
SDNIPS: Enabling Software-Defined Networking
Based Intrusion Prevention System in Clouds

Tianyi Xing1, Zhengyang Xiong1, Dijiang Huang1, Deep Medhi2
1Arizona State University, U.S.A,{tianyi.xing, zhengyang.xiong, dijiang}@asu.edu

2University of Missouri–Kansas City, U.S.A, dmedhi@umkc.edu

Abstract—Security has been considered as one of the top
concerns in clouds. Intrusion Detection and Prevention Systems
(IDPS) have been widely deployed to enhance the cloud se-
curity. Using Software-Defined Networking (SDN) approaches
to enhance the system security in clouds has been recently
presented in [1], [2]. However, none of existing works established
a comprehensive IPS solution to reconfigure the cloud networking
environment on-the-fly to counter malicious attacks. In this paper,
we present an SDN-based IPS solution called SDNIPS that is a
full lifecycle solution including detection and prevention in the
cloud. We propose a new IDPS architecture based on Snort-
based IDS and Open vSwitch (OVS). We also compare the SDN-
based IPS solution with the traditional IPS approach from both
mechanism analysis and evaluation. Network Reconfiguration
(NR) features are designed and implemented based on the
POX controller to enhance the prevention flexibility. Finally,
evaluations of SDNIPS demonstrate its feasibility and efficiency
over traditional approaches.

I. INTRODUCTION

Cloud computing platforms have been widely proposed and
implemented due to the flexibility, scalability, high availability,
efficiency, and so on [3], [4], [5]. Security has been regarded
as one of the most critical issues where cloud resource abuse
and malicious insiders are among top threads considered in the
current cloud computing systems [6]. Based on compromised
cloud resources, attackers may spam, disseminate malicious
codes, crack passwords and security keys, compromise vul-
nerable VMs and then deploy DDoS attacks, deploy botnet
command and control, etc. Existing countermeasures usually
provide add-on and customizable security models, and con-
sider the cloud can afford the demanded resource.

Establishing the Intrusion Detection and Prevention System
(IDPS) is a good way to protect the cloud system with both
detection and prevention capability. Traditionally, the IDS can
be configured and enabled to be an IPS. For instance, Snort
[7] can be configured as the inline mode and work with a
common firewall system, e.g., Iptables, to implement the IPS
in the cloud networking environment [8]. However, there are
several issues with such a traditional IPS: 1) Latency: in-bound
IPS requires inspection and blocking action on each network
packet, which consumes cloud system resources and increases
the detection latency; 2) Resource Consumption: running the
IDPS services usually consumes significant resources. For
instance, configuring SPAN port mirroring technology will
duplicate all traffic and forward to a port that an IDS is con-
nected; 3) Inflexible Network Reconfigurations: traditional IPS
does not have network programmability feature to reconfigure

the virtual networking system and provide scrutinized traffic
inspection and control.

SDN based security approaches in a cloud virtual net-
working environment has been considered as the trend for
future virtual networking security solutions. Opensafe [9]
is a system utilizing both OpenFlow and Snort technology
but they focused on the area of how to route traffic to
monitoring appliances, rather than attempting to provide a
comprehensive detection and prevention solution. In [10], the
authors proposed a mechanism called OpenFlow Random Host
Mutation (OFRHM) in which the OpenFlow controller fre-
quently assigns each host a random virtual IP that is translated
to/from the real IP of the host. This mechanism can effectively
defend against stealthy scanning, worm propagation, and other
scanning-based attack, but does not work when the attackers
know the internal address of victims. In a recent work [2], the
authors presented an SDN-based IDS/IPS solution to deploy
attack graph to dynamically generate appropriate counter-
measures to enable the IDS/IPS in the cloud environment.
SnortFlow [1] is another recent work focusing on the design
and preliminary evaluation of OpenFlow [11] enabled IPS in
the cloud environment. However, to our best knowledge, none
of them address the issue below: 1) how to establish an effi-
cient SDN-based IPS solution in the cloud virtual networking
environment; 2) how does SDN-based IDS/IPS compare with
traditional one; 3) how to design the SDN-based IDS/IPS
networking architecture that provides a dynamic defensive
mechanism for clouds.

Therefore, motivated by issues above, we present the SD-
NIPS, a SDN-based IPS security solution in clouds. This paper
proposes a new design of IDS/IPS based on SDN network
management, i.e., Open vSwitch (OVS); it also introduces
a comprehensive comparative study based on the presented
SDNIPS and Snort/Iptables based IPS [12] solutions to demon-
strate the advantages of the SDN-based IDS/IPS solution.

II. SDNIPS: DESIGN AND IMPLEMENTATION

In this section, we present the designed architecture includ-
ing components and the processing flow of the SDNIPS, which
is then followed by the Network Reconfiguration (NR). The
architecture and components are presented in Fig. 1.

A. Overall Architecture and Components

Cloud Cluster is the major component hosting cloud re-
sources and the environment where the proposed SDNIPS is

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 308 CNSM Short Paper



User Dom U

Dom 0

Controller

Kernel 

User
ovsdb-server

ovs-vswitchd

flowtable
JSON/RPC

Openvswitch_mod.ko

Hash lookup table

VM from Dom 1

Xenbr1 Xenbr0

Vif 1.1 Vif 1.0

eth1 eth0

Packet

classifier

Eth xEth xeth x

VM from 

Dom 2

Vif 2.0

eth0

OpenFlow

Listen

Log

Snort-Agent

Admin Dom U

Fig. 1: The SDNIPS System Architecture.

applied. A cloud cluster can contains one or multiple cloud
servers with major cloud-based OS installed. In this paper, our
established system is based on XenServer that is an efficient
parallel virtualization solution on top of the bare metal. Open
vSwitch (OVS) is the pure software implementation of the
OpenFlow switch [11]. OVS is usually implemented in the
management domain or privilege domain of the cloud system.
In user-space of OVS, there are two modules which are ovsdb-
server and ovs-switchd. The module ovsdb-server is the log-
based database that holds switch-level configuration; while
the module ovs-switchd is the core OVS component that
supports multiple independent data-paths (bridges). As shown
in Fig. 1, ovs-switchd module is able to communicate with
ovsdb-server through management protocol, with controller
through OpenFlow protocol, and with kernel module through
netlink. In the kernel space, kernel module handles packet
switching, lookup and forwarding, tunnel encapsulation and
decapsulation. Every Virtual Interface (VIF) on each VM has
a corresponding virtual interface/port on OVS, and different
virtual interface connecting to the same bridge can be regarded
on the same switch. For example, VIF 1.0 (the virtual port
of eth0 on VM from Dom 1) has the layer 2 connection
with VIF 2.0 (the virtual port of eth0 on VM from Dom 2).
Snort is a multi-mode packet analysis tool dominating the
IDS/IPS market and has overall performance strength over
other products [13]. It has sniffer, packet logger, and data
analysis tools. In its detection engine, rules form signatures
to judge if the detected behavior is a malicious behavior or
not. It can be implemented in Dom 0 (privilege domain) or
Dom U (unprivileged domain) based on Xen virtualization
architecture. In this paper, we deploy the Snort in Dom 0,
which makes it natively detect the bridge in OVS and has
better performance [1]. Controller is the component providing
a centralized view and control over the cloud virtual network.
The controller contains three major components, SDNIPS
daemon, alert interpreter, and rules generator. SDNIPS daemon
is mainly for collecting alert data generated from Snort agent
in Dom 0 of controlled SDN devices, i.e., OVS. The SDNIPS

daemon is implemented in the format of JSON message. The
alert information is stored in JSON message and the JSON
server is running at the controller side. Alert interpreter takes
care of parsing the alert and targets the suspect traffic. Several
information is parsed out of the raw alert data, e.g., source
IP address, destination IP address, TCP port, etc. Then, the
parsed and filtered information is passed to rules generator
that generates the rules to be injected to the OpenFlow device
to reconfigure the network.

CSV Log File

SDNIPS

Agent@Dom0

Packets

OVS@Dom0
Bridge 0 Bridge n

Cloud Resource

SDNIPS

Daemon

Alert

Intepreter

Rules

Generator

FlowTable

SDNIPS Controller

Cloud Virtual Network Environment

Fig. 2: The SDNIPS Processing Flow.

B. SDNIPS Processing Flow

The processing flow of the SDNIPS is illustrated in Fig.
2. The network traffic is generated from the cloud resources,
i.e., VMs. Snort agent in Dom 0 has the advantage of directly
detecting through the bridge, which is more efficient than
sniffing the traffic by utilizing the SPAN technology. When
any traffic matching the Snort rules is alerted into the log file,
The SDNIPS daemon will store the alert information in JSON
format and send over to the JSON server at controller side.
After that, the alert interpreter will parse the alert information
and extract all necessary information, e.g., attack type, source
IP, destination IP, TCP port, etc. Finally, the rules generator
will generate the OpenFlow rule entries and push them to the
OVS to update the flowtable. Therefore, the following suspect
traffic matching the newly updated flowtable entries will be
swiftly handled with valid countermeasures in the data plane
of the OVS with line rate. Currently, the system described in
Fig. 1 is implemented.

C. Network Reconfiguration (NR)

NR is an approach to reconfigure the network characteristics
including topology, packet header, QoS parameters, etc. With
the SDN concept enabled in the cloud virtual networking
environment, network reconfiguration can be applied to con-
struct the countermeasure of the IPS system. Traffic redirec-
tion redirects the traffic by rewriting the destination address.
QoS adjustment adjusts the QoS parameters. Traffic isolation
isolates the traffic by using virtual networking technology
such as VLAN. Filtering filters the packets by matching any
field of the flowtable and take corresponding actions, e.g.,
drop. Block port blocks the TCP/UDP ports. Major network
reconfiguration actions are summarized in Table I.

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 309 CNSM Short Paper



TABLE I: Network Reconfiguration Actions

No. Countermeasure
1 Traffic Redirection
2 QoS Adjustment
3 Traffic Isolation
4 Filtering
5 Block Port

III. SDNIPS VS TRADITIONAL IPS (SNORT/IPTABLES)

Application

FlowTable

Dom U

Dom 0

Attacker

Dom U Dom U

SDNIPS 

Controller

IptablesIPS 

Controller

Transport

Internet

Network

Network

User Space

Kernel Space NFQueue

Dom U

Victim

1 2 341 2 3 4

Control Packet Data Packet

Fig. 3: SDNIPS and Snort/Iptables IPS Mechanisms.

Traditional IPS system is not specially designed for the
cloud virtual networking environment, but for a general net-
work environment. Two IPS solutions are different in terms
of the essence, i.e., working mechanism and operation level.
Fig. 3 indicates the scenario on how the Iptables IPS (blue
lines) and SDNIPS (red lines) prevent the attacks. The number
besides each line represents the sequence of the packet flow.
Solids lines and dot lines represent the data traffic and control
traffic respectively.

As shown in Fig. 3, when attacking packets generated from
attacker’s virtual interface, all the packets need to be passed
through Dom 0 before being forwarded to the destination (blue
line 1). When Snort detects any suspect traffic, it needs to
inform the NFQUEUE, which is an Iptables and Ip6tables
target delegating the decision on packets to a user-space
software, to take the actions defined in the rules. The Iptables
IPS needs to consult its brain (controller at application level),
which then sends out control messages to issue command
(blue line 2 & 3). Finally, the suspect packet is handled
at Internet level kernel space at Dom U and will be either
forwarded to victim or dropped (blue line 4). Unlike the
Snort/Iptables IPS, SDNIPS stands out since both the detection
engine and the packet processing are natively deployed in Dom
0, which is dramatically efficient especially handling large
amount of traffic. When packets arrive at Dom 0 (red line
1), Snort detection engines is able to natively monitoring the

bridges, even though the OVS controller is placed at Dom
U, only few control messages between OVS at Dom 0 and
controller at Dom U are generated (red line 2 & 3). After
the controller update the flowtable, all traffic with the same
pattern will be processed at OVS fast path in Dom 0 (red
line 4). From the Fig. 3, it is also obvious that packets in
Snort/Iptables IPS scenario need to be in and out the Dom 0
twice while the SDNIPS only needs once to fulfill the same
task. Although control message in SDNIPS has further way
to go than in Iptables IPS, the control message only updates
the flowtable at the first time when traffic is suspected and all
the traffic will be only handled by flowtable fast path at Dom
0 without interaction with controller at Dom U. Thus, due
to the IPS working mechanism, SDNIPS should significantly
outperformance any other Dom U IPS solution especially in
cloud virtual networking environment.

IV. EVALUATION

We establish the SDNIPS prototype by using one cloud
server with OVS installed and properly configured in Dom
0 which has 4 virtual CPUs. The detection engine, i.e., Snort,
in Dom 0 can directly access the virtual bridges in OVS to
monitor all tenant networks while Snort/Iptables-based IPS
agent in Dom U can only monitor the tenant network where
it is. The OVS controller is implemented based on the POX
controller [14]. Traditional Snort/Iptables IPS is implemented
in a VM (Ubuntu 12.04 Server edition, 4 virtual CPUs and
2048 MB Memory) at Dom U. All VMs at Dom U are
configured with VIF with 10GbE maximum capacity whose
actual bandwidth is around 8 Gbits/s based on our testing in the
real XenServer virtual network environment. In our evaluation,
the traffic are generated by hacking tools and packet generators
such as [15], [16], [17] to mimic the real attack scenario in
the cloud virtual networking environment.

10
00
15
00
20
00
25
00
30
00
35
00
40
00
45
00
50
00
55
00
60
00
65
00
70
00
75
00
80
00
95
00

10
00
0

15
00
0

25
00
0

35
00
0

40
00
0

50
00
0

75
00
0

10
00
00

12
50
00

35
00
00

Attack Rate(packets per second)

0

10

20

30

40

50

60

70

80

90

100

110

120

In
tr
u
si
o
n
 D
e
te
ct
io
n
 R
a
te
 (
%
)

Intrusion Detection Rate
SDNIPS
IPS

Fig. 4: Evaluation of Intrusion Detection Rate.

In Fig. 4, we evaluate the alert generation capacity of both
IPS and SDNIPS under flood interference, which also states

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 310 CNSM Short Paper



how well the IPS can handle the attacking packets. To evaluate
this performance, we generate two different types of attacks,
which are DoS flooding attack acting as the stressful back-
ground traffic and ICMP flood attack acting as an potential
threat to be tested. This evaluation mainly indicates whether
IPS and SDNIPS can generate alert under high workload stress
in terms of successful alert generation rate of ICMP attack
under DoS attack interference. When the speed of the ICMP
attack reaches to 15000 packets per second, IPS can only
generate 13.72% alerts of the ICMP attack. On the other hand,
SDNIPS is able to efficiently avoid interference from DoS
flooding attack due to OVS capability, so it can successfully
alert all the threats that are sent at the speed of 15000 packets
per second. When the speed of the ICMP attack reaches to
30000 packets per second, the performance of SDNIPS start
decreasing, and when the speed of ICMP attack increases to
300000 packets per second, Snort agent in SDNIPS is not able
to capture packets and launch alerts because the snort detection
engine itself almost reached its threshold.

1 1000 2500 5000 7500 10000 12500 15000 17500 20000 22500 25000 30000

Attack Rate(packets/second)

0

10

20

30

40

50

60

70

C
P
U
 U
ti
li
za
ti
o
n
(%

)

CPU Utilization Performance of Major NRs
Drop
TR
TR with Spoofing
QA

Fig. 5: CPU Utilization Performance of Major NRs.

After the SDNIPS and traditional IPS are comparatively
evaluated, we evaluate the performance of SDNIPS NR alone
since traditional IPS does not have the NR capability. We
mainly evaluate two NR actions mentioned above, Traffic
Redirection (TR) and QoS Adjustment (QA), as well as
default drop action. Fig. 5 shows the performance of resources
consumption in term of the CPU utilization of Dom 0 for NRs.
We are using packet generator [15] to generate the packets
captured by Snort and processed by flowtable in order to test
the resources utilization change in the cloud system. In each
NR approach, TR is implemented by using destination IP &
MAC rewriting; while TR with spoofing reply is implemented
by rewriting not only destination IP & MAC address but also
source IP & MAC of victims. Thus, the attacking traffic can
be redirected to a security appliance that is able to spoof
the attacker by replying the packet with victims’ IP & MAC
address as source address. TR with spoofing feature consumes
a little more resources than the pure TR since OVS modifies

more packet fields to enable the spoofing feature. The default
NR, i.e., drop packets, consumes less system resource because
the OVS does not modify the matching flow and just simply
drop them (output to a non-existing virtual port in POX
controller implementation). In the QA scenario, it has the best
performance among all NRs because the rate limiting action
is performed based on OVS native mechanism, which means
excess packets will be discarded and OVS does not have to
inspect and match the packet with all kinds of fields.

V. CONCLUSION

In this paper, we propose an SDN-based Intrusion Preven-
tion System called SDNIPS in the cloud virtual networking
environment. It inherits the intrusion detection capability from
Snort and flexible network reconfiguration from SDN. SD-
NIPS is firstly compared with traditional IPS from principle
perspective and the real world evaluation. NR actions are also
designed and developed based on OVS and POX controller.
The evaluation proves its feasibility and efficiency.

ACKNOWLEDGMENT

The presented work is sponsored by ONR YIP award and
NSF grant CNS-1029546.

REFERENCES

[1] T. Xing, D. Huang, L. Xu, C.-J. Chung, and P. Khatkar, “Snortflow: A
openflow-based system in cloud environment,” in GENI Research and
Educational Experiment Workshop, GREE, 2013.

[2] C.-J. Chung, P. Khatkar, T. Xing, J. Lee, and D. Huang, “Nice: Network
intrusion detection and countermeasure selection in virtual network
systems,” in IEEE Transactions on Dependable and Secure Computing
(TDSC), Special Issue on Cloud Computing Assessment, 2013.

[3] T. Xing, D. Huang, D. Medhi, and S. Ata, “Mobicloud: a geo-distributed
mobile cloud computing platform,” in Proceedings of 8th International
Conference on Network and Service Management, 2012.

[4] T. Xing, X. Liu, C.-J. Chung, A. Wada, S. Ata, D. Huang, and
D. Medhi, “Constructing a virtual networking environment in a geo-
distributed programmable layer-2 networking environment (g-plane),” in
Communications (ICC), 2012 IEEE International Conference on. IEEE,
2012, pp. 5879–5884.

[5] D. Huang, T. Xing, and H. Wu, “Mobile cloud computing service
models: a user-centric approach.” IEEE Network, vol. 27, no. 5, 2013.

[6] C. C. S. Alliance, “Top threats to cloud computing v1.0,” in White Paper,
2010.

[7] “SourceFire Inc.” [Online]. Available: http://www.snort.org
[8] W. Morton, “Intrusion prevention straitegies for cloud computing,” 2011.
[9] J. R. Ballard, I. Rae, and A. Akella, “Extensible and Scalable Network

Monitoring Using OpenSAFE,” in INM/WREN, 2010.
[10] J. H. Jafarian, E. AI-Shaer, and Q. Duan, “Openflow random host

mutation: Transparent moving target defense using software defined
networking,” in HotSDN, 2012.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” in ACM SIGCOMM Computer Communication
Review, April 2008.

[12] R. U. Rehman, “Intrusion detection systems with snort,” in BRUCE
PERENS OPEN SOURCE SERIES.

[13] A. Alhomoud, R. Munir, J. P. Disso, I. Awan, and A. Al-Dhelaan,
“Performance evaluation study of intrusion detection systems,” in The
2nd International Conference on Ambient System, Networks and Tech-
nologies, 2011.

[14] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown, and
S. Shenkes, “Nox: Towards an operating system for networks,” in ACM
SIGCOMM Computer Communication Review, July 2008.

[15] R. Olsson, “pktgen the linux packet generator.”
[16] hping3. [Online]. Available: http://linux.die.net/man/8/hping3
[17] NetPerf. [Online]. Available: http://www.netperf.org/

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 311 CNSM Short Paper




