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Abstract—We consider the problem of optimizing the sensing
strategy of a monitoring system in the presence of faulty
sensors. We develop ORSg, an efficient data-driven algorithm
for computing sampling strategies that nearly maximize the
submodular utility of sensing with only a fraction of active and
fault-prone sensors. Our approach combines techniques from
information theory, game theory and submodular optimization.
We empirically evaluate our algorithm with a real-world sensing
scenario.

I. INTRODUCTION

There has been substantial work on energy conservation
in the wireless sensors community [1], [2] and [3] and a
number of energy saving models have been proposed to reduce
power hungry operations. Adaptive sampling is a promising
technique that exploits temporal and spatial correlation be-
tween measured samples to reduce the amount of data to be
acquired. With adaptive sampling, samples are only acquired
a fraction of the time at a fraction of the sensors. This has
been shown to be particularly effective for classes of sensors,
such as chemical and biological sensors, acoustic and seismic
transducers, where the energy cost for data acquisition is
significantly high.

Indeed acquiring data from a fraction of the sensors saves
energy and prolongs the lifetime of the sensing system, how-
ever, it implies uncertainty about the values of the remaining
ones. Besides, in addition to running out of power, active
sensors may fail to communicate their data. Hardware failures,
environmental hazards, extreme weather and ambient condi-
tions negatively impact wireless communications and interfere
with the quality of the collected data.

In this paper, we consider the problem of finding optimal
sampling strategies in the presence of faulty sensors, and
jointly address three design objectives; energy conservation,
sensing utility maximization and robustness to sensor failures.
We introduce an efficient data-driven algorithm for computing
near-optimal sampling strategies that maximize the utility of
sensing with only a fraction of active and fault-prone sensors,
whenever the utility function satisfies submodularity. Our
approach combines techniques from information theory, game
theory and submodular optimization.

The remainder of this paper is organized as follows. Sec-
tion II introduces the robust sampling problem and outlines our
methodology. In Section III we describe the ORSg algorithm
and prove its near-optimality. In Section IV we evaluate
the algorithm empirically. Section V surveys relevant works.

In Section VI we discuss possible extensions of the ORSg
algorithm along with our future research directions.

II. THE ROBUST SAMPLING PROBLEM

Let V = {s1, ..., s|V |} be the set of sensors deployed in
the sensing system. We denote by sampling plan any subset
of sensors A ∈ V that meets a given constraint such as on
cardinality or cost. Let P(V ) be the ground set of possible
sampling plans.The robust sampling problem is about finding
the sampling plan or a strategy over sampling plans in P(V )
that best senses the condition assuming sensors are failure-
prone.

We associate with each node s ∈ V a discrete random vari-
able Xs. We want to select the most informative sampling plan
A ⊂ V to allow for an accurate estimation or understanding
of the observed phenomenon. The most informative sampling
plan A should allow for little uncertainty about the remaining
sensors V − A. This uncertainty can be captured by the
entropy remaining in the random variable XV−A conditioned
by the readings of XA, known as the conditional entropy [4]
H(XV−A|XA). Hence our problem is to find the subset of
sensors A such that:

A = argmin
A∈P(V )

H(XV−A|XA)

In the following, Ā and will denote V −A.

A. Problem Modelling

As sampling and communication failures may occur, only a
fraction of the expected readings may be received and used to
understand the observed phenomenon. Because conditioning
on less data increases the uncertainty in a random variable,
robustness to sensor failures is a paramount criterion. The
sampling strategy has to minimize this uncertainty in the worst
case failure scenario.

The robust sampling problem can be seen as a two-player
zero-sum game, i.e. a game in which one player’s gain results
only from the other player’s equivalent loss. In this game, one
player, called MIN, plays a sample plan Ai from P(V ) while
the opponent, called MAX plays a failure event from a set of
possible events F . Let m and n be the cardinality of F and
P(V ) respectively.

A fundamental theorem of game theory, the Minimax theo-
rem, established by Neumann [5], states that every finite zero-
sum two-person game, with a n × m game matrix, has (at
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least) a couple of optimal mixed strategies also called Nash
Equilibrium; a probability assignment x∗ = (x∗i )i=1..n with∑
i x
∗
i = 1 over MIN ’s possible strategies that will mini-

mize her maximum loss, as well as a probability assignment
y∗ = (y∗j )j=1..m with

∑
j y
∗
j = 1 over MAX ’s possible

strategies that will maximize her minimum gain.
According to the Minimax theorem, the best outcome comes

from assessing potential wins and losses, and developing a
stochastic scheme for optimizing the way that the players
play. This suggests that the robustness and optimality of the
sampling strategy is ensured provided that it is built on the
probability distribution x∗ over all possible plans Ai. Once
x∗ is computed, it is possible to set up a schedule among
the sampling plans Ai, with each sample Ai operating at
the frequency x∗i . Indeed the sampling strategy could be
established before hand which allows for the implementation
of a sample-sleep schedule at the sensor level for better battery
saving.

Now to find the optimal scheduling strategy we need to
solve the game which requires solving a linear program
(LP). Indeed it is possible to solve an LP in polynomial
time, however this usually requires more than the number
of variables of the LP raised to the third power operations
[6]. Consider for instance that we want to sample from at
most k sensors; i.e. any subset of sensors of cardinality less
or equal to k is a potential sampling plan. The cardinality
of P(V ) is clearly exponential in the number of sensors.
Thus, solving the LP is not tractable in general. In addition,
even if the Nash strategy x∗ can be computed “efficiently”, it
may be too complicated to implement. An optimal scheduling
strategy is almost impractical if it has to randomize over a
large number of simple sampling plans. This naturally leads
us to the following question: instead of following a complex
plan of actions over a very large number of simple sampling
plans, can we approximate efficiently the optimal sampling
strategy with a smaller number of plans?

B. Approximation and ε−approximate Strategy with Small
Support

The challenge here is to devise an efficient algorithm that
computes a sampling strategy that achieves nearly as well
as the optimal, and that randomizes over a smaller set of
sampling plans. The problem is known as finding a near-
optimal strategy with small support. Fortunately, results from
[7] and [8] show that for any two-person zero-sum game
there exists an ε−equilibrium (assuming that the payoffs are
in [0, 1]), i.e. a strategy for MIN for which the worst payoff is
within an ε−additive from optimum, with only a logarithmic
support. Moreover the strategy of each player in such an
equilibrium is uniform on a small multiset of pure strategies.

Theorem 1. [7] Let X l be all the mixed strategies that
choose uniformly from a multiset of simple strategies Pl(V ) of
cardinality l. For any ε > 0 and l ≥ [ lnm

2ε2 ], and considering
the scaled payoff matrix Π;

max
x∈Xl

min
j

∑
i

xiΠ(i, j) ≤ λ∗ + ε

Equality holds only if l = [ lnm
2ε2 ].

In a seminal result, Young [9] shows that a simple multi-
plicative update algorithm can be used to approximate optimal
mixed strategies in an (arbitrary) matrix game, as long as 1)
one of the players has a finite number of choices, and 2) the
other player can compute best responses strategies for the MIN
player -the best response strategy to a given MAX’s strategy
would be the strategy that minimizes MAX’s gain-. In the
following, we review this algorithm, adapted to the context of
our application.

III. THE ORSG ALGORITHM

Without loss of generality, we consider in the following
single sensor failure events; at each sampling round, at most
one sensor fails to sample or communicate with the rest of
the system. The impact of communication failures can vary
with the sensing application and particularly with the sensor-
to-sink communication model. If the communications between
the sensors and the sink are single-hop then the faulty sensor
will only fail to deliver its readings to the sink. However if the
communications between the sensors and the sink are multi-
hop, the faulty sensor will fail to deliver all the readings it is
forwarding to the sink. As a proof of concept we will assume
a single-hop communication model. Indeed our methodology
is generic enough to apply to any kind of failure events and
any sensor-to-sink communication model.

Under the above conditions, it is easy to see that the set of
possible failure events F is the same as V , thus m = |V |. The
outcome of the pair of strategies (Ai, sj) where the sampling
plan Ai is selected to acquire data and the sensor sj ∈ Ai is
selected to fail to acquire/deliver data, is the scaled entropy of
Āi ∪ {sj} conditioned by the observations of Ai − {sj}.

Using the identity H(Y |X) = H(X,Y )−H(X), we have:

H(XĀi∪{sj}|XAi−{sj}) = H(XV )−H(XAi−{sj})

Given V the (finite) set of sensors deployed to monitor a
given condition, P(V ) the set of possible sampling plans, the
scaled uncertainty matrix

(
Π(i, j)

)
where Π(i, j) is the scaled

expected uncertainty about the sensors in Āi∪{sj} conditioned
by the observations in Ai − {sj}, and ε > 0, we consider the
following Oblivious Randomized Sampling algorithm 1.

Algorithm 1 ORS(V,Π)

α← e4ε − 1
P∗(V )← {} . Multiset of best response sensor sets
Yj ← 1(j = 1, ...,m)
Xi ← 0(j = 1, ..., |P(V )|)
repeat

choose Ai ∈ P(V ) to minimize
∑
j YjΠ(i, j)

Xi ← Xi + 1
P∗(V )← P∗(V ) ∪ {Ai} . Ai may appear more than once
Yj ← Yj [1 + αΠ(i, j)](j = 1, ...,m)

until |P∗(V )| ≥ lnm
2ε2

return (xi = Xi
|P∗(V )| )i=1,...,|P∗(V )|
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Theorem 2. [9] The Oblivious Randomized Scheduling algo-
rithm 1 returns an ε−optimal solution to the robust sampling
problem.

At each iteration, the algorithm calls an oracle that returns
the best response sensor set Ai to the probability distribution
(

Yj∑
j Yj

)j=1..m over failure events at sj , and adds it to the
multiset of best response sampling plans P∗(V ).

The algorithm stops when the cardinality of the multi-
set reaches [ lnm

2ε2 ]. After [ lnm
2ε2 ] iterations of the algorithm,

the ε−optimal solution is given by the returned vector
(xi)i=1...|P(V )|.

One important corollary that follows from the construction
of the algorithm is that after [ lnm

2ε2 ] iterations of the algorithm,
the primal and the average dual values differ by at most ε.
That is to say:

max
j

∑
i

xiΠ(i, j) ≤
∑
j

yj
∑
i

xiΠ(i, j) + ε (1)

A. The accelerated Greedy Oracle

The oracle in Algorithm 1 can be implemented as an
exhaustive search over the set P(V ) of all possible sensor
sets. With real world problems and large scale sensing systems
such a solution is expensive in general. In the following we
show that a Greedy-based oracle not only has much lower
complexity and execution time but also returns an approximate
solution to argmin

Ai∈P(V )

∑
j YjΠ(i, j) with strong guarantees.

Let hj(A) = H(XA−{sj}) be the entropy of the readings
received from the subset A− {sj} (assuming that s failed to
deliver its reading).

Using the identity H(XV−A|XA) = H(XV )−H(XA), we
can see that minimizing the expected penalty

∑
j YjΠ(i, j)

is the same as maximizing the expected entropy h̄(Ai) =∑
j Yjhj(Ai), in other words;

argmin
Ai∈P(V )

∑
j

YjΠ(i, j) = argmax
Ai∈P(V )

∑
j

Yjhj(Ai) (2)

Entropy is a positive and monotonically non decreasing
function. The latter property follows from the chain rule
H(XA,XT ) = H(XA|XT )+H(XT ) = H(XT |XA)+H(XA),
where the conditional entropy is itself positive.

Another major characteristic of the entropy is submodular-
ity [10] [11]. We can easily show that for each j, hj(A) =
H(XA−{sj}) is also submodular, by realizing that hj(.) is
the joint entropy function H(.) defined on the ground set
P(V −{sj}). The submodularity of h̄(Ai) follows as the class
of submodular functions is closed under non-negative linear
combinations.

Maximizing submodular functions is NP-hard in general.
However, Nemhauser [12] proves that maximizing a monotone
submodular function subject to a cardinality constraint admits
a (1− 1/e) approximate solution, and assuming the P 6= NP
conjecture, no polynomial-time algorithm can achieve a better
approximation ratio. Interestingly, the approximate solution is
provided by the simple Greedy algorithm which starts with an

empty solution A = ∅, grows A by successively adding some
elements s from V −A that maximize the marginal gain, and
stops when size constraint is reached.

Considering a constraint k on the cardinality of the simple
sampling plans Ai and by substituting to the exact ora-
cle an oracle based on the simple Greedy selection rule
(i.e. add the sensor s that maximizes the marginal gain∑
j Yj [hj(A∪{s})−hj(A))]), we are returned at each iteration

of the algorithm a constant-factor approximate minimizer to∑
j YjΠ(i, j) with substantially lower computational complex-

ity, O(k|V |) in the number of sensors |V | (if we consider the
evaluations

∑
j Yj [hj(A ∪ {s}) − hj(A))] for all s ∈ V − A

as atomic operation). To speedup the oracle, as suggested
by Minoux [13], we can exploit the submodularity of the
entropy function H a little further and reduce the number of
evaluations

∑
j Yj [hj(A ∪ {s})− hj(A))] as follows:

Function 2 GOracle(V, k, Y )

A← {}
for all s ∈ V do

δ(s)←∞
repeat

for all s ∈ V −A do
evals ← FALSE

break ← FALSE
repeat

s∗ ← argmax
s∈V−A

δ(s)

if evals∗ then
A← A ∪ {s∗}
break ← TRUE

else
δ(s∗) =

∑
j Yj [hj(A ∪ {s∗})− hj(A)]

evals∗ ← TRUE
until break

until |A| = k return A

We show in the following that the degree of approximation
of the accelerated Greedy oracle (Algorithm 2) is carried over
into the performance guarantees of the sampling algorithm.

B. ORSg : The Oblivious Randomized Sampling Algorithm
with Simple Greedy Oracle

Algorithm 3 ORSg(V, k, ε)

α← e4ε − 1
P∗k (V )← {}
Yj ← 1 ∀j = 1, ...,m
repeat

A∗ ← GOracle(V,H, k, Y )
P∗k (V )← P∗k (V ) ∪ {A∗}
XA∗ ← XA∗ + 1 . # of occurrences of A∗

Yj ← Yj [1 + α(1− hj(A
∗)

H(XV )
)](j = 1, ...,m)

until |P∗k (V )| ≥ lnm
2ε2

return ( XA
|P∗

k
(V )| )A∈P∗

k
(V )

Theorem 3. The ORSg algorithm is guaranteed to provide a
sampling strategy that achieves at least a constant fraction of
the optimal solution within O(k|V | lnmε2 ) time.

Proof. At any iteration the ORSg algorithm, the greedy or-
acle only returns an approximate optimizer Ai∗ , such that
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∑
j yjhj(Ai∗) ≥ (1 − 1

e ) max|Ai|≤k
∑
j yjhj(Ai), here

yj =
Yj∑
j Yj

. Given that
∑
j yjΠ(i, j) =

H(XV )−
∑

j yjhj(Ai)

H(XV ) ,
we have∑

j

yjΠ(i∗, j) ≤ (1− 1

e
) min

i

∑
j

yjΠ(i, j) +
1

e
(3)

Since at any step of the algorithm, the returned Ai∗ is no
longer an optimizer, it is easy to realize that the average of the
values of the dual solution provided by the ORSg algorithm
is such that vG ≤ (1− 1

e )
∑
j yj mini Π(i, j) + 1

e .
Accounting for Equation 1, it is easy to realize that ORSg

returns a vector x such that:

max
j

∑
i

xiΠ(i, j) ≤ (1− 1

e
)
∑
j

yj min
i

Π(i, j)+
1

e
+ ε (4)

Note that mini
∑
j yjΠ(i, j) is a lower bound of

λ∗ = mini maxj Π(i, j). This implies that after [ ln |V |
2ε2 ]

iterations of ORSg, we have:

max
j

∑
i

xiΠ(i, j) ≤ (1− 1

e
)λ∗ +

1

e
+ ε (5)

For a given 0 < ρ < 1 it suffices that ε ≥ (1/e−ρ)λ∗−1/e
for the algorithm to compute a solution that is a (1−ρ) fraction
from optimal. The Theorem follows.

IV. EXPERIMENTAL RESULTS

Our experimental evaluation is two-fold. First, we study
the near-optimality of the ORSg algorithm by comparing the
solution provided by ORSg to the optimal solution of the ro-
bust sampling problem obtained by solving the corresponding
LP as discussed previously. Second, we consider an empirical
evaluation of the sampling strategy selected by ORSg.

Our dataset consists of measurements of the ambient humid-
ity collected every 15 minutes (in average) from 20 sensors
distributed over the UC Berkeley Blue Oak Ranch Reserve.
The dataset is available online through the eKoview web
interface 1.

We consider the sensors records over a given day D.
Figures 1 show the readings of sensors s2, s3, s15 and s19
between the time stamps T = 0 and T = 90. It is clear that
records from s2 and s3 evolve similarly. In contrast, there
is a discrepancy between the readings of s15 and s19. This
suggests that s2 and s3 are more correlated than s15 and
s19. Interestingly, we see that while humidity decreases in
s15 (between T = 5 and T = 8), it increases in s19. This
suggests that humidity is not isotonic across the field.

We build a Gaussian mixture model for the system fitted
to day D’s dataset with MATLAB’s gmdistribution.fit
(Figure 2). We vary k, the constraint on the cardinality of
the sampling plans and compare the near-optimal solution
provided by ORSg to the optimal solution obtained by solving
the LP. Interestingly, as shown in Figure 3, ORSg solves the
problem very near-optimally; the solution provided by ORSg
is much closer to the solution of the LP than to the guaranteed

1www.blueoakranchreserve.org

(a)

(b)

Fig. 1: (a) Highly correlated pair of sensors and (b) Weakly
correlated pair of sensors

a priori bound. This suggests that a finer online bound should
be investigated.

Fig. 2: Our model

Intuition suggests that due to changes in weather patterns,
seasons, environment and other factors, the model is not time
invariant. At some points in time, the system should collect
readings from all the sensors to check the validity of the model
and eventually build a new one. To determine a strategy for
the adaptation procedure, key questions should be answered:
Is there indeed a need for updating the sampling plan due
to dynamic changes in the observed phenomenon? How often
and under which condition the validity of the model should
be checked? What should the conditions be that initiate the
creation of the new model?

In order to test the validity of our sampling strategy we con-
sidered the following experiment. We consider the sampling
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Fig. 3: Performance of ORSg compared to the optimal solu-
tion

strategy Sch provided by ORSg for day D’s model with k = 4
(i.e. only a quarter of the sensors are operated per sampling
round). We calculate H(Xs|XSch) the expected uncertainties
about each sensor in the system considering the measurements
recorded by the sensors in Sch on day D, and the next
following days. We calculate the actual entropy H(Xs) of each
sensor in the system on day D and the next following days,
and then the error H(s)−H(Xs|XSch)

H(s) for each day. Interestingly,
as shown in Figures 4 the mean error does not exceed 0.45%
over the 12 days that follow D. This suggests that the model
and sampling strategy can be assumed valid for a fairly long
time. Indeed it is possible to set a threshold beyond which the
adaptation procedure should be triggered.

Fig. 4: Evaluation of the mean entropy error

V. RELATED WORKS

Early works on energy-effective sensing are on sensor de-
ployment and coverage maximization [14] [15] [16] [17]. Cov-
erage maximization has often been addressed in the literature
with computational geometry-based approaches, which have
been proven inefficient in many real-world scenarios [18]. In
fact, geometry-based approaches typically assume that sensors
have a fixed sensing radius. In practice, sensors make noisy
measurements about the nearby environment, and their sensing
area is not usually characterized by a regular disk. In contrast,
our approach is data driven and does not place any assumption
on the sensing coverage.

Our approach is stochastic and relies on statistical modeling.
We exploit the characteristics of the sensed phenomenon in
terms of random process and use a probabilistic model to
predict the sensed value. Works like [19] [20] [21] [18] [22]
well exemplify such approach.

In [19], an adaptive query-based sensing system is pro-
posed. The sensed phenomenon is modeled as a time-varying
multivariate Gaussian process. Historical data are used to
build the initial probability density function over different
attributes (temperature, humidity, voltage, etc.) at different
sensors. The problem addressed in [19] is how to best sample
from the sensors given correlations between the attributes at
the different sensors.

In [20] [21] [18] sensor data is also assumed to follow a
Gaussian distribution. Kernel linear regression is then used to
predict the sensed condition in locations where no sensors are
placed. The latter incorporates distance to predict the value at
a given location. In [18] [21] the model is used to find a sensor
placement that maximizes the mutual information between the
selected placement and the uncovered locations. [21] optimizes
the sensor placement while minimizing the communication
cost in the sensor network. [22] considers sensor placement
and scheduling jointly.

Even though the models used in [19] [20] [21] [18] [22]
are very relevant to our work, the tackled problems are very
different from our robust adaptive sampling problem. In fact,
we further exploit the spatio-temporal correlations between
measurements in order to reduce the number of data acqui-
sitions and save energy. [23], and [24] are equally relevant
from this perspective.

The main idea of [23] is that, nodes deployed with sufficient
density do not have to sample the sensed field in a uniform
way; more nodes have to be active in the regions where
the variation of the measurements is high. Given a spatial
distribution of the sensed phenomenon, the field is partitioned
in a number of sub-squares with non-uniform resolution, where
sensors are grouped in clusters. The sink will then activate
additional sensors in the locations where the spatial correlation
is low. To this end, it “backcasts” an activation message to
the clusterheads who forward the received message to activate
additional nodes in the cluster.

[24] addresses the energy conservation problem by adap-
tively coordinating the sleep schedules of sensors while guar-
anteeing that values of sleeping nodes can be recovered from
the active nodes within a specified error bound. An isotonic re-
gression model is used to characterize the sensed phenomenon
and an adaptive sampling procedure is proposed. However, the
proposed approach relies on the solution of a Mixed Integer
Program to organize the sensors into domatic partitions such
that each partition can predict the sensed condition on the
entire network, which is intractable in general.

The approaches used in [23] and[24] are very different
from ours, besides none of them considers robustness to
failure events. The isotonicity constraint used in [24] and that
assumes that as the phenomenon being sensed increases, the
sensors will experience an increase in their readings, does
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not hold in general. In fact we show in Figure 1 that as the
humidity increases at one sensor, it decreases at the second.
More generally, this assumption does not apply in large or
heterogeneous settings.

VI. DISCUSSION AND CONCLUSION

We have devised a methodology for robust and energy
efficient sensing by exploiting correlations in sensors data to
reduce the number of data acquisitions by sampling at only
a fraction of the sensors. We have presented and evaluated
ORSg a low complexity, stochastic, data driven algorithm that
solves the robust sampling problem to near-optimality with
strong guarantees. The performance results are very promis-
ing. Possible extensions and future works include the design
and implementation a self-assessment/adaptation module that
assesses the validity of the schedule and the used model and
triggers the adaptation of the system to the new conditions.
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