
An Analytics Approach to Traffic Analysis in
Network Virtualization

Hui Zhang, Junghwan Rhee, Nipun Arora, Qiang Xu, Cristian Lumezanu, and Guofei Jiang
NEC Laboratories America, Princeton, New Jersey 08540

Email: {huizhang,rhee,nipun,qiangxu,lume,gfj}@nec-labs.com

Abstract—Network virtualization has been propounded as a
diversifying attribute of the future inter-networking paradigm.
However, monitoring and troubleshooting operational virtual net-
works can be a daunting task, due to their size, distributed state,
and additional complexity introduced by network virtualization.

We propose an analytics approach for the analysis of network
traces collected across hypervisors and switches. To re-organize
individual trace events into path-wise slices that represent the
life-cycle of individual packets, we first present a trace slicing
scheme. Then, we develop a path characterization scheme to
extract feature matrices from those trace slices. Using those
feature metrics, we develop a set of trace analysis algorithms to
cluster, rank, query, and verify packet traces. We have developed
the analytics approach in a SDN network management tool, and
presented evaluation results to show how it can enable visibility
and effective problem diagnosis in a SDN network.

Keywords—Network Virtualization, Software-Defined Networks,
Network Management, Traffic Analysis

I. INTRODUCTION

Network virtualization in multi-tenant data centers [10]
provides the illusion of multiple, independent virtual networks
on the same underlying physical hardware. The physical de-
vices are responsible for forwarding packets while the software-
based virtual networks provide a logical abstraction that allows
tenants to deploy and manage diverse applications indepen-
dently. Virtualizing the network enables the deployment of
complex configurations and policies, that might not work to-
gether otherwise. Additionally, it improves network efficiency,
and reduces operational costs [10].

Network virtualization comes at the expense of increased
management complexity. For instance, Figure 1 depicts the net-
working architecture of a physical host in OpenStack [3] open-
source infrastructure-as-a-service (IaaS) software. As shown
in the figure, the physical host has 3 virtual machine (VM)
guests running on it, which are configured with virtual network
1 (where vm01 and vm02 are connected to), and virtual
network 2 (vm02, and vm03). For an Ethernet frame to travel
from eth0 of vm01, to the physical network, it must pass
through nine devices inside the host: a TAP device for vnet0
(implements the virtual network interface card), Linux bridges
(which behave as hubs, and forward all received packets to all
ports), veth pairs qvbXXX to qvoXXX , and int-br-eth1
to phy-br-eth1 (which are like virtual patch cables), an
Open vSwitch [1] (OVS, configurable similar to any other
physical switch), and finally the physical network interface
card. The complexity involved in the transition of the packet
over the “virtual interfaces” is quite significant and makes
debugging and troubleshooting very difficult.

Fig. 1: OpenStack network architecture [3] on a physical host.
Based on our experiences in data center network man-

agement we have observed three main challenges in virtual
networks.

Complex configuration. Network virtualization is enabled
through a variety of mechanisms and devices, such as software
switches deployed on hypervisors (e.g., OVS ), management
protocols for programmable switches (e.g., OpenFlow [2]),
isolation and tunneling protocols for legacy networks (e.g.,
VLAN, GRE). This generally requires non-trivial amount of
network configuration efforts, such as tagging VLANs on
legacy switches and adding tunnels in Open vSwitches. As
the amount of work increases, so does the chance for miscon-
figuration. Thus, it is important to identify the packet behavior
as it traverses the network (in the data plane) rather than (or
in addition to) examining what configuration operators have
been applied (in the control plane).

Miscellaneous network devices. Virtualization mecha-
nisms often require the initialization of a large number of
virtual network devices, each performing a specific function on
traffic. Aggregating views from different network locations is
essential in troubleshooting network performance degradations
and failures. Existing solutions such as NetFlow offer only
“interface-wise” visibility such as TCP flows traversing through
the attached switch interface, the number of packets for a given
flow. However, such visibility is not sufficient to reveal the
life-cycle of an single packet. Simply combining distributed
traces is insufficient because it requires domain knowledge to

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 316 CNSM Short Paper



account packet events from different traces to the same packet
and recreate the packet’s life-cycle. Thus, in order to fully
conquer the complexities of virtual network monitoring, we
need a systematic approach to account for packets across all
physical and virtual network devices.

Assorted traffic groups. The operational granularity of
networks is often global rather than local – a network update
is not limited to an update of a single forwarding table entry,
but a sequential updates of forwarding table entries along a
routing path that certain packets have taken. For example,
to resolve traffic congestion, it is effective to update certain
source-to-destination routes or certain route segments. Besides,
in a virtualized network, there is typically a large number
of traffic groups to support: for instance, a tenant’s traffic,
a VM’s traffic, one application’s traffic, traffic of a priority
class, etc., which indicates that a given traffic group may be
likely buried in a large number of groups, and difficult to
be examined. To achieve such operations above, we expect
that analytics-friendliness, e.g., the ability to allow clustering,
ranking, querying packets and routes, is a desired feature.

In this paper we propose an approach for the summarization
and analysis of virtual network traces collected across hypervi-
sors and switches. It provides a new structure to network traces
beyond 5-tuple IP flows, and offers both aggregate information
and selective analysis for understanding the network’s behav-
iors and performance along the time. The key contributions of
the paper are:

• We propose a network trace modeling mechanism that in-
cludes a trace slicing scheme to re-organize individual trace
events into route-wise slices which represent the life-cycle
of individual packets. The mechanism also includes a path
characterization scheme to extract feature matrices from these
trace slices.
• We develop a set of packet analysis algorithms to cluster,
rank, query, and verify packet traces based on feature metrics
from trace slices.
• We developed the analytics approach in a NEC internal SDN
network management tool, and presented evaluation results to
show how it can enable problem diagnosis in a hybrid SDN
network.

Ultimately, our goal is to help speed up diagnosis of data-
path routing problems by leveraging new network analytics
techniques for path-wise packet analysis.

II. RELATED WORK

There are several existing network monitoring and diagno-
sis tools, which have not solved the discussed challenges and
provide the desired feature of FLOWVIEW.

There are centralized software solutions that monitor net-
work devices using NetFlow, SNMP or by simply collect-
ing packet traces, and then aggregating statistical data. The
tools based on NetFlow and SNMP cannot analyze traffic
at the granularity of packets. Protocol analyzers, such as
Wireshark [12], capture and view packets on specific interfaces.
Network data visualization has a long history [4], [9], [14]; e.g.,
NetViewer [9] focuses on large-scale network diagnosis tasks
such as DDoS detection, and Visty [14] helps troubleshoot-
ing cross-layer network perform problems within a particular

Fig. 2: Overview of FLOWVIEW.
machine. Most of those tools focus on IP flow dynamics at
specific interfaces or hosts, and FLOWVIEW is complementary
to them by providing packet analytics across the network.

In SDN trouble-shooting, VeriFlow [8] analyzes the con-
figuration files pushed to network devices to infer forward-
ing paths and determine inconsistency. However, even if the
configuration is correct, packets may not follow it due to
bugs in switch software, conflicting rules or limited memory
space to enforce all rules [6]. ndb [5] is a network debugger
for software-defined networks that traces packet paths by
emitting “postcards” from every switch that the traced packet
traverses. The network controller collects all postcards and
reconstructs the packet paths. While it is able to collect and
correlate network wide information, ndb suffers from the
increased overhead of logging information in the control plane.
OFRewind [15] records guest network traffic by mirroring
those packets on traversed switches and then replays them to
identify operational problems. FLOWVIEW is complementary
to them by helping operators to speed up diagnosing data-path
routing problems with automated packet analytics across the
network.

III. DESIGN OF FLOWVIEW

In this section, we present the design of FLOWVIEW.
Figure 2 shows how FLOWVIEW processes packet information.
It has four main components.

• Trace collection: This step collects the network packet traces
from the target network. Various open-source packet capture
tools (e.g., libpcap) or proprietary packet dump tools can be
used for collecting traces from open vSwitches and physical
network elements.
• Trace slicing: Each single trace presents an isolated view in
each network infrastructure element. This step transforms such
isolated packet events into event sequences, which groups all
packet events that a packet invoked throughout the network.
We call this information a trace slice.
• Feature generation: FLOWVIEW uses feature vectors in
multiple levels of a network path, a link, and a packet to
represent the characteristics of trace slices which are analyzed
in the next step.
• Packet trace analysis: In this step, FLOWVIEW provides
versatile data analytic techniques onto the trace slices such as
clustering, ranking, query, and verification based on the feature
matrix for network management such as performance profiling
or troubleshooting.

A. Trace Slicing

Network traces collected from each router/switch show
an isolated view on per-hop behavior. For troubleshooting
network problems it is necessary to have a holistic view on
the lifetime of a packet, which is a series of events collected
from routers/switches that the packet goes through during its
routing. We call the generation of this view, trace slicing,

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 317 CNSM Short Paper



Algorithm 1 Trace Slicing
H : Network element set, P : Packet trace set indexed by an network element, S :
A network event, FS : A flow slice, FSS : A set of FS, TD : A network diameter

1: function PREPROCESSING(P,H)
2: M = ∅
3: for h in H do
4: for e in P [h] do
5: [Te, SWe, Porte, IOe,He, Pe] = e; Se = GenSignature(He, Pe)
6: M .append([Te, SWe, Porte, IOe,He, Se])
7: Sort M by Te in the ascending order
8: return M
9: function FLOWSLICING(M )

10: FSS = ∅; FoundFS = ∅
11: for e in M do
12: FSExist = false
13: for FS in FSS do
14: if Se == FS.sig then
15: e′ = FS’s last event
16: if Te′ >= (Te − TD) then
17: FS.append(e); FSExist = true
18: continue
19: if FSExist == false then
20: FS = {e}; FS.Sig = Se; FFS.append(FS)
21: return FSS

1) Pre-processing the collected packet events: The packet
events include diverse data fields. Before applying the slicing
algorithm, the packet events need to be structured to ease the
slicing procedure as shown in the Preprocessing function
of Algorithm 1. For each packet event e, a packet signature
Se is created based on the header He and payload Pe. Like
the idea in IP traceback [13], this signature is the invariant
content in the packet that does not change through the routing
process. In the header He, the IP flow information [source IP
address, source port, destination IP address, destination port]
is a part of the invariant content (for IP tunneling, the inner
IP headers flow information is invariant). In the payload Pe,
the whole content or a hash value of the content can be used
as a part of the signature. The signature Se is the combination
of the invariant content created from both the header He and
payload Pe.

After this step, packet events along with the newly gener-
ated signatures are sorted in an ascending order of the event
time stamp Te, and they are stored in an ordered list.

2) Slicing packet events: We define a unit of sliced packet
events called a flow slice (FS) as a time-ordered event sequence
data structure which includes all recorded packet events that
a network packet invoked when it traverses the network. The
FlowSlicing function in Algorithm 1 shows this mecha-
nism. For each event in the ordered preprocessed event set,
repeat the following steps; Search in the set FSS for any
existing FS having the same signature as e’s signature. If no
FS found, create a new FS, insert e as the first event of this
FS and label its signature as Se, and continue; Otherwise,
if for every FS found, its last packet events time stamp is
earlier than e’s time stamp by more than the threshold TD,
(the maximum time a packet can remain in the network and it
is a function of the network diameter), then create a new FS,
insert e as the first event of this FS and label its signature as
Se, and continue; Otherwise, for each found FS whose last
packet events time stamp is not earlier than e’s time stamp by
more than TD, append e as the last event of this FS. After a
loop is finished, return FSS, a derived set of flow slices.

B. Trace Feature Generation

Once packet flow slices are generated we extract feature
metrics which characterize the slices and assist the analysis

tasks such as clustering, ranking, and query of packet traces.
FlowView provides three kinds of features:

Path features: Each packet may have a diverse route. In
order to precisely analyze each packet’s behavior and represent
its route, we defined features for the paths that the packets go
through. One example is a feature vector for switch ids and
ports which is defined as the set of switch ids and ports in a
packet flow slice. It is a two dimensional matrix whose row
represents a switch id and whose column represents a port. As
another example, a feature vector for the number of path links
in a slice can be easily determined using the count of the pairs
of switch ids and ports.

Link features: Link features characterize the packet’s per-
link behavior. For instance, the feature for the packet delay in
each link would be a set of link delays.

Packet features: Packet features capture the properties
specific to the packet which are common in the perspective
of a link or a path. The size, the protocol, the VLAN tag, the
source or destination IP addresses would be the examples of
packet features.

C. Trace Analysis

Based on the extracted features, FlowView provides four
types of packet trace analyses: clustering, ranking, query, and
verification. These four functions provide versatile packet trace
analytics functions.

1) Clustering of trace slices: This procedure constructs the
clusters of trace slices based on the similarity of features. One
major usage of clustering is based on the feature vector for
switch ids and ports which reflect the similarity of the end-to-
end paths that the packets traverse in the network. This cluster-
ing enables us to determine the groups of different paths that
the packets go through and perform behavior-based analysis
of packets even without knowing the overall topology of the
network. For the clustering method, we use connectivity based
clustering [7] with a threshold in the distance function. This
scheme uses an agglomerative method (bottom-up approach),
and the single-linkage is used to connect clusters.

2) Ranking of trace slices: This procedure provides ranking
of trace slices so that users can understand the significance of
slices in a given ranking scheme of interest. Depending on
users’ interest various feature vectors can be used for ranking.
For example, ranking based on the link delay will give us the
network paths that are affected by delays.

3) Query of trace slices: In case that users have a specific
dimension of analysis in mind and would like to find packets or
paths for a certain condition as input, query function achieves
such a goal. Given a set of query conditions, FlowView queries
the set of slices, and reports the set that matches the conditions.
For instance, if a user wants to understand whether there is any
packet of a certain protocol or packet size, such information
can be easily retrieved by FlowView.

4) Verification of trace slices: By building the paths that
packets take in the data plane, users can have a global view
and check a large diversity of conditions concerning network
behavior which include end-to-end reachability, loop-freeness,
routing behavior consistency. FlowView supports such verifi-
cations with invariant models [8]. For instance, FlowView can

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 318 CNSM Short Paper



automatically report the end-to-end reachability by verifying if
the slice of a packet includes the OVSes in the two end hosts
that serve the ingress and egress switches for that packet.

IV. IMPLEMENTATION AND EVALUATION

The current FLOWVIEW implementation collects network
traces from OVS switches. Trace slicing, feature generation,
and the internal engine of trace analysis are written in C++. In
addition, we have a graphical user interface for trace analysis
implemented in Java.

A. Case Study: A hybrid SDN network

Fig. 3: An example of a structured packet event.
Trace information: The input trace data consist of a set

of OVS traces in our hybrid SDN network [11]. This testbed
is composed of 4 OVS switches, 2 NEC OpenFlow switches,
and 1 legacy Juniper switch. Among such network devices,
FLOWVIEW is deployed in the 4 OVS switches that act as the
ingress and egress switches for VMs. Traces are periodically
generated from this infrastructure for the purpose of accounting
and troubleshooting. In particular, ping command was used
to generate end-to-end traffic between VMs. Figure 3 shows
an example of one FLOWVIEW packet event. A packet event
e is defined as a 5-tuple object of time, switch ID, switch port,
IN/OUT, packet header, and the signature.

Fig. 4: The FLOWVIEW report on an abnormal network.
Abnormal network: A network anomaly occurred that

the ping traffic in some nodes were not successful. We
start troubleshooting by examining the FLOWVIEW summary
report shown in Figure 4. A noticeable symptom was that
the number of packet events were significantly more than the
detected packet traces. We looked into those ARP packets and
found they were mostly for the sending VM looking up the
receiving VM’s MAC address. Taking a close look at the ARP
headers, we found that they all carried a VLAN tag. This
hint led to the in-network VLAN configuration inspection,
and turned out those ARP packets were dropped at the first
physical switch which needs a VLAN trunk mode setup.
Once the misconfiguration was fixed, the network restored the
reachability for the VMs.

Fig. 5: The FLOWVIEW report on a normal network.
Normal network: A part of the FLOWVIEW summary

report on the normal network is shown in Figure 5. It includes

the reachability verification on the ping traffic between two
VMs. Figure 6 shows the details of the path that one of packets
in the trace has traversed.

Fig. 6: The snapshot of a FLOWVIEW slice example.

V. CONCLUSION

FLOWVIEW is a tool for SDN analysis. Individual trace
events from hypervisors and switches are re-organized into
trace slices that represent the life-time of packets. FLOWVIEW
offers versatile analytics features such as clustering, ranking,
querying, verification as well as a graphical interface. We
present our proof-of-concept and its concrete usage case that
detects and troubleshoots the root cause of a network problem.

REFERENCES

[1] Open vSwitch: An Open Virtual Switch. http://openvswitch.org/.
[2] OpenFlow specification in Open Networking Foundation. https://www.

opennetworking.org/sdn-resources/onf-specifications/openflow.
[3] OpenStack: Open Source Cloud Computing Software. https://www.

openstack.org/.
[4] R. A. Becker, S. G. Eick, and A. R. Wilks. Visualizing network data.

IEEE Trans. Visualization and Computer Graphics, 1(1):16–28, 1995.
[5] N. Handigol, B. Heller, V. Jeyakumar, D. Maziéres, and N. McKeown.

Where is the debugger for my software-defined network? In Proc. ACM
HotSDN, 2012.

[6] B. Heller, C. Scott, N. McKeown, S. Shenker, A. Wundsam, H. Zeng,
S. Whitlock, V. Jeyakumar, N. Handigol, J. McCauley, K. Zarifis, and
P. Kazemian. Leveraging sdn layering to systematically troubleshoot
networks. In Proc. ACM HotSDN, 2013.

[7] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review.
ACM Comput. Surv., 31(3):264–323, Sept. 1999.

[8] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow:
Verifying network-wide invariants in real time. In Proc. USENIX NSDI,
2013.

[9] S. S. Kim and A. L. N. Reddy. Netviewer: A network traffic
visualization and analysis tool. In Proc. USENIX LISA, 2005.

[10] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B. Fulton,
I. Ganichev, J. Gross, N. Gude, P. Ingram, E. Jackson, A. Lambeth,
R. Lenglet, S.-H. Li, A. Padmanabhan, J. Pettit, B. Pfaff, R. Ra-
manathan, S. Shenker, A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt,
A. Yip, and R. Zhang. Network virtualization in multi-tenant datacen-
ters. In Proc. USENIX NSDI, 2014.

[11] H. Lu, N. Arora, H. Zhang, C. Lumezanu, J. Rhee, and G. Jiang.
Hybnet: Network manager for a hybrid network infrastructure. In Proc.
ACM/IFIP/USENIX Middleware, 2013.

[12] A. Orebaugh, G. Ramirez, J. Burke, and L. Pesce. Wireshark & Ethereal
Network Protocol Analyzer Toolkit (Jay Beale’s Open Source Security).
Syngress Publishing, 2006.

[13] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
S. T. Kent, and W. T. Strayer. Hash-based ip traceback. In Proc. ACM
SIGCOMM, 2001.

[14] K. Wongsuphasawat, P. Artornsombudh, B. Nguyen, and J. McCann.
Network stack diagnosis and visualization tool. In Proc. ACM CHiMiT,
2009.

[15] A. Wundsam, D. Levin, S. Seetharaman, and A. Feldmann. Ofrewind:
Enabling record and replay troubleshooting for networks. In Proc.
USENIX ATC, 2011.

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 319 CNSM Short Paper




