP based on the IMSI contained
in the MAP PSI request and sets the IDR-flag to value
‘3’ (this indicates that the location information is re-
quested), along with generating a Session ID. The IDR
message is then directed to MME/SGSN.

3) The MME/SGSN replies to the IDR command using
Diameter Insert Subscription Data Answer (IDA) over
the SGd/Gdd interface as specified in [21]. Depending
on the information requested, the IDA message includes
the EPS User State and EPS Location information AVPs,
which contains the subscriber (victim) state and cell ID
respectively.

4) On the receipt of IDA message, the IWF 1 translates
that into MAP Provide Subscriber Data Info Ack (PSI
ack) message as per the guidelines specified in the
section 8.11.2 of [1]. In particular, the translated PSI
ack contains the location information (Cell ID or GPRS
information) and subscriber state (if it was requested in
step 1).

A variant of the attack in context is when the attacker poses as
home-HLR of the victim and sends the MAP Insert Subscriber
Data command instead of PSI. Even in this case, the MAP

Fig. 7. Location disclosure attack using MAP PSI

specific messages will be translated [11] into IDA/IDR to
finally return the MAP Insert Subscriber Data Ack (ISD)
containing the victim’s subscription data.
Attack 4: Location disclosure emergency location service
messages
The 3GPP standards for IWF (i.e. [4] and [3]) does not
specify the procedures for handling MAP PSL command and
hence, the direct mapping to Diameter specific command is
not possible. Even if there were relevant specifications, the
maximum achievable accuracy of the location is similar to
that of the location information retrieved using PSI command.

VII. COUNTERMEASURES

Interworking with legacy equipment cannot be discontinued
without serious service interruption, however, there are several
measures which can be deployed in order to improve the
security of the interconnection as we describe below:

The first line of defence is the protection of the IMSI,
specifically by deploying the home routing for SMS based
communication messages, as it makes the IMSI retrieval via
the interconnection network much harder. The second layer
of defence is to improve the Interworking Function with
security features. The Interworking Function should have some
additional layers of security, in particular we suggest:

1) Basic SS7 filter or firewall that that effectively verifies
whether a message is:

• network internal or to be received via the intercon-
nection.

• communicated within the GT range of a contract
partner.

• for an outbound roamer who is actually roaming.
2) Whitelisting of partners and the protocols that they use

i.e. an LTE-only partner should use Diameter and not
suddenly send a MAP message.

3) Implement NDS/IP security over the Diameter Edge
Agents with roaming hubs and with partners who has
direct connection along with support for Diameter.

321ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

4) AVP specific filtering and modifications e.g. dummy
location in MAP PSI over the interconnection.

Diameter security is much closer to the traditional Inter-
net security, which deploys IP based firewalls. In addition,
The operators should validate whether the origin realm AVP
belongs to one of their partners, and if not, such messages
should be either discarded or filtered for further analysis. For
the routing level security, the routing need to be based on the
origin identity and not on the hop-by-hop identity between
nodes to avoid the attack outlined in [22].

VIII. CONCLUSION

Telecommunications is an intricate system made up of di-
versified, circuitous subsystems with a multiplicity of different
technologies. The complexity increases even further in the
worldwide interconnection network which connects operators
for the purpose of roaming, as such interconnection contains
all possible kinds of legacy systems. Therefore, even the
fully fledged LTE operators deploy Interworking Functions
to be able to communicate with their partners with legacy
technologies. This paper takes the existing SS7 based location
tracking attacks into consideration and further investigates the
behaviour of the attacks, when they are run against the inter-
connection nodes with Interworking Function support. Even
though some of the attacks fail to harm the LTE networks,
the successful attacks that we described, prove the feasibility
of translation of legacy attacks on the newer protocols or
networks which are believed to be secure. Furthermore, the
Interworking functionality may be potentially used to launch
other type of attacks such as Denial of Service against a
subscriber by using Cancel Location or Purge commands,
which is part of our ongoing research.

In conclusion, we argue that the newer generation of mo-
bile networks are vulnerable to legacy attacks. The attacks
described in this paper not only outlines a novel evolution
of legacy attacks, but also it appeals to be relevant to the
current state of telecommunication industry, where the oper-
ators are gradually upgrading to networks along with LTE
roaming. While, those operators continue to be vulnerable
by still supporting some SS7 functionalities until all their
roaming partners fully upgrade their networks, the proposed
countermeasures are expected to make them relatively secure.

ACKNOWLEDGMENT

The authors would like to thank the GSMA RIFS group
members for their drive to improve the security of the global
interconnection network and in particular, Looi Kwok Onn
for spotting some technical hurdles and suggesting measures
to overcome them.

REFERENCES

[1] 3GPP, “Mobile Application Part (MAP) specification,” 3rd Generation
Partnership Project (3GPP), TS 29.002, Sep. 2008. [Online]. Available:
http://www.3gpp.org/ftp/Specs/html-info/29002.htm

[2] 3GPP, “3G security; Network Domain Security (NDS); IP network
layer security,” 3rd Generation Partnership Project (3GPP), TS 33.210.
[Online]. Available: http://www.3gpp.org/ftp/Specs/html-info/33210.htm

[3] 3GPP, “InterWorking Function (IWF) between MAP based and Diameter
based interfaces,” 3rd Generation Partnership Project (3GPP), TS 29.305,
Sep. 2008. [Online]. Available: http://www.3gpp.org/ftp/Specs/html-
info/29305.htm

[4] 3GPP, “InterWorking Function (IWF) between MAP based
and Diameter based interfaces,” 3rd Generation Partnership
Project (3GPP), TR 29.805, Jul. 2008. [Online]. Available:
http://www.3gpp.org/ftp/Specs/html-info/29805.htm

[5] T. Engel, “Locating mobile phones using signalling system 7,” in 25th
Chaos communication congress, 2008.

[6] K. Nohl, “Mobile self-defense,” in Vortrag auf dem Chaos Communica-
tion Congress 31C3, Hamburg, 2014.

[7] A. De Oliveira and P.-O. Vauboin, “Worldwide at-
tacks on ss7 network,” FTP: http://2014. hacki-
toergosum. org/slides/day3 Worldwide attacks on SS
7 network P1security Hackito 2014. pdf, 2014.

[8] S. Puzankov and D. Kurbatov, “How to intercept a conversation
held on the other side of the planet,” 2014. [Online]. Available:
http://2014.phdays.com/program/tech/36930/

[9] T. Engel, “Ss7: Locate. track. manipulate,” in FTP: http://events. ccc.
de/congress/2014/Fahrplan/system/attachments/2553/or iginal/31c3-
ss7-locate-track-manipulate. pdf, 2014.

[10] S. P. Rao, “Analysis and mitigation of recent attacks on mobile com-
munication backend,” 2015.

[11] S. P. Rao, S. Holtmanns, I. Oliver, and T. Aura, “Unblocking stolen
mobile devices using ss7-map vulnerabilities: Exploiting the relationship
between imei and imsi for eir access,” in Trustcom/BigDataSE/ISPA,
2015 IEEE, vol. 1. IEEE, 2015, pp. 1171–1176.

[12] “Signaling system 7 (ss7) security report.” [Online]. Available:
http://tinyurl.com/SS7-Security-report

[13] 3GPP, “Customized Applications for Mobile network Enhanced
Logic (CAMEL) Phase X; Stage 2,” 3rd Generation Partnership
Project (3GPP), TS 23.078, Sep. 2007. [Online]. Available:
http://www.3gpp.org/ftp/Specs/html-info/23078.htm

[14] 3GPP, “Functional stage 2 description of Location Services (LCS),” 3rd
Generation Partnership Project (3GPP), TS 23.271, Sep. 2007. [Online].
Available: http://www.3gpp.org/ftp/Specs/html-info/23271.htm

[15] “Open cellid.” [Online]. Available: http://opencellid.org/
[16] “Shodan: The search engine for internet of things.” [Online]. Available:

https://www.shodan.io/
[17] O. Coskun, “Why nation-station malware targets telco networks,” 2015.

[Online]. Available: http://www.slideshare.net/merCokun1/defcon23-
why-nationstatemalwaretargettelcoomercoskun-51440112

[18] D. Fox, “Der imsi-catcher,” Datenschutz und Datensicherheit, vol. 26,
no. 4, pp. 212–215, 2002.

[19] 3GPP, “Diameter based protocols to support Short Message Service
(SMS) capable Mobile Management Entities (MMEs),” 3rd Generation
Partnership Project (3GPP), TS 29.338.

[20] 3GPP, “Basic call handling; Technical realization,” 3rd Generation
Partnership Project (3GPP), TS 23.018, Sep. 2008. [Online]. Available:
http://www.3gpp.org/ftp/Specs/html-info/23018.htm

[21] 3GPP, “MME Related Interfaces Based on Diameter Protocol,” 3rd
Generation Partnership Project (3GPP), TS 29.272, Sep. 2008. [Online].
Available: http://www.3gpp.org/ftp/Specs/html-info/29272.htm

[22] C. Bonnet, “From ss7 to diameter security,” 2015. [Online]. Available:
http://www.slideshare.net/zahidtg/from-ss7-to-diameter-security

322ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Representation Selection Problem:
Optimizing Video Delivery through Caching

Andrea Araldo †, Fabio Martignon § and Dario Rossi†

LRI, Université Paris-Sud, { rst.last}@lri.fr
† Telecom ParisTech, { rst.last}@enst.fr § IUF, Institut Universitaire de France

Abstract—To cope with Internet video explosion, recent work
proposes to deploy caches to absorb part of the traf c related
to popular videos. Nonetheless, caching literature has mainly
focused on network-centric metrics, while the quality of users’
video streaming experience should be the key performance index
to optimize. Additionally, the general assumption is that each
user request can be satis ed by a single object, which does not
hold when multiple representations at different quality levels are
available for the same video.

Our contribution in this paper is to extend the classic object

placement problem (which object to cache and where) by fur-
ther considering the representation selection problem (i.e., which
quality representation to cache), employing two methodologies to
tackle this challenge. First, we employ a Mixed Integer Linear
Programming (MILP) formulation to obtain the centralized opti-
mal solution, as well as bounds to natural policies that are readily
obtained as additional constraints of the MILP. Second, from the
structure of the optimal solution, we learn guidelines that assist
the design of distributed caching strategies: namely, we devise
a simple yet effective distributed strategy that incrementally
improves the quality of cached objects. Via simulation over large
scale scenarios comprising up to hundred nodes and hundred
million objects, we show our proposal to be effective in balancing
user perceived utility vs bandwidth usage.

Keywords—Content Distribution; Optimization; Quality of Ex-

perience (QoE); Caching

I. INTRODUCTION

The large majority of the Internet traf c currently consists
of video delivery. The related traf c is expected to explode due
to increasing demand on the one hand, but, more importantly,
in reason of the increasing quality expectations of users.
Indeed, at the Consumer Electronics Show in Las Vegas,
“Beyond 4K Ultra HD” technologies were shown that increase
pixel density by 167% [1] over the previous year – a much
faster growth rate with respect to worldwide user population.

Caching video content, with either current Content Distri-
bution Network (CDN) technologies and their interconnection
or more futuristic and pervasive Information Centric Network
(ICN) architectures, may help containing this traf c deluge.
However, the caching literature has, with few exceptions [3],
considered network-centric metrics like hit-ratio, hit-distance,
server of oad, etc., overlooking more important aspects related
to the quality of user experience.

More importantly, except for some recent effort, video
streaming and caching have been mostly studied as orthogonal
problems, often in different research communities. Rephrasing

the title of [12], caching and video are still not friends: classic
video streaming mechanisms assume that a client downloads
a video from a single source, which is not true in presence
of caching, misleading control loops. Moreover, caching tech-
niques are designed with generic content in mind, whereas we
show in this paper that the peculiarities of video traf c demand
for caching mechanisms speci cally tailored for it. The most
important peculiarity is a different request-to-object mapping
assumption: previous studies assume that a user request can
be mapped to a single object, while a request for a video can
be served by providing one of the different representations of
the same video, corresponding to different quality levels, and
ultimately different levels of user satisfaction.

As a rst consequence, it is no longer suf cient to choose
which object to cache, but also which of its available rep-
resentations. Therefore, we add a new dimension to caching
techniques: in addition to the classic object placement problem,
i.e., which object to cache and where, we also consider the rep-
resentation selection problem, i.e. which quality representation
to cache. As a second consequence, the bandwidth required to
satisfy a certain request is no more univocally determined by
the object identi er, but depends on the quality at which we
decide to serve that request. ISPs can leverage the possibility of
serving the same request by using different bandwidth amounts
to ef ciently exploit their links and adapt to the dynamics of
traf c, maximizing user satisfaction at the same time.

We consider a scenario in which Autonomous Systems
(AS) peer together forming a coalition to collaboratively share
their cache resources. We do not investigate the coalition
formation problem, and rather focus on providing a strategy
for the AS coalition to maximize the quality perceived by their
users. Our key contributions can be summarized as follows:

• We propose a novel representation-aware Mixed Integer
Linear Programming (MILP) model, which determines
the object placement, quality representation selection and
routing, taking into account video quality in order to
maximize users’ experience, in a capacity and cache size-
constrained network scenario.

• The knowledge gained by studying the structure of the
optimal solution inspires the design of a distributed
caching strategy, which we implement in an event-driven
simulator to scale up the analysis to network sizes of
hundred nodes and catalog of hundred million objects.

Our key nding is that, despite the cache deployment con-
siderably helps in improving user quality of experience, utility
maximization can be achieved by (i) minimizing the number
of representations stored per object (to increase the cacheISBN 978-3-901882-83-8 © 2016 IFIP

323ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

ef ciency), and (ii) selecting the most useful representation for
each object (which is at the heart of the representation selection
problem). We thus devise a simple yet effective distributed
strategy that: (i) maintains a single representation per object,
and (ii) incrementally improves the quality of cached objects
at each new request, so that the average quality in steady state
is inversely related to the object popularity.

This paper is structured as follows. Sec. II casts this
work in the context of related effort. Sec. III introduces the
methodologies used in our work, extensively describing (i) the
representation-aware MILP model and its variants, as well as
(ii) the online distributed cache algorithm. Sec. IV illustrates
our numerical and simulation results in both (i) toy case
scenarios, to understand properties of the optimal solution as
well as (ii) large scale scenarios, to con rm our reasoning to
hold in more general cases. Sec. V concludes the paper with
a summary of our ndings and our future work agenda.

II. RELATED WORK

Video streaming over the Internet has become a mainstream
research topic in recent years: as such, several works focused
on the problem of ensuring an ef cient video streaming in
communication networks. Similarly, caching is a very effective
technique that permits to serve contents in both bandwidth
and time-ef cient manners, which has attracted a surge of
attention in recent years through popularization of Content
Distribution and Information Centric networks. However, as
already discussed, there is still lack of a uni ed viewpoint
to alleviate the huge increase in required bandwidth and
guarantee satisfactory Quality of Experience (QoE) for users.

To con rm this, classic caching directly applied to video
streaming is not only inef cient but can even be harmful [12].
Another example of classic caching vs. classic video streaming
impairment is given in [15], which, by means of trace-driven
simulations, nds that an ICN cache deployment would not
lead to relevant QoE improvement in video delivery. Yet we
argue that such results understate the bene ts achievable via
caching, since they are obtained by applying representation-
blind policies, which consider homogeneous objects, all en-
coded at a single quality. In this work, we instead leverage
the possibility to serve different quality representations to
maximize user satisfaction, respecting capacity constraints.

Conversely, QoE maximization has been tackled in the
classic video literature [6], [12], [13] by proposing control
mechanisms that intelligently share bandwidth among different
users. Control algorithms in scenarios with multiple sources
(like caches and repositories) are proposed by [12], [13]. In
particular, the former shows that quality uctuations can be
observed because of caching, which hampers QoE. Both works
evaluate control algorithms under a given content allocation,
whereas we look for the allocation guaranteeing the best QoE.
Authors of [14] consider caching of videos in a heterogeneous
network, assuming that users can specify the minimum video
quality they are willing to accept and the network provider
goal is to minimize delay and cost while providing at least that
quality. Our viewpoint is different, since we directly measure
user satisfaction in terms of quality provided, rather than delay,
and our goal is not just to satisfy a minimum requirement but
to send videos at the maximum possible quality. In a similar

context, the work in [19] introduces a new layered video en-
coding, while our enhancement is obtained using the currently
most deployed technologies, like MPEG-DASH. Moreover, the
context of our model is a multi-AS environment, where the
capacity of multi-hop paths limits the rate of transmission
(thus, the served quality) whereas in wireless contexts the
limitation is due to the channel condition. The closest work
to ours is perhaps [10], which employs caching, transcoding
and routing functions to minimize the networking cost in a
video distribution context. A two-step iterative approach is
proposed, where, rst, storage and computing resources are
allocated optimally, then the routing is con gured in the second
phase. However, the model does not explicitly account for
the utility perceived by users downloading different video
representations, which is the focus of our paper.

The fact that a single video can be represented at differ-
ent qualities has an important impact on users’ experience,
which [17] and [20] study in a CDN and wireless scenario,
respectively, investigating what is the subset of video quality
levels to make available in order to maximize QoE. Both
make crude simpli cations of the network settings: the former
characterizes a delivery system only by the total bandwidth,
while the latter only considers one cache and one video.
Differently, we assume that the set of quality levels is already
established, and look at the problem from a network viewpoint.

III. METHODOLOGY

This section explains our methodologies, casting them to
an AS-level system model (Sec.III-A). We formulate a Mixed
Integer Linear Programming (MILP) model that maximizes the
users’ quality of experience, taking into accurate account the
different object representations available, as well as capacity
and cache constraints (Sec. III-B), discussing its limits and
possible extensions (Sec. III-C). We constrain our model to
give solutions with simpler structures guaranteeing, at the same
time, performance close to the optimum (Sec. III-D). The
solution of the MILP, that we report in a later section, then
guides the design of an effective distributed caching policy
that can be easily implemented in practice (Sec. III-E). Tab. I
summarizes the notation used throughout this paper.

A. System model

We illustrate the system model considered in our work,
with the help of an example scenario depicted in Fig. 1.
We consider a set V = {1, . . . , V } of Autonomous Systems
(ASes), whose interconnection is represented by a graph, com-
posed of nodes and capacitated arcs. Nodes in the graph (ASes)
can act as content producers (when they are directly connected
to some repositories), transit ASes that merely participate in
the content caching and diffusion, or consumer ASes that
additionally generate video requests. Repositories and caches
distributed in the ASes store objects (in particular, multimedia
content and videos), of which different representations (quality
levels) exist, belonging to a discrete set Q. Each of these
quality levels is associated to a rate rq necessary to support and
transmit the object at the given quality q, as well as to a storage
space sq that is necessary to cache it. AS users issue requests
for videos without specifying the quality representation, given
that the model will nd the optimal one.

324ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Table I. SUMMARY OF THE NOTATION USED IN THIS PAPER.

Parameters of the Models
A Set of arcs
V Set of Nodes (Autonomous Systems, ASs)
O Set of objects
Q Set of qualities

FS(i) Set of forward arcs (i, j) A for node i V
BS(i) Set of backward arcs (j, i) A for node i V
be Capacity of the arc e A
no
v Number of requests for object o, in AS v V

rq Rate required to retrieve an object at quality q Q
sq Storage space required to cache an object

at quality q Q
Uq Utility gained to serve one request for an object

at quality q
pov 0-1 Producers reachability matrix

pov = 1 if AS v has a producer for object o O
(it can serve whatever quality of object o)

Sv Max caching storage that can be installed at AS v
STOT Max caching storage that can be installed in the

network
bwv Max egress capacity for AS v V ,

bwv = max
e FS(v)

be;
o O

no
v ·maxq Q rq

Decision Variables of the Models
no,q
v Number of requests for object o at quality q satis ed

at AS v
xo,q
vs 0-1 Caching variable, if the source AS vs V caches

o at quality q
y
o,q,vd
e Flow on arc e A for object o O,

at quality q sent to the destination AS vd V
do,q,vd Rate requested at AS vd V , for object o at quality q
z
o,q,vd
vs Rate provided by the source AS vs V , for object o,

at quality q for the destination vd V , when vs
behaves as a producer (po,qvs = 1)

w
o,q,vd
vs Rate provided by the source AS vs V , for object o,

at quality q for the destination vd V , when vs
behaves as a cache (xo,q

vs = 1)

Each AS has upstream links through which data is retrieved
from other nodes and downstream links through which data is
sent to users. ASes are endowed with caching capabilities, and
can store objects as well as route object requests/data towards
neighbor routers, the repository or clients. To be as general
as possible, we do not specify the details of the technology
that provides caching capabilities (ICN, CDN, Web proxy,
etc.). Each object can be served at different qualities, which
may depend on the network characteristics (link capacities,
bottlenecks) and the clients position, and produce a utility that
is experienced by users. The aim of our work is to determine
(i) optimal allocations of objects to AS caches, (ii) optimal
quality level(s) to store for each cached object and to map
to each request, as well as (iii) optimal routing strategies,
that collectively contribute in maximizing the overall utility
perceived by network users.

B. Representation-Aware MILP

The Representation-Aware model that maximizes users’
utility can be formalized as follows:

max

o O q Q v V

no,q
v Uq (1)

Figure 1. Example scenario and the main variables of the MILP model.

subject to:

q Q

no,q
v = no

v o O, v V (2)

do,q,vd = no,q
vd

· rq o O, q Q, vd V (3)

do,q,vd = zo,q,vdvd
+ wo,q,vd

vd
+

e BS(vd)

yo,q,vd
e

e FS(vd)

yo,q,vd
e

o O, q Q, vd V (4)

zo,q,vdvs + wo,q,vd
vs +

e BS(vs)

yo,q,vd
e =

e FS(vs)

yo,q,vd
e

o O, q Q, vs V, vd V, vs = vd (5)

o O q Q vd V

yo,q,vd
e be e A

(6)

vd V

zo,q,vdvs po,qvs · bwvs o O, q Q, vs V

(7)

vd V

wo,q,vd
vs xo,q

vs · bwvs o O, q Q, vs V

(8)

o O q Q

xo,q
vs · sq Svs vs V

(9)

o O q Q vs V

xo,q
vs · sq STOT (10)

xo,q
v {0, 1} o O, q Q, v V

(11)

no,q
v Z

+ o O, q Q, v V
(12)

yo,q,vd
e R

+ o O, q Q, vd V, e A
(13)

do,q,vd R
+ o O, q Q, vd V

(14)

zo,q,vdvs , wo,q,vd
vs R

+ o O, q Q, vd V, vs V.
(15)

In particular, objective function (1) represents the overall
utility experienced by network users, which is maximized
by our model. The set of constraints (2) makes sure that
all the requests are served at one (or more) quality level(s).
In the problem instances we add a “special” quality level
q = 0, which represents unserved traf c demands: when
serving quality q = 0, no bandwidth is required (rq = 0);
moreover, no utility is generated, U0 = 0. Constraints (3)

325ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

set the value of the rate requested at AS a, for object o, at
quality q. Such demand is satis ed in (4). In particular, it can
be satis ed because: (i) the AS is a producer for that object
(i.e.: zo,q,vd

vd
= do,q,vd), (ii) the AS caches the object (i.e.:

wo,q,vd
vd

= do,q,vd), or (iii) the AS retrieves the object (i.e.: the
sum of ows on incoming links).

Flow balance constraints are imposed in (5) and we bound
the arc capacity in (6). Similarly, in (7) and (8), we limit the
maximum emitted ows the AS sends when it behaves as a
producer and a cache, respectively. The overall caching storage
that can be deployed by an AS is bounded in (9), and we extend
the same limit to the entire topology in (10). Finally, integrality
and non-negativity constraints are imposed in (11)-(15).

C. Discussion

The problem that our model aims to solve can be concep-
tually formulated as follows: at a generic time instant we have
facilities, i.e. link capacities and caches and a set of concurrent
user requests for video chunks. Our goal is to nd the facility
allocation that maximizes users utility. In other words, we
adopt a snapshot approach, as usually done in optimization
works, which is based on this instantaneous picture of the
system. Although this might be considered too simplistic,
almost all the vast and notable literature, e.g. [5], [8], [10],
[14], [17], [19], [20], which applies optimization models to
network analysis is based on it, even when not explicitly stated,
and results have been widely accepted by the community.
For these reasons, the plausibility of the snapshot approach is
unlikely to be questionable and, however, we build on it only to
show meaningful insights on the novel representation selection
problem, rather than to provide absolute measures. On the
other hand, we analyze realistic scenarios, where requests can
arrive at any moment and the system evolves from time to
time, in Sec. IV-E by means of simulation.

While related work usually aims to minimize delay to
improve user perception, we focus instead on maximizing the
provided quality for two reasons: i) we want our contribution to
be complementary to this related work, ii) the packet delay can
be absorbed by playout buffers and be invisible to users. The
only exception to this is when this delay is excessively high
or variable, causing high startup times or rebuffering episodes.
This happens in case of congestion. For these reasons, rather
than looking at the delay, we focus on caching content at the
right quality, such that it can be transmitted using the available
bandwidth on the path, thus avoiding congestion.

Another aspect worth underlining is that in today’s video
delivery, plugins in the user Web browser select the quality
representation to request, while we assume that ISPs choose
the best possible quality to serve its users. This is not unrealis-
tic since, in either case, users do not make any explicit choice
most of the time [9], so that the selection mechanism, be it
done in the Web browser of their personal device, or at the
proxy in the ISP premises, is completely transparent to them.

Additionally, we remark that, while most of the effort in
video streaming literature and industry is devoted to congestion
control algorithms, which are outside the scope of this work,
we orthogonally focus on caching and aim at nding the
performance bounds from a more abstract viewpoint. The

ndings we provide here should be considered what an optimal

Table II. MODEL VARIANTS IMPLEMENTING NATURAL AS POLICIES:
ADDITIONAL CONSTRAINTS FOR THE MILP MODEL (1)-(15)

Caching Policy Additional constraint in MILP model

NoCache xo,q
v = 0

CacheLQ xo,q
v = 0, q = LQ

CacheHQ xo,q
v = 0, q = HQ

AllQ x
o,qh
v = x

o,qk
v , qh, qk Q

Partitioned
o O

xo,q
vs

· sq Svs · sq

q Q
s
q

caching strategy can theoretically achieve, supposing a perfect
congestion control mechanism at the bottom. For this reason,
we can adopt the snapshot approach.

It is worth noticing that our model can be easily extended to
have a ne-grained representation, considering heterogeneity
of video type and user device. As for the former, it is
known that videos with different subjects (sport, movies, TV
shows), even if encoded at the same bit-rate and resolution,
are perceived in a different way [17]. As for the latter, a user
watching a video on a smartphone may be perfectly satis ed
with a resolution and a bit-rate lower than the one demanded
by a user using a ultra-HDTV 4K screen. However, this level
of detail is beyond the scope of this paper and such directions
can be incorporated at a later step in the model.

D. Modeling AS policies

Jointly deciding the optimal representations that each node
should cache and serve to users is a hard task to be performed
by a distributed online strategy, in which each node makes
local decisions without having knowledge of the status of the
rest of the network and the overall set of requests. Nonetheless,
our nal aim is to give a feasible solution that can be deployed
in a real network, providing a good performance at least close
to the optimal one.

We thus constrain our model to give solutions with a
simpler structure and we verify how far they are from the
optimum. The constrained variants of the model, detailed
hereafter, are easier to approximate in distributed, online
algorithms and, as our numerical results will show, some of
them exhibit indeed very good performance, close to optimality
in several situations. Thanks to the exibility of our MILP
model, modeling AS policies is as simple as adding a single
constraint for each strategy.

Such constraints, speci ed in Tab. II, include: a No Cache
strategy, which never caches videos; CacheLQ and CacheHQ,
which exclusively cache the lowest (highest) quality repre-
sentation available, indicated with quality level LQ (HQ),
respectively; AllQ, which caches all quality representations
for any cached object; nally, Partitioned stores the same
number of objects for each quality representation (while their
buffer occupancy depends on the quality of the corresponding
representation). Note that the constraints only concern caching,
and do not force to serve a request with a speci ed quality
representation. For example, a HQ video can still be served,
even when CacheLQ is employed; in such case, given that HQ
videos cannot be cached, they must be retrieved directly by a
repository and cross all links between this latter and the user.
In this work, we assume that all ASes in the coalition use the
same policy, chosen among the ones described above.

326ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

E. Distributed policy: Bandwidth-utility trade-off

In the MILP model, our only objective is to maximize the
utility. To do so, we let the model use the links at their full
capacity. In practice, ASes may tend to limit link utilization, in
order to avoid the occurrence of congestion, to ensure low end-
to-end latency and bound operational costs associated to traf c
transmitted toward transit providers. Therefore, a trade-off
arises between the utility provided to users and the bandwidth
used to guarantee it, that we investigate via simulation.

The bounds of this trade-off are represented by two sce-
narios: namely OnlyLQ (OnlyHQ) where objects have a single
representation equal to the lowest (highest) quality level. These
policies respectively correspond to a crude attempt to minimize
the bandwidth (vs maximize the utility) but, as a consequence,
incur in low user utility (vs high bandwidth usage).

Between these two extremes, we propose a Quality Im-
provement (QImpr) strategy that reactively incrementally im-
proves quality of stored replicas at each new request, and op-
portunely balances bandwidth and user utility. QImpr operates
as follows. Each request req(q) carries a value q specifying
the minimum required quality, which is always set to q = 1 at
the ingress of the network (either by the user browser or the
ISP proxy) meaning that any quality is accepted (i.e., receiving
a LQ representation is preferable to not receiving the video at
all). When a new request req(q) arrives at any cache, if a
copy at quality qcached q is found, the request is served with
that copy and, at the same time, the AS node issues another
request req(qcached +1) for the same object. Otherwise, req(q)
is normally forwarded.

Caches maintain objects in an ordered list. Whenever an
object o at quality q arrives, if a better quality qcached q of
that object is already cached, the incoming object is discarded.
Otherwise, the new object representation (i) is placed at the
head of the list, (ii) any lower quality representation of o
is evicted, (iii) if further space is needed to store o, this is
obtained by evicting cached objects starting from the least
recently used one, up toward the head, until a suf cient space
to accommodate o at quality q is available. Shortly, expected
bene ts of this policy are that unpopular objects will only be
cached at low quality, whereas popular objects will quickly
escalate quality levels. On the downsides, popular objects will
be requested at multiple quality levels, generating a slight
overhead in the quality improvement process.

Note that in reason of size heterogeneity between repre-
sentations at different levels, caching a new object causes the
eviction of a variable number of least-recently-used objects
suf cient to make room for the incoming higher quality
representation. This is in contrast with what usually assumed
in the ICN- avored caching literature that assumes all chunks
having equal size.

Table III. QUALITY LEVELS AND CORRESPONDING TRANSMISSION

RATES, CACHE OCCUPANCY AND PERCEIVED UTILITY (LINEAR/CONCAVE).

Quality Rate (Kbps) Utility u1(q) Utility u2(q)

1 300 0.2 0.67
2 700 0.4 0.80
3 1500 0.6 0.88
4 2500 0.8 0.95
5 3500 1 1

Figure 3. Single-AS scenario: Videos can be downloaded from the cache
(cache-stream) or from other ASes (up-stream).

IV. RESULTS

This section evaluates the impact of caching on the overall
video quality perceived by users, showing the validity of the
caching strategies proposed so far. To this aim, we provide
both numerical solutions of the MILP model via the CPLEX
12.5 solver for the centralized policies and the results of
discrete event simulation, implemented in ccnSim [2], for
the distributed solutions. After describing the scenario in
Sec. IV-A, we investigate performance and properties of the
proposed strategies in an incremental fashion.

Focusing on a single AS, we rst illustrate the structure
of the optimal solution in Sec. IV-B. We then thoroughly
analyze the bandwidth-storage tradeoff in light of variable
representations in Sec. IV-C. We next contrast the range of
centralized policies, as well as the distributed QImpr policy, in
Sec. IV-D. Moving to a multi-AS scenario, we nally con rm
MILP results to hold on a 10-node topology, and extend the
simulation results to cover topologies up to 100-nodes and
catalogs up to 108 objects in Sec. IV-E

A. Scenario

We consider ve quality levels [7] in the set Q as reported
in Tab. III. Each quality corresponds to a given resolution
and bitrate, which both increase for increasing quality levels.
We only report the bitrate as this is more pertinent to our
optimization goal: video bitrate correlates to both cache storage
space, as well as network bandwidth. Resolution, instead, does
not come into play directly in the system model, apart from
determining a different user perception, that is accounted for
in the utility function.

The utility function must be an increasing function of the
provided quality, since the higher the quality provided to a
user is, the better the utility. Moreover, it must be concave
to express the diminishing return in the experience of human
vision when providing improved quality [16]. The exact shape
of such an utility function is still subject to debate, and there
is no unanimously accepted function. However, gathering this
function is a hard task that requires intensive experimentation
with real users, which is far from the topic of this work.
To gather results that are not tied to a speci c function, we
consider two shapes at the broad end of the spectrum of
plausible utility functions, tabulated in Tab. III. Speci cally, we
de ne u1(q) as a model with linear return with respect to the
quality: the model likely underestimates contributions of low
quality videos, and does not exhibit diminishing returns [16],
so that it is biased toward high-quality content. We next de ne
u2(q) as a power function with a higher concavity: this model
does exhibit diminishing returns but sits at the other side of
the spectrum as it possibly overestimates contributions of low-
quality videos (notice indeed that u2(q = 1) > 3u1(q = 1)).
In the following, we will report the average system utility as

327ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

A
ve

ra
ge

 u
til

ity

Load factor

Optimum(u2)

Optimum(u1)

NoCache(u2)

NoCache(u1)

(a) Impact of the utility functions.

0.1 0.5 0.8 1 1.2 1.5 2
 0

 20

 40

 60

 80

 100

R
at

io
 o

f s
er

ve
d

re
qu

es
ts

 %

Load factor

NoCache

average
quality 4.5 1.8 1.2 1.0 0.8 0.7 0.5

served
not
q 1
q 2
q 3
q 4
q 5

0.1 0.5 0.8 1 1.2 1.5 2
 0

 20

 40

 60

 80

 100

R
at

io
 o

f s
er

ve
d

re
qu

es
ts

 %

Load factor

Optimum

5.0 4.2 3.8 3.6 3.6 3.4 3.2

(b) Percentage of requests served at different quality levels, with and without cache.

Figure 2. Single-AS scenario: (a) Bene ts of optimal caching and impact of utility function; (b) breakdown of the utility across quality levels for varying load.

the average per-request utility, i.e. the total utility as in (1)
divided by the total number of requests.

Unless otherwise stated, we consider the single AS scenario
depicted in Fig. 3: at a logical level, in the cache-stream we
include the ows of videos downloaded from the cache, while
up-stream includes the ows retrieved through other ASes.
The cache represents the aggregate of several cache nodes
within the AS, and similarly the up-stream resource represents
a single logical link, aggregating all physical links where the
request can be satis ed (i.e., all the links except the one where
the request is coming from).

Also, unless otherwise stated, the catalog comprises O =
104 objects whose popularity is distributed as a Zipf with
exponent = 1. The cache space at each AS is suf cient to
store 1/100 of the catalog objects at the highest quality, HQ.
Observe that the size of each object depends on its quality, i.e.
an object at quality q is sHQ/sq times smaller than an object
at the highest quality, with sHQ/sLQ exceeding one order of
magnitude as can be seen in Tab. III.

All links have the same capacity b. We express the number
of user requests as a load factor L, i.e. the factor by which we
should multiply b in order to transmit all the requested objects
at the lowest quality, LQ. Otherwise stated, if the load factor
is L = 1, even if no cache is deployed in the network, we
can satisfy all requests at quality LQ, by fully utilizing the
network capacity. Notice, however, that due to cache space, it
makes sense to consider a normalized load larger than L > 1,
since part of the endogenous requests can be served from the
cache without consuming upstream bandwidth.

B. Structure of the optimal solution

We rst start assessing the dependency of our results on the
particular perceptual model in the single cache scenario, based
on the results from the MILP model. We contrast two extremes,
namely the optimal solution against the case in which the
system is not equipped with caches (so that this latter can
sustain a load at most equal to L = 1). The average utility is
shown in Fig. 2-(a) for both linear u1(q) and concave models
u2(q): while quantitative results are of course affected by the
peculiar function, qualitative results are instead independent of
the utility function considered. In particular, the improvement
of user experience provided by optimal caching is notable at
high load, where caches at the AS absorb a large fraction of
the requests, alleviating the impact of the upstream bandwidth

limitation. Since the qualitative results between u1(q) and
u2(q) remain unchanged, and to avoid cluttering the pictures,
we only consider the concave pro le of u2(q) in what follows.

A breakdown of the quality levels served to users is
reported in Fig. 2-(b), which helps to better understand the
structure of the optimal solution – thus, ultimately, where the
utility gain comes from. Without any cache, all the delivered
videos must cross the upstream link, and the bandwidth is
hardly available to transmit them at high quality, unless the
input load is particularly low (L = 1/10). At high load,
the bandwidth is not suf cient to serve all the requests, not
even at the lowest quality, and a growing fraction remains
unsatis ed. The situation is drastically improved by optimal
caching, which stores a signi cant fraction of videos, and
especially the most popular ones, at high quality. Since the
requests for these videos account for a large part of the overall
requests, the upstream link is relieved of a considerable amount
of traf c. As a rst consequence, we are able to satisfy all
the requests coming from users. Moreover, the most popular
objects are served at high quality, which as net effect increases
the average utility perceived by users.

C. Contributions of cache and upstream link

To better understand the relative contribution of storage vs.
bandwidth, we decompose the video ows arriving at users in
cache-stream and up-stream, where the former is the stream
of data retrieved from the cache, whereas the latter is the

ow coming from the upstream links, as illustrated in Fig. 3.
Based on the results from the MILP model, we represent the
breakdown of the utility provided by content retrieved from
cache vs. content retrieved from upstream in Fig. 4, where
the sizes of the circles represent the relative contribution of
the two utility values. Circles additionally report the quality
breakdown of the two contributions.

From Fig. 4 we rst observe that, in the scenarios under
consideration, the cache is responsible of the most part of
the utility (storage circles are bigger than upstream ones), as
it stores the most popular objects (thus intercepting a large
fraction of traf c) at a furthermore high quality.

Second, an interesting specialization arises between the
cache-stream and up-stream: the highest quality levels (darker
colors) are served by the cache and only low representations
cross the upstream link. Indeed, it would not be bene cial to
serve high quality objects through the upstream link, since the

328ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

1/1000

1/100

1/10

0.5 1 2

C
ac

he
 to

 c
at

al
og

 ra
tio

Load factor

up
str

ea
m

ca
ch

e

up
str

ea
m

ca
ch

e

up
str

ea
m

ca
ch

e

Figure 4. Single-AS scenario: Contributions of cache and upstream links.
Circle size re ects relative cache vs upstream contribution, and the breakdown
reports the qualities of both contributions.

high bandwidth cost should be paid repeatedly, at each request.
On the contrary, placing them in the cache permits to pay only
once the cost in terms of memory, and to still repeatedly gather
utility at each request.

Third, the load has an evident impact on the breakdown. At
high load, both streams must carry lower quality representa-
tions. Indeed, in this case, the average quality of the upstream
must be low, to t the link capacity. At the same time, we
need to reduce the number of transmissions on the upstream
by intercepting more requests with cached copies. To do so,
we need to cache a larger number of different videos and, since
the cache space is limited, we need to store smaller copies of
them, i.e. lower quality representations. This explains why, at
high load, the quality of the cache-stream decreases.

Fourth, we observe the impact of cache size on the break-
down: as expected, when the cache size increases, its relative
contribution to the overall utility increases as well. Yet, more
interestingly, also the breakdown of the stored video quality
changes as well: in particular, the larger the cache, the higher
the quality, which is intuitive.

Finally, observe that the cache size has a side effect on
the breakdown of the upstream video quality: indeed, the
average quality increases for increasing cache size, which can
be explained with the fact that the larger the cache, the larger
the fraction of absorbed traf c. As a consequence, at any given
load the upstream link has to serve less requests and can afford
to do it at higher quality.

D. Performance bounds of online algorithms

We next compare the performance of the ve strategies
discussed in Sec. III-D (viz., NoCache, CacheLQ, CacheHQ,
AllQ, Partitioned), with the solution that maximizes the quality
of experience perceived by network users (Optimum). Utility
is reported in Fig. 5, whereas the structure of the solution is
reported in Fig. 6, which depicts the quality level of each stored
object under all strategies – including the distributed QImpr
policy discussed in Sec. III-E.

Note that, when the network caches only low quality
objects (CacheLQ), their small size permits to store a large

0.33

0.67

0.80

0.88

0.95
1

 0 0.5 1 1.5 2 2.5

N
or

m
al

iz
ed

 u
til

ity

Load factor

q=1

q=2

q=3

q=4
q=5

Optimum
Partitioned
CacheHQ

AllQ

CacheLQ

NoCache

Figure 5. Single-AS scenario: comparison of MILP variants.

q

MILP variants

��

Optimum

Partitioned

CacheHQ

AllQ
CacheLQ

1 50 100 150 1000

E[
q]

objects

Simulation

popularity

QImpr ��

Figure 6. Single-AS scenario: Quality levels cached by centralized strategies
(MILP variants) and distributed policy (simulation).

number of them, intercepting a large fraction of the requests.
This already provides robustness with respect to load, guar-
anteeing at least a minimum quality (the CacheLQ curve
is above the q = 1 reference quality), that is not possible
without cache. However, CacheLQ does not exhibit cache
ef ciency because higher quality objects, necessary to increase
the average utility, can only be retrieved through the upstream
link. Rigidly storing all quality representations (AllQ) further
improves the performance but is still far from the optimum.
Indeed, for each object we must waste cache space for all
the representations, although only a subset of them will be
actually served to users. This limits the number of different
objects that can be cached. CacheHQ performance approaches
to the Optimum, suggesting that storing few (due to their large
size) popular objects at HQ already provides a notable payoff
(due to the product of their popularity times their utility at
HQ).

Yet, Partitioned performance is even closer to the Opti-
mum: the root cause is that the quality representation selection
is similar to the optimal one, as Fig. 6 shows. In particular,
the optimal behavior in terms of overall utility is to store a
number of objects at each quality, preferring to store more
popular objects at higher quality, and Partitioned implements
this behavior. This increases the overall cardinality of cached
content and assigns to each object the “right” quality, i.e.
the one such that the cost in terms of occupied memory is

329ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

NoCache

CacheLQ

AllQ
CacheHQ

Partitioned

Optimum

 0

 20

 40

 60

 80

 100

ratio of served requests %

served

average
quality 1.50 2.01 2.85 3.34 3.34 3.37

not q 1 q 2 q 3 q 4 q 5

(a) MILP variants (10-nodes network, 103 catalog, load L = 2)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

0 10 20 30

A
ve

ra
ge

 u
til

ity

Average bandwidth (Gbps)

q=1

q=2

q=3

q=4

q=5

OnlyHQ

QImpr

OnlyLQ
|V|=11 , |O|=106

|V|=11 , |O|=108

|V|=100, |O|=106

improving region

increasing
Quality

reducing
overhead

(b) Simulation (100-nodes network, 108 catalog)

(c) 100-nodes AS
coalition (Barabasi-
Albert model)

Figure 7. Multi-AS scenarios: (a) optimal solution, (b) simulation results and (c) example large-scale topology.

compensated by the pay-off in terms of utility provided to the
set of requests for it. The difference between Partitioned and
Optimum is in the number of objects stored at each quality.
While Partitioned constrains this number to be the same for
each quality, Optimum does not incur this constraint and
prefers, in this scenario, roughly two quality levels. So doing,
the Optimum strategy caches more objects than CacheHQ (but
less than Partitioned), a signi cant fraction of which is at lower
quality than CacheHQ (but higher than Partitioned).

From the above observations, we infer that the quality at
which each object must be cached should increase with its
popularity. This is the observation we leveraged in the design
of QImpr, which is shown in the last raw of Fig. 6. Notice
that while solving the optimization problem returns exactly
one object quality, in the simulation case the representation of
an object stored in the cache varies over time, so that we report
the average quality for an object sampled at 100 random times
during the simulation. It can be seen that QImpr tends to store
only the popular objects at high quality, thus approaching a
solution that is structurally similar to Partitioned or Optimal
strategies – which con rms the mechanism of improving the
object quality at each new hit to pay off. Note that a fairness
concern may arise, since popular content is served better
than the rest. In any case, bandwidth is limited and it is
impossible to serve all the content at high quality. Therefore,
a network provider has two choices: i) being fair and lowering
the quality of all the served videos or ii) differentiating based
on popularity. While the former case is admissible, we have
shown that the latter permits utility maximization, which is
the target of this paper. On the other hand, a network provider
may wish to provide always a quality above a certain threshold
higher than LQ. We can easily model this by removing from
the set Q of the admissible levels the lowest ones.

E. Realistic and large scale topologies

We now consider a multi-AS environment, where each AS
operates a cache system with a storage space suf cient to cache
1/100 of the catalog at the highest quality. We start our analysis
solving the MILP model for a coalition of 10 ASes and a 103

objects catalog in Fig. 7-(a), and extend the analysis up to
100 ASes and 108 objects in Fig. 7-(b) The multi-AS graphs
are generated in accordance to the Barabasi-Albert model [4],
which is considered to approximate the AS interconnection in

Internet [18]. A compact illustration of the interconnection is
in Fig. 7-(c) for a large scale topology of 100 nodes.

We only brie y comment MILP results, reported in Fig. 7-
(a), to assess that they are coherent with the observations
on the single-AS case. Speci cally, we notice that while the
average quality is very similar among CacheHQ, Partitioned
and Optimum, however the fraction of content that is not
served is largely different. In the case of CacheHQ, about
5% of the videos are not served, which is 2.3 times larger
than the fraction of non-served videos in the Optimum case.
In contrast, the Partitioned strategy limits to +30% the amount
of additional videos not served with respect to Optimum.

While this fact does not appear in the perceptual model
we used (where a non served content has a utility 0 and does
not generate any penalty) nevertheless it can be argued that the
impact of service denial can be much worse. Indeed, from loss
aversion models commonly used in prospect theory [11], not
receiving a video at expected quality q generates a negative
utility 2u(q), which could be accounted for in the model.
Yet, repeatedly receiving denial of requests could lead users
to change ISPs on a long timescale, which can have disastrous
consequences on the ISP business, for which limiting the
fraction of non-served content is primordial.

A second important observation is that gains are struc-
turally equivalent to what early shown in the single-AS case,
and on which we based the design of our proposed distributed
strategy (QImpr). Comforted by this observation, we relax
the capacity constraint and carry out simulation of QImpr on
large scale instances. Otherwise stated, while the Optimum
operates at full capacity, we do not expect ASes to run their
network at this capacity regime. Rather, ISPs will be interested
in controlling their average (or peak) bandwidth on external
links, which we assess by simulating scenarios with dynamic
arrivals. Aiming at assessing the utility vs. bandwidth trade-
off, we use two additional reference points where only low-
quality (OnlyLQ), or high-quality objects exist in the system
(OnlyHQ), and caches employ standard Least Recently Used
(LRU) replacement. Requests are generated according to a
Poisson process and results are collected in steady state over 10
runs for each scenario. The bandwidth utilization is computed
considering that, every time an object at quality q crosses a

330ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

link, it occupies a bandwidth rq . The bandwidth in Fig. 7-(b)
is averaged over time and over all the links of the network.

Note that the points in Fig. 7-(b) are well clustered,
meaning that the performance of OnlyLQ, OnlyHQ and QImpr
is coherent and our ndings do not vary with the scale of
the problem. Bounds on the utility vs. bandwidth trade-off are
given by OnlyLQ and OnlyHQ: the former guarantees the mini-
mum bandwidth utilization by only serving and caching objects
at the lowest quality, while the latter provides maximum utility
at the expense of high bandwidth utilization. QImpr nicely ts
halfway these extremes, realizing a smooth tradeoff between
bandwidth and quality.

The picture nally shades an area where the performance of
interesting distributed algorithms lays: i.e., those that achieve
a more convenient bandwidth-quality tradeoff. QImpr design
can be ameliorated to move performance in the upper-left part
of Fig. 7-(b) by (i) reducing the overhead (i.e., move left) and
(ii) improving the utility (i.e., move up). As far as (i) overhead
is concerned, recall that whenever a request hits a cached
copy at quality q, the cache immediately triggers a request to
improve the content quality to q + 1. These cache-originated
requests constitute an overhead, which could be limited by
probabilistically reducing the rate at which they are issued –
much as in probabilistic meta-caching. As far as (ii) utility is
concerned, recall that the Optimal solution implicitly quantized
the quality levels to a subset of all the available ones, which
should be easy to implement.

Notice however that overhead reduction and utility max-
imization are con icting goals, since e.g., slowing down the
rate at which quality of content is improved from q to q+1 by a
given factor also implies that the amount of requests served at
quality q instead of q+1 grows by the same factor. While this
observation affects only the transient but vanishes in the steady
state, it can however be argued that it has practical relevance
in real scenarios where popularity is time-varying and there is
no steady state. Additionally, the choice of the best subset may
depend on the utility, cache/upstream ratio, topology, request
load, popularity skew, etc. which requires future work.

V. CONCLUSIONS

To the best of our knowledge, this is the rst paper that
tackles the problem of optimal content distribution in cache-
enabled networks, by explicitly taking into account multiple
representations of the same object, each having a different
utility perceived by users. This is a crucial aspect in video
delivery, in which each video can be represented at different
quality levels. The need for caching techniques that, apart from
the general ones, are optimized for video traf c is enforced
by the prevalence of this traf c on the other types and its
inherent cacheability. We nd the optimal caching solution
that maximizes user utility and we contrast it against several
candidate strategies along the user experience angle. We study
the fundamental properties of the solution to infer important
guidelines to optimize object-level caching in video delivery.
We leverage these guidelines in designing a distributed solu-
tion that we benchmark via event-driven simulation. Our key

ndings suggest that (i) the quality at which each object should
be cached is inversely related to its popularity, (ii) a balance
between user perceived utility and bandwidth usage is possible

by means of intelligent caching distributed policy of which
QImpr, the one proposed in this paper, is an example.

However, QImpr does not allow ISPs to explicitly control
the balance, so to reach a target network utilization. In our
future work, we aim at (i) proposing a distributed solution
that approaches a target optimal bandwidth-quality tradeoff,
as well as (ii) performing a thorough sensitivity analysis on
the topology of the coalition, investigating how cache content
differentiates with respect to the node position in the network,
due to the interaction and the ltering effect of neighbors.

ACKNOWLEDGMENT

This work was funded by Labex DigiCosme (project ANR-
11-LABEX-0045-DIGICOSME) operated by ANR as part of
the program Idex Paris-Saclay (ANR-11-IDEX-0003-02) and
partly by ANR Green-Dyspan and carried out at LINCS
http://www.lincs.fr.

REFERENCES

[1] Sharp Website. http://www.sharpusa.com/ces-2015-recap.aspx.

[2] ccnSim. http://www.enst.fr/ drossi/ccnSim.

[3] M. Badov, A. Seetharam, and J. Kurose. Congestion-Aware Caching
and Search in Information-Centric Networks. In ACM SIGCOMM ICN,
2014.

[4] A.-L. Barabási and R. Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, October 1999.

[5] S. Borst, V. Gupta, and A. Walid. Distributed Caching Algorithms for
Content Distribution Networks. In IEEE INFOCOM, 2010.

[6] G. Cofano, L. De Cicco, and S. Mascolo. A Control Architecture
for Massive Adaptive Video Streaming Delivery. In ACM VideoNext
Workshop, 2014.

[7] L. De Cicco, V. Caldaralo, V. Palmisano, and S. Mascolo. ELASTIC:
a Client-side Controller for Dynamic Adaptive Streaming over HTTP
(DASH). In IEEE Packet Video Workshop (PV), 2013.

[8] M. Dehghan et al. On the Complexity of Optimal Routing and Content
Caching in Heterogeneous Networks. In IEEE INFOCOM, 2015.

[9] A. Finamore. YouTube Everywhere: Impact of Device and Infrastructure
Synergies on User Experience. In ACM SIGCOMM IMC, 2011.

[10] Y. Jin, Y. Wen, and C. Westphal. Towards Joint Resource Allocation
and Routing to Optimize Video Distribution over Future Internet. IFIP
Networking, 2015.

[11] D. Kahneman. Thinking, fast and slow. Macmillan, 2011.

[12] D. H. Lee, C. Dovrolis, and A. C. Begen. Caching in HTTP Adaptive
Streaming: Friend or Foe? In ACM NOSSDAV Workshop, 2014.

[13] C. Liu et al. Rate adaptation for dynamic adaptive streaming over
HTTP in content distribution network. Elsevier Signal Processing:
Image Communication, 27(4):288–311, Apr. 2012.

[14] K. Poularakis, G. Iosi dis, A. Argyriou, and L. Tassiulas. Video
Delivery over Heterogeneous Cellular Networks: Optimizing Cost and
Performance. IEEE INFOCOM 2014, 2014.

[15] Y. Sun, S. K. Fayaz, Y. Guo, V. Sekar, Y. Jin, M. A. Kaafar, and
S. Uhlig. Trace-Driven Analysis of ICN Caching Algorithms on Video-
on-Demand Workloads. In CoNEXT, 2014.

[16] H. Susanto, B. Kim, and B. Liu. User Experience Driven Multi-Layered
Video Based Applications. In IEEE ICCCN, 2015.

[17] L. Toni et al. Optimal Set of Video Representations in Adaptive
Streaming. In ACM MMSys, 2014.

[18] Y. Wang, Z. Li, G. Tyson, S. Uhlig, and G. Xie. Optimal Cache
Allocation for Content-Centric Networking. In IEEE ICNP, 2013.

[19] S. Yun, D. Kim, X. Lu, and L. Qiu. Optimized Layered Integrated
Video Encoding. In IEEE INFOCOM, 2015.

[20] W. Zhang, Y. Wen, Z. Chen, and A. Khisti. QoE-Driven Cache
Management for HTTP Adaptive Bit Rate Streaming Over Wireless
Networks. IEEE Trans. Multimedia, 15(6):1431–1445, Oct. 2013.

331ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

MC3: A Cloud Caching Strategy for Next
Generation Virtual Content Distribution Networks

Pietro Marchetta⇤, Jaime Llorca†, Antonia M. Tulino⇤†, Antonio Pescapé⇤‡
⇤Universitá di Napoli Federico II and ‡NM2 Srl, Italy. Email: {pietro.marchetta, pescape}@unina.it

†Bell Labs, Nokia, NJ, USA. Email: {jaime.llorca, a.tulino}@nokia.com

Abstract—With the advent of network functions virtualization
and software defined networking, cloud content distribution
network (CDN) providers can auto-scale their virtual CDN
appliances in order to meet changing demands for commercial
and user generated content services in a cost and energy efficient
manner. However, existing caching policies, constrained to work
with dedicated CDN resources and designed to maximize local
cache hit rates, do not exploit the elasticity of virtualized
cloud environments to adaptively guarantee service requirements
with minimum cost. In this paper, we design and evaluate
MC3 (MinCostCloudCache), an adaptive distributed caching
strategy whose fundamental goal is to guarantee content service
requirements while minimizing the use and associated cost of the
shared physical infrastructure. MC3 estimates the global benefit
of caching an object at a network node using only locally available
information. The caching benefit is flexible and adaptive to the
particular content service requirements, and is aware of the
behavior of neighbor network caches, creating effective cache
cooperation using only local information. Through simulation,
we show how MC3 not only reduces the experienced average
delay with respect to existing caching policies, but it also uses
significantly less storage and transport resources, leading to
increased revenues and reduced operational costs.

I. INTRODUCTION

Content distribution networks (CDNs) are highly distributed
systems consisting of globally dispersed cache servers that
allow hosting and delivering content items close to the end
users, thus providing improved user experience and reduced
transport costs. Traditional CDNs are composed of dedicated
hardware appliances that the operator dimensions according
to estimated peak demands. For a given dedicated CDN
deployment, the extent to which the benefits of network
caching can be obtained depends crucially on the efficacy of
the implemented content caching strategy. Given that today’s
CDNs are composed of a relatively small number of fixed-size
hierarchical caches, content caching strategies are typically
designed to maximize local hit rates, or the fraction of requests
served by a given cache, which has been shown to be a good
proxy for average delay in hierarchical CDNs [1]. However,
the increasing dynamics and heterogeneity of content types,
popularity, and service requirements, challenge the efficiency
of traditional CDNs, in which dedicated storage and delivery
appliances need to be pre-provisioned based on estimated
peak demands, resulting in excessive over-provisioning and/or
degraded quality of service (QoS).

With current advances in network virtualization and pro-
grammability, network operators have the opportunity to de-
sign their content distribution solutions in the form of elastic
virtual networks over a common cloud network infrastructure
[2]-[4]. In this way, operators can adaptively optimize the
combined use of storage and transport resources to meet
application requirements with minimum cost. In this attractive
scenario, existing caching solutions, designed to work with
fixed-size dedicated CDN appliances, cannot exploit the flexi-
bility of evolved virtualized cloud environments nor the prop-
erties of the different content services to adaptively guarantee
service requirements with minimum use of the shared physical
infrastructure. We therefore argue for a shift in the design of
content caching strategies for future cloud CDNs, driven by
the main goal of minimizing the overall network’s operational
cost while guaranteeing QoS requirements.

A. Contributions

In this paper, we look at content caching in the context
of next generation virtual CDNs that can host a variety of
content services and elastically scale their network resources.
Our approach – instead of just maximizing local hit rates for
typically small hierarchical fixed-size CDNs – aims at guar-
anteeing content services’ QoS requirements with minimum
overall use of the shared cloud network’s infrastructure.

The contributions of this work are fourthfold. First, we
analytically characterize the optimal cloud caching policy
for a given first-order stationary input process (Sec. II and
Sec. III). Second, based on the structure of the optimal
stationary solution, we propose MC3 (Minimum Cost Cloud
Cache), a fully distributed cloud caching algorithm targeting
optimal caching decisions based on local estimates of the
global cost benefit (Sec. IV). MC3 provides effective cache
cooperation with negligible overhead via the adaptive learning
of transport costs to access neighboring replicas and local
content popularity. Specifically, with MC3, network nodes: i)
infer neighbors’ actions from information in object arrivals;
ii) infer local content popularity from information in request
arrivals; and iii) compute the benefit of caching an object at a
particular location based on the overall cost reduction it can
provide. Third, we implement the proposed caching strategy in
a custom-built discrete event simulator (Sec. V-A). Fourth, we
perform a comparison with a number of well known caching
strategies (LRU-LCE, Perfect-LFU, an Oracle), demonstrating
the significant performance and efficiency gains that MC3 canISBN 978-3-901882-83-8 c� 2016 IFIP

332ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

provide in virtual CDN environments (Sec. V-B). We show
the superiority of MC3 in terms of average delivery delay and
overall operational cost with varying transport-to-storage cost
ratio, cache size, and content popularity settings.

B. Related Work

A substantial amount of research has been devoted to the
content distribution problem (CDP), where the goal, in its
most general setting, is to find the placement and routing
of content objects in an arbitrary capacitated network that
minimizes the combined transport and storage cost while
satisfying possible delivery deadline constraints. The authors
in [5] provide a comprehensive complexity classification of
the CDP. Interestingly, while NP-Hard in general, the CDP
is shown to be polynomial-time solvable in tree networks
and in arbitrary networks that allow coding between objects
of the same requested content. The work in [6] addresses
the CDP in realistic AS-level topologies showing how the
footprint of dedicated CDNs must expand to accommodate
increasingly tighter user requirements. A number of works
have addressed the design of approximated solutions for the
CDP, mostly relying on LP-relaxation techniques (e.g., [7], [8],
[9]) or greedy algorithms (e.g., [10], [11], [12]) that exploit
special assumptions such as uniform object sizes, network
symmetry, and hierarchical topologies. The solutions to the
CDP are centralized and proactive, in the sense that content
placement decisions are made based on global estimates of
the users’ average demands (e.g., content popularity) over a
given time period, typically in the range of hours or even days.
Network caches are then updated to best satisfy future requests
over the given time period. The performance of centralized
proactive solutions heavily depends on the system dynamics
and its corresponding prediction accuracy. In fact, with the
increasing volatility and unpredictability of next generation
content services, errors in the popularity estimates and the
overhead associated to frequent cache updates can significantly
degrade the performance of centralized proactive solutions.

In highly dynamic and unpredictable scenarios, content
distribution solutions must resort to distributed reactive al-
gorithms that adapt to fast changes in content popularity
with minimal overhead. An extensive line of work has also
been devoted to the distributed dynamic content replacement
problem, where the objective is to adaptively refresh the
network caches as content objects travel through the network
(e.g., [13], [14], [15]). The most common cache replacement
algorithms are LRU (Least Recently Used) and LFU (Least
Frequently Used), by which the least frequently/recently used
content object is evicted upon arrival of a new object to
a network cache. Due to its simplicity, LRU is the most
widely used caching algorithm in today’s CDNs and the most
analyzed in the context of emerging paradigms such as ICN
(see [16], [17] and references therein). These studies show
the benefits of LRU-based caching to reduce dissemination
latency and network load, and the little improvements provided
by alternative caching policies proposed to date. However,
as pointed out earlier, existing caching policies have been

Fig. 1: The routing tree for object k, Tk ⇢ G, rooted at the
source or repository of k, sk, for a given time period. �k(u)
denotes node u’s upstream neighbor in Tk.

designed and compared against hit-rate performance metrics,
ignoring the operational cost associated to the use of storage
and transport resources. Hence, motivated by the increasing
adaptability and programmability associated to the configura-
tion of next generation cloud networks, and the dynamics and
heterogeneity of next generation content services, we argue
that centralized proactive content distribution solutions must
be complemented with distributed reactive caching algorithms
that are designed to achieve global system objectives, such as
overall cloud network operational efficiency, via simple local
interactions that incur minimal overhead.

II. NETWORK MODEL

In a distributed cloud network architecture, a virtual CDN
consists of a set of virtual caches (vCache), implemented
as virtual network functions (VNFs) in an NFV framework.
The vCache nodes are interconnected by virtual links (vLink),
representing the logical connectivity. We model a virtual CDN
as a directed graph G = (V, E) with V vCaches and E vLinks.
We assume content items are partitioned into equal-size objects
k 2 K and denote by �uk the exogenous average request rate
for object k 2 K at node u 2 V during a specified time period.
We denote by estu the per-object storage cost of vCache u 2 V
and etruv the per-object transport cost of vLink (u, v) 2 E .

Motivated by the different time-scales at which routing and
caching operate, here we do not address routing optimization
and assume that the goal is to design a caching strategy for a
given routing policy. We denote by Tk = (V, Ek) the routing
tree rooted at the source or repository of k, sk, as shown in
Figure 1. It will also be useful to define Tk(u) as the set of
nodes in the subtree of Tk rooted at u, Dk(u) as the nodes
downstream of u, Uk(u) as the nodes upstream of u, ⇥j

k(u) as
the j-th hop downstream neighbors of u, �j

k(u) as the j-th hop
upstream neighbor of u (since most of the time we will refer
to the one hop neighbors of u, we denote ⇥k(u) ⌘ ⇥1

k(u) and
�k(u) ⌘ �1

k(u)), Hk as the height of Tk, Huk as the height of
Tk(u), and �uk as the depth of u in Tk, as shown in Fig. 1.
We refer to euk as the unit transport cost of link (�k(u), u).

333ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

III. OPTIMAL STATIONARY POLICY

In this section, we analytically characterize the optimal
cloud caching policy under the setting of stationary request
process and sufficiently large storage capacity. Note that the
“sufficiently large storage capacity” is a reasonable assumption
in a cloud CDN, for which virtual storage may be largely
available, but whose usage comes at a cost. While these
assumptions may not always hold in practice, the structure
of the resulting optimal policy will show extremely useful in
driving the design of the proposed general caching strategy
described in Sec. IV.

Under the assumption of a first-order stationary request
process, we focus on designing a stationary caching policy
that minimizes the average CDN cost. Letting x = {xuk}
denote a stationary caching configuration, with xuk = 1 if
object k is cached at node u, and xuk = 0 otherwise, we seek
the caching configuration x

⇤ that satisfies

x

⇤ = arg min
x

C(x), (1)

where

C(x) =
X

u2V

X

k2K

�

estu xuk + etruk�uk (1� xuk)
�

, (2)

etruk =
huk�1
X

j=0

etr
�j
k(u)k

, (�0
k(u) ⌘ u), (3)

huk =
�uk
X

j=1

j x�j
k(u)k

j�1
Y

p=0

⇣

1� x�p
k(u)k

⌘

. (4)

The average CDN cost, C(x), in (2), is computed as the sum
over all nodes and objects of two mutually exclusive terms.
The first term is the storage cost if k is cached at u, and the
second term is the transport cost incurred in fetching k from
the closest upstream copy at a rate �uk, if k is not cached at
u. The variable etruk denotes the cost of the path from u to the
closest upstream node caching k, and huk is the number of
hops from u to the closest upstream node caching k.

Note that without capacity constraints, i.e., under the as-
sumption of ”sufficiently large storage capacity”, (1) can be
solved independently for each object k 2 K. Let Cuk denote
the total cost for the delivery of object k over the subtree
Tk(u) when u stores a copy of k:

Cuk = estu + C(0)
uk , (5)

where, for all u 2 V and h = {0, . . . , Hk},

C(h)
uk =

X

v2⇥k(u)

Cvkxvk+
⇣

etrvk�
(h+1)
vk +C(h+1)

vk

⌘

(1� xvk) (6)

is the total cost of the subtree Tk(u) when the closest upstream
node caching k is h hops from u, and

�(h)
vk = �vk +

X

w2⇥k(v)

�(h+1)
wk (1� xwk) (7)

is the aggregate rate of requests for k at node v when the
closest upstream node caching k is h hops from v.

TABLE I: Summary of the main variables used for the analysis
of OSC, in addition to the routing tree variables in Fig. 1.

{xuk} stationary cache configuration, with xuk = 1 if object k is
cached at node u, and xuk = 0 otherwise

e

st
u per-object storage cost of node u

e

tr
uv per-object transport cost of link (u, v)
�uk request rate of object k at node u

huk number of hops from node u to the closest upstream node
caching object k

e

tr
uk transport cost of transferring object k to node u form the

closest upstream node caching object k
�

(h)
uk rate of requests for object k at node u when the closest

upstream node caching object k is h hops from node u

Cuk total cost for the delivery of object k over subtree Tk(u)
when node u is caching object k

C(h)
uk total cost for the delivery of object k over subtree Tk(u)

when the closest upstream node caching object k is h hops
from node u

In the following, we present OSC (Optimal Stationary
Cache) - see Tab. I for the details on the adopted notation - a
dynamic programming algorithm that computes the minimum
cost for the delivery of object k over Tk, Ck, as

Ck = Cuk

�

�

�

u=sk
, (8)

with

Cuk = estu + C(0)
uk , (9)

where, for all u 2 V and h = {0, . . . , Hk},

C(h)
uk =

X

v2⇥k(u)

min
n

Cvk , etrvkµ
(h+1)
vk + C(h+1)

vk

o

, (10)

µ(h)
vk = �vk +

X

w2⇥k(v)

µ(h+1)
wk

⇣

1� X(h+1)
wk

⌘

, (11)

and

X(h)
wk =

8

<

:

1 if etr,hwk µ(h)
wk + C(h)

wk � Cwk

0 otherwise
, (12)

with etr,hwk defined as

etr,huk =
h�1
X

j=0

etr
�j
k(u)k

. (13)

Note that (5)–(7) are the equivalent of (9)–(11) when
evaluated at the solution of OSC given by (12).

The optimality of OSC is based on the following theorem.
Theorem 1: Ck, as defined in (8), is the minimum cost for

the delivery of object k over Tk with average request rates
�uk, 8u 2 V .

Proof. In order to prove Theorem 1, we first state and prove
the following Lemma.

Lemma 1: For all u 2 V , C(h)
uk is the minimum cost over

Tk(u) for the delivery of object k, given that the closest
upstream node caching object k is h hops away from u, i.e.,
for all h = {0, . . . , Hk}

C(h)
uk = min

x

n

C(h)
uk

o

. (14)

334ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Proof. To prove Lemma 1, we proceed by induction on the
tree height. Let H(j) be the set of nodes at height j in Tk.

First, we prove that the claim of Lemma 1 holds at the
bottom of the tree. In fact, for all subtrees rooted at u 2 H(1),

min
x

n

C(h)
uk

o

=

= estu +min
x

X

v2⇥k(u)

n

Cvkxvk+
⇣

etrvk�
(h+1)
vk +C(h+1)

vk

⌘

(1� xvk)
o

= estu +min
x

X

v2⇥k(u)

n

estv xvk +
�

etrvk�vk

�

(1� xvk)

(15)

= estu +
X

v2⇥k(u)

min
�

estv , etrvk�vk

(16)

= Cuk. (17)

where (15) follows from Cvk = estv , C(h)
vk = 0 and �(h)

vk =
�vk for all leaf nodes v 2 ⇥k(u) ⇢ H(0) and for all h =
{0, . . . , Hk}; (16) follows from the fact that each term in the
summation only depends on xvk; and finally (17) follows from
C(h)
vk = 0, Cvk = estv , and µ(h)

vk = �vk for all leaf nodes
v 2 H(0).

Next, we prove that if for all v 2 H(`), ` = 0, . . . , (j � 1),

C(h)
vk = min

x

n

C(h)
vk

o

, (18)

then it also holds that

C(h)
uk = min

x

n

C(h)
uk

o

, 8u 2 H(j). (19)

To this end, notice that using (6),

min
x

n

C(h)
uk

o

=
X

v2⇥k(u)

min
n

min
x

{Cvk},min
x

n

etrvk�
(h+1)
vk +C(h+1)

vk

oo

(20)

=
X

v2⇥k(u)

min
n

Cvk,x
n

etrvk�
(h+1)
vk +C(h+1)

vk

oo

(21)

where (20) is due to the fact that when the closest upstream
node caching k is h hops away from v, then the optimal
configuration of Tk(v) can be found by solving independently
the optimal configuration for each of the subtrees rooted at
w 2 ⇥k(v); and (21) follows from the induction step in (18).

Now, we prove by reductio ad absurdum that

min
x

n

etrvk�
(h+1)
vk + C(h+1)

vk

o

= etrvkµ
(h+1)
vk + C(h+1)

vk . (22)

To this end, first note that the non-strict inequality always
holds:

min
x

n

etrvk�
(h+1)
vk + C(h+1)

vk

o

 etrvkµ
(h+1)
vk + C(h+1)

vk ; (23)

in fact, the right hand side of (23) is the cost of the subtree
Tk(v) when k is cached h + 1 hops away from v plus the
cost of the upstream link (u, v), computed for the caching
configuration given by (12), while the left hand side is the
minimum over all possible caching configurations of the
above function. Next, let us verify that strict inequality in
(23) leads to a contradiction. To this end, assume (23) is

strict, and let x̄ = argmin
x

n

etrvk�
(h+1)
vk + C(h+1)

vk

o

. Since,

min
x

n

C(h+1)
vk

o

= C(h+1)
vk by induction, and C(h+1)

vk =

C(h+1)
vk

�

�

�

X
from (8)-(12), then

C(h+1)
vk

�

�

�

x̄

� C(h+1)
vk = C(h+1)

vk

�

�

�

X
. (24)

From (6) and (7), we now have that

etrvk�
(h+1)
vk + C(h+1)

vk

�

�

�

x̄

=

=etrvk�vk+
X

w2⇥k(v)

min

(

Cwk

�

�

�

x̄

,
⇣

�

etrvk + etrwk

�

�(h+2)
wk +C(h+2)

wk

⌘

�

�

�

x̄

)

= etrvk�vk +
X

w2⇥
C1
k (v)

Cwk

�

�

�

x̄

+
X

w2⇥
C2
k (v)

Cwk

�

�

�

x̄

+
X

w2⇥
nC1
k (v)

⇣

(etrvk + etrwk)�
(h+2)
wk +C(h+2)

wk

⌘

�

�

�

x̄

+
X

w2⇥
nC2
k (v)

⇣

(etrvk + etrwk)�
(h+2)
wk +C(h+2)

wk

⌘

�

�

�

x̄

(25)

where {⇥C1
k (v),⇥C2

k (v),⇥nC1
k (v),⇥nC2

k (v)} is a partition of
⇥k(v) such that:

⇥C1
k (v) ⌘ {w 2 ⇥k(v) : Xst,h+2

wk = 0 and x̄st
wk = 1},

⇥C2
k (v) ⌘ {w 2 ⇥k(v) : Xst,h+2

wk = 1 and x̄st
wk = 1},

⇥nC1
k (v) ⌘ {w 2 ⇥k(v) : Xst,h+2

wk = 1 and x̄wk = 0},
⇥nC2

k (v) ⌘ {w 2 ⇥k(v) : Xst,h+2
wk = 0 and x̄wk = 0}.

Based on how the four regions are defined, using (24), the
induction step (18), and the definitions of C(h+1)

vk , Xst,h+2
wk ,

�(h+1)
vk and µ(h+1)

vk as in (6)-(12), it can be shown that:

etrvk�
(h+1)
vk +C(h+1)

vk

�

�

�

x̄

� etrvk�vk +
X

w2⇥
C2
k (v)[⇥

nC1
k (v)

Cwk

+
X

w2⇥
C1
k (v)[⇥

nC2
k (v)

⇣

etrvk + etrwk)µ
(h+2)
wk + C(h+2)

wk

⌘

= etrvkµ
(h+1)
vk + C(h+1)

vk . (26)

Using (26) and (23), we show that a strict inequality in (23)
leads to a contradiction, and hence (22) is proved. Replacing
(22) in (21) and using (10), (19) follows. ⌅

Using Lemma 1, it immediately follows that:

min
x

{Cuk(xk)} =
⇣

eu +min
x

n

C(0)
uk

o⌘

�

�

�

u=sk

= eu + C(0)
uk

�

�

�

u=sk

= Cuk

�

�

�

u=sk
= Ck

which concludes the proof of Theorem 1. ⌅

335ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

We note that the complexity of OSC is linear with the
product of the number of nodes and the height of the tree,
O(V Hk), and thus can find the optimal configuration for the
delivery of K over G in

P

k2K O(V Hk) O(V 2�), with
� the diameter of G. Furthermore, OSC admits a distributed
implementation, which requires O(Hk � Huk) information
exchange between each node u 2 V at height Huk and its
upstream node �k(u).

However, the optimality of OSC is constrained to the
availability of sufficiently large storage capacity and the sta-
tionarity of the input request process. While, as stated earlier,
large storage capacity may be available in cloud CDNs, the
increasing dynamics of content service demands can degrade
the performance of OSC in practice. In the following, we
propose MC3, a fully distributed dynamic caching policy
that builds on the structure of OSC, to drive local caching
decisions that adapt to the system dynamics, while completely
eliminating the need for any explicit exchange of informa-
tion between neighbor nodes. In particular, with MC3, local
caching decisions are based on the binary criterion described
in (12), where information about the closest upstream content
copies and the caching configuration of the downstream nodes
is inferred from the dynamic arrivals of requests and objects
themselves. A detailed description of MC3 and its key mech-
anisms are provided in Sec. IV. Also, while omitted due to
space limitations, it is worth mentioning that for a hierarchical
topology with homogeneous resources at each layer, under a
first-order stationary request process, it can be shown that MC3

achieves the optimal steady-state configuration given by OSC.

IV. MC3: ALGORITHM DESIGN

In this section, we describe MC3 (Min Cost Cloud Cache),
an on-line fully distributed cloud caching algorithm that allows
nodes to make local caching decisions based on real-time
estimates of the global cost benefit. Recall that in a cloud
CDN, the goal is to guarantee QoS requirements (e.g., average
delivery delay) while minimizing the overall operational cost.
Hence, in MC3, objects only get cached if doing so contributes
to the global system benefit by: i) reducing the combined
transport-storage cost, or ii) reducing the average delay.

As illustrated by the structure of the optimal stationary
policy, OSC, a caching decision for object k at node u at time t
is essentially a trade-off between the cost incurred in writing
and keeping object k in the cache of node u, and the cost
incurred in fetching k from the closest upstream node that has
already cached k. We remark that while the cost of writing and
keeping an object at a network nodes is pure storage resource
cost, the cost of fetching an object from the closest upstream
copy captures both transport resource cost and QoS, since the
further the closest copy is, the higher is the delay in delivering
the object to the requesting user.

Based on this observation, we can evaluate at time t, the
benefit of caching object k at node u, as the difference between
the average transport cost needed to transfer object k to node

u based on the current network conditions, and the storage
cost involved in writing and keeping k at u, as:

CBuk(t) = etruk(t)f̂uk(t)� estu (27)

etruk(t) =
X

(u,v)2�uk(t)

etruv (28)

In (27), (28), f̂uk(t) represents an estimate of the aggregate
rate of requests for object k at node u; etruk(t) is the transport
cost paid at time t to transfer object k to node u from its closest
upstream copy along the path �uk(t); and estu represents the
cost needed to write and store an object over a time unit in
the cache of node u.

Note that in the case of homogeneous resources, i.e., etruv =
etr, 8(u, v) 2 E , (27) reduces to

CBuk(t) = huk(t)f̂uk(t)e
tr � estu , (29)

where huk(t) is the number of hops to the closest upstream
node caching k at time t.

In general, in MC3, etruv represents a generic cost of trans-
porting an object over a link, which may include transport
equipment CAPEX and OPEX, as well as link delay. We
remark that in the case that the link delay model is load-
dependent, etruv(t) would be a function of t, indicating the
dependence on the current load.

In MC3, each vCache node maintains a data structure named
shadow cache, where key metadata related to both cached and
not-cached objects is stored in order to compute the global
benefit of caching an object at any given time. Each entry in
the shadow cache contains the following information:

1) Object Identifier
2) Estimated request inter-arrival time, [�tuk(t) = 1/f̂uk(t)
3) Estimated transport cost to closest replica, etruk(t)
Note that the algorithm is based on two main estimates:

i) the cost of fetching k from the closest copy at the time
of the next request arrival, etruk(t), and ii) the request inter-
arrival time of object k, [�tuk(t). In order to locally estimate
i), we propose to store an additional field inside the packets
carrying the objects through the network: field E indicates
the transport cost incurred by an object as it travels through
the network since the last time it was cached. When an object
arrives at a cache node, field E is increased to take into account
the cost of transferring the object across the last traversed
link. The obtained value is then used as etruk(t) in Eq. (27) in
order to compute the global benefit of caching the object. If
the node decides to cache the object or the object has been
already cached, field E is reset to 0. This approach allows
nodes to share the information they need to compute (29) with
negligible constant-size communication overhead. In order to
locally estimate ii), every time node u receives a new request
for object k, it updates the estimated request inter-arrival time
in the shadow cache, [�tuk(t), based on a predictor. A simple
approach is to adopt a moving average computed based on
past request arrivals with a suitable window size, as used in
LFU and its variants [15].

336ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Algorithm 1 : MC3

1: For every node u 2 V , v = �k(u)
2: if Request for object k at node u (time t) then
3: if Object k in the cache then
4: Forward k downstream (set E = 0)
5: Update c�tuk(t) in shadow cache entry
6: Compute CBuk(t)
7: if (CBuk(t) > 0) then
8: Keep k in the cache and update its position based on

CBuk(t) (decreasing order)
9: else

10: Remove k from the cache
11: end if
12: else
13: Update c�tuk(t)
14: Forward request upstream
15: end if
16: end if
17: if Object k at node u from v = �k(u) (time t) then
18: Get E from packet
19: Update etruk(t) = E + etrvu
20: Get c�tuk(t) from the shadow cache entry
21: Recompute CBuk(t)
22: if (CBuk(t) > 0) then
23: Cache k based on CBuk (decreasing order)
24: Set E = 0
25: if Cache full then
26: Remove last object (least cost benefit)
27: end if
28: else
29: Set E = etruk(t)
30: end if
31: Forward k downstream (including E)
32: end if

By relying on the shadow cache and the information carried
by the objects travelling through the network, each node is
able to identify the subset of objects with the highest cost
benefit. This result is achieved by maintaining a list of object
entries sorted in terms of decreasing cost benefit. Objects are
added and removed to this list every time their cost benefit
is recomputed. Note that only objects with a positive cost
benefit are potentially cached. This implies that depending
on the ratio between transport and storage cost as well as
the characteristics of the stream of object requests, nodes will
make use of different portions of the available virtual cache
space. Finally, we use a negative cost benefit for those objects
for which we do not have information inside the shadow cache
since we do not have enough information to compute the
request inter-arrival time. The object is potentially cached only
starting from the second received request.

In order to mitigate the impact of possible overestimates
(too short) of request inter-arrival times, a timer is used to
update the entries in the shadow cache if no request arrives
within a guard time (set as a factor of the estimated inter-
arrival time). This approach is useful to correct inaccurate
or stale metadata such as the estimated next request arrival
time. Note that underestimates of request inter-arrival times
are naturally updated when the actual request arrives.

The pseudo-code in Algorithm 1 describes the procedures

invoked by MC3 upon i) a new request arrival, and ii) a
new object arrival to a vCache node. Note that MC3 ex-
hibits constant-time computational complexity and constant-
size communication overhead, as neither the number of com-
putations nor the information objects carry grow with the num-
ber of nodes and objects in the system. Indeed, in MC3, objects
themselves carry how much cost they incur as they travel
through the network. This allows vCache nodes to adaptively
learn relevant system information, effectively creating cache
cooperation with minimal overhead.

V. EXPERIMENTAL ANALYSIS

We analyze the benefit of MC3 in the context a 2-layer
vCache hierarchy with Internet video workloads that exhibit
different content types, daily viewing patterns, and object
popularity. The main parameter settings are derived from the
work in [18], as described in the following.

A. Simulation Methodology

Adopted topology. We consider a 2-layer tree structure of
vCache nodes: three leaf vCache nodes are connected to a
root vCache connected to the library, which stores all available
content objects. User requests are first forwarded to the leaves
in the hierarchy. A request is then forwarded to the root node
or to the library only in case of a cache miss. The links
between users and leaf vCache nodes are characterized by a
delay of 20 ms, while all other links experience a delay of 50
ms. As in a number of previous works (e.g., [18], [19], [20]),
we test the vCache hierachy against synthetic yet realistic
streams of user requests for video objects.

Object types. We consider two types of video objects: TV
shows and Movies. They differ in terms of size (Movies are
typically twice as long as TV shows), and popularity trends
(TV shows become unpopular much faster than Movies). The
number of TV shows is typically much larger than the number
of Movies: in our library, we adopt a shows-to-movies ratio
of 4:1, as also suggested in [18].

Object requests. Video object requests are generated accord-
ing to a Poisson process with average rate determined by the
total number of requests to be generated during a specific
portion of the day, as described in the following. In our
experimentation, we generate 80, 000 requests every day, on
average.

Daily pattern. The temporal evolution of the video object
requests is known to show a clear time-of-the-day effect [19],
with a peak during evening prime time and a lull during the
night. To take into account this pattern, we partition the day
into four time intervals: morning [6 a.m., 12 p.m.), afternoon
[12 p.m., 6 p.m.), evening [6 p.m., 12 a.m.), and night [12
a.m., 6 a.m.). Letting R denote the total number of requests
to generate during the day, we inject 10%, 20%, 30%, and
40% of the R requests during the night, morning, afternoon,
and evening, respectively.

337ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 0

 20000

 40000

 60000

 80000

 100000

 1 3 5 7 9 11 13 15 17 19 21

T
o
ta

l
R

e
q
u
e
s
ts

 (
#
)

Day

(a) Overall requests per day.

 0

 20000

 40000

 60000

 80000

 100000

10 11 12 13 14

R
e
q
u
e
s
ts

Day

1st Object

2nd Object

3rd Object

4th Object

5th Object

Others

(b) Requests per object.

 0.001

 0.01

 0.1

 1

 1 10 100 1000

O
b
je

c
t
P

o
p
u
la

ri
ty

 (
%

)

Ranked objects

Generated workload

Zipf(Alpha = 0.7)

(c) Object popularity after 14 days.

Fig. 2: Details on the workload used in the simulation.

Object popularity. The stream of requests is generated as a
series of independent trials drawn from a Zipf (or Zipf-like)
distribution over the set of possible objects [15]. However,
generating object requests according to a Zipf distribution does
not capture the temporal evolution of the popularity of each
object. Recently, Balachandran et al [19] observed a specific
temporal trend in case of video objects. There is a peak of
requests the first day the object becomes available, while
the number of requests decreases exponentially during the
following days. Hence, while the popularity of video objects
over the entire observation period follows a Zipf distribution,
a realistic workload must take into account this day-by-day
temporal evolution of the object popularity. To achieve this
effect, we follow the steps recently proposed by Akhtar et
al. [18]: for each object k, i) we compute the total number of
requests Rk over the entire observation period according to
the object popularity extracted from the Zipf distribution; ii)
given an observation period of N days, we randomly select
the day X in which object k becomes publicly available: the
Rk requests are then packed in the time range [X , N]; iii)
to determine the first burst and the successive exponential
decrease in the number of requests, we adopt a power series
expansion such that the final number of requests generated
over the time range [X , N] is Rk. New objects are injected
into the library at the beginning of the injection day causing
the library to grow in size day by day. In our simulation,
we inject 300 new video objects every day. Moreover, since
empirical observations show that the popularity of TV shows
decreases faster than that of Movies [19], we set the day-by-
day popularity decrease rate to vary in [0.3, 0.5] for TV shows
and in [0.05, 0.2] for Movies.

Fig. 2 shows an instance of the workload used in our
simulations. We generate an average of 80, 000 requests per
day, although we reach this value after a transitory period
of 7 days (see Fig. 2a). Fig. 2b, provides a breakdown of
the requests generated between the 10th and the 14th day.
Considering the 5 most popular objects in this time range, we
can notice that: i) the first, third, and fifth most popular objects
are already available on the 10th day, whereas the second and
forth objects become available only starting from the 11th

and 12th day, respectively; ii) the number of requests for
each of these objects decreases rapidly day after day. Despite
this dynamic evolution in the number of requests, the object
popularity computed over the first 14 days is very close to the
expected Zipf distribution with Zipf parameter alpha set to
0.7 (see Fig. 2c).

Observation period. We consider a long observation period
of 21 days, i.e., 3 weeks. At the end of this period, our library
contains 6300 video objects.

MC3 settings. We adopt a moving average approach to
estimate the object request inter-arrival and, after a first tuning
phase, we set this weight to 0.5. In our experiments, we
observe a negligible impact of slight modifications to this value
on the overall vCDN performance.

Other caching strategies. We compare MC3 with other
caching strategies: i) LRU-LCE (Least Recently Used - Leave
Copy Everywhere) – each cache node applies a least recently
used replacement policy; ii) Perfect-LFU (Perfect Least Fre-
quently Used) – each cache node applies a least frequently
used replacement policy that tracks the number of requests
for all objects in a shadow cache. This solution is known to
well approximate the optimal hit-rate in case of static object
popularity; iii) Oracle – each cache node can take omniscient
caching decisions since nodes are informed about the future
object popularity of each day. LRU and LFU represent simple
and effective caching strategies made available in commercial
products such as Apache Traffic Server, Squid, and Varnish,
solutions widely adopted in operational environments.

We remark that the cache management cost of MC3, while
slightly higher than LRU – the lightest caching policy – is
exactly the same as that of LFU or any other policy that is
ordering-based (i.e., objects are kept in a specified order in
the cache) and shadow-cache-based (i.e., policies that track
non-cached objects’ metadata).

B. Experimental Results

We now describe the performance of MC3 by varying the
transport-to-storage cost ratio, cache size, and object pop-

338ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 60

 70

 80

 90

 100

 110

 120

 130

 140

 1 3 5 7 9 11 13 15 17 19 21

A
v
e

ra
g

e
 L

a
te

n
c
y
 [

m
s
]

Day

Perfect-LFU
LRU
MC

3

Oracle

(a) End to end latency.

-10

 0

 10

 20

 30

Perfect-LFU LRU Oracle

C
o

s
t

p
e

n
a

lt
y
 v

s
 M

C
3
 (

%
) Storage cost

Transport cost

(b) Operational cost after 21 days.

Fig. 3: Performance when the transport-to-storage cost ratio is
10,000:1.

ularity. As done in similar works [22], [21], we relied on
Omnet++ [23] to instrument our simulation.

Performance with a varying transport-to-storage cost ratio.
We evaluate the caching strategies with a transport-to-storage
cost ratio, etruv/estu , of 10,000:1 and 2,000:1. Recall that etruv
is used to capture not only transport resource costs but also
QoS related penalties such as average delay. In this setting,
we instrument each node in the hierarchy to cache no more
than 50% of the objects injected every day (i.e., 150 objects),
while the popularity of each object is generated from a Zipf
distribution with Zipf parameter alpha equal to 0.7.

Fig. 3 shows the performance achieved when the ratio is
10,000:1. Fig. 3a shows the daily average latency, i.e., the
time the cache hierarchy takes to deliver a requested object to
the user. For most of the caching strategies, the performance
stabilizes after 7 days. This result is expected since the library
is empty at the beginning of the simulation and gets filled
day after day with new objects (see Fig. 2a): the equilibrium
between previously injected unpopular objects and recently
injected highly popular objects is reached only after this initial
transitory. Hence, in the following, we discuss the average
performance achieved between the 7th and 21th day. In this
setting, the performance of MC3 is very close to Oracle, the
cache strategy that takes omniscient caching decisions. On an
average day, the hierarchy instrumented with MC3 delivers
objects to the users with a latency only 1.8% higher than
using Oracle, taking 12 ms and 12.4 ms less than LRU and
Perfect-LFU, on average. This result is a direct consequence
of the higher hit rate achieved by MC3. Indeed, the average
combined hit rate achieved by MC3 is 28.3% and 33.3%
higher compared to LRU and Perfect-LFU, respectively. At the
same time, MC3 guarantees a lower operational cost. Fig. 3b
shows the total transport and storage cost penalty paid when
using the other caching strategies relative to MC3. Due to the
high transport-to-storage cost ratio, MC3 uses almost all the
available space at the cache nodes in this setting. For this
reason, we observe only a limited gain in terms of storage
cost. On the other hand, MC3 carefully selects which objects
to cache according to the cost of transferring them over the
network, thus achieving a significant gain in terms of total
transport cost. Indeed, the transport cost registered when using
LRU and Perfect-LFU is 17% and 12% higher than MC3,

 60

 70

 80

 90

 100

 110

 120

 130

 140

 1 3 5 7 9 11 13 15 17 19 21

A
v
e

ra
g

e
 L

a
te

n
c
y
 [

m
s
]

Day

Perfect-LFU
LRU
MC

3

Oracle

(a) End to end latency.

-20

 0

 20

 40

 60

 80

 100

 120

Perfect-LFU LRU Oracle

C
o

s
t

p
e

n
a

lt
y
 v

s
 M

C
3
 (

%
) Storage cost

Transport cost

(b) Operational cost after 21 days.

Fig. 4: Performance when the transport-to-storage cost ratio is
2,000:1.

respectively. Hence, for high transport-to-storage cost ratio,
MC3 achieves higher performance compared to LRU and
Perfect-LFU in terms of hit rate and latency, with a similar
storage cost, but a much lower transport cost.

Fig. 4 shows the performance achieved by the tested caching
policies in the case of a transport-to-storage cost ratio of
2,000:1. Note that MC3 is the only strategy modifying its
behavior: in this setting, the latency achieved by MC3 is
similar to that achieved by LRU, and lower than that of
Perfect-LFU. At the same time, MC3 achieves this result by
using only a fraction of the cache space available at each
node: while all other strategies fully use the entire available
storage space, MC3 uses on average only 47% of the space
in each cache node. The direct consequence is a significantly
lower total operational cost as reported in Fig. 4b: using LRU
(Perfect-LFU) leads to a total storage cost of 92% (93%)
higher, and a total transport cost 8% (3%) higher than when
using MC3. In conclusion, for less unbalanced ratio between
transport and storage cost, MC3 is able to provide similar or
higher performance than LRU and Perfect-LFU in terms of
hit rate and latency, with a much lower storage and transport
cost.

Performance with a varying cache size. Fig. 5 reports the
results achieved when varying the cache size. Each node is
configured to cache up to 25%, 50%, 75% and 100% of the
amount of objects injected every day, i.e., 75, 150, 225, and
300 objects, respectively. Fig. 5a shows the latency penalty
paid when using all other caching strategies relative to MC3:
for larger cache sizes, the latency gain of MC3 decreases.
This happens because the other caching strategies fully use
the available storage space in the cache disregarding the
associated operational cost, while MC3 keeps caching objects
according to the transport-to-storage cost ratio (2,000:1 in this
setting). Fig. 5b shows the cost penalty of operating the cache
hierarchy with these strategies compared to using MC3. The
total operational cost increases sharply with the cache size:
compared to all the other strategies, MC3 guarantees savings
that go from 28% up to 264% with the increasing cache size.
Finally, by being aware of the transport and storage relative
costs, MC3 is able to select the objects to cache in order
to guarantee a reasonable average latency while significantly
saving in the overall operational cost. Note that one may easily

339ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

-30

-20

-10

 0

 10

 20

 30

75 150 225 300

L
a

te
n

c
y
 p

e
n

a
tl
y
 v

s
 M

C
3
 (

%
)

Cache Size

Perfect-LFU
LRU

Oracle

(a) Average end to end latency.

 0

 50

 100

 150

 200

 250

 300

75 150 225 300C
o

s
t

p
e

n
a

lt
y
 v

s
 M

C
3
 (

%
)

Cache Size

Perfect-LFU
LRU

Oracle

(b) Total operational cost.

Fig. 5: Performance compared to MC3 when the transport-to-
storage cost ratio is 2,000:1 for different cache sizes.

 0

 10

 20

 30

 0.7 0.8 0.9 1

L
a

te
n

c
y
 p

e
n

a
lt
y
 v

s
 M

C
3
 (

%
)

Zipf alpha value

Perfect-LFU
LRU

Oracle

Fig. 6: Latency penalty compared to MC3 when the transport-
to-storage cost ratio is 10,000:1 for different object popularity.

improve the latency performance of MC3 by simply increasing
the transport-to-storage cost ratio to induce the MC3 nodes to
cache more objects, leading to higher hit rate, lower latency,
but at the expense of higher operational cost.

Performance with varying popularity. Finally, we also inves-
tigate whether and how the performance of MC3 changes when
varying the object popularity. Results are reported in Fig. 6.
We consider a cache size of 150 objects and a transport-to-
storage cost ratio of 10,000:1. In this setting, the MC3 nodes
are induced to fully use their available storage space. We vary
the Zipf parameter alpha in the range [0.7, 1.0]. On average,
we observe an almost constant gain over LRU and Perfect-
LFU, with a latency reduction of 12% and 18%, respectively.
Note that the latency achieved by Oracle is only very slightly
lower than the one achieved by MC3.

VI. CONCLUSIONS

Motivated by the dynamics and heterogeneity of next gener-
ation cloud-based CDNs, and the crushing burden that content
storage and transport costs pose on cloud network operators,
in this paper we took a fresh look at the dynamic content
distribution problem from an overall cost-oriented perspective.
We proposed a novel fully distributed online caching solution,
we called MC3, aiming at guaranteeing QoS requirements
with minimum overall use of the shared cloud network’s
infrastructure. We first analytically characterized the optimal
cloud caching policy for a given first-order stationary input
process, and then – inspired by the structure of the optimal
stationary solution – we developed MC3, an online caching
policy that guides local caching decisions based on real-time
estimates of the global cost benefit. We implemented MC3

in a custom-built CDN simulator and presented performance
results for different settings of the transport-to-storage cost
ratio, cache size, and object popularity. We also provided a
comparison with three well known caching strategies (LRU-
LCE, Perfect-LFU, and an Oracle), demonstrating the signif-
icant performance and efficiency gains – in terms of average
latency and overall operational cost – that MC3 can provide
in virtual CDN environments.

REFERENCES

[1] H. Che, Y. Tung, Z. Wang, “Hierarchical Web caching systems: model-
ing, design and experimental results,” IEEE J. Sel. Areas Commun., vol.
20, no. 7, pp. 1305–1314, 2002.

[2] Bell Labs Strategic White Paper, “The Programmable Cloud Network -
A Primer on SDN and NFV,” June 2013.

[3] Marcus Weldon, “The Future X Network,” CRC Press, October 2015.
[4] J. Llorca, C. Sterle, A. M. Tulino, N. Choi, A. Sforza, A. E. Amideo,

“Joint Content-Resource Allocation in Software Defined Virtual CDNs,”
IEEE ICC’15 CCSNA Workshop, London, England, 2015.

[5] J. Llorca, A.M. Tulino, “The content distribution problem and its
complexity classification,” Bell Labs technical report, 2013.

[6] S. Hasan, S. Gorinsky, C. Dovrolis, and R. Sitaraman, ”Trade-offs in
Optimizing the Cache Deployments of CDNs”, IEEE INFOCOM’14,
pp. 460-468, 2014.

[7] I.D. Baev, R. Rajaraman, C. Swamy, “Approximation algorithms for data
placement in arbitrary networks,” ACM SODA’01, 2001.

[8] I.D. Baev, R. Rajaraman, C. Swamy, “Approximation algorithms for
data placement problems,” SIAM Journal on Computing, vol. 38, pp.
1411-1429, 2008.

[9] S. Borst, V. Gupta, A. Walid, “Distributed Caching Algorithms for
Content Distribution Networks,” IEEE INFOCOM’10, San Diego, 2010.

[10] P. Krishnan, D. Raz, Y. Shavitt, “The cache location problem,”
IEEE/ACM Trans. on Networking, vol. 8, no. 5, pp. 568–582, 2000.

[11] L. Qiu, V. Padmanabhan, and G. Voelker, “On the placement of web
server replicas,” IEEE INFOCOM’01, vol. 3, 2001.

[12] M.R. Korupolu and M. Dahlin, “Coordinated placement and replacement
for large-scale distributed caches,” IEEE Transactions on Knowledge and
Data Engineering, vol.14, pp. 1317–1329, 2002.

[13] Wang, J., “A survey of web caching schemes for the internet,” ACM
SIGCOMM CCR, v. 29, n. 5, pp. 36-46, ’99.

[14] P. Cao, S. Irani, “Cost-Aware WWW Proxy Caching Algorithms,”
Usenix symposium on internet technologies and systems, vol. 12, no.
97, pp. 193–206, 1997.

[15] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” IEEE INFO-
COM’99, vol. 1, pp. 126–134, 1999.

[16] G. Carofiglio, M. Gallo, L. Muscariello, D. Perino, “Modeling data
transfer in content-centric networking,” IEEE ITC’11, pp.111–118, 2011.

[17] E. J. Rosensweig, J. Kurose, “A Network Calculus for Cache Networks,”
IEEE INFOCOM’13, pp. 85–89, 2013.

[18] S. Akhtar, A. Beck, I. Rimac, “HiFi: A Hierarchical Filtering Algorithm
for Caching of Online Video,” Proc. of the 23rd ACM international
conference on Multimedia (MM ’15). ACM, NY, USA, 421-430.

[19] A. Balachandran, V. Sekar, A. Akella, and S. Seshan. “Analyzing the
potential benefits of CDN augmentation strategies for Internet video
workloads.” ACM SIGCOMM IMC, pp. 43-56. 2013.

[20] B. Paul and C. Mark, “Generating representative web workloads for
network and server performance evaluation,” Proc. ACM SIGMETRICS,
Madison, USA, 1998.

[21] J. Llorca, A. M. Tulino, K. Guan, J. Esteban, M. Varvello, N. Choi,
D. C. Kilper, “Dynamic in-network caching for energy efficient content
delivery,” IEEE INFOCOM’13, Turin, Italy, 2013.

[22] K. Stamos, G. Pallis, A. Vakali, D. Katsaros, A. Sidiropoulos, and Y.
Manolopoulos. “CDNsim: A simulation tool for content distribution
networks.” ACM Transactions on Modeling and Computer Simulation
(TOMACS) 20, no. 2 (2010): 10.

[23] A. Varga, “The OMNeT++ discrete event simulation system.” ESM 2001,
vol. 9, no. S 185, p. 65. sn, 2001.

340ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Enhanced Caching Strategies At the Edge of LTE
Mobile Networks

Andre S. Gomes ⇤†, Torsten Braun ⇤, Edmundo Monteiro †
⇤Institute of Computer Science, University of Bern, Switzerland

{gomes,braun}@inf.unibe.ch
†CISUC, University of Coimbra, Portugal

{asng,edmundo}@dei.uc.pt

Abstract—With a boom in the usage of mobile devices for

traffic-heavy applications, mobile networks struggle to deliver

good performance while saving resources to support more users

and save on costs. In this paper, we propose enhanced strategies

for the preemptive migration of content stored in Information-

Centric Networking caches at the edge of LTE mobile networks.

With such strategies, the concept of content following the users

interested in it becomes a reality and content within caches is

more optimized towards the requests of nearby users. Results

show that the strategies are feasible, efficient and, when compared

to default caching strategies, ensure that content is delivered

faster to end users while using bandwidth and storage resources

more efficiently at the core of the network.

Index Terms—Information-Centric Networking, Content Mi-

gration, Caching, LTE.

I. INTRODUCTION

Mobile network evolution in the last few years has been
quite intense, with major increase of throughput performance
and resources usage efficiency. Such evolution is mostly driven
by tremendous demand of bandwidth [1], on the one hand
because smartphones and other mobile devices play a major
role as content demanders, and on the other hand because
traffic-heavy applications are part of the daily life of millions
of people. However, satisfying the content requirements of the
current number of users with such dynamic networks is still
an open challenge, which is currently being addressed by a
number of emerging concepts and technologies.

As far as the network is concerned, new 5G concepts such
as Network Function Virtualization (NFV) [2] are emerg-
ing, allowing mobile networks to adapt more dynamically
to different conditions and requirements, and also to support
other value-added technologies. One of these efforts is Cloud
Radio Access Network (C-RAN) [3][4]. It brings the pos-
sibility to virtualize the entire 3GPP Long Term Evolution
(LTE) radio infrastructure, except for the antennas. Virtualized
infrastructures extend the cloud computing concept to the
Radio Access Network (RAN), and explore the modularity
of the components together with the usage of general-purpose
hardware infrastructure to run evolved Node Bs (eNBs). Such
fact transforms C-RAN into an enabler for deployment of
value-added services closer to the edge of mobile networks,
i.e. in very close proximity to mobile users. Despite increased
delays due to its characteristics, the proximity deployment of

other services allows for performance gains and cost savings
that more than surpass those overheads and improve the end-
to-end service.

In this direction, Future Internet (FI) concepts such as
Information-Centric Networking (ICN) [5], which proposes
a change in the current host-centric paradigm of requesting
content, are becoming increasingly important due to the ad-
vantages brought together by its content-centric architecture.
Namely: performance improvements [6], indirect bandwidth
savings from its caching-based architecture, enhanced mobility
support [7] and increased security [8].

With such concepts in mind, proposals appear to take
advantage of the fact that they complement each other. Gomes
et al. [9] evaluate the feasibility of deploying ICN together
with 3GPP LTE mobile networks, leveraging the C-RAN
concept and its role as an enabler for the deployment of
additional services at the edge of these mobile networks. In
that work, authors conclude that there are clear benefits of
deploying ICN routers co-located with LTE eNBs, such as
bandwidth savings at the core network and lower latency to
retrieve content derived from the proximity to end users. Those
findings are also in line with works such as [6], and show that
there is an important demand of enhanced caching strategies
to have content cached closer to the users interest in it while
using resources efficiently.

Those caching strategies are twofold: first they are used
to populate edge caches, and thereafter they must maintain
content where it will yield the most benefit at any given time.
As users are increasingly mobile and tend to move between
different locations quite often, it is safe to assume that what
is cached at a location is not necessarily what is going to be
requested by the users that will be there in the next few hours
or days. Studies [10] even show that user interests in social
media content contribute deeply to its locality and homophily
characteristics, which means that people geographically close
to each other may have common or similar interests of content
objects (locality) [11] and also that users are clustered by
regions and interests (homophily) [12]. That leads to the ques-
tion: how should caching strategies handle user mobility? Such
question does not have a simple answer, as some assumptions
have to be made and challenges need to be considered to reach
a preliminary conclusion. First, it is important that user mobil-
ity is predicted to perform preemptive actions, and proposalsISBN 978-3-901882-83-8 c� 2016 IFIP

341ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

exist to deal with it [13][14][15]. Then, if a set of users is
predicted to be at a location, more complex decisions need to
be made in order to have accurate migrations that minimize
overhead and maximize performance. The first decision is
whether content from caches at the origin of the users should
be migrated to other caches at the possible destinations. Once
that is established, other questions arise: where should content
be migrated to (mobility prediction usually outputs a list of
possible destinations with different probabilities), which subset
of the content should be migrated, how it should be migrated
and when should it be migrated.

In this paper, we attempt to answer the previously described
questions by developing content migration strategies that han-
dle the required decisions and deliver the greatest possible
trade-off between benefit and cost. In section II, existing
proposals to address content migration strategies are analyzed.
Section III introduces our proposal for the migration of content
and related decisions. Section IV describes experimentation
scenarios for the evaluation of the proposal. Section V presents
the results of the performed experiments. Finally, in section
VI, the main achievements of this work are highlighted.

II. RELATED WORK

When considering strategies that take into account the
mobility of users to decide on placement/migration of services
or content within mobile networks, only a few works exist and
there are still a number of shortcomings to be addressed.

One proposal assumes that mobility of the user is considered
for services placement and scaling [16]. In this case, orches-
tration of distributed cloud services is done by predicting user
mobility, i.e. more or less resources are allocated if the system
predicts that users will move to/from the location of each small
Data Center (DC). However, migration of services from one
location to another is not considered.

In this direction, one very important concept towards mi-
gration strategies - Follow-Me Cloud - was first proposed by
Taleb et al. [17]. It essentially considers that small DCs are
present closer to the edge of mobile networks and proposes
that services are deployed in close geographical proximity
to users. Hence, when users move to a different location,
those services should be migrated and follow the user. To
handle the decision, several different models can be used.
An analytical model based on Markov Decision Processes is
proposed [18][19].

Such model considers that user positions must be found
in order to have services instantiated in the optimal DC. It
relies on the random walk mobility model to try to predict
future positions, and when the user is n hops away from its
current optimal DC, migrations are triggered using a system
modeled with Continuous-Time Markov Chains. Also, when
considering if data migration should be done, factors such as
class of the user, load policies, service migration costs and
service migration duration need to be analyzed. Bearing these
factors in mind, it is assumed that cost and service disruption
are to be minimized, and the user should be connected to
the optimal DC as often as possible. This approach provides

many benefits for the migration of services, but only a final
destination is considered, not multiple destinations along a
path. Moreover, it does not decide which services to migrate, it
only considers a single user (overhead of migration for a single
user may not be justified) and does not deal with specificities
of migrating content or even stateful services.

As far as strategies to deal with content migration are
concerned, other works [20] have looked at the problem in
Peer-to-Peer (P2P) networks from the provider perspective.
With a typical hierarchical Content Delivery Network (CDN)
architecture, the main requirement is to distribute content
among nodes in a way that leaf nodes get the most traffic
and root nodes are seldom used. This strategy increases
performance and thus reduces latency for end users, and
relies on decisions to migrate/copy content from one node
to another depending on popularity and cost. However, as it
maximizes the usage of caches while attempting to maximize
performance, those decisions are a NP-complete problem that
is hard to manage. In very dynamic mobile networks, that
poses an issue due to the need of quick and proactive decisions
sometimes even before there is user movement, and that is
why other works aim at less complex and local approaches
that maintain hierarchical caches efficiently used [21].

Another proposal [22] takes dynamic mobile networks into
account, and uses proactive migration strategies for content,
i.e. migration is triggered when it is predicted that the user
will move to a neighbor location. Using a proxy system, it
is proposed that subscribed content is pre-fetched whenever
it is predicted that a user will move to the geographical
region of another proxy. With the knowledge of possible
destinations and corresponding probabilities, a decision has
to be made in order to select the destination proxies for
the content while minimizing cost (migration cost and cache
storage) and maximizing benefit (latency and cache hit ratios).
Despite some gains in terms of delay, the number of criteria
for migration decisions is small and no different weights are
considered, there are no replacement policies when caches
become full and the required single user mobility prediction
is too simplistic/naive, i.e. the effect of a single user on the
entire network is questionable when comparing to the required
overhead of content migration and cache usage.

Considering all the proposals and the issues they fail to ad-
dress, we propose a system that relies on their positive findings
and at the same time attempts to address the challenges not
taken into consideration.

III. ENHANCED CACHING STRATEGIES

In-line with the idea of Follow-Me Cloud (FMC) described
in the previous section, the proposal can be summarized
into making decisions and perform preemptive migrations of
mobile network’s edge-cached content based on user mobility,
i.e. migrations (copies) ahead of future user requests at a new
location. The following key objectives are assumed: mobility
prediction must be used to take actions before users move
from one location to another, content may only be migrated
if it is likely it will yield benefit at the destinations, multiple

342ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

destinations may be considered at the same time to improve
accuracy and migration cost should be minimized as much
as possible. We also assume that content migrations should
happen among caches with modified policies, as they typically
implement a Least Recently Used (LRU) policy that can delete
recently added content in a matter of seconds if the load of
received Interests is high. In this case we are interested in
maintaining our own policy, i.e. popularity based queue, with
the most popular and recently accessed content at the head of
the queue and deletions happening at the tail.

A. Architecture

In order to achieve the goals associated with the objectives
of this proposal, an architecture was defined as illustrated in
Fig. 1.

FMC Controller
eNB eNBNDN

Router
NDN

Router

S-GW S-GW

1)

2)

3)

Mobility Predictor

P-GW

MME

S5/S8 S5/S8

S11 S11

S1-MME S1-MME

S1-U
S1-U

X2

Fig. 1: Follow-Me Cloud Architecture

In this architecture, we assume as base architecture the
3GPP LTE Evolved Packet System (EPS). Namely, its main
components (eNB, S-GW, P-GW, MME) and its main inter-
faces (X2, S1-U, S1-MME, S11, S5/S8). At the same time, a
recent and increasingly popular approach for ICN is selected -
Named Data Networking (NDN) [23]. We consider that NDN
routers are co-located with 3GPP LTE eNBs [9], serving the
subset of users present at each network cell. At the same
time, information about the network and its users is gathered
at the FMC Controller. This information includes mobility
prediction data, local content popularity and availability at
a given cell, number of users per cell and availability of
resources such as storage. With that information, a multi-step
process for content migration is triggered every time mobility
is predicted or detected by the Mobility Predictor using input
from the 3GPP LTE Evolved Packet Core’s (EPC) Mobility
Management Entity (MME), based on the defined time period
between predictions:

1) FMC Controller is notified about user mobility (e.g.
user ID n is moving from cell ID x to cell ID y with

probability z) and decides, upon policies such as the
number of users moving to a destination cell, if other
steps should be taken or the process should stop.

2) If decisions have to be made regarding content migra-
tion, the FMC Controller has to decide: where to migrate
content (cell ID and corresponding NDN router), what
subset of the local content should be migrated (content
object’s prefixes), when to do it (according to other
scheduled migrations) and finally how to do it (routing
and load balancing for content requests).

3) After a decision is made, the FMC Controller issues a
NDN message called Request of Interests that instructs
the destinations’ NDN router(s) to fetch the subset of
content to be migrated from the closest source and place
it at its cache.

B. Decision Techniques
As far as decisions are concerned, two types of decisions

must be carefully analyzed and made in the proposed system.
The first decision is where to migrate content when users
are moving. Although mobility prediction will output a list of
candidate destinations and respective probabilities, such set of
destinations may not be complete and still needs to be reduced
and ranked according to other important factors.

To increase the list of candidates, one may assume that
neighbor cells in-between the returned destination candidates
and the origin should also be considered. After all, the user
will need to travel through those cells and, depending on the
delta time, i.e. amount of time in the future considered for
prediction, it may even stop and stay there longer than at the
final destination. With this full list of destination candidates,
the problem is now how to rank these in order to select only a
few that satisfy the defined criteria and will yield the highest
trade-off between benefit and cost.

Multiple-Criteria Decision-Making (MCDM) [24] is an
approach to make decisions in the presence of multiple,
usually conflicting, criteria. As it is not tied to a specific
problem, it can be applied to a very diverse range of scenarios
and problems, from business decisions to complex science
problems. At the same time, it supports multiple weighted
criteria and typically returns a finite number of solutions when
dealing with a selection/assessment problem. Therefore, it fits
the decision to be performed in terms of ranking/selection the
destinations for content migration.

To handle decisions, which involve ranking of candidates,
the most common methods are score methods. Within these,
perhaps the most well-known and used method is Analytical
Hierarchy Process (AHP) [25][26][27]. This method starts
by summarizing the problem, deciding the hierarchical list
of criteria to be considered for the decision and listing the
alternatives to be ranked. In this case, the problem is already
defined: a destination or destinations need to be selected for
content migration. Considering that not only the destination
of users is important but also to maximize the efficiency of
cache usage within the network edge, the following criteria
were defined:

343ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

• Mobility prediction information containing probabilities
for destinations.

• Percentage of non-intersecting content between origin
and alternative destination.

• Percentage of free storage space at alternative destination.
• Relative size of mobile group, defined as the ratio be-

tween number of users moving and users present at
alternative destination.

• Cost of migration, estimated as the network transfer delay
to copy the expected data size from its origin to an
alternative destination.

Afterwards, a N ⇥ M matrix is created, where N is the
number of alternatives and M the number of criteria. For each
cell of the matrix, a score value is calculated to reflect how
good the alternative is in terms of the criteria being considered.

As each of the criteria may have a different significance
for the decision, each of them should also have a weight
value to be considered. In order to rank criteria, judgment
is used by creating a M ⇥ M matrix where each criteria is
compared against the others using pair-wise comparisons, i.e.
each compared to all the others in terms of importance. For
instance, we may define that mobility prediction information
is three times more important than the relative size of the
mobility group. In that case, the cell that compares mobility
prediction with relative size of the mobility group will have
a value of 3/1, and the opposite comparison the value of 1/3.
This matrix, however, cannot be used directly. An eigenvector
with the final weights has to be calculated following the
procedure:

1) Convert fractions to decimals.
2) Square the resulting matrix.
3) Sum up the rows of the matrix and get a vector. Each

of the rows of the vector must be divided by the sum of
all its rows to normalize the values.

4) Repeat the previous steps until the resulting vector is
not different from the previously obtained vector.

With the scores of each alternative for each criterion and
the weights, the score of alternative i is given by:

S

i

=

MX

j=1
8i2[1,N]

w

j

r

ij

(1)

where:

S

i

is the score of the i

th alternative;
r

ij

is the normalized rating of the i

th alternative for the
j

th criterion, which is calculated as r

ij

= x

ij

/(max

i

x

ij

) for
benefits and r

ij

=

1
xij

/(max

i

1
xij

) for costs;
x

ij

is an element of the decision matrix, which represents
the original value of the j

th criterion of the i

th alternative;
w

j

is the weight of the j

th criterion;
M is the number of criteria;
N is the number of alternatives.

With the list of destination alternatives ranked and sorted in
descending order by their score, hereafter just called ”rank-
ing”, the decision about where to migrate content may be

made based on the defined policies. For instance, the first
three alternatives (destinations) of the ranking can be selected
and content will be migrated to all of them. Or, depending
on the problem and assuming that the score is normalized,
alternatives with scores above 0.75 are to be selected.

After the decision about the destinations has been taken, the
remaining decision of what content should be migrated still
needs to be taken. This decision has to be made considering
that currently the association between LTE users and NDN
users is not known, and therefore content cannot be related to a
particular moving user. Therefore, it takes the local popularity
of content as key criterion [21] and considers the following
steps. First, if the content object being considered is available
nearby (1 hop distance) or already at the destination, it will
not be migrated. Second, if it is not available, and if free
space is available at the destination, content objects are just
migrated until the cache is filled. Third, if no free space is
available, both popular content at the origin and destination
should be considered together and ranked to fill the destination
cache with the content that will deliver the greatest benefit for
all the users (existing and new ones). That problem can be
modeled as a Knapsack problem, and be solved with Dynamic
Programming [28]. However, it is a NP-complete problem
and, even if a solution is found, it may take too long to
calculate. Therefore, another simpler approach was followed.
The following equation was considered to calculate the score
of each content object k:

S

k

=

8
>>>>>><

>>>>>>:

p

k

⇤ n

mgt

n

mgt

+ n

dst

, if the k

thcontent object is

considered for migration.

p

k

⇤ n

dst

n

mgt

+ n

dst

, otherwise.

(2)

where:

S

k

is the score of the k

th content object;
p

k

is the local popularity of the k

th content object;
n

mgt

is the number of users migrating from origin to the
selected destination;
n

dst

is the number of users at the selected destination for
content.

With the content objects ranked and sorted in descending
order by their score, content is selected to fill the cache until its
size threshold. When content is not already available locally,
decisions are made towards deciding how to copy it from
its nearest replica and when that operation should be per-
formed. The first decision is based on a simple load balancing
strategy, considering the available links’ status information
and giving priority to direct links, e.g. 3GPP-defined X2
interfaces between eNBs. The second decision is derived from
the available time for migration (given by mobility prediction)
and the existing schedule for other migrations using the same
components. Based on the time it will take to copy the content
subset and the deadline to have it copied, a slot is picked in

344ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

the migration schedule and the FMC Controller instructs the
NDN router at the destination to fetch the content accordingly.

IV. EVALUATION EXPERIMENTS

In order to evaluate the proposed strategies, a set of ex-
periments was defined and is described in detail in the next
subsections.

A. Mobility Data Input

In order to evaluate the proposal described in the previous
section, a realistic mobility trace was selected [29]. This
trace includes data from one hundred human subjects over
the course of nine months, and it was collected by MIT
students using Nokia 6600 smart phones in the academic year
of 2004/2005. Although the information collected includes
call logs, Bluetooth devices in proximity, cell tower IDs,
application usage, and phone status, for this evaluation only
the information on mobility was considered: Object Identifier
(OID), endtime, starttime, person OID, celltower OID. There-
fore, it is possible to know at every given time to which cell
a given person is connected. Such trace can thus be used to
assess how the system behaves in realistic conditions, as if
mobility was generated in any other way, it would probably
create biased results and render the conclusions invalid for
real-world scenarios.

Concerning mobility prediction, it is not the main focus
of this work. Therefore, 15 minutes delta time predictions
(15 minutes in the future) were generated at every 1 hour of
simulation time according to the results obtained by mobility
prediction works [30][31]. As concluded in the mentioned
works, a 50% user movement randomness corresponds to
an accuracy of about 50%. Thus, the generated predictions
for these experiments had an accuracy following a normal
distribution N(0.5, 0.1).

B. Basic Setup

The setup for this evaluation is depicted in Fig. 2. It consists
of the proposed architecture implemented in the ns3 simulator
using its LTE module [32] together with ndnSIM 2.1 [33].
First, the simulator creates a Content Producer attached to a
NDN Router, which is a node with NDN capabilities such
as caching and forwarding. The latter is by itself attached
using IP and 10 Gbps links to the EPC of the LTE module.
Afterwards, a pair of eNB + NDN Router (including a NDN
Content Store, i.e. cache of 2 GB stored in RAM) is created
for each cell of the trace mobility file, attaching randomly
positioned (within the cell’s coverage) UEs + NDN Consumers
to the LTE network according to the trace mobility inputs.
These attachments are changed over the simulation time, thus
emulating user mobility and triggering an handover using the
X2 interface. That handover is managed by the MME, which
is modified to feed information to the Mobility Predictor. The
Mobility Predictor feeds mobility information, while NDN
Routers provide the remaining relevant information (criteria)
to the FMC Controller, which makes decisions and therefore
instructs content to be copied between NDN Routers.

FMC Controller
eNB eNBNDN

Router
NDN

Router

Mobility Predictor

S-GW +
P-GW

MME

S1-U

S11

S1-MME S1-MME

S1-U

UEs +
Consumers

UEs +
Consumers

X2

NDN
RouterProducer

Fig. 2: Evaluation Setup

As for the simulation itself, it runs for 12 hours in a
daytime period of the trace mobility file, when it is more
likely for users to be active. Simulations were repeated 30
times using different day periods with at least 60 active users
and considering the 100 most visited cells, using a Linux
cluster to parallelize the work (http://www.ubelix.unibe.ch).
Additionally, for parameters not mentioned here, the default
values were used (e.g. LTE radio parameters).

C. Decision Criteria’s Weights
Assuming that different weights for the criteria may return

different results, four different weight sets were considered for
evaluation. These are highlighted in the tables below, which
each contain the AHP judgment matrix for all the criteria
and the resulting eigenvector with weights calculated using
the process described in Section III.

M.P. Diff F.S. G.S.

M.P. 1/1 2/1 4/1 3/1
N.C. 1/2 1/1 2/1 3/1
F.S. 1/4 1/2 1/1 1/2
G.S. 1/3 1/3 2/1 1/1

(a) Matrix

Weight

M.P. 0.46124
N.C. 0.28450
F.S. 0.10633
G.S. 0.14793

(b) Vector

TABLE I: Weight Set #1
M.P. Diff F.S. G.S. Cost

M.P. 1/1 2/1 4/1 3/1 3/1
N.C. 1/2 1/1 2/1 3/1 2/1
F.S. 1/4 1/2 1/1 1/2 1/1
G.S. 1/3 1/3 2/1 1/1 2/1
Cost 1/3 1/2 1/1 1/2 1/1

(a) Matrix

Weight

M.P. 0.39778
N.C. 0.25232
F.S. 0.09725
G.S. 0.14897
Cost 0.10368

(b) Vector

TABLE II: Weight Set #1 with Cost

In Table I, the importance given to mobility prediction
(M.P.) is higher than for any other criterion. At the same time,
group size (G.S.) is considered more important than free space
(F.S.) and cost is not considered.

345ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

M.P. Diff F.S. G.S.

M.P. 1/1 1/2 3/1 2/1
N.C. 2/1 1/1 3/1 4/1
F.S. 1/3 1/3 1/1 2/1
G.S. 1/2 1/4 1/2 1/1

(a) Matrix

Weight

M.P. 0.28450
N.C. 0.46124
F.S. 0.14793
G.S. 0.10633

(b) Vector

TABLE III: Weight Set #2
M.P. Diff F.S. G.S. Cost

M.P. 1/1 1/2 3/1 2/1 2/1
N.C. 2/1 1/1 3/1 4/1 3/1
F.S. 1/3 1/3 1/1 2/1 1/1
G.S. 1/2 1/4 1/2 1/1 2/1
Cost 1/2 1/3 1/1 1/2 1/1

(a) Matrix

Weight

M.P. 0.31739
N.C. 0.36398
F.S. 0.11526
G.S. 0.10714
Cost 0.09623

(b) Vector

TABLE IV: Weight Set #2 with Cost

In Table II, everything is similar to Table I besides the fact
that migration cost is now considered and the resulting weights
are different.

In Table III, the greatest importance is given to the amount
of non-intersecting content between the caches (N.C.) and,
unlike in Table I, F.S. is considered more important than G.S.
Also here, cost is not considered.

In Table IV, everything is similar to Table III besides the
fact that migration cost is now considered and the resulting
weights are different.

D. Content and Requests

The Content Producer consists of a file generator, which
generates 100 000 files according to the defined scenario:
either a YouTube scenario or a web server scenario. The
first scenario intends to mimic video streaming traffic using
conditions from the well-known YouTube video portal, which
is the type of traffic that dominates Internet nowadays. The
second scenario attempts to mimic traffic of users accessing
modern Web 2.0 pages with plenty of multimedia content
such as high-resolution images. As shown in Table V, it is
assumed that content popularity of both of them follows a Zipf
distribution [34]. For this setup, 20 popularity classes are taken
into account. As several studies have shown [35][36] that most
content objects are unpopular and only a few content objects
are very popular, the number of content objects to be included
in each popularity class is mapped to a Zipf distribution with
↵ = 1 and with inverted classes, i.e., most content objects are
included in class 19 and fewest files in class 0.

Parameter Web Server YouTube

Requests Every 5 seconds

Request Popularity Zipf distribution with
↵ = 1 ↵ = 2

File Distribution
per Popularity Class

Zipf distribution, ↵ = 1
mapped to inverse classes

File Sizes
per Popularity Class

Gamma distribution,
↵ = 1.8, � = 1200

min. 50KB
max. 50MB

Gamma distribution,
↵ = 1.8, � = 5500

min. 500KB
max. 100MB

TABLE V: Evaluation Parameters

As also described in Table V, file sizes within each popular-
ity class are different. Based on existing YouTube models [37],
file size distribution for a YouTube scenario is set to a gamma
distribution with ↵ = 1.8 and � = 5500. The file sizes for web

server traffic are considerably smaller [38]. However, these
file sizes have increased during the last years, and it is safe
to assume that they keep increasing in the future with NDN.
Transmitted NDN packets need to have a certain minimum size
to be efficient, e.g., segment size of 4096 bytes or more, to
avoid too large overhead for content headers including names
and signatures. Therefore, it is assumed that for future NDN
traffic, many small files may be aggregated to larger data
packets or NDN would only be applied to large static files,
e.g., pictures or embedded videos, and not small text files
that may change frequently. Therefore, a gamma distribution
with ↵ = 1.8 and � = 1200 was selected for the web server
scenario.

As for the content requests to be performed by users
(Consumers) during the simulation, a parameter of ↵ = 1

is considered realistic for web server traffic and ↵ = 2 is used
for YouTube traffic.

E. Evaluation Metrics

Finally, five different metrics were evaluated to assess
accuracy of the strategies, performance improvements for end
users and potential savings for operators. The first is the
position of an optimal solution (highest profit destination)
in the score-sorted ranking of destination alternatives derived
from the output of the AHP decision. The optimal solution
is the location where the group of users was on which the
requested volume of content recently migrated was the highest.
If it is in the first positions (1, 2, 3, etc.) of the aforementioned
ranking, it means that the decisions were good and will yield
benefits for the users. The second metric is the number of
cache hits, which enables the comparison of strategies and the
benefit to be quantified in terms of end users perspective and
possible network bandwidth savings. The third is the average
download latency experienced by users, considering the best
weight set from previous metrics evaluation. The fourth is the
aggregated usage of bandwidth at the core interfaces (S1 and
X2), evaluating the overhead caused by different strategies
and how the load becomes distributed. Finally, the fifth is a
comparison of timings for FMC in the different scenarios in
order to evaluate if migrations are made on time when they
are reactive (no predictions) or proactive (mobility predicted).

V. EVALUATION RESULTS

In the graphs below, results from the experiments defined
in the previous section can be observed. To assess the first
evaluation metric a comparison is made between the different
weight sets, and a Cumulative Distribution Function (CDF)
is generated for each ranking position. With the CDF, it is
possible to obtain the cumulative percentage of times when
the optimal solution was within the n first positions of the
ranking. For example, one may assume that x percent of the
times the optimal solution was at the first three positions of
the ranking of destinations.

In Fig. 3, results show that weight set #1 has a higher
percentage of optimal solutions at the first position of the
ranking, meaning that selections were perfect in almost 60%

346ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

!

!"#

!"$

!"%

!"&

'

'"#

' # ($)*

!"
#

$%&'()*+,-,*&

./,01-(2/-(34 ./,01-(2/-(35 ./,01-(2/-(34(67(!*+-

./,01-(2/-(35(67(!*+- 8*9,:,-;()</=,>-,*&(?&:;

Fig. 3: Optimal Solution in Ranking

of the cases. However, the results of weight set #2 converge
quicker to 100% of the cases, surpassing weight set #1 after
(and including) rank position number 2. Overall, one may
assume that weight set #2 selects better options than any other
weight set, especially considering that the optimal solution was
within the first three positions of the ranking in more than 90%
of the cases. This can be easily explained by the accuracy of
mobility prediction, which can vary immensely and does not
account for the time users spend at the predicted locations.
At the same time, giving priority to destinations where most
of cached content is not the same as in the origin has a big
inherent potential to be explored from the beginning.

When looking at the weight sets but considering cost, the
trend is slightly different. Weight set #2 with cost outperforms
weight set #1 with cost from the beginning, with the optimal
solution being in the first position of the ranking almost 50%
of the cases and in more than 80% of the cases the optimal
solution being in the first 4 positions of the ranking. These
results are according to what was expected, as cost limits the
performance but considering it still delivers a good trade-off
for both end users and network operators.

!

!"#

!"$

!"%

!"&

!"'

!"(

!")

!"*

!"+

#

,-./0123-124# ,-./0123-124$,-./0123-124#2
5627891

,-./0123-124$2
5627891

:8;<=->.?1.8@ A82B:7

!"
#$
%&
'(
)&*

")
%

+%,&-%./%. 01232,%

Fig. 4: Cache Hit Rates

As for the second evaluation metric, a comparison between
our strategies with different weight sets, mobility prediction
only [22] and no use of FMC (default strategy) is shown in
Fig. 4, evaluating cache hits in both the YouTube and Web
Server scenarios.

From the depicted results, one may observe that cache hit
rates tend to be lower for the YouTube scenario because of

bigger file sizes and a different Zipf distribution. However,
in this particular case our FMC strategies show the biggest
difference towards simple Mobility Prediction and No FMC.
For instance, the cache hit rate using weight set #2 is up to
40% higher than with the default strategy without FMC, and
over 20% higher than relying solely on Mobility Prediction.

As for the Web Server scenario, the benefit is not so high
(up to 20% less). Such fact is explained by the characteristics
of web server traffic, which has a lot of small objects that are
easily cached even if the cache storage space is low. Therefore,
users may find most of the content already distributed over the
network, and migration strategies do not copy a large amount
of content that can yield benefits. However, multimedia content
now accounts for the most traffic in mobile networks [1], and
we can easily conclude that FMC content migration strategies
deliver their biggest performance for the biggest part of the
traffic.

!
"

#!
#"
$!
$"
%!
%"
&!
&"
"!

! #! $! %! &! "!

!"
#
$%
"&

'(
()&

*+
$,
-(.
/+
,"
$'

/0

12%+(324+(.560

7"$8,&,9+' :&,9+' 15:

Fig. 5: Average Content Download Latency - Web Server

!

"!

#!

$!

%!

&!!

&"!

! "! #! $! %! &!!

!"
#
$%
"&

'(
()&

*+
$,
-(.
/+
,"
$'

/0

12%+(324+(.560

7"$8,&,9+' :&,9+' 15:

Fig. 6: Average Content Download Latency - YouTube

In Fig. 5 and Fig. 6, a comparison between the different
strategies (no edge caching, edge caching and FMC) is pre-
sented for the Web Server and YouTube scenarios. Here, the
FMC strategy is considered to be Weight Set #2 with cost,
thus having the highest cache hit rates together with possible
savings in core bandwidth. First, we may observe that data
points present high variance, caused by the method they were
obtained with. As the number of files is too big to represent,
sampling was performed to include only 500 data points
between the minimum and maximum file sizes. This sampling
considers the sizes of all files generated in the multiple runs,
and therefore has the influence of the different file sizes

347ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

themselves, network conditions, processing and others. Thus,
to facilitate the understanding of the results, a trend line
with a moving average of 50 data points is included. Results
confirm in a end-to-end user perspective what was visible
when comparing cache hit rates: improvements experienced
by end users are considerable and caches are used more
efficiently, i.e. cached content corresponds mostly to content
that will actually be requested by users. This is true for both
scenarios, and again we may easily see that improvement
towards regular edge caching is much bigger when multimedia
traffic is considered and content sizes tend to increase.

As for aggregated core bandwidth usage, Fig. 7 depicts a
comparison for the different strategies (no edge caching, edge
caching and FMC), in the two scenarios and also in different
LTE core interfaces (S1-U and X2). First, we observe that,
as expected, the aggregated usage of the S1-U interfaces is
clearly reduced for both scenarios when caching at the edge.
Second, we can also see that there is an overhead created by
using FMC strategies when comparing to edge caching. This
overhead becomes more clear over time, when caches start to
be filled and more content is migrated, but it is compensated by
the usage of the X2 interfaces between eNBs. This balances the
load and eventually even adds more load to the X2 interface
(prioritize), thus moving traffic away from the EPC and using
available resources more efficiently. Finally, we conclude that
there are differences between scenarios, especially because of
the file sizes being bigger in YouTube traffic. This leads to a
higher bandwidth consumption reduction with edge caching in
the YouTube scenario, but also a slightly higher overhead for
FMC strategies. Despite that, reductions in the usage of S1-U
interfaces, and therefore in EPC, are still meaningful because
of more traffic being offloaded using X2 interfaces.

!

!"#

$

$"#

%

%"#

&

&"#

!"
"#
$"
%&
$'

()
%*

'+
,'
&-
(.
/%
"$
(01

23
/4

5,678%&,9*(:,6$

5;<*9*=>%>-$'<?5 5;<*9*=>%>-$'<@: 5;<>%>-$'<?5 5;<>%>-$'<@:

5;<ABC<?5 5;<ABC<@: DE<ABC<?5 DE<ABC<@:

Fig. 7: Aggregated Core Bandwidth Usage

Finally, in Fig. 8 we plot the average execution times of
different components for the FMC strategies (in both traffic
scenarios) together with the average available time brought
by both X2 handover procedures and mobility prediction. All
values have a confidence interval of 95%, and we see that
despite the accuracy of mobility prediction (about 50%), on
average there is still plenty of available time for decisions
and other cache operations (bear in mind that we are using a
logarithmic scale). Using mobility prediction, in both scenarios
the FMC components are able to execute within the available
time frame. At the same time, if FMC operations are triggered

!

!"

!""

!"""

!""""

!"""""

!""""""

#$%&'()* +',-.-/01 2*)&-3/-'% 4+5167 4+5189

!"
#$
%&
'(
)*
+'
,
#*
-,

'.'/
#$
()

0/
1

234'.45.#*+',# 678*9#$'/'()/ :';#*84.$%.4&'()

:$<#0%.')= >(%&')=*4)0*?4.4)$')= 8()&#)&*8(@A')=

Fig. 8: Execution Times
reactively (no prediction), the handover delay is only enough
for the decisions process. This means that the content transfer
procedure will only start after the user is already at the new
location, and in the worst case scenario it will have some initial
cache misses while the content is still transferring. Overall,
the impact of this behavior is not very high, as from previous
figures we still observed very high cache hit ratios.

VI. CONCLUSIONS

In this paper, concepts and strategies for the migration of
content within mobile networks were introduced, enabling
multiple benefits both from user and network perspectives.
As the users move to different locations, they still want
to access content in which they are interested with a low
latency and without delays or breaks, especially if dealing with
multimedia content. From the network perspective, this can
only be granted if caches exist at the edge of mobile networks
and content kept in those caches (with limited resources) is
the right content, i.e. popular content that local users are very
interested in.

A number of proposals to handle this issue already exist,
and were described thoroughly in Section II. However, some
cannot be applied to content (only to services) or have other
limitations, often assuming a very specific scenario or scope
and not handling important issues or considering certain
requirements. Therefore, we propose a broader approach to
deal with content migration, handling decisions with multiple
criteria and deciding multiple factors that will trigger content
migration to a particular place of a given subset of content.

This proposal was evaluated in terms of performance, con-
sidering multiple weight values and different scenarios. When
comparing to the case where default NDN caching strategies
are used, clear benefits can be observed and quantified, leading
to the conclusion that not only FMC enhanced caching strate-
gies are the way to go when handling edge caches, but also
that the architecture proposed in subsection III-A together with
its decision mechanisms can achieve the goal of delivering
content with lower latency to end users while efficiently using
and saving well-valued network bandwidth.

Although the results can be considered as quite good, im-
provements can still be made. For instance, more hierarchical
levels can be considered in the criteria for the decision where

348ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

to scale content and more advanced strategies can be used
to decide which subset of content should be migrated. We
envision that popularity may not be the only factor to decide
which content to migrate due to is general nature, but also
other factors that relate user to content should be considered
in future work.

ACKNOWLEDGEMENT

The research leading to these results has received funding
from the European Union’s Seventh Framework Programme
Mobile Cloud Networking project (FP7-ICT-318109).

REFERENCES

[1] “Cisco Visual Networking Index: Global Mobile Data Traffic Fore-
cast Update, 2014–2019,” http:/ /www.cisco.com/c/en/us/solutions/
collateral/service- provider/visual- networking- index- vni/white paper
c11-520862.pdf, Feb 2015.

[2] P. Demestichas, A. Georgakopoulos, D. Karvounas, K. Tsagkaris,
V. Stavroulaki, J. Lu, C. Xiong, and J. Yao, “5g on the horizon:
Key challenges for the radio-access network,” Vehicular Technology
Magazine, IEEE, vol. 8, no. 3, pp. 47–53, Sept 2013.

[3] “Suggestions on Potential Solutions to C-RAN by NGMN Alliance,”
The Next Generation Mobile Networks (NGMN) Alliance, Tech. Rep.,
Jan. 2013. [Online]. Available: http://www.ngmn.org/uploads/media/
NGMN CRAN Suggestions on Potential Solutions to CRAN.pdf

[4] B. Haberland, F. Derakhshan, H. Grob-Lipski, R. Klotsche, W. Rehm,
P. Schefczik, and M. Soellner, “Radio Base Stations in the Cloud,” Bell
Labs Technical Journal, vol. 18, no. 1, pp. 129–152, 2013.

[5] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th International Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’09. New York, NY, USA: ACM, 2009,
pp. 1–12.

[6] S. K. Fayazbakhsh, Y. Lin, A. Tootoonchian, A. Ghodsi, T. Koponen,
B. Maggs, K. Ng, V. Sekar, and S. Shenker, “Less pain, most of the gain:
Incrementally deployable icn,” in Proceedings of the ACM SIGCOMM
2013 Conference on SIGCOMM, ser. SIGCOMM ’13. New York, NY,
USA: ACM, 2013, pp. 147–158.

[7] D.-h. Kim, J.-h. Kim, Y.-s. Kim, H.-s. Yoon, and I. Yeom, “Mobility
Support in Content Centric Networks,” in Proceedings of the Second
Edition of the ICN Workshop on Information-centric Networking, ser.
ICN ’12. New York, NY, USA: ACM, 2012, pp. 13–18.

[8] D. Smetters and V. Jacobson, “Securing network content,” PARC, Tech.
Rep., Oct. 2009. [Online]. Available: https://www.parc.com/content/
attachments/TR-2009-01.pdf

[9] A. Gomes and T. Braun, “Feasibility of Information-Centric Networking
Integration into LTE Mobile Networks,” in Proceedings of the 30th
Annual ACM Symposium on Applied Computing, ser. SAC ’15. ACM,
April 2015, pp. 628–634.

[10] X. Wang, M. Chen, Z. Han, D. Wu, and T. Kwon, “Toss: Traffic
offloading by social network service-based opportunistic sharing in
mobile social networks,” in INFOCOM, 2014 Proceedings IEEE, April
2014, pp. 2346–2354.

[11] M. P. Wittie, V. Pejovic, L. Deek, K. C. Almeroth, and B. Y.
Zhao, “Exploiting locality of interest in online social networks,” in
Proceedings of the 6th International COnference, ser. Co-NEXT ’10.
New York, NY, USA: ACM, 2010, pp. 25:1–25:12. [Online]. Available:
http://doi.acm.org/10.1145/1921168.1921201

[12] M. D. Choudhury, H. Sundaram, A. John, D. D. Seligmann, and A. Kel-
liher, “”birds of a feather”: Does user homophily impact information
diffusion in social media?” CoRR, vol. abs/1006.1702, 2010.

[13] H. Li and G. Ascheid, “Mobility prediction based on graphical model
learning,” in Vehicular Technology Conference (VTC Fall), 2012 IEEE,
Sept 2012, pp. 1–5.

[14] S. Rajagopal, N. Srinivasan, R. Narayan, and X. Petit, “Gps based
predictive resource allocation in cellular networks,” in Networks, 2002.
ICON 2002. 10th IEEE International Conference on, 2002, pp. 229–234.

[15] Y. Chon, H. Shin, E. Talipov, and H. Cha, “Evaluating mobility
models for temporal prediction with high-granularity mobility data,”
in Pervasive Computing and Communications (PerCom), 2012 IEEE
International Conference on, March 2012, pp. 206–212.

[16] A.-F. Antonescu, A. Gomes, P. Robinson, and T. Braun, “Sla-driven
predictive orchestration for distributed cloud-based mobile services,” in
Communications Workshops (ICC), 2013 IEEE International Conference
on, June 2013, pp. 738–743.

[17] T. Taleb and A. Ksentini, “Follow me cloud: interworking federated
clouds and distributed mobile networks,” Network, IEEE, vol. 27, no. 5,
pp. 12–19, September 2013.

[18] ——, “An analytical model for follow me cloud,” in Global Communica-
tions Conference (GLOBECOM), 2013 IEEE, Dec 2013, pp. 1291–1296.

[19] A. Ksentini, T. Taleb, and M. Chen, “A markov decision process-based
service migration procedure for follow me cloud,” in Communications
(ICC), 2014 IEEE International Conference on, June 2014, pp. 1350–
1354.

[20] H. Liu, Y. Sun, and M. S. Kim, “Provider-level content migration
strategies in p2p-based media distribution networks,” in Consumer
Communications and Networking Conference (CCNC), 2011 IEEE, Jan
2011, pp. 337–341.

[21] C. Anastasiades, A. Gomes, R. Gadow, and T. Braun, “Persistent caching
in information-centric networks,” in Local Computer Networks (LCN),
2015 IEEE 40th Conference on, Oct 2015, pp. 64–72.

[22] X. Vasilakos, V. A. Siris, G. C. Polyzos, and M. Pomonis, “Proactive se-
lective neighbor caching for enhancing mobility support in information-
centric networks,” in Proceedings of the Second Edition of the ICN
Workshop on Information-centric Networking, ser. ICN ’12. New York,
NY, USA: ACM, 2012, pp. 61–66.

[23] “Named Data Networking (NDN) project,” http : / /named- data .net /
techreport/TR001ndn-proj.pdf, PARC, Tech. Rep., Oct. 2010.

[24] D.-L. Xu, “An introduction and survey of the evidential reasoning
approach for multiple criteria decision analysis,” Annals of Operations
Research, vol. 195, no. 1, pp. 163–187, 2012.

[25] T. L. Saaty, The Analytic Hierarchy Process: Planning, Priority Setting,
Resource Allocation. New York, NY: Mcgraw-Hill, 1980.

[26] R. Saaty, “The analytic hierarchy process—what it is and how it is used,”
Mathematical Modelling, vol. 9, no. 3–5, pp. 161 – 176, 1987.

[27] T. L. Saaty, “How to make a decision: The analytic hierarchy process,”
European Journal of Operational Research, vol. 48, no. 1, pp. 9 – 26,
1990, decision making by the analytic hierarchy process: Theory and
applications.

[28] R. Andonov, V. Poirriez, and S. Rajopadhye, “Unbounded knapsack
problem: Dynamic programming revisited,” European Journal of Op-
erational Research, vol. 123, no. 2, pp. 394 – 407, 2000.

[29] N. Eagle and A. (Sandy) Pentland, “Reality mining: Sensing complex
social systems,” Personal Ubiquitous Comput., vol. 10, no. 4, pp. 255–
268, Mar. 2006.

[30] N. Samaan and A. Karmouch, “A mobility prediction architecture
based on contextual knowledge and spatial conceptual maps,” Mobile
Computing, IEEE Transactions on, vol. 4, no. 6, pp. 537–551, Nov
2005.

[31] N. Amirrudin, S. Ariffin, N. Malik, and N. Ghazali, “User’s mobility
history-based mobility prediction in lte femtocells network,” in RF and
Microwave Conference (RFM), 2013 IEEE International, Dec 2013, pp.
105–110.

[32] “ns-3: LTE Module,” https://www.nsnam.org/docs/models/html/lte.html,
Sep. 2015.

[33] A. Afanasyev, S. Mastorakis, I. Moiseenko, and L. Zhang, “NS-3 based
Named Data Networking (NDN) simulator,” http://ndnsim.net, Sep.
2015.

[34] D. Rossi and G. Rossini, “Caching performance of content centric
networks under multi-path routing (and more),” http://perso.telecom-
paristech.fr/⇠drossi/paper/rossi11ccn-techrep1.pdf, Telecom ParisTech,
Tech. Rep., 2011.

[35] T. Yu, C. Tian, H. Jiang, and W. Liu, “Measurements and analysis of
an unconstrained user generated content system,” in Communications
(ICC), 2011 IEEE International Conference on, June 2011, pp. 1–5.

[36] “Half of youtube videos get fewer than 500 views,” http: / /www.
businessinsider.com/chart-of- the-day-youtube-videos-by-views-2009-
5?IR=T, May 2009.

[37] A. Abhari and M. Soraya, “Workload generation for youtube,” Multi-
media Tools Appl., vol. 46, no. 1, pp. 91–118, Jan. 2010.

[38] A. Williams, M. Arlitt, C. Williamson, and K. Barker, “Web workload
characterization: Ten years later,” in Web Content Delivery, ser. Web In-
formation Systems Engineering and Internet Technologies Book Series,
X. Tang, J. Xu, and S. T. Chanson, Eds. Springer US, 2005, vol. 2,
pp. 3–21.

349ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Optimized Cooperative Streaming
in Wireless Mesh Networks

Luca Baldesi, Leonardo Maccari, Renato Lo Cigno
Department of Information Engineering and Computer Science (DISI), University of Trento, Italy

{luca.baldesi, leonardo.maccari, renato.locigno}@disi.unitn.it

Abstract—Peer-to-peer video streaming is a valuable technique

to reduce the overhead produced by centralized and unicast-

based video streaming. Key to the efficiency of a peer-to-

peer approach is the optimization of the logical distribution

topology (the overlay with respect to the underlying network, the

underlay). This work studies peer-to-peer streaming in wireless

mesh networks for which the underlay is known. We propose

an optimized, cross-layer approach to build the peer-to-peer

distribution overlay minimizing the impact on the underlay. We

design an optimal strategy, which is proven to be NP-complete,

and thus not solvable with a distributed, light weight protocol.

The optimal strategy is relaxed exploiting the knowledge of the

betweenness centrality of the underlay nodes, obtaining two easily

implementable solutions applicable to any link-state routing

protocol. Simulation and emulation results (experimenting with

real applications on a network emulated with the Mininet

framework) support the theoretical findings, showing that the

relaxed implementations are reasonably close to the optimal

solution, and provide vast gains compared to the traditional

overlay topology based on Erd

¨

os-R

´

enyi models that a peer-to-

peer application would build.

I. INTRODUCTION

Video streaming is the major component of the global
Internet traffic, and it is thought to be increasing for several
years to come. Today streaming is normally delivered with
several seconds of delay, but users are asking for more
performing systems, and video calls and conferences, which
are still somewhat “rare”, require a much more timely delivery
of the video. Currently, the majority of the Video Service
Providers (VSPs) deliver video streams using unicast traffic
and leveraging centralized platforms supported by world-wide
Content Delivery Networks (CDNs).

Ten years ago, the peer-to-peer (P2P) paradigm and tech-
nologies promised to offer a solution for massive content
distribution, including video streaming and conferencing. The
reasons P2P systems were unable to meet their potential are
many, a key one was the difficulty to realize P2P overlays
optimized from the point of view of the Internet Service
Providers (ISPs).

An application field in which this problem can be overcome
is the field of wireless mesh networks, and in particular
Community Networks (CN from now on). CNs are large

This work was financed partially by the University of Trento under the
grant “Wireless Community Net-works: A Novel Techno-Legal Approach”
—Strategic Projects 2014, and partially by the European Commission, H2020-
ICT-2015 Programme, Grant Number 688768 ’netCommons’ (Network Infras-
tructure as Commons).

mesh networks (primarily made of wireless links) that are
flourishing in many different scenarios, from the developing
country where there is no other connectivity means, to the
urban areas of western cities where they compete with other
network providers. The steep decrease of the prices of outdoor
wireless equipment makes it possible to build cooperative
wireless mesh networks with links that can achieve tens of
Mbit/s and support CNs made of hundreds of nodes. The most
prominent example is the Guifi network (www.guifi.net) that
is a collection of various networks in East Spain, for a total
of about 30,000 nodes [1]. In CNs the underlay is normally
known, since the routing protocols exports it to each node (as
long as a link-state routing protocol is used), which removes
one of the technical barriers that blocked the deployment of
P2P video streaming on the Internet. We assume that the
distribution engine of the video is installed in the mesh nodes,
as already proven feasible in [2], while the video can be
enjoyed on standard terminals, so that underlay details are
easily accessible to the overlay manager.

The contribution of this paper is a cross-layer optimization
scheme to perform live video streaming (i.e., with a strict
deadline on the arrival delay) in mesh networks [3]. The
optimization minimizes the impact of the streaming overlay
on the underlay network exploiting information on the topol-
ogy and routing of the underlay. The case of non real-time
streaming can be seen as a sub-case of live streaming relaxing
the constraints on delivery delay.

The optimization is based on the concept of centrality,
which is also at the base of successful algorithms as Google
PageRank [4]. Taking into account the centrality of peers in
the underlay graph, the optimized overlay topology greatly
improves the efficiency of the video distribution and maintains
high performance. The resulting algorithm and protocol are
first tested on synthetic topologies, showing that they are
robust and efficient; finally they are implemented within
PeerStreamer1, an existent live P2P-streaming platform, and
tested using a network emulator configured with the topologies
of real wireless mesh networks.

II. MOTIVATION AND PROBLEM STATEMENT

We consider a communication system where the cooperative
distribution exploits a logical topology called the overlay built
on top of a meshed routing network called the underlay.

1PeerStreamer is Open Source effort supported by the DISI-ANS research
group of the University of Trento. See http://peerstreamer.orgISBN 978-3-901882-83-8 c� 2016 IFIP

350ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

1 2

34

5

6 7

8

91011

12

13

14

15

16

Fig. 1: Example of wireless mesh underlay graph. Hosts are
numbered with an arbitrary ordering. Dashed lines represent
the wireless links.

1
p1

2
p2

34

5

p3 6 7

8

910 p411

12

p5

13 p6

14
p7

15

16 p8

Fig. 2: Possible overlay graph (black vertexes and edges) over
the underlay graph of Fig. 1.

Nodes in the overlay, that from now on we call peers, do
have access to information concerning the underlay, including
details on the topology and quality of its links. This is true for
a wireless mesh network using link-state routing protocols, in
which every wireless router needs to know the whole topology
of the network to perform routing. For instance, standard
implementations as the OLSRd daemon implementing the
Optimized Link State Routing (OLSR) protocol [5] export the
topology with a simple API. The optimization we propose
regards the choices of the edges in the overlay so that the
impact on the underlay is minimized and evenly distributed.

We model the underlay with an undirected graph U(H,L)
with vertexes h 2 H called hosts or nodes, and edges l 2 L
called links. The size of H is between a few tens up to a
thousand hosts, which corresponds to the realistic size of a
CN [6]. Fig. 1 shows the graph representation of a sample
underlay with 16 hosts.

The peers form an overlay that is also modeled as an
undirected graph O(P,E) with vertexes p 2 P called peers,
and edges e 2 E called virtual or logical links. Each peer
resides in one host only, and it has access to information
pertaining to U , including the association between peers and
hosts. Fig. 2 depicts a possible overlay graph on the underlay
of Fig. 1.

The goal is to find a viable (meaning that can be imple-
mented as a distributed system with limited signaling overhead
and acceptable computational overhead) methodology to select
virtual links between peers to build O(P,E) given U(H,L)
and P so that the load imposed by the video streaming on
the underlay links is minimized, and links are loaded as fairly

TABLE I: Summary of the main symbols used through the
paper and their meaning.

Peers, Hosts, Links and Virtual Links sets P , H , L, and E
Overlay and underlay graphs U(H,L), O(P,E)
Fairness of O(P,E) over U(H,L) F
Network load of O(P,E) over U(H,L) L
kth undirected overlay edge in P ⇥ P e

k

Cross-layer overlay edge descriptor of e
k

ē
k

ith overlay peer p
i

Set of the overlay edges in O(P,E) linking p
i

S0
i

Family of all S0
i

, i = 1, . . . , |P | F 0

O(P,E) as an intersection graph ⌦(F 0)
Target function on ⌦(F 0) addressing L and F O

c

Binary variable representing of whether e
k

2 E z
k

Estimation of link usage in O(P,E) b̄

as possible. O is dynamically created and maintained because
both O and U can change frequently, so the modification of
O must be fast and efficient.

A. Formal Problem Definition
Tab. I reports the main notation we use in the paper. Given

an edge e connecting pi, pj 2 P , we call D(e) the Dijkstra
function returning an (ordered) set of links in the underlay
that form the shortest path from the host where pi resides and
the host where pj resides. For example in Fig. 2 we have:

e = (p1, p4) 7! D(e) = {(1, 3), (3, 10)}
where (i, j) is the link e connecting hosts i and j. A generic
weight w(l) is assigned to any link in the underlay, so that
the load L imposed by O on U is

L =

X

e2E

X

l2D(e)
w(l) (1)

This representation perfectly fits the routing protocols that
use the ETX metric [7], ETX is the expected average number
of frames sent on the link to correctly deliver one frame, and
it is used by OLSR and other protocols.

Every link l is loaded by a number of virtual links. To mea-
sure fairness, we use Jain’s fairness index on the distribution
of the number of logical links insisting on every l. Let H(l)
be the number of logical links loading l:

H(l) = |{e 2 E : l 2 D(e)}| (2)

where |·| is the size of a set. The Jain’s fairness is defined as

F =

�P
l2L H(l)

�2

|L|Pl2L H(l)2
(3)

Jain’s fairness is maximal if F = 1 and minimal when F =

1
|L| , but we do not expect that maximal fairness can be reached,
as in general there are links in the underlay that do not support
any edge in the overlay.

The contribution of this paper is twofold:
• First we derive a formal framework wherein it is possible

to define an optimization problem that allows finding
the topology of O(P,E) given U(H,L) and P that
minimizes a metric composed of L and F . The problem
is NP-complete and we’ll show that it can be reduced to
a quadratic knapsack problem [8];

351ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

• Second we propose two relaxations of the optimization in
decreasing complexity order and we show, with numerical
solutions and with an implementation in a real P2P
streaming platform, that the two relaxations are close
to the global optimum and that they vastly outperform
the tradition P2P overlay building based on selecting
uniformly neighboring peers to build an Erdös-Rényi
graph.

The paper focuses on building a mesh overlay and not on
how video chunks are distributed on it. On mesh topologies
this latter problem can be tackled with several different
strategies. Even if this is not the focus of the paper, Sec. III
briefly refers some relevant works on this topic, justifying our
choice for the distribution strategy we use in Sec. VI and
Sec. VII. The assumption we start from, which becomes a
constraint of the optimization problem, is that each peer should
receive exactly one copy of every chunk. We assume also
that each peer will contribute to the dissemination serving
chunks to other peers proportionally to its degree in O, so
that the chunk dissemination strategy becomes agnostic of the
volume of served chunks, simplifying it. This is one reason
why the overlay cannot simply be a full mesh, since the
traffic generated by each node is proportional to its degree.
Another reason is that to maintain a set of neighbors each
peer will periodically send probe messages to verify their
state and possibly the network conditions (loss, delay etc.).
Again the overhead needed for the maintenance of the network
graph is linear with the degree of each node. The theoretic
findings are validated implementing the strategies devised in
Sec. V into the PeerStreamer platform [9], and comparing
them with the standard overlay management strategy available
in PeerStreamer and used as reference for several works like
[10], [11].

III. RELATED WORKS

Cooperative video streaming (including P2P) is an estab-
lished research area. We focus on unstructured and mesh-
based approaches, in which there is no specific structure (like
a tree) in the topology. This approach has been shown to be
particularly robust even in networks with churn (i.e., peers
leaving and joining the swarm).

We do not consider here papers that perform streaming
optimization on mesh networks requiring modifications to the
lower layers (they cannot be applied to existing CNs) or that
are not tailored for live video streaming (e.g., using large
chunks that imply several seconds of buffering delay). We
also do not consider techniques (e.g., like cloud-assisted or
SDN based), where the role of the peers is, in one way or
another, not fundamental, and we assume that security [12] and
collusion [13] issue need not be solved by the application itself.
The following discussion is focused on two parts: topology
management, which is directly related to our contribution, and
chunk/information scheduling, which justify the choice of the
chunk selection strategy in Sec. VI and Sec. VII.

1) Topology Management: As we already mentioned, over-
lay optimization on the Internet is not feasible due to lack of
information on the underlay details; however several efforts

have been done to adapt and improve the overlay topology to
some measured underlay characteristics.

The first approach to mention is the use of “network
coordinates” as a means to compute distances between hosts
in a certain space. Several algorithms were proposed [14],
[15], [16], that are designed to work in the heterogeneous
environment of Internet. In all of them the goal is clearly to
find a method to infer details on the underlay (the Internet),
a problem that we do not have, as we take advantage of the
available information on the network topology provided by
routing protocols in Wireless Mesh Networks (WMNs). We
believe that our solution can be adapted, albeit not straight-
forwardly, to situations where the underlay is not known but
approximated with network coordinates.

A second line of research has been concerned with the
adaptation of the overlay based on bandwidth [17] or delay
(normally the round trip time between peers) [18] measures,
but also on a mix of the two [19]. The solutions found in these
works are, once again, tailored to the Internet, where delays
can be large (CNs spans a few tens of hundreds of km at most),
and bandwidth asymmetry at the edges impose hard limits to
the capacity of peers to contribute to dissemination.

Extremely interesting and promising for topology manage-
ment is the adoption of centrality metrics as means to better
understand the topology characteristics of a network graph
as it emerges from the routing protocol. Centrality metrics
in graphs have been used in social science since the 70s to
identify the most influential elements in social networks. Quite
surprisingly, they were not applied to multi-hop networks up
to recent times [4]. Centrality metrics can be used to enhance
network monitoring and routing [20], intrusion detection and
firewalling [21], [22], and topology control [23]. There are
several metrics based on different centrality “concepts”. In
this paper we use the betweenness centrality (see [22] for a
definition tailored to our problem) to relax the optimization
problem as it is strictly related to shortest path routing.

2) Chunk Scheduling: In a mesh-based overlay the problem
of chunk scheduling is the selection of the neighbors to
send/receive information to/from while contextually choosing
the right information (chunk) to send/retrieve. This problem
has been extensively studied [24], [25], [26], and in some
specific contexts with restrictive assumptions, the existence
of an optimal scheduling strategy has been proven [27].

Those works show that an efficient and robust chunk
scheduling technique that works well in most environments
consists in selecting a neighbor with a random (possibly
weighted) strategy, and push the most recent chunk that is
still missing at the receiving peer (Latest Useful Chunk). This
is the standard methodology used in PeerStreamer and that we
use to benchmark our proposal.

IV. OVERLAY MODEL

The links in U are bidirectional and assumed quasi-
symmetric: the most common routing protocols take care of
excluding unidirectional or highly asymmetric links. Thus
both O and U are undirected, and the maximum number of
edges they can have is mO =

|P |2�|P |
2 and mU =

|H|2�|H|
2

respectively.

352ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

e3,e4,
e7

S0
1

e8,e11,
e12

S0
2

e8,e14,
e15

S0
3

e3,e14,
e22

S0
4

e4,e15

S0
5

e11
S0
6

e12,e28
S0
7

e7,e22,
e28

S0
8

Fig. 3: Example of overlay intersection graph. Elements ek are
the cross-layer overlay edge descriptors between the nodes.

Let r 2 1 . . .mU be an arbitrary ordering on the links;
r is also a mapping from the two hosts hi and hj that are
the endpoints of the link: r(hi, hj). Similarly we define an
ordering k 2 1 . . .mO on the edges of O, and k is a mapping
k(pi, pj).

Every link lr is represented by a binary array of size mU

with the rth element set to one and all other elements set to
zero (we use the bar sign to refer to the array representation
of a link):

¯lr = (0, . . . , 0, 1, 0, . . . , 0)

Equivalently each virtual link ek is represented by the sum
of the link arrays in the corresponding shortest path:

ēk =

X

lr2 D(ek)

¯lr

We call ēk the cross-layer overlay edge descriptor, since it
connects the overlay with the underlay. Link weights w(l) in
U can be easily taken into account: let W 2 RmU⇥mU be
a diagonal matrix such that Wr,r = w(lr), then ēkW is the
weighted representation of the overlay edge.

A. Overlay re-definition as an intersection graph
Given all ēk for a set of peers P , we can take advantage

from a transformation into the intersection graph space (see
[28] for the complete definitions and properties of intersection
graphs) in order to formulate our optimization problem.

Let S be a set and F = {S1, . . . , Sp} a nonempty family
of distinct nonempty subsets of S whose union is S. The
intersection graph of F is denoted ⌦(F), with Si and Sj

adjacent whenever i 6= j and Si \ Sj 6= ;. It is easily shown
that if O(P,E) is a full mesh then it is isomorphic with the
intersection graph space ⌦(F) where

Si = {ēk(pi,pj), 8pj 2 P} 8pi 2 P ; S = [|P |
i=1Si (4)

and each Si is the set of all the possible virtual links built
on shortest paths from peer pi to all other peers. As a
consequence, given an underlay U(H,L) and a set of peers
P , any overlay O(P,E) over U(H,L) can be defined as
the intersection graph ⌦(F 0

) with F 0
= {S0

1, ..., S
0
|P |} where

S0
i ✓ Si 8Si 2 F . If each peer chooses only a subset S0

i ✓ Si

and activates only a subset of possible edges, then the resulting
overlay is isomorphic with some ⌦(F 0

). The overlay depicted
in Fig. 2 is isomorphic with the intersection graph shown in
Fig. 3: every S0

i in Fig. 3 corresponds to a peer pi in Fig. 2.

B. Performance Measures

We can now redefine in terms of intersection graphs also
the performance metrics Eq. (1) and Eq. (3) defined in Sec. II:

L = OI(⌦(F
0
)) =

~
1 · L(F 0

); L(F 0
) =

X

ēk2S0

ēk W (5)

where L(F 0
) is the array that associates the traffic potentially

produced by the overlay to each link in the underlay, ~1 is
the array of size mU made of all ones, and · is the dot
product. Eq. (5) redefines Eq. (1) through operations done in
the intersection graph space. Similarly we re-define the Jain’s
fairness index as

F = Of (⌦(F
0
)) =

(

PmU

k=1 L(F
0
)i)

2

mU (
PmU

k=1 L(F
0
)

2
i)

(6)

V. OVERLAY OPTIMIZATION

For the sake of simplicity, but without loss of generality
we take as weighting matrix W the identity matrix. Let’s say
we want to build an overlay O determined by a choice of
F 0

= {S0
1, ..., S

0
|P |} that minimizes the load on the underlying

edges and guarantees a fairness as close as possible to 1. We
have to choose the sets S0

i ✓ Si with S0
= [|P |

i=1S
0
i such

that both OI and Of are minimal, which is a multi-objective
combinatorial optimization problem. The problem allows the
definition of a combined metric Oc that expresses the cost of
the overlay. Since each array ēk 2 S0 corresponds to a set of
links the cost of the overlay is defined as:

Oc(⌦(F
0
)) =

������

������

|S0|X

k=1

ēk

������

������
2

The creation of an efficient overlay ⌦(F 0
) can now be

formulated as a minimization problem as follows. Select F 0

in order to minimize the expression:

argmin

z

������

������

|S|X

k=1

zkēk

������

������
2

(7)

where

zk =

⇢
1 if ēk 2 S0

0 otherwise

In order to avoid a trivial solution we impose on each peer
a minimum node degree d > log2(|P |), which also guarantees
that the resulting overlay is connected with high probability2.

This problem can be rephrased as: find the overlay graph
⌦(F 0

) with minimum degree d defined by F 0
= {S0

1, ..., S
0
|P |}

2Using simple P2P techniques the probability actually converges to 1 [19].

353ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

so that the norm of L(F 0
) is minimized subject to the

following constraint

X

ēk2Si

zk

!
� d; 8i = 1...|E| (8)

In Eq. (8) we did a small abuse of notation to improve the
readability: the sum spans all the edges ek 2 Si, but it is
indeed a sum over k(pi, pj) to correctly identify the indication
function zk. We will use this notation also in several other
equations.

If, instead of the norm, in Eq. (7) we use the sum of the
elements, this would simply minimize OI . The norm instead
prefers solutions that are close to the minimum OI and, among
two potential solutions with the same OI , it prefers the one
in which the weights of L(F 0

) are more fairly distributed.
This problem is a zero-one quadratic programming problem

[29], similar to a quadratic knapsack problem [8]. In this kind
of problems one wants to minimize the value of an expression
cTx+xTQx where x = {0, 1}n is an array of binary variables,
c 2 Rn and Q is a symmetric matrix of size n ⇥ n. The
minimization is subject to a constraint of the kind hTx +

xTGx > g where h is an array of size n, G a symmetric
matrix of size n⇥ n and g some real value. If we call ¯A the
matrix made of columns corresponding to the arrays ēk and z
the array made of zk elements then:

argmin

z

������

������

|S|X

k=1

zkēk

������

������
2

= argmin

z
zT ¯AT

¯Az

Our problem is thus a zero-one quadratic problem with Q =

¯AT
¯A, G and c made of all zeros, h =

~
1. This family of

problems is known to be NP-hard, but there are algorithms in
literature that make them tractable up to a certain size using
branch-and-bound techniques. Still, when |S| grows beyond a
few hundreds the problem can not be solved on commodity
hardware. |S| corresponds to the number of possible edges in
the overlay mO, so it scales quadratically with the number of
peers, which quickly makes the problem intractable.

A. Betweenness Centrality-based Relaxation

We need to find a relaxation in which each pj can solve
a portion of the problem, making some assumptions on the
behaviour of the other peers. This corresponds to a scenario
in which every peer is aware of the other peers, independently
selects its own neighbors, and it communicates them its
choice. This is the way P2P streaming protocols based on
peer sampling typically work (including PeerStreamer).

Let us first separate the contribution to the overall cost of
the edges chosen by pj and all the other peers in Eq. (7)
������

������

|S|X

k=1

zkēk

������

������
2

=

1

2

������

������

X

Si2F,Si 6=Sj

X

ēk2Si

zkēk +

X

ēk2Sj

zkēk

������

������
2
(9)

The value 1
2 comes from the observation that when we

separately count each link, every link is counted twice in the

sum. Let’s call bj the vector representing the choices of the
peers in P \ {pj}:

������

������

|S|X

k=1

zkēk

������

������
2

=

1

2

������

������
bj +

X

ēk2Sj

zkēk

������

������
2

(10)

and we can say that:

argmin

z

������

������

|S|X

k=1

zkēk

������

������
2

= argmin

z

������

������
bj +

X

ēk2Sj

zkēk

������

������
2

(11)

Our goal is now to find a relaxation of the problem in
which every peer chooses its own neighborhood making some
assumptions about bj , which represents the choice that the
other peers pi 6= pj do. We need to find a reasonable
approximation ¯b ' bj that node pj can use in (11).

Let us now introduce a notion that helps us in this task. In
graph theory, the notion of betweenness centrality is a property
of the edges (or nodes) of a graph defined as the fraction of
the total number of shortest paths that passes through that edge
(or node). It is a metric used to identify the edges (or nodes)
that are more involved in multi-hop interactions between the
vertexes of a graph, so for some applications they can be
considered more important than the others.

We call b =
P

ēk2S ēk the summation of all the cross-layer
overlay edge descriptors of the complete overlay. Recall that
ēk corresponds to a shortest path in U between two hosts on
which a peer resides, thus, each element of b corresponds to
a link in U and expresses the number of shortest paths in the
set S that insist on that link.

Consider the limit case in which every host in the underlay
contains a peer (|P | = |H|) and let b⇤ be the value of b
normalized to the total number of shortest paths:

b⇤ = b
2

|P |2�|P |
b⇤ is exactly the vector corresponding to the betweenness
centrality of each link in L.

If |H| > |P |, b⇤ is an approximation of the real array of
centralities. This is a known fact that is used to approximate
centrality in large networks: if the number of nodes is too large
to compute all the shortest paths, centrality can be estimated
using a subset of the paths chosen from a random set of nodes
[30]. A key fact is that the convergence to a solution close
to the real one is pretty fast in power-low graphs, that are
extremely frequent in real communication networks, and also
in some large CNs [1]. Thus, even if pj ignores bj a reasonable
assumption is that whatever the choice of each other peer is,
the elements of bj (that represent the sum of all choices) have
a shape similar to the centrality expressed by the normalized
value b⇤. This, on power-law underlays is true even for values
of |P | one order of magnitude smaller than |H|.

Given that we impose each peer to have (at least) d
neighbors, the number of edges in E will be approximately
d|P |
2 and finally the best approximation for bj turns to be

¯b = b⇤(|P |�1)

d

2

= b
d(|P |�1)

|P |2�|P | = b
d

|P | =
d
P|S|

k=1 ēk
|P | (12)

354ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

The complexity of Eq. (12) is polynomial with P [30],
that allows the computations of its solution for overlays of
hundreds of peers using commodity hardware. Moreover in
communication networks, that are sparse graph, betweenness
can be computed quickly using heuristics [31], which explains
why we introduced this formulation based on centrality. Thus,
replacing bj with ¯b in (11) each peer pj resolves the following
optimization problem:

argmin

z

������

������
¯b+

X

ēk2Sj

zkēk

������

������
2

(13)

conditioned to:
X

ēk2Sj

zk � d (14)

The formulation of (13) is another zero-one quadratic mini-
mization problem, but the dimension of the problem is now
bounded by |P |< |S| (the maximum number of neighbors for
pj), and can be effectively solved up to hundreds of peers. In
the rest of the paper we will use the branch-and-bound solver
given by the YALMLIP library [32] which solves the problem
(13) for a network of 100 nodes in few seconds.

If still the dimension of the problem or the available
hardware do not allow the solution of the optimization, we
can apply a greedy search algorithm, ranking each possible ēk
for its weight and choosing the ones that minimize the sum.
This corresponds to relax (13) to:

argmin

z

X

ēk2Sj

zk
����¯b+ ēk

����
2

(15)

conditioned to:
X

ēk2Sj

zk � d (16)

which of course captures only a part of the original problem
but greatly simplifies the computation. Our results show that
the solutions generated by (7), (13) and (15) in the case of
realistic network topologies are reasonably close one another.

It is worth nothing that if we set b = ~
0 in Eq. (15) then the

l-2 norm respects the order of a l-1 norm. In practice each pj
chooses the neighbors that are close in terms of hops in the
underlay. The b terms instead introduces a bias in the choice
towards the neighbors connected through links that are less
overloaded and introduces a higher fairness. In the comparison
we include also a strategy in which b = 0 because this
strategy can be used also in absence of full information from
the underlay topology, since the distance from another peer
can be measured with probing tool (like the traceroute

application) or can be inferred by the time-to-live field in
IP packets. Results show that the performance of this simple
ranking function is sensibly lower compared to the proposed
strategies.

Tab. II summarises the different optimization strategies and
labels them with names used in the rest of the papers.

VI. EXPERIMENTAL SET-UP

We evaluated the proposed strategies with two different
approaches, first, we implemented them in a simulator that
computes the best overlay according to each strategy on

Name Symbol Formula

Global Optimization G
o

argmin
z

k
P|S|

k=1 zk ēk k2
Local Optimization L

o

argmin
z

k b̄+
P|Sj |

k=1 zk ēk k2
Local Equalized Ranking E

r

argmin
z

P|Sj |
k=1 zk k b̄+ ē

k

k2
Local Ranking L

r

argmin
z

P|Sj |
k=1 zk k ē

k

k2

TABLE II: A summary of the optimization functions

synthetic network topologies, then we run a modified version
of PeerStreamer in an emulated network topology derived from
previous studies of real mesh networks.

A. Simulations
Simulations have been performed using the Networkx li-

brary, a powerful library for the generation and analysis of
graphs realized in the Python language. Given an underlay
topology we have implemented the proposed strategies and for
each one we compared the measures of load and fairness of the
generated overlay graph. The global and the local optimization
problems are solved with the YAMLIP library, while the others
have been implemented directly in Python.

B. Emulations
All the code used for emulations is open-source and is

freely available on-line3. For our emulation experiments we
take advantage from real-life WCN topologies, taken from the
Ninux and the FFWien4 networks [33] respectively made of
131 and 236 nodes.

Emulations are based on a modified version of Mininet,
a lightweight emulator for arbitrary network topologies [34].
We use the ETX information from the topology dataset to
evaluate the link loss during experiments. We consider a link
delay uniformly distributed in [30, 1000] µs and a constant
link bandwidth of 10 Mbit/s. This is a reasonable assumption
since WCN links can typically provide even more bandwidth,
both in uplink and downlink. The sample video we use in
our experiments is a re-encoding at bit rate of 300 kbit s�1

(including both audio and video) of Big Buck Bunny5. Cur-
rently, hardware constraints limit the number of overlay nodes
we can emulate, in our experiments we setup overlays of 30
peers with a minimum node degree of 10.

VII. RESULTS

Figs. 4 and 5 report the comparison of all the described
strategies in a small (20 peers) scenario, increasing the size
of the underlay. With 20 peers we are able to solve all the
optimization problems, so this is a good benchmark to outline
the differences between each strategy. Figs. 4a and 4b report
the differences in the strategies measured using an Erdős-
Rényi (ER) underlay of increasing size, while Figs. 5a and 5b
report the same values computed on a Barabási-Albert (BA)
graph of the same size. In all the cases, the optimized results

3https://ans.disi.unitn.it/redmine/projects/peerstreamer
4See http://ninux.org and http://www.funkfeuer.at/
5http://www.bigbuckbunny.org

355ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500

L
o

a
d

 Er

 Go

 Lo

 Lr

 Random

(a) Load for 20 peers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 200 300 400 500

F
a

ir
n

e
s
s

 Er

 Go

 Lo

 Lr

 Random

(b) Fairness for 20 peers

Fig. 4: Load and fairness for an ER underlay from 100 to 500
hosts and 20 peers

 0

 100

 200

 300

 400

 500

 600

 700

 100 200 300 400 500

L
o

a
d

 Er

 Go

 Lo

 Lr

 Random

(a) Load for 20 peers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 100 200 300 400 500

F
a

ir
n

e
s
s

 Er

 Go

 Lo

 Lr

 Random

(b) Fairness for 20 peers

Fig. 5: Load and fairness for a BA underlay from 100 to 500
hosts and 20 peers

vastly outperform the random strategy, which is not surprising
since they use available information on the underlay. What is
most significant is that even the strategies that are less costly to
compute, namely Lo and Er achieve results that are very close
to the optimal strategy Go especially in terms of fairness. This
is true for both the topology types chosen, and more evident
for the BA graphs.

This means that even if the quadratic optimization remains
NP, in the analysed graphs (especially for BA graph) the

 0

 1000

 2000

 3000

 4000

 5000

 6000

 100 200 300 400 500

L
o

a
d

 Er

 Lo

 Lr

 Random

(a) Load for 100 peers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 200 300 400 500

F
a

ir
n

e
s
s

 Er

 Lo

 Lr

 Random

(b) Fairness for 100 peers

Fig. 6: Load and fairness for a BA underlay from 100 to 500
hosts and 100 peers

number of available disjoint paths between two peers is low
and the space of the solutions of the optimization problem
is small enough for all the optimization strategies to be very
close. This is a key observation since many works in literature
show that real communication networks present a scale-free
topology as the BA algorithm produce.

In the next set of results we evaluate the strategies using two
different topology generator, the already mentioned BA and
the generator proposed by Cerdá-Alabern (CE) in [1], derived
from the analysis of a number of real mesh networks. The CE
algorithm uses a preferential attachment algorithm to create a
core of interconnected hosts, and then adds leaf hosts using a
Gamma distribution. We performed experiments with overlay
size up to 100 peers, since there is no qualitative difference in
the results we report only the results for 100 peers. With that
size we are not able to use the Go strategy, so the comparison
is done only with the remaining strategies.

Figures 6 and 7 report the results on a 100 peers overlay and
show that in both the considered topologies the Lo and the Er

strategies are very close and achieve a substantial improvement
compared to the random strategy.

It is interesting to note that the random strategy generates
a distribution of the traffic in the underlay in which the links
with a higher centrality have a higher load. In practice, the
value of fairness computed on the random overlay mirrors
the fairness computed on the b⇤ array for the underlay. Only
the Lr strategy produces a lower fairness compared to the
random strategy, since Lr simply chooses the neighbors for
peer pj among the closest ones. It thus reduces the overall
load (since the average distance is decreased) but it prefers
links that are highly central, and peers that are highly central,
thus decreasing the measure of fairness. This observation is
important to understand that to achieve a fair distribution of

356ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 100 200 300 400 500

L
o

a
d

 Er

 Lo

 Lr

 Random

(a) Load for 100 peers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 100 200 300 400 500

F
a

ir
n

e
s
s

 Er

 Lo

 Lr

 Random

(b) Fairness for 100 peers

Fig. 7: Load and fairness for a CE underlay from 100 to 500
hosts and 100 peers

 0

 500

 1000

 1500

 2000

 2500

 3000

FFW ninux

Ov
er

la
y

Lo
ad

 Lr
 Random

 Er

 0

 0.2

 0.4

 0.6

 0.8

 1

FFW ninux

Ov
er

la
y

Fa
irn

es
s

 Lr
 Random

 Er

Fig. 8: Load and fairness of the overlay graph computed on
FFWien and ninux topologies

the resources it is necessary to have at least some information
on the underlay, or else the local-only optimization performed
by Lr leads to a global choice that is largely sub-optimal.

A. Results on Real Topologies
To further corroborate our results, first we tested the pro-

posed strategies on two topologies that have been extracted
from real mesh networks, then, on the same topologies we run
a modified instance of PeerStreamer that implements the Er

and Lr strategies using the emulation environment. The goal
of this subsection is to show that the real implementation has
even better performance compared to the simulated algorithm,
that the Er strategy can be easily implemented and that it
guarantees a timely delivery of chunks in a realistic wireless
mesh network scenario.

Fig. 8 shows the load and fairness on the overlay of
the ninux and FFWien networks, obtained with simulations.
The results are perfectly compatible with the ones we have
described so far. Moreover, they are perfectly compatible with
Fig. 9 that reports the corresponding values measured with the

 0

 2000

 4000

 6000

 8000

 10000

FFWien ninux

S
e
n
t
d
a
ta

 [
M

B
]

Lr
Random

Er

 0

 0.2

 0.4

 0.6

 0.8

 1

FFWien ninux

J
a
in

 f
a
ir
n
e
s
s
 o

n
 s

e
n
t
b
y
te

s Lr
Random

Er

Fig. 9: Sent data and data fairness of the overlay graph
measured with PeerStreamer on real topologies

 0

 50

 100

 150

 200

 250

 300

 350

 0 10 20 30 40 50 60 70 80

S
e
n
t
d
a
ta

 [
M

B
]

Links

ninux

Random
Lr
Er

 0

 50

 100

 150

 200

 250

 300

 0 20 40 60 80 100 120

S
e
n
t
d
a
ta

 [
M

B
]

Links

FFWien

Random
Lr
Er

Fig. 10: Load measured on each link on real topologies

PeerStreamer emulation. In this case the occupation of each
link has been measured in terms of number of video bytes
transmitted on each underlay link. PeerStreamer includes a
number of mechanisms that limit the traffic per link, while
in the simulations we considered that each link would have
carried an unit of traffic. For this reason the absolute values are
not comparable, indeed the relative values show an extremely
similar behaviour, especially in the load measure. The distribu-
tion process operated by PeerStreamer is extremely dynamic
and driven both by its algorithms and by random choices.
This very dynamic behaviour leads to an hardly predictable
link resource usage and it may reduce the absolute value of
the fairness.

The graph in Figure 10 show the number of bytes sent on
each link of the underlay measured on all the emulation runs.
Links are ordered on the x axis for the measured load, reported
on the y axis. The graph confirms the decreased total traffic,
it shows that Lr and Er have a small deviation from their
average value (which confirms the fairness measure) but it
also shows that the peak of the measured traffic is strongly
reduced. This is a fundamental feature that shows that a fair
distribution of resources can effectively prevent bottlenecks
and saturation on the most central links.

Finally, Tab. III reports the packet loss in the emulated
network. We do consider successfully delivered only chunks
that arrive before 1 second after their generation, chunks
arrived with a higher delay would not be useful in a real-
time live streaming. It is evident that the proposed strategies
do not significantly impact the delivery of packets, which is

357ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Network Strategy Loss (%)
FFWien L

r

4.8
FFWien E

r

4.9
FFWien Random 3.8
ninux L

r

1.5
ninux E

r

1.6
ninux Random 1.6

TABLE III: Packet loss measured via emulation

in both networks higher than 95%. Ninux has lower losses
since it has a higher average link quality[33]. Note that with a
lower delivery rate it would be necessary to assess the received
video with specific video-quality metrics, but with less than
5% or even 2% loss, we do not consider necessary to apply
such metrics, and we can focus only on networking issues.

VIII. CONCLUSIONS

WMNs are an integral part of the present and future Internet
access, as they provide large capacity with flexible allocation
and mobility. Thus, video streaming in WMNs with a small
footprint on the precious wireless resources is of paramount
importance. Starting from this observation we designed a novel
strategy for cooperative (live) video streaming on distributed
networks which can be successfully deployed on a WMN,
or any other multi-hop network that provides to the network
nodes a complete view of the topology.

Exploiting a novel mapping of the problem onto intersection
graphs, we formulated an optimization problem to build an
overlay that not only reduces the total load on the underlay,
but also increases the fairness in the distribution of the load
on the underlay links. This problem in its general formulation
is NP, so we proposed two relaxations based on betweenness
centrality.

We applied the proposed technique to video streaming on
the PeerStreamer platform, but we believe it can be applied to
any similar problem in which an overlay must be optimized to
efficiently use the resources of the underlay network. More-
over, recently introduced heuristics make centrality metrics
fast to be computed even on thousands of nodes so our
proposal can be extended to networks and applications with a
larger number of peers than what we analysed in the paper.

REFERENCES

[1] L. Cerda-Alabern, “On the topology characterization of Guifi.net,” in
IEEE 8th Int. Conf. on Wireless and Mobile Computing, Networking
and Communications (WiMob), Oct. 2012, pp. 389–396.

[2] L. Maccari et al., “Live Video Streaming for Community Networks,
Experimenting with PeerStreamer on the Ninux Community,” in ACM
DIYNetworking ’15, Florence, IT, May 22, 2015, pp. 1–6.

[3] L. Baldesi, L. Maccari, and R. Lo Cigno, “Improving P2P streaming in
Wireless Community Networks,” Computer Networks, vol. 93, Part 2,
pp. 389–403, 2015.

[4] D. Katsaros, N. Dimokas, and L. Tassiulas, “Social network analysis
concepts in the design of wireless ad hoc network protocols,” IEEE
Network, vol. 24, no. 6, pp. 23 –29, Dec. 2010.

[5] T. Clausen and P. Jaquet, “Optimized link state routing protocol (olsr),”
Internet Requests for Comments, RFC 3626, Oct. 2003.

[6] B. Braem et al., “A Case for Research with and on Community
Networks,” ACM SIGCOMM Comput. Commun. Rev., vol. 43, no. 3,
pp. 68–73, Jul. 2013.

[7] M. Campista et al., “Routing metrics and protocols for wireless mesh
networks,” IEEE Network, vol. 22, no. 1, pp. 6–12, 2008.

[8] D. Pisinger, “The quadratic knapsack problem–a survey,” Discrete
Applied Mathematics, Elsevier, vol. 155, no. 5, pp. 623–648, Mar. 2007.

[9] R. Birke et al., “Architecture of a Network-Aware P2P-TV Application:
The NAPA-WINE Approach,” IEEE Communications Magazine, vol. 49,
pp. 154–163, June 2011.

[10] S. Traverso et al., “Experimental comparison of neighborhood filtering
strategies in unstructured P2P-TV systems,” in 12th IEEE Int. Conf.
on Peer-to-Peer Computing (P2P-12), Tarragona, Spain, Sept. 2012, pp.
12–24.

[11] L. Abeni, C. Kiraly, and R. Lo Cigno, “Robust Scheduling of Video
Streams in Network-Aware P2P Applications,” in IEEE ICC 2010, Cape
Town, ZA, May 2010, pp. 1–5.

[12] G. Gheorghe, A. Montresor, and R. Lo Cigno, “Security and Privacy
Issues in P2P Streaming Systems: A Survey,” Springer Peer-to-Peer
Networking and Applications, vol. 4, pp. 75–91.

[13] G. Ciccarelli and R. Lo Cigno, “Collusion in Peer-to-Peer Systems,”
Elsevier Comput. Netw., vol. 55, no. 15, pp. 3517–3532, Oct. 2011.

[14] T. E. Ng and H. Zhang, “Predicting internet network distance with
coordinates-based approaches,” in IEEE INFOCOM 2002, New York,
NY, USA, June 2002, pp. 170–179.

[15] F. Dabek, R. Cox, F. Kaashoek, and R. Morris, “Vivaldi: A decentralized
network coordinate system,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 34, no. 4, 2004, pp. 15–26.

[16] Y. Chen, X. Wang, C. Shi, E. K. Lua, X. Fu, B. Deng, and X. Li,
“Phoenix: A weight-based network coordinate system using matrix
factorization,” Network and Service Management, IEEE Trans. on, vol. 8,
no. 4, pp. 334–347, 2011.

[17] R. Fortuna et al., “QoE in Pull Based P2P-TV Systems: Overlay
Topology Design Tradeoffs,” in 10th IEEE Int. Conf. on Peer-to-Peer
Computing (P2P-10), Delft, NL, Aug. 2010, pp. 1–10.

[18] A. Russo and R. Lo Cigno, “Delay-Aware Push/Pull Protocols for Live
Video Streaming in P2P Systems,” in IEEE ICC 2010, Cape Town, ZA,
May 2010, pp. 1–5.

[19] S. Traverso et al., “Neighborhood Filtering Strategies for Overlay Con-
struction in P2P-TV Systems: Design and Experimental Comparison,”
IEEE/ACM Trans. on Networking, vol. 23, no. 3, pp. 741–754, June
2015.

[20] S. Dolev, Y. Elovici, and R. Puzis, “Routing betweenness centrality,” J.
ACM, vol. 57, no. 4, pp. 25:1–25:27, May 2010.

[21] L. Maccari and R. Lo Cigno, “Waterwall: a cooperative, distributed
firewall for wireless mesh networks,” EURASIP Jou. on Wireless Com-
munications and Networking, vol. 2013, no. 1, pp. 1–12.

[22] L. Maccari and R. Lo Cigno, “Betweenness estimation in OLSR-based
multi-hop networks for distributed filtering,” Elsevier Jou. of Computer
and System Sciences, vol. 80, no. 3, pp. 670–685, May, 2014.

[23] A. Vzquez-Rodas and L. J. de la Cruz Llopis, “A centrality-based topol-
ogy control protocol for wireless mesh networks,” Ad Hoc Networks.

[24] Y. Sakata et al., “A Chunk Scheduling Based on Chunk Diffusion Ratio
on P2P Live Streaming,” in IEEE NBiS 2012, Sept. 2012, pp. 74–81.

[25] K.-L. Hua et al., “An efficient scheduling algorithm for scalable video
streaming over P2P networks,” Elsevier, Computer Networks, vol. 57,
no. 14, pp. 2856–2868, Oct. 2013.

[26] J. Zhang et al., “Modeling and performance analysis of pull-based
live streaming schemes in Peer-to-Peer network,” Elsevier Computer
Communications, vol. 40, pp. 22–32, Mar. 2014.

[27] L. Abeni, C. Kiraly, and R. Lo Cigno, “On the Optimal Scheduling of
Streaming Applications in Unstructured Meshes,” in IFIP Networking,
Aachen, DE, May 2009.

[28] F. Harary, “Graph theory,” 1969.
[29] H. D. Sherali and J. C. Smith, “An improved linearization strategy for

zero-one quadratic programming problems,” Optimization Letters, vol. 1,
no. 1, pp. 33–47, 2007.

[30] U. Brandes and C. Pich, “Centrality estimation in large networks,” 2007.
[31] R. Puzis, P. Zilberman, Y. Elovici, S. Dolev, and U. Brandes, “Heuristics

for Speeding Up Betweenness Centrality Computation,” in Privacy,
Security, Risk and Trust (PASSAT), 2012 Int. Conf. on and 2012 Int.
Conf. on Social Computing (SocialCom), Sep. 2012, pp. 302–311.

[32] J. Lofberg, “YALMIP: A toolbox for modeling and optimization in
MATLAB,” in Computer Aided Control Systems Design, 2004 IEEE
Int. Symposium on. IEEE, 2004, pp. 284–289.

[33] L. Maccari and R. Lo Cigno, “A week in the life of three large Wireless
Community Networks,” Ad Hoc Networks, Elsevier, vol. 24, Part B, pp.
175–190, Jan. 2015.

[34] L. Baldesi and L. Maccari, “NePA TesT: Network Protocol and Appli-
cation Testing Toolchain for Community Networks,” in 12th Conf. on
Wireless On-demand Network Systems and Services (WONS), Cortina
d’Ampezzo, IT, Jan. 2016.

358ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Tube Streaming: Modelling Collaborative Media
Streaming in Urban Railway Networks

Argyrios G. Tasiopoulos, Ioannis Psaras, Vasilis Sourlas and George Pavlou
Dept. of Electronic and Electrical Engineering, University College London, UK

Email: (argyrios.tasiopoulos, i.psaras, v.sourlas, g.pavlou)@ucl.ac.uk

Abstract—We propose a quality assessment framework for
crowdsourced media streaming in urban railway networks. We
assume that commuters either “tune in” to some TV/radio chan-
nel, or submit requests for content they desire to watch or listen
to, which eventually forms a playlist of videos/podcasts/tunes.
Given that connectivity is challenged by the movement of trains
and the disconnection that this movement causes, users collabo-
ratively download (through cellular and WiFi connections) and
share content, in order to maintain undisrupted playback. We
model collaborative media streaming for the case of the London
Underground train network. The proposed quality assessment
framework comprises a utility function which characterises the
Quality of Experience (QoE) that users (subjectively) perceive
and takes into account all the necessary parameters that affect
smooth playback. The framework can be used to assess the media
streaming quality in any railway network, after adjusting the
related parameters.

To the best of our knowledge, this is the first study to
quantify the perceptual quality of collaborative media streaming
in (underground) railway networks from a modelling perspective,
as opposed to a systems perspective. Based on real commuter
traces from the London Underground network, we evaluate
whether audio and video can be streamed to commuters with
acceptable QoE. Our results show that even with very high-
speed Internet connection, users still experience disruptions, but
a carefully designed collaborative mechanism can result in high
levels of perceived QoE even in such disruptive scenarios.

Index Terms—Mobile Video/Audio Delivery, Collaborative
Video/Audio Streaming, Crowdsourcing.

I. INTRODUCTION

We envision ubiquitous streaming of popular channels, e.g.,
national broadcasters, in smart city environments. We argue
that there is a lot of space for resource optimisation in mixed
cellular and WiFi access environments complemented with lo-
cal transmission of content between mobile devices. Arguably,
the quality of Internet services deteriorates when several
hundreds of users attempt to connect simultaneously through
the same WiFi Access Point (AP) or cellular Base Station
(BS). This situation is rather common in large metropolitan
areas where hundreds of users commute (e.g., in trains or
buses), wait in stations or airports, or just move slowly
towards their destination [1]. The case becomes even more
challenging when connectivity is physically disrupted, e.g.,
when (underground) trains travel between stations. In those
cases, installing more bandwidth will not necessarily improve
performance [2], simply because quality often suffers due to: i)
frequent handovers, ii) the hundreds of sessions that an AP/BS

has to handle simultaneously, and iii) physical challenges, such
as long disconnection periods. In urban railway networks, for
instance, it is not uncommon the situation where in busy times
more than 500 commuters are onboard a train (and might want
to access online services), trains stay in stations (and therefore,
connectivity is available) for as little as 20 seconds, followed
by a disconnection period of 4 minutes (or more), when the
train is in the tunnel. The situation is even worse for real-time
streaming sessions, as opposed to downloading some static
web-page content.

In the absence of any collaboration between users to down-
load and stream content collectively, the users end up with
degraded media quality and, more often than not, abandon
their sessions.

Crowdsourcing-based approaches have been proposed re-
cently in order to deal with the above challenges [3], [4], [5],
[6]. Crowdsourced content retrieval is based on the premise
that users share their storage, connectivity and energy re-
sources given some direct or indirect incentives, e.g., improved
service quality [7], or some monetary reward [6], [8].

The implementation details of such a crowdsourced mobile
video and audio on demand streaming service for commuters
in urban railway networks have been studied in [3]. However,
the question of whether such a system can provide acceptable
media experience (or QoE) to participating users has not
been answered yet. That said, in this study, we fill this gap
by building a quality assessment framework that attempts to
answer the above question.

Quality of Experience (QoE) is traditionally characterised
by the subjective perception of users [9] and as such, it is
difficult to quantify in terms of objective metrics [10]. In-
deed, objective measures of user engagement, such as bitrate,
throughput, startup delay and buffering, which by and large
comprise the state of the art to date, are not adequate in
a media-dominated Internet, let alone a mobile environment.
The proposed framework, which is based on a utility function,
extends our previous work in [5] and goes beyond the above
primitive metrics to take into account the user’s tolerance to
disruptions, the energy needed to download and share media
content, as well as the cost of using the cellular network. The
energy factor, for instance, can influence user engagement in
collaborative streaming in fear of battery depletion. In other
words, users will not spend energy (and cellular data) to
participate in a collaborative streaming system unless quality
compensates. As such, we argue that a quality assessment
framework for media delivery is necessary to characterise theISBN 978-3-901882-83-8 c� 2016 IFIP

359ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

perceptual and subjective quality as opposed to the network-
dependent, objective quality.

An urban railway system exhibits a number of challenges,
as well as a number of physical properties, which can be
utilised to make design decisions. For example, the train
route and timetable is fixed (as opposed to walking users
or vehicles). On the other hand, connectivity is physically
disrupted when trains move between stations. Furthermore,
disconnection periods can be as long as eight times this of the
connection period, during which there is no WiFi connectivity
and cellular connection is rather poor. Finally, the users’
commuting patterns are unknown, but the aggregate number of
commuters can be approximated depending on factors such as
the time of day (i.e., peak or off-peak time) and the direction
of travel (i.e., bound towards the city centre or not).

The main contributions of this work are:
• We define a utility function as the key aspect of our

quality assessment framework. This utility function takes
into account playback disruption and energy factors and
provides a quantitative measure of a media delivery system
for railway networks.

• We analyse a 17-day sample of commuters’ jour-
ney traces, provided by Transport for London (TfL,
http://www.tfl.gov.uk). We identify and illustrate
commuting patterns and approximate the number of users
travelling in each train throughout the day, as well as the
connection and disconnection periods they experience.

• We quantify the users’ experience by applying the utility
function to the commuters’ traces. Interestingly, we find that
although it is difficult to achieve undisrupted multimedia
playback, especially during the rush hours, a collaborative
media streaming application can provide acceptable QoE.
The rest of the paper is organised as follows. In Section II,

we discuss related works. Section III includes the analytical
description of the problem under consideration, while in
Section IV we give details of our commuter data trace and
we evaluate the performance of the system. Finally, Section V
concludes this study.

II. RELATED WORK

The mobility properties of public transportation systems, as
well as the limited connectivity during the commute makes
communications in these environments a rather challenging
problem. In the absence of any connectivity in underground
train networks, authors in [11] build on the concept of Familiar
Strangers [12] and analyse commuter traces to investigate
whether collocation patterns exist. They find that such patterns
indeed exist and build a content sharing and distribution
network around content stored in commuters’ devices. They
identify users who posses content which is of interest to others
and who will travel long enough within range of each other
in order to successfully transfer the content in a p2p manner.

In [13] and [14] authors propose installation of a hub
on public transportation vehicles, which commuters utilise in
order to stay connected throughout their journeys. Although
existence of a connectivity device on board the vehicle is
desirable, the authors do not exploit aggregate connectivity

and storage opportunities offered by user devices. Peer-to-peer
communications between mobile devices have been exten-
sively studied in the context of delay-tolerant networks, taking
also advantage of social links to drive connectivity decisions
[15], [16], but also with a target to improve QoE [7], [17].

None of these works, however, has attempted to model the
performance of real-time multimedia streaming in challenged,
intermittent connectivity environments and as such we con-
sider these works complementary to ours.

Closer to our work are studies that investigate co-operative
download techniques for mobile users. Such studies are ap-
plicable to a broader scope of problems in the context of
delay-/disruption-tolerant networks. For instance, co-operative
techniques that exploit cellular and local WiFi connectivity
have been studied to improve the capacity available to mobile
users, or in other words, increase the aggregated downlink rate
of each user, e.g., [6], [18], [19]. In [20], a group of collocated
train commuters, using several wireless Internet access links,
jointly access a video stream and each user contributes to the
group by sharing his downloaded content. In [4], the authors
formulate a network utility maximisation problem where a
single static group of commuters attempts to access a video
stream. According to [4], users try to utilise Internet access
links as well as the device-to-device capacity by taking into
account packet loss and applying network coding. The model
in [4] is complementary to any study that investigates co-
operative download for mobile devices. Finally, the authors
in [3] design, implement, and evaluate Microcast, a system
that improves the streaming experience of a group of users,
albeit in relatively static conditions.

This second group of studies focuses mainly on the im-
plementation principles of a co-operative streaming service,
ignoring to a large extent the performance that such systems
would achieve in reality. Quality of Service (QoS) metrics
cannot be used for this purpose as they focus on network-
related aspects and ignore the human perception factor. There
is a clear lack in the literature of studies that characterise QoE
for mobile media delivery. Mean Opinion Score (MOS) is the
most widely used ranking metric that takes into account the
objective opinion of individual users [9], [10]. In this study,
we fill this gap by building a utility function that characterises
the user’s QoE when streaming media in train networks.
Given the connectivity challenges in this case, tolerance to
disruptions is a central factor. Furthermore, given that in order
to participate in collaborative media streaming, users spend
battery resources, energy consumption also plays a central role
in the QoE assessment.

III. QUALITY ASSESSMENT FRAMEWORK

A. System Model

We consider that users access the Internet through either
WiFi or cellular links and can either individually Pull, or
collectively PUll and SHare (PUSH) content. In this section
we lay out the description of the model for each of the Internet
access methods considered (i.e., cellular and WiFi), as well as
for each content retrieval approach (i.e., Pull or PUSH). We
define as an epoch i, Epi, a time interval of duration |Epi|,

360ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

which consists of a connection period Ci (of duration |Ci|)
and a disconnection, or poor connection quality period eCi (of
duration | eCi|). Clearly, |Epi| = |Ci|+| eCi|, which also implies
that a new epoch starts at each station, where the previous one
finishes. Connection period is the time that a train spends in
a station and disconnection period is the time it takes for the
train to arrive at the next station.

In the simple case, users Pull content individually from
the Internet. Video or audio content is split in chunks, where
every chunk contains y seconds of playback time at bit-rate
b. Users can also form groups to PUll and SHare (PUSH)
content with fellow-commuters in the vicinity. Initially, we
present the basic framework which effectively quantifies the
utility obtained by individual users (Sections III-B, III-C). We
then extend the utility function to incorporate aspects such
as energy consumption and cellular download data charges
(Section III-D). Finally, we adjust the basic framework to each
of the content retrieval approaches (i.e., Pull and PUSH) and
access method technologies in Sections III-E, III-F, III-G.

We assume that the functionality of the PUSH approach,
is realised in the context of a mobile Backend as a Service
(mBaaS) platform that runs in the cloud (similar in rational
to [3] and [6]) and is responsible for managing group syn-
chronisation in terms of collaborative content retrieval. For the
purposes of this study we ignore any potential implementation
overhead (e.g., chunk download scheduling). In particular, the
mBaaS platform assigns to each member the content chunks
that (s)he has to download and share with the rest of the group
participants. All members of a group download and share
equal number of chunks which implies fairness in terms of
computation and communication effort. Our model notation is
given on Table I.

B. Playback and Playback Disruption
The Internet access medium (i.e., WiFi or cellular), as well

as the content retrieval approach (i.e., Pull or PUSH) affects
the number of chunks that a user can receive over a predefined
period of time. We denote as Xi

A,R the number of chunks that
a user receives over epoch i when (s)he accesses the Internet
by technology A and retrieves a content by approach R.

Given reception of Xi
A,R chunks, we calculate the playback

and playback disruption periods that a user experiences over
consecutive epochs. Firstly, we estimate the total number of
chunks received by a user over epochs f to i as Xf!i

A,R =
iP

j=f

Xj
A,R, where f is the epoch during which the user enters

the system.
Next, we express the number of chunks in terms of playback

time. We assume that a chunk can be watched/listened only
when it has been fully downloaded. Hence, the watching time
worth of downloaded content from epoch f to epoch i for one
user is:

Lf!i
A,R = bXf!i

A,R c ⇥ y, (1)
where y is the playback duration of a content chunk.

Given that we model an on-demand streaming service,
the downloaded playback time will differ from the actually
watched playback time over epochs f to i, W f!i

A,R , due to

|Ci|, | eCi| i-th connection/disconnection duration
|Epi| i-th epoch duration
A Internet access technology (WiFi,cellular)
R Content retrieval approach (Pull,PUSH, Hybrid)
f Epoch user started downloading the content
y, b, S Playback time, bit-rate, and size of a chunk
Y Content playback time duration
Xi

A,R

Chunks received at epoch i for A and R
Xf!i

A,R

Total chunks received until epoch i (incl.)
Lf!i

A,R

Total playback time received until epoch i (incl.)
W f!i

A,R

Playback time watched until epoch i (incl.)
Df!i

A,R

Playback Disruption until epoch i (incl.)
Uf!i

A,R

User utility until epoch i (incl.)
eUf!i

A,R

User extended utility until epoch i (incl.)
UC,f!i

A,R

, UE,f!i

A,R

User cellular and energy cost to epoch i
a
d

,a
c

,a
e

User disruption, cell, and energy sensitivity
X

cell

,X
WiFi

Per second chunks delivery rate at cellular,
Xg

p2p WiFi, and sharing interface for a group g

N(t) # of users requesting access at moment t
B

WiFi

Total bandwidth assigned to a platform of a station
B

Cell

, Ḃ
Cell

User good and poor cell bandwidth
N

g

(t) # of users of group g at moment t
B

p2p Bandwidth limit for local p2p transfers
V i,g

max(p2p)
Maximum amount of content to be shared
and downloaded over an epoch i for group g

V i,g

A

, eV i,g

A

Identical chunks downloaded by all the
members of group g during good and poor connectivity

TABLE I: Model Notation

buffered content. We model this difference in a retrospective
manner between epochs i and i � 1 and express the actually
watched playback time W f!i

A,R as the sum of: i) the watched
playback time during the previous epochs W f!i�1

A,R and ii)
the difference between the total downloaded playback time
between f and i, Lf!i

A,R , and the actually watched playback
time during the current epoch (Lf!i

A,R � W f!i�1
A,R). Note that

in case the user has buffered enough content to get through
the current epoch, then Lf!i

A,R �W f!i�1 = |Epi|. Therefore,
we have:

W f!i
A,R = min[W f!i�1

A,R +min(|Epi|, Lf!i
A,R �W f!i�1

A,R), Y],
(2)

where Y is the total playback duration from the beginning of
the journey, which apparently works as an upper bound of the
watched time and W f!i�1

A,R = 0 for the first epoch.
Finally, the playback disruption time until epoch i, Df!i

A,R ,
is calculated as:

Df!i
A,R =

8
><

>:

Df!i�1
A,R , if W f!i

A,R = Y
iP

j=f

|Epj |�W f!i
A,R , otherwise,

(3)

where Df!i�1
A,R = 0 for the first epoch.

C. Utility Function

The playback time, W f!i
A,R , as well as the playback disrup-

tion, Df!i
A,R , are the fundamental components that we use in

order to describe the user’s utility in terms of QoE. Clearly,
the ideal utility of a user until epoch i is equal to the sum of
the epochs’ duration, or the content duration Y , whichever is
shorter:

Uf!i
ideal = min(Y,

iX

j=f

|Epj |). (4)

361ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

We consider that the utility decreases due to the playback
disruption Df!i

A,R and express a user’s utility in terms of
undisrupted playback time according to the formula:

Utility Function : Uf!i
A,R = W f!i

A,R � ad ⇥Df!i
A,R , (5)

where ad is the user’s tolerance to playback disruptions.
The disruption tolerance factor decreases the user’s utility
by ad. For instance, for a user who has watched 10 secs of
undisrupted playback and therefore has built a utility function
equal to 10, a disruption tolerance factor equal to 2 will
decrease his utility to 8, after 1 second of disruption. We
consider the disruption tolerance factor as a central component
of the utility function for media delivery in connectivity-
challenged mobile environments.

We express the “efficiency” of an Internet access technology
A and content retrieval approach R for a commuter according
to the following utility ratio:

Utility Ratio / Efficiency : Qf!i
A,R =

Td + Uf!i
A,R

Td + Uf!i
ideal

, (6)

which is bounded by the interval [0, 1]. Td is the “Initial
Tolerance Interval”, which indicates the user’s patience to
start-up delay. In the rest of this work, we use Eq. 6 to quantify
the QoE that users obtain during their journeys, which together
with the utility function in Eq. 5 comprise the two main
building blocks of the proposed quality assessment framework.

Fig. 1 illustrates the utility (Eq. 5) and efficiency (Eq. 6)
fluctuation for 3 users with disruption tolerance (i.e., ad)
0, 2, and 3.5, respectively; the users experience a playback
disruption of 2 seconds after 10 seconds of playback time
and another disruption of 3 seconds after playback time of
20 seconds; the total playback duration is 30 seconds, which
also means that the ideal utility is equal to 30. Apparently,
delay sensitivity equal to 0 leads to efficiency equal to 1
(Fig. 1b), while for delay sensitivity equal to 2 and 3.5 in this
setting the produced efficiency is 0.666 and 0.416, respectively.
This result demonstrates that efficiency is subjective when
it comes to QoE, since it is subject to the users’ temporal
utility/satisfaction and their personal tolerance to disruptions.

The Utility Ratio or Efficiency can get negative values due
to extended disruptions. In this case we assume that a rational
user would quit the attempt to watch (listen) this video (music
playlist), which would set the Efficiency’s value to zero, or
more formally:

Qf!i,t
A,R = max(

Td + Uf!i,t
A,R

Td + Uf!i,t
ideal

, 0). (7)

D. Cellular and Energy Cost
To further extend our model with a realistic representation

of a working system we incorporate two more factors in the
utility function of users. The first relates to the medium used to
download content and is associated with the cost of using the
cellular network, denoted as cellular cost. The second factor
relates to the energy consumed in order to use this medium,
denoted as energy cost. Given the description and structure
of the utility function in Eq. 5 the cellular and energy costs
need to be converted to actual playback time. That said, the
cellular cost is the equivalent of the playback time downloaded

(a) Utility Comparison (b) Efficiency Comparison

Fig. 1: Comparison of user utilities and efficiencies over time
for a disruption of 2 and 3 seconds after 10 and 20 seconds
of playback time.

through the cellular network, denoted as UC,f!i
A,R for epochs

f to i.
As regards the energy cost, an interface supporting radio

technologies works in different power states, each one related
to a different workload as well as power consumption. These
states include the Idle state, when no Internet connection is
required, and consumes the least possible energy. Starting
from this state, an interface can be promoted to one or more
productive states by spending a fixed amount of energy and
time, where productive means that an interface becomes able
to receive or transmit data. Finally, an interface experiences a
tail power phenomenon where it stays in a high power state,
in anticipation of more data exchange, before returning to its
initial Idle state.

We denote as Eprom
A,R and Etail

A,R the fixed energy cost of all
involved interfaces, of technology A and approach R, when
being promoted to a productive state and when experiencing
the tailing phenomenon, respectively. Thus, the energy spent
until epoch i, Ef!i

A,R , is:

Ef!i
A,R = Eprom

A,R + Eprod,i
A,R + Etail

A,R + Ef!i�1
A,R , (8)

where Eprod,i
A,R is the energy spent on the productive state of

all interfaces for receiving and sharing content during epoch
i. Therefore, by identifying the technology, A⇤, and approach,
R⇤, which spend the smallest possible amount of energy until
epoch i, Ef!i

A⇤,R⇤ , we can express the energy cost of a candidate
technology, A, and approach, R, in terms of playback time,
UE,f!i
A,R , by:

UE,f!i
A,R = (

Ef!i
A,R

Ef!i
A⇤,R⇤

� 1)⇥ Lf!i
A⇤,R⇤ . (9)

The value of UE,f!i
A,R in Eq. 9 is effectively the additional

content (in terms of playback time) that a user would download
if (s)he used technology, A⇤, and approach, R⇤.

Building on Eq. 5, the extended utility function that inte-
grates the energy and cellular costs is:

eUf!i
A,R = Uf!i

A,R � ac ⇥ UC,f!i
A,R � ae ⇥ UE,f!i

A,R , (10)

where ac and ae are the corresponding weights of cell and
energy cost, called cell and energy sensitivity.

In the following, we first discuss the general chunk reception
rates over WiFi and cellular connectivity, which are indepen-
dent of the content retrieval approach (Section III-E). Then we
adjust those reception rates to the Pull and PUSH cases, in

362ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Sections III-F and III-G, respectively. The target is to define
the total chunks received until epoch i, that is, the bXf!i

A,R c
component of Eq. 1, which then feeds Eq. 2 and eventually
the Utility Function defined in Eq. 5 and extended in Eq. 10.

E. Chunk Reception Rate over WiFi and Cellular
The size of a single chunk, S, is S = b ⇥ y, where b is

the bitrate and y is the chunk’s playback duration.1 Then,
assuming interference-free cellular downlinks, the cellular
chunk delivery rate (per second) will be Xcell(t) = Bcell/S,
where Bcell is the bandwidth allocated to the user by the
cellular network provider. For simplicity, we consider that
the cellular bandwidth is stable, irrespectively of the number
of active users.2 We assume that Bcell is the bandwidth
availability when the train is stopped at some station and that
the connection quality deteriorates when the train is moving
(i.e., B̈cell < Bcell).

Without loss of generality, we assume that the available
WiFi access bandwidth per platform of each station is equal
to BWiFi, which is equally shared among the users/commuters
at each platform. Therefore, the chunk reception rate per
second and per user at time t, received through the WiFi
AP of a platform is, XWiFi(t) = B

WiFi

N(t)·S , where N(t) is
the number of users requesting Internet access at moment
t 2 [ti, ti+1) at the given platform. Please note that there is
no WiFi connectivity during disconnection periods (i.e., when
trains are in-between stations), which means that the chunk
reception rate is: ẌWiFi = 0.

In the PUSH approach, apart from the chunks received
through the Internet, users receive chunks from group mem-
bers too. The chunk reception rate between group members in
the PUSH approach is proportional to the group size. Chunks
are shared over bandwidth Bp2p and the number of chunks
that can be shared among a group g of Ng(t) members at a
moment t, Xg

p2p(t), is defined as:

Xg
p2p(t) =

Bp2p

N(t) · S ⇥Ng(t), (11)

Eq. 11 implies an underlying pseudo-broadcast sharing mech-
anism (similar to [3]) where a single peer at a time unicasts its
content to another peer, while the rest of the members of the
group overhear the transmission. Note that the mBaaS platform
(mentioned earlier in Section III-A) is also responsible for
organising the “sharing turns”, given that only one user can
unicast at a time.

F. Pull Reception Rate
In the simple Pull approach users pull content individually.

For cellular Internet access, the total number of chunks re-
ceived during epoch i is equal to:

1Note that we do not consider dynamic rate adaptation (e.g., DASH) for
simplicity of modelling. We evaluate the proposed model under the lowest
possible rate, hence, any higher bandwidth availability will only increase the
performance we observe.

2In reality, even the cellular bandwidth assigned to each user can be
influenced by the level of contention (that is, number of users), but this
happens for larger number of users, possibly in the order of thousands, which
is not the case of a train (station).

Xi
cell,Pull = |Ci|⇥Xcell + | eCi|⇥ Ẍcell. (12)

In the WiFi AP case, where the medium is shared between
users, the total number of chunks that a user receives through
a WiFi AP over epoch i is:

Xi
WiFi,Pull =

t
i

+|Ci|Z

t=t
i

XWiFi(t)dt, (13)

where ti is the starting time of epoch i.
Finally, in case users utilise both interfaces for Internet

access, in a Hybrid way, the total number of chunks they
receive during epoch i is:

Xi
Hybrid,Pull = Xi

cell,Pull +Xi
WiFi,Pull. (14)

G. PUll and SHare (PUSH) Reception Rate
In the PUSH approach, users who belong to a group g of

Ng(t) members, at moment t, share their downloaded content.
The chunk reception rate from fellow group members is given
in Eq. 11. Our model does not include multi-hop transmissions
which implies that all members of a group have to be within
transmission range of each other. For that purpose, we consider
WiFi Direct as the technology of choice in order to transmit
in long distances with high rates [21]. We also assume that
devices can make simultaneous use of two separate half-duplex
WiFi interfaces, one for downloading through the WiFi AP and
another one for local sharing. Our approach is also applicable
in the simple scenario where only one WiFi interface is
available per device, but in that case downloading and sharing
should take place sequentially, that is, the users would first
download the required chunks and then share them with the
rest of the group.

The total volume of content that can be shared between a
group (according to Eq. 11) is Xg

p2p, or more formally, the
theoretical maximum amount of content that can be shared
over an epoch i for a group g, V i,g

max(p2p), is:

V i,g
max(p2p) =

t
i

+|Epi|Z

t=t
i

Xg
p2p(t)dt. (15)

On the other hand, the maximum volume of content that can
be downloaded collaboratively over the connection period of
an epoch by access approach A, V i,g

A,C , is:

V i,g
A,C =

t
i

+|Ci|Z

t=t
i

XA(t)⇥Ng(t)dt, (16)

where XA(t) is the number of downloaded chunks per second
per group member, during the connection period.

Finally, the corresponding maximum downloaded content
under poor connectivity (i.e., using cellular connection when
the train is in-between stations), V i,g

A, eC
, is:

V i,g

A, eC
=

t
i

+|Epi|Z

t=t
i

+|Ci|

ẌA(t)⇥Ng(t)dt, (17)

where ẌA(t) is the number of downloaded chunks per second
per group member, during poor connection (or disconnection)

363ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 2: Average journey duration and number of commuters
per end-to-end journey of the line.

period. It follows that the total volume of content that can be
downloaded over an entire epoch i, Xi

A,PUSH , is:

Xi
A,PUSH = V i,g

A,C + V i,g

A, eC
. (18)

Eq. 18 effectively expresses the total number of chunks that
the group can download and share within epoch i. In case
Xi

A,PUSH > V i,g
max(p2p) the group has downloaded exactly

as much content as it can share during epoch i. This would
happen when the Internet access bandwidth is higher than the
p2p one and therefore, users can download faster than they can
share. In this case, users continue downloading individually
without sharing.

IV. EVALUATION

A. Commuter Journey Traces Dataset
We analyse the anonymised commuter trace dataset from

London’s Oyster Radio Frequency Identification cards. The
dataset is a 17-day trace of all journeys made in all of the 11
lines of the London Underground network; the total number of
journeys in our dataset is in the order of one million per day.
Each journey is identified by an entry and exit point in the
network, which is recorded at the granularity of one minute.
The traces do not include information regarding the specific
lines used by commuters, hence, in order to get an insight of
how many passengers are on board a train at some given point
throughout the day, we build a custom simulator which takes
into account both the entry/exit points of commuters, but also
the specific topology of the network. That is, we also consider
the distance between stations, as well as the intersections of
lines at each station and the routes that each line follows.

Given that a journey’s route might cross more than one lines,
and that commuters follow the shortest path with the fewest
interchanges between their entry and exit points, we process
the trace and assign commuters to specific lines and then to
individual trains.

Due to space limitations and for better visualisation of our
results, we choose one line and present results for this line
only. However, we report that evaluations with most of the
lines of the network present similar results.

B. Group Formation Insights/Potential
Fig. 2 depicts the average number of commuters that our

chosen line serves per one end-to-end journey. Obviously, not
all commuters travel from one end to the other, but this plot
includes all commuters that at some point in their journey use
this line of the network. The number of commuters is averaged
over all trains of the day in per hour time slots. We observe

Fig. 3: Number of commuters per train (single direction) for
a station in the beginning, middle, and end of the line.

that there are two clear peaks during the morning and the
afternoon rush hours. During those times, one train can serve
up to 1400 commuters in its end-to-end journey. Depending on
their entry and exit points, these commuters can form groups
to PUll and SHare content from the network.

In order to get a closer view of the potential to form
groups, in Fig. 2, we also depict the average journey time
per commuter, as well as the standard deviation of the per
commuter journey time. According to this plot, commuters
use this line on average for approximately 9 minutes with a
standard deviation of around 5 minutes. Although the propor-
tion of time that commuters physically share journeys depends
on how much the chosen routes overlap (i.e., entry and exit
points), this time is enough to watch or listen to the headline
stories of some TV/radio channel.

Clearly, from Fig. 2 we see that a line serves different
volumes of commuters at different times of day, but their
distribution over the stations of the end-to-end line needs fur-
ther investigation. A more detailed analysis though, shows that
commuters’ volumes differ hugely at each station depending
on the train direction and the time of day. We note that the
lines normally start and terminate at the outskirts of the city
centre, but always cross the city centre itself. In Fig. 3 we
present the average number of commuters per train at three
different stations over the duration of a day. The three stations
chosen are towards the beginning of the line (Station 1), the
middle of the line (a central location, Station 6) and the end of
the line (Station 12). Interestingly, and somewhat expectedly,
we see that the station at the beginning of the line serves most
users in the morning rush hours (i.e., users move towards the
city centre), whereas the station towards the other end of the
line serves most users during the afternoon rush hours (i.e.,
on the way back). The station in the city centre presents two
peaks one in the morning and one in the afternoon rush hour.

This result makes clear the need for provisioning of Inter-
net streaming services according to journey patterns, station
locations and the time of day. That is, given that connectivity
is available only when trains are within stations, where they
normally stay for about 20-30 seconds and that disconnection
periods last 1-4 minutes, the amount of content that needs
to be buffered in order to avoid playback disruptions differs
hugely. Given also that different stations are busy at different
times of day depending on the area and the direction of the
train, the system has to be carefully modelled to include these
factors in order to guarantee undisrupted playback.

364ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Standard Setting Variable Value
Total bandwidth per station, B

WiFi

0.5 Gbps
Cell rate - moving (B̈

cell

)/static (B
cell

) train 150-550 Kbps
Sharing bandwidth, B

p2p 54 Mbps
Connection period duration for each station i, |Ci| 20”

Participation probability, p
list

50%
Music/Video bit-rate 160/419 Kbps

Chunk playback time, y 5”
Playlist duration, Y 15’
Zipf’s exponent, a 1

Playlists generated per station, Z 5-95
Delay (a

d

), Energy (a
e

), Cell (a
c

) Sensitivity 3, 0, 0

TABLE II: Standard Evaluation Setting

C. Simulation and Evaluation Setup

We assume that users have access to both WiFi connec-
tivity when trains are in stations and cellular connectivity
throughout their journeys. Although in the case of the London
Underground cellular connectivity is not available, here we
include this access option for completeness. We also assume
that users can use both their cellular and their WiFi interfaces
simultaneously to receive content (Hybrid approach).

Although the current WiFi access deployment at the London
Underground network provides download speeds of up to
100Mbps, here, we consider a future, overprovisioned network
where each station is connected to the Internet with 500Mbps
links. This bandwidth is split between all platforms and among
all lines passing through each station.

For the cellular case, we assume that users get between
150Kbps and 550Kbps - closer to the lower value when the
train is moving and to the highest one when the train is static
in the station. Finally, we set the users’ sensitivity to delay
(ad in Eq. 5) equal to 3, which means that for every second
of disruption the users’ utility decreases by three, whereas
their utility increases by one for every second of undisrupted
playback. This value is specifically chosen as an extreme
scenario, where users are not tolerant to disruptions.

In addition to the different access methods, we evaluate the
users’ QoE (i.e., Eq. 6) when two different types of content
are available, that is, music content (at 160Kbps) and video
content (at 419Kbps). The chosen bit rates are the lowest
possible for acceptable quality streaming. In cases where the
system can achieve minimum disruptions, an adaptive increase
of the corresponding bit rates can be applied (e.g., through
DASH), but this is out of the scope of this paper. Unless
mentioned otherwise, the full list of settings of our evaluation
setup is given on Table II.

Due to the limitations of the environment under investiga-
tion, we do not assume that users individually choose to stream
content and only if requests match, then users form groups.
This would clearly result in very few and very small groups,
effectively reflecting the Pull case. Instead, we evaluate two
specific scenarios. In the first one, we assume that users create
music or video “playlists” according to genre preferences, e.g.,
sports clips, or jazz music. Users then join a group and add
their own preferences to the list. We assume that between 5
and 95 playlists are generated in each epoch, resulting in more
than 500 playlists available throughout the train’s end-to-end
journey. The playlists’ duration is set to 15 minutes to reflect
the average journey time plus standard deviation. In our second
scenario, users tune in to radio or TV channels [22], [23]

Fig. 4: 15-min Playlists scenario Pull efficiency for WiFi, Cell,
and Hybrid access methods.

and we assume that 50 channels are supported by the system,
which would cover the main broadcasters of a country. The
difference between the playlist and channel scenario is that in
case of the latter, users form larger groups. In both cases, users
choose which playlist or channel to subscribe to following a
Zipf distribution [24].

In both scenarios, and after the users have created new
playlists at each station, these playlists are suggested to the
rest of the commuters who are not participating in any other
group. A commuter is interested in this list and participates
with a probability plist while choosing the r-th element of the
list according to a Zipf distribution with probability f(r; a, Z)
where a is the Zipf exponent and Z is the number of elements
in the list.

We measure the users’ perceptual QoE as expressed through
Eq. 6. The initial tolerance interval (Td in Eq. 6) is set to 5
seconds, after the expiration of which each user abandons the
attempt to receive content. This setting is based on studies that
assess the patience of users to load web content (e.g., [25]).

D. Performance Evaluation

1) Pull Approach - Playlists scenario: Fig. 4 illustrates the
average (over all trains) efficiency of WiFi, Cell, and Hybrid
access methods of the Pull approach for music and video
streaming over one operational day of the tube network. Given
that with the Cell approach each user gets between 150Kbps
and 550Kbps and that the bitrate for streaming music rate is
160Kbps, it is straightforward that the network can support
such a service. Hence, the Cell approach (and stemming from
that, obviously, the Hybrid approach) can provide good QoE.
On the other hand, the WiFi access method experiences dis-
ruptions which increase as the volume of commuters increases
(i.e., during rush hours - see Fig. 2 and Fig. 3). In the case
of video streaming all three access approaches, WiFi, Cell and
Hybrid perform worse than music streaming. In the following
we exclude the music bitrate for the cell access approach, as
it clearly can be supported when cell access is available (not
for the case of the London Underground network though).

2) PUSH Approach - Playlists scenario: From Fig. 5 we
observe that streaming music over the WiFi network is chal-
lenged by disruptions/disconnections, achieving performance
close to 0.8 at best, while during rush hours this can go
as low as 0.4. In the case of Video playlists, which is
even more demanding (i.e., higher bit rates), achieves lower
performance ranging between 0.7-0.8 when utilising both the
WiFi and the cellular connection. Note that the performance

365ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 5: 15-min Playlists scenario PUSH efficiency for WiFi,
Cell, and Hybrid access methods.

Fig. 6: Streaming Channels - PUSH efficiency for WiFi, Cell,
and Hybrid access methods.

of the PUSH approach is acceptable during off-peak time,
especially considering the extreme delay sensitivity assumed
here. Overall, based on the parameters used here (especially
for the delay sensitivity) collaborative download can provide
acceptable service quality, especially when it is combined with
cellular connectivity. In the following we experiment with
different parameters to investigate whether quality can improve
further.

3) PUSH Approach - Channels scenario: Efficiency perfor-
mance follows similar trends in the case of the second scenario
(i.e., TV/radio channel streaming - see Fig. 6), where, however,
we observe a small increase in the QoE perceived by the users.
This is because, in the “channel” case, groups form for longer
time periods [26] and also more users join in as trains move
towards their destination. That said, groups are bigger in size
compared to the playlists scenario, giving the opportunity to
move more content locally. Of course, during the rush hours
the available WiFi bandwidth per commuter is significantly
small and despite the size of the formed groups the efficiency
is still quite low, since each user can download and share a
very small portion of the desired content. As we show next, it
requires a large amount of available WiFi bandwidth at each
station in order to increase the performance of the system.
Furthermore, another important factor that affects performance
is the initial tolerance interval as we show later in this section.

4) PUSH Approach - WiFi Bandwidth Factor: In general
more bandwidth available at each platform/station improves
performance, but here we examine whether investing more on
bandwidth would pay off in terms of users’ QoE. In Fig. 7 we
present the case for video streaming to groups of commuters
(i.e., PUSH approach) for the WiFi and the Hybrid access
methods.

Interestingly, the efficiency achieved by the WiFi access
method during peak times overtakes the one achieved during
off-peak times when the available bandwidth at each station
is significantly large (� 1Gbps). In those cases, larger number

Fig. 7: 15-min Video Playlists scenarion PUSH Efficiency for
WiFi and Hybrid access methods for increasing bandwidth
(Peak time: 8am, Off-Peak: 11am).

of commuters on board the trains result in larger groups. In
turn, each group gets a larger stake of the available bandwidth.
Overall, we see that even when 1Gbps is readily available at
each of the hundreds of tube stations throughout the network,
it is still difficult to achieve uninterrupted video streaming
relying on the WiFi connectivity only, even at off-peak times.
On the other hand, when collaborative streaming is combined
with cellular connectivity, we observe performance close to
0.8, even for smaller bandwidth values and rather disruption-
sensitive users (i.e., ad = 3).

5) PUSH Approach - Cell and Energy Sensitivity: The cell
sensitivity integrates the cost factor, that is, the monetary cost
to download through the cellular network (i.e., ac in Eq. 10),
as opposed to the WiFi access. In general the efficiency
decreases linearly in all the retrieval approaches (i.e., Pull and
PUSH) with respect to the cell sensitivity. In more details in
the Pull case it declines with exactly the same rate during
both peak and off-peak times, since the amount of data that
each commuter downloads from the cellular interface in each
case remains the same. On the other hand, for the PUSH
approach (Fig. 8) the efficiency decline rate is less steep
and the difference between the peak and off-peak time is
proportional to the average group size. In this approach users
also exchange a significant amount of data minimizing the data
to be directly downloaded from the cellular network.

We use the power state machine presented in [27] to evaluate
the energy sensitivity of the cellular and WiFi interfaces of
smartphone devices for each one of the power state (i.e.,
Promotion, Productive and Tail). Our findings show that
despite the fact that PUSH uses an additional interface for
sharing data, the low promotion and tail energy required by
the sharing interface decreases the overall performance as
we increase the energy sensitivity. Finally, we notice that
increasing the sharing energy transmission coefficient, atr,
causes only slight performance decline, proportional to the
coefficient’s actual value (Fig. 9). This is partly because local
transfers (through the sharing interface) completes much faster,
therefore, spending little time in “transmission mode”.

6) PUSH Approach - Tolerance Interval: The “Initial Tol-
erance Interval” of users indicates the patience of users to
startup delay. Throughout our evaluation this interval was set
to 5 seconds, according to related studies on users’ tolerance
to delays [25]. In this experiment, we investigate the effect of

366ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 8: Cell Sensitivity In-
crease - Scenario 1: Video
Playlist

Fig. 9: Energy Sensitivity
Increase - Scenario 1 Video
Playlist, Hybrid

Fig. 10: 15-min Playlists scenario PUSH- WiFi Efficiency for
different Initial Tolerance Intervals.

the tolerance interval on users’ QoE (in Fig. 10); we assume
a 15-min playlist when users are pulling and sharing content
over WiFi and the tolerance interval is set to 10, 20 and 30
seconds. As the users’ tolerance increases, we observe that the
QoE increases too. This is a straightforward result, given that
the groups formed in this case are larger and can therefore, get
larger share of the available WiFi bandwidth. However, we also
observe that after the 20-second threshold the performance
does not improve further.

V. CONCLUSIONS

We have designed a model that characterises the QoE of
users in an urban railway network, when they attempt to stream
real-time media content. Our model applies to both simple
Pull cases, and to collaborative download, PUll and SHare
(PUSH) cases and assumes WiFi connectivity in train stations,
as well as cellular connection throughout the journey. The
QoE is expressed in terms of the efficiency that users enjoy
and takes into account connection and disconnection periods,
sensitivity to disruptions and to the energy spent to download
content, as well as the cost to use the cellular network. We
have analysed commuters’ traces and have applied our model
to these mobility patterns. We found that it is difficult to
maintain undisrupted playback, especially in case of high bit
rates, i.e., video content, but at the same time, well thought-out
collaborative mechanisms can increase the perceived QoE even
under such challenged conditions. When cellular connectivity
is available, performance improves considerably, given that
users can utilise both interfaces (the WiFi and the cellular
one) simultaneously.

ACKNOWLEDGMENTS

V. Sourlas is supported by the EC through the FP7-
PEOPLE-IEF INTENT project, (GA no. 628360). The rest

of the authors are supported by the EU-Japan initiative under
EC FP7 GreenICN project (GA no. 608518, NICT no. 167),
the EC H2020 UMOBILE project (GA no. 645124) and the
EPSRC INSP Fellowship (no. EP/M003787/1).

REFERENCES

[1] G. Lyons and K. Chatterjee, “A human perspective on the daily com-
mute: Costs, benefits and trade-offs,” Transport Reviews, 2008.

[2] L. Li, K. Xu, D. Wang, C. Peng, Q. Xiao, and R. Mijumbi, “A
measurement study on tcp behaviors in HSPA+ networks on high-speed
rails,” in IEEE INFOCOM 2015.

[3] L. Keller and et al., “Microcast: Cooperative video streaming on
smartphones,” in MobiSys ’12.

[4] H. Seferoglu, L. Keller, B. Cici, A. Le, and A. Markopoulou, “Cooper-
ative video streaming on smartphones,” in Allerton Conference, 2011.

[5] A. G. Tasiopoulos, I. Psaras, and G. Pavlou, “Mind the gap: modelling
video delivery under expected periods of disconnection,” in ACM
CHANTS ’14.

[6] D. Syrivelis, G. Iosifidis, D. Delimpasis, K. Chounos, A. Korakis, and
T. Leandros, “Bits and coins: Supporting collaborative consumption of
mobile internet,” in IEEE INFOCOM ’15.

[7] C.-L. Tsao and R. Sivakumar, “On effectively exploiting multiple
wireless interfaces in mobile hosts,” in ACM CoNEXT ’09.

[8] W. Wu, R. Ma, and J. Lui, “Distributed caching via rewarding: An
incentive scheme design in P2P-VoD systems,” Parallel and Distributed
Systems, IEEE Transactions on, 2014.

[9] M. Venkataraman and M. Chatterjee, “Inferring video qoe in real time,”
Network, IEEE, 2011.

[10] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I. Stoica, and H. Zhang,
“A quest for an internet video quality-of-experience metric,” in ACM
HotNets-XI, 2012.

[11] L. McNamara, C. Mascolo, and L. Capra, “Media sharing based on
colocation prediction in urban transport,” in ACM MobiCom ’08.

[12] E. Paulos and E. Goodman, “The familiar stranger: anxiety, comfort,
and play in public places,” in ACM SIGCHI ’04.

[13] J. LeBrun and C.-N. Chuah, “Bluetooth content distribution stations on
public transit,” in Workshop on Decentralized resource sharing in mobile
computing and networking, 2006.

[14] F. P. Tso and et al., “Dragonnet: A robust mobile internet service system
for long-distance trains,” Mobile Computing, IEEE Transactions on,
2013.

[15] C. Boldrini, M. Conti, and A. Passarella, “Exploiting users’ social rela-
tions to forward data in opportunistic networks: The HiBOp solution,”
Pervasive and Mobile Computing, 2008.

[16] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: Social-based forward-
ing in delay-tolerant networks,” Mobile Computing, IEEE Transactions
on, 2011.

[17] G. Ananthanarayanan, V. N. Padmanabhan, L. Ravindranath, and C. A.
Thekkath, “Combine: leveraging the power of wireless peers through
collaborative downloading,” in ACM MobiSys ’07.

[18] S. Ioannidis, A. Chaintreau, and L. Massoulié, “Optimal and scalable
distribution of content updates over a mobile social network,” in IEEE
INFOCOM 2009.

[19] J. Whitbeck, M. Amorim, Y. Lopez, J. Leguay, and V. Conan, “Re-
lieving the wireless infrastructure: When opportunistic networks meet
guaranteed delays,” in IEEE WoWMoM ’11.

[20] M. Stiemerling and S. Kiesel, “A system for peer-to-peer video stream-
ing in resource constrained mobile environments,” in ACM U-NET
Workshop ’09.

[21] “WiFi alliance. Wi-Fi direct: http://www.wi-fi.org.”
[22] “PPLive: http://www.pplive.com.”
[23] “TVUnetworks: http://www.tvunetworks.com.”
[24] “Cisco. cisco visual networking index: Global mobile data traffic fore-

cast update, 2013-2018. white paper, [online] http://goo.gl/l77haj, 2014.”
[25] D. F. Galletta, R. Henry, S. McCoy, and P. Polak, “Web site delays: How

tolerant are users?” Journal of the Association for Information Systems,
2004.

[26] F. Wang, J. Liu, and Y. Xiong, “Stable peers: Existence, importance, and
application in peer-to-peer live video streaming,” in IEEE INFOCOM
’08.

[27] N. Ding, D. Wagner, X. Chen, Y. C. Hu, and A. Rice, “Characterizing
and modeling the impact of wireless signal strength on smartphone
battery drain,” in ACM SIGMETRICS ’13.

367ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Energy-Aware Cooperative Computation in Mobile
Devices

Ajita Singh, Yuxuan Xing, Hulya Seferoglu
ECE Department, University of Illinois at Chicago

asingh64@uic.edu, yxing7@uic.edu, hulya@uic.edu

Abstract—New data intensive applications, which are continu-

ously emerging in daily routines of mobile devices, significantly

increase the demand for data, and pose a challenge for current

wireless networks due to scarce resources. Although bandwidth

is traditionally considered as the primary scarce resource in

wireless networks, the developments in communication theory

shifts the focus from bandwidth to other scarce resources includ-

ing processing power and energy. Especially, in device-to-device

networks, where data rates are increasing rapidly, processing

power and energy are becoming the primary bottlenecks of

the network. Thus, it is crucial to develop new networking

mechanisms by taking into account the processing power and

energy as bottlenecks. In this paper, we develop an energy-aware

cooperative computation framework for mobile devices. In this

setup, a group of cooperative mobile devices, within proximity of

each other, (i) use their cellular or Wi-Fi (802.11) links as their

primary networking interfaces, and (ii) exploit their device-to-

device connections (e.g., Wi-Fi Direct) to overcome processing

power and energy bottlenecks. We evaluate our energy-aware

cooperative computation framework on a testbed consisting of

smartphones and tablets, and we show that it brings significant

performance benefits.

I. INTRODUCTION
The dramatic increase in mobile applications and the num-

ber of devices demanding for wireless connectivity poses a
challenge in today’s wireless networks [1], [2], and calls for
new networking mechanisms.

One of the promising solutions to address the increasing
data and connectivity demand is Device-to-Device (D2D)
networking. As illustrated in Fig. 1(a), the default operation
in current wireless networks is to connect each device to
the Internet via its cellular or Wi-Fi interface. The D2D
connectivity idea, which is illustrated in Fig. 1(b), breaks this
assumption: it advocates that two or more devices in close
proximity can be directly connected, i.e., without traversing
through auxiliary devices such as a base station or access
point. D2D networking, that can be formed by exploiting D2D
connections such as Wi-Fi Direct [3], is a promising solution
to the ever increasing number and diversity of applications and
devices. In this context, it is crucial to identify scarce resources
and effectively utilize them to fully exploit the potential of
D2D networking.

Although bandwidth is traditionally considered as the pri-
mary scarce resource in wireless networks, in D2D networks,
thanks to close proximity among devices and the develop-
ments in communication theory, the main bottleneck shifts
from bandwidth to other scarce resources including processing

Mobile
DeviceD1

D2

D3
Base Station

(Access Point)

The Core
Network

(a) The default operation

Mobile
DeviceD1

D2

D3
Base Station

(Access Point)

D2D Link

The Core
Network

(b) D2D connectivity

Fig. 1. (a) The default operation for the Internet connection. (b) D2D
connectivity: two or more mobile devices can be connected directly, i.e.,
without traversing through the core network, if they are in close proximity by
exploiting local area connections such as Wi-Fi Direct.

power and energy. Next, we present our pilot study demon-
strating that processing power can be more pronounced as a
bottleneck than bandwidth in D2D networks.

Pilot Study: We developed a prototype for this pilot study
as shown in Fig. 2(a), where a mobile device D

2

receives
data from another device D

1

over a Wi-Fi Direct link. We
use Android operating system [4] based Nexus 7 tablets [5] as
mobile devices. In this experiment, after receiving the packets,
the mobile device D

2

performs operations with complexities
of O(1), O(n), and O(n2

) above the transport layer (TCP),
where n is the packet size, and the operations we perform
are counting the bytes in the packets. In particular, O(1),
O(n), and O(n2

) correspond to (i) no counting, (ii) counting
every byte in a packet once, and (iii) counting every byte in
a packet n times, respectively. We demonstrate in Fig. 2(c)
the received rate at the mobile device D

2

(note that this is
the rate we measure at the mobile device D

2

after performing
computations) versus time. This figure demonstrates that the
received rate decreases significantly when the complexity
increases. ⇤

Our pilot study shows that even if actual bandwidth is
high and not a bottleneck, processing power could become a
bottleneck in D2D networks. Similar observations can be made
for the energy bottleneck as detailed in our technical report [6].
Furthermore, with the advances in communication theory, e.g.,
millimeter wave communication [7], it is expected that data
rates among devices in close proximity will increase signifi-
cantly, which will make processing power and energy more
pronounced as bottlenecks. However, existing applications,
algorithms, and protocols are mainly designed by assuming
that bandwidth is the main bottleneck. Thus, it is crucial to
develop new networking mechanisms when bandwidth is not
the primary bottleneck, but processing power and energy are.

Thus, in this paper, our goal is to create group of devices
that help each other cooperatively by exploiting high rate D2DISBN 978-3-901882-83-8 © 2016 IFIP

368ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

D1 D2

(a) Setup

0 10 20 30
0

2

4

6

8

Time (s)

A
ve

ra
g
e

 R
a
te

 (
M

b
p
s)

O(1)

O(n)

O(n2)

(b) Rate vs Time
Fig. 2. Pilot Study: (a) Setup: Data is transmitted from mobile device D1
to another mobile device D2. In this setup, the mobile devices are Android
operating system (OS) [4] based Nexus 7 tablets [5]. The specific version of
the Anroid OS is Android Lollipop 5.1.1. The devices have 16GB storage,
2GB RAM, Qualcomm Snapdragon S4 Pro, 1.5GHz CPU, and Adreno 320,
400MHz GPU. Packet size is 500B. (b) Transmission rate versus time
for different computational complexities at the receiver side. Note that we
present the rate that we measure at the mobile device after performing the
computations. The presented rates are the averages over 10 seeds.

connections to overcome the processing power and energy
bottlenecks. The next example demonstrates our approach.

Example 1: Let us consider Fig. 1(a) again, where device
D

1

would like to receive a file from a remote resource via its
cellular or Wi-Fi connection. Assume that the cellular (or Wi-
Fi) rates of all devices are 1Mbps, but device D

1

can receive
data with 500kbps rate due to processing power bottleneck,
i.e., device D

1

has limited processing power (similar to our
pilot study we presented earlier). In a traditional system, D

1

will behave as a single end point, so its receiving rate will
be limited to 500kbps. On the other hand, if devices D

1

, D
2

,
and D

3

will behave as a group and cooperate, then devices
D

2

and D
3

can also receive and process 500kbps portions of
data, and transmit the processed data to device D

1

over D2D
connections. This increases the receiving rate of device D

1

to
1.5Mbps from 500kbps, which is a significant improvement.

This example could be extended for scenarios when energy
(battery of mobile devices) is limited. For example, if device
D

2

’s battery level is too low, its participation to the group
activity should be limited. ⇤

Application Areas. The scenario in the above motivating
example could arise in different practical applications from
health, education, entertainment, and transportation systems.
The following are some example applications. Health: A per-
son may own a number of health monitoring devices (activity
monitoring, hearth monitoring, etc.) which may need updates
from the core network. These updates - potentially coded for
error correction, compression, and security reasons - should be
processed (decoded) by these devices. Processing takes time,
which may lead to late reaction to the update (which may
require timely response) and energy consumption. On the other
hand, by grouping mobile devices, the person’s smartphone or
tablet could receive the update, process, and pass the processed
data to the health monitoring devices via high rate D2D links.
Education & Entertainment: A group of students may want
to watch the video of a lecture from an online education
system (or an entertainment video) while sitting together and
using several mobile devices. In this setup, one of the devices
can download a base layer of a video and decode, while the
other devices could download enhancement layers and decode.
The decoded video layers could be exchanged among these

mobile devices via high rate D2D links. As in the motivating
example, if one device’s download and decoding rate is limited
to 500kbps, it could be improved to 1.5Mbps with the help of
other devices.

Note that the processing overhead in these applications
could be due to any computationally intensive task related to
data transmission. For example, for video transmission appli-
cations, H.264/AVC decoders introduce higher computational
complexity when higher quality guarantees are needed [8], [9].
Another example could be network coding; for example, data
could be network coded at the source to improve throughput,
error correction, packet randomization potential of network
coding [10]. However, most of the network coding schemes
introduce high computational complexity at the receiver side;
O(n3

), [11], [12], which limits the transmission rate. En-
cryption could be another example that introduces processing
overhead [13].

Thus, there exist several applications and scenarios where
bandwidth and energy could be bottlenecks, while bandwidth
is not the bottleneck. This makes our approach demonstrated
in Example 1 crucial. In particular, in this paper, we develop an
energy-aware cooperative computation framework for mobile
devices. In this setup, a group of cooperative mobile devices,
within proximity of each other, (i) use their cellular or Wi-Fi
(802.11) links as their primary networking interfaces, and (ii)
exploit their D2D connections (Wi-Fi Direct) for cooperative
computation. Our approach is grounded on a network utility
maximization (NUM) formulation of the problem and its
solution [14]. The solution decomposes into several parts with
an intuitive interpretation, such as flow control, computation
control, energy control, and cooperation & scheduling. Based
on the structure of the decomposed solution, we develop a
stochastic algorithm; energy-aware cooperative computation.1
The following are the key contributions of this work:

• We consider a group of cooperative mobile devices within
proximity of each other. In this scenario, we first investi-
gate the impact of processing power to transmission rate.
Then, we develop an energy-aware cooperative compu-
tation model, where devices depending on their energy
constraints could cooperate to get benefit of aggregate
processing power in a group of cooperative devices.

• We characterize our problem in a NUM framework by
taking into account processing power, energy, and band-
width constraints. We solve the NUM problem, and use
the solution to develop our stochastic algorithm; energy-
aware cooperative computation (EaCC). We show that
EaCC provides stability and optimality guarantees.

• An integral part of our work is to understand the per-
formance of EaCC in practice. Towards this goal, we

1Note that our work focuses on cooperative resource utilization in mobile
devices. In this sense, our work is complementary to and synergistic with: (i)
creating incentive mechanisms in D2D networks, and (ii) providing privacy
and security for D2D users [15], [16]. Looking into the future, it is very
likely that our proposed work on the design, analysis, and implementation
of cooperative resource utilization is gracefully combined with the work on
creating incentives and providing privacy and security.

369ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

develop a testbed consisting of Nexus 5 smartphones and
Nexus 7 tablets. All devices uses Android 5.1.1 as their
operation systems. We implement EaCC in this testbed,
and evaluate it. The experimental results show that our
algorithm brings significant performance benefits.

The structure of the rest of the paper is as follows. Section II
presents related work. Section III gives an overview of the
system model. Section IV presents the NUM formulation
of our cooperative computation scheme. Section V presents
our stochastic algorithm; EaCC. Section VI evaluates the
performance of our scheme in a real testbed. Section VII
concludes the paper.

II. RELATED WORK
This work combines ideas from D2D networking, network

utility maximization, and stochastic network control.
The idea of D2D networking is very promising to efficiently

utilize resources, so it has found several applications in the
literature. In particular, D2D connections are often used to
form cooperative groups for data streaming applications, and
for the purpose of (i) content dissemination among mobile
devices [17], [18], (ii) cooperative video streaming over mobile
devices [19], [20], [21], [22], and (iii) creating multiple paths
and providing better connectivity by using multiple interfaces
simultaneously [23], [24]. As compared to this line of work,
we investigate the impact of processing power and energy in
D2D networks, and develop mechanisms to effectively utilize
these scarce resources.

D2D networking is often used for the purpose of offloading
cellular networks. For example, previous work [25], [26],
[17] disseminate the content to mobile devices by taking
advantage of D2D connections to relive the load on cellular
networks. Instead of offloading cellular networks, our goal is
to create energy-aware cooperation framework to overcome the
processing power and energy bottlenecks of mobile devices.

There is an increasing interest in computing using mobile
devices by exploiting connectivity among mobile devices [27].
This approach suggests that if devices in close proximity are
capable of processing tasks cooperatively, then these devices
could be used together to process a task as it is a cheaper
alternative to remote clouds. This approach, sparking a lot
of interest, led to some very interesting work in the area [28],
[29], [30]. As compared to this line of work, we focus on pro-
cessing power and energy bottlenecks in mobile devices and
address the problem by developing energy-aware cooperative
computation mechanism.

An integral part of our proposed work in this task is
to develop efficient resource allocation mechanisms. In that
sense, our approach is similar to the line of work emerged
after the pioneering work in [31], [32], [33]. However, our
focus is on energy-aware cooperative computation.

III. SYSTEM MODEL
We consider a cooperative system setup with N mobile

devices, where N is the set of the mobile devices. Our system
model for three nodes are illustrated in Fig. 3(a). The source
in Fig. 3(a) represents the core network and base stations
(access points). This kind of abstraction helps us focus on

the bottlenecks of the system; processing power, energy of
mobile devices, and downlink/uplink data rates. In this setup,
mobile devices communicate via D2D connections such as Wi-
Fi Direct, while the source communicates with mobile devices
via cellular or Wi-Fi links. We consider in our analysis that
time is slotted and t refers to the beginning of slot t.

Connecting Devices Together: The total flow rate towards
device n in Fig. 3(a) (as also explained in Fig. 3(b)) isP

k2N xn,k(t), where xn,n(t) is the transmission rate of the
packets from the source towards device n, and these packets
will be used by device n. Note that xn,k(t) is the transmission
rate of the packets from the source towards device n, and these
packets will be processed by device n and forwarded to device
k. On the other hand, yn(t) is the total flow rates targeting
device n as demonstrated in Fig. 3(b). The source constructs
a queue Sn(t) for the packets that will be transmitted to the
mobile device n. The evolution of Sn(t) based on yn(t) and
xk,n(t) is expressed as

Sn(t+ 1) max[Sn(t)�
X

k2N
xk,n(t), 0] + yn(t), (1)

where the inequality comes from the fact that there may be
less than yn(t) packets arriving into Sn(t) at time t in practice
(e.g., in real time applications, the number of available packets
for transmission could be limited).

The flow rate yn(t) is coupled with a utility function
gn(yn(t)), which we assume to be strictly concave function
of yn(t). This requirement is necessary to ensure stability and
utility optimality of our algorithms. The ultimate goal in our
resource allocation problem is to determine the flow rates;
yn(t) which maximize the sum utility

P
n2N gn(yn(t)).

Finally, flow rate over D2D connection between device n
and k is hn,k(t), k 6= n. Note that hn,k(t) is to help node k
using node n as a processing device.

Inside a Mobile Device: In each device, we develop
different modules depending on where data is arriving from
(as shown in Fig. 3(c)); i.e., from the source via cellular or
Wi-Fi interface, or other mobile devices via D2D interfaces.

When data is arriving from a D2D interface, it is directly
passed to the application layer, as this data is already processed
by another device. On the other hand, when data is arriving
from the source via cellular or Wi-Fi interfaces, packets go
through multiple queues as shown in Fig. 3(c), where Un,k,
Qn,k, and Zn,k represent three different queues constructed at
mobile device n for the purpose of helping node k. Incoming
packets via cellular or Wi-Fi links are stored in Un,k, which
then forwards the packets to computation block with rate
dn,k(t). The computation block processes the packets, and
pass them to queue Qn,k. Note that the output rate from com-
putation block is dn,k(t)↵n,k(t), where ↵n,k(t) is a positive
real value. This value captures any possible rate changes at the
computation block, i.e., ↵n,k(t) is a rate shaper. For example,
if the computation block is H.264/AVC decoder or transcoder,
we expect that the rate at the output of the computation block
should be higher than the input. Thus, ↵n,k(t) captures this
fact for any n, k, t. On the other hand, if there is no rate change

370ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

m n

k

Source

Sn(t)Sk(t)

xn,n(t)
xn,k(t)

hn,k(t)

Cellular or
Wi-Fi Links

D2D
Connections

(a) System Model

Source

SnFilen

Cellular
or Wi-Fi
interface

xn,n(t)
yn(t)

xn,k(t)

(b) Building blocks of the source.

Mobile
Device n

Un,k Computation Qn,k
Energy
Filter

Energy
Source

Zn,k

Cellular
or

Wi-Fi
interface

D2D
InterfaceEnergy Credits

xn,k(t)
dn,k(t)

dn,k(t) n,k(t) en,k(t)
hn,k(t)

Application
Layer

D2D
Interface

hk,n(t)

Pass packets
to application

(c) Building blocks of mobile device n
Fig. 3. (a) System model for the scenario of three devices; n, m, k. The source in this model represents the core network and base stations (access points).
(b) Building blocks of the source. Filen, 8n is read and inserted in the buffer Sn(t), and packets are transmitted from Sn(t). xn,k(t) is the transmission rate
of the packets from the source towards device n, and these packets will be processed by device n and forwarded to device k. (c) Building blocks of mobile
device n. If packets are received from the source via cellular and Wi-Fi interfaces, then they go to the computation and energy control blocks. If packets are
received from other mobile devices via D2D interface, they are directly passed to the application.

after the processing, then ↵n,k(t) = 1.
The processed (and possibly rate shaped) packets are queued

at Qn,k(t) and passed to energy filter. The energy filter is
coupled to the energy source, which determines the amount of
energy that can be spent to support the tasks at each slot. The
amount of energy is determined according to energy credits.
In particular, the energy source, depending on the battery level
as well as the estimate on the expected battery consumption
in the near future, calculates the number of packets that can
be supported by the mobile device, and the same number
of energy credits enter the energy filter. (Note that both
energy filter, energy source, and energy credits are not real,
but virtual entities, so they can be modeled by using a few
counters in practice.) Thus, at each transmission slot, packets
are transmitted from Qn,k(t) to Zn,k(t) with rate en,k(t) if
there exist energy credits in the energy filter. Finally, packets
from Zn,k(t) are transmitted to application if device n is the
destination of the data (i.e., n = k), or they are transmitted to
the original destination via D2D interface with rate hn,k(t).

The computation and energy filter blocks in Fig. 3(c) model
the processing and energy bottlenecks of the mobile device,
respectively. If packets in Un,k increases too much, this means
that the computation block, hence processing power, is the
bottleneck, so node n should not receive much packets from
the source. Similarly, if Qn,k increases too much, this means
that energy filter is the bottleneck, so again node n should
not receive much packets. Note that there could be also some
buildup in Zn,k if the link between node n and k is the
bottleneck of the system, and it should be taken into account
when the energy-aware cooperative computation framework is
developed.

Also, it is crucial in our system model to put energy filter
after the computation block, because if device n will help
device k, the actual amount of packets that are supposed to be
transmitted are the processed packets, which will cause energy
consumption (i.e., not the packets before processing).

Based on the above intuitions and observations, we will
develop our resource allocation problem and algorithm in the
next sections. The evolution of the queues Un,k(t), Qn,k(t),
and Zn,k(t) are provided in Table I.

Links: In our system model, we consider two scenarios:
(i) cellular + Wi-Fi Direct, and (ii) Wi-Fi + Wi-Fi Direct.

TABLE I
EVOLUTION OF QUEUES Un,k(t), Qn,k(t), AND Zn,k(t).

Un,k(t+ 1) max[Un,k(t)� dn,k(t), 0] + xn,k(t)
Qn,k(t+ 1) max[Qn,k(t)� en,k(t), 0] + dn,k(t)↵n,k(t)

Zn,k(t+ 1) max[Zn,k(t)� hn,k(t), 0] + en,k(t)

In both cases, the D2D links between mobile devices are
Wi-Direct. In the first case, i.e., in cellular + Wi-Fi Direct,
the links between the source and mobile devices are cellular,
while they are Wi-Fi in the second case, i.e., in Wi-Fi + Wi-
Fi Direct. These two scenarios are different from each other,
because in the first scenario, cellular and Wi-Fi Direct links
could operate simultaneously as they use different parts of
the spectrum. On the other hand, in the second scenario, both
Wi-Fi and Wi-Fi Direct use the same spectrum, so they time
share the available resources. Our model and energy-aware
cooperative computation framework are designed to operate
in both scenarios. Next, we provide details about our link
models.2

In the system model in Fig. 3(a), each mobile device n 2 N
is connected to the Internet via its cellular or Wi-Fi link. At
slot t, Cs

(t) is the channel state vector of these links, where
C

s
(t) = {Cs

1

(t), ..., Cs
n(t), ..., C

s
N (t)}. We assume that Cs

n(t)
is the state of the link between the source and mobile device n,
and it takes “ON” and “OFF” values depending on the state of
the channel. Without loss of generality, if mobile device n does
not have Internet connection, then Cs

n(t) is always at “OFF”
state, which means there is no cellular or Wi-Fi connection.

Since we consider that mobile devices are in close proximity
and transmission range, they form a fully connected clique
topology. At slot t, C

w
(t) is the channel state vector of

the D2D links, where C

w
(t) = {Cw

1,2(t), ..., Cw
n,k(t), ...,

Cw
N�1,N (t)}. We assume that Cw

n,k(t) is the state of the D2D
link between node n and k.

We consider protocol model in our formulations [34], where
each mobile device can either transmit or receive at the
same time at the same frequency. Assuming that C(t) =

2Note that the link models described in this section provide a guideline in
our algorithm development and basis in our theoretical analysis. However, in
Section VI, we relax the link model assumptions we made in this section, and
evaluate our algorithms on real devices and using real links.

371ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

{Cs
(t),Cw

(t)} is the channel state vector of the system
including both the links between the source and mobile devices
as well as among mobile devices, �

C(t) denotes the set of the
link transmission rates feasible at time slot t depending on
our protocol model. In particular, for cellular + Wi-Fi Direct
setup, �

C(t) is the set that allows more links to operate at the
same time, while for the Wi-Fi + Wi-Fi Direct setup, �

C(t) is
a more limited set due to the interference among the links.

IV. PROBLEM FORMULATION

In this section, we characterize the stability region of the
energy-aware cooperative computation problem, and formulate
network utility maximization (NUM) framework. The solution
of the NUM framework provides us insights for developing the
stochastic control algorithms in the next section.3

A. Stability Region

We provide the stability region of the cooperative compu-
tation system for both cellular + Wi-Fi Direct and W-Fi +
Wi-Fi Direct setups. First, the flow conservation constraint at
the source should be yn P

k2N xk,n to stabilize the system.
This constraint requires that the total outgoing rate from the
source, i.e.,

P
k2N xk,n should be larger than the generated

rate yn.
Furthermore, the following flow conservation constraints

inside a mobile device should be satisfied for stability; xn,k
dn,k, dn,k↵n,k en,k, and en,k hn,k. These constraints
are necessary for the stability of queues Un,k, Qn,k, and
Zn,k, respectively. Finally, the transmission rates over the links
should be feasible, i.e., {xn,k, hn,k}8n2N ,k2N 2 �

C

.
Thus, we define the stability region as ⇤ =

{{yn, xn,k, dn,k, en,k, hn,k}8n2N ,k2N | yn, xn,k, dn,k, en,k,
hn,k � 0, 8n 2 N , k 2 N , yn P

k2N xk,n, xn,k dn,k,
dn,k↵n,k en,k, en,k hn,k, {xn,k, hn,k}8n2N ,k2N 2 �

C

}.

B. NUM Formulation

Now, we characterize our NUM problem.

max

y

X

n2N
gn(yn)

s.t. yn, xn,k, dn,k, en,k, hn,k 2 ⇤, 8n 2 N , k 2 N (2)

The objective of the NUM problem in (2) is to determine
yn, xn,k, dn,k, en,k, hn,k for 8n 2 N , k 2 N which maximize
the total utility

P
n2N gn(yn).

C. NUM Solution

Lagrangian relaxation of the flow conservation constraints
that characterize the stability region ⇤ gives the following
Lagrange function:

3Note that NUM optimizes the average values of the parameters that are
defined in Section III. By abuse of notation, we use a variable, e.g., � as the
average value of �(t) in our NUM formulation if both � and �(t) refers to
the same parameter.

L =

X

n2N
gn(yn)�

X

n2N
sn(yn �

X

k2N
xk,n)�

X

n2N

X

k2N
un,k

(xn,k � dn,k)�
X

n2N

X

k2N
qn,k(dn,k↵n,k � en,k)�

X

n2N

X

k2N

zn,k(en,k � hn,k) (3)

where sn, un,k, qn,k, and zn,k are the Lagrange multipliers.
Note that we will convert these Lagrange multipliers to queues
Sn, Un,k, Qn,k, and Zn,k when we design our stochastic
algorithm in the next section.

The Lagrange function in (3) is decomposed into sub-
problems such as flow, computation, and energy controls as
well as cooperation and scheduling. The solutions of (3) for
yn, dn,k, en,k, xn,k, and hn,k are expressed as:

Flow control: max

y

X

n2N
(gn(yn)� ynsn) (4)

Computation control: max

d

X

n2N

X

k2N
dn,k(un,k � qn,k↵n,k)

(5)

Energy control: max

e

X

n2N

X

k2N
en,k(qn,k � zn,k) (6)

Cooperation & Scheduling:

max

x,h

X

n2N

X

k2N
[xn,k(sk � un,k) + zn,khn,k]

s.t. {xn,k, hn,k}8n2N ,k2N 2 �

C

(7)

Next, we design a stochastic algorithm; energy-aware co-
operative computation inspired by the NUM solutions in (4),
(5), (6), (7).

V. ENERGY-AWARE COOPERATIVE COMPUTATION

Now, we provide our energy-aware cooperative computation
algorithm which includes flow control, computation control,
energy control, and cooperation & scheduling.

Energy-Aware Cooperative Computation (EaCC):
• Flow Control: At every time slot t, yn(t) is determined

by maximizing max

y

[Mgn(yn(t))�Sn(t)yn(t)] subject
to yn(t) Rmax

n , where Rmax

n is a positive constant
larger than the transmission rate from the source, and
M is a large positive constant. Note that Sn(t) is the
queue size at the source of flow and stores packets that
are supposed to be transmitted to mobile device n. After
yn(t) is determined, yn(t) packets are inserted in queue
Sn(t) (as illustrated in Fig. 3(a)).

• Computation Control: At every time slot t, the computa-
tion control algorithm at device n determines dn,k(t) by
optimizing

max

d

X

k2N
dn,k(t)[Un,k(t)�Qn,k(t)↵n,k(t)]

s.t.
X

k2N
dn,k(t) Dmax

n (8)

372ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

where Dmax

n is a positive constant larger than the process-
ing rate of the computation block in device n dedicated
to help device k. The interpretation of (8) is that at every
time slot t, dn,k⇤

= Dmax

n packets are passed to the
computation block (in Fig. 3(b)) if Un,k⇤

(t)�Qn,k⇤
(t) >

0, where k⇤ is the mobile device that maximizes (8).
Otherwise, no packets are sent to the computation block.
The packets that are being processed by the computation
block are passed to Qn,k(t). Note that some computation
blocks may require to receive a group of packets to be
able to process them. In that case, Dmax

n is arranged
accordingly (i.e., it can be increased to transfer a group
of packets).

• Energy Control: At every time slot t, the energy control
algorithm at device n determines en,k(t) by optimizing

max

e

X

k2N
en,k(t)[Qn,k(t)� Zn,k(t)]

s.t.
X

k2N
en,k(t) Emax

n,k (9)

where Emax

n is a positive constant larger than the energy
capacity of device n dedicated to help device k. The inter-
pretation of (9) is that at every time slot t, en,k⇤

= Emax

n

packets are passed to the energy filter (as illustrated in
Fig. 3(b)) if Qn,k⇤

(t) � Zn,k⇤
(t) > 0, where k⇤ is the

mobile device that maximizes (9). Otherwise, no packets
are sent to the energy filter. The packets passing through
the energy filter are inserted in Zn,k(t).

• Scheduling & Cooperation: At every time slot t, the
scheduling and cooperation algorithm determines trans-
mission rates over links, i.e., xn,k(t) and hn,k(t) by
maximizing

max

x,h

X

n2N

X

k2N
[xn,k(t)(Sk(t)� Un,k(t)) + hn,k(t)Zn,k(t)]

s.t. x,h 2 �

C(t) (10)

For cellular + Wi-Fi Direct system, (10) is decomposed
into two terms: maximizing

P
n2N

P
k2N xn,k(t)(Sk(t)

� Un,k(t)) and
P

n2N
P

k2N hn,k(t)Zn,k(t), because
cellular and Wi-Fi Direct transmissions operate simulta-
neously and transmission over one link does not affect
the other. On the other hand, for Wi-Fi + Wi-Fi Direct
setup, the joint optimization in (10) should be solved.
Note that transmissions over all links are unicast trans-
missions in our work, where unicast is dominantly used
in practice over cellular, Wi-Fi, and Wi-Fi Direct links.
Also, it is straightforward to extend our framework for
broadcast transmissions.

Theorem 1: If channel states are i.i.d. over time slots, and
the arrival rates E[yn(t)] = An, 8n 2 N are interior of the
stability region ⇤, then energy-aware cooperative computation
stabilizes the network and the total average queue sizes are
bounded.

Furthermore, if the channel states are i.i.d. over time slots,
and the traffic arrival rates are controlled by the flow control

algorithm of energy-aware cooperative computation, then the
admitted flow rates converge to the utility optimal operating
point with increasing M .
Proof: The proof is provided in [6]. ⌅

Our energy-aware cooperative computation framework has
several advantages: (i) distributed, (ii) takes into account
scarce resources such as processing power and energy in
addition to bandwidth to make control decisions, and (iii)
utilizes available resources; processing power, energy, and
bandwidth in a utility optimal manner. Theorem 1 shows the
theoretical performance guarantees of our framework, while
we focus on its performance in a practical setup in the next
section.

VI. PERFORMANCE EVALUATION
In this section, we evaluate our energy-aware cooperative

computation (EaCC) scheme using a testbed that consists of
Android based smartphones and tablets. The evaluation results
show that our scheme significantly improves throughput as
compared to (i) no-cooperation, where each device receives
its content from the source without cooperating with other
devices, and (ii) cooperation, where multiple mobile devices
cooperate, but the cooperating devices do not do computation
and energy control for other devices (mobile devices just
receive packets from the source, and relay them to other
mobile devices without processing and energy control). Next,
we present testbed setup and results in detail.

A. Setup & Implementation Details
Devices: We implemented a testbed of the setup shown in

Fig. 3(a) using real mobile devices, specifically Android 5.1.1
based Nexus 5 smartphones and Nexus 7 tablets.

We classify devices as (i) a source device, which acts as the
source in Fig. 3(a), (ii) helper devices, which receive data from
the source, process it, and transmit to other devices (receivers)
to help them, and (iii) receiver devices, which receive data
from both the source device and the helpers. A receiver device
processes data arriving from the source, but it does not process
the data arriving from helpers as the helpers send already
processed data.4 Note that a device could be both receiver
and a helper device depending on the configuration.

Integration to the Protocol Stack: We implemented our
energy-aware cooperative computation (EaCC) framework as
a slim layer between transport and application layers. In
other words, we implemented our framework on top of TCP.
This kind of implementation has benefits, because (i) mobile
devices do not need rooting, and (ii) our framework and
codes could be easily transferred to mobile devices using other
operating systems such as iOS.

Source Configuration and EaCC Implementation: We im-
plemented the source node in Fig. 3 using a Nexus 5 smart-
phone. Basically, multiple files; Filen, Filek requested by
devices n and k are read by using the public java class
BufferedInputStream according to the flow control algorithm
described in Section V and shown in Fig. 3(b). The bytestream

4Note that we relax this assumption in our technical report [6] for
multimedia applications.

373ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

R1 H1

(a) System Model

0 10 20 30 40 50
0

1

2

3

4

Time (s)

R
a
te

 (
M

b
p
s)

EaCC

No−cooperation

(b) Rate vs. Time

20 30 40 50 60

0

1

2

3

4

5

Battery Level at R
1
 (%)

A
ve

ra
g
e
 R

a
te

 (
M

b
p
s)

No−cooperation

EaCC

(c) Rate vs. Energy

Fig. 4. (a) System model consisting of a source device, one receiver, and one helper. Wi-Fi is used between the source and the receiver device (R1) and
the helper device (H1), while Wi-Fi Direct is used to connect R1 to H1. (b) Average rate versus time for the setup shown in (a) for the case that all the
devices are Android based Nexus 7 tablets. (c) Average rate versus energy level at receiver device R1. In this setup, all devices are Android based Nexus 5
smartphones. In both (b) and (c), the average rate is calculated as the average over 10 trials (with different seeds). The computation under consideration in
this experiment is O(n2), which counts the number of bytes in a packet for each byte in the packet (i.e., recursive counting).

is packetized by setting each packet to 500B, and packets
are inserted into source buffers; Sn(t), Sk(t). We set the
flow control parameters as; M = 500, Rmax

n = 100, and
slot duration is 20msec. We used log function as our utility
function. In this setup, reading files, converting bytestream into
packets, and inserting packets into the input queues are done
by multiple threads, i.e., a thread runs for each file; Filen in
Fig. 3(b).

The other set of threads at the source device make packet
transmission decisions from the source device to receiver and
helper devices. In particular, the source node collects Un,k(t)
information from all mobile devices. At each time slot, the
source node checks Sk(t)�Un,k(t), and if Sk(t)�Un,k(t) > 0,
then 100 packets are transmitted from Sk(t) to the TCP socket
at the source device for transmission to mobile device n.

EaCC Operation on Mobile Devices: All mobile devices
(including helper or receiver+helper devices) implement all
the building blocks illustrated Fig. 3(c). Multiple threads are
used to make these blocks operating simultaneously.

The first thread at mobile device n receives packets that are
transmitted by the source node, and inserts these packets in
Un,k.

The second thread has two tasks. First, it transfers packets
from Un,k to Qn,k according to the computation control
algorithm in (8), where Dmax

n = 100 packets and the slot
duration is 20msec. We set ↵n,k(t) = 1 in our experiments
as our applications do not change the rate as explained
later in this section. The second task of this thread is to
actually do the computation tasks related to the application.
In our experiments, the computation block counts the bytes
in the packets. In particular, similar to the pilot study in the
introduction, O(1), O(n), and O(n2

) correspond to (i) no
counting, (ii) counting every byte in a packet once, and (iii)
counting every byte in a packet n times, respectively.

The third thread transfers packets from Qn,k to Zn,k using
the energy control algorithm in (9), where we set Emax

n,k
depending on the battery level of the device. For example,
if the battery level is below some threshold, Emax

n,k is limited.
We evaluated different configurations in our experiments as
we explain later. The slot duration is again set to 20msec.

The final thread transfers packets from Zn,k to application
layer if n = k, or transmits to node k if n 6= k. In the second
case, i.e., if n 6= k, the number of packets in TCP socket is

checked at every time slot, where the time slot duration is
20msec. If it is below a threshold of 500 packets, then 100

packets are removed from Zn,k and inserted to the TCP socket
to be transmitted to node k.

When node n receives packets from node k, it directly
passes the packets to the application layer as illustrated in
Fig. 3(c), because these packets are the ones that are already
processed by node k. If node n is both a helper and a receiver
device, it runs all the threads explained above in addition to
the receiving thread from node k (illustrated in Fig. 3(c)).

Information Exchange: Our implementation is lightweight
in the sense that it limits control information exchange among
mobile devices. The only control information that is trans-
mitted in the system is Un,k from each mobile device to the
source node. Each mobile device n collects Un,k, 8k 2 N ,
and transmits this information to the source node periodically,
where we set the periods to 100msec.

Connections: All the devices in the system including the
source device, helpers, receivers, and helper+receiver devices
are connected to each other using Wi-Fi Direct connections
in our testbed. The source node is configured as the group
owner of the Wi-Fi Direct group. We note that cooperation in
this setup does not bring any benefit in terms of bandwidth
utilization as all the links use the same transmission channel
in a Wi-Fi Direct group. However, as we demonstrate later in
this section, it brings benefit due to cooperative processing
power and energy utilization, which is our main focus in
this paper. Therefore, this setup (where all the devices are
connected to each other using Wi-Fi Direct links) well suits
to our evaluation purposes.

Test Environment: We conducted our experiments using
our testbed in a lab environment where several other Wi-
Fi networks were operating in the background. We located
all the devices in close proximity of each other, and we
have evaluated EaCC for varying levels of computational
complexity, number of receivers, and number of helpers. Next,
we present our evaluation results.

B. Results
We first consider a setup as shown in Fig. 4(a) which

consists of a source device, one receiver (R
1

), and one helper
(H

1

). Fig. 4(b) shows the average rate versus time graph for
the setup shown in Fig. 4(a) when all three devices are Android

374ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

R1 H1 H2

(a) System Model

0 1 2 3
0

5

10

15

Number of Helpers

A
ve

ra
g
e

 R
a
te

 (
M

b
p
s)

O(1)

O(n)

O(n2)

(b) Rate vs. Number of Helpers

0 1 2 3 4
0

2

4

6

8

10

12

Number of Helpers

A
ve

ra
g
e

 R
a
te

 (
M

b
p
s)

EaCC

Cooperation

(c) Rate vs. Number of Helpers

Fig. 5. (a) System model consisting of a source device, one receiver, and multiple helpers. Wi-Fi is used between the source and the receiver device (R1) and
the helper devices (H1, . . .), while Wi-Fi Direct is used to connect the receiver devices with the helper devices. (b) EaCC: Average rate measured at receiver
R1 versus the number of helpers. (c) Average rate measured at receiver R1 versus the number of helpers for EaCC and cooperation, when the complexity is
O(n2).

based Nexus 7 tablets. The average rate is calculated as the
average over 10 trials (with different seeds). The computation
under consideration in this experiment is O(n2

), which counts
the number of bytes in a packet n times, n is the packet size.
As can be seen, if there is no cooperation, the rate measured
at R

1

is on the order of 1.5Mbps. On the other hand, EaCC
increases the rate to almost 3Mbps. This means that helper
device H

1

helps the receiver device R
1

process the packets in
EaCC. In this setup, EaCC doubles the rate as compared to
no-cooperation, which is a significant improvement.

For the same setup in Fig. 4(a), we also evaluate the
impact of energy control part of EaCC on the average rate
performance. In particular, Fig. 4(c) shows the average rate
versus battery level at the receiver device R

1

. In these results,
we used Android based Nexus 5 smartphones. The average rate
is calculated as the average over 10 trials (with different seeds).
The computation under consideration in this experiment is
O(n2

), which counts the number of bytes in a packet for each
byte in the packet. We consider that if the battery level of
a device reduces below 40% threshold, then energy credits
are not generated for the processing of the received packets.
This makes Qn,k large over time, and after some point no
packets are transmitted to that device for the processing task.
In Fig. 4(c), when the battery level of R

1

reduces below 40%,
then it stops receiving packets for processing. If there is no
cooperation, then the rate towards R

1

reduces to 0. On the
other hand, with EaCC, the rate is still higher than 0 thanks to
having helper. The helper device with larger energy level (for
the sake of this experiment), receives packets from the source,
processes them, and forwards them to R

1

, which receives
already processed data. After 40% threshold, both EaCC and
no-cooperation improve, because R

1

starts processing packets.
This result shows the importance of energy-awareness in our
cooperative computation setup.

Now, we consider the impact of the number of helpers to
overall rate performance. In particular, we develop a setup
shown in Fig. 5(a), where there is one source, one receiver,
and a varying number of helpers. In this setup, the source
device, receiver, and the first two helper devices are Nexus
5 smartphones, while the other helpers are Nexus 7 tablets.
Fig. 5(b) shows the average rate (averaged over 10 seeds)
when EaCC is employed versus the number of helpers for
different computational complexities such as O(1), O(n), and

O(n2

), where the processing task is counting the number of
bytes in a packet. As expected, when complexity increases, the
rate decreases. More interestingly, the increasing number of
helpers increases the rates of all complexity levels. There are
two reasons for this behavior. First, even if complexity level is
low, e.g., O(1), processing power is still a bottleneck, and it
can be solved by increasing the number of helpers. Note that
after the number of helpers exceeds a value, the achievable
rates saturate, which means that processing power is not a
bottleneck anymore, but bandwidth is. The second reason is
that receiving data over multiple interfaces increases diversity.
In other words, when the channel condition over one interface
(e.g., between source and the mobile device) degrades, the
other interface (e.g., between two mobile devices) can still
have a better channel condition.

In order to understand the real impact of processing power
in a cooperative system, we tested both EaCC and cooperation
(without computation and energy control) in the setup shown
in Fig. 5(a). The results are provided in Fig. 5(c) when the
complexity is O(n2

). As can be seen, while EaCC signifi-
cantly increases the rate with increasing number of helpers,
cooperation slightly increases the rate (due to diversity). The
improvement of EaCC over cooperation is as high as 83%,
which is significant.

Finally, we consider a scenario that there are multiple
receivers interested in different files. Fig. 6(a) shows the
system model with one source, two receivers, and multiple
helpers. In this setup, the source, two receivers, and the first
helper is Android based Nexus 5 smartphone, while the rest
of the helpers are Nexus 7 tablets. Fig. 6(b) and (c) show the
average rate (averaged over 10 seeds) measured at R

1

and
R

2

when EaCC is employed with respect to the increasing
number of helpers, respectively. Similar to previous setups,
O(1), O(n), and O(n2

) correspond to different computational
complexities, where the processing task is counting the number
of bytes in a packet. As can be seen, the measured rate at both
R

1

and R
2

increases with increasing number of helpers. This
shows that our EaCC algorithm successfully accommodates
multiple flows and receivers.

VII. CONCLUSION

We considered that a group of cooperative mobile devices,
within proximity of each other, (i) use their cellular or Wi-Fi
(802.11) links as their primary networking interfaces, and (ii)

375ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

R1 H1 H2 R2

(a) System Model

−1 0 1 2 3
0

2

4

6

8

10

Number of Helpers

A
ve

ra
g
e
 R

a
te

 (
M

b
p
s)

O(1)

O(n)

O(n2)

(b) Rate at R1 vs. Number of Helpers

−1 0 1 2 3
0

2

4

6

8

10

Number of Helpers

A
ve

ra
g
e
 R

a
te

 (
M

b
p
s)

O(1)

O(n)

O(n2)

(c) Rate at R2 vs. Number of Helpers

Fig. 6. (a) System model consisting of a source device, two receivers, and multiple helpers. Wi-Fi is used between the source and the receiver devices (R1,
R2) and the helper devices (H1, . . .), while Wi-Fi Direct is used to connect the receiver devices with the helper devices. (b) EaCC: Average rate measured
at receiver R1 versus the number of helpers. (c) EaCC: Average rate measured at receiver R2 versus the number of helpers.

exploit their D2D connections (Wi-Fi Direct) for cooperative
computation. We showed that if mobile devices cooperate
to utilize their aggregate processing power, it significantly
improves transmission rates. Thus, for this scenario, we de-
veloped an energy-aware cooperative computation framework
to effectively utilize processing power and energy. This frame-
work provides a set of algorithms including flow, computation
and energy controls as well as cooperation and scheduling. We
implemented these algorithms in a testbed which consists of
real mobile devices. The experiments in the testbed show that
our energy-aware cooperative computation framework brings
significant performance benefits.

REFERENCES

[1] “Cisco visual networking index: Global mobile data traffic forecast
update,” 2014-2019.

[2] “Ericsson mobility report,” February 2015.
[3] “Wi-fi direct,” http://www.wi-fi.org/discover-and-learn/wi-fi-direct.
[4] “Android,” http://developer.android.com/develop/index.html.
[5] “Nexus tech specs,” https://support.google.com/nexus/answer/6102470?hl=en.
[6] A. Singh, Y. Xing, and H. Seferoglu, “Cooperative compuration in

device-to-device networks.” [Online]. Available: http://nrl.ece.uic.edu
and via [cs.NI] arXiv:1602.04400

[7] T. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. Wong,
J. Schulz, M. Samimi, and F. Gutierrez, “Millimeter wave mobile
communications for 5g cellular: It will work!” Access, IEEE, vol. 1,
pp. 335–349, 2013.

[8] J. Ostermann, J. Bormans, P. List, D. Marpe, M. Narroschke, F. Pereira,
T. Stockhammer, and T. Wedi, “Video coding with h.264/avc: tools,
performance, and complexity,” Circuits and Systems Magazine, IEEE,
vol. 4, no. 1, pp. 7–28, First 2004.

[9] M. Horowitz, A. Joch, F. Kossentini, and A. Hallapuro, “H.264/avc
baseline profile decoder complexity analysis,” Circuits and Systems for
Video Technology, IEEE Transactions on, vol. 13, no. 7, pp. 704–716,
July 2003.

[10] J. K. Sundararajan, D. Shah, M. Jakubczak, M. Mitzenmacher, and
J. Barros, “Network coding meets tcp: Theory and implementation,”
Proceedings of the IEEE, pp. 490–512, March 2011.

[11] P. Vingelmann, P. Zanaty, F. Fitzek, and H. Charaf, “Implementation
of random linear network coding on opengl-enabled graphics cards,” in
Wireless Conference, 2009. EW 2009. European, May 2009, pp. 118–
123.

[12] H. Shojania, B. Li, and X. Wang, “Nuclei: Gpu-accelerated many-core
network coding,” in INFOCOM 2009, IEEE, April 2009, pp. 459–467.

[13] S. Arora and B. Barak, Computational Complexity: A Modern Approach.
Cambridge University Press, 2009.

[14] M. Chiang, S. T. Low, A. R. Calderbank, and J. C. Doyle, “Layering
as optimization decomposition: a mathematical theory of network archi-
tectures,” Proceedings of the IEEE, vol. 95, no. 1, January 2007.

[15] D. Syrivelis, G. Iosifidis, D. Delimpasis, K. Chounos, T. Korakis, and
L. Tassiulas, “Bits and coins: Supporting collaborative consumption of
mobile internet,” in Proc. IEEE Infocom, Hong Kong, April 2015.

[16] A. Asadi, Q. Wang, and V. Mancuso, “A survey on device-to-device
communication in cellular networks,” April 2014, technical report -
arxiv:1310.0720v6[cs.GT].

[17] P. Hui, J. Crowcroft, and E. Yoneki, “Bubble rap: social-based forward-
ing in delay tolerant networks,” in Proc. of ACM MobiHoc, Hong Kong,
May 2008.

[18] C. Boldrini, M. Conti, and A. Passarella, “Exploiting users’ social
relations to forward data in opportunistic networks: The hibop solution,”
in Proc. of Pervasive and Mobile Computing, October 2008.

[19] L. Keller, B. Cici, A. Le, H. Seferoglu, C. Fragouli, and A. Markopoulou,
“Microcast: Cooperative video streaming on smartphones,” in Proc. of
ACM MobiSys, June 2012.

[20] H. Seferoglu, L. Keller, A. Le, B. Cici, C. Fragouli, and A. Markopoulou,
“Cooperative video streaming on smartphones,” in Proc. Allerton, 2011.

[21] M. Ramadan, L. E. Zein, and Z. Dawy, “Implementation and evaluation
of cooperative video streaming for mobile devices,” in Proc. of IEEE
PIMRC, Cannes, France, September 2008.

[22] S. Li and S. Chan, “Bopper: wireless video broadcasting with peer-to-
peer error recovery,” in Proc. of IEEE ICME, Beijing, China, July 2007.

[23] J. Chesterfield, R. Chakravorty, I. Pratt, S. Banerjee, and P. Rodriguez,
“Exploiting diversity to enhance multimedia streaming over cellular
links,” in Proc. of IEEE INFOCOM, March 2005.

[24] ——, “A system for peer-to-peer video streaming in resource constrained
mobile environments,” in Proc. of ACM U-NET, December 2009.

[25] S. Ioannidis, A. Chaintreau, and L. Massoulie, “Optimal and scalable
distribution of content updates over a mobile social network,” in Proc.
IEEE INFOCOM, Rio de Janeiro, Brazil, April 2009.

[26] B. Han, P. Hui, V. A. Kumar, M. V. Marathe, G. Pei, and A. Srinivasan,
“Cellular traffic offloading through opportunistic communications: a case
study,” in Proc. of ACM Workshop on Challenged Networks (CHANTS),
Chicago, IL, September 2010.

[27] R. K. Lomotey and R. Deters, “Architectural designs from mobile cloud
computing to ubiquitous cloud computing - survey,” in Proc. IEEE
Services, Anchorage, Alaska, June 2014.

[28] T. Penner, A. Johnson, B. V. Slyke, M. Guirguis, and Q. Gu, “Transient
clouds: Assignment and collaborative execution of tasks on mobile
devices,” in Proc. IEEE GLOBECOM, Austin, TX, December 2014.

[29] M. Satyanarayanan, S. Smaldone, B. Gilbert, J. Harkes, and L. Iftode,
“Bringing the cloud down to earth: Transient pcs everywhere,” in
MobiCASE’10, 2010, pp. 315–322.

[30] E. Miluzzo, R. Caceres, and Y. Chen, “Vision: mclouds - computing on
clouds of mobile devices,” in ACM workshop on Mobile cloud computing
and services, Low Wodd Bay, Lake District, UK, June 2012.

[31] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
mul- tihop radio networks,” IEEE Trans. on Automatic Control, vol. 37,
no. 12, December 1992.

[32] ——, “Dynamic server allocation to parallel queues with randomly
varying connectivity,” IEEE Trans. on Information Theory, vol. 39, no. 2,
March 1993.

[33] M. J. Neely, E. Modiano, and C. Li, “Fairness and optimal stochas-
tic control for heterogeneous networks,” IEEE Trans. on Networking,
vol. 16, no. 2, April 2008.

[34] P. Gupta and P. R. Kumar, “The capacity of wireless networks,”
IEEE/ACM Transactions on Information Theory, vol. 34, no. 5, March
2000.

376ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Device-to-Device Mobile Data Offloading for
Music Streaming

Sylvia T. Kouyoumdjieva and Gunnar Karlsson
ACCESS Linnaeus Center, School of Electrical Engineering

KTH Royal Institute of Technology, Stockholm, Sweden
Email: {stkou, gk}@ee.kth.se

Abstract—Device-to-device communication (also referred to as
opportunistic networking) is considered a feasible means for
offloading mobile data traffic. Due to the sporadic nature of
contact opportunities, applications in the domain of device-to-
device communication are assumed to be delay-tolerant, with
content delivery deadlines being in the order of hours. However,
predictions suggest that by 2020 more than 75% of the traffic
volumes at mobile operators will be generated by multimedia
contents which is often seen as data served in real-time. In this
paper we explore how the concept of opportunistic networking
can be used for dissemination of real-time streaming contents
for users in urban environments without degrading quality of
experience. We first present a general framework for offloading
multimedia data that is organized in terms of playlists, and we
then investigate the performance of the framework in realistic
urban environments using the music streaming service Spotify
as a use-case. Our results show that it is feasible to use
opportunistic device-to-device communication in the context of
music streaming. We demonstrate that the system performance
is insensitive to a number of parameters such as playlist length
distribution, and initial content availability distribution, however
it exhibits sensitivity towards the amount of requested data and
the node density.

Index Terms—mobile data offloading, device-to-device commu-
nication, opportunistic networking, music streaming, Spotify.

I. INTRODUCTION

The proliferation of mobile devices has changed tremen-
dously the way in which people consume information. The
huge amounts of data delivered to mobile users on an every-
day basis requires mobile operators to face the challenge of
increased traffic volumes in their networks. In fact, predictions
are that by 2020 mobile operators will experience around 24
EB of monthly mobile data traffic. Approximately 75% of this
traffic is expected to be generated by multimedia contents [1].
Mobile operators are thus exploring different possibilities
for offloading traffic volumes to alternative networks, and
one of the promising solutions that has been proposed is
device-to-device (also called opportunistic) communication.
Opportunistic communication allows devices in proximity to
exchange data directly with each other without relying on
infrastructure.

Opportunistic communication has been perceived as a
means of disseminating and offloading delay-tolerant contents
characterized with content delivery deadlines in the order of
hours such as news or software updates. However with the

increasing amounts of multimedia contents such as music and
video delivered to mobile devices, offloading solely delay-
tolerant contents may not be enough to reduce the traffic
volumes at mobile operators. Thus, we here question whether
the concept of device-to-device opportunistic communication
could also be applicable for disseminating data with much
shorter deadline requirements, such as streaming data. Only
few studies [2], [3], [4] evaluate direct device-to-device com-
munication as an alternative for delivering on-demand stream-
ing to mobile devices, however the solutions rely on the pres-
ence of infrastructure for supporting the dissemination process.
Instead, we evaluate the feasibility of an infrastructureless
solution for offloading streaming data while maintaining the
quality of experience for the end user.

The contributions of this work are two-fold. We first in-
troduce a framework for disseminating real-time streaming
contents in an opportunistic manner. We then evaluate the
performance of the framework via extensive trace-driven simu-
lations based on realistic mobility traces that recreate mobility
patterns of urban users. We base our evaluation on the popular
music streaming service Spotify as a use-case. The rationale
behind choosing a music streaming service as a use-case is
the length of the flows. Music streams are long-lived (in
the order of hours) and although they do not require high
data rates, due to their duration they result into high traffic
volumes. Our results show that opportunistic device-to-device
communication is a viable means for offloading streaming
data. The system performance exhibits high sensitivity towards
the node density and the amount of requested data, but it is
insensitive towards the distribution of the playlist length and
the initial content availability.

The rest of this paper is structured as follows. In Section II
we present our proposed general framework for offloading
multimedia contents via device-to-device communication. Sec-
tion III presents a popular music streaming service, Spotify,
which we further use as a case study for evaluating the
framework. Sections IV and V summarize the evaluation
scenario and results, while Section VI discusses the related
work and positions our proposal with respect to it. Finally, we
conclude in Section VII.

II. OPPORTUNISTIC DISSEMINATION AND STREAMING

Opportunistic device-to-device communication allows nodes
equipped with mobile devices to exchange data with oneISBN 978-3-901882-83-8 c⃝ 2016 IFIP

377ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

A D

C

B

1

4

2 2 3

3

14

Fig. 1. An example with four nodes {A, B, C, D} interested in four content
items {1, 2, 3, 4}. Each node has one content item in its cache (left rectangle)
and one content item in its requested playlist to obtain in the nearest future
(right rectangle). Dashed lines show nodes in direct communication range;
solid lines show possibilities for content exchange.

another when in direct communication range. Data exchange
is only possible if nodes share one or more common interests.
An interest is expressed in the form of a subscription to a
specific content category through a publish/subscribe interface
exposed by an opportunistic content dissemination system [5].
Nodes encounter other peers, and are consecutively able to
discover and download contents stored on those peers, as they
move through an area. However, without keeping track of the
mobility pattern of each and every node in the system, it is not
possible to predict beforehand neither when any two devices
with shared interest would be in direct communication range,
nor how long the duration of their contact would be. Due to
this unpredictability, opportunistic communication is mostly
proposed as an offloading solution for delay-tolerant content,
and is often considered inappropriate for sharing real-time
contents such as streaming data.

Streaming data is provided in real-time when considering
the data that is delivered to a device. However, shifting the
viewpoint towards contents changes the definition from real-
time data into data with tight delay constraints. We define con-
tents to have tight delay constraints if its playout is in real-time
but its delivery to the requesting application happens within
some predefined delay boundaries. Contrary to traditional on-
demand data delivery, the delay boundaries in this case are
more generous. Let us illustrate this concept with an example,
Fig. 1. Four mobile nodes {A, B, C, D} are interested in
obtaining four content items {1, 2, 3, 4} constituting a playlist.
The dashed lines show direct communication links between
nodes. At the beginning, all playout buffers are empty. Thus,
each of the nodes begins by streaming one of the items of
interest from a server via the cellular network and playing it
out; node A streams item 1, node B streams item 2, etc. Since
all nodes are interested in all four of the content items, the
application at each node is aware both of the currently played
content item, as well as of other content items that are not
available on the device but are part of the playlist; we call
this the request playlist. In this example, the request playlist
of node A consists of item 2, the request playlist of node B
consists of item 3, etc. Normally node A would request item
2 from the server and stream it in real-time once it is done

.
Cached Playlist Items Requested Playlist Items

1 j n
Currently Served

Content Item

Max Download DelayPlayout
Buffer

Playout Duration

. . j - 1

Played Out Scheduled

PP

Fig. 2. The cached playlist holds items that are already available on the device;
these can be either items that have been played by the device, or items that
have been downloaded for future usage. The requested playlist holds items
that still need to be downloaded. The playout point is denoted with PP.

streaming item 1. However, if node A’s application is aware
of the items in its request playlist, it may as well attempt to
obtain these items in advance in alternative ways, for example
via opportunistic device-to-device communication, before they
are requested by the application. Then, once the streaming
of item 1 is over, item 2 can be played seamlessly from a
local cache. In our example, node A has item 2 in its request
playlist, while node B which is a neighbor of node A already
has item 2 which it has obtained via streaming; node B could
consecutively share item 2 upon request with node A.

In the context of delivering multimedia to mobile devices,
a node can either stream the data in real-time directly from a
server via the cellular network, or it can download the data
from a peer via an opportunistic contact. Contents available in
the cache of a node is then played out whenever the application
requests it. Observe that play out is oblivious whether the data
source is local (the device’s cache) or remote (the server).

Fig. 2 illustrates the general concept of cached and re-
quested playlist items. A cached playlist item is already
available on the device. Observe that we do not specify how
the cached item has been made available to the device. For
instance, it could have been streamed via a cellular network, or
downloaded via an opportunistic contact. A requested playlist
item is a content item that the device is expected to provide
to the application in the future. A special case of a cached
item is the currently served content item, i.e. the item that is
being played out to the requesting application. The currently
served content item defines the maximum download delay as
the time until the next play out. In case that the currently
consumed content item is the last item in the cached playlist,
the maximum download delay measures how long the node
could search new content items in neighboring devices before
its buffer under-flows. Algorithm 1 presents the framework for
offloading streaming data with tight delay constraints. As long
as the request playlist of a node is not empty (line 3), the node
actively searches for peers in its vicinity that could provide it
with useful contents. Upon downloading a content item from
a neighbor, the node stores the item in its scheduled playlist,
and removes it from the request playlist (lines 7 and 8).
Whenever the playout buffer reaches the end of the currently
consumed content item (line 10), the requesting application
checks whether there are any scheduled content items; if this

378ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Algorithm 1 Framework for Offloading of Streaming Data
1: S ← set of scheduled content items
2: R ← set of requested content items
3: while R is not ∅ do
4: search for peers in vicinity
5: if available peer with shared interest then
6: download content item
7: add content item to S
8: remove content item from R
9: end if

10: if playout buffer is ∅ then
11: if S is ∅ then
12: if replay then
13: replay cached content item
14: else
15: stream content item from server
16: end if
17: else
18: play out next content item
19: end if
20: end if
21: end while

is the case, the first of the scheduled content items is played
out from the local cache (line 18). However, if the scheduled
content items playlist is empty, the requesting application has
two options: either to replay a locally cached content item that
has already been played out before (line 13) or to stream a
new content item from the server via the cellular network (line
15).

The playout system in a device can be described as a G/G/1
queueing system, Fig. 3. Nodes arrive in the communication
range of an observer node j with mean arrival rate λ. However,
only a subset of these nodes could be useful to the observer
node. A contact is useful if it can deliver contents of interest
to the observer node while in its communication range. Useful
contacts occur at a content solicitation rate λ′ < λ, and can be
described with a distribution of useful inter-contact times f(t).
The distribution of the useful inter-contact times is defined
by the underlying node mobility, as well as the popularity
of the content items in the requested playlist of the observer
node. The duration of the currently served content item τ
in node j defines the service time. The service time follows
a distribution g(τ). Opportunistic mobile data offloading for
streaming services is then defined as feasible if the mean
inter-arrival time of useful nodes to node j is larger than the
mean service time for node j, E[f(t)] > E[g(τ)]. Contrary to
traditional queueing theory, the main objective for the system
is to operate in a saturated state.

III. MUSIC STREAMING WITH SPOTIFY

Spotify is a popular online peer-assisted music streaming
service [6]. Spotify offers an extensive music catalog with
more than 20 million music tracks to desktop, mobile and
web users. In the wired domain, users can stream music
directly from the Spotify servers or via peers who have already

Playout
Rate 1/τ

Cached Scheduled
Content Items

Content solicitation
Rate λ′ Requested

Content Items

Playlist

Fig. 3. The playout system in a device represented as a G/G/1 queueing
system.

<track href="spotify:track:5eCgNATwXgRc4mZx9NymGJ">
<name>Waiting For Love</name>
<artist href="spotify:artist:1vCWHaC5f2uS3yhpwWbIA6">

<name>Avicii</name>
</artist>
<album href="spotify:album:0LUr5Q06EQu7QIid7cACFU">

<name>Waiting For Love</name>
<released>2015</released>
<availability>

"AD", "AR", ... "TW", "UY"
</availability>

</album>
<track-number>1</track-number>
<length>228.750000</length>
<popularity>96</popularity>

</track>

Listing 1. Sample data structure of a Spotify track. Some parameters are
omitted in order to improve readability.

downloaded the track and cached it on their devices. It has
been shown that approximately 40% of all data delivered to
users is provided by peers instead of by the server. In the
wireless domain, however, users are currently only allowed to
download tracks directly from the Spotify servers. Recently
Spotify announced that the usage of their service on mobile
devices has surpassed the usage of desktop and web clients,
with more than 50% of users streaming music on their
smartphones or tablets [7]. This shift in usage significantly
increases the traffic volumes on the servers as well as on the
mobile operator, and would ultimately require a shift in the
way data is provisioned to devices in the wireless domain.

A. Spotify Data Analytics
Spotify provides an application programming interface

(API)1 which allows developers to access and extract meta
data about tracks, artists as well as users and their playlists.
Searching through Spotify’s database is performed by a simple
GET request:
GET http://api.spotify.com/v1/search?q=text&keyi=vali

Here, text denotes a free text, for instance a name of a
track, while keyi and vali are additional key-value filtering
options for improving the search results. For example, in this
section we make use of the market key which expects an ISO
3166-1 alpha-2 country code as a value to narrow down search
results to a specific country. Another popular filtering key
option is type which can take values of track, artist
and album.

The data provided by the API in response to a GET
search request is presented in the form of a JSON object,
and in essence it consists of a collection of key-value pairs
associated with a particular request. A sample data structure

1Spotify’s API is available at http://developer.spotify.com/web-api/

379ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0 500 1000 1500 2000 2500 3000 3500 4000
0

1

2

3

4

5

6

7

x 10−3

Duration, sec

D
en

si
ty

empirical pdf
lognormal fit

(a)

100 101 102 103 104 10510−2

10−1

100

Tracks

Po
pu

la
rit

y

spotify.com

(b)

Fig. 4. Statistics collected from 100 000 tracks on Spotify. (a) Distribution
of track durations. (b) Distribution of track popularity.

corresponding to a search of a popular track is presented in
Listing 1; the format is converted into XML for the sake
of readability. The track element is the highest level element
in the structure, and it contains various meta data associated
with the particular track, such as the length of a track (in
milliseconds), the associated artist and album, as well as the
track availability across the world. Each track has a unique
identifier in the form of a URI which is provided by the href
key.

To obtain a better understanding of the parameters of data
distributed by the Spotify service, we implemented a simple
crawler in Python and collected statistics of 100 000 tracks
out of the Spotify catalog. Fig. 4(a) presents the distribution
of track durations. Most tracks have durations of few minutes,
with the mean track duration being approximately 225 s.
However we see that few tracks exhibit much longer durations;
these are for example classical music pieces. None of the
general probability distributions is able to fully describe the
distribution of track durations however the lognormal distri-
bution gives the closest fit.

Spotify also provides their own estimate of the popularity
of tracks as a value between 0 and 100, with 100 denoting the
most popular tracks. Popularity is estimated with respect to the
total number of times a track has been played, as well as how
recently it has been played. Fig. 4(b) illustrates the popularity
distribution of 100 000 tracks plotted on a loglog scale. (We
here represent popularity with values between 0 and 1 on the
y-axis to improve readability.) Only few tracks have a high
popularity score. Those are the tracks that could potentially
be solicited by neighboring peers instead of streamed directly
from the Spotify server in the wireless domain. We there-
fore further focus on evaluating only high popularity tracks.
However we should note that when considering tracks for
disseminating via opportunistic device-to-device contacts, we
should not look into track popularity on global scale. Instead,
since device-to-device communication allows data exchange
among devices in proximity, we should attempt to describe
data popularity in a smaller and more local scope, i.e. the scope
of a country or even an area in a country. Spotify currently
provides data at the scope of a country in its availability tag.

Fig. 5 shows the popularity distribution of tracks currently
present in the Top 50 chart for three European countries:

Fig. 5. The popularity distribution of the top 50 tracks per country can
be described with a Zipf distribution. Popularity is calculated based on the
number of times a track has been played in the course of a week. Although
tracks tend to have different popularity across countries, the parameter
describing the Zipf distribution does not vary significantly.

Austria, France and Sweden. (We take into account only data
from European countries instead of the USA or China due to
the fact that the area is smaller and the statistics represent a
more localized view of the track popularity.) The graph plots
the popularity of tracks in terms of the times a track has been
played with respect to the position of the track in the chart.
Users in different countries exhibit different usage patterns
of the Spotify service, with the service being most commonly
used in Sweden, and least used in Austria (upper left in Fig. 5).
We then fit the popularity curve into a Zipf distribution, and
we estimate the parameter α for each of the three datasets.
It is interesting to see that although the usage statistics per
country vary significantly (the most popular song in Sweden
is played more than 250 000 times, while in Austria – less
than 10 000 times), the Zipf distribution that describes the
popularity exhibits similar behavior (with α ∈ [0.354, 0.386]).

Finally, we provide a rough quantitative measure of the
maximum offload that could be achieved if popular tracks
are to be disseminated via opportunistic contacts instead
of streaming the contents directly from the Spotify servers.
Table I shows the amount of data downloaded from the server
when the duration of each song has a mean of 225 s, the
audio stream is encoded with Ogg Vorbis q9 with 320 kbps
(the typical encoding scheme for premium users of Spotify).
Currently, the top 50 most popular tracks amount to hundreds
of terabits of data downloaded from a server, and traversing
a mobile network which could potentially be offloaded to
alternative networks.

B. Spotify and Opportunistic Communication
In order to be able to examine the performance of a

music streaming service such as Spotify in the opportunistic
domain, we first need to define how the current protocols and
data formats would fit into the context of device-to-device

380ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE I
TOP 50 CHART: TOTAL WEEKLY DOWNLOADS AND MAXIMUM OFFLOAD

CAPACITY WHEN AUDIO STREAMS ARE ENCODED WITH OGG VORBIS Q9
AT 320 KBPS.

Country Total downloads Offload capacity
(millions) (terabits)

Austria 0.2 M 16 Tb
France 1.3 M 80 Tb
Sweden 5.4 M 380 Tb

communication. We thus present a sample publish/subscribe
framework for opportunistic networks. Similar to the pub-
lish/subscribe interface exposed currently by Spotify to its
users [8], in the opportunistic domain users should be able to
express interest in the tracks they wish to listen to. However,
while in the wired domain a user is able to subscribe to a
playlist or to an artist or to another user, in the wireless domain
such a fragmentation in subscriptions would lead to an under-
utilization of the opportunistic network. For instance, a node
is less probable to encounter another peer which is subscribed
to the same playlist, however a user has higher chances of
encountering another node which is subscribed to the same
track. The reason is that tracks may exist in multiple playlists,
and they are always defined by a single unique identifier.

IV. EVALUATION SCENARIO

A. Mobility scenario

In order to realistically recreate pedestrian mobility, we
use the Walkers traces [9] captured in Legion Studio [10],
a commercial simulator initially developed for designing and
dimensioning large-scale spaces via simulation of pedestrian
behaviors. Its multi-agent pedestrian model is based on ad-
vanced analytical and empirical models which have been cali-
brated by measurement studies. Each simulation run conducted
in Legion Studio results in a mobility trace file, containing a
snapshot of the positions of all nodes in the system every 0.6 s.

Fig. 6 presents an urban outdoor scenario considered in
our evaluation; the outdoor scenario recreates an actual part
of downtown Stockholm. The scenario consists of a grid of
interconnected streets with lengths varying between 20 m and
200 m. Each street has a width of 2 m which is representative
of a sidewalk. In terms of cellular coverage, we assume that the
area of the outdoor scenario corresponds to the area of a single
cell of a mobile operator. Nodes enter into the urban area
according to an arrival rate λ via one of the fourteen passages
that connect the area to the outside world, and roam around
the area until they reach an exit passage. The mean sojourn
time of nodes is approximately 295 s. The active area of the
scenario is 5872 m2; observe that the active area defines the
area through which nodes can actually move, i.e., the streets.
Throughout their lifetime nodes are constantly moving in the
observed area, therefore the scenario can be characterized as
a high mobility scenario. More details on the scenario can be
found in [11].

Fig. 6. Urban scenario: a grid of streets representing a part of an actual
downtown area in Stockholm.

B. Simulation Setup

In our evaluation scenario we assume that all nodes carry
mobile devices on which the Spotify application is installed.
Communication between nodes may occur when they are in
direct communication range; we set the range to be 10 m.
Since most technologies dedicated to device-to-device com-
munication, such as Wi-Fi Aware [12] and LTE-Direct [13],
are not yet mature, we here do not focus on evaluating the per-
formance of opportunistic mobile data offloading with respect
to a specific underlying technology. Instead we only assume
that the data rate between nodes is regulated to 10 Mbps.

Nodes have some contents preloaded into the caches of their
devices, and while this content is played out, they attempt to
obtain one or more tracks from their request playlist. Observe
that from the viewpoint of the Spotify service, nodes may
be subscribed to different playlists. However, as long as these
playlists contain the same track, opportunistic device-to-device
data exchange is possible. In this work we only evaluate the
performance of the system with respect to these overlapping
popular tracks as part of the request playlist. We believe that
such an evaluation is realistic based on the track popularity
distribution exhibited in the previous section. We assume that
a total of N tracks, belonging to one or more Spotify playlists,
are available in the area, and nodes may be subscribed to a set
of them, or to all of them. Based on the data collected from
Spotify in Section III we assume that the mean duration of a
track is 225 s, with a standard deviation of 30 s. The popularity
of tracks follows a Zipf distribution with parameter α = 0.368;
observe that the value of α is chosen in correspondence with
the results obtained in Section III. For each simulation run we
first remove the transient phase, and we then collect statistics
of 1000 nodes in steady state. For all results the mean values
are plotted with a 95% confidence interval.

C. Performance metrics and configurations

We focus on the following three metrics in our evaluation:
• User satisfaction: The user satisfaction is a measure of

the percentage of users who are able to obtain at least
one track from their request playlist via an opportunistic
contact with a neighboring node before the maximum

381ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

download delay associated with the currently consumed
content item is reached.

• Offload ratio: The offload ratio is a measure of the
amount of data obtained via opportunistic contacts with
respect to the total amount of data in the request playlist
of a node. We only account for downloads from peers
that lead to transfer of an entire track.

• Inter-download time: The inter-download time defines
the interval between two consecutive encounters with
nodes that are able to provide contents of interest to a
given node. The ability of a node to provide contents of
interest is in turn defined by the local subscriptions and
the contact duration. Contacts with duration shorter than
the minimum transfer time for a track are discarded.

Although energy consumption is an important metric in the
context of device-to-device communication, we do not address
it in this work; instead we refer the reader to [14] where we
present power-saving algorithms for opportunistic mobile data
offloading.

V. RESULTS

A. Effect of Request Window Size

Let us assume that all nodes are interested in obtaining a
playlist, constituting a total of N = 50 tracks. Nodes that
enter the area have one track pre-loaded in their cache, and
are initially interested in obtaining k tracks from the request
playlist. A request window of size k = 1 denotes that a node is
interested in obtaining the next item on its playlist. We refer to
this type of playlist as a preset playlist. A preset playlist may
for instance contain a collection of podcast episodes which
need to be reproduced in the correct order at the end device.
A node that has a request window of size k > 1 is interested
to obtain any of the next k tracks on its playlist; there is no
need to preserve the order of tracks on the playlist, hence
the playlist is random. An example of a random playlist is
a playlist of independent music tracks which can be played
in any order. Note that in this study we do not consider a
scenario in which nodes can interact with the playlist, i.e., we
assume that nodes do not fast-forward or skip a track during
their lifetime in the system.

Fig. 7 shows the effect of the request window size on
the offload ratio for the urban scenario with two different
arrival rates. The offload ratio increases both with the size
of the request window and with the density of nodes in the
area. In fact, when a critical mass of nodes is present in the
area, even at relatively small values of the request window
k = 5, the offload ratio is approximately 90%. However, the
offload ratio should not be considered in isolation; instead it
should be coupled with the user satisfaction. A user is satisfied
when its buffer does not underflow, i.e. when it is able to
obtain at least one track out of its request playlist before the
maximum download delay is reached. Observe that even if the
offload ratio is low, the user satisfaction may be much higher
(Table II) even at low densities. The reason is that the offload
ratio provides a measure with respect to the overall size of

Fig. 7. Effect of the request window size for λ = {0.01, 0.15} nodes/s on the
offload ratio with and without replay. Observe the difference in the maximum
value on the the y-axis.

TABLE II
USER SATISFACTION WITH RESPECT TO THE REQUEST WINDOW SIZE.

Request Window Size
Arrival rate 1 2 3 4 5 10
λ = 0.01 n/s 6% 11.6% 16.9% 25% 31.9% 60.5%
λ = 0.15 n/s 66.9% 91.1% 97.3% 99% 100% 100%

the request window (thus the whole playlist), while the user
satisfaction provides a measure for the momentary state of the
node (what is to be played next).

Nodes that do not download a track before the maximum
download delay is reached have two options: either to stream
the track directly via the cellular network, or to replay one
of the previous tracks that are already available in the device
cache. The first strategy gives us the lower bound of offload
ratio - no node is willing to replay tracks; the second strategy
- the upper bound of the offload ratio - all nodes prefer to
replay tracks rather than to download contents via the cellular
network. Fig. 7 shows that at low densities, replaying tracks
allows for a marginal improvement of the offload ratio at low
values of the request window size, however as the request
window size increases the offload ratio achieved with and
without application of a replay strategy becomes comparable.
At higher densities the replay strategy is almost never used
since nodes have enough contact opportunities to download
fresh contents.

B. Effect of Node Density

Fig. 8 illustrates the effect of the node density on the system
performance in terms of offload ratio. We vary the arrival rate
of nodes in the area from λ = 0.01 n/s to λ = 0.15 n/s
for each entry point into the observed area, and we evaluate
the offload ratio for two values of the requested playlist size,
k = 1 (preset playlist) and k = 10 (random playlist). The
results in Fig. 8 confirm that the system performance improves

382ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 8. Effect of node density on the offload ratio for two different values
of the request window size, k = 1 (preset playlist) and k = 10 (random
playlist).

with the increase of node density. It is interesting that even at
low node densities, track dissemination via device-to-device
communication achieves relatively high offload ratio (more
than 50% for λ = 0.03 n/s) when the size of the request
playlist is large (k = 10) and the tracks from the request
playlist can be downloaded in random order. Furthermore, a
larger request window size results in faster increase of the
offload ratio, especially for small values of the arrival rate.
On the contrary, when the playlist is preset with k = 1, the
change in the offload ratio between two consecutive values of
the arrival rate is almost linear.

The results in Fig. 8 also illustrate that replay strategies
are useful for preset playlists regardless of the node density.
On the other hand, when the playlist is set to random with a
large request window size, replaying tracks does not improve
performance significantly even in sparsely populated scenarios
(λ = 0.01 n/s).

C. Effect of Playlist Length

Users have different music preferences; thus nodes often
would not be interested in obtaining all N tracks but only
a subset S ⊂ N of these tracks. In this section we evaluate
whether the distribution of the mean playlist length of the
subset S affects the system performance. Upon entering in the
area, each node subscribes to a subset S of tracks distributed
either uniformly or normally over all tracks in the original
set N . A subset of the playlist S is already available on each
device upon entering the area. According to [6], approximately
50% of tracks that are requested by the Spotify application can
be found locally in the cache of the requesting device. We thus
assume that initially the cache of each device is populated with
j tracks chosen uniformly at random from the S tracks in the
playlist, with the mean value of j being E[j] = |S|/2 where
|S| is the cardinality of the playlist set. The size of the request
window of a node is then calculated as |S| j.

Fig. 9 shows how the distribution of the playlist length |S|
affects the offload ratio for scenarios with different density.
The offload ratio exhibits sensitivity towards the mean value
of the playlist length, however it is not sensitive towards
the distribution of the playlist length. Again, adopting replay

(a)

(b)

Fig. 9. Effect of playlist length distribution on the offload ratio with and
without replay for (a) λ = 0.01 nodes/s, and (b) λ = 0.15 nodes/s. Observe
the difference in the maximum value on the the y-axis.

TABLE III
PERCENTAGE OF NODES THAT DO NOT OBTAIN A SINGLE TRACK DURING
THEIR LIFETIME IN THE SYSTEM UNDER DIFFERENT DISTRIBUTIONS OF

THE PLAYLIST LENGTH.

Arrival Rate
Playlist Length λ = 0.01 n/s λ = 0.15 n/s

Uniform Normal Uniform Normal
E[j] = 5 76.5% 75.2% 32.9% 34.2%
E[j] = 10 50.2% 45.2% 18.5% 15.2%
E[j] = 20 31.7% 25.3% 10.4% 8.8%

strategy is only beneficial for scenarios with low node densi-
ties, especially for short playlists. As the mean length of the
playlist increases, and with the increase of participating nodes
in the system, replaying tracks does not enhance the system
performance.

We further take a look into the distribution of inter-
download times, Fig. 10. Regardless of the node density,
the shorter the length of the playlist |S|, the longer the
inter-download times. Furthermore, the distribution of playlist
length does not significantly affect the distribution of inter-
download times.

Finally, we evaluate the effect of playlist length distribution
on content delivery. Table III shows the percentage of nodes
that are not able to obtain a single track throughout their life-
time in the system. Similar to the offload ratio, the percentage
of nodes that are not able to obtain contents via opportunistic
contacts is strongly dependent on the mean length of the
playlist as well as the node density in the area, however it
is not affected by the actual distribution of the playlist length.

383ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a)

(b)

Fig. 10. Effect of playlist length distribution on the inter-download times for
(a) λ = 0.01 nodes/s, and (b) λ = 0.15 nodes/s. Observe the difference in the
maximum value on the the y-axis.

TABLE IV
AVERAGE INTER-DOWNLOAD TIMES FOR DIFFERENT DISTRIBUTION OF

THE INITIAL CONTENT AVAILABILITY WITH MEAN m = 25 TRACKS.

Arrival Rate
Distribution λ = 0.01 n/s λ = 0.15 n/s

Deterministic 42.2 s 3.8 s
Uniform 45.2 s 3.8 s
Normal 45.2 s 3.8 s

D. Effect of Initial Content Availability
Lastly we examine the effect of initial content availability.

We assume that all nodes are interested in obtaining all N
tracks from a playlist, and that on average they have already
stored half of the playlist in their local caches. We vary
the distribution of cached tracks, and examine three different
distributions: deterministic (exactly 50% of the items from
the playlist are cached), uniform and normal. Table IV shows
the average inter-download times for each of the distributions;
we see that the inter-download times are not sensitive to the
distribution of the initial contents available in the cache.

VI. RELATED WORK

Recent solutions for alleviating traffic load on cellular
networks can be divided in two main categories: offloading
to femtocells or existing Wi-Fi networks [15], [16], [4], and
offloading through opportunistic device-to-device communica-
tion. Although the large body of work produced in the area
of offloading cellular traffic pertain to femtocells and Wi-Fi
networks, such approach is limited to possible deployments
and the availability of Internet access. Using opportunistic

communication for mobile data offloading does neither depend
on available deployment, nor on Internet access, and has
thus become a popular candidate for traffic offloading in
recent years. A number of studies attempt to optimize the
traffic volumes delivered to end users through opportunistic
communication. In [17], Han et al. study a target-set selection
problem for choosing initial data carriers in order to minimize
the amounts of mobile data traffic. Lu et al. propose an
opportunistic forwarding protocol for increasing the proba-
bility of data delivery [18]. Since mobile data offloading
makes use of battery resources on battery-powered mobile
devices, a body of work in the mobile offloading domain has
been concentrated towards reducing energy consumption [14],
[19]. However, all of the studies assume that opportunistic
communication is used for offloading delay-tolerant contents.
Instead, we evaluate whether opportunistic communication
could be used for offloading data with tight delay constraints
such as streaming multimedia organized in playlists.

Few works evaluate the performance of on-demand video
streaming services in the presence of opportunistic contacts.
In [2] Yoon et al. present a mobile peer-to-peer video-on-
demand application which uses peers for delivering parts of
a video stream to the video player. The application however
relies heavily on the presence of a centralized scheduler
which coordinates the data exchange among the peers, and
it utilizes a complementary download link when contents
cannot be fetched in real-time from nodes in the vicinity.
In [3], Siris et al. present testbed experiments of multi-
source mobile video streaming which exploits mobility and
throughput prediction for prefetching video data in caches
located at hotspots that the mobile will encounter and device-
to-device communication to opportunistically obtain parts of
a video from neighboring mobile devices. A delay-tolerant
networking approach relying on multiple links and routing
is applied to live-streaming by Morgenroth et al. in [20].
In contrast to these works, we do not aim to offload the
currently served content item but instead we make use of
opportunistic contacts to deliver contents that would be needed
by the node in the near future. Furthermore, we do not rely
on infrastructure for supporting the content delivery, neither
do we incorporate routing for finding appropriate peers to
deliver the stream. In [21], Keller et al. propose MicroCast, a
system for cooperative video streaming among mobile devices
in close proximity. MicroCast is however designed to operate
for small number of participants in a static setting, and is thus
not applicable for mobile scenarios with users on-the-go. Our
approach is closest to the work of Ding et al. [4] in which they
examine prefetching of non-live streaming contents. However,
they rely on Wi-Fi infrastructure, on profiling user mobility
patterns and on location reporting for determining the access
points on which to offload future multimedia streams. Instead,
our solution is purely based on opportunistic communication.
Recently Jimenez et al. evaluated the effect on energy con-
sumption when mobile devices are introduced as participants
in Spotify’s peer-to-peer overlay in the wired domain [22]. As
opposed to them, we here evaluate a solution which creates

384ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

a separate overlay in the wireless domain and alleviates the
communication with Spotify’s servers which allows offloading
mobile data from the operators’ networks. Lastly, in [23]
Danihelka et al. propose a hybrid architecture for video sharing
based on cloud logic and device-to-device communication.
Similar to us, the authors aim to offload the next to-be-played-
out piece of video contents within a predefined deadline. The
proposed architecture however requires a signalling feedback
to assist the device-to-device content spreading. Instead, in
our work we do not require nodes to provide feedback to the
network, and the content dissemination is purely opportunistic.

VII. CONCLUSION

It is expected that by 2020 more than 75% of the traffic
volumes at mobile operators will be generated by real-time
multimedia services such as audio and video streaming. Mo-
bile operators are thus seeking solutions for offloading mobile
data with an alternative being the use of opportunistic device-
to-device communication. However, opportunistic communica-
tion has been perceived mainly as a means for disseminating
delay-tolerant information. In this work we studied whether the
mechanisms of opportunistic device-to-device communication
could be applied to a particular class of real-time services,
namely music streaming; music streaming is characterized
by long-lived flows resulting into high traffic volumes. We
first introduced a framework for opportunistic content sharing
in the context of multimedia streaming services. We then
evaluated the feasibility of opportunistic device-to-device com-
munication for streaming data using the popular music stream-
ing service Spotify as a use-case, and performed extensive
trace-driven simulations of realistic pedestrian mobility in
urban environments. The main findings of our work can be
summarized as follows:

• Opportunistic device-to-device communication is viable
for offloading streaming data. The performance is en-
hanced when the inter-download times are shorter than
the mean track duration.

• The system performance depends on the node density
and the request window size. In sparse areas, the sys-
tem performance could be improved by adopting replay
strategies to avoid buffer under-flows. In dense scenarios
opportunistic device-to-device communication achieves
up to 90% offload ratio even at low values of the request
window size.

• The system performance exhibits low sensitivity towards
the distribution of parameters such as playlist length and
initial content availability. However, it is sensitive towards
the mean values of these parameters. This indicates that
it is sufficient to take into account mean values when
designing systems that use opportunistic device-to-device
communication for streaming services.

As part of our future work, we plan to implement the
proposed model on actual devices and to perform field tests
to verify the feasibility of our approach.

REFERENCES

[1] “Cisco visual networking index: Global mobile data traffic forecast
update 2014 - 2019 white paper,” 2015.

[2] H. Yoon, J. Kim, F. Tan, and R. Hsieh, “On-demand video streaming
in mobile opportunistic networks,” in Proc. IEEE PerCom 2008, March
2008, pp. 80–89.

[3] V. A. Siris and D. Dimopoulos, “Multi-source mobile video streaming
with proactive caching and d2d communication,” in Proc. IEEE WoW-
MoM, June 2015, pp. 1–6.

[4] A. Ding, B. Han, Y. Xiao, P. Hui, A. Srinivasan, M. Kojo, and
S. Tarkoma, “Enabling energy-aware collaborative mobile data offload-
ing for smartphones,” in Proc. IEEE SECON, June 2013, pp. 487–495.

[5] Ó. Helgason, E. A. Yavuz, S. Kouyoumdjieva, L. Pajevic, and G. Karls-
son, “A mobile peer-to-peer system for opportunistic content-centric
networking,” in Proc. ACM SIGCOMM MobiHeld workshop, 2010.

[6] G. Kreitz and F. Niemela, “Spotify – large scale, low latency, p2p music-
on-demand streaming,” in Peer-to-Peer Computing (P2P), 2010 IEEE
Tenth International Conference on, Aug 2010, pp. 1–10.

[7] “Spotify makes the shift to mobile with 52 percent of listening now
on phones and tablets,” http://techcrunch.com/2015/01/10/music-is-a-
mobile-linchpin/, accessed: 2015-07-30.

[8] V. Setty, G. Kreitz, R. Vitenberg, M. van Steen, G. Urdaneta, and
S. Gimåker, “The hidden pub/sub of spotify: (industry article),” in
Proceedings of the 7th ACM International Conference on Distributed
Event-based Systems, ser. DEBS ’13. New York, NY, USA: ACM,
2013, pp. 231–240.

[9] S. T. Kouyoumdjieva, Ó. R. Helgason, and G. Karlsson, “CRAW-
DAD data set kth/walkers (v. 2014-05-05),” Downloaded from
http://crawdad.org/kth/walkers/, May 2014.

[10] “Legion Studio,” http://www.legion.com/.
[11] Ó. Helgason, S. T. Kouyoumdjieva, and G. Karlsson, “Opportunistic

communication and human mobility,” Mobile Computing, IEEE Trans-
actions on, vol. 13, no. 7, pp. 1597–1610, July 2014.

[12] Wi-Fi Alliance, “Wi-fi aware: Better proximity technology for person-
alized experiences,” July 2015.

[13] Qualcomm Technologies Inc., “Lte-direct trial,” Tech. Rep., Feb. 2015.
[14] S. T. Kouyoumdjieva and G. Karlsson, “Energy-aware opportunistic

mobile data offloading for users in urban environments,” in IFIP
Networking, May 2015, pp. 1–9.

[15] K. Lee, J. Lee, Y. Yi, I. Rhee, and S. Chong, “Mobile data offloading:
How much can wifi deliver?” Networking, IEEE/ACM Transactions on,
vol. 21, no. 2, pp. 536–550, April 2013.

[16] L. Gao, G. Iosifidis, J. Huang, and L. Tassiulas, “Economics of mobile
data offloading,” in Proc. IEEE INFOCOM, April 2013, pp. 3303–3308.

[17] B. Han, P. Hui, V. Kumar, M. Marathe, J. Shao, and A. Srinivasan,
“Mobile data offloading through opportunistic communications and
social participation,” Mobile Computing, IEEE Transactions on, vol. 11,
no. 5, pp. 821–834, May 2012.

[18] L. Xiaofeng, H. Pan, and P. Lio, “Offloading mobile data from cellular
networks through peer-to-peer wifi communication: A subscribe-and-
send architecture,” Communications, China, vol. 10, no. 6, pp. 35–46,
June 2013.

[19] V. F. Mota, D. F. Macedo, Y. Ghamri-Doudanez, and J. M. S. Nogueira,
“Managing the decision-making process for opportunistic mobile data
offloading,” in Proc. IEEE NOMS, May 2014, pp. 1–8.

[20] J. Morgenroth, T. Pögel, and L. Wolf, “Live-streaming in delay tolerant
networks,” in Proc. ACM CHANTS. New York, NY, USA: ACM, 2011,
pp. 67–68.

[21] L. Keller, A. Le, B. Cici, H. Seferoglu, C. Fragouli, and A. Markopoulou,
“Microcast: Cooperative video streaming on smartphones,” in Proc.
ACM MobiSys. New York, NY, USA: ACM, 2012, pp. 57–70.

[22] R. Jimenez, G. Kreitz, B. Knutsson, M. Isaksson, and S. Haridi, “Inte-
grating smartphones in spotify’s peer-assisted music streaming service,”
KTH, Royal Institute of Technology, Stockholm, Sweden, Tech. Rep.
Diva-134609, 2013.

[23] J. Danihelka, D. Giustiniano, and B. Plattner, “On a cloud-controlled
architecture for device-to-device content distribution,” in Proc. ACM
CHANTS, New York, NY, USA, 2015, pp. 19–24.

385ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Analysing and Leveraging Client Heterogeneity
in Swarming-based Live Streaming

Wasiur R. KhudaBukhsh⇤, Julius Rückert†, Julian Wulfheide†, David Hausheer†, and Heinz Koeppl⇤
⇤ Bioinspired Communication Systems Lab (BCS), E-Mail: {wasiur.khudabukhsh | heinz.koeppl}@bcs.tu-darmstadt.de
† Peer-to-Peer Systems Engineering Lab (PS), E-Mail: {rueckert | julian.wulfheide | hausheer}@ps.tu-darmstadt.de,

Technische Universitaet Darmstadt, Germany

Abstract—Due to missing IP multicast support on an Internet
scale, over-the-top media streams are delivered with the help
of overlays as used by content delivery networks and their
peer-to-peer (P2P) extensions. In this context, mesh/pull-based
swarming plays an important role either as a pure streaming
approach or in combination with tree/push mechanisms. The
crucial impact of today’s variety of client systems with their
heterogeneous resources is not yet well understood. In this paper,
we contribute to closing this gap by mathematically analysing
the most basic scheduling mechanisms latest deadline first (LDF)
and earliest deadline first (EDF) in a continuous time Markov
chain framework and combining them into a simple, yet powerful,
mixed strategy to leverage inherent differences in client resources.
The contribution of this paper is, hence, twofold: (1) we develop a
mathematical framework for swarming on random graphs with a
focus on LDF and EDF strategies in heterogeneous scenarios; (2)
we propose a mixed strategy, named SCHEDMIX, that leverages
client heterogeneity. We show that SCHEDMIX outperforms LDF
and EDF using different abstractions: a mean-field theoretic
analysis of buffer probabilities, simulations of the stochastic
model on random graphs, and a full-stack implementation of
a P2P streaming system.

I. INTRODUCTION

Media streaming dominates the traffic share on Internet. As
new services are typically offered in an over-the-top (OTT)
manner, they need to be efficient and scalable, without de-
pendence on special network services. Because of its inherent
limitations [3], IP multicast was not adopted in more than
network islands and, in particular, is not usable for OTT
content delivery. Instead, multicast functionality is realized
at application layer in the form of content delivery networks
(CDNs) and, to make delivery more profitable, peer-to-peer
(P2P) mechanisms, or a combination of both [32]. In this work,
we focus on live media streaming, an important application
scenario with both high demand bandwidths and delays.

Over the years, different classes of P2P live stream-
ing approaches were proposed [29], such as tree/push- and
mesh/pull-based, as well as hybrid approaches. Due to their
inherent robustness, mesh/swarming approaches continue to be
of major importance, especially in hybrid settings where they
often function as a substrate even when tree structures run on
top of them [22], [24]. A key design issue in swarming is
the data scheduling strategy used by individual peers to select
chunks to be requested from their neighbours. Not only must

it ensure continuous playback for an individual client, but also
a healthy data replication to avoid content bottlenecks [20].

Several scheduling strategies of varying levels of complexity
were proposed in the literature [29]. The impact of resource
heterogeneity as observed in real client populations, however,
is not yet fully understood. This leaves a big gap in the design
space of practical P2P streaming approaches, where systemat-
ically leveraging resource imbalances could help simplifying
complex scheduling strategies or designing new ones.

In this paper, we contribute to closing this gap by analysing
the basic scheduling strategies earliest deadline first (EDF)
and latest deadline first (LDF) based on a continuous time
Markov chain framework. Our model can essentially be inter-
preted as a contact process [4], [15] on a random graph. An im-
portant facet of our framework is that it explicitly captures the
degree-dependence of peers. Driven by the resulting analytic
insights, we combine EDF and LDF into a simple, yet power-
ful, mixed strategy called SCHEDMIX to leverage differences
in upload resources. Our theoretical efforts are complemented
with a full-stack implementation of a P2P streaming system
based on the SIMONSTRATOR [21] framework. The proposed
strategy is shown to outperform the other two strategies using
different abstractions: a mean-field theoretic analysis of buffer
probabilities, simulation of the stochastic model, and discrete
event-based simulation of the full-stack implementation. Thus
we both theoretically and practically show the potential of
using a combination of primitive scheduling mechanisms
to improve overall performance in mesh-/pull-based media
streaming. These results are encouraging to consider using
primitive scheduling mechanism combinations in mesh-based
as well as hybrid streaming and enable seamless switching
(transitions) between them as proposed in [6].

The remainder of this paper is structured as follows: Sec-
tion II presents the proposed mathematical framework, fol-
lowed by our mean-field analysis in Section III. Subsequently,
Section IV presents our findings from simulations of the
stochastic process. Section V is devoted to the full-stack
implementation. Finally, in Section VI we discuss related work
and conclude our paper with a discussion in Section VII.

II. MODEL

A. The network
We describe the underlying network as a random graph. We

assume the associated degree distribution has a finite mean. LetISBN 978-3-901882-83-8 c� 2016 IFIP

386ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

G
M

be the class of all simple and connected random graphs
with M nodes. Let ⇡ : N ! [0, 1] be the associated degree
distribution. We also define the size-biased degree distribution,
q as follows:

q(k) B
k⇡(k)
P

k

k⇡(k)
, (1)

for k 2 N. The quantity q(k) is the probability that a given
edge points to a vertex of degree k.

B. The peer-to-peer communication system
Suppose there are M peers and a single server. Let n

denote the buffer length. The server uniformly selects a peer at
random and uploads a chunk at buffer position 1. It continues
to upload chunks to the chosen peer until there is a connection
breakage/loss (an event that occurs with a small probability,
say " 2 (0, 1]) in which case the server chooses a peer
again uniformly at random. The chunk at buffer position n,
if available, is pushed for playback. After playback, the chunk
is removed and all other chunks are shifted one index closer
to playback. Each peer maintains a Poisson clock with rate
proportional to its degree1. A peer, if not selected by the server,
contacts one of its neighbours uniformly at random at each tick
of its Poisson clock and seeks to download a missing chunk.
The chunk it downloads from among all downloadable chunks
is decided by its chunk selection strategy. For simplicity, we
assume that the playback rate is one chunk per unit of time.

Let G B (V, E) 2 G
M

be a given realisation of a
random graph, where V and E ✓ V ⇥ V are the sets of
vertices and edges, respectively. Each node is a peer. Let
⌦ B {! 2 {0, 1}M⇥n | PM

i=1!(i, 1) = 1} be the configuration
space of all peers and buffers, and denote all subsets of ⌦ by
A. Define a continuous time Markov chain (CTMC) {X

t

}
t�0

on the measurable space (⌦,A) as X
t

(i, j) B 1 if the j-th
buffer location of the i-th peer is filled, and 0 otherwise. The
rows of the matrix X

t

, denoted as X1
t

, X2
t

, . . . , XM

t

represent
buffer states of peers 1, 2, . . . ,M , respectively.

Let S : {0, 1}M⇥n [{0, 1}n ! {0, 1}M⇥n [{0, 1}n denote the
buffer shifting operator defined as SY B (0, y1, y2, . . . , yn�1)
for Y = (y1, y2, . . . , yn) 2 {0, 1}M⇥n [{0, 1}n where
y1, y2, . . . , yn denote the columns of Y .

Let us now define the transition rates of interaction for a
node v 2 V as follows

µv (u, u + e
i

) =

8>>>>>>>>><>>>>>>>>>:

X

l2V:(v,l)2E
&1(X

t

(l, i) = 1)↵v (i, u, X l

t

),

if i , 1,
1(X

t

(v, 1) = 1)(1 � " + "/M)
+1(X

t

(v, 1) = 0)"/M if i = 1,

(2)

where u = (u1, u2, . . . , un) 2 T B {0, 1}n, i 2 F B
{1, 2, . . . , n}, such that u

i

= 0, & > 0 is a constant, 1(.) is
the indicator function, e

i

is the i-th unit basis vector of the
n-dimensional Euclidean space and ↵v : F ⇥ T ⇥ T ! [0, 1]
is the chunk selection function of the peer v 2 V . In words,
↵v (i, u, X l

t

)�t is the probability of downloading chunk i when

1That is, we place a Poisson clock on each edge of the graph.

peer v is in buffer state u and contacts peer l in buffer state
X l

t

. We defer an elaborate discussion of the chunk selection
function to a later section. The system is described by the
following master equation

dP(X)
dt

= � P(X) +
X

v

0 2V
1(X (v0, 1) = 1)

 X

Y 2⌦:SY=X��(v0,1)

µv
0
(Y v

0
,Y v

0
+ e1)

⇢
P(Y)

+
X

i2F \{1}

X

v2V\{v0 }

✓ X

Z2⌦:Z=Y��(v,i)

µv (Y v � e
i

,Y v)

⇥ P(Z) � µv (Y v,Y v + e
i

)P(Y)
◆��
,

(3)

for X 2 ⌦, where �(v, i) is an M ⇥ n matrix of all zeroes
except for a unity at position (v, i). We omit the time index
whenever dependence is unambiguous.

The master equation (3) can not be solved analytically. We,
therefore, carry out an aggregation of the chain into population
counts. Define deg(v) B

P
l2V 1((v, l) 2 E) 8v 2 V and

D B {d | 9v 2 V, deg(v) = d}. Consider a map T defined by
T(X) B (zk

x

: x 2 T , k 2 D) where zk
x

B
P

v2V 1(Xv =
x)1(deg(v) = k), the number of degree-k peers at buffer
configuration x. Define an equivalence relation T⇠ on ⌦ as
X T⇠ Y () T(X) = T(Y) and ⌦

t

B {X 2 ⌦ : T(X) = t}
for each t. Then, {⌦

t

} is a partition of ⌦ and each ⌦
t

is an
equivalence class. The induced probability is given by

P(T(X) = t) =
X

X2⌦:T(X)=t

P(X). (4)

Such an aggregation is useful in reducing the state space
if we now consider the lumped process T of population
counts instead. In [10], we provide a necessary and sufficient
condition for such an aggregation to engender state space
reduction and also discuss worst case scenarios. We emphasize
that we do lose information in the process of aggregation.
Also, the lumped process is not necessarily Markovian [9].

III. MEAN-FIELD THEORETIC ANALYSIS

In this section, we approximate the lumped process T
defined in Section II-B, when M is large. Mean-field theory
is extensively used for this purpose [4], [13], [18]. As a first
step in this direction, peers are assumed to be independently
interacting with a mean environment. This allows us to treat
each neighbour of a degree-k peer as an independent sample
from a mean environment. We also impose that peers having
the same degree play the same chunk selection strategy
and thus, behave indistinguishably in a large random graph,
suggesting that such a mean-field behaviour can very well
be described by population counts. We, therefore, define a
mean-field population model that lumps the original process
according to the equivalence relation T⇠. We shall index all the
relevant quantities by degree k in the following, instead of
indexing by peers.

387ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

A. Mean-field master equations

Consider the process {Z
t

}
t�0 defined as Z

t

B (zk
x

(t) : x 2
T , k 2 N) where zk

x

(t) is the number of degree-k peers at
buffer configuration x 2 T at time t. We get our mean-field
transition rates for a degree-k peer as follows, for each k 2
N, u 2 T and i 2 F \ {1} such that u

i

= 0,

�k (u, u + e
i

) =
kX

l=1
&E[1(Y

l

(i) = 1)↵k (i, u,Y
l

)]

= k&E[1(Y1(i) = 1)↵k (i, u,Y1)],

where {(Y
l

, d
l

) | Y
l

= (Y
l

(1),Y
l

(2), . . . ,Y
l

(n)) 2 T , d
l

2 N}k
l=1

is a set of k independent and identically distributed (i.i.d.)
samples from the mean environment of a degree-k peer. The
first component of each neighbour is the buffer state and the
second component, its degree. Note that d

l

’s are distributed
according to q of eq. (1). Then,

E[1(Y1(i) = 1)↵k (i, u,Y1)]
=
X

v2T :vi=1

X

m2N
↵k (i, u, v)P(Y1 = v | d1 = m)P(d1 = m)

=
X

v2T :vi=1

X

m2N
q(m)

E[zm
v

]
n
m

↵k (i, u, v).

where n
m

is the number of peers of degree m. Thus, we get,

�k (u, u + e
i

) = k&
X

v2T :vi=1

X

m2N
q(m)

E[zm
v

]
n
m

↵k (i, u, v), (5)

for each k 2 N, u 2 T and i 2 F \ {1} such that u
i

= 0.
For i = 1, we set � such that

P
u2T :u1=1

z

k
u�e1
nk
�k (u � e1, u) =

1
M

, the total input to the system by the server. Define the
change vector % : N ⇥ T ⇥ F ! {�1, 0, 1} |T |⇥N such that
Y = Z � %(k, u, i) =) yk

u

= zk
u

+ 1, yk
u+ei

= zk
u+ei
� 1, yl

x

=

zl
x

8l 2 N\ {k}, x 2 T \ {u}. Broadening the scope of definition
of � by setting it to 0 for all u, u+e

i

not covered in eq. (5), for
large M , we have the following mean-field master equation

dP(Z)
dt

= � P(Z) +
X

Y :PSv=u y

l
v=z

l
u

8u,v2T ,l2N

"
P(Y)

+
X

l2N,u2T ,i2F
(yl

u

+ 1) �l (u, u + e
i

)

⇥ P(Y � %(l, u, i))

�
X

l2N,u2T ,i2F
yl
u

�l (u, u + e
i

)P(Y)
#
.

(6)

In pursuance of the mean dynamics, we begin by first setting
P(Y) = 0 8Y < N |T |⇥N0 where N0 B N [{0}, and then by
defining, for each l 2 N, u 2 T , i 2 F , the following quantity
�
l,u,i (Z) B zl

u

�l (u, u + e
i

). Next, we note that, in mean field,
we can write E[�

l,u,i (Z)] as E[zl
u

]�l (u, u+ e
i

). The following
result encapsulates the mean dynamics of the system.

Result 1. The process {Z
t

}
t�0 admitting master equation (6)

satisfies

dE[Z]
dt

= �E[Z]+E[Y]+
X

l2N,u2T ,i2F
%(l, u, i)E[�

l,u,i (Y)], (7)

where Y 2 N |T |⇥N0 is such that yl
u

=
P
Sv=u zl

v

8l 2 N, u 2 T .

The proof is provided in [10]. Looking closely at eq. (7) and
recalling the definition of %(l, u, i), we write down explicitly,
for each u 2 T , k 2 N

dE[zk
u

]
dt

= �E[zk
u

] +
X

v2T :Sv=u

"
E[zk

v

]

+
X

i2F
E[zk

v�ei]�
l (v � e

i

, v) �
X

i2F
E[zk

v

]�l (v, v + e
i

)
#
,

(8)

a self-consistent (autonomous) set of ordinary differential
equations (ODEs) for the mean population counts.

It is convenient to work with proportions to study the mean
dynamics. Therefore, define W

t

B (wk

x

(t) : x 2 T , k 2 N)
where wk

x

(t) B zk
x

/n
k

. We argue that, when the number
of peers is large, it suffices to study the mean dynamics of
the proportions, for the fluctuation around mean is expected
to be negligible for large systems [12]. Therefore, denoting
E[wk

x

], with abuse of notation, by wk

x

itself, we write down
the following rate equations,

dwk

u

dt
= � wk

u

+
X

v2T :Sv=u

"
wk

v

+
X

i2F

✓
wk

v�ei �
k (v � e

i

, v) � wk

v

�k (v, v + e
i

)
◆#
,

(9)

for each u 2 T , k 2 N. We find steady-state proportions
by setting dw

(k)
u

dt

= 0, giving rise to following fixed point
equations at steady state,

wk

u

=
X

v2T :Sv=u

"
wk

v

+
X

i2F

✓
wk

v�ei �
k (v � e

i

, v)

� wk

v

�k (v, v + e
i

)
◆#
.

(10)

Observe that
P

u2T
dw

k
u

dt

= 0 for all k 2 N. This is because
of the fact that proportions sum up to 1, i.e.,

P
u2T wk

u

=
18k 2 N. It does merit some attention that the population
model presented here can be thought of as an infection model
with 2n distinct levels of a disease, each level being repre-
sented by a u 2 T and (gradual) recovery being represented
by the shifting of buffer state after playback. This amounts
to saying, a peer with all buffer positions filled is infected to
the highest extent of a disease and if it does not download
any chunk, i.e., if it does not get infected, within the next
n-time units, it will gradually recover to a state of complete
susceptibility (no chunk available).

One of the key metrics of performance in live streaming
context is the buffer probability. The buffer probability of

388ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

index i of a degree-k peer is the probability that a degree-k
peer has a chunk at buffer index i. In mean field, this becomes
the proportion of degree-k peers that have chunks at buffer
index i. Therefore, we define p

k

: {1, 2, . . . , n} ! [0, 1], the
buffer probability of a peer of degree k 2 N as

p
k

(i) =
X

u2T :ui=1
wk

u

. (11)

The corresponding global performance of the network is
linked to these degree-specific buffer probabilities through the
associated degree distribution of G as follows

p(i) =
X

k2N
⇡(k)p

k

(i). (12)

Next, we try to derive a recurrence relation among p
k

’s by
means of eq. (10) to understand their behaviour. We have the
following result in that direction.

Result 2. The process {W
t

}
t�0 of proportions obeying rate

equation eq. (9), admits the following recursion relation
among the buffer probabilities at steady state

p
k

(i + 1) = p
k

(i) +
X

u2T :ui=1
wk

u�ei �
k (u � e

i

, u)

p(i + 1) = p(i) +
X

k2N
⇡(k)

X

u2T :ui=1
wk

u�ei �
k (u � e

i

, u)

for all i, k 2 N. Moreover, buffer probabilities are nondecreas-
ing functions of their arguments, i.e., buffer indices.

The proof is omitted for want of space and is given in [10].
Interpretation of result 2: The left hand side of the re-

currence relation gives the probability that the chunk required
to fill the buffer location i + 1 is present. The right hand
side tells us that there are two possible ways to have the
chunk at buffer index i + 1 present. First, it could already
be there at buffer index i, with probability of buffer index i,
and was made available at index i+1 due to shifting. Second,
the chunk was not there, but the peer could download it in
the mean time. Roughly speaking, this occurs with proba-
bility

P
u2T :ui=1 w

k

u�ei �
k (u � e

i

, u) for a degree-k peer. This
forms the basis of our further analysis of buffer probabilities.

Now we make use of a largely adopted assumption about the
chunk selection function. We assume that the chunk selection
function of a degree-k peer, ↵k (i, u, v) does not depend on
any particular value of u and v, but rather assigns probability
to buffer indices according to their relative importance as
pronounced by EDF and LDF. Call this simplified policy s

k

,
instead of ↵k . This implies,

�k (u, u + e
i

) = k&
X

v2T :vi=1

X

l2N
q(l)wl

v

↵k (i, u, v)

= k&s
k

(i)
X

l2N
q(l)p

l

(i) = k&s
k

(i)✓
i

,

where i 2 F and ✓
i

B
P

l2N q(l)p
l

(i) encapsulates the
probability that an arbitrarily given edge points to a node
where chunk i is available.

Let us now revisit the recurrence relation in result 2 and
plug in the above simplified quantities. In order to do so, note
that, for all i 2 F ,

X

u2T :ui=1
wk

u�ei �
k (u � e

i

, u) =
X

v2T :vi=0
wk

v

�k (v, v + e
i

)

= k&✓
i

s
k

(i)
X

v2T :vi=0
wk

v

= k&✓
i

(1 � p
k

(i))s
k

(i).

The recursion relation in result 2 then reads

p
k

(i + 1) = p
k

(i) + k&✓
i

(1 � p
k

(i))s
k

(i), (13)

where k 2 N, i = 1, 2, . . . , n � 1, and ' B p
k

(1) = 1
M

. Such
a recurrence relation in the special case of a homogeneous
system has served as a starting point for the study of buffer
probabilities in a number of articles in the literature, e.g., [27],
[33], [34]. In fact, by choosing ⇡(k) = 1(k = k⇤), & = 1

k

⇤ for
some k⇤ 2 N, we retrieve from eq. (13) the corresponding
recurrence relation in the homogeneous setup, as found in
[27], [33], [34]. Our endeavour was to provide a principled
approach to derive such a recurrence relation in a more general
heterogeneous setup exhibiting degree dependence of peers.

Remark. Equations (12) and (13) are two key instruments in
our analysis of buffer probabilities. While eq. (13) describes
the playback experience of a degree-k peer, a local aspect,
eq. (12) allows us to combine these local information through
degree distributions of arbitrary networks to give us a global
view. This is notable because even this simple, approximate
model allows us to capture the dependence of performance on
network structure by plugging in its degree distribution.

We shall now focus on the two popular chunk selection
strategies, namely, LDF and EDF. We follow the same inter-
pretations of EDF and LDF as laid down in [34].

B. Chunk selection function
1) Latest deadline first (LDF) strategy: This strategy aims

to download the rarest piece first. The priority is thus on the
initial buffer indices. Therefore, s

k

(i) can be written as

s
k

(i) =
⇥1 � '⇤

i�1Y

j=1

f
p
k

(j) + (1 � p
k

(j))(1 � k&✓
j

)
g
.

The explanation, omitted for want of space, is simple and is
provided in [10]. This gives us the following result.

Result 3. 1) The chunk selection function for the latest
deadline first (LDF) strategy can be expressed as

s
k

(i) = 1 � p
k

(i). (14)

2) The recursion relation for buffer probabilities for the
latest deadline first (LDF) strategy has the following
form, for i = 1, 2, . . . , n � 1 and k 2 N

p
k

(i + 1) = p
k

(i) + k&✓
i

(1 � p
k

(i))2. (15)

The proof is similar to [34], however, for the sake of
completeness, it is provided in [10].

389ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

2) Greedy strategy: The greedy strategy or the earliest
deadline first (EDF) strategy seeks to download pieces that are
close to playback. The priority is thus on playback urgency
and hence on the final buffer indices. Therefore, the chunk
selection function can be expressed as

s
k

(i) =
⇥1 � '⇤

n�1Y

j=i+1

f
p
k

(j) + (1 � p
k

(j))(1 � k&✓
j

)
g
.

The explanation is similar to the case of the LDF strategy,
with the notable exception that now we require to search buffer
index n first, then n � 1 and so on.

Result 4. 1) The chunk selection function for the greedy
strategy (EDF) can be expressed as

s
k

(i) = 1 � ' � p
k

(n) + p
k

(i + 1). (16)

2) The recursion relation for buffer probabilities for the
greedy strategy (EDF) has the following form, for i =
1, 2, . . . , n � 1 and k 2 N

p
k

(i + 1) = p
k

(i) + k&✓
i

(1 � p
k

(i))
⇥1 � ' � p

k

(n) + p
k

(i + 1)
⇤
.

(17)

The proof is provided in [10].

Remark. A typical EDF buffer probability curve exhibits a
late, sharp increase, contrary to an LDF curve (see [33], [34]).
However, when M is large, EDF hinders propagation of new
chunks. While LDF is known to possess good scalability, EDF
outperforms LDF when M is small. We wish to exploit this
feature of EDF even when M is large. In order to do so, we
must devise a way to arrest this content bottleneck. We con-
jecture that this can be done by employing a reasonably small
percentage of strong peers (the ones with higher bandwidth,
say, but not necessarily connected directly to the server) to
play LDF so as to act as pseudo-servers in the system. We
pursue this idea by studying different strategy profiles in a
minimal setup with only two degrees, where we call the peers
of higher degree strong peers and peers of smaller degree,
weak peers.

Suppose there are only two degrees k1, k2 2 N in the
system where k1 < k2. For typographical convenience, we
shall subscript all the relevant variables with only 1, 2 instead
of k1, k2 respectively, whenever the degree of a vertex appears
as a subscript or as an argument to a function, e.g., ⇡1, ⇡2 in
place of ⇡(k1), ⇡(k2) respectively and p1(i), p2(i) in place of
p
k1 (i), p

k2 (i) respectively.

C. Pure LDF strategy
As seen in Section III-B1, buffer probabilities for the two

degrees k1, k2 when everybody plays LDF, are given by the
following recursion relations

p1(i + 1) = p1(i) + k1&✓i (1 � p1(i))2,

p2(i + 1) = p2(i) + k2&✓i (1 � p2(i))2,
(18)

for i = 1, 2, . . . , n�1. We adopt a continuous approximation of
the above two difference equations (as done in [27], [34], for

instance). Treating the buffer index i as a continuous variable
x and writing y1, y2, ✓ for p1(i), p2(i) and ✓

i

respectively, we
have the following differential equations

dy1
dx
= k1&✓(1 � y1)2,

dy2
dx
= k2&✓(1 � y2)2.

(19)

The above luckily allows an exact solution which we present
in the next result.

Result 5. For the pure LDF strategy and large systems,
i.e., when M ! 1, the two buffer probabilities are related
according to the following equation

y2 =
y1

r + (1 � r)y1
, (20)

where r = k1
k2

is the relative strength of the weak peers
compared to the strong ones.

The proof is given in [10]. We immediately see that y2 > y1,
i.e., the stronger peers have better performance owing to
their greater rate of interaction. However, this difference in
performance for the weak peers due to degree disparity can
be made arbitrarily small if a sufficiently large buffer is
made available. Another interesting consequence is that the
above can now be used to derive an expression for buffer-size
requirements and facilitate sensitivity analysis therefrom. That
is, given ✏1 = 1�p1(n), the playback discontinuity of the weak
peers, we can find the required buffer length of the weak peers
n1 = f (⇡, r, ✏1) that ensures performance at level ✏1 for some
f 2. Notice that the global performance is related to ✏1 by

1 � ✏ = ⇡1(1 � ✏1) + ⇡2
1 � ✏1

1 � (1 � r)✏1
,

where 1 � ✏ = p(n). This can be used when we intend to
achieve a prespecified level of global performance.

D. Mixed strategy: SCHEDMIX

Now we turn to the mixed strategy referred to as SCHED-
MIX. Suppose the weaker peers of degree k1 adopt EDF
and the stronger peers of degree k2, LDF. Following Sec-
tions III-B1 and III-B2, we have the following recursion
relations

p1(i + 1) = p1(i) + k1&✓i (1 � p1(i))
⇥1 � ' � p1(n) + p1(i + 1)

⇤
,

p2(i + 1) = p2(i) + k2&✓i (1 � p2(i))2,

(21)

for i = 1, 2, . . . , n � 1. As before, we shall use a continuous
approximation to study their behaviour. Writing ✏1 = 1�p1(n),
we get the following differential equations:

dy1
dx
=

k1&✓(1 � y1)(y1 � ' + ✏1)
1 � k1&✓(1 � y1)

,

dy2
dx
= k2&✓(1 � y2)2.

(22)

2The exact expression is provided in [10].

390ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Buffer Location
0 10 20 30 40

Bu
ffe

r P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Weak
Strong
Global

Buffer Location
0 10 20 30 40

Bu
ffe

r P
ro

ba
bi

lit
y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Mixed
LDF
EDF

(a) (b)

Fig. 1: Performance comparison based on mean-field analysis
of buffer probabilities. (a) Global buffer probabilities for the
three strategy profiles. SCHEDMIX gives higher playback
continuity than both EDF and LDF for the given buffer length.
(b) Comparison of weak versus strong under SCHEDMIX.
Weak peers indeed eventually outperform the strong peers
under SCHEDMIX. Parameter values: M = 10000, k1 = 5, k2 =
15, ⇡1 = 0.85 = 1 � ⇡2, & = 0.20.

The above equations, unfortunately, do not yield an analytic
solution. Therefore, we resort to numerical solution to compare
global performance of the system under different strategy
profiles. It turns out that performance under SCHEDMIX is
indeed better than that under the pure LDF strategy (see
Fig. 1), substantiating our claim.

When we compared performance of weak peers versus
strong ones, an interesting phenomenon was observed. The
weak peers could eventually manage to outperform the strong
ones, caused by a sharp increase in buffer probabilities that
a typical “EDF curve” enjoys and what we call the boon of
heterogeneity (see Fig. 1). This phenomenon is in agreement
with our supposition and can be explained intuitively. Both
strong and weak peers benefit from being exposed to a het-
erogeneous environment. In a homogeneous setup, one would
expect somewhat similar availability of chunks among all its
neighbours. On the contrary, a heterogeneous environment
makes available a diverse collection of chunks. This prepones
the steep rise that a typical “EDF curve” enjoys. Since an
EDF curve has a greater growth-rate in the neighbourhood
of 1 (see [33], [34]), weak peers can eventually outperform
LDF-playing strong peers even for moderate buffer-lengths.

Remark. We do not consider the pure EDF strategy separately
here as it can be studied in a similar fashion. In [10], we
also provide a short stability analysis that gives an additional
justification of why the weak peers outperform the strong ones.

IV. SIMULATION OF THE STOCHASTIC MODEL

In this section, we document our findings from the simula-
tion of the stochastic model. This is carried out in two steps:
first, generation of a random graph and second, simulation of
the content delivery process in accordance with Section II.

We dispense with a description of how to simulate CTMCs
due to insufficiency of space. Interested readers are referred

to [10] where we also investigated the effect of assuming an
exponential shifting time versus a deterministic one and con-
firmed that the behaviour of the strategies remained unaffected.

Startup latency: The second metric that we look at is
the start-up latency. It is the time a peer should wait before
starting playback. While there is no unanimity as to how one
should define this quantity, it is reasonable to wait until a
newly arrived peer’s buffer attains a steady state. If it starts
playback before that, it is likely to experience below steady
state playback quality initially. On the other hand, waiting
longer will not improve long-term playback experience. In a
homogeneous set-up where everybody plays the same policy
and has the same buffer probabilities, as argued in [33], this is
well represented by

P
i

p(i), the average number of available
chunks at each peer. In our heterogeneous model, a higher
degree peer interacts more often than a lower degree peer.
Therefore, a newly arrived degree-k peer should have start-
up latency of k&

P
i

p(i) in the mean-field. The corresponding
global metric follows as E[k]&P

i

p(i). For aesthetic reasons,
we normalise this quantity to (0, 1).

Impact of network structure: In order to see the impact
of network structure, we perform simulation of the model on
Barabási-Albert (BA) preferential attachment [2] and Watts-
Strogatz (WS) small world [25] networks. Simulation results
on a BA network with 2000 peers (with 25% of them playing
LDF) and that on a WS network with 5000 peers (with 20% of
them playing LDF) are depicted in Fig. 2. In both cases, the
mixed strategy SCHEDMIX gives a better performance, cor-
roborating our claim. More importantly, it causes a significant
reduction in start-up latency.

Buffer index
10 20 30 40

Pr
ob

ab
ilit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EDF
LDF
Mixed

Buffer index
10 20 30 40

St
ar

t-u
p

la
te

nc
y

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
LDF
Mixed

Buffer index
10 20 30 40

Pr
ob

ab
ilit

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
EDF
LDF
Mixed

Buffer index
10 20 30 40

St
ar

t-u
p

la
te

nc
y

0

0.1

0.2

0.3

0.4

0.5

0.6
LDF
Mixed

(a) (b) (c) (d)

Fig. 2: Impact of network structure and performance evaluation
in terms of buffer probabilities and the start-up latency on
a Barabási-Albert (BA) and a Watts-Strogatz (WS) graph.
Figures (a), (b) show performance on a BA graph with 2000
peers. Figures (c), (d) display performance on a WS graph with
5000 peers. In both cases, n = 40, & = 0.25. Please note that
start-up latency is shown only for strategies ensuring playback
continuity of at least 0.75 with buffer size n = 40.

Remark. Although Fig. 2 stands affirmatory to the fact that
SCHEDMIX does outperform the pure LDF and the pure
EDF strategies, the crux of employing SCHEDMIX remains
in letting most peers play greedy. SCHEDMIX, thus, allow for

391ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

smaller start-up latency to ensure good playback performance
for everyone (at least as good as pure LDF strategy). This is
a significant benefit.

V. FULL-STACK SIMULATION STUDY

A. Practical system model
We also designed and implemented a practical P2P

live video streaming system and considered communication
network-related factors. The implementation is based on the
SIMONSTRATOR API [21] and is evaluated using the network
simulation framework PEERFACTSIM.KOM [23]. The full-
stack implementation includes protocols for mesh establish-
ment and maintenance, the scheduling mechanisms them-
selves, and buffer management. Due to space constraints, we
omit some details that follow state-of-the-art P2P streaming
systems and in particular [22], [26].

1) Mesh establishment: For the establishment of the mesh
overlay structure, a join procedure is implemented that uses
a BitTorrent-like tracker as central node registry. The tracker
selects a maximum of 30 neighbours uniformly at random
from the set of currently active peers and sends the list to the
requesting peer. For both in- and outgoing directions, peers
calculate a maximum number of connections by dividing 90%
of the available bandwidth by the video bitrate and rounding
the result to the next integer. Joining peers strive to fill their
free incoming connections and thus contact multiple peers
from the initial neighbour list in parallel and query the tracker
for additional contacts if necessary. Receivers accept the
requests depending on the availability of free connection slots.
Limiting the number of connections is combined with a per-
connection transfer queue to avoid too many parallel transfers
that could stall each other, leading to a situation where video
chunks would take an indefinite time to be delivered. In case
a peer has no free connection slots, requests can still be
accepted with a small probability to foster randomness in the
mesh structure where early peers might otherwise be already
blocked, and to allow peers with high bandwidths to eventually
become well connected. The second aspect turned out to
be important for applying the proposed mixed scheduling
strategy, which relies on degree heterogeneity across peers.

2) Scheduling and data exchange: The actual scheduling
of data transmissions is done by each peer individually based
on its local clock with a rate proportional to its in-degree and
buffer status. Chunks are selected by the scheduling strategy
from a defined request window on the local buffer, which
is used to limit the chunks requested. For the simulations,
the window size is set to a default value of 20, starting at
the beginning of the buffer for LDF and the end for EDF.
The selected chunks are assigned uniformly at random to a
peer’s in-connections, are batched on a per-neighbour basis
into chunk requests, and are sent out. The buffer length is 4
seconds, translating to 50 chunks at a rate of 8 chunks/s.

3) Playback policy: A simplified policy was realized for
this initial simulation study. Joining peers learn about the
current broadcasting position from the tracker and start their
playback after 4 seconds (the buffer length). In the meantime,

they establish connections and start requesting chunks. Once
started, the playback proceeds based on the local clock and at
the video bitrate. Chunks that miss the playback deadline are
recorded in terms of playback continuity.

B. Full-stack simulation results
A simulative sensitivity analysis was conducted, covering

key system and environment parameters. Due to space con-
straints, only results for the default configuration are presented
here (see [10] for additional results). The defaults were ob-
tained by conducting calibration runs for several parameter
combinations. Due to the large configuration space, ensuring
an overall optimal configuration was not possible and is hard to
achieve in general. The presented results, thus, focus on study-
ing the potential of the proposed scheduling mechanism, not
on the absolute performance. All simulations were repeated 30
times with different random seeds. 95%-confidence intervals
are reported for all mean values.

Simulation workload: Peers are divided into three resource
classes based on bandwidth distributions reported in [17] (see
Table I). We acknowledge that these bandwidths are rather
high in comparison to configurations used in related works.
Yet, we intend to reflect a setting in that the delivery is not pri-
marily limited by peer bandwidths but rather focus on content
bottlenecks resulting from the scheduling strategy itself [7].
This is important as peers can only use available bandwidth
if scheduling ensures a timely replication of chunks. At the
beginning of the simulation scenario, peers subsequently join
the system in a random order and at a constant arrival rate.
After the system stabilizes, performance and cost metrics are
recorded on per-peer basis and aggregated for 60 seconds
intervals and over the total simulation time of 90 minutes.
Peers stay in the system until the end of the simulation.

TABLE I: Used peer bandwidth distribution based on [17].

Class Number Share UL BW (Mbps) DL BW (Mbps)

Low 50 50% 5 26
Medium 30 30% 4.5 60
High 20 20% 56 134

As observed in [14], the source bandwidth plays an im-
portant role and, thus, its influence is studied in more detail
in [10]. Per default, a single source is used with an up-
/download bandwidth of 12.5Mbps. With a video bitrate of
1, 500 Kbps as commonly observed and recently reported [11],
this translates to a maximum out-degree of 7.

Figure 3 shows the streaming performance for the default
configuration. Here, it is to note that using a request window
of size 20 is an extreme case as it artificially limits the
request rate by localizing the chunks to be selected. This
is done to highlight the key difference between the chunk
selection strategies. Other configurations of this parameter are
presented in [10]. Figure 3a shows that SCHEDMIX achieves a
significantly higher playback continuity compared to the pure
strategies. The buffer probability (see Figure 3b) shows that

392ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

an early replication of new chunks greatly supports the greedy
replication by EDF peers once entering their request window.

EDF LDF 0Lxed
6Fheduler 6trDtegy

0.0

0.2

0.4

0.6

0.8

1.0

P
lD

yE
DF

k
C

on
tLn

uL
ty

EDF LDF 0Lxed
6Fheduler 6trDtegy

0.0

0.2

0.4

0.6

0.8

1.0

P
lD

yE
DF

k
C

on
tLn

uL
ty

(a) Playback continuity.

0 10 20 30 40 50
Buffer Lndex

0.0

0.2

0.4

0.6

0.8

1.0

 B
uf

fe
r 3

ro
ED

EL
lLt

y

EDF
LDF
0Lxed

(b) Buffer probability.

Fig. 3: Streaming performance and buffer characteristics (de-
fault configuration), comparing EDF, LDF, and SCHEDMIX.

Figure 4 shows the resulting request rates for the indi-
vidual chunk selection strategies. For the overall population,
the request rate drastically drops using the mixed strategy,
indicating a major reduction in overhead by roughly 50% for
most peers, lending credence to the boon of heterogeneity.
When separating strong peers (i.e. peers that play LDF in case
of SCHEDMIX) from the rest of the population, it becomes
apparent that this reduction is limited to the non-strong sub-
population. The strong peers, however, are penalised as their
average request rate is slightly increased for SCHEDMIX. At
the same time (figures not shown here), the average playback
continuity rate across the sub-populations does not show any
difference. This supports the argument that there is a high
incentive for strong peers to play LDF instead of EDF to
improve the overall system performance (see [10] for a game
theoretic perspective). These results strengthen our previous
analytic arguments and establish that peer heterogeneity can
be leveraged to form a powerful mixed scheduling strategy.

EDF LDF 0Lxed
SFheduler StrDtegy

0

5

10

15

20

25

30

35

40

45

C
hu

nk
s

re
qu

es
te

d
Se

r s
eF

on
d

EDF LDF 0Lxed
6Fheduler 6trDtegy

10

20

30

40

50

60

70

C
hu

nk
s

re
qu

es
te

d
Se

r s
eF

on
d

(a) All peers.

EDF LDF 0Lxed
6Fheduler 6trDtegy

10

20

30

40

50

60

70

C
hu

nk
s

re
qu

es
te

d
Se

r s
eF

on
d

EDF LDF 0Lxed
6Fheduler 6trDtegy

10

20

30

40

50

60

C
hu

nk
s

re
qu

es
te

d
Se

r s
eF

on
d

(b) Strong (left) and rest (right).

Fig. 4: Number of requests (default configuration) for (4a) all
peers as well separated into strong peers (LDF candidates in
SCHEDMIX) and the remaining sub-population (4b).

VI. RELATED WORK

P2P live streaming has been studied extensively in the
recent past, albeit in a homogeneous setup. Buffer probabil-
ity received considerable attention for due reasons. Zhou et

al. [33], [34] propose a simple model for its analysis based
on mean field heuristics. Adamu et al. [1] also attempt to
analyse it in the context of a discrete Markov chain. Zhao
et al. [31] develop a population model and make interesting
observations about optimal strategies. Outside live streaming,
Hajek et al. [8], [35] highlight interesting aspects of stability
of a P2P system and lay down insightful results on a CTMC
formulation. However, there has been little investigation into
heterogeneous strategies. The influence of degree, to the best
of our knowledge, has also not been studied so far. Our
endeavour in this article has been to carefully capture these
two important aspects in a principled way. Infection models
(see [4], [15], [18]) have proven useful in many computer
science problems such as the study of security investments in
networks [13], algorithms for distributed systems [5] and par-
ticularly many gossip algorithms that later found application
in the peer-to-peer area as well [16], [30].

Zhang et al. [28] show that pull-based streaming can achieve
high bandwidth utilisation and estimate a lower bound for the
delivery ratio, based on simulations and a steady-state analysis
of simple sender-requester topologies. Liang et al. [14] discuss
scheduling as a key mechanism for P2P streaming and name
source scheduling and bandwidth, the buffer sizes, and degrees
as additional factors. Besides, they argue that scheduling plays
a role only at a low resource index, whereas we observe clear
differences due to content bottlenecks. In [7], a scheduling
strategy is proposed, implicitly leveraging heterogeneity by
maximising bandwidth utilisation of peers. The authors show
a nearly optimal utilisation only for a fully connected mesh,
greatly limiting the applicability to realistic setup. In contrast,
we focus on pure pull strategies, do not assume a fully con-
nected mesh, and do not focus on maximising bandwidth only.
In [19], a mesh/push-based streaming system is proposed using
LRU as scheduling strategy. The authors consider overlay
rewiring and source scheduling to improve performance and
provide supportive experimental results.

VII. DISCUSSION

In this paper, we contributed to building a sound mathemat-
ical framework for swarming on random graphs. The depen-
dence of performance on degree was made explicit. The idea
of a degree-based (strength-based) combination of primitive
scheduling strategies led to two interesting revelations, namely,
the boon of heterogeneity and the weak peers outperforming
the strong ones. Inspired by these observations, we proposed
our mixed strategy SCHEDMIX.

We showed that SCHEDMIX could guarantee good playback
continuity at a smaller start-up latency and smaller unsuccess-
ful download rate. The question, however, remains why the
strong peers should opt to play LDF. We answer this question
with a game theoretic argument in [10] where we established
that SCHEDMIX is a Nash equilibrium.

The basic idea behind SCHEDMIX is rather simple: exploit
the capabilities of the strong peers to help the weak ones.
SCHEDMIX achieves this through degree-based assignment of
strategies, but the notion goes beyond degrees. The virtues of

393ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

SCHEDMIX can also be achieved, perhaps more pronouncedly,
by taking into account other important networking factors such
as betweenness centrality, well-connectedness to the server.
Our initial simulation results with betweenness centrality-
based strategy assignment (not shown here) are affirmative.

We observed that it required only a small percentage of
strong peers to uplift the weak peers and improve overall
playback experience. However, the optimal percentage of
strong peers required to do so is an open research problem.

Our mathematical framework can also serve as a foundation
in problems other than the one in pursuit, e.g., network
security problems such as circulation of updates to anti-
virus in the event of cyber attacks or the circulation of
virus/malware itself, supply chain problems for products with
limited validity, express consignment delivery problems. Its
shifting feature makes it particularly interesting as it allows
for multiple interpretations, e.g., advertisement of promo-
tional offers with deadlines, gradual recovery or mutation in
the context of infection spread. Keeping analytic tractabil-
ity aside, the prospect of incorporating more sophisticated
mechanisms in practical implementation is broad. We expect
to see application of SCHEDMIX in combination with more
sophisticated mechanisms. One straightforward but important
step is the application of SCHEDMIX in a state-of-the-art
hybrid streaming system, where both mesh/pull and multi-
tree/push-based mechanisms coexist. In this context it would
also be interesting to understand the impact of other mech-
anisms, such as exchange of buffermaps or a streaming of
layered media content. The results presented in this paper
are encouraging in that SCHEDMIX could be used as an
alternative to complex scheduling strategies in the growing
number of scenarios where peer heterogeneity is inevitably
given, e.g., when bandwidth-constrained mobile users meet
well-connected and high-capacity home users. Besides, the
results could be used in the planning of transitions [6] between
strategies when environmental conditions change.

ACKNOWLEDGEMENT

This work has been funded by the German Research Foun-
dation (DFG) as part of project C03 within the Collaborative
Research Center (CRC) 1053 – MAKI. The authors would like
to thank Ralf Steinmetz for his valuable input and feedback.

REFERENCES

[1] A. Adamu, Y. Gaidamaka, and A. Samuylov, “Discrete Markov Chain
Model for Analyzing Probability Measures of P2P Streaming Network,”
in NEW2AN, ser. LNCS. Springer, 2011, vol. 6869.

[2] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, no. 5439, 1999.

[3] C. Diot, B. Levine, B. Lyles, H. Kassem, and D. Balensiefen, “De-
ployment Issues for the IP Multicast Service and Architecture,” IEEE
Network, vol. 14, no. 1, 2000.

[4] R. Durrett, Random Graph Dynamics. Cambridge University Press.
[5] P. Eugster, R. Guerraoui, A.-M. Kermarrec, and L. Massoulié, “Epidemic

Information Dissemination in Distributed Systems,” IEEE Computer,
vol. 37, no. 5, 2004.

[6] A. Frömmgen, B. Richerzhagen, J. Rückert, D. Hausheer, R. Steinmetz,
and A. Buchmann, “Towards the Description and Execution of Transi-
tions in Networked Systems,” in AIMS, 2015.

[7] Y. Guo, C. Liang, and Y. Liu, “AQCS: Adaptive Queue-based Chunk
Scheduling for P2P Live Streaming,” in IFIP NETWORKING, 2008.

[8] B. Hajek and J. Zhu, “The Missing Piece Syndrome in Peer-to-Peer
Communication,” in IEEE ISIT, 2010.

[9] J. G. Kemeny and J. L. Snell, Finite Markov Chains. van Nostrand,
Princeton, NJ, 1960.

[10] W. R. KhudaBukhsh, J. Rückert, J. Wulfheide, D. Hausheer, and
H. Koeppl, “A Comprehensive Analysis of Swarming-based Live
Streaming to Leverage Client Heterogeneity,” Technische Universitaet
Darmstadt, Germany, Tech. Rep., 12 2015. [Online]. Available: http:
//www.bcs.tu-darmstadt.de/media/bcs/Technical_Report_WKB_1.pdf

[11] D. Krishnappa, M. Zink, and R. Sitaraman, “Optimizing the Video
Transcoding Workflow in CDNs,” in ACM MM, 2015.

[12] T. G. Kurtz, Approximation of Population Processes. SIAM, 1981.
[13] M. Lelarge and J. Bolot, “A local mean field analysis of security invest-

ments in networks,” in Proceedings of the 3rd International Workshop
on Economics of Networked Systems. ACM, 2008.

[14] C. Liang, Y. Guo, and Y. Liu, “Is Random Scheduling Sufficient in P2P
Video Streaming?” in IEEE ICDCS, 2008.

[15] T. M. Liggett, Stochastic Interacting Systems: Contact, Voter and
Exclusion Processes. Springer, 1999.

[16] J. Liu, S. Rao, B. Li, and H. Zhang, “Opportunities and challenges of
peer-to-peer internet video broadcast,” Proceedings of the IEEE, vol. 96,
no. 1, Jan 2008.

[17] Organisation for Economic Co-operation and Development, “OECD
Broadband Report,” Tech. Rep., 2014.

[18] R. Pastor-Satorras and A. Vespignani, “Epidemic Dynamics in Finite
Size Scale-free Networks,” Physical Review E, vol. 65, no. 3, 2002.

[19] F. Picconi and L. Massoulié, “Is There a Future for Mesh-based Live
Video Streaming?” in IEEE P2P, 2008.

[20] R. Rejaie and N. Magharei, “On Performance Evaluation of Swarm-
based Live Peer-to-Peer Streaming Applications,” Springer Multimedia
Systems, vol. 20, no. 4, 2014.

[21] B. Richerzhagen, D. Stingl, J. Rückert, and R. Steinmetz, “Simonstrator:
Simulation and Prototyping Platform for Distributed Mobile Applica-
tions,” in ICST/ACM SIMUtools, 2015.

[22] J. Rückert, B. Richerzhagen, E. Lidanski, R. Steinmetz, and D. Hausheer,
“TopT: Supporting Flash Crowd Events in Hybrid Overlay-based Live
Streaming,” in IFIP NETWORKING, 2015.

[23] D. Stingl, C. Gross, J. Rückert, L. Nobach, A. Kovacevic, and R. Stein-
metz, “PeerfactSim.KOM: A Simulation Framework for Peer-to-Peer
Systems,” in IEEE HPCS, 2011.

[24] F. Wang, Y. Xiong, and J. Liu, “mTreebone: A Collaborative Tree-Mesh
Overlay Network for Multicast Video Streaming,” IEEE TPDS, vol. 21,
no. 3, 2010.

[25] D. J. Watts and S. H. Strogatz, “Collective Dynamics of ‘Small-world’
Networks,” Nature, vol. 393, 1998.

[26] M. Wichtlhuber, B. Richerzhagen, J. Rückert, and D. Hausheer, “TRAN-
SIT: Supporting Transitions in Peer-to-Peer Live Video Streaming,” in
IFIP NETWORKING, 2014.

[27] L. Ying, R. Srikant, and S. Shakkottai, “The Asymptotic Behavior of
Minimum Buffer Size Requirements in Large P2P Streaming Networks,”
in IEEE Information Theory and Applications Workshop (ITA), 2010.

[28] M. Zhang, Q. Zhang, L. Sun, and S. Yang, “Understanding the Power
of Pull-based Streaming Protocol: Can We Do Better?” IEEE JSAC,
vol. 25, no. 9, 2007.

[29] X. Zhang and H. Hassanein, “A Survey of Peer-to-Peer Live Video
Streaming Schemes - An Algorithmic Perspective,” Computer Networks,
vol. 56, no. 15, 2012.

[30] X. Zhang, J. Liu, B. Li, and T. Yum, “Coolstreaming/donet: a data-
driven overlay network for peer-to-peer live media streaming,” in IEEE
INFOCOM 2005, vol. 3, March 2005.

[31] B. Zhao, J. Lui, and D. Chiu, “Exploring the Optimal Chunk Selection
Policy for Data-driven P2P Streaming Systems,” in IEEE P2P, 2009.

[32] M. Zhao, P. Aditya, A. Chen, Y. Lin, A. Haeberlen, P. Druschel,
B. Maggs, B. Wishon, and M. Ponec, “Peer-Assisted Content Distri-
bution in Akamai NetSession,” in ACM IMC, 2013.

[33] Y. Zhou, D. M. Chiu et al., “A Simple Model for Analyzing P2P
Streaming Protocols,” in IEEE ICNP, 2007.

[34] Y. Zhou, D.-M. Chiu, and J. Lui, “A Simple Model for Chunk-scheduling
Strategies in P2P Streaming,” IEEE/ACM TON, vol. 19, no. 1, 2011.

[35] J. Zhu and B. Hajek, “Stability of a Peer-to-Peer Communication
System,” IEEE Transactions on Information Theory, vol. 58, no. 7, 2012.

394ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Mistrustful P2P: Privacy-preserving File Sharing
Over Untrustworthy Peer-to-Peer Networks

Pedro Moreira da Silva⇤, Jaime Dias⇤, Manuel Ricardo⇤
⇤INESC TEC, Faculdade de Engenharia, Universidade do Porto

Rua Dr. Roberto Frias, 378, 4200-465 Porto, Portugal
Email: {pmms, jdias, mricardo}@inesctec.pt

Abstract—Peer-to-Peer networks are extensively used for large-
scale file sharing. As more information flows through these
networks, people are becoming increasingly concerned about
their privacy. Traditional P2P file sharing systems provide
performance and scalability at the cost of requiring peers to
publicly advertise what they download. Several P2P privacy-
enhancing systems have been proposed but they still require
peers to advertise, either fully or partially, what they download.
Lacking alternatives, users have adopted anonymity systems
for P2P file sharing, misunderstanding the privacy guarantees
provided by such systems, in particular when relaying traffic of
insecure applications such as BitTorrent.

Our goal is to prevent any malicious peer(s) from ascertaining
users’ content interests so that plausible deniability always
applies. We propose a novel P2P file sharing model, Mistrustful
P2P, that (1) supports file sharing over open and untrustworthy
P2P networks, (2) requires no trust between users by avoiding
the advertisement of what peers download or miss, and (3) still
ensures deterministic protection of user’s interests against attacks
of size up to a configured privacy protection level. We hope that
our model can pave the ground for a new generation of privacy-
enhancing systems that take advantage of the new possibilities it
introduces. We validate Mistrustful P2P through simulation, and
demonstrate its feasibility.

I. INTRODUCTION

Peer-to-Peer (P2P) networks are extensively used for large-
scale file sharing. As more information flows through these
networks, people are becoming increasingly concerned about
their privacy. The reasons behind the privacy concerns may
be various such as (1) avoiding user profiling, tracking and
data mining, (2) engaging in legal content sharing that may
be embarrassing or deplorable from a political, religious or
social point-of-view, or (3) engaging in illegal or incriminating
content sharing.

Traditional P2P file sharing systems are designed for per-
formance and scalability. These systems take advantage of
the large number of interconnected peers1, and their idle
resources, to more efficiently distribute contents at the cost
of requiring peers to publicly advertise what they download.
Given that peers form interest-based communities [6], every
single connection presents an opportunity for a malicious peer
to passively obtain additional information that may enable
user’s content interests identification.

Several P2P privacy-enhancing systems have been proposed,
such as [17], [19], [12], [13], [10], the majority employing

1We say peer to refer to the network node, and user to refer to the person.

either techniques to provide anonymity, such as onion rout-
ing [11] and information slicing [13], or employing techniques
to provide plausible deniability, such as request relaying –
peers relay requests to create uncertainty about communicating
endpoints –, and content interest disguise – peers download ad-
ditional contents to hide their real interests. All these solutions
share one common issue: they require peers to advertise, either
fully or partially, what they download. Lacking alternatives,
users have adopted anonymity systems for P2P file sharing [4],
misunderstanding the privacy guarantees provided by such
systems [5], in particular when relaying traffic of insecure
applications [14], i.e., applications that disclose sensitive in-
formation.

Our objective is to prevent any malicious peer(s) from
ascertaining the interests of any user downloading a content,
either through observation or through active probing attacks,
while completing the download in a timely manner. Users
interested in downloading contents are provided with plausible
deniability against regular peers or groups of colluding peers.

In this paper, we propose a novel P2P file sharing model,
which we name Mistrustful P2P, that enables file sharing over
open and untrustworthy P2P networks (networks in which
peers should be mistrusted) without disclosing user’s interests.
Our model does not require trust between users by avoiding
the advertisement of what peers are downloading or missing.
The Mistrustful P2P model ensures deterministic protection
of user’s interests from regular peers or groups of colluding
peers of size up to a privacy protection level configured by
the user. It resorts on erasure coding to avoid advertising
what is downloaded. The remaining of this paper is structured
as follows. Section II details the problem we aim to solve.
Section III presents the related work. Section IV provides
the required background. Section V depicts the novel P2P
file sharing model we propose. Sections VI and VII describe,
respectively, the validation of our model through simulation,
and the results obtained. Section VIII presents the conclusions.

II. PROBLEM DESCRIPTION

One privacy aspect that is especially sensitive to users is
the concealment of their interests. Users look for a privacy-
enhancing system that is able to protect their interests from
other participants in the system without compromising per-
formance. Also, providing a configurable per content privacy
protection level, supporting untrustworthy P2P networks, and

395ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

having high performance, are all desirable features because
user’s privacy requirements are idiosyncratic, they may find
themselves in need to join untrustworthy P2P networks, and
want to download contents as fast as possible. Above all, users
tend to prefer security mechanisms that provide strong defense
against well defined attacks, even if narrow ones, rather than
broad but weak security defense mechanisms.

We consider an attacker that participates in the system,
either a regular peer or a group of colluding peers, but not
external entities monitoring all traffic of a peer, such as ISPs,
or controlling the whole network, such as governments. Protec-
tion against link monitoring could be achieved by encrypting
communications between peers, but requires key exchange and
distribution mechanisms, which are out of the scope of this
work.

P2P privacy-enhancing systems typically either completely
hide user’s activities through anonymity or disguise them by
relaying traffic and/or generating cover downloads. Anonymity
systems, being Tor [10] the most popular, as a rule, are not
designed for P2P file sharing. Nevertheless, lacking alterna-
tives, users have adopted anonymity systems for such end [4],
misunderstanding the privacy guarantees they provide [5], and
unaware of the privacy impact that relaying traffic of insecure
applications, such as BitTorrent, introduces [14]. On the other
hand, systems disguising user’s activities are designed for
P2P file sharing but require users to publicly advertise what
they download, either fully or partially, so that peers know to
whom blocks (chunks, using BitTorrent terminology) can be
requested, and also to improve content availability by provid-
ing incentives to download rarer blocks. However, advertising
what is downloaded (block advertisement) enables download
progress tracking, allowing passive attackers to differentiate
genuine from cover traffic, therefore disclosing user’s interests.
Content interest disguise systems that fully download cover
contents are an exception to this, but increase greatly the
network overhead.

Thus, the problem we aim to solve is how to enable P2P file
sharing so that (1) block advertisement and trust links between
users are avoided, (2) users are protected against attacks of size
for a privacy protection level that is flexible and configurable
per content, and (3) contents can be downloaded in due time.

III. RELATED WORK

Several P2P privacy-enhancing systems have been proposed
in the literature providing different degrees of privacy to
users, the majority of which provides either anonymity or
plausible deniability. Tor and Freenet [1] are probably the
most prominent anonymity solutions for, respectively, low-
latency anonymity and anonymous content distribution net-
works. Given that anonymity systems tend to introduce more
overhead, and do that without improving the overall perfor-
mance, herein, we depict the state-of-the-art P2P privacy-
enhancing systems providing plausible deniability and de-
signed specifically for P2P file sharing.

BitBlender [3] provides plausible deniability by introducing
relay peers that simply proxy requests on behalf of other peers.

Peers willing to act as relay peers can register at a central node
called blender, and, once requested, will join a P2P swarm
(group of peers sharing a content) in a probabilistic way so that
they cannot be distinguished from regular peers. The joining
probability of relay peers is defined by the blender, when
asking registered peers to join a P2P swarm, so that the set
of relay peers remains unknown while having the cardinality
requested by the tracker. As so, BitBlender requires users to
trust both the tracker and the blender.

SwarmScreen [6] provides plausible deniability by obscur-
ing user’s interests through cover traffic (content interest
disguise). The devised scheme, which consists in “adding
a small percentage (between 25% and 50%) of additional
random connections that are statistically indistinguishable
from natural ones”, thwarts guilt-by-association attacks, i.e.,
attacks in which the user’s interests can be inferred with high
certainty just by classifying peers based on the behavior of the
communities they participate in. SwarmScreen’s attack model
only considers passive attacks, it is vulnerable to active attacks.

OneSwarm [12] attempts to be an alternative to BitTorrent,
and builds upon friend-to-friend networks – networks in which
peers only communicate with trusted peers (friends). It pro-
vides a high privacy protection level and extensive control over
what information is disclosed to other peers. Nevertheless,
content availability may be limited as it is difficult to connect
any pair of peers using just trusted links. Also, the problem of
providing such privacy guarantees in large groups of untrusted
peers remains unsolved.

The BitTorrent Anonymity Marketplace [16] follows
SwarmScreen’s approach to provide plausible deniability.
However, in order to protect against both passive and active
attacks, all contents are fully downloaded because peers adver-
tise what they download. The authors define k-anonymity as
the privacy protection level obtained from fully downloading
k contents. Thus, as it increases greatly the network overhead,
it either prevents downloads from completing in due time or
constrains the privacy protection level.

Petrocco et. al [17], following SwarmScreen’s approach,
proposed a system that aims to protect user’s interests without
compromising download completion in due time. Their system
relies on private swarms, request relaying, caching, and partial
advertisement of downloaded blocks. As stated by the authors,
private swarms are required to ensure a good level of privacy.
Yet, to obtain the credentials needed to join a private swarm,
peers must trust one or more participants. Also, as only a frac-
tion of the blocks are advertised, it is not clear how a content
sharing is bootstrapped with few seeders nor how request relay
should operate during periods of content unavailability.

IV. ERASURE CODES

Erasure codes are a class of Forward Error Correction (FEC)
codes for the Binary Erasure Channel (BEC), a channel in
which transmitted data packets are either correct or missing
(erasures). Networking layers above the data link layer behave
as an erasure channel since packets are either correct, and are
delivered, or present errors, and are discarded.

396ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

An erasure code generates a set of n symbols from a set of
k symbols, k < n, at a rate given by k/n, so that any subset of
k (1 + ✏(k)) is enough to reconstruct the original information,
where ✏(k) is the erasure coding overhead. Erasure codes are
usually classified according to three orthogonal properties: (1)
systematicity, (2) rate fixedness, and (3) coding overhead. An
erasure code is systematic if the input symbols are embed into
output symbols, and non-systematic otherwise. If n is static
and needs to be known before encoding, the erasure code is
fixed-rate. If n can be dynamically increased and the amount
of symbols that can be generated does not impose any practical
limitation, the erasure code is rateless. Finally, an erasure code
is said MDS (Maximum Distance Separable) if any k symbols
out of n are enough to reconstruct the original information
[✏(k) = 0], or non-MDS if additional symbols are required
[✏(k) > 0]. Non-MDS erasure codes reduce significantly the
encoding and decoding time complexity orders by introducing
coding overhead.

For P2P file sharing, MDS erasure codes are more suitable
as the network is typically the most constrained resource, not
the CPU [15]. Non-systematic erasure codes may have the
property of only granting access to any part of a content after
fully downloading it. Rateless erasure codes enable the setting
of n as a function of hard to predict dynamic variables, such
as peer arrival rate, to continuously adjust it to the P2P file
sharing dynamics.

V. MISTRUSTFUL P2P MODEL

In this section, we describe the Mistrustful P2P model, a
novel P2P file sharing model that (1) supports file sharing over
open and untrustworthy P2P networks, (2) requires no trust
between users by avoiding the advertisement of what peers
download or miss, and (3) still ensures deterministic protection
of user’s interests, through plausible deniability, against attacks
of size up to a configured privacy protection level. We consider
that the burden of an increased privacy protection level should
be on the peer requiring it and not on other peers’ resources,
thereby peers communicate through direct links, i.e., there is
no peer relaying. For this reason, our model relies on cover
downloads to protect user’s interests, and therefore, targets the
development of content interest disguise systems.

The description of each component of the model is con-
ceptual but we provide the instantiation used for validating
the Mistrustful P2P model (Section VI) as an example. We
hope that our model can pave the ground for a new generation
of privacy-enhancing systems that take advantage of the new
possibilities it introduces.

A. Overview

Mistrustful P2P avoids block advertisement, and therefore
peers no longer know to whom blocks can be requested nor
can request a specific block they need. Consider a content
divided into k blocks, and that a block request is sent to a
randomly selected peer which offers a randomly selected block
it owns. Such approach enables to share some blocks between
peers but is unfeasible for fully downloading contents because,

assuming an uniform distribution of blocks among peers, the
probability of obtaining the last block is just 1/k. Using erasure
codes we are able to generate a set of n blocks so that any
subset of k0 blocks enables to retrieve the content, where k0 =
k (1 + ✏(k)), and ✏(k) is the erasure coding overhead. As so,
for the same conditions, the probability of retrieving the last
block increases to 1� k0�1

n .
Peers only share erasure coded blocks to ensure that access

to any part of a content is only granted after fully downloading
it, albeit all contents being publicly available. This way, there
is no proof that a user had full or partial access to a particular
content, including cover ones, by just having downloaded
some blocks; thus, they can still participate in its sharing. We
assume that this property is provided by the erasure codes,
although content encryption can be used to achieve the same
goal. Unless otherwise stated, from now on, we say block to
refer to erasure coded block.

The Mistrustful P2P model aims at enabling P2P file sharing
in large groups of untrusted peers, thereby, no trust links
between peers are required. Attending to the idiosyncrasy
of user’s privacy requirements and to the flexibility required
to not constrain the privacy-enhancing systems that can be
built on top of our model, the user privacy protection level
is configurable per peer and per content. It is defined as
a two-dimensional variable composed by c, the size of the
largest colluding group considered by the user, and m, the
maximum number of blocks that can be shared with any set
of c peers, where c m and m < k so that the content
cannot be fully downloaded from a single considered colluding
group. Thereby, our model provides a deterministic protection
of user’s interests as long as the effective size of the largest
colluding group does not exceed the one configured. When
the user privacy requirements for a particular download are
not met, the download pauses until they are met again.

Peers, per content, can take one of two roles depending on
their privacy requirements and the way they contribute to the
file sharing: seeder – peer having a content that wants to share,
and willing to forgo its privacy –, or commoner – peer willing
to download content blocks if its privacy requirements can be
met. Seeders may be the authors or some party interested in
publishing the content, and therefore do not require interest’s
concealment. We consider that there is always at least one
seeder to ensure content availability, which provides a new
erasure coded block for each request it receives. This is a
realistic assumption given that a small fraction of publishers
are responsible for 67% of the published content and 75%
of the downloads in BitTorrent [7]. Seeders only refuse to
serve block requests if they have no resources available. On
the other hand, commoners do not create new blocks and only
share them if their privacy remains protected. They can either
act as an helper (cover downloads) or as, using BitTorrent
terminology, a leecher (genuine downloads). Commoners keep
track of what they have shared with other peers both for
privacy enforcement reasons and to avoid offering a block
twice to the same peer. They may refuse to serve block
requests (1) due to resources constraints, (2) if they have

397ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

no useful blocks to offer due to privacy constraints, or (3)
due to content disguise strategies. The reason behind is never
disclosed. If a block is offered, the requesting peer can then
either cancel the request (duplicate block) or proceed with its
download (useful block).

Let k be number of blocks required to fully download a
content, n the number of unique blocks that can be generated,
na the number of unique blocks available for download,
and Di the set of unique blocks already downloaded by
commoner i. Commoner i attempts to select a random peer
that maximizes the probability of having it offering a block
that is not in the set Di. Given that any subset of k0 blocks
out of na enables to fully retrieve the content, increasing na

maximizes the probability of a peer obtaining a useful block;
which can be achieved by increasing the number of seeders.
However, determining which block should be offered in reply
to a request, when should a request be sent, and to which
peer is not trivial. Let us consider ei,j to be the number of
blocks that can be exchanged between commoners i and j,
and Ei the number of blocks that commoner i can exchange
with all other peers (available requests), which is limited by
the privacy constraints. If commoner i makes too much block
requests, more block requests will fail to retrieve useful blocks
and it will run out of available block requests (Ei = 0); on the
other hand, if commoner i makes too few block requests, more
block requests could have been sent and the available requests
to commoner j will still be far from zero once commoner j
leaves (ei,j � 0).

We devised three mechanisms which main purpose is to
attend the issues stated above. The block selection mechanism
is used by commoners to determine which block should be
offered to a requesting peer. The request backoff mechanism
aims at delaying block requests to help maximizing the amount
of useful blocks that can be obtained from the available
block requests, in the shortest time frame possible. The peer
selection mechanism aims at determining the peers that should
be selected to minimize the download time.

In sum, the Mistrustful P2P model relies on cover down-
loads to protect user’s interests, and has five main components:
erasure codes, the privacy enforcement mechanism, the request
backoff mechanism, the peer selection mechanism, and the
block selection mechanism. It is out of the scope of this
work to provide optimal instantiations of each component.
We provide only, as an example, the instantiation used for
validating our model.

B. Erasure Codes

Although other erasure codes can be used, we refer the
reader to [9] for a rateless MDS construction of Reed-Solomon
codes that we developed for our model. These erasure codes
are defined over the finite field Fp2 , where p is a Mersenne
prime (p = 2q � 1), and n 2q+1. Their performance was
evaluated over F(231�1)2 , so n 232, and does not impose any
constraints to the file sharing. Also, they are non-systematic
erasure codes that have the property of only granting access
to any part of a content after fully downloading it.

C. Privacy Enforcement

The privacy enforcement mechanism ensures deterministic
protection of user’s content interests, through plausible de-
niability, against attacks of size up to a configured privacy
protection level. Mistrustful P2P guarantees that any peer or
colluding group, with size up to c peers, are unable to (1)
prove that the user downloaded a particular content or had
full or partial access to it, and to (2) distinguish between cover
and genuine downloads by tracking its progress. The user can
configure, per content, the size of the largest colluding group
to consider, c, and the maximum amount of blocks that can be
shared with any set of c peers, m, where c m and m < k
so that the content cannot be fully downloaded from a single
group of size c. The protection provided is guaranteed as long
as the effective size of the largest colluding group does not
exceed the one considered by the user. Given that finding the
maximum intersection between the set of blocks exchanged
with any c peers is an NP-hard problem [18], we devised a
conservative yet efficient algorithm to evaluate the numbers
of blocks that can still be shared with a peer. The algorithm
is divided into two main functions, one to update the counter
of blocks shared with a peer (Function 1), and the other to
determine the number of blocks that can still be exchanged
with a peer (Function 2).

Function 1 Update Blocks Shared
. commoners is an array sorted by blocks shared.

. blksShared is the max no. of blocks shared w/ c peers.

function INCREMENTBLOCKSSHARED(id)
i commoners.getIndex(id)

if invalidIndex(i) then . New.
commoners.push(id)
commoners.last.blks 1
i commoners.getIndex(id)

else . Known.
commoners[i].blks commoners[i].blks+ 1
j i� 1

while validIndex(j) do
blksI commoners[i].blks
blksJ commoners[j].blks

if blksI > blksJ then . Still unsorted.
swap(commoners[i], commoners[j])
i j

j j � 1
else . Sorted.

break
end if

end while
end if
if i < c then . Changes on top c peers.

blksShared blksShared+ 1
end if

end function

Function 1 relies on an array sorted by the number of blocks
shared with a peer, and the maximum number of blocks shared
with any set of c peers. The function receives a peer id as a
parameter, and starts by checking if any blocks have been

398ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

exchanged with that peer. If it is the first one, sets the number
of blocks shared to 1. Otherwise, the number of shared blocks
is incremented, and, if needed, some elements are swapped
until the array is again sorted. The maximum number of blocks
shared with any set of c peers is incremented if the update was
in one of the top c positions of the array. Function 1 has linear
time complexity.

Function 2 Blocks to Share Left
. commoners is an array sorted by blocks shared.

. blksShared is the max no. of blocks shared w/ c peers.

function BLOCKSHARELEFT(id)
if c > m or m � k then . Invalid.

return 0
end if
top min(c, commoners.length) . Top peers.
left m� blksShared� (c� top)
i commoners.getIndex(id)

if invalidIndex(i) then . New.
if commoners.length > c then

left left+ commoners.last.blks� 1
end if
return left

else . Known.
if i � c then

left left+ commoners.last.blks

left left� commoners[i].blks
end if
return left� 1

end if
end function

Function 2 relies on the same variables as Function 1, and
also receives the same parameter. It starts by checking if the
configured privacy protection level is invalid. If it is valid,
left contains the number of blocks that can still be exchanged,
ensuring that at least one block is exchanged with each one
of the top c peers. This value needs to be updated if there are
already at least c peers and the peer referred by id is outside
of that set. Function 2 runs in logarithmic time.

D. Block Selection

The block selection mechanism is used by commoners to
determine which block should be offered to a requesting peer.
It plays an important role on how the blocks end up distributed
among peers, affecting the probability of peers obtaining
useful blocks. This mechanism ensures that no block is offered
twice to the same peer, and determines when requests should
be refused due to the lack of useful blocks to share.

Although this mechanism should use content sharing infor-
mation as input, such as the number of requests that end up
canceled (both as source and destination), for validating the
model we select blocks randomly due to its simplicity. With
Mistrustful P2P model there is no need to suddenly terminate,
remove downloads, or stop sharing because the privacy pro-
tection level does not depend on the time a peer keeps sharing
a content, as long as cover and genuine downloads are treated
in the same way.

E. Request Backoff

The request backoff mechanism aims at delaying block
requests to help maximizing the amount of useful blocks that
can be obtained from the available block requests, in the
shortest time frame possible. It does so by constraining the set
of peers to which block requests can be sent (eligible peers),
and by determining for how long no block requests should
be performed. Therefore, as the former is a direct result of
individual peer behavior and the latter depends on the swarm
behavior, we define the backoff time has a two-dimensional
variable that has a per peer and a swarm components. The
peer backoff component provides the delay to return a peer to
the set of eligible peers while the swarm backoff component
provides the delay to perform a new block request.

A block request has five possible outcomes: 1) refusal – the
request is refused by the contacted peer, 2) cancellation – the
request is canceled by the requester (duplicate block), 3) ac-
ceptance – the request is accepted and a block is downloaded,
4) interruption – the request is accepted but the download is
interrupted, and 5) disposal – no request is sent due to the lack
of eligible peers. Refusal and disposal reveal no information,
but all the others do. Cancellation and acceptance reveal that
both peers already own that block; interruption reveals that the
contacted peer owns that block.

To validate our model, we considered that the peer backoff
component is a function of the block transfer time, btt, and is
defined as min (↵ · �⌧ , µ) = min

�
btt
8 · 2⌧ , k·btt

4

�
, where ↵ is

the peer base backoff time, � is the exponential factor, ⌧ is the
number of consecutive failed requests (all but disposal), and µ
is the maximum peer backoff time (25% of download time).
The swarm backoff component should be a function of the
swarm dynamics to find the proper amount of block requests
but, for the sake of simplicity, it is defined as � + � · ⌧ =
100 + 100 · ⌧ , where � is the swarm base backoff time, �
is the scale factor, and ⌧ is the number of consecutive failed
request attempts (including disposal).

F. Peer Selection

The peer selection mechanism also helps to maximize the
amount of useful blocks of a given content that can be obtained
from the available block requests, in the shortest time frame
possible, by selecting the peers that return useful blocks in less
time. It depends both on the privacy enforcement and on the
request backoff mechanisms. The former provides, for a given
content, the list of peers to which no further block requests
can be sent; the latter provides, also for a given content, which
peers are ineligible for the moment, and when can the next
block request be performed.

For the validation, given that we considered homogeneous
peers and no parallel requests, and also for the sake of
simplicity, we select peers randomly.

VI. VALIDATION

This section details the simulation setup, the peer arrival
traces used as simulation input, and the use cases considered to
validate the Mistrustful P2P model. Given that simulations are

399ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

only as good as their models, the simulations were carried out
using the ns-3 network simulator [2], which provides realistic
network stack and its protocols. Still, the simulation of large
scale P2P networks using accurate and realistic models is a
complex task. Thereby, to be able to simulate P2P file sharing
with thousands of peers using accurate network models, we
also use CIDRarchy module [8], a module that we developed
for ns-3 that performs IP packet forwarding in constant time.

The validation of our model is done by asserting that peers
are able to download contents in due time without advertising
what they download. To do so, we simulate the content sharing
to evaluate the rate of peers that are able to complete their
downloads, and the average download time. Given that the
content download due time is subjective, we consider that a
content is received in due time if the average download time is,
at most, one order of magnitude above direct download time.
For the sake of clarity, although cover downloads are required
to protect user’s content interests, we consider a single content
download and no cover downloads. Also, peers are provided
with a list of all peers currently in the swarm, request one
block at a time, and accept one request at a time. We consider
the worst case scenario for how long peers share a given
content: peers leave immediately after finishing the download.
It is out of the scope of this work to provide a performance
comparison with state-of-the-art privacy-enhancing systems.

A. Simulation Setup

We consider a star network topology with a central node
mimicking an ISP, and with homogeneous leaf nodes connect-
ing to it through asymmetric links: 30 Mbit/s downlink and
3 Mbit/s uplink. As described in Section V, our model was
instantiated as follows. We considered Storm erasure codes,
and therefore, any subset of k blocks enables to fully download
a content, seeders generate a new block per request, and peers
only have access to the content after fully downloading it. The
privacy mechanism ensures that peers do not exchange more
than m blocks with any set of c peers. The block selection,
and peer selection mechanisms select, respectively, blocks and
peers randomly. The request backoff mechanism sets the peer
backoff component as a function of block transfer time that
grows exponentially with failed requests, while the swarm
backoff component is set as a linear function of failed request
attempts.

To ensure that the peer arrival models are realistic, we
gathered peer arrival traces of several contents and use them as
input to the simulation. The traces were collected by querying
a tracker for typical BitTorrent contents, and provide the
number of new peers that arrived within ten minute intervals
since content publication up to 21 days. We consider the peer
arrivals to be independent within each interval, and therefore,
we use an exponential function to generate the peer inter-
arrival times within that period (Poisson process). We classify
content’s popularity according to their average peer arrival
rate: more popular contents are those that have higher average
peer arrival rates. From those collected traces, we selected

TABLE I
OVERALL NUMBER AND RATIO OF DOWNLOADS COMPLETE.

Contents 1 Seeder,
Col. of 1

1 Seeder,
Col. of 32

64 Seeders,
Col. of 1

64 Seeders,
Col. of 32

VideoMP 100 75296
(99.82%)

75294
(99.82%)

75323
(99.86%)

75321
(99.85%)

VideoMP 800 74509
(98.78%)

74520
(98.79%)

74565
(98.85%)

74569
(98.86%)

VideoP 100 22444
(99.45%)

22439
(99.42%)

22471
(99.57%)

22472
(99.57%)

VideoP 800 21772
(96.46%)

21762
(96.42%)

21808
(96.63%)

21821
(96.69%)

VideoLP 100 3308
(99.91%)

3257
(98.37%)

3308
(99.91%)

3308
(99.91%)

VideoLP 800 3257
(98.37%)

3240
(97.86%)

3271
(98.79%)

3269
(98.73%)

three video traces for comparison that have different degrees
of popularity.

B. Use Cases

For each individual peer arrival trace we consider eight use
cases, which are a result of combining three distinct variables,
each taking one of two possible values. We consider a privacy
protection level against single peer attacks (collusion of 1)
or collusion group attacks of, at most, 32 peers (collusion of
32). Contents are always divided into 64 blocks, have a size
of either 100 MiB or 800 MiB, and are shared either by 1
seeder or 64 seeders; seeders are always present during the
content sharing. Given that, for the traces we collected, the
peer arrival peak usually occurs within the first 36 hours, each
use case is simulated for 48 hours to encompass, at least, the
content bootstrap and the content sharing peak. We consider
m = k � 1, i.e., no single peer can download all k blocks
from peers belonging to a group of c peers.

Our goal is to validate the model for different content pop-
ularities, privacy protection levels, content sizes, and number
of seeders.

VII. RESULTS AND DISCUSSION

In this section, we present the simulation results for the
validation of the Mistrustful P2P model. For each use case,
we measured the rate of peers that completed the download,
and the average download time. All values are for one hour
intervals, thus, for the sake of clarity, we use ’overall’ to
differentiate between the values for the whole simulation and
those for one hour intervals. Figure 1 depicts the number
of downloads completed over time, and Table I provides
the overall number of downloads completed and the overall
completion rate. The average download time is illustrated on
Figure 2 while the average overall download time, and the
ratio to the direct download time are presented on Table II.
Content download is limited by the uplink (3 Mbit/s) because
block requests are performed one at a time, thus to a single
peer at a time. As so, the reference download times for direct
download of 100 MiB and 800 MiB contents are, respectively,
approximately 5 and 38 minutes.

The results demonstrate that our model is feasible as peers
were able to complete their downloads, and do so in due

400ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

D
ow

nl
oa

ds
C
om

pl
et

ed
P
er

H
ou

r VideoMP_100MiB

0 500 1000 1500 2000 2500
0

500

1000

1500

2000

2500

D
ow

nl
oa

ds
C
om

pl
et

ed
P
er

H
ou

r VideoMP_800MiB

0 500 1000 1500 2000 2500
0

200

400

600

800

D
ow

nl
oa

ds
C
om

pl
et

ed
P
er

H
ou

r VideoP_100MiB

0 500 1000 1500 2000 2500
0

200

400

600

800

D
ow

nl
oa

ds
C
om

pl
et

ed
P
er

H
ou

r VideoP_800MiB

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

Time (minutes)

D
ow

nl
oa

ds
C
om

pl
et

ed
P
er

H
ou

r VideoLP_100MiB

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

Time (minutes)

D
ow

nl
oa

ds
C
om

pl
et

ed
P
er

H
ou

r VideoLP_800MiB

0

500

1000

1500

2000

2500

P
ee

r
A
rr
iv
al

s
P
er

H
ou

r

0

500

1000

1500

2000

2500

P
ee

r
A
rr
iv
al

s
P
er

H
ou

r

0

200

400

600

800

P
ee

r
A
rr
iv
al

s
P
er

H
ou

r

0

200

400

600

800

P
ee

r
A
rr
iv
al

s
P
er

H
ou

r

0

50

100

150

200

250

300

P
ee

r
A
rr
iv
al

s
P
er

H
ou

r

0

50

100

150

200

250

300

P
ee

r
A
rr
iv
al

s
P
er

H
ou

r

1 Seeder, Collusion of 1 1 Seeder, Collusion of 32 64 Seeders, Collusion of 1 64 Seeders, Collusion of 32

Fig. 1. Number of downloads completed over one hour periods for 100 MiB (left) and 800 MiB (right) contents using a more popular (MP), a popular (P),
and a less popular (LP) peer arrival traces as input (one per row). Each plot depicts four use cases that are a result of using either 1 or 64 seeders, and
considering either single peer attacks or collusion attacks of, at most, 32 peers. The peer arrival rate is represented in gray with a y-scale on the right.

time, without advertising what they have downloaded. For
most use cases, the average overall download time is close
to the direct download time (see Table II). As shown in
Figure 1, peers download completion rate closely follows the
peer arrival rate with an offset, which increases as the size
of the content increases because peers need to stay longer
to fully download the content. Table I shows that the overall
download completion rate is very high; the only peers that have
not completed the download are those that were sharing when
the simulation stopped. Figure 2 shows that peers complete
their downloads in due time, and that the average download
time depends on the peer arrival rate (content popularity), the
privacy protection level, the number of seeders sharing the
content, and on the content size.

The average download time decreases down to a minimum

TABLE II
AVERAGE OVERALL DOWNLOAD TIME, IN MINUTES, AND RATIO TO

DIRECT DOWNLOAD TIME.

Contents 1 Seeder,
Col. of 1

1 Seeder,
Col. of 32

64 Seeders,
Col. of 1

64 Seeders,
Col. of 32

VideoMP 100 8.4 (1.8) 8.4 (1.8) 6.8 (1.5) 6.8 (1.5)
VideoMP 800 60.7 (1.6) 60.8 (1.6) 57.8 (1.6) 57.6 (1.5)
VideoP 100 8.4 (1.8) 11.0 (2.4) 6.0 (1.3) 6.0 (1.3)
VideoP 800 60.1 (1.6) 60.5 (1.6) 55.5 (1.5) 55.4 (1.5)
VideoLP 100 8.4 (1.8) 51.1 (11.0) 5.2 (1.1) 5.2 (1.1)
VideoLP 800 61.0 (1.6) 85.1 (2.3) 47.8 (1.3) 48.0 (1.3)

near the direct download time as the peer arrival rate increases.
As the peer arrival rate decreases, both the average download
time and the download time variance increase, which suggests
that some peers have to wait for others to join before being

401ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

●
● ● ● ● ● ● ● ● ● ● ●■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

350

A
ve

ra
ge

D
ow

nl
oa

d
Ti

m
e
(m

in
ut

es
)

VideoMP_100MiB

●

● ● ● ● ● ● ● ● ● ● ●

■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆▲ ▲ ▲ ▲ ▲ ▲ ▲
▲ ▲ ▲ ▲ ▲

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

350

A
ve

ra
ge

D
ow

nl
oa

d
Ti

m
e
(m

in
ut

es
)

VideoMP_800MiB

● ● ● ● ● ● ● ● ● ● ● ●

■

■

■

■
■ ■ ■

■

■

■ ■ ■

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

350

A
ve

ra
ge

D
ow

nl
oa

d
Ti

m
e
(m

in
ut

es
)

VideoP_100MiB

●

●
● ● ● ● ● ● ● ● ● ●

■

■

■
■ ■ ■ ■ ■

■ ■ ■ ■

◆

◆

◆

◆ ◆ ◆ ◆

◆

◆

◆ ◆ ◆

▲

▲

▲
▲ ▲

▲
▲

▲

▲
▲ ▲ ▲

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

350

A
ve

ra
ge

D
ow

nl
oa

d
Ti

m
e
(m

in
ut

es
)

VideoP_800MiB

● ● ● ● ● ● ● ● ● ● ● ●

■

■

■

■

■

■
■

■

■

■

■

■

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

350

Time (minutes)

A
ve

ra
ge

D
ow

nl
oa

d
Ti

m
e
(m

in
ut

es
)

VideoLP_100MiB

●

●
●

● ● ● ● ● ●

●

●
●

■

■

■

■

■

■ ■ ■

■

■

■

■

◆ ◆

◆

◆

◆ ◆
◆ ◆

◆ ◆

◆ ◆

▲ ▲

▲
▲

▲ ▲

▲ ▲

▲
▲

▲ ▲

0 500 1000 1500 2000 2500
0

50

100

150

200

250

300

350

Time (minutes)

A
ve

ra
ge

D
ow

nl
oa

d
Ti

m
e
(m

in
ut

es
)

VideoLP_800MiB

0

500

1000

1500

2000

2500

P
ee

r
A
rr
iv
al

s
P
er

H
ou

r

0

500

1000

1500

2000

2500

P
ee

r
A
rr
iv
al

s
P
er

H
ou

r

0

200

400

600

800

P
ee

r
A
rr
iv
al

s
P
er

H
ou

r

0

200

400

600

800

P
ee

r
A
rr
iv
al

s
P
er

H
ou

r

0

20

40

60

80

100

120

140

P
ee

r
A
rr
iv
al

s
P
er

H
ou

r

0

20

40

60

80

100

120

140

P
ee

r
A
rr
iv
al

s
P
er

H
ou

r

1 Seeder, Collusion of 1 1 Seeder, Collusion of 32 64 Seeders, Collusion of 1 64 Seeders, Collusion of 32

Fig. 2. Average download time over one hour periods for 100 MiB (left) and 800 MiB (right) contents using a more popular (MP), a popular (P), and a
less popular (LP) peer arrival traces as input (one per row). Each plot depicts four use cases that are a result of using either 1 or 64 seeders, and considering
either single peer attacks or collusion attacks of, at most, 32 peers. The bars represent the minimum and maximum download times within one hour intervals.
The peer arrival rate is represented in gray with a y-scale on the right.

able to complete the download. The numbers of peers that
need to be contacted is constrained by the privacy protection
level (at least c+1 peers) but also depends on how successful
the block requests are, which in turn are dependent on other
variables such as the block distribution among the peers.
Therefore, the results suggest that the number of peers that
need to be contacted is higher than that imposed by the
privacy protection level (c + 1), and the average download
time increases when those peers are not immediately available.
Adding seeders provides a two-fold improvement on the
average download time: 1) since seeders are always present,
less commoners need to be simultaneously sharing to be able
to complete the download; 2) seeders improve the probability

of successful block requests as they always offer a useful
block, which increases the number of unique blocks available
on the network. Unlike direct download time, the average
download time does not increase linearly with the increase of
the content size. The average number of peers present in the
network increases with the increase of the content size because
commoners have to stay longer to fully download the content,
therefore increasing the probability of successful requests,
which, in turn, contributes to a lower average download time.
This is more evident for less popular contents: for the less
popular peer arrival trace, despite the 800 MiB content being
eight times larger than the 100 MiB one, the average download
time is only less than two times higher.

402ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

In sum, the results demonstrate that our model is feasible
and, for most of the use cases considered, the average overall
download time is close to the direct download time. We con-
sidered an instantiation of our model that focus on simplicity
instead of optimality, and the peer download completion rate
is still very high. For the 64 seeders use cases, the average
download time is very close to the direct download time, even
for a privacy protection level against collusion group attacks
of, at most, 32 peers.

VIII. CONCLUSIONS

We proposed a novel P2P file sharing model that provides
deterministic protection of user’s content interests, against
attacks of size up to a configured privacy protection level, by
avoiding the advertisement of what peers download, as long
as the effective size of the largest colluding group does not
exceed the one configured; it supports open and untrustworthy
P2P networks, and requires no trust links between peers. Our
model thwarts passive attacks differentiating genuine from
cover downloads using solely block advertisements, and forces
attackers to engage in content sharing to know which blocks
a peer owns.

By avoiding block advertisement, our model enables peers
to control individually what information is disclosed to other
peers, and has no requirements on the amount of blocks that
have to be downloaded per cover content, so that no single
colluding group is able to identify it as a cover content. As
so, novel disguise schemes can be devised to conceal user’s
interests that use more cover contents without increasing the
network overhead.

We demonstrated its feasibility through simulation, using
ns-3, considering an instantiation of our model focused on
simplicity rather than on optimality, and where peers leave
immediately after finishing the download. In the majority of
the use cases considered, the average overall download time
is close to the direct download time. With the Mistrustful
P2P model, peers have no need to suddenly terminate or
remove downloads because the privacy protection level does
not depend on the time a peer keeps sharing a content, as long
as cover and genuine downloads are treated in the same way.

As future work, we intend to (1) compare our model against
a simple traditional P2P file sharing model, (2) improve the re-
quest backoff mechanism to increase the overall performance,
and (3) conduct further experiments to evaluate the Mistrustful
P2P model with more peer arrival traces, mainly less popular
ones, and include more variables such as the number of blocks
into which a content is divided. Then, we will analyze how
the probability of successful requests changes over time, so
that we can improve the instantiation of our model herein
presented. We will also propose cover download selection
algorithms that minimize the amount of cover traffic required
while preserving the privacy protection.

ACKNOWLEDGMENT

This work is financed by the ERDF – European Regional
Development Fund – through the Operational Programme

for Competitiveness and Internationalisation – COMPETE
2020 Programme – within project “POCI-01-0145-FEDER-
006961”, and by National Funds through the FCT – Fundação
para a Ciência e a Tecnologia (Portuguese Foundation for Sci-
ence and Technology) as part of project UID/EEA/50014/2013
and under the fellowship SFRH/BD/69388/2010.

REFERENCES

[1] Freenet project. https://freenetproject.org/.
[2] ns-3 network simulator. https://www.nsnam.org/.
[3] K. Bauer, D. McCoy, D. Grunwald, and D. Sicker. BitBlender: Light-

weight anonymity for BitTorrent. In Proceedings of the Workshop
on Applications of Private and Anonymous Communications (AlPACa
2008). ACM, September 2008.

[4] A. Chaabane, P. Manils, and M. Kaafar. Digging into anonymous traffic:
A deep analysis of the Tor anonymizing network. In Network and System
Security (NSS), 4th International Conference on, pages 167–174, 2010.

[5] S. Chakravarty, G. Portokalidis, M. Polychronakis, and A. Keromytis.
Detection and analysis of eavesdropping in anonymous communication
networks. International Journal of Information Security, 14(3):205–220,
2015.

[6] D. R. Choffnes, J. Duch, D. Malmgren, R. Guiermà, F. E. Bustamante,
and L. Amaral. SwarmScreen: Privacy through plausible deniability in
P2P systems. Technical report, Northwestern EECS, March 2009.

[7] R. Cuevas, M. Kryczka, A. Cuevas, S. Kaune, C. Guerrero, and
R. Rejaie. Is content publishing in BitTorrent altruistic or profit-driven?
In Proceedings of the 6th International COnference, Co-NEXT ’10,
pages 11:1–11:12, New York, NY, USA, 2010. ACM.

[8] P. M. da Silva, J. Dias, and M. Ricardo. CIDRarchy: CIDR-based ns-3
routing protocol for large scale network simulation. In Proceedings of
the 8th International Conference on Simulation Tools and Techniques,
SIMUTools ’15, pages 267–272, 2015.

[9] P. M. da Silva, J. Dias, and M. Ricardo. Storm: Rateless MDS erasure
codes. In Wireless Internet, pages 153–158. Springer, 2015.

[10] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-
generation onion router. In Proceedings of the 13th Conference on
USENIX Security Symposium - Volume 13, SSYM’04, 2004.

[11] D. Goldschlag, M. Reed, and P. Syverson. Onion routing. Commun.
ACM, 42(2):39–41, Feb. 1999.

[12] T. Isdal, M. Piatek, A. Krishnamurthy, and T. Anderson. Privacy-
preserving P2P data sharing with OneSwarm. SIGCOMM Comput.
Commun. Rev., 41(4):–, Aug. 2010.

[13] S. Katti, J. Cohen, and D. Katabi. Information slicing: Anonymity using
unreliable overlays. In Proceedings of the 4th USENIX Conference on
Networked Systems Design and Implementation, NSDI’07, 2007.

[14] S. Le Blond, P. Manils, A. Chaabane, M. A. Kaafar, C. Castelluccia,
A. Legout, and W. Dabbous. One bad apple spoils the bunch: Exploiting
P2P applications to trace and profile Tor users. In Proceedings of the
4th USENIX Conference on Large-scale Exploits and Emergent Threats,
LEET’11, 2011.

[15] D. Liben-Nowell, H. Balakrishnan, and D. Karger. Analysis of the
evolution of peer-to-peer systems. In Proceedings of the twenty-first
annual symposium on Principles of distributed computing, PODC ’02,
pages 233–242. ACM, 2002.

[16] S. J. Nielson and D. S. Wallach. The BitTorrent anonymity marketplace.
CoRR, abs/1108.2718, 2011.

[17] R. Petrocco, M. Capotă, J. Pouwelse, and D. H. Epema. Hiding user
content interest while preserving P2P performance. In Proceedings of
the 29th Annual ACM Symposium on Applied Computing, pages 501–
508. ACM, 2014.

[18] M.-Z. Shieh, S.-C. Tsai, and M.-C. Yang. On the inapproximability
of maximum intersection problems. Information Processing Letters,
112(19):723 – 727, 2012.

[19] P. Tsang, A. Kapadia, C. Cornelius, and S. Smith. Nymble: Blocking
misbehaving users in anonymizing networks. Dependable and Secure
Computing, IEEE Transactions on, 8(2):256–269, March 2011.

403ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Go-with-the-Winner: Performance Based
Client-Side Server Selection

Chang Liu†, Ramesh K. Sitaraman†‡, and Don Towsley†
†University of Massachusetts, Amherst ‡Akamai Technologies Inc.

{cliu, ramesh, towsley}@cs.umass.edu

Abstract—Content delivery networks deliver much of the

world’s web and video content by deploying a large distributed

network of servers. We model and analyze a simple paradigm

for client-side server selection that is commonly used in practice

where each user independently measures the performance of a

set of candidate servers and selects the one that performs the

best. For web (resp. video) delivery, we propose and analyze

a simple algorithm where each user randomly chooses two or

more candidate servers and selects the server that provides the

best hitrate (resp. bitrate). We prove that the algorithm converges

quickly to an optimal state where all users receive the best hitrate

(resp. bitrate), with high probability. We also show that if each

user chooses just one random server instead of two, some users

receive a hitrate (resp. bitrate) that tends to zero. We simulate

our algorithm and evaluate its performance with varying choices

of parameters, system load, and content popularity.

I. INTRODUCTION

Modern content delivery networks (CDNs) host and deliver
a large fraction of the world’s web content, video content,
and application services on behalf of enterprises that include
most major web portals, media outlets, social networks, appli-
cation providers, and news channels [17]. CDNs deploy large
numbers of servers around the world that can store content
and deliver that content to users who request it. When a user
requests a content item, say a web page or a video, the user is
directed to one of the CDN’s servers that can serve the desired
content to the user. The goal of a CDN is to maximize the
performance perceived by the user while efficiently managing
its server resources.

A key function of a CDN is server selection by which client
software running on the user’s computer or device, such as
media player or a browser, is directed to a suitable server of a
CDN [6]. The desired outcome of server selection is that each
user is directed to a server that will provide the requested
content with good performance. The performance metrics that
are optimized vary by the content type. For instance, good
performance for a user accessing a web page might mean low
latency web page downloads. Good performance for a user
watching a video might mean high bitrate video delivery by
the server while avoiding video freezing and rebuffering [11].

Server selection can be performed in two distinct ways
that are not mutually exclusive. Network-side server selection
algorithms monitor the real-time characteristics of the CDN
and the Internet. Such algorithms are often complex and
measure liveness and CDN server load, as well as latency, loss,

and bandwidth of the communication paths between servers
and users. Using this information, the algorithm computes a
good “mapping” of users to servers, such that each user is
assigned a “proximal” server capable of serving that user’s
content [17]. This mapping is computed periodically and is
typically made available to the client using the domain name
system (DNS). Specifically, the user’s browser or media player
looks up the domain name of the content that it wants to
download and receives as translation the IP address of the
selected server.

A complementary approach to network-side server selection
that is commonly is used is client-side server selection where
the client embodies a server selection algorithm. The client
software is typically unaware of the global state of the server
infrastructure, the Internet, or other clients. Rather, the client
software typically makes future server selection decisions
based on its own historical performance measurements from
past server downloads. Client-side server selection can often be
implemented as a plug-in within media players, web browsers,
and web download managers [2].

While client-side server selection can be used to select
servers within a single CDN, it can also be used in a multi-
CDN setting. Large content providers often make the same
content available to the user via multiple CDNs. In this case,
the client tries out the different CDNs and chooses the “best”
server from across multiple CDNs. For instance, NetFlix uses
three different CDNs and the media player incorporates a
client-side server selection algorithm to choose the “best”
server (and the corresponding CDN) using performance met-
rics such as achievable video bitrates [1]. Note also that in
the typical multi-CDN case, both network-side and client-side
server selection can be used together, where the former is used
to choose the candidate servers from each CDN and the latter
is used by the user to pick the “best” among all the candidates.

A. The Go-With-The-Winner paradigm

A common and intuitive paradigm that is often used for
client-side server selection in practice is what we call “Go-
With-The-Winner” that consists of an initial trial period during
which each user independently “tries out” a set of candidate
servers by requesting content or services from them (cf.
Figure 1). Subsequently, each user independently decides on
the “best” performing server using historical performance
information that the user collected for the candidate servers
during the trial period. It is commonly implemented in theISBN 978-3-901882-83-8 c� 2016 IFIP

404ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

ORIGIN

SERVERS

USERS

REQUESTPERFORMANCE
FEEDBACK U

S1 S2

Fig. 1: Client-side Server Selection with the Go-With-The-
Winner paradigm. User U makes request to two candidate
servers S1 and S2. After a trial period of observing the
performance provided by the candidate, the user selects the
better performing server.

content delivery context that incorporate selecting a web or
video content server from among a cluster of such servers.

Besides content delivery, the Go-With-The-Winner
paradigm is also used for other Internet services, though
we do not explicitly study such services in our work. For
instance, BIND, which is the most widely deployed DNS
resolver (i.e., DNS client) on the Internet, tracks performance
as a smoothed value of historical round trip times (called
SRTT) from past queries for a set of candidate name servers.
BIND then chooses a particular name server to query in part
based on the computed SRTT values [12]. It is also notable
that BIND implementations incorporate randomness in the
candidate selection process.

The three key characteristics of the Go-With-The-Winner
paradigm are as follows.

1) Distributed control. Each user makes decisions in a
distributed fashion using only knowledge available to it.
There is no explicit information about the global state
of the servers or other users, beyond what the user can
infer from it’s own historical experience.

2) Performance feedback only. There is no explicit feed-
back from a server to a user who requested service
beyond what can be inferred by the performance ex-
perienced by the user.

3) Choosing the “best” performer. The selection criteria is
based on historical performance measured by the user
and consists of selecting the best server according to
some performance metric (i.e., go with the winner).

Besides its inherent simplicity and naturalness, the paradigm is
sometimes the only feasible and robust solution. For instance,
in many settings, the client has no detailed knowledge of the
state of the server infrastructure as it is managed and owned

by other business entities. In this case, the primary feedback
mechanism for the client is its own historical performance
measurements.

While client-side server selection is widely implemented, its
theoretical foundations are not well understood. A goal of our
work is to provide such a foundation in the context of web and
video content delivery. It is not our intention to model a real-
life client-side server selection process in its entirety which
can involve other adhoc implemention-specific considerations.
But rather we abstract an analytical model that we can explore
to extract basic principles of the paradigm that are applicable
in a broad context.

B. Our contributions

We propose a simple theoretical model for the study of
client-side server selection algorithms that use the Go-With-
The-Winner paradigm. Using our model, we answer founda-
tional questions such as how does randomness help in the trial
period when selecting candidate servers? How many candidate
servers should be selected in the trial phase? How long does
it take for users to narrow down their choice and decide on
a single server? Under what conditions does the selection
algorithm converge to a state where all users have made correct
server choices, i.e., selected servers provide good performance
to their users? Some of our key results that help answer these
questions follow.

(1) In Section II, in the context of web content delivery, we
analyze a simple algorithm called GoWithTheWinner where
each user independently selects two or more random servers
as candidates and decides on the server that provides the
best cache hit rate. We show that with high probability, the
algorithm converges quickly to a state where no cache is
overloaded and all users obtain a 100% hit rate. Furthermore,
we show that two or more random choices of candidate servers
are necessary, as just one random choice will result in some
users (and some servers) incurring cache hit rates that tend
to zero, as the number of users and servers tend to infinity.
This work represents the first demonstration of the “power of
two choices” phenomena in the context of client-side server
selection for content delivery, akin to similar phenomena
observed in balls-into-bins games [14], load balancing, circuit-
switching algorithms [4], relay allocation for services like
Skype [16], and multi-path communication [10].

(2) In Section III, in the context of video content delivery,
we propose a simple algorithm called MaxBitRate where
each user independently selects two or more random servers
as candidates and decides on the server that provides the
best bitrate for the video stream, We show that with high
probability, the algorithm converges quickly to a state where
no server is overloaded and all users obtain the required bitrate
for their video to play without freezes. Further, we show
that two or more random choices of candidate servers are
necessary, as just one random choice will result in some users
receiving bitrates that tend to zero, as the number of users and
servers tends to infinity.

405ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(3) In Section IV, we go beyond our theoretical model
and simulate algorithm GoWithTheWinner in more complex
settings. We establish an inverse relationship between the
length of the history used for hitrate computation (denoted
by ⌧) and the failure rate defined as the probability that the
system converges to a non-optimal state. We show that as
⌧ increases the convergence time increases, but the failure
rate decreases. We also empirically evaluate the impact of the
number of choices of candidate servers. We show that two or
more random choices are required for all users to receive a
100% hitrate. Though even if only 70% of the users make
two choices, it is sufficient for 95% of the users to receive
a 100% hitrate. Finally, we show that the convergence time
increases with system load. But, convergence time decreases
when the exponent of power law distribution that describes
content popularity increases.

II. HIT RATE MAXIMIZATION FOR WEB CONTENT

The key measure of web performance is download time
which is the time taken for a user to download a web object,
such as an html page or an embedded image. CDNs enhance
web performance by deploying a large number of servers in
access networks “close” to the users. Each server has a cache
capable of storing web objects. When a user requests an object,
such as a web page, the user is directed to a server that can
serve the object (cf. Figure 1). If the server already has the
object in its cache, i.e, the user’s request is a cache hit, the
object is served from the cache to the user. In this case, the
user experiences good performance, since the CDN’s servers
are proximal to the user and the object is downloaded quickly.
However, if the requested object is not in the server’s cache,
i.e., the user’s request is a cache miss, then the server first
fetches it from the origin, places it in its cache, and then
serves the object to the user. In the case of a cache miss,
the performance experienced by the user is often poor since
the origin server is typically far away from the server and the
user. In fact, if there is a cache miss, the user would have
been better off not using the CDN at all, since downloading
the content directly from the content provider’s origin would
likely have been faster! Since the size of a server’s cache is
bounded, cache misses are inevitable. A key goal of server
selection for web content delivery is to jointly orchestrate
server assignment and content placement in caches such that
the cache hit rate is maximized. While server selection in
CDNs is a complex process [17], we analytically model the
key elements that relate to content placement and cache hit
rates, leaving other factors that impact performance such as
server-to-user latency for future work.

A. Problem Formulation

Let U be a set of n
u

users who each requests an ob-
ject picked independently from a set C of size n

c

using a
popularity distribution {p

1

, p
2

, . . . , p
nc}, where the k-th most

popular object in C is picked with probability p
k

. The user
then makes a sequence of requests for that content item to the
set of available servers. In practice, users tend to stay with

one website for a while, say reading the news or looking at a
friend’s posts. We model the sequence of requests generated
by each user as a Poisson process with homogeneous arrival
rate �. Note that each request from user u can be sent to one
or more servers selected from S

u

✓ S, where S
u

is the set of
candidate servers for user u.

Let S be the set of n
s

servers that are capable of serving
content to the users. Each server can cache at most objects
and a cache replacement policy such as LRU is used to evict
objects when the cache is full. Given that the download time
of a web object is significantly different when the request is a
cache hit versus a cache miss, we make the assumption that the
user can reliably infer if its request to download an object from
a server resulted in a cache hit or a cache miss immediately
after the download completes.

The objective of client-side server selection is for each user
u 2 U to independently select a server s 2 S using only the
performance feedback obtained on whether each request was
a hit or a miss. Let the hit rate function H(u, s, t) denote the
probability of user u receiving a hit from server s 2 S

u

at time
t. We define the system-wide performance measure H(t), as
the best hit rate obtained by the worst user at time t,

H(t)
�

= min

u2U

max

s2Su

H(u, s, t), (1)

a.k.a. the minmax hit rate. Our goal is to maximize H(t).
In the rest of the section, we describe a simple “Go-With-
The-Winner” algorithm for server selection and show that it
converges quickly to an optimal state, with high probability.

Note: Our formulation is intentionally simple so that it can
model a variety of other situations in web content delivery. For
instance, a single server could in fact model a cluster of front-
end servers that share a single backend object cache. A single
object can model a bucket of objects that cached together as
is often done in a CDN context [17].

B. The GoWithTheWinner Algorithm
After each user u 2 U selects a content item and a set of

� servers S
u

, the user executes algorithm GoWithTheWinner

to select a server likely to always have the content. In this
algorithm, each user locally executes a simple “Go-With-The-
Winner” strategy of trying out � randomly chosen candidate
servers initially. For each server s 2 S

u

, the user keeps
track of the most recent request results in a vector hs

=

(hs

1

, hs

2

, · · · , hs

⌧

) where hs

k

= 1 corresponds to the k-th recent
request resulting in a hit from server s and hs

k

= 0 if otherwise.
⌧ is the “sliding window size”. Using the hit rates, each user
then independently either chooses to continue with all the
servers in S

u

or decides on a single server that provided good
performance. If there are multiple servers providing 100% hit
rate, the user decides to use the first one found.

C. Analysis of Algorithm GoWithTheWinner
Here we analyze the case where n

u

= n
c

= n
s

= n and ex-
perimentally explore other variants where n

c

and n
u

are larger
than n

s

in Section II-D and IV. Let H(t) be as defined in (1).
If � � 2, we show that with high probability H(t) = 100%,

406ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Algorithm 1: GoWithTheWinner
1 The current user u chooses a set of � candidate servers
S
u

✓ S uniformly at random from all the servers;
2 for each s 2 S

u

do

3 set hs (hs

1

, hs

2

, · · · , hs

⌧

) = 0;
4 end

5 for each arrival of request do

6 set t to the current time;
7 Request content a

u

from all servers s 2 S
u

;
8 for each server s 2 S

u

do

9 hs

i

 hs

i�1

, 2 i ⌧ ;
10 hs

1

 if hit;hs

1

 0, if miss;
11 compute hit rate H

⌧

(u, s, t) (

P
⌧

i=1

hs

i

)/⌧ ;
12 if H

⌧

(u, s, t) = 100% then

13 decide on server s by setting S
u

 {s};
14 return;
15 end

16 end

17 end

for all t � T , where T = O(

log(+1)

(log n)+1

log logn).
That is, the algorithm converges quickly with high probability
to an optimal state where every user has decided on a single
server that provides a 100% hit rate, and every server has the
content requested by its users.

Definitions. A server s is said to be overbooked at some
time t if users request more than distinct content items from
server s, where is the number of content items a server can
hold. Note that a server may have more than users and not
be overbooked, provided the users collectively request a set
of or fewer content items. Also, note that a server that is
overbooked at time t is overbooked at every t0 t since the
number of users requesting a server can only remain the same
or decrease with time. Finally, a user u is said to be undecided
at time t if |S

u

| > 1 and is said to be decided if it has settled
on a single server to serve its content and |S

u

| = 1. Note that
each user starts out undecided at time zero, then decides on a
server at some time t and remains decided in all future time
later than t. Users calculate the hit rates of each of the available
servers based on a history record of the last ⌧ requests, where
⌧ is called the sliding window size.

Lemma 1: If the sliding window size ⌧ = ⇥(log

+1 n), the
probability that some user u 2 U decides on an overbooked
server s 2 S

u

upon any request arrival is at most 1/n⌦(1).
Proof: If user u decides on server s then the current

request together with the previous ⌧ � 1 requests are all hits.
Let H

k

, k = 1, 2, · · · , ⌧ be Bernoulli random variables, s.t.
H

k

= 1 if the most recent k-th request of u is a hit and
H

k

= 0 if it is a miss. To prove Lemma 1 we need to show

P (\⌧
k=1

(H
k

= 1)) n�⌦(1). (2)

Let t
1

denote the time of the most recent request for content
a
u

from user u appears at server s, resulting in feedback H
1

to the user. Let t
1

�� be the time that the previous request

for a
u

arrives at s. Let A
s

= {a
1

, a
2

, · · · , a
M

} be the set
of different content items requested at s, where M > . Let
N

i

� 1 be the number of users requesting a
i

from s. WLOG,
let a

1

= a
u

be the content that u requests, such that N
1

is
the number of users requesting for a

u

. Because we assume
all the users generates requests with a Poisson process with
arrival rate �, the aggregated arrival rate of requests for a

u

is
then N

1

�. Thus � is an exponential random variable, � ⇠
Exp(N

1

�). Now we look at the number of different requests
arrives between time t

1

�� and t
1

. Let X
i

, i = 2, 3, · · · ,M
be an indicator that a request for a

i

arrives at server s during
the time interval (t

1

��, t
1

), we have X
i

⇠ Bernoulli(1�
e�Ni��

). Furthermore, let random variable Y =

P
M

i=2

X
i

be
the number of different requests arrived in the time interval.
With the server running on LRU replacement policy,

P (H
1

= 0) = P (Y �) , (3)

because for content a
u

to be swapped out of the server, more
than different requests other than that for a

u

must have
arrived. Equation (3) shows that H

1

only depends on the
number different requests arrived after the previous request
for a

u

, which means events H
k

, k = 1, 2, · · · , ⌧ are mutually
independent.
Furthermore1, because N

i

� 1, we have X
i

�
d

X 0 where
X 0 ⇠ Bernoulli(1� e���

). Thus,

Y =

MX

i=2

X
i

�
d

MX

i=2

X 0
= Z,

where Z ⇠ Binomial(, (1� e���

)).
Thus, we have

P (Y �) � P (Z �)

=

Z 1

0

P (Z � |� = t) f
�

(t)dt

=

Z 1

0

(1� e��t

)

N�e�N�tdt

=

N !!

(N +)!

� (N +)�,

where f
�

(t) is the probability density function of �.
Note that N is the number of users requesting a at server

s, and is bounded by N = O(

logn

log logn

), with high probability
[19].

Now, we can finally prove (2). Let c0 be an appropriate
constant,

P (\⌧
k=1

(H
k

= 1)) = P (H = 1)

⌧

= (1� P (H = 0))

⌧

= (1� P (Y �))⌧

 (1� (N +)�

)

⌧

 (1� (c0
log n

log logn
+)�

)

⌧ ,

1random variables U �d V if P (U > x) � P (V > x) for all x.

407ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

which is n�⌦(1) when ⌧ = ⇥(log

+1 n).
By bounding the time for ⌧ requests to arrive at user u, we

have the following,
Lemma 2: If user u (with candidate servers S

u

) is not
decided at time t, then the server is overbooked at time
t � � for � =

⌧+1

�

c
0

where c
0

> 1 is a constant, with high
probability.

Proof: Let random variable N
�

be the number of requests
from u during time (t��, t), N

�

⇠ Poisson(��). A bound on
the tail probability of Poisson random variables is developed
in [15] as

P (X x) e��

0
(e�0

)

x

xx

,

where X ⇠ Poisson(�0
) and x < �0.

We can show there are at least ⌧+1 requests during (t��, t)
w.h.p. as the following,

P (N
�

< ⌧ + 1) e���

(e��)⌧+1

(⌧ + 1)

⌧+1

= e�(⌧+1)c

0

(ec
0

)

(⌧+1)

= e�(⌧+1)(c

0

�1)c(⌧+1)

0

= n� (⌧+1)

log n (c

0

�1�log c

0

)

= n�⇥(log

n),

as c
0

> 1 and ⌧ = ⇥(log

+1 n). Thus, w.h.p. no fewer than
⌧ + 1 requests arrive at u. And because user is not decided
at time t we know that with high probability, at least one
of the previous ⌧ requests results in a miss, which means
that between the previous (⌧ + 1)-th request and the miss,
different other requests arrived at the server. Thus server s is
overbooked at the time the previous (⌧+1)-th request arrives,
which with high probability is no earlier than t� �.

Based on Lemmas 1 and 2, we can then establish the fol-
lowing theorem about the performance of Algorithm GoWith-

TheWinner.
Theorem 3: With probability at least 1� 1

n

⌦(1)

, the minmax
hit rate H(t) = 100% for all t � T , provided � � 2

and T = O(

log(+1)

(log n)+1

log log n). That is, with high
probability, algorithm GoWithTheWinner converges by time
T to an optimal state where each user u 2 U has decided on
a server s 2 S that serves it content with a 100% hit rate.
This is the main result for the performance analysis of the
algorithm. Due to space limit, please refer to our technical
report [13] for detailed proof of this theorem.

Are two or more random choices necessary for all users
to receive a 100% hit rate? Analogous to the “power of two
choices” in the balls-into-bins context [14], we show that two
or more choices are required for good performance with the
following theorem.

Theorem 4: For any fixed constants 0 ↵ < 1 and � 1,
when algorithm GoWithTheWinner uses one random choice
for each user (� = 1), the minmax hit rate H(t) = o(1), with
high probability, i.e., H(t) tends to zero as n tends to infinity,
with high probability.
The reader is referred to technical report [13] for the proof.

D. When n
u

= n↵

s

,↵ > 1

Now we analyze the case that there are many more users
than the number of servers. Assume n

s

= n, n
u

= n↵ and
 =

nu
ns

= n↵�1, we have the following result,
Theorem 5: When n

s

= n, n
u

= n↵,↵ > 1, with
probability at least 1� 1

n

⌦(1)

, the maximum load (number of
incoming servers) over all servers is O(� nu

ns
). Furthermore, if

 =

nu
ns

, all users have 100% hit rate.
Theorem 5 implies that when n

u

= n↵

s

all the servers have
balanced load of � nu

ns
, and thus we don’t need a server selec-

tion mechanism for load balancing other than just letting users
randomly choose the server. In this case, it’s not beneficial to
let users start with more than one randomly selected servers,
because with � = 1 the load on all servers are balanced
already. Thus, as long as we have feasible server capacity
 = !(nu

ns
), all the users will have enough resources from the

server and have 100% hit rate by randomly select one server.
The number of content items n

c

here does not affect the
result of load balancing. Actually, the result stays the same
when n

c

� n
u

. When the number of content items is much
smaller than number of users, n

c

<< n
u

, the cache size can
be made smaller because the number of distinct requests at
each server becomes smaller.

III. BITRATE MAXIMIZATION FOR VIDEO CONTENT

In video streaming, a key performance metric is the bitrate
at which a user can download a video. If the server is unable
to provide the required bitrate to the user, the video may
frequently freeze resulting in an inferior viewing experience
and reduced user engagement [11]. For simplicity, we model
the server’s bandwidth capacity that is often the critical bottle-
neck resource, while leaving other factors that could influence
video performance such as the server-to-user connection and
the server’s cache2 for future work.

A. Problem formulation
The bitrate required to play a stream without freezes is often

the encoded bitrate of the stream. For simplicity, we assume
that each user requires a bitrate of 1 unit for playing its video
and each server has the capacity to serve an aggregation of
units. We also assume each server evenly divides its available
bitrate capacity among all users streaming videos from it. We
assume each user can tell the exact bitrate that it receives from
its chosen candidate servers and that this bitrate is used as the
performance feedback (cf. Figure 1).

Unlike web content delivery, where users make random
requests to the same website, we assume that users request-
ing video streaming maintain persistent connections with the
server. We use a discrete time model in this case as compared
to the continuous time model for web content delivery. We
assume after each time unit that users examine the bit rate
provided by each of the available servers and then make

2Unlike the web, cache hit rate is a less critical determinant of video
performance. Videos are cached in chunks by the server. The next chunk
is often prefetched from origin if it is not in cache, even while the current
chunk is being played by the user, so as to hide the origin-to-server latency.

408ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

decisions according to the performance (measured by bit rate).
The goal of each user is to find a server that can provide the
required bitrate of 1 unit for viewing the video.

B. Algorithm MaxBitRate

After each user u 2 U has selected a video object c
u

2 C
using the popularity distribution, Algorithm MaxBitRate de-
scribed below is executed independently by each user u 2 U ,
in discrete time steps.

1) Choose a random subset of candidate servers S
u

✓ S
such that |S

u

| = �.
2) At each time step t � 0, do the following:

a) Request the video content from all servers s 2 S
u

.
b) For each server s 2 S

u

, compute B(u, s, t)
�

=

bitrate provided by server s to user u in the current
time step.

c) If there exists a server s 2 S
u

such that
B(u, s, t) = 1, then decide on server s by setting
S
u

 {s}.
Note that each user executes a simple strategy of trying
� randomly chosen servers initially. Then, using the bitrate
received in the current time step as feedback, each user
independently narrows it’s choice of servers to a single server
that provides the required unit bitrate. If multiple servers
provide the required bitrate, the user selects one at random.
Further, note that a user u downloading from a server s at time
t knows immediately whether or not the server is overloaded,
since server s is overloaded if user u received a bitrate of
less than 1 unit from the server, i.e., B(u, s, t) < 1. This is
a point of simplification in relation to the complex situation
of hit rate maximization where any single cache hit is not
indicative of a non-overloaded server and a historical average
of hit rates over a large enough time window ⌧ is required
as a probabilistic indicator of server overload. Furthermore,
this simplification yields both faster convergence to an optimal
state in T = O(log log n/ log(+1)) steps and a much simpler
proof of convergence.

C. Analysis of Algorithm MaxBitRate

As before, we rigorously analyze the case where n
u

= n
s

=

n. Let the minmax bitrate B(t) be the best bitrate obtained by
the worst user at time t, i.e.,

B(t)
�

= min

u2U

max

s2S

B(u, s, t).

Theorem 6: When � � 2, the minmax bitrate con-
verges to B(t) = 1 unit, for all t � T , within time
T = O(log logn/ log(+ 1)), with high probability. When
� = 1 on the other hand, the minmax bitrate B(t) =

O(log logn/ log n), with high probability. In particular,
when � = 1 and the cache size is o(log n/ log logn),
including the case when is a fixed constant, B(t) tends to
zero as n tends to infinity, with high probability.
The proof can be found in [13].

IV. EMPIRICAL EVALUATION

We empirically study our algorithm GoWithTheWinner

through simulation. Requests from each user is modeled as
a Poisson arrival sequence with unit rate. We use n

u

= 1000

users. To simulate varying numbers of servers, users, and con-
tent items, we vary n

s

and n
c

such that 1 n
u

/n
c

, n
u

/n
s

100. We also simulate a range of values for the spread
1 � 6, and sliding window size 1 ⌧ 20. Each server
implements an LRU replacement policy of size � 2. We use
the power law distribution for content popularity distribution,
where the kth most popular object in C is picked with a
probability

p
k

�

=

1

k↵ · H(n
c

,↵)
, (4)

where ↵ � 0 is the exponent of the distribution and
H(n

c

,↵) =

P
nc

k=1

1/k↵. Note that power law distributions
(aka Zipf distributions) are commonly used to model the
popularity of online content such as web pages, and videos.
This family of distributions is parametrized by a Zipf rank
exponent ↵ with ↵ = 0 representing the extreme case of
an uniform distribution and larger values of ↵ representing
a greater skew in the popularity. It has been estimated that
the popularity of web content can be modeled by a power
law distribution with an ↵ in the range from 0.65 to 0.85 [3],
[9], [8]. In the simulations, the content items are requested by
users using the power law distribution of (4) with ↵ = 0.65 to
model realistic content popularity [3] [9]. However, we also
vary ↵ from 0 (uniform distribution) to 1.5 in some of our
simulations.

The system converges when all users have decided on a
single server from their set of candidate servers. There are two
complementary metrics that relate to convergence. Failure rate
is the probability that the system converged to a non-optimal
state where there exists servers that are overbooked, resulting
in some users incurring cache misses after convergence. The
failure rate is calculated from multiple runs of the simulation.
Convergence time is the time it takes for the system to
converge provided that it converges to an optimal state.

A. Speed of convergence

Figure 2 shows how the fraction of undecided users de-
creases over time until it reaches zero, resulting in conver-
gence. Note that users do not decide in the first ⌧ steps, since
they must wait at least that long to accumulate a window of ⌧
hits. However, once the first ⌧ steps complete, the decrease in
the number of undecided users is fast as users discover that at
least one of their two randomly chosen candidate servers have
less load. The rate of decrease in undecided users decreases
towards the end, as the number of users who experience cache
contention in both of their server choices require multiple
iterations to resolve.

In this simulation, we keep the number of users n
u

= 1000

but vary the number of servers n
s

to achieve different values
for n

u

/n
s

. Note that for a fair comparison, we keep the
system-wide load the same. Load l is a measure of cache

409ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0 20 40 60 80 100 120
time t

0

20

40

60

80

100

un
de
ci
de
d
us
er
s
(%
)

⌧ =20
⌧ =15
⌧ =10
⌧ =5

(a) ↵ = 0.65, nu/ns = 1

0 10 20 30 40 50
time t

0

20

40

60

80

100

un
de
ci
de
d
us
er
s
(%
)

⌧ =20
⌧ =15
⌧ =10
⌧ =5

(b) ↵ = 0.65, nu/ns = 10

0 10 20 30 40 50
time t

0

20

40

60

80

100

un
de
ci
de
d
us
er
s
(%
)

⌧ =20
⌧ =15
⌧ =10
⌧ =5

(c) ↵ = 0.65, nu/ns = 20

Fig. 2: The figures show the percentage of undecided users for a typical power law distribution (↵ = 0.65) with spread � = 2

and n
u

= 1000. Note that the undecided users decrease with time in all cases, but the convergence is faster when we use
fewer but larger servers by setting n

u

/n
s

to be larger. Also, the smaller values of the look-ahead window ⌧ result in faster
convergence.

5 6 7 8 9 10 11 12
sliding window size ⌧

0

20

40

60

80

100

f
a
i
l
u
r
e

r
a
t
e

(
%

)

failure rate

0

20

40

60

80

100

c
o
n
v
e
r
g
e
n
c
e

t
i
m

e
t

90.0

55.0

25.0

5.0

15.0

5.0

0.0

5.0

46.5

47.5

56.1

61.9

72.6 72.6

80.0

85.3

convergence time

0

20

40

60

80

100

(a) ↵ = 0.6, nu/ns = 1

5 6 7 8 9 10 11 12
sliding window size ⌧

0

20

40

60

80

100

c
o
n
v
e
r
g
e
n
c
e

t
i
m

e
t

27.6

31.8

34.8

39.0

42.8

46.4

51.5

54.9

(b) ↵ = 0.6, nu/ns = 20

Fig. 3: Generally, as ⌧ increases, convergence time increases but failure rate decreases. It is also true for larger servers (n
u

/n
s

= 20), only the failure has gone to zero for all investigated sliding window size⌧ .

1 10 20 30 40 50 60 70 80 90 100

nu/ns

30

40

50

60

70

80

90

100

110

c
o

n
v
e

r
g

e
n

c
e

t
i
m

e
t

Fig. 4: As n
u

/n
s

increases fewer servers with larger
capacity are used and convergence time decreases. The
decrease is less pronounced beyond n

u

/n
s

� 40 under
this setting (↵ = 0.65, � = 2, ⌧ = 20).

1 2 3 4 5 6 7
spread �

0

100

200

300

400

500

c
o

n
v
e

r
g

e
n

c
e

t
i
m

e
t

Fig. 5: There is a very small incremental benefit in using
� = 3 instead of 2, though higher values of � > 3 only
increased the convergence time. (↵ = 0.65, n

u

/n
s

=

1, ⌧ = 20, = 2.)

contention in the network and is naturally defined as the ratio
of the numbers of users in the system and total serving capacity
that is available in the system. That is, l �

= n
u

/(· n
s

). For
all three setting of Figure 2, we maintain a load l = 0.5. The
figure shows that with fewer (but larger) servers (n

u

/n
s

is
larger) the convergence time is faster, because having server
capacity in a few larger servers provides a larger hit rate
than having the same capacity in several smaller servers.
Similar performance gains are also found in the context of web
caching and parallel jobs scheduling [18]. Convergence times
are plotted explicitly in Figure 4 for a greater range of user-to-

server ratios. As n
u

/n
s

increases from 1 to 40, convergence
time decreases. The decreases in convergence times are not
significant beyond n

u

/n
s

� 40.

B. Impact of sliding window ⌧

The sliding window ⌧ is the number of recent requests
used by algorithm GoWithTheWinner to estimate the hit rate.
As shown in Figure 3, there is a natural tradeoff between
convergence time and failure rate. When ⌧ increases, the users
take longer to converge, as they require a 100% hit rate in a
larger sliding window. However, waiting for a longer period
also makes their decisions more robust. That is, a user is less

410ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

1.0 1.2 1.4 1.6 1.8 2.0
average spread �avg

0

20

40

60

80

100

h
i
t
r
a

t
e

(
%

)

median

5%

1%

minimum

Fig. 6: Order statistics of the hit rate of the user popula-
tion. (↵ = 0.65, n

u

/n
s

= 1, ⌧ = 10, = 2.)

0 50 100 150 200 250
time t

0

20

40

60

80

100

m
in
m
ax

hi
tr
at
e
H
(t
)
(%
)

↵ = 0

↵ = 0.5

↵ = 1

↵ = 1.5

Fig. 7: Minmax hitrate versus time for different power
law distributions.

likely to choose an overbooked server, since an overbooked
server is less likely to provide a string of ⌧ hits for large ⌧ . In
our simulations with many smaller caches (n

u

/n
s

= 1), when
⌧ 4, users made quick choices based on a smaller sliding
window. But, this resulted in the system converging to a non-
optimal state 100% of the time. As ⌧ further increases, failure
rate decreases. The value of ⌧ = 11 is a suitable sweet spot
as it results in the smallest convergence time for a zero failure
rate. However, for fewer but larger servers (n

s

/n
u

= 20),
all selections of window size ⌧ (thus the small values like
⌧ = 5) yielded a 0% failure rate, while convergence time still
increases as the window size gets larger.

C. Impact of spread �

As shown in Theorems 3 and 4, a spread of � � 2 is
required for the system to converge to an optimal solution,
while a spread of � = 1 is insufficient. As predicted by our
analysis, our simulations did not converge to an optimal state
with � = 1. Figure 5 shows the convergence time as a function
of spread, for � � 2.

As � increases, there are two opposing factors that impact
convergence time. The first factor is that as � increases, each
user has more choices and a user is more likely to find a
suitable server with less load. On the other hand, an increase
in � also increases the total number of initial requests in the
system that equals �n

u

. Thus, the initiate server load increases
in �. These opposing forces result in a very small incremental
benefit when using � = 3 instead of 2, though the higher
values of � > 3 showed no benefit as convergence time
increases with � increases.

We established the “power of two random choices” phe-
nomenon where two or more random server choices yield
superior results to having just one. It is intriguing to ask what
percentage of users need two choices to reap the benefits
of multiple choices? Consider a mix of users, some with
two random choices and others with just one. Let �

avg

,
1 �

avg

 2, denote the average value of the spread among
the users.

In Figure 6, we show different order statistics of the hit
rate as a function of �

avg

. Specifically, we plot the minimum
value, 1

st-percentile, 5

th- percentile and the median (50th-
percentile) of user hit rates after simulating the system for
200 time units. As our theory predicts, when �

avg

= 2, the

minimum and all the order statistics converge to 100%, as all
users converge to a 100% hit rate. Further, if we are interested
in only the median user, any value of the spread is sufficient
to guarantee that 50% of the users obtain a 100% hit rate.
Perhaps the most interesting phenomena is that if �

avg

= 1.7,
i.e., 70% of the users have two choices and the rest have one
choice, the 5

th-percentile converges to 100%, i.e., all but 5%
of the users experience a 100% hit rate. For a higher value of
�
avg

= 1.9, the 1

st-percentile converges to 100%, i.e., all but
the 1% of the users experience a 100% hit rate. This result
shows that our algorithm still provides benefits even if only
some users have multiple random choices of servers available
to them.

D. Impact of demand distribution

We now study how hit rate changes with the exponent ↵
in the power law distribution of Equation 4. Note that the
distribution is uniform when ↵ = 0 and is the harmonic
distribution when ↵ = 1. As ↵ increases, since the tails
fall as a power of ↵, the distribution becomes more skewed
towards content items with a smaller rank. In Figure 7, we
plot the minmax hitrate over time for different ↵, where we
see that a larger ↵ leads to faster convergence. The reason is
that as the popularity distribution gets more skewed, a larger
fraction of users will request the same popular content items,
leading to higher hit rate and faster convergence. Thus, the
uniform popularity distribution (↵ = 0) is the worst case and
the algorithm converges faster for the distributions that tend
to occur more commonly in practice. Providing theoretical
support for this empirical result by analyzing the convergence
time to show faster convergence for larger ↵ is a topic for
future work.

V. RELATED WORK

Server selection algorithms have a rich history of both
research and actual implementations over the past two decades.
Several server selection algorithms have been proposed and
empirically evaluated, including client-side algorithms that use
historical performance feedback using probes [7], [5]. Server
selection has also been studied in a variety of contexts, such
as the web [5], [20], video streaming [21], and cloud services
[22]. Our work is distinguished from the prior literature in that
we theoretically model the “Go-With-The-Winner” paradigm

411ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

that is common to many proposed and implemented client-side
server selection algorithms. Our work is the first formal study
of the efficacy and convergence of such algorithms.

In terms of analytical techniques, our work is closely
related to prior work on balls-into-bins games where the
witness tree technique was first utilized [14]. Witness trees
were subsequently used to analyze load balancing algorithms,
and circuit-switching algorithms [4]. However, our setting
involves additional complexity requiring novel analysis due
to the fact that users can share a single cached copy of an
object and the hitrate feedback is only a probabilistic indicator
of server overload. Also, our work shows that the “power
of two random choices” phenomenon applies in the context
of content delivery, a phenomenon known to hold in other
contexts such as balls-into-bins, load balancing [23], relay
allocation for services like Skype [16], and circuit switching
in interconnection networks [14].

VI. CONCLUSION

Our work constitutes the first formal study of the sim-
ple “Go-With-The-Winner” paradigm in the context of web
and video content delivery. For web (resp., video) delivery,
we proposed a simple algorithm where each user randomly
chooses two or more candidate servers and selects the server
that provided the best hit rate (resp., bitrate). We proved that
the algorithm converges quickly to an optimal state where
all users receive the best hit rate (resp., bitrate) and no
server is overloaded, with high probability. While we make
some assumptions to simplify the theoretical analysis, our
simulations evaluate a broader setting that incorporates a range
of values for ⌧ and �, varying content popularity distributions,
differing load conditions, and situations where only some
users have multiple server choices. Taken together, our work
establishes that the simple “Go-With-The-Winner” paradigm
can provide algorithms that converge quickly to an optimal
solution, given a sufficient number of random choices and a
sufficiently (but not perfectly) accurate performance feedback.

VII. ACKNOWLEDGEMENTS

This work was supported in part by NSF grant CNS-
1413998. It was partially sponsored by the U.S. Army Re-
search Laboratory and the U.K. Ministry of Defence and
was accomplished under Agreement Number W911NF-06-3-
0001. The views and conclusions contained in this document
are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied,
of the U.S. Army Research Laboratory, the U.S. Government,
the U.K. Ministry of Defence or the U.K. Government. The
U.S. and U.K. Governments are authorized to reproduce and
distribute reprints for Government purposes notwithstanding
any copyright notation hereon.

REFERENCES

[1] V. K. Adhikari, Y. Guo, F. Hao, M. Varvello, V. Hilt, M. Steiner, and
Z.-L. Zhang. Unreeling netflix: Understanding and improving multi-cdn
movie delivery. In INFOCOM, 2012 Proceedings IEEE, pages 1620–
1628. IEEE, 2012.

[2] Akamai. Akamai download manager. 2013. http://www.akamai.com/
html/solutions/downloadmanager overview.html.

[3] L. Breslau, P. Cue, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web
caching and zipf-like distributions: Evidence and implications. In
INFOCOM, 1999.

[4] R. Cole, B. M. Maggs, M. Mitzenmacher, A. W. Richa, K. Schröder,
R. K. Sitaraman, B. Vöcking, et al. Randomized protocols for low-
congestion circuit routing in multistage interconnection networks. In
Proceedings of the thirtieth annual ACM symposium on Theory of
computing, pages 378–388. ACM, 1998.

[5] M. E. Crovella and R. L. Carter. Dynamic server selection in the internet.
Technical report, Boston University Computer Science Department,
1995.

[6] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl.
Globally distributed content delivery. Internet Computing, IEEE,
6(5):50–58, 2002.

[7] S. G. Dykes, K. A. Robbins, and C. L. Jeffery. An empirical
evaluation of client-side server selection algorithms. In INFOCOM
2000. Nineteenth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 3, pages 1361–
1370. IEEE, 2000.

[8] C. Fricker, P. Robert, and J. Roberts. A versatile and accurate approxima-
tion for lru cache performance. In Proceedings of the 24th International
Teletraffic Congress, ITC ’12.

[9] P. Gill, M. Arlitt, Z. Li, and A. Mahanti. Youtube traffic characterization:
A view from the edge. In Proceedings of the 7th ACM SIGCOMM
Conference on Internet Measurement, IMC ’07. ACM, 2007.

[10] P. Key, L. Massoulie, and P. Towsley. Path selection and multipath con-
gestion control. INFOCOM 2007. 26th IEEE International Conference
on Computer Communications. IEEE, 2007.

[11] S. S. Krishnan and R. K. Sitaraman. Video stream quality impacts
viewer behavior: inferring causality using quasi-experimental designs.
In Proceedings of the 2012 ACM conference on Internet measurement
conference, pages 211–224. ACM, 2012.

[12] C. Liu and P. Albitz. DNS and Bind. O’Reilly Media, Inc., 2009.
[13] C. Liu, R. K. Sitaraman, and D. Towsley. Go-with-the-winner: Client-

side server selection for content delivery. CoRR, abs/1401.0209, 2014.
[14] M. Mitzenmacher, A. W. Richa, and R. Sitaraman. The power of two

random choices: A survey of techniques and results. COMBINATORIAL
OPTIMIZATION-DORDRECHT-, 9(1):255–304, 2001.

[15] M. Mitzenmacher and E. Upfal. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press,
New York, NY, USA, 2005.

[16] H. X. Nguyen, D. R. Figueiredo, M. Grossglauser, and P. Thiran.
Balanced relay allocation on heterogeneous unstructured overlays. In
INFOCOM, 2008.

[17] E. Nygren, R. K. Sitaraman, and J. Sun. The akamai network: a platform
for high-performance internet applications. ACM SIGOPS Operating
Systems Review, 44(3):2–19, 2010.

[18] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow:
Distributed, low latency scheduling. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles. ACM.

[19] M. Raab and A. Steger. balls into binsa simple and tight analysis.
In Randomization and Approximation Techniques in Computer Science,
pages 159–170. Springer, 1998.

[20] M. Sayal, Y. Breitbart, P. Scheuermann, and R. Vingralek. Selection
algorithms for replicated web servers. ACM SIGMETRICS Performance
Evaluation Review, 26(3):44–50, 1998.

[21] R. Torres, A. Finamore, J. R. Kim, M. Mellia, M. M. Munafo, and
S. Rao. Dissecting video server selection strategies in the youtube cdn.
In Distributed Computing Systems (ICDCS), 2011 31st International
Conference on, pages 248–257. IEEE, 2011.

[22] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford. Donar:
decentralized server selection for cloud services. In ACM SIGCOMM
Computer Communication Review, volume 40. ACM, 2010.

[23] L. Ying, R. Srikant, and X. Kang. The power of slightly more than one
sample in randomized load balancing. In Computer Communications
(INFOCOM), 2015 IEEE Conference on. IEEE, 2015.

412ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Utility-maximizing Server Selection
Truong Khoa Phan, David Griffin, Elisa Maini, Miguel Rio

University College London, UK
Email: {t.phan, d.griffin, e.maini, miguel.rio}@ucl.ac.uk

Abstract—This paper presents a new method for selection

between replicated servers distributed over a wide area, allowing

application and network providers to trade-off costs with quality-

of-service for their users. First, we create a novel utility frame-

work that factors in quality of service metrics. Then we design

a polynomial optimization algorithm to allocate user service

requests to servers based on the utility while satisfying transit

cost constraint. We then describe an efficient - low overhead

distributed model with the need to only know a small subset of

the data required by a global optimization formulation. Extensive

simulations show that our method is scalable and leads to higher

user utility compared with mapping user requests to the closest

service replica.

I. INTRODUCTION AND MOTIVATION

As the Internet becomes the enabler for more types of
services with a wider spectrum of requirements, pressure is
being put onto the Internet ecosystem to facilitate service
placement and to select the best replica for each user request
at each instant in time. This replication always involves multi-
stakeholder trade-offs involving costs (deployment and traffic
related) and user quality of service (QoS).

There are many drivers for service replication, including
server resilience, network diversity, and proximity of servers
to users. Deploying services closer to the users allows the
application providers to improve on QoS metrics like latency
and/or throughput for all users. Some frameworks, like fog
computing [1], even attempt to put service instances at the
extreme edge of the network in locations such as access points.

Although in theory this replication could be optimal, in
practice there are several obstacles: deployment costs vary
between geographical areas and may be prohibitive in some
locations, demand forecasting is inaccurate, flash crowds are
unpredictable. Efficient allocation of user requests to service
replicas will have to rely on a service selection at query time.

Service quality has two major sets of component metrics,
relating to computation and networking parameters. Servers
will have to be properly provisioned for the arrival rate and
holding time of user requests otherwise users will be not
served or blocked, increasing application latency. Network
distance will have primarily an effect on end-to-end delay but,
in many scenarios, causes an increase in packet loss and/or a
decrease in good-put. The service selection system will have
to take into account both computation and networking factors
to optimize its selection.

Resolution involves converting a service name to a specific
network locator for the selected replica. Our work assumes that
the user’s ISP is in the best position to make this selection.

The ISP has accurate information regarding the user’s position
in the network, the current network status and, furthermore, it
allows the ISP to apply traffic network policies in the selection
process to reduce traffic costs. A centralized approach would,
in theory, allow global optimization but it would often be
unscalable and unrealistic. A central entity would not have
access to information on the detailed user position, the network
topology or current network status and would be incapable
of implementing ISPs’ specific traffic policies as it would
have to arbitrate between conflicting policies of different ISPs
which would be problematic from a business point of view. For
those reasons, our server selection model can be implemented
in a similar way of PaDIS [2] which allows ISPs to better
assign users to servers by using their knowledge about network
conditions and user locations.

In brief, the contributions of our work are as follows:
• Firstly, we introduce the utility function relating to one

or more QoS metrics that allows application providers to
define based on their application’s requirements.

• Secondly, we design a polynomial centralized optimiza-
tion algorithm that allows ISPs to redirect their users
to the best replica, allowing to trade-off their traffic
costs with users’ QoS. In addition, the model allows to
optimize for multi-services at the same time.

• Finally, we propose a simple - efficient distributed model
that allows ISPs to run a local version of the selection
algorithm without the need for global knowledge of all
service replicas and network conditions.

This paper is organized as follows: Section II introduces
the utility-maximizing server selection model and is followed
by the optimization formulation in Section III. Section IV
presents extensive evaluation. We finish by surveying related
work in Section V and conclusions in Section VI.

II. UTILITY-MAXIMIZING SERVER SELECTION

The goal of utility-maximizing server selection is to pro-
vide the highest QoS for the greatest number of users. Our
framework unifies the objectives of several stakeholders and
the quality of service of the end users. In our approach, the
stakeholders involved in service selection are as follows:

• Execution zones (EZ): These are the entities running
the computational aspect of the distributed application.
Typically they will be cloud/data centers but they can
be smaller micro-data centers. They can be run by the
ISPs themselves (current trends point to this being anISBN 978-3-901882-83-8 c� 2016 IFIP

413ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

importance new revenue stream for them). Whatever the
scenario, they want to maximize their revenue.

• Application (Service) Providers: These represent the or-
ganizations that wish to run distributed applications in ex-
ecution zones. They may instantiate their replicas directly
or use a third-party orchestrator (e.g. cloud broker). They
will trade-off the deployment costs with the quality-of-
service of their users. After deployment they publish the
utility function of the service so that resolution algorithms
can maximize this utility. It is noted that the utility
function can simply be general (no sensitive) latency
requirements for applications as shown in Fig. 2.

• Internet Service Provider: These will implement resolu-
tion algorithms to resolve users queries, mapping service
names to locators. They will also trade-off the final
quality of service of their users with the traffic costs
imputed to them by these choices.

Application providers deploy service instances in execution
zones. These replicas register with a local resolver in the ISP
to which they are connected and send periodic updates. These
messages contain for each service:

• The utility function of the service as described in section
II-B.

• The number of available session slots. A session slot is a
unit of measurement representing how many users can be
accommodated simultaneously in a given service instance
without blocking.

• Servicing execution statistics regarding the total demand
on the service instance and the distribution of service
duration times.

We define routing epoch as the interval between the resolution
system making resolution decisions. Regarding to session slots
announcement, if sessions are long compared to the routing
epoch then the EZs simply announce a snapshot of what
is available. However if session durations are short then an
announcement of instantaneous availability is more-or-less
meaningless. For example: assume a routing epoch of 10
seconds and a service S1 with an average duration of 100
seconds and S2 with an average duration of 1 second, and
a single service instance for each service can each handle 2
sessions simultaneously. The EZ would announce 2 available
session slots for S1 as the current session is likely to last
much longer than the routing epoch. However for S2, if 2
available session slots are announced, it would mean that only
two requests should be forwarded to that EZ, even though the
currently active session (as well as those arriving in the near
future) is very likely to end during the epoch. Therefore the
number of session slot would be announced up to 20 for S2,
depending on the service arrival time.

Given those aforementioned stakeholders involving in the
system, we present next the main criteria to do server selection.

A. Motivation Example

As an example in Fig. 1, assuming that there are two
users requiring a voice service which is available in both

EZ2

EZ1

user1

user 2

20 ms

Internet

Fig. 1: Utility based vs. closest based selection
.

EZ1 and EZ2. However, each EZ can serve only one user
at a time or they announce only one available session slot.
Latencies between users and EZs are shown in Fig. 1. For
the voice service, we observe that if bandwidth is enough,
and when the latency is equal or less than 20 ms, humans’
ears cannot distinguish between audio and real speech or in
other words, people do not feel any disturbance [3]. Therefore,
5 ms or 20 ms latency gives the same (and the best) QoS
for voice services. Note that we consider here the latency
for on-going services, not including setup time. As shown in
Fig. 1, the classical closest based selection algorithm would
have solution: (user 1 - EZ1) and (user 2 - EZ2) (dash lines)
as the minimum total latency is (5+30) = 35 ms. It means that
user 1 can have the best QoS while user 2 sees some disruption
in the voice quality. However, we see a better solution should
be (user 1 - EZ2) and (user 2 - EZ1) in which both users
get the best QoS with 20 ms latency. This is the motivation
of our work to define a utility function applying in the server
selection problem.

B. Utility Function
Our general utility function is grounded on practical re-

search on quality of service utility [4], [5] and years of
investigation on Mean Opinion Scores [6]. Our interval data
points map to user ratings of excellent, good, fair, poor and
no service or blocked (Fig. 2).

Tmin t Tfair Tmax
0

U

1

excellent good fair poor no service

Ufair

Ub

Fig. 2: Utility function vs. latency
.

In our utility framework, application providers determine
utility function by the two latency thresholds: T

min

and T
max

.

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Note that the utility is not restricted to only latency. In future
work, we will extend the utility to be a combination of any
QoS metrics such as latency, bandwidth, loss, etc. As shown
in Fig. 2, we use a non-increasing piecewise linear utility
function that is characterized by:

• If t T
min

: depending on the service type, an appro-
priate value of T

min

is selected meaning that even if the
latency reduces below this value, the improvement is not
perceived by the users of that service, thus the utility
is unchanged (U

max

= 1). For instance, voice over IP
requires T

min

= 20 ms [3]; for simple web services,
T
min

= 100 ms gives users the feeling of instantaneous
response [7].

• If T
min

< t T
max

: QoS is within an acceptable range
(0 U < 1). User satisfaction reduces as the latency
increases. We also define T

fair

2 [T
min

, T
max

] as the
point from which users start to feel disappointed about
the services as QoS is getting poor. Note that the value of
T
fair

is set depending on services and does not change
the slope of the utility graph.

• If T
max

< t: the request is blocked (no service) because
the latency is beyond the acceptable range. Details on
blocked requests are presented in Section III-B2.

Based on this utility function, the utility-maximizing solution
for the problem in Fig. 1 will be (user 1 - EZ2) and (user 2
- EZ1) because both users will get the maximum utility with
t = T

min

= 20ms.

III. SERVER SELECTION OPTIMIZATION

In this section, we present a mathematical formulation
for the server selection problem that ISP’s resolvers use to
dynamically resolve names to locators. In general, the goal
is to direct user requests to suitable execution zones (EZs)
and satisfy a predefined objective function. We use the utility
function defined in Section II-B to measure user satisfaction.
We use linear programming to formulate the server selection
problem which maximizes the total utility of all users while
taking into account constraints on the data transit cost.

A central pre-requisite for our model is the existence of a
forecasting demand component that provides an input to the
optimization algorithm. Although client demand varies with
time, work in the literature [8] points to reasonably stable
demand within 10 minutes intervals. Note that, we aggregate
individual users with the same preference to form a group. This
can be done according to users’ postal codes [8] or by users’ IP
prefixes [9]. Aggregation of this kind reduces the quantity of
input variables for the optimization and also stabilizes request
rates per-group [8].

A. Problem description
• Input: estimated user requests (D); two threshold values

(T ij

min

and T ij

max

) for each pair of (user group i, service
j) defined in the utility function (Fig. 2); latency between
user group i and EZ z for a specific service j is lj

iz

; unit
data transit cost (c

iz

); the maximum budget (COST) and
available session slots at each EZ (Sj

z

).

• Objective: maximize the performance (total utility) of
users for multi-services j while considering the trade-off
between the performance and the data transit cost.

• Output: xj

iz

2 [0, 1]: fraction of user group i connecting
to EZ z for service j.

We define a utility function as described in Section II-B as
follows:

u
ij

=

8
><

>:

1 if t
ij

 T ij

min

�t

ij

+T

ij

max

(T ij

max

�T

ij

min

)
if T ij

min

< t T ij

max

U
b

otherwise

The utility is defined for each pair of (user group i, service
j). When the latency is larger than T ij

max

, the request is consid-
ered to be blocked. We set U

b

to be a small negative value to
indicate the utility of a blocked request. More details on how
to set value for U

b

are presented in Section III-B2. We first
present a centralized model and then introduce a distributed
one which is more suitable for Internet-scale deployment.

B. Centralized model

Given the key notations in Table I, we use linear pro-
gramming to formulate the utility-maximizing server selection
problem.

1) Linear Program Formulation:

max[
X

(i,j)2D

u
ij

] (1)

s.t.
X

z2Z
xj

iz

= 1 8(i, j) 2 D (2)

X

i2I
d
ij

xj

iz

 Sj

z

8j 2 J , z 2 Z (3)

t
ij

=
X

z2Z
lj
iz

xj

iz

8(i, j) 2 D (4)

y
ij

� 0 8(i, j) 2 D (5)

y
ij

� t
ij

� T ij

min

8(i, j) 2 D (6)

u
ij

=
T ij

max

� T ij

min

� y
ij

T ij

max

� T ij

min

8(i, j) 2 D (7)
X

z2Z

X

(i,j)2D

c
iz

b
ij

xj

iz

 COST (8)

xj

iz

2 [0, 1], u
ij

 1 8(i, j) 2 D, z 2 Z (9)

Explanation:
• The objective function (1) maximizes the total utility over

all user groups.
• Constraint (2): all the requests of user group i for a

specific service j have to be served.
• Constraint (3): each EZ has a limited capacity (bandwidth

and computational resources) for deploying instances of a
specific service type. It may be the case that some special
services (e.g. those that require GPU processing) can only
be deployed at certain EZs with the necessary hardware

415ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE I: Key Notations (in Alphabetical Order)

bij bandwidth required by user i to get service j
COST the maximum transit cost (budget)
ciz unit transit cost between user i and EZ z
D set of user requests D = {(i, j), 8i 2 I, j 2 J }
dij requested session slot of user i to service j
I set of user groups I = {i}
J set of services J = {j}
ljiz latency between user i and EZ z for service j
Sj
z available session slot of service j at EZ z

tij average latency of user i to get service j
Z set of execution zones (EZ) Z = {z}
Ub utility value of a blocked user
uij utility of user i when getting service j

xj
iz fraction of user i connects to EZ z to get j

yij variable used to compute the utility

available. This constraint ensures that the number of
session slots available in an EZ is sufficient to serve user
requests.

• Equation (4) is used to compute the average latency
for the user group i to get the service j. We model
connectivity as a full mesh between user groups and EZs.
However, for the input of the LP, we do not consider any
connections between user group i and EZ z to get service
j if the latency lj

iz

> T ij

max

. This step guarantees that,
even without adding explicit constraints in the model, the
latency for any user group i to connect to any EZ z to
get service j is less or equal to T ij

max

.
• Constraint (5) - (6) ensure that y

ij

� 0 if t
ij

 T ij

min

,
otherwise y

ij

� t
ij

� T ij

min

> 0.
• Equation (7) is used to model the utility function defined

in Section III-A. There are two possibilities:
- If t

ij

 T ij

min

, based on constraints (5) - (6), y
ij

can
be any value greater or equal to 0, however, due to the
objective function maximizing utility (7) the formulation
will choose a minimum value of y

ij

, or in other words,
y
ij

is set to 0 and thus, u
ij

= 1.
- Similarly, if t

ij

> T ij

min

, the formulation will choose
y
ij

= t
ij

� T ij

min

and thus u
ij

= �t

ij

+T

ij

max

T

ij

max

�T

ij

min

.
• Constraint (8) limits the data transit cost. As shown in [9],

[10], the linear transit cost we use here is also a good
approximation for the 95-th percentile transit cost.

An important remark is that our formulation allows to optimize
for multi-services at the same time, i.e. maximizing the
total utility for all pairs of (user i, service j). For instance,
assume that we have video streaming and voice services, each
potentially has different QoS requirements. If we optimize
for video streaming first, then the remaining resources are
dedicated for the voice service and vice versa. This will end
up with a sub-optimal solution. Our model allows to optimize
for multi-services at the same time, therefore it guarantees to
find a global optimal solution.

The optimization formulation above is a (pure) linear pro-
gramming model one; hence it can be solved efficiently in
polynomial time. The number of variables xj

iz

in the LP

problem is |I| ⇥ |Z| ⇥ |J | where |I| is the number of user
groups, |Z| is the number of EZs and |J | is the number of
service types. Since |Z| and |J | are usually much smaller
than |I|, the worst case complexity of the LP problem will be
O(|I|3.5) [9]. We report the execution time of the algorithm
in Section IV-C1.

2) Blocked user requests: When there are not enough
resources (session slot or cost) the constraints (3) and (8) in
the LP are violated and the LP ends up with no solution. We
address this by allowing user requests to be blocked when
there are insufficient resources. To model this, we define a
virtual EZ with very large capacity so that the constraint (3)
cannot be violated. The transit cost between users and the
virtual EZ is zero. The latency between all users to this virtual
EZ is set at a value which is larger than T

max

, therefore the
utility for a blocked request is U

b

< 0 (Fig. 2). We evaluate
different values of U

b

and show its impact on the number of
requests to be blocked when running the optimization model
(Section IV-A2). Intuitively, the closer to 0 the value of U

b

is,
the more possibility for requests to be blocked because there
is a reduced difference in utility between a request at T

max

(U
T

max

= 0) and a blocked one (U
b

). It is noted that, with the
virtual EZ, the LP always finds a feasible solution because the
constraints (3) and (8) cannot be violated, but the total utility
could be extremely (negative) small. And those requests that
have to go to the virtual EZ are considered to be blocked.

C. Distributed model

Although our centralized optimization model can be solved
in polynomial time, it is impractical in real deployments as a
single global resolver would be required to collect information
from all EZs and networks and also to handle resolution
requests from all users. Moreover we want to put the ISP
(resolver) at the center of decision making in order for local
traffic policies to be applied.

Designing an efficient distributed algorithm is a classical
problem [8], [10], [11], and it would satisfy the following
general requirements:

• (1) Low overhead: small number of control messages
exchanged. In addition, it should guarantee a fair share
based on demand of each resolver.

• (2) Convergence: the algorithm is guaranteed to be always
converged to a stable solution.

• (3) Efficiency: solution of the distributed algorithm is
close to the centralized one.

Existing work in literature can satisfy the requirements (2)
and (3) by using optimization decomposition methods [8],
subgradient methods [11] or alternating direction method of
multipliers [10]. However, they end up with high complexity
formulation and require high control overhead. Potentially,
control messages can be exchanged between (in both direc-
tions): resolvers - resolvers, resolvers - EZs, and EZs - EZs.
In this work, we propose a novel distributed model satisfying
all the three aforementioned requirements. Compared with
existing work, our model is simpler (still can be solved

416ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE II: Key Notations in Distributed Algorithm

Az
i (k) allocated session slots at z by Ri in epoch k
Cz total session slots at EZ z
k epoch (iteration) number
M number of resolvers that share an EZ
N number of EZs that one resolver can see
Ri resolver i

Sz
i (k) available session slots at z seen by Ri in epoch k
Z set of execution zones

in polynomial time) and low overhead in which only one-
way control messages from EZs to resolvers are needed. In
addition, the messages exchanged are simple as we describe
later.

1) Distributed algorithm: We divide the time into intervals

in which we assume the traffic demand is unchanged (e.g. 10
minutes as observed in [8]). Each interval is sub-divided into
epochs and the distributed algorithm is run at the beginning
of each epoch. We call visibility set be a subset of EZs that
are closest to a resolver and can be seen by that resolver.

Resolver 1

EZ

Capacity C

S0
S1

A0 A1

Resolver 1

EZ

Capacity C

S0
S1

A0 A1

Epoch k Epoch (k+1)

Shared border
Shared border

Fig. 3: EZ z is shared by two resolvers R0 and R1

.

We introduce some notations used in the distributed algo-
rithm (Table II). Considering an EZ z with total available
session slots Cz which is shared by M resolvers. At an epoch
k � 0, let a resolver R

i

(0 i M � 1) see Sz

i

(k) Cz

session slots from the shared EZ. To guarantee capacity
constraint, we have

P
M�1
i=0 Sz

i

(k) Cz . Let Az

i

(k) Sz

i

(k)
be the number of session slots that the resolver R

i

allocates for
its users to connect to the EZ z at the epoch k. A visualization
of those notations are shown in Fig. 3. The algorithm, step-
by-step, at each resolver is as follows:

1) At the beginning of each interval: collect the latest
estimated local user requests and network metrics (e.g.
latency between users and EZs).

2) At the beginning of each epoch: each EZ announces the
latest capacity (Cz) and the total-in-allocation (total-in-
use) session slots (

P
M�1
i=0 Az

i

(k)) at that EZ to resolvers.
3) Each resolver updates available session slots that it can

use in the next epoch as follows:

Sz

i

(k + 1) = Az

i

(k)
⇥
1 +

Cz �
P

M�1
i=0 Az

i

(k)
P

M�1
i=0 Az

i

(k)

⇤
(10)

if
P

M�1
i=0 Az

i

(k) = 0, we set Sz

i

(k + 1) = Cz .
4) Given new available session slots from EZs, resolvers

execute the linear program in Section III-B to find which
users should connect to which EZs to get services.

By using the equation (10), we show that the distributed
algorithm satisfies all the requirements mentioned in III-C:

• Each resolver requires local user demand and the session
slots have been used in the previous epoch (Az

i

(k)). In
addition, each resolver uses the LP in III-B, thus the
distributed algorithm can be solved in polynomial time.

• Low overhead: only one-way message from EZs to re-
solvers to update information about total capacity (Cz)
and total in-use session slots at the previous epoch
(
P

M�1
i=0 Az

i

(k)). In addition, we show that the equation
(10) also achieves the fair share on demand requirement.
As shown in Fig. 3, at epoch k, the resolver R0 just
uses a small fraction of its shared available session slots
(A0 < S0) while R1 requires all the slots that it can see
(A1 = S1). Therefore, in the epoch (k + 1), we should
move the shared border to the left (but do not touch the
red area - the allocated slots of R0) so that there will be
more free space for R1 to forward its requests to the EZ
if needed. This can be done automatically by using the
equation (10) (see the example in III-C2).

• We show, both by mathematical proof and simulations
that local decisions always converge within a handful of
iterations and the solution of distributed algorithm is close
to the centralized one. However, because of limited space,
we omit the mathematical proof in this paper and will
present it in a journal version.

Initially, when services are first deployed, each EZ announces
its available session slots to all resolvers that can see it. Given
the available session slots and the local user demand, each
resolver executes the linear formulation in section III-B to
find a solution for its users. In this initial step, EZs can be
overloaded as they are shared by many resolvers, but there is
no message between resolvers to say that. However, by using
the equation (10) to update available capacity at EZs after each
epoch, the capacity constraints are not violated after the initial
step. We present a simple example to make the algorithm clear.

EZ3

EZ2

EZ1

100 slots

100 slots 40 slots

user 2
user1

Fig. 4: Example of distributed algorithm
.

2) Examples of distributed algorithm: Assume that user 1
requires 100 slots and user 2 requires 80 slots. Capacities of
EZs are shown in Fig. 4. The latencies between resolvers, users
and EZs are as follows:

• l(R1, EZ2) < l(R1, EZ1) < l(R1, EZ3)
• l(R2, EZ3) < l(R2, EZ2) < l(R2, EZ1)

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

stiller
Typewritten Text

• T
min

< l(usr1, EZ2) < l(usr1, EZ1) < l(usr1, EZ3)
• T

min

< l(usr2, EZ2) < l(usr2, EZ3) < l(usr2, EZ1)

Recall that depending on the size of the visibility set, we can
have different solutions for the server selection problem. Using
the above network metrics, we consider the example with two
scenarios:

- Scenario 1 (visibility set size is 1): the resolver 1 can only
see EZ2 (as EZ2 is the closest EZ of R1) and the resolver 2
can only see EZ3. Therefore, the solution will be: the resolver
1 sends all 100 requests to EZ2 and similarly, all requests of
the resolver 2 go to EZ3. This solution does not change if the
user requests are unchanged between epochs.

- Scenario 2 (visibility set size is 2): resolver 1 can see (EZ2

and EZ1) and resolver 2 can see (EZ3, EZ2). Assume that
the requests do not change, we present results for each resolver
within 2 epochs (or 2 iterations of the distributed algorithm).

• Epoch 0:
- Resolver 1 sees from EZ1: S1

1(0) = 40, and from
EZ2: S2

1(0) = 100. As l(usr1, EZ2) < l(usr1, EZ1),
it forwards all 100 requests to EZ2.
- Resolver 2 sees from EZ2: S2

2(0) = 100, and from
EZ3: S3

2(0) = 100. As l(usr2, EZ2) < l(usr2, EZ3), it
assigns all 80 requests to EZ2.
The total allocated session slots at EZ2 is 180, and the
EZ2 is overloaded at epoch 0.

• Epoch 1:
- Resolver 1 updates available session slots using the
equation (10):

– S1
1(1) = C1 = 40 (as A1

1(0) +A1
2(0) = 0)

– S2
1(1) = 100⇥ (1 + 100�180

180) = 55

Solution after epoch 1 is: 40 slots go to EZ1; 55 slots go
to EZ2 and 5 slots are blocked (as there are insufficient
session slots).

- Resolver 2 updates available session slots using
the equation (10):

– S3
2(1) = C3 = 100 (as A3

1(0) +A3
2(0) = 0)

– S2
2(1) = 80⇥ (1 + 100�180

180) = 44

Solution after epoch 2 is: 44 slots go to EZ2; 36 slots
go to EZ3 and no slots are blocked.

It is clear that, after epoch 1, thanks to the equation (10),
no EZ is overloaded. In this example, the solution does not
change after 2 epochs as long as the user demands do not
change. It means that the distributed algorithm converges
to a stable solution. On the other hand, session slots are
assigned proportionally to the requirement of each resolver.
For instance, in the stable solution, R1 and R2 respectively
use 55 and 44 slots from the EZ2. It is because in epoch 0,
R1 requires 100 slots while R2 needs only 80 slots (10080 ' 55

44).
We call this as fair share on demand.

IV. SIMULATION RESULTS

We solve the linear program model using IBM CPLEX
solver [12]. All computations were carried out on a computer
equipped with a 3 GHz CPU and 8 GB RAM. Our evaluation

is through simulation and consists of 5 main parts. Firstly,
we evaluate the algorithms with different parameters: supply

demand

ratios, U
b

on blocking probability and visibility set sizes
for the distributed algorithm. Next, we compare our novel
utility-maximizing server selection (USS) with the classical
closest based server selection algorithm. Then, we evaluate
the distributed algorithm and compare with the centralized
one. Next, we show the impacts of mismatch between supply
and demand on the server selection solution. And lastly, we
discuss on the inaccuracies of demand forecasting when using
our algorithm.

We use a dataset with 2508 data centers distributed in 656
cities all over the world [13]. For the distributed model, we
assume that each city has one resolver. Since data centers
in a city are geographically close to each others, we group
them as one execution zone (EZ). The capacity of an EZ is
proportional to the number of data centers in that city. We
assume that the services are available in all EZs. The data
transit cost is based on the Amazon EC2 charging model. The
user demand is modeled as Poisson process and is proportional
to the population of each city [14]. The latency between users
and execution zones are collected based on Haversine distance,
the shortest distance between two points around the planet’s
surface [15].

A. Different Parameters for the Algorithm

0"

20"

40"

60"

80"

80%" 130%" 200%"

%
"o
f"s
es
sio

n"
slo

ts
"

Supply/Demand"ra5os"

u"=="1"
0"<="u"<"1"
-0.625"<="u"<"0"
queued"

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

supply/demand 80%
supply/demand 130%
supply/demand 200%

(a)

(b)

0 <= u < Ufair

u == 1
Ufair<= u < 1

blocked

Fig. 5: Different supply

demand

ratios
.

1) Different Supply/Demand Ratios: We first find server
selection solutions for different supply

demand

ratios with the cen-
tralized algorithm. We set T

min

= 20 ms, T
fair

= 100 ms
and T

max

= 150 ms for all pairs of (group user, service).
In Fig. 5, we show the utility and the Cumulative Distribution
Function (CDF) of latency for three scenarios of supply

demand

ratio:
80%, 130% and 200%. supply

demand

= 80% means that the total

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

available capacity in all EZs is scaled down to equal to 80%
of the total requests. As a result, 20% of the requests will be
blocked while maximizing total utility of the served requests.
In the CDF of latency in the scenario 80% (Fig. 5b), only 80%
of requests receive service with less than T

max

= 150 and the
remaining requests are blocked. For the two other scenarios
(130% and 200%), since there are sufficient session slots, no
user request is blocked. Obviously, the greater the supply of
session slots, the better solution we get in terms of utility and
latency (Fig. 5).

2) Utility of a Blocked User: As shown in Section III-B2,
our algorithm allows to block user requests while maximizing
the total utility. By selecting different values of utility for a
blocked request (U

b

< 0), we obtain solutions with different
blocking probabilities. We show in Fig. 6 the results for the
centralized algorithm with different values of U

b

. When U
b

0"

20"

40"

60"

80"

ra)o"="1.1" ra)o"="2" ra)o"="10" ra)o"="100"

%
"o
f"s
es
si
on

"sl
ot
s"

u"=="1" 0"<="u"<"1"
00.625"<="u"<"0" queued"blocked

u == 1 Ufair<= u < 1

0 <= u < Ufair

Ub = -1.1 Ub = -2 Ub = -10 Ub = -100

Fig. 6: Different values of U
b

.

is close to 0, e.g. U
b

= �1.1 or U
b

= �2, blocking user
requests does not incur much penalty in the total utility. A
significant number of requests are blocked despite total utility
being maximized. When U

b

is much more smaller (e.g. U
b

=
�100), blocking a single request can dramatically reduce the
total utility, thus the algorithm tries to avoid as many requests
being blocked as possible. In Fig. 6, when U

b

= �100, no
user request is blocked.

In the remaining evaluation, if not stated otherwise, default
values are used as follows: supply

demand

ratio = 130%, U
b

= �100,
T
min

= 20 ms, T
fair

= 100 ms and T
max

= 150 ms.
3) Different visibility sets: In a distributed manner, each

resolver only sees its local user demand and a subset of
EZs which is called visibility set. We vary the size of the
visibility set by changing the parameter N , the percentage of
the total 656 execution zones that can be seen by a resolver.
For example, N = 0.3% means that each resolver can see its
2 closest EZs.

Intuitively, when N increases, more session slots are avail-
able for a resolver to allocate user requests. As shown in Fig. 7,
the percentage of blocked requests reduces as we increase N .
However, as resolvers greedily allocate their user requests to
the best EZs in their visibility set, users in “poor resource”
areas do not have enough session slots and still we can see a
few of users are blocked even N = 100%. Note that in the
centralized algorithm, there is no blocked user request when
the supply

demand

ratio is 130%.

0"

20"

40"

60"

80"

N"="0.3%" N"="5%" N"="10%" N"="20%" N"="40%"N"="100%"

%
"o
f"s
es
si
on

"sl
ot
s"

Visibility"set"size"

u"=="1"
0"<="u"<"1"
00.625"<="u"<"0"
queued"blocked

u == 1

Ufair<= u < 1

0 <= u < Ufair

Fig. 7: Utility with different visibility set sizes
.

B. USS vs. closest selection algorithm

(a) Utility

(b) CDF latency

0"

20"

40"

60"

80"

USS"algorithm" Closest"algorithm"

%
"o
f"s
es
si
on

"sl
ot
s"

u"=="1"
0"<="u"<"1"
u"<"0"
blocked"

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

closest algorithm
USS algorithm

u == 1

0 <= u < Ufair
Ufair<= u < 1

Fig. 8: Voice: USS vs. closest algorithm
.

Given the parameters in IV-A2, Fig. 8 shows a comparison
between our utility-maximizing server selection (USS) and
the classical closest algorithm with N = 20%. The closest
algorithm tries to allocate user requests to nearby EZs that
have available session slots. If the closest EZ does not have
available session slots, the algorithm considers the next closest
one and so on. Only the case there is no available session
slot within the latency range of T

max

, requests have to be
blocked. After finding the latency for user requests in the
closest solutions, we compute the utility corresponding to the
voice (T

min

= 20 ms, T
fair

= 100 ms and T
max

= 150
ms [16]) (Fig. 8a). We can see the USS algorithm performs
better with less blocking probability. This is because the USS
algorithm is less greedy, providing more flexibility for requests
to connect to many servers which have latency less than T

min

.
Taking a closer look at the CDF of latency (Fig. 8b), more
requests get low latency in the closest algorithm, however
more requests are also blocked due to its greedy behavior.

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) N = 0.3% (b) N = 5% (c) N = 10%

(d) N = 20% (e) N = 40% (f) N = 100%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

centralized algorithm
N = 0.3%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

centralized algorithm
N = 5%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

centralized algorithm
N = 10%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

centralized algorithm
N = 20%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140
%

 o
f s

es
si

on
 s

lo
ts

latency (ms)

centralized algorithm
N = 40%

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

centralized algorithm
N = 100%

Fig. 9: Latency with different visibility set sizes
.

C. Distributed Algorithm
1) Distributed vs. centralized algorithm: We show in Fig. 9

the CDF of latency for the centralized and the distributed algo-
rithms with different visibility set sizes. One of the goal when
designing the distributed algorithm is that it should perform
well, close to the centralized one. However, performance of
the distributed algorithm depends on how much resource a
resolver can see. As shown in Fig. 9, as visibility set size
N increases, each resolver can see more available session
slots, therefore less user requests are blocked. To report on
execution time, the centralized algorithm with full knowledge
of execution zones and user demands takes about 2 minutes to
find an optimal solution, while the distributed algorithm only
requires a few seconds to finish.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140

%
 o

f s
es

si
on

 s
lo

ts

latency (ms)

epoch 1
epoch 2
epoch 3
epoch 4

Fig. 10: Convergence of distributed algorithm
.

2) Convergence of distributed algorithm: To evaluate the
convergence of the distributed algorithm, Fig. 10 shows the
quality of the solution after 4 epochs in case visibility set size
N = 20%. We see that the four lines in Fig. 10 are nearly
overlapped. After the first epoch, we already have a reasonably

good solution and is close to the final solution. This result
confirms a fast convergence of the distributed algorithm.

D. Mismatch between supply and demand

To evaluate the impact of mismatch between supply and
demand, we first run the centralized model (section III) but
without the capacity and the cost constraints. That is to
find how many session slots are needed at every EZ for an
optimal server selection solution. Then we scale these values
to achieve 130% supply

demand

ratio. We call this configuration
be the perfect allocation. Next, we create different levels of
mismatch between supply and demand by varying a parameter
“X% rand.” (Fig. 11). This means that for each EZ, we
remove X% of its session slots from the perfect allocation
configuration. Then, we mix the removed session slots of all
EZs and scatter them uniformly to all EZs. This guarantees that
the total session slots of EZs in all cases (perfect allocation
and “X% rand.”) are the same. “0% rand.” is equivalent to the
perfect allocation while in “100% rand.”, there is a uniform
distribution of sessions slots between all EZs. Fig. 11 shows

0"

20"

40"

60"

80"

100"

0%"rand." 25%"rand." 50%"rand." 75%"rand." 100%"rand."

%
"o
f"s
es
si
on

"sl
ot
s"

u"=="1"
Ufair"<="u"<"1"
0"<="u"<"Ufair"
blocked"
0 <= u < Ufair

u == 1
Ufair<= u < 1

Fig. 11: Utility with different mismatch levels

evaluation results for the distributed algorithm with visibility
set size N = 5% with different value of “X% rand.”. With
the perfect allocation “0% rand.”, the distributed algorithm

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

performs well with no blocked requests. It is clear that by
increasing X%, more requests are blocked as we increase the
level of mismatch between local supply and demand. It is
noted that because we use a 130% supply

demand

ratio, the scenario
“25% rand.” is within an acceptable range of mismatch and
the solution is close to the “0% rand.” case.

E. Impact of inaccuracy in demand forecast

A central prerequisite for our model is the existence of a
forecasting demand component that provides an input to the
optimization algorithm. We discuss in this section the robust-
ness of our solution vs. inaccuracy in forecasting demand. As
shown in Fig. 11 (distributed algorithm with N = 5%), the
cases “50% rand.” and “75% rand.” respectively have around
8% and 22% of blocked user requests. On the other hand, in
Fig. 7, with N = 5%, there are around 18% of requests are
blocked. This would mean that our results for the distributed
algorithm in this paper (except Fig. 11) is corresponding to
50% � 75% inaccuracy in the forecasting demand compared
to the perfect allocation case. Therefore, this mismatch leads
to worse solutions. However, as shown in Fig. 7, we still can
find good solution (small fraction of blocked users) for the
distributed algorithm if the visibility set is large enough, for
instance N � 20%.

V. RELATED WORK

Server selection: our work is closely related to recent
work on optimizing performance-cost for server selection [8],
[9]. For example, Wendell et al. [8] introduce DONAR -
a decentralized replica-selection system that considers client
locality, server load, and policy preferences. Like DONAR, our
model can perform balancing client requests across replicas by
manually setting capacity cap at each execution zone. Zhang
et al. [9] focus on optimizing cost and performance in online
service provider networks. The objective is to search for the
optimal “sweet-spot” in the performance-cost Pareto front.
Auspice [17] uses a heuristic placement algorithm to determine
the locations of active replicas so as to minimize client-
perceived latency. In general, these works use the classical
closest method saying that the closer the servers are, the better
QoS users can perceive. Our study can be a complementary for
previous work as we define utility, a more general framework
to qualify QoS compared to the classical closest approach. In
addition, our polynomial algorithm can perform optimization
for multi-services at the same time.

Network latency and traffic demand estimation: recent
works have shown that the IP geolocation of the user provides
accurate and predictable network latency [18]. This has been
confirmed not only by third-party datasets such as Peerwise
[19] and iPlane [20], but also by our own extensive active
measurements [21], [22]. On the other hand, work in literature
shows that client request rate can be sufficiently predictable
under short interval (e.g. 10 minutes [8]). These works are
useful as they provide accurate inputs for our optimization
model.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented utility-maximizing server selection, a
novel method to implement service instance selection that al-
lows for trading-off user QoS with traffic cost. Compared with
the classical closest approach, our utility framework allows
reducing blocking probability while maintaining good utility
for users. As further work, we are working on the modeling of
incentives between application and network providers and how
to address the scenarios where the ideal choice of server is not
the same for both stakeholders. In addition, we are planning
to extend the utility function to support more QoS metrics.

ACKNOWLEDGMENT

This research has received funding from the Seventh Frame-
work Programme (FP7/2007-2013) of the European Union,
through the FUSION (grant agreement 318205) projects.

REFERENCES

[1] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog Computing and
its Role in the Internet of Things,” in MCC, 2012.

[2] I. Poese, G. Smaragdakis, B. Frank, S. Uhlig, B. Ager, and A. Feldmann,
“Improving Content Delivery with PaDIS,” IEEE Internet Computing,
vol. 16, no. 3, pp. 46–52, 2011.

[3] M. Stone and B. Moore, “Tolerable Hearing Aid Delays. Est. of Limits
Imposed by the Auditory Path Alone using Simulated Hearing Losses,”
Ear and Hearing, vol. 20, no. 3, 1999.

[4] M. A. Khan and U. Toseef, “User Utility Function as Quality of
Experience (QoE),” in ICN, 2011.

[5] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguade, “Utility-
based Placement of Dynamic Web Applications with Fairness Goals,”
in NOMS, 2008.

[6] “Recommendation p.800 (08/96),” http://www.itu.int/rec/T-REC-P.800-
199608-I/en.

[7] J. Nielsen, “Usability Engineering: Response Times: The Three Impor-
tant Limits,” 1993.

[8] P. Wendell, J. W. Jiang, M. J. Freedman, and J. Rexford., “DONAR:
Decentralized Server Selection for Cloud Services,” in SIGCOMM,
2010.

[9] Z. Zhang, Y. Hu, M.Zhang, R.Mahajan, A. Greeberg, and B. Christian,
“Optimizing Cost and Performance Online Service Provider Networks,”
in NSDI, 2010.

[10] H. Xu and B. Li, “Joint Request Mapping and Response Routing for
Geo-distributed Cloud Services,” in INFOCOM, 2013.

[11] S. Boyd and A. Mutapcic, “Subgradient Methods,” in Lecture notes of
EE364b, Stanford University, 2006.

[12] Www-01.ibm.com/software/commerce/optimization/cplex-optimizer.
[13] Http://www.datacentermap.com/.
[14] Https://github.com/richardclegg/multiuservideostream.
[15] G. V. Brummelen, Heavenly Mathematics: The Forgotten Art of Spher-

ical Trigonometry. Princeton Uni. Press, 2013.
[16] S. Gangam, J. Chandrashekar, I. Cunha, and J. Kurose, “Estimating TCP

Latency Approximately with Passive Measurements,” in PAM, 2013.
[17] A. Sharma, X. Tie, D. Westbrook, H. Uppal, A. Yadav, and A. Venkatara-

mani, “A Global Name Service for a Highly Mobile Internetwork,” in
SIGCOMM, 2014.

[18] S. Agarwal and J. Lorch, “Matchmaking for Online Games and Other
Latency-sensitive P2P Systems,” in SIGCOMM, 2009.

[19] M. Lu, J. Wu, K. Peng, P. Huang, J. Yao, and H. Chen, “Design and
Evaluation of a P2P IPTV System for Heterogeneous Networks,” IEEE
ToM, vol. 9, no. 8, pp. 1568–1579, 2007.

[20] H. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krish-
namurthy, , and A. Venkataramani, “iPlane: An information Plane for
Distributed Services,” in NSDI, 2006.

[21] R. Landa, J. T. Araujo, R. G. Clegg, E. Mykoniati, D. Griffin, and
M. Rio, “The Large Scale Geography of Internet Round Trip Times,”
in IFIP Networking, 2013.

[22] ——, “Measuring the Relationships between Internet Geography and
RTT,” in ICCCN, 2013.

421ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TCP Hollywood: An Unordered, Time-Lined, TCP
for Networked Multimedia Applications

Stephen McQuistin
University of Glasgow, UK

sm@smcquistin.uk

Colin Perkins
University of Glasgow, UK

csp@csperkins.org

Marwan Fayed
University of Stirling, UK

mmf@cs.stir.ac.uk

Abstract—Ossification of the transport-layer limits networked
multimedia applications to use TCP or UDP, despite standard-
isation of new transport protocols that better support their
requirements. To improve transport for these applications, we
present TCP Hollywood, an unordered, time-lined, TCP variant
designed to support real-time multimedia traffic while being
widely deployable. Analysis of the protocol indicates that it
increases the utility of the network in lossy conditions where total
one-way delay is constrained, such as with telephony applications
and low-latency video streaming. This allows retransmissions
to be useful in cases where they are not with standard TCP,
improving the timely good-put of the protocol and reducing
overheads. Initial experiments show that TCP Hollywood is
deployable on the Internet, successfully operating on all major
fixed and mobile networks in the UK, with safe failure modes.

I. INTRODUCTION

Real-time networked multimedia applications have long
contributed to Internet traffic. This can take the form of
telephony [1], video conferencing [2], live or on-demand TV
and movies [3], [4], or user-generated video. These applications,
and the traffic they generate, are rapidly increasing in popularity,
and now comprise the majority of Internet traffic [5].

The nature of such real-time traffic is that it prefers
predictable and bounded latency to strict reliability, since
data that arrives too late is as bad as data that does not
arrive at all. This suggests that data should be sent in packets
that can be independently decoded [6], to allow them to be
processed irrespective of the loss or delay of other packets.
However, the requirement for efficient media compression leads
to interdependence between packet contents and codecs that
operate across multiple frames. When coupled with challenging
network environments, such as mobile wireless, that have
unreliable delivery and unpredictable latency, the requirements
for effective media transport become difficult to satisfy.

Applications access the network via the transport layer.
The transport protocol should provide services to meet the
application demands, abstracting away details of the transport
process, and delivering data with an appropriate degree of reli-
ability and timeliness. For real-time networked multimedia, the
transport should be trusted to minimize transport-induced delay,
and should respect (partial) reliability semantics pertaining to
media importance, deadlines, and dependencies.

Message-oriented transports, such as SCTP [7] and DCCP
[8], ought to be suitable building blocks, but their deployment
is restricted by NATs, firewalls, and other middleboxes [9].

This leaves real-time applications to use UDP or TCP, neither
of which is well-suited to their needs. UDP contributes minimal
latency, making it the recommended transport to meet the strict
latency bounds of real-time applications [10], but provides
limited support to applications, and is commonly blocked by
enterprise firewalls. TCP prefers reliability to timeliness, and
its congestion control tends to drive up queueing delay, but is
often the only transport that can pass through middleboxes on
the path. Accordingly, and despite its many problems, TCP is
rapidly becoming the de facto transport for multimedia traffic.

In this paper, we engineer TCP Hollywood in response
to these trends. TCP Hollywood is an unordered and time-
lined transport protocol, that is wire compatible with standard
TCP, but eliminates two sources of transport-induced latency,
and provides reliability semantics that better suit real-time
multimedia applications. Specifically, TCP Hollywood: 1)
removes head-of-line blocking at the receiver and delivers
received data to the application immediately, irrespective of
ordering; and 2) relaxes reliability to respect time lines provided
by the application, so only data that will arrive in time
is retransmitted, otherwise retransmissions carry new data.
The combination of both design elements reduces latency
and introduces message-oriented semantics, allowing TCP
Hollywood to express inter-dependencies between messages.
Crucially, TCP Hollywood is wire-compatible with TCP, and
incrementally deployable on the public Internet.

Our implementation consists of an intermediate logic layer
that sits between the application and the kernel. Extensions
in the TCP stack facilitate out-of-order delivery, and can
be enabled or disabled via socket options. Messages are
delineated in the logic layer using timing and dependency
information from the application, and COBS-encoded [11]
to survive re-segmentation that may occur in the network.
We introduce the concept of inconsistent retransmissions: if
the round-trip time (RTT) estimator indicates that a message
will arrive too late to be useful, or if a message depends
on a previous unsuccessfully transmitted message, then TCP
Hollywood can exploit re-transmission slots to send new data
and avoid retransmitting useless data. The semantics of TCP are
maintained by preserving the sequence numbers in retransmitted
segments, whether inconsistent or not. We develop an analytical
framework to model the value of a retransmission against the
buffering and processing time of data at the receiver-side. Our
analysis reveals a wide range of RTT values where standard
TCP retransmissions will arrive too late to be useful. We use
this model to validate TCP Hollywood, and show that it handles
retransmissions correctly.ISBN 978-3-901882-83-8 © 2016 IFIP

422ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Our contributions are as follows. After reviewing the
rationale and requirements in Section II, we design a TCP-
compatible architecture and application programming interface
(API) that eliminates transport related, but not congestion
control related, delay from TCP in Section III (this can be
used with any of the existing proposals to reduce congestion
control related delay, such as active queue management [12],
[13] or delay-based congestion control [14], [15]). We develop
an analytic framework in Section IV to determine the value and
content of retransmitted data. We outline our implementation
in Section V, alongside experiments to demonstrate ease of
deployment. Related work and concluding remarks are provided
in Sections VI and VII, respectively.

II. RATIONALE AND REQUIREMENTS

We begin by considering in more detail the requirements
and rationale for an unordered and time-lined transport protocol.
It is instructive to establish TCP as the foundation from which
to build, and understand its negative impact in the context of
live and interactive media.

Our primary design goal is to improve performance over
TCP for real-time traffic, while maintaining deployability on
the scale of TCP and UDP. Ossification of the transport layer
means this goal can only be achieved by using TCP or UDP as a
substrate. This is a limitation that exists in the Internet because
of middleboxes that process packets based on static views of
what is a valid transport. The operation of these middleboxes
places two constraints on transport protocols [16]. First, only
payloads marked as TCP or UDP are marked as valid; payloads
carried by other transport protocols are often rejected. Second,
middleboxes may reject valid TCP packets that don’t conform
to some limited subset of the TCP protocol that is understood
by the middlebox [17]. For example, packets with the SACK
(selective acknowledgement) extension might be rejected by a
middlebox that doesn’t understand that extension, and expects
only regular ACK packets. In this restricted domain, reliability
and congestion control are desirable features, that are difficult
to implement at the application layer, and have forced TCP
to emerge as the protocol of choice for real-time multimedia,
despite struggling to meet latency bounds.

Our secondary goal is to minimize the transport-induced
latency on applications. With TCP selected as the substrate,
it remains to determine the appropriate modifications to meet
our latency goals. TCP introduces latency in part because of
the nature of its congestion control dynamics, and in part by
providing an ordered, reliable, delivery model using head-of-
line blocking and retransmissions. The former can be addressed
using active queue management and/or delay-based congestion
control algorithms, and has been widely studied. The latter issue
is more applicable for real-time traffic, and is the subject of
our work. Figure 1 shows the impact of head-of-line blocking:
The loss of the third segment causes subsequent segments to
be buffered at the receiver while waiting for the retransmission.
Only when the delayed segment arrives can TCP deliver the in-
order sequence to the application. The impact of retransmissions
are exacerbated when they push segments outside of the window
in which they are useful to the application. Effectively such
segments are lost to the application, despite having been
delivered to the host on time. It is these late losses that TCP
Hollywood seeks to minimize.

Sender Network Receiver

kerneluser kernel user

HoL blocking
delay

tim
e

seq 1

seq 2

seq 4

seq 5

seq 6

seq 3

ack 1

ack 2

ack 2

ack 2

ack 2

seq 3

Figure 1. The interaction between head-of-line blocking and loss in TCP:
multiple segments are delayed by a loss, and potentially delivered too late to
be useful to the receiver

Two requirements follow. First, segments must be delivered
as they arrive to eliminate head-of-line blocking. Second,
retransmissions should be evaluated against timing information
to ensure the delivery of useful data, by allowing inconsistent
retransmissions to send new data in a segment that is retransmit-
ted. So that applications can benefit from out-of-order delivery,
a message-oriented abstraction is needed. Specifically, messages
should be independently useful to the receiver [6]. With both
a message-oriented abstraction and timing information, the
collection of message dependency information follows. This
increases the application-awareness of the transport layer.

III. ARCHITECTURE AND DESIGN

TCP Hollywood has been designed to be deployable on
the ossified Internet as it exists today, and to support partial
deployments where only the sender or the receiver has been
upgraded to support the TCP Hollywood extensions. The nature
of the extensions we propose supports the former, while the
latter is achieved by splitting the functionality between a user-
space intermediary ‘shim’ layer and a set of extensions to the
kernel TCP stack. The intermediary layer operates over either
unmodified TCP, or with the TCP Hollywood kernel extensions
enabled. The user and kernel components are represented in
the overall architecture represented in Figure 2. In discussing
the architecture it is useful to consider the sender separately
from the receiver, and for each to consider the user-space
intermediary layer separately from the kernel TCP extensions.

A. TCP Hollywood Sender architecture

The architecture of a TCP Hollywood sender is shown in the
left hand side of Figure 2. The sender inherits the requirements
identified in Section II to support a timed, message-oriented,
transport abstraction, with inconsistent retransmissions.

The intermediary layer provides the message-oriented
abstraction. It accepts a sequence of messages (i.e., datagrams,

423ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Hollywood socket

Socket

COBS encoding

send_message()

write()
setsockopt()

RTT
estimate

Application

Intermediary Layer

Kernel: Transport

Kernel: Network

send queue

timing data buffer

Timing info

Hollywood receive logic

read()

fragment reassembly buffer

incomplete
messages

COBS decoding

receive_message()

Sender Receiver

receive queue

metadata queue

reassembly buffer

TCP receive logic ACKs

Figure 2. TCP Hollywood sender and receiver architecture

rather than a byte stream) from the application, with optional
timeliness and dependency information, to be delivered to
the destination. The intermediary layer supports a sub-stream
abstraction, allowing messages from multiple flows to be
multiplexed on a single transport-level connection (similar
to how multiple streams can be sent within a single SCTP
association [7]). This can be used to cleanly multiplex audio and
video flows onto a single connection, or to distinguish multiple
layers of a stream encoded using scalable video coding [18],
for example using H.264/SVC. The intermediary layer appends
a sub-stream identifier to messages before they are encoded,
framed, and passed to the kernel TCP sender, with a default
sub-stream being reserved for flows where no sub-stream is
specified. The application can provide timing or dependency
data via the intermediary layer API. This is passed to the kernel
alongside the encoded message, and used to determine whether
inconsistent retransmissions are appropriate.

To support a message-oriented abstraction over a TCP byte
stream, the TCP Hollywood flows must be resilient to re-
segmentation or segment coalescing by middleboxes. Message
integrity must be protected: messages received must have been
sent, and only complete messages must be delivered. This is
ensured by the intermediary layer, which frames messages
with a leading and trailing marker. The effect is shown in
Figure 3, where markers can be used to delineate messages
irrespective of the segmentation. The intermediary layer encodes
messages with consistent overhead byte stuffing (COBS) [19];
this efficiently encodes the stream to escape all zero bytes,
allowing their use as framing markers, while still providing a
transparent channel that can carry any message.

The TCP sender implementation in the kernel is modified
to perform consistent segmentation, and to manage inconsistent
retransmission by tracking message timing, deadline expiration,
and dependencies. Consistent segmentation ensures that a single
write() call made by the intermediary layer will generate a
single TCP segment, provided the size of the segment does not
exceed the MTU. This ensures each message is sent in a separate
TCP segment, allowing the receiver to process it independently
of other messages, reducing latency. This implies disabling
Nagle’s algorithm (i.e., setting the TCP_NODELAY socket
option) to avoid unnecessary buffering – Nagle’s algorithm
would not provide a significant benefit to our target applications,
where messages are large compared to their headers.

TCP TCPTCPTCPTCP

time

message fragmentation

Figure 3. Encoding and framing with leading and trailing markers protects
against middlebox re-segmentation; received segments can be properly decoded

TCP retransmissions ensure reliability, but also inject latency
that may cause late losses. A TCP Hollywood sender has the
notion of message expiry: a message expires when (i) RTT
estimates indicate the retransmitted message will arrive too
late, or (ii) if the message depends on a previous message
that was unsuccessfully delivered. Under these circumstances
TCP Hollywood can send a new message using the same TCP
sequence number space as a previously sent message, re-writing
the remaining bytes in the TCP send buffer with new content.
To support such inconsistent retransmissions, the intermediary
layer passes messages down to the modified kernel TCP stack
along with metadata to describe their deadline, dependency, and
sub-stream. This is enabled by calls to the Berkeley Sockets API
setsockopt() function. The metadata, with the exception
of the sub-stream identifier, is never transmitted on the wire,
but is held locally for each message for as long as the message
is buffered (i.e., until all ACKs associated with a message are
received). Our kernel extensions implement a separate buffer
to hold per-message metadata.

The inconsistent retransmission logic is triggered when the
standard TCP retransmission logic would be triggered by a
triple duplicate ACK or timeout. Metadata for unacknowledged
messages is then evaluated against the current RTT estimate, to
determine whether the original message is to be retransmitted,
or if an inconsistent retransmission is to be sent, replacing the
original data with new content while keeping the same TCP se-
quence number. Since messages are framed and self-describing,
a receiver can decode the inconsistent retransmission.

The latency benefits of inconsistent retransmissions will
be quantified in Section IV. In the interim, we emphasize the
message abstraction in this context: TCP Hollywood sends
messages rather than bytes in a data stream. Consequently,
a message may be composed of multiple fragments, split
across TCP segments. To preserve the semantics at the receiver,
fragments necessary to finish a partially received message are
always retransmitted, but if no part of a message was received,
it may be replaced with a new message when its containing
TCP segment is retransmitted.

The processing overhead of TCP Hollywood at the sender
is comprised of COBS encoding at the intermediary layer, and
the maintenance of metadata in the kernel. COBS encoding
requires a copy of the message to be made, but this could be
eliminated by performing the byte stuffing as the message is
being generated, as part of the multimedia encoding. Beyond
this copy, COBS is “computationally cheap” [11]. In the
kernel, the sender maintains metadata for each message, while
the message could still be sent. Further processing, such as
estimating whether a message will arrive on time, uses data
already maintained by the kernel.

424ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

B. TCP Hollywood Receiver Architecture

The receiver-side architecture of TCP Hollywood is shown
on the right hand side of Figure 2. Like the sender, it
is composed of a user-space intermediary layer, and TCP
extensions in the kernel receive path. The receiver supports
message-oriented delivery, and additionally eliminates head-
of-line blocking. The use of inconsistent retransmissions is
invisible to the receiver.

The kernel initially processes incoming segments as would
TCP. It generates the appropriate ACKs (e.g., duplicate ACKs
for out-of-order or lost segments), and places segments into
the reassembly buffer as usual. The on-the-wire response to
each received segment is identical to that of TCP: ACKs (and
SACK blocks, or other extensions, if negotiated) are generated
in exactly the same way as standard TCP, and the congestion
response is unchanged.

Where a TCP Hollywood receiver differs from standard TCP
is that all segments, including those received out-of-order, are
delivered to the intermediary layer in the order they are received,
with no head-of-line blocking or reordering. As each segment
arrives, a metadata structure is created to store its TCP sequence
number. This sequence number is then appended to the segment
as it is read by the intermediary layer. Sequence numbers are
used by the intermediary layer to delineate messages that are
encoded across multiple segments. Making segments available
to the intermediary layer as they arrive is the only change
needed to the kernel TCP code at the receiver.

The intermediary layer scans incoming segments for com-
plete messages, delineated by the COBS framing. If consistent
segmentation was used, and segments were not fragmented or
coalesced in the network, then messages will correspond to
TCP segments. Otherwise, incomplete message fragments are
buffered in the fragment reassembly buffer awaiting missing
fragments. The relative ordering of the bytes in message
fragments is established using the TCP sequence number
tag associated with received segments. As shown in Figure
2, complete messages are decoded and queued for delivery
to the application. The API between intermediary layer and
application is message oriented, and includes a message
sequence number. This simplifies receiver processing compared
to the TCP stream API.

The COBS decoding process is similar to that of the
receiver, incurring an additional copy at the intermediary
layer. In the kernel, our proof-of-concept implementation
maintains a metadata structure to store the TCP sequence
number and length of each incoming segment – data that would
be otherwise lost. For incoming segments that are out-of-order,
or arrive while there are segments in the reassembly queue, we
make an additional copy (versus the TCP implementation)
of the segment’s payload, storing this with the segment’s
metadata. While this simplifies the implementation, it is not a
requirement of the design: optimisation of our implementation
could eliminate this.

C. Partial Deployments and Legacy TCP Compatibility

The TCP Hollywood intermediary layer is a user-space
library that can run over a standard TCP implementation, using
the Berkeley Sockets API, or on a modified TCP stack using

the extensions we have described. If both sender and receiver
support the kernel TCP extensions, the full benefit described
above is achieved. However, the TCP Hollywood intermediary
layer can also be deployed as part of an application, irrespective
of the state of deployment of the kernel TCP extensions.

If only the receiver supports the TCP Hollywood kernel
extensions, with a standard TCP sender, then the intermediary
layer and application will benefit from avoidance of head-of-
line blocking, but not from the latency reduction of inconsistent
retransmission. Message oriented delivery will be supported,
since COBS framing is generated by the intermediary layer
at the sender, but COBS decoding may be less efficient since
messages boundaries will be less likely to be aligned with
segment boundaries.

If only the sender supports the TCP Hollywood kernel
extensions, it will generate inconsistent retransmissions, and
perform consistent segmentation as described, since both are
invisible to the TCP layer of the receiver (compatibility with
middleboxes is discussed in Section V-B). This will improve
latency, and increase efficiency of COBS decoding, at the
receiver, irrespective of whether the receiver has the TCP
Hollywood kernel extensions.

If neither sender or receiver support the TCP Hollywood
kernel extensions, the intermediary layers can communicate over
a standard TCP connection. In this case, the message oriented
abstraction persists, and applications can communicate using
a TCP Hollywood socket to exchange messages, rather than
byte streams, in a congestion controlled and reliable manner,
although with no latency benefit over standard TCP.

IV. LATENCY REDUCTIONS AND ANALYSIS

TCP Hollywood reduces transport latency through support
of inconsistent retransmissions, and by eliminating receiver-
side head-of-line blocking. To quantify the benefits of these
two techniques to the application, we begin by modelling the
one-way transport delay, Towd, as:

Towd = Tsender +Tplayout +Trtt/2 (1)

where Tsender is the time taken for the sender to capture, encode,
and transmit a frame of media data. Tplayout is the sum of the
de-jitter buffering delay, and the time taken to decode and
render a frame to the application at the receiver. Finally, Trtt

is the network round-trip time. With no loss of generality we
assume broadly symmetric network paths in this analysis.1

The inter-frame interval of the media, i.e., the duration of
media in each frame, is denoted by Tframing. We know that
Tsender ≥ Tframing, since a frame cannot be sent before it has
been captured. Similarly at the receiver, if the media is to be
decoded and rendered without gaps, then Tplayout ≥ Tframing. The
time needed to encode and decode media is generally negligible
in comparison to the framing interval, making Tsender ≈ Tplayout

a reasonable approximation in the absence of jitter. At the
receiver, however, while the media decoding and rendering

1This assumption does not hold in ADSL and cellular networks with
asymmetric downstream and upstream links. In these cases, our model mis-
approximates the application’s upper bound on delay, shifting the line marked
“Application Deadline” in Figure 4. While further analysis is needed to quantify
the impact of this, it is clear that it does not change the broad conclusion of our
analysis: that TCP Hollywood increases the usable region of retransmissions.

425ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Tmax - Tframing - Trtt /2

Tframing

T rtt
+ 4⋅

T fra
ming

T p
la

yo
ut

Trtt

Retransmission
Time

Application Deadline

Region of Wasted
TCP Retransmits

Figure 4. Inconsistent Retransmissions for real-time applications: TCP
retransmissions may arrive too late to be used, if the play-out delay is set to
meet the application deadline

time is generally small, the de-jitter buffer duration can be
significant, and a similar approximation cannot be made.

The one-way transport delay contributes to an application’s
acceptable delay bound Tmax, such that Towd ≤ Tmax. For
interactive applications, the delay bound is generally around
150ms [20], whereas streaming applications can accept longer
delay bounds (around 0.5 seconds if channel surfing is to be
supported; up to tens of seconds for on-demand streaming).

A. Utility of Inconsistent Retransmissions

TCP senders interpret a triple duplicate acknowledgement
as an indication of packet loss, and retransmit the missing
packet. It follows that the time needed by a sender to identify
packet loss following a transmission has a lower bound of:

Trexmit = Trtt +3×Tframing (2)

At the receiver there is one additional framing interval to
compensate for the interval that was lost with the original
transmission. Assume media decoding and rendering take a
negligible time. A retransmitted packet will arrive in time to
be received and rendered to the application, provided:

Tplayout ≥ Trexmit +Tframing (3)

When Tplayout < Trexmit, retransmissions of the original
packet will arrive after the data was scheduled to be rendered,
and will be discarded by the application. This gives a lower
bound on Tplayout for standard TCP retransmission to be useful.

The corresponding upper bound is the maximum acceptable
delay for the application,Tmax. If we assume media encoding
delay is negligible, Tsender ≈ Tframing. By combining these
bounds, we see that standard TCP retransmissions will arrive
in time to be rendered to the application, provided:

Tmax −Tframing −Trtt/2 ≥ Tplayout ≥ Trtt +(3+1)×Tframing (4)

This inequality is shown graphically in Figure 4. The
unshaded regions in Figure 4 fall outside of the feasible
operating regime of the application and may be ignored, as they

correspond to stalls in play-out or overall delay bound violations.
The feasible operating regime is represented by the shaded
regions that separate useful from wasteful retransmissions. The
green cross-hatch highlights the region where standard TCP
retransmissions arrive in time to be useful.

Wasteful TCP retransmissions are marked by the red-lined
region in Figure 4. When the media play-out delay is less
than the retransmission time (Tplayout < Trexmit) but satisfies
the overall delay bound (Tplayout ≤ Tmax − Tframing − Trtt/2),
and is greater than the framing interval (Tplayout ≥ Tframing),
then standard TCP retransmissions will arrive too late.This is
where inconsistent retransmissions are useful: when a TCP
retransmission will arrive too late to replace the original lost
packet in this region. By contrast an inconsistent retransmission
can use that retransmission slot to transmit the next unsent data
segment. The lost packet is never recovered, but its sequence
number is reused to send data that will be useful when it
arrives.

B. Inconsistent Retransmissions and Real-Time Media

The benefits of TCP Hollywood can be quantified by
substituting real-time traffic parameters into Equation 4. Con-
sider interactive voice telephony. Widely deployed speech
codecs typically use Tframing = 20ms with a delay bound of
Tmax = 150ms [20]. Assuming media encoding delays are
negligible, so that Tsender = Tframing, then the feasible region
where standard TCP retransmissions arrive in time to be useful
can be derived from Equation 4 as:

130ms−Trtt/2 ≥ Tplayout ≥ Trtt +80ms (5)

which has valid solutions for Tplayout provided Trtt ≤ 33.33ms.
This round-trip time bound is low for wide-area networks. For
example, TCP retransmission would be useful for calls from
the authors’ homes within Europe, but discarded during inter-
continental calls. Figure 4 shows TCP Hollywood provides
valid solutions for Tplayout when Trtt ≤ 220ms, showing the
utility of inconsistent retransmissions for this application.

For on-demand video streaming using the MPEG DASH
framework, the framing interval and delay bounds are typically
much larger. A typical deployment today might use an encoding
segment size of Tframing = 2s, and an overall delay bound of
Tmax = 30s. Assuming Tsender = Tframing, and substituting into
Equation 4, this permits valid solutions for Tplayout provided
Trtt ≤ 13.33s, giving no benefit from inconsistent retransmission.

These two applications represent extremes in terms of
latency bounds: voice telephony has tight latency bounds,
while those of on-demand video streaming are relaxed. We
analyse a third application: IPTV delivery using DASH. IPTV
applications seek to minimise zap time (i.e., the total time taken
between a viewer selecting a channel, and content from that
channel being displayed). Bouzakaria et al. [21] show that end-
to-end latencies – the time between encoding and decoding of a
frame – of less than 240ms can be achieved using DASH. Using
their techniques, segments are fragmented into 200ms chunks
for delivery, giving Tsender = Tframing = 200ms. An overall delay
bound of Tmax = 1s allows for channel surfing to be supported.
Substituting these values into Equation 4, we see that regular
TCP retransmissions do not benefit this application for any
RTT values. In contrast, inconsistent retransmissions in TCP
Hollywood can be used when Trtt ≤ 1s.

426ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Application Tmax (ms) RTT Bound (ms) Useful within a continent? Useful intercontinental?
Standard Hollywood Standard Hollywood Standard Hollywood

Voice telephony 150 33.3 220 Y Y N Y
On-demand video 30000 13333.3 52000 Y Y Y Y
Live video 1000 0.0 1200 N Y N Y

Table I. SAMPLE TCP AND TCP HOLLYWOOD RTT BOUNDS REQUIRED TO MEET APPLICATION BOUNDS, HIGHLIGHTING INDICATES WHERE TCP
HOLLYWOOD IS BENEFICIAL

Table I summarises the three applications considered. Utility
of inconsistent retransmission is seen to depend on the latency
bounds of the application. Interactive applications, where the
overall latency requirements are tight, can strongly benefit from
the ability to send new data in place of a retransmission, but
those applications with relaxed latency bounds find less benefit.

C. Connecting Head-of-Line Blocking

If a packet is lost, then TCP will send a retransmission once
a triple duplicate ACK is received. If standard TCP is used,
then later segments will not be delivered to the application until
the retransmission of the lost segment is received, potentially
causing media play-out to stall. This is known as head-of-line
blocking, as discussed in Section II.

The size of the play-out buffer relative to the round-trip
time and media framing interval determines whether play-out
stalls, or whether there is sufficient buffering to cover the
retransmission delay. As was shown in Equation 3, if Tplayout ≥
Trexmit +Tframing, then the retransmission will arrive in time to
be played out, and no head-of-line blocking will occur.

However, if Tplayout < Trexmit +Tframing, then the retransmis-
sion will not arrive in time to be played-out. This will cause
a 1-segment gap in the media play-out, since some data is
missing (this occurs with both standard TCP, and with the
TCP Hollywood extensions). If standard TCP is used, then the
receiver may also suffer head-of-line blocking and be unable
to access later segments, leading to a longer gap in play-out.

If the retransmission arrives less than one framing interval
after it was scheduled to be played out, i.e., if Trexmit ≤ Tplayout <
Trexmit +Tframing then it will arrive before the following packet
is to be played. In this case, there is no head-of-line blocking,
and only a single packet gap occurs in play-out. If it is further
delayed, such that Tplayout < Trexmit, then head-of-line blocking
will cause one or more later frames to also miss their play-out.

A graphical representation is provided by Figure 5. The
yellow cross-hatch region in Figure 5a is the region of Tplayout

values where blocked segments will be made wasteful. The
details are labeled in Figure 5a by numbered events, with
associated time-lines in Figure 5b. For a given value of Trtt

the process begins with a loss marked by the red ‘×’. The
next frame arrives at 1⃝ and is held by TCP, as are all the
segments that follow, awaiting the retransmission. For any size
of Tplayout at that moment 2⃝, the retransmission will arrive
too late. Upon arrival of the retransmission 3⃝ TCP releases
blocked segments to the play-out buffer. The duration of the
head-of-line blocking that will be discarded by the play-out
buffer is labelled as THoL in Figure 5, can be calculated as:

THoL = Trexmit −Tplayout = Trtt +3×Tframing −Tplayout (6)

The duration translates to NHoL frames missing their play-
out due to head of line blocking, and in addition to the
retransmission that arrived too late, where:

NHoL = max

(⌈
Trtt +3×Tframing −Tplayout

Tframing

⌉
,0

)
(7)

Finally, we remark on the grey shaded region in Figure 5a
that occurs when that when retransmissions arrive past the
acceptable deadline. From Equation 4, values of Tplayout are
upper-bound by the application deadline. Subsituting this into
Equation 6 gives a lower bound on THoL of:

THoL ≥ 3×Trtt/2+4×Tframing −Tmax (8)

As Trtt increases under TCP, so too does THoL, and with
it the fragility of the real-time connection. While a TCP
retransmission under these circumstances will always arrive
too late, the TCP Hollywood extensions eliminate THoL. In
doing so the grey shaded region in Figure 5a, where real-time
connections may be infeasible under TCP, are made viable with
TCP Hollywood.

Our analysis identifies the value of inconsistent retransmis-
sions, and the way in which they interact with head-of-line
blocking. Specifically, it shows that removal of head-of-line
blocking, via receiver side modifications to the kernel TCP
stack, is necessary to make effective use of inconsistent retrans-
missions. For this reason, a full deployment of TCP Hollywood
eliminates head-of-line blocking, to support latency reduction
and improve good-put due to inconsistent retransmissions.

V. IMPLEMENTATION AND DEPLOYMENT

To evaluate our design, we have an implementation of TCP
Hollywood that has been tested in fixed and mobile networks
in the UK to evaluate ease of deployment.

A. Implementation

We implemented TCP Hollywood in the FreeBSD 10.1
operating system. The TCP modifications in the kernel impact
approximately 300 lines of code, while the intermediary layer
comprises 600 lines of user-space C code. The source code is
available at http://dx.doi.org/10.5525/gla.researchdata.291.

The main implementation complexity in TCP Hollywood
comes from the use of inconsistent retransmissions, since they
cause the TCP RTT estimator to interact closely with the
message deadlines and dependency tracking features of TCP
Hollywood. Figure 6 shows sample results from a dummynet
testbed used to validate our inconsistent retransmission imple-
mentation. These simulate a voice telephony scenario, like that

427ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Tframing

T rtt
+ 4⋅

T fra
ming

T p
la

yo
ut

Trtt

Retransmission
Time

×

2

3

1

HoL Discards

Tmax - Tframing - Trtt /2

Application Deadline

(a) Tplayout region where blocked segments will be delivered too late.

Trtt + 4⋅Tframing

Tplayout

x

x

time

✔......

...... time

THoL

1

2

3

(b) Head of line blocking events between a loss and its retransmission.

Figure 5. Head of line blocking for real-time applications using regular TCP: for any given RTT and playout, segments that immediately follow a loss (1) are
pushed past the acceptable deadline (2), and delivered as late as (3). The gap between RTT and playout is the duration of useful HoL blocked segments that
become wasteful

 0 50 100 150 200 250

RTT (ms)

 0

 20

 40

 60

 80

 100

 120

 140

P
la

y
-o

u
t

d
e
la

y
 (

m
s
)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

Figure 6. Implementation validation test. Shading shows the percentage of
all retransmissions that are inconsistent at different combinations of play-out
delay and RTT, for a VoIP scenario. This validates Figure 4

described Section IV-B, using 20ms framing, 120 byte payload
per frame, and a maximum one-way delay of 150ms. The
colours in Figure 6 show the fraction of retransmissions sent
as inconsistent retransmissions, when subject to 5% random
packet loss. RTT and playout delay were sampled at 10ms
spacing across the entire range, with each point being repeated
5 times. We see that inconsistent retransmissions are triggered
as expected, based on the analysis in Section IV. The step-like
nature of the curve is due to the 10ms sampling interval. The
fuzzy regions around the edge of the coloured space stem from
limitations in the timer resolution that cause some degree of
unpredictability in whether a retransmission will be inconsistent
or not. This test shows that our implementation works as
expected, but does not evaluate performance. A detailed
evaluation of the implementation performance compared to
the analytical results is for future work.

B. Feasibility of Deployment

We investigate the feasibility of deploying TCP Hollywood,
using results from initial experiments with our FreeBSD
implementation on residential and mobile networks in the UK.

TCP Hollywood ought to be entirely compatible with
TCP. The only on-the-wire visible difference between a TCP
Hollywood flow and a standard TCP flow appears within the
payload data carried by inconsistent retransmissions. Recall
from Section III-A that inconsistent retransmissions carry new
payload data inside of segments with previously transmitted
sequence numbers. This modification is invisible to receivers
and middleboxes that only process TCP/IP headers, but is
visible to middleboxes that use deep packet inspection if they
compare the contents of a retransmitted packet with the original
data. Depending on the configuration such behaviour may
disrupt the connection. For example, a firewall may interpret
inconsistent retransmissions as belonging to a man-on-the-side
attack, and reset the connection.

We conducted experiments with a live deployment of
TCP Hollywood to obtain an initial assessment on whether
such middleboxes exist, and what impact they have. A TCP
Hollywood server was setup on a public IP address, and
configured to always send inconsistent retransmissions in lieu of
the original data, so that all retransmissions contained new data
with the same sequence numbers. The server was configured
to listen on ports 80, 4001, and 5001. Port 80 is used by web
traffic, and can be expected to be affected by middleboxes
such as “transparent” caches and firewalls. We expect ports
4001 and 5001 to be less likely to be subject to interference by
middleboxes, since they are not used by popular applications.

Clients were deployed across a number of access networks,
operated by different service providers. Each client connected
to the server, and received data. All incoming segments to
the client host were recorded by tcpdump, then filtered by
iptables to uniformly drop 5% of segments before reaching
the TCP stack for traffic from ports 80 and 4001, leaving

428ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

traffic from port 5001 unaffected.2 Each loss induced at the
client triggered an inconsistent retransmission from the server.
Remaining segments were passed up the stack to the client
application, as normal. Data received by the client application
was recorded, and compared against tcpdump logs from the
server to identify the dropped segments, and to compare the
payload data in the dropped segments with that sent in the
original packet and in the inconsistent retransmission. This
allows us to see what segments have been dropped, and to
confirm that both the original and retransmission cross the
path between client and server, and whether the inconsistent
retransmission was delivered.

The evaluation was conducted using clients in 14 different
locations in the UK, connecting to a server located at the
University of Glasgow. The clients connected via eight different
fixed-line residential ISPs (Andrews & Arnold, BT, Demon,
EE, Eclipse, Sky, TalkTalk, and Virgin), and four mobile
operators (EE, O2, Three, and Vodafone). All of the fixed-
line residential ISPs successfully delivered the inconsistent
retransmissions. In contrast only one out of the four mobile
operators delivered inconsistent retransmissions. The three
remaining mobile operators delivered the original segments
instead, while the server saw no corresponding segment loss.
The observed behaviour is consistent with a transparent split-
connection TCP performance enhancing proxy cache that
intercepts and responds to ACKs from the client on behalf
of the server. On two of the three providers, this caching
behaviour was seen on both port 80 and port 4001, while the
other provider appeared to operate a cache on port 80 only.

Crucially, TCP Hollywood continued to operate whether
or not the provider middlebox was present in the network.
At no time did connections suffer a reset, and the use of
the TCP Hollywood extensions did not affect connectivity
or performance. Middlebox manipulations such as caching
are designed to be transparent, leaving the client to believe
it is interacting with a standard TCP server. Recall from
Section III-C that TCP Hollywood is designed for partial
deployment. This experiment provides evidence that TCP
Hollywood continues to deliver messages and eliminate head-
of-line blocking, even when inconsistent retransmissions are
absent. In the worst-case, performance is the same as TCP
without our extensions.

The set of networks tested is by no means exhaustive.
Further, and larger scale, evaluation is needed to build evidence
that inconsistent retransmissions are deployable. Previous
studies provide room for optimism, however. Honda et al. [17]
investigated deployment of TCP modifications with regards to
middlebox interaction, from 142 networks in 24 countries, in
early 2011, including inconsistent retransmission measurements
taken over a large number of paths, with path diversity.
Their observations mirror ours: the majority of paths deliver
inconsistent retransmissions as expected, while a small number
deliver the original instead. They also observed connection
resets on one path, representing less than 1% of paths evaluated.

2Given that our goal is to test the ability to deploy TCP Hollywood, rather
than performance, we are only concerned with creating sufficient loss to trigger
inconsistent retransmissions. A high un-correlated drop rate enables TCP to
survive where it would fail against correlated drops. The ensuing reduction
in throughput translates to reduced loss due to congestion. Thus the client is
more likely to see both the original transmission and its retransmission.

VI. RELATED WORK

The immediate precursors of TCP Hollywood are the
Minion protocol suite [22] and TL-TCP [23]. The Minion
protocol suite includes uTCP, which proves a COBS-encoded
user-space datagram abstraction atop TCP, with prioritization
and out-of-order delivery. uTCP also provides an API that
enables applications to replace existing datagrams in the
transmission buffer before they are sent. Datagrams that have
already been sent (i.e., those being retransmitted) cannot be
replaced. The authors acknowledge this as a conservative design
choice, made to ensure middlebox interaction.

Our wire compatibility experiments from Section V-B,
and those of Honda et al. [17], indicate that inconsistent
retransmissions are possible, but that the integrity of the
sequence space needs to be preserved. The need to consider
middlebox interaction with new or modified protocols is
underscored by the design, and success, of Multi-Path TCP [24].
The design of TCP Hollywood builds on a number of protocols,
and tweaks to TCP, that are unlikely to be deployable.

TL-TCP marks the first appearance of time-lines and incon-
sistent retransmissions [23]. The underlying mechanism works
by injecting gaps into the sequence space. This modification is
observable by middleboxes, and so is unlikely to be deployable.
TCP Hollywood builds on TL-TCP, and related protocols,
but does so while focussing on deployability. As discussed
in Section III, we minimise changes to the wire protocol to
maximise compatibility with middleboxes.

Transport protocols that rely on application-layer metadata
to improve performance include Partially Error Controlled
Connection (PECC) [25] and PRTP-ECN [26]. Other protocols
such as SCTP [7] and DCCP [8] were engineered to broaden the
delivery models offered by the transport-layer. Despite stand-
ardization and deployment in mainstream operating systems,
their use is hampered by a lack of middlebox support.

Liang and Cheriton in [27] note that loss can be more
detrimental to streaming application performance than jitter.
On-demand streaming applications, for example, can effectively
hide jitter from the application but are unable to tolerate loss.
The authors present a modified TCP, TCP-RTM, that allows
receivers to read beyond a gap in the receive buffer. The
sequence numbers in the gap are ACKed, preventing their
retransmission by the sender. Applications read from the socket
at a predetermined play-out rate offset by some delay. There
are no changes to TCP itself; instead, the interaction between
application and receiver buffer is modified. Selective negative
ACKs (NACKs) allow senders to be informed of the segments
that were skipped over.

Deadline-aware TCP is a modified TCP specifically for data-
centers, and implements flows with soft time constraints [28].
The modifications allow for the TCP window size and conges-
tion back-off to be varied based on the flow congestion deadline.
Flows with imminent deadlines benefit from larger windows.
As the network becomes congested, flows will tend to complete
closer to their deadlines. The modifications require ECN support
in the network, and a modified TCP sender. Requiring ECN
support effectively prevents deployment outside of datacenters.

QUIC (Quick UDP Internet Connections) [29] is a transport-
layer protocol implemented atop UDP. It incorporates a number

429ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

of latency-reducing techniques (e.g., large initial data transfers,
low RTT setups) that are slowly migrating to TCP. Its use of
UDP as a substrate provides an interesting contrast to our choice
of TCP. The main motivation being the ability to deploy without
kernel modifications, and so QUIC is implemented entirely in
userspace. The flexibility of a userspace implementation comes
at the cost of universal deployment, since the initial estimates
by the QUIC authors show around 5-10% are behind UDP-
blocking firewalls. Upon detection of a blocking device QUIC
is forced to fall back to TCP. The analysis presented in Section
IV shows that falling back to TCP Hollywood is better for
latency-sensitive applications (such as those using QUIC), in
certain network conditions.

The trade-off between a UDP-based protocol with fall-
back to standard TCP, as chosen by the QUIC authors,
and a slightly modified TCP variant, as we have chosen,
hinges on ease of implementation and deployment. We believe
our implementation is simpler, since we build on the TCP
infrastructure, but acknowledge that this gives us less flexibility
to evolve the protocol. Equally, we believe our implementation
is likely to be more deployable, as it builds on TCP. Broader
measurement studies, for both TCP Hollywood and QUIC, are
needed to evaluate this claim, however.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we presented TCP Hollywood, a modified
TCP for real-time multimedia. The analysis shows that our
modifications are beneficial to applications with tight latency
bounds, such as voice telephony and live video delivery. Further,
we’ve shown that by limiting the wire-visible modifications,
we can maintain TCP’s widespread ease of deployment.

Future work includes real-world performance evaluation.
Measuring the performance improvements, in terms of the
increase in usable bytes delivered to the application, that
TCP Hollywood provides to the applications analysed in real
networks is key to validating the analysis in Section IV. Beyond
this, we are exploring enhancements to TCP Hollywood that
may further improve performance. For example, dependency
information is currently used to determine when not to send
a message, but it may be a cause to send a message, even if
that message may not arrive in time to be played out, to allow
future messages to be processed. Broader enhancements, such
as integration with SACK or MP-TCP, should also be studied.

TCP Hollywood exists within a transport-layer protocol
design space that is constrained by ossification. We have
TCP and UDP as substrates, with little room for modification.
Substrate selection presents trade-offs: TCP gives a wider
deployment story than UDP, but depending on the desired
functionality, receiver-side kernel modifications can be needed.
These trade-offs may shift over time, as the network responds
to large deployments of substrate-based transports. For example,
QUIC is seeing non-trivial deployment by being included
within Google’s web browser, and may result in fewer firewalls
blocking UDP. This is a long-term concern, however, and in the
near future we believe that protocols like TCP Hollywood offer
important advantages relating to middlebox traversal, that will
make them easy and valuable to deploy. Our initial results show
TCP Hollywood is deployable on all major fixed and mobile
operators in the UK, and offers compelling latency advantages.

REFERENCES

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson,
R. Sparks, M. Handley, and E. Schooler, “SIP: Session initiation protocol,”
IETF, June 2002, RFC 3261.

[2] C. Jennings, T. Hardie, and M. Westerlund, “Real-Time Communications
for the Web,” IEEE Communications, vol. 51, no. 4, Apr. 2013.

[3] M. Cha, P. Rodriguez, J. Crowcroft, S. B. Moon, and X. Amatriain,
“Watching television over an IP network,” in Proc. Internet Measurement
Conference. ACM, October 2008.

[4] T. Stockhammer, “Dynamic adaptive streaming over HTTP – standards
and design principles,” in Proc. MMSys. ACM, February 2011.

[5] Cisco, “Visual Networking Index: Forecast and Methodology, 2012-
2017,” White Paper, May 2013.

[6] D. D. Clark and D. L. Tennenhouse, “Architectural Considerations for
a New Generation of Protocols,” in Proc. ACM SIGCOMM, 1990.

[7] R. Stewart, “SCTP,” RFC 4960, IETF, Sep. 2007.

[8] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” RFC 4340, IETF, Mar. 2006.

[9] S. Hätönen et al., “An Experimental Study of Home Gateway Charac-
teristics,” in Proc. Internet Measurement Conference. ACM, 2010.

[10] C. S. Perkins, M. Westerlund, and J. Ott, “WebRTC: Media transport
and use of RTP,” IETF, Nov. 2014, work in Progress.

[11] S. Cheshire and M. Baker, “Consistent Overhead Byte Stuffing,” in Proc.
ACM SIGCOMM, 1997.

[12] K. Nichols and V. Jacobson, “Controlling Queue Delay,” ACM Queue,
vol. 10, no. 5, May 2012.

[13] N. Khademi, R. Ros, and M. Welzl, “The New AQM Kids on the Block:
An Experimental Evaluation of CoDel and PIE,” in Proc. Global Internet
Symposium. Toronto, ON, Canada: IEEE, April 2014.

[14] C. Jin, D. Wei, and S. Low, “FAST TCP: Motivation, Architecture,
Algorithms, Performance,” in Proc. IEEE Infocom, Mar. 2004.

[15] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas:
New Techniques for Congestion Detection and Avoidance,” in Proc.
SIGCOMM Conference. London, UK: ACM, August 1994.

[16] S. McQuistin and C. S. Perkins, “Reinterpreting the Transport Protocol
Stack to Embrace Ossification,” in Proc. IAB Workshop on Stack
Evolution in a Middlebox Internet, Zürich, Switzerland, Jan. 2015.

[17] M. Honda et al., “Is it still possible to extend TCP?” in Proc. ACM
IMC, Berlin, Germany, Nov. 2011.

[18] J.-R. Ohm, “Advances in Scalable Video Coding,” Proc. IEEE, vol. 93,
no. 1, pp. 42–56, Jan 2005.

[19] S. Cheshire and M. Baker, “Consistent Overhead Byte Stuffing,” in Proc.
ACM SIGCOMM, 1997.

[20] ITU-T, “One-way transmission time,” Rec. G.114, May 2003.

[21] N. Bouzakaria, C. Concolato, and J. L. Feuvre, “Overhead and
performance of low latency live streaming using MPEG-DASH,” in
Proc. 5th Intl. Conf. Information, Intelligence, Systems and Applications.
Crete, Greece: IEEE, 2014.

[22] M. F. Nowlan, N. Tiwari, J. Iyengar, S. O. Amin, and B. Ford, “Fitting
Square Pegs Through Round Pipes: Unordered Delivery Wire-Compatible
with TCP and TLS,” in Proc. USENIX NSDI, San Jose, CA, Apr. 2012.

[23] B. Mukherjee and T. Brecht, “Time-lined TCP for the TCP-friendly
delivery of streaming media,” in Proc. IEEE ICNP, 2000.

[24] C. Raiciu et al., “How Hard Can It Be? Designing and Implementing a
Deployable Multipath TCP,” in Proc. USENIX NSDI, vol. 12, 2012.

[25] B. Dempsey, T. Strayer, and A. Weaver, “Adaptive Error Control for
Multimedia Data Transfer,” in Proc. IWACA, vol. 92, 1992.

[26] K.-J. Grinnemo and A. Brunstrom, “Evaluation of the QoS offered by
PRTP-ECN - a TCP-compliant partially reliable transport protocol,” in
Proc. IWQoS, Karlsruhe, Germany, Jul. 2001.

[27] S. Liang and D. Cheriton, “TCP-RTM: Using RTP for Real Time
Multimedia Applications,” May 2002, submission to IEEE International
Conference on Network Protocols (ICNP).

[28] B. Vamanan, J. Hasan, and T. N. Vijaykumar, “Deadline-Aware Data-
center TCP (D2TCP),” in Proc. ACM SIGCOMM, 2012.

[29] J. Iyengar and I. Swett, “QUIC: A UDP-based secure and reliable
transport for HTTP/2,” Work in progress, IETF, Jun. 2015.

430ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

BLEST: Blocking Estimation-based MPTCP
Scheduler for Heterogeneous Networks

Simone Ferlin,⇤†, Özgü Alay⇤
⇤Simula Research Laboratory, Norway

{ferlin,ozgu}@simula.no

Olivier Mehani,† Roksana Boreli†
†National ICT Australia (NICTA), Sydney, Australia

{first.last}@nicta.com.au

Abstract—With the widespread availability of multi-homed
devices, multipath transport protocols such as MPTCP are
becoming increasingly relevant to support better use of multiple
connectivity through capacity aggregation and seamless failover.
However, capacity aggregation over heterogeneous paths, such
as offered by cellular and Wi-Fi networks, is problematic. It
causes packet reordering leading to head-of-line (HoL) blocking
at the receiver, increased end-to-end delays and lower application
goodput. MPTCP tackles this issue by penalising the use of
longer paths, and increasing buffer sizes. This, however, results
in suboptimal resource usage. In this paper, we first evaluate
and compare the performance of default MPTCP and alternative
state-of-the-art schedulers, all implemented in the Linux kernel,
for a range of traffic patterns and network environments. This
allows us to identify shortcomings of various approaches. We then
propose a send-window BLocking ESTimation scheduler, BLEST,
which aims to minimise HoL-blocking in heterogeneous networks,
thereby increasing the potential for capacity aggregation by
reducing the number of spurious retransmissions. The resulting
scheduler allows an increase by 12% in application goodput with
bulk traffic while reducing unnecessary retransmissions by 80%
as compared to default MPTCP and other schedulers.

Index Terms—MPTCP, multipath, transport protocol, packet
scheduling, head-of-line blocking, receive window limitation,
heterogeneous networks

I. INTRODUCTION

Multipath transport protocols, and particularly Multipath
TCP, allow to better use the network resources available
to multi-homed devices such as mobile phones. Two main
advantages are envisioned: capacity aggregation across mul-
tiple links, and the ability to maintain connection if one of
the path fails. Capacity aggregation is however challenging
with heterogeneous paths, such as offered by cellular and
Wi-Fi, in particular because of delay heterogeneity [1]. This
heterogeneity results in packet reordering, leading to head-of-
line (HoL) blocking, increased out-of-order (OFO) buffer use
at the receiver and, ultimately, reduced goodput.

MPTCP’s default scheduler, minRTT, is based on Round-
Trip Time (RTT). minRTT starts by filling the congestion
window (CWND) of the subflow with the lowest RTT before
advancing to other subflows with higher RTTs. When one of
these subflows blocks the connection, e.g., due to head-of-line
blocking, MPTCP’s default scheduler retransmits the segments
blocking the connection on the lowest-delay path and penalise
longer (i.e., higher-delay) paths that caused the issue [2]. This

has a long-term impact on the CWND of these subflows, which
are limited in their growth [3], leading to sub-optimal capacity
aggregation, as higher-delay paths are underused [4]. As a rule-
of-thumb, it is also recommended to increase the receive buffer
size to further limit HoL-blocking situations [5].

The need for multipath transport protocol schedulers is
known, and a number of proposals have been made and
evaluated in the past [6]. However, in the specific case of
heterogeneous paths, more care is required to avoid the issues
discussed above. Such schedulers have been proposed in [7]–
[9], based on the concept of sending packets out of order
so they reach the receiver in order. There exists, however,
no comparison of these schedulers to the MPTCP default
scheduler in a consistent environment.

In this paper, we first offer a comparative study of the pro-
posed MPTCP schedulers [7]–[9], by experimentally evaluat-
ing our Linux implementation of these algorithms. We evaluate
their behaviour for different traffic types (Web, Bulk, CBR).
The performance of these schedulers is compared to MPTCP’s
default scheduler as well as plain single-path TCP, in terms
of application goodput (for bulk traffic), end-to-end delays
(CBR) and completion time (Web). Based on observations in
these experiments, we identify how the studied mechanisms
offer the best performance, and what they fail to properly
account for. We also take insight from the observations
of [10] that not all subflows should be used at all times and,
while scheduling is needed to complement pure congestion
control, path selection and send buffer management are also
primordial. We then propose a novel BLocking ESTimation-
based scheduler, BLEST, which takes a proactive stand towards
minimising HoL-blocking. Rather than penalising the slow
subflows, BLEST estimates whether a path will cause HoL-
blocking and dynamically adapts scheduling to prevent block-
ing. Although BLEST is designed for heterogeneous paths, we
show in our experiments that it works as well as MPTCP’s
minRTT scheduler in homogeneous scenarios.1

The remainder of this paper is organised as follows. We
present the background to this work, and show motivating
examples in the next section. We describe our evaluation setup
in Section III. In Section IV, we discuss our implementation
of different schedulers [7]–[9] and compare their perfor-
mance side-by-side with MPTCP’s default scheduler. Based

1BLEST’s code is available at http://nicta.info/mptcp-blest.ISBN 978-3-901882-83-8 c� 2016 IFIP

431ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

on observations in these experiments, we propose a proactive
minimum-delay scheduler that can predict the send-window
blocking risk, and schedule accordingly in Section V, and
evaluate its performance in Section VI, both in emulated and
real multipath environments. We finally offer some concluding
remarks in Section VII.

II. BACKGROUND AND MOTIVATION

A. Multipath Transfer over Heterogeneous Paths
Multipath transport has be shown to provide benefits from

bandwidth aggregation to increased robustness [2], [11]–[13].
Whenever the underlying network paths are homogeneous,
MPTCP accomplishes its goals [14]. However, path hetero-
geneity can hinder achievement of MPTCP’s goals, mostly
due to the HoL-blocking which causes higher end-host mem-
ory usage and path bandwidth underutilisation [1], [3]. In
MPTCP, the scheduler is the component that is responsible
for the distribution of packets among the available paths. A
well-designed scheduler that can dynamically adapt packet
distribution based on the channel conditions to provide a better
performance, both in terms of goodput and delay, is crucial.

MPTCP’s default minRTT scheduler2 first sends data on
the subflow with the lowest RTT estimation, until it has filled
its congestion window [2]. Data is sent on the subflow with
the next higher RTT. In order to address the heterogeneity of
the paths, a mechanism of opportunistic retransmission and
penalisation (PR) has also been proposed in [2]. In order to
quickly overcome HoL-blocking, opportunistic retransmission
immediately reinjects segments causing HoL-blocking onto a
subflow with an RTT lower than that of the blocking subflow
which has space available in its congestion window. The
penalisation mechanism also halves the congestion window
of the blocking subflow to limit its use. [3] showed that
MPTCP’s PR does not behave well in some scenarios when
path characteristics (e.g., capacity, delay and loss rates) are
significantly different. Penalisation of a long subflow (higher
RTT) has a long-term detrimental impact on the performance:
it will take longer for the subflow to increase its CWND,
leading to underutilisation of the path and, ultimately, lower
capacity aggregation.

In order to illustrate the challenges in heterogeneous sce-
narios, we ran experiments with constant bitrate (CBR) and
web transfers, and contrast the results with homogeneous
scenarios. In Figure 1, we observe that the amount of data
and the path heterogeneity are the main factors determining
the performance of MPTCP. MPTCP generally provides lower
completion times, especially for websites with many objects.
However, when the paths are heterogeneous in terms of delay
and loss, as in the 3G+WLAN case, losses in the WLAN force
MPTCP to use the 3G path, therefore MPTCP’s completion
time becomes higher than TCP on the WLAN path. Similarly,
Figure 1(d) shows the same effect for the packet delay of
a CBR flow: MPTCP’s minRTT adequately leverages the
aggregation of two homogeneous WLAN paths and reduces

2We base our work on MPTCP v0.90 throughout this paper.

WLAN+WLANWLAN
0

500

1000

C
o
m

p
le

tio
n
 T

im
e
 [
m

s]

3G+WLANWLAN 3G

0

1000

2000

3G WLAN MPTCP

(a) Download time, Wikipedia

WLAN+WLANWLAN
0

500

1000

1500

2000

C
o
m

p
le

tio
n
 T

im
e
 [
m

s]

3G+WLANWLAN 3G

0

2000

4000

6000

3G WLAN MPTCP

(b) Download time, Amazon

WLAN+WLANWLAN
0

2000

4000

6000

C
o
m

p
le

tio
n
 T

im
e
 [
m

s]

3G+WLANWLAN 3G

0

0.5

1

1.5

2
x 10

4
3G WLAN MPTCP

(c) Download time, Huffington Post

WLAN+WLANWLAN
0

20

40

60

80

100

C
o
m

p
le

tio
n
 T

im
e
 [
m

s]

3G+WLANWLAN 3G

0

200

400

600
3G WLAN MPTCP

(d) Packet delay, CBR video
Figure 1. Download times for selected websites, and application packet
delay for CBR video traffic, both over MPTCP in WLAN+WLAN (left
of each pair) and 3G+WLAN (right of each pair) (CORE emulation, with
background traffic, see III-1). MPTCP with heterogeneous paths (3G+WLAN)
underperforms single-path TCP on the best (WLAN) path.

both delay and jitter; however, it doesn’t perform as well
as a single WLAN path when running over heterogeneous
3G+WLAN paths.

This goes against one of MPTCP’s design goals: “[a]
multipath flow should perform at least as well as a single
path flow would on the best of the paths available to it” [5].

B. Schedulers for heterogeneous paths

Alternative multipath scheduling algorithms have been ob-
ject of multiple studies [4], [10], [15]. In [6], the authors
evaluated different scheduling strategies (pull, push and hy-
brid) focusing on implementation performance. They also
considered how schedulers should cope with paths that have
heterogeneous delay and/or capacities. They concluded that a
scheduler must take both delay and capacity into consideration
in order to effectively leverage multipath scenarios.

Later, [8] evaluated and extended the idea of a Delay-Aware
Packet Scheduler (DAPS) [7] for MPTCP in order to overcome
HoL-blocking due to path heterogeneity. In that work, the
authors derived a rule-of-thumb for buffer size for MPTCP. [9]
explored a more ambitious scheduler implementation, sending
packets out of order so they arrive in order. They however
included some simplications that expose vulnerabilities of the
approach. For example, no consideration is given to segment
reinjection if a certain path is blocking the connection.

These alternative algorithms were so far not extensively
tested against MPTCP’s default scheduler. The number of sce-
narios in which they were evaluated was also limited, and did
not cover many scenarios (homogeneous vs. heterogeneous)
and traffic classes. The differences in evaluation methods also
make it difficult to accurately compare their performance. In
the next sections, we address this issue by re-implementing
these schedulers in the Linux kernel, and systematically eval-
uating their performance in a range of scenarios and traffic
use-cases agains MPTCP’s default scheduler.

432ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Bottleneck 1

Bottleneck 2

MPTCP
Server

MPTCP
Client

Server 1

Server 2

Client 1

Client 2

Figure 2. Emulation experiment setup

III. MEASUREMENT SETUP

We used CORE [16] for the initial evaluation. CORE is
a network emulator able to emulate a real network stack
implementation within Linux containers, making it suitable
to avoid simulation model simplifications. Figure 2 shows the
emulation topology. Bottleneck 1 was loaded with background
traffic from Server 1 to Client 1, and bottleneck 2 with traffic
from Server 2 to Client 2. The link characteristics for WLAN
and 3G links are set as follows.

• WLAN: Capacity=25 Mbit/s, Delay=25 ms, Loss=1%
• 3G: Capacity=5 Mbit/s, Delay=65 ms, Loss=0%

Based on measurements carried in real networks, the queue
lengths at each router interface were set to 100 packets for
WLAN and 3750 packets for 3G. The losses applied to the
WLAN path are random.

1) Network and System characteristics: System settings are
known to impact TCP’s performance. In order to emulate
realistic network scenarios, we used system settings close to
the standard characteristics of each technologies. The TCP
buffer sizes (send/receive) were set to be equivalent to widely
known Android settings, that are configured as follows.

• Homogeneous (WLAN): 1024 KiB/2048 KiB.
• Heterogeneous (3G+WLAN): 1024 KiB/2048 KiB.

For bulk traffic experiments, we set both send and receive
buffers to 16 MiB to evaluate MPTCP’s aggregation capability.

To ensure independence between runs, the cached TCP
values were flushed after every run. We focused on congestion
avoidance; therefore, we discarded the initial phase for each
experiment and analyzed a period of 90 s for bulk and constant
bitrate (CBR) traffic. For single-path TCP flows, we used TCP-
Reno, therefore, fairly compairing against MPTCP-OLIA.3

2) Application Traffic: We considered three different types.
a) Video Streaming: We considered constant bit-rate

(CBR) video traffic with a frame size of 5 KiB on the ap-
plication level and a rate of 1 Mbps. This is in line with the
recent measurement studies [17] showing that more than 53%
of the downstream traffic in North America is video streaming,
and with other reports [18] predicting further increase,

b) Web Traffic: We selected three websites of different
sizes, small, medium and large (see Table I), as a good set of
typical website sizes. To mimic the behavior of a real browser
downloads were performed with 6 concurrent connections.

c) Bulk Transfer: We completed the evaluation with the
most common case for MPTCP — a buk transfer, of 64 MiB.

3TCP-Linux kernel 3.14.33 is used throughout our evaluations.

3) Background Traffic: A synthetic mix of TCP and UDP
traffic was generated with D-ITG [19] as background traffic
in order to create a realistic environment. The TCP traffic
was composed of saturated sender and rate-limited TCP flows
with a exponentially distributed mean rate of 157 pps. The
UDP traffic was composed of UDP on/off flows with Pareto
distributed on and exponentially distributed off times. Each
flow has an exponentially distributed mean rate of 100 kbps in
the heterogeneous scenario and 500 kbps in the homogeneous
scenario. Packet sizes were varied with a mean of 1000 Bytes
and RTTs between 20 and 100 ms. We repeated all experiment
settings 50 times, in both emulation and real scenarios.

IV. SCHEDULING AGAINST HOL-BLOCKING

In the following, we discuss both Delay-Aware Packet
Scheduler (DAPS) [7], [8] and Out-of-order Transmission for
In-order Arrival Scheduler (OTIAS) [9], evaluating them in
common scenarios, and commenting on their implementation.

A. Delay-Aware Packet Scheduler (DAPS)
The DAPS algorithm was proposed in two versions. In [7],

it pursues the goal to make segments arrive in order by
planning which subflows the next segments should be sent over
based on both the forward delay and CWND of each subflow.
A schedule is created to span the least common multiple
(LCM) of the forward delays lcm(D

i

2 {D1, D2, . . . , Dn

}).
Algorithm 1 shows the main loop of the mechanism.

As an example, assume two subflows with similar capac-
ities, but with a subflow having a forward delay ten times
higher than the fast subflow. DAPS will derive the following
schedule: segments 1. . . 10 will be sent on the fast subflow,
and segment 11 on the other subflow. Ideally, segment 11 will
arrive right after segment 10, thereby avoiding HoL-blocking.

In [8], DAPS is formulated for a scenario with only two
subflows (r

s

and r
f

). It is also a simplification of the original
algorithm [7] as it does not take CWND asymmetry into
account, only considering the subflows’ RTT ratio (⌘) and the
CWND of the fast subflow.

Since both algorithms are comparable, we consider only
the original DAPS [7] in our evaluations. We ignore the
simplifications presented in [8], as they were only introduced
to ease the implementation in the ns-2 of CMT-SCTP.

B. Out-of-order Transmission for In-order Arrival Scheduler
(OTIAS)

The OTIAS algorithm [9] is based on the idea of scheduling
more segments on a subflow than what it can currently send.
Queues may therefore build up at each subflow of the sender,
under the assumption that these segments will be sent as soon

Table I
WEB TRAFFIC GENERATION

Domain name Number of Objects Size of Objects

http://www.wikipedia.org 15 72 KiB
http://www.amazon.com 54 1024 KiB
http://www.huffingtonpost.com 138 3994 KiB

433ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Algorithm 1 DAPS [7]
1: S

max

 0
2: for P

i

2 {P1, P2, ..., Pn

} do
3: SEQ

Pi InitializeV ector()
4: end for
5: for P

i

2 {O1, O2, ..., OP
i21,2,...,n

lcm(Di)
Di

} do
6: SEQ

Pi Append(SEQ
Pi [Smax

+ 1, S
max

+ C
i

]
7: end for
8: t 0
9: while t < lcm(D

i

2 {D1, D2, ..., Dn

}) do
10: for P

i

2 {P1, P2, ..., Pn

} do
11: if t ⌘ 0 (mod D

i

) then
12: Transmit(P

i

, SEQ
Pi [

t

Di
])

13: S
max

 S
max

+ C
i

14: end if
15: end for
16: t t+ 1
17: end while
Where:

• {P1, P2, ..., Pn

} set of paths
• {D1, D2, ..., Dn

} paths’ respective forward delays
• SEQ

Pi seqnos of packets to be transmitted on P
i

as there is space in the CWND for the subflow. When asked
to schedule a new segment, the algorithm estimates its arrival
time if sent over each subflow (T j

i

), and chooses the subflow
with the earliest arrival time. The estimation is performed
based on a subflow’s RTT, its CWND, the number of in-flight
packets and the number of already queued packets. If there is
space in the CWND, the segment would be sent immediately,
yielding an arrival time of approximately RTT/2 (assuming
symmetric forward and backward delays). If the CWND is full,
however, the segments will have to wait in the subflow’s queue.
Assuming a send rate of 1 CWND per RTT, the additional
waiting time is calculated as RTT_to_waitj

i

. Algorithm 2
shows the main loop of the OTIAS mechanism.

Algorithm 2 OTIAS [9]
1: for each available subflow j do
2: pkt_can_be_sent

j

= cwnd
j

� unacked
j

3: RTT_to_wait

j

i

=
j
not_yet_sentj�pkt_can_be_sentj

cwndj

k

4: T j

i

= (RTT_to_waitj

i

+ 0.5)⇥ srtt
j

5: if T j

i

< min
T

then
6: min

T

= T j

i

7: selected_subflow = j
8: end if
9: end for

C. Comparative evaluation of DAPS and OTIAS
Although DAPS and OTIAS have the same goal to reduce

HoL-blocking, they follow different approaches: DAPS creates
a schedule for the distribution of future segments into the
available subflows for a scheduling run and follows this

0

100

200

300

400

500

G
o
o
d
p
u
t
[k

iB
p
s]

minRTT DAPS OTIAS

0

500

1000

1500

2000

2500

3000

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

(a) 3G+WLAN

0

100

200

300

400

500

G
o
o
d
p
u
t
[k

iB
p
s]

minRTT DAPS OTIAS

0

100

200

300

400

500

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

(b) WLAN+WLAN
Figure 3. Goodput and OFO queue for bulk traffic between DAPS, OTIAS
and minRTT.

schedule until it is completed, after which planning for the next
run is determined. On the other hand, OTIAS decides which
subflow to use on a per-packet basis. It takes into account the
RTTs and the queue sizes of the subflows at a given moment
and it is closer to MPTCP’s default scheduler (minRTT) in
this respect, albeit taking into account more information from
the subflows.

OTIAS operates based on current data and is able to react
more dynamically to network changes, where DAPS can only
react to changes in the next scheduling run. OTIAS is however
still less dynamic than MPTCP’s minRTT since it builds up
queues on the subflows. If a segment that had already been
sent is blocking the connection, e.g., it could be delayed or
lost, the queued packets would linger at the sender more than
assumed, disturbing the created schedule. Moreover, MPTCP’s
default scheduler retransmission mechanism, retransmitting a
packet on the fastest subflow [4], is not applicable if a send
queue exists for a subflow, as that segment would have to wait
in the queue before retransmission.

In the following we present an evaluation of DAPS and
OTIAS against MPTCP’s minRTT with bulk, web and CBR
traffic through emulations. We look at application goodput for
bulk transfers, completion times for web transfers, and average
application delay for CBR traffic. In all cases, we also sample
the maximum value of the out-of-order (OFO) queue every
10 ms during the experiments and present the results.

1) Bulk: Figure 3 shows DAPS, OTIAS and MPTCP’s
default scheduler goodput and OFO buffer size for bulk
transfer in both 3G+WLAN and WLAN+WLAN scenarios.
OTIAS provides a goodput increase of 6% but requires 35%
less OFO buffer compared to MPTCP’s minRTT. On the other
hand, DAPS provides a goodput decrease of 27% and requires
65% less OFO buffer compared to MPTCP’s default scheduler.
In WLAN+WLAN scenarios, MPTCP’s default scheduler has
a 3.5% lower goodput compared to OTIAS, which on the
contrary takes about 87% more OFO buffer. DAPS delivers
goodput values of about 16% less compared to MPTCP’s
default scheduler with about 97% more OFO buffer.

2) Web: Figure 4 shows the completion times and OFO
buffer sizes for DAPS, OTIAS and MPTCP’s default sched-
ulers in both 3G+WLAN and WLAN+WLAN scenarios. For
3G+WLAN, in Figure 4(a), all scheduler algorithms per-
form similarly in terms of completion time. However, for
larger object sizes, we observe a larger OFO buffer size. In
WLAN+WLAN, in Figure 4(c), DAPS and OTIAS struggle

434ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Wikipedia

0.1

0.2

0.3

0.4

0.5

Amazon
0.5

1

1.5

2

2.5

3

Huffpost

2

3

4

5

6

C
o

m
p

le
tio

n
 T

im
e

 [
s]

OTIAS DAPS minRTT

(a) 3G+WLAN, Completion time

Wikipedia
0

1

2

3

4

5

A
ve

ra
g

e
 M

P
T

C
P

 O
F

O
 Q

u
e

u
e

 [
ki

B
]

Amazon
0

10

20

30

40

50

Huffpost
0

50

100

150

200

250
minRTT DAPS OTIAS

(b) 3G+WLAN, OFO queue

Wikipedia

0.2

0.4

0.6

0.8

1

Amazon1

1.5

2

2.5

Huffpost

2.5

3

3.5

4

4.5

5

C
o

m
p

le
tio

n
 T

im
e

 [
s]

OTIAS DAPS minRTT

(c) WLAN+WLAN, Completion time

Wikipedia
0

1

2

3

4

5
A

ve
ra

g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

Amazon
0

10

20

30

40

50

Huffpost
0

50

100

150

200

250
minRTT DAPS OTIAS

(d) WLAN+WLAN, OFO queue
Figure 4. Completion time and OFO queue for web traffic (Wikipedia,
Amazon and Huffington Post) for DAPS, OTIAS and minRTT.

when both paths have higher loss rates, because DAPS cannot
react quickly enough to changes on the paths, and OTIAS
builds queues that also don’t allow immediate reaction. While
the losses on the WLAN paths cause higher OFO buffer size
in WLAN+WLAN, the path heterogeneity is the main reason
for the higher OFO size in 3G+WLAN.

3) CBR: Figure 5 shows the average application delay and
the OFO buffer size for DAPS, OTIAS and MPTCP’s default
schedulers in both 3G+WLAN and WLAN+WLAN scenarios.
Both 3G+WLAN and WLAN+WLAN yield higher application
delay with DAPS. OTIAS can reduce the usage of the 3G
subflow in the 3G+WLAN scenario, leading to improved
application delay compared to MPTCP’s default scheduler.
However, for the WLAN+WLAN scenario, OTIAS provides
higher delay values compared to MPTCP due to the lack
of design for a reinjection mechanism. Moreover, MPTCP’s
default scheduler PR mechanism can partially overcome path
heterogeneity in 3G+WLAN, where we can observe burst of
packets on the 3G path, which lead to spikes in the OFO
buffer, resulting in higher application delay.

D. Successes and Failures of Existing Algorithms

Overall, we observe that, although all state-of-the-art ap-
proaches address the challenges of multipath scheduling in
heterogeneous scenarios, trying to overcome receive-window
limitation and, consequently, HoL-blocking, they still fail in
some typical use-case scenarios settings, e.g., heterogeneous
delays and/or loss rates, as well as with excessive delays due to
buffering. Here, we comment on the strong and weak aspects
of the state-of-the-art proposals just evaluated.

1) OTIAS: Although OTIAS can make decisions on a per-
packet basis (subflow j and packet i) reacting fast and using
current state from the network (cwnd

j

loop), it builds up
queues on the subflows with lowest RTTs, regardless of their
CWND state, i.e., it does not restrict the scheduler if the

1 Mbps0

200

400

600

800

1000

A
p
p

lic
a
tio

n
 D

e
la

y
[m

s]

1 Mbps
0

50

100

150

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]minRTT DAPS OTIAS

(a) 3G+WLAN
1 Mbps

50

55

60

65

A
p

p
lic

a
tio

n
 D

e
la

y
[m

s]

1 Mbps
0

5

10

15

20

25

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

minRTT DAPS OTIAS

(b) WLAN+WLAN
Figure 5. Packet delay and OFO queue for CBR traffic for DAPS, OTIAS
and minRTT.

CWND is full. In addition, the algorithm assumes symmetric
forward delays (OWD = RTT/2), and scheduler reinjections
(retransmissions) are not mentioned. While OTIAS can yield
good results with heterogeneous RTTs, if the heterogeneity
is too large and losses occur in one of the subflows, the
algorithm will build up long queues in the subflows with lower
RTTs, reducing their ability to overcome HoL-blocking. In
homogeneous scenarios the OTIAS scheduler delivers lower
performance due to not using both subflows as fully as
MPTCP’s default scheduler.

2) DAPS: The DAPS implementation is more complex,
requiring more memory at run-time to keep the schedule
run. Furthermore, DAPS is not able to react upon network
changes in a timely manner due to long schedules arising
from high heterogeneity in the subflow delays, i.e., high
LCM in Algorithm 1. Last but not least, DAPS will use all
subflows that can send, even if a certain subflow’s contribution
is very low. This is the main contrast compared to both
OTIAS and MPTCP’s default schedulers, which can reduce the
slow subflow contribution, if a faster subflow can sustain the
required rate. This is particularly important for transfers where
the sender is not saturated. Finally, similar to OTIAS, DAPS
does not have a defined behaviour for scheduler reinjections.

V. BLEST: BLOCKING ESTIMATION-BASED MPTCP
SCHEDULER

Based on the observations from Section IV, we introduce a
new algorithm, BLEST, addressing the challenges of reducing
HoL-blocking, spurious retransmissions, and hence increas-
ing application performance in heterogeneous scenarios. The
scheduling is based on a new metric, estimating the amount of
HoL-blocking, which might result from scheduling a packet
on a give subflow.

For each new segment, MPTCP’s default scheduler, min-
RTT, chooses the subflow with lowest RTT among all subflows
ready to send, i.e., with space in the CWND. When MPTCP
detects that it cannot send new data due to a full send window
(mirror of receive window at the sender), it will resend the
segment blocking the fastest subflow, but only if it hasn’t
been sent on that subflow before. It will also penalise the
slow subflow responsible for blocking, halving its CWND.
The idea is to reduce its contribution preventing further HoL-
blocking. Such an approach reduces the chance of HoL-
blocking only for a limited amount of time. In other words,

435ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

1

MPTCP Send Window

0 … 10

Subflow 2
Send Window

2 3

0 … 10

Subflow 1
Send Window

MPTCP
Send Window

13…20 ?

13…20

Subflow 1
Send Window

4

24…32

Subflow 1
Send Window

11…12

21…23!

Subflow 2
Send Window

MPTCP
Send Window

24…32 21…23!

Figure 6. MPTCP example with BLEST: In ¨, segments 0. . . 10 are in flight on subflow 1, the subflow with lowest delay. In ≠ it is uncertain how many
segments should be sent on subflow 2, which has a higher delay. While subflow 2’s window could accommodate more data, only segments 11. . . 12 are
allocated, due to BLEST’s blocking prediction. Here, minRTT would allocate as much data as fits into subflow 2’s window given its CWND. In Æ subflow
1 can advance with segments 13. . . 20, because 0. . . 10 were acknowledged. At Ø both subflows can advance with MPTCP’s send window with subflow 1
carrying segments 24. . . 32 and subflow 2 carrying 21. . . 23.

after the CWND was reduced by penalisation, the congestion
control will start increasing it again, until a recurrence of
blocking. Furthermore, the approach is reactive as it depends
on blocking to trigger PR at the sender. The PR mechanism
itself is detrimental in the long run, since it keeps the CWND
of slow subflow artificially low.

To overcome the issues of the PR, we propose a proactive
scheduler where we decide at packet scheduling time whether
to send packets over the slow subflow or not. The decision is
based on MPTCP’s send window. MPTCP maintains a send
window on its control-plane for each MPTCP connection, one
level above the subflows. This window is necessary due to the
full multiplexing among all subflows belonging to the same
MPTCP connection. However, due to its scheduler design, if
data is not acknowledged in one of the subflows, MPTCP’s
send window can be temporarily blocked, stalling the whole
multipath connection.

BLEST assumes that a segment will occupy space in
MPTCP’s send window (MPTCPSW) for at least RTT

S

if it
is sent now on subflow S, as illustrated in Figure 6. We assume
that all segments in flight on S occupy space in the window for
the same amount of time. This is a conservative assumption,
as these segments can be acknowledged earlier. The remaining
send window can be used by the faster subflow (i.e., lower RTT
subflow), F . This means that HoL-blocking would occur if F
were not able to send due to lack of space in the send window
because of S. Therefore, we estimate the amount of data X
that will be sent on F during RTT

S

, and check whether this
fits into MPTCP’s send window . To estimate X , we assume
that for every RTT

F

, its CWND grows by 1 (as it is done in
congestion avoidance) and is always filled by the scheduler,
as

rtts = RTT
S

/RTT
F

X = MSS
F

· (CWND + (rtts� 1)/2) · rtts
If X⇥� > |M |�MSS

S

·(inflight
S

+1), the next segment
will not be sent on S. Instead, the scheduler waits for the
faster subflow to become available. Essentially, while minRTT
always opts to use an available subflow, our scheduler is able to
skip a subflow, waiting for a more advantageous subflow which
can offer a lower risk of HoL-blocking, and the number of
retransmissions that would have been consequently triggered.

0

0.5

1

1.5

δ
λ

Experiment Time [s]0 45

δ

λ
=0.001

δ
λ
=0.003

δ
λ
=0.005

δ
λ
=0.01

δ
λ
=0.02

0

100

200

300

400

500

G
o

o
d

p
u

t
[k

iB
p

s]

minRTT δ
λ
=0.001 δ

λ
=0.003 δ

λ
=0.005 δ

λ
=0.01 δ

λ
=0.02

0

500

1000

1500

2000

2500

3000

A
ve

ra
g

e
 M

P
T

C
P

 O
F

O
 Q

u
e

u
e

 [
ki

B
]

Figure 7. 3G+WLAN and BLEST’s � parameter influence on bulk traffic with
varying ��=0.001, 0.003, 0.005, 0.01, and 0.02; compared against minRTT.

The estimate of X , however, can be inaccurate at times. To
address this, we introduce a correction factor �, to scale X . �
is adjusted as follows. HoL-blocking during one RTT

F

is an
event that triggers an increase of � by �

�

; the absence of HoL-
blocking triggers a decrease by �

�

. In the beginning of the
connection we set �=1.0, i.e., no correction of the estimation.

Figure 7 shows how � changes over time in our scenario
with different �

�

. With �
�

= 0.001 we see that � changes
slowly towards a value that represents the reality on the (lossy
WLAN) link. Note that X is over-estimated in the beginning
of the transfer. Therefore, most of the traffic is sent over the
WLAN link leading to a reduced goodput. However, in time,
the estimate is corrected by � to reach a steady value where
the HoL-blocking is minimised.

On the left side, Figure 7 shows the first 45 seconds of a
bulk transfer and how � corrects the estimation (each dot in the
plot curves show the average and standard deviation over 1s)
of the rate of the faster subflow throughout the period. On
the right side, Figure 7 shows the effect in the OFO buffer
size and, consequently, in the goodput for different �

�

. � is
corrected to lower values than its initial setting of 1.0, because
the model does not incorporate losses.

VI. EVALUATION

One of MPTCP’s goals is to perform at least as well as TCP
on the best path. For this reason, we compare MPTCP’s default
scheduler, minRTT, and BLEST against single path TCP on
3G and WLAN paths. We include both 3G+WLAN and
WLAN+WLAN scenarios in our evaluation to illustrate the
improvements in heterogeneous settings, while not impacting
MPTCP in homogeneous scenarios. In the following we show
emulations and real network experiments results.

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0

100

200

300

400

500

G
o
o
d
p
u
t
[k

iB
p
s]

WLAN 3G minRTT BLEST

0

500

1000

1500

2000

2500

3000

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

(a) 3G+WLAN

0

100

200

300

400

500

G
o
o
d
p
u
t
[k

iB
p
s]

WLAN
0 minRTT BLEST

0

5

10

15

20

25

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

(b) WLAN+WLAN
Figure 8. 3G+WLAN and WLAN+WLAN scenarios for bulk traffic with
minRTT, BLEST and TCP on 3G and WLAN.

A. Emulation Experiments
1) Bulk: Increasing application goodput for bulk trans-

fer has been one of the most common ways to evaluate
MPTCP’s performance. Figures 8(a) and 8(b) compares the
performance in terms of goodput and OFO queue size for
minRTT and BLEST with bulk traffic in 3G+WLAN and
WLAN+WLAN scenarios, respectively. In 3G+WLAN, we
observe that BLEST reduces OFO buffer size by 19%, while it
increases application goodput by 12%. Note that the MPTCP
default scheduler’s penalisation and retransmission (PR)
mechanism has a particular negative impact in 3G+WLAN. As
illustrated in Table II, MPTCP’s PR mechanism can send up to
0.53 MiB retransmissions, to overcome blocking of the WLAN
path. BLEST achieves better aggregation with less OFO buffer,
saving up to 80% of retransmissions. In WLAN+WLAN,
BLEST achieves similar application goodput with negligible
OFO buffer size of 2.5 kiB compared to minRTT.

2) Web: The total download time is not a perfect metric as
most browsers start rendering the page before the transmission
is complete. However, we are focusing on the transport-level
performance, and discard any browser-related optimisations.
Figures 9(a) and 10(a) show the completion times for minRTT
and BLEST for web traffic with different object sizes, see
Table I. We also compare the OFO buffer size shown in
Figures 9(b) and 10(b), and quantify the contribution of the
additional subflow with smaller web objects, the amount of
bytes transferred on each subflow relative to the transfer size,
see Figures 9(c) and 10(c). In 3G+WLAN, for smaller web
objects such as Wikipedia, the contribution of the additional
subflow (3G) can be considered negligible, with only up to 2%
of the total transfer. However, the small contribution of the 3G
path for Amazon can cause an impact of up to 7% reduction
in the completion time for BLEST compared to minRTT,
see Table III and Figure 9(b). For Huffington Post, although
the contribution of the additional subflow is still comparably
low (about 2%), the completion time for BLEST is 6%
lower than minRTT. In WLAN+WLAN, BLEST provides an

Table II
PENALISATION AND RETRANSMISSION MECHANISM TRIGGER IN

3G+WLAN WITH BULK TRAFFIC SHOWN IN FIGURE 3

Scheduler Traffic Retrans. Packets

3G+WLAN minRTT Bulk 366.37 0.53 MiB

BLEST 70.3 0.1 MiB

improvement of 3% for Huffington Post and 2% for Amazon
in completion times compared to minRTT. Overall, Table III
illustrates the benefits of BLEST where the lowest completion
time is achieved by the proposed BLEST algorithm for both
heterogeneous and homogeneous scenarios for all the websites
evaluated.

3) CBR: Live video has higher requirements of low latency
compared to other forms of video streaming, e.g., video on
demand. Moreover, live video is more sensitive to network
delay variations and, therefore, impacts the user experience the
most. As we want to assess whether MPTCP could be used
for applications other than bulk traffic, we evaluate live video
performance that is more sensitive to latency. Figures 11(a)
and 11(b) show the average application delay for minRTT
and BLEST for CBR traffic with 1 Mbps. In the 3G+WLAN
scenario, BLEST improved the application delay over minRTT
by 8% for CBR (1 Mbps) and a slight improvement in
OFO buffer size of 8% is also achieved, see also Table 11.
In the same scenario and with the same application traffic,
comparing BLEST to results shown in Figures 4, BLEST
performed worse than OTIAS with CBR, because OTIAS
completely discarded the 3G path. In contrast to that, DAPS
keeps utilising the 3G path. In WLAN+WLAN shown in
Figure 11(b), BLEST performed similar to MPTCP’s default
scheduler as expected.

B. Real Experiments
Finally, we validate the performance of the different sched-

ulers with real-network experiments within the same topology
as shown in Figure 2 for the emulation experiments, but now
constructed over NorNet [20]. To generate background traffic,
we use Virtual Machines (VM) from five commercial cloud
service providers (2x in Europe, 1x in North America and 2x
in Asia) connected via 100 Mbps links, as described in Sec-
tion III, towards the server machine in Figure 12. We also use
consumer hardware with a RaspberryPi connected to a home
DSL provider via WLAN and another interface via 3G/3.5G to
a mobile broadband operator. On the RaspberryPi side, back-
ground traffic from other connected devices congested both
WLAN and 3G. The experimental setup is shown in Figure 12.

Table III
AVERAGE WEB COMPLETION TIME, SEE FIGURES 4, 9, AND 10

minRTT OTIAS DAPS BLEST

Scenario Traffic Completion Time [s]

3G+WLAN Web
Wikipedia 0.421 0.392 0.435 0.337
Amazon 1.60 1.724 1.789 1.503

Huffington Post 4.87 4.858 4.932 4.62

WLAN+WLAN Web
Wikipedia 0.398 0.4107 0.333 0.324
Amazon 1.461 1.621 1.598 1.456

Huffington Post 4.218 4.509 4.393 4.114

Table IV
AVERAGE CBR APPLICATION DELAY, SEE FIGURES 5AND 11

minRTT OTIAS DAPS BLEST

Scenario Traffic [Mbps] Application Delay [ms]

3G+WLAN CBR 1 68 53.2 843.7 62.8

WLAN+WLAN CBR 1 52.18 53.49 54.02 52.24

437ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Wikipedia

0.5

1

1.5

Amazon
1

2

3

4

5

Huffpost

2

4

6

8

10

12

14

C
o
m

p
le

tio
n
 T

im
e
 [
s]

BLEST minRTT 3G WLAN

(a) Completion Time

Wikipedia
0

0.2

0.4

0.6

0.8

1

A
ve

ra
g

e
 M

P
T

C
P

 O
F

O
 Q

u
e

u
e

 [
ki

B
]

Amazon
0

10

20

30

40

50

Huffpost
0

50

100

150
minRTT BLEST

(b) MPTCP OFO Queue

Wikipedia
0

0.2

0.4

0.6

0.8

1

B
yt

e
 o

n
 P

a
th

 R
a

tio
 [

%
]

Amazon
0

0.2

0.4

0.6

0.8

1

Huffpost
0

0.2

0.4

0.6

0.8

1

minRTT−3G WLAN BLEST−3G WLAN

(c) Byte on Path: 3G and WLAN
Figure 9. 3G+WLAN for web traffic with Wikipedia, Amazon and Huffington Post with minRTT, BLEST and TCP on 3G and WLAN.

Wikipedia

0.2

0.3

0.4

0.5

Amazon
1

1.2

1.4

1.6

1.8

2

Huffpost

3.5

4

4.5

5

C
o
m

p
le

tio
n
 T

im
e
 [
s]

BLEST minRTT WLAN
0

(a) Completion Time

Wikipedia
0

0.2

0.4

0.6

0.8

1

A
ve

ra
g

e
 M

P
T

C
P

 O
F

O
 Q

u
e

u
e

 [
ki

B
]

Amazon
0

10

20

30

40

50

Huffpost
0

50

100

150
minRTT BLEST

(b) MPTCP OFO Queue

Wikipedia
0

0.2

0.4

0.6

0.8

1

B
yt

e
 o

n
 P

a
th

 R
a

tio
 [

%
]

Amazon
0

0.2

0.4

0.6

0.8

1

Huffpost
0

0.2

0.4

0.6

0.8

1

minRTT−WLAN
0

WLAN
1

BLEST−WLAN
0

WLAN
1

(c) Byte on Path: WLAN0 and WLAN1

Figure 10. WLAN+WLAN for web traffic with Wikipedia, Amazon and Huffington Post with minRTT, BLEST and TCP on WLAN (WLAN0 and WLAN1).

1 Mbps

0

100

200

300

400

500

A
p
p
lic

a
tio

n
 D

e
la

y
[m

s]

BLEST minRTT 3G WLAN

1 Mbps
0

5

10

15

M
a
xi

m
u
m

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

(a) 3G+WLAN

1 Mbps

45

50

55

60

A
p
p
lic

a
tio

n
 D

e
la

y
[m

s]

BLEST minRTT WLAN
0

1 Mbps
0

1

2

3

4

5

M
a
xi

m
u
m

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

(b) WLAN+WLAN
Figure 11. 3G+WLAN and WLAN+WLAN scenarios for 1 Mbps CBR
traffic with minRTT, BLEST and TCP on 3G and WLAN.

Multi-homed
Client

Subflow@3G

India
U.S.A.

Server

Subflow@WLAN

Lab network
3G!

WLAN!

U.K.

Germany

Download

Background
Traffic

Figure 12. Real network experiment setup

0

500

1000

1500

2000

2500

3000

G
o
o
d
p
u
t
[k

iB
p
s]

WLAN 3G minRTT BLEST

0

200

400

600

800

1000

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

(a) 3G+WLAN
Figure 13. 3G+WLAN for bulk traffic in real experiments, see Figure 12.

In our experiments, we used the same parameters and settings
from Section III as well as the same traffic from Section VI-A.
We evaluate the performance of different schedulers under
realistic network conditions, with real-network experiments,
in a constructed non-shared bottleneck scenario as used in the
emulation experiments shown in Figure 2.

1) Bulk: Figure 13 shows the application goodput and OFO
buffer size for bulk traffic with minRTT and BLEST compared
to TCP on 3G and WLAN paths. BLEST achieves on average
18% higher application goodput aggregation, while reducing
the amount of retransmissions by more than 37%, see Table V,
with a slight improvement in OFO buffer size of 3%.

2) Web: Figures 14(a) and 14(b) show the completion times
and OFO buffer sizes for the web transfers. With larger object
sizes, BLEST reduces the completion time by up to 10%,
while reducing the OFO size by up to 25%. Thus, MPTCP’s
performance with BLEST is closer to the WLAN path, only
3% worse than TCP on the best path (WLAN).

3) CBR: Figure 15(a) shows the the average application
delay and OFO buffer size for the 1 Mbps CBR traffic with
both minRTT and BLEST. BLEST improves the application
delay by 11% while reducing the OFO size by more than
20%. We noticed, looking at single experiments, that MPTCP’s
default scheduler had small packet bursts sent over 3G, causing
some spikes in the OFO buffer and, consequently, increasing
the application delay. However, BLEST used the 3G path in
the majority of the cases to send few single packets.

VII. CONCLUSION

Path heterogeneity is rather the rule than the exception with
MPTCP. Even subflows from a single machine can follow
different paths to the destination with distinct delay, capacity,

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Wikipedia

0.2

0.3

0.4

0.5

0.6

0.7

Amazon
1

1.5

2

2.5

3

Huffpost

1

2

3

4

5

6

7

C
o
m

p
le

tio
n
 T

im
e
 [
s]

BLEST minRTT 3G WLAN

(a) Completion time

Wikipedia
0

0.2

0.4

0.6

0.8

1

A
ve

ra
g
e
 M

P
T

C
P

 O
F

O
 Q

u
e
u
e
 [
ki

B
]

Amazon
0

10

20

30

40

50

Huffpost
0

50

100

150
minRTT BLEST

(b) MPTCP OFO queue
Figure 14. 3G+WLAN for web traffic with Wikipedia, Amazon and Huffin-
gton Post in real experiments, see Figure 12.

1 Mbps

0

200

400

600

800

1000

A
p
p
lic

a
tio

n
 D

e
la

y
[m

s]

BLEST minRTT 3G WLAN

1 Mbps
0

1

2

3

4

5

M
a

xi
m

u
m

 O
F

O
 Q

u
e

u
e

 [
ki

B
]

(a) Delay and MPTCP OFO queue
Figure 15. 3G+WLAN for CBR traffic in real experiments, see Figure 12.

and losses. Such path heterogeneity results in HoL-blocking
at the receiver undermining MPTCP’s overall performance.
To overcome path heterogeneity, MPTCP follows a reactive
approach and penalizes the subflows that cause HoL-blocking,
through the penalisation and retransmission mechanism.

In this paper, we highlighted the limitations of such an
approach for different application types in heterogeneous sce-
nario through emulations and real-world experiments. More-
over, we have implemented and systematically evaluated
scheduling algorithms aiming at mitigating this issue. We
found, however, that neither was able to perform well in all
multi-homing scenarios and traffic use-cases. We therefore
proposed BLEST, a new scheduler based on a BLocking
time ESTimation. Compared to previous proposals, BLEST
directly considers the prospective HoL-blocking as a metric
to minimise, and based on this metric, it dynamically selects
whether it is worthwhile to schedule a packet on a specific
subflow, or to ignore it. This allowed us to eliminate the pe-
nalisation and retransmission by implementing a more robust,
proactive, scheduling metric. We evaluated our algorithm in
emulated and real experiments with different application traffic
(CBR, web and bulk). By comparing BLEST with minRTT,
as well as the alternative DAPS and OTIAS, we showed that
our approach outperfoms all algorithms across the presented
scenarios, achieving its goal of reducing HoL-blocking, and
consequently unnecessary retransmissions. This results in an
increasing application goodput, lower packet delay and com-

Table V
PENALISATION AND RETRANSMISSION ALGORITHM RETRANSMISSIONS’

OVERHEAD IN 3G+WLAN WITH BULK TRAFFIC SHOWN IN FIGURE 12

Scheduler Traffic Retrans. Packets

3G+WLAN minRTT Bulk 33.42

BLEST 21.3

pletion time, and reduced receiver buffer size.
For future work, we believe that both BLEST and OTIAS

follow the right approach towards robust and effective schedul-
ing for heterogeneous scenarios. We want to expand our eval-
uation with the method proposed in [5], add other elements of
heterogeneity, e.g., other network access technologies, evaluate
different application performance metrics, e.g., throughput
aggregation versus delay constraints, increase the number of
subflows and test the approach in mobility scenarios.

REFERENCES

[1] G. Sarwar, R. Boreli, E. Lochin, and A. Mifdaoui, “Performance
evaluation of multipath transport protocol in asymmetric heterogeneous
network environment,” in ISCIT 2012.

[2] C. Raiciu, C. Paasch, S. Barré, A. Ford, M. Honda, F. Duchêne,
O. Bonaventure, and M. Handley, “How Hard Can It Be? Designing
and Implementing a Deployable Multipath TCP,” in NSDI 2012.

[3] S. Ferlin, T. Dreibholz, and O. Alay, “Multi-path transport over hetero-
geneous wireless networks: Does it really pay off?” in GLOBECOM
2014.

[4] C. Paasch, S. Ferlin, O. Alay, and O. Bonaventure, “Experimental
evaluation of multipath TCP schedulers,” in ACM SIGCOMM Capacity
Sharing Workshop (CSWS), 2014.

[5] C. Paasch, “Improving multipath TCP,” Ph.D. dissertation, UCLouvain
/ ICTEAM / EPL, Nov. 2014.

[6] A. Singh, C. Goerg, A. Timm-Giel, M. Scharf, and T.-R. Banniza, “Per-
formance comparison of scheduling algorithms for multipath transfer,”
in GLOBECOM 2012.

[7] G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, and G. Smith, “Mitigating
receiver’s buffer blocking by delay aware packet scheduling in multipath
data transfer,” in WAINA 2013.

[8] N. Kuhn, E. Lochin, A. Mifdaoui, G. Sarwar, O. Mehani, and R. Boreli,
“DAPS: Intelligent delay-aware packet scheduling for multipath trans-
port,” in ICC 2014.

[9] F. Yang, Q. Wang, and P. Amer, “Out-of-order transmission for in-order
arrival scheduling policy for multipath TCP,” in WAINA 2014.

[10] B. Arzani, A. Gurney, S. Cheng, R. Guerin, and B. T. Loo, “Impact of
path characteristics and scheduling policies on MPTCP performance,”
in WAINA 2014.

[11] S. Barré, C. Paasch, and O. Bonaventure, “Multipath TCP: From theory
to practice,” in IFIP Networking 2011.

[12] C. Paasch, G. Detal, F. Duchêne, C. Raiciu, and O. Bonaventure,
“Exploring mobile/WiFi handover with multipath TCP,” in CellNet 2012.

[13] C. Paasch, R. Khalili, and O. Bonaventure, “On the benefits of applying
experimental design to improve multipath TCP,” in CoNEXT 2013.

[14] C. Raiciu, S. Barré, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley, “Improving Datacenter Performance and Robustness with
Multipath TCP,” in SIGCOMM 2011, Toronto, ON, Canada.

[15] I. A. Halepoto, F. Lau, and Z. Niu, “Management of buffer space for the
concurrent multipath transfer over dissimilar paths,” in DINWC 2015.

[16] J. Ahrenholz, “Comparison of CORE network emulation platforms,” in
MILCOM 2010.

[17] Sandvine Intelligent Broadband Networks, “Global
Internet Phenomena Report,” Jul. 2013. [Online].
Available: https://web.archive.org/web/20141216103806/https:
//www.sandvine.com/downloads/general/global-internet-phenomena/
2013/sandvine-global-internet-phenomena-report-1h-2013.pdf

[18] Cisco Visual Networking Index, “Forecast and
Methodology, 2014–2019,” 2014. [Online]. Avail-
able: http://www.cisco.com/c/en/us/solutions/collateral/service-provider/
ip-ngn-ip-next-generation-network/white paper c11-481360.pdf

[19] A. Botta, A. Dainotti, and A. Pescapé, “A tool for the generation
of realistic network workload for emerging networking scenarios,”
Computer Networks, vol. 56, no. 15, pp. 3531–3547, 2012.

[20] E. G. Gran, T. Dreibholz, and A. Kvalbein, “NorNet core — a multi-
homed research testbed,” Computer Networks, Special Issue on Future
Internet Testbeds, vol. 61, pp. 75–87, Mar. 2014.

439ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Multi-Flow Congestion Control with Network
Assistance

Yannis Thomas, George Xylomenos, Christos Tsilopoulos and George C. Polyzos
Mobile Multimedia Laboratory & Department of Informatics

School of Information Sciences and Technology
Athens University of Economics and Business

Patision 76, Athens 10434, Greece
E-mail: {thomasi, xgeorge, tsilochr, polyzos}@aueb.gr

Abstract—A well-known technique for enhancing the perfor-
mance and stability of content distribution is the use of multiple
dissemination flows. Multipath TCP (MPTCP), the most popular
multiflow protocol on the Internet, allows receivers to exploit
multiple paths towards a single sender. Nevertheless, MPTCP
cannot fully exploit the potential gains of multipath connectivity,
as it must fairly share resources with (single-flow) TCP, without a
clear understanding of whether the available paths do share any
bottleneck links. In this paper, we introduce a hybrid congestion
control algorithm for multisource and multipath transport that
enables higher bandwidth utilization compared to MPTCP, while
remaining friendly to TCP-like flows. Our solution employs (i) an
in-network module that offers essential topological information
and (ii) Normalized Multiflow Congestion Control (NMCC), a
novel end-to-end congestion control algorithm. While NMCC
is architecture-independent and the in-network module can be
adapted for Multi-Protocol Label Switching (MPLS) or Software
Defined Networks (SDNs), our prototype was implemented on
the Publish-Subscribe Internetworking (PSI) architecture, which
offers centralized path formation and source routing. Using an
actual protocol implementation deployed on our test-bed, we
provide experimental results which validate the effectiveness
of our design in terms of performance, adaptation to shifting
network conditions and friendliness to other flows.

I. INTRODUCTION

Experience with content distribution indicates that multi-
source and multipath [1], i.e. the use of multiple sources
and multiple paths to each source, respectively, can benefit
both network operators and end users. First, the exploitation
of multiple paths allows achieving higher throughput via
bandwidth aggregation. Second, the use of multiple sources
offers resilience to both link and source failures via path
or source switching. As a result, multisource and multipath,
collectively referred to as multiflow in this paper, provide load
balancing and higher resource utilization, by spreading flows
across more links and sources.

Multiflow transport is the focus of considerable research
activity, due to the increase of multihomed devices, such as
smartphones with WiFi, Bluetooth and Cellular connectivity.
A significant body of research has focused on the side-effects
of multipath, such as lack of TCP friendliness [2], [3], [4], [5],
[6], [7]. This issue arises from the uncoupled congestion con-
trol scheme originally proposed for Multipath TCP (MPTCP),

where an independent congestion window is used for each
subflow. This causes the multiflow transfer of N flows to
grasp up to N times more bandwidth than a single-path flow
over the same bottleneck, thus causing the latter to starve.
The current MPTCP congestion control algorithm achieves
TCP-friendliness by limiting all subflows, so as to fairly
share bandwidth with single-path flows. Nevertheless, blindly
restricting multipath flows can lead to degraded resource
utilization when friendliness is not an issue, for example, when
a multipath flow exploits physically disjoint paths.

Efficient utilization of network resources is also the driving
force of the Publish Subscribe Internet (PSI) architecture,
an instantiation of the Information-Centric Networking (ICN)
paradigm [8]. Following ICN principles, PSI bases com-
munication on self-identified information items, rather than
end-hosts. PSI also supports centralized path selection via
a special network entity, the Topology Manager, and source
routing via LIPSIN forwarding [9]. We have exploited these
features in previous studies [10], [11], where we presented
the Multisource and Multipath Transfer Protocol (mmTP),
a multiflow transport protocol for PSI. The use of multiple
paths to multiple sources was shown to greatly enhance the
performance and resilience of mmTP over the, inherently
unpredictable, PlanetLab testbed [11].

In this paper we focus on multiflow congestion control,
proposing to exploit any available topological knowledge of
the network to better balance performance and friendliness.
Specifically, we present and evaluate a novel congestion
control scheme for multiflow transport that consists of two
independent modules: (i) Normalized Multiflow Congestion
Control (NMCC), an end-to-end multiflow-aware algorithm,
and (ii) an in-network mechanism to assist NMCC. NMCC
is a simple, yet effective algorithm that manages bandwidth
aggregation under the friendliness constraint, even in the face
of heterogeneous paths and sudden changes in the congestion
level. On the other hand, the in-network mechanism provides
information about shared bottlenecks, thus allowing NMCC to
adapt its behavior accordingly. Furthermore, we explain how
our scheme can be adapted to IP networks operating over
technologies utilizing centralized path computation compo-
nents, including Multi-Protocol Label Switching (MPLS) and
Software Defined Networks (SDNs).ISBN 978-3-901882-83-8 c⃝ 2016 IFIP

440ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

The remainder of this paper is organized as follows. In
Section II we summarize existing work on multiflow transport
in IP and ICN networks. In Section III we briefly describe PSI
and its features that allow us to realize selective friendliness. In
Section IV we introduce our hybrid congestion control scheme,
which consists of NMCC and the in-network assistance mech-
anism. In Section V we experimentally evaluate our design,
using a prototype implementation. In Section VI we explain
how the required in-network mechanisms can be provided by
MPLS and SDNs. We provide our conclusions in Section VII.

II. BACKGROUND WORK

Multipath congestion control is an active research topic for
both traditional IP networks and ICN clean-slate architectures.
The common goal is maximizing resource utilization, in terms
of exploiting the bandwidth available in multiple paths, while
not harming competitive single-flow transfers, a constraint also
known as TCP-friendliness.

A. TCP-friendliness
When a multiflow connection with N independent subflows

competes against a single-flow connection for the same bottle-
neck link, the multiflow connection can be up to N times as
aggressive as the single-flow one. While we usually say that
the multiflow connection is not TCP-friendly, we will use the
term friendly to imply single-flow friendly, defined as follows:

When a multiflow connection competes with a single-flow
connection for the same network resource, the former should
not acquire a larger share of that resource than the latter.

The price of friendliness is performance degradation: often,
the bandwidth of the multiple subflows is not fully exploited,
to prevent the starvation of single-flow connections. However,
when the paths taken by each subflow are disjoint, meaning
that we do not have multiple subflows sharing the same bottle-
neck link, this needlessly penalizes the multiflow connection.

B. Multiflow Congestion Control in IP
The coupled1 congestion control algorithm of Multipath

TCP (MPTCP) jointly tackles performance and friendli-
ness [2]. MPTCP represents an evolution of TCP-Reno and
EWTCP [5], adopting the slow-start and congestion avoid-
ance phases per subflow, while also addressing multipath-
specific problems, such as fair bottleneck sharing, Round Trip
Time (RTT) mismatch and shifting network load. MPTCP
manages its subflows under two constraints: (i) a multipath
flow should achieve at least as much throughput as it would
get with single-path TCP on the best of its paths and (ii) a
multipath flow should grasp no more capacity on any path or
collection of paths than a single-path TCP flow using the best
of those paths. The second constraint, which assures MPTCP’s
friendliness towards unicast connections, compromises perfor-
mance when friendliness in not an actual issue, for example,
when the available paths do not share a bottleneck link.

Even though this decision may be far from optimal, it is
imposed by the IP routing architecture. Due to the distributed,

1We use the term coupled to refer to the final algorithm presented in [2].

hop-by-hop routing of IP networks, a transport protocol can-
not reliably detect whether the dissemination paths used are
overlapping. As a result, its congestion control module cannot
detect whether friendliness is an issue or not. There are some
application-layer solutions for the end-to-end detection of
shared bottlenecks [12], [13], but their efficiency is debatable.
In [12] the authors detect shared bottlenecks based on the tem-
poral correlation of fast-retransmit packets, while in [13] the
authors evaluate both loss-based and delay-based correlation
techniques, arguing that the loss-based technique is unreliable,
while the delay-based methods require considerably more time
for accurate results; also, the convergence time of the loss-
based method is roughly 15 ms, which is unrealistically high
for a general purpose multiflow protocol.

C. Multiflow Congestion Control in ICN
In ICN networks, the location-based networking of IP

is replaced with information-based routing and forwarding.
These features can support more efficient transport patterns,
such as multipath, multisource and multicast, since they pin
transport paths on the physical topology. Thereupon, it is
often proposed that ICN routers should assist topology-aware
congestion control so as to better handle friendliness issues.

Along these lines, in [14] and [15] the authors discuss
the design of transport protocols that pull data from multiple
sources via multiple paths over the Content Centric Network-
ing (CCN) architecture [8], exploiting congestion detection
and control in the forwarding nodes. In [14] flow control
and part of congestion control is managed by the receiver,
but in-network congestion control is also present in the form
of dynamic request forwarding: intermediate routers choose
on-the-fly the most appropriate interface to forward each
packet, shifting flows to less congested parts of the network.
In contrast, in [15], traffic control is exclusively assigned
to in-network nodes, which separate content (cache) from
forwarding (queue) storage: each router maintains a per-
flow queue with the Deficit Round Robin (DRR) scheduling
policy to determine which packets must be dropped and/or
connections must be rejected, based on link utilization and
fairness constraints. The receiver uses a simple control loop,
responding to explicit congestion signals from routers.

The stateful CCN-based approaches have some important
disadvantages. First, CCN nodes face significant overheads:
the estimation of link utilization for congestion detection
in [14], [15] and the additional per packet state for fair queuing
in [15] can impact their performance, making the achievement
of wire speed forwarding doubtful. Second, distributed in-
network congestion control has a delayed reaction to losses.
While TCP rapidly detects lost packets via either out-of-
sequence packets or time-outs, in [15] authors use explicit
notifications to the receiver when a queue drops a packet; [14]
introduces a novel time-out estimation function, which is not
investigated with regard to its effects on the other CCN timers.

A different approach for enriching congestion control with
topological information, involves an in-network notification
system that can report the existence of shared bottlenecks.

441ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

This notification system, which must be aware of both network
structure and dissemination routes, should explicitly indicate
path disjointness to the end-hosts, allowing them to apply
friendliness mechanisms more selectively. This design offers
accurate information without convergence delay and without
stressing the core routers, which are the weaknesses of the IP
and CCN solutions, respectively. PSI follows this approach,
since routing takes place at a conceptually centralized in-
network entity, the Topology Manager. We briefly discuss the
PSI architecture in the following section.

III. MULTIFLOW TRANSPORT IN THE PSI ARCHITECTURE

A. The PSI architecture

In the PSI architecture, content objects are treated as publi-
cations, content sources as publishers and content consumers
as subscribers. User programs exploit a publish/subscribe
API for advertising and requesting information. A fundamen-
tal design tenet in PSI is the clear separation of its core
functions [16]: (i) the Rendezvous function tracks available
publications and resolves subscriptions to publishers, (ii) the
Topology Management and Path Formation function monitors
the network topology and forms forwarding paths and (iii) the
Forwarding function handles packet forwarding [17].

Network nodes in a PSI network are classified into Ren-
dezvous Nodes (RNs), Topology Managers (TMs) and For-
warding Nodes (FNs). The RNs receive and store the pub/sub
requests and match publications with subscriptions of the same
content. When matching takes place, the RN asks a TM to find
the appropriate dissemination routes. The TM, which is aware
of topology, network conditions and content characteristics,
discovers the “best” path(s) and encodes them into LIPSIN
identifiers [17]. LIPSIN forwarding, which is realized by the
FNs, offers line-speed stateless source routing. Finally, the
LIPSIN identifiers are delivered to the end-host applications
that exploit them for direct communication, thus delegating
congestion control to the network edges.

The centralized nature of the TMs raises concerns about
PSI’s feasibility, since they must compute paths for all network
connections. However, recent work showed that a centralized
intra-domain TM service is feasible: for a typical national-
scale network provider in the UK, it was demonstrated that a
reasonable number of TM instances with precomputed paths
can efficiently cope with the resulting network load [18].

B. Multipath and multisource in PSI

We have presented a multiflow transport protocol for PSI
in previous studies [10], [11], the Multisource and Multipath
Transfer Protocol (mmTP). mmTP is a reliable protocol that
supports multisource and multipath data transfers by exploiting
PSI’s source routing and centralized path selection. mmTP
relies on a TM function that can discover multiple paths
between a receiver and multiple senders. These paths are
encoded in LIPSIN identifiers that are later sent to the end-
hosts. Given that LIPSIN identifiers encode dissemination
routes without unveiling the actual dissemination paths, or

even the destination nodes, the end-hosts acquire a set of dis-
tinct options for requesting data, which may involve different
publishers and/or different paths. Hence, mmTP provides a
generic interface, transparently supporting any combination of
multisource and/or multipath services.

The design of mmTP allows congestion control in two
levels: (i) path selection by the TMs and (ii) path utilization by
the end-hosts. Specifically, the TMs, which are aware of net-
work conditions, select appropriate routes for load balancing
and bandwidth aggregation. We have previously shown the
gains of centralized path formation in [19], where we used
QoS routing schemes to satisfy certain throughput and error
rate constraints in PSI. Based on these routes, the end-hosts
evaluate in real-time the performance of each path and adjust
the amount of data to be delivered through it. The congestion
control mechanism used at the end-hosts, which is derived
from TCP, pushes complexity at the network edges, thus
enhancing network stability and keeping forwarding stateless.

IV. HYBRID MULTI-FLOW CONGESTION CONTROL

In this section we present a hybrid multiflow congestion
control algorithm that enhances resource utilization without
violating the friendliness requirement. Our novel congestion
control scheme consists of two independent modules: (i)
NMCC, an end-to-end multiflow-aware algorithm, and (ii) an
in-network mechanism to assist congestion control. NMCC is
simple, yet it outperforms the coupled congestion control of
MPTCP in terms of friendliness in short transfers and perfor-
mance in heterogeneous networks. The in-network mechanism
exploits knowledge of shared bottlenecks to enhance the
performance adaptation of NMCC.

A. Path Formation
The best case scenario for multiflow communication arises

when all communication paths are physically disjoint, that is,
they do not share any links or routers. In this case, each
multiflow connection can use the same congestion control
algorithm as single-flow connections. In contrast, when some
subflows use paths which are not disjoint, their aggressiveness
needs to be limited in order for them to remain friendly.

Path selection in PSI is performed by the TMs, whose
operation extends beyond the scope of this paper. Our only
requirement is that when the TMs return a set of paths encoded
as LIPSIN identifiers, a group id code should be added to
each identifier so as to indicate non-disjoint paths. Specifically,
all paths that share at least one link with each other (not
necessarily the same link) are marked with the same group id.
In general, for any given underlying routing mechanism, the
in-network assistance mechanism must be able to signal to
NMCC how the available paths are grouped by group id.

For example, Figure 1 shows three examples of path com-
position along with the corresponding group id codes. In
Figure 1(a) the three paths are disjoint, thus each path is
marked with a distinct group id, whereas in Figure 1(b) paths
A and B share a link, thus they have the same group id. In
1(c) Paths A and B share a link and paths B and C share a

442ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 1. Three different cases of path composition and their corresponding group id codes: (a) Disjoint paths, (b) Paths A and B share one link, (c) Paths A
and B share one link, paths B and C share another link.

different link; they still get the same group id, to ensure that
each path belongs to a single group. This simplifies operation,
at the cost of losing some efficiency, since a congested link
may only affect some of the paths in a group.

B. Window Management
When the available paths have different group ids (i.e.,

they do not share any links), then window management does
not consider friendliness: our algorithm creates a distinct TCP-
like subflow for each path with an individual congestion
window variable (cwnd), RTT-based loss detection mecha-
nism, retransmission mechanism and slow start and conges-
tion avoidance algorithms. Therefore, window management is
similar to MPTCP’s uncoupled congestion control scheme.

In contrast, when multiple paths have the have the same
group id (i.e., they share some links) our NMCC algorithm is
used to maintain friendliness. NMCC differs from the coupled
congestion control algorithm of MPTCP in two respects. First,
coupled MPTCP only tries to limit its aggressiveness during
congestion avoidance, while NMCC also considers slow start.
Second, NMCC is simpler to operate than coupled MPTCP.
The coupled MPTCP algorithm is a variant of TCP Reno,
where aggressiveness is controlled by reducing the growth rate
of the congestion window per RTT. This introduces compli-
cations when paths have different RTTS and shifting network
loads, which are due to the use of a single-flow solution to
a multiflow problem. On the other hand, NMCC exploits a
well-known TCP-fairness issue, the fact that connections with
higher RTTs are less aggressive [20], to ensure friendliness.
Instead of reducing the growth of the congestion window per
RTT, NMCC controls the congestion window by inflating the
RTTs; this reduces complexity, simplifies friendliness during
slow start and avoids multiflow-related issues due to RTT
mismatch and sudden load and congestion shifts.

1) Congestion Avoidance: NMCC uses an inflated RTT ′
i ≥

RTTi for each subflow i to control window growth; the in-
flated RTT ′

i makes the congestion window grow slower com-
pared to a single-flow connection. We introduce a friendliness
factor m ≥ 1 so that RTT ′

i = m∗RTTi, trying to approximate

the two goals of fair bottleneck sharing: (i) the growth rate
of all subflows sharing a link should be no more than that
of a single-flow connection and (ii) the overall growth rate
should not be less than that of the most aggressive single-flow
connection. Since the most aggressive single-flow connection
has the minimum RTTi = RTTmin and during congestion
avoidance the growth rate of a single-flow connection is one
packet per RTT , the rate increase intervals during congestion
avoidance must satisfy the following equation:

1

RTTmin
=

N∑

i=1

1

RTT ′
i

=
N∑

i=1

1

m ∗RTTi

where N is the number of jointly controlled subflows. We can
therefore estimate m using the following equation:

m = RTTmin ∗
N∑

i=1

1

RTTi

To understand the friendliness factor m, consider a simple
example. When the TM offers two paths marked with the
same group id, we initially set m = 2, the number of
jointly controlled paths. Upon receipt of the first packet over
each path, the RTTi’s are updated and m is re-calculated.
If RTT1 = 50 ms and RTT2 = 100 ms, then m = 1.5,
so RTT ′

1 = 75 ms and RTT ′
2 = 150 ms, therefore NMCC

will increase its overall congestion window by three maximum
segment sizes (MSS) during a period of 150 ms: two MSS from
the first subflow and one MSS from the second. This is equal
to the increase of the fastest single-flow connection: one MSS
per 50 ms.

By applying m to all subflows, we adapt the growth rate
across all paths. This means that, although we favor the
subflow which operates over the fastest path, we do not
neglect the slower paths. Therefore, NMCC does not require
probing to detect load changes on an unused path, whereas
the coupled MPTCP algorithm introduces a special parameter
for controlling the amount of probing. NMCC can therefore
perform efficiently in heterogeneous environments, adapting
fast to path failures and congestion bursts. For instance,

443ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

consider an integrated terrestrial-satellite network where the
terrestrial link has 10 ms delay and the satellite one 250 ms. In
this case m = 1.004, hence window growth is not constrained
and NMCC effectively grasps the available capacity.

2) Slow Start: Most work on multiflow transport only deals
with congestion avoidance, disregarding slow start. Neverthe-
less, during the evaluation of NMCC we noticed that friend-
liness was compromised when (i) the content was relatively
small and (ii) the path was very congested. An analysis of
the evolution of the congestion windows showed that NMCC
gained bandwidth almost N -times faster than a single-flow
connection during slow start, with N subflows. Since short
and very congested connections spend a substantial fraction
of their lifetimes in slow start, meeting the friendliness goals
in congestion avoidance was not enough to amortize NMCC’s
aggressive behavior during slow start.

One way to reduce aggressiveness during slow start is to
reduce ssthresh so as to move faster to congestion avoidance.
Unfortunately, this has two disadvantages. First, when a con-
nection starts, the available bandwidth of the communication
path is unknown, thus ssthresh should be set high enough to
probe it. Second, reducing ssthresh only limits the amount
of bandwidth that the protocol will re-acquire, not its rate of
acquisition. For this reason, we reused the friendliness factor
m to also control slow start.

During slow start, a subflow i doubles its congestion win-
dow during a period of RTTi; its growth rate is cwndi

RTTi
, while

during congestion avoidance it drops to 1
RTTi

. We introduce
Ωi and Ω′

i, the regular and the friendly growth rate of subflow
i, respectively, where Ωi = m ∗Ω′

i. Again, we want to match
the growth rate of the most aggressive flow, Ωmax, therefore
we have the following equation:

Ωmax =
N∑

i=1

Ω′
i =

N∑

i=1

Ωi

m

for N jointly controlled subflows. We can then calculate m
based on the regular growth rates of all subflows as follows:

m =

∑N
i=1 Ωi

Ωmax

Consequently, each flow’s growth rate Ω′
i becomes cwndtcp

i
m∗RTTi

during slow start and 1
m∗RTTi

during congestion avoidance,
where cwndtcpi is the equilibrium window of TCP for path
i. As increases in slow start are multiplicative, any change
in window growth affects the subsequent increases: smaller
windows grow slower. Therefore, during slow-start we use
cwndtcp in order to assure that the cumulative growth of
NMCC is equal to single-flow TCP. Algorithm 1 provides the
combined slow start and congestion avoidance algorithm. Note
that the algorithm translates the “inflated RTTs” of NMCC into
MPTCP-like “decreased window growths” to avoid any side-
effects of prolonged timeouts, such as delayed loss detection.

V. PERFORMANCE EVALUATION

In this section we focus on the extent to which our hybrid
congestion control can meet the friendliness requirement of

Algorithm 1 Window adjustment and estimation of m.
1: procedure INCREASE WINDOW
2: if (cwnd < ssthresh) then
3: cwnd← cwnd+ cwndtcp ∗MSS/(cwnd ∗m)
4: else
5: cwnd← cwnd+MSS/(cwnd ∗m)
6: end if
7: end procedure
1: procedure ESTIMATE M
2: max rate← 0
3: total rate← 0
4: for (i ∈ subflows) do
5: if (subflow statei == CONG AVOID) then
6: rate←MSS/RTTi

7: else
8: rate← cwndi/RTTi

9: end if
10: total rate← total rate+ rate
11: if (rate > max rate) then
12: max rate← rate
13: end if
14: end for
15: m← total rate/max rate
16: end procedure

multiflow transfers in different network scenarios. We have
implemented our scheme as part of the mmTP protocol that
runs over Blackadder, the PSI prototype implementation [21].
Our implementation includes the mmTP sender and receiver
applications with NMCC enabled, as well as a TM that com-
putes the k-shortest paths from every publisher to a subscriber,
using the algorithm by Yen [22] with hop count as the metric.2

We deployed Blackadder with mmTP in several LAN
topologies, using 100 Mbit switches and workstations as
network nodes. Our experiments examine (i) the effect of TM
assistance when paths are disjoint, (ii) the effectiveness of
NMCC with overlapping paths, (iii) NMCC’s behavior in short
transfers (iv) the friendliness of NMCC and coupled MPTCP
and (v) NMCC’s behavior in heterogeneous networks.

In our testbed, the transmission latency among all nodes is
0.2-0.3 ms and the bandwidth of each link is 11.7 MB/s, as
estimated using iperf.3 The duration of transfers during all
experiments is 20 seconds, except when mentioned otherwise.
In order to enhance the reliability of our conclusions, we
repeated each experiment until the margin of error was less
than 1%, so as to achieve a confidence level of 95%.

A. Disjoint paths

We first deployed mmTP in the topology of Figure 2(a),
where we investigated the performance gains of our hybrid
congestion control scheme when paths are known to be

2Our implementation is available at http://mm.aueb.gr/.
3Available at http://iperf.sourceforge.net/.

444ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 2. Topology for performance evaluation with (a) disjoint paths and (b)-(c) shared paths.

Transmission mode Transfer rate (MB/s)
Multipath with TM assistance 21.3
Multipath with no TM assistance 20.7
Single-flow from P1 to S1 10.6
Single-flow from P2 to S2 10.7
Single-flows on both paths 21.1

TABLE I
AVERAGE TRANSFER RATES WITH DISJOINT PATHS.

disjoint. Figure 2(a) supports one multisource path from pub-
lishers P1 and P2 to subscriber S1 and two single-paths from
publishers P1 and P2 to subscribers S1 and S2, respectively.
Thereupon, we ran some experiments with no contending
traffic, so as to establish a performance baseline, leading to
the average transfer rates shown in Table I. These experiments
include deployment of multiflow mmTP connections with
and without TM assistance, as well as single-flow mmTP
connections. We notice that each path offers roughly 10.6
MB/s throughput and multiflow mmTP achieves 21.3 and 20.7
MB/s with and without TM assistance, respectively. These
preliminary results validate that mmTP fully exploits available
capacity and imply that TM assistance slightly enhances
performance, even in the absence of competitive flows.

We then deployed mmTP in multipath mode over the same
topology (S1 requests data from both P1 and P2), with one
or two single-flow connections competing over one or both
disjoint paths (S1 to P1 and S2 to P2). In Figure 3(a) we show
the average share of the total bandwidth that mmTP achieved
in each case, depending on whether TM assistance was turned
on or off. The results validate the performance gains and the
friendliness of NMCC. Ideally, with one contending single-
flow connection NMCC should use half of the bandwidth over
one path and the entire bandwidth over the other, or 75%
of the total bandwidth, while with two contending single-
flow connections NMCC should use half of the bandwidth
over each path, or 50% of the total bandwidth. With TM
assistance, mmTP acquires 67.5% and 49.5% of the overall
bandwidth, respectively. Not only is this higher than with
no TM assistance, it is also closer to the ideal bandwidth
share. The bandwidth shares of mmTP with no TM assistance,
which are only 52.6% and 36.8%, respectively, correspond
to an equal share of the bandwidth among all connections,
disregarding the actual topology.

Fig. 3. Bandwidth share of mmTP (a) with and without TM assistance and
(b) with and without friendly slow start in short transfers.

B. Shared paths

To investigate the case where paths share some links,
mandating a less aggresive behavior to ensure friendliness,
we used the topology shown in Fig. 2(b), where Publishers
and Subscribers are connected by paths sharing a link. We
deployed a multisource connection from subscriber S1 to
publishers P1 and P2, in parallel with 1, 2, 4 and 9 single-
flow connections from subscriber S1 to publisher P1 and from
subscriber S2 to publisher P2; these connections are distributed
uniformly between the two paths.

Fig. 4(a) demonstrates the average bandwidth percentage
acquired by NMCC and all single-flow connections, while
Fig. 4(b) displays the average transfer rate achieved by NMCC
and the average unicast connection. NMCC acquires 51.1%,
35.5%, 21.5% and 10.8% of the bottleneck link’s bandwidth
when competing with 1, 2, 4 and 9 single-flow connections,
respectively, marginally over the optimal sharing ratios of
50%, 33.3%, 20% and 10%, respectively, thus satisfying the
friendliness goal. The slight performance advantage of NMCC,
also evident in the transfer rates, is a side effect of the friend-
liness constraint: since window growth is distributed across
all subflows, NMCC approaches congestion limits gradually,
resulting in slightly less retransmissions than the average
single-flow connection (2.1% on average).

We also examined NMCC’s response to a sudden change
in the congestion level, by repeating the previous experiment,
but this time starting the multiflow connection either 7 sec
after or 7 sec before the start of the single-flow connections.

445ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 4. (a) Bandwidth shares of NMCC and all single-flow connections. (b) Transfer rate of NMCC and the average single-flow connection.

The results of these experiments are nearly identical to the
previous ones, as NMCC acquires 52%, 35.6%, 21.1% and
10.8% of the bandwidth when competing with 1, 2, 4 and
9 single-flow connections, respectively. Consequently, NMCC
manages to efficiently share bandwidth with newly established
connections, as well as to obtain a fair share of bandwidth
when launched in an already congested path.

C. Short Transfers

NMCC is friendly during slow-start, unlike MPTCP which
is only concerned with congestion avoidance. This is particu-
larly important for short transfers, where friendly congestion
avoidance cannot compensate for an unfriendly slow start. To
evaluate this aspect of NMCC, we reused the shared link topol-
ogy of Fig. 2(b), deploying one multisource NMCC connection
and either 1 or 2 contending single-flow connections. Each
connection transfers a 10 MByte object, which would require
less than 1.1 second to complete in the absence of contention.
Fig. 3(b) presents the percentage of overall bandwidth acquired
by NMCC when friendly slow start is turned on or off.

With unfriendly slow start, NMCC grabs a disproportionate
amount of bandwidth from the competing connections, com-
pared to the ideal shares of 50% and 33%. In the first case,
NMCC gets 57.4% of the bandwidth; while in the second
case it gets 38.9%, or 14.8% and 16.8% more than the fair
share, respectively. On the other hand, NMCC with friendly
slow start gains 49.4% and 34.8% of the total bandwidth.
Consequently, NMCC is friendly even with short transfers.

For even shorter transfers, for example Web objects a few
KBytes long, the unfairness is even more pronounced, as such
connections can easily complete during slow start. The reason
for presenting results from a 10 MByte transfer is to show
that the initial over-aggressiveness during slow start cannot be
compensated even with longer transfers.

D. Friendliness of NMCC and MPTCP

We then compared the friendliness of the hybrid approach
of NMCC and the coupled congestion control of MPTCP [2].
MPTCP’s design is similar to NMCC, in that congestion
management takes place at the endpoints and time-out esti-
mation is based on RTTs. These similarities simplified the

implementation of the coupled congestion control algorithm
of MPTCP in our mmTP implementation.

For these experiments we used the topology of Fig. 2(c),
where all paths share at least one link; MPTCP’s inability to
support TM assistance would make a comparison over disjoint
paths unfair. We deployed a number of single-path flows from
subscriber S1 to publisher P1, as well as multipath flows from
subscriber S2 to publisher P2, using the paths indicated in
Fig. 2(c). Multipath connections utilized either the coupled
MPTCP or the NMCC algorithm. We denote each experiment
as X : Y : Z, where X shows the number of single-path
flows, Y shows the number of multipath flows using coupled
MPTCP and Z shows the number of those using NMCC.

The results of these experiments are summarized in Fig. 5.
Fig. 5(a) displays the deviation of the obtained bandwidth
of each connection from its fair share which, due to the
shared link, is given by Link Capacity

#Connections . Results below 0%
indicate overly friendly flows, while results over 0% indicate
overly aggressive ones. We can distinguish three groups in
this figure. The first group reflects experiments ‘1:3:3’, ‘1:2:2’
and ‘1:1:1’, where MPTCP is too friendly, resulting in poor
performance. The second group reflects experiment ‘2:1:1’,
where all connections are close to their fair shares. The
third group reflects experiments from ‘3:1:1’ to ‘8:1:1’, where
multiflow connections are more aggressive, making single-
flow ones lose some of their share.

Figure 5(b) presents the above results for multipath con-
nections normalized to the bandwidth achieved by single-path
flows, that is, we divide the bandwidth share obtained by
MPTCP and NMCC by the bandwidth achieved by the average
single-flow connection. Thereupon, the closer the score is to
1 the friendlier a connection is to single-flow. Based on this
figure we can argue that NMCC is more friendly to single-
flow connections than MPTCP most of the time. Even though
the performance superiority of NMCC is mostly evident when
there are fewer single-path flows competing for capacity, we
observe that NMCC gives more consistent results in general.

E. Heterogeneous Networks

Finally, we explored NMCC’s performance in heteroge-
neous networks where paths exhibit diverse capacity, delays

446ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 5. (a) Deviation of obtained bandwidth from fair shares, (b) Difference
of multiflow and single-flow deviation from fair shares normalized to the
single-flow deviation from fair shares.

and error-rates. In order to emulate these conditions, we
replicated the RTT-mismatch scenario used in the evaluation
of coupled MPTCP [2]. This scenario assumes a smartphone
device that uses simultaneously two disjoint paths: (a) a WiFi
link with 10 ms delay and 4% error-rate and (b) a 3G link
with 100 ms delay and 1% error-rate. First, we used netem4

to configure the delay and error-rate of the multisource paths
in the topology of Figure 2(a) and then we deployed mmTP
with no contending traffic, so as to study window growth
without congestion. We investigated the behavior of NMCC
against both the coupled and uncoupled MPTCP congestion
control algorithms. Figure 6 presents the number of packets
that are sent over the WiFi link within a period of 60 seconds;
we neglect the 3G link, as it is identically saturated by all
algorithms. The results validate the expected performance
superiority of NMCC. The significant RTT divergence leads
NMCC to compute a low friendliness factor (m ≃ 1.1)
which offers similar performance to the uncoupled MPTCP
algorithm, thus grasping all available capacity from the start. In
contrast, coupled MPTCP fails to adapt to this RTT mismatch,
as it utilizes less than 93% of the available capacity until 10 sec
and roughly 96% thereon.

VI. IN-NETWORK ASSISTANCE IN IP NETWORKS

Our hybrid congestion control mechanism for multiflow
transfers, NMCC, relies on an in-network scheme that reports
shared bottlenecks to the end-hosts. The PSI architecture is
an appropriate terrain for this design, since it provides a TM
function that (i) is aware of network topology and (ii) interacts

4http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

Fig. 6. Packets/sec sent over the WiFi link for a 60 sec period.

with the end-hosts. The TM knows the physical structure of the
network, so it can easily detect shared bottlenecks. In addition,
when two pub/sub requests are matched, the TM sends the
LIPSIN identifiers of the paths directly to the applications,
therefore it directly pushes the topological information to
the users. In order to extend our scheme to other types of
networks, such as IP-based ones, we need equivalent in-
network mechanisms to provide such information.

A technology that offers centralized path selection and
source routing in IP networks is Multi-Protocol Label Switch-
ing (MPLS) [23]. MPLS is used in backbone networks, where
it applies QoS-based traffic control by classifying flows and
forwarding them via predefined routes. Short fixed-length
labels are assigned to packets at the ingress to an MPLS cloud,
and these labels are used to make forwarding decisions inside
the MPLS domain. The path formation process is generic,
allowing route computation by the underlying routing proto-
cols or explicit definition by a network operator. Multipath
deliveries are also encouraged, in the form of splitting single-
flow connections into several subflows at the ingress router.

Currently, MPLS is used for applying domain-scale traffic
engineering rather than for enhancing the performance of
individual connections, hence, connection splitting is done
with static sharing weights for general load balancing. Conse-
quently, congestion control takes place at the actual end-hosts
(i.e the users), while the ingress MPLS router is confined
to the flow control of the available paths. However, if we
consider the ingress router as the congestion manager of the
MPLS cloud, as it splits the flow, assigns labels to each of its
subflows and becomes the end-host of a local MPLS service,
then our network-assisted congestion control can be integrated
to the MPLS network. Specifically, when the network operator
discovers multiple paths for bulk flows and sends the corre-
sponding labels to the ingress router, it also sends information
on how flows are grouped depending on path sharing, as
described in Sec. IV-A. The ingress router, which runs NMCC
for each bulk flow, exploits this information and source routing
to selectively engage the friendliness mechanism.

Software-Defined Networking (SDN) [24] is a novel net-
working scheme that can be used to achieve similar goals
to PSI, including centralized path selection. In SDN, pro-

447ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

grammable switches forward packets based on “dynamic”
rules that bind flow identifiers, such as fields of the IP header,
with outgoing network interfaces. These rules are defined by
a centralized controller that is aware of the network topology
and forms virtual circuits by explicitly sending rules to all on-
path routers. Circuit creation can be reactive, where a router
ask the controller’s assistance when no rule can be applied
to a received packet, or proactive, where the controller forms
the route a priori, for example, to achieve load balancing. In
both cases, SDN operation is transparent to the end-hosts that
manage congestion control.

As the SDN controller does not communicate with end
hosts, which means that it cannot pass any topological infor-
mation to them, we can apply the same ideas as for MPLS to
introduce in-network assistance and NMCC to SDN clouds, by
considering the ingress SDN router as the congestion manager
of bulk flows. When the SDN controller creates forwarding
paths by sending the appropriate rules to the SDN switches, it
can send information on how flows are grouped depending on
path sharing to the ingress SDN router, as well as instructions
on how to tag each IP header so as to implicitly select the
appropriate path. The ingress SDN router will then run NMCC
for each bulk flow, as above.

Adding in-network assistance to MPLS or SDN clouds may
raise two concerns: (i) the computational costs of applying
congestion control for numerous flows at the ingress router
may degrade scalability, (ii) the limited application scope of
backbone networks may prevent fully exploiting all connectiv-
ity options. For example, when multihomed devices connect
to different access networks, these may not employ the same
MPLS or SDN cloud, preventing the transparent use of NMCC
within each separate cloud.

VII. CONCLUSIONS

We presented a hybrid congestion control algorithm for
multiflow transport, consisting of NMCC and an in-network
assistance mechanism. Our design offers friendliness to single
path connections using TCP-like congestion control, while
increasing the utilization of network resources. It achieves this
by detecting shared physical bottlenecks and managing ag-
gressiveness appropriately, without requiring complex network
signaling or adding state to routers. We have implemented the
congestion control algorithm in the PSI architecture prototype
and evaluated its performance gains in several topological and
traffic scenarios. Our results not only verify the effectiveness
of our design, they also validate its performance superiority
over MPTCP’s coupled congestion control algorithm in short
transfers and heterogeneous networks. Finally, we discussed
how in-network assistance can be provided in IP networks
based on centralized routing, such as MPLS or SDN.

ACKNOWLEDGEMENT

The work presented in this paper was supported by the EU
funded H2020 ICT project POINT, under contract 643990.

REFERENCES

[1] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-peer
content distribution technologies.” ACM Computing Surveys, vol. 36,
no. 4, pp. 335–371, 2004.

[2] D. Wischik, C. Raiciu, A. Greenhalgh, and M. Handley, “Design,
implementation and evaluation of congestion control for multipath TCP,”
in Proc. of the USENIX NSDI Conference, 2011.

[3] C. Hopps, “Analysis of an equal-cost multi-path algorithm,” RFC 2992,
2000.

[4] J. Widmer, R. Denda, and M. Mauve, “A survey on TCP-friendly
congestion control,” IEEE Network, vol. 15, no. 3, pp. 28–37, May 2001.

[5] M. Honda, Y. Nishida, L. Eggert, P. Sarolahti, and H. Tokuda, “Multipath
congestion control for shared bottleneck,” in Proc. of the PLFDNeT
Workshop, 2009.

[6] P. Key, L. Massoulie, and D. Towsley, “Path selection and multipath
congestion control,” in Proc. of the IEEE INFOCOM, 2007, pp. 143–
151.

[7] M. Becke, T. Dreibholz, H. Adhari, and E. P. Rathgeb, “On the fairness
of transport protocols in a multi-path environment,” in Proc. of the IEEE
ICC, 2012, pp. 2666–2672.

[8] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopou-
los, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A survey of
information-centric networking research,” IEEE Communications Sur-
veys and Tutorials, vol. 16, no. 2, pp. 1024–1049, 2014.

[9] P. Jokela, A. Zahemszky, S. Arianfar, P. Nikander, and C. Esteve,
“LIPSIN: line speed publish/subscribe internetworking,” in Proc. of the
ACM SIGCOMM, 2009, pp. 195–206.

[10] Y. Thomas, C. Tsilopoulos, G. Xylomenos, and G. C. Polyzos, “Mul-
tisource and multipath file transfers through publish-subscribe inter-
networking,” in Proc. of the ACM SIGCOMM ICN Workshop (poster
session), 2013, pp. 43–44.

[11] ——, “Accelerating file downloads in publish subscribe internetwork-
ing with multisource and multipath transfers,” in Proc. of the World
Telecommunications Congress (WTC), 2014, pp. 1–6.

[12] M. Zhang, J. Lai, A. Krishnamurthy, L. L. Peterson, and R. Y. Wang,
“A transport layer approach for improving end-to-end performance and
robustness using redundant paths.” in Proc. of the USENIX Annual
Technical Conference, 2004, pp. 99–112.

[13] D. Rubenstein, J. Kurose, and D. Towsley, “Detecting shared congestion
of flows via end-to-end measurement,” IEEE/ACM Transactions on
Networking, vol. 10, no. 3, pp. 381–395, 2002.

[14] G. Carofiglio, M. Gallo, L. Muscariello, and M. Papali, “Multipath
congestion control in content-centric networks,” in Proc. of the IEEE
INFOCOM NOMEN Workshop. IEEE, 2013, pp. 363–368.

[15] S. Oueslati, J. Roberts, and N. Sbihi, “Flow-aware traffic control for a
content-centric network,” in Proc. of the IEEE INFOCOM, 2012, pp.
2417–2425.

[16] D. Trossen, M. Sarela, and K. Sollins, “Arguments for an information-
centric internetworking architecture,” SIGCOMM Computer Communi-
cations Review, vol. 40, no. 2, pp. 26–33, Apr. 2010.

[17] G. Xylomenos, X. Vasilakos, C. Tsilopoulos, V. Siris, and G. Polyzos,
“Caching and mobility support in a publish-subscribe Internet architec-
ture,” IEEE Communications, vol. 50, no. 7, pp. 52–58, July 2012.

[18] B. A. Alzahrani, M. J. Reed, J. Riihijärvi, and V. G. Vassilakis,
“Scalability of information centric networking using mediated topology
management,” Journal of Network and Computer Applications, 2014.

[19] Y. Thomas, P. A. Frangoudis, and G. C. Polyzos, “Qos-driven multipath
routing for on-demand video streaming in a publish-subscribe internet,”
in Proc. of the IEEE Workshop on Multimedia Streaming in Information-
centric Network (MuSIC). IEEE, 2015, pp. 1–6.

[20] T. Henderson, E. Sahouria, S. McCanne, and R. Katz, “On improving
the fairness of TCP congestion avoidance,” in Proc. of the IEEE
GLOBECOM, vol. 1, 1998, pp. 539–544 vol.1.

[21] G. Parisis, D. Trossen, and D. Syrivelis, “Implementation and evaluation
of an information-centric network,” in Proc. of the IFIP Networking
Conference, 2013, pp. 1–9.

[22] J. Yen, “Finding the k shortest loopless paths in a network,” Science
Management, vol. 17, no. 11, pp. 712–716, 1971.

[23] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and J. McManus,
“Requirements for traffic engineering over mpls,” RFC 2702, 1999.

[24] H. Kim and N. Feamster, “Improving network management with soft-
ware defined networking,” IEEE Communications, vol. 51, no. 2, pp.
114–119, 2013.

448ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Characterizing Interest Aggregation in
Content-Centric Networks

Ali Dabirmoghaddam⇤ Mostafa Dehghan† J. J. Garcia-Luna-Aceves⇤ ‡
⇤University of California Santa Cruz, †University of Massachusetts Amherst, ‡PARC

{alid, jj}@soe.ucsc.edu, mdehghan@cs.umass.edu

Abstract—The Named Data Networking (NDN) and Content-
Centric Networking (CCN) architectures advocate Interest aggre-
gation as a means to reduce end-to-end latency and bandwidth
consumption. To enable these benefits, Interest aggregation must
be realized through Pending Interest Tables (PIT) that grow in
size at the rate of incoming Interests to an extent that may
eventually defeat their original purpose. A thorough analysis is
provided of the Interest aggregation mechanism using mathe-
matical arguments backed by extensive discrete-event simulation
results. We present a simple yet accurate analytical framework
for characterizing Interest aggregation in a CCN router, and
use our model to develop an iterative algorithm to analyze the
benefits of Interest aggregation in a network of interconnected
routers. Our findings reveal that, under realistic assumptions,
an insignificant fraction of Interests in the system benefit from
aggregation, compromising the effectiveness of using PITs as an
integral component of Content-Centric Networks.

I. INTRODUCTION

The fact that the content and not its location is what matters
to end-users has given rise to many recent proposals classified
under the generic name of Information-Centric Networking
(ICN) [1]. Many ICN blueprints can be seen as Interest-
driven communication models, where users ask for content by
name through Interest packets. The most prominent examples
of Interest-driven ICN (NDN [2] and CCNx [3]) are based
on three main components. Routers maintain Forwarding
Information Bases (FIB) listing routes to name prefixes, which
enable routing to names rather than addresses. Given that
all copies of the same content are equivalent, routers cache
content opportunistically in their local Content Store (CS). In
addition, each router maintains a Pending Interest Table (PIT)
to suppress unnecessary Interests.

When a router receives an Interest that cannot be satisfied
through its local CS, it creates a PIT entry and forwards
the Interest if there is no entry for the same content name
in its PIT. If a PIT entry already exists for the content
name, the Interest is aggregated at the router and is not
forwarded. The idea of Interest aggregation is hardly new. It
has been implemented in Web caching architectures in the
past, e.g., Squid [4]—where it was referred to as collapsed
forwarding—and commercially used on production content
delivery networks since the early days of the Web.

The expectation of Interest aggregation in ICN architectures
has been that network and server loads can be drastically
reduced by suppressing similar Interests, and that end-to-

end latencies can be reduced by integrating caching with
Interest aggregation. These benefits, however, come at a non-
trivial cost. Creating and maintaining the PIT is expensive,
especially when performed at Internet scale. The routers used
in the Internet backbone handle hundreds of thousands of
packets every second. The proposed data structure must be
fast enough when operating at its peak capacity to not act as a
source of latency and overhead itself. Thus, considerable work
has focused on optimization and scalability of the PIT (e.g.,
see [5]–[8]).

We are not aware of any comprehensive analytical work
characterizing the expected benefits of Interest aggregation.
Some experimental efforts [9], [10] have been made in under-
standing the dynamics of the PIT size; however, important
questions such as what fraction of Interests are subject to
aggregation under realistic conditions and whether or not that
justifies the use of PITs have remained unanswered to this date.

To answer these questions, Section II presents a simple yet
powerful analytical toolbox for characterizing a CCN router
with a CS and a PIT. We compute the cache hit probability at
the CS, the Interest aggregation probability at the PIT, as well
as the router response time at an object-level granularity. Sec-
tion III uses these constructions for the analysis of a network
of interconnected content routers. Through extensive event-
driven simulations, Section IV demonstrates how accurately
our proposed framework can predict the steady-state behavior
of such a complex system. Furthermore, it shows how the
model can be used to study the performance of a large network
under realistic conditions, such as that of today’s Internet, for
which event-driven simulations are prohibitive.

Numerical evaluations of our model for large-scale systems
reveal that only a small fraction of Interests may actually
benefit from Interest aggregation in realistic settings. These
benefits are highly dependent on the amount of caching budget
available to the network. For example, a 5% cumulative
aggregation percentage can be achieved using a per-node
caching capacity of equal to 0.05% of the total number of
objects in the system, while increasing the budget to just
0.5% reduces the aggregation percentage to below 1%. Even
worse, our findings show that most Interest aggregation takes
place closer to where the content is permanently stored—i.e.,
near the producers deep in the core of the network—where
aggregating Interests hardly makes sense anymore.

The insights from our modeling results lead to the necessary
conclusion that Interest aggregation should not be an integralISBN 978-3-901882-83-8 c� 2016 IFIP

449ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

component of future ICN architectures and Content-Centric
Networks. On-path caching or edge caching provide all the
benefits of reducing the number of Interests that request similar
content, without the costs of maintaining PITs. In turn, if
per-Interest forwarding state is not needed for other reasons,
this realization makes Content-Centric Networking at Internet
scale more feasible than the current NDN design, given that
forwarding data structures (e.g., CCN-DART [11], [12] and
CCN-GRAM [13]) smaller and more efficient than PIT could
be used for routing data back to the consumers.

II. CCN ROUTER WITH NON-ZERO DOWNLOAD DELAYS

We develop a mathematical model to characterize a CCN
router with a Content Store (CS) to enable caching function-
ality and a Pending Interest Table (PIT) that allows Interest
aggregation. Unlike previous work [14]–[17], we assume that
the content download delays are non-zero. Our derivations,
hence, can be regarded as an extension to a highly accurate
approximation of LRU cache introduced by Che et al. [15].

Consider a content router with a CS of capacity C imple-
menting LRU replacement policy receiving Interests indexed
(without loss of generality) in their decreasing order of pop-
ularity from 1 to N . In the rest of this paper, the terms
CS and cache refer to the same concept and we shall use
them interchangeably. Assume that Interests conform to the
Independent Reference Model (IRM), i.e., for every object,
Interests inter-arrival times to the router are independent, iden-
tically distributed (i.i.d.) random variables. Fig. 1 illustrates
Interests (shown as combs) as arriving at a content router
over time. We focus on the Interests for an object i, which
are highlighted in color. In Fig. 1, the red and green zones
respectively specify time intervals when object i is absent
or present in the CS. Upon receiving an Interest, if the CS
contains a copy of object i, a cache hit occurs (see green
combs); the Interest is immediately satisfied and a copy of
that object is sent back to the requester. Otherwise, we say a
cache miss occurs (see red combs).

t0 t1 time
di

T

Interest inter-forwarding time

· · ·

Fig. 1: Interests arriving at a content router over time

Let t0 be the instant when the first cache miss for object
i occurs at the CS. At that point, the content router creates a
PIT entry for that object and forwards the Interest to another
router/source (forwarded Interests shown as solid red combs).
Let di be the random variable indicating the duration till a
copy of the requested object is downloaded and stored in the
CS, and mark that instant as t1 = t0+di. We shall refer to di
as the download delay of object i. Any subsequent Interest for
object i during the interval (t0, t1) is aggregated at the content
router due to the existence of a PIT entry under object i’s name
(aggregated Interests shown as dotted red combs).

A set of events take place at time t1, namely the content
router: (1) stores a copy of object i in the local CS; (2) removes
the PIT entry for the corresponding Interest, and (3) forwards
a copy of object i on all interfaces from which a request for
it had been received. A copy of object i remains in the CS
so long as the inter-arrival time of consecutive Interests for
object i is smaller than T denoting the characteristic time
of the cache introduced by Che et al. [15] (see Fig. 1). In
essence, T is a random variable signifying the duration it takes
until C distinct objects other than i are downloaded into the
cache and object i is dismissed. For relatively large C and N
and when the content download delays into the cache are zero,
Fricker et al. [18] proved that T becomes deterministic. Later
Dehghan et al. [19] proved this right even when download
delays are non-zero.

The characteristic time T depends on the cache capacity C,
the Interests arrival rate and the object popularity distribution
and is computed according to

E
"

NX

i=1

Xi

#
= C , (1)

where Xi is the Bernoulli random variable indicating whether
object i is present in the cache or not. Eq. (1) comes from
the fact that the cache has the capacity for C objects. Note
that E[Xi] equals the probability of object i being present
in the cache, i.e., the cache occupancy probability. With
Poisson arrivals and thanks to the PASTA property, the cache
occupancy probability equals the cache hit probability for any
object i. Hence, we arrive at

NX

i=1

hi = C . (2)

where hi denotes the cache hit probability of object i. We
shall later use (2) as a constraint in computing the cache hit
probability of individual objects.

A. Computing the Cache Hit Probability
Under the assumption that request inter-arrival times are in-

dependent exponential random variables, for a particular object
i, the p.m.f. of exactly ni = k cache hits is the probability
of the event that the first k Interest inter-arrival times are
smaller than T , while the following Interest inter-arrival time
is greater than T . This probability can be formalized by the
geometric distribution (ni = k) =

�
1�e��iT

�k
e��iT , and

the expected number of cache hits is derived as

E[ni] =

1X

k=0

k (ni = k) = e�iT � 1 .

After forwarding a missed request for object i, if E[di] denotes
the expected time to download a copy of i into the CS, the
expected number of missed requests during this interval would
be E[n̄i] = 1+�iE[di], of which one Interest is forwarded and
the remaining �iE[di] are aggregated at the PIT. The expected
total number of Interests received for object i during one
such inter-forwarding cycle is then E[Ni] = E[ni] + E[n̄i].

450ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Consequently, the probability of a cache hit for object i is
derived as

hi =
E[ni]

E[Ni]
=

e�iT � 1

�iE[di] + e�iT
. (3)

Eq. (3) can be regarded as an extension to the LRU approx-
imation of Che et al. [15] where download delays can be
non-zero. In fact, setting download delays to zero simplifies
Eq. (3) to their renown form of hi = 1� exp(��iT).

B. Computing the Interest Aggregation Probability
We now turn to computing the probability of Interest

aggregation at the PIT. From our previous discussion, the
expected number of aggregated requests during the download
interval E[di] are E[n̄i] � 1 = �iE[di]. The probability of an
Interest for object i being aggregated at the PIT is subsequently
derived as

ai =
E[n̄i]� 1

E[Ni]
=

�iE[di]
�iE[di] + e�iT

. (4)

Put differently, Eq. (4) states what fraction of Interests for
object i arriving at the content router are aggregated in the
long run.

C. Computing the Router Response Time
Another important measure in the analysis of interconnected

routers when the download delays are non-zero is the router
response time. Due to the potential existence of a PIT entry
in the content router when an Interest for object i is received,
the time it takes the router to satisfy that Interest can be any
value from interval (0, di].

We define the pending time of an Interest in the PIT as the
time difference between the arrival of the Interest to the router
and the subsequent moment when the Interest is served. With
Poisson arrivals, Interest arrival times are uniformly distributed
over (0, di]; hence, the sum Wi of pending time of Interests
during a download interval di can be formulated as

Wi = di + �i

Z di

0
(di � t) dt = di(1 + 0.5�idi) .

We define the response time ri of the content router for a
particular object i as the expected pending time of Interests
for that object which is readily derived as

ri =
E[Wi]

E[Ni]
=

E[di(1 + 0.5�idi)]

�iE[di] + e�iT
. (5)

The router response time depends on the distribution of
download delays, though knowledge of only the first two
moments is sufficient.

III. AN ALGORITHM FOR THE ANALYSIS OF
HIERARCHICAL CCN NETWORKS

We investigate how an interconnected network of CCN
routers can be analyzed using the results from the previous
section. Consider a hierarchy of routers as depicted in Fig. 2.
Consumers are located at the bottom level where their requests
for objects of interest are directed to the first level CCN routers

(i.e., `1 routers). An `1 router searches its local CS for a copy
of the requested object and if failed, it forwards the request to
the next level router (i.e., the parent `2 router). This process
is repeated on every cache miss and in the worst case, the
requested object is downloaded directly from the producer at
the top of the hierarchy storing permanent copies of all the
objects in the system. On the reverse path back to the original
requester, a copy of the object is stored in the CS of every
CCN router it passes through.

For simplicity, we consider only a single producer in the
network. The producer in our model can alternatively be
conceived as a collection of several producers at the core
of the network collapsed into one single entity. This single-
source spanning-tree simplification of the network topology is
standard in many studies of content delivery [20] and publish-
subscribe networks [21].

There are two important challenges in the analysis of the
foregoing structure. First, the Interest stream into a higher-
level router (i.e., all except `1 routers) is no longer a simple
Poisson process, but an aggregate of miss streams from a
number of lower-level routers. It is known, however, that the
superposition of multiple streams tends toward Poisson as
the load increases [22], [23]. We shall use this insight when
extending the results of the previous section to the analysis of
CCN networks by primarily focusing on trees of higher arity.

Secondly, chaining routers may cause circular dependencies
in the computation of some router performance metrics. For
instance, the cache hit probability in an `1 router depends on
the download delay of the objects as mandated by Eq. (3).
That delay is determined by the response time of the parent
`2 router which in turn is a function of its input rate. The input
into an `2 router itself partially relies on the miss stream of
its descendant `1 router, and that is how a dependency cycle
is formed. To overcome this hurdle, we present an iterative
approach as outlined in Algorithm 1.

Procedure ANALYZE-CCN-TREE is proposed to compute
the important router performance metrics we discussed in
Section II for a hierarchical network structure such as the
one portrayed in Fig. 2. The procedure analyzes a complete
k-ary tree of height L + 2 in which consumers are at level
0; L layers of CCN routers are employed in the middle,
and the producer is located at level L + 1 as the root of
the tree. The available caching budget is provided by vector

.

· · · · · ·

· · · · · ·

...

· · · · · ·

· · ·
...

· · ·

consumers

`1 routers

`2 routers

`L�1 routers

`L routers

producer

Fig. 2: A partial view of a hierarchy of interconnected routers

451ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Algorithm 1 Method to characterize a hierarchical CCN
represented by a complete tree as depicted in Fig. 2
Input: k: arity of the tree; L: number of tree levels; �: consumer input rate

to each first level router; �: round-trip delay across each link; C: vector
of caching budget per node per layer; q: probability vector reflecting the
object popularity profile.

Output: T : characteristic time of caches at each level; h: vector of cache
hit probabilities at each level; a: vector of aggregation probabilities at
each level; r: vector of router response times at each level; m: vector of
incoming Interest rates to each level.

1 procedure ANALYZE-CCN-TREE(k, L,�, �,C, q)
2 i 0
3 for ` from 1 to L do
4 r

(i)
`+1 � ⇥ (L� `)

5 end for
6 while not converged do
7 i i+ 1
8 for ` from 1 to L do
9 d

(i)
` � + r

(i�1)
`+1

10 end for
11 m

(i)
1 �⇥ q

12 for ` from 1 to L do
13 T

(i)
` CHAR-TIME(m(i)

` , d(i)
` , C`)

14 h
(i)
` HIT-PROB(m(i)

` , d(i)
` , T (i)

`)

15 a
(i)
` AGG-PROB(m(i)

` , d(i)
` , T (i)

`)

16 r
(i)
` RESP-TIME(m(i)

` , d(i)
` , T (i)

`)

17 m
(i)
`+1 MISS-RATE(k, m(i)

` , h(i)
` , a(i)

`)
18 end for
19 end while
20 end procedure

C in which element C` indicates the allocated CS capacity
for each of the routers at level `. The initial rate at which
Interests are produced by the consumers and fed into each
`1 router is �. The object popularity profile follows a Zipfian
distribution as determined by the probability vector q. Without
loss of generality, in this paper we always rank objects in
their decreasing order of popularity. As such, the normalized
popularity of the nth ranked object is determined by the power-
law q(n) = n�↵/

PN
u=1 u

�↵ , where exponent ↵ > 0 is the
parameter to the Zipf distribution. Finally, each link induces
a round-trip delay of � for transporting an individual content
object. These parameters are inputs to Algorithm 1.

As pointed out, Algorithm 1 works in iterations to tackle
circular dependencies. The superscript (i) used throughout the
algorithm denotes the latest count of iterations. At the 0

th

iteration, i.e., the initial phase, since all caches are empty and
all requests are fulfilled directly by the producer, the router
response times (denoted by r) are simply set based on the hop-
distance of routers from the root (lines 3–5). The notation r(i)`+1
describes the response time of a (`+1)

th level router computed
at the ith iteration. Note that variables denoted in bold face are
in fact vectors with values corresponding to individual objects
in the system as ordered in popularity profile q. Next, at any
subsequent iteration:

1) Download delays for all levels are updated (lines 8–10)
according to the heuristic that the delay for downloading
files into the CS of an arbitrary router is equal to the

response time of its parent router plus the round-trip
delay of the link connecting them together. Assuming all
objects are unit-sized, we can deduce that the average
link delays are the same. In a hierarchical structure, thus,
we can compute the download delays into a particular
router by knowing the average link delays and the
response time of the next level (i.e., parent) router.

2) All performance measures discussed in Section II are
computed/updated across all tree levels (lines 12–18).

Starting from the bottom working towards the top, at each
tree level the measures are computed in the following order:

a) Procedure CHAR-TIME: is called at line 13 to com-
pute the cache characteristic times by solving the following
fixed-point equation for variable T :

NX

j=1

em[j]T � 1

m[j]d[j] + em[j]T
= C , (6)

where m[j] and d[j] are the jth elements in vectors m and
d, respectively denoting the input rate and download delay
for object j at the corresponding router. Note that Eq. (6) is
indeed the expanded form of (2) using (3).

b) Procedures HIT-PROB, AGG-PROB and RESP-TIME:
are called at lines 14–16 to use the above computed character-
istic time for computing the cache hit probability, PIT aggre-
gation probability and response time of routers for individual
objects according to Eqs. (3), (4) and (5), respectively.

c) Procedure MISS-RATE: is called at line 17 to com-
pute the aggregate miss rate into the next level (i.e., parent)
router using the above computed hit- and aggregation proba-
bilities according to the following relation:

m`+1 = k ·m` � (1� h`)� (1� a`) , (7)

where � signifies component-wise multiplication of corre-
sponding vectors. In essence, Eq. (7) suggests that the input
stream of a router at level-(`+1) is the superposition of k miss
streams from its descendant level-` routers. The only exception
are `1 routers whose input is directly provided by consumers
according to line 11.

AGG-PROBHIT-PROB RESP-TIME

MISS-RATE DELAY

CHAR-TIME

START

I
n

i
t
i
a

l
i
z
e

C
u

r
r
e

n
t

L
e
v

e
l

N
e
x

t
L

e
v

e
l

consumer
input rate

end-to-end
delay

Fig. 3: Dependency among procedure calls in Algorithm 1.

To better understand the dependency between these proce-
dure calls, the diagram in Fig. 3 provides a pictorial view

452ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

of their relationship. At the beginning, consumers’ input rate
and the end-to-end delay (between the consumers and the
producer) are used to compute the cache characteristic time
for all `1 routers. Cache hit- and PIT aggregation probabilities
as well as router response times are then computed for `1
routers. Next these results are used to calculate the input rate
and download delays for `2 routers. Then level 2 becomes
the current level and a similar procedure is repeated for all
remaining levels from the bottom to the top of the tree.

The computations in the middle and bottom boxes in Fig. 3
may be repeated in consecutive iterations as needed; the results
from one iteration will be used in computing the next as the
computed measures gradually converge to their steady-state
values. In our numerical simulations—to be discussed next—
we noticed that the first few iterations usually suffice to get an
accuracy of better than 0.1% while no more than 10 iterations
were needed in all cases studied (irrespective of the input size).

Implementing Algorithm 1 is straightforward in many off-
the-shelf numerical computing environments. In our simula-
tions, for solving Eq. (6), we leveraged fsolve function from
MATLAB’s Optimization Toolbox which uses trust-region
methods [24] for solving systems of nonlinear equations. It is
known [25] that trust-region methods take O(✏�2

) iterations to
drive the norm of the gradient of the objective function below
desired threshold ✏. The time-complexity of Algorithm 1 is
hence O(NL ✏�2

).

IV. PERFORMANCE EVALUATION

We present simulation results to show how the proposed
method can be used to accurately predict the complex behavior
of a network of content routers. First, a detailed comparison of
the numerical results of the presented model versus the results
from extensive event-driven simulations in ndnSIM [26] is
presented. Next, the results from our model are used to analyze
more complex scenarios, such as networks with larger content
base, which are far more cumbersome and time-consuming to
study using conventional event-driven simulations.

We focus on two major strategies of cache allocation,
namely uniform caching and edge caching. In the former, a
fixed caching budget is evenly distributed across all content
routers, whereas with the latter, the budget is entirely allocated
to the routers at the edge of the network, i.e., the ones
directly serving the consumers. With edge caching, the upper
level routers simply act as routers with no caching capability
(that is, their CS size is set to zero). Yet they still perform
Interest aggregation upon receiving Interests for which they
have pending entries in their PITs.

A. Comparison of Model with Event-driven Simulations
We consider a tree of degree k = 10 and height H = 5

as the underlying topology, where L = 3 levels of content
routers are used in the middle. The reason for using such a
configuration is to keep the overall aggregate traffic pattern
in the middle layers as close to being Poisson as possible,
as discussed in Section III. Although the model was able
to capture the overall trends in our experiments with trees

of lower arity, we noticed that more accurate results are
generally obtained when nodes have higher fan-in (e.g., 10 or
more). This assumption, however, is not unrealistic as some
studies [27] of the actual Internet router-level topology have
reported an average degree of more than 22 per router.

For the first set of experiments, we begin with a fairly
small content catalog comprising only 100 objects. The reason
for this choice is as follows. When performing event-driven
simulations with a large content base, the system takes much
longer to come to a steady-state; while growing worse with
an increasing caching budget. In such case, a large number of
requests must be used just to “warm-up” the system—hence,
not to be used for collecting statistics—from the initial state
where all caches are empty. Besides, because of the Zipfian
nature of object popularity, a larger number of requests must
be generated in total to ensure that objects at the long tail of
the distribution also get a reasonable chance to appear in the
generated request stream. Even with a content catalog of size
100 objects with a Zipf parameter of 1, we had to generate
roughly 4 million requests—while disregarding the first half—
to make sure all caches in all levels have their capacity almost
fully utilized before collecting statistics.

For the foregoing set-up, in Fig. 4 we compare the ag-
gregation probability for individual objects as predicted by
model versus the results from extensive event-driven simu-
lations. Curves in each plot represent the PIT aggregation
probability as attained by each of the content routers at the
corresponding level. Thanks to the symmetry of the topology,
all routers at the same level share similar statistics. Graphs in
the top row contrast uniform caching against edge caching
employed for graphs at the bottom. In each row, the total
caching budget (CB) increases from left to right. The model
accurately predicts aggregation across various caching levels
even at a fine object-scale resolution. Edge caching results in
higher aggregation probability at higher levels. This behavior
is expected because with edge caching naturally no cache
hit may occur at higher levels in the tree. Therefore, many
requests that would have hit those caches if a non-zero cache
size were used will now end up being aggregated at PITs.

To obtain a more insightful view of Interest aggregation,
graphs in Fig. 5 show the odds of a generic Interest (irre-
spective of the object popularity rank) getting aggregated at
each level of the tree when the link delay gradually increases.
It is clear that at a fixed Interest rate, an increased link de-
lay generally improves the aggregation probability. However,
larger cache sizes tend to offset some of these improvements,
especially with uniform caching strategy.

Interest aggregation occurs at a higher probability at upper
levels of the tree. This can be attributed to the higher input
rate into those levels considering the fact that the aggregate
miss stream from many lower level routers constitutes the
input of their parent router. Results from Fig. 6 suggest
that significant benefits are likely to accrue from Interest
aggregation; however, this promising gain should be taken with
a grain of salt due to the reasons discussed in the following.

First, the small object catalog consisting of only 100 objects

453ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

100 101 102
0.0

0.2

0.4

0.6

0.8

object popularity rank

ag
gr

eg
at

io
n

pr
ob

ab
ili

ty
(a) CB = 1.11e4 (uniform caching)

100 101 102
0.0

0.2

0.4

0.6

object popularity rank

(b) CB = 3.33e4 (uniform caching)

100 101 102
0.0

0.1

0.2

0.3

0.4

object popularity rank

(c) CB = 5.55e4 (uniform caching)

100 101 102
0.00

0.02

0.04

0.06

0.08

0.10

object popularity rank

(d) CB = 7.77e4 (uniform caching)

100 101 102
0.0

0.2

0.4

0.6

0.8

1.0

object popularity rank

ag
gr

eg
at

io
n

pr
ob

ab
ili

ty

(e) CB = 1.11e4 (edge caching)

100 101 102
0.0

0.2

0.4

0.6

0.8

object popularity rank

(f) CB = 3.33e4 (edge caching)

100 101 102
0.0

0.2

0.4

0.6

object popularity rank

(g) CB = 5.55e4 (edge caching)

100 101 102
0.0

0.2

0.4

0.6

object popularity rank

(h) CB = 7.77e4 (edge caching)

Model `3 Model `2 Model `1
ndnSIM `3 ndnSIM `2 ndnSIM `1

Fig. 4: A comparison of model versus event-driven simulations. Input rate into each edge router is 100 Interests/sec. Model predicts aggregation
probability for individual objects fairly accurately across all levels of the tree topology.

naturally gives rise to a higher frequency of similar Inter-
ests arriving at the router, thereby an increased aggregation
probability. Despite the event-driven simulation which turns
out to be extremely tedious especially for a large number
of objects, numerical simulations using the proposed model
are practicable even on commodity hardware. Our numerical
results in the next subsection confirm that the actual benefits
of Interest aggregation are indeed much less in reality.

Secondly, the notion of aggregation probability itself may
give a magnified image of the real benefits. In fact, aggregation
probability at a certain level in the hierarchy indicates what
fraction of Interests making it up to that level end up getting
aggregated. Since the request stream observed by the higher
level routers is a “filtered” version of the input stream to their
descendants, it is clear that fewer Interests are received in
total towards the top of the hierarchy. For this, we define a
new measure called aggregation percentage that determines
the percentage ratio of the count of aggregated Interests at a
certain level (or at a particular router) over the total count of
produced Interests in the whole system. Since every generated
Interest can be aggregated at most once on its path towards the
producer, aggregation percentage provides a more reasonable
and unbiased measure, and we shall use that in our later
assessments of aggregation benefits.

Given the foregoing remarks, we emphasize that the results
demonstrated in Figs. 4 and 5 are particularly meant to verify
the accuracy of the proposed analytical framework, and to
provide a side-by-side comparison of how varying different
parameters affects the relative odds of Interest aggregation.
The true benefits of Interest aggregation are discussed in the

following subsection, where more realistic input parameters
are used.

B. Numerical Evaluations

Fig. 6 sheds light on the combined impact of download
delay and input rate on the Interest aggregation probability.
The symmetry of plots in Fig. 6 suggests that it is in fact the
combination of the link delay and input rate which regulates
the overall trend of aggregation probability. In fact, doubling
the input rate for a fixed link delay has the same effect on
the aggregation probability as keeping the input rate fixed and
doubling the link delay. Therefore, we define system load as
the product of these two quantities to build our next set of
experiments on it. As a combined metric, system load does not
identify a specific delay or input rate, rather defines an infinite
range for these parameters. For example, a system load of 10
may imply an input rate of 100 Interests/sec with link delay of
0.1 seconds, or equivalently, an input rate of 500 Interests/sec
with link delay of 0.02 seconds.

TABLE I: Table of default parameter values

Parameter Symbol Value
Tree height H 5
Number of cache layers L 3
Node degree k 10
Total number of objects N 140 million
Cache capacity per cache node C 100,000 objects
Zipf exponent ↵ 0.8
Input rate into each edge cache � 100,000/sec
Link delay each way d 15 milliseconds

454ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

link delay (millisec)

ag
gr

eg
at

io
n

pr
ob

ab
ili

ty
(a) CB = 1.11e4 (uniform caching)

20 40 60 80 100

link delay (millisec)

(b) CB = 3.33e4 (uniform caching)

20 40 60 80 100

link delay (millisec)

(c) CB = 5.55e4 (uniform caching)

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

link delay (millisec)

(d) CB = 7.77e4 (uniform caching)

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

link delay (millisec)

ag
gr

eg
at

io
n

pr
ob

ab
ili

ty

(e) CB = 1.11e4 (edge caching)

20 40 60 80 100

link delay (millisec)

(f) CB = 3.33e4 (edge caching)

20 40 60 80 100

link delay (millisec)

(g) CB = 5.55e4 (edge caching)

20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

link delay (millisec)

(h) CB = 7.77e4 (edge caching)

Model `3 Model `2 Model `1
ndnSIM `3 ndnSIM `2 ndnSIM `1

Fig. 5: Interest aggregation probability at various router levels as a function of link delay for increasing cache sizes (left to right) and different
cache allocation strategies (top vs bottom rows). Input rate into each edge router is 100 Interests/sec.

0

500

1,000

0

50

100

0.0

0.5

1.0

input rate (1/s)
link delay (ms)

ag
gr

eg
at

io
n

pr
ob

ab
ili

ty

(a) bottom layer (`1)

0

500

1,000

0

50

100

0.0

0.5

1.0

input rate (1/s)
link delay (ms)

(b) middle layer (`2)

0

500

1,000

0

50

100

0.0

0.5

1.0

input rate (1/s)
link delay (ms)

(c) top layer (`3)

Fig. 6: The combined impact of link delay and input rate on aggregation probability. Increasing one factor has exactly the same effect on
Interest aggregation as increasing the other.

In the experiments to be discussed next, we consider the
same tree topology as in the previous subsection, with the
general configurations listed in Table I (unless otherwise
stated). The total number of objects considered, i.e., 140
million, is an estimation of the total number of videos on
YouTube in 2008 [28] and the Zipf parameter of 0.8 is taken
from empirical studies [29], [30] of real content networks.
The input rate of 100,000 Interests/sec and link delay of 15
milliseconds are also chosen such that the average generated
traffic in the network is comparable with the load experienced
by the Internet’s backbone routers [31], [32].

Fig. 7 shows the probability of Interest aggregation at each
tree level as a function of system load. Contrary to the results
in Fig. 5, a side-by-side comparison of uniform- vs. edge-

caching reveals that when the object catalog is large, there is
no remarkable difference between these two cache allocation
strategies. It is interesting that even with the highest system
load of 3000, the maximum aggregation probability observed
at the top most level is around 0.06. This almost 12-fold
degradation compared to the previous results highlights the
importance of the size of the object catalog in the overall
odds of Interest aggregation. This rather surprising finding can
be explained as follows. With the Zipf popularity distribution
of objects, a highly popular object is requested frequently.
Therefore, once such an object is downloaded into the CS,
due to the frequent references to it, it stays there for a long
time. Hence, Interests for that object mostly result in cache
hits and are rarely aggregated. On the other hand, Interests

455ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0.3 1.2 2.1 3.0

⇥103

0.00

0.02

0.04

0.06

system load

ag
gr

eg
at

io
n

pr
ob

ab
ili

ty
(a) uniform caching

`3

`2

`1

0.3 1.2 2.1 3.0

⇥103

0.00

0.02

0.04

0.06

system load

(b) edge caching

`3

`2

`1

Fig. 7: Impact of system load on the aggregation probability.

0.3 1.2 2.1 3.0

⇥103

0%

2%

4%

6%

8%

system load

ag
gr

eg
at

io
n

pe
rc

en
ta

ge

(a) uniform caching

`3

`2

`1

0.3 1.2 2.1 3.0

⇥103

0%

2%

4%

6%

8%

system load

(b) edge caching

`3

`2

`1

Fig. 8: Impact of system load on cumulative aggregation percentage.

for an unpopular object (in the long tail of the distribution)
are received so sporadically over time that the odds of them co-
occurring in the short time span when the router is awaiting
the content are almost nil. As a result, in practice, Interest
aggregation occurs only for a small fraction of Interests.

To make this argument even stronger, Fig. 8 shows the
cumulative percentage of aggregated Interests in the system
against an increasing system load. Evidently, the overall per-
centage of Interests being aggregated is less than 5% under a
low to moderate load, and around 7% under heavy load. Note
that for these results each cache node has capacity to store
only 0.07% of the entire object catalog.

Increasing cache size further shrinks the benefit margin by
improving the overall cache hit rates. As Fig. 9 suggests, with
a small cache capacity, sizable gain (around 15% total) can
be attained through Interest aggregation. However, this gain
drastically decays as cache size per node increases. Eventually,
with a cache size of 500,000 per node (i.e., < 0.4% of the size
of the content base), there is virtually no benefit in Interest
aggregation. A secondary observation from the results in Fig. 9
is that with smaller cache size, all layers in the hierarchy
contribute about the same in aggregation percentage; however,
as more cache is added to the nodes, most Interest aggregations
occur at the upper layers, while aggregation percentage at the
edge approaches zero more rapidly.

Finally, Fig. 10 captures the impact of the object popularity
distribution on the cumulative percentage of aggregated Inter-
ests. The non-monotonic trend of curves in Fig. 10 exhibits a
diminishing returns type of effect. To explain this behavior,
we note that with a Zipf popularity distribution, objects

100 102 104 106
0%

5%

10%

15%

cache size per node

ag
gr

eg
at

io
n

pe
rc

en
ta

ge

(a) uniform caching

`3

`2

`1

100 102 104 106
0%

5%

10%

15%

cache size per edge node

(b) edge caching

`3

`2

`1

Fig. 9: Impact of cache size on overall aggregation percentage.

0.2 0.4 0.6 0.8 1.0 1.2
0%

1%

2%

3%

4%

5%

6%

Zipf parameter
ag

gr
eg

at
io

n
pe

rc
en

ta
ge

(a) uniform caching

`3

`2

`1

0.2 0.4 0.6 0.8 1.0 1.2
0%

1%

2%

3%

4%

5%

6%

Zipf parameter

(b) edge caching

`3

`2

`1

Fig. 10: Impact of popularity distribution on aggregation percentage.

can heuristically be categorized into two groups, namely, an
unpopular majority and a popular minority. The Zipf parameter
(↵) controls the relative size of each group as well as the
skewness of the distribution. In fact, the larger the Zipf
parameter, the smaller the proportion of the minority group,
and the greater their popularity intensity. The latter signifies a
higher access frequency to the objects in the popular group
as ↵ increases, hence a higher aggregation rate for them.
However, as ↵ increases and the proportion of the popular
objects shrinks, the higher access frequency also results in
higher hit rates, because a lot of those objects eventually find
their way into the caches; therefore, subsequent requests for
them no longer get aggregated. On the other hand, thanks
to their diminishing popularity, the Interests for the majority
group are also becoming so sparsely dispersed that the odds of
finding a relevant entry for them at the PIT becomes negligible.
For this, only a small fraction of Interests representing those
fairly popular objects which may not have found a free spot
in (limited-size) caches remain subject to aggregation. Further
increasing the Zipf parameter shrinks down the size of the
popular group gradually such that at some point, every one of
them finds a permanent place in all caches. Thenceforth, the
probability of aggregation becomes effectively zero.

From another viewpoint, Fig. 10 also provides suggestive
evidence that even under a non-stationary content popularity
distribution, no remarkable benefit can be anticipated from
Interest aggregation. For example, when object references are
temporally localized, a data object becomes highly popular
over a certain duration of time, while its popularity gradually
vanishes over time as some other data object becomes popular.

456ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

In that case, if the objects popularity is measured within
smaller discrete time windows, each piece can independently
be approximated with a Zipf distribution with a possibly
different parameter. As Fig. 10 suggests, irrespective of how
different the popularity profile looks like, only an insignificant
number of Interests may be aggregated at various intervals;
hence, the benefits of Interest aggregation would still remain
minimal, with the maximum aggregation of less than 5%
taking place around a Zipf parameter of 0.9.

V. FINAL REMARKS AND CONCLUSIONS

We presented the first analytical treatment of Interest ag-
gregation in Content-Centric Networks using a simple yet
accurate model where content download delays into the routers
are non-zero. Based on our model, we introduced an iterative
algorithm for analyzing a hierarchical network of content
routers in terms of CS hit- and PIT aggregation probabilities
and router response times. This method enables the evaluation
of large-scale hierarchical caching structures, such as that
of an ICN at Internet scale, with high accuracy and low
computational cost for which discrete-event simulations are
entirely impractical due to high processing and time demands.

Our numerical evaluations of a network of caches under
realistic assumptions revealed that: (1) even with very small
caching budgets, less than 5% of total Interests on average are
subject to aggregation; (2) increasing caching budgets rapidly
diminishes the benefits of Interest aggregation; (3) most ag-
gregations take place closer to the producers, negating the
expected benefits of reducing latency and bandwidth utilization
desired from aggregation; and (4) aggregation gains are almost
invariant to the choice of cache allocation strategy (i.e., edge-
vs. uniform-caching). Together, these observations imply that
Interest aggregation should only be an optional mechanism
in Content-Centric Networking. Furthermore, if per-Interest
forwarding state is not needed for other purposes, the state-
full forwarding plane of NDN (realized through PITs) can
effectively be replaced with more efficient mechanisms, such
as CCN-DART [11], [12] and CCN-GRAM [13], in which
forwarding state is stored only per route or per destination
while providing similar end-to-end content delivery latencies.

Our model relies on the assumption that input streams
conform to the independent reference model, which need not
be true in reality. However, the simulation results in [12], [13]
indicate that in-network caching makes Interest aggregation
unnecessary even with spatio-temporal locality of Interests.

ACKNOWLEDGMENTS

This work was supported in part by the Jack Baskin Chair
of Computer Engineering at UCSC, NSF grant CNS-1413998,
and MURI ARO grant W911NF-12-10385.

REFERENCES

[1] B. Ahlgren et al. , “A Survey of Information-Centric Networking,” IEEE
Commun. Mag., vol. 50, no. 7, pp. 26–36, 2012.

[2] L. Zhang et al. , “Named Data Networking,” ACM SIGCOMM Comput.
Commun. Rev., vol. 44, no. 3, pp. 66–73, 2014.

[3] [Online]. Available: http://www.ccnx.org/
[4] [Online]. Available: http://www.squid-cache.org

[5] H. Dai et al. , “On Pending Interest Table in Named Data Networking,”
in Proc. ACM/IEEE ANCS, Austin, USA, 2012, pp. 211–222.

[6] Y. Wang et al. , “Scalable Name Lookup in NDN Using Effective Name
Component Encoding,” in Proc. IEEE ICDCS, Macau, China, 2012, pp.
688–697.

[7] M. Varvello et al. , “On the Design and Implementation of a Wire-
Speed Pending Interest Table,” in Proc. IEEE INFOCOM Workshops,
Turin, Italy, 2013, pp. 369–374.

[8] H. Yuan and P. Crowley, “Scalable Pending Interest Table Design: From
Principles to Practice,” in Proc. IEEE INFOCOM, Toronto, Canada,
2014, pp. 2049–2057.

[9] M. Virgilio et al. , “PIT Overload Analysis in Content Centric Net-
works,” in Proc. ACM SIGCOMM Workshop on ICN, Hong Kong, China,
2013, pp. 67–72.

[10] A. Abu et al. , “Interest Packets Retransmission in Lossy CCN Networks
and Its Impact on Network Performance,” in Proc. ACM ICN, Paris,
France, 2014, pp. 167–176.

[11] J. Garcia-Luna-Aceves, “A More Scalable Approach to Content Centric
Networking,” in Proc. ICCCN, Las Vegas, USA, 2015, pp. 1–8.

[12] J. Garcia-Luna-Aceves and M. Mirzazad-Barijough, “A Light-Weight
Forwarding Plane for Content Centric Networks,” in Proc. IEEE ICNC,
Kauai, USA, 2016.

[13] ——, “Content-Centric Networking Using Anonymous Datagrams,” in
Proc. IFIP Networking, Vienna, Austria, 2016.

[14] A. Dan and D. Towsley, “An Approximate Analysis of the LRU and
FIFO Buffer Replacement Schemes,” ACM SIGMETRICS Perform. Eval.
Rev., vol. 18, no. 1, pp. 143–152, 1990.

[15] H. Che et al. , “Hierarchical Web Caching Systems: Modeling, Design
and Experimental Results,” IEEE J. Sel. Areas Commun., vol. 20, no. 7,
pp. 1305–1314, 2002.

[16] S. Ioannidis and P. Marbach, “On the Design of Hybrid Peer-to-Peer
Systems,” ACM SIGMETRICS Perform. Eval. Rev., vol. 36, no. 1, pp.
157–168, 2008.

[17] E. Rosensweig et al. , “On the Steady-State of Cache Networks,” in
Proc. IEEE INFOCOM, Turin, Italy, 2013, pp. 863–871.

[18] C. Fricker et al. , “A Versatile and Accurate Approximation for LRU
Cache Performance,” in Proc. ITC, Krakow, Poland, 2012, pp. 1–8.

[19] M. Dehghan et al. , “On the Analysis of Caches with Pending Interest
Tables,” in Proc. ACM ICN, San Francisco, USA, 2015, pp. 69–78.

[20] J. Ni and D. Tsang, “Large-Scale Cooperative Caching and Application-
Level Multicast in Multimedia Content Delivery Networks,” IEEE
Commun. Mag., vol. 43, no. 5, pp. 98–105, 2005.

[21] R. Chand and P. Felber, “XNET: A Reliable Content-Based Pub-
lish/Subscribe System,” in Proc. IEEE SRDS, Florianpolis, Brazil, 2004,
pp. 264–273.

[22] J. Cao et al. , “Internet Traffic Tends Toward Poisson and Independent
as the Load Increases,” in Lect. Notes. Stat. Springer New York, 2003,
vol. 171, pp. 83–109.

[23] E. Cinlar and R. Agnew, “On the Superposition of Point Processes,” J.
Roy. Stat. Soc. B Met., vol. 30, no. 3, pp. 576–581, 1968.

[24] A. Conn et al. , Trust Region Methods, ser. MPS/SIAM S. Optimizat.
Philadelphia, USA: SIAM, 2000.

[25] S. Gratton et al. , “Recursive Trust-Region Methods for Multiscale
Nonlinear Optimization,” SIAM J. Optimiz., vol. 19, no. 1, pp. 414–444,
2008.

[26] A. Afanasyev et al. , “ndnSIM: NDN Simulator for NS-3,”
NDN, Technical Report NDN-0005, 2012. [Online]. Available:
http://named-data.net/techreports.html

[27] “Internet Topology at Router- and AS-levels,” accessed: 2015-07-17.
[Online]. Available: http://www.caida.org/research/topology/generator

[28] A. Russakovskii, “How to Find Out the Number of Videos on Youtube,”
2008, accessed: 2015-07-22. [Online]. Available: http://beerpla.net/2008/
08/14/how-to-find-out-the-number-of-videos-on-youtube/

[29] A. Mahanti et al. , “Traffic Analysis of a Web Proxy Caching Hierarchy,”
IEEE Netw., vol. 14, no. 3, pp. 16–23, 2000.

[30] C. Fricker et al. , “Impact of Traffic Mix on Caching Performance
in a Content-Centric Network,” in Proc. IEEE INFOCOM Workshops,
Orlando, USA, 2012, pp. 310–315.

[31] J. Cowie et al. , “Modeling the Global Internet,” Comput. Sci. Eng.,
vol. 1, no. 1, pp. 42–50, 1999.

[32] C. Fraleigh, “Provisioning Internet Backbone Networks to Support
Latency Sensitive Applications,” Ph.D. dissertation, Stanford University,
Stanford, USA, 2002.

457ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Let’s Collect Names: How PANINI Limits
FIB Tables in Name Based Routing

Thomas C. Schmidt, Sebastian Wölke, Nora Berg
Dept. Informatik, HAW Hamburg

firstname.lastname@haw-hamburg.de

Matthias Wählisch
Freie Universität Berlin

m.waehlisch@fu-berlin.de

Abstract—Name-based routing as proposed in In-
formation Centric Networking encounters the prob-
lems of (a) exploding routing tables, as the number of
names largely exceeds common routing resources, and
(b) limited aggregation potentials, as names are com-
monly independent of content locations. In this paper,
we introduce Partial Adaptive Name Information in
ICN (PANINI), an approach to scale routing on names.
PANINI aggregates names at (virtual) collectors and
adapts FIB tables simultaneously to available resources
and actual traffic patterns. PANINI introduces routing
hierarchies and prefix-specific default routes, bimodal
FIBs, and confined flooding. We thoroughly evaluate
the approach in theory and practical experiments. Our
findings indicate that effective reductions in control
state largely outweigh overheads in control traffic.

Index Terms—FIB aggregation, scalable adaptive for-
warding, CCN/ NDN, confined Interest flooding.

I. Introduction
Information Centric Networking has introduced a new,

promising communication paradigm, but continues to
struggle with severe challenges [1]. NDN [2] (among others)
binds routing on names at a high level of maturity. However,
the multitude and complexity of distributed content names
has not been treated convincingly. Names are by orders of
magnitude too many to be stored in today’s forwarding in-
formation basis (FIBs) and remain too delocalized to allow
for aggregation. Even though several original approaches
have been presented [3], [4], the sheer scalability demands
risen from names prevent a striking step forward.

Scalable routing in the current Internet is achieved by
a hierarchy that shields global from local operations. The
majority of route identifiers is situated at the edge, but
treated as aggregates at the core. The initial concepts of
routing on hierarchical names invert this principle and
require detailed, de-aggregated knowledge of name state
throughout the network. In this paper, we approach this
problem by introducing Partial Adaptive Name Information
in ICN (PANINI).

The PANINI approach [5] starts from fixing an aggrega-
tion point for a group of names resident in a (topological)
network. The typical aggregator would be a larger cache
repository on the fixed Internet, or a gateway in the IoT.
We assume topology building mechanisms in place that
generate a shortest path tree rooted at the aggregation

point. This is in full analogy to the current Internet, where
standard routing protocols can construct shortest paths on
the inter- and intra-domain level. Given this basic topology,
every node can identify up- and downward paths with
respect to the aggregating root—with upward paths serving
as default.

The objective of name-based routing is to link content
requesters with content suppliers in an efficient way. In-
spired by the highly skewed popularity distribution of
names, PANINI aspires to efficiently balance FIB sizes and
control traffic. Popular names are included in distributed
tables, while unpopular ones are omitted and searched
by confined flooding. Our thorough evaluations reveal
significant optimizations at small FIB tables and rare
flooding events.

In the following, we will present this hybrid combination
of (artificially enhanced) name aggregation at rendezvous
points, adaptive mapping by FIBs, and a dynamic on-
demand flooding of Interests towards content suppliers. We
start with a problem statement and discuss related work
in Section II. The PANINI routing and forwarding scheme
is presented in Section III along with several deployment
scenarios. Extensive evaluations accounting for both, theory
and experimentation follows in Section IV. Finally, we
conclude and give an outlook in Section V.

II. The Problem of Scalable Routing on Names
and Related Work

A. FIB-size, Aggregation, Flooding
Scalable name-based routing is one of the open research

challenges in ICN [1], [4], [6], [7]. This problem appears
at least with two faces—limiting state (FIBs sizes) and
control traffic at routers.

A common approach to reducing routing entries is ag-
gregation. Aggregation of names, though, requires a corres-
pondence of identifiers and locations. Such an assumption
conflicts with a flexible or distributed content placement
within the network. According to current common practice,
content names belong to the content owner and not to
the network provider. Consequently, a content owner can
decide to change the ICN upstream, which then leads to de-
aggregated routing entries. Furthermore, routers on names
in ICN cannot locally decide on aggregation, since names—ISBN 978-3-901882-83-8 © 2016 IFIP

458ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

unlike IP addresses—do not fall into a fixed, enumerable
number space.

The Internet consists (and will consist) of heterogeneous
kinds of routers in terms of hardware and capacity. As-
suming a flexible name-based content distribution system—
as originally envisioned in the ICN community—routing
tables will naturally aggregate rather sparsely and easily
cause memory exhaustions at most routers. As long as a
router is single-homed, all entries can be collapsed to a
(default) entry towards the (single) uplink. Most mobile end
devices as well as edge routers are multi-homed, though.
In PANINI, we extend the concept of default routing and
leverage its benefits without ignoring the potential of the
underlying network structure.

An alternative approach to implement scalable routing
is to separate names from locators and deploy a name
resolution service [8], [9]. Staying with the core concepts
of NDN/CCN and its security benefits, PANINI performs
routing solely on names and without a mapping.

Converse to a complete table view or a default routing
system operates a path detection by flooding. Flooding
helps to explore the location of content but is clearly not
applicable on Internet-scale. PANINI exploits flooding oc-
casionally in strictly confined local regimes, when hardware
resources are limited.

To reduce the amount of memory allocated by FIB
entries, several data structures have been proposed that are
specifically tailored to name-based routing (e.g., [10]). We
consider those approaches orthogonal to PANINI, as they
help to implement scalable name-based routing (wherever
a complete view is required) but do not solve the scalability
problem from first principle.

B. Name-based Routing
Recently, the debate on how to improve the state of

name-based routing has heated again with several proposals.
OCEAN [11] starts from the observation that aggregation
is unlikely to occur on its own at Internet scale. Agreeing
with this observation, we introduce aggregation facilitators.
Instead, OCEAN proposes to aggregate on virtual paths
and (re-)introduces a virtual circuit path switching facility.
These ‘pathlet’-type forwarding also eliminates loops that
can occur in current NDN/CCN. By introducing a clear,
Internet-type route hierarchy, loops are equally prevented
in PANINI.

SNAMP [12] proposes a map-encap approach including
mapping services at the edges, which link an arbitrary name
to a backbone-specific prefix. Thus, routers in the default-
free zone (DFZ) need to store only a subset of prefixes
of the overall namespace but the edges need to handle
full tables. SNAMP introduces inverse requirements as
compared to PANINI where name collectors with complete
FIB entries span the DFZ.

Wang et al. [13] designed a flooding mechanism for ICNs.
Therein the flooding radius is set dynamically from local
graph properties that yield information about the global

100

10−2

10−4

10−6

100 101 102 103 104

Website Popularity [Rank]

R
el

at
iv

e
R

eq
ue

st
 F

re
qu

en
cy

Alexa (monthly page views)
Informer (daily page views)
Quantcast (monthly unique visitors)
Zipf's law (a = 1)

Figure 1. Zipf’s law in comparison to empirical name popularity from
different sources

structure. It shows that in scale free networks nearly all
information can be retrieved within a very small flooding
radius. In PANINI, we apply additional restrictions and
can show that even in the worst case, the overhead which
is introduced by flooding remains relatively moderate.

Geometric routing [14]–[16] addresses the problem of
route scalability by encoding forwarding in coordinates.
These approaches are promising as they do not require a
global routing table, neither in the edge nor in the core.
However, embedding arbitrary names in geometric space is
still an unsolved problem in real Internet-like deployment.

C. Name Popularity
The huge numbers of names for content can be contrasted

by its largely uneven frequency of use, which PANINI
exploits. The distribution of name popularity has been
repeatedly measured in different contexts like web caching
[17], or web access [18] and was found to be a power law
distribution of Zipf type [19].

For confirmation and parameter fixing, we performed
additional checks on web data of different type and periods.
In detail, we consulted the three different web analytic
services Alexa1, which provides monthly page view statist-
ics for the top million websites, Quantcast2, which offers
statistics of unique monthly website visits from the United
States, and Informer3, from which we crawled the daily
visitors and page views per website.

Results are displayed in Figure 1 in comparison with
Zipf’s law for a = 1. All measurements remain in reasonable
agreement with the Zipf curve, why we continue to build
our content popularity model and analysis on it.

D. Modeling Shortest Path Trees
The routing mechanism of PANINI creates shortest path

trees (SPTs). From theory [20], [21] we know that SPTs
are well modelled by uniform recursive trees (URTs). URTs
are random trees that can be generated stepwise as follows.
First, the root vertex is added to an empty graph. In each

1http://www.alexa.com
2http://www.quantcast.com
3http://website.informer.com

459ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

NAC

/foo/mail

/foo/news

FIB

/foo/*

/foo/mail

Bimodal FIB

Face 1

 include /foo/*

 exclude /foo/mail

DFZ FIB

/foo/mail

/foo/news

cd

e

Figure 2. Overview of PANINI routing and forwarding.

following step n, the n-th vertex is connected to one of the
n − 1 previous vertices with equal probability [22]. The
resulting tree is self-similar and represents the structural
properties of shortest path trees within networks, as we
will exploit in our analytical evaluation.

III. PANINI Routing
A. Overview

The core ideas of PANINI are to limit global as well
as local FIBs by introducing aggregation points (name
collectors) that are reachable via default routes, and an
utility-adaptive FIB management.

1) Limiting Global FIBs: PANINI distributes responsib-
ility for names across Name Collectors (NACs) by assigning
prefixes to NACs. Each NAC aggregates those names that
match its prefix(es) at a static preconfigured position
in the network. Prefixes can be selected demand-wise
and distributed among an arbitrary number of NACs,
tailoring a partition of the routable namespace according
to content popularity, topological preferences, or provider
needs. We discuss diverse deployment scenarios in the
following subsection.

As such, a NAC serves as a prefix-specific anchor point
that aggregates name-based routes and facilitates name-
specific caching. The anchor itself becomes reachable via
prefix-specific default routes, which a NAC simply advert-
ises within its domain. These default routes purely depend
on the topology and remain independent of individual
content providers. Following such a default route for
a prefix, any node within the network can reach the
corresponding NAC on the shortest available path. Hence
the union of all default routes for a prefix will define a
shortest path tree rooted at the NAC. Figure 2 displays
such a default for the prefix /foo/*. From this perspective,
NACs form the default-free zone (DFZ) in PANINI routing.

2) Publishing Content: A content supplier who wants
to advertise a name to the routing system uses the default

route towards its most specific prefix for issuing a Name
Advertisement Message (NAM) (see step 1 in Fig. 2). Per
default, NAMs travel hop-by-hop towards the aggregation
point, and every intermediate router can harvest the
content advertisement for including in its own routing
table. These table entries are specific, down-tree oriented
non-default routes. Filling all FIBs will generate a complete
routing path from the aggregation point to the content
source. It is worth noting that routing states close to a
NAC naturally aggregate in FIBs.

3) Requesting Content: A consumer requests content
by transmitting an Interest for a name. In the absence of
more specific FIB entries or cache hits, this Interest will
travel up to the NAC on the default route (see step 2 in
Fig. 2), where popular content is likely to be cached. If
not satisfied from the cache, the Interest will be forwarded
down along the previously installed path to the content
provider (see step 3 in Fig. 2). Data forwarding will follow
the pending Interest states on the reverse path as in regular
NDN/CCN. Routing and forwarding are thus aligned to
a network hierarchy that resembles the current Internet
with aggregation points located at the transit tier. It is
noteworthy that routing towards the NAC will aggregate
paths and thereby facilitate on-path caching.

4) Limiting Local FIBs: Up to this point, we have
globally reduced FIB entries to prefix-specific defaults,
but required names present in local FIBs. This is known
to be infeasible in ICN. PANINI weakens this requirement
as follows. Complete routing tables shall only be required
at the aggregation points. This is a significant relaxation,
since aggregation points are designed to facilitate name
aggregation and largely reduce routing table space. In
addition, providers may select strong NAC devices. From
complete, aggregated FIB tables, the (transit) root can
thus always tell which branch (or lower tier ISP) holds the
requested content. Without further FIB entries, flooding
may lead the Interest down this (loop-free) branch.

Intermediate nodes are not required to carry a full FIB,
but rather aim at adapting selected entries to minimize
Interest flooding. In analogy to caching content, each node
autonomously decides about (a) its memory resources
available for the FIB, and (b) the forwarding logic it applies
within its vicinity. Traffic flows (with highly skewed name
utilization) can be continuously used to adapt the FIB
to relevant traffic patterns. For example, a node can hold
more specific information for frequently requested names,
while it may erase entries for traffic rarely seen.

To optimize Interest guidance with partial forwarding
information even further, we introduce a bimodal FIB.
This extends the FIB structure to operate in two modes—
include and exclude. In include mode, all Interests that
match a FIB prefix will be forwarded on the associate Face,
while all Interests that match a FIB exclude-prefix will
be blocked on that Face. The initial state of an empty FIB
reads exclude * which prevents flooding of all incoming
Interests. A node that has seen no routable names from

460ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

NAMs about a prefix /foo/*’ in a subtree of his will
remain exclude /foo/*.

In combining these two routing mechanisms—(i) default
prefix routes to NACs and (ii) adaptive bimodal FIB
management—the PANINI system largely reduces FIB
tables. In the evaluation Section IV, we will show that
even with constant, small FIB sizes the routing remains
highly efficient.

B. Deployment Scenarios
1) A Content Delivery Internet: In an Internet-wide

deployment, PANINI content distribution will rely on per
prefix replicated NACs that are placed in various provider
networks. Each NAC serves its local content suppliers and
requesters as the default addressee. Routing and forwarding
for locally available or cached content remains local as
described in the previous section.

To make content accessible across domains, NACs in
service of the same prefixes need to peer in the default
free zone. NACs need to exchange more specific prefixes
of their local content names, which can be done similar to
BGP network prefix exchange, or by a distributed key-value
system. It is worth recalling that NACs are aware of their
complete local name tables and can therefore efficiently
aggregate. Request routing and content forwarding can
then be performed either by directly traversing the local
NAC and its peerings, or recursively by the local NAC as
it is common in today’s CDNs. A detailed study of routing
and forwarding in the DFZ will be subject to our future
work.

2) ICN in the Internet of Things: IoT networks com-
monly consist of distributed sensors and actuators which
are often constrained, embedded devices, and at least one
(full-featured) Internet gateway. To serve this setting, we
first need to create a topology. We propose to follow the
well-established approach of building a tree-like structure—
a destination-oriented directed acyclic graph (DODAG)—
as known from RPL [23], for example. Parents broadcast
their presence (DIO) and children attach (DAO). These
link-local operations can be transfered to the link-layer in
a straight-forward manner. The IoT gateway takes the role
of the root node and NAC.

Given this basic topology, the gateway(s) can announce
their default prefixes, which in a simple network will reduce
to a unique default route (/*). In the IoT, we need to face
the trade-off that Interests in a constrained environment
should ideally be minimized, but intermediate nodes have
limited memory and cannot hold large routing tables. In
our previous work [24], we have designed and analysed two
routing corner stones—Vanilla Interest Flooding (VIF) and
Reactive Optimistic Name-based Routing (RONR). While
VIF works without a FIB, RONR nodes gradually acquire
all FIB entries in a reactive fashion. Given the DODAG
topology, PANINI can now define a self-optimizing strategy
for routing on names by making a hybrid use of both
routing primitives—typically keeping the FIB limited to

Table I
Example of a PANINI FIB table

Mode Prefix Face

Default /foo/* 1
/bar/* 1

Include /my/videos/ 2
/your/music/ 3

Exclude /qux/* 2,3

hold a few entries that are replaced according to a least
frequently used (LFU) policy.

3) Edge Caching in 5G Mobile Networks: The emerging
5G mobile network architecture foresees an ultra dense
access network that is backed by a shared data domain for
fast content access. Several major players including Cisco
opt for deploying ICN technologies to facilitate content
caching at the edge.

PANINI routing will significantly simplify deployment as
follows. NACs shall be positioned as virtualized networked
functions in the shared data domain to channel content
retrieval and caching from the open Internet (either by
a name-based peering or by traditional IP). NACs can
dynamically resize in their virtualized environment to
adapt caching capabilities to content popularity. They will
distribute default content routes throughout the access
network so that the ultra dense access only needs to
carry a minimized set of FIB entries that persist with
topology. Neither complex, user-driven route management
nor flooding are required, as content is always pulled from
the data sharing domain.

This setting resembles the base PMIPv6 multicast archi-
tecture [25], which experienced deployment. Here access
routers (MAGs) play the role of request proxies and regional
mobility anchors (LMAs) serve as content aggregation
points.

C. Initializing a Default Distribution System
To illustrate the PANINI routing system in detail, let

us consider an initial network prior to any signaling. This
system consists of interconnected routers and a collection
of NACs. NACs have prefixes assigned and routers precon-
figured their FIBs autonomously to exclude /* * (cf.,
Table I). The initialization of the distribution system then
proceeds in three phases.

1) Setting-up Defaults: Once configured, the NACs will
start to announce their prefix availability and thereby
construct shortest path trees (SPTs) per prefix. Efficient
protocol mechanisms for that task are well known such
as BIDIR PIM [26] in the Internet, or RPL [23] in the
IoT. These SPTs are defined by the corresponding default
entries in regular FIBs (cf., Table I). It is noteworthy that
defaults enable any router on path to distinguish upstream
and downstream messages prefix-wise.

461ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

2) Registering Content Names: On completion of Phase 1),
content is only available at or via the NACs (e.g., from
external peering). In order to publish content, providers
need to register their content names with the appropriate
NAC. For this providers issue a Name Advertisement
Message (NAM) that is forwarded along the default route
to its NAC. At each hop, intermediate routers see such
advertisement and must update their FIBs to maintain
consistency. For example, an ‘exclude all’ interface must
change state to include the newly seen name or prefix.
Alternatively, forwarding prefixes that have been already
configured may need extension to include the new advert-
isement. Beyond consistency demands, an intermediate
router is free to decide about the level of precision it
includes in its Forwarding Information Base. To ensure
message redundancy, resilience, and to facilitate adaptive
FIB management, NAMs need periodic retransmission as
is common in related Internet protocols.

3) Processing Content Interest: In the third phase, all
content is available for request as described in Section III-A.
Interests arriving at a router face are placed in the Pending
Interest Table (PIT) like in regular NDN/CCN, and
are forwarded under aggregation according to the FIB.
However, as FIBs need not be complete, Interest forwarding
needs to adapt in the following way.

Any Interest traveling up-tree will be forwarded along
default routes, unlike a specific FIB entry (i.e., ‘include’
as in Table I) refers downwards. It should be noted here
that longest prefix match cannot be applied to name-based
routing without globally coordinated aggregation. At the
NAC, a complete FIB will guide the Interest down to
its dedicated subtree. Arriving on the downward path,
any intermediate router will search its FIB for a specific
route. If present, the Interest will travel in regular unicast
mode. In case of a FIB miss, the router will select all
down-tree interfaces without a matching exclude entry
for broadcasting the Interest. We will show in Section IV
that the expected broadcast fanout is small, and—by the
recursive nature of SPTs—independent of network size.
Note that loops are strictly prevented as Interests travel
up-tree only once and monotonically downwards thereafter.

Additionally, Interest arrival is a measure of content
popularity and used to adapt the FIB population at
intermediate routers. We will discuss such adaptive FIB
management in the subsequent section.

D. Adaptive FIB Management
A major objective of PANINI is to effectively limit FIB

sizes. This is at first achieved by enhanced aggregation and
default routes, but strict limits require additional measures.
We now address how local routers can independently limit
their FIBs in an optimized fashion.

A PANINI router can impose strict limits on its FIB,
the minimum being a single default /*. While admitting
incomplete forwarding information by flooding, it is the
idea to keep broadcasts unlikely by populating the FIB

according to content popularity, which is highly skewed
(see Section II). PANINI does not dictate a common policy
for managing FIBs, but rather leaves this to individual
capacities and configurations of nodes. At the same time,
any on-path router can measure name popularity through
Interest processing and maximize the utility of its table
entries.

We favour two strategies for an adaptive FIB manage-
ment, leaving the field open, though, for further strategic
improvements. A minimal approach—also feasible in the
IoT—is to fix a table size and replace by least frequent
use. In detail, FIB entries keep a statistic counter that
is incremented for every Interest match. When a new
name advertisement arrives, it replaces the least popular
FIB entry, leaving the total size unchanged. Additional
thresholds in frequency and time can increase convergence
of this simple scheme.

A relaxed scheme based on soft states may be preferable
at moderately constrained FIB sizes. Every advertised
name will at first written to the FIB with a timestamp
attached. A FIB entry then will expire after a timeout
period, unless an Interest refreshes its timestamp. In this
way, FIB tables will adjust to content variety and request
frequency, possibly fluctuating heavily in size. The actual
FIB properties may be fine-tuned by adjusting the timeout
period or imposing additional thresholds.

IV. Evaluation
In this section, we evaluate PANINI with a special focus

on routing costs and overheads. We will approach the
subject from two sides, theoretically by analysing the struc-
tural properties of the routing trees, and experimentally
by emulating virtual PANINI networks in our lab. While
theory grants rigorous insights into intrinsic characteristics
of the system and to scale its size, experiments practically
reveal net effects from the different constellations of the
huge state space. Wherever possible, we compare results.

A. Theoretical Modeling
The PANINI routing scheme is built on prefix-specific

shortest path trees (SPTs) that are rooted at the cor-
responding NACs. Without loss of generality it suffices
to analyse the properties of a single tree, as no further
assumptions are made w.r.t. individual prefixes.

1) Flooding Fanout: A router on the shortest path may
experience a FIB miss in PANINI and needs to broadcast
an Interest. In the absence of exclude entries, the flooding
overhead increases with the fanout. Fanout resp. degree
distributions are known for URTs [22]. Consider a URT of
N nodes, then the expected number of nodes with degree
k can be approximated by

E [VN (k)] = N

2k+1 + O((log N)k+1). (1)

Figure 3 shows the normalized degree distribution for
different network sizes which coincide due to the recursive

462ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Figure 3. Node degree distribution for URTs of different sizes

nature of the trees. In particular, fanouts (= degree - 1
uplink) are uniform and likely range between one and
five. This confirms a limited ramification of URTs that are
uniformly wide but short, and a broadcast at a single node
will have limited multiplicity.

2) Flooding in Subbranches: When a PANINI node floods
downwards after a FIB miss, there are two options of
Interest propagation at each receiver. Either it holds a
matching FIB entry, or it continues flooding. By the latter,
flooding may extend over complete subbranches, which
again share the URT property at reduced size. In this
section, we calculate the worst, best, and average number
of nodes that receive a flooded Interest message.

In the worst case, a direct child of the NAC holds
no forwarding state for a specific Interest message and
initiates flooding. In the absence of any further forwarding
information, the nodes which receive the broadcast message
are all in that branch. The expected size of such a branch
can be calculated from the number of nodes and the
expected root degree as follows.

Let UN denote the random variable that maps from an
URT with N nodes to the degree of the root vertex. Then
the expected root degree reads [27]

E [UN] =
N−1∑

j=1

1
j

= HN−1 (2)

that is the (N − 1)th harmonic number HN−1. Since the
distribution of branch sizes is uniform in an URT, we obtain
the expected branch size from dividing the remaining N −1
by (2).

A Uniform Recursive Tree of N nodes has an average
depth of log(N), which is the optimal number of downtree
Interest messages. For the average scenario, we consider
the unicast hops and a random FIB on path empty with its
corresponding subtree flooded (see below). We visualize the
outcome in Figure 4. As can be seen from the graph, the
average number of Interest messages needed for locating
content follows closely the logarithmic behavior of the best
case. In contrast, the worst case scenario grows almost
linearly (≈ N/ log N).

We now calculate the size distribution of a randomly
selected subtree following the Polya urn model. We consider

10 100 500 1000
0

20
40
60
80

100
120
140

<I
nt

er
es

tM
es

sa
ge

s>
[#

]

Network Size [# Nodes]

Best Case
Average Case
Worst Case

Figure 4. Average number of Interest messages for different scenarios
and network sizes

0 5 10 15 20
0.0

0.2

0.4

R
el

at
iv

e
Fr

eq
ue

nc
y

Size of Subtree [# Nodes]

N=10
N=100
N=1000

Figure 5. Distributions of branch sizes in a routing tree of N nodes

N nodes that are numbered in the order of attachment.
Let DN (k) denote the number of descendants of node
k > 1, then the distribution can be derived from the Polya-
Eggenberger distribution [28], [29]

P (DN (k) = j) = (k − 1) · (N − k − j + 1)j

(N − j − 1) · (N − 1)j
, (3)

with (n)j the j-th rising factorial power of n.
Summing over all nodes k with equal probability 1/N yields
the distribution DN of nodes in a subtree rooted at an
arbitrarily chosen node.

Figure 5 visualizes these analytical distributions for
different numbers of nodes. Strikingly, the branch sizes
are largely independent of the overall network size, which
is due to the recursive nature of the URTs. Node numbers
from these exponentially decaying distributions are rather
small: more than 7 nodes appear with probability 0.01.
This is again due to a uniformly wide fanout—trees are
rather wide and short.

3) Resilience and Robustness: To provide robust data
distribution a network needs to adjust to changes and
failures. PANINI operates on the basis of shortest path
trees and needs to cope with nodes that disappear from
the SPT and possibly reappear somewhere else on the tree
at a later time. Therefore, the FIBs need to be updated,
e.g., by periodically repeating publishing messages. With
the insertion depth of a node in an URT, we can estimate
how many link changes are required and thereby how large

463ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Figure 6. PDF of the insertion depth of a failing node

a damage and the effort to update the FIB at the NAC
are.

To obtain the insertion depth of a node, we use the
profile E [Vd,N] of a URTs [22], which describes the expected
number of nodes at level d. Let random variable IN map
to the insertion depth d of a node, then

P (IN = d) = E [Vd−1,N−1]
N − 1 (4)

Figure 6 depicts the probability density functions of
IN for different network sizes. The graph shows that the
insertion depth of a node only slowly increases with growing
size. The reason is again that the shapes of URTs tend
to grow relatively wide but not very deep. Furthermore,
in URTs about half of the nodes will be situated at level
ln(n). That means that we expect a new publish message to
travel ln(n) hops until the NAC has the right information
in which subtree the node rejoined.

B. Experimental Emulation

We now proceed to our experimental evaluations that
are performed using a realistic emulation environment.
While the theoretical analysis remained limited to struc-
tural properties of the routing system, we experimentally
consider real-world topologies, realistic name popularities,
and adaptive FIB management. Caching was not considered
in this work, since arbitrary cache effects would blur the
outcome of routing and FIB management that we want to
reveal. However, adding caching to the system will only
improve the overall performance.

Evaluations again concentrate on the routing costs and
overheads produced by PANINI. In addition to control
messages and flooding costs, we quantify the path stretch
for the Rocketfuel topologies, which also serves as an
indicator for overheads in forwarding delay.

1) Experimental Environment: For experimentation,
emulated networks were set up on a 64-core host machine
based on virtual nodes and Mininet [30]. Topologies were
created from Rocketfuel data [31] and from artificially
generated URTs.

(a) URT (b) AS 1239 (sized) (c) AS 1239 (timed)

Figure 7. Overall distribution of message types for different FIB sizes
resp. FIB entry life times, showing average, 95% and 5% percentile

Every virtual node ran an NDN-Forwarder based on a
modified version of NDN (0.4.0-beta2)4. PANINI modifica-
tions were implemented in the NDN strategy layer which
allows for specific processing of each individual packet. We
implemented a fixed size FIB operating a LFU replacement
policy and a life-time management for FIB entries. Using
this setting, we were able to reliably run networks of several
hundred core routers without loosing packets or exhausting
resources otherwise.

All individual experiments were performed according to
the following scheme. We fixed a topology and FIB size,
and placed the NAC at its center (on the node of highest
betweeness). For each content name from a set of 10.000,
we placed providers on random but fixed routers in the
topology. Consumers were emulated as child nodes of the
core routers. Each consumer was placed uniformly random
and requested content from our name set according to a
Zipf distribution. One million individual message paths
were iterated, monitored, and recorded for evaluation.

C. Experimental Results
1) Expected Message Distribution: Our first glance at the

system addresses the overall messaging behaviour. We are
interested in the average number of unicasts and broadcasts
per content request for different topologies and FIB sizes,
as well as FIB entry life times. The results in Fig. 7 surprise
with a remarkably low broadcast appearance for both, the
artificial URT (size 100 routers) and the AS1239 Rocketfuel
topology (size 315 routers). Only for small FIB sizes in
the URT, broadcast multiplicities fluctuate by an order of
magnitude. With increasing FIB sizes, but in particular for
the temporal FIB entry management, flooding reduces to
about a single broadcast per request. Note that the routing
refresh rate equals 200s and the average path lengths in
both topologies is close to six.

For a more differentiated view, we correlated the message
type distribution with content ranks (see Fig. 8). Unsur-
prisingly, broadcast multiplicities and fluctuations largely
increase with decreasing popularity. In detail, content re-
quests above rank 100 caused visibly fluctuating broadcasts.
However, given the heavily skewed content distribution

4http://named-data.net/

464ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) URT (b) AS 1239, FIB size limit 50 (c) AS 1239, FIB Entry Lifetime 60s

Figure 8. Measurements of (typed) message frequencies for selected popularity ranks and different scenarios

known from Fig. 1, it becomes evident that these flooding
events carry limited weight and contribute little to the
overall average results in Fig. 7.

These numbers strongly support the initial PANINI
assumption that low-ranked content names in FIBs are
of little use.

2) Flooding in Subtrees: The following analysis explores
the empirical shapes of flooded subtrees, which had already
been discussed in the theory section. For the same exper-
iments, we identify (a) all coherent subtrees and (b) the
accumulated size of flooded regions that are composites
of a larger tree with subtrees connected via unicast links.
The latter are results from alternating FIB misses and hits
along paths.

Fig. 9 visualizes the different distributions of subtree
sizes. Results for single broadcast trees only, are in excellent
agreement with theory and very small. Almost 90 % of
flooded subbranches subsume less than 10 nodes. This
again reflects the limiting characteristic of the recursive
structures. On the contrary, composite trees tend to be
much larger with about 50 % exceeding 25 network nodes.
This is an indication of fluctuating decision at neighboring
routers that cannot converge on treating certain names.
Even though these events occur rarely and carry little
weight, we expect to improve this behavior with name ag-
gregation at FIBs close to the NAC. Name aggregation has
not been implemented yet, but shall assign an increasing
weight of names at up-tree routers.

3) Path Stretch: In most cases, PANINI transmits In-
terests via a NACK to the producer (in the absence of
caches) and thus may artificially extend paths. To quantify
this effect, we evaluate the distributions of path stretches
for all Rocketfuel topologies. The results are displayed in
Fig. 10.

Strikingly, 50 % of all paths experience no stretch at
all except for the slightly outlying AS 1239 topology.
Larger stretches exceeding two are very rare—mainly
in less than 10 %. These results are tightly connected

●

●
●
●
●
●
● ● ●

● ● ●
●
●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●

●
●

●

●

●

● ●
●
● ● ●

● ●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●
● ● ●

● ● ●
●
● ●

● ●

●

●

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Size of Subtree [# Nodes]

C
D

F

ıı

ıı

ıı

●●

●●

AS 1221 Broadcast Tree
AS 1221 Composite Broadcast Tree
Theoretical Reference
URT 100 Broadcast Tree
URT 100 Composite Broadcast Tree

Figure 9. Distribution of subtree sizes for single and composite
broadcast trees at FIB size 50—comparison of measurements from
two topologies with theory

with the placement of NACs. Being at the center of the
network, many shortest paths traverse through the NAC
and experience no stretch. Caching at NAC will improve
the results even further.

V. Conclusions and Outlook
Name based routing and forwarding in Information Cent-

ric Networking offer interesting potentials, but continue to
raise significant challenges. In this work, we proposed a
way to limit routing table sizes and to benefit from name
aggregation within topological constraints. We introduced
and thoroughly analysed PANINI, which may lead a new
way to simplified content networking. Experimental as well
as a theoretical evaluations revealed promising results in
several dimensions.

In summary, we could show that PANINI routing is a
self-optimizing hybrid approach that mitigates between
FIB sizes and Interest flooding while locating content.
Evidence was presented that rigorously small, incomplete
routing tables can be compensated by a negligible quantity

465ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Figure 10. Distribution of path stretchs for PANINI Routing in dif-
ferent Rocketfuel topologies, BC denotes the Betweenness Centrality
of the NAC

of broadcasts. Our future work will concentrate on to
elaborate and quantitatively evaluate the aggregation
potentials in distributed name-based routing. For the
default free zone, this will raise the particular challenge of
a scalable name synchronisation at interdomain peering.
Corresponding routing strategies need to be found. It is our
intend to show the feasibility of PANINI even for large-scale
inter-provider settings.

References
[1] D. Kutscher, S. Eum, K. Pentikousis, I. Psaras, D. Corujo,

D. Saucez, T. Schmidt, and M. Waehlisch, “ICN Research
Challenges,” IETF, Internet-Draft – work in progress 06, March
2016.

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, and M. F. Plass,
“Networking Named Content,” in Proc. of the 5th Int. Conf.
on emerging Networking EXperiments and Technologies (ACM
CoNEXT’09). New York, NY, USA: ACM, Dec. 2009, pp. 1–12.

[3] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and
B. Ohlman, “A Survey of Information-Centric Networking,”
IEEE Communications Magazine, vol. 50, no. 7, pp. 26–36, July
2012.

[4] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilo-
poulos, X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A
Survey of Information-Centric Networking Research,” IEEE
Communications Surveys and Tutorials, vol. 16, no. 2, pp. 1024–
1049, 2014.

[5] T. C. Schmidt, S. Wölke, N. Berg, and M. Wählisch, “Partial
Adaptive Name Information in ICN: PANINI Routing Limits FIB
Table Sizes,” in 2nd ACM Conference on Information-Centric
Networking (ICN 2015), Poster Session. New York: ACM, Oct.
2015, pp. 193–194.

[6] Y. Chung, “Distributed Denial of Service is a Scalability Prob-
lem,” SIGCOMM CCR., vol. 42, no. 1, pp. 69–71, Jan. 2012.

[7] M. Wählisch, T. C. Schmidt, and M. Vahlenkamp, “Backscatter
from the Data Plane – Threats to Stability and Security
in Information-Centric Network Infrastructure,” Computer
Networks, vol. 57, no. 16, pp. 3192–3206, Nov. 2013. [Online].
Available: http://dx.doi.org/10.1016/j.comnet.2013.07.009

[8] M. D’Ambrosio, C. Dannewitz, H. Karl, and V. Vercellone,
“MDHT: A Hierarchical Name Resolution Service for Information-
centric Networks,” in Proc. of the ACM SIGCOMM WS on ICN.
New York, NY, USA: ACM, 2011, pp. 7–12.

[9] K. V. Katsaros, X. Vasilakos, T. Okwii, G. Xylomenos, G. Pavlou,
and G. C. Polyzos, “On the Inter-domain Scalability of Route-
by-Name Information-Centric Network Architectures,” in Proc.
of IFIP Networking, 2015.

[10] T. Song, H. Yuan, P. Crowley, and B. Zhang, “Scalable name-
based packet forwarding: From millions to billions,” in Proc. of
ACM ICN. New York, NY, USA: ACM, 2015, pp. 19–28.

[11] J. J. Garcia-Luna-Aceves, “A More Scalable Approach to Content
Centric Networking,” in Proc. of ICCCN. Piscataway, NJ, USA:
IEEE, 2015.

[12] A. Afanasyev, C. Yi, L. Wang, B. Zhang, and L. Zhang, “SNAMP:
Secure Namespace Mapping to Scale NDN Forwarding,” in Proc.
of IEEE Global Internet Symposium. Piscataway, NJ, USA:
IEEE, 2015, pp. 281–286.

[13] L. Wang, S. Bayhan, J. Ott, J. Kangasharju, A. Sathiaseelan, and
J. Crowcroft, “Pro-Diluvian: Understanding Scoped-Flooding
for Content Discovery in Information-Centric Networking,” in
Proceedings of the 2nd International Conference on Information-
Centric Networking. ACM, 2015, pp. 9–18.

[14] R. Kleinberg, “Geographic Routing Using Hyperbolic Space,”
in INFOCOM. Piscataway, NJ, USA: IEEE Press, 2007, pp.
1902–1909.

[15] D. Krioukov, F. Papadopoulos, M. Kitsak, A. Vahdat, and
M. Boguñá, “Hyperbolic Geometry of Complex Networks,”
Physical Review E, vol. 82, no. 036106, Oct 2010.

[16] D. Papadimitriou, D. Colle, P. Audenaert, and P. Demeester,
“Geometric Information Routing,” in Proc. of IEEE ANTS.
Piscataway, NJ, USA: IEEE, 2013.

[17] P. Barford, A. Bestavros, A. Bradley, and M. Crovella, “Changes
in Web Client Access Patterns: Characteristics and Caching
Implications,” World Wide Web, vol. 2, pp. 15–28, 1999, special
Issue on Characterization and Performance Evaluation.

[18] M. Halvey, M. T. Keane, and B. Smyth, “Mobile Web Surfing is
the Same as Web Surfing,” Commun. ACM, vol. 49, no. 3, pp.
76–81, 2006.

[19] G. K. Zipf, “Relative Frequency as a Determinant of Phonetic
Change,” Harvard Studies in Classical Philology, vol. 40, pp.
1–95, 1929.

[20] P. Van Mieghem, G. Hooghiemstra, and R. van der Hofstad, “A
Scaling Law for the Hopcount in Internet,” Delft University of
Technology, Tech. Rep., 2000.

[21] P. Van Mieghem, Performance Analysis of Communications
Networks and Systems. Cambridge, New York: Cambridge
University Press, 2006.

[22] M. Drmota, Random Trees: An Interplay between Combinatorics
and Probability. Springer Science & Business Media, 2010.

[23] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis,
K. Pister, R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6
Routing Protocol for Low-Power and Lossy Networks,” IETF,
RFC 6550, March 2012.

[24] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and
M. Wählisch, “Information Centric Networking in the IoT:
Experiments with NDN in the Wild,” in Proc. of 1st ACM
Conf. on Information-Centric Networking (ICN-2014). New
York: ACM, September 2014, pp. 77–86. [Online]. Available:
http://dx.doi.org/10.1145/2660129.2660144

[25] T. C. Schmidt, M. Wählisch, and S. Krishnan, “Base Deployment
for Multicast Listener Support in Proxy Mobile IPv6 (PMIPv6)
Domains,” IETF, RFC 6224, April 2011. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc6224.txt

[26] M. Handley, I. Kouvelas, T. Speakman, and L. Vicisano, “Bid-
irectional Protocol Independent Multicast (BIDIR-PIM),” IETF,
RFC 5015, October 2007.

[27] Q. Feng, C. Su, and Z. Hu, “Branching Structure of Uniform
Recursive Trees,” Science in China Series A: Mathematics,
vol. 48, no. 6, pp. 769–784, 2005.

[28] N. Johnson and S. Kotz, “Urn Models and Their Application:
An Approach to Modern Discrete Probability Theory,” 1977.

[29] A. Panholzer and H. Prodinger, “Level of Nodes in Increasing
Trees Revisited,” Random Structures & Algorithms, vol. 31, no. 2,
pp. 203–226, 2007.

[30] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McK-
eown, “Reproducible Network Experiments Using Container-
based Emulation,” in Proc. of CoNEXT ’12. New York, NY,
USA: ACM, Dec. 2012, pp. 253–264.

[31] N. Spring, R. Mahajan, D. Wetherall, and T. Anderson, “Measur-
ing ISP Topologies With Rocketfuel,” IEEE/ACM Trans. Netw.,
vol. 12, no. 1, pp. 2–16, 2004.

466ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Scalable URL Matching with Small Memory
Footprint

Anat Bremler-Barr†, David Hay⇤, Daniel Krauthgamer†, and Shimrit Tzur-David‡
†Dept. of Computer Science, the Interdisciplinary Center Herzliya, Israel. {bremler,krauthgamer.daniel}@idc.ac.il

⇤School of Engineering and Computer Science, Hebrew University, Jerusalem, Israel. dhay@cs.huji.ac.il
‡Dept. of Computer Science, Ben-Gurion University of the Negev, Israel. tzurdavi@cs.bgu.ac.il

Abstract— URL matching lies at the core of many net-
working applications and Information Centric Networking
architectures. For example, URL matching is extensively
used by Layer 7 switches, ICN/NDN routers, load balancers,
and security devices. Modern URL matching is done by
maintaining a rich database that consists of tens of millions
of URL which are classified to dozens of categories (or egress
ports). In real-time, any input URL has to be searched in
this database to find the corresponding category.

In this paper, we introduce a generic framework for
accurate URL matching (namely, no false positives or miscat-
egorization) that aims to reduce the overall memory footprint,
while still having low matching latency. We introduce a
dictionary-based compression method that compresses the
database by 60%, while having only a slight overhead in time.
Our framework is very flexible and it allows hot-updates,
cloud-based deployments, and can deal with strings that are
not URLs.

I. INTRODUCTION

As networks become more application- and service-
oriented, URL matching is becoming an important com-
ponent in many network devices and middleboxes.

In particular, URL matching is the basic building block
of layer 7 switches, routers, and load balancers [18], [20],
[25], [36], where routing decisions (e.g., which egress
to forward a packet) are often determined by a URL
(or a name) within a header of some application-layer
protocol. Thus, URL (or, alternatively, service name or
any other hierarchical human-readable names) matching
is extensively used under Content-Centric Networking
(CCN) approaches, such as Service-Centric Naming (e.g.,
Serval [20]) and Information Centric Networking [13]
architectures like Named Data Networking (NDN) [2],
[14], [38]. In particular, forwarding tables in high-speed
NDN routers are expected to hold between 1�10 millions
URLs.

URL matching is also important in traditional net-
working, where it is primarily used to enforce usage
or security policy. Modern security devices, especially
in enterprises and workplace networks, are now filtering
web content according to URLs (see Checkpoint [16],
Palo Alto Networks [21], WebSense [33], Sourcefire [26],

and others [28], [29]). In the past, such URL filtering
consisted only on two categories: a blacklist of URLs that
cannot be accessed and a white-list of legitimate URLs.
However, contemporary URL filtering tools support tens
of categories, allowing fine-grained policies which can be
easily customized. Today, URL filtering tools have 1�100

million URLs in these lists. URL matching is also used for
other applications such as URL shortening services [27],
[37], and search engines [15].

As the average length of a URL is 22.6 bytes, the
memory footprint of the URL database often becomes
humongous. On the other hand, URL matching is often
performed as a bump on the wire, implying the URL
database must be stored in an expensive fast memory to
support line-rate queries. Thus, compressing the database
while obtaining fast queries is essential, either to make
URL-matching–based solutions feasible, or to signifi-
cantly reduce their costs.

This paper tackles exactly this problem and presents a
generic framework to efficiently store URLs in a database,
along with their categories (in the context of Layer
7 routing or NDN/ICN, the database corresponds to a
forwarding table/FIB, and a category corresponds to an
egress port or ports). When the database is queried, it
either returns the category attached to the queried URL or
? in case the URL is not in the database. Importantly, we
do not allow inaccurate results—the query must always
return the correct answer.

Our approach is generic in the sense that it does not
have any assumption on the data structure used to perform
the URL matching itself (This data structure is referred to
as database in Fig. 1). Our framework compresses only the
information stored in that data structure, and therefore, can
leverage from any fast URL matching technique (called
database query in Fig. 1). Specifically, our compression
can be performed on the entire URL at once (applicable
mainly for hash-based solution) or in a component-by-
component manner (applicable, for example, to Trie-based
solutions).

This paper focuses on reducing the memory footprint of
the database, while still enabling fast queries. Since URLs
share many common substrings, a naı̈ve approach wouldISBN 978-3-901882-83-8 c� 2016 IFIP

467ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Heavy Hitters
Algorithm

Anchors
Selection

Huffman
Code

for literals

and anchors

Dictionary
stored as DFA

Deterministic
URL Database
Compression
and Huffman

Code Creation

Database
key=compressed URL

value=category

List of URLs
with attached
categories

Frequent
substrings

Anchors
w/ frequencies

Compressed
URLs with
categories

Huffman codeList of anchors

Database
Query

Determinsitic
Anchors Selection
Rule and Huffman

Encoding

Input URL Compressed URL Category

Fig. 1. A block diagram of our framework. The blue blocks describe the offline phase, where the database and auxilary data structures are built. The red
blocks are the datapath of our framework. Green blocks represent the data structures, which constitute the memory footprint we try to minimize.

have been to compress the database using an off-the-shelf
compression algorithm (e.g., DEFLATE used by gzip [9]).
Indeed, such compression reduces the memory footprint
by about 70%, however it does not allow fast queries of
the compressed database. This essentially stems from the
fact that the compressed form of each individual URL
depends on previous URLs in the database.

Thus, we take a different approach and use a dictionary-
based compression, which is illustrated in Figure 1. Our
framework is divided to two phases: an offline phase, in
which the database is built, and a datapath, in which input
URLs are queried against the database.

In the offline phase, we start by extracting the frequent
substrings1 that appears in the URLs; (for example, the
three most such substrings in our data were “.com”,
“s.com”, and “e.com”); this is done by off-the-shelf
heavy hitters algorithms, such as [1], [10]. Notice that
frequent substrings intersect each others, and therefore,
sometimes a substring may not be useful for compression,
even though it appears many times. Thus, for each fre-
quent substring, we first estimate its real frequency in the
compressed database, and then try to determine whether
it is indeed beneficial to use it (taking into account, for
example, also its length and the overhead in storing it
in the dictionary). Using these estimates, we select a
subset of the frequent substrings as anchors, which will
be stored in the dictionary. We also use the estimated
frequency of the anchors to create a Huffman code for
them (which will further reduce the memory footprint).
We note that given the Huffman code and the dictionary,
we can compress each URL separately, by replacing each
anchor (and each literal) by the corresponding Huffman

1We will use the terms string and substring interchangeably when it
is clear from the context.

code. All compressed URLs are stored along with their
categories in an off-the-shelf database (e.g., based on a
hash-table [35], [37] or a Trie). We note that sometimes
more than one anchor replacement option is available (e.g.,
suppose our dictionary is §1=“goo”, §2=“.com”, and
§3=“ogle”; the URL google.com can be compressed
to either §1gle§2 or go§3§2). Hence, our compression
algorithm uses a deterministic rule to choose the proper
replacement, implying that the compressed form of each
URL depends only on the dictionary used.

The datapath works in a similar way: We first identify
which anchors are in the input URLs, then we use the
same deterministic rule to choose which anchors to use,
and finally we use the same Huffman code to encode the
selected anchors and literals. Thus, when querying the
database, it is sufficient to use the compressed-form of
the queried URL as a key to the database.

Overall our framework yields a reduction of up to 60%

in memory. Naturally, using compression trades memory
space with the overhead of processing (compressing) the
data. However, our experiments shows that the processing
overhead (namely, the URL compression) works at rate of
more than 200 Mb/s on one core, which is acceptable in
these settings, as these operations can be highly paralleled
(either by compressing many URLs on simultaneously
on multiple cores, or by having the URL compression
and database query as successive stages in a pipeline). In
addition, we note that our framework allows hot-updates
support, where URLs can be easily inserted, deleted, or
modified in the database. In addition, we are able to deal
with both exact matching and longest prefix matching
(LPM) of URLs, where the only difference is that under
LPM, we must first break the URL to its components
(separated by dots or slashes) and then compress each

2

468ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

such component separately.
We provide a full implementation of our framework

in [6].
The rest of this paper is organized as follows: Section II

discusses previous works on URL matching. In Section III,
we describe the datapath of our framework, in which we
resolve online the category of input URLs. Section IV
describes the offline phase of our framework, in which
the database and auxiliary data structures are constructed.
In Section V, we present experimental results on real-life
URL data sets. Finally, we conclude in Section VI.

II. RELATED WORK

Performing fast URL matching has recently received
extensive attention [2], [8], [30]–[32], mostly focusing on
the URL matching time This paper focuses on reducing
the memory footprint of the URL database by designing
a tailored-made compression method. Once the database
is compressed, it can be used in conjunction with any of
the previously suggested URL matching techniques.

As opposed to our framework, which employs loss-
less compression, most of the previous works on URL
compression have used lossy compression, such as a
hash-chain compression [18], CRC compression [39], or
hierarchical Bloom filters [11]. Clearly, lossy compression
techniques have two clear drawbacks. First and foremost,
they might lead to a false categorization of URLs, as
several URLs (each with different category) might be com-
pressed to the same form. In addition, these compressions
are not reversible, implying updates might become more
difficult.

The works in [11], [35], [37], [39] dealt only with
two categories of URLs (blacklist and white-list), and
cannot be easily extended to multiple categories (e.g.,
by assuming that each URL that is not in one category,
is implicitly in the other). Hence, these works are not
applicable to modern devices that have many categories
and have to store significantly more URLs.

URL lossless compression using AVL tree was consid-
ered in [15]. This compression achieves 50% compression
ratio, albeit with high query and insertion time (namely,
tens of microseconds). We note that this solution aims to
compress crawling information of web spiders, which is
less time-sensitive. However, in our case, query time is
important, as most URL matching lie in the critical path
of the traffic. In other words, the required solution has
to represent the data using as little space as possible, yet
efficiently answering queries on the represented data.

Moreover, nowadays there are many URL shortening
services such as [4], [27]. These services store a database
that translates the shortened version of the URL back to
its original form, and then redirects the user requests to
the original address. Thus, this shortening is basically
a renaming of the URLs rather than compression; the

database holds the URLs in an uncompressed form and
its total space is not reduced, and therefore, it is not
applicable in our setting.

Another common strategy to deal with the string re-
trieval problem is using tries. However, tries-based so-
lutions do not supply efficient solutions to a non-prefix
query, unless a very large amount of memory is used.
Note that providing a solution to the string retrieval
problem usually requires to create an index to the data
and the footprint that is required to represent this index
is sometimes larger than the footprint of the original data.
Compressing trie-based data structure for URL matching
was considered in [8], [30]. In these works, the edges
of the trie correspond to the components of the URLs
and the basic idea is to provide each such component
with a unique code; moreover, the same code can be used
for different parts of the trie when its decoding is not
ambiguous. It is important to notice that the technique
compresses the trie-based data-structure, but its memory
footprint is larger than the size of a bare list of all URLs,
as almost the entire URL information is stored explicitly in
the lookup table for finding the code of each component.
Our framework, on the other hand, reduces the memory
footprint below the size of that list, and can be used in
conjunction with the techniques of [8], [30] to further
reduce the memory footprint of the trie. Moreover, while
the compression techniques of [8], [30] is specific to their
trie-based data structure, our framework is generic and can
be applied with any matching data-structure.

Usually, solutions that create an index of the data are
heavy in space (e.g. [17]). Dealing with this inefficient
footprint was a subject recent research (e.g., [12]). Our
solution obtains better results, in compression ratio as well
as lookup performance. Actually, the lookup performance
of this work is two orders of magnitude slower than
our solution, as presented at Section V. We also note
that compressing string dictionaries was a subject for
extensive research (c.f. [7], [19] and references therein);
however, these solutions were not geared specifically to
URL databases.

Retravi et al. have studied how to compress IP forward-
ing table [23]. However their solution is not applicable to
URL matching, since it assumes either a limited number
of categories (corresponding to the possible next hops) or
very rare updates.

Finally, femtoZip [10] is a compression library that
aims in compressing short documents. As our framework,
it constructs a shared dictionary which are used by all
documents; unlike our scheme, this shared dictionary is
a concatenation of all anchors, and therefore, references
to this dictionary is done by referring to the offset of
the anchor from the beginning of the dictionary and the
length of the anchor. Concatenating anchors yields a more
compact dictionary (e.g., one can refer to all substrings of

3

469ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

each anchor, by the appropriate offset and length), yet
references the dictionary from the compressed document
require three bytes for 64 KB dictionary with anchors of
up to 256 bytes. femtoZip is not applicable to our setting
as, on one hand, it does not provide fast compression
after the dictionary is built (needed for our datapath),
and, even more importantly, holding the dictionary as a
concatenation of anchors rules out efficient encoding of
the anchors. As we will show later, Huffman encoding of
the anchors achieves significant improvement in the com-
pression ratio, as, on average, each anchor requires less
than three bytes (this is due to the fact that there are many
frequent anchors whose short encoding reduce the overall
size significantly). Nevertheless, we use components of
femtoZip as one of the alternatives for a heavy hitters
algorithm (to extract frequent substrings), as described in
Section IV-A.

III. THE DATAPATH AND DATA STRUCTURES

In this section, we explain the different steps taken
to resolve the category of an input URL. Essentially, it
include a compression stage, and then a database query
with the URL in a compressed-form as a key. Notice
that this process is done online, and it assumes that
the database and auxiliary data structures are given (see
Figure 1). We will explain how to obtain the database
and construct the data structures in Section IV. Moreover,
in case that either a trie-based database is used or a
longest-prefix matching is required, we first break the
URL into components (by “.” and “/” delimiters) and
then compress each component separately. First, given the
input URL, we extract the anchors which are contained in
that URL. This is done by applying a pattern matching
algorithm on the URL, where the set of patterns is the set
of anchors. In this work, we chose to use the Aho-Corasick
algorithm [3], which is based on traversing a Deterministic
Finite Automaton (DFA) representing the set of anchors.
Thus, the dictionary is stored as a DFA, whose accepting
states represent anchors. We note that it is useful to store
additional information about each anchor in the DFA,
namely the length of the corresponding Huffman code and
a pointer to the Huffman code itself. Compressing the size
of the DFA for pattern matching algorithm was the subject
of an extensive research recently; in this work, we use the
most compressed form as presented in [5].

We notice that at each byte traversal of the DFA, the
DFA state represents the set of anchors which are suffixes
of the URL up until the scanned byte. We will need
to decide deterministically which of the anchors in this
set should be used indeed for compression (recall the
example in Section I where the URL google.com can
be compressed into two different forms by different choice
of anchors). As we aim to minimize the total length of
the compressed URL, we are using the following greedy

approach, which traverses the DFA one byte at a time, and
(conditionally) pick the anchor that minimize the length
of the scanned prefix.

Specifically, for each anchor or literal a, let `(a) be its
length in bytes and p(a) be its Huffman code length. Let
ui be the i-th byte of the URL, and let Si be the set of
anchors which are suffixes of the prefix of the URL up
until ui (as represented by the DFA state after scanning
ui).

The deterministic selection rule works iteratively by
maintaining two vectors P and V , such that P [i] is the
minimum length for encoding the first i bytes of the URL,
and V [i] is the last anchor or literal that achieves encoding
length P [i]. Hence, for each byte i, we first calculate

V [i] = argmin

a2Si[{ui}
(P [i� `(a)] + p(a)) ,

and P [i] = P [i� `(ai)] + p(V [i]) (P [0] is always 0).
When completing the traversal of the entire URL, we

go backwards on the elements of V [i] and concatenate
them, skipping non-useful elements (namely, after adding
V [i], we add element V [i�`(V [i])], skipping all elements
in between). It is easy to verify by induction that this
selection results in an optimal-length encoding (given the
set of anchors and Huffman code), thus achieving the best
compression ratio.

Fig. 2 depicts a step-by-step example of compress-
ing the URL comrgnetwork.com in a component-by-
component manner. Note that, for example, in the 5th step,
the DFA finds a matching with anchor mrg; however the
value of P [5 � `(mrg)] + p(mrg) = P [2] + 3 = 14 is
larger than choosing the last literal g. When scanning the
arrays backwards, the anchors and the literals network,
g, r, and com are selected. The second component com is
compressed by running the first three steps of the above-
mentioned execution.

The final step is to use the compressed-form to
query the database. Since we require accurate results
(namely, no false positive and miss categorizations), the
database maintains also the compressed-form of the URL
and not only its category. Most current implementa-
tion uses a hash-table to maintain the database [37].
Thus, by comparing the lookup key with the stored key,
one avoids miss-categorization due to hash collisions.
Trie-based solutions and longest-prefix matching usu-
ally require a component-by-component compression and
lookup. Clearly, our framework readily supports such data-
structures and matching, albeit with smaller compression
ratio as some compression opportunities (e.g., anchors that
span more than one component) may be missed.

IV. THE OFFLINE PHASE: BUILDING THE DATABASE

As illustrated in Figure 1, the offline phase of our
framework, consists of three steps:

4

470ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

!

"

#

"

$

%

%

"
%

& #

'

(

)

"

%

*

$

Dictionary stored as DFA

com 00
org 11
net 010
mrg 101
network 0101
g 1001
o 01110
c 100011
m 100010
r 100001
n 100000
e 0111111
t 0111110
w 0111101
k 0111100

Huffman code table

P[1] = 6 V[1] = c P[7] = 25 V[7] = e

P[2] = 11 V[2] = o P[8] = 15 V[8] = net

P[3] = 2 V[3] = com P[9] = 22 V[9] = w

P[4] = 8 V[4] = r P[10]= 27 V[10]= o

P[5] = 12 V[5] = g P[11]= 33 V[11]= r

P[6] = 18 V[6] = n P[12]= 16 V[12]= network

Determinsitic Anchors Selection Rule and Huffman Encoding

Fig. 2. Compressing the URL comrgnetwork.com in a component-
by-component manner. As shown in Fig. 1, the compression uses
a dictionary stored as a DFA and a corresponding Huffman code
table. The resulting compressed URL comprises of the anchors
com,r,g,network,com and is of length 18 bits (16 bits for the
first component whose code is 0010000110010101 and 2 bits for the
second component whose code is 00).

Step 1: Heavy hitters algorithm, in which we find a set of
k frequent substrings in the set of URLs database.

Step 2: Anchors selection, in which we pick, from the
frequent substrings, a final set of anchors. For each
anchor and literal, we also calculate the estimated
number of occurrences in the compressed URL
database

Step 3: Deterministic URL database compression and
Huffman code creation, in which we use the se-
lected anchors to replace substrings in each URL
separately. We also create an Huffman code using
the given frequencies of literals and anchors, which
we then use to encode each URL.

Next we elaborate on each step.

A. Heavy Hitters Algorithm
We compare between two off-the-shelf alternatives to

extract the most frequent substrings in the list of URLs.
The algorithm described in [1] is geared to find frequent

substrings of variable length. Specifically, it returns all the
substrings which have unique frequency larger than n/k,
where n is the number of URLs and k is a parameter that
aims to calibrate the number of frequent substrings we
need to find. The algorithm is approximated and the fre-
quency of each substring is only estimated (with an error
bound of 3n/k). Note that, in any case, this frequency is

not used later by our algorithm, as subsequent steps will
estimate the actual number of times each substring is used
for compression.

This algorithm works in time complexity of O(n · L),
where L is the average URL length, in O(k · `) space
complexity. The algorithm requires only one pass on the
URL database and its space requirement is proportional
to the number of heavy hitters. Yet, the results are only
approximated with small error in the estimated frequency
of the substrings and thus the algorithm might not find the
real k frequent substrings.

Moreover, we note that this algorithm avoids space
pollution and if a substring s is selected as a heavy
hitter then the algorithm would not count appearances of
a substring s0, such that s0 ✓ s, when s0 is within s.
Nevertheless, appearances of s0 not within s are counted,
and if s0 appears frequently alone, it might be selected as
a heavy hitter together with s. See, for example, Fig. 3
that presents component-by-component compression of
URLs. The heavy-hitters algorithm with k = 5 picks the
substrings “network” and “net” as anchors, but not the
substring “netwo” that never appears by itself. Naturally,
when processing the entire URLs at once (see Fig. 4)
the heavy-hitters algorithm finds longer anchors such as
“network.com”.

The second alternative is to use the heavy-hitters algo-
rithm of femtoZip library. Unlike [1], this heavy-hitters
algorithm is accurate, and it works by essentially enumer-
ating all the possible substrings. Thus, it is significantly
more time and space intensive, with time complexity of
O(n · L · log(n · L)) and space complexity of O(n · L).

While we are less concern with the performance of
the components in the offline phase, it is still desirable
to reduce them as much as possible. In the experimental
section, we show that, in practice, the compression ratio
stays almost the same, whether we use the accurate or the
approximate algorithm.

B. Anchors Selection

As explained before, the fact that frequent substrings
intersect implies that a substring might not be used to com-
press sufficiently many URLs, even though it is frequent.
Yet, these substrings increase the size of the dictionary,
and therefore, should be eliminated.

Thus, in this step, we pick anchors out of the frequent
substrings. Specifically, we first estimate, for each frequent
substring, the database compression frequency—the num-
ber of times it will be used in the database compression
(which is smaller than the frequency attached to it by
the heavy hitter algorithm). Then, based on this estimated
frequency, we will approximate both the gain in selecting
the substring and the loss in terms of dictionary size,
so that each substring whose gain is larger than its loss
will be selected as an anchor. Finally, given the definitive

5

471ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

network.com A
orgnet.org B
work.org C
gon.org/ctem D
comrgnetwork.com E
mrg.net/com F
mrg.com.net G

List of URLs with attached categories

com 5
net 5
org 4
mrg 3
network 2

Frequent substrings

com 5
org 4
net 3
mrg 3
network 2
g; o 2 each
c; m; r; n 1 each
e; t; w; k

Anchors with frequencies

Heavy Hitters
Algorithm

Anchors
Selection

Huffman
Code

Creation

List of
anchors

0101/00 A
11010/11 B
0111101011101000010111100/11 C
100101110100000/11/10001101111100111111100010 D
0010000110010101/00 E
101/010/00 F
101/00/010 G

Database (key=compressed URL; value=category)

Deterministic
URL Database
Compression

Fig. 3. An example of the offline phase of the algorithm, where compression is done in a component-by-component manner. In the compressed database, we
use “/” as a delimiter between components; this delimiter is either used within a trie-based data structure or should be encoded separately. The corresponding
auxiliary data structures used by the datapath (namely, the dictionary as a DFA and the Huffman code table) appear in Fig. 2.

selection of anchors, we adjust the frequency of both
anchors and literals.

1) Estimating the database compression frequency of a
substring: In order to calculate the estimated compression
frequency, we try to estimate the compression process, as
explained in Section III. Since, at this point, we cannot
know what will be the Huffman code of each anchor or
literal, we assume in this phase that the length of encoding
each literal and each anchor is the same and, without loss
of generality, is set to 1. This implies that the length of a
compressed URL is estimated by the sum of the number
of anchors in the compressed URL and the number of the
remaining literals (e.g., in the example given in Section I,
the estimated length of §1gle§2 is 5 and the estimated
length of go§3§2 is 4).

As explained in I, a single URL compression involves
a deterministic selection rule of specific anchors out of a
larger set of anchors. In this step, we apply the same rule
to select anchors out of the set of frequent strings, which
implies we build a temporary DFA for all frequent sub-
strings, set p(a) = 1 for each literal and anchor a, and run
the greedy algorithm of Section III, one URL at the time,
for all URLs in the list. Each time a frequent substring is
selected as an anchor when compressing a single URL, we
increase the substring’s database compression frequency
by 1. In the end of the process, we will have an estimation
of the database compression frequencies of each substring.
Notice that this is just an estimation, since not all sub-
strings (with a frequency of at least 1) will be selected
as anchors, implying the deterministic selection rule in
Step 3 might yield different results. In addition, another
difference in selection might be as a results of variable
length encoding (with Huffman code) in Step 3; see Fig. 3

that also illustrates the new calculated frequency, where
the frequency of the substring “net” is reduced as in two
of its appearances the substring “network” was selected.
A sketch of the DFA representing the DFA appears in
Fig. 2, where some of the edges are omitted for clarity;
accepting states are marked with double circles.

2) Selecting anchors out of frequent substrings: We
note that while replacing a parts of a URL by anchors
reduces the URL size, it comes with a price: each anchor
increases the size of the dictionary’s DFA and, in addition,
the anchor’s encoding needed to be tracked, implying even
further memory footprint. Therefore, we need to avoid
picking up substrings that are not used sufficiently many
times.

Let A be the set of all frequent substrings, let ⌃ be
the set of all literals, and let f(a) be the number of times
substring a 2 A [⌃ was used in the previous step. If an
anchor a 2 A is selected, for each of these f(a) times, we
save `(a)� huffman(a) bytes, where `(a) is the length of
a in bytes and huffman(a) is the length of the Huffman
code of a. Since we cannot calculate the Huffman code of
a yet, we estimate it by anchor a’s information content:

h(a) =
1

8

log2

P
a2A[⌃ f(a)

f(a)
.

Note that Huffman code strives to encode each anchor
a with h(a) bits. Thus, the total gain of selecting a is
f(a) (`(a)� h(a)).

On the other hand, inserting a to the data structures,
requires adding states to the DFA and storing its Huffman
code. As explained before, we estimate the Huffman code
cost by h(a). As described in [5], the footprint of the DFA
in its compressed form, is approximately Cstate = 4 bytes

6

472ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

per state. Notice that two anchors that share a common
prefix, share also common states in the DFA. Hence, we
use the following procedure to decide whether a substring
is selected as an anchor. We first have an empty DFA,
and sort the substrings in descending order of their gain.
For each frequent substring a 2 A in turn, we calculate
the number of states states(a) it requires (on top of the
existing DFA) and h(a). If f(a) (`(a)� h(a)) � Cstate ·

states(a) + h(a), we select a as an anchor, update the
DFA, and continue to the next substring. Otherwise, we
leave the DFA unchanged and skip substring a. In the end
of the process, we will have the set of all anchors and the
corresponding DFA, that is used in the datapath.

3) Re-estimating the frequency of anchors and literals:
Since only a subset of the frequent strings was selected
as anchors, the frequency of anchors and literals can be
changed significantly. Thus, we ran the greedy algorithm
of Section III, using the DFA that was created in Sec-
tion IV-B2 and with p(a) = h(a) for each literal and
each anchor a. This will result in an updated frequency
estimation of each anchor and literal.

C. Deterministic URL database compression and Huff-
man code creation

Now that we have the anchors and their estimated
frequency, as well as the estimated frequency of all
literals, we construct the Huffman codes in a standard
way, treating all anchors and literals as symbols (and, thus,
ignoring their original size). The result is stored in the
Huffman code data structure (namely, a table with entry
for each literal and anchor, where the entries of anchors
are pointed out by the corresponding DFA state). We then
run once again the algorithm of Section III with the correct
p(a) value for each anchor and literal a. This will results
in compressing each URL separately. Each compressed
URL will be then inserted into the database along with its
category; see Fig. 3.

D. Hot-updates Support
In order to insert a new URL, we first obtain its com-

pressed form by going over all the steps of the datapath.
Then, instead of querying the database, we perform an
insert operation with the compressed-form URL as a
key and the category as a value. Similar operation should
be done in order to update a category of a URL.

Periodically, the algorithm can rebuild the database
from scratch, as the frequency of substrings might change
over time, resulting in suboptimal encoding.

V. EXPERIMENTAL RESULTS

We have used an open-source database of URLs avail-
able in URLBlackList.com [28]. This daily-generated
list consists of 2, 200, 000 unique domain names and 95

different categories. We note that than 800, 000 URLs have
also paths and not just domain names.

Compression Method Compression
Ratio

femtoZip 0.57
Huffman encoding only 0.59
Our Framework (accurate heavy hitter) 0.43
Our Framework (approximate heavy hitter) 0.44

TABLE I
COMPARISON BETWEEN THE COMPRESSION RATIOS OF DIFFERENT

METHODS FOR MODERATE SIZE DATABASE OF 128,000 DOMAIN
NAMES AND 128,000 URL COMPONENTS. THE SIZE OF THE

DATABASE IN AN UNCOMPRESSED FORM IS 57.2 MB, WHILE OUR
FRAMEWORK COMPRESSES THE DATABASE UP TO 24.3 MB.

0.40!

0.42!

0.44!

0.46!

0.48!

0.50!

0.52!

0.54!

0! 2! 4! 6! 8! 10! 12! 14! 16!
C

om
pr

es
si

on
 R

at
io
!

Anchors (Thousands)!

Entire URL!
Component by Component!

Fig. 5. The effect of the number of anchors used on the compression
ratio. 50 anchors achieve 52% compression ratio for entire URLs,
and 49% compression ratio where the URL is compressed component-
by-component. With 16K anchors, the compression ratio improves to
40.77% and 43.8%, respectively.

The focus of this paper is the memory footprint of
our framework (namely, the size of the database in its
compressed-form and the size of the auxiliary data struc-
tures). This is captured by the compression ratio, which
is the ratio between its memory footprint and the size
of the database with uncompressed URLs. Notice that
smaller compression ratio is better. More specifically, we
have calculated our memory footprint by summing up the
size of the dictionary (represented as DFA), the size of
the Huffman code table, and the length of each URL
in the database in its compressed form. We compare
this footprint with the total length of all URLs in their
uncompressed form.

We note that the memory footprint of the auxiliary data
structures is only 0.1% � 3.3% of the overall memory
footprint (the exact percentage depends on the number
of anchors used). In practice, padding and fragmentation
issues may increase this memory footprint significantly.
Therefore, we have designed and implemented tailored-
made memory allocator that reduces the overhead to 30%,
implying that, in practice, at most 4.2% of the memory
footprint is used for the auxiliary data structures.

7

473ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

network.com A
orgnet.org B
work.org C
gon.org/ctem D
comrgnetwork.com E
mrg.net/com F
mrg.com.net G

net 5
com 4
org 4
.com 3
.org 3
mrg 3
.net 2
mrg. 2
network.com 2

.org 3
com 2
.net 2
mrg. 2
network.com 2
g; o; r 3 each
n 2
e; t; w; k; m 1 each
c; . 0 each

Heavy Hitters
Algorithm

Anchors
Selection

Deterministic
URL Database
Compression

Anchors with frequenciesFrequent substrings
List of URLs with attached categories

Fig. 4. An example of the offline phase of the algorithm, where compression is done in on the entire URL at once. In this example, the heavy hitter algorithm
is configured with k = 9 and we consider only the domain part of the URLs. We note that anchors that are left with one appearance are not selected, and
some literals always appear as part of one of the anchors.

A. Comparison with other lossless compression methods

Table I shows the compression ratio for several com-
pression methods. We note that as we need to maintain
low matching latency, we must compress each URL
separately. Thus, methods that use backward-references
(namely, applying either zip [22], bzip2 [24], or lzw [34],
[40], on each URL separately) are not useful in this case
(and in fact, even increase the size of it due to overhead
of information they store for compression). As expected,
femtoZip [10], which aims in compressing short strings,
achieves reasonable compression ratio when the number
of URLs is sufficiently large. Yet, it lacks an efficient
datapath (namely, after the database compression, only
decompression of URL is easy, while compression of new
URLs using the same dictionary is difficult). Encoding the
literals of the URLs with Huffman codes also reduces the
memory footprint by approximately the same factor. Nev-
ertheless, our framework outperforms all other methods.
There are negligible difference between the performance
of our framework with accurate or approximate heavy
hitter algorithm.

B. The throughput of the datapath compression

We have implemented our datapath in C and used Intel
Xeon E5-2690V3 CPU, whose processor speed is 2.6 GHz
with 16 GB memory (per core), L2 cache of 256 KB (per
core), and L3 cache of 30 MB. The system runs Ubuntu
14.04.2 LTS.

Each performance number was measured by applying
the datapath compression 20 times on 10 randomly-
selected sets of 10,000 URLs (namely, 200 runs per
performance number, each representing compression of
10,000 URLs in a batch). All our experiments ran only
on a single core. We did not measure the data-base
lookup as this is orthogonal to our framework and can
be implemented as a successive pipeline stage.

Fig. 6 shows the throughput (per core) of the datapath
as a function of the number of anchors. The performance

50!

100!

150!

200!

250!

300!

350!

0! 2! 4! 6! 8! 10! 12! 14! 16!

T
hr

ou
gh

pu
t (

M
bp

s
)!

Anchors (Thousands)!

Entire URL!

Component by Component!

Fig. 6. The throughput of the URL compression stage in the datapath.

of the datapath depends both on the size of the auxiliary
data structure and on the number of anchors (per URL)
used for compression. As the number of anchors increases,
longer anchors are added to the dictionary, implying the
average number of anchors per URL decreases. However,
larger number of anchors implies larger data structures that
might not fit entirely in cache, thus causing performance
degradation. In any case, the throughput is between 320
Mb/s to 100 Mb/s.

VI. CONCLUSIONS

This paper introduces a framework to significantly
reduce the memory footprint of URL-based databases
and forwarding tables, while maintaining the accuracy
of the lookup processing (namely, no false positives or
miscategorizations) and incurring only a small overhead
in time. The framework also allows hot updates of the
database and a longest prefix matchings.

We note that a common deployment of URL-matching–
enabled devices is to store the rich database in a cloud

8

474ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

and store locally (in a cache) recently-matched URLs.
Upon a cache-miss, the networking device will query the
database in the cloud for the correct category of a URL.
Our framework can be deployed in both locations. In this
setting, the databases will be stored in a compressed form
in the cloud, and upon a cache-miss, the networking device
will compress the input URL and use the compressed form
to query the database. This implies that all traffic between
the networking device, its cache (if applicable), the cloud,
and intra-cloud communication is done with the com-
pressed URL, whose size is only approximately 40% of
the uncompressed one. Naturally, the latency of the URL
matching processes is dominated by the latency between
the security tool and the cloud (the processing overhead
is negligible). This implies that it may be beneficial to
store in the cache also compressed URLs, increasing their
number by a factor of 2.5.

Acknowledgments: This research was supported by the
European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013)/ERC
Grant agreement no 259085, and also by the Neptune
Consortium, administered by the Office of the Chief
Scientist of the Israeli ministry of Industry and Trade and
Labor.

REFERENCES

[1] Y. Afek, A. Bremler-Barr, and S. Landau Feibish. Automated
signature extraction for high volume attacks. In ACM/IEEE ANCS,
2013.

[2] R. Ahmed, F. Bari, S.R. Chowdhury, G. Rabbani, R. Boutaba, and
B. Mathieu. ↵route: A name based routing scheme for information
centric networks. In IEEE INFOCOM, pages 90–94, 2013.

[3] AV. Aho and MJ. Corasick. Efficient string matching: an aid to
bibliographic search. Commun. of the ACM, pages 333–340, 1975.

[4] bitly, Inc., 2013. https://bitly.com.
[5] A. Bremler-Barr, Y. Harchol, and D. Hay. Space-time tradeoffs in

software-based deep packet inspection. In IEEE HPSR, 2011.
[6] Anat Bremler-Barr, David Hay, Daniel

Krauthgamer, and Shimrit Tzur-David, 2015.
https://github.com/DeepnessLab/urlmatching.

[7] N.R. Brisaboa, R. Cánovas, F. Claude, M. Martı́nez-Prieto A, and
G. Navarro. Compressed string dictionaries. In Experimental
Algorithms, pages 136–147. 2011.

[8] H. Dai, B. Liu, Y. Chen, and Yi Y. Wang. On pending interest table
in named data networking. In ACM/IEEE ANCS, pages 211–222,
2012.

[9] P. Deutsch. GZIP file format specification version 4.3. IETF RFC
1952, 1996.

[10] femtoZip. Shared dictionary compression library, 2013.
https://github.com/gtoubassi/femtozip/wiki.

[11] Y.-H. Feng, N.-F. Huang, and C.-H. Chen. An Efficient Caching
Mechanism for Network-Based URL Filtering by Multi-Level
Counting Bloom Filters. In IEEE ICC, 2011.

[12] P. Ferragina and R. Venturini. The compressed permuterm index.
ACM Trans. Algorithms, 7(1):10:1–10:21, December 2010.

[13] IRTF. Information-centric networking research group (icnrg).
https://irtf.org/icnrg.

[14] V. Jacobson, D.K. Smetters, J.D. Thornton, M.F. Plass, N.H.
Briggs, and R.L. Braynard. Networking named content. In ACM
CoNEXT, pages 1–12, 2009.

[15] K. Koht-Arsa and S. Sanguanpong. In-memory URL compression.
In National Computer Science and Engineering Conference, 2001.

[16] Check Point Software Technologies LTD. Check
point URL filtering software blade, 2013.
http://www.checkpoint.com/products/url-filtering--

software-blade/.
[17] Christopher D. Manning, Prabhakar Raghavan, and Hinrich

Schütze. Introduction to Information Retrieval. Cambridge Uni-
versity Press, New York, NY, USA, 2008.

[18] B. Scott Michel, Konstantinos Nikoloudakis, Peter Reiher, and
Lixia Zhang. URL Forwarding and Compression in Adaptive Web
Caching. In IEEE INFOCOMM, pages 670–678, 2000.

[19] G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM
Computing Surveys, 39(1):2, 2007.

[20] E. Nordström, D. Shue, P. Gopalan, R. Kiefer, M. Arye, S. Ko,
J. Rexford, and M. J. Freedman. Serval: an end-host stack for
service-centric networking. In USENIX NSDI, 2012.

[21] Palo Alto Networks. Next-generation firewall features, 2013.
http://www.paloaltonetworks.com/products/features/-

url-filtering.html.
[22] PKWARE, Inc. zip, an archive file format, 1989.

http://www.pkware.com/support/zip-app-note/.
[23] G. Retvari, J. Tapolcai, A. Korosi, A. Majdan, and Z. Heszberger.

Compressing ip forwarding tables: Towards entropy bounds and
beyond. IEEE/ACM Transactions on Networking, 2014.

[24] J. Seward. bzip2 and libbzip2, a program and library for data
compression, 2007. www.bzip.org.

[25] W. So, A. Narayanan, D. Oran, and Y. Wang. Toward fast NDN
software forwarding lookup engine based on hash tables. In
ACM/IEEE ANCS, pages 85–86, 2012.

[26] Sourcefire, Inc. Intelligent cybersecurity solutions, 2013.
http://www.sourcefire.com/security-technologies/-

network-security/next-generation-firewall.
[27] TinyURL!TM. Making over a billion long urls usable! serving

billions of redirects per month., 2013. http://tinyurl.com.
[28] URL.Blacklist.com, 2013. http://urlblacklist.com/.
[29] URLfilterDB. URL filter for the Squid web proxy, 2013.

http://www.urlfilterdb.com/.
[30] Y. Wang, K. He, H. Dai, W. Meng, J. Jiang, B. Liu, and Y. Chen.

Scalable name lookup in ndn using effective name component
encoding. In IEEE ICDCS, pages 688–697, 2012.

[31] Y. Wang, T. Pan, Z. Mi, H. Dai, X. Guo, T. Zhang, B. Liu,
and Q. Dong. Namefilter: Achieving fast name lookup with
low memory cost via applying two-stage bloom filters. In IEEE
INFOCOM, pages 95–99, 2013.

[32] Y. Wang, Y. Zu, T. Zhang, K. Peng, Q. Dong, B. Liu, W. Meng,
H. Dai, X. Tian, and Z. Xu. Wire speed name lookup: A gpu-based
approach. In USENIX NSDI, pages 199–212, 2013.

[33] Websense, Inc. The Websense Master Database.
http://www.websense.com/content/urlcategories.aspx.

[34] T. A. Welch. A technique for high-performance data compression.
Computer, 17(6):8–19, June 1984.

[35] T. Yamauchi, H. Yuan, and P. Crowley. Implementing URL-
based forwarding on a network processor-based router platform.
In ACM/IEEE ANCS, pages 171–172, 2009.

[36] H. Yuan, T. Song, and P. Crowley. Scalable NDN Forwarding:
Concepts, Issues and Principles. In IEEE ICCCN, 2012.

[37] H. Yuan, B. Wun, and P. Crowley. Software-based implementations
of updateable data structures for high-speed URL matching. In
ACM/IEEE ANCS, page 15, 2010.

[38] Lixia Zhang et al. Named Data Networking Project (NDN), 2010.
[39] Z. Zhou, T. Song, and Y. Jia. A high-performance url lookup engine

for url filtering systems. In IEEE ICC, pages 1–5, 2010.
[40] J. Ziv and A. Lempel. Compression of individual sequences via

variable-rate coding. IEEE Trans. Inf. Theory, 24(5):530–536,
1978.

9

475ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Network Quality Differentiation: Regional Effects,
Market Entrance, and Empirical Testability

Toni Mäki
VTT Technical Research Centre of Finland

Oulu, Finland

Patrick Zwickl
University of Vienna

Faculty of Computer Science
Vienna, Austria

Martı́n Varela
VTT Technical Research Centre of Finland

Oulu, Finland

Abstract—While for offline business models it does not seem
necessary to reiterate the close relationship between quality and
price, for Internet services the quality-based, i.e., Quality of
Experience (QoE), and customer-centric pricing is non-trivial.
As insufficient data exists today to successfully commercialise
QoE, this paper collects the integral empirical Willingness-To-
Pay (WTP) data for the case of online video services. This
work reproduces and extends a previous study in two dedicated
campaigns in Austria and Finland. The campaigns study QoE
and WTP related to Dynamic Adaptive Streaming over HTTP
(DASH). They also confirm or disprove previous studies, openly
share the data, and provide empirical background information
on the purchasing behavior of customers. Due to the testing at
two locations, we can further first time study whether cultural
or regional differences affect the purchasing behaviors of such
services. Additionally this paper gives insights and updated
methodological guidance on conducting future WTP studies.

I. INTRODUCTION

The success of online services depends on several factors
such as the value they provide (to match and satisfy customer
demand), Quality of Experience (QoE), pricing strategies,
but also on optimal use of resources (for cost efficiency).
While the value proposition of such services may primarily
be defined by the provided contents (e.g., video content to
be streamed; quality of the videos), communication services
can substantially affect the experience for customers. From
the networking research and business point of view, the
questions of quality, pricing, resource management and the
interplay of these factors are, thus, the most interesting ones
in understanding roles and co-operation of operators, ISPs, end
customers and other stakeholders.

Service providers and operators have certain trade-offs to
take into account when dimensioning for their service. They
can try and minimize their costs, risking a lower-quality
service, or they can try and offer the best possible quality
to their users, with the risk of being inefficient in terms
of cost (as achieving high quality levels in online services
most often involves a significant investment in terms of
resources). Between those extremes, there is of course a range
of cost / quality ratios that can be planned for. QoE research
gives good indications on managing such kinds of trade-offs.

However, optimisations are not only possible on the dimen-
sioning side, but are also necessary for pricing and market

strategy: While not very common today, service providers can
make use of price discrimination based on quality, customer
segment, regional factors. etc. In the context of QoE, the
quality-based discrimination where operators offer pricing tiers
with correspondingly different service quality levels are of
outmost interest. Doing so in an optimal manner requires an
understanding of how users perceive the value of the service
and service quality (i.e., its utility), and how it translates
to monetary means (i.e., revenues). This is a significantly
different assessment to classical QoE testings as service and
quality appeal may not equally translate to purchases or (high)
WTP.

In contemporary markets the service offering and pricing
can face highly dynamic competition as new challengers try
to enter the field or existing companies try to increase their
market share. This may also affect the users’ opinions and their
expectations on quality and pricing. Therefore it is important
to understand and be able to estimate what kind of effects
(sometimes necessary) tariff changes may incur. Additionally,
for a new service or company it is important to plan the market
entry properly. Market entrance pricing is a key element in
this planning. While low entrance pricing may attract users,
the later increases may prove to be difficult to implement,
renderering the business unsustainable.

In this paper we propose to address the question of how
users perceive the value of better quality in an online video
service (à la Netflix), by means of an experiment on their
Willingness-To-Pay (WTP) for different quality levels, as a
close metric to utilities for ISPs. We further investigate how the
relation of QoE and WTP is affected by different tariff changes
and cultural or regional effects. The work presented herein
replicates and expands upon a previous work in [1], where the
problem was systematically studied. The present work differs
from the previous approach by using an entirely paperless test
laboratory, but also recent codec, i.e., H.265 / HEVC, and
video adaptation advancements, DASH. The present work can
also be considered to be a retesting of the results in [1], with
target of the trial data to be openly accessible for the research
community, which is not the case with the previous results.
The experiments were carried out with almost identical setups
in two labs, at the University of Vienna, in Austria, and at
VTT, in Oulu, Finland. This allows the unique comparison of
regional effects that may affect the utility and, thus, WTP forISBN 978-3-901882-83-8 c⃝ 2016 IFIP

476ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

network video quality services.
From the results of the earlier work [1] we can isolate the

following null hypotheses that were studied in this work:

Hypothesis 1 WTP for network video quality upgrades does
not exist.

Hypothesis 2 Historic pricing does not affect the market
entrance of quality enhanced network video services.

Hypothesis 3 Different consumer segments do not make dif-
ferent quality - price decisions.

The execution of the similar campaigns in two countries
allows for testing possible variation in WTP between the
two cultures. Additionally, it is known that the consumer
prices (in relation to purchasing power) in Finland are higher
than those in Austria (Comparative price levels 122.3 and
105.8, respectively1). Therefore we postulate the following
null hypothesis:

Hypothesis 4 WTP for quality-differentiated network video
services is not affected by regional or cultural factors.

The remainder of this work is structured as follows: in
Section II we cover the relevant related work. The experi-
ment environment, design and both setups are described in
Section III before presenting the results in Section IV and
analysis of key findings in Section V. The paper is finished
with conclusions in Section VI.

II. RELATED WORK

QoE has been a vital research topic in telecommunications
for years. Especially the empirical perspective, both laboratory
and field, to map the technical QoS to a subjective represen-
tation of QoE has received substantial attention [2], [3]. Nu-
merous standards and recommendations, e.g., [4] and [5], have
improved the test practices in order to obtain reproducible,
consistent results. The transfer of empirical or estimated
QoE data to the provisioning of network resources has been,
for example, discussed in [6] and more access-oriented in
[7]. Despite the usefulness of such data and practices, the
economic utilization has been hampered by several knowledge
gaps:

1) The mapping of QoE to purchasing or spending be-
haviours

2) Communication problems [8] due to the experience
product nature [9] of network quality

3) Difficult generalisation of data across individual mea-
surements [10]

The most pressing issue is the first one listed above, as QoE
information needs to be transferred to perspective of business
models: utilities, product demand, etc. While an early work
[11] has targeted the assessment of WTP for network quality
the community has been silent for years afterwards. In the last

1Eurostat, Purchasing Power Parities: http://ec.europa.eu/eurostat/web/
purchasing-power-parities/ last accessed: March 30, 2016

few years this problem was then finally targeted from several
perspectives:

1) The fixed-point model of QoE [12] which formalises
the interaction between price and subjective quality
experience

2) Empirical confirmation of early WTP results in [13]
and [1], as well as the exploration of QoE spending
phenomena, e.g., related to cognitive dissonance [14]

3) Approximation of WTP from QoE and other results in
[10]

The recent empirical efforts for understanding WTP have
focused on careful laboratory setups by learning from the
experiences in QoE testing. Contrary to the approach in [11],
[13] and especially [1] have strictly moderated the information
that is provided to the user. In other words, these studies
have reduced the usage complexity and eliminated several
biases, such as an inherent convergence to the mean (of
the quality range) effect. While [13] has tested UDP video
transmissions under packet loss, [1] has used more modern
adaptive streaming technologies based on TCP. Both studies
were able to illustrate a reasonable WTP for enhanced network
services, a clear trade-off management of subjects between
quality and price concerns, and effects induced by historic
pricing (i.e., “market entrance pricing” recommendations).
Despite the promising results, the results of these studies
are not openly available and due to the low sample sizes a
confirmation of the effects is advisable. This work will, hence,
bring the test design used in [1] to 2015 by conducting a
new campaign using up-to-date codecs and video adaptation
techniques.

III. EXPERIMENTS DESCRIPTION

A. Overview
The tested scenario was about watching typical video

streaming content in a living-room like environment and
making video quality purchasing decisions. In addition to
the hypotheses to be verified or disproved by the empirical
laboratory-based studies, the work had also some technical
and generic goals. Recent developments in multimedia tech-
nologies called for considering them also in WTP studies
(in addition to numerous QoE studies covering them). The
technological advancements compared to previous studies are
summarized in Section III-B.

B. Technological Advancements & Changes
While the technical setup followed the initial testing in [1],

a series of changes and advancements were necessary in order
to meet the state-of-the-art of technologies and to respond to
insights from the earlier tests.

In a way analogous to the initial testing, but contrary to the
older studies such as [11] and [13], our study used adaptive
streaming over TCP to allow dynamically applying quality
changes and also to match the contemporary typical video
usage. The standard DASH [15] was used as video streaming
technology, instead of Apple’s HTTP Live Streaming (used in
[1]). The DASH content was played out for viewing with the

477ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

GPAC client2 for Linux. The GPAC player was manipulated in
order to reduce the buffering and associated quality switching
times, which was important for the experimental setup.

In earlier tests, the H.264 [16] video coding format was
used. In the described campaigns, the substantially improved
H.265 [17] (also referred to as HEVC [18], [19]) encoding
was used instead. In pilot tests (executed prior to actual user
campaigns), a reduced bandwidth demand of approximately
30% was witnessed in order to obtain comparable QoE values.

Contrary to a separate monitor in the initial testing, an iPad
tablet computer was used to display both the available content
(video library) and the price of the current selection (plus the
information about the remaining reward of the user).

Finally, while in the initial testing 3 test groups were used,
the test group design was simplified in our approach, as
sketched below.

C. Experiment Environment and Contents

Movie Library

Server
Rails App

G
PAC

M

P4C
lient

DB

Movie selection Current Price /
Account Balance

Content

Quality selection
TV 40/42” Jogwheel

Tablet

Fig. 1. Experiment set-up

1) Testing Environment: The subjective tests were executed
in laboratory environment adhering the ITU-T P.910[4] (e.g.,
sample size and lighting conditions) and ITU-R BT.710 [5]
(e.g., viewing distance) as closely as possible. The experiment
set-up and how test subjects viewed and controlled the testing
application is illustrated in Fig. 1. The main components of
the test environment are described in Table I.

2) Tested Contents: The contents were prepared by ex-
tracting the content from the purchased Blueray discs into
full quality versions (in M4V and Matroska containers). Then
the 20 minute clips of each movie were carefully selected
and edited in full quality. Finally, the full quality clips were
transcoded to different degraded qualities with help of x2653

and FFmpeg4 tools. The actual qualities (defined in terms
of bitrate) are specified in upcoming sections. The original
contents available in the Movie Library of the campaigns are
listed in Table II. Some videos were offered in English and
German in the Vienna trial.

2GPAC Multimedia Open Source Project: http://gpac.wp.mines-telecom.fr/,
last accessed: March 30, 2016

3http://x265.org/, last accessed: March 30, 2016
4https://www.ffmpeg.org/, last accessed: March 30, 2016

TABLE I
TEST ENVIRONMENT: MAIN COMPONENTS

Component Description Function

Server Ubuntu
14.04 LTS
PC

Host for the software application
components.

Rails App Rails appli-
cation

Control UI for tablet and control
logic for test.

Movie Library File system DASH video files in all quality
levels.

DB SQLite3
Database

Metadata and results of the tests.

GPAC MP4Client Media
player

Presentation of the DASH contents
to the subjects.

TV 40/42” TV set The screen for viewing the con-
tents.

Jogwheel Jogwheel
device

Remote control device for the
video quality selection.

Tablet iPad Device for the selection of videos,
interactive questionnaires, and the
presentation of instructions, price
information and deposit balance
for subjects.

TABLE II
THE CONTENT AVAILABLE IN THE MOVIE LIBRARY

Content Description Campaign

Grand Budapest Hotel Comedy, 2014. Vienna
(outliers)

Breaking Bad TV series / Crime,
2012.

Both

The Dark Knight Rises Superhero, 2012. Both
Edge of Tomorrow Science fiction, 2014. Both
Guardians of the Galaxy Superhero, 2014. Both
Harry Potter and the Order
of the Phoenix

Fantasy, 2007. Both

Inception Sci-Fi, 2010. Both
Interstellar Sci-Fi, 2014. Both
Oblivion Sci-Fi 2013. Both
Oblivion Sci-Fi, 2013. Both
Orphan Black TV series / Sci-Fi,

2013
Both

The Hobbit: An Unexpected
Journey

Fantasy, 2012 Both

Transcendence Sci-Fi, 2014 Both
(different edits)

Toy Story 3D animation, 2010 Oulu

D. Test Design

During the tests the users could choose from eight quality
classes, where the quality of each class was controlled in terms
of bitrate. The different quality levels are named Q0 . . . Q7,
where Q0 denotes the class with the lowest and Q7 the class
with the best quality.

The test design used three tariffs A, B and C with linear
price curves from 0 to the resp. maximum prices pmax of e2,
e3 and e4:

478ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

A := {p0 = 0, p1 = 0.286, . . . , p6 = 1.714, p7 = 2} ,

B := {p0 = 0, p1 = 0.429, . . . , p6 = 2.571, p7 = 3} ,

C := {p0 = 0, p1 = 0.571, . . . , p6 = 3.429, p7 = 4} .

4/5 mins {
No Interaction

Phase
Quality Selection

Phase

{

{Video Rating
Phase

……

{Video Selection
Phase

20 mins video
3x PAYMENT€10

Receive

Fig. 2. Experiment sequence

The experiment process is illustrated in Fig. 2. First, each
subject received e10 at the beginning of the trial – the
money was shown as a deposit on the screen and was initially
provided symbolically in cash. The subjects could (but needed
not) use this money to finance quality upgrades during the
trial (e10 were sufficient to constantly watch the best quality).
After the trial, the remaining money on the deposit was to be
paid out in cash, i.e., up to e10 could be paid out to the users
in cash.

The actual experiment consisted of three measurements t1,
t2, and t3, each consisting of a 20 minutes video of the
subject’s choice and some ratings. Each user was assigned
into Group 1 or into Control group. The difference between
the groups was in the tariffs (A, B, and C) that user was
exposed to:

• Group 1: t1 : A→ t2 : B → t3 : C
• Control: t1 : B → t2 : B → t3 : C/A

In other words, Group 1 tested the increasing prices and
the Control group had the stable pricing in t1 and t2 for
comparison reasons. The Control group was further divided
into two subgroups regarding the tariff of t3 for a broader
tariff comparison. Contrary to the initial trial, the decreasing
prices were not tested, due to sample size reasons (in both the
initial and retested trial) and the higher effects that have been
witnessed for price increases in [1]. This test design allows
within-subject comparisons, which require lower sample sizes
for providing expressive results.

Analogously to the notions used in [13], each measurement
t consisted of four phases (illustrated in Fig. 2):

1) Video Selection Phase (VSP): The subject browsed our
extensive library of modern video material and selected
the content of her liking. The next phase was triggered
upon the selection of the video.

2) Quality Selection Phase (QSP): During the first 4
minutes (5 in Oulu trial) of the video watching the
subject could freely test any quality level and evaluate
the different quality-price tradeoffs (price was shown;
quality was only perceived). When the QSP closed the
quality level was fixed (to current one) and the price was
finally deducted from the subjects balance.

3) No Interaction Phase (NIP): The rest of the video was
shown using the quality class selected by the user in
the QSP. No further quality selection interaction was
possible.

4) Video Rating Phase (VRP): After the video had fin-
ished, the subject rated the QoE on the ACR-5 scale
(Bad, Poor, Fair, Good, Excellent) and answered a
binary acceptance question.

At the beginning, there was a pre-session questionnaire;
the user was asked to specify her/his gender, age, education,
Internet usage, Internet video purchasing habits and whether
the user subscribes to some video services.

In a post-session questionnaire subject anwered the question
“Did it feel like spending your own money?” in order to
understand the validity of the test methodology. The users were
also asked if they liked the available content.

E. Vienna Campaign

Using members of our faculty, several full-length pilot tests
were conducted. Such tests served the elimination of test biases
(such as unclear user interfaces), and assured the technical
functioning of the trial and the meaningful parameterisation
of the trial. Our expert users made the following noteworthy
observations:

• The system is easy to use, the video content is interesting,
and the scenario is realistic.

• Relative to H.264, H.265 performs surprisingly well with
moderate bitrates

• Some experts did not recognise any quality gains above
Q4

• As the sound quality was rated to be insufficient, a new
surround sound system was installed after the pilot test.

The actual campaign was conducted in our living laboratory
in Vienna in July 2015. Twenty-two (22) test subjects com-
pleted all stages of the experiment with an average duration of
≈ 1.5 hours. Due to the three measurements, within-subject
comparisons are enabled and 66 data points (purchases and
associated QoE ratings) are available. 9 subjects (≈ 41%)
were female and 19 had graduated from a university (typically
with a master’s degree or equivalent). The subjects belonged
to the following age groups: 2 subjects were between 10 and
19 years old, 11 were between 20 and 29, 6 were between
30 and 39 and 3 subjects were older. Their experiences with
VoD services were limited, i.e., 11 subjects seldom purchased
contents, one did so weekly, and 7 had one or more video
service subscriptions.

F. Oulu Campaign: Differences to Vienna Campaign

Some technical improvements were implemented by the
recommendations derived from Vienna trial:

1) One of the observations was that HEVC provides good
quality already on rather low bitrates. While generally
a positive development, the high efficiency of the codec
decreased the width of active decision making area in
the trial as most users reached acceptable quality levels

479ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

already on Q3 or Q4. To this end, the set of available
quality levels were changed by adding more lower bit
rate alternatives (See Table VI). The bit rates were
selected so that their Peak Signal to Noise Ratio (PSNR)
increases linearly. Also one of the videos was changed
to start from beginning (Transcending) and one video
was added to the library (Toy Story 3).

2) The price was made more prominent in control device
by showing it in red colour.

3) The segment length of DASH content was set to 1
second (using also GOP size of 1 s). In the Vienna trial
it was 2 seconds.

4) A 5 minute Video Selection Phase was used (as opposed
to 4 minutes in the Vienna trials).

The test campaign was executed in November - December
2015 in the (living room-like) QoE laboratory at VTT premises
in Oulu. Nineteen (19) subjects completed the experiment with
average duration of ≈ 1 hour and 15 minutes. In this trial the
three measurements led to 57 data points (purchases and QoE
ratings). Most of the participants were VTT employees, and 4
of them were female (≈ 21%) and 17 held a university degree.
The subjects belong to the following age groups: 2 subjects
were between 10 and 29 years old, 10 were between 30 and 39,
5 between 40 and 49 and two were older. They used Internet
rather much as 8 persons reported over 5 hours daily usage and
10 reported the usage of 1 to 4 hours per day. 6 participants
reported never buying video content from the Internet, while
the remaining participants used to purchase content seldomly.
5 participants reported buying their video content in HD/4K
quality. 11 participants subscribed to some video services, but
only 2 persons subscribed to more than one service.

Due to the taxation laws of Finland, the reward could not
be given out in cash (as intented). Instead the participants
were rewarded with a movie ticket and variable amount of
candy (depending on their deposit balance) they could select
themselves. Nevertheless, the participants were led to believe
in the beginning of the test that they would receive the e10
as in the original design. Please note that rewarding was not
discussed during recruitment, so people were not expecting
monetary compensation when they arrived to the tests.

IV. RESULTS

A. Vienna Campaign Results

TABLE III
2015 TRIAL (VIENNA): QUALITY LEVELS Q0 TO Q17 IN KBIT/S.

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

128 256 512 1024 2048 4096 8192 16384

In the Vienna trial, the video qualities shown in Table IV
were tested for quality levels Q0 (poorest) to Q7 (best). For
these values the WTP shown in Table IV was observed.

In other words, a substantial WTP for enhanced network
video services was observed (median: e1.29 out of e2.98,

TABLE IV
SPENDING PER TARIFF (2015 trial, Vienna).

Overall Tariff A Tariff B Tariff C

Max offering e2.98 e2 e3 e4
Median e1.29 e0.86 e1.71 e1.71
(% of maximum) (43%) (43%) (57%) (43%)
Std. deviation e0.87 e0.43 e0.80 e1.16
(% of maximum) (26%) (22%) (27%) (29%)

To
ta
l

0 1 2 3 4 5 6 7

0
5

10
15

Fig. 3. Selected quality class Qx (x-axis) in Vienna trial

the average maximum of the campaign), comparable to the
experiences made in [1]. The majority of the subjects selected
intermediary quality levels (see Fig. 5). Contrary to the trial
reported in [1], no peaks towards the range extrema were
observed. This may be explained by the chosen codec: using
the modern H.265 codec, the QoE saturates quickly with the
chosen bitrates—H.265 provides better than expected QoE
improvement for low bitrates. The codec starts to perform very
well already at moderate bitrates, which yields surprisingly
high QoE ratings, as Mean Opinion Score (MOS) on ACR-5
scale — see Fig. 4. Hence, subjects may not have perceived
any quality difference for qualities better than Q4, which
distributed the premium segment between Q5 and Q7. In a
restesting, we recommended a finer-grained quality offering
in the lower to medium QoS range.

The obtained WTP data was further relatively noisy —
high variation in t1, low correlation between t1 and t2 in the
control group. This may indicate that the video files offered
in the marketplace were too heterogenous to allow a direct
comparison. Thus, we recommend a further improvement of
the carefully selected video library to assure even higher
consistency. As especially the first measurement t1 was very
noisy, we suggest a longer QSP duration – in the Vienna trial
only 3 minutes were used in pre-trial testing, which was later
on extended to 4 minutes for the actual trial.

Due to the noisy data, the detailed analysis of the used
groups has not been conclusive. The high noise in t1 affects
the comparison of t2 across groups (equal tariffing in t2, but
unequal historic tariffs). However, when focusing on t2 and

480ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

●

●

●●

●●

1 2 3 4 5 6 7 8

1
2

3
4

5

Quality classes

M
O

S
/ A

CR
−5

1 20 3 5 64 7

Fig. 4. Box plot of MOS ACR-5 ratings across all tariffs with logarithmic
fit (Vienna).

t3 of the control group, the subgroups with tariff sequences
B → A and B → C can be compared.

TABLE V
SPENDING AS PERCENT OF pmax IN t2 AND t3 PER CONTROL SUBGROUP

IN VIENNA TRIAL.

t2 t3

B: pmax = 3 A: pmax = 2

Mean 43% 45%
Median 43% 43%

B: pmax = 3 C: pmax = 4

Mean 51% 29%
Median 57% 43%

As shown in Tab. V, the normalised expenditure is sub-
stantially affected by price increases, while price drops are
hardly felt. When applying an ANOVA RM (α = 0.05) to
both the absolute and normalized spending, no significant time,
group and group-time effects can be observed, however. This
is caused by the test design that focused on the comparison
of results in t2 rather than t3 and across test groups rather
than looking at subgroups of the control group. Due to the
high noise, not explained by rationales of subjects or provided
feedback, especially in t1, the analysis of historic pricing
effects from [1] cannot be repeated for t1 → t2.

An improved retesting shall target the working out of such
effects in t1 and t2 or in a redesigned later test phase. The latter
results highly correlate to the observations in [1]. Subjects
seem to avoid a redecision in the case of price decreases,

as not absolutely necessary, but immediately respond to price
increases — see relationship to cognitive dissonance in [14].

Almost all subjects liked the provided contents (91%) and
rated the “own money” feeling with 2.9 (ACR-5) on average
(median: 3.0; “Fairly”). These results support the general
functioning of the campaign design.

B. Oulu Campaign Results

TABLE VI
2015 TRIAL (OULU): QUALITY LEVELS Q0 TO Q17 IN KBIT/S.

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7

128 180 280 440 800 2548 8000 15000

The video qualities shown in Table VI were tested in Oulu
trial. The overall and per tariff WTP are shown in Table VII.
Interestingly, the WTP is higher than in the Vienna trial
(e1.71). The results of both trials disprove Hypothesis 1.

As illustrated in Fig. 5 most of the users again selected
intermediary quality levels. The peaks at the range extrema
observed in the trial reported in [1] are present (esp. on the
high-quality end), but they are not very pronounced. Still, the
user groups present in [13] – (price focused users, average
users, and quality focused users – can also be spotted in Fig. 5,
which disproves the Hypothesis 3.

Fig. 6 illustrates the MOS of each quality level and it
demonstrates the logarithmic nature of QoE. The implemented
changes in the Oulu trial over the Vienna trial have caused
more quality differentiation (by users) in medium and high bit
rates, as was intented. This has likely affected also the selected
qualities of Fig. 5.

TABLE VII
SPENDING PER TARIFF (2015 trial, Oulu).

Overall Tariff A Tariff B Tariff C

Maximum e3.02 e2 e3 e4
Median e1.71 e1.43 e1.71 e2.29
(% of maximum) (57%) (71%) (57%) (57%)
Std. deviation e0.87 e0.43 e0.80 e1.16
(% of maximum) (25%) (18%) (25%) (27%)

Next, the campaign-wide mean expenditures and mean
(selected) qualities including all the measurements (t1, t2, t3)
done by the users of the Group I and Control group were
calculated. The mean expenditures of Group I and Control
groups were e2.12 and e1.65, respectively, while mean qual-
ities were 5.97 and 4.93, respectively. Both differences were
tested with t-tests and found significant on alpha level 0.05
(p-value of 0.03 for expenditure and 0.02 for quality). Similar
differences can be found in Vienna trial outcome, but less
significant (p-value of 0.14 for both expenditure and quality).
Also, when comparing t2 expenditure of Control group is
lower than expenditure Group I (e1.52 vs e2.06) with close

481ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

To
ta
l

0 1 2 3 4 5 6 7

0
5

10
15

Fig. 5. Selected quality class Qx (x-axis) in Oulu trial

●

●

1 2 3 4 5 6 7 8

1
2

3
4

5

Quality classes

M
O

S
/ A

CR
−5

Fig. 6. Box plot of MOS ACR-5 ratings across all tariffs with logarithmic
fit (Oulu).

to significance p-value (0.11). It has to be noted that with such
a small sample size even a single user can affect the result.

Both of these observations contribute to disproving Hypoth-
esis 2 (as the different pricing histories seem to affect), while
we still cannot claim it to not hold.

Again focusing on t2 and t3 of the control group (c.f. Ta-
ble V for Vienna results), the subgroups with tariff sequences
B → A and B → C are compared. As shown in Tab. VIII, the
results contradict those of the Vienna trial. In the Oulu trial the
price drop has triggered redecision (or the users are not making

an active decision, but follow an earlier price decision), while
the price increases are hardly felt. Both trials show (weak)
signal of price history affecting the price decision thus partially
disproving Hypothesis 2.

Similarly to what happened in the Vienna trial, almost
all users liked the content they chose (91 %). The subjects
reported slightly higher “own money” feeling with 3.2 (ACR-
5) on average (median: 3.5; “Fairly”) than in Vienna trial.

TABLE VIII
SPENDING AS PERCENT OF pmax IN t2 AND t3 PER CONTROL SUBGROUP

IN OULU TRIAL.

t2 t3

B: pmax = 3 A: pmax = 2

Mean 57% 79%
Median 64% 79%

B: pmax = 3 C: pmax = 4

Mean 46% 43%
Median 57% 57%

V. ANALYSIS

A. Regional Differences in Expenditures

As described in Section IV, the realised expenditures of
Oulu campaign were higher than ones in Vienna. It is possi-
ble that some cultural or socio-economic factor(s) affect the
purchasing behaviour of participants. On the other hand, the
difference could be explained by the altered quality levels
between the campaigns.

The observed aggregated MOS of all measurements in both
Vienna and Oulu campaign was 3.8, whereas the average
selected quality class in Vienna was 4.5 and in Oulu 5.5.
Also, it can be observed from Figure 4 and Figure 6, that
the average QoE of 3.8 is reached at Q4 in Vienna and at
Q5 in the Oulu trial. Therefore we can conclude that on
the average, participants in Oulu chose quality level one step
higher compared to the Vienna trial. Furthermore, the average
spending in Vienna was e1.48 and in Oulu e1.90, their
difference being e0.42. The average price increment in both
campaigns is e0.43 which is very close to observed average
spending difference. Also, the average bitrate in Vienna trial
(4080 kbits/s) is 19 % larger than in Oulu trial (3422 kbits/s).
The difference is very close to difference in WTP, 22 %. It
can be concluded that the findings support the Hypothesis 4:
the online video service market can be regarded to be of
global nature where regional limitations may be marginal and
relative to the cultural diversity (applicable at least between
countries within economic and cultural proximity, but not
necessarily between countries with highly different sosio-
economic conditions).

B. Market Entrance and General Pricing

In the earlier work [1] it was observed that the price
increases caused active decisions to be triggered (typically

482ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

leading to lower normalised expenditure), while price de-
creases did not trigger similar re-evaluations. The similar (yet
weak) effects could be observed in Vienna trial, that suggest
that aggressive entry pricing (discounts) may not be suitable
for all markets.

On the other hand, in Oulu trial the effects seem to indicate
the opposite (admittedly, weakly). There the subjects were
more willing to tolerate the price increases, once they had
originally made quality selection in the t1/t2. This implies
that for some customer segments low entry price strategy (e.g.
free/discounted first month) can be a viable option.

In the Oulu trial, when the prices were dropped for part
of the Control group (c.f. tariff B in t2 and tariff A in t3
as shown in Table VIII) the normalised expenditure seems
to increase. This could indicate that the participants had
made the initial WTP decision already before and they were
maintaining the expenditure level even after the price drop.
Such customers could potentially allow introducing discount
campaigns without losing much revenue while attracting new
users (e.g. the existing users could get a quality upgrade for
the same price).

Regarding the different set of available qualities and result-
ing WTP, we can observe that adding more low level quality
steps has resulted in higher spending. One way to interpret this
information, is to conclude that participants “had to” spend
more to acquire the adequate quality (which subjects of both
campaign seem to agree on). But in the end, customers spent
more for the same quality in the latter trial. This highlights
the importance of understanding the real willingness to pay for
any offering (e.g. gained from market research prior to product
launch) and optimising the pricing accordingly, so that all the
potential revenue gets harvested.

C. Empirical Testability
Rather high variability in the results imply that the WTP

testing differs drastically from traditional QoE testing. We can
identify a few factors and recommendations that may have an
effect on the WTP testability:

Active decision making: WTP study typically includes an
active decision component (simulating the real-life purchasing
event). Unlike in the act of perceiving a stimulus (e.g. watching
a video), making a buying decision requires internal evaluation
considering, for example, motives, the context and the poten-
tial value of the available object (better quality in this study).
Presence of such evaluation makes the cognitive processing in
WTP test very different than in typical QoE test setting.

Motivation heterogeneity: Varying motivations between
subjects is likely to have an effect on QoE assessments as
well as WTP assessments. Additionally, in a WTP study the
motives of subjects may affect also the course of the test (via
active decisions), which may not happen in more passive QoE
tests.

Freedom: The consistency of the laboratory test results
may benefit from the high level of control. However, for a
WTP to be realistic people should feel free to do the buying
decisions.

Perceived gain or loss: Subjective tests do not normally
have a component of perceived loss or gain, but there is a
static bilateral relationship between test conductor and test
participant (contribution vs. reward). However, to be realistic
WTP test, the realistic and strong enough gain-loss causality
must be present (e.g. better quality, smaller reward). The
subjects need to feel like spending their own money facing the
“pain” component of purchasing event. This could be achieved
e.g. by increasing the rewards and paid prices (if possible), or
using innovative rewarding schemes (e.g. using chocolate or
something concrete as a currency). Alternatively, if the test
design allows, the “pain” component could be for example
extra (and boring) task to be done.

Difficult parameterisation: Due to the high heterogeneity
of motives, content preferences, and customer segments the
parameterisation of this kind of campaign is generally difficult.
Only when subjects are set in a critical situation where they
have to actively manage the tradeoffs between quality and
price, the exploration of motives or market entrance pricing
effects is possible. Otherwise only the higher-level aggregate
data can be obtained that gives a rough indication on the
available demand and the associated WTP. In the Vienna trial,
the high noise of the content appeared to be problematic.

The comparison of the Oulu and Vienna results shows that
more inadequate low-quality offers, may lead to a higher
revenue (while the quality choice may be similar). Partially
this could be explained by the fact that in the Oulu trial, the
price (an intentional test bias) may have played a too dominant
role, i.e., the quality considerations have been secondary. This
could explain the high relative adaptation under price losses
and highlights the need to carefully moderate the required
“price bias”.

Market scenario: Having the participants in the right
mindset, by the creation of a realistic market scenario within
the trial, despite the limitations of empirical trials in general,
is crucial to obtain the required data.

Assessment methodology: The WTP studies may also
benefit from simplifying the assesment tasks. For example,
binary choice offers (do you want to buy this quality level
for this price?) may lead to different results than scenarios
offering dozens of quality classes — see [10].

Content consistency: In case a test includes a variety of
different contents (like in the described work), it is necessary
to harmonize them regarding the studied properties. For ex-
ample, the observed quality levels that guide the purchasing
decisions (as in our test during the Quality Selection Phase),
should be consistent across the contents and provide similar
trade-offs to be considered by users.

VI. CONCLUSIONS

The results have shown that null Hypothesis 1 has to be
rejected as substantial WTP was witnessed in both trials.
Hypothesis 2 can be weakly rejected (due to lack of signif-
icance) as the historic pricing has triggered (at least weak)
effects on purchasing behaviors. Interestingly, the effect of
price changes varied between the trials. In Vienna trial, the

483ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

price increase caused normalised expenditure to drop, while in
Oulu trial it was price decrease that triggered more significant
effect, causing normalised expenditure to rise. Hypothesis 3
is rejected as there are different distinguishable customer
segments (in Oulu trial), although not as clearly as in previous
studies. Finally, the Hypothesis 4 is considered proved as
the average WTP was on the same level in both trials (after
compensating the effect caused by different quality levels
between the campaigns). However, the hypothesis is proved
only for regions and cultures with moderate sosio-economic
differences (e.g. European welfare states).

Regarding the pricing aspects of video services, the results
indicate that for some video streaming services the same pric-
ing scheme can be applied successfully to different regional
markets of the same geopolitical area. On a global market
level, where cultures are targeted that do not moderately
resemble each other culturally and economically, differences
may still be observed, which cannot be answered quantitively
from the conducted trials.

We also repeat the recommendation of earlier work, that
companies need to be cautious about extremely low teaser
discounts as increasing the prices later on can be challenging.
On the other hand, for some customer segments/cultures the
service/quality level lock-in may prove to be strong enough
to allow later tariff increases (as indicated by Oulu results).
Finally, the results imply that clever pricing and packaging of
the same product (additional lower quality levels in this work)
can potentially increase the profits in some cases.

The trials have shown the challenging nature of conduct-
ing WTP trials (compared to traditional QoE testing). Some
challenges were identified and recommendations are given in
Section V-C. The future retestings shall take these further
recommendations into account in test design.

VII. ACKNOWLEDGMENTS

Martı́n Varela’s and Toni Mäki’s work was partially funded
by Tekes, the Finnish agency for research innovation, in the
context of the CELTIC+ project NOTTS. The research leading
to these results has partially also received funding from the
European Community’s Seventh Framework Programme for
the PRECIOUS project under grant agreement no. 611366.

REFERENCES

[1] P. Zwickl, A. Sackl, and P. Reichl, “Market Entrance, User Interaction
and Willingness-to-Pay: Exploring Fundamentals of QoE-based Charg-
ing for VoD Services,” in Proc. of the IEEE Globecom’13, 2013, pp.
1310–1316.

[2] N. Staelens, P. Coppens, N. Van Kets, G. Van Wallendaef, W. Van den
Broeck, J. De Cock, and F. De Turek, “On the impact of video stalling
and video quality in the case of camera switching during adaptive
streaming of sports content,” in Seventh International Workshop on
Quality of Multimedia Experience (QoMEX). IEEE, 2015, pp. 1–6.

[3] C. Keimel, A. Redl, and K. Diepold, “The TUM High Definition Video
Datasets,” in Proc. of the Fourth International Workshop on Quality of
Multimedia Experience (QoMEX). IEEE, 2012, pp. 97–102.

[4] International Telecommunication Union, “Subjective video quality as-
sessment methods for multimedia applications,” ITU-T Recommendation
P.910, April 2008.

[5] ITU-R BT.710-4 Subjective assessment methods for image quality in
high-definition television, ITU-R BT.710-4, ITU, 1998.

[6] F. Agboma and A. Liotta, “Qoe-aware qos management,” in Proc. of the
Sixth International Conference on Advances in Mobile Computing and
Multimedia. ACM, 2008, pp. 111–116.

[7] K. Ivešić, L. Skorin-Kapov, and M. Matijašević, “Cross-layer QoE-
driven Admission Control and Resource Allocation for Adaptive Multi-
media Services in LTE,” Journal of Network and Computer Applications,
2014.

[8] M. Varela, P. Zwickl, P. Reichl, M. Xie, and H. Schulzrinne, “Experience
Level Agreements (ELA): The Challenges of Selling QoE to the User,”
in Proc. of the ICC 2015 Workshops. IEEE, 2015, pp. 1741–1746.

[9] P. Nelson, “Information and Consumer Behavior,” Journal of Political
Economy, vol. 78, no. 2, pp. 311–329, 1970.

[10] P. Zwickl, P. Reichl, L. Skorin-Kapov, O. Dobrijevic, and A. Sackl,
“On the Approximation of ISP and User Utilities from Quality of
Experience ,” in Proc. of the Seventh International Workshop on Quality
of Multimedia Experience (QoMEX). IEEE, 2015.

[11] FP5 Project M3I, IST–1999–11429, “Deliverable 15/2 – M3I user
experiment results,” 2002.

[12] P. Reichl, P. Maillé, P. Zwickl, and A. Sackl, “A Fixed-Point Model
for QoE-based Charging,” in Proc. of the ACM SIGCOMM Workshop
on Future human-Centric Multimedia Networking (FhMN), 2013, pp.
33–38.

[13] A. Sackl, S. Egger, P. Zwickl, and P. Reichl, “The QoE Alchemy:
Turning Quality into Money. Experiences with a Refined Methodology
for the Evaluation of Willingness-to-pay for Service Quality,” in Proc. of
the Fourth International QoMEX Workshop. IEEE, 2012, pp. 170–175.

[14] A. Sackl, P. Zwickl, S. Egger, and P. Reichl, “The Role of Cognitive
Dissonance for QoE Evaluation of Multimedia Services,” in Proc. of the
2012 IEEE Globecom Workshops. IEEE, 2012, pp. 1352–1356.

[15] ISO/IEC 23009-1:2014: Information Technology – Dynamic Adaptive
Streaming over HTTP (DASH) – Part 1: Media Presentation Description
and Segment Formats, ISO/IEC 23009-1:2014, International Standards
Organization (ISO), 2012.

[16] H.264: Advanced video coding for generic audiovisual services, Recom-
mendation H.264 (02/14) (twinned), International Telecommunication
Union (ITU), 2014.

[17] H.265: High efficiency video coding, ITU-T H.265 (V3) (04/2015
(twinned), International Telecommunication Union (ITU), 2015.

[18] ISO/IEC 23008-2:2015: Information technology – High efficiency coding
and media delivery in heterogeneous environments – Part 2: High
efficiency video coding, ISO/IEC 23008-2:2015 (twinned), International
Organization for Standardization, 2012.

[19] G. J. Sullivan, J.-R. Ohm, W.-J. Han, and T. Wiegand, “Overview of the
high efficiency video coding (hevc) standard,” IEEE Transactions on
Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649–
1668, 2012.

484ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Economics Models and Policies for
Cloud Federations

George Darzanos, Iordanis Koutsopoulos, George D. Stamoulis
Athens University of Economics and Business, AUEB, Athens, Greece

{ntarzanos, jordan, gstamoul}@aueb.gr

Abstract—Cloud federation has emerged as an effective solu-

tion offering worldwide coverage, dynamic infrastructure scaling

and improved QoS for the demanding cloud services. In this

paper, we present a model for Cloud Service Providers (CSPs)

federation and we investigate the economic benefits of CSPs

under different federation modes. Each CSP is modeled as an

M/M/1 queue with arrivals corresponding to computation tasks

and service rate that captures the computational capabilities of

the CSP. Each CSP earns revenue by charging its customers

according to a QoS-dependent pricing function, and it undergoes

a cost due to energy consumption of its infrastructure. We

propose a model for the formation of cloud federations, according

to which each CSP may forward part of the workload stemming

from its customers to other CSPs. We define three federation

modes with varying degrees of CSPs’ interaction, namely the

strong, weak and elastic federations. In strong federations, the

CSPs jointly decide on their forwarding policies to maximize

the total profit of the federation; then, they share these profits

according to certain profit sharing policies. In weak federations,

a game arises, in which each CSP follows a forwarding policy

that aims to maximize its individual payoff, which however

incorporates some fairness. In elastic federations, each CSP again

aims to maximize its individual payoff, but it has the freedom

to tune the degree of its selfishness through a pricing function.

The numerical results validate and quantify the conjecture that

federation can incur substantial monetary benefits and achieve

a near to optimal QoS.

I. INTRODUCTION

Nowadays, the multi-faceted applications that are moving
to the cloud demands global geographic presence and high
QoS for end-users. Although Cloud Service Providers (CSPs)
promise flexible and scalable resources, thus creating the
illusion of infinite resources to their customers, no CSP can
provide on-demand dynamic resource scaling in order to
handle the workload variations in a cost-effective manner.
Furthermore, even market giants have limited geographic
coverage since it is not profitable to invest on establishing
datacenters in multiple geographical locations to satisfy the
demand. Cloud federation arises as an effective way to expand
the reach of CSPs and improve the QoS of their customers.

In a cloud federation, multiple CSPs cooperate to provide
seamless provisioning of high-quality services across different
domains. A cloud federation should be accompanied by certain
policies that ensure the sustainability of this CSP community,
and each CSP that participates has to conform to these policies.
The policies should guarantee that each CSP that joins the
federation will not undergo profit loss. Further, they need to
motivate all CSPs to participate regardless of their market

power or the size of their infrastructure. Cloud federation
comes together with several participation incentives such as
geographic footprint expansion, the scaling of resources to
handle the request traffic bursts of peak demand and the inter-
cloud load balancing. Hence, a cloud federation prevents the
datacenter over-dimensioning and further it reduces the CSPs’
energy cost through better utilization of their infrastructure.

In real life, there are several instances of cloud federation
in both academic and enterprise environments. The OnApp
Federation [1] is a network of CSPs running on the OnApp
cloud management platform. The CSPs that join this federation
may buy and sell capacity on demand through the OnApp
market. Arjuna’s Agility framework [2] is a dynamic federated
cloud computing platform that is created from IT resources
that are offered by autonomous, cooperating business parties
within and beyond an enterprise, and under certain policies.
EGI Federated Cloud [3] is a seamless grid of academic
private clouds and virtualized resources, built around open
standards and it focuses on the requirements of scientific com-
munity. BonFIRE [4] offers a federated testbed that supports
large-scale testing of applications, services and systems over
multiple, geographically distributed, heterogeneous cloud and
network testbeds. Finally, the CERN Openlab project [5] aims
to build a seamless federation among multiple private and
public cloud platforms on OpenStack.

Several works in recent literature investigate the problem of
resource allocation in cloud federations. These works can be
classified into two broad categories: (i) Cooperative resource
pooling [6]–[8], where CSPs aggregate their resources aiming
to maximize the total utility of federation and (ii) Resource
trading [9], [10], where CSPs aim to maximize their individ-
ual profit by trading their unused resources. In our prelude
work [11], we modeled each CSP as an M/M/1 queueing
system and devised a mathematical model for the net profit
of each CSP. This consists of accrued revenues from pricing
on its customers and of incurred energy cost at the cloud
infrastructure. Furthermore, we introduced a first approach to
model a service-oriented cloud federation between two CSP,
where each CSP may forward a portion of the tasks stemming
from its customers to other CSPs. Finally, we formulated
the problem of finding the utility-optimal federation as a
global profit maximization problem in which CSPs align their
strategies to jointly solve it.

In this paper, we build on and substantially extend our
previous work by studying different cloud federation regimes.
In particular, we define the strong, weak and elastic federationISBN 978-3-901882-83-8 c� 2016 IFIP

485ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

modes. Each mode differs on the level of cooperation among
CSPs, the extent of private information that CSPs should make
available to others, and the CSPs’ objectives that may be
aligned or conflicting. Strong federation requires an offline
mutual commitment of CSPs, such that they all agree to align
their forwarding policies to optimize their total net profit.
Additionally, a mutually agreed policy is applied for the fair
sharing of total profit of federation. In weak federation, the
CSPs are still able to forward tasks, however each of them acts
unilaterally by trying to maximize its own net profit, and thus
an non-cooperative game arises. Nevertheless, the net profit
of each CSP in this type of federation is strongly connected
to its contribution in the federation, namely its profit share is
given by its Shapley value. It will be seen that use of Shapley
value as payoff function leads the relevant game to an efficient
equilibrium. We also develop a more elastic model for cloud
federations whereby all CSPs employ a flexible pricing scheme
on forwarded tasks that reflects their degree of selfishness.
Again, each of them aims to maximize its net profit and thus
a non-cooperative game arises, the outcome of which depends
on this degree of selfishness. For each federation mode we
formulate the problem of net profit-optimal service delegation
and we find the optimal forwarding policies.

The paper is organized as follows. In section II we provide
an overview of relevant state-of-the art work. In section III, we
present our model for a single CSP. In section IV we present
our cloud federation model, we introduce and specify the
three modes of federation and solve the relevant optimization
problems. In section V we present our numerical evaluation,
and in section VI we briefly present our conclusions.

II. RELATED WORK

Architectural approaches of cloud federation. The au-
thors in [12] present the challenges of a utility-oriented cloud
federation and propose three basic entities for a market-based
cloud federation architecture; the cloud exchange as the entity
that creates the market, a cloud coordinator per CSP as seller
and a cloud broker per client as buyer. The Reservoir model, a
modular cloud architecture, is proposed in [13]. In Reservoir,
multiple CSPs collaborate in order to create a virtual pool
of resources that seems infinite. The authors in [14] present
the concept of cloud federation as service aggregation and
they present two modes of such a federation, the redundancy
and migration federations. In redundancy federation, multiple
CSPs come together and jointly offer a service to achieve
improved quality for a client, while in migration federation
a client is moved from an old service to new one offered by
another CSP due to improved quality. Finally, the authors in
[15] envision the federation of CSPs as vertical stack that fits
on the layered model of cloud computing. A service request
may arrive in any layer of a CSP and can served either by
local resources using delegation to a lower layer or by another
federated CSP using delegation to a matching layer.

Cooperative inter-cloud resource allocation. The authors
in [16] propose cooperative price-based resource allocation
mechanisms in dynamic cloud federation platforms, aiming

to maximize the total utility of federation. In [6] and [7],
coalitional game theory is applied as a mechanism for the
dynamic formation of CSPs’ federation. Both these papers
have proposed algorithms that determine the optimal coalitions
for a set of CSPs, given their client generated workloads. In
[8] the inter-CSP VM migration is presented a solution to the
problem of resource over-provisioning. The authors propose a
global scheduler that decides whether a VM should migrate
or shut down, thus aiming to CSPs utility maximization.

Resource allocation among selfish CSPs. In [9], the
federation among geo-distributed CSPs is investigated. The
authors design double-auction based algorithms for inter-cloud
VM trading in federations of selfish CSPs. The authors in
[17] model each CSP as a set of heterogeneous servers,
each of them modeled as a queueing system. Then, they
formulate the problem of resource allocation in a multi-CSP
environment as a game among selfish CSPs, where each CSP
aims to maximize its individual utility taking into account the
customer SLAs. The author in [10] investigates the interactions
among CSPs as a repeated game among selfish players that aim
at maximizing their profit by selling their unused resources in
a spot market. The model incorporates information for both
historical and expected future revenue as part of the resource
trading decision, in order to simultaneously maximize the CSP
revenue and avoid future workload fluctuations.

Some of the above works provide an overview of the
architectural elements of a federated system, while others
consider the problem of resource allocation in inter-cloud
environments of either cooperative or selfish CSPs. In our
work, we propose the concept of federation among CSPs as
service delegation and we model the federated environment
as well as its involved economics. Contrary to most existing
works, we provide policies both for cooperative and the non-
cooperative federated environments. Further, we propose a
flexible policy where CSPs can move between cooperation
and selfishness. Additionally, most of existing works do not
take into account the QoS offered to CSPs’ customers in their
optimization approach. In our work, the federation policies
are optimal with respect to total or individual CSPs’ profit
(depends on policy), but they are also beneficial with respect
to the QoS offered to customers.

III. CLOUD SERVICE PROVIDER MODEL

A. CSP as an M/M/1 Queueing System
For each CSP i, we use Ci to denote the total computational

capacity (in operations/sec) of its infrastructure. We assume
that tasks from its customers arrive to a central controller
according to a Poisson process of rate �i (tasks/sec). Each of
these tasks requires a random number of operations in order
to be executed. We assume that the number of operations
follows an exponential distribution with mean number L

operations/task. The average service rate (in tasks/sec) for a
CSP i is µi = Ci/L, and thus the service time of a task is
exponentially distributed with mean 1/µi.

We use the average task completion time as a metric for
customers’ QoS. By standard theory for M/M/1 single-server

486ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

queueing systems, the average completion time di for tasks
served by the infrastructure of CSP i is given by

di(�i) =
1

µi � �i
. (1)

The average rate of incoming tasks must always be lower than
the service rate of the system (�i < µi), otherwise the CSP
queue becomes unstable.

M/M/1 abstraction justification. In practice, a CSP con-
sists of multiple datacenters with servers within each of them.
In our approach, we abstract the multi-server infrastructure of
the CSP as a single-server M/M/1 queueing system. To this
end, we assume that a CSP performs perfect dispatching and
scheduling of incoming tasks by preventing its servers from
becoming idle. In particular, if the infrastructure of a CSP
i consists of Mi identical servers of computational capacity
Ci/Mi each, the CSP achieves the same average utilization
level ⇢i to all servers by applying the optimal internal task
dispatching and scheduling. Hence, we can safely assume that
the multi-server infrastructure of each CSP behaves as a single-
server with computational capacity Ci and utilization ⇢i.

The queueing-system assumption can be justified as follows:
Tasks arrive at the controller in the form of a stream. Since
cloud computing provides the technology for virtualizing
resources, tasks coming from the customers of a CSP are
assigned to established virtual machines (VMs). VMs are not
in abundance, but they are finite resources that are assigned
on-demand to serve requests. Given that a typical cloud
computing system serves a large number of customers where
each of them generates multiple computational tasks and these
arrive in bursts, is more probable to have smaller interarrival
times than larger ones. Thereafter, we can assume that the tasks
arrive according to a Poisson process. Furthermore, the time
that a task spends in the CSP’s system depends both on the
waiting and service time, i.e. on the number of existing tasks
that wait to be served, on the availability of resources when
the task arrives and on its size with respect to the number of
operations it entails. The majority of tasks that arrive in a CSP
queue usually demands a smaller number of operation, while
relatively fewer tasks require a large number of operation.
Hence, we can assume that the number of operations that a task
requires is exponentially distributed, and therefore the service
time also follows an exponential distribution. Consequently,
the M/M/1 queueing model is applicable. While this is a
simplification that allows the mathematical treatment of our
paper, it is also reasonable enough to capture the reality.

B. CSP Economics
Energy consumption cost. We take the infrastructure en-

ergy consumption cost of a CSP as measure for its total cost.
The power consumption of a server includes the power for
its operation and the power that is required for supportive
systems like cooling devices. However, according to prevalent
state-of-the art literature [18], the total power consumption is
a linearly increasing function of the utilization factor of the
server, ⇢. Specifically, the total power consumed is the sum of
server’s idle power and utilization factor-dependent dynamic

power consumption. The former amount of power, W0, is the
power consumed when the server is powered on but does not
serve any task. The latter one is linearly increasing in the
server utilization ⇢. If we denote by W1 the power of a server
when it is fully utilized (namely at ⇢ = 1), the range of power
consumption is [0,W1 �W0].

To estimate the total power consumption of a CSP, we take
into account that its infrastructure consists of multiple servers.
Since a CSP achieves the same average level of utilization ⇢
in all its servers (subsection III-A), idle and dynamic power
consumptions of the entire infrastructure can be computed by
aggregating the corresponding power consumption patterns of
all servers. Consequently, if a CSP i has Mi servers, and if
W0,ij and W1,ij denote the idle and total power consumption
of the j-th server of CSP i, the aggregate power consumption
of the CSP i in Watts is

Wi(�i) =

MiX

j=1

W0,ij +
�i

µi

MiX

j=1

⇣
W1,ij �W0,ij

⌘

= W0,i +

⇣
W1,i �W0,i

⌘
�i

µi
,

(2)

where W0,i and W1,i denote the idle and total power con-
sumptions of i’s infrastructure. If i uses electricity at a price
Zi per KWatt·sec, the cost of energy consumption per unit of
time is given by

Ei(�i) = Wi(�i) Zi. (3)

QoS-dependent Pricing. We assume that a CSP charges
its customers based on the offered QoS-level and on load of
received requests. Recall that we use average tasks completion
time as measure for the QoS offered by a CSP. Thereafter, a
CSP i sets a price per task according to a pricing function pi(·),
where pi(·) is decreasing in average task completion time,
di. This function should also be convex, because a marginal
change in delay is perceived more by the customer for smaller
values of the delay. Further, the average completion time of
task is always lower-bounded by the expected service time
�i = 1/µi. A function that satisfies the requirements above is

pi(�i) =
�i

di(�i)
Qi, (4)

where Qi denotes the price per task that i charges for offering
service in the best possible QoS, i.e. the expected service time
�i. In practice, the pricing function for each CSP is driven
by the competition in the cloud market. In our approach, we
assume that each CSP has made a decision offline on its pric-
ing function that already takes into account this competition.
Moreover, we assume that CSPs cannot adapt their pricing
functions and also that their customers are committed by some
contract and therefore they cannot change their serving CSP.

Revenue. The revenue of a CSP is generated from pricing
on the tasks coming from its customers. Since CSP is also
committed by some contract, we assume that the tasks arrive
in its queue are always served. Consequently, the revenue rate
in monetary units per unit of time for CSP i is given by

Ri(�i) = �i pi(�i). (5)

487ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 1. Cloud federation for N CSPs, each of them is modeled as a single-server M/M/1 queue. Each CSP may forward a portion of the tasks coming from
its customers to other CSPs and likewise it can receive task streams coming from customers of other CSPs. The streams of forwarded tasks between CSPs i
and j undergo a fixed average transfer delay Dij .

Net Profit. The net profit that i earns per time unit is

Pi(�i) = Ri(�i)� Ei(�i). (6)

IV. CLOUD FEDERATION POLICIES

Our cloud federation model is based on the ability of each
CSP to forward part of its incoming traffic stream of tasks to
other CSPs within the federation. Therefore, the forwarding
policy of each CSP is considered as its strategic leverage. The
objective of a CSP for joining the federation may vary, and
thus a CSP may have incentives to act either cooperatively or
selfishly. We investigate three different modes under which the
CSPs can federate:(i) the strong, (ii) weak and (iii) elastic
federation modes. Each mode differs from others either in
the level of private information that each CSP should make
available to other CSPs or in the cooperation level of CSPs
that may have common or conflicting federation objectives.

A. Model
We consider a set N of N = |N | CSPs, and for each

CSP i 2 N we define variables ↵ij for j = 1, .., N that
determine the portion of its incoming tasks that CSP i forwards
to a CSP j. Therefore, our global forwarding policy is a
N ⇥ N dimensional matrix A, whose entries ↵ij determine
the forwarding policy of all CSPs. We use vectors ai and a0i
to denote the i-th row and i-th column of A respectively.
The aggregate rate of tasks that CSP i forwards to others
is

P
j2N\{i}

↵ij�i, while the average rate of tasks that CSP i

receives from other CSPs is
P

j2N\{i}
↵ji�j .

Fig. 1 depicts our federation model for N CSPs. We assume
that the portion of tasks that are transferred from a CSP to
another, experiences an additional delay due to the intervening
Internet links between their datacenters. Therefore, for each
pair of CSPs i, j 2 N we define an average communication
delay Dij . This delay is understandably exogenous to the
system of CSPs. Also, we assume that the tasks that arrive

in all CSPs belongs to the same service class and thus have
the same mean number of operations, L, per task.

In our model, the task arrival rate at the input of each CSP’s
queue depends on the forwarding policy of other federated
CSPs. Therefore, the ultimate arrival rate of tasks in the queue
of CSP i depends on values of i-th column of matrix A (i.e.
on vector a0i) and is defined as �

0
i(a

0
i) =

P
j2N

↵ji�j . Thus, the

average completion time of the tasks that are served by the
infrastructure of CSP i is

di(a
0
i) =

1

µi � �

0
i(a

0
i)
. (7)

A portion of the task stream that arrives in a CSP is
served by its own infrastructure, while other portions may be
forwarded to other CSPs. Hence, the average completion time
of tasks coming from the customers of CSP i depends on
the average delay experienced at other CSP queues. Thus the
average task completion time for customers of CSP i depends
on all columns of matrix A and is defined as:

Ti(A) =

X

j2N
↵ij

�
dj(a

0
i) +Dij

�
. (8)

Note that Dii = 0. At this point, it is important to stress the
difference between Ti(·) and di(·):
di(·) the average completion time for tasks that are served

by i’s infrastructure, including tasks originating from
customers of i and tasks from other CSPs’ customers.

Ti(·) the average completion time of tasks that are generated
from customers of CSP i, regardless of whether they are
ultimately served by CSP i or by other CSPs.

In Section III a complete characterization of a single CSP
is provided, however we need to slightly revise our model
in order for it to be applicable in the federation. Now,
the power consumption of i’s infrastructure is affected by

488ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

forwarding policies of CSPs. Thus, the power consumption
of i’s infrastructure is given by

Wi(a
0
i) = W0,i +

�
W1,i �W0,i

�
�

0

i(a
0
i)

µi
. (9)

Accordingly, the energy cost per unit of time is defined as

Ei(a
0
i) = Wi(a

0
i) Zi. (10)

The customers of CSP i should be charged based on Ti(·)
rather than di(·) because different tasks may be served from
different CSP queues. Hence, the pricing function becomes
pi(A) =

�i

Ti(A)Qi, and thus the revenue per unit of time is

Ri(A) = �i
�i

Ti(A)

Qi. (11)

Finally, the generated profit per unit of time is given by

Pi(A) = Ri(A)� Ei(a
0
i). (12)

B. Strong Federation
All CSPs that participate in a strong federation comply

to certain cooperation rules that have been agreed a priori.
These rules include: (i) cooperation on exchanging private
information, i.e. the values of their computational capacity
Ci and average request load �i, (ii) agreement on the com-
mon objective of total federation profit maximization (iii)

cooperation on defining the appropriate policy for sharing the
total profit incurred from federation, and (iv) commitment to
always serve the forwarded tasks of other federated CSPs.

Total Profit maximization. The CSPs cooperate and jointly
decide the forwarding policies A that maximize the total
federation profit. The globally optimal forwarding policy A⇤

is derived by solving the total profit maximization problem,

argmax

A

P
i2N

Pi(A)

s.t. ↵ij � 0 , 8i, j 2 N ,P
j2N

↵ij = 1 , 8i 2 N ,

�

0

i(a
0
i) < µi , 8i 2 N .

(13)

The second constraint captures the splitting of CSP i’s task
traffic across others. The third constraint is due to stability in
the queues of each CSP. We can solve this non-linear problem
by applying standard optimization methods, i.e. formation of
the Lagrangian and statement of the necessary and sufficient
KKT conditions that should be satisfied for optimality.

Profit Sharing Policies. Our problem formulation guar-
antees that under the optimal A⇤, the total federation profit
is maximized. Thereafter, in the worst case scenario, i.e. in
A⇤

= I (Identity matrix), the total profit of federation equals
the aggregate profit of CSPs in standalone operation. By stan-
dalone, we mean that each CSP serves only the tasks coming
from its customers. However the individual profit may in fact
deteriorate for one (or more) CSPs due to task forwarding
actions. Specifically, the CSPs that only receive forwarded
tasks may have loss because the extra workload will increase
their energy cost due to the higher infrastructure utilization.

As a result, these CSPs may be unwilling to comply with the
federation, unless some rule is applied for the elimination of
their losses. Since the total profit of the federation exceeds
the aggregate profit of CSPs in the standalone mode, CSPs
that only forward tasks definitely have higher profit than
before, thus they are able to compensate others. Therefore,
the CSPs have to reach an agreement for the fair sharing of
total generated profit that satisfies all of them.

Next, we present two cooperative profit-sharing policies that
serve the objective above. In the first policy, the profit share
that a CSP receives depends both on its standalone profit and
on the percentage of total forwarded tasks that it forwards or
receives. In the second policy, we determine the profit that
a CSP should get based on its marginal contribution in the
federation by making use of Shapley value notion [19].

1) Interaction driven profit-sharing: In this approach, a
CSP i gets at least the profit it had in standalone operation,
while the extra profit generated from the federated operation is
proportionally shared among N CSPs based on the percentage
of forwarded tasks that each of them forwarded or received.
We define the extra generated profit PF (A⇤

) by subtracting
the aggregate profit of CSPs in the standalone operation from
the total profit of federation

PF (A
⇤
) =

X

i2N
Pi(A

⇤
)�

X

i2N
Pi(I). (14)

where Pi(I) denotes the profit of CSP i in standalone opera-
tion. Consequently, the share of CPS i is determined by:

⇠i(A
⇤
) =

|�0i(a0⇤i)� �i|P
j2N

|�0j(a0⇤j)� �j |
PF (A

⇤
) + Pi(I), (15)

where |�0
i(a

0⇤
i)��i|P

j2N
|�0

j(a
0⇤
j)��j |

is the proportionality parameter which

defines that a CSP who forwards or receives more tasks
compared to another, will receive proportionally larger share
of the extra generated profit.

2) Shapley value driven profit-sharing: Shapley value has
been widely used in coalitional game theory applications as
a mechanism for sharing total utility in a fair manner. A
characteristic function �(·) measures the benefit of a coalition,
also called the worth of coalition. In our approach, we take as
characteristic function the total profit that is generated from
the federated operation of a given set of CSPs. For instance,
the worth of coalition �(·) for the set of N CSPs is

�(N ,A) = max

A

X

i2N
Pi(A), (16)

where the solution is obtained by (13). For a federation of
N CSPs, the Shapley value of each CSP is obtained by
calculating its average marginal contribution in all possible
sub-federations S ✓ N . Therefore, we need to know the worth
of coalition �(S,AS) for all possible subsets of CSPs S . Note
that S = |S| and AS is the corresponding S ⇥S dimensional
matrix of forwarding policies. In order to find the worth of
subset S , we have to solve the relevant optimization problem
(13) for all possible such subsets.

489ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Assuming that S ✓ N \ {i}, the marginal contribution of
CSP i when it joins a sub-federation S is defined as

MCi(S,AS , �) = �(S [i,AS[i)� �(S,AS) (17)

Consequently, the profit share of a CSP i in the federation of
N CSPs is given by its Shapley value defined as

'i(N ,A) =
X

S✓N\{i}

|S|!
�
N � |S|� 1

�
!

N !
MCi(S,AS , �) , (18)

where 'i(N ,A) denotes the estimated marginal contribution
of CSP i over all possible subsets of S .

Remark I. The two profit-sharing policies differs on how
they perceived the level of a CSP’s contribution. In interaction
driven policy the extra profit is distributed only among the
CSPs that are involved in forwarding actions of optimal policy,
either as source or destination. On the other hand, Shapley
value is less tight since it takes also into account the potential
contribution of a CSP in all possible sub-federations. For more
than two CSPs the policies may lead to totally different result.

C. Weak Federation

Weak and strong federation both require a level of com-
mitment for each CSP in serving the requests forwarded to
it by others. However, in weak federation the CSPs do not
share the same objective any more, i.e. the maximization of
total profit. Each of them determines its individual forwarding
policy aiming to maximize its net profit, and thus a non-
cooperative game arises. Since the CSPs have conflicting
objectives, it is not sufficient to define the individual profit of
each CSP as its payoff function as if the CSP were standalone.
Otherwise, a selfish CSP would be able to outsource tasks
without cost, taking the game to an equilibrium point where
one or more CSPs may have less profit compared to that in
their standalone operation. As a result, CSPs that undergo
losses may be unmotivated to participate. In order to tackle
this participation constraint and to simultaneously achieve a
fair allocation of profits, it is announced to CSPs that their
profit in federation is determined by a fair contribution-based
profit sharing rule, namely their Shapley value. Then the CSPs
are left alone to choose their own forwarding policies.

Non-cooperative Game. The set of players in this game is
N = (1, 2, ..N

�
. The individual forwarding strategy of a CSP

i is defined by the entries of i-th row of forwarding matrix A,
thus the set of strategies of CSPs is A = (a1,a2, ...,aN). Note
that A contains the same elements as A. We define by ai the
strategy of CSP i, and by a�i the strategies of all other CSPs
except i. The payoff of its CSP in the game is determined by
its Shapley value, thus the set of payoffs under a set of given
strategies A is ' = ('1(N ,A),'2(N ,A), ...,'N (N ,A)).

The game starts with each CSP operating in the standalone
mode, where A = I. In every step of the game, a CSP i takes
as input the current forwarding policies of other CSPs a�i

and determines its best response. The best response of CSP i

is to select a forwarding policy ai that maximizes its payoff
'i(N ,ai,a�i). Therefore, i determines its best response by

solving the following optimization problem:

argmax

ai

'i(N ,ai,a�i)

s.t. ↵ij � 0 , 8j 2 N ,P
j2N

↵ij = 1,

�

0

i(a
0
i) < µi.

(19)

In order to calculate its Shapley value, a CSP has to com-
pute its marginal contribution in all possible sub-federations
S ✓ N . For the moment, we assume that this information is
available and the game is played only for the full set N and
not for subsets S . At the end of this paragraph we elaborate on
how the marginal contribution of CSP i in each S ✓ N \ {i}
can be obtained. The game continues until the system reaches
a Nash equilibrium (NE) A⇤, where 8i 2 N and for every
possible strategy ai, 'i(N ,a⇤i ,a

⇤
�i) � 'i(N ,ai,a⇤�i).

Claim. Given a set of forwarding strategies A. If CSP i

applies a forwarding strategy a⇤i that maximizes its payoff
under Shapley value objective function, a⇤i is globally optimal.

Proof: Given that under strategy a⇤i the 'i(N ,a⇤i ,a
⇤
�i) of

CPS i is maximized. Due to strong monotonicity of Shapley
value [19] MCi(N ,a⇤i ,a

⇤
�i, �) is also maximized. From (17),

MCi(N ,a⇤i ,a
⇤
�i, �) is maximized when the total profit of

subset that i joins is maximized. Consequently, all CSPs adapt
their forwarding policies in a such way that the total profit of
federation is maximized.⌅

Corollary. Under Shapley value payoffs the set of individu-
ally optimal forwarding strategies A⇤ is a Nash Equilibrium.

Proof: We assume that in a step of the game all CSPs have
chosen their optimal forwarding strategies A⇤ that according to
our Claim are also globally optimal. We change the strategy
of CSP i from a⇤i to ai, and we let the game continue. In
the next step, CSP i changes back its strategy to a⇤i in order
to maximize its payoff. Suppose that A⇤ is not a NE, there
exist a CSP i that by changing its strategy to ai can achieve
'i(N ,ai,a⇤�i) > 'i(N ,a⇤i ,a

⇤
�i). However, since a⇤i 2 A⇤

this is a contradiction.⌅
Remark II. In order to determine its best response in

previously presented game, each CSP should calculate its
Shapley value based on its marginal contribution in all sub-
federations S ✓ N . There are two alternatives to obtain
this information: (i) The CSP plays recursive non-cooperative
games as the above one for all the possible sub-federations. It
starts playing these games from the smallest to largest subset,
and the output of each game is used as input to the larger ones.
(ii) Same as in section IV-B2, the CSP solves the relevant
global optimization problem (13) for all subsets S and uses
the results as input on determination of its best response in
(19). Note that the second approach is less complex because
we only have one game, however it has the drawback that
CSPs should reveal their private information as done in strong
federation.

D. Elastic Federation
The weak federation does not give CSPs the freedom to

select their objective function. In this section, we propose the

490ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

elastic federation where CSPs are free to tune their level of
selfishness in the federation, and thus make a choice on their
objective function. The elastic federation does not require any
cooperation of CSPs on exchanging private information or on
deciding a fair profit sharing policy. Each CSPs advertises
a price that will charge all other CSPs for serving each
forwarded task. Given these, each CSP decides its individual
forwarding policy aiming to maximize its profit. Again, the
CSPs have conflicting objectives and thus a non-cooperative
game arises. However, by setting an arbitrary price per task,
there is no guarantee that in the Nash equilibrium point the
individual profit of each CSP will be better than its profit in
standalone operation. Thus, we provide a rule for computing
prices that does attain this goal.

Inter-CSP pricing rule. This rule guarantees that each CSP
i sets a price that does not violate the federation participation
constraint, i.e. CSP’s i profit does not decrease due to federa-
tion. This is achieved by setting a lower bound on the price of
each asking. This bound is determined based on an estimate
of the negative impact that a forwarded task can have on the
destination CSP’s profit. In addition, the pricing rule gives
CSPs the freedom to be as aggressive as they wish on the
selection of price. In particular, CSP i sets the price per task
by following the two steps below:

1) Lower bound of price: Given that the tasks arrival rate of
CSP i in standalone operation is �i, we estimate the profit loss
that a CSP would have by accepting to serve free of charge
a number of µi � �i more tasks so as to reach utilization
factor equal to 1. The profit is affected both by the increased
energy consumption cost and by QoS degradation that brings
revenue losses due to price reduction. When the utilization
factor reaches 1, the average completion time di ! 1,
thus the price per task (4) becomes zero and the revenue is
zero. Therefore, the revenue loss that a CSP can have equals
to its revenue in standalone operation Ri(�i). On the other
hand, the additional energy cost for serving the number of
additional tasks µi��i is given by subtracting its energy cost
in standalone operation from the energy cost that it would
have in utilization level 1. Thus, the energy loss is given by
Ei(µi) � Ei(�i). Consequently, the profit loss of CSP i for
accepting µi � �i more tasks without charging is given by
Ri(�i) + Ei(µi) � Ei(�i). Consequently, we can estimate
the empirical per-task average negative impact by dividing
the profit loss among the number of possible additional tasks,
µi � �i. Then, CSP i can set a lower bound on price xi(�i)

per task that covers its profit loss, where

xi(�i) =
1

µi � �i

⇣
Ri(�i) + Ei(µi)� Ei(�i)

⌘
. (20)

2) Selfishness aware pricing: Having set the lower bound
in the price, we now introduce the selfishness of each CSP
in price setting, i.e. the level of its intrinsic desire to gen-
erate more revenue. The selfishness level of each CSP i is
determined by a selfishness factor ✓i 2 [0, 1], where ✓i = 0

means that CSP i is not selfish and acts as being federation-
friendly, and ✓i = 1 implies that CSP i is extremely selfish.

An extremely selfish CSP i would charge each task with a
price that corresponds to the price paid by its customers in
standalone operation, i.e. the price given from (4) for the
current �i. On the contrary, a federation-friendly CSP would
only charge a price xi(�i) per task.

In practice the parameter ✓i determines how the extra
generated profit from a forwarded task is shared among the
source and destination CSPs. If the destination CSP i is totally
selfish, it gets all the extra generated profit; on the other hand if
i is totally friendly, all the generated profit is gathered from the
source CSP. However, being extremely selfish may discourage
others from forwarding tasks toward i and select other more
friendly destinations. Therefore, higher selfishness does not
necessarily mean higher revenue. Based on the above analysis,
the final price per task is determined as

!i(�i) = xi(�i) + ✓ipi(�i), (21)

where pi(�i) is the QoS-dependent pricing function (4). In
this paper, we assume that ✓ is fixed and same for all CSPs.
The selection of optimal ✓i per CSP gives rise to new game-
theoretic aspects that we plan to study in the near future.

Non-cooperative Game. In elastic federation the payoff of
a CSP i includes its individual profit, the monetary amount
that i receives by charging others for serving their tasks, and
the monetary amount that i pays to others for serving tasks of
its customers. Hence, the payoff of CSP i is defined as

 i(A) = Pi(A) +

X

j2N\i

↵ji�j!i(�i)� ↵ij�i!j(�j). (22)

Same as in weak federation, the set of players is N and their
strategies are A = (a1,a2, ...,aN), but now their payoff set is
 = (1(A), 2(A), ..., N (A)). The best response of CSP i

is given by the solution of argmaxai i(ai,a�i) and under
the same constraints as (19). The game stops when the CSPs
converge to a Nash equilibrium point. The pure NE existence
is confirmed by Debreu-Glicksberg-Fan’s theorem [20].

V. NUMERICAL EVALUATION

A. Simulation setup
We focus our attention to the scenario of two CSPs in

order to better understand and interpret the obtained results.
We assume that the tasks that arrive in both CSP queues
require an average of L = 200 Giga operations in order
to be executed. We assume that both CSPs are symmetric
with respect to computational capacity of their infrastructures
C = 2 Tera operations per second. This capacity corresponds
about 100 servers. The additional communication delay D for
the forwarded tasks is taken to be an order of magnitude lower
than tasks completion time in each CSP queue, D = 0.01. For
the power consumption, we take the idle and total powers as
W0 = 60 KWatt and W1 = 400 KWatt. Both CSPs pay the
same price to their electricity provider, namely Z = 2.7 ·10�5

$/KWatt·sec. Further, they both charge their customers accord-
ing to the same pricing function, with same maximum price Q

$/task. In our experiments, we select the value of Q by taking
as input the electricity price Z. In particular, given the price

491ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 2. Total profit of CSPs under different operation modes, for �2 = 7 and
�1 2 [1, 9]

Z, we find the value of Q for which the profit of CSP becomes
zero when the utilization factor is 0.99. This guarantees that
both CSPs in standalone operation will not have negative profit
for any value of utilization up to 99%. The price per task in our
setup is Q = 0.11 $/task. For the selfishness factor of CSPs in
the case of elastic federation, we try out different combinations
of ✓ values in the interval [0, 1]. In all experiments, we assume
that CSP 2 has a fixed rate of incoming tasks �2 and we set
values for �1 in the feasible range of values [1, 9.9], with a
step of 0.1. We run this type of experiment for different fixed
values of �2 from 1 to 9.9.

B. Numerical Results

Total Profit. Fig. 2 shows the total profit under all operation
modes, for fixed value of �2 = 7 and �1 2 [1, 9.9]. The results
reveal that all three federation modes can achieve higher or at
least the same total profit compared to the aggregate profit of
CSPs in standalone operation. The total profit of strong and
weak federation appears to coincide in all possible values of
�1 and �2. This happens because of Shapley value’s selection
as a CSP’s payoff in weak federation, since Shapley value
urges each CSP to act for the benefit of all federation. In
Fig. 2 we can observe that for �2 = 7 and for low load �1,
strong and weak federation achieve a profit that is around 80�
200% more than the aggregate profit of CSPs in the standalone
operation. For medium and high load, the benefit of strong
and weak federation seems to diminish, while for �1 = �2,
the total profit is equal to the one of standalone operation.
Note that if the value of �2 were fixed to 9.9, the benefit of
federation would be even higher for low and medium values
of �1; about 100�400% more than standalone. Consequently,
the more diverse the CSPs’ infrastructure utilization, the more
pronounced the benefit of strong and weak federation is.

The total profit of elastic federation is strongly dependent
on the selfishness factors ✓ of the federated CSPs. The results
in Fig. 2 show that the total profit of elastic federation for
✓ = 0.5 is lower but close enough to the one of strong and
weak federation. Further, the results reveal that when ✓ is very
close to or equal to 1, the extremely selfish CSPs set high
prices and therefore the benefit of federation is eliminated.
On the other hand, when ✓ equals to zero the total profit of
elastic federation coincides with the total profit of strong and
weak federation. Finally, the results show that for same value

Fig. 3. Optimal forwarding policies of CSPs under different operation modes,
for �2 = 7 and �1 2 [1, 9]

of ✓, the benefit of elastic federation is relatively closer to
strong and weak in high level of utilization, e.g. for �1 = 9.9

and �1 = 7 in Fig. 2.
Forwarding strategy. Fig. 3 shows the optimal forwarding

policy of both CSPs under different federation modes. Inter-
estingly, in the optimal solution at least one of ↵12 and ↵21

equals to zero. Further, the non-zero value always refers to
the most utilized CSP. Strong and weak federation result to the
same optimal pair (↵⇤

12,↵
⇤
21). In elastic federation, the value of

non-zero ↵ parameter is affected by the selfishness factor ✓ of
the less loaded CSP which eventually receives the forwarded
tasks. If ✓ = 0, then the optimal pair (↵

⇤
12,↵

⇤
21) of elastic

federation is the same as in strong and weak federation. On the
other hand, if the ✓ = 1, the source CSP has no benefit from
forwarding any task. Thereafter, the optimal pair of strong
and weak federation is the upper bound for the optimal for-
warding strategy of elastic federation. Further, we conducted
additional numerical evaluations by setting different values
in the communication delay D. The numerical results reveal
that as the communication delay increases, the CSPs follow a
more conservative forwarding policy and when D exceeds a
certain value, the optimal pair becomes (↵

⇤
12,↵

⇤
21) = (0, 0).

Consequently, network delay is an important parameter for the
effectiveness of federation.

Individual Profit. Fig. 4 and Fig. 5 show the individual
profit of both CSPs under all possible operation modes. The
individual profit of each CSP in all federation modes is higher
or at least equal to its profit in standalone operation. The
individual profit of a CSP under the interaction-driven profit
sharing policy of strong federation equals its profit share
when the Shapley value-driven policy is applied. However,
this would be different in an experiment with more than two
CSPs. In weak federation the individual profit of each CSP
equals to its profit share in the strong federation. This happens
because of Shapley value selection as payoff function of each
CSP in the game. The individual profit of CSPs in elastic
federation varies and is again related to their selfishness factor.
In particular, for ✓ = 0 a CSP that forwards a number of
tasks gain all the extra revenue generated from that action,
while the destination CSP only cover its profit loss. As ✓

increases the destination CSP demands a share of this extra
generated revenue, therefore the profit share of destination
CSP increases, and that of source CSP decreases. There are

492ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 4. Individual profit of CSP 1 under different operation modes, for �2 = 7
and �1 2 [1, 9]

non-zero values of ✓ where either CSP 1 or CSP 2 earns higher
individual profit than in strong federation, however this cannot
hold for both CSPs simultaneously because their aggregate
profit cannot exceed the total profit of strong federation. A
value of ✓ that achieves individual profit for both CSPs that
are close to their profit in strong federation varies and depends
on the input loads of CSPs. Consequently, the value of ✓ is
debatable and needs further investigation.

QoS level. The results show that all federation modes out-
perform standalone operation and achieve a close-to-optimal
QoS. The strong and weak federation achieves the same
average task completion time, and further their performance
is extremely close to the average completion time of a QoS-
optimal federation. In elastic federation, for ✓ = 0 the average
task completion time equals the one of strong and weak
federation, while for ✓ = 1 elastic federation has the same
performance as standalone operation.

VI. CONCLUSIONS

In this paper, we have presented models and policies for the
formation of service-oriented cloud federations. Our models
guarantee the economic sustainability of cloud federations
both for cooperative and non-cooperative environments. The
results show that in strong and weak federations the net profit
of federation is maximized, while the offered QoS is very close
the optimal one. The elastic federation gives CSPs the freedom
to select their selfishness level. By selecting the appropriate
selfishness level, a CSP may earn a higher individual profit
than in a strong and weak federation, but the total profit of
federation decreases. However, an extremely high selfishness
level may deter the generation of additional individual profit.

In the present work, the forwarding policy of each CSP is
consider as its strategic leverage. We plan to extend our work
by investigating federation modes where the strategies of CSPs
will be expressed through both forwarding policy and pricing.
We also plan to study different types of federation based on an
alternative model, where the federation is instantiated through
computational capacity sharing instead of sharing tasks.

ACKNOWLEDGMENT

This work was partly funded by the Research Centre of
Athens University of Economics and Business, in the frame-

Fig. 5. Individual profit of CSP 2 under different operation modes, for �2 = 7
and �1 2 [1, 9]

work of the project entitled “Original Scientific Publications”,
and by the EU Project SmartenIT (FP7-2012-ICT-317846).

REFERENCES

[1] http://onapp.com/federation.
[2] http://www.arjuna.com/federation.
[3] https://www.egi.eu/infrastructure/cloud.
[4] http://www.bonfire-project.eu.
[5] http://openlab.web.cern.ch.
[6] L. Mashayekhy, M. Nejad, and D. Grosu, “Cloud federations in the sky:

Formation game and mechanism,” IEEE Trans. on Cloud Computing,
vol. 3, no. 1, pp. 14–27, Jan 2015.

[7] M. Guazzone, C. Anglano, R. Aringhieri, and M. Sereno, “Distributed
coalition formation in energy-aware cloud federations: A game-theoretic
approach (extended version),” CoRR, vol. abs/1309.2444, 2013.

[8] I. Goiri, J. Guitart, and J. Torres, “Characterizing cloud federation
for enhancing providers’ profit,” in Proc. of IEEE 3rd International
Conference on Cloud Computing (CLOUD), 2010.

[9] H. Li, C. Wu, Z. Li, and F. Lau, “Profit-maximizing virtual machine
trading in a federation of selfish clouds,” in Proc. of IEEE INFOCOM,
2013.

[10] N. Samaan, “A novel economic sharing model in a federation of selfish
cloud providers,” IEEE Trans. on Parallel and Distributed Systems,,
vol. 25, no. 1, pp. 12–21, Jan 2014.

[11] G. Darzanos, I. Koutsopoulos, and G. D. Stamoulis, “A model for
evaluating the economics of cloud federation,” in Proc. of 4th IEEE
International Conference on Cloud Networking, 2015.

[12] R. Buyya, R. Ranjan, and R. N. Calheiros, “Intercloud: Utility-oriented
federation of cloud computing environments for scaling of application
services,” in Proc. of the 10th International Conference on Algorithms
and Architectures for Parallel Processing - Volume Part I, 2010.

[13] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas, I. Loy, K. Nagin,
J. Tordsson, C. Ragusa, M. Villari, S. Clayman, E. Levy, A. Maraschini,
P. Massonet, H. Muoz, and G. Tofetti, “Reservoir - when one cloud is
not enough,” Computer, vol. 44, no. 3, pp. 44–51, March 2011.

[14] T. Kurze, M. Klems, D. Bermbach, A. Lenk, S. Tai, and M. Kunze,
“Cloud federation,” in Proc. of Cloud Computing, 2011.

[15] D. Villegas, N. Bobroff, I. Rodero, J. Delgado, Y. Liu, A. Devarakonda,
L. Fong, S. M. Sadjadi, and M. Parashar, “Cloud federation in a layered
service model,” Journal of Computer and System Sciences, vol. 78, no. 5,
pp. 1330–1344, 2012.

[16] M. Hassan, B. Song, and E.-N. Huh, “Distributed resource allocation
games in horizontal dynamic cloud federation platform,” in Proc. of
IEEE 13th International Conference on High Performance Computing
and Communications (HPCC), 2011.

[17] Y. Wang, X. Lin, and M. Pedram, “A game theoretic framework of sla-
based resource allocation for competitive cloud service providers,” in
Proc. of Sixth Annual IEEE Green Technologies Conference, 2014.

[18] M. Steinder, I. Whalley, J. Hanson, and J. Kephart, “Coordinated man-
agement of power usage and runtime performance,” in Proc. Network
Operations and Management Symposium (NOMS 08), 2008.

[19] L. S. Shapley, “A value for n-person games,” Tech. Rep., 1952.
[20] G. Debreu, “A social equilibrium existence theorem,” Proc. of the

National Academy of Sciences of the United States of America, 1952.

493ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Backward-Shifted Strategies Based on SVC for
HTTP Adaptive Video Streaming

Zakaria Ye⇤, Rachid El-Azouzi⇤, Tania Jimenez⇤, Eitan Altman† and Stefan Valentin‡
⇤University of Avignon, Avignon, France, †INRIA, Paris, France, ‡Huawei Technologies, France

Email: {zakaria.ye, rachid.elazouzi, tania.jimenez}@univ-avignon.fr
eitan.altman@inria.fr, stefan.valentin@huawei.com

Abstract—Although HTTP-based video streaming can easily
penetrate firewalls and profit from Web caches, the underlying
TCP may introduce large delays in case of a sudden capacity
loss. To avoid an interruption of the video stream in such
cases we propose the Backward-Shifted Coding (BSC). Based
on Scalable Video Coding (SVC), BSC adds a time-shifted layer
of redundancy to the video stream such that future frames are
downloaded at any instant. This pre-fetched content maintains a
fluent video stream even under highly variant network conditions
and leads to high Quality of Experience (QoE). We characterize
this QoE gain by analyzing initial buffering time, re-buffering
time and content resolution using the Ballot theorem. The
probability generating functions of the playback interruption and
of the initial buffering latency are provided in closed form. We
further compute the quasi-stationary distribution of the video
quality, in order to compute the average quality, as well as
temporal variability in video quality. Employing these analytic
results to optimize QoE shows interesting trade-offs and video
streaming at outstanding fluency.

Index Terms—Scalable Video Coding, Quality of Experience,
Queuing Theory, Ballot theorem, QoE Optimization

I. INTRODUCTION

Recent studies show that video streaming already generated
45% of all mobile data traffic in 2014 [1]. By 2019, this
fraction will likely increase to 62%, while an 11-fold increase
is predicted for the overall mobile data traffic [1]. Despite the
recent advances in increasing wireless capacity, this massive
traffic load will drive mobile networks further into saturation
and will turn user satisfaction into an enormous challenge.
Consequently, more and more content providers and network
operators will focus on Quality of Experience (QoE) per unit
cost as primary metric for operational efficiency [2].

The dominating factors of QoE are widely studied [3, 4].
Recent works developed approaches for understanding user
engagements metrics [5, 7]. The direct relation between time
spent in rebuffering and user engagement was shown in [5].
In [7], the buffering ratio, rate of buffering, start up delay,
rendering quality and average bit rate were demonstrated to
show a dominating effect on QoE. Guidance to operators for
improving user engagement in real time using only network-
side measurements is provided in [8]. Authors of [9] found that
temporal quality variation is worse than keeping a constant
quality that is lower on the average.

In general, understanding the QoE of mobile video is a
complex task due to the many relationships between metrics

and end-user’s perceived video quality, metric-to-metric de-
pendencies and confounding factors [8]. At the same time,
highly dynamic load and channel states lead to fluctuating
capacity not only in mobile networks.

To efficiently trade-off fluency and visual quality, more
and more content providers deploy HTTP Adaptive Streaming
(HAS) solutions, which are standardized as MPEG Dynamic
Adaptive Streaming over HTTP (DASH) [10]. With DASH,
each video file is divided into multiple small segments and
each segment is encoded into multiple quality levels. Based on
the available capacity, the client adaptively chooses the quality
level of the segment such that visual quality is maximized at
a low risk for an empty playback buffer.

The video segments can be created by encoding video
content with various compression algorithms, where those fol-
lowing H.264/AVC (Advanced Video Coding) and H.264/SVC
(Scalable video coding) [12, 13] are widely employed. Al-
though each AVC encoding run generates only segments of
a single bitrate, segments for various bitrates can be created
in multiple runs and chosen adaptively with HAS. This leads
to a multiple bitrate video stream even with a non-scalable
technique as AVC. On the other hand, SVC directly supports
multiple bitrates within a single segment by multi-layer cod-
ing. With this technique, the video stream is encoded in one
base layer and one or more enhancement layers. The base
layer is always requested and, at sufficient capacity, one or
more enhancement layers are additionally requested.

A. Related Literature

One benefit of HAS video streaming is that HTTP traffic can
easily penetrate firewalls and profit from Web-infrastructure
such as proxies and Content Delivery Networks (CDNs). The
drawback, however, is that the underlying TCP protocol may
introduce substantial delays to cope with packet errors and
contention. For the video, this means that pixels errors and
frame drops can essentially be ignored while resolution, initial
buffering latency, starvation duration, and rate of buffering
become the dominating factors for QoE. Such latencies are
the result of an empty playback buffer as a consequence of
choosing a higher quality than the supported bitrate [15]. To
avoid such erroneous adaptation, current HAS policies are
based on the measured segment fetch time that allows an
instantaneous adaptation [17]. Authors in [16] developed a
rate adaptive method to enhance DASH performance overISBN 978-3-901882-83-8 c� 2016 IFIP

494ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

multiple content distribution servers. A Fuzzy-based controller
has been proposed to dynamically adapt the video bitrate based
on both the estimated throughput and the size of the playback
buffer [20]. Other approaches have been explored by jointly
considering the characteristics of the media content and the
available wireless resources in the operator network [18, 19].

This paper proposes a complementary solution to DASH,
named Backward-Shifted Coding (BSC). This solution makes
HAS more robust to rapid fluctuations of the network capacity
and provides more flexibility in increasing the quality of video
without playback interruption. Furthermore, we develop an
exact approach to obtain the distributions of the number of
the playback interruptions and of the initial buffering latency.
This analysis is closed to that of M/M/1 queue model in
[22] and allows us to obtain an explicit formulation for the
QoE metrics. While the bounds on the playback interruption
probability were obtained in [21] for an M/D/1 queue, our
paper provides a new analysis for BSC which also obtains the
average quality and temporal variability in video quality by
using the quasi-stationary regime.

B. Main Contributions

This paper provides important insight in optimization
of HTTP adaptive video streaming and proposes a new
Backward-Shifted Coding (BSC) scheme. The main idea of
BSC is to add a layer of time-shifted redundancy to the video
stream such that future frames are downloaded at any instant.
In case of a sudden capacity drop, these pre-fetched frames
can be played back and maintain a smooth video stream at
sufficient quality. BSC can be implemented using the standard
codecs and allows us to analytically obtain the key QoE factors
by using the Ballot theorem. Using these factors as inputs we
finally propose a QoE optimization function.

We can summarize the main contributions of this paper as
follows:

1. We develop a novel coding scheme to improve the user
QoE in HTTP adaptive streaming.

2. We present explicit form expressions for the QoE metrics.
3. We propose an optimization scheme that take into account

not only the waiting time, but also the mean video quality.
4. We show that our scheme can render a better QoE than

existing bitrate adaptation algorithms used in DASH.
5. We show that our scheme can greatly reduce the proba-

bility of video playback interruption using several frames
arrivals processes.

C. Paper Organization

The remainder of this paper is structured as follows: Section
II describes the system model. Section III presents the analyt-
ical model for computing the QoE metrics using the Ballot
theorem. Section IV presents the optimization issue for the
QoE metrics while Section V verifies the theoretical results
and shows some numerical examples. Section VI concludes
the paper.

seq=1
720p

BL(seq=1)
360p

seq=2
720p

seq=Ø-1
720p

BL(seq=2)
360p

BL(seq=Ø-1)
360p

BL(seq=Ø+1)
360p

BL(seq=Ø)
360p

EL(seq=Ø)
720p

EL(seq=Ø+1)
720p

seq=1
720p

BL(seq=Ø)
360p

seq=2
720p

BL(seq=Ø+1)
360p

seq=Ø-1
720p

BL(seq=2Ø-2)
360p

BL(seq=2Ø-1)
360p

EL(seq=Ø)
720p

BL(seq=2Ø)
360p

EL(seq=Ø+1)
720p

BL(seq=N)
360p

EL(seq=N-Ø+1)
720p

EL(seq=N)
720p

BL(seq=N)
360p

Frames encoding on the server side

Frames transmission through the network

BL(seq=2Ø+1)
360p

EL(seq=Ø+2)
720p

EL(seq=N-Ø+2)
720p

EL(seq=N-1)
720p

EL(seq=N)
720p

EL(seq=N-Ø+3)
720p

EL(seq=N-2)
720p

Fig. 1: Using SVC in Backward-Shifted Coding

II. SYSTEM DESIGN

In this section we describe how our scheme Backward-
Shifted Coding (BSC) can be used with any video codec that
follows the H.264/SVC standard [13]. Then we describe the
integration into HAS based on the MPEG-DASH standard
[10].

A. Mapping from BSC Scheme to Coding Scheme

BSC is entirely client driven and it is independent of the
video compression standard. The main idea of this scheme is to
shift the base layer frames (low quality) and the enhancement
layer frames (optimal quality), so that, when an interruption
of playback buffer occurs, the base layer frames can still be
played. To each frame n, we add its base layer in some
subsequent frame n � � + 1. If the starvation happened at
frame n, the playback retrieves the base layer frame from
frame n��+1. In particular, we exploit temporal redundancy
between subsequent frames in order to avoid the interruption
of the playback buffer. Our scheme is inspired from Forward
Error Correction (FEC) where the encoder adds redundancy
to a message. However, using the SVC codec, the BSC
scheme does not generate any overhead or redundant frames
compared to the FEC scheme. Indeed, with an SVC codec,
the video bitstream contains a base layer and number of
enhancement layers. The enhancement layers are added to the
base layer to further improve the quality of video by increasing
video frame-rate, temporal and quality scalability and spatial
resolution. In our scheme, base layer and enhancements layers
are temporally shifted as shown in Figure 1. We assume � to be
the offset between the basic layer frame and its enhancement
layers. Frame n with 1 n � � 1 contains two blocks:
complete block n and the base layer of block n+��1. Frame
n with n > ��1 contains two blocks: the enhancement layers
of block n and the base layer of block n+ �� 1. At the user
side, incoming bits are reassembled into video frames by the
decoder. Starvation under BSC can happen at block n if the
base layer block n is missing and the quality switching occurs
when the enhancement layer is missing and the player finds
only the base layer block n.

B. Mapping from BSC Scheme to DASH

In DASH systems, each video consists of multiple small
segments at the media server and each segment is encoded

495ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

at multiple discrete bitrates. Hence, the BSC scheme can be
used at client side with DASH. In fact, when using the BSC
scheme with DASH, the video player decides the most suitable
quality level of the base layer and the number of enhancement
layers. For example, given three video resolutions 720p, 480p
and 360p, the video player can decide the most suitable
configuration between the base layer and enhancement layer
such as 360p (BL) and 480p (1 EL) or 360p (BL) and 720p (2
ELs). This gives more flexibility to the video player to detect
the highest quality level the current network conditions can
support.

III. MATHEMATICAL PERFORMANCE EVALUATION

In order to evaluate the efficiency of BSC using the SVC
codec, in this section, we develop a novel performance evalu-
ation for QoE based on the Ballot theorem [11]. This analysis
captures QoE factors such as fraction of time spent rebuffering,
content resolution and initial buffering latency. The analysis
of starvation is closely related to analyzing the busy period
in transient queues but differs in two aspects: First, our work
aims to find the probability generating function of starvation
events and not the queue size. Second, we do not assume a
stationary arrival process.

A. Starvation Analysis

In this section, we call optimal frame the enhancement
layers. The non-optimal frame corresponds to the base layer.
We assume N to be the media file size. When the streaming
packets traverse the network, their arrivals to the media player
are not deterministic due to the dynamic of the available
bandwidth. The packets are reassembled by the decoder to
render the video frames. We assume a Poisson distribution
to describe the frames arrivals. After the streaming frames are
received, they are first stored in the playout buffer. The interval
between the service of two frames is assumed to be expo-
nentially distributed so that we can model the receiver buffer
as an M/M/1 queue. The exponential distributed assumption
is not the most realistic way to describe frame arrivals, but
it reveals the essential features of the system, and it is the
first step for more general arrival processes. In Section V
we evaluate the performance of the Backward-Shifted Coding
system by simulation, using different types of packet arrivals
process such as the logistic process and the on-off process. The
logistic process fits the video streaming traffic on the Long
Term Evolution (LTE) networks according to [14]

The maximum buffer size is assumed to be large enough to
exclude buffer overflows. � is the offset between the optimal
frame and its corresponding non-optimal frame (Fig. 2). A
starvation happens when the playout buffer is empty.
We denote by � the Poisson arrival rate of the frames, and
by µ the Poisson service rate. We define ⇢ = �/µ to be the
traffic load.
In a non-empty M/M/1 queue with everlasting arrivals, the
rate at which either an arrival or a departure occurs is given
by �+µ. This event corresponds to an arrival with probability

p, or is otherwise to an end of service with probability q, where

p =
�

�+ µ

=
⇢

1 + ⇢

; q =
µ

�+ µ

=
1

1 + ⇢

The buffer is initially empty. We let Tx be the initial buffering
delay, in which x frames are accumulated in the buffer.

1) Probability of Starvation: We present a frame level
model to investigate the starvation probability with the BSC.
Our analysis of the probability of starvation is built on the
Ballot theorem1.

Since we set the value of � at the beginning of the video
session, the starvation can happen before the arrival of frame
� if � > x. So we have to investigate the probability
of starvation by distinguishing the two cases: � x and
� > x. Let P<

s (N,�, x) and P

>
s (N,�, x) denote, respectively,

the probability of starvation for � x and � > x. For
� x, the media player starts to work when the number of
optimal frames in the buffer reaches x optimal frames which
corresponds to x + � � 1 non-optimal frames stored in the
buffer. Thus P

<
s (N,�, x) is given by [22],

P

<
s (N,�, x) =

N�1X

k=x+��1

x+ �� 1

2k � x� �+ 1

✓
2k � x� �+ 1

k � x� �+ 1

◆
·

p

k�x��+1
q

k
. (1)

Let P k
x,� and P

k
x denote, respectively, the probability that the

starvation happens exactly after the departure of frame k using
BSC and without BSC. These probabilities are given by

P

k
x,� =

x+ �� 1

2k � x� �+ 1

✓
2k � x� �+ 1

k � x� �+ 1

◆
· pk�x��+1

q

k
,

P

k
x =

x

2k � x

✓
2k � x

k � x

◆
· pk�x · qk. (2)

Theorem 1. For the offset � > x, the probability of starvation
is given by:

P

>
s (N,�, x) = Ps1 + (1 � Ps1) · Ps2 (3)

where

Ps1 =
��2X

k=x

x

2k � x

✓
2k � x

k � x

◆
· pk�x · qk, (4)

and

Ps2 =
N�1X

k=2��2

x+ �� 1

2k � x� �+ 1

✓
2k � x� �+ 1

k � x� �+ 1

◆
·

p

k�x��+1
q

k
. (5)

Proof. For the case � > x, the starvation could happen before
the arrival of frame �. We define E<� and E>� to be the event
that the starvation happens for the first time before � and after

1Ballot theorem: In a ballot, candidate A scores NA votes and candidate
B scores NB votes, where NA > NB . Assume that while counting, all the
ordering (i.e. all sequences of A’s and B’s) are equally alike, the probability
that throughout the counting, A is always ahead in the count of votes is
N

A

�N
B

N
A

+N
B

.

496ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

1

BL(Ø)

2 x

BL(Ø+1) BL(X+Ø-1)

Ø-1 EL(Ø)

BL(2Ø-2) BL(2Ø-1)

EL(N-Ø+1) EL(N)

BL(N)

Fig. 2: The BSC Coding for the offset � > x. The starvation can happen before the arrival of optimal frame � since x < �.

�, respectively. The event of starvation is E<�[(E>�\Ē<�);
where Ē<� is the complementary of E<� and is the event that
no starvation happens before the arrival of frame �. We have
P (E<� [(E>� \ Ē<�)) = P (E<�) + P (E>� \ Ē<�). For
the event E<�, since we cannot use the non-optimal frames
of the BSC coding because the starvation happens before �,
the probability of starvation is Ps1. We exclude in this sum
� � 1 since the starvation cannot happen after the service of
frame � � 1 because the frame � (non-optimal) is already
stored in the buffer. Now we compute the probability of the
second term P (E>� \ Ē<�). We have P (E>� \ Ē<�) =
P (E>�/Ē<�)P (Ē<�). Since Ē<� is the complementary of
E<�, P (Ē<�) is 1 � Ps1. E>�/Ē<� is the event that a
starvation happens for the first time after the arrival of frame
�� 1, given that the starvation does not happen before. Then,
assuming that the starvation does not happen before � � 1,
frame x+��1 will be played after ��1 as shown in Fig. 3.
At this instant, the non-optimal frame 2�� 2 is already in the
buffer, so the starvation cannot happen before the service of
2�� 2. We use the Ballot theorem to compute the probability
of the event E>�/Ē<� based on the non-optimal frames. The
most important trick is the origin of the Ballot theorem, i.e.,
where to start the process of counting the frames arrivals and
departures. The inappropriate method is to start the counting
process just after the arrival of the frame ��1. At that moment,
we do not know the number of departures that occur before. So
we start the counting process when we have x optimal frames
in the buffer, that correspond to the last non-optimal frame
x+��1. We define Ak to be an event that the buffer becomes
empty for the first time when the service of frame k is finished
(Fig. 3). All the events Ak, k = 1, ...N , are mutually exclusive.
The event of starvation is the union [N�1

k=2��2Ak. We exclude
in this union Ak for k 2 [1, 2� � 3] because we cannot have
a starvation before the arrival of optimal frame � � 1. That
corresponds to the non-optimal frame 2� � 2. This union of
events excludes EN because the empty buffer after the service

x Ø-1 Nk

x+Ø-1

2Ø-2

Frame Ø-1 and non
optimal frame 2Ø-2

are sent together

Since we do not have
starvation before Ø-1, x+Ø-1

will be serve

A starvation happens
after the service of

frame k

Fig. 3: If the starvation does not happen before �� 1, then there will be no
starvation untill the service of frame 2�� 2.

of N packets is not a starvation. When the buffer is empty at
the end of the service of the k

th packet, the number of arrivals
is k�x��+1 after the pre-fetching process. The probability of
having k�x��+1 arrivals and k departures is computed from
the binomial distribution

�2k�x��+1
k�x��+1

�
· pk�x��+1 · qk. For the

necessary and sufficient condition of the event Ak, we apply
the Ballot theorem. If we count the number of arrivals and
departures when the playback starts, the number of departures
is always greater than the number of arrivals. Otherwise, the
empty buffer already happens before the k

th frame is served.
According to the Ballot theorem, the probability of event Ak is
computed by x+��1

2k�x��+1

�2k�x��+1
k�x��+1

�
·pk�x��+1·qk. Therefore,

the probability of the event E>�/Ē<�, is the probability of
the union [N�1

k=x+��1Ak, given by (5).

2) Probability Generating Function of Starvation Events:
In the BSC scheme, the starvation may happen for more
than once during the file transfer. We are interested in the
probability distribution of starvation, given the finite file size
N . When � x, we cannot have a starvation before the
service of � � 1. In this case, the probability generating
function is similar to that of [22] in replacing x by x+�� 1.
Now, we show how the probability generating function of
starvation events can be derived using the Ballot theorem for
the case � > x. We define a path as a complete sequence of
frame arrivals and departures [22]. The probability of a path
depends on the number of starvations. We consider a path
with j starvations. To carry out the analysis, we start from the
event that the first starvation takes place. We denote by kl the
l

th departure of a frame that sees an empty queue. We notice
that the path can be decomposed into the following mutually
exclusive events:

. Event F(k1): the buffer becoming empty for the first time
in the entire path.

. Event Ml(kl, kl+1): the empty buffer after the service of
frame kl+1 given that the previous empty buffer happens
at the departure of frame kl.

. Event Lj(kj): the last empty buffer observed after the
departure of the last frame kj .

We let PF(k1), PM
l

(k
l

,k
l+1) and PL

j

(k
j

) be the probabilities
of events F(k1), Ml(kl, kl+1) and Lj(kj), respectively, and
will analyze the probabilities of these events step by step. We
first compute the probability of having only one starvation.
This probability concerns the two events: F(k1) and L1(k1),

x k1 Ø-1 NØ-x

x

Fig. 4: A starvation happens at k1 < �� x.

497ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

x

x

N

N

k1

k1

Ø-1

Ø-1

Ø-x

Ø-x

x

x

Fig. 5: A starvation happens at k1 > �� x.

i.e., the event that the buffer becomes empty for the first time
after the service of the frame k1 and the event that we do not
observe an empty buffer after k1 until the end of the video
file (Fig. 4 and 5). The starvation can happen at k1 before we
use the BSC redundant frames, i.e., before the arrival of frame
� � 1. In this case, the probability of starvation is given by
P

k1
x of (2). If the starvation happens after the arrival of frame

� � 1, then it necessarily happens after the service of frame
2�� 3 since we cannot have a starvation between �� 2 and
2��3. Then the probability of starvation is given by Theorem
1. So the probability distribution of event F(k1) is expressed
as

PF(k1) :=

8
>>>><

>>>>:

0, if k1 < x or k1 = N ;
P

k1
x if k1 2 [x, ...,�� 2];

0, if k1 2 [�� 1, ..., 2�� 3];
(1� Ps1)P

k1
x,�,

if k1 2 [2�� 2, ..., N � 1].

(6)

P

k1
x , P k1

x,� and Ps1 are given by (2) and (4). Given that the
only starvation happens at k1, what is the probability that no
starvation happens until the end of the video? That is the
probability of the event L1(k1). We take the complement of
starvation probability as the probability of no starvation for
the file size N � k1. We denote x� = x + � � 1 to simplify
the expressions. We distinguish two cases (Fig. 4 and 5). The
first case is that the starvation happens at k1, and we still can
have a starvation before the arrival of frame � � 1 (Fig. 4).
Then, we use the probability of starvation of the theorem 1,
P

>
s (N � k1,�, x) to compute the probability of having no

starvation until the end of the video file. For the remaining
case (Fig. 5), a starvation cannot happen before we use the
non-optimal frames. Then, we use the probability of starvation,
P

<
s (N�k1,�, x). Finally, the probability distribution of event

L1(k1) is expressed by

PL1(k1) =

8
>>>>>><

>>>>>>:

0, if k1 < x or k1 = N ;
1� P

>
s (N � k1,�, x), if x k1 < �� x;

1� P

<
s (N � k1,�, x), if

�� x k1 < �� 1 or 2�� 2 k1 < N � x�;
0, if �� 1 k1 < 2�� 3;
1, if N � x� k1 < N.

(7)
We denote by Ps(j) the probability of having j starvations.
For the case with one starvation, Ps(1) is solved by

Ps(1) =
NX

i=1

PF(i)PL1(i) = PF · PT
L1

(8)

where T denotes the transpose. Here, PF is the row vector of
PF(i), and PL1 is the row vector of PL1(i), for i = 1, 2, ..., N .

x

Ø-1 Nkj2Ø-21

x x

x, e times
if e<j then kj will be
greater than 2Ø-2

e starvations take
place consecutively

if e>=j then kj <=Ø-1

Fig. 6: The lower bound of kj in case we have j starvations.

Now we compute the probability of having more than one star-
vation. A path with j starvations is composed of a succession
of events

F(k1),M1(k1, k2), ...,Mj�1(kj�1, kj),Lj(kj).

We have to solve the probability distribution of the events
Lj(kj) and Ml(kl, kl+1). Suppose that there are j starvations
after the service of frame kj . Then, only the lower bound
of kj changes in the event Lj(kj) from L1(k1). This lower
bound corresponds to the extreme case where the j starvations
take place consecutively. Let e be the number of starvations
that we can have before frame �� 1 in the extreme case. So
e = b��2

x c. We distinguish two cases where e � j and e < j

(Fig. 6). If e � j, then all the j starvations will happen before
the service of frame � � 1 and the lower bound of kj is jx.
Then we find the expression of Lj(kj) in replacing the lower
bound x by jx in the expression of L1(k1). If e < j, then the
remaining starvations will happen after the service of frame
2� � 2 since we do not have starvation between � � 1 and
2�� 2. Hence, the probability distribution of event Lj(kj) is

PL
j

(k
j

) =

8
>>>><

>>>>:

0,
if kj < 2�� 2 + (j � e)x� or kj = N ;

1� P

<
s (N � kj ,�, x),

if 2�� 2 + (j � e)x� kj < N � x�;
1, if N � x� kj < N.

(9)
We now compute the probability of the event Ml(kl, kl+1).
After frame kl is served, the l

th starvation is observed. We
compare kl to e to obtain the position of kl. If e < l, then
kl should not be less than 2� � 2 + (l � e)(x + � � 1)
in order to have l starvations. Also, kl+1 must satisfy
kl + (x + � � 1) kl+1 < N � (j � l � 1)(x + � � 1)
because of the pre-fetching after kl and the fact that we have
j starvations in total. In this case, PM

l

(k
l

,k
l+1) is expressed as

x+��1
2k

l+1�2k
l

�x��+1

�2k
l+1�2k

l

�x��+1
k
l+1�k

l

�x��+1

�
p

k
l+1�k

l

�x��+1
q

k
l+1�k

l .
If e � l, then we have lx kl � � 1. For
kl + x kl+1 < � � 1, PM

l

(k
l

,k
l+1) is expressed as

x
2k

l+1�2k
l

�x

�2k
l+1�2k

l

�x
k
l+1�k

l

�x

�
p

k
l+1�k

l

�x
q

k
l+1�k

l . Since the
(l+1)th starvation cannot happen between �� 1 and 2�� 2,
for 2��2 kl+1 < N�(j� l�1)(x+��1), the probability
of the event Ml(kl, kl+1) is expressed as the probability for
the case e < l. We denote by PM

l

the matrix of PM
l

(k
l

,k
l+1)

for kl, kl+1 2 [1, N]. The probability of having j(j � 2)
starvations is given by

498ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

-Ø+1 -1-Ø 0 x

λ λ λ λ λ

µ µ µ µ µ µ

1

λ λ

µ µ

The restart state of the processµ

Fig. 7: Markov model of the switching mechanism, denoting the difference
between the number of optimal and non-optimal frames in the playout buffer.

Ps(j) =
NX

k1=1

NX

k2=1

, . . . ,

NX

k
j�1=1

NX

k
j

=1

PF(k1) · PM1(k1,k2), . . . ,

PM
j�1(kj�1,kj

) · PL
j

(k
j

) = PF ·
✓ j�1Y

l=1

PM
l

◆
· PT

L
j

. (10)

Then, we can write the probability generating function (p.g.f)
G(z) by

G(z) = E(zj) =
JX

j=0

Ps(j) · zj . (11)

B. Analysis of the Video Quality

In this section, we analyze the average video quality of
the BSC system. For this purpose we model the system as a
continuous-time Markov birth-death process with an absorbing
state which corresponds to the starvation event. Then, we
compute the amount of time spent in each bitrate level. We call
low bitrate, the bitrate of the base layer frames (or non-optimal
frames) and optimal bitrate, the bitrate of the combined base
and enhancement layers frames. The switching process is
shown in Fig. 7.
Let A and D be the sequence number of the last optimal frame
in the buffer and the sequence number of the last frame that
was displayed at the screen respectively. The state n of the
Markov process is A �D. If D A, the state n is positive
and there is exactly A � D available optimal frames in the
buffer. Otherwise, if D > A, the state n is negative. In that
case, there is no more available optimal frames and the number
of available non optimal frames is A�D+�. For example if
the process is in the state ��+ 1 (i.e., A�D = ��+ 1), it
remains exactly 1 non optimal frame in the buffer as shown
in Fig. 7.
The infinitesimal generator Q of the process is a tridiagonal

matrix where elements of the diagonal, upon the diagonal and
under the diagonal are �(�+µ), � and µ respectively, except
the first element of the diagonal and upon the diagonal which
is 0 (due to the absorbing state).

First, we compute the time to absorption starting from initial
state k > ��. To do this, we substitute transition to the
absorbing state �� by transition to the initial state k, whenever
the resulting Markov chain is ergodic and admits a stationary
regime q = (q��+1, q��+2, ..). q is given by solving the

balance equations of the resulting Markov chain8
>><

>>:

µq��+2 = (�+ µ)q��+1

�qj�1 + µqj+1 = (�+ µ)qj , j 6= x+ 1
�qx�1 + µ(qx+1 + q��+1) = (�+ µ)qxP1

j=��+1 qj = 1
(12)

qj = q��+1
1� ⇢

j+�

1� ⇢

, j = ��+ 1,��+ 2, .., x

qj = q��+1
1� ⇢

x+�

1� ⇢

⇢

j�x
, j = x+ 1, x+ 2, ...

Thus, we have8
>><

>>:

q��+1 = 1�⇢
�+x

qj = (1�⇢j+�)
(�+x) , j = ��+ 1, .., x

qj = (1�⇢x+�)
((�+x) ⇢

j�x
, j = x+ 1, x+ 2, ...

(13)

Let E[Si] be the expected time spent in state i before the
process reaches the absorbing state. From [6], we have

E[Si] = qiE[⌧x]

where E[⌧
x

] is the time to absorption into state �� starting
from the initial state x. According to [27], the mean time to
absorption into state �� from the initial state x is given by

E[⌧x] =
x+ �

µ� �

(14)

Thus the expected time spent in state i before the process
reaches the absorbing state is given by

E[Si] = qi
x+ �

µ� �

(15)

where qi is given by (13). Thus the time spent in the low
bitrate and in the optimal bitrate are given, respectively, by

TL =
�1X

i=��+1

E[Si] and TH =
1X

i=0

E[Si] (16)

Let bL and bH be the bitrate of the low coding (base layer)
and the bitrate of the optimal coding (base and enhancement
layers) respectively. Hence, the average bitrate is

bavg =
TLbL + bHTH

TL + TH
(17)

Let us now compute the distribution of period of time
during which the video playback quality is optimal, named
BH . This period corresponds to the duration of time that the
process starting from state 1, stays continuously away from
state 0. Using the analysis from the busy period in M/M/1,
the expected and variance of BH is given, respectively, by
[27]

E[BH] =
1

µ� �

, and V (BH) =
(1 + ⇢)

µ

2(1� ⇢)3

The analysis of the variation of the quality is omitted in this
paper due to lack of space.

499ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0 50 100 150 200
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

File size N (pkts)

P
r
o
b
.

o
f

S
t
a
r
v
a
t
i
o
n

x=40, ρ=0.90

The offset
to be set in
this region

Fig. 8: The value of the offset �.

C. The Initial Buffering Delay and Rebuffering Delay
The expected initial buffering delay is x

� and the expected
rebuffering delay is x+��1

� . Note that the BSC scheme in-
creases the start-up delay compared to an equivalent single
bitrate system because of the shift �. Indeed, we send the
enhancement layer � after the complete frame � � 1. But
in practice, this delay does not exceed a couple of seconds,
then it does not have a huge impact on the overall quality of
experience. However, � impacts the rebuffering delay, i.e., the
waiting time after a starvation event. The player starts when
we accumulate x optimal frames in the buffer. So a high value
of � increases the amount of rebuffering time.

IV. EVALUATION OF THE QOE
In this section, we show how the BSC can be used to

improve the metrics of the quality of experience. The param-
eter � affects the initial buffering delay and the starvation.
We first confirm this with the model and show how one can
choose � to improve the QoE metrics. Then, we propose an
evaluation function to improve the user experience during the
video session.

A. Choosing the Offset �
To set the value of the offset �, we should know the

probability of starvation of a simple system without BSC
according to the file size N . This probability is given in [22]
by

Pstarvation =
N�1X

k=x

x

2k � x

✓
2k � x

k � x

◆
· pk�x · qk, (18)

It also corresponds to the probability of playing the non
optimal frames for the first time in BSC system since a
starvation in a system without BSC is equivalent to a switching
in BSC system. The surrounded region in figure 8 corresonds
to the set of values of N where the risk of the playback
interruption is small (� can be set up to 80 in the figure
without risk of starvation). Then, we can choose the offset � to
improve the QoE metrics: the rebuffering time, the starvation
and the average bitrate. We have less risk of starvation for
some values of �. Since after each starvation event, we wait
for x+��1 frames, small values of � decreases the rebuffering
time. Moreover, (16) shows that the time spent in low bitrate
level increases with �. Then, � must satisfy these QoE metrics
requirements too. Parameter � is calculated at the beginning

200 250 300 350 400 450 500 550 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

File size N (pkts)

p
r
o
b
.

o
f

S
t
a
r
v
a
t
i
o
n

Ps BSC Coding x=40, φ=50

ρ = 1 − model
ρ = 1 − sim
ρ = 0.66 − model
ρ = 0.66 − sim
ρ = 0.50 − model
ρ = 0.50 − sim

Fig. 9: The probability of starvation
vs the file size N

150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Prob. of 0, at least 1 and 2 starv., x=40, ρ=0.66 φ=50

File size N (pkts)

P
r
o
b
.

o
f

s
t
a
r
v
a
t
i
o
n

model no starv.
sim no starv.
model at least 1 starv.
sim at least 1 starv.
model at least 2 starv.
sim at least 2 starv.

Fig. 10: The probability of no starva-
tion, or having at least one and two
starvations vs the file size N

of the video session based on the networks conditions and the
user profile but its value can be updated after each starvation
if the networks conditions changed.

B. Evaluation Scheme for the Global QoE

To use our analysis for optimizing the QoE, we define
an objective QoE cost function C(x,N) for a user, which
includes the expected initial buffering latency, the number of
playback interruption during the video session and the average
video quality. These metrics are weighted by three coefficients
�1, �2 and �3, which allow us to balance the tradeoff among
the QoE metrics according to user preferences.

The weights �1 and �2 are preceded by a positive sign be-
cause the smaller the initial buffering latency and the number
of starvation are, the better the QoE is. Implicit tradeoff exists
between the two metrics and the initial buffering time is pre-
ferred to the starvation by around 90% of users [24]. Although
users have a very low tolerance for playback interruptions
[23] they also only accept a start-up delay between 5 and 15
seconds, depending on the duration of the overall video [24].

The weight �3 is preceded by a negative sign because the
higher the average quality, the better the QoE. According to
this reasoning, we propose the cost function

C(x,N) = �1 · E[Tx] + �2.Ps(j)� �3 ·
rX

i=1

wiTi (19)

where E[Tx] is the expected initial buffering delay, Ps(j) is
the number of starvations, r is the number of available bitrates,
wi is a weight associated to each bitrate and Tr is the fraction
of time spent in each bitrate level. We use this function to
evaluate the BSC scheme performance on the QoE metrics,
i.e., how our scheme can evaluate the objective QoE cost
C(x,N). The examples are shown in section V-B.

V. SIMULATION AND NUMERICAL EXAMPLES

A. Simulation and validation

The mathematical models of QoE metrics are computed
and compared with event-driven simulations using MATLAB.
A timer generates random variable stamps that record the
frames arrival and departure. Each frame contains two blocks
(original frame and the copy of another frame). We monitor
the playout buffer length based on the frames arrival rate
and the playback rate. A switching occurs when there is no
more frames of high bitrate. In this case, the player display
only the frames with the low bitrate until high bitrate frames

500ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

File size N (pkts)

Pl
ay

ba
ck

 in
te

rr
up

tio
n

pr
ob

ab
ili

ty

Playback interruption probability for 25fps rate, x=40, φ=50

Poisson λ=21
Poisson BSC λ=21
Logistic µ=0.04, σ=0.02
Logistic BSC µ=0.04, σ=0.02
On−Off λ=27, α=0.5, β=2
On−Off BSC λ=27, α=0.5, β=2

Fig. 11: The playback interruption probability using several packet arrivals
processes

are available. A starvation happens when the buffer is empty.
We take into account the size of the video file. We vary the
parameters frame arrival rate �, service rate µ, the file size
N , the pre-fetching threshold x, the offset �. We run each
set of simulations for 4000 times and we show here only a
small set of figures obtained, due to page number constraints.
Our model exhibits excellent accuracy with the simulations.
Figure 9 shows the probability of starvation given the file size
N, for different settings of the traffic intensity ⇢. The start-up
threshold x = 40 while the offset � = 50. The probability of
starvation decreases when the network throughput increases.
The streaming users only suffer from the playback interruption
when ⇢ < 1. We further evaluate the probabilities of having no
starvation, at least one and two starvations, given the file size
N for ⇢ = 0.66. Figure 10 shows that our analytical model
predicts the starvation probabilities accurately. The probability
of no starvation decreases from 1 to 0, while the probability
of having at least one and two starvations increases. The lag
between the two curves gives an idea about the mean playback
time, i.e., the mean time between two consecutive starvations.
Then, based on the file size, the initial buffering latency, the
offset and the traffic intensity, the model predicts the number
of starvation that the video session could have.

Before studying the QoE optimization problem, we evaluate
the BSC scheme under different types of arrival processes: the
logistic distribution and the ON/OFF arrival process. In Fig.
11 we show that the BSC scheme reduces the playback inter-
ruption. Furthermore, we obtain an important improvement of
the probability of playback interruption where the arrival of
frames follows the logistic process.

B. QoE Optimization

We consider five video resolutions (1080p, 720p, 480p,
360p and 240p) with the corresponding bitrates (4500Kbps,
2500Kbps, 1000Kbps, 750Kbps and 400Kbps). The network
throughput is 2200Kbps or 3000Kbps. Then we compute the
corresponding traffic intensities ⇢. We also compute the bitrate
in the BSC scheme using H.264/SVC codec. We compare the
QoE metrics between a classical DASH based SVC and the
BSC system. Our BSC system is based on the SVC codec,
then, we compare it to DASH/SVC since we know that SVC
adds 10% encoding overhead compared with the same quality

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500
−2.5

−2

−1.5

−1

−0.5

0

0.5

File size N (pkts)

C
o
s
t

c
(
x
,

N
)

The QoE Cost, x=40, φ=50

480p without BSC
720p+480p

Fig. 12: The QoE cost function for
480p and 720p+480p, �1 = 0.1,
�2 = 1, �3 = 0.01

250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

File size N (pkts)

p
r
o
b
.

o
f

S
t
a
r
v
a
t
i
o
n

Probability of starvation x=40, φ=80

720p without BSC
720p+480p

Fig. 13: Reduce the probability of
starvation with BSC scheme

AVC. This comparison is done on a single video segment.
The bitrate adaptation in the BSC system is the scope of our
ongoing research. We will show the two appropriate bitrates
to select after the downloading of each segment, and compare
the video quality to the classical DASH system.
Let assume that the network throughput is 2200Kbps. In
DASH, the adaptation engine will select the bitrate that is
just under the network throughput, i.e., 480p resolution. What
happens if we select 480p+360p, 720p+360p or 720p+480p
in the BSC scheme?
When we select 480p+360p in the BSC, the cost of DASH is
better than BSC although there is no starvation in both cases.
Indeed, the DASH system just benefits from the initial buffer-
ing latency. However, selecting the resolutions 720p+360p or
720p+480p allows to minimize the QoE cost function (Fig.
12). There is only one starvation for a file size of 1500 frames
but with a better rendering quality. Hence, when the network
throughput changes to 3000Kbps, the BSC can use 1080p
video resolution while the simple DASH cannot.

VI. CONCLUSION AND DISCUSSION

In this paper, we proposed the novel Backward-Shifted
Coding (BSC) scheme to improve the performance of HTTP
adaptive streaming. Inspired from Forward Error Correction,
BSC adds time-shifted redundancy to the video stream that
provides smooth playback even if the main stream is inter-
rupted.

We describe an integration of BSC into SVC and its opera-
tion with HAS. We then provide an analytical characterization
of the dominating QoE factors initial buffering time, starvation
and average video bitrate. We compute the first two metrics
using the Ballot theorem and obtain explicit results for the
probability generation function of the starvation. The average
video bitrate metric is computed using the quasi-stationary
approach. Finally, we show by global optimization that BSC
can improve both the playback interruption and the average
bitrate in video streaming systems compared to standard
DASH on a single video segment.

We will explore the bitrate adaptation in the BSC system
in our future work.

ACKNOWLEDGMENT

This work has been carried out in the framework of IDEFIX
project, funded by the ANR under the contract number ANR-
13-INFR-0006.

501ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

REFERENCES

[1] Cisco Visual Networking Index: Global mobile data traffic
forecast update, 2014–2019, white paper, Cisco Systems,
February 2015.

[2] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I.
Stoica and H. Zhang, A Quest for an Internet Video
Quality-of-experience Metric, Proceedings of the 11th
ACM Workshop on Hot Topics in Networks, Redmond,
Washington, 2012.

[3] S. Thakolsri, S. Khan, E. Steinbach, and W. Kellerer,
QoE-Driven Cross-Layer Optimization for High Speed
Downlink Packet Access, Journal of Communications, vol.
4, no. 9, pp. 669680, Oct. 2009.

[4] P. Ameigeiras, J. J. Ramos-Munoz, J. Navarro-Ortiz, P.
Mogensen, and J. M. Lopez-Soler, QoE oriented cross-
layer design of a resource allocation algorithm in beyond
3G systems, Computer Communications, vol. 33, no. 5,
2010.

[5] A. Balachandran, V. Sekar, A. Akella, S. Seshan, I.
Stoica and H. Zhang, Developing a Predictive Model of
Quality of Experience for Internet Video, Sigcomm, Hong
Kong, 2013.

[6] R. J. Kryscio, C. Lefvre, ”On the extinction of the SIS
stochastic logistic epidemic, Journal Appl. Prob. 27, 685-
694, 1989.

[7] F. Dobrian, A. Awan, D. Joseph, A. Ganjam, J. Zhan, V.
Sekar, I. Stoica, and H. Zhang, Understanding the impact
of video quality on user engagement, in ACM SIGCOMM,
pp. 362373, 2011

[8] M. Z. Shafiq, J. Erman, L. Ji, A. X. Liu, Jeffrey Pang, Jia
Wang Understanding the Impact of Network Dynamics on
Mobile Video User Engagement SIGMETRICS14, June
1620, 2014, Austin, Texas, USA.

[9] C. Yim and A. C. Bovik, Evaluation of temporal variation
of video quality in packet loss networks, Signal Process-
ing: Image Communication, Jan. 2011.

[10] ISO/IEC, “Dynamic adaptive streaming over HTTP
(DASH)”, International Standard DIS 23009-1.2, 2012.

[11] FELLER, William. An Introduction to Probability The-
ory and Its Applications. Volume I. London-New York-
Sydney-Toronto : John Wiley & Sons, 1968.

[12] J. Ohm, G. Sullivan, H. Schwarz, T.K. Tan and T.
Wiegand, Comparison of the Coding Efficiency of Video
Coding Standards - Including High Efficiency Video Cod-
ing (HEVC), IEEE Transactions on Circuits and Systems
for Video Technology, vol. 22, no. 12, pp. 1669-1684,
2012.

[13] International Standards Organisation/International Elec-
trotechnical Commission (ISO/IEC), 14496-10:2012 In-
formation Technology - Coding of Audio-visual Objects
- Part 10: Advanced Video Coding, 2012.

[14] YE, Zakaria, JIMENEZ, Tania, et EL-AZOUZI, Rachid.

Video streaming analysis in Vienna LTE system level sim-
ulator. In : Proceedings of the 8th International Conference
on Simulation Tools and Techniques. ICST (Institute for
Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), 2015. p. 47-54.

[15] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and
M. Watson, ”A buffer-based approach to rate adaptation:
Evidence from a large video streaming service,” in Proc.
ACM Conference on Special Interest Group on Data
Communication (SIGCOMM), 2014.

[16] C. Zhou, C.-W. Lin, X. Zhang, and Z. Guo, A control-
theoretic approach to rate adaption for DASH over multi-
ple content distribution servers, IEEE Trans. Circuits Syst.
Video Technol., vol. 24, no. 4, Apr. 2014.

[17] C. Liu, I. Bouazizi, and M. Gabbouj, Rate adaptation for
adaptive HTTP streaming, in Proc. ACM Multimedia Syst.
2011.

[18] El Essaili, D. Schroeder, D. Staehle, M. Shehada,
W. Kellerer, E. Steinbach, Quality-of-Experience driven
Adaptive HTTP Media Delivery, IEEE ICC 2011, Bu-
dapest, Hungary, Juni 2013.

[19] C. Lottermann, A. Machado, D. Schroeder, Y. Peng,
E. Steinbach, Bit Rate Estimation for H.264/AVC Video
Encoding based on Temporal and Spatial Activities, IEEE
ICIP 2014, Paris, France, Oktober 2014.

[20] A. Sobhani, A. Yassine and S. Shirmohammadi, ”A
fuzzy-based rate adaptation controller for DASH”, in the
Proceeding NOSSDAV 15, 2015.

[21] Parandeh Gheibi et al, Avoiding Interruptions a QoE
Reliability Function for Streaming Media Applications,
IEEE J. Sel. Areas Commun., Vol.29, No.5, pp:1064-1074,
2011.

[22] XU, Yuedong, ALTMAN, Eitan, EL-AZOUZI, Rachid, et
al. Analysis of buffer starvation with application to objec-
tive qoe optimization of streaming services. Multimedia,
IEEE Transactions on, 2014, vol. 16, no 3, p. 813-827.

[23] T. Hoßfeld, R. Schatz, M. Seufert, M. Hirth, T.
Zinner and P. Tran-Gia, Quantification of YouTube QoE
via Crowdsourcing, MQoE 2011, Dana Point, CA, USA,
(December 2011).

[24] P. Balaouras and I. Stavrakakis, Multimedia Trans-
port Protocols for Wireless Networks, Emerging Wireless
Multimedia: Services and Technologies (2005), pp. 49-82,
2005.

[25] J.N. Darroch and E. Seneta, On Quasi-Stationary Dis-
tributions in Absorbing Continuous-Time Finite Markov
Chains, Journal of Applied Probability Vol. 4 No. 1,
pp:192-196 1967.

[26] I. NÅSELL, Extinction and quasi-stationarity in the
Verhulst logistic model: with derivations of mathematical
results, 2007.

[27] S. Karlin and H. M. Taylor, A first course in stochastic
processes, Academic Press, New York, 1975.

502ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Sacrificing Efficiency for Quality of Experience:
YouTube’s Redundant Traffic Behavior

Christian Sieber⇤, Poul Heegaard†, Tobias Hoßfeld‡, Wolfgang Kellerer⇤
⇤Chair of Communication Networks, Technical University of Munich, Germany

{c.sieber, wolfgang.kellerer}@tum.de
†Norwegian University of Science and Technology, Trondheim, Norway

{poul.heegaard}@item.ntnu.no
‡Universität Duisburg-Essen, Germany

{tobias.hossfeld}@uni-due.de

Abstract—Internet traffic reports show that YouTube is one
of the major sources of data traffic world-wide. Furthermore,
the data traffic shifts from mostly fixed landlines to cellular
data connections where bandwidth is sparse and expensive.
Previous studies revealed that YouTube uses a user-friendly
HTTP Adaptive Streaming (HAS) strategy which sacrifices band-
width efficiency to increase the average playback quality for
the user. That way, it happens that the same video segment
is transmitted in two or more quality levels, but only one can
be shown to the user. We denote this as redundant traffic and
this work is dedicated to understanding the influence factors
on the amount of redundant traffic. This paper presents the
results of a large-scale study with over 12,000 video views over
a bottleneck link shaped to various bandwidths.We first evaluate
the playback characteristics and show that YouTube’s HAS
algorithm linearly increases the average playback quality with the
available bandwidth while at the same time video buffering is sub-
linearly decreased. Furthermore, we identify video-dependent
bandwidths which optimize the playback time on a quality level.
Afterward, we show that this is achieved by discarding lower
layer segments and therefore paid with redundant traffic of up
to 40 %. We evaluate the overall efficiency of the system and show
that YouTube is able to improve the average quality level by up
to 0.7 quality levels by using this adaptation strategy. However,
a penalty of 0.5 quality levels is paid for it due to the discarded
data of the lower quality segments.

I. INTRODUCTION

Video streaming services in the Internet gain more and
more importance. The offered content and services for video
on-demand (VoD) including live streaming exhibit a strong
increase in popularity. By now, Internet traffic reports account
VoD for the largest single type of consumer traffic in the
Internet for landline and cellular access [1].

HTTP over TCP has become the de-facto standard for
delivery of the VoD content. The HTTP protocol is firewall-
friendly and easy to implement. Furthermore, large content
delivery networks (CDN) are in place to distribute HTTP
content globally and provide the content close to the users.
At the beginning, VoD over HTTP was implemented by
progressive download [2]. With progressive download, a HTTP
server provides a single file with the content in a specific
quality level. The player, e.g., the browser, starts to download
the file and at the same time, or after an initial buffering

phase, begins to play the video to the user. However, in case
of insufficient network bandwidth, the video buffer depletes
and the video stalls, which significantly decreases the Quality
of Experience (QoE) of the end user [3].

Progressive download does not allow to adapt to current
network conditions or to specific devices, e.g., phone or TV
screen. By now, progressive download is being replaced by
HTTP Adaptive Streaming (HAS). See [2] for a survey on
HAS. HAS encodes the content into different quality levels,
segments it into small chunks of a few seconds and makes it
available over HTTP. A manifest file describing the content,
e.g., video codec, number of quality levels and chunk location,
is placed alongside the segments on the HTTP server. At first
the client requests the manifest file and afterward downloads
the content segments in a quality level chosen by the client.
Dynamic Adaptive Streaming of HTTP (DASH) is an ISO
standard describing the structure of the manifest file and is
in use by some of the major content providers. However, the
quality level adaptation logic, which dictates how the client
should adapt the quality, is not part of the standard and is
left to be decided by the implementation of the streaming
client. Factors to consider for the adaptation are for example
the viewing device, the available download bandwidth and
the video bit-rates of the quality levels. As every client can
implement their own adaption algorithm, the QoE of the user
differs between content providers and streaming clients. The
QoE of adaptive streaming is an active research topic [2]. QoE
studies show that stalling must be avoided [3], [2] and that the
quality switching rate should be minimized [4]. The average
quality level is a major influence factor for the QoE in adaptive
streaming [4].

In this paper we take a closer look at one of the major
sources of video streaming traffic [5] in the Internet, YouTube.
In a first pilot study [6] we have shown that YouTube’s
adaptation algorithm replaces previously downloaded lower
quality segments. However, this introduces overhead, denoted
as redundant traffic, as the lower quality segments are dis-
carded. Hence, there is a trade-off between network efficiency
and average playback quality that also affects the Quality of
Experience of the user. Due to the limited scope of the study
(four videos in total, 150 views), no reliable conclusions couldISBN 978-3-901882-83-8 c� 2016 IFIP

503ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

be drawn with respect to possible influence factors.
In this paper, we tackle two important questions. First, when

does redundant traffic occur and how much redundant traffic
is transferred over the network? Second, what is the overall
efficiency of this approach, i.e., how much of the additional
traffic can actually be used to improve the average quality
level and how much has to be paid as penalty for replacing
lower layer segments? To answer this, over 12,000 video views
were recorded in our test-bed under different emulated network
bottlenecks. We first describe the playback characteristics
as observed for the different network conditions from the
end user’s point of view. Afterward we relate the playback
characteristics to the recorded redundant traffic and show that
the amount of redundant traffic can be estimated based on the
playback characteristics. At the end, we evaluate the overall
efficiency by comparing the quality gain due to the adaptation
strategy with an estimation of the maximum achievable quality
level based on the amount of total downloaded data in the
session.

This paper is structured as follows. We first describe the
background and related work in Section II. Here we also
explain the behavior which leads to the redundant traffic in
detail. In Section III we introduce the measurement method-
ology and explain the measurement set-up. In Section IV we
discuss general playback characteristics observed in the study.
In Section V we first evaluate the relationship between the
observed playback characteristics and the overhead introduced
by discarding lower quality segments. Afterward we evaluate
the overall efficiency of the adaptation strategy considering the
overhead. In Section VI we conclude the work and give future
research directions.

II. BACKGROUND & RELATED WORK

In the following we first introduce HTTP adaptive streaming
in general. Afterward we discuss the results of our previous
study where we do a first characterization of the adaption
behavior of YouTube. At the end we revisit the related research
to this topic.

A. HTTP Adaptive Streaming
HAS enables client-driven adaptation of the quality level

to device capabilities such as screen size, resolution and
stereoscopic capabilities. Furthermore, by switching to dif-
ferent quality levels, the client can adapt the video bit-rate
to the available bandwidth and therefor adapt to dynamically
changing network conditions such as observed for example in
cellular environments. HAS is implemented by encoding the
content into multiple representations, e.g. different quality lev-
els, segmenting it in small chunks (for YouTube: 10 s to 20 s,
depending on the video) and making the segments available
to the client through the HTTP protocol. The ISO standard
MPEG-DASH is a widely accepted HAS standard adopted by
YouTube. DASH defines an XML-based Media Presentation
Presentation (MPD) file which describes the representations,
e.g., average bit-rate or codec used, and gives the URL to the
individual segments. At the beginning of a streaming session,

the client requests the MPD file. Afterward the implementation
on the client-side decides which chunks to request from which
representation. As every content provider can implement their
own adaption strategy, the experience for the user depends
not only on the offered representations, but also on the ability
of the adaption strategy to request in chunks in a user-
friendly way. Evaluations show that the adaptation algorithm
has a strong influence on the resulting playback behavior and
therefore also on the perceived QoE of the user [7]. It has to
be noted that YouTube also allows the end user to manually
select a fixed quality level which deactivates HAS even if it
results in frequent buffering. However, the default setting is
the automated quality adaptation.

B. YouTube’s Quality Adaptation Strategy
In our previous study [6] we describe the behavior of

YouTube where the streaming client replaces previously down-
loaded chunks with higher quality ones. Figure 1 illustrates a
request schedule for one of the experiment runs. At first, the
YouTube player requests four segments of quality level 144p
of a playback time up one minute and all four requests are
made in the first 20 seconds of the experiment. At about 21
seconds into the experiment, the player revises its decision and
replaces the segment containing the playback time 30 s to 45 s
with a quality level of 240p. Afterward the player switches
back to 144p and downloads playback time 60 s to 90 s in
quality level 144p. Later in the experiment, the player switches
up to a quality level of 480p by replacing 360p and 144p
segments. The figure illustrates that some chunks of content
are downloaded even more than twice.

0 20 40 60 80 100 120
Requested Video Interval (s)

0

20

40

60

80

100

Ti
m

e
of

R
eq

ue
st

(s
)

� = 1144p
240p
360p
480p

Figure 1. Example request schedule. The shaded areas indicate where lower
quality segments are replaced by higher quality segments. For the first minute
into the playback, 30 seconds of 144p are replaced with 15 seconds of 240p
and 15 seconds of 360p to increase the average playback quality.

From the request schedule it becomes obvious that the
adaption strategy tries to optimize the average playback quality
shown to the user. Furthermore, by constantly downloading
chunks, the algorithm prevents stalling of the underlying TCP
connection. In a previous study [7] we show that by constantly
utilizing the TCP connection a HAS strategy can keep the fair
share of the network bandwidth provided by TCP adaptive
behavior. Furthermore, adaptation strategies that underutilize

504ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

the TCP connection, e.g., if the playback buffer is full, have a
distinct disadvantage compared to strategies which constantly
utilize the TCP connection.

C. Related Work

In [8], Añorga et al. present a recent study about YouTube’s
HAS adaptation and review previous studies. Their findings
show that YouTube uses a large playback buffer and therefore
reacts only slowly to changing bandwidth conditions (13 s to
40 s). In [9], Yao et al. evaluate different sources of redundant
traffic in video streaming services. They show how the iOS
YouTube player requests overlapping segments to smoothen
the playback. The amount of redundant traffic is not evaluated.
In [10], Lui et al. evaluate the difference between Android
and iOS-based YouTube media streaming. They conclude that
buffering is not dependent on the playback time, but on
the amount of data buffered. Furthermore, they quantify a
redundant traffic of 15 % and account it for re-downloading
the beginning of the video. Mansy et al. [11] analyze the
streaming behavior of the three streaming providers including
YouTube in terms of their playback characteristics, redundant
traffic and bandwidth utilization. The authors observe that
YouTube aggressively discards segments of lower quality lev-
els to download higher bit-rate segments when the bandwidth
increases. In the study, one video is evaluated in a wireless
scenario with varying bandwidths (every 2 minutes a new
link bandwidth is set). For this scenario, the authors conclude
a percentage of redundant traffic of 16 %. The study also
shows that other content providers deploy similar adaptation
strategies. Nam et al. [12] show that in a mobile scenario more
than 35 % of transferred data by YouTube is redundant. The
authors account frequent termination of TCP connections and
discarded on-fly packets as the case of the redundant traffic.
Rao et al. [13] and Ito et al. [14] model the traffic patterns
produced by a YouTube streaming session. Their findings
suggest that the implementation of the adaptation strategy and
therefor the resulting behavior varies with the type of the
viewing device. Alcock et al. [15] describe the initial burst
phase deployed by YouTube. In the initial burst phase, 32 s
of playback time are sent to the client a fast as possible. We
also observe this initial burst phase and account it for a source
for redundant traffic, as a low quality initial burst phase is in
some cases later replaced by higher quality segments.

This work extends the state-of-the art and presents the first
large-scale study which statistically quantifies the amount of
redundant traffic. Further, we relate redundant traffic to QoE
influence factors and are able to quantify the QoE loss by
downloading redundant traffic instead of higher quality levels.

III. METHODOLOGY

In the following we first discuss the experimental set-
up used to collect the results. Afterward we introduce the
notation and metrics evaluated in this work. At the end we
give a description of how we selected the content and which
characteristics the selected content exhibits.

Virtual Machine

Virtual Network

Internet

Virtual Host

Network Monitoring

Application Monitor

Shaping

Service

Proxy

Figure 2. Experimental set-up based on a virtual machine (VM) and virtual
network with browser-based and in-network-based monitoring.

A. Experiment Set-up

Figure 2 illustrates the experiment set-up. The set-up con-
sists of a virtual machine with Xubuntu 14.04 64-bit running
a browser (Firefox 21) with the YouTube player, an HTTPS
proxy inside the virtual machine and a virtual network which
limits the available bandwidth. The set-up is connected to the
Internet through a lightly utilized lab network and through
the university’s Internet connection. Internal traffic reports and
monitoring of experiment download speed rule out external
bottlenecks. Since the beginning of 2015, YouTube uses the
encrypted HTTPS protocol for video delivery. In order to
still being able to decrypt the traffic in the network, we
inject a custom certificate into the browser and mark it as
trustworthy for the domains used by YouTube. Furthermore,
we use a customized version of mitmproxy [16] in order to
intercept, capture and decrypt the YouTube traffic. The proxy
was customized to quickly forward all incoming traffic without
buffering and tested to rule out any performance issue as
influence factor on the adaptation behavior.

In order to capture the player state and the HTTP requests
in the network, we use browser-based and network-based
monitoring. We implemented browser-based monitoring by
embedding the YouTube video into a custom web-page and
use an extension for the browser [17] to access the API of the
player to monitor buffering events and quality switches. For
network monitoring, we use the described proxy to capture and
decrypt the HTTPS requests. In order to translate between the
byte range requests and playtime seconds, we download the
videos [18] in all evaluated quality levels and afterward decode
the downloaded mp4 containers [19].

Before every experiment run, the virtual environment is
reset to a default state. During the playback, the status of
the experiment is constantly monitored and if the video was
not played out until the end, the experiment run is discarded.
A detailed description including the whole experimental set-
up is available together with the raw and summarized traces
online [20]. We encourage others to play with the data and
do their own evaluations. At total, the traces and summarized
results for 12,075 runs are available online (35 videos ⇥ 27
bandwidth values ⇥ 15 replications).

505ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Table I
KEY VARIABLES AND NOTATIONS USED IN THE PAPER.

notation meaning

B downloaded and played bytes
BT total downloaded bytes
⇢ Redundant Traffic Ratio (RTR)
Q number of quality levels
Q set of quality levels; Q = {q0; qQ�1}
q quality level, q 2 Q
V number of videos
v video index
R number of replicated downloads (of each video v)
r replication index
F number of bandwidth levels
f bandwidth level
f

⇤ rescaled bandwidth level
nv number of segments in video v

⌧v (fixed) segment play time of video v

xij quality index indicator; 1 if segment i is downloaded at
quality level j, 0 otherwise

sij size of segment i for video quality level j
J average quality level
J

+
i maximum quality level downloaded of segment i;

J

+
i = {max j|xij > 0}

J

�
i minimum quality level downloaded of segment i;

J

�
i = {min j|xij > 0}

bi number of buffer event in segment i
 buffering rate for bandwidth f

tfv buffering time for video v and bandwidth f

Tfq average relative time/probability on quality level q in a
video sequence with bandwidth f

� average bit-rate
�i 1 if quality level has switched from segment i� 1 to i, 0

otherwise;
w average number of switches
✏ overall efficiency
 buffering ratio

B. Metrics

The notation used in the paper is summarized in Table I. In
the following we define the key performance metrics as used
in our analysis. Efficiency ✏ is defined in Chapter V.

The average bit-rate per quality level q of video v

�qv =
1

nv⌧

nvX

i=1

{siq}v (1)

Total downloaded bytes in video sequence v:

BT =
nvX

i=1

Q�1X

j=0

xijsij (2)

Total played bytes in a session under the assumption that
always the maximum quality level downloaded J

+ is played:

B =
nvX

i=1

siJ+
i

(3)

Each bandwidth level f , replication r and video v has a
unique Bfrv and a corresponding average quality level Jfrv .
The average quality level with played bytes B is denoted JB

and is the average over the video sequences with Bfrv = B.

The average played quality level for bandwidth f :

Jf =
1

RV

RX

r=1

VX

v=1

1

nv

nvX

i=1

{J

+
i }frv (4)

The average buffering event rate for bandwidth f :

 f =
1

⌧RV

RX

r=1

VX

v=1

1

nv

nvX

i=1

{bi}frv (5)

The average quality switching rate for bandwidth f :

wf =
1

⌧RV

RX

r=1

VX

v=1

1

nv

nvX

i=1

{�i}frv (6)

The estimated probability of playtime on quality level q in
a video sequence for bandwidth f :

Tfq =
1

RV

RX

r=1

VX

v=1

1

nv

nvX

i=1

{xiq}frv (7)

The buffering ratio (8) is the ratio between the experiment
run-time and the duration of the video:

frv =
nv⌧v + tfrv

nv⌧v
(8)

Buffering ratio = 1 means that no buffering happened
during the experiment. for a specific bandwidth f is defined
as f = 1

RV

PR
r=1

PV
v=1 frv .

C. Redundant Traffic Ratio (RTR)
The redundant traffic is defined as the ratio between the

downloaded bytes that are discarded (BT � B) and the bytes
that are played (B). This gives the overhead of the playback
with the data volume of only the played out segments as
reference. The Redundant Traffic Ratio (RTR) for one single
download is then

⇢ =
BT � B

B

(9)

For download at a specific bandwidth factor f , the index is
added to BT in Eq. (2) and to B in Eq (3) and the redundant
traffic ratio ⇢ is updated accordingly.

D. Content
In order to represent the variety of videos uploaded to

YouTube, we use the YouTube API provided by Google to
automatically select suitable videos. We define 5 categories
”minecraft”, ”music”, ”funny cats”, ”gopro”, ”game” by using
the category name as search query string. Furthermore, we
filter the query results by the following criteria. The selection
of videos considers the following aspects: 1) embeddable,
i.e., use in HTML iframe allowed, 2) syndication is allowed,
3) available in high resolutions and 4) videos which were
published between 1 and 9 month ago. The query result is
sorted by popularity, i.e., view count, and from the result we
select videos with a duration of 1, 2, ... , 10 minutes with an
allowed deviation of 5 seconds. In total, 35 different videos
were accessible during the whole experiment time and are

506ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Video bit-rate (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

144p

240p 360p

480p

Figure 3. CDF of the quality levels of the selected video sequences. Means:
144p: 0.11 Mbit/s, 240p: 0.24 Mbit/s, 360p: 0.37 Mbit/s, 480p: 0.72 Mbit/s.

included in the evaluation. Average duration of selected videos
is 5.3 minutes.

Figure 3 shows the cumulative distribution function
(CDF) of the bit-rates of the four quality levels, Q =
{144p, 240p, 360p, 480p} for the selected videos. Note that the
client player uses some decision logic to select a subset of the
available resolutions on YouTube’s servers based on the type
of device, e.g. based on the screen size. In our environment this
was the subset Q. The average bit-rate for each quality level is
calculated by Eq. 1, then �144p=0.11 Mbit/s, �240p=0.24 Mbit/s,
�360p=0.37 Mbit/s, and �480p=0.72 Mbit/s. Note that although
360p has a higher number of pixels than 240p, approximately
18 % of the videos in quality level 360p are encoded with a
lower average bit-rate then the average bit-rate for quality level
240p. YouTubes encoding of (cover art) music videos leads
to higher data volume for lower resolutions than for higher
resolutions. The reason for this is not clear as it depends on
the YouTube internal encoding of those videos. Please note
that we nevertheless include those videos in the first part of
the evaluation as they are part of the content mix observed on
the platform. For the evaluation of the efficiency, we exclude
those videos.

IV. VIDEO PLAYOUT AND ADAPTATION CHARACTERISTICS

This section presents key characteristics of the adaptation
observed in our measurements for different bandwidths f . This
includes the average quality level Jf , quality switching rate
wf , buffering rate f , and the probability of a playback Tfq

at quality q in a session. If not otherwise stated, error bars in
the figures depict the 95 % confidence interval.

Figures 4 (a) and (b) illustrate how the average quality Jf ,
the buffering rate f , the quality switching rate wf and the
redundant traffic ratio ⇢f develops for increasing bandwidth f

for video v = CbhnuRhbC, which shows scenes from a video
game with picture-in-picture commentary. The average bit-rate
for the four quality levels are � ={0.11 Mbps, 0.25 Mbps,
0.43 Mbps, 0.84 Mbps}.

Figure 4(a) shows the average quality J and the buffering
rate . The buffering rate decrease from 0.8 [min�1] at
0.8 Mbps to 0 at 2.5 Mbps. The buffering rate has two peaks
for ⇢. The average quality level increases approximately linear
from 0.5 at 0.8 Mbps to the maximum of 3 at 2.5 Mbps.

0.5 1.5 2.5
Bandwidth f (Mbps)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
vg

.Q
ua

lit
y

J

Quality

0.0

0.2

0.4

0.6

0.8

1.0

B
uf

fe
rin

g
ev

en
ts

y
([

m
in

�
1]

)

Buffering

(a) Buffering rate and average quality

0.5 1.5 2.5
Bandwidth f (Mbps)

0.0

0.5

1.0

1.5

2.0

Q
ua

lit
y

Sw
itc

he
s

w
([

m
in

�
1]

) Switches

0

10

20

30

40

50

60

RT
R

r
(%

)

RTR

(b) Quality switching rate and RTR

Figure 4. Average playback quality Jf , buffering rate f [min�1], quality
switch rate wf [min�1] and RTR ⇢f for video v = CbhnuRhbX5I. 95 %
confidence intervals over 15 runs are indicated.

In Figure 4(b) we observe that for bandwidth f 1.6 Mbps,
the RTR is approximately ⇢ = 20 %, except for two peaks of
30 % at both 0.9 Mbps and 1.5 Mbps. With f >1.6 Mbps, the
RTR decreases linearly until it reaches zero at about 2.5 Mbps.
The quality switching rate has a linear decreasing trend from
approximately 1.5 [min�1] down to 0 [min�1] at 2.5 Mbps.
The same two peaks at 0.9 Mbps and 1.5 Mbps as for the RTR
⇢f are also observed for wr. Next we summarize the results
over all videos per bandwidth f .

0.5 1.0 1.5 2.0 2.5
Bandwidth f (Mbps)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ev
en

ts
[m

in
�

1]

Switches

Buffering

k f

1.0

1.2

1.4

1.6

1.8

2.0

k f

Figure 5. Buffering events [min�1], switching events [min�1] and buffering
ratio f . f and buffering rate decreases non-linear. Switching rate decreases
linear.

Figure 5 shows the buffering rate, the switching rate and the

507ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

average buffering ratio for the different bandwidth values
f and averaged over all videos. The buffering ratio (8) is
the ratio between the experiment run-time and the duration of
the video. = 1 means that no buffering happened during the
experiment. In our set-up, the browser start-up time is included
in the experiment time. The minimum value can reach is
about 1.05, depending on the video. The figures show that the
buffering rate and average buffering ratio decreases non-linear
with increasing f , while the corresponding decrease in quality
switching rate is approximately linear. At the lowest evaluated
bandwidth 0.4 Mbps, we observe an average buffering rate of
1.4 [min�1] and an average of buffering time close to two
times the duration of the video. The quality switching rate is on
average between 1.75 [min�1] and 2.0 [min�1] for 0.4 Mbps
to 0.5 Mbps. At about 2.6 Mbps, the three metrics reach their
minimum of zero for the buffering and switching events
and about 1.07 for the ratio between experiment and video
duration. From the figure we conclude that for a bandwidth
of 2.6 Mbps all videos in our result set are, on average,
played back without buffering events and quality switches.
Furthermore we see that switching events are more frequent
than buffering events and decrease slower for increasing f .

0.5 1.0 1.5 2.0
Bandwidth f (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e
Pl

ay
ba

ck
Ti

m
e

T f
q

144p

240p 360p 480p

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

Q
ua

lit
y

J f

Figure 6. Average quality level and probability of playout time on quality
level Tfq (

P
q2⌦I

Tfq = 1).

In Figure 6, the average quality level is depicted on the
axis to the right. The axis on the bottom gives the bottleneck
bandwidth in the range of f = (0.4, 2.2) Mbps. The shaded
areas indicate the average fraction of time spent on each of
the quality levels for a specific bandwidth, i.e., the relative
playback time (scale on the left axis). Two key observations
can be made from the figure. First, for each quality level
there is a distinct bandwidth range where one of the four
different quality levels dominates. This is illustrated by Tfq

for q = 0, 1, 2, 3 which have their maximum at different
bandwidths f . Second, even at a low data rate as f = 0.5, the
T0.5,4 = 0.2, which means that in 20 % of the time the highest
quality level is viewed to the user. This can be explained by
the fact that some of the videos, especially music videos with
static cover, have a low average bit-rate for the higher quality
levels and therefor can be selected in the highest quality level
even if the available download-rate is low. The figures also

illustrate for which range of f the different qualities dominate
and when we switch from one level to the next higher or
lower quality level. Based on Figure 6 we cannot identify a
clear relationship between the bandwidth and the probability
of selecting a specific quality level as the regions are heavily
overlapping. This is due to the high variance in video bit-rates
as shown in Figure 3.

To align the probabilities of the four quality levels, Tvq ,
we scale the bandwidth f with a quality and video dependent
bandwidth factor f

⇤
vq = f/�vq . In Figure 7 we plot the relative

playback time Tvq for each experiment run and for all four
quality levels q using the rescaled bandwidth f

⇤
vq . The error

bars indicate the confidence interval of 95 % for each of the
bins. From this we observe that q1 = 240p, q2 = 360p and
q3 = 480p reach their maximum Tfvq at approximately f

⇤
q =

3. This is indicated by the vertical (red) line. For 240p and
360p the maximums are close to 60 %, while for 480p the
maximum is 100 %. For 144p, the maximum of about 55 %
is reached at f

⇤
1 = 3.8. There are no samples for f

⇤
1 < 3.8

available, which corresponds approximately to a bandwidth of
0.4 Mbps. Hence, the maximum is reached for all quality levels
at f

⇤ = 3, independent of the quality level q. It can be read as;
when three times the average bit-rate of a certain video v of a
certain quality level q is available, this quality level dominates.
If we have more, we switch to a higher level, if it exists. Note
that we compare here the link bandwidth with the raw video
bit-rate, without any overheads (e.g. IP, HTTP, TCP or video
container overhead) and without the audio stream. Therefor,
the absolute value where Tvq reaches its maximum may vary
depending on the scenario. But, the results show that there
is a (narrow) range of bandwidths for each video where each
quality level reaches a maximum probability of being played
out to the user. This suggests, that the adaptation algorithm
of YouTube uses the average bit-rate of a quality level of a
video and compares it with the available network bandwidth to
determine which quality level to select next. The results also
reveal that although the network bandwidth remains constant
quality switches occur and the video is watched in different
quality levels. In the next chapter we discuss how playback
characteristics affect on the redundant traffic.

V. EVALUATION OF ADAPTATION EFFICIENCY

In the previous section we characterized the playback
behavior from the perspective of the user (average quality
level, buffering and switching events) and discussed how the
available bandwidth influences the playback behavior. Next,
we put the evaluated playback characteristics in perspective
to the amount of redundant traffic downloaded in the back-
ground, unnoticed by the viewer, and subsequently discuss
the effectiveness of this adaptation approach. We do this by
introducing a metric which summarizes the quality gain due
to the adaptation on the one side and the penalty introduced
by the redundant traffic on the other side.

508ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0 2 4 6 8 10
Rescaled Bandwidth f �

vq

0.0

0.2

0.4

0.6

0.8

1.0
R

el
at

iv
e

Pl
ay

ba
ck

Ti
m

e
T q 480p

144p

240p
360p

Figure 7. The probability of each playback quality level Tf⇤
vq

as a function
of the rescaled bandwidth f

⇤
vq . The vertical line at f⇤

vq = 3 indicates where
we find the peak for all quality levels.

A. Relationship of Playback Characteristics to Redundancy

In Figure 8 we take a closer look at the peak of relative
playback time as shown in Figure 7 from the perspective of
the RTR based on the rescaled bandwidth f

⇤
vq . The average bit-

rate of each of the quality levels q is given as a reference and
can be used to get an estimate of the bandwidth f based on f

⇤
q

(f = �q ⇥ f

⇤
q). However, this neglects the standard deviation

of the bit-rates of the videos. The figure shows that for 240p
and 360p, high Tq translates to about 30 % of RTR. For 144p,
a RTR of 20 % for 3.6 of rescaled bandwidth is observed.
The highest quality level 480p exhibits a RTR of 10 % at the
point where it reaches close to 100 % of the playback time.
We conclude from the figure that the peak of the estimated
probability of playtime on a quality level q, Tfq , does not
translate to a stable, i.e., sequential, quality selection behavior.
On the contrary, the RTR for 240p and 360p show that the
player downloaded up to 40 % of data more than it showed to
the user.

Figure 9 depicts the switching and buffering rate for
increasing values of RTR. K-means clustering is used to
generate bins of RTR in the figure. The error bars indicate
the 95 % confidence interval for a cluster. The shaded area
in the background shows the probability density function,
g(⇢) for the observed values of RTR. The g(⇢) shows that
approximately 25 % of the experiment runs in the result set
do not exhibit any or a minor percentage of redundant traffic
and the second highest density of samples can be observed
between a RTR of 15 % and 50 %. The figure illustrates that
there is a close relationship between the switching/buffering
rate and the amount of redundant traffic. While the buffering
rate increases only slowly for increasing RTR, the switching
rate increase is steeper. For 20 % of RTR the buffering rate
is approximately one buffering event per two minutes, while
switching rate is up to 1.2 switches per one minute. By
implication, this shows that buffering events quickly translate
to a high amount of redundant traffic. Buffering events are
a sign of sudden drop in bandwidth (or equivalent: a sudden
increase in the video bit-rate) or an effect of poor decision

2 3 4 5 6 7
Rescaled Bandwidth f �

144p

0

10

20

30

40

50

RT
R

(%
)

(a) q0 =144p (�0 =0.11 Mbps)

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Rescaled Bandwidth f �

240p

0

10

20

30

40

50

RT
R

(%
)

(b) q1 =240p (�1 =0.24 Mbps)

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Rescaled Bandwidth f �

360p

0

10

20

30

40

50

RT
R

(%
)

(c) q2 =360p (�2 =0.37 Mbps)

1.5 2.0 2.5 3.0 3.5 4.0 4.5
Rescaled Bandwidth f �

480p

0

10

20

30

40

50

RT
R

(%
)

(d) q3 =480p (�3 =0.72 Mbps)

Figure 8. RTR for the rescaled bandwidth f

⇤ relative to the four quality
levels. Note that the shown range of f

⇤ is wider for 144p compared to the
other quality levels.

0 20 40 60 80 100
RTR r (%)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Ev
en

ts
[m

in
�

1]

Switches

Buffering

0.00

0.05

0.10

0.15

0.20

0.25

0.30

g(
e)

Figure 9. Switching and buffering events for increasing RTR. The shaded area
illustrates the probability density function of the RTR values in the collected
result set.

by the adaptation logic. Hence, it can be concluded that
higher values of redundant traffic can be observed when
the playout buffer is often depleted. Furthermore, from the
(approximately) strict monotonic increase follows that it is
possible to estimate the RTR of a viewing session based on
the playback characteristics.

B. Efficiency of Adaptation Strategy

Next, we discuss the efficiency of the observed adaptation
strategy. In particular we want to answer the following ques-
tions: How much of the additionally downloaded data was
actually used to improve the average playback quality? And
how much average quality was lost, compared to an optimum
where the segments are downloaded without overlaps. For
calculation of the efficiency we exclude videos where higher
quality levels have a lower bit-rate than lower quality levels.

509ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

15 30 45 60
Played Bytes B (MB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Q

ua
lit

y
Le

ve
lJ

(a) v1 = pjBVUyq530

15 30 45 60
Played Bytes B (MB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

lit
y

Le
ve

lJ
(b) v2 = vbLLqaa9ksw

Figure 10. Approximated function ✓ for two of the videos.

0.5 1.0 1.5 2.0 2.5
Bandwidth f (Mbps)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

Q
ua

lit
y

J

q̄(BT)

J�

J+

Figure 11. The worst case average quality J

�
f , the played average quality

J

+
f and the estimated optimum quality ✓f (BT

) for increasing bandwidth f .

The translation between average playback quality of a cer-
tain downloaded volume of bytes z is estimated by a function
✓(z), which is determined by regression of the observation
of the quality levels as a function of the bandwidth f . We
apply isotonic regression [21] to fit the played bytes B to
the average quality level. Isotonic regression approximates
monotonic functions and does not assume a specific shape of
the underlying function. The translation between the bytes B

of the viewed quality level J

+ and the quality level J

+ itself is
(mostly) monotonic, therefor isotonic regression is applicable
to the problem at hand.

Figure 10 illustrates the isotonic regression result for two of
the videos v1 and v2 used in the result set. The red dots depict
the samples collected for the video, (B, J

+). The connected
green dots show the approximated function ✓(y), y 2 (0, B

+)
(B+ is the maximum observed B). Two observations can
be made from the figure. First, ✓v2 is more flat than ✓v1 .
Second, v2 shows a larger deviation for the bytes required
for a specific average quality level. The difference in slope is
a result of the different bit-rates for quality level q3 = 480p
for the two videos. q3 = 480p of video v1 has an average
bit-rate of �v1 = 0.49 Mbps, while for v2 the average bit-rate
is �v2 = 0.78 Mbps. The deviation for the same quality level
indicates that the standard deviation for the video bit-rate for
video v1 is higher than for v2. Next, we use ✓ to estimate the
optimum average quality level for a given B

T and compare
it to the observed average playback quality and to the worst
case quality level J

� where no lower quality segments were
replaced by segments with a higher quality.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Bandwidth f (Mbps)

0.0

0.2

0.4

0.6

0.8

1.0

Ef
fic

ie
nc

y
e

e

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Q
ua

lit
y

Le
ve

lJ

J+ � J�

q(BT)� J�

Figure 12. Efficiency ✏f , difference between played and worst case quality
level J+

f � J

�
f and difference between estimated optimum and worst case

quality ✓f (BT
)� J

�
f over bandwidth f .

Figure 11 depicts the worst case quality level J

�
f , the

played quality level J

+
f and the estimated optimum quality

level based on the total downloaded amount of data ✓(BT)
for a bandwidth factor up to f = 2.6 Mbps. It can be seen
in the figure, that for low bandwidths, the absolute difference
between three quality levels is larger than for higher bandwidth
values. For example for 0.5 Mbps, the quality level increases
due to the adaption strategy by 0.7 quality levels. However,
based on the amount of downloaded data, the redundant
traffic introduced a penalty of 0.5 quality levels. For higher
bandwidth values, the absolute difference between the three
quality levels J

�
f , J

+
f and ✓(BT) becomes less, but the ratio

between them stays roughly the same. For a bandwidth of
2.6 Mbps, no difference can be observed.

Next, we define a metric for the efficiency of the adaptation
strategy in respect to the amount of downloaded and played
data. In the best case, an adaption strategy allows the player to
utilize all the bytes downloaded. However, this is only possible
if ✓(BT) = J

+
f = J

�
f , as each difference between J

+
f and

J

�
f introduces redundant traffic and therefor increases also

the difference between estimated optimum ✓(BT) and J

+
f .

We define the efficiency ✏ of the algorithm as the ratio be-
tween the measured quality gain (J+ �J

�) and the estimated
maximal quality gain ✓(BT) � J

� (see Eq (10)).

✏ =
J

+ � J

�

✓(BT) � J

� (10)

If ✏ = 1, the algorithm was able to utilize all the additionally
downloaded data to improve the average quality level. If ✏ = 0,
the algorithm requested additional segments, but was not able
to improve the average quality level by doing so.

Figure 12 depicts the efficiency ✏f , the difference between
played and worst case quality level J

+
f �J

�
f and difference be-

tween estimated optimum and worst case quality ✓f (BT)�J

�
f

over bandwidth f . The figure shows that for low bandwidths
(f < 0.8 Mbps), the adaptation strategy is able to utilize 60 %
of the additionally downloaded data to increase the average
quality level J . For bandwidth from 0.8 Mbps to 1.5 Mbps, the
efficiency drops to 55 %. For bandwidths from 1.5 Mbps up to

510ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

2 Mbps, the efficiency increases up to 65 %. For bandwidths
larger than 2 Mbps, the width of the confidence interval do not
allow a reliable conclusion. For overcapacity bandwidth f , the
✏f looks ”noisy” because there are no adaptation, and hence
not redundancy, and therefor the ✓f (BT), J

�
f , and J

+
f are

(almost) equal. To summarize the figure, the algorithm is on
average able to utilize 60 % of the additionally downloaded
data to improve the average quality level compared to J

�,
where no replacement of lower quality segments takes place.
The left over 40 % are the penalty the algorithm has to pay
for discarding previously downloaded segments.

VI. CONCLUSION & OUTLOOK

The traffic share of video streaming in the Internet continues
to increase. Major content providers such as YouTube provide
a global infrastructure to serve commercial and user-generated
contents to every end-user’s device. YouTube alone accounts
for about 15 % of the total downstream Internet traffic in
the US. Furthermore, reports show that the video traffic also
increases for cellular access where available data-rate is scarce.
Therefor it is important to understand how YouTube adapts
to the available bandwidth and how efficiently it uses the
available network resources. Previous studies reveal that the
adaption strategy used by the YouTube client tries to optimize
the average playback quality by replacing previously down-
loaded lower quality segments with higher quality segments.
This increases the average quality shown to user. However,
it decreases the efficiency in respect to the used network
resources. In this paper we present the results of a large-
scale study with more than 12,000 video views of different
contents while the downstream traffic was shaped to emulate
a bottleneck link with a certain bandwidth. First we show how
YouTube adapts to the available bandwidth from the perspec-
tive of the user in terms of quality switching, buffering events
and playback quality. Higher available bandwidth increases
almost linearly the average playback quality, while buffering
ratio and buffering event rate are decreasing sub-linearly. The
switching frequency is decreasing almost linearly. The results
show that for every video and quality level there is a specific
network bandwidth which maximizes the time spent on the
specific quality level. Thus, this network bandwidth is related
to the video bit-rate of that quality level. However, that specific
bandwidth does not force the player to select a specific quality
level with a probability larger than 0.6 for any quality level
below the maximum, except for the trivial case of bandwidth
overprovisioning of more than 300 % of the video bit-rate. In
any other case, quality switching always occurs.

In the second part of the study we discuss the efficiency
of the adaption strategy from a networking view point. The
results show that by replacing lower quality segments, the
YouTube player is able to increase significantly the average
playback quality by up to 0.7 quality levels. However, 30 %
redundant data has to be downloaded for this. Based on
the amount of redundant traffic, we estimate the optimal,
i.e. highest, average quality level which could be achieved
by downloading the same total amount of data but avoiding

redundant traffic. The results show that without redundancy the
amount of downloaded data could have been used to increase
the average quality level by up to 1.3 quality levels. Therefor,
about a half quality level is unnecessarily downloaded and
discarded due to the redundancy.

In the future, we plan to include highly varying bandwidth
conditions, e.g. as found in cellular access. Furthermore,
the maximum achievable playback quality for a certain data
volume can be formulated as an optimization problem instead
of regression based on historic data. This can give insight
into an upper bound for potential improvements to YouTube’s
adaptation algorithm.

REFERENCES

[1] “Cisco visual networking index: Foreecast 2014 - 2019.” [Online].
Available: http://goo.gl/0iqjo9

[2] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hossfeld, and P. Tran-
Gia, “A survey on quality of experience of http adaptive streaming,”
Communications Surveys Tutorials, IEEE, 2014.

[3] T. Hoßfeld, R. Schatz, E. Biersack, and L. Plissonneau, “Internet video
delivery in youtube: from traffic measurements to quality of experience,”
in Data Traffic Monitoring and Analysis. Springer, 2013, pp. 264–301.

[4] T. Hoßfeld, M. Seufert, C. Sieber, T. Zinner, and P. Tran-Gia, “Iden-
tifying qoe optimal adaptation of http adaptive streaming based on
subjective studies,” Computer Networks, vol. 81, pp. 320–332, 2015.

[5] Sandvine, “Global Internet Phenomen Report 1H 2014,” 2014.
[6] C. Sieber, A. Blenk, M. Hinteregger, and W. Kellerer, “The cost of

aggressive HTTP adaptive streaming: Quantifying YouTube’s redundant
traffic,” in 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM). IEEE, may 2015, pp. 1261–1267.

[7] C. Sieber, T. Hoßfeld, T. Zinner, P. Tran-Gia, and C. Timmerer, “Imple-
mentation and User-centric Comparison of a Novel Adaptation Logic for
DASH with SVC,” in IFIP/IEEE International Workshop on Quality of
Experience Centric Management (QCMan), Ghent, Belgium, May 2013.

[8] J. Añorga, S. Arrizabalaga, B. Sedano, M. Alonso-arce, and J. Men-
dizabal, “YouTube’s DASH implementation analysis,” in 19th Interna-
tional Conference on Circuits, Systems, Communications and Computers
(CSCC), 2015, pp. 61–66.

[9] L. Yao, W. Qi, G. Lei, S. Bo, C. Songqing, and L. Yingjie, “Investigating
Redundant Internet Video Streaming Traffic on iOS Devices: Causes and
Solutions,” Multimedia, IEEE Transactions on, vol. 16, no. 2, 2014.

[10] Y. Liu, F. Li, L. Guo, B. Shen, and S. Chen, “A comparative study of
android and ios for accessing internet streaming services,” in Passive
and Active Measurement. Springer, 2013, pp. 104–114.

[11] A. Mansy, M. Ammar, J. Chandrashekar, and A. Sheth, “Characterizing
Client Behavior of Commercial Mobile Video Streaming Services,” in
Proceedings of Workshop on Mobile Video Delivery, MoViD’14, 2014.

[12] H. Nam, B. H. Kim, D. Calin, and H. G. Schulzrinne, “Mobile video is
inefficient: A traffic analysis,” 2013.

[13] A. Rao, A. Legout, Y.-s. Lim, D. Towsley, C. Barakat, and W. Dabbous,
“Network characteristics of video streaming traffic,” in Proceedings
of the Seventh COnference on emerging Networking EXperiments and
Technologies. ACM, 2011.

[14] M. Ito, R. Antonello, D. Sadok, and S. Fernandes, “Network level
characterization of adaptive streaming over http applications,” in IEEE
Symposium on Computers and Communication (ISCC), June 2014.

[15] S. Alcock and R. Nelson, “Application flow control in youtube video
streams,” SIGCOMM Comput. Commun. Rev., vol. 41, no. 2, Apr. 2011.

[16] “mitmproxy.” [Online]. Available: https://mitmproxy.org/
[17] B. Staehle, M. Hirth, R. Pries, F. Wamser, and D. Staehle, “YoMo: A

YouTube Application Comfort Monitoring Tool,” in New Dimensions in
the Assessment and Support of Quality of Experience for Multimedia
Applications, 2010.

[18] “youtube-dl.” [Online]. Available: https://rg3.github.io/youtube-dl/
[19] “ffprobe.” [Online]. Available: https://ffmpeg.org/ffprobe.html
[20] “Traces and programs used in this paper.” [Online]. Available:

http://git.io/vRSSW/
[21] R. E. Barlow, D. J. Bartholomew, J. Bremner, and H. D. Brunk,

Statistical inference under order restrictions: the theory and application
of isotonic regression. Wiley New York, 1972.

511ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Clique-Aware Mobile Social Clouds
Christian Quadri, Matteo Zignani, Sabrina Gaito, Gian Paolo Rossi

Computer Science Dept. , University of Milan
Email: firstname.lastname@unimi.it

Abstract—The important role played by cliques in identifying

cohesive subgroups of people has been theorized and explored by

sociologists years ago, but only recently investigated in large-scale

social networks. In this paper we focus on the interplay between

cliques established by on-phone communications and the urban

locations their members share each other. The results about co-

located cliques has been achieved through the extensive analysis

of a large anonymized dataset of Call Detail Records (CDR)

relying on the phone activities of nearly 1 million people in the

city of Milan. Taking the cue from the observation of cliques,

the paper envisions and designs a novel clique-support service

for mobile users by fully exploiting the current virtualization

process that is radically transforming the core network of mobile

operators. The approach we propose brings together a few

important contributions: first, it concretely shows that the current

NFV-enabled trend of placing cloud services at the edge of the

operator’s network is viable and may have a payoff in terms

of traffic offloading and improved user’s experience; secondly,

it demonstrates for the first time that a few typical cloud-based

services can effectively be directly performed inside the mobile

network by simply leveraging the rich amount of data about

users’ location and mobility behavior.

I. INTRODUCTION

The real-life sociality of each individual unrolls among
friends with strong social ties, is still bound to proximity,
which means being near enough to repeatedly encounter the
person and to do things together, and gives opportunities to
share common ideas and personal feelings with each other.
Today’s social network operators and service providers willing
to deploy cloud-based platforms suitable for supporting real
life social interactions are required to tighten their grip on the
daily life of their users and keep some synchrony with their
social and mobility behaviour. Such a direct drive with the
daily life of individuals can only be achieved by performing
continuous monitoring of the users’ devices and becoming
aware of their surroundings through the connectivity infras-
tructure provided by mobile operators. The result is a growing
amount of resource draining interactions that reduce the users’
quality of experience, force mobile operator to continuous
expensive upgrades and give rise to critical privacy concerns.

The next generation cellular networks, with flexible and
decentralized architectures more akin to modern data centers,
will provide the connectivity and computing infrastructure
where all system and networking issues can be properly
addressed, mitigated and solved [1], [2], [3]. However, to
benefit of this emerging new service provisioning in the
design of services inspired by and tailored on individual’s
behavior, the research is today challenged by the urgency

of better understanding how real life sociality is undertaken
and properly drive the design of a digital service and of the
underlying network infrastructure, accordingly. In line with
these arguments, this paper pursues the following objectives:
• give empirical evidence of the nature of the social inter-

actions among people in real life. We achieve this goal
through an extensive analysis of a large anonymized dataset
of Call Detail Records (CDR) relying on phone activities
(voice, data and text) of nearly 1 million people in the city
of Milan.

• define functional and system requirements of a digital
platform supporting real life social activities, interactions
and encounters.

• envision a service architecture suitable for addressing these
requirements. In line with a mobile edge computing ap-
proach, we sketch a viable virtualized approach placing
the service as close as possible to the end-user at the edge
of the mobile operator’s core network.

The main contributions of the paper are:
i. We observe that the human sociality mediated by on-

phone communications is organized in cliques of small
size (we observed cliques ranging from 3 to 9 people) and
with intense internal interactions revealing strong social
ties among people belonging to the clique. People in a
clique are used to encounter periodically in a variety of
city’s locations, thus proving the importance of physical
encounters in real life sociality and the role of on-phone
interactions on capturing mobi-social groups. The interplay
between on-phone groups and group meeting is stronger
w.r.t. results about a similar correlation measured on single
links [4].

ii. Cliques justify the rise of CLique-Aware Mobile Social net-
works, we name it CLAMS, serving the small community
of individuals and providing internal basic services, such
as clique interactions, sharing of contents relevant to the
clique (namely, photos, video or other contents), and clique
specific privacy preservation policies driven by explicit
user’s consent. During extemporaneous encounters of the
persons in a clique, devices’ proximity may be opportunis-
tically exploited to provide CLAMS communications. This
way CLAMS creates a targeted service which supports the
needs of the cliques;

iii. The potentially huge amount of CLAMSs (more than
53.000 have been observed in our dataset) has explicit en-
tailments on system requirements when supporting the in-
teractions between user’s device and cloud-based CLAMS
service. Efficiency, flexibility and scalability requirementsISBN 978-3-901882-83-8 c� 2016 IFIP

512
ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

advocate a virtualized approach enabling to dynamically
place contents as close as possible to the mobile users, and
to lower the entire cloud-based CLAMS service next to the
users when they encounter each other in a city location. In
the perspective of a totally virtualized mobile network, the
cloud service may not only be placed next to the operator’s
data centers, but it can definitely enter it and be placed
at dynamically changing levels in the network hierarchy
with the aim to optimize resource consumption, reduce
latency and ensure traffic offloading from the operator’s
core network. In line with these arguments, we let the cloud
service cooperate with the operator’s core functionalities to
orchestrate the placement of the CLAMS cloud thus finding
the best trade-off between network resource consumption
and user’s perceived service quality. This way, for instance,
when the members of a clique are co-located, the cloud
service can be placed at the edge of the core network
[5], [2] to ensure low latency interactions and efficient
content sharing. Co-location is frequent among friends
and is common in workplaces, where members of a team
daily share the same area and perform intense interactions.
When the devices of a clique happen to be under the
coverage area of a single cell tower, the relevant device-to-
device communications can be seamlessly performed via
Direct-LTE [6] or opportunistically. The paper describes
a NFV/SDN-based architecture supporting dynamic place-
ment of CLAMS through cooperation between network and
cloud operators.

II. MOBI-SOCIAL GROUPS

A cloud-based platform supporting social interactions can-
not disregard the role of social groups as the main constituent
of its infrastructure. Social groups are often identified by the
notion of cohesive subgroups, i.e. subsets of individuals among
whom there are frequent and relatively strong interactions.
In these groups beliefs, interests and idea are often very
homogeneous due to the pressure towards uniformity and
group standards exerted by intense interactions [7]. Favorite
places are among the interests of a cohesive group. In fact,
shared places encourage the formation and the strengthening
of social relationships and, conversely, groups could choose a
specific place to better express themselves.

Through mobile phone data we are able to highlight the
interplay between cohesive groups and people mobility. Al-
though on-phone communications capture a part of all social
interactions, mobile phone data are inclined to trusted com-
munications since people are not willing to share their private
phone number with everyone. This way we rely on calls and
text-messages to identify cohesive groups. At the same time
we exploit the localization provided by the network infrastruc-
ture to reconstruct the mobility patterns of the group members.
Specifically we proceed in our analysis by i) identifying close
groups through the extraction of maximal cliques; ii) studying
how interactions inside a group are distributed and finally; iii)
mapping a clique to the places it visits, finding what we call
’mobi-social’ groups.

Fig. 1: Clique size distribution.

A. Dataset

Our mobile phone dataset [8] consists of Call Detail Records
(CDRs) containing voice-call, text and data activities of nearly
1 million mobile subscribers in the Milan metropolitan area.
The records span over 67 days, from March 26 to May 31,
2012; a period long enough to reconstruct most of the on-
phone social relationships, as observed in Onnela et al. [9]
(the statistical characteristics of the network largely saturate
in a two-months-long sample). Whenever a voice/text call
is issued, a CDR entry is created as a 6-ple tCDR =
hs, r, tstart, d, cell, areai, where s and r respectively represent
the sender and the receiver of the call/sms, tstart is the initial
time of the activity (when the call starts or a SMS is sent), d is
the duration and cell is the serving cell the user s is attached to.
The field area indicates the location-name attribute related to
the cell, e.g. street/square name or city’s zone, that represents
a coarse grain division of the city region.

We discovered that nearly 40% of calls have duration equal
to 0. Besides missed or unanswered calls, 0-duration calls
are reckoning with a common practice in Italy to use rings
for implicit communications (”Call me back soon”, ”I’m just
arrived”, etc.). Due to the ambiguity of 0-duration calls in the
analysis of social interactions, we discarded them from the
dataset which finally turns out to be composed of 41 millions
calls and 20 millions SMS. We also filtered out calls involving
other mobile operators, both incoming and outgoing, thus
maintaining only activities involving subscribers of the same
operator. This way we eliminate the bias between operators;
in fact, we have a full access to the call/SMS records of
one operator, while partial access to the calls issued towards
subscribers of other competitors.

Unlike previous studies where cell tower may cover a zone
as wide as a few kilometers [10], the dataset we are leveraging
reports data about cell towers inside a city space where a
very small coverage radius, of one or few hundred meters, is
adopted. This characteristic, combined with the knowledge of
cliques, is a powerful enabler to study the off-line social life of
tight-knit groups as information on both their communications
and meetings can be mined from the dataset. In fact, we argue
that, when people with strong social relationships happen to be
contemporaneously co-located, they are more likely to have a
social encounter and a face-to-face interaction than being co-

513
ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 2: Distribution (CDF) of the clique intensity as a function of the clique
size (k). The inset figure shows the correlation between the clique size and
the median clique intensity. The boxes contain values between the first and
the third quartile.

located by chance.

B. Clique analysis

We construct the call/SMS undirected weighted graph
G(N,E,W) where N is the set of the mobile operator
subscribers and E is the set of ties between them, where
a link exists between node i and node j if at least three
communications, either voice call or text messages, with an
overall duration greater than a minute, have been exchanged
between the two end-nodes. The order of the resulting network
is 289448, while its size is 429273. The weight wi,j of a link
(i, j) is an integer number equal to the overall number of
communications, voice calls and text messages, between the
two nodes.

We rely on the notion of clique to identify cohesive sub-
groups on the mobile phone graph. To this aim on G(N,E) we
performed an adaptation of the Bron and Kerbosch’s algorithm
[11] to find all the maximal cliques in an undirected graph,
i.e. the maximal fully connected subgraphs in the network.
Although the worst-case running time of the algorithm is
exponential on the number of nodes, in practice it has been
demonstrated to run very fast on real networks. The algorithm
returns a set C of maximal cliques, whose elements will be
indicated by ci.

1) Do cliques exist?: Overall, we observed 53437 maximal
cliques whose size (k) is greater than 2. 122.027 people, 29.4%
of all users, are involved in at least one clique, a very high
percentage if we mind the limits of mobile phone data: only
communications between users of the same mobile operator
and on a limited geographical area are recorded. The same
holds for links since the 44% of network ties are intra-clique.
This very first result confirms the presence of strongly cohesive
groups in mobile phone graphs and highlights the importance
of cliques in the people’s sociality expressed through on-phone
communications.

The distribution of clique size is in line with other studies
[9], [10], [12], too. As shown in Figure 1, very small cliques

(k = 3, 4) are predominant. They represent the reference
group from where an individual is particularly likely to seek
advice or support when needed since the corresponding links
represent very strong social relationships. In particular the
prevalence of triangles (k = 3) highlights that, also in call
graphs, the triadic closure process is very likely to happen and
act on the network structure. Fig.1 also indicates that larger
cliques are less widespread and they more likely represent
cohesive groups of interest than familiar or friendship tight
groups. No cliques larger than 9 was observed, however we
suppose that larger cliques could actually be observed by
combining phone data of other mobile operators.

2) Clique strength: One of the properties characterizing
cohesive subgroups is the higher frequency of ties among
their members compared to the remainder of the network. In
line with the previous works on cliques in call graph [9], we
compute the clique intensity int to assess the propensity of
communicating inside a clique. The clique intensity of a clique
ci is defined as the geometric mean of its link weights:

int(ci) =

0

@
Y

(i,j)2E(ci)

wi,j

1

A
1/|E(ci)|

(1)

where E(ci) denotes the links forming the clique ci. Fig.2
shows the cumulative distribution function (CDF) of the clique
intensity for the different values of the clique size. Globally,
we observe that members in the cliques are quite interactive
since the median is equal or greater than 20 interactions for
each distribution. Thus, on average, each pair in a clique has
communicated more than 20 times in two months. Moreover
the range of the intensity reduces as the clique size increases.
For instance, triangles include both scarcely (3 interactions
per pair on average) and very active (> 600 interactions per
pair) 3-ples, while the intensity of larger cliques lies within a
smaller range (25� 60 interactions per pair).

As shown in the inset boxplot of Fig.2, we make the
correlation between the clique size and the intensity more
explicit. The median intensity increases as the size increases,
specifically it doubles for the largest cliques. From the network
operator viewpoint these large cliques represent a strategic
target (marketing, premium services) due to their frequent
communications and their cohesiveness, while from a so-
ciological viewpoint the increasing trend of the intensity
suggests that maintaining large strongly cohesive groups can
be highly demanding in terms of communications and resource
consumption, thus advocating specific support by the cellular
network infrastructure.

3) Clique meeting places: Mobile call data have been ex-
ploited in recent years to extract the relation between people’s
sociality and mobility. Most of researches focused on dyads
and found out that people having a social relationship are more
likely to share spaces than unrelated ones, although all these
studies have been using a coarse spatial granularity in the
mile/km scale. In [13] we observed a weak correlation between
social and spatial communities as detected on the same dataset
we are using here with a finer granularity ensured by the dense

514
ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

3 5 4 6 7 8 9
Clique size

0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f d

ay
s

Cell
Area

(a)

0 5 10 15 20 25 30 35 40
Number of locations

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Cell
Area

(b)

0 50 100 150 200 250 300
Area

0

200

400

600

800

1000

1200

1400

1600

N
um

be
r o

f c
liq

ue
s

(c)

Fig. 3: a) Percentage of cliques that meet. b) Distribution of the number of locations (cell/area) per clique. c) Number of cliques meeting in each area.

placement of urban cell towers. Nonetheless, communities
remain quite loose organizations that only sporadically gather
in a place to perform common activities. By contrast, at
the network mesoscopic scale, cliques are more interesting
when a strong socio-spatial connotation is needed. We adopt
the following methodology to detect clique co-location. For
each clique we reconstruct the mobility trace of each user
starting from the CDRs, and we transform it as follows: we
convert each point, identified by triplet ht, cell, areai, in a
time interval assuming that if the user was in a cell at time
t she/he was in that cell from t � � until t + �. In this
paper we use � = 30 minutes in line with [4]. Each time
interval maintain the same location attributes (cell and areas)
of the trace point from which is generated. Then we merge
all the traces of the members of the clique, by retaining only
the time overlapping intervals that share the same location
attributes. In the following we consider two levels of clique co-
location, cell-tower and area. Cell co-location, i.e. the strictest
one, implies that, for all the retained time interval, the cell
attribute must be the same across all clique members, while
in case of area co-location this restriction is limited to the area
attribute.

Our findings show that 57.1% of cliques meet at least
once in the considered time frame, that is an impressively
high amount when considering the network sparsity. The
result confirms that there is a strong correlation between on-
phone interactions and real life encounters. The percentage
of meeting cliques per clique size is reported in Fig.3a. The
likelihood of having all clique members gathered in a place at
the same time decreases with larger cliques.

Fig. 4: City map with places of encounter.

4) Social urban spaces: In Fig.3b and Fig.3c the number of
locations visited by a clique and the number of cliques meeting
in each area are reported, respectively. A visual representation
can be seen in Fig.4 where most social urban spaces are
reported on the city map. Fig.3c and the map in Fig.4 highlight
the fact that some city locations are more favored that others
for clique encounters and therefore, indirectly, that cities have
places more social than others.

III. NFV-BASED ARCHITECTURE FOR CLAMS
The results of the CDR analysis described in the previous

section give a quantitative evidence of how social interactions
are performed in real life. We show that interactions are
often performed within cliques of individuals with strong
social/professional ties and that persons engaged in a clique
are also used to encounter each other in different locations
of a city, i.e. they are co-located. Interactions in a clique are
performed either by voice call or text message, or generate
data traffic when contents are shared. Traffic is generated when
the persons are spread in different locations of the city and
continues even when they are co-located.

In such a scenario, we can envision that the traffic load
created by the interactions within a clique is intended to grow
sharply with the growth of people sharing resource-draining
contents (for both leisure and work), playing distributed
games, or as soon as virtual reality will become a common
tool for social engagement. Mobile operators are already
designing the next generation cellular networks to achieve
higher standards of flexibility, scalability and performance
through virtualized architectures more akin to data centers.
This radical transformation will provide the connectivity and
computing infrastructure where all these emerging system
and networking issues can be solved. Similarly, cloud-based
operators will be urged to collaborate with network operators
to ensure the best quality of experience to their users, while
optimizing resource consumption and reducing time latencies
among interacting people. As shown by this paper, cliques are
social aggregations deserving this type of care by any cloud-
based service provider.

In this Section we provide the description of the architecture
exploiting the underway evolution of cellular networks to
properly support interactions among people belonging to a
clique, i.e. we provide the CLAMS supporting architecture.

515
ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Physical network

Micro-DC

L-orchestrator

VMs

Micro-DC

L-orchestrator

VMs

Core
Functions MME HSS Privacy Security

High-Level
Functions Proximity Caching

API

Resource	Manager

SDN	controller

Mobile Network Operator

Embedding	Virtual	Services
…

External	API

Cloud	Service	1

Cloud	Service	2

Cloud	Service	n

Internet

Global	Orchestrator

Micro-DC

L-orchestrator

VMs

Virtual network

SLA	
Manager

Service	
Composer	
Manager

…

Fig. 5: CLAMS architecture.

At the hearth of this idea lays the need to provide a frame-
work enabling network and cloud operators to negotiate the
service agreement, package it with the instantiation of the
cloud service and let the network operator to orchestrate the
placement of the embedded service in order to satisfy the
service requirements and optimize the resource utilization. The
architecture is coherent with the current evolution of mobile
networks to meet the 5G requirements of flexibility, scalability,
small delay and high bandwidth. Our approach has been
inspired by [14] where a new architecture, based on network
function virtualization (NFV) and software defined networking
(SDN), is presented without requiring control and data planes;
rather, they are tailored according to the requirements of
specific applications and devices. In line with the proposal, any
network function can be dynamically instantiated within the
cloud infrastructure to satisfy specific application and device
performance and relevant functional requirements. Relying
on this approach, our proposal enables CLAMS to be easily
deployed and managed in a virtualized environment.

A. Architecture overview

The Fig. 5 shows an overview of the architecture supporting
the CLAMS service. The network architecture combines both
Physical and Virtual elements. The physical network con-
tains all resources – computational, storage and networking
– providing connectivity to the users, and implements the
data plane protocols. The network nodes are compatible with
SDN standards, e.g. Openflow, and are all managed by a
SDN controller. Inside the physical network we place micro
data centers (Micro-DC), each handling one or more access
nodes and covering different geographical areas (preferably
overlapped to favor load balancing). The network operator
could decide to assign a Micro-DC to a single area, or Tracking

Area, or even to a single cell tower, for dealing with the traffic
burden and requirements that crowded locations of a city bring
together, like the case of the most social places we identified in
the previous section or whenever popular events are organized
in a city. Micro-DCs have computational and storage resources
managed by a local orchestrator (L-orchestrator) and they are
able to host virtual instances of network functions (e.g. MME,
HSS and security) as well as virtual packages embedding cloud
services and serving cliques of users, either spread in different
locations of the city or co-located.

On top of the physical network, the virtual network is
composed of different modules in charge of managing the
physical network and orchestrating the virtual services that,
in the perspective of this proposal, can be both internal and
external to mobile operator. The three modules at the edge
between physical and virtual networks have the responsibility
of managing physical resources. In particular, the Global
Orchestrator supervises the allocation and the deployment of
virtual resources, the Resource Manager collects and pro-
cesses all status information of the allocated resources, the
Embedding Virtual Services maps the virtual services on the
physical resources on the base of the information provided
by the resource manager. A set of Core Functions lays on
top of the edge modules and constitutes the template of the
current LTE core network functionalities. These templates will
be configured and combined in service packages according to
the global orchestration strategy during the deploying phase.
Core Functions may be combined with High-level Functions
to provide templates of added-value services, whose configu-
ration is still performed by the global orchestrator during the
deploying phase. Moreover, cloud service providers can seek
improved user’s quality of experience and service provisioning
by requiring to wrap cloud-specific functions in combination

516
ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

with both core and higher functions. The obtained service
package is thus embedded and deployed by means of the edge
services. For instance, a clique of CLAMS can be instantiated
in a package together with Proximity and Caching Higher
Functions, and with most of the Core Functions.

The cloud-based service provider can interact with the
mobile operator through the Service Composer Manager that
offers a sort of dashboard interface from where the cloud
provider is able to wrap and tailor services by simply leverag-
ing functions and services provided by the network operator.
The Service Level Agreement module, SLA manager, has been
added to regulate the usage of the infrastructure. Both Service
Composer Manager and SLA Manager are accessible through
a set of API and are needed to negotiate the service quality
and compose the cloud service to deploy inside the operator’s
network.

B. CLAMS services deployment operations
When the CLAMS service provider needs to wrap a clique-

specific package inside the operator’s network, it directly
accesses the service composer manager. The service-specific
requirements drive the selection of different cloud and network
functions and lead to create the template of the CLAMS
service that, if it satisfies the policies defined in the SLA
Manager, can be added to the repository – one per each cloud
service – of the deployable CLAMS services. While packaging
the cloud service, the requirements in terms of bandwidth,
delay, computational and storage capabilities are specified.

The cloud service provider can also specify a set of rules,
within the negotiated Service Level Agreement, to apply when
the service is deployed, e.g. to optimize content access and
interactions when clique members are co-located, or to char-
acterize the traffic among clique components. The activation of
a set of rules triggers the deployment phase, a message is sent
to the Embedding Virtual Service module that performs the
embedding of the required CLAMS service into the physical
network. The Global Orchestrator is then activated, operates
the deployment of the virtual instances and informs the SDN
controller about the required links. At this point, the CLAMS
service is ready to be used by users.

Although the described architecture enables to sink cloud
services into the depths of the operator’s core network, no
sensible information are, interestingly, shared between the two
operators; for example, the users’ location remains in the
domain of mobile operators, while the cloud service provider
is unaware of where the CLAMS and relevant users are placed.
Moreover, the rules to preserve privacy are managed by the
cloud operator and deployed accordingly.

IV. CONCLUDING REMARKS

In this work we show that on-phone interactions bring
together the formation of cohesive social groups of persons, or
cliques, and we give evidence of them. Moreover, we show that
people engaged in cliques are also very likely to meet each
other in different locations of the city space, thus enabling
the identification of the most social locations of the city, i.e.

the places where cliques are more likely to encounter. These
information are relevant whenever new socio-techno-driven
services have to be designed and deployed by either mobile or
cloud operators. By exploiting the underway radical transfor-
mation of the core network of mobile operators, we provide a
virtualized network architecture enabling cooperation between
mobile and cloud operators to embed cloud services into the
mobile network thus ensuring high user’s experience, reducing
resource consumption and minimizing communication latency.
All these first results are promising enough to induce us to
perform further investigations. In particular, a deep temporal
analysis of clique’s socio-spatial patterns is needed to better
design the architecture, while specific simulation should be
performed to quantify the benefits achieved by adding flexible
placement in Micro-DC by means of function virtualization.

REFERENCES

[1] Ericsson, “The real-time cloud,” White Paper, February 2014.
[2] A. Manzalini, R. Saracco, C. Buyukkoc, P. Chemouil, S. Kukli?ski,

A. Gladisch, M. Fukui, E. Dekel, D. Soldani, M. Ulema, W. Cerroni,
F. Callegati, G. Schembra, V. Riccobene, C. Mas Machuca, A. Galis,
and J. Mueller, “Software-defined networks for future networks and
services,” in White Paper based on the IEEE Workshop SDN4FNS.
IEEE, 2013.

[3] H. Wang, S. Chen, H. Xu, M. Ai, and Y. Shi, “Softnet: A software
defined decentralized mobile network architecture toward 5g,” Network,
IEEE, vol. 29, no. 2, pp. 16–22, March 2015.

[4] D. Wang, D. Pedreschi, C. Song, F. Giannotti, and A.-L.
Barabasi, “Human mobility, social ties, and link prediction,” in
Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’11. New
York, NY, USA: ACM, 2011, pp. 1100–1108. [Online]. Available:
http://doi.acm.org/10.1145/2020408.2020581

[5] European Telecommunication Standards Institute (ETSI), “Mobile-edge
computing - introductory technical white paper,” Technical Report,
September 2014.

[6] 3GPP TR 36.877, “LTE Device to Device Proximity Services; User
Equipment (UE) radio transmission and reception (Release 12),” Tech-
nical Report, 2014.

[7] S. Wasserman and K. Faust, Social network analysis: Methods and
applications. Cambridge university press, 1994, vol. 8.

[8] C. Quadri, M. Zignani, L. Capra, S. Gaito, and G. P. Rossi, “Multidi-
mensional human dynamics in mobile phone communications,” PLoS
ONE, vol. 9, no. 7, pp. 1–12, 07 2014.

[9] J.-P. Onnela, J. Saramki, J. Hyvnen, G. Szab, D. Lazer, K. Kaski,
J. Kertsz, and A.-L. Barabsi, “Structure and tie strengths in mobile
communication networks,” Proceedings of the National Academy of
Sciences, vol. 104, no. 18, pp. 7332–7336, 2007. [Online]. Available:
http://www.pnas.org/content/104/18/7332.abstract

[10] A. A. Nanavati, R. Singh, D. Chakraborty, K. Dasgupta, S. Mukherjea,
G. Das, S. Gurumurthy, and A. Joshi, “Analyzing the structure and evo-
lution of massive telecom graphs,” Knowledge and Data Engineering,
IEEE Transactions on, vol. 20, no. 5, pp. 703–718, 2008.

[11] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time complex-
ity for generating all maximal cliques and computational experiments,”
Theoretical Computer Science, vol. 363, no. 1, pp. 28 – 42, 2006.

[12] M.-X. Li, W.-J. Xie, Z.-Q. Jiang, and W.-X. Zhou, “Communication
cliques in mobile phone calling networks,” Journal of Statistical Me-
chanics: Theory and Experiment, vol. 2015, no. 11, p. P11007, 2015.

[13] M. Zignani, C. Quadri, S. Gaito, and G. P. Rossi, “Calling, texting,
and moving: multidimensional interactions of mobile phone users,”
Computational Social Networks, vol. 2, no. 1, pp. 1–24, 2015.

[14] R. Trivisonno, R. Guerzoni, I. Vaishnavi, and D. Soldani, “Sdn-
based 5g mobile networks: architecture, functions, procedures and
backward compatibility,” Transactions on Emerging Telecommunications
Technologies, vol. 26, no. 1, pp. 82–92, 2015. [Online]. Available:
http://dx.doi.org/10.1002/ett.2915

517
ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

On the Technical and Social Structure of
Community Networks

Leonardo Maccari
Department of Information Engineering and Computer Science,

University of Trento, Italy
{leonardo.maccari}@disi.unitn.it

Abstract—A Community Network is a bottom-up network

created by a community of people with the goal of building a self-

owned, self-managed communication infrastructure. Community

Networks are blooming, they range from small ones (tens of

nodes) to gigantic ones (tens of thousands of nodes), they are

made primarily of wireless links but in some cases they mix

wired and wireless technologies. People running a Community

Network wish to have more independence and more control on

the infrastructure compared to what commercial ISPs offer. Such

networks can not be understood without studying the interaction

between the social and the technical aspects, since both layers are

tightly intertwined. This paper will show some properties of three

community networks, indicating that they have some structural

peculiarities. It will also show a socio-technical analysis using data

coming from the public mailing list of one of the community, in

order to highlight issues that the community needs to address to

guarantee its sustainable growth.

I. INTRODUCTION

A Community Network (CN) is a communication network
set-up by a community of people with a bottom-up, partic-
ipatory approach. It is primarily a wireless mesh network,
extended in some cases with wired connections. While the
concept of CN is not new [1] their development in the last
period was remarkable, and today, CN represent an extremely
interesting and timely research topic due to (among others)
three factors1: The first is that recent standards (such as
IEEE 802.11n/ac) make it possible to realize high-capacity
wireless links that can reach a length up to tens of km. This
allows to create networks that cover entire cities with excellent
performances. Thus, the scalability and the protocols for mesh
networks that were of high interest in the 2000s, today can be
finally applied to real networks made of hundreds of nodes.

The second factor is that CNs have shown to be an effective
way to bring connectivity in underserved areas, so they are
a valuable instrument against digital divide. An outstanding
case is the Guifi.net CN that was awarded by the European

This work was financed partially by the University of Trento under the
grant “Wireless Community Net-works: A Novel Techno-Legal Approach”
—Strategic Projects 2014, and partially by the European Commission, H2020-
ICT-2015 Programme, Grant Number 688768 ’netCommons’ (Network Infras-
tructure as Commons).

1Recently, various large research projects focussed on CNs: see the CON-
FINE, CLOMMUNITY, P2PValue and netCommons projects, respectively at
www.confine-project.eu, www.clommunity-project.eu, www.p2pvalue.eu and
www.netcommons.eu

Commission with the 2015 European Broadband Awards2.
The third factor is that CNs are unique environments to

experiment inter-disciplinary research, since they can be better
interpreted combining different research methodologies. In
a CN each network node corresponds to a person, a fam-
ily, an association or a small business. The management of
the network is collective so the social dynamics inside the
community influence the technical choices about the network
itself. It is crucial to understand the motivations that drive the
communities and the social norms that regulate them if one
wants to propose solutions that are not only technically sound
but also compatible with the open and participatory nature of a
CN. Such a mix of social and technical aspects makes a CN an
example of the emerging paradigm of the so-called “Internet
of People” (IoP), because the whole network infrastructure is
shaped by the behaviours of the individuals and their group
decisions. It is thus very interesting to understand if this
original organization leads to networks with different features
compared to other networks that have been already studied.

This paper contributes to this discussion and will analyse the
data available from three community networks: the FunkFeuer
network in Wien and Graz, and the ninux.org network in Rome
(abbreviated respectively as FFWien, FFGraz, ninux). The goal
of the paper is to answer two questions:

• Is the evolution of the network graph different compared
to other communication networks, such as scale-free
networks?

• Given that the goal of the community is to build a
distributed network with a de-centralized management,
is the result close to the expectations of the community?

II. MOTIVATIONS, DATA-SET, BACKGROUND

There is a large body of works that suggest that many
network graphs, including the Internet, show a scale-free
behaviour, that is, the distribution of the degree of the nodes
follows a power-law function. A scale-free network presents
a small number of densely connected hubs that strongly
influence the behaviour of a communication network. Hubs
guarantee that the average shortest path grows slowly with the
number of nodes, which is a positive factor because it keeps
the round-trip-time low. However, hubs are enormously more
important than other nodes, which is a negative factor, because

2see https://ec.europa.eu/digital-agenda/en/news/five-projects-got-first-ever-
european-broadband-awardISBN 978-3-901882-83-8 c� 2016 IFIP

518

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

they introduce points of failures. This paper uses data from the
FFWien and FFGraz network to verify if this pattern can be
observed also in CNs.

Another level of interpretation is given by the socio-
technical analysis of ninux, that gives insights on the sus-
tainability of the network itself. Recent social analysis [2]
have shown that community networks have strong political
motivations: the construction of an independent, robust, decen-
tralized network infrastructure. Ninux is not an exception [3]:
Ninux participants have a critical opinion of ISPs and service
providers motivated by the recent discussions about neutrality,
privacy and forced disconnections. They identify the root cause
of these problems in the centralization (both technical and
administrative) of the networks and of the services, and for this
reason they build their own decentralized network, managed
with a peer-to-peer approach. Peer-to-peer organization is a
key feature of ninux: since the mesh network works without
introducing hierarchies and layers, the community tries to
reflect this approach also in the social organization. Thus, the
ninux community did not create a formal association, it does
not assign formal responsibilities and does not have “roles”
assigned to people. The discussions in the community are
primarily carried on in the mailing lists and in weekly face-
to-face meetings, and decisions are taken with a consensus-
based method. This approach is shared with other CNs and it
is original in the communication panorama.

It is legitimate to ask what is the degree of success of
ninux and its overall sustainability. To answer, it is crucial
to remember that the network exists because the participants,
through their social interactions, cooperate to reach a common
goal so the social networking layer is as important as the
technological one. If the network is not technically sound,
it will fail in bringing services to the people, but also if the
community is not participated enough, there will be a lack of
the social capital needed to maintain the infrastructure. The
key observation is that in a CN the social network and the
network infrastructure can be linked, since every node belongs
to a person. The two layers of analysis can be explored with
the same instruments to understand if there are cross-layer
single points of failure that can mine the future growth of the
network.

A. The data-set

The three networks use OLSR (Optimized Link-State Rout-
ing), a link-state routing protocol that makes it possible for
each node to be aware of the whole network topology. The
communities publish the network topology dumped by the
OLSRd daemon, that can be used to analyse the network
evolution. The topology recorded by the routing daemon can
be misleading: in some cases a number of devices placed in
the same physical location are attached to a wired switch and
each of them runs a separate instance of the routing protocol.
For OLSR they are different nodes but, in practice, they are
not. To merge these cliques, another source of information
is needed. More details about the networks and the merging
technique are out of the scope of this paper, the interested

FFWien FFGraz ninux
maximum recorded nodes 235 126 140
maximum recorded links 450 181 158

time series available yes yes limited
first dump 2013-07-27 2007-03-31 2014-1-14
last dump 2014-02-15 2016-02-21 2014-1-20

dump interval weekly monthly every 5 min
node ownership no no yes

mailing list no no yes

TABLE I: The summary of the available data

reader can find details in the published source code3 and in
previous works [4][5].

The FunkFeuer networks publish a long history of dumps,
while for Ninux only the current state is available, plus data
collected in a week-long monitoring realized in 2014 [5]. Tab. I
reports a summary of the data used for this paper. In the rest
of the paper the time based evolution of the network always
refers to the FreiFunk networks, instead when the analysis is
done on a single snapshot, the sample with the largest number
of nodes for each network in considered.

For the ninux network, two other sources of information
were accessed. The first is a database containing the mapping
between the physical node and the ID of a person that owns
it, the second is the archive of the mailing lists of the ninux
community of Rome for the year 2014.

B. Related Works
CNs have been the subject of a series of research works in

the past years that had the goal of analysing their topological
features [6][4][5][7] their routing solutions [8][9] and their
social and management aspects [10][11]. This paper performs
a different analysis based on two original elements, the first
is the analysis of the time-evolution of the networks, which
helps understanding what was, and potentially what will be
the evolution of the network. The second is the mixed social
and technological analysis aimed at identifying single points
of failure in the techno-social organization of the network.

III. THE NETWORK GRAPHS AND THEIR EVOLUTION

Fig. 1 Fig. 2 and Fig. 3 show the relative frequency of
the degree distribution for the three networks, and the best-fit
with a power-law function. A power-law degree distribution is
normally observable in the central part of a distribution or in
the right tail. In this case the size of the networks (hundreds
of nodes, and maximum degree that ranges from 11 to 29)
makes it statistically hard to identify a trend.

An alternative approach is to investigate if the network
evolution follows a preferential attachment model, which
would lead to a more evident scale-free behaviour with the
growth of the network. The preferential attachment model
describes the way in which new nodes are added to the
network, and the entry points they connect to. In such model
the rate ⇧(k) with which a node with k links acquires new
links is a monotonically increasing function of k. Following a
preferential attachment model is not a necessary condition to

3accessible via Git at github.com:leonardomaccari/

519

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 0.001

 0.01

 0.1

 1

 1 10

Re
la

tiv
e

Fr
eq

ue
nc

y

Degree

Real degree
Best PL fit

Fig. 1: The degree distribution for FFWien, and the best power-
law fit x�↵, ↵ = 1.13.

 0.001

 0.01

 0.1

 1

 1 10

Re
la

tiv
e

Fr
eq

ue
nc

y

Degree

Nodes degree
Best PL fit

Fig. 2: The degree distribution for FFGraz, and the best power-
law fit x�↵, ↵ = 1.16.

have a scale-free network, however since it has been shown
that it is at the base of several different kinds of scale-free
networks (the Internet graph for instance, has been shown
to have ⇧(k) / k so that the probability of acquiring now
links is proportional to the current number of links of a node
[12]) measuring the relationship between ⇧(k) and k can give
insights on the future evolution of the network. This behaviour
is easier to test on this data-set because the total number
of new nodes that joined the network during the observed
period is much higher than the number of nodes at the end
of the interval, since many nodes join the network for a

 0.001

 0.01

 0.1

 1

 1 10

Re
la

tiv
e

Fr
eq

ue
nc

y

Degree

Real degree
Best PL fit

Fig. 3: The degree distribution for ninux, and the best power-
law fit x�↵, ↵ = 1.55.

 0.1

 1

 1 10

k(
k
)

Degree

Graz-2007
Graz-2008
Graz-2009
Graz-2010
Graz-2011
Graz-2012
Graz-2013
Graz-2014
Graz-2015
Wien-2014

Fig. 4: The value of k(k) in the FFGraz and FFWien networks,
separately computed per each year

0

0.05

0.1

0.15

0.2

0.25

0.3

0 5 10 15 20 25 30

⇧
(k
)

Degree

Graz-2007
Graz-2008
Graz-2009
Graz-2010
Graz-2011
Graz-2012
Graz-2013
Graz-2014
Graz-2015
Wien-2014

Fig. 5: The value of ⇧(k) in the FFGraz and FFWien networks,
separately computed per each year

limited period of time. To test the hypothesis of the preferential
attachment model, for each year of the available data, for every
new node added to the network the degree of the entry node
was recorded and collected in a histogram that approximates
⇧(k) (each node is counted only once at its first entry). To
smooth fluctuations, as in [12], the cumulative function k(k)
is considered:

k(k) =
Z

k

0
⇧(x)dx (1)

In case ⇧(k) / k then k(k) / 2, which reported in a log-log
graph should be a straight line of slope 2.

Fig. 4 report k(k) for various years in the two FunkFeuer
network and show clearly that there is no linear trend. Indeed,
Fig. 5 confirms that for none of the years under analysis ⇧(k)
grows with k.

These results show that the two networks for which data
is available (for the ninux network the monitoring period is
too short) the growth model does not support the hypothesis of
preferential attachment. As such, if the network keeps growing
with the same model, coupled with the factual evidences
explained in the next section, we do not expect the emergence
of a scale-free behaviour.

520

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

A. Interpretation of the results
Two features that influence the growth of a CN are: i) the

limited range of wireless links ii) an upper bound on the
number of incoming links.

Limited range: Wireless links are limited to a maximum
length of about tens of kilometers and need to have line-of-
sigh between the endpoints, while wired links do not have
this limitation. Thus, a new node entering the network can not
connect to any other node, and an existent node can acquire
new links only from nodes placed at a distance smaller than
the maximum range (which is not a fixed value and depends on
a number of factors, such as the antenna type, the transmission
power etc.). If the network grows in an urban area maintaining
a constant density, hubs will be formed less likely than in a
scale-free network.

Limited maximum node degree: A wireless node can be
equipped with several physical radios, but more radios require
more maintenance. Mounting tens of radios, cabling them,
powering them, configuring them, is costly. While wireless
ISPs use trellis and pay for the maintenance, a single person
typically does not have the physical space, the resources and
the time to install and maintain such a complex infrastructure.
Thus, node degree can not grow indefinitely.

This result confirms and extends the analysis carried on
portions of the Guifi network [7] that observed that some
portions of Guifi did not show a scale-free behaviour. The
authors suggest that this is true for networks that cover up to
a certain geographical area and it is influenced by the degree
of ”planning” in the evolution of the network (planned or
completely spontaneous). Another interpretation could be that
Guifi, contrarily to the networks analysed in this paper is a
real cooperative ISP, thus its mission is to bring Internet to the
people. This probably leads to shorten as much as possible the
path to the closest gateway, and a quasi-hierarchical network
design is more suitable for this task. Instead, networks that
have local connectivity as a goal may follow a different
evolution path; more research is needed to formulate a sound
interpretation.

IV. SOCIO-TECHNICAL ANALYSIS OF NINUX

The following data is taken from network dumps collected
in 2014 and extends the publication [5], the next two subsec-
tions expose the results and the third one jointly comments
them. Direct interaction with the community was necessary to
give a qualitative interaction of the quantitative results.

A. The Ownership of the ninux network
Fig. 6 presents the number of nodes possessed by the top

20 ninux participants, ordered by nodes owned, referring to
a snapshot of the network in which the maximum number of
nodes were present (140). Over a total of 78 owners, one user
possess 17% of the nodes and the top five people own 31% of
the nodes, top 13 people own roughly 50% of the nodes, 61
people own just one node. If we exclude the first individual
(that we call P

top

), the distribution is not particularly skewed,
reflecting the fact that the number of owned nodes is generally
limited by the number of physical locations in the city to which

 0

 5

 10

 15

 20

 25

 2 4 6 8 10 12 14 16 18 20

Ow
ne

d
no

de
s

Person

Fig. 6: The number of nodes per user in the ninux network,
top 20 users.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 2 4 6 8 10 12 14 16 18 20

Pe
rs

on
 N

et
wo

rk
 C

en
tra

lit
y

Person

Fig. 7: The “person network centrality” for the participants to
the ninux network, top 20 users.

the person has access (home, workplace, houses of relatives
etc. . .). P

top

owns 24 nodes and is not the owner of all the
locations where the nodes are placed, he is simply a technically
skilled person that very often offers his help to set up the
network for newcomers. As a result, he appears to be the owner
and the technical manager of the nodes.

Fig. 7 shows the group betweenness centrality computed
on all the nodes owned by the same person. The group
betweenness centrality is the fraction of shortest paths that pass
through at least one node in the group. Formally, if the network
graph is a weighted graph G(V,E), and P

i,j

= {v
i

. . . v

j

} is
the set of nodes that constitute the shortest path from node
v

i

to node v

j

then the group centrality of a set of nodes
S = {v1 . . . vn} ⇢ V is given by:

B(S) =
||{P

i,j

i, j 2 (1 . . . |V |) | S \ P

i,j

6= ;}||
||{P

i,j

i, j 2 (1 . . . |V |)}|| (2)

where ||·|| is the size of a set. The centrality metric is com-
puted running Djikstra’s algorithm on the weighted network
topology, and, without information on the traffic matrix is the
best estimation of the number of traffic flows that a group
of nodes can intercept. Fig. 7 shows the “person network
centrality”, the ranked group centrality of the nodes owned
by the same person and tells that P

top

can potentially control
almost 90% of the traffic flows.

Figs. 6 and 7 outline a peculiar feature of a CN. As long as
people are not allowed to own nodes out of their properties,

521

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000

R(
i)

ith person

Fig. 8: The fraction of answered emails on the total in the
mailing list.

the Wi-Fi range limitation does not allow a single person to
be too central, and thus too critical for the network economy.
This questions the peer-to-peer nature of the network in the
case in which it is participated not only by individuals but
also by associations, small business etc. that can be physically
located in several places. In that case, the community must
monitor the importance of those entities in order to avoid that
any of them could become a single point of failure for the
CN, as P

top

is for ninux.

B. The ninux mailing list
The analysis of the mailing list messages helps understand-

ing who are the individuals that lead the discussion inside
the community. Two metrics defined in the literature have
been chosen for this task [13]. The first is the normalized
number of answered email per user: given a number X of
total messages that reply to some other message, and being
x

i

the number of replies to a message sent by the ith person,
R(i) = xi

X

is the relevance metric shown in Fig. 8. This is
a basic metric that assumes that people that receive a high
number of replies are able to generate interesting discussion
topics, thus are considered important in the community.

Fig. 8 shows that the relevance to the mailing list is not
equally distributed among the participants, a very small num-
ber of people lead the discussion. The cumulative distribution
in Fig. 9 shows that as less as 6 people receive 50% of the
overall answers.

The second metric is the centrality of a person in the mailing
list social graph. The social graph is an undirected graph
G(V,E) in which every node v

i

is a person in the mailing list
and there is an unweighted edge between two nodes v

i

, v
j

if
person v

j

ever answered to person v

i

(or vice-versa). Mailing
list centrality is computed on the social graph for v

i

as in
Eq. (2) when S = {v

i

}. Betweenness centrality on mailing
lists is used to understand who is able to make other people
join the same discussion, so that he/she can facilitate the flow
of information in the community. Again, Fig. 10 shows that
there is a small number of people connecting all the other
participants, and one in particular whose centrality is at least
the double of the others.

Finally, Fig. 11 reports the percentage overlap on the two
betweenness rankings from Fig. 7 and Fig. 10. The percentage

 0.2

 0.3

 0.4

 0.5
 0.6
 0.7
 0.8
 0.9

 1

 1 2 3 4 5 6 7 8 10 100

Cu
m

ul
at

iv
e

Re
le

va
nc

e
M

et
ric

Person

Fig. 9: The cumulative distribution of answered emails on the
total in the mailing list.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 4 6 8 10 12 14 16 18 20

Be
tw

en
ne

ss
 C

en
tra

lit
y

Person

Fig. 10: The ranked centrality of the top 20 participants in the
ninux mailing list.

overlap gives a measure of the correlation between the two
rankings. Given a family of sets B

i

and the respective ordering
functions o

i

(v) on their elements, we call B

k

i

the first k

element of B
i

ordered by o

i

(v): Bk

i

= {v|v 2 B

i

, o

i

(v) k}.
Given two sets B1 and B2 the percentage overlap p(k) is a
function of k that shows the percentage of elements present
in both sets when considering only the first k elements:

p(k) =
100

k

⇥ ||Bk

1 \B

k

2 || (3)

Fig. 11 shows two fundamental points: the first is that P
top

,
the person that owns more nodes and has the highest person
network centrality is the same one that has the highest mailing
list centrality. The second is that excluding the top person the
correlation is not extremely strong, p(10) = 20% and p(20) =
35%.

C. Interpretation of the results
The distribution of the ownership, and thus the person

centrality shows that, albeit the goal of the ninux community is
to build a both technically and socially decentralized network,
the results diverge from the goal. In 2014 one person in ninux
managed a sufficient number of nodes to be able to control
the network, and to represent a single point of failure. The
same person, given his technical skills was a central person in
the social network of the community, so he had an influential
voice in the discussions. Indeed, direct discussion engaged

522

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 20 30 40 50 60 70

p(
k)

k

Fig. 11: The percentage overlap metric computed on the
ranked mailing-list and group node centrality.

with people in the community revealed that this person left the
community in 2015 and the nodes he managed started to fail
and disconnect entire areas. At the time of writing the network
is made of 87 nodes, 53 less than at its maximum expansion.
In conclusion, the approach of the ninux community for the
decentralization of the technical and social network was not
successful since the network had a single point of failure
represented by P

top

.
However the situation changes excluding P

top

from the
analysis. Fig. 6 shows that the maximum number of owned
nodes is generally capped by the amount of physical locations
that the users have access to, which intrinsically limits the
chances of some individuals to take-over the network. Also,
even if the social network metrics show that the relevance of
the participants to the mailing list is not evenly distributed
(this is indeed pretty common in many mailing list [14]) the
correlation between the most relevant node owners and the
most relevant members of the mailing list is low. This means
that people participate to the community in diverse ways, with
the construction of new nodes or through rising discussion
topics.

V. CONCLUSIONS

This paper analyses the evolution of two large CNs and
produces a socio-technical analysis of a third one. The analysis
shows that wireless network with a bottom-up, peer-to-peer
organization do not match a preferential attachment growth
model. The emergence of hubs is reduced so the topology
is less dependent on hubs compared to a scale-free network.
More research, and time, is needed to tell if CNs will represent
with their growth a different network model, or they will
converge to some other known models, and what are the effects
on the applications that a CN can sustain.

If the community networkers want to pursue their goal of
building decentralized socio-technical infrastructure they will
have to monitor the social interactions in the community, to
verify that no single person or small group of people can
take over the network. Metrics such as network centrality and
person centrality, together with social network analysis as used
in this paper represent a starting point to develop monitoring
instruments that will give to the community the “pulse” of
the network and decide if the community is following a

direction that best represents the community’s collective goal.
This is particularly important when the network evolves and it
becomes the interconnection not only between private people
but also between for-profit activities, as it happens in the Guifi
network. In that case, the CN must monitor that a single entity
does not grow large enough or central enough to become the
effective “owner” of the network, reducing the control power
of the community on the infrastructure.

REFERENCES

[1] S. Jain and D. Agrawal, “Wireless community networks,” Computer,
vol. 36, no. 8, pp. 90–92, 2003.

[2] J. Sderberg, “Free Space Optics in the Czech Wireless Community:
Shedding Some Light on the Role of Normativity for User-Initiated
Innovations,” Science, Technology & Human Values, vol. 36, no. 4, pp.
423–450, Jan. 2011.

[3] S. Crabu, F. Giovanella, L. Maccari, and P. Magaudda, “A Transdis-
ciplinary Gaze on Wireless Community Networks,” TECNOSCIENZA:
Italian Journal of Science & Technology Studies, vol. 6, no. 2, pp. 113–
134, Jan. 2016.

[4] L. Maccari, “An analysis of the Ninux wireless community network,”
in The Second International Workshop on Community Networks and
Bottom-up-Broadband (CNBuB), 2013.

[5] L. Maccari and R. L. Cigno, “A week in the life of three large wireless
community networks,” Ad Hoc Networks, vol. 24, Part B, no. 0, pp. 175
– 190, 2015.

[6] L. Cerda-Alabern, “On the topology characterization of Guifi.net,” in
IEEE 8th International Conference on Wireless and Mobile Computing,
Networking and Communications (WiMob), Oct. 2012.

[7] D. Vega, R. Baig, L. Cerd-Alabern, E. Medina, R. Meseguer, and
L. Navarro, “A technological overview of the guifi.net community
network,” Computer Networks, vol. 93, pp. 260–278, 2015.

[8] C. Barz, C. Fuchs, J. Kirchhoff, J. Niewiejska, and H. Rogge, “OL-
SRv2 for Community Networks: Using Directional Airtime Metric with
external radios,” Computer Networks, vol. 93, Part 2, pp. 324–341, Dec.
2015.

[9] L. Cerda-Alabern, A. Neumann, and L. Maccari, “Experimental Eval-
uation of BMX6 Routing Metrics in a 802.11an Wireless-Community
Mesh Network,” in 3rd International Conference on Future Internet of
Things and Cloud (FiCloud), Aug. 2015.

[10] R. Baig, R. Roca, L. Navarro, and F. Freitag, “Guifi.Net: A Network
Infrastructure Commons,” in Proceedings of the Seventh International
Conference on Information and Communication Technologies and De-
velopment ACMDev. ACM, 2015.

[11] J. Kos, M. Milutinovic, and L. Cehovin, “nodewatcher: A substrate for
growing your own community network,” Computer Networks, vol. 93,
pp. 279–296, 2015.

[12] H. Jeong, Z. Nda, and A.-L. Barabsi, “Measuring preferential attachment
in evolving networks,” EPL (Europhysics Letters), vol. 61, no. 4, p. 567,
2003.

[13] C. Bird, A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan, “Min-
ing Email Social Networks,” in Proceedings of the 2006 International
Workshop on Mining Software Repositories. ACM, 2006.

[14] S. L. Toral, M. R. Martnez-Torres, and F. Barrero, “Analysis of virtual
communities supporting OSS projects using social network analysis,”
Information and Software Technology, vol. 52, no. 3, pp. 296–303, Mar.
2010.

523

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

A flexible workload model based on
roles of interactive users in social networks

Pablo Nicolás Terevinto, Ana Pont, José A. Gil and Josep Domenech
Universitat Politècnica de València (Spain)

Email: {pabtecha,jdomenech}@upvnet.upv.es, {apont,jagil}@disca.upv.es

Abstract—Uses, applications and functionalities of Online So-
cial Network (OSN) are continuously changing and adapting to
the new habits of users. The massive adoption of smart mobile
devices and the appearance of new roles such as community
managers have had a strong influence in the wide use of these
networks among all sectors of population regardless of age,
gender or socio-economic status. Consequently, the character-
ization and modeling of OSN user’s behavior is a difficult task
because their habits and activities change rapidly. This fact
motivates us to propose a new OSN user’s workload model
based on the active roles that they play at any instant when
navigating the application. Role-based workload is a flexible
way to have a fresh characterization of users because they can
adopt new roles, stop using others, or simply modify the way
they change between them. Roles and their interrelations can
be easily defined in our workload model and generator thus
providing a useful tool for fine grain performance evaluation
and testability studies. 1

Index Terms—Online Social Network, User characterization,
workload, user role.

1. Introduction

Social networking activity is a current global phe-
nomenon that has surpassed all expectations. Statistics [1]
show that more than 70% of all internet users are now active
on social media, and experts project the number of social
network users grow 12.5% each year. But maybe the most
interesting point in this growth is the increasing presence of
social networking in business and other activities different
to leisure and entertainment, like for instance education,
research and more timidly for e-governance.

But despite its penetration and massive use, the technical
paradox in this kind of applications is the lack of tools,
workload models and testbeds for performance evaluation
and testability studies. This fact makes difficult, among
others, provisioning hardware and software resources in an
efficient and appropriate way according to the functional
use and workload previsions. As with any other web-based
application, the complexity of characterizing a wide spec-
trum of user’s behaviors and the continuous emergence of

1. This work has been partially supported by the Spanish Ministry
Economy and Competitiveness under grant TIN-2013-43913-R

applications that change user’s habits makes it extremely
difficult to get representative workloads for these important
studies. This fact is even more relevant due to the intrinsic
difficulty for many research communities to get real traces
which are usually owned and kept by big companies.

In a previous work [2], we proposed the Dynamic Web
Workload Model (DWEB). This model makes it possible to
characterize and reproduce the behavior of web users which
is usually a difficult task due to the continuous interaction
between them and the offered content. To do this, DWEB
introduced two concepts that permit to consider different
levels of user interactions. First, the user navigation concept
allows us to represent dynamic reactions of users when
they interact with web content and services. These reactions
modify the user’s response according to the content provided
by the OSN server or other parameters, as for instance,
response time or quality of service. This feature permits
to create interactive users. Second, the user roles concept
defines the different behaviors of users according to the char-
acteristics of the visited site, their personal goals and their
active involvement. By implementing these two concepts in
our workload generator we can mimic the behavior of the
actual web users’ community.

Departing from the versatility offered by DWEB, this
paper proposes a workload model based on roles repre-
senting a variety of OSN user’s profiles. In this paper we
propose a workload model based on roles. We present three
different user’s roles which have been currently identified
in different OSN (Facebook, Twitter, LinkedIn, MySpace,
Pinterest, Tuenti). These roles are representative of the most
common user’s profiles in these kind of networks and can
be easily identified in one degree or another in all of them.
Nevertheless, the activities that can be performed in each
role can be different according to the services offered by
each application. User’s roles define a level of abstraction
that allows us to create a flexible model which can be
adapted to any kind of OSN by modifying the activities
performed by each role.

In summary, the main contributions of this work are:
i) a flexible and adaptable OSN workload model based on
the main current user’s roles, ii) a generation of a dynamic
workload that accurately reproduces interactive OSN user.

The remainder of this paper is organized as follows: in
Section 2 we present the roles of our model and describe
the activities of an OSN which are later used to create the

ISBN 978-3-901882-83-8 c� 2016 IFIP

524

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Figure 1. Navigational graph based on the OSN interface.

workload model. Then, the model is used to generate the
workload as Section 3 describes. Later in Section 4 we
provide a comparison of our work with the most related
works that can be found in the open literature. Finally, we
provide the main conclusions of our work and give some
ideas about our future work.

2. Workload modeling based on user roles

In this section we present a workload model which is
based on the concept of role implemented in DWEB. For
this, we present the typical roles identified and an example
of this model for an specific OSN. First of all, for sake of
clarity, we define the nomenclature used in this work.

• Role: defines the user’s behavior while interacts with
the application. Roles define the active involvement
of users and produce a set of sequences of a activities
that can be done in parallel and/or sequentially by
each user.

• Activity: is the sequence of actions performed by
the user aimed at achieve a simple goal. Examples
of activities are: uploading a file, posting a blog
or commenting a photo. Many current OSN offer
similar activities, but the way they are made can
differ in each one. This is because the sequence of
actions involved is different.

• Action: each of the interactions between the user
agent and the application (OSN). They are originated
from the interrelation between user and the applica-
tion’s interface. Actions can trigger the request of
a new page or the change of state of the current

one. However, not all user’s interactions produce
an action. For instance, filling up a form may not
produce an action, while sending it does. Actions are
intrinsic to the application. Between the successive
actions of an activity usually it elapses time, which is
the latency between an action and the user’s reaction,
as a consequence of the previous ones (think time).

2.1. User’s roles definition

An accurate definition of roles is important to later
develop a flexible workload model that: i) can represent
the activities done by users when they use this type of
applications, ii) permits to conduct fine grain evaluation
studies. The user roles that we propose in this paper are
representative of the current behaviors of any individual
when they participate in a OSN. Those roles are: user,
generator user, and reader user. These profiles have been
also identified in [3] after analyzing real traces from a
blogsphere. This observation is also consistent with the user
characterization presented in [4] and [5]. And finally, some
internet monitoring websites [6] and [7] provide similar
inputs about OSN user’s active participation.

• Social user: this type of users browse the OSN,
but also interact with other users and generate new
content in the OSN.

• Generator user: content generator users are those
whose main purpose is to update and upload new
content to the social network and respond to other
user’s comments and messages. This is the typical

525

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

role for a social media manager or community man-
ager for example.

• Reader user: users which generally log in to check
the updates in the OSN. Reader user do not interact
with other users or comment any content. They only
browse the OSN.

2.2. Activities for an OSN

Although roles are quite independent from the type of
OSN, the activities of each role are not. The activities and
the actions that implement the activities are dependent of the
services offered by the OSN. For this reason and in order to
present an example model, an online social network powered
by the open source social networking engine Elgg was used.
The Elgg 1.8 version was selected with the plugins for the
most common activities which users usually undertake while
navigating OSN.

Figure 2. Grouping several actions into the activity upload photo

Our first step was an analysis of the OSN interface and
the possible transitions between the different pages. Here
we identified the starting point of the web site, the Home
page. It provides a timeline with the latest visible changes
occurred on the site and therefore, offers direct links to
specific content such as photos, files, posts, albums, groups
or members. Also, the OSN interface has fixed links to
each of the types of content mentioned before. This analysis
resulted in the navigational graph shown in Figure 1 where
each square node represents a single page of the OSN. This
graph shows the transitions present in each of the OSN web
pages without considering the transitions between different
types of content which are always present in every page.
This omission aims to reduce the complexity of the graph.
Although those transitions have been omitted in the figure,
they will be taken into consideration in the following steps
of the modeling process.

Using this graph we identify the activities that a user
can perform in our OSN.

As an example, Figure 2 shows how we have grouped
the different necessary actions to upload a photo to the
social network into the activity upload photo. Each square
node represents a web page while activities are represented
with circles. Besides the transitions between pages, an ac-
tivity also includes actions which provide interactivity. For
instance, after each transition we can modify the user’s
response time or the length of the answer according to

Figure 3. Navigation graph for a social user.

the amount of data of the server response. Responses with
more information usually require more time for the user to
process them. Quality of service could also affect an action
because the user may decide to stop browsing after several
unsuccessful connections to the server or due to high latency.
These factors can influence the probabilities of transition,
changing the activity of closing the session.

2.3. Linking activities to user’s roles

At this point, we took into consideration the definitions
of roles aforementioned and selected those activities which
better suit each role. Additionally, the user’s roles are finally
defined by giving probabilities to the transition between
activities

Social role model. A social user spends most of the
time browsing the social network, but eventually interacts
with other users or generates new content to share with the
rest of users.

In our model, we considered the results presented in [4]
stating that: i) 92% of the total amount of workload consist
in browsing content, ii) users tend to repeat the same activity
around 67% of the time, iii) users tend to do related activities
instead of doing unrelated ones.

The navigational graph for the social role is the result of
grouping all the activities described in the previous section.
Figure 3 represents the initial Home page and the transitions
to the different activities. For sake of clarity, the activities
not accessible from the starting page where added to the
graph but the transitions between them have been omitted.
The complete representation of transitions is presented in
Table 1. It represents the transitions between activities and
the probabilities for each transition with values represented
in percentage. These values and the ones presented in other
tables are merely an example, although they are enough
consistent with users navigations. Most of the time spent
is browsing the site and mainly repeating the same activity.
Also, changes between activities tend to occur to related
activities.

Generator role model. Content generator users only
perform activities which produce new content or modify

526

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE 1. PROBABILITIES (%) OF TRANSITIONS BETWEEN ACTIVITIES FOR A SOCIAL ROLE.

H
om

e

G
et

po
st

G
et

fil
e

G
et

ph
ot

o

G
et

gr
ou

p

G
et

to
pi

c

N
ew

po
st

U
pl

oa
d

fil
e

U
pl

oa
d

ph
ot

o

C
re

at
e

gr
ou

p

A
dd

to
pi

c

Ed
it

po
st

Ed
it

fil
e

Ed
it

ph
ot

o

Ed
it

to
pi

c

C
om

m
en

t

R
ea

d
m

es
sa

ge

Se
nd

m
es

sa
ge

Fi
nd

m
em

be
r

Ed
it

pr
ofi

le

Home - 18 18 18 18 18 1 1 1 1 - 1 1 1 1 - 0.5 0.5 0.5 0.5
Get post 3 66 4 4 4 4 2 - - - - 1 - - - 10 0.5 0.5 0.5 0.5
Get file 3 4 66 4 4 4 - 2 - - - - 1 - - 10 0.5 0.5 0.5 0.5

Get photo 3 4 4 66 4 4 - - 2 - - - - 1 - 10 0.5 0.5 0.5 0.5
Get group 13 19 19 19 4 19 1 1 1 1 1 - - - - - 0.5 0.5 0.5 0.5
Get topic 3 4 4 4 4 66 - - - - 2 - - - 1 10 0.5 0.5 0.5 0.5
New post 12 50 5 5 5 5 3 - - - - 3 - - - 10 0.5 0.5 0.5 0.5

Upload file 12 5 50 5 5 5 - 3 - - - - 3 - - 10 0.5 0.5 0.5 0.5
Upload photo 12 5 5 51 5 5 - - - - - - - 5 - 10 0.5 0.5 0.5 0.5
Create group - - - - - - 25 25 25 - 25 - - - - - - - - -

Add topic 12 5 5 5 5 50 - - - - 3 - - - 3 10 0.5 0.5 0.5 0.5
Edit post 59 10 2 2 2 2 1 1 1 1 1 1 - - - 15 0.5 0.5 0.5 0.5
Edit file 59 2 10 2 2 2 1 1 1 1 1 - 1 - - 15 0.5 0.5 0.5 0.5

Edit photo 59 2 2 10 2 2 1 1 1 1 1 - - 1 - 15 0.5 0.5 0.5 0.5
Edit topic 59 2 2 2 2 10 1 1 1 1 1 - - - 1 15 0.5 0.5 0.5 0.5
Comment 8 16 16 16 16 16 1 1 1 1 1 1 1 1 1 1 0.5 0.5 0.5 0.5

Read message 20 - - - - - - - - - - - - - - - 15 65 - -
Send message 80 - - - - - - - - - - - - - - - 20 - - -
Find member - 19 18 19 18 18 - - - - - - - - - - 8 - -

Edit profile 3.5 18 18 19 18 18 1 1 1 1 1 - - - - - 0.5 0.5 0.5 -

Figure 4. Navigation graph for a generator user.

existing one. We also consider that these users read and
answer private messages from other users as well as they
answer comments from other users on the generated content.

Figure 4 shows the navigation graph including only the
transitions from the initial node (Home) to each activity. To
reduce the complexity of the graph given the high density
of connections between nodes, the remaining transitions are
shown at Table 2 where each probability is expressed in
percentage. As this type of users do not tend to browse
content, the navigations had to be readjusted by giving more
weight to the actions that create new content rather than
those that modify existing ones. Also, we have considered
that this kind of user uses the private messages mainly to
answer other users. Therefore the activity Send message only
follows a read message first.

Reader role model. The only interaction of this type
of users with the OSN is requesting content. They do
not interact with other users nor generate new content to
contribute with the OSN growth. With this in mind, we have
selected the activities which allowed the user to browse the
site without creating new content. Figure 5 shows the graph

TABLE 2. PROBABILITIES (%) OF TRANSITIONS BETWEEN ACTIVITIES
FOR A GENERATOR ROLE.

H
om

e

N
ew

po
st

U
pl

oa
d

fil
e

U
pl

oa
d

ph
ot

o

Ed
it

po
st

Ed
it

fil
e

Ed
it

ph
ot

o

C
om

m
en

t

R
ea

d
m

es
sa

ge

Se
nd

m
es

sa
ge

Home - 18 18 18 2 2 2 20 20 -
New post 5 17 17 17 4 - - 30 10 -

Upload file 5 17 17 17 - 4 - 30 10 -
Upload photo 5 17 17 17 - - 4 30 10 -

Edit post 23 17 17 17 1 - - 15 10 -
Edit file 23 17 17 17 - 1 - 15 10 -

Edit photo 23 17 17 17 - - 1 15 10 -
Comment 20 16 16 16 - - - 22 10 -

Read message 10 13 13 14 - - - - 15 35
Send message 45 15 15 15 - - - - 10 -

Figure 5. Navigation graph for a reader user.

with the Home page as the starting point, and the activities
from the initial node.

Table 3 represents the transitions between activities and
the probabilities for each transition with percentage values.
Every activity has a similar behavior, except for Get group
which tends to get topics, posts, photos or files of that

527

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

specific group. Also here it can be appreciated that the user
tends to repeat the same activity.

TABLE 3. PROBABILITIES (%) OF TRANSITIONS BETWEEN ACTIVITIES
FOR A READER ROLE.

H
om

e
G

et
po

st

G
et

fil
e

G
et

ph
ot

o

G
et

gr
ou

p

G
et

to
pi

c

Home - 20 20 20 20 20
Get post 2 70 7 7 7 7
Get file 2 7 70 7 7 7

Get photo 2 7 7 70 7 7
Get group - 25 25 25 - 25
Get topic 2 7 7 7 7 70

3. Workload generation

This characterization of user’s behaviors in roles, and
the proposed model are addressed to finally generate a
representative workload for testing applications and for any
type of fine grain performance evaluation studies. To this
end, we implement a workload with interactive users using
GUERNICA and LoadG. GUERNICA [8] is a web work-
load generator which allows the user to define interactive
web workloads based on the concept of DWEB previously
mentioned and considering also current browsers facilities.
LoadG is a graphical configuration tool which provides a
user-friendly interface to create the navigation and work-
load XML files to configure GUERNICA. LoadG helps to
easily design the models by graphically adding new nodes
and interconnect nodes assigning probabilities of transitions
between them. Also, each node can be edited and the user
can add one or more actions associated with the node. In
this case, we define each activity as a node as shown in the
previous sections and each node contains the different ac-
tions necessary to achieve the goal of the activity. Once the
model is implemented, LoadG allows the user to export the
model in a XML format which GUERNICA can interpret.
At this point, the generator permits to define conditional
transitions among activities, considering, for instance, the
results of previous actions, QoS parameters or the time of
day. Figure 6 is a screenshot of the reader user’s model
implemented with LoadG. This interface offers different
colors and line thickness to distinguish between a single
transition and multiple transitions.

4. Related Work

Unlike other computational workloads, web-based ap-
plication ones involve people who interact and are sensitive
to the offered content. That makes it difficult to have avail-
able representative workloads for performance evaluation or
testability studies. In order to provide detailed and realistic
workloads for web-based applications, the faithful character-
ization of users behaviors is a fundamental pillar. One of the
earliest attempts to characterize in detail web users behavior
can be found in [9] where the intrinsic characteristics of web

Figure 6. Reader user’s navigation graph implemented with LoadG.

workloads were settled and the importance of considering
the user interactivity was pointed out. For the case of e-
commerce sites, this work identified the main user transac-
tions which supposed a workload characterization based on
user’s activities according to our nomenclature.

This user model was later extended in [10] to capture
application inter-request and data dependencies in order to
consider a certain degree of interactivity in the workload.
More recently, [11] characterized and modeled generic web
user’s navigations that include current browsers facilities
such as the use of back button or opening new tabs, and
they also represented the user dynamic interaction with the
provided contents or according to QoS parameters.

With the growing and wide penetration of social network
applications, it becomes necessary to define specifics web
workload models for them. A recent work [11] presents an
interesting survey where several approaches to characterize
OSN users are explored. They classified these attempts ac-
cording to the point of view of connection, interaction, traffic
activity, mobile social behavior, and malicious behavior.
This work also focuses on the importance of understanding
user’s behavior both for Internet and Applications service
providers. Also a better knowledge of user’s behavior can
help for enhancing user experience.

The most related work to ours [3] defines the workload
for a blogspace. In this work, a similar idea to ours for
identifying user’s roles was made for the first time. They
describe profiles like ”blurker” and ”commenter” and also
distinguish between write session and read session associ-
ated to those profiles. But, this work only considers the
scope of the blogosphere which is only a specific case of
social network.

In [4], they characterize users behavior in online social
networks by collecting and analyzing data obtained from a
representative social network aggregator. While their model
relies on user activities and the transitions between them,
our work, provides a higher level of abstraction, by identi-
fying the main user’s roles in OSN according to the major
functionalities and characteristics of these applications [12].

Other authors have focused on characterizing specific

528

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

user’s actions or roles. For instance, the work presented
in [13] models the user posting behavior on social media
according to the influence of content factors but it does not
consider other user roles which are also of huge interest.

Another approach can be found in [14], where a nor-
mal OSN user’s behavior is characterized and modeled in
order to identify significant deviations aimed at detecting
anomalous or malicious activities. Authors use statistical
techniques applied to user pattern accesses, such as the
number of likes at day. This level of characterization does
not permit to easily identify user’s roles or specifics profiles.

An interesting work to assist the workload generation
process for OSN is [15]. They characterize the workload at
the level of user navigation, identifying sessions, subsessions
within a session, session durations, active and inactive times,
inter arrival time, bytes per session, and they pay also
attention to popularity. Nevertheless, some data should be
reviewed for updating the results to the current context.

Aimed at detecting user’s intentions and preferences
for efficient recommendations system design, the work pre-
sented in [16] also analyzes user behaviors in social media
systems considering temporal context. This work focuses
only on the creation of more accurate actions and recom-
mendations, but does not consider user’s profiles

In general, pro-active users of social networks not only
focus on one type of them but they are also active members
of others. Therefore, to understand how users distribute
their activities across different sites is also of interest. In
these vein [17] investigates the relationship between user’s
patterns of two well-known social sites to better understand
this phenomenon.

5. Conclusions and future work

In conclusion, in this paper we have presented a new
method for designing a flexible model to represent the
interactive behavior of OSN users.

Our model is based on the typical roles that active
users play currently in these networks. Roles present a level
of abstraction when modeling the workload that permit to
offer a flexible and fresh characterization. Consequently,
it can be easily adapted to the ever-changing environment
of these applications, where new trends, functionalities and
technologies are appearing constantly.

By implementing the resulting model in our workload
generator (GUERNICA) we can reproduce in an accurate
way the interactive actions performed by OSN users when
navigating. Our generator allows conditional user naviga-
tions depending on the content offered or other type of
parameters related, for instance, to QoS metrics. The combi-
nation of GUERNICA and LoadG, a powerful and friendly
tool to graphically define and edit web based workloads,
permits to generate detailed workloads for performance
evaluation and testability studies.

The model presented in this work has been applied to
the specific case of Elgg, an open source OSN that includes
the typical functionalities of these type of networks. At the
present, Elgg has been conveniently filled out with contents

to serve as back end for a future benchmark aimed, among
others, at evaluating OSN.

References

[1] I. W. Stats, “Usage and statistics,”
http://www.internetworldstats.com/.

[2] R. Pea-Ortiz, J. Sahuquillo, A.Pont, and J. A. Gil, “Dweb model: Rep-
resenting web 2.0 dynamism,” Computer Communications, vol. 32,
no. 6, pp. 1118 – 1128, 2009.

[3] F. Duarte, B. Mattos, J. Almeida, V. Almeida, M. Curiel, and
A. Bestavros, “Hierarchical characterization and generation of blo-
gosphere workloads,” 2006.

[4] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida, “Characteriz-
ing user behavior in online social networks,” in Proceedings of the 9th
ACM SIGCOMM Conference on Internet Measurement Conference,
ser. IMC ’09. New York, NY, USA: ACM, 2009, pp. 49–62.

[5] M. Maia, J. Almeida, and V. Almeida, “Identifying user behavior in
online social networks,” in Proceedings of the 1st Workshop on Social
Network Systems, ser. SocialNets ’08. New York, NY, USA: ACM,
2008, pp. 1–6.

[6] Statista, “Social networks usage in spain,”
http://www.statista.com/study/31830/social-networks-usage-statista-
dossier/.

[7] S. M. Examiner, “Facebook and twitter user behavior changes: New
research,” http://www.internetworldstats.com/.

[8] R. Pea-Ortiz, J. Sahuquillo, A. Pont, and J. A. Gil, “Generating
dynamic workload for web performance evaluation,” XXI Jornadas
de Paralelismo (JJPP’10), pp. 711–718, 2010.

[9] D. A. Menasce and V. Almeida, Capacity Planning for Web Services:
Metrics, Models, and Methods, 1st ed. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2001.

[10] M. Shams, D. Krishnamurthy, and B. Far, “A model-based approach
for testing the performance of web applications,” in Proceedings of
the 3rd International Workshop on Software Quality Assurance, ser.
SOQUA ’06. New York, NY, USA: ACM, 2006, pp. 54–61.

[11] L. Jin, Y. Chen, T. Wang, P. Hui, and A. Vasilakos, “Understanding
user behavior in online social networks: a survey,” Communications
Magazine, IEEE, vol. 51, no. 9, pp. 144–150, September 2013.

[12] J. Heidemann, M. Klier, and F. Probst, “Online social networks: A
survey of a global phenomenon,” Computer Networks, vol. 56, no. 18,
pp. 3866 – 3878, 2012, the {WEB} we live in.

[13] Z. Xu, Y. Zhang, Y. Wu, and Q. Yang, “Modeling user posting
behavior on social media,” in Proceedings of the 35th International
ACM SIGIR Conference on Research and Development in Information
Retrieval, ser. SIGIR ’12. New York, NY, USA: ACM, 2012, pp.
545–554.

[14] B. Viswanath, M. A. Bashir, M. Crovella, S. Guha, K. P. Gummadi,
B. Krishnamurthy, and A. Mislove, “Towards detecting anomalous
user behavior in online social networks,” in 23rd USENIX Security
Symposium (USENIX Security 14). San Diego, CA: USENIX
Association, Aug. 2014, pp. 223–238.

[15] F. Schneider, A. Feldmann, B. Krishnamurthy, and W. Willinger, “Un-
derstanding online social network usage from a network perspective,”
in Proceedings of the 9th ACM SIGCOMM Conference on Internet
Measurement Conference, ser. IMC ’09. New York, NY, USA: ACM,
2009, pp. 35–48.

[16] H. Yin, B. Cui, L. Chen, Z. Hu, and Z. Huang, “A temporal context-
aware model for user behavior modeling in social media systems,”
in Proceedings of the 2014 ACM SIGMOD International Conference
on Management of Data, ser. SIGMOD ’14. New York, NY, USA:
ACM, 2014, pp. 1543–1554.

[17] R. Ottoni, D. B. Las Casas, J. P. Pesce, W. Meira Jr, C. Wilson,
A. Mislove, and V. Almeida, “Of pins and tweets: Investigating
how users behave across image-and text-based social networks.” in
ICWSM, 2014.

529

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

On Improving Tie Strength Estimates by
Aggregating Multiple Communication Channels

Narges Yousefnezhad
Aalto University

narges.yousefnezhad@aalto.fi

Marcin Nagy
Aalto University

marcin.nagy@aalto.fi

N.Asokan
Aalto University & University of Helsinki

asokan@acm.org

Abstract—The degree of closeness in a relationship is charac-
terized as tie strength. Estimates of tie strength can be useful
in many contexts, including as a parameter in access control
policies or social context based services. Several papers have
proposed how tie strength can be estimated by quantifying
interactions in different individual communication channels such
as online social networks, phone communication and face-to-
face encounters. It has been conjectured by Wiese et al. [1] that
considering only a single communication channel may not lead to
accurate estimates of tie strengths. In this paper, we explore this
conjecture by examining whether the combination of co-location
events and mobile communication data can lead to better tie
strength estimations than considering each channel individually.
Surprisingly, our results indicate that the conjecture may not be
true, but further analysis with more extensive datasets is needed
to confirm the result.

I. INTRODUCTION

Tie strength is a notion used by social scientists to represent
the degree of closeness in a relationship between two people
[2]. The ability to accurately estimate tie strengths among
people can lead to new services or improvement of existing
ones. For instance, travellers and commuters can use tie
strength estimation to decide if they want to share a ride
with a stranger [3]. Similarly, people can decide to share
their mobile data connection with close friends, specified
as the list of their contacts with tie strength values above
some threshold [4]. Generally, estimation of tie strength has
many important applications in user-controlled online identity
authentication [5], consumer behaviour prediction systems [6],
recommendation services [7] and reputation services [8].

Prior research on tie strength estimation has largely focused
on using input data from a single communication channel.
We define a communication channel as any medium that
can be used for exchange of information between people.
Most studies estimate tie strength based on three communi-
cation channels: online social network (OSN) interactions [9],
[10], traditional telecommunication such as calls and text
messages [11], [12], [13] and interactions based on physical
proximity [14], [15], [16].

Intuitively, information about interactions in different com-
munication channels is likely to be a more accurate predictor
for tie strength values. Several previous works [2], [17], [18],
[1] have touched on this topic. Want et al. [17] conducted
user studies to understand how well interactions over different

communication channels correlate with closeness of friend-
ship. Hritsova et al. [18] showed that people who use multiple
types of channels for communicating with each other are more
likely to have higher tie strengths between them. Wiese et
al. [1] showed that when only one communication channel
(interactions via telecommunication networks) is considered,
the resulting tie strength estimates may be incorrect. They
further concluded that combining information from different
communication channels can lead to more accurate estimation
of tie strength values. None of above investigated concrete
tie-strength computation techniques that use multiple commu-
nication channels to confirm whether the conjecture is correct.

In this paper, we explore this question by using machine
learning classifiers to predict tie strengths in order to evaluate
whether combination of data from different communication
channels leads to a better prediction accuracy. We use an
existing dataset [19]. Our results indicate that while this
conjecture may be true, it cannot be claimed with statistical
significance. We therefore conclude that a more extensive
dataset would be needed in order to resolve this question more
definitively.

II. BACKGROUND

Tie strength was introduced by Granovetter in 1973 [20].
He defines strength of a tie between two people in the social
network as a combination of four factors: the amount of time
people spend with each other, emotional intensity, intimacy
(mutual confiding), and reciprocal services that characterize
the tie. Furthermore, he also divides ties into two classes: weak
ties that link acquaintances and strong ties that are formed
between people trusting each other. There is a lot of published
prior work on tie strength estimation with a particular focus
on assigning binary values (strong or weak) to ties [17], [5],
[21] and labelling them [22], [8].

We now present a brief summary of recent works on tie
strength estimation using a single communication channel and
discuss the shortcomings of relying only on a single channel.

A. Tie strength in a single communication channel
We consider three types of communication channels: online

social networks (OSN), mobile communication networks and
physical proximity.

Tie strength via OSN interactions. People using OSNs
often have a very large number of contacts. Although mostISBN 978-3-901882-83-8 c� 2016 IFIP

530

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

OSNs provide the functionality of assigning social contacts
to specific sets (e.g., family, acquaintances, etc.) that reflect
various degrees of closeness, people usually do not bother
to take advantage of such functionality. To automate this
process, Gilbert et al. [23] and Spiliotopoulos et al. [24]
proposed using tie strength estimation methods based on a
linear combination of factors described by Granovetter as well
as emotional support and social distance. Arnaboldi et al.
[9] defined 19 Facebook features, found their correlation to
tie strength and presented two linear models for tie strength
estimation. They concluded that recency of contact between
people has the highest impact on tie strength. Jones et al. [10]
extracted 14 features and developed a logistic regression model
to check importance of extracted features. They, however,
showed that interaction frequency is the most important feature
in determining tie strength.

Tie strength via mobile communication network inter-
actions. Before OSNs became hugely popular, tie strength
estimation research largely concentrated on interactions via
(mobile) communication networks. Onnela et al. [11] ex-
amined social communication patterns based on phone calls
and SMSes. They applied duration of calls for tie strength
estimation to show the existence of a relationship between
tie strength and local social network structure. Zhang and
Dantu [12] presented an affinity model for predicting social
ties relying on communication logs. Eagle et al. [25] analysed
status of friendship based on mobile phone record data.

Tie strength via interactions in physical proximity. Tie
strength can also be estimated based on co-location events
(proximity interactions) between two people. Crandel et al.
[15] found that high number of physical proximity interactions
between two people corresponds to the higher probability of a
strong tie between them. Bilogrevic et al. [16] used the notion
of an encounter (defined as co-presence of two people for a
sufficiently long duration) for estimating tie strength. Sekara
et al. [26] presented tie strength estimation based on proximity
as determined by Bluetooth encounters.

B. Shortcomings of using a single communication channel

Although tie strength estimation based on a single commu-
nication channel gives a fairly accurate results, applications
like access control can benefit from increased accuracy. For
instance, tie strength estimation based solely on physical
proximity interactions is affected by the familiar stranger [27]
phenomenon, which can causes the strength of some ties to
be overestimated. Similarly, ties between people that are not
usually co-located (e.g., in long-distance relationships) will
be underestimated. Wiese et al. [1] showed that tie strength
estimation based only on mobile communication interactions
causes about 50% of strong ties to be incorrectly classified
as weak ties. They concluded that there is a strong motivation
for building tie strength estimation methods that connect input
data from multiple communication channels.

III. MULTI COMMUNICATION CHANNEL TIE STRENGTH

We now discuss our multi communication channel tie
strength estimation model. We begin with a description of the
dataset we worked with, including an overview of features we
use in our model. Later, we describe the three tie strength
estimation models.

A. Dataset
We have two main requirements for the dataset to fulfill:

(1) presence of at least two different communication channels
and (2) ground truth about the tie strength between pairs of
people. We chose the MIT Social Evolution dataset [19] which
contains traces from everyday life of 80 students living in the
dormitory on the MIT campus. The dataset includes two com-
munication channels: physical proximity (based on Bluetooth
scans) and mobile communication network interactions (logs
of phone calls and SMSes). The dataset covers nine months
beginning from October 2008.

Data volume. The dataset contains 372 instances (pairs
of people) with mobile communication interactions and 4770
instances with physical co-presence. 367 instances have in-
teractions in both communication channels, and can thus
be used for evaluation of tie strength estimation in a multi
communication channel model.

Ground truth. During the data collection campaign, par-
ticipants were asked which other participants they consider to
be close friends with. Thus, if a participant has indicated that
he/she is a close friend of another participant, we recognize
their tie as strong. Otherwise, we consider their tie as weak.
Overall, the ground truth is skewed, as only 668 pairs out of
4770 total pairs of users in both interactions indicated strong
tie.

B. Multi-channel Tie Strength Model
Definition. We define the multi communication channel tie

strength as a tie strength between two individuals that includes
communication features coming from multiple communication
channels.

Figure 1 illustrates difference in tie strength estimation be-
tween single and multiple communication channel approaches.
If only mobile communication channel is involved, tie strength
between Bob and John cannot be estimated. Similarly, tie
strength between Bob and Alice cannot be calculated if
only physical proximity channel is considered. However, by
aggregation of data from multiple communication channels,
all possible tie strengths between them can be estimated.
Furthermore, tie between Alice and John can be estimated
more accurately, as it includes data coming from both com-
munication channels.

Feature Extraction. Recall from II-A that contact duration,
contact frequency, and recency of contacts are considered as
the most important features for tie strength estimation. We
use them as the basic features both in mobile communication
as well as physical proximity channel. In addition, we derive
several new features which are based on distribution of these
basic features (e.g., percentiles of call duration).

531

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

John%

Alice%Bob%

C1:Phone%

John%

Alice%Bob%

C2:Proximity%

Aggrega9on%

John%

Alice%Bob%

C1%+%C2%

Fig. 1: Social network based on multiple communication
channels.

Having extracted the features for mobile communication and
physical proximity channels, we build two models, namely the
Mobile Communication-only model and the Proximity-only
model based on the features from respected channels. Finally,
we create the new model (which we call Aggregation) by
combining the features from the both channels.

Model description.

• Mobile Communication-only. The most important mo-
bile communication features are identical to the top
five features used by [1]. Furthermore, we define also
additional 11 features describing various percentile levels
of inter-communication times (i.e., time intervals between
subsequent communication between two people). In total,
the model includes 16 mobile communication features
(see Table II for details).
Furthermore, we assume mobile communication model
follows unidirectional character of user interactions. This
is motivated by intuitively different impact of incoming
and outgoing calls and SMSes on tie strength estimation.
For instance, if Alice calls Bob, it can be implied that
she is interested in him, but the reverse interest cannot
be proven.

• Proximity-only. Following Bilogrevic et al. [16], we use
encounter as the primary feature. Based on it, we derive
a total of 17 proximity features ranging from simple
total encounter counts and mean encounter duration to
more sophisticated percentile based features describing
distributions of encounter and inter-encounter durations
(see Table II for details).
Unlike in the mobile communication-only model, we
assume user interactions in the Proximity-only model
to be bidirectional. This is motivated by assumption of
mutual interest of two people during a co-presence event.

• Aggregation. This model includes both the Mobile
Communication-only and the Proximity-only features. In

total, the model has 33 features.
Since the aggregation model is a combination of the
Mobile communication-only and the Proximity model,
for which notions of interactions are unidirectional and
bidirectional respectively, we assume also unidirectional
notion of user interactions in this model.

IV. EVALUATION

This section presents accuracy of tie estimation achieved
by our models. We begin with description of the dataset
preparation for our evaluation. After that we describe how
we checked that the dataset includes similar characteristics
to the dataset used by Wiese et al. [1]. Finally, we eval-
uate the Aggregation model and compare accuracy of tie
strength estimation with the Mobile Communication-only and
the Proximity-only models.

A. Dataset preparation
Preprocessing. Recall from Section III that the Proximity-

only model assumes user interactions to be bidirectional.
Unfortunately results of Bluetooth scans may be asymmetrical
(e.g., if Bob and Alice are co-located, only Bob’s device
discovers Alice presence, while her device does not discover
him). This can happen for two reasons: (1) strong interference
coming from neighbouring devices makes some devices unable
to respond to Bluetooth discovery inquiry and (2) two parties
are separated by some distance/obstacle (and in fact not co-
present) and consequently Bluetooth signal between them is
very weak and detectable only by one party. To compensate
for this problem, we assumed the former reason and manually
updated proximity data, as if the parties have been able to
mutually discover themselves. On the other hand, we also
checked that removal of asymmetric Bluetooth scan results
(i.e., assuming the latter reason) does not change the accuracy
of tie strength estimation results.

Normalization. Due to wide range of values that the
features take, we apply the normalization of features with the
range of 0 and 1.

B. Dataset validation
Wiese et al. [1] concluded that reliance only on the mobile

communication network channel produces many errors in tie
strength estimations and needs to be updated with more com-
munication channels. Furthermore, as the dataset presented in
their evaluation shows specific characteristics, we validate that
our dataset exhibits similar characteristics.

They evaluated accuracy of tie strength estimation for three
different input data. The first set of data (all) contains tie
strength estimations between users and randomly chosen 70
contacts from the phone book and the Facebook contacts. The
second set (contactlist) includes only contacts contained in
user’s phone book. Finally, the third set (somecomm) includes
only contacts to which user has made at least 1 phone call
or exchanged 1 SMS. Their results show a clear trend that
precision of weak ties classification decreases if there are less
contacts with whom user does not actively communicate (see

532

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Table I for details). The reason behind this performance drop
is the fact that most of the ties without active communication
are weak ones, thus are easier to classify.

Since our dataset does not contain the notion of the
Facebook contacts and the phone book, we must generate a
simulated phone book which includes all users contained in
the dataset. We have following inputs:

• fullbook: includes all possible pairs of dataset users. Our
dataset contains 80 users, so there are 80⇤79 = 6320 pairs
in total. If there is a recorded communication between
a pair of users, we assign mobile communication-only
features for them, otherwise we set values for all features
to zero.

• someEn1: includes all possible pairs of users in the
dataset with at least one recorded co-location event. It
has 4403 pairs in total.

• someEn10: includes all possible pairs of users in the
dataset with at least 10 recorded co-location events. It
has 3893 pairs in total.

We validated that our dataset shows similar trends to Wiese
et al.’s by evaluating our inputs using the Weka Toolkit [28].
We balanced ground truth using Synthetic Minority Over-
sampling Technique (SMOTE) [29] and used implementation
of the Sequential Minimal Optimization (SMO) [30] with 10-
fold cross-validation as the classifier. As the strong tie in our
dataset is indicated by “close friend” label, for comparison we
chose 2 � mediumstrong class condition from Wiese et al.
which classifies tie strength into two classes (strong-medium
ties and weak ties). Our dataset exhibits similar performance
drop trend as reported by Wiese et al., thus it can be used
for evaluation of multi communication channel tie strength
estimation (see Table I for details).

TABLE I: Comparison of performance drop in precision of
weak ties classification for Wiese et al. [1] and our dataset.

Strong ties Weak ties
Precision Recall Precision Recall

Wiese et al.
all 0.693 0.420 0.764 0.920
contactlist 0.683 0.460 0.680 0.843
somecomm 0.707 0.724 0.488 0.467

Our dataset
fullbook 0.928 0.338 0.615 0.976
someEn1 0.936 0.398 0.547 0.964
someEn10 0.943 0.425 0.51 0.959

C. Aggregation analysis
Evaluation settings. Now we present the accuracy values

for the Mobile Communication-only, the Proximity-only and
the Aggregation models. Recall from III-A that only 367 pairs
of users appear both in the mobile communication network
channel and the physical proximity channel. Thus, to ensure
equal input data in comparison of models, we use only data
belonging to pairs of users appearing in both communication
channels. We balanced ground truth using SMOTE and used
SMO with 5-fold cross-validation as the classifier (10-fold
cross-validation was not possible due to low number of input
pairs).

TABLE II: Attributes and their weights in proximity and
communication models.

Model Attribute Weight

Communication

Total duration of call -0.0616
Count of days with at least 1 call -0.3544
Count of calls -0.0179
Count of calls and SMSes -0.0741
Call duration mean time -1.5441
Mean time between two calls -0.4804
90th percentile of time between two calls -1.534
75th percentile of time between two calls 0.4843
50th percentile of time between two calls 0.0186
25th percentile of time between two calls -0.9565
90th percentile of call duration -0.0237
75th percentile of call duration -0.0192
50th percentile of call duration -0.4215
25th percentile of call duration -0.311
Count of days since last call 0.0298

Proximity

Count of co-location events -0.1276
Count of all encounters 0.4214
Mean encounter time -0.082
Count of encounter days 0.1409
95th percentile of encounters -0.4808
90th percentile of encounters -0.3974
80th percentile of encounters -0.5826
75th percentile of encounters -0.1368
50th percentile of encounters 0.3816
25th percentile of encounters 0.6159
90th percentile of time between two encounters 0.3849
75th percentile of time between two encounters 0.1433
50th percentile of time between two calls 0.092
Mean time between two encounters 0.1584
Count of non-encounter co-location events 0.53
Count of days since last co-location 0.1467
Sum of all times between two encounters -0.2853

Results. The accuracy for the Mobile Communication-
only, the Proximity-only and the Aggregation model equal
72.49%, 62.23% and 72.71% respectively. The Aggrega-
tion model obtains a 10% accuracy improvement over the
Proximity-only model. However, results achieved by the Mo-
bile Communication-only and the Aggregation models are
almost equal with a slight edge for the latter (see Table III
for details). Thus, although the Aggregation model achieves
the best accuracy, the significant accuracy gain anticipated by
Wiese et al. [1] is not observed with this dataset.

TABLE III: Classification performance with different models

Model F-measure AccuracyStrong ties Weak ties
Mobile Communication-only 0.688 0.754 72.49%
Proximity-only 0.656 0.581 62.23%
Aggregation 0.69 0.756 72.71%

Statistical Analysis. To verify that there is enough evidence
to accept our claims about results, we run the statistical test.
Table IV lists the accuracies of five folds for each of the three
models.

We verify our claims by testing two hypotheses:
Null Hypothesis 1 (H1): There isn’t any significant dif-

ference between accuracy results achieved by the Mobile
Communication-only model and the Aggregate model.

Null Hypothesis 2 (H2): There isn’t any significant differ-
ence between accuracy results achieved by the Proximity-only
model and the Aggregate model.

533

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE IV: Accuracy for Each Fold

Accuracy
Mobile Communication-only Proximity-only Aggregation

fold 1 74.74% 56.84% 74.74%
fold 2 76.6% 57.45% 75.53%
fold 3 76.59% 60.64% 76.59%
fold 4 65.96% 63.83% 65.96%
fold 5 70.21% 57.45% 71.28%

We found that difference in accuracy between the Aggregate
model and the Proximity-only method is statistically signifi-
cant in the 95% confidence interval (t⇤H2 = �5.792). However,
there is not any significant difference between the accuracy
of the Mobile Communication-only model and the Aggregate
model in the 95% confidence interval (t⇤H1 = 0).

V. RELATED WORK

Motivated by constant increase in the use of OSNs, the
research community has worked on several solutions for the
social relationships based access control. Fogues et al. [31]
reviewed some Relationship-based Access Control (ReBAC)
models and specified their features. One feature which can
be used for differentiating relationships in these models is
tie strength. Carminati et al. [32] defined several access
control rules and leverage relationship types for determining
numerical values for strength of friendship.

Another group of research activities concern mappings of
tie strength estimations between social networks. WeMeddle,
the Twitter application showed that a predictive model for tie
strength can be generalized to other social media [21]. Tang
et al. [22] described a transfer-based factor graph (TranFG)
model that can be used to learn and infer tie strength across
heterogeneous networks.

Another set of activities is related to prediction of online
social network evolution. Wang et al. [33] discovered that
online and offline movement patterns have strong correlation
with each other and measured that both patterns can be used
for link prediction. They also observed that tie strength has
more correlation with offline proximity than online measures.
On the other hand, Kahanda et al. [34] investigated link
strength prediction in online social networks. They derived
four categories for social features and showed that network
transactional features (e.g. wall posts) are the most important
one.

Another field of research studies mechanisms fortrust in-
ference based on tie strength estimation. In [35], Seyedi et
al. introduced a proximity-based method for bootstrapping
trust values, and showed by experiment that trust values are
relevant to tie strength using the MIT Reality Mining dataset.
TidalTrust [36], SUNNY [37], H-OSTP [38], SocialTrust [39],
FuzzyTrust [40] algorithms are examples for inferring trust in
social networks.

Onnela et al. [11] examined social communication patterns
based on phone calls and SMSes. They applied duration
of calls for tie strength estimation to prove existence of a

relationship between tie strength and local social network
structure.

VI. CONCLUSION

In this paper, we evaluated the three new tie strength estima-
tion models. Two of them are based on a single communication
channel (the Mobile Communication-only and the Proximity-
only models), while the third one (the Aggregate model)
is constructed by merging all the features provided by the
first two models. We evaluated performance of these models
using the MIT Social Evolution dataset. Our results show a
significant accuracy improvement of the Aggregate model in
comparison to the Proximity-only model. However, the gain
between the Aggregate model and the Mobile Communication-
only model is negligible.

Based on obtained results, we cannot confirm (with this
dataset) the hypothesis stated by Wiese et al. [1] that usage
of multiple communication channels improves accuracy of
tie strength estimation. However, their hypothesis cannot be
dismissed either, as the dataset used by us contains communi-
cation data only between people that have participated in the
collection campaign, thus it may not be fully representative.
In addition, there are no other publicly available datasets that
fulfil requirements of having multiple communication channels
and verified ground truth. Finally, construction of the new
dataset is also not a trivial task. In order to have a more
meaningful dataset than the MIT Social Evolution dataset,
it must be able to correlate identities of users (both actively
participating in the dataset construction process as well as acci-
dentally encountered) over multiple communication channels.

ACKNOWLEDGMENTS

The authors would like to thank Mika Juuti for helping
with using Weka Toolkit functions and machine learning
techniques.

REFERENCES

[1] Jason Wiese, Jun-Ki Min, Jason I Hong, and John Zimmerman, “You
never call, you never write: Call and sms logs do not always indicate
tie strength,” in Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing. ACM, 2015, pp. 765–
774.

[2] Nils Jeners, Petru Nicolaescu, and Wolfgang Prinz, “Analyzing tie-
strength across different media,” in On the Move to Meaningful Internet
Systems: OTM 2012 Workshops. Springer, 2012, pp. 554–563.

[3] Blerim Cici, Athina Markopoulou, Enrique Frias-Martinez, and Nikolaos
Laoutaris, “Assessing the potential of ride-sharing using mobile and
social data: A tale of four cities,” in Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing,
New York, NY, USA, 2014, UbiComp ’14, pp. 201–211, ACM.

[4] Marcin Nagy, Thanh Bui, Emiliano De Cristofaro, N Asokan, Jörg Ott,
and Ahmad-Reza Sadeghi, “How far removed are you? scalable privacy-
preserving estimation of social path length with social pal,” arXiv
preprint arXiv:1412.2433, 2014.

[5] Tiffany Hyun-Jin Kim, Akira Yamada, Virgil Gligor, Jason Hong,
and Adrian Perrig, “Relationgram: Tie-strength visualization for user-
controlled online identity authentication,” in Financial Cryptography
and Data Security, pp. 69–77. Springer, 2013.

[6] Vikas Mittal, John W Huppertz, and Adwait Khare, “Customer com-
plaining: the role of tie strength and information control,” Journal of
Retailing, vol. 84, no. 2, pp. 195–204, 2008.

534

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

[7] Katrina Panovich, Rob Miller, and David Karger, “Tie strength in
question & answer on social network sites,” in Proceedings of the ACM
2012 conference on computer supported cooperative work. ACM, 2012,
pp. 1057–1066.

[8] Wenbin Tang, Honglei Zhuang, and Jie Tang, “Learning to infer social
ties in large networks,” in Machine Learning and Knowledge Discovery
in Databases, pp. 381–397. Springer, 2011.

[9] Valerio Arnaboldi, Andrea Guazzini, and Andrea Passarella, “Egocentric
online social networks: Analysis of key features and prediction of tie
strength in facebook,” Computer Communications, vol. 36, no. 10, pp.
1130–1144, 2013.

[10] Jason J Jones, Jaime E Settle, Robert M Bond, Christopher J Fariss,
Cameron Marlow, and James H Fowler, “Inferring tie strength from
online directed behavior,” PloS one, vol. 8, no. 1, pp. e52168, 2013.

[11] J-P Onnela, Jari Saramäki, Jorkki Hyvönen, György Szabó, David Lazer,
Kimmo Kaski, János Kertész, and A-L Barabási, “Structure and tie
strengths in mobile communication networks,” Proceedings of the
National Academy of Sciences, vol. 104, no. 18, pp. 7332–7336, 2007.

[12] Huiqi Zhang and Ram Dantu, “Predicting social ties in mobile phone
networks,” in Intelligence and Security Informatics (ISI), 2010 IEEE
International Conference on. IEEE, 2010, pp. 25–30.

[13] Frank Bentley and Ying-Yu Chen, “The composition and use of
modern mobile phonebooks,” in Proceedings of the 33rd Annual ACM
Conference on Human Factors in Computing Systems. ACM, 2015, pp.
2749–2758.

[14] Mangesh Gupte and Tina Eliassi-Rad, “Measuring tie strength in implicit
social networks,” in Proceedings of the 4th Annual ACM Web Science
Conference. ACM, 2012, pp. 109–118.

[15] David J Crandall, Lars Backstrom, Dan Cosley, Siddharth Suri, Daniel
Huttenlocher, and Jon Kleinberg, “Inferring social ties from geographic
coincidences,” Proceedings of the National Academy of Sciences, vol.
107, no. 52, pp. 22436–22441, 2010.

[16] Igor Bilogrevic, Kévin Huguenin, Murtuza Jadliwala, Florent Lopez,
Jean-Pierre Hubaux, Philip Ginzboorg, and Valtteri Niemi, “Inferring
social ties in academic networks using short-range wireless communi-
cations,” in Proceedings of the 12th ACM workshop on Workshop on
privacy in the electronic society. ACM, 2013, pp. 179–188.

[17] Hua Wang, Vincent Chua, and Michael A Stefanone, “Social ties, com-
munication channels, and personal well-being a study of the networked
lives of college students in singapore,” American Behavioral Scientist,
p. 0002764215580590, 2015.

[18] Desislava Hristova, Mirco Musolesi, and Cecilia Mascolo, “Keep your
friends close and your facebook friends closer: a multiplex network
approach to the analysis of offline and online social ties,” arXiv preprint
arXiv:1403.8034, 2014.

[19] Anmol Madan, Manuel Cebrian, Sai Moturu, Katayoun Farrahi, et al.,
“Sensing the” health state” of a community,” IEEE Pervasive Comput-
ing, , no. 4, pp. 36–45, 2012.

[20] Mark S Granovetter, “The strength of weak ties,” American journal of
sociology, pp. 1360–1380, 1973.

[21] Eric Gilbert, “Predicting tie strength in a new medium,” in Proceedings
of the ACM 2012 conference on Computer Supported Cooperative Work.
ACM, 2012, pp. 1047–1056.

[22] Jie Tang, Tiancheng Lou, and Jon Kleinberg, “Inferring social ties across
heterogenous networks,” in Proceedings of the fifth ACM international
conference on Web search and data mining. ACM, 2012, pp. 743–752.

[23] Eric Gilbert and Karrie Karahalios, “Predicting tie strength with social
media,” in Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM, 2009, pp. 211–220.

[24] Tasos Spiliotopoulos, Diogo Pereira, and Ian Oakley, “Predicting tie
strength with the facebook api,” in Proceedings of the 18th Panhellenic
Conference on Informatics. ACM, 2014, pp. 1–5.

[25] Nathan Eagle, Alex Sandy Pentland, and David Lazer, “Inferring
friendship network structure by using mobile phone data,” Proceedings
of the National Academy of Sciences, vol. 106, no. 36, pp. 15274–15278,
2009.

[26] Vedran Sekara and Sune Lehmann Jørgensen, “The strength of friend-
ship ties in proximity sensor data,” PL o S One, vol. 9, no. 7, 2014.

[27] Stanley Milgram, “The Familiar Stranger: An Aspect of Urban
Anonymity,” in The Individual in a Social World, pp. 51–53. Addison-
Wesley, Reading, MA, USA, Aug. 1977.

[28] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter
Reutemann, and Ian H. Witten, “The weka data mining software: an
update,” SIGKDD Explor. Newsl., vol. 11, no. 1, pp. 10–18, 2009.

[29] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer, “Smote: Synthetic minority over-sampling technique,” J.
Artif. Int. Res., vol. 16, no. 1, pp. 321–357, June 2002.

[30] Chih-Chung Chang and Chih-Jen Lin, “Libsvm: A library for support
vector machines,” ACM Trans. Intell. Syst. Technol., vol. 2, no. 3, pp.
27:1–27:27, May 2011.

[31] Ricard Fogues, Jose M Such, Agustin Espinosa, and Ana Garcia-
Fornes, “Open challenges in relationship-based privacy mechanisms
for social network services,” International Journal of Human-Computer
Interaction, vol. 31, no. 5, pp. 350–370, 2015.

[32] Barbara Carminati, Elena Ferrari, Raymond Heatherly, Murat Kantar-
cioglu, and Bhavani Thuraisingham, “Semantic web-based social net-
work access control,” computers & security, vol. 30, no. 2, pp. 108–115,
2011.

[33] Dashun Wang, Dino Pedreschi, Chaoming Song, Fosca Giannotti, and
Albert-Laszlo Barabasi, “Human mobility, social ties, and link predic-
tion,” in Proceedings of the 17th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 2011, pp. 1100–1108.

[34] Indika Kahanda and Jennifer Neville, “Using transactional information
to predict link strength in online social networks,” ICWSM, vol. 9, pp.
74–81, 2009.

[35] Amir Seyedi, Rachid Saadi, and Valérie Issarny, “Proximity-based trust
inference for mobile social networking,” in Trust Management V, pp.
253–264. Springer, 2011.

[36] Jennifer Ann Golbeck, “Computing and applying trust in web-based
social networks,” 2005.

[37] Ugur Kuter and Jennifer Golbeck, “Sunny: A new algorithm for trust
inference in social networks using probabilistic confidence models,” in
AAAI, 2007, vol. 7, pp. 1377–1382.

[38] Guanfeng Liu, Yan Wang, Mehmet A Orgun, and Ee-Peng Lim,
“A heuristic algorithm for trust-oriented service provider selection in
complex social networks,” in Services Computing (SCC), 2010 IEEE
International Conference on. IEEE, 2010, pp. 130–137.

[39] James Caverlee, Ling Liu, and Steve Webb, “Towards robust trust estab-
lishment in web-based social networks with socialtrust,” in Proceedings
of the 17th international conference on World Wide Web. ACM, 2008,
pp. 1163–1164.

[40] Mohsen Lesani and Saeed Bagheri, “Fuzzy trust inference in trust graphs
and its application in semantic web social networks,” in Automation
Congress, 2006. WAC’06. World. IEEE, 2006, pp. 1–6.

535

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Group-based Communication in WhatsApp
Michael Seufert∗,Tobias Hoßfeld†, Anika Schwind∗, Valentin Burger∗, Phuoc Tran-Gia∗

∗Institute of Computer Science, University of Würzburg, Würzburg, Germany
{seufert | anika.schwind | valentin.burger | trangia}@informatik.uni-wuerzburg.de

†Chair of Modeling of Adaptive Systems, University of Duisburg-Essen, Essen, Germany
tobias.hossfeld@uni-due.de

Abstract—WhatsApp is a very popular mobile messaging
application, which dominates todays mobile communication.
Especially the feature of group chats contributes to its success
and changes the way people communicate. The group-based com-
munication paradigm is investigated in this work, particularly
focusing on the usage of WhatsApp, communication in group
chats, and implications on mobile network traffic.

Index Terms—Group-based communication, WhatsApp, mo-
bile messaging application

I. INTRODUCTION

As the Internet has become omnipresent, nowadays a com-
plex interplay of Internet technology and human behavior can
be observed. On the one hand, the Internet is changing our
daily lives, the society as well as industry and business. On the
other hand, the Internet technology is driven by the adoption
of the end users and stakeholders in the ecosystem.

In particular, we have a closer look at the de facto com-
munication applications in the Internet. We notice that the
applications changed the usage behavior of users. YouTube,
being a prominent example of a video streaming service, made
it possible to upload and stream user-generated videos, which
lead to an unprecedented increase of global Internet traffic.
Another change of user behavior can be seen with mobile
messaging applications recently. With these applications, such
as WhatsApp, users are now communicating asynchronously
in groups, which are created spontaneously or which exist over
a longer period. The users activity is triggered by events in
these groups, i.e., posted messages, which can be enriched
by user-generated images and videos. Thus, as users are
always online and interacting due to smartphones and network
connectivity everywhere, their activity patterns are changing.

Then again, the emerging user behavior may also change
the underlying Internet technology. This happened in the past
and may also happen in the future. Coming back to the
same examples mentioned above, we observed the need for
content delivery networks (CDNs) due to the increased video
demand on YouTube. CDNs allowed to place and cache the
content closer to the users and to take into account regional
or social interests. This new Internet technology subsequently
spread, and now many different types of applications rely on
CDNs. Similarly, the changing usage behavior of group-based
communication in WhatsApp might have possible disruptive
implications for the future Internet.

The mobile messaging applications establish a publish-
subscribe paradigm on application layer, which may be ef-
ficiently implemented on the network layer. Moreover, the
exchange of user-generated content in groups fosters caching
approaches close to the edge and the social groups. Thus,
research proposals like information-centric networking (ICN)
could introduce benefits. However, the increasing privacy
awareness of users might lead to encrypted data communica-
tion hindering network management for ISPs. It might not yet
be obvious, which technology will be employed to cope with
the new challenges and demands. Nevertheless, it is the user
behavior that dictates the path of technology through service
acceptance and adoption.

In this paper, we show researchers how group-based com-
munication changes the activity patterns of multiple users.
This should be taken into account, e.g., when evaluating
communication technologies. Models from the past (e.g.,
Poisson arrival process of end-to-end voice calls) cannot
be directly used for nowadays applications (e.g., WhatsApp
messages are exchanged in groups of users) and need to be
adapted to integrate interaction of users on a smaller time
scale. Therefore, we present measurement results of WhatsApp
and the group communication behavior and discuss possible
implications of this emerging communication paradigm on
networking technology.

Section II describes the evolution of communication
paradigms from one-to-one communication towards group-
based communication. Section III introduces WhatsApp, the
most popular application for group communication. The im-
plications of the usage of WhatsApp on user activity and the
network traffic are discussed in Section IV, and Section V
concludes.

II. EVOLUTION OF COMMUNICATION PARADIGMS

During the last two decades, the evolution of technology
and especially of the Internet changed our message telecom-
munication. Figure 1 shows this evolution by presenting some
important messaging services in chronological order of their
release. It furthermore assigns them to three different ways of
communication: one-to-one, one-to-many and group commu-
nication.

The 1990s were characterized by private, immediate ex-
change of messages between two equal partners of commu-
nications. This way of communication is called one-to-one
communication. In the middle of the 1990s, for the first timeISBN 978-3-901882-83-8 © 2016 IFIP

536

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 1. Evolution of communication paradigms and notable messaging
services

the concept of personal instant messaging over the Internet
became available in the form of so called instant messengers.
Instant messengers are chat programs, which allow users to
instantly exchange messages of short size with each other. In
that, they are similar to the Short Message Service (SMS),
which already became available to mobile phone users in the
early 1990s.

With the release of the instant messenger ICQ1 in 1996,
an alternative to the traditional email communication became
popular on personal computers. In comparison to emails,
which are mostly written formal, containing long and fully
formulated sentences and usually have a longer response time,
instant messengers are made to communicate with others
similar to a real life oral conversation. Here, the content is
informal with mainly short sentences. Also, a quick response
is expected, so that a fluent conversation results [1]. Other
well-known instant messengers are, for example, Microsoft’s
discontinued MSN Messenger and AIM2, the instant messen-
ger of AOL.

After the turn of the millennium, a new trend in online
communication emerged. For the next couple of years, one-
to-many communication became more and more popular. One-
to-many communication is a way of broadcasting messages to
a receiving group of users. Messages are simply published and
can be read by everyone or by a restricted set of users, which
were given rights to read the contents, or which subscribed
to the feed. The messages are not necessarily answered by
the recipients directly, as the main idea is to make messages
available to many people at the same time. Nevertheless, it
is possible to reply to messages by broadcasting an answer,
so the communication is not unidirectional. This way of
communication is mainly used in online social networks.
These networks also support one-to-one communication, but
the main usage is one-to-many communication.

In 2003 and 2004, two of the most popular online social
networks, Myspace3 and Facebook4, were launched. This
development increased the desire of users to publish messages
within their social environment. A prime example for this

1ICQ. http://www.icq.com/ – Accessed: February 15, 2016
2AIM. http://www.aim.com/ – Accessed: February 15, 2016
3Myspace. http://www.myspace.com/ – Accessed: February 15, 2016
4Facebook. http://www.facebook.com/ – Accessed: February 15, 2016

kind of communication is also Twitter5, which is an online
service started in 2006. Twitter allows users to broadcast short
messages with up to 140 characters to their so called followers,
which are passive recipients.

Since the middle of the 2000s, online communication has
been supplemented by group communication. In this context,
group communication means a conversation of a fixed group
of users, which can equally participate. This process started
in 2007, when the first iPhone was introduced and changed
mobile communication significantly. Since this time, smart-
phones have become more and more popular, whereas SMS
has been pushed into the background by the increasing usage
of Mobile Messaging Applications (MMA). These applications
are a form of instant messengers for smartphones. In contrast
to emails and online social networks, MMAs are designed to
allow immediate responses in real time similar to instant mes-
sengers. Additionally, communication in MMAs is not limited
to one-to-one or one-to-many conversations, as many MMAs
provide group conversation features. Older technologies like
mailing lists and IRC also provided the ability to communicate
in groups, but only with the introduction of MMAs this type of
communication became widely popular. A further advantage
of MMAs is the mobility, which allows to easily communicate
with others from anywhere and at any time. One of the most
popular MMAs is WhatsApp6, which will be covered in more
detail later [2].

Online social networks like Facebook also follow the trend
of mobile communication and offer their own MMAs like
the Facebook Messenger7. Moreover, they also added group
communication explicitly, e.g., Facebook, or implicitly, e.g.,
Twitter hashtags, which are implicitly forming theme-based
groups. Thus, the conversation in groups, the possibility of
immediate responses, and the omnipresence of smartphones
move written online communication further into the direction
of real-life conversations.

In the future, data security and privacy, integration into
the cloud, and the availability of the same services on all
devices will be main points of interest. First steps in this
direction have been taken, for instance, by Telegram8, an
MMA founded in 2013. This application offers end-to-end
encryption of chats and cloud features. A further trend is
unified communication, especially in the professional area.
Unified communication combines real-time communication
services, such as instant messaging or IP telephony, with non-
real-time communication services, like email or fax. Finally,
the support of the group communication paradigm by com-
munication networking technology is expected. This means
that traffic management solutions take into account group
communications, especially in mobile networks, for example,
by implementing the publish-subscribe pattern.

5Twitter. http://www.twitter.com/ – Accessed: February 15, 2016
6WhatsApp. http://www.whatsapp.com/ – Accessed: February 15, 2016
7Messenger. http://www.messenger.com/ – Accessed: February 15, 2016
8Telegram. http://www.telegram.org/ – Accessed: February 15, 2016

537

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

(a) Chat overview. (b) Conversation in a
group.

(c) Pop-up notification.

Fig. 2. Screenshots of WhatsApp, retrieved from the official website of
WhatsApp.

III. BACKGROUND ON WHATSAPP

WhatsApp Inc. was founded by Jan Koum and Brian
Acton in Santa Clara, California, in 2009. Starting as an
iPhone application, WhatsApp soon became more popular and
also available for Android, Windows Phone, BlackBerry, and
Nokia. In February 2014, Facebook Inc. bought WhatsApp
for USD 19 billion. In September 2015, it had more than 900
million monthly active users worldwide [3], being especially
popular among young people [4] and reaching a usage share
of up to 77% of mobile Internet users in some countries [5].

It is very simple to start using WhatsApp because it is
free to download and no complex registration is required.
The application automatically identifies users by their phone
numbers. Those contacts saved on the smartphone that are
also users of WhatsApp will be automatically added to the
application’s contact list.

WhatsApp combines one-to-one, one-to-many, and group
communication by offering private chats, broadcasts, and
group chats. In the beginning of 2015, a desktop client and a
feature for voice calls via VoIP was added [6].

Figure 2 shows various features of WhatsApp (in this
example on an Android device). In Figure 2a, there is an
overview over all chats and broadcasts. On top of this list is a
toolbar. A private chat can, for example, be started by touching
the message icon on the toolbar and choosing a contact of your
list.

To start a new group, one has to open the menu and choose
new group. Then, the subject of the group (a free text) must
be defined and a group icon can be uploaded. Afterwards, up
to 100 contacts from the contact list can be invited to join the
group. The creator of a group has administrative privileges and
can add and remove people from the group at any time and
also promote other group members to group administrators.

An example for a group chat can be seen in Figure 2b.
Each posts of a member of the group is represented by a
speech bubble. Apart from the exchange of text messages,
WhatsApp also allows to send photos, videos, and audio
files, contact data, as well as the current location of the
user. In a conversation, every type of message is seamlessly

integrated into a single view, as Figure 2b shows. Every user
of WhatsApp will be notified as soon as a new post arrives,
whether in a group or in a private chat. This notification can
be a sound, an icon, or a pop-up window, which is depicted
in Figure 2c.

In contrast to SMS, WhatsApp needs an Internet connection
to send and receive messages. For this purpose, it uses the
Extensible Messaging and Presence Protocol (XMPP) 9. What-
sApp is a fully centralized service, i.e., it is a service, which is
operated exclusively by the US based cloud provider SoftLayer
[7] This work will investigate the way users communicate
using WhatsApp. Particularly, the focus will lie on group-
based communication.

IV. IMPLICATIONS OF GROUP-BASED COMMUNICATION

To analyze the usage of WhatsApp and the implications of
group-based communications, we conducted a measurement
study on group communications, as well as a survey on the
campus of the University of Würzburg, Germany in November
2014 [8]. The survey was divided into three different parts:
demographic questions, group communications, and network
usage statistics. The participants answered the questions of the
survey in a dedicated room using personal or laptop computers,
which took around 15 minutes. Questions had to be answered
using text fields, single choice, or multiple choice options.

In total, 243 persons participated in the survey, which all had
WhatsApp installed on their smartphones. After filtering out
invalid or inconsistent answers, 209 participants remained –
106 female and 103 male. The ages of the participants ranged
from 17 to 29. The average age was 21.4, which is because
mostly students took part in the study. After taking part in the
survey, the participants were asked to send us some of their
messaging histories from WhatsApp groups by email. In that
way, 402 messaging histories have been collected.

A. Usage of WhatsApp
Comparing the usage of WhatsApp to SMS, the survey

showed that WhatsApp is used significantly more often than
SMS. 85.17% of the participants use WhatsApp at least once
or twice a day, whereas only 6.69% use SMS so frequently.
This leads to the conclusion that WhatsApp communication
was preferred considerably to SMS communication by the
participants. The participants also had to indicate if and
which other mobile messaging applications they use besides
WhatsApp. Most participants (81.82%) also use other MMAs
showing that WhatsApp is not the only well-established MMA.
The reason is that competitive mobile messaging applications
(e.g., Facebook Messenger, Skype, Threema) provide addi-
tional or different features than WhatsApp.

The participants were also asked for which purposes they
used WhatsApp. 98.09% of the participants answered that
they used WhatsApp for private purposes, 92.34% for orga-
nizational purposes, 77.51% for fun, 50.24% for important
issues, and 33.01% for professional purposes. It follows that,

9The XMPP Standards Foundation. http://xmpp.org/ – Accessed: February
15, 2016

538

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0 20 40 60 80 100 120 140 160
0

0.2

0.4

0.6

0.8

1

number of chats

cu
m

ul
at

iv
e

su
m

 o
f t

he
 p

ro
ba

bi
lit

y
of

 o
cc

ur
re

nc
e

all chats
group chats

Fig. 3. CDF of the number of all chats compared to the number of group
chats

for many people, WhatsApp has become an important means
of communication in many conditions of life. Moreover,
WhatsApp and group communication seems to be so useful
for organizing things that it also qualifies for important and
professional purposes.

B. Group Chatting in WhatsApp

The high popularity of WhatsApp can be seen in the number
of different communication chats per user. A chat in WhatsApp
can be either a one-to-one chat with only one communication
partner or a group chat with group sizes of 3 to 100. Thus, the
participants had to count how many chats in total they had on
their devices and how many of these chats were group chats.

Figure 3 depicts these distributions by comparing the num-
ber of all chats (including group chats) to the number of
group chats. The average number of chats is 59. 70.32% of
the participants exchanged messages with at least 30 different
partners. 12.44% of the participants had even more than 100
chats, the maximum being 158. As can be seen in the brown
curve, the number of groups ranged up to 59, the average
being 10. Only 1.91% of the participants did not participate
in any group chat. Please note that it is possible to delete
group chats and the participants estimated during the study
that they had already deleted on average 7 groups. Still the
share of group chats among all chats is fairly high having an
average of 17.94%. For most of the participants (83.28%), this
share ranged between 5% and 30%. All in all, this supports
the assumption that the group chat feature is used frequently
by almost every WhatsApp user, which makes it a key feature
of WhatsApp.

We further asked about each group chats and the participants
had to specify the number of members of each group, the
number of members they did not know, and their personal par-
ticipation in the group chat. Figure 4a shows the distribution
of group chat sizes. The average number of group members is
9, and on average one of them is unknown to the user, i.e., not
in his contact list. The average group size is considerable, but
low considering that WhatsApp allows creating group chats
with a maximum of 100 members. Only few group members
are unknown, which leads to the assumption that group chats
are mainly used for communicating with specifically selected

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

number of members in a group chat

cu
m

ul
at

iv
e

su
m

 o
f f

re
qu

en
cy

(a) Distribution of group chat members.

(b) Active participation of group chat members.

Fig. 4. Distribution of the number of members and their active participation.

people who know each other. Nevertheless, we see that What-
sApp, like online social networks, is able to link people who
do not yet know each other (triadic closure).

Next, each collected messaging history was analyzed with
respect to how much posts each member actually sent in
relation to all sent posts in a group chat, which is visualized
in Figure 4b. It shows a bar for each group that indicates the
shares of the top-3-contributors and the share of the remaining
members. The bars are sorted by group size and the share of
the user who sent the most posts. It can be seen that group
conversations are rarely balanced. In 8.1% of the group chats,
there was one user who dominated the group and sent more
than 50% of all posts in this group chat. Furthermore, in
19.2% of the group chats, there were two or three members
who dominated, each sending 30% or more of all posts. Also
for many large groups, it can be observed that the top-3-
contributors account for a quite big share of messages. This
leads to the conclusion that most group chats consist of few
active, dominating and several passive members. The active
members send most posts in a group chat while the others in
most cases only read the messages.

C. Impact on Network Traffic
Investigating the impact of group communication on the

network, it is important to understand how often messages
have to be transmitted. The black line in Figure 5 shows the
distribution of the inter-arrival times of posts in group chats.
Here the x-axis represents the inter-arrival time in minutes and
the y-axis the cumulative distribution. It can be seen that many
posts are replied very fast, but some messages have a very

539

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Fig. 5. Inter-arrival times (IAT) of messages in active and inactive phases

large inter-arrival time. 59.60% of the posts were immediate
responses and had an inter-arrival time of one minute or
less. Considering the range from 0 to 30 minutes, it can be
seen that 84.90% of all inter-arrival times are included. Only
15.10% of all inter-arrival times are 30 minutes or longer.
This suggests that there are different communication phases in
group communications, which resembles older on-off-models
(e.g., Markov-modulated Poisson processes) in telephony or
networking [9].

Thus, in Figure 5, we also separate the group communi-
cation into active and inactive phases. An inter-arrival time
equal or lower than 30 minutes, which is the default session
timeout for web servers such as Apache Tomcat, is assigned to
an active phase, higher than 30 minutes to an inactive phase.
The active phase is plotted in orange on a linear scale from
0 to 30 minutes, and the inactive phase is shown in brown
on a logarithmic x-axis from 30 minutes to almost two years
(~106 minutes). More than two thirds (69.92%) of the inter-
arrival times in active phases were immediate answers in one
minute or less. In inactive phases, 44.42% of the inter-arrival
times are one day or less and almost all messages are replied
within one week (~104 minutes). The probability of changing
from an active to an inactive phase is 12.24%, from inactive
to active it is 69.99%. This distributions support the statement
that WhatsApp constitutes a very fast communication.

Over the course of a day, the typical diurnal pattern can
be observed with most posts being sent in the evening from
6pm to 8pm (15.10%), fewest between 5am and 7am (0.44%).
This also confirms the statement of the participants that only
few use WhatsApp for professional purposes. The participants
were asked to enter the statistics of WhatsApp’s network
usage, which are collected by the application on every device.
Generally, the communication of each user in WhatsApp is
balanced, however, an average user receives roughly 21%
more messages than he actually sends. The slightly higher
rate of received messages is likely to be caused by group
chats. Recall that in these chats, every message sent by one
user is potentially received by a multitude of other users. We
observed in the messaging histories that media posts, e.g.,
photos, videos, or voice messages, are sent very rarely. On
average only 6.53% of all posts in a group were media posts.
However, considering the relation between received media

Fig. 6. Process of sending a message in a group chat with three users

bytes and received bytes in total, nearly 86% of the total
bytes can be attributed to media posts. This ratio has a linear
behavior among our participants with high Pearson correlation
coefficient of 0.92. This indicates that media posts generally
cause the largest part of WhatsApp’s network traffic. Similar
findings obtained from passive measurements in a cellular
network are presented in [7]. With respect to message sizes,
a simple measurement showed that, as expected, the size of a
text message increases linearly with the number of characters.
During our study, we observed an average message length of
36 characters, which resulted in an average text message size
of 317B. For media messages, [7] reports an average size of
225KB. However, a more thorough investigation is needed, as
we noticed during our measurement that WhatsApp applies
transcoding and scaling to transmitted images and videos.

Not only the data volumes of the messages themselves, but
also a lot of application-layer signaling traffic puts load on the
mobile network. Figure 6 illustrates the process of sending
a message in a minimal group chat with only three users
following the specifications of the XMPP protocol [10]. User
A sends a message to the server addressing it to the room of
the group. The message can be a text post or media post and
its content can potentially have a high data volume. As soon as
the server receives the message, it sends an acknowledgement
to user A. With a simple setup, we measured that sizes
of acknowledgements are around 60B. Upon arrival of the
acknowledgement, the clock symbol turns into a single grey
checkmark on user As phone. The server forwards the message
with the content to all members of the group, which are
user B and user C. The message receptions are acknowledged
to the server. The server forwards the acknowledgements to
user A, signaling that the message was delivered. As soon as
the message is received and acknowledged by all members
of the group, the server drops the message and the symbol
in the chat turns into a grey double checkmark. If a user
in the group displays the message to eventually read it, it
is reported to the server, which forwards it to the sender.

540

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

After all group members were reported to have displayed the
message, the double checkmark turns blue. Hence, sending
a message within a group implies a number of subsequent
messages signaling the reception and processing state of the
message of each user. Additionally, each application signaling
induces a lot of signaling in the mobile network [11]. In groups
with many members this results in a significant traffic volume
and high number of signaling messages, which have to be
processed by the network. In peak hours or in case of flash
crowd events, this may lead to problems in the network and
requires management of the traffic.

V. CONCLUSION

In this paper, we investigated group-based communication
in WhatsApp. Communication in groups constitutes an emerg-
ing communication paradigm, which has a huge impact on
todays mobile networks. We conducted a survey on WhatsApp
usage and analyzed collected messaging histories to better
understand group communication and its impact on network
traffic.

All in all, this work provided a first investigation of group-
based communication in WhatsApp, which changes the way
how people communicate. The analyses presented in this
paper allow for modelling and simulating communication in
groups. Thereby, novel traffic management mechanisms can
be designed and evaluated in order to better cope with the
network demands. These might include the ICN proposal and
caching of content close to the end users, publish-subscribe
mechanisms, or multicast transmissions instead of transmitting
content naively to each individual group member. Moreover,
other approaches like mobile ad hoc transmissions could
become relevant, especially in cases in which (parts of) the
virtual WhatsApp group physically meet. Content could then
be exchanged directly when the members are in the same WiFi
network or by short-range device-to-device communication as
currently discussed for 5G networks. It remains for future work
to analyze the benefits and to study the applicability of each
approach in order to adapt the current Internet technologies to

the changing user behavior with group communication being
well underway.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungsge-
meinschaft (DFG) under grants HO4770/1-2 and TR257/31-2
(DFG project OekoNet). The authors alone are responsible for
the content.

REFERENCES

[1] A. F. Cameron and J. Webster, “Unintended Consequences of Emerging
Communication Technologies: Instant Messaging in the Workplace,”
Computers in Human Behavior, pp. 85–103, 2005.

[2] C. Montag, K. Błaszkiewicz, R. Sariyska, B. Lachmann, I. Andone,
B. Trendafilov, M. Eibes, and A. Markowetz, “Smartphone Usage in the
21st Century: Who is Active on WhatsApp?” BMC Research Notes 8.1:
331, Tech. Rep., 2015.

[3] L. Rao, “WhatsApp hits 900 million users,” 2015. [Online]. Available:
http://fortune.com/2015/09/04/whatsapp-900-million-users/

[4] J. Fetto, “The $19 billion question: Who uses WhatsApp and why
are they so important to Facebook?” 2014. [Online]. Available:
http://www.experian.com/blogs/marketing-forward/2014/02/21/the-19-
billion-question-who-uses-whatsapp-and-why-are-they-so-important-
to-facebook/

[5] J. Mander, “WhatsApp Usage Highest in LatAm and MENA,” 2014.
[Online]. Available: https://www.globalwebindex.net/blog/whatsapp-
latam-mena

[6] A. Chowdhry, “WhatsApp Android App Now Has Free Voice Calling
For Everyone,” 2015. [Online]. Available: http://www.forbes.com/sites/
amitchowdhry/2015/03/31/whatsapp-calls-android/

[7] P. Fiadino, M. Schiavone, and P. Casas, “Vivisecting Whatsapp Through
Large-scale Measurements in Mobile Networks,” in Proceedings of the
ACM SIGCOMM, Chicago, IL, USA, 2014.

[8] M. Seufert, A. Schwind, T. Hoßfeld, and P. Tran-Gia, “Analysis of
Group-based Communication in WhatsApp,” in Proceedings of the 7th
EAI International Conference on Mobile Networks and Management
(MONAMI), Santander, Spain, 2015.

[9] D. L. Jagerman, B. Melamed, and W. Willinger, “Stochastic Modeling
of Traffic Processes,” Frontiers in Queueing: Models and Applications
in Science and Engineering, pp. 271–320, 1997.

[10] P. Saint-Andre, “XEP-0045: Multi-User Chat,” 2008. [Online].
Available: http://xmpp.org/extensions/xep-0045.html

[11] C. Schwartz, T. Hoßfeld, F. Lehrieder, and P. Tran-Gia, “Angry Apps:
The Impact of Network Timer Selection on Power Consumption, Sig-
nalling Load, and Web QoE,” Journal of Computer Networks and
Communications, 2013.

541

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Online Engagement and Well-being at Higher
Education Institutes: A German Case Study

Margeret Hall
Karlsruhe Service Research Institute, KIT

Karlsruhe, Germany
hall@kit.edu

Simon Caton
National College of Ireland

Dublin, Ireland
simon.caton@ncirl.ie

Abstract—Society is increasingly mirrored in the digital
sphere. Unknown is how well this maps back in real-life aspects
like the feeling of well-being or community engagement. Our tool
‘BeWell@KIT’ was employed to parse 140 Facebook pages
comprising the online social media presence of a large public
German university. Discourse attributes are established and
investigated to identify the interaction between digital discourse
and real-world events. We find evidence of critical system-wide
events directly impacting the expressed well-being and
engagement of the community, while also displaying an uptick in
the psychological concepts ‘belongingness’ and ‘resilience.’ Our
study indicates that digital expressions of well-being support the
healthy functioning of the community at large.

Keywords—Online Social Networks; Facebook; Behavior
Modeling; Sentiment Analysis; LIWC

I. INTRODUCTION
The dividing line between off- and online communities is

increasingly blurred. Digital participation and communication
has become the ‘new normal’ [1]. Considering fast-paced
online communities there is an institutional interest in knowing
if, and which, events have significant effects on the way the
community interacts and expresses well-being online, what
changes sentiment over time. Similar works name the mapping
of digital sentiment and behaviors a ‘Social Observatory’ [2].
An interesting extension to existing efforts is the mapping of
digital interactions of a university community considering
expressed well-being. We ask, ‘Which attributes of digitally
expressed, institutional well-being can be extrapolated from
informal online text?’. To address this, our work evaluates the
performance of a university from the perspective of the
university community’s subjective opinion(s) of itself online,
aggregating based on community well-being and expressions
of engagement. Such a system establishes a more granular and
sensitive feedback system for stakeholders (i.e., administration,
students, faculties) to assess and respond to university
performance. In response to this a Social Observatory is
employed to analyze and report socially-sourced indicators on
university quality and satisfaction. The Social Observatory
procured data from popularly used public Facebook pages
surrounding the Karlsruhe Institute of Technology (KIT) [1],
for a tool that is near to real time and sensitive to concerns of
both privacy and the desire to participate online.

Section II reviews related work and Section III justifies the
design made in the implementation choices and gives the
descriptive attributes of the KIT Facebook network. Section IV
reviews the macro, meso and micro attributes of communal
discourse across the KIT Facebook network. Section V
discusses and contextualizes the findings and addresses
limitations, and Section VI concludes the chapter.

II. RELATED WORK

A. On the application of Social Media Platforms for Social
Sentiment Analysis
In the 1960s computational innovations resulted in a

challenge shift: The restricting parameter for social researchers
was no longer the collection of data. Instead, information grew
at a rate faster than researchers could analyze [3].
Developments in people’s daily lives are at once more
transparent, yet more difficult to understand. This is due in part
to the rise of networked online social data. Social media sites in
particular have quickly ascended from a novelty of the early
2000’s to a fact of life, and daily necessity. Users interact
online by creating profiles and providing (semi)personal
information in form of text, photos and other media [4]. As
social networking and media platforms are generally based on
true identities or variants thereof [4], [5], they are well suited
for digital community analyses.

Facebook is the largest, most active platform with its 1.308
billion daily active users, with one in every seven minutes
worldwide (and for Americans, one in every five minutes)
spent on Facebook.1 In an exhaustive survey, [6] summarized
and classified 412 articles written on Facebook for the period
2007-2012 leading to five supra-categories: descriptive
analysis of users, motivations for using Facebook, identity
presentation, the role of Facebook in social interactions, and
privacy and information disclosure. Recognizable is that the
usage of Facebook’s API by non-Facebook staff or partners to
support quantitative, unobtrusive studies is low; when the
referenced studies apply quantitative methods, the method of
choice tends to be based in survey methods.

Notable studies from Facebook Research look at public
expressions of sentiment. [7] used status updates based in the
United States to create a composite well-being index. Another

1 http://techcrunch.com/2014/07/23/facebook-usage-time/. Last Accessed: 12
March 2015. ISBN 978-3-901882-83-8 © 2016 IFIP

542
ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

series of studies by Kramer and colleagues [8], [9] reviews
emotional contagion on Facebook. These studies report that
emotions are indeed contagious in a network. Their findings
support that short informal text like Facebook status updates
can be used to measure sentiment online. To date, no studies
were identified that dissect how educational institutions and
their communities use, leverage, and engage computer-
mediated communication with Facebook. This article addresses
that research gap.

B. Linguistic Inquiry and Word Count
LIWC originally was not intended to be used on short

informal text, but to analyze text of expressive and therapeutic
writing sessions usually containing more content than the
average tweet or Facebook update [10], [11]. However, its
expansive psychometric dictionary offers a unique opportunity
to reveal the latent emotional context of text-based data. The
application of LIWC on documents returns the percentage of
words across the categories social processes, affective
processes, cognitive processes, perceptual processes, biological
processes, work and achievement, as well as punctuation and
structural details [11], [12]. Per cent based information gives
the researcher a mechanism by which to see the relative worth
of categories in speech. This facilitates measuring change,
looking for group-based patterns, monitoring individual spikes
and dips, and identifying psycholinguistic profiles.

When people share (written) information, there is not only
content but also the way they create their message and the
linguistic style [13]. They found that function words are well
suited to build a systematic picture of this inconceivable
dimension as latent indicators. They refer to pronouns,
prepositions, articles, conjunctions, and auxiliary verbs and
altogether can be imagined as “[…] the linguistic “glue” that
hold content words together” [14]. While LIWC focuses on
function words it also includes content words. The
functionality is based on dictionaries that assign over 4,500
words to 70 different categories, ranging from a simple stylistic
(e.g. article, prepositions) to a complex psychological level
(e.g. positive emotion, cognitive words). Due to their near
constant usage and grammatical weight, use of function words
is nearly impossible to manipulate and thus will uncover
motives, personality and psychological processes more
accurately than analysis of the content [15]. Using
computational tools in analyzing function words bears further
advantages. Firstly, people’s poor awareness of function words
is not restricted to their own language. The listener doesn’t
focus on function word composition, and therefore is unable to
rate usage. Hence, computational pattern matching can reveal
findings not attainable by human judges. Secondly, less than
0.04% of an average persons’ vocabulary are function words
[13]. At the same time, they make up more than half of daily
language. Consequently, function-word based analyses are
well-situated to reveal latent individual states. All in all, the
function word’s importance on psychological findings justifies
the application of its simpler dictionary-based approach
wherever emphasis is set on personal traits.

III. DESIGN AND APPROACH
To address research questions several steps must first be

taken. Following the methodology established in [1], [2] the
raw data is first filtered based on post type, then aggregated to
represent groups of the university; is run through LIWC, and
finally mapped and assessed. In order to create a comparative
baseline, LIWC scores of all data (posts and comments) before
the start of the event and after its completion have been
aggregated to a single number, weighted by total word counts.
All measures in the coming analyses do not show the actual
LIWC scores, but relative increases and decreases considering
a time-local baseline. The app used to extract Facebook data is
open source and can be found in [2].

The first assumption to be addressed it the use of Facebook
as opposed to Twitter. The KIT database of Facebook activities
features an average text length of 33.96, mainly German,
words. Given Twitter’s character restrictions and that the
average German word length is estimated as 5.7 characters2,
this would exclude 33.57 characters of the average message or
otherwise force unnatural brevity or improper spellings;
consequently adding complexity and errors to the (text)
analysis. The fraction of posts and comments in this procured
dataset containing more than 160 letters (28 words on average)
represents 80.1% of the corpus, reflecting 39.86% of all
comments and posts being longer than Twitter’s restriction.
Twitter would certainly result in drastically shorter text
submissions and consequently in a loss of more complicated,
reflective statements. There is an additional restriction of
Twitter that lends unknown biases, namely that Twitter grants
between 1-10% of the data available from the first request date
in a given query [16]–[18], compared to the full Timeline of
the Facebook extraction. For KIT, Facebook usage outranked
all other Social Media usage for both university-generated and
student-generated content, which is in line with the fact that
Facebook has an 82% market reach of Germany, whereas
Twitter has approximately 20%.3

The 140 pages in the dataset represent all open pages which
were (1) primarily populated by KIT members and (2) had
posted 50 or more words between the timespan of 2011-2014.
Finally, four granularities are investigated: post-comment
splits, page group splits, administration-faculty splits, and
temporal aspects. From this baseline it is possible to see what,
if any, spikes and dips appear. Accordingly the next section
describes the KIT Facebook community, establishing the
attributes that make up the communal discourse.

IV. MACRO, MESO, AND MICRO GRANULARITIES OF
BEWELL@KIT

In order to gain a more granular understanding of how the
KIT relates and interacts online, the baseline of discourse and
latent emotive value are established focusing on the years
2011-2014; while some pages were open longer than this, all
pages included in the study were open from 2011 onwards.

2 http://www.duden.de/sprachwissen/sprachratgeber/durchschnittliche-laenge-
eines-deutschen-wortes. Last Accessed: 10 March 2015.
3 http://www.statista.com/statistics/280176/penetration-rate-of-social-media-
sites-in-germany/. Last Accessed: 10 March 2015.

543
ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

A. Macro Attributes of the KIT Facebook Network
Table I displays descriptive characteristics of the dataset.

Likes far outnumber posts and comments, and posts outnumber
comments. That posts outnumber comments in this use case is
a surprising characteristic as most official pages only permit
administrators to post on the timeline; constituent participation
is restricted to commenting on those posts.

TABLE I: SUM OF VALUES OF ALL PAGES IN KIT FACEBOOK NETWORK
CONSIDERING POSSIBLE INTERACTIONS OF THE PAGES AND AUDIENCES

Page
Likes

Status
Update

s

Wall
Posts

Comm
ents

Likes on
Posts

Resour
ces

Posted

Resourc
es

Liked

101,772 26,259 4,284 16,079 179,721 8,817 45,241

Given that KIT is an online community, it is expected that
its members communicate in similar time spans. KIT’s
communal discourse has a cyclic pattern that matches recurring
semester cycles: The start of semester, mid-semester, exam
weeks and semester holidays. The intensity of interactions also
follows this pattern closely, as approximately 66% of
interaction occurs inside of the semester. Figure 1 displays the
average over academic years considering the timespan 2011-
2014 in per cent. There it can be seen that the bulk of
discussions occur inside of the semester, with the Winter
Semester having slightly more chatter than the Summer
Semester. This pattern is flipped for the holiday seasons, which
Summer Holidays having a slight boost in activity compared to
the Winter Holidays. That remains constant when comparing
the exam weeks to the holidays – Winter Holidays have less
Facebook interaction than the Winter Exams, and Summer
Holidays have more interaction than the Summer Exam period.

 Fig 1. Frequency of posts and comments at KIT, 2011-2014

B. A Meso-assessment of KIT’s Discourse Baseline
A group representation is the creation of supra-groups

based on commonalities (e.g., administration, faculties, student
groups) used to assess the KIT community as a more realistic
replication. Regarding group partitioning, two approaches are
executed. First, all the 140 available pages are assigned to one
of 12 page categories in order to facilitate analyses of the
university’s Facebook community. The naming of the groups is

guided by the KIT website where possible to assure a realistic
assessment in reconstructing discourse. In the case of KIT
affiliated but not KIT sponsored groups, the most general
common name is used. The names of the groups are KIT
(official presence), Library, Schools, Departments and
Institutes, Student Clubs, University Clubs, Sports Teams,
Innovation and Development, Politics, Career, Music, and
Social. It must be noted that during the course of the study five
pages closed and were duly excluded from the analysis; pages
with less than 50 words over the four years of assessment are
likewise excluded. These groups are further assessed
considering if they are run by administrators or students.
Splitting the data into these subgroups aims to reproduce an
accurate picture of the community, by taking interactions and
communal diversities within into account.

Comparing administrators and students reveals interesting
differences in the discourse baseline. Results of an Independent
Sample Mann-Whitney U test show highly significant
differences in the use of Positive Emotion (U = 6,740, z = -
4.520, p = .0005) and Negative Emotion (U = 7,530, z = -
3.381, p = .0005), using an asymptotic sampling distribution
for U. Mann-Whitney U is the non-parametric estimation of a
One-Way ANOVA. Administrators show a lower frequency of
positive and negative emotional discourse. When these
emotions are employed, they tend to be employed by students.
Net Affect, a composite variable, is calculated by subtracting
negative sentiment categories from positive sentiment. KIT’s
network is mesokurtic with a positive skew (Figure 2a) and a
reversed sigmoid distribution (Figure 2b), hovering at zero but
with a long positive tail.

Fig. 2 Net Affect, displaying skewedness and (a) Kurtosis and (b) Distribution

That KIT’s Net Affect tends to hover around zero signifies
few pages employing extreme emotion. The absolute range is
-8.0 from the OSKar- Optics Students Karlsruhe e.V comments
to a positive 15.38 from the comments of the Institute of
Regional Science. Students tend to make up both ends of the
tails, and administrators are grouped in the middle of the
distribution (the zero range). This supports the results of the
Mann-Whitney U tests that students are move emotive than
administrators in their digital discourse.

When this is considered alongside with the tendency of
comments to use more cognitively expressive (Figure 3) and
emotive discourse in their responses, it can be understood that
although this tendency should be expected in most
communities, the size of this gap indicates that the university’s
constituents visit the pages to seek and engage in lively

544
ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

discussions. Comments display significantly higher cognitive
complexity than posts (U = 5,831.5, z = -5.861, p = .005).

Fig. 3. Results of a Mann-Whitney U test comparing cognitive complexity

C. Micro Representations of Communal Well-being
Given KIT’s cycle discourse, a reasonable way to identify

events of impact is to inspect sentiment spikes and dips as they
are related to the semester intervals. The following analysis
addresses the benchmarks of the semester. BeWell@KIT
established a critical system shock for students and employees
as the denial of the Elite Status on 15 June 2012.4 The loss
acted as a shockwave across the network and was the most
common discussion topic the days after the loss, as it was
expected to damage the university’s prestige and signaled the
end of the ‘Excellence Money,’ a governmental support of 15-
20€ million yearly. Students feared decreasing employment
opportunities in the highly competitive academic working
environment. At the same time, financial consequences
threatened the continuing of research projects and existence of
administration jobs. The denial impacted students, researchers,
and administration employees likewise [1].

The Facebook community’s overall activity after
publication of the judges’ Excellence decision increased
strongly. Whilst the week before the announcement counts
7,425 words, this amount increases by one third to 11,070
words during the consecutive week and 15,072 (almost an
additional 25%) two weeks after the event. The two weeks
representing the event and after the event comprise 1.3% of the
corpus’ words. The categories reflecting cognitive complexity
(Articles, Exclusion, Causation) show a positive trend in the
following week of the Excellence loss compared to the overall
score before (Table III). Putting this together with the
significantly higher scores of Past and Future (measuring verb
tense frequency), and the topic categories Money, Occupation,

4 http://www.kit.edu/kit/english/5963.php. Last Accessed: 3 January 2015.

Job and School is an indication of intense discussion on the
reasons and future impacts of the Elite denial.

 The first week shows the most distinct peaks for all cases.
Still, a wider timeframe post-event produces the same
tendencies for all LIWC categories but Future (Figure 4). The
additional three-week timeslot enables observation whether
detected peaks presume or ebb away quickly. All categories
except Future display significant percentage increased at the
p < 0.05 level in the short-term and that Occupation and Past
maintain mid-term significance at p < 0.05.

Fig. 4 Affective changes in discourse relating to the KIT Elite loss. All
measures show relative changes, not absolute LIWC scores. The blue bars in
the middle reflect the event week, while bars to the left (1 week before) and
right (3 weeks after) represent temporal deviations from the baseline.

More than impacting professional and practical concerns,
the loss of the Excellence status had a major influence on the
KIT’s digital expressions of well-being (Figure 5). Increased
frequencies of the categories Negative Emotion and Sad hint at
collective frustration. Positive Feeling depicts a decrease (-
35.7%) directly after the announcement. More interesting are
the categories Social and Inclusion, which are proxies for the
feeling of belonging to the community of reference. The LIWC
categories Social and Inclusion increase slightly after the
incident, and quickly increases in the following three weeks.
Here we see no significant change between the week preceding
and the week of announcement. However, significant increases
(p < 0.05) in social and inclusive discourse are seen in the
month after. This indicates both expressions of increased
community belongingness, and its related construct resilience.
It is interesting to observe that after the event, zooming out to
the following three weeks the categories show a slight upswing
indicating communal resilience while reminding us how
delicate results based on latent emotional states are.

 These two categories are strong reflectors of communal
belongingness, thus leading to an interesting finding. Because
the loss was unexpected it affected almost all community
members: the shock was wide-spread and deep. Former
research found that tragic collective experiences often promote
feelings of belongingness [7], [19], [20]. This is evident in the
KIT dataset, where the loss of the Excellence status acted as a
collective crisis. Encouragingly, the community responded
with not only shock and negative feelings, but also resilience
and an increase in togetherness, signs of well-being according
to the definition of [21].

The Excellence initiative reaction suggests that campus-
wide incidents affect the way the community interacts. Well-
being is affected in the short-run, but the long-term impacts are

TABLE III SCORE DEVELOPMENT FOR COMPARISON BETWEEN 1) ALL DATA
BEFORE JUNE 15TH 2012, 2) THE FOLLOWING FIRST WEEK AFTER THE EVENT

AND 3) THE FOLLOWING THREE WEEKS AFTER THE EVENT WHERE GREEN
SHOWS INCREASES AND RED SHOWS DECREASES

 Before Loss 1 Week After 3 Weeks After
Articles 6.68 8.24 7.64

Exclusion 0.86 1.04 1.04
Causation 0.63 0.88 0.72

Past
Future
Money

Occupation
Job

School

1.31
0.56
0.72
5.49
1.89
2.87

1.85
0.78
0.89
6.07
2.06
3.37

1.71
0.71
0.68
5.83
2.04
3.19

545
ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

minimal. Belongingness increases in spite of the negative
feeling overall. This highlights both community resilience, and
how delicate the results are.

 Fig. 5 Emotive sentiment flow in discourse relating to the KIT Elite loss.

V. DISCUSSION
Focusing a Social Observatory on the KIT Facebook

network revealed quite clear online discourse patterns among
university network members. Post-comment comparison, in
which posts represent activities of page administrators and
comments participation of page visitors, serve as the analysis’s
baseline, providing insights into the community characteristics
as a whole, and as a guideline for further data partitions.

LIWC results display an overall satisfied community,
disclosing indicators of high emotional and mental well-being
through various emotional, attentional and cognitive categories.
Interestingly, comments are both the most positive and
negative aspects of the dataset, indicating that the community
has a diversity of emotion even though the net effect is overall
positive. To better understand the dynamics of discourse, focus
was shifted to differences between comments and posts,
considering if it originated on an administrator or student led
page. Comments on student pages are more emotional overall.
Combining this with the prevalence of cognitive processes in
comments, it can be posited that a central motivation for
visiting the KIT Facebook pages is seeking lively discussions
and discussion of opinions. In contrast, university
administrators seem to restrict themselves to ‘newsflashes’ in a
professional, formal manner, avoiding narratives.

With respect to the temporal aspects of the analysis, several
interesting patterns were detected. Campus discourse showed
dependencies with the recurring semester cycles. KIT’s
Facebook community is most active when students are
returning from holidays to the new semester. Supplementary
pressure and study habits seem to reduce social activity in
contrast to the middle of the semester, where social processes
peak. The denial of the Elite status acted as a shockwave not
only on the campus but also across the various pages of the
university’s Facebook community. Members reacted
emotionally with anger, anxiety and sadness summarized by a
generally increased density of negative emotion. Positive
feelings in the community were marked by a significant drop
from the week preceding the announcement. However, the
community showed resilience as displayed by an increase in
positive emotions, and social and inclusive discourse three
weeks after the event. Remarkably, the KIT community

responded with an increase of communal belongingness to this
disappointing experience.

A. Limitations and Future Work
This work focuses on spikes and dips with clear data

signals in its current iteration. Innumerable smaller and
unstudied incidents can add up and be responsible for emotive
shifts just as well as significant and sudden dips and spikes.
This is due to the fast-changing features of and in social media,
including strong dynamics without distinct attributes. The long-
term analysis of events seems best suited for large-scale
political interventions ([22]) or small, clear communities [1].

Some limitations caused by the tools available do exist. As
stated, LIWC was not designed for short informal text like that
found in Online Social Media, even though it copes
astonishingly well. The importance of multilingualism in
Online Social Media is increasingly recognized. Interlanguage
comparison or even pages including a mixture of several
languages could mislead interpretation of results. To allow for
consideration of these inaccuracies further software versions
could process an output reflecting word count percentages of
contained languages.

A major limitation of this exploratory work is its reliance
on estimations of emotional states. This is especially true for
dictionary-based approaches that are insensitive to context and
thus will misinterpret ambiguous words and certain linguistic
constructs like irony or sarcasm. Although there is a high
amount of agreement with established literature to indicate this
study’s validity, better grounding of the dictionary to context
and not only latent states would allow for more definitive
statements on the general health of the community.

An interesting extension would be a comparative
assessment of other universities and technical universities in
Germany, as well as (dis)similar global universities. This
would enable the establishment of in-depth comparisons of
community characteristics and participative behavior,
representing a powerful information resource for education
institutions worldwide. It would also establish the findings this
work as confirmatory rather than exploratory.

VI. CONCLUSION
BeWell has shown that it can detect notable community

events by tracking expressed sentiment in Facebook posts and
comments. This work’s contribution is the binding of a multi-
dimensional well-being definition that are otherwise hidden
inside a data stream. To achieve this, both benchmarks from
literature and unusual sentiment-based spikes and dips were
observed and reported.

The results revealed by the temporal analysis indicate that
within a community, stakeholders should not be identified in a
top-down way. Especially the shockwaves across the digital
community after the loss of the Elite status show that the
community is both self-nominated, and highly engaged,
participating in the events and emotions experienced as a
community. Partitioning the data in recurring semester cycles
presents information on how communication focus shifts over
the year. Due to the fact that people frequently debate about

546
ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

daily activities and events the results also capture the prevailing
topics of daily activities. The way a Facebook page is
administrated also seems to affect a basic indicator contributing
to well-being, namely the feeling of communal belongingness.
This characteristic is especially valuable for institutions since it
reflects if constituents can identify themselves with values and
views of the organization.

Sentiment analysis on Facebook and the KIT Facebook
presences revealed multiple characteristics useful to describe a
community. LIWC score interpretation allowed for the
identification of the community’s well-being, belongingness,
resilience and engagement. The description of characteristics
was not restricted to capturing macro tendencies but even
delivered dynamics over time, sentiment cycles, and
differences between various subgroups of the respective
community. Results affirm LIWC as an efficient analysis tool
for tracking communal sentiment, well-being and aspects of
belongingness. The results are quite often nuanced: small
percentage points highlight differences for more than one
community characteristic. Yet, topic domains and specific
other scores allow for detecting more specific interpretations
and should not be disregarded.

Information estimated from aggregated social media data
may lack some interpretation quality but provides an easy and
repeatable way to gain quick insight into the essential factors
defining a community. Macro-assessment of social indicators
rises from investigation of post-comment distinction, a pre-
given structure of any Facebook dataset. This means that the
approach is easily replicable for other communities and
generalizable. Although some customizing effort concerning
data preparation are inevitable if community-specific insights
are pursued, many of the employed partitions are to be
individualized to further use cases. This aspect of popularly
sourced well-being information is ripe for broader adaptation.

REFERENCES
[1] A. Lindner, C. Niemeyer, S. Caton, M. Hall, C.

Niemeyer, and S. Caton, “BeWell: A Sentiment
Aggregator for Proactive Community Management,”
in Proceedings of the 33rd Annual ACM Conference
Extended Abstracts on Human Factors in Computing
Systems, 2015, pp. 1055–1060.

[2] S. Caton, M. Hall, and C. Weinhardt, “How do
politicians use Facebook? An applied Social
Observatory,” Big Data Soc., vol. 2, no. 2, p.
2053951715612822, Dec. 2015.

[3] C. Cioffi-Revilla, “Computational social science,”
Comput. Stat., vol. 2, no. 3, pp. 259–271, May 2010.

[4] M. Hall and S. Caton, “A Crowdsourcing Approach to
Identify Common Method Bias and Self-
representation,” Oxford, England, 2014.

[5] J. Lingel, M. Naaman, and danah boyd, “City, self,
network: transnational migrants and online identity
work,” in CSCW’14, 2014, pp. 1502–1510.

[6] R. E. Wilson, S. D. Gosling, and L. T. Graham, “A
Review of Facebook Research in the Social Sciences,”
Perspect. Psychol. Sci., vol. 7, no. 3, pp. 203–220,
May 2012.

[7] A. Kramer, “An Unobtrusive Behavioral Model of
‘Gross National Happiness,’” in Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, 2010, pp. 287–290.

[8] A. Kramer, “The spread of emotion via facebook,” in
Proceedings of the 2012 ACM annual conference on
Human Factors in Computing Systems - CHI ’12,
2012, pp. 767–770.

[9] A. Kramer, J. E. Guillory, and J. Hancock,
“Experimental evidence of massive-scale emotional
contagion through social networks,” Proc. Natl. Acad.
Sci., vol. 111, no. 24, pp. 8788–8790, Jun. 2014.

[10] N. Wang, M. Kosinski, D. Stillwell, and J. Rust, “Can
Well-Being be Measured Using Facebook Status
Updates ? Validation of Facebook ’ s Gross National,”
Soc. Indic. Res., vol. 115, no. 1, pp. 483–491, 2014.

[11] Y. Tausczik and J. Pennebaker, “The Psychological
Meaning of Words: LIWC and Computerized Text
Analysis Methods,” J. Lang. Soc. Psychol., vol. 29,
no. 1, pp. 24–54, Dec. 2010.

[12] J. Pennebaker, C. K. Chung, M. Ireland, A. Gonzales,
and R. J. Booth, “The Development and Psychometric
Properties of LIWC2007,” University of Texas,
Austin, Austin, TX, 2007.

[13] C. Chung and J. Pennebaker, “The Psychological
Functions of Function Words,” Soc. Commun., pp.
343–359, 2007.

[14] C. J. Groom and J. Pennebaker, “Words,” J. Res.
Pers., vol. 36, pp. 615–621, 2002.

[15] J. Pennebaker, The Secret Life of Pronouns: What Our
Words Say About Us. New York, New York, USA:
Bloomsbury Press, 2013.

[16] S. González-Bailón, N. Wang, A. Rivero, and J.
Borge-Holthoefer, “Assessing the bias in samples of
large online networks,” Soc. Networks, vol. 38, no.
January, pp. 16–27, 2014.

[17] D. Ruths and J. Pfeffer, “Social media for large studies
of behavior,” Science (80-.)., vol. 346, no. 6213, pp.
1063–1064, 2014.

[18] M. Russell, Mining the Social Web, Second.
Sebastopol, CA: O’Reily Media, 2013.

[19] J. Pennebaker, M. R. Mehl, and K. G. Niederhoffer,
“Psychological aspects of natural language use: our
words, our selves.,” Annu. Rev. Psychol., vol. 54, pp.
547–77, Jan. 2003.

[20] J. Pennebaker and T. C. Lay, “Language use and
personality during crises: Analyses of Mayor Rudolph
Giuliani’s press conferences.,” Journal of Research in
Personality, vol. 36. pp. 271–282, 2002.

[21] F. Huppert and T. T. C. So, “What percentage of
people in Europe are flourishing and what
characterises them?,” Florence, Italy, 2009.

[22] B. Böcking, M. Hall, and J. Schneider, “Event
Prediction With Learning Algorithms—A Study of
Events Surrounding the Egyptian Revolution of 2011
on the Basis of Micro Blog Data,” Policy & Internet,
vol. 7, no. 2, pp. 159–184, 2015.

547
ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Performance of real-time collaborative editors at
large scale: user perspective

Quang-Vinh Dang
Université de Lorraine, LORIA, F-54506

Inria, F-54600
CNRS, LORIA, F-54506
quang-vinh.dang@inria.fr

Claudia-Lavinia Ignat
Inria, F-54600

Université de Lorraine, LORIA, F-54506
CNRS, LORIA, F-54506

claudia.ignat@inria.fr

Abstract—Real-time collaborative editing allows multiple users
to edit a shared document at the same time. It received a lot
of attention from both industry and academia and gained in
popularity due to the wide availability of free services such
as Google Docs. While these collaborative editing systems were
initially used in scenarios involving only a small set of users such
as for writing a research article, nowadays we notice a change in
the scale from several users to communities of users. Group note
taking during lectures or conferences is an emerging practice.

An important measure of performance of real-time collabora-
tive editing systems is delay. Delays exist between the execution
of one user modification and the visibility of this modification
to the other users. They can be caused by network physical
communication media, complexity of consistency maintenance
algorithms and system architecture. Some user studies have
shown that delay affects group performance in collaborative
editing. In this paper, we measure delays in popular real-time
collaborative editing systems such as Google Docs and Etherpad
and we study whether these systems could cope with large scale
settings from a user perspective. Our results show that these
systems are not yet ready for large-scale collaborative activities
as either they reject new users connection or a high delay appears
when facing an increasing number of users or their typing speeds
in the same shared document.

I. INTRODUCTION

Today team working is a key role of success in companies
or organizations. Very often members within an organisation
or between different collaborating organisations are located
at different geographical places and can work at different
times. For an effective collaboration, team members usually
need to use collaborative tools in order to overcome the
geographical distance. Real-time collaborative editing systems
are commonly used as they allow multiple users to edit a
shared document at the same time.

Benefits of real time on-line collaborative editors are mul-
tiple. Firstly, they provide a ready-to-use platform for all
users to view and modify documents on their web browsers,
without installing heavy software bundle such as Microsoft
Office or Libre Office. Secondly, they provide an environment
where multiple users can contribute to shared documents in
a fast and easy manner. While sharing documents by emails
or physical mediums such as USB sticks would require to
manually deal with multiple concurrent revisions and using

version control systems such as git and svn would require
trained users, in real-time collaborative editing merging is
automatically performed without any user intervention.

Business analysis showed that new cloud collaborative
editing systems such as Google Drive are taking the market
share from the traditional document software provider such
as Microsoft Office [1]. The number of users of Google
Drive service increased from 10 millions on 2012 [2] to 240
millions on October 2014 [3]. On September 2015 Google
Drive announced that there are one million paying customers
using their service [4].

Initially, real-time collaborative editing systems were used
in scenarios involving a small number of concurrent editing
users (e.g, up to ten) such as writing a research article
or a brainstorming session. However, scenarios involving a
large number of concurrent editing users are emerging, such
as students of a class or participants in a conference that
collaboratively take notes. A recent example is a MOOC
(Massive Open Online Course) where the 40,000 participants
were asked to access to parts of the Google Docs documents
created for the course. Due to the high number of concurrent
edits to the same documents, the system crashed and finally
the lecture was cancelled [5].

Various quality aspects should be taken into consideration in
the design phase of large-scale collaborative editing systems.
One of the important requirements of these systems is delay
[6], [7]. Delays exist between the execution of one user’s
modification and the visibility of this modification to the other
users. Delays can be caused by different reasons: network
delay due to physical communication technology be it copper
wire, optical fiber or radio transmission; complexity of various
algorithms for ensuring consistency, where most of them
depend on the number of users and number of operations
that users performed; the type of architectures: For thin client
architectures the computation for algorithms for maintaining
consistency is done mainly on the server, which becomes
a bottleneck in the case of a large number of users and
operations, and therefore causes an increased delay for seeing
operations of other users. For thick client architectures the
computation is done mainly on the client side and delays are
lower in this case.

In the context of collaborative editing, the delay is a criticalISBN 978-3-901882-83-8 c� 2016 IFIP

548

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

concern and it has a great influence on the performance and
behavior of users [7]. By studying users’ behavior in real-
time collaborative note taking with artificial added delay, Ignat
et al [6] claimed that “delay increases grammatical errors
and redundancy, resulting in a decreased quality of the task
content”. However, delay has not been addressed at its desired
level in the development of real-time collaborative editing
systems.

In this paper, we aim at measuring the performance of real-
time collaborative editing systems from users point of view.
More precisely, we measure the perceived delay by users in
online real-time collaborative editing systems in their normal
working environment, i.e. using web browsers.

Setting up an experiment with numerous real users that edit
concurrently a shared document would not be possible with
current tools. Existing tools restrict the number of users editing
a document and most of them are not open-source in order to
allow code instrumentation for delay measurement. We instead
simulated user behavior by means of agents that use popular
web-based real-time collaborative editing services currently
available in the market: Google Docs1 and Etherpad2.

The paper is structured as follows. We start by describing
the set-up of our experiments: how we modeled and simulated
user behavior and how we measured delays. We next present
the performance evaluation of Google Docs and Etherpad and
discuss the results obtained. We finally provide concluding
remarks.

II. EVALUATION SETTINGS

A. User Behavior

We define user behavior as a set of the following actions,
which can be further extended:

• Start a web browser instance (Firefox, Chrome, Internet
Explorer, Safari, Edge, etc.).

• Surf to the dedicated web page of a collaborative editor.
• Load a shared document.
• Perform modifications by inserting and/or deleting char-

acters in the document.
• Interact with buttons on the web page by using mouse /

pointing system.
• Close the web browser, since current collaborative editors

automatically save user changes.

B. Simulation Settings

In order to simulate the real user behavior on web browsers,
we selected Selenium [8], which has been widely accepted in
web-based testing community [9].

The simulation is distributed on multiple computers3. Three
types of simulated users have been defined:

1) Writer: writes a specific string to the shared document.
2) Reader: waits and reads the specific string from the

writer.
1https://docs.google.com
2http://etherpad.org
3The implementation is available at https://github.com/vinhqdang/

collaborative editing measurement

3) DummyWriter: writes random strings to the shared
document. Random strings are different from the specific
string. DummyWriters are used to simulate concurrent
users.

Each simulator (Writer, Reader, DummyWriter) performs
its task on different Google Chrome browser window. The
delay is measured by the time period between the moment the
specific string is written by the Writer and the moment when
the specific string is read by the Reader. In order to avoid clock
synchronisation issues, both Reader and Writer are executed
on the same computer.

C. Experiment Settings

For each real-time collaborative editing system, i.e. Google
Docs and Etherpad, we measured the performance (delay) in
different settings by varying the number of users who modify
the document at the same time, and their typing speed, i.e. the
number of characters each user types to the document in one
second.

As the number of users that can concurrently modify a
document in Google Docs4 is limited to 50, we varied the
number of users from one to 50. The usual range of user typing
speed is 2–4 characters per second [10]. We also considered
that higher speeds could be achieved by performing cut and
paste operations on large blocks of text. We therefore varied
the typing speed from one to 8 characters per second.

We created five shared documents and then evaluated the
delays in turn on each of these documents and for each
combination of settings (number of users and typing speed). In
order to further eliminate random effects on the performance
achieved, for each of the shared document and for each
combination of settings, we repeated the experiment four
times.

We used five local computers located at Inria Grand-Est,
Nancy, France with the corresponding configuration features
described in Table I. Clients simulating user behavior were
executed on one of these computers: the Writer and Reader
are executed by the first computer (with CPU Intel i7 720QM),
and the DummyWriters are executed by other computers.
DummyWriters are assigned to computers in a load balancing
fashion: during the experiment when the number of clients,
i.e. DummyWriters, is increased, each new DummyWriter is
executed on the computer running the minimum number of
clients with respect to its capacity, i.e. CPU and memory.
We report the maximum number of DummyWriter which are
executed on each computer in the third column of Table I.

III. RESULTS

In this section, we present and discuss the performance eval-
uation results of two popular real-time collaborative editing
systems: Google Docs and Etherpad.

4https://support.google.com/docs/answer/2494827?hl=en as on 15-Feb-
2016.

549

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

TABLE I
THE EXPERIMENT CONFIGURATION

CPU Memory Number of simulated users
Intel i7 720QM 8 GB 2

Intel Xeon W3550 8 GB 15
Intel Xeon W3520 8 GB 15

Intel Core 2 Duo E6850 4 GB 10
Intel Core 2 Duo E6550 4 GB 9

A. Google Docs

Google Docs is the most popular real-time collaborative
editing system today. The service was introduced in 2007, and
quickly attracted over one million users [1], [2].

The results of performance evaluation of Google Docs are
displayed in Figures 1–5 for different typing speeds. The
delays mean value line depicted in each figure shows the
increasing trend of delay with an increasing number of users
that join and modify the shared documents at the same time.

The above graphs show a very interesting feature of Google
Docs. When the number of users is less than ten, Google
Docs provides a very good and stable performance. The delays
are very small and stable meaning that the performance of
the system has not been affected when the number of users
increases from one to ten. However, when the number of
users exceeds ten, the performance of Google Docs decreases
quickly, meaning that the delay increases significantly. This
might be an explanation for the limit of 50 concurrent users
specified by the Google Docs documentation.

The results also show us another interesting property of
Google Docs: a higher typing speed leads to a higher depen-
dency of delay on number of users. In other words, a higher
typing speed will lead to a higher delay, and the delay also
increases faster with the number of users.

We notice that it is very common to observe delays over
ten seconds with Google Docs. Moreover, even if Google
Docs documentation claimed that up to 50 users can modify
a shared document at the same time, it is not always the case.
We only can simulate 50 users if the typing speed of users
is one character per second. Otherwise, if we increase the
typing speed, a maximum of 38 users can log in and use the
service. Additional users cannot use the system as they are
repeatedly displayed the following message at login “Wow
this file is really popular! Some tools might be unavailable
until the crowd clears”.

B. Etherpad

Etherpad is a popular open-source web based collaborative
platform, with the first version being released in 2008. Ether-
pad is currently being used by many open-source and non-
profit organizations, such as Wikimedia5.

In order to evaluate the performance of Etherpad, we
installed the source code provided by Etherpad development
team6 on our own server (Intel Xeon W3550) and performed

5https://etherpad.wikimedia.org
6http://etherpad.org/\#download

0

1
0

2
0

3
0

4
0

5
0

0

10

20

30

40

50

60

Number of user

D
e

la
y
 i
n

 s
e

c
o

n
d

s

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

Fig. 1. Performance of Google Docs with a typing speed of one character /
second

0

1
0

2
0

3
0

4
0

0

5

10

15

20

25

30

Number of user

D
e

la
y
 i
n

 s
e

c
o

n
d

s

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

Fig. 2. Performance of Google Docs with a typing speed of two characters
/ second

0

1
0

2
0

3
0

4
0

0

5

10

15

20

25

30

Number of user

D
e

la
y
 i
n

 s
e

c
o

n
d

s

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

Fig. 3. Performance of Google Docs with a typing speed of four characters
/ second

550

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

0

1
0

2
0

3
0

4
0

0

5

10

15

20

25

30

Number of user

D
e

la
y
 i
n

 s
e

c
o

n
d

s

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

Fig. 4. Performance of Google Docs with a typing speed of six characters /
second

0

1
0

2
0

3
0

4
0

0

10

20

30

40

Number of user

D
e

la
y
 i
n

 s
e

c
o

n
d

s

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

Fig. 5. Performance of Google Docs with a typing speed of eight characters
/ second

the same evaluation method that we previously described for
Google Docs. We applied all default settings of Etherpad (i.e.
we used dirtyDB as the underlying database), and maintained
the same evaluation settings as in the case of Google Docs.

When the number of users is less than ten, we observe
a similar phenomenon as Google Docs: Etherpad responds
quickly to users’ modifications, and delays are small and
stable. However, when the number of users exceeds ten,
Etherpad starts rejecting connections from new users, as it
can be seen in the screenshot in Figure 6.

We can conclude that, Etherpad cannot be used by more
than ten users that concurrently modify the shared document
at the same time.

IV. DISCUSSION

A. Source of delay

As previously mentioned, in real-time collaborative editing,
delays can appear because of network due to the structure and
configuration of the Internet, which basically operates on the
“best effort” principle, trying to deliver data from a computer
to other ones as fast as possible but without any guarantee of
time bound. Delays are also due to the collaborative editing
systems architecture such as client-server, peer-to-peer, thin or

Fig. 6. Etherpad rejects users’ connection when the number of users exceeds
ten

thick client. Moreover, delays are due to the synchronisation
algorithms implemented by each system.

In this paper, we measured the delay with different number
of users and typing speeds. The delay the real users observe
depends on how many users are modifying the sharing docu-
ment at the same time, and how fast they are typing. However,
we could not perform a more in-depth analysis on the reasons
of delay as information about the inside architecture and
algorithms used in Google Docs is not available and we could
not take into account all the network infrastructure from our
computers to Google Docs server.

During the experiments, we monitored the network band-
width and CPU usage on our experimental computers7. The
monitoring logs showed that our computers never consume
more than 30% of CPU usage, and the incoming/outgoing net-
work bandwidth is always less than 100 Kilobytes per second,
which can be easily satisfied with the Internet connection today
[11].

B. Sharing limit

Both Google Docs and Etherpad, the two popular real-time
collaborative editing systems today, do not support a large
number of users. Etherpad stops to accept new incoming users
when the number of current users is more than ten. Google
Docs claims that the service can support up to 50 users that
can modify the shared document at the same time. However,
this is true only if these users type at slow speed (1 character
/ second). Otherwise, the service cannot support more than 38
users that modify the shared document at the same time.

Therefore, Google Docs and Etherpad are not suitable
for large-scale collaborative editing activities today, where
hundreds of persons can share and modify a document such
as a notes in events, meetings, conferences or MOOCs.

C. Effect on users

The effect of delay on users’ behavior in collaborative
editing has been studied in [6], [12]. Twenty groups of four
students from a French university have been recruited to

7CPU usage and network bandwidth were monitored by using multiload
indicator, which is available at https://launchpad.net/indicator-multiload

551

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

perform an experiment including several tasks in collaborative
editing. Users were asked to perform each collaborative task
using the Etherpad collaborative editor under instructions that
demanded interleaved work. Users were allowed to coordinate
themselves by using the chat available in Etherpad. Without
informing participants, delays were intentionally added, i.e.
the server has been programmed to wait a certain amount
of time before sending data to clients. The artificial delay
levels included two, four, six, eight and ten seconds, which
are realistic as we discussed in Section III. Each group had
to perform the required tasks under a constant but undeclared
delay in the propagation of changes between group members.
Software recorded each user’s desktop activity, including task
performance as well as chat for coordination.

The task where users were provided with a list of movies
and asked to search for the release date of those movies
and then sort them in an ascending order according to the
release date was analysed in [12]. For the analysis of the
collected data outcome metrics for measuring the quality of
the realised task but also process metrics for analysing user
behaviour during achievement of the tasks were introduced:
a sorting accuracy based on the insertion sort algorithm,
average time per entry, strategies (tightly coupled or loosely
coupled task decomposition of the task), chat behavior and
collisions between users. It has been found that delay slows
down participants which decrements the outcome metric of
sorting accuracy. Tightly coupled task decomposition enhances
outcome at minimal delay, but participants slow down with
higher delays. A loosely coupled task decomposition at the
beginning leaves a poorly coordinated tightly coupled sorting
at the end, requiring more coordination as delay increases.

The note taking task where users listened to an interview
about cloud computing and took notes during this time was
analysed in [6]. It has been noticed that due to delay, notes
about the same topic were taken two, three and even four
times. What happened is that when two users want to take
notes on the same topic, in the presence of delay, changes
of one user are not immediately visible to the other user,
so a user thinks that the other user is not taking notes, so
he/she is taking the notes. In that way, finally, the notes are in
double. If more than two users try to take notes simultaneously,
finally the same idea will appear three or even four times.
It was found that the error rate is higher for groups that
experienced a higher level of delay and redundancy is higher
for groups in higher delay condition. Moreover, as delay
increases the keywords depicted by users decreases. Groups
were classified into two categories according to their declared
experience in the domain of collaborative editing. For high
experienced groups redundancy increases with the delay, but
for low experienced groups the same tendency could not
be observed. Chat behavior by means of number of accord
words and definite determiners which together provides a
common ground knowledge was considered as a measure of
coordination. Low experienced groups used more coordination
to manage redundancy. High experienced groups did not adjust
their collaboration effort to manage redundancy.

A general hindrance of delay was observed in all analysed
tasks. Delay destroys the value of collaborative editing and
forces independent, redundant work.

Delays measured in GoogleDocs when the number of users
exceeds ten are largely superior to the artificial delays experi-
enced in [6], [12]. We therefore expect that a high hindrance
of delay will be experienced in Google Docs in scenarios of
collaborative editing that involve a large number of users that
concurrently modify a shared document.

D. Implications for design

Our primary purpose is to demonstrate the delay users could
observe in popular real-time collaborative editing systems
available in the market, and we showed that delay is a fact
in current real-time collaborative editing systems. In the scale
of more than ten users to modify the sharing document at the
same time, delay can come up to 50 seconds.

Usually, in distributed computing, delays could appear due
to traffic congestion when the amount of data transferred
between nodes overcomes the capability of the network [13].
However, as we presented in Section IV-A, we did not observe
the traffic congestion during our experiments. Therefore, we
could suggest that the delay mostly comes from the architec-
ture and implementation of the services.

As claimed in the official blog of Google Drive development
team [14], Google Docs is relying on the Jupiter algorithm
[15] for synchronization between nodes. This might not be the
best choice of algorithm to be used in collaborative editing
at large scale, because the Jupiter algorithm, which belongs
to Operational Transformation family of synchronisation so-
lutions [16] requires a lot of computation on the server side,
which increases the delay users observe in large-scale settings.
Different algorithms such as CRDT [17], [18], standing for
Conflict-free Replicated Data Type should achieve a better
performance in large-scale collaborative editing and feature
smaller delays [19]. Moreover, CRDT-based algorithms on
strings should achieve better performance than character-based
CRDT algorithms [20], [21].

Notifying delay to users could be implemented in real-
time collaborative editing services. As suggested by several
researches [6], [7], notified delay could let the users adapt their
behaviors for the context. However, the delay notification has
not been implemented yet in the real-time collaborative editing
systems.

V. CONCLUSIONS

In this paper, we presented the performance measurement
in term of delay in popular real-time editing services in the
market. We demonstrated that, delay is a fact and high delay
will appear and increase if there are more users joining to
modify the shared document at the same time, or the users
increase their typing speed. We demonstrated that the existing
real-time collaborative systems are not yet ready for large-
scale collaborative activities, as they reject the new users’
connection if the number of users in the system increases a
certain limit.

552

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

Delay destroys the value of collaborative editing and forces
independent, redundant work. Therefore, delay should be
avoided and needs more attention from development team. We
discussed several strategies to tackle the problem such as using
suitable consistency maintenance algorithms or notifying delay
to users.

VI. ACKNOWLEDGEMENTS

This work has been carried out thanks to the support of
the PSPC OpenPaaS::NG project funded by the “Investisse-
ments d’Avenir” French government program managed by the
“Commissariat général à l’investissement” (CGI).

REFERENCES

[1] A. Covert, “Will google docs kill off microsoft office?”
2013. [Online]. Available: http://money.cnn.com/2013/11/13/technology/
enterprise/microsoft-office-google-docs/

[2] J. Crook, “Google drive now has 10 million users:
Available on ios and chrome os,” 2012. [Online].
Available: http://techcrunch.com/2012/06/28/google-drive-now-has-10-
million-users-available-on-ios-and-chrome-os-offline-editing-in-docs/

[3] E. Protalinski, “Google announces 10% price cut
for all compute engine instances, google drive has
passed 240m active users,” 2014. [Online]. Available:
http://thenextweb.com/google/2014/10/01/google-announces-10-price-
cut-compute-engine-instances-google-drive-passed-240m-active-users/

[4] B. Darrow, “Google drive claims one million paying customers, er,
organizations,” 2015. [Online]. Available: http://fortune.com/2015/09/
21/google-drive-1m-paid-users/

[5] S. Jaschik, “Mooc mess,” 2013. [Online].
Available: https://www.insidehighered.com/news/2013/02/04/coursera-
forced-call-mooc-amid-complaints-about-course

[6] C.-L. Ignat, G. Oster, O. Fox, V. L. Shalin, and F. Charoy, “How do
user groups cope with delay in real-time collaborative note taking,” in
Proceedings of the 14th European Conference on Computer Supported
Cooperative Work (ECSCW), 2015, pp. 223–242.

[7] I. Vaghi, C. Greenhalgh, and S. Benford, “Coping with inconsistency due
to network delays in collaborative virtual environments,” in Proceedings
of the ACM Symposium on Virtual Reality Software and Technology
(VRST), 1999, pp. 42–49.

[8] A. Holmes and M. Kellogg, “Automating functional tests using sele-
nium,” in Proceedings of AGILE Conference (AGILE), 2006, pp. 270–
275.

[9] R. Angmo and M. Sharma, “Performance evaluation of web based
automation testing tools,” in Proceedings of the 5th International Confer-
ence Confluence, The Next Generation Information Technology Summit
(Confluence), 2014, pp. 731–735.

[10] R. William Soukoreff and I. Scott Mackenzie, “Theoretical upper and
lower bounds on typing speed using a stylus and a soft keyboard,”
Behaviour & Information Technology, vol. 14, no. 6, pp. 370–379, 1995.

[11] Akamai, “State of the internet report,” 2015. [Online]. Available:
https://www.akamai.com/us/en/our-thinking/state-of-the-internet-report/

[12] C.-L. Ignat, G. Oster, M. Newman, V. Shalin, and F. Charoy, “Studying
the effect of delay on group performance in collaborative editing,” in
Proceedings of the 6th International Conference on Cooperative Design,
Visualization and Engineering (CDVE), 2014, pp. 191 – 198.

[13] J. F. Kurose and K. W. Ross, Computer networking: a top-down
approach. Addison-Wesley, 2007.

[14] G. D. Blog, “What’s different about the new google docs: Making
collaboration fast,” 2010. [Online]. Available: http://googledrive.
blogspot.com/2010/09/whats-different-about-new-google-docs.html

[15] D. A. Nichols, P. Curtis, M. Dixon, and J. Lamping, “High-latency,
Low-bandwidth Windowing in the Jupiter Collaboration System,” in
Proceedings of the 8th Annual ACM Symposium on User Interface and
Software Technology (UIST), 1995, pp. 111–120.

[16] C. A. Ellis and S. J. Gibbs, “Concurrency control in groupware systems,”
in Proceedings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), 1989, pp. 399–407.

[17] S. Weiss, P. Urso, and P. Molli, “Logoot : A Scalable Optimistic
Replication Algorithm for Collaborative Editing on P2P Networks,”
in Proceedings of the 29th International Conference on Distributed
Computing Systems (ICDCS), 2009, pp. 404–412.

[18] N. Preguiça, J. M. Marquès, M. Shapiro, and M. Letia, “A Commutative
Replicated Data Type for Cooperative Editing,” in Proceedings of
the 29th International Conference on Distributed Computing Systems
(ICDCS), 2009, pp. 395–403.

[19] M. Ahmed-Nacer, C. Ignat, G. Oster, H. Roh, and P. Urso, “Evaluating
crdts for real-time document editing,” in Proceedings of the ACM
Symposium on Document Engineering (DocEng), 2011, pp. 103–112.

[20] L. André, S. Martin, G. Oster, and C.-L. Ignat, “Supporting Adaptable
Granularity of Changes for Massive-scale Collaborative Editing,” in Pro-
ceedings of the International Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom), 2013.

[21] W. Yu, L. André, and C.-L. Ignat, “A CRDT Supporting Selective Undo
for Collaborative Text Editing,” in Proceedings of the 10th International
Federated Conference on Distributed Computing Techniques (DisCoTec)
Distributed Applications and Interoperable Systems (DAIS), 2015, pp.
193–206.

553

ISBN 978-3-901882-84-5, IFIP Networking 2016 © 2016 IFIP

