
Design and Evaluation of a Scalable Hierarchical
Application Component Placement Algorithm for

Cloud Resource Allocation
Maryam Barshan, Hendrik Moens and Filip De Turck

Ghent University - iMinds, Department of Information Technology
Gaston Crommenlaan 8/201, B-9050 Gent, Belgium

Email:maryam.barshan@intec.ugent.be

Abstract—In the context of cloud systems, mapping appli-
cation components to a set of physical servers and assigning
resources to those components is challenging. For large-scale
clouds, traditional resource allocation systems, which rely on
a centralized management paradigm, become ineffective and
inefficient. Therefore, there is an essential need of providing new
management solutions that scale well with the size of large cloud
systems. In this paper a distributed and hierarchical component
placement algorithm is presented, evaluated and compared to
a centralized algorithm. Each application is represented as a
collection of interacting services, and multiple service types
with differing placement characteristics are considered. Our
evaluations show that the proposed algorithm is at least 84.65
times faster and offers better scalability compared with a central
approach, while the percentage of servers used and fully placed
applications remains close to that of the centralized algorithm.

Index Terms—cloud management, application placement, hi-
erarchical systems.

I. INTRODUCTION

Nowadays many companies use of cloud technologies to
reduce costs, increase flexibility and to respond faster to
customer needs. Although the benefits of cloud systems are
considerable, numerous challenges remain, among them, effec-
tive supervision of resource usage, scalability and in particular
resource allocation. The resource allocation or the application
placement refers to the act of deciding where on the clusters of
servers, the applications are placed [1]. Managing placement
of a large number of applications on a large number of cloud
servers leads to unsustainable administrative costs, requiring
automated approaches for such a management task.

In cloud management literature, application placement de-
ployments often rely on traditional systems in which the
management of application placement is typically centralized.
With the expected hundreds of thousands of servers and
significant customer demands in next generation of cloud
systems, centralized approaches won’t be able to scale well.
As a solution, scalability can be achieved by dividing a
cloud into different administrative domains, with independent
managers for each domain and efficient interaction among
these managers.

In this paper, we address the problem of application place-
ment for large-scale cloud environments with the following
design goals: scalability and performance. The proposed hier-
archical algorithm executes faster than a centralized approach

and each management cluster maintains a partial view of
the network. Consequently the resource allocation process is
scalable both in the number of cloud servers (up to 512000
servers) and the number of applications placed onto the cloud
servers. Furthermore, as a part of our presented approach
a local application placement policy is followed for each
administrative domain. This partial solution tries to minimize
the number of servers used which is mostly effective to reduce
the power consumption of large-scale datacenters [2]. Addi-
tionally, as the requirements of application components differ,
two general component types have been defined: database
and computational components. Moreover, as a constraint
each server is just allowed to place one kind of application
component, but when there is enough capacity, components
can be placed on the same server. To make it clear, Figure
1 shows an illustrative example of application component
placement into a small cluster of cloud servers.

In the context of modern cloud platforms, the application
placement process consists of placing the application compo-
nents to a set of VMs (Virtual Machines) and then deploying to
the physical infrastructure [3], [4]. In this paper we assume that
the components are already encapsulated in VMs or similar
containers, so the applications consist of multiple VMs.

The rest of the paper is organized as follows. In Section II,
we discuss related work. Section III describes the architecture
of the proposed method. In Section IV the algorithms are dis-
cussed in detail. Then in Section V we evaluate the proposed
algorithms. Finally in Section VI, we conclude the paper.

II. RELATED WORK

As shown in [5] the problem of application placement is
NP-hard, making it desirable to find near-optimal solutions.
Recently many approaches to the application placement have
been proposed that each focus on different aspects of the
problem [6]. While many approaches such as [3], [7], [8]
and [9] rely on the central approaches, [10] offers a distributed
resource management architecture. This distributed approach
does not take communication between application components
into account however. [11] focuses on resource allocation
in IaaS clouds, maximizing resource utilization and request
acceptance rate. Another work [12] clarifies the definition of
distributed cloud and the challenges of resource allocation

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 175 CNSM Mini-Conference Paper

D

D

C D C
D

D

C D C
D

D

C D C
… …

DD DC DS CS

App (i) App (i+1) App (i+2)

E E E E E

Physical Servers

DD Initial Default Database Server

DC Initial Default Computational Server

DS Database Server

CS Computational Server

E Unused Servers (Empty)

Application Components

D Database Component

C Computational Component

Fig. 1: The process of application component placement.

on distributed clouds. Based on the definition of "the best-fit
placement" in [5], our solution follows the same rule which is
finding a feasible server whose residual capacity is minimal.
Nevertheless, this work differs from our approach as it is
centralized and not network-aware.

In our previous work [13] we presented an optimal ILP-
based solution with the main focus of cost-effectiveness along
with a central heuristic algorithm. This algorithm is however
centralized, making it only useful for smaller datacenters. In
this paper a decentralized algorithm is designed and evalu-
ated which can be applied in large-scale cloud environments.
Our other previous work [14] focuses on component-based
application as well as network-awareness. The main focus of
the paper was on placement of multi-tenant component-based
applications where VMs are shared between the applications
and no placement constraints between different application
component types were considered. In this paper, our approach
works differently as it offers a VM-level placement, the appli-
cation component is characterized as being either a database
or a computational one. Furthermore, multiple dedicated types
of servers are defined here, one type for hosting computational
components and another type for database components.

Generally, what distinguishes our method from other
approaches are: 1) our solution is decentralized and scalable;
2) application modeling is component-based with two
different types, and interaction between those components
affects the placement process; 3) SLA agreements and the
properties of underlying network are respected; 4) servers are
not allowed to host different component types and multiple
same-type components can be placed onto a single node; and
5) our method minimizes the number of servers used.

III. DESCRIPTION OF MODELS

The model consists of three parts:
The model of the physical cloud system: The physical

cloud system is a graph consists of homogeneous server and
links.Each server can be either a database or computational
server and no backup is assumed.

The model of the management plane: The manage-
ment plane relies on multi-layered hierarchical architecture

in which three types of manager are defined: LLM (Low
Level Manager), MLM (Mid Level Manager) and RLM (Root
Level Manager). The LLMs are located in the lowest level of
management hierarchy, the RLM in the top level and MLMs
in middle ones. The number of management levels (|ML|) and
the number of supported servers (|SS|) for each LLM are taken
as inputs and the branch factor of each tier (µ) is calculated.In
addition, the number of supported servers and the number of
levels determine the number of LLMs. By calculating the level
branch factor the number of MLMs can be achieved as follows.

µ = |ML|−1
√
|LLM | (1)

|LLM | = d|S|/|SS|e (2)

|MLM | =
|ML|−2∑
level=1

µ((|ML|−1)−level) (3)

The model of the applications: The architecture of the
applications is service oriented and the topology of the services
is a graph. The components are the nodes and connections
between these components form the directed links of the
application graph. Each component has a specific amount of
CPU, memory and storage demands. Also, the application link
bandwidth and delay demands can be considered as the SLA.

IV. ALGORITHMS

In this section two centralized and hierarchical approaches
are discussed which we refer to as the Centralized Cloud
Mapping Algorithm (CCMA) and the Hierarchical Cloud
Mapping Algorithm (HCMA) respectively.

A. Centralized Cloud Mapping Algorithm (CCMA)

This algorithm first arbitrarily chooses two nearby nodes
as the default database and the default computational servers.
For each application the algorithm goes through all the com-
ponents and tries to allocate resources to each component.
In order to have minimal bandwidth overhead, the algorithm
uses the Dijkstra shortest path algorithm [15] for mapping the
application links. However, there are two situations in which
the application component cannot be placed, either because
of physical node or link limitations. Node limitation occurs
when there is not enough residual CPU, memory or storage
capacity in one of default servers. In the latter case again there
are two situations.First the application components cannot be
connected because there is no link to connect application
components located on different servers. Second, no possibility
because bandwidth or delay demands cannot be responded.

No matter which situation is causing unsuccessful com-
ponent placements, the Next Server Selection (NSS) process
should be followed to choose another default server. In the
NSS process, a Breadth First Search (BFS) algorithm [15] is
run with the current default server as the start vertex. However,
when link limitation occurs, first another server is chosen
temporarily and then the algorithm checks the path availability
and SLA fulfillment, and sets it as a default server provided
that choosing this server satisfies both conditions. Otherwise,

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 176 CNSM Mini-Conference Paper

the placement is not successful. In this case the algorithm
must backtrack and start again with new default servers and
continue until the NSS process is unable to find a new server.
This algorithm differs from our previously designed algorithm
in [13] because in this paper the next server is found by calling
the BFS algorithm, whereas in the previous work the process
searches among the neighbours and in the case of no unvisited
neighbour another arbitrary server was chosen, an approach
which is less efficient for large-scale networks.

B. Hierarchical Cloud Mapping Algorithm (HCMA)
The GCMA is run on every manager and the CCMA is

only run on LLMs. Based on this algorithm, all the placement
requests can be sent to the current active LLM. The current
active LLM is determined arbitrary when the algorithm starts.
Each manager has two states: “full” and “not full”. A manager
is “full” when all its managed servers get fully occupied. The
active LLM will be replaced when its state changes to “full”.
The next active LLM is chosen by the parent of the current
active LLM. In order to interact between different managers
within the management plane, another algorithm is designed
which is referred to as the GCMA (Global Cloud Mapping
Algorithm). The GCMA runs on every manager. For each
newly arriving application, the HCMA invokes the GCMA
with the current active LLM and a “new request” message. In
the GCMA three types of messages are defined: “new request”,
“from the parent” and “full”. For more clarification Figure 2
is depicted. Then, the GCMA sends the application request to
the current active LLM by calling the CCMA, the centralized
algorithm. In hierarchical approach the CCMA is run on every
LLM. If this administrative domain was not able to place the
entire application components, the status of the current active
LLM changes to “full”. Afterward, this LLM calls the GCMA
with a “full” message to its parent.

Global Cloud Mapping Algorithm (GCMA): The GCMA
is a hierarchical algorithm (Algorithm 1). Based on this algo-
rithm when a request arrives, three cases can be distinguished:

1) A request is received by the highest level manager
(RLM): The request will be forwarded to the next unvisited
domain with a “from the parent” message. If all domains are
full the cloud system is not able to place this application.

2) A request is received by the mid-level manager (MLM):
The request will be forwarded by applying the same policy to
one dedicated lower-level manager with a “from the parent”
message until the target LLM is reached. If all domains are
full, the status of this manager turns to “full” and the request
with a “full” message will be forwarded to the parent.

3) A request is received by the lowest level manager (LLM):
In this level all the request messages would be either “new
request” or “from the parent”. No matter who is the sender,
the manager runs the CCMA algorithm. In a saturation case ,
the LLM has to send the newly arriving requests to its parent
and introduce itself as a “full” manager.

V. EVALUATION DETAILS

The physical cloud system is tree-based nd amulti-tier,
similar to the current datacenter topologies [4], [6]. To design

input: application a, manager m, requestSender r, message
s

Impossibilitya ← false;
Currentstate ← Save the current system state;
while (Mappeda = false & Impossibilitya = false) do

Set current system state to CurrentState;
if (mtype = LLM & s=("new request" OR "from the
parent")) then

if (one of the default servers=null) then
fullm ← true;
GCMA(a, parentm, m, "full");

else
CCMA(m,a);

end
end
if (mtype 6= LLM & s = ("full" OR "from the parent"))
then

for (ch ∈ childrenm) do
if (fullch =false & ch6=r) then

GCMA(a, ch, m, "from the parent");
return;

end
end
fullm ← true;
if (mtype = MLM) then

GCMA (a,parentm, m, "full") ;
else

Impossibilitya ←true;
end

end
if (Impossibilitya =true) then

Set current system state to CurrentState;
end

end
Algorithm 1: The Global Application Mapping Algorithm
(GCMA), which is executed on every manager in the
hierarchical approach.

the physical infrastructure, the number of server nodes (|S|),
the number of switch ports (|P|) and the number of levels
(|L|) are taken as inputs. This physical cloud environment is a
complete N-ary tree in which the N is the calculated branch
factor (β). The branch factor of each tier and the number of
intermediate switches (|IS|) are calculated as the follows.

β = |L|−1
√

|S| (4)

|IS| =
|L|−1∑
level=1

β((|L|−1)−level) (5)

MLM

LLM
LLM

1. GCMA(“new request” , app)

D
D

D
C

F F
D
D

D
C

E E

2. CCMA (app)

3. GCMA(“full” , app) 4. GCMA(“from parent” , app)

5. CCMA (app)

D

D
C D C

6. App is mapped

Physical Servers

DD Default Database Server

DC Default Computational Server

F Full Server

E Unused Server (Empty)

Application Components

D Database Component

C Computational Component

Fig. 2: Different messages for interacting between the man-
agers in GCMA (GCMA: Global Cloud Mapping Algorithm,
CCMA: Centralized Cloud Mapping Algorithm).

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 177 CNSM Mini-Conference Paper

In our evaluation two types of applications are implemented
as shown in Table III. Type 1 refers to the 5-component
applications and Type 2 refers to 20-component applications.

This section is divided into three parts. First an evaluation
of the CCMA is provided by comparing to an optimal solution
based on the ILP-based model we presented in [13]. Then, we
evaluate the HCMA by comparing its performance with the
CCMA. Finally, we will end the section with a large-scale
evaluation of the HCMA.

A. Comparing the CCMA to the ILP-based algorithm

1) Evaluation Set up: The optimal model and the CCMA
are evaluated with a configuration of 6 servers arranged in a
star topology. The network specification can be observed in
Table I. Also, Type 1 applications are used, the number of
which varies from 1 up to 9. The experiments are iterated 20
times and the average percentage of used servers are presented.

2) Evaluation Results: In Figure 3 the CCMA is compared
to the optimal approach and the percentage of servers used to
place all of the applications are depicted. As can be seen in
this figure, when it comes to the physical resources usage, the
CCMA provides a near-optimal solution compared to the ILP-
based algorithm. In 66% of cases, the results of centralized
method are equal to the optimal algorithm and in the worst
case, with 9 applications, the CCMA uses 8.3 percent more
servers. This analysis shows the performance of the CCMA is
close to that of the optimal algorithm.

B. Comparing hierarchical algorithm to the centralized ap-
proach

We study three case studies. In the first case, 5-component
applications are placed on cloud system with 1000 servers
and the second case considers a larger scenario with 4096
servers and 20-component applications. In the experiments,
we measure the percentage of servers used, the percentage of
mapped applications and the execution times per application.
Afterward, the impact of different physical infrastructures on
the average number of fully mapped applications and the
execution time for 1000 up to 4096 servers are analyzed.

1) Evaluation Set up: For the evaluation, the configuration
of physical infrastructure is considered to be a 4-tier hierar-
chical tree topology. For the first scenario, the physical cloud

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

A
ve

ra
ge

 P
e

rc
e

n
ta

ge
 o

f
U

se
d

 S
e

rv
e

rs

Number of 5-component Applications

ILP-based

CCMA

Fig. 3: Comparing the CCMA to the ILP-base algorithm (20
iterations).

TABLE I: The Physical Infrastructure Specifications.

Physical Infrastructure Specifications

Case study |S| |IS| |L| |SP|
1 1000 111 4 10
2 4096 273 4 16

Physical Server Specifications Physical Link Specifications

CPU Storage Memory bandwidth Delay
3GHZ 200GB 16GB 400Mbps 3ms

TABLE II: Management plane infrastructure.

Case study type |ML| |SS| |LLM| |MLM| |RLM| µ

1 CCMA 1 1000 1 0 0 -
HCMA 3 10 100 10 1 10
HCMA 3 40 25 5 1 5
HCMA 2 100 10 0 1 10

2 CCMA 1 4096 1 0 0 -
HCMA 3 16 256 10 1 16
HCMA 3 64 64 5 1 8
HCMA 2 256 16 0 1 16

system consists of 1000 servers (4096 for case study 2) in the
lowest tier. The number of ports in each intermediate device
is 10 (16) which results in 1+10+100 (1+16+256) switches in
first three tiers. Consequently the number of physical nodes is
1111 (4369) in the entire cloud system. The specifications of
physical cloud resources are shown in Table I.

Apart from the central management system, three different
hierarchical management planes are generated and Listed in
Table II. The applications are of Type 1 (Type 2), the number
of which varies from 100 up to 1500 (400 up to 4000). The
component demands are provided in Table III.

2) Evaluation Results: Figure 4a shows the percentage of
used servers for different management planes. As it can be
observed in Figure 4a, the number of used servers grows
linearly with the number of applications until all the resources
are completely occupied. Among all, the CCMA uses the
fewest and the HCMA with higher numbers of LLMs uses the
most servers. In the worst case the hierarchical scenario with
100 LLMs uses 6.7% more servers. Moreover, the average
standard errors is 0.025% for the CCMA and 0.031% on
average for the HCMAs.

In Figure 4b, the percentages of placed applications are
depicted. As it can be seen the CCMA results in the best
performance and the HCMA with 100 LLMs is the worst one.
Additionally, application placement failures are expected due
to fix number of servers and resource saturation after 1000

TABLE III: Application specifications.

Type # component # link # database # computational

1 5 4 3 2
2 20 19 14 6

Type Component demands(Random) Link demands(Random)

CPU Storage Memory Delay BW
1 (1-1000)MHZ (1-20000)MB (1-2000)MB 1s (1-50)Mbps
2 (1-200)MHZ (1-10000)MB (1-300)MB 200ms (1-20)Mbps

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 178 CNSM Mini-Conference Paper

0

20

40

60

80

100

120

P
e

rc
e

n
ta

ge
 o

f
Se

rv
e

rs
 U

se
d

Number of 5-component applications

CCMA
HCMA (100 LLMs, 10 MLMs, 1 RLM)
HCMA (25 LLMs, 5 MLMs, 1 RLM)
HCMA (10 LLMs, 0 MLM, 1 RLM)

(a) The Percentage of Servers Used.

0

20

40

60

80

100

120

P
e

rc
e

n
ta

ge
 o

f
fu

lly
 m

ap
p

e
d

 a
p

p
lic

at
io

n
s

Number of 5-component applications

CCMA
HCMA (100 LLMs, 10 MLMs, 1 RLM)
HCMA (25 LLMs, 5 MLMs, 1 RLM)
HCMA (10 LLMs, 0 MLM, 1 RLM)

(b) The Percentage of placed applications.

0.01

0.1

1

10

Ex
e

cu
ti

o
n

 t
im

e
/a

p
p

lic
at

io
n

 (
m

s)

Number of 5-component applications

CCMA

HCMA (100 LLMs, 10 MLMs, 1 RLM)

HCMA (25 LLMs, 5 MLMs, 1 RLM)

HCMA (10 LLMs, 0 MLM, 1 RLM)

(c) The execution time per application.

Fig. 4: Case study 1 with 1000 servers and 20 iterations.

0

20

40

60

80

100

120

400 800 1200 1600 2000 2400 2800 3200 3600 4000

P
e

rc
e

n
ta

ge
 o

f
Se

rv
e

rs
 U

se
d

Number of 20-component applications

CCMA

HCMA (256 LLMs,16 MLMs,1 RLM)

HCMA (64 LLMs,64 MLMs, 1 RLM)

HCMA (16 LLMs,0 MLM,1 RLM)

(a) The Percentage of Servers Used.

0

20

40

60

80

100

120

400 800 1200 1600 2000 2400 2800 3200 3600 4000

P
e

rc
e

n
ta

ge
 o

f
fu

ll
y

m
ap

p
e

d
 a

p
p

lic
at

io
n

s

Number of 20-component applications

CCMA

HCMA (256 LLMs, 16 MLMs, 1 RLM)

HCMA (64 LLMs,64 MLMs, 1 RLM)

HCMA (16 LLMs, 0 MLM, 1 RLM)

(b) The Percentage of placed applications.

0.01

0.1

1

10

100

1000

400 800 1200 1600 2000 2400 2800 3200 3600 4000

Ex
e

cu
ti

o
n

 t
im

e
/a

p
p

lic
at

io
n

 (
m

s)

Number of 20-component applications

CCMA

HCMA (256 LLMs, 16 MLMs,1 RLM)

HCMA (64 LLMs, 64 MLMs,1 RLM)

HCMA (16 LLMs, 0 MLM,1 RLM)

(c) The execution time per application.

Fig. 5: Case study 2 with 4096 servers and 20 iterations.

applications. Nonetheless, in both figures even in the worst
case, the result is within 8% of the best result.

The execution time of hierarchical approaches is promising.
As it can be clearly seen in Figure 4c the time in which an
application is placed in the CCMA is much higher than the
hierarchical approaches, especially in the hierarchical scenario
with more LLMs.

Then the result of second case study is presented. As can
be observed in Figure 5a, the percentage of used servers in-
creases by adding more applications when the servers are fully
occupied. Afterwards, the percentage of mapped applications
declines as the newly arriving applications are immediately
rejected due to saturated resources. Although, the CCMA
shows better performance, the hierarchical management planes
use at most 5.6% more resources. Figure 5b compares the
percentage of mapped applications in hierarchical approaches
to the centralized solution. As it can be seen in the worst case
the result of the hierarchical management planes is within 7%
of the best result. Also, Figure 5c indicates that the execution
time of the CCMA is high compared to the hierarchical
scenarios.

We also evaluate the execution time and the number of fully
mapped applications in different physical cloud systems with
different number of servers and different number of switch
ports. The applications are of Type 1 based on Table III. The
assumption of physical infrastructures and management planes
are provided in Table IV and Table V respectively.

In Figure 6a the number of fully mapped applications is
depicted, as the β and consequently the number of servers
increases, the number of mapped applications grows. On
average the CCMA is able to map 6.2% more applications.
However, as can be seen in Figure 6b the execution time of
the CCMA dramatically grows when the number of servers

increases which makes the centralized algorithms inefficient
in large scale cloud systems.

C. Large scale scenarios

In this phase we focus on the scalability of the presented
algorithms and we extend the scale of the experiments up to
512000 servers and more than 540000 5-component applica-
tions. In these experiments the number of fully mapped ap-
plications and the execution time per application is evaluated.
The results are the average value of 10 experiments.

1) Evaluation Set up: The experiments are conducted for
different number of servers from 1000 up to 512000. The
assumptions of the applications, of the physical networks and
of the management planes are provided in Table III, Table IV
and Table V respectively.

2) Evaluation Results: The number of fully mapped ap-
plications for two different hierarchical management plane
architectures are compared and shown in Table VI. The
numbers of successfully mapped applications are close, but the
management plane with more number of supported servers in
each administrative domain allocate on average 3.4% more
applications. Nonetheless, while the execution time of this
approach grows exponentially, the HCMA with more LLMs
shows better performance, as it can be clearly seen in Table VI.

TABLE IV: The number of physical devices.

β 10 11 12 13 14 15 16

|S| 1000 1331 1728 2197 2744 3375 4096
|IS| 101 122 145 170 197 226 257

β 20 30 40 50 60 70 80

|S| 8K 27K 64K 125k 216K 343K 512K
|IS| 401 901 1601 2501 3601 4901 6401

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 179 CNSM Mini-Conference Paper

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

10 11 12 13 14 15 16

N
u

m
b

e
r

o
f

fu
lly

 f
ap

p
e

d
 a

p
p

lic
at

io
n

s

Physical Level Branch Factor (β)

CCMA

HCMA (β*β LLMs, β MLMs, 1 RLM)

(a) The number of fully placed applications.

0.01

0.1

1

10

100

10 11 12 13 14 15 16

Ex
e

cu
ti

o
n

 t
im

e
/a

p
p

lic
at

io
n

 (
m

s)

Physical Level Branch Factor (β)

CCMA

HCMA (β*β LLMs, β MLMs, 1 RLM)

(b) The execution time per application.

Fig. 6: Case study 3 (20 iterations).

As a result, for experiments larger than 125000 servers, only
results of the second hierarchical architecture are provided.

VI. CONCLUSION

In this paper we presented a method to map the applica-
tion components on cloud environments. To have a scalable
solution, a hierarchical algorithm is designed and evaluated in
order to be deployed in large scale cloud management systems.
This algorithm takes the characteristic of underlying network
into account and works with component-level applications. In
our implementation we make a distinction between different
components of applications. Also, each physical resource is
just allowed to host the same-type components. In our ap-
proach during the placement, the relations between the applica-
tion components have also been considered. The experimental

TABLE V: The management plane parameters based on dif-
ferent β values.

Evaluation part Type |ML| |SS| |LLM| |MLM| |RLM|

B CCMA 1 β3 1 0 0
HCMA 3 β β2 β 1

C HCMA1 3 β2 β 0 1
HCMA2 3 β β2 β 1

TABLE VI: Large scale evaluation results.

Number of fully mapped applications

β 20 30 40 50 60 70 80
HCMA1 8.5k 28.7k 68k 133k
HCMA2 8.2k 28k 67k 131k 227k 361k 540k

Execution time per application.

HCMA1 1.150 4.8 14.6 35.2
HCMA2 0.037 0.06 0.08 0.09 0.13 0.14 0.17

results showed that in large scale clouds our design works
efficiently compared to a centralized management system.
However, the percentage of nodes used and the percentage
of mapped applications remain close to that of the centralized
algorithm, in the worst case 6.7% and 8% respectively.

ACKNOWLEDGMENT

This research is carried out using the Stevin Supercomputer
Infrastructure at Ghent University, funded by Ghent University,
the Hercules and Flemish Government, department EWI. The
work is also partly supported by the iMinds DMS2 project and
the FP7 NoE FLAMINGO project.

REFERENCES

[1] Y. Li, F.-H. Chen, X. Sun, M.-H. Zhou, W.-P. Jiao, D.-G. Cao, and
H. Mei, “Self-adaptive resource management for large-scale shared
clusters,” Journal of Computer Science and Technology, vol. 25, no. 5,
pp. 945–957, 2010.

[2] A. Verma, G. Dasgupta, T. K. Nayak, P. De, and R. Kothari, “Server
workload analysis for power minimization using consolidation,” in
Proceedings of the 2009 conference on USENIX Annual technical
conference, pp. 28–28, USENIX Association, 2009.

[3] R. P. Esteves, L. Z. Granville, H. Bannazadeh, and R. Boutabai,
“Paradigm-based adaptive provisioning in virtualized data centers,” in
Integrated Network Management (IM 2013), 2013 IFIP/IEEE Interna-
tional Symposium on, pp. 169–176, IEEE, 2013.

[4] M. F. Bari, R. Boutaba, R. Esteves, L. Z. Granville, M. Podlesny, M. G.
Rabbani, Q. Zhang, and M. F. Zhani, “Data center network virtualization:
A survey,” Communications Surveys & Tutorials, IEEE, vol. 15, no. 2,
pp. 909–928, 2013.

[5] B. Urgaonkar, A. L. Rosenberg, and P. Shenoy, “Application placement
on a cluster of servers,” International Journal of Foundations of Com-
puter Science, vol. 18, no. 05, pp. 1023–1041, 2007.

[6] B. Jennings and R. Stadler, “Resource management in clouds: Survey
and research challenges,” Journal of Network and Systems Management,
pp. 1–53, 2014.

[7] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable appli-
cation placement controller for enterprise data centers,” in Proceedings
of the 16th international conference on World Wide Web, pp. 331–340,
ACM, 2007.

[8] T. Kimbrel, M. Steinder, M. Sviridenko, and A. Tantawi, “Dynamic
application placement under service and memory constraints,” in Exper-
imental and Efficient Algorithms, pp. 391–402, Springer, 2005.

[9] D. Carrera, M. Steinder, I. Whalley, J. Torres, and E. Ayguadé, “Utility-
based placement of dynamic web applications with fairness goals,” in
Network Operations and Management Symposium, 2008. NOMS 2008.
IEEE, pp. 9–16, IEEE, 2008.

[10] F. Wuhib, R. Stadler, and M. Spreitzer, “Gossip-based resource man-
agement for cloud environments (long version),” KTH Royal Institute of
Technology, Tech. Rep, 2010.

[11] A. Nathani, S. Chaudhary, and G. Somani, “Policy based resource
allocation in iaas cloud,” Future Generation Computer Systems, vol. 28,
no. 1, pp. 94–103, 2012.

[12] P. T. Endo, A. V. de Almeida Palhares, N. N. Pereira, G. E. Goncalves,
D. Sadok, J. Kelner, B. Melander, and J.-E. Mangs, “Resource allocation
for distributed cloud: concepts and research challenges,” Network, IEEE,
vol. 25, no. 4, pp. 42–46, 2011.

[13] M. Barshan, H. Moens, S. Latré, and F. De Turck, “Algorithms for
efficient data management of component-based applications in cloud
environments,” Proc. IEEE/IFIP Network Operations and Management
Symposium (NOMS 2014), 2014.

[14] H. Moens, B. Hanssens, B. Dhoedt, and F. De Turck, “Hierarchical
network-aware placement of service oriented applications in clouds,”
Proc. IEEE/IFIP Network Operations and Management Symposium
(NOMS 2014), 2014.

[15] T. Cormen, Introduction to Algorithms. MIT Press, 2009.

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 180 CNSM Mini-Conference Paper

