ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP

NTCS: A Real Time Flow-based Network Traffic
Classification System

Silas Santiago Lopes Pereira, Jorge Luiz de Castro e Silva, José Everardo Bessa Maia
Department of Statistics and Computing
UECE - State University of Ceara
Fortaleza - Ceard - Brazil
Email: {silas, jlcs}@larces.uece.br, jose.maia@uece.br

Abstract—This work presents the design and implementation
of a real time flow-based network traffic classification system.
The classifier monitor acts as a pipeline consisting of three
modules: packet capture and preprocessing, flow reassembly, and
classification with Machine Learning (ML). The modules are built
as concurrent processes with well defined data interfaces between
them so that any module can be improved and updated indepen-
dently. In this pipeline, the flow reassembly function becomes
the bottleneck of the performance. In this implementation, was
used a efficient method of reassembly which results in a average
delivery delay of 0.49 seconds, aproximately. For the classification
module, the performances of the K-Nearest Neighbor (KNN),
C4.5 Decision Tree, Naive Bayes (NB), Flexible Naive Bayes (FNB)
and AdaBoost Ensemble Learning Algorithm are compared in
order to validate our approach.

I. INTRODUCTION

This work describes the architecture of a real time Internet
traffic classifier monitor for use in corporate networks. It
also evaluates different machine learning methods for network
traffic classification. The classifier monitor is based on concept
of bidirectional flow. This means that the fundamental object to
be classified in a determined pattern is the traffic flow, either
complete or as subflow. A flow is defined by one or more
packets between a host pair with the same quintuple: source
and destination IP address, source and destination ports and
protocol type (ICMP, TCP, UDP) [1].

The remainder of this paper is organized as follows. Section
Il overviews the related work about flow reassembly and
traffic classification. In section III, we describe the design and
implementation of the classifier monitor. Section IV details
the data colection used for evaluate the NTCS and describes
how the experiments were performed. Section V presents and
discusses the performance tests results. Section VI ends with
some conclusions and future work.

II. RELATED WORK

Here, we briefly review some important approaches to
stream reassembly and traffic classification.

In [2], the authors present an efficient TCP stream reassem-
bly mechanism for real time network traffic processing at
high speeds. The mechanism uses the recently-accessed-first
principle to reduce the search cost of a connection for each
packet arrival. Moreover, to improve the search process, the
system keeps established and not established TCP connections

368

in different structures. Experimental results based on network
traffic captured in a typical gigabit gateway showed the pro-
posed policy, in comparison of traditional one (RFC 793), was
more efficient and could attend the real time property requisite
of traffic analysis systems in gigabit networks.

In [3], the author presents a TCP stream reassembly
mechanism designed and implemented to an network-based
intrusion detection system. The system receives individual
packets from network and performs signature detection from
the payload. The approach is described as follows: First, the
system associates each received packet to its corresponding
TCP connection, based on the quadruple composed of source
IP address and port, and destination IP address and port. Then,
the system checks the packet sequence number and determines
if this packet is the next expected packet for the respective
connection. If true, the packet is sent for signature detection.

In [4], the machine learning approach applied to traffic clas-
sification using only transport-layer statistics is explored. This
approach seeks to circumvent the problem that many network
applications, such as P2P protocols, make use of dynamic
port numbers and content encryption to avoid detection. This
becomes inefficient the traditional approaches of port mapping
and content analysis. The author evaluate the impact on the
performance of data dimensionality, selected attributes, and
machine learning used algorithms, which were, respectively,
TAN, C4.5, NBTree, RandomForest and Distance Weighted
KNN. The application of classification techniques and dis-
criminant selection based on genetic algorithms together can
dramatically reduce the learning and modeling time with little
variation in the classification process accuracy.

III. THE CLASSIFIER MONITOR

This section details the design and operation of our classifier
monitor, and concludes with the presentation of the modules
which compose the system.

A. Architecture

The monitor works as a three-stage pipeline, with a collect
and preprocessing module, a flow reassembly module, and an
attribute extraction and classification module. For the purpose
of pipeline, the time is divided in intervals of 30s. This value
was chosen arbitrarily. Once the monitor starts, three parallel
processes are in execution on each interval: the packet capture,

CNSM Short Paper

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP

the flow reassembly of the previous interval packet capture,
and the flow classification for the collection occurred in two
delay intervals. Another parallel process is responsible for
closing old connections periodically, in order to reduce the
use of memory and processing during reassembly process. This
approach allows the classifier monitor reach a response time of
(30 + «) seconds, where « is the necessary time to performs
the reassembly of the captured data in a given interval. In
summary, the monitor works with a quantum of 30s of traffic
and with an average delay of « seconds in the flow reassembly,
feature extraction, and classification. The average found value
achieved in the current implementation was o = 0.49 seconds.
The Figure 1 exhibits the capturing and processing environ-
ment of the monitoring and classification system. Basically,
we assume that the traffic is mirrored by a network border
router to a network interface monitored by the system. The
system periodically performs the processing and categorization
of captured data, and presents the obtained information from
monitoring and classification process. The Figure 2 exhibits
the layered structure of implemented classifier monitor, whose
tasks modules are online traffic collection from a network
point, preprocessing for flow reassembly, extraction and se-
lection of statistical attributes, flow labeling since payload
analysis or port-based method (only during training step),
training with a supervised machine learning technique and
classification, using the ML model built from training data.

. Internet

Managed
switch

Border router

Monitoring PC
(running NTCS)

Fig. 1. Traffic Capture Environment .

Flow Reassembly

!

Packet Capture >

N Statistical Feature
Lz < Extraction
v
Training ~----» Flow Classification

Fig. 2. Block Diagram of Classifier Monitor.

369

B. Flow Reassembly

Recently-accessed-first Principle: In a high-speed network,
there may be hundreds of thousands of simultaneous con-
nections, so that the reassembly system, which maintains
a structure for storing connection records, searches in this
structure the corresponding record for each collected packet.
The search becomes expensive and needs to be optimized as
the number of connections increases [2]. The idea of recently-
accessed-first principle is to bring the most recently accessed
connection records to top of connection record list.

This work uses the same concept of TCP stream presented
in [5], and the recently-access-first principle presented in [2] to
optimize the reassembly step of our software-based solution.
Differently of [2], which uses two hash tables for connection
management, we use a simple list to store connections. The
adopted reassembly policy was based on mechanism proposed
in [3] for TCP session reassembly. The applied reassembly
approach was validated experimentally with the Tcptrace and
Tepflow tools.

C. Flow Labeling

Labeling is a necessary step for training and subsequent
evaluation of classifiers. Although the utilization of port-based
method [6] to traffic flow labeling can introduce errors due
its increasing ineffectiveness since flows can be incorrectly
labeled, the existence of some inaccurate values in data sets
is a common machine learning problem, and a good ML
scheme must have the capability to deal with this situation [7].
Although this labeling method was implemented in the first
prototyping of NTCS, other sophisticated labeling techniques
can be subsequently incorporated.

D. Traffic Classification

The presented approach uses real traces in the evaluation of
Naive Bayes [8], Kernel Naive Bayes [9], C4.5 Decision Tree
[10] and K-Nearest Neighbor [11] methods for Internet traffic
classification using statistical information derived from packet
headers. The Weka [12] (Waikato Environment for Knowledge
Analysis) is an Open Source tool implemented in JAVA, and
contains a collection of machine learning algorithms for data
mining problems. The NTCS utilizes the Weka libraries for
the training and evaluation of the machine learning methods.
We utilize the IKVM [13] software to enable Java and NET
interoperability. This tool allows to generate the Weka dlis,
which were imported to C# code. Thus, it is possible to use the
weka classifiers in the classification module of our classifier
monitor.

IV. METHODOLOGY

This section starts with a presentation of the network
traffic data used to evaluate the NTCS, and finishes with the
description of the statistical features.

CNSM Short Paper

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP

TABLE I
CHARACTERISTICS OF THE TRACE T7

Characteristic T T2

Packets Number 614282 1579921
Capture Size 565.62MB 1.88GB
Capture Duration 3516.79s 1355.83s
Average packet Size 920.78 Bytes 1195.16 Bytes
Average capture Rate 1.28 Mbps 11.14 Mbps

A. Data Collection and Experiments

The performance of packet capture and reassembly modules
was evaluated for capacity verification, under variable load
conditions. The classifier monitor was performed with a Core
i5 computer with CPU 2.30 GHz and 4GB of memory. The
trace-driven simulation allows flexibility in the evaluation of
distinct classifiers and reassembly approaches. This is because
the different executions of our system for the same packets
trace always generate the same flows set. Without this deter-
minism, it would be extremely difficult to reproduce the same
results of an online packet capture, given the possibility of
delay and packet loss, for example. For confidently evaluate
the online monitor, we used traffic traces collected in a host
connected to the broadband Ethernet 100Mbps. Each flow in
a reassembly process is configured with a 60 seconds timeout,
in order to avoid the storage of old or idle connections, which
consume memory and processing resources unnecessarily. This
means that TCP flows whose duration is greater than this value
are finished by the collector process periodically. We compare
the time complexities and the number of recontructed flows
of our flow reassebly module and the external tools Tcptrace,
TcpFlow, TcpRecon and Wireshark. Using Weka resources,
we use 10-fold cross validation for accuracy evaluation of the
aforementioned classification models. The used traffic traces
characteristics, referred as 7 and 715, reflect the communica-
tion between a host at State University of Ceara (UECE) and
the Internet.

The identified application categories in the current traces
were: Www (World Wide Web), Https (Http protocol over
TLS/SSL), Ftp (File Transfer Protocol), Xvttp (Xvttp Protocol)
and Isakmp (Isakmp Protocol). The most representative cate-
gories in 7 traffic trace are Www and Ftp applications. In 75
traffic trace, the Https and Isakmp application have a greater
number of flow instances. In our study, the classification and
training steps are performed at the end of packet capture
simulation and reassembly. This methodology is necessary to
evaluate the modules of our classifier monitor.

B. Statistical Features

In order to evaluate the classification process, we consider-
ate the following features: elapsed time between the first and
last packets, number of packets, number of bytes, the number
of all packets with at least a byte of TCP data payload, the
number of all packets seen with the PUSH bit set in the TCP
header, and the median and the variance of the number of

370

bytes in IP packet. Since each attribute is computed for both
directions of flow (uplink and downlink), each flow instance
has 14 statistical discriminators plus the class label. There was
not a proper selection of attributes in this study. We chose
some of the most often found attributes in previous published
work [1] which could be calculated from the data contained
in the header of packets without examining their payload.

V. RESULTS AND DISCUSSION

Table II presents some performance metrics of our classifier
monitor for the used traces. We observed that the highest
achieved throughput for the packet capture and reassembly
modules was 3.95 flows per second (fps) forT) traffic trace.
This means that this is the number of traffic flows are delivered
by reassembly process at every second. Although this is
a low value, since the mean packet capture throughput of
T, is only 1.28 Mbps, the reassembly process achieves a
throughput of 24997.25 fps at one of packet capture intervals.
The average packet capture and reassembly rate, expressed
by Mbits/(Tco + Trr), was 1014.73 Mbps, where Too
and Trp are the total duration times of packet capture
and reassembly, respectively Similarly, the same performance
metrics are presented for 75 traffic trace. We can observe no
bottlenecks in the reassembly process, which could support the
considerate traffic. Our software-based monitor is effective to
work in real time for a corporate network, for example. The
average delivery delay « for 77 and 75 traffic traces is 0.49s
and 7.50s, respectively. This means that this is the average
reassembly duration for ever quantum of 30s. We can observe
that delivery delay varies greatly between the two compared
traces. Although they are from the same packet capture point,
the two trace files are essentially different. The throughput
collection of the 75 is much larger than T3. Furthermore, the
traffic load in 7% is larger than 77. This means that there are
less traffic to process in Tj, and consequently, its delivery
delay is lower than the other trace.

TABLE 11
PERFORMANCE OF MONITORING AND REASSEMBLY PROCESSES

Metric T Ty

TCP Connections Number 2969 365
Max Capture & Reassembly Throughput 3.95 fps 2.89 fps
Max Reassembly Throughput 24997.25 fps 128.21 fps
Average Capture & Reassembly Rate 1014.73 Mbps ~ 635.34 Mbps
Average Delivery Delay 0.49s 7.50s
Total Monitor Time 75.67s 310.84s

In Table III, our system is compared with the Tcptrace,
TcpFlow, TcpRecon and Wireshark tools. The TcpRecon was
modified to use a flow timeout of 60 seconds. We can
observe that the number of flows is not the same between
the tools, because the divergence of the used traffic flow
concept, as explained previously. We can observe that our
adopted reassembly approach execution time is lower than the
other tools. Our reassembly scheme was implemented in TCP
session Reconstruction Tool, replacing the TcpRecon default

CNSM Short Paper

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP

policy. In summary, the difference between these two policies
is the adopted recently-accessed-first principle and the use of
different data structures to hold established and not established
TCP connections.

TABLE III
COMPARISON WITH EXTERNAL TOOLS

Approach/Tool Flows Number Reassembly Time
Proposed Approach 2969 75.67s
TcpFlow 5894 118.87s
Tcptrace 3044 612.95s
Wireshark 3036 182.69s
TcpRecon 3036 96.97s

Since TcpRecon and our proposed scheme are written in
same language and uses the same packet capture libraries,
we also compare the performance of these two policies one
of each other. The confidence interval estimation of an event
population will have greater reliability if the event is executed
at least 30 times [14]. We executed and measured the elapsed
times of the aforementioned TCP reassembly policies. The
policies were evaluated over the already presented datasets. We
computed the average execution time and confidence level for
each TCP policy. We consider a high confidence level of 95%.
The resulting confidence levels for TcpRecon and our adopted
reassembly scheme are presented in Table I'V. For the T traffic
trace, our scheme obtain a time complexity advantage of 20.31
seconds. For the 75 traffic trace, there is also a reduction of
9.39 seconds with our approach.

TABLE IV
PERFORMANCE COMPARISON OF REASSEMBLY POLICIES

Traffic Trace TcpRecon Proposed Policy
Ty 91.85 £ 5.61 seconds 71.54 £+ 3.57 seconds
Ts 380.36 4= 14.82 seconds 370.97 + 7.72 seconds

The Table V presents the main results about the classi-
fication process. We can observe that C4.5 Decision Tree
was able to categorize on average 87.40% and 89.86% of
the traffic correctly for the two traffic traces. The AdaBoost
ensemble algorithm, using the DecisionStump classifier, was
able to categorize on average 78.17% and 89.58% of the
traffic correctly. The KNN technique, with £ = 10, was able
to categorize on average 86.25% and 91.50% of the traffic
correctly, against 72.48% and 80.00% for NB classifier. The
duration of classification phase was a few seconds, and the
results aim to validate the previous phases of the classifier
monitor.

VI. CONCLUSION

This paper presented the architecture, implementation, and
performance of an Internet traffic classifier monitor. The
monitor is composed of three modules which were imple-
mented as concurrent processes: capture and preprocessing,
flow reassembly, and classification. For the 77 traffic trace, the

371

TABLE V
GLOBAL ACCURACY PER TRACE

Classifier T Ts

C4.5 Decision Tree 87.40% 89.86%
AdaBoost(DecisionStump) 78.17% 89.58%
K-Nearest Neighbor 86.25% 91.50%
Naive Bayes 72.48% 80.00%
Flexible Naive Bayes 64.09% 88.76%

throughput reassembly module of the current implementation
is 24997.25 flows per second. The average delivery delay is
0.49 seconds. For the classification module, the C4.5 algorithm
outperforms KNN and AdaBoost classifiers with average ac-
curacy of 87.40% and 89.86% against 72.48% and 80% for
the KNN and AdaBoost methods, respectively.

Future directions for this research includes to incorporate
subflow based classification in NTCS to reduce response
time. Second, we aim to verify the performance impact of
our classifier monitor at gigabit links, which are becoming
increasingly common at computer networks.

REFERENCES

[11 A. Moore and D. Zuev, “Internet traffic classification using bayesian
analysis techniques,” in Proceedings of the 2005 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems. ACM, 2005, p. 60.

[2] B. XIONG, C. Xiao-su, and C. Ning, “A Real-Time TCP Stream Re-
assembly Mechanism in High-Speed Network,” JOURNAL OF SOUTH-
WEST JIAOTONG UNIVERSITY, vol. 17, no. 3, 2009.

[3] P. Agarwal, “TCP Stream Reassembly and Web based GUI for Sachet

IDS,” Master’s thesis, Indian Institute of Technology Kanpur, Kanpur,

India, 2007.

L. Jun, Z. Shunyi, L. Yanqing, and Z. Zailong, “Internet traffic clas-

sification using machine learning,” in Second International Conference

on Communications and Networking in China, 2007. CHINACOM 07,

2007, pp. 239-243.

[5] G. Wagener, A. Dulaunoy, and T. Engel, “Towards an estimation of the
accuracy of tcp reassembly in network forensics,” in Future Generation
Communication and Networking, 2008. FGCN’08. Second International
Conference on, vol. 2. IEEE, 2008, pp. 273-278.

[4

finar

[6] TANA. (2014, May) Internet assigned numbers authority. [Online].
Available: http:/www.iana.org
[71 Y. Wang and S. Yu, “Machine Learned Real-Time Traffic Classifiers,” in

Intelligent Information Technology Application, 2008. IITA’08. Second
International Symposium on, vol. 3. 1EEE, 2009, pp. 449-454.
[8] D. Zuev and A. Moore, “Traffic classification using a statistical ap-
proach,” Passive and Active Network Measurement, pp. 321-324, 2005.
[9] G. John and P. Langley, “Estimating continuous distributions in Bayesian
classifiers,” in Proceedings of the eleventh conference on uncertainty in
artificial intelligence, vol. 1. Citeseer, 1995, pp. 338-345.
T. Korting, “C4. 5 algorithm and multivariate decision trees,” Image
Processing Division, National Institute for Space Research—-INPE Sao
Jose dos Campos—SP, Brazil.
M. J. Islam, Q. M. J. Wu, M. Ahmadi, and M. A. Sid-Ahmed,
“Investigating the performance of naive- bayes classifiers and k- nearest
neighbor classifiers,” Convergence Information Technology, Interna-
tional Conference on, vol. 0, pp. 1541-1546, 2007.
E. Frank, M. Hall, and L. Trigg, “Weka 3-Data Mining with Open Source
Machine Learning Software in Java,” The University of Waikato, 2000.
J. Frijters, “Ikvm, an implementation of java for mono and the .net
framework [computer software and documentation],” 2004.
R. Jain, The Art of Computer Systems Performance Analysis: Techniques
for Experimental Design, Measurement, Simulation, and Modeling.
Wiley - Interscience, ISBN:0471503361., New York, NY, April, 1991.

[10]

(11]

[12]

[13]

[14]

CNSM Short Paper

