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Abstract—A tenant hosted by a cloud platform typically runs
a lot of applications, each of which not only has its own service
capacity but also differs in revenue or business importance. Thus
we argue that it is crucial for a cloud platform to provide fine-
grained and application-aware performance monitoring for each
tenant, rather than current monitors that can only handle overall
metrics. In this paper, we propose CloudWatch+, a tool that
focuses on detecting the latency of web-based applications. A
cloud platform equipping with CloudWatch+ can automatically
learn and distinguish web-based applications it is hosting, and
detect latency anomalies for each application based on its
own status. Our evaluation using the real data from a cloud
platform with over 200 tenants demonstrates that the detection
results of CloudWatch+ are more detailed than those of Amazon
CloudWatch, which misses most alarms while some tenants’
specific applications experience bad performance. Meanwhile,
CloudWatch+ is also realtime and light-weight.

I. INTRODUCTION
Cloud computing platforms (e.g., Amazon AWS and Win-

dows Azure) are critical components of the current Internet.
These platforms offer attractive properties, such as elastic
scaling, integrated management and global accessibility. As
such, more and more Internet services are deployed on cloud
platforms. For example, Netflix builds its entire online video
streaming service on top of Amazon AWS.

As with any Internet applications, web applications are
sensitive to various performance metrics, one of which is
response latency. For example, 1 second increasing of latency
can lead to 11% page views dropping and 7% customer
conversations lost according to [1]. Therefore, latency monitors
are considered to be indispensable components of the cloud
platforms hosting web applications. There have been a suite of
tools provided within a cloud, such as Amazon CloudWatch [2]
and Windows Azure Metrics [3]. Besides, many solutions
from SaaS-based third parties are available as well, such
as RightScale [4] and New Relic [5]. Beyond monitoring,
Amazon CloudWatch is able to automatically trigger auto-
scaling (provisioning more cloud instances) when performance
degradation has been found.

Despite the efforts of these commercial monitors, the met-
rics they gathered are all aggregated at either an instance level
or a tenant level (e.g., Amazon CloudWatch), and measured
with minimum, average, and maximum [6], [7], [8], [9]. .
This fundamentally limits the effectiveness of the web latency
monitoring for tenants, because (1) the applications of a tenant
could differ in their importance, e.g., VIP users’ applications
and revenue related applications are more cared by tenants;
(2) a single application might contribute to only a small part
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of the total requests [10], thus their latency anomalies (if any)
cannot result in an obvious symptom of the overall latency
(both average and 90th percentile). Although the maximum
can reveal any latency anomaly, it is commonly believed to
be too noisy and triggers a large number of false positives,
thus is rarely used in practice. As a result, tenants cannot
be informed for the performance degradation of one or more
specific important applications.

While overall performance metrics is coarse-grained, mon-
itoring and alarming on each individual URL (raw data in
typical web access logs) is also ineffective. This is because an
application may produce a huge number of unique URLs, and
a failure happens on an application, the alarms on individual
URLs would be overwhelming. For example, in one-day data
set (after sampling by 1/60), there are still more than 70,000
suspicious records with different URLs when the latency
threshold is set as 1.5 seconds. It’s an intractable task for
tenants to manually figure out which applications are suffering
serious performance problems from these URLs.

To address the above dilemma, we propose an application-
aware web latency monitor for cloud tenants. Its granularity is
fine enough for tenants to identify the poor applications. We
name our tool as CloudWatch+, and it can be considered as
an application-aware version of Amazon CloudWatch.

The architecture of CloudWatch+ is shown in Fig. 1. The
input data is web access logs, recording the timestamp, URL,
response latency, etc., for every visit. The data is then handled
by two main components of CloudWatch+ in sequence: (1)
uCluster is a module that automatically classify a large number
of web access records into different applications based on
URL clustering. Its high level idea is exploiting the URL
pattern for each application, e.g., common fields of URLs.
(2) Anomaly detector calculate the latency and workload of
every time slot for each application. In this paper The latency
is measured with the 90th percentile, which is a common
measurement of performance; the workload is measured with
query per seconds (QPS). The anomaly detector determines
anomalies by comparing the latency of each application to a
threshold. Beyond that, it can also estimates the capacity of
applications. Based on this information, it can infer whether
a latency anomaly is caused by overload or not, a rather
important suggestion for tenants to make accurate decisions
of whether to scale up (e.g., purchasing more instances from
the cloud).

CloudWatch+ has the following advantages:

• URL based web application identification and no pri-
or knowledge. CloudWatch+ exploits URLs, common
identities of web access, to distinguish applications.
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Fig. 1: Architecture of CloudWatch+.

Moreover, it does not know in advance what ap-
plications are run by tenants, nor does it know the
URLs pattern (i.e., which fields of a URL represent
applications and which ones represent parameters).
CloudWatch+ simply monitors web access logs and
automatically learns the information.

• Online and Realtime. Since the anomalies of appli-
cation latency can severely cause damages to users’
experience, CloudWatch+ is designed to be online
and realtime. Thus, tenants can be warned as soon
as possible, and then take actions to stop further loss.

• Light-weight. CloudWatch+ is also light-weight in
space and CPU complexity so that it can be easily
deployed as an online tool in the cloud, that hosts a
potentially large number of tenants and applications.

We evaluate CloudWatch+ using the real data from a cloud
platform hosting over 200 tenants. The results show that,
CloudWatch+ is able to identify the anomalies of each appli-
cation separately, while almost all these anomalies are missed
by Amazon CloudWatch. In addition, the storage and CPU
overhead are very low even when monitoring and detecting a
large amount of access records.

The remainder of the paper is organized as follows. We
present the observations and intuitions from the analysis of
real data in Section II. The design of the online URL clus-
tering algorithm and the corresponding results are described
in Section III and Section IV respectively. We introduce our
anomaly detection method based on uCluster in Section V, and
evaluate CloudWatch+ in Section VI. We discuss related work
in Section VII before concluding this paper in Section VIII.

II. DATA SET AND OFFLINE ANALYSIS
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Fig. 2: Overall request rate at the cloud data center.

To gain more insights into the web access in a real cloud,
before developing our methods, we first introduce the one day
worth of web access log obtained from one cloud provider. It
serves more than 200 tenants, and the overall workload reaches

42K QPS during peak-hour around 22:00 (as shown in Fig. 2).
As some tenants only receive a small amount of workloads,
we focus on the top 64 most visited tenants in the rest of
the paper. These tenants provide services such as online social
network, news portals, picture sharing, video sharing, music
streaming, document sharing.

Our data set is collected at the load balancers of the cloud,
with a sampling rate of 1/601. In total, we obtained 12.5G
worth of data with 33 million records. In each record, there
are multiple fields, three of which are used by CloudWatch+,
i.e., {Request-Timestamp, URL, Latency}. The latency refers
to the time between when a request is forward to a server by
a load balancer and its response returns back. This measure-
ment is adopted similarly by commercial Cloud performance
monitoring tools, such as Amazon CloudWatch [2], but they
aggregate the latency at an instance level or a tenant level. Our
goal in this section is to investigate whether and how we can
monitor the latency at a fine granularity.

A. A Motivating Example
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Fig. 3: The maximum, 90th percentile, and average of latency
during a day.

Within the data set, a particular tenant (an online social
network service) received a lot of user complaints about the
long latency for several applications from 23:30 to 00:30.
We measure the overall metrics of latency for this tenant,
like existing monitors. Fig. 3 plots the three metrics derived
from the data set. We can see that the average and 90th
percentile of latency are always under 0.25s, representing a
good performance. On the other hand, the maximum fluctuates
significantly all the time, thus is seldom used for raising per-
formance alarms. The result shows that these overall metrics
are all infeasible to capture the real user perceived problems,
and proves that the coarse-grained monitoring is ineffective.

Motivating by the above example, we intend to design
an application-aware latency monitoring method for web ap-
plications in this paper. The high level idea is intuitive,
that is distinguishing web applications, then measuring and
detecting their latency separately. In order to identifying web
applications generally, we exploit a very common field in web
access logs, i.e., URL.

B. Observations from the data set
We now present some observations from offline analysis of

the data set. These observations both highlight the challenges
and offer the intuitions of designing such a method.

Observation 1: Most tenants have a large number of
unique URLs. Fig. 4 shows the number of unique URLs

1Unless otherwise noted, the workload in this paper refers to the one in the
sampled data set.
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Fig. 4: Then number of requests and unique URLs per tenant.
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Fig. 5: The CDF of the request number of each URL.

generated by each tenant, as well as the number of requests
received by each tenant. The tenants are ordered along X
axis by the number of unique URLs in descending order. As
shown in Fig. 4, the number of unique URLs owned by each
tenant ranges from tens to millions, and the number of requests
per tenant ranges from hundreds to millions (after sampling).
We also notice that for many tenants (e.g. the first tenant),
the numbers of its unique URLs and requests are both huge.
This is because the URLs contain some conversation-specific
parameters such as date time and transaction ID, thus every
request will generate a different URL even if they visit the
same application.

Observation 2: Most URLs are visited only once during a
day. Fig. 5 shows the CDF of the request number of each URL.
It shows that 97.7% of URLs are visited only once during that
day. Only 0.007% URLs received requests more than 1000,
such as the home pages or static images.

Observation 3: Most URLs have only a few fields. As
illustrated in Fig. 6(a) , for all the 64 tenants, 99% of their
URLs are up to 11 fields, and for 61 of them, 99% of
their URLs are at most 7 fields. By further investigating,
we find that the tenants with URLs of a few fields mostly
provide simple index pages (e.g., /news/20130102.html) or
static content caching (e.g., /banner/top.gif). Similarly, requests
are more likely to hit the URLs with less fields. As shown in
Fig. 6(b), for all the 64 tenants, 99% of their requests hit the
URLs with no more than 9 fields, and for 57 of them, URLs
with less than 7 fields absorb 99% requests. This observation
also suggests that the number of common fields shared by
different URLs is even less.

C. Challenges and Intuitions
To detect the latency anomaly at web application gran-

ularity, we first identify applications via URLs. However,
this is challenging due to the following two aspects. First,
the URLs of the same application always carry parameters
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(a) The number of tenants whose 99%, 95%, and 90% URLs are no more than
X fields.
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that are no more than X fields.

Fig. 6: The distribution of the number of URL fields.

with it, yet eliminating them is intractable due to the URL
rewriting technology[11]. Specifically, the parameters can exist
not only in the last field after “?” as standard URLs appear,
but also anywhere of URLs. For example, “/news/0001” is
rewritten from “/news?id=0001”. Second, as Observation 1
shows, a large number of user requests visit unique URLs (e.g.,
same application, but with different parameters). This renders
manually analyzing and identifying applications impractical
and raises a requirement of an automatical URL clustering
method for application identification.

Based on the data analysis, we leverage the following intu-
itions to track the above challenges and design CloudWatch+.

Intuition 1: A URL pattern with a parameter field can
generate more different URLs. Each URL pattern can generate
a different number of specific URLs sharing several common
fields. Particularly, the URL pattern with a parameter field
can result in much more unique URLs than the one without
parameter field. For example, “/news/parameters” pattern can
have many specific and unique URLs such as “/news/0001”,
“/news/0002”,..., “/news/9999”. On the other hand, another
URL pattern “/user/application” can only have a handful of
unique URLs such as “/user/blog” and “/user/info”. Further-
more, the number of requests hitting URLs with parameters
are much less because the requests are dispersed by different
parameter values.
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Intuition 2: URL pattern of the same application is
hierarchical by nature. Although URLs can be encoded very
flexibly in reality, the practical URL patterns are hierarchical.
This is because web servers typically organize files (for static
content) and codes (for dynamic scripts) in a hierarchical
folder structure. This implies that the clusters of URLs are
hierarchical and a cluster can be represented by the common
fields of the URLs belong to it.

III. ONLINE URL CLUSTERING ALGORITHM
In this section, we first introduce the limitations of some

existing clustering methods. Afterwards we formalize our
problem and describe our clustering algorithm.

A. Limitations of Existing Clustering Methods
There are many clustering technologies used for partition-

ing a data set, such as classical k-means and hierarchical
clustering. However, it is still faced with many challenges
to apply them in online monitoring for URL clustering: (1)
Their high complexity is unacceptable for online monitoring
a huge quantities of data, e.g., k-means is NP-hard [12] and
hierarchical clustering is O(n3) and O(n2) for special cas-
es [13]. (2) The clustering terminal conditions have significant
impacts on the clustering results, yet it is difficult to manually
determine those values intuitively (e.g., k value in k-means).
(3) Assumption of a complete data is inflexible when the
handling incremental data, such as dealing with the change
of URL patterns caused by the service updates.

B. Problem Formalization
For convenience of later discussions, we first review some

basic concepts used in clustering.
• x, an element of the data set, and is denoted by a

vector: x = {v1, v2...vn}.
• D(x, y), the distance function between two elements

x and y (e.g., Euclidean distance and Hamming dis-
tance).

• LC(X ,Y), the linkage criteria specifying the dis-
tance between clusters X and Y (e.g., single-linkage
min{D(x, y)|x ∈ X , y ∈ Y} and complete-linkage
max{D(x, y)|x ∈ X , y ∈ Y}).

Hence, all the elements are sequentially merged into clus-
ters according to the distance functions and strategies used in
different methods.

Now we formalize the URL clustering problem. Each URL
u has a set of fields split by a delimiter (“/” most frequently
used). Particularly, if there is a “?” appearing in the last field,
we remove the part after the “?”, aiming at preliminarily
filtering out the conspicuous parameters of standard URLs.
Then the fields of u is denoted by F (u) = {f1, f2, ..., fi};
each field f is indexed based on its position in u. For example:
F (forum/userInfo?12416) = {forum,userInfo?}.

The distance between URLs can be measured with the
number of common fields. Therefore, the distance function D
is defined as follows:

D(u1, u2) =

{
∞ , if F (u1)

⋂
F (u2) = ∅

1
|F (u1)

⋂
F (u2)| , otherwise (1)

This indicates that the more common fields a pair of URLs
have, the closer they are to each other. Note that whether the
common fields are consecutive is not critical in the definition.

This yields the ability to handle the parameters in the middle
part of a URL.

C. uCluster Algorithm
To overcome the aforementioned challenges, we design

uCluster, a URL clustering algorithm. By leveraging our
observations and intuitions, uCluster differs URL clustering
problem from general cases. It aims at clustering URLs based
on their structural similarity and eliminating parameters of
applications. Our design of uCluster possesses the following
advantages: (1) low complexity O(n); (2) intuitive arguments
of clustering, which can be derived from analyzing data itself;
(3) the online manner without assuming complete data.

Firstly, We introduce two concepts, virtual clusters and
final clusters, to aid in eliminating parameters in URLs and
achieving the ability of online process. Virtual clusters are
the intermediate clusters generated according to the distance
between URLs, and they are the candidates into which a
URL would be finally grouped. Final clusters are the resultant
clusters, and also represent the applications we identified. They
are converted from virtual clusters based on the number of sub-
clusters (as we describe later).

A virtual cluster is denoted by V , and the set of common
fields shared by the URLs in V is denoted as F (V), where
F (V) = {

∑
∩F (u)|u ∈ V}. All the virtual clusters are

hierarchically structured as a tree, and the level (or depth) of
V is denoted as l(V). The nature of each V is |F (V)| > l(V),
which means that the number of the common fields shared in
V must be no less than the level of V . This nature can also be
interpreted as ∀u1, u2 ∈ V : D(u1, u2) 6 1/l(V), that is as V
goes deeper in the tree, the distance between the URLs in V
should be shorter. As Observation 3 shows, the fields number
of most URLs are always only a few, indicating the maximum
level of the tree, denoted as L, is small.

The linkage criteria between V1 and V2 is defined as:

LC(V1,V2) =
1

|F (V1)
⋂
F (V2)|

(2)

And the conditions when V1 and V2 can be merged are that
(1) V1 and V2 have the same direct ancestor and they are at the
same level, l(V1) = l(V2) = l (to guarantee the hierarchical
structure); (2) the new merged cluster should also satisfy the
nature of virtual cluster, that is LC(V1,V2) 6 1

l .
When a pair of virtual clusters, V1 and V2, have been

merged into a new virtual cluster Vnew, we have F (Vnew) =
F (V1)

⋂
F (V2). Vnew is still at the same level as V1 and V2.

Fig. 7(a) gives an example of how virtual clusters are
constructed and merged (final clusters in Fig. 7(a) will be
introduced later): (1) When a URL “/a/b/c” arrives, it makes
three virtual clusters on each level, as it has three fields.
These virtual clusters are all initially represented by F (/a/b/c);
(2) Similarly, a URL “/x/y/e” constructs three virtual clusters
in the same way, but merging conditions are not hold here
and no clusters are further merged; (3) After “/a/e” arrives
and construct two virtual clusters, V1 and V2 (in the circle)
satisfy merging conditions, where F (V1) = F (/a/b/c) and
F (V2) = F (/a/e). Specifically, V1 and V2 belong to the same
direct ancestor (root), l(V1) = l(V2) = 1, and LC(V1,V2) =

1
|F (V1)

⋂
F (V2)| 6 1. (4) So that V1 and V2 are merged into

Vnew, and F (Vnew) = F (/a). Corresponding children clusters
change their hierarchical relations from original ones to the
new cluster.
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Fig. 7: The work flows of virtual clusters and final clusters.

Through this merging strategy, we can obtain all the virtual
clusters, and now we need to determine which of them are
the final clusters, i.e., applications we identified (We will use
cluster and application interchangeably). Note that the final
clusters are generated in parallel with virtual cluster merging.
The conditions for final clusters are two aspects. First, all the
leaf nodes are labeled as final clusters, as shown in Fig. 7(a)
and Fig. 7(b). Second, according to the intuition 1, the numbers
of unique URLs produced by the URL patterns with and
without parameters are different. Therefore, we set a boundary
threshold, denoted as N , to determine the fields of parameters.
In particular, if a virtual cluster V has more than N sub-
clusters (i.e., children clusters), including both virtual and final
clusters, we deem that these sub-clusters are generated by URL
parameters, and should be eliminated. Thus V itself turns into
a new final cluster. An example of final clusters merging is
shown in Fig. 7(b). After the arrival of “/x/101”, the sub-
clusters number of V1 increases to 101, and exceeds the given
threshold N = 100. As a result, the sub-clusters of V1 are
removed, and V1 becomes a new final cluster. We can see that
this heuristic merging strategy can find out the fields derived
from URL parameters without assumptions of their positions.

In general, clustering methods always face multiple clusters
that have the same optimal distance, leading to different clus-
tering results, uCluster is no exception. Worse still , this can
generate false clusters in the scenario of online URL clustering,
as the results depend on the arrival sequence of URLs. For
example, if the first two emerging URLs are “/news/100” and
“/image/100”, they will be merged and generate a false virtual

cluster, i.e., “//100”, which turns out to be a parameter field,
instead of an application field. We solve this problems based
on the observation that the number of unique URLs matching
a real application cluster (e.g., “/news/*”) is much larger than
those match a related false cluster (e.g., “//100”). Therefore,
when choosing clusters for merging, we do it in descending
order of the number of the unique URLs contained by each
virtual cluster. This trick would distribute most URLs to the
real application clusters. As a result, wrong clusters are always
ignored when a multiple clusters can be merged. Only a few
incorrect merging in the initial phase have trivial influence on
the accuracy when dealing with a huge volume of data.

Finally, we propose Algorithm 1 based on uCluster. It’s
easy to see that its complexity is O(N �L �n), where L and N
are both small constants, so that the complexity is just O(n).

Algorithm 1 uCluster (URL u, L, N )
1: current = root
2: for d = 1 to min(L, |F (u)|) do
3: merge flag == false
4: if current is not FINAL CLUSTER then
5: for each CLUSTER c in current DESC do
6: if |F (c)

⋂
F (u)| ≥ d then

7: current = c
8: merge flag = true
9: F (c) = F (c)

⋂
F (u), break

10: end if
11: end for
12: if merge flag == FALSE then
13: if |F (current)| == N then
14: set current FINAL CLUSTER, break
15: else
16: V IRTUAL CLUSTER v = F (u)
17: current.add virtual cluster(v)
18: current = v
19: if d == min(L, |F (u)|) then
20: set current FINAL CLUSTER
21: end if
22: end if
23: end if
24: end if
25: end for

IV. ARGUMENTS SELECTION AND CLUSTERING RESULTS
In this section, we show that the two arguments of the

uCluster algorithm, N and L, are quite convenient to select
based on the characteristics of data. Our arguments selection
methodology uses, but is not restricted to, the data set we
collected.

First of all, the argument N has a simple and practical
implication, that is the maximum number of the applications
contained in each application directory. Therefore, it can be
easily estimated by tenants. One alternative way is counting
the the maximum number of the accessible files included by
each application directory. This differs with those unintuitive
arguments used by other clustering methods, such as the k
value in k-means algorithms.

The administrator from one of the tenants suggest that
N = 100 is large enough , and our evaluation proves it works
well in our data set. Our evaluation methodology is based on
the observation 1, i.e., the number of clusters generated by
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parameter pattern is large, in the meantime, the average hits
number of them is small since the requests are dispersed by
the parameters of a wide value range. We run uCluster on
64 tenants without the constraint of N to get all the number
of sub-clusters, as well as their average hits. Due to the page
limitation, we only show two typical tenants here. As shown in
Fig. 8, X axis is the cluster index and Y axis represents both the
number of sub-clusters and average hits in log scale. Fig. 8(a)
(tenant 1) indicates that, for the clusters with a huge number
of sub-clusters, the average of hits on these sub-clusters falls
below 10. Therefore, they are more likely to be parameter
patterns, as implied by intuition 1. We can see that if we draw
a horizontal line at Y equals 100 (i.e., N = 100), most of
the parameter patterns would be merged, and other application
pattern would remain. In addition, Fig. 8(b) illustrates that
tenant 2 does not have any obvious parameter pattern and
N = 100 also works well with this situation, as it treat all
these sub-clusters as applications.
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Fig. 8: The relationship between sub-clusters number and
average hits per sub-cluster without constraint of N (L=5).

As for the argument L, it can be derived from data analysis.
We run uCluster with N = 100 and list the results of top 10
most visited tenants. As Fig. 9 shows, uCluster groups massive
unique URLs (from 1.6×105 to 6×106) of the 10 tenants into
tens to hundreds of clusters. The number of clusters increases
as L first, and then remains stable after L exceeds 5. This
also proves the observation 3, i.e., most URLs have only a few
fields. In fact, the number of clusters also represents clustering
granularity. So L = 5 is proper for our data set, as a larger L
would not improve granularity further.

An automatic program based on the above selection
methodology is relatively easy to implement. In the interest
of space, we leave the detailed discussion on these topics as
our future work.

V. LATENCY ANOMALY DETECTION
We first introduce the limitations of detection based on

overall metrics of latency. Then we describe our detection
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Fig. 9: The clustering results of top 10 most visited tenants.
L values from 1 to 7 under the condition of N = 100.

methods.

A. Limitations of Monitoring Overall Metrics
In this paper, we focus on the 90th percentile of latency

(latency90 for short), a common measurement for performance.
When monitoring overall latency90 for a tenant, alarms are
triggered if more than 10% of the tenant’s volume are served
in more than a threshold of time. Under this situation, if
an application tries to raise alarms in the face of overall
latency90, while other applications remain normal2, the anoma-
lous volume of the application needs to exceed 10% of the
tenant’s volume, which is always larger than its own 10%
volume. This actually degrades the threshold of 90th percentile
for the application, and even makes it impossible for some
applications to be detected by itself as their volume accounts
for less than 10% of total volume. The degraded percentile
threshold of application α is denoted as Pα, and suppose
the volumes of α and the tenant hosting it are Vα and Vt
respectively, then Pα can be calculated as:

Pα =

{
−∞ , if Vα/Vt < 10%

100%− 10%
Vα/Vt

, otherwise
(3)

Vα/Vt is the volume proportion of α in its tenant. Fig. 10
shows the volume proportion of the top 10 most visited appli-
cations of the top 10 tenants. Fig. 10(a) shows that there are
4 tenants with the applications receiving more than 20% (up
to 47%) of their total requests, and Fig. 10(b) shows another
6 tenants whose applications all account for less than 20%
of their volume. As a result, even for application 1 of tenant
2 in Fig. 10(a), that contributes to the most proportion 47%),
its degraded percentile equals to 78%, implying the application
needs 22% anomalous volume to catch the attention of detector
on overall latency90. Worse still, for most applications of these
10 tenants, their proportions are all less than 10%, so than they
cannot be detected in the face of overall latency90.

B. Latency Detection on Applications
Benefit from uCluster, web applications are separated and

the latency90 can be measured for each application. This

2For simplicity, we only discuss the situation when only a single application
is anomalous. This provides the worst case for monitoring on overall latency.
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Fig. 10: The volume distribution of the top 10 most visited ap-
plications of the top 10 tenants. The applications are identified
by uCluster with N = 100 and L = 5.

fundamental improvement gains the ability of application-
aware latency anomaly detection for cloud tenants. Meanwhile,
as each virtual cluster can maintain the metrics aggregated
from all its sub-clusters, CloudWatch+ can conduct flexible
anomaly detection at different granularity of applications, or
even detect the overall metrics (i.e., using the data of root
clusters).

Beyond the improvement of granularity, we also want
to answer this question: “Is a latency anomaly caused by
overload?”. This is an important problem for cloud tenants,
as they need to decide wether their capacity is inadequate
and more instances are required. However, a latency anomaly
might be caused by many factors, such as software bugs
and hardware failure. We resolve this problem by keeping
a track of the workload that has been well served by each
application of tenants, aiming at estimating the capacity of
different applications. So that when an anomaly happens to
a certain application, we can determine overload by simply
checking wether the current workload exceeds the historical
capacity.

The details of our anomaly detection are shown in Fig. 11.
Firstly, the latency90 and workload (measured by query per

anomaly
window

Time

overloaded
window

QPS

perfect
window

anomaly slot
CLB=max{QPS}

QPS>CLB

slots

Fig. 11: Detecting latency anomaly and deciding whether
overload happens. CLB is short for capacity lower bound.

second, or QPS) of each application are calculated for every
slot (10s is used in this paper). By setting a threshold of latency
(as Amazon CloudWatch does), a slot is called anomaly slot if
its latency90 exceeds the threshold. To avoid transient anoma-
lies trigger alarms more than frequently, we introduce window,
formed by W consecutive slots (in Fig. 11, W = 5). If there
are n anomaly slots in a window, we call the window anomaly
window, and an alarm is eventually raised. The parameters n
and W decide the sensitiveness of detection. Meanwhile, we
maintain and update the capacity lower bound (CLB) for each
application. CLB records the largest average QPS of perfect
window, that is the window without any anomaly slot. CLB
conservatively estimates the capacity of an application so far.
An anomaly window is called overloaded window if its average
QPS exceeds CLB. Then we can calculate the percentage of
the overloaded windows within an anomaly period, defined
as overload ratio. It gives the possibility of that an anomaly
period is caused by overload.

VI. EVALUATION
In this section, we evaluate CloudWatch+ using the one-

day data set from a real cloud. The data set has been described
in Section II. The prototype of CloudWatch+ is implemented
with 2700 C++ lines.

We begin by comparing the detection result of Cloud-
Watch+ (CW+) to that of Amazon CloudWatch (ACW), which
provides only tenants level monitoring. Both methods use 1.5s
as the latency threshold, and are compared under different
n/W . In addition, CloudWatch+ is running with N = 100
and L = 7 according to the Section IV. The results are shown
in Fig.12. According to the detection result of ACW, all the 64
tenants seem in good performance except only a few transient
anomalies.

After further investigating the anomalous periods identified
by ACW (as listed in Table. I), we find out that they belong to
four tenants. Moreover, each of these anomalies is caused by
only one application. These anomalous applications all account
for a considerably large part of their tenants’ volume, ranging
from 24.2% to 99.7%. This is also the reason why ACW can
detect them using overall latency90. Another explanation of
that is the degraded percentiles of these applications are close
or even equal to the original 90th. The above result proves that
monitoring on overall metrics can only detect the anomaly of
volume-dominate applications, yet most other applications are
invisible for it.

On the contrary, Fig.12 shows that CW+ is able to detect
at an application granularity. Specifically, as the sensitiveness
threshold n/W increases, less severe anomalies are ignored
and the the number of alarms (anomaly periods) are reduced
from 472 in Fig.12(a) to 123 in Fig.12(c). Here, n/W can be
set by tenants according to their requirements.
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(b) n/W = 4/10.
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Fig. 12: The latency90 anomalies of one-day period identified by Amazon CloudWatch (ACW) and CloudWatch+ (CW+)
respectively, based on 1.5s as threshold. Y axis represents the index of 2100 applications of top 64 tenants. Each anomaly
point indicates an anomaly window of 100s duration. Note that since ACW cannot distinguish applications, i.e., its alarms are
at tenant level, the anomaly of ACW will cover all the tenant’ applications along Y-axis. (Best viewed in color.)

Tenant # APP #Anomalous Anomalous APP Degraded
ID APP volume(%) percentile
11 57 1 65.8% 85th

15 14 1 24.2% 59th

17 2 1 99.7% 90th

28 3 1 96.6% 90th

TABLE I: The information of 4 anomaly periods detected by
ACW with n/W = 3/10. APP is short for applications.

Determining false positive rate is challenging, as investi-
gating all the anomalies would take a huge amount of effort.
Instead, we study two notable groups of anomalies detected
by CW+, and shows that they are reasonable. As shown in
Fig.12(c), applications of group-1 is a upload module of a
file sharing service (tenant 1), and the anomaly is caused by
the saturated bandwidth during three peak periods of a day;
group-2 is a signing up application of an online social network
(tenant 2), and a large number of users’ visiting causes their
database overloaded.

We also list the anomaly periods with overload ratio ≥ 50%
for tenant 1 and 2. As shown in Table II, the longest anomaly
period comes from tenant 2 and lasts for 6100s, corresponding
to group-1 in Fig.12(c). Worse still, the overload ratio of that
period is 73.61%, a rather high value that indicates the capacity
of tenant 2 is not enough for this application. As for tenant
1, its two applications are overloaded at nigh, especially the
overload ratio of “/sign/add?” reaches 100%. The result has
been confirmed by the tenant, saying that this application
always suffers from flash crowd at midnight, as there are
incentives for users who sigh up first of a day.

As for the overhead of CloudWatch+, the storage con-
sumption of the major data structure can be measured by the
number of both virtual and final clusters. As shown in Fig. 13,
when processing all the over 200 tenants together, the number
of clusters increases to around 10,000, which is trivial for
commercial servers. In addition, it takes CloudWatch+ merely
875s to process all the one-day data, including both clustering
and detecting. This effectiveness can lead to a realtime ability.
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Fig. 13: The number of clusters, including both virtual and
final clusters, during the processing of one-day data.

VII. RELATED WORK
There are many previous literatures focusing on the perfor-

mance management of cloud platform. One main thread comes
from the solutions of commercial cloud providers , such as
AWS CloudWatch [2], Windows Azure Metrics [3], as well
as SaaS-based third parties, such as RightScale Monitor [4]
and New Relic [5]. They provide monitoring metrics in a wide
range, including both physical and service status. However, all
of them are at the tenant or instance granularity, thus inefficient
to detect the anomalies of a tenant’s specific applications as we
previously introduced. Besides, some performance monitoring
methods are built on traditional platforms. For example, [14] is
based on HP Mercury Diagnostics [15], trying to correlate the
hardware metrics of a single server (e.g., CPU utilization and
network bandwidth) and application performance; [16], [17]
are both based on coarse grained and pre-defined applications
of web service (e.g., css, js, php), while CloudWatch+ does
not assume any prior knowledge about the applications and
automatically clusters the URLs into applications.

Besides, several anomaly (or change) detection method-
s [18], [19], [20], [21] have been proposed and applied in
different fields. In this paper, rather designing a complicated
detection methods itself, we focus on improving the granularity
of detection. Therefore, our work is complementary to these
methods, and they can be applied upon CloudWatch+.

VIII. CONCLUSION
In this paper, we propose CloudWatch+, an application-

aware latency monitoring tool for web applications. A cloud
platform can use CloudWatch+ to automatically learn web
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Tenant Application Interval Avg CLB Avg MAX Overload
ID latency90 QPS QPS QPS ratio
1 /sign/add? 00:01:22-00:02:52 (100s) 2.73 2.43 3.50 5.30 100.00%
1 /pad/commit/message/get all? 21:48:22-21:49:52(100.00s) 1.26 0.71 0.69 1.20 50.00%
2 /i/submit 08:49:42-10:31:12 (6100s) 3.21 0.13 0.21 1.40 73.61%
2 /submit? 09:06:22-09:07:52 (100s) 13.49 0.45 0.41 0.70 50.00%
2 /submit? 09:09:42-09:11:12 (100s) 15.22 0.45 0.57 1.10 70.00%
2 /submit? 09:23:02-09:24:32 (100s) 23.41 0.45 0.56 0.90 90.00%
2 /i/submit 14:11:22-14:14:32 (200s) 4.10 0.13 0.18 0.50 50.00%
2 /i/submit 16:34:42-16:36:12 (100s) 1.96 0.13 0.25 1.10 60.00%

TABLE II: Anomaly periods with overload ratio≥ 50% for tenant 1 and 2 (n/W = 5/10). Each record includes the tenant ID,
name of anomalous application, anomaly interval time, the average latency90 of the interval, the average and maximum QSP of
the interval, as well as CLB and overload ratio.

applications it hosts, and detect latency anomalies at the
granularity of application. The benefits of CloudWatch+ to
a cloud and its tenants are two-fold. First, the business-
critical applications of a tenant, regardless of their volume,
can be monitored based on their own metrics (e.g., the 90th

percentile of latency). Such service is not currently available
in performance monitoring services provided by commercial
clouds. Second, tenants can figure out whether the current
anomalies are due to overload (as suggested by CloudWatch+).
Then they can take right actions to stop further loss, such
as purchasing more instance to increase capacity or optimize
applications to reduce their consumptions.

Our evaluation using real data from a cloud shows that
CloudWatch+ is both online and light-weight, and the detection
results are much more detailed than those provided by AWS
CloudWatch.
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