
Shadow Patching: Minimizing Maintenance Windows in a Virtualized Enterprise
Environment

Duy Le∗, Jidong Xiao∗, Hai Huang†, Haining Wang∗

∗The College of William and Mary, Williamsburg, Virginia, USA
†IBM T. J. Watson Research Center, Hawthorne, New York, USA

Abstract—Software is growing bigger and more complex,
which results in bugs and defects being no longer dealt as
exceptions, but rather as normal artifacts in a software’s lifecycle.
In fact, many patches are released by vendors on a preset
schedule. This implies that managing patches in a correct and
timely manner has become an important factor in smoothly
running an IT environment. However, when a patch is applied, the
affected software is often required to stop temporarily, which can
cause a disruption of service. The down time is commonly called
a maintenance window. Although sophisticated live patching
techniques have been previously proposed, their applicability in
practice is very limited. In this paper, we propose a novel patch
management technique based on commonly available virtualiza-
tion capabilities. It allows system administrators to perform a
majority of the patch work outside of the maintenance window,
such as downloading patches, installing them, and performing
post-installation testing and fixes. By capturing the disk activities
and replaying them during the actual maintenance window, we
can transform a complex software patching operation to a series
of more deterministic file I/O operations, and thus, reducing
maintenance window from hours to minutes.

I. INTRODUCTION

In data centers, there is a strict requirement on apply-
ing patches before their deadlines to satisfy Service Level
Agreements (SLAs). Patch scheduling has become a complex
task, similar to a multi-dimensional optimization problem,
e.g., simultaneously trying to minimize service downtime,
avoid change freeze due to business requirements, and line
up all the relevant support teams to be available during the
maintenance window. As SLAs are getting adopted by more
Cloud service providers, patch management will be offered
more as a standard managed service to their customers. Any
benefit result from reducing downtime can grow significantly
when multiplied by the number of virtual machines managed
in a cloud.

In a managed environment, when a patch is released, it is
always a challenge to strike the right balance between applying
the patch to the affected systems as soon as possible and
the unfortunate fact that patching the affected systems will
almost always result in service downtime. During this time,
the affected software is first shut down or put into a quiescent
state before patches are applied. Afterwards, various tests are
performed to verify if the system is still in a working state,
in terms of functionality, performance, and scalability, which
all are time consuming tasks. If a patch or one of the post-
installation tests has failed, then it could take many hours for
system administrators to find a fix and make the necessary
adjustments. Furthermore, if the fix cannot be found within

the originally scheduled time frame (e.g., 6-8 hours), SLAs
could be violated.

Due to such potential complications (to both service
providers and customers), some may choose to run outdated
software [1] to avoid or minimize service disruptions, and
resort to other means as a temporary solution. However,
not fixing a known problem at its root, i.e., in the affected
software, could lead to serious consequences, especially when
the problem exposes security vulnerabilities.

In this paper, we present a patch management technique
called Shadow Patching (SP). It uses commonly available
virtualization capabilities to transform a set of interactive steps
to patch a system into a series of deterministic file operations
that can quickly be replayed in a batch mode. In the framework
of SP, we first instantiate an exact replica of the virtual machine
(VM) that is to be patched. Second, the replica VM will be
patched in the conventional way, i.e., download the patch,
install the patch, test the patch, and make any necessary
changes. Finally, during the maintenance window when the
original VM is to be patched, we will need to merge (1)
the data that has been changed by the running application in
the original VM, and (2) the data that has been changed by
installing the patch in the replica VM.

The remainder of this paper is organized as follows.
Section II surveys related work. Section III describes the
architectural design and implementation details of Shadow
Patching. Section IV presents the experimental results of using
SP to apply patches to different types of software. Finally,
Section V concludes the paper.

II. RELATED WORK

SP framework is based on various online and offline
patching techniques. Online patching techniques attempt to
eliminate downtime all together by performing various in-
memory modifications. However, by nature, these techniques
target very specific software as they need to understand the
intricacies of a particular software. It is challenging to build
a generic online patching framework, and it would require
significant modifications to system infrastructure in order
to employ such techniques [2]. Another approach to online
patching is to make use of live migration capabilities that is
commonly available in virtualized environments [3], [4], [5].
Before a patch is applied, one could migrate applications and
services to another environment, and migrate them back when
the change is done. Depending on what needs to be patched,
different migration capabilities are needed. For example, when
the hypervisor needs to be patched, VM migration can be used

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 169 CNSM Mini-Conference Paper



so VMs are not impacted during the change. When a VM
needs to be patched, its processes will need to be migrated to
avoid being impacted. Unfortunately, in the current state-of-
art, not everything can be migrated cleanly, let alone in a live
manner. Moreover, if a patch changes the underlying system
data structure and/or interfaces related to migration, this will
prevent whatever was migrated from being migrated back.

There are also many offline patching techniques.
VMWare’s vSphere Update Manager inserts patches into the
software update process [6]. Microsoft’s VMST wakes a
dormant VM up, and then applies software patches on this
system [7]. Nuwa requires rewriting installation scripts to
apply software patches directly on a VM image [8]. However,
if a software is patched offline, the patched system needs to
be restarted [6] or stayed at dormant states [8]. In this work,
we are primarily concerned with patching of running systems
and how to reduce their downtime. Although offline patching
techniques greatly facilitate software maintenance, they do not
reduce system downtime.

III. SHADOW PATCHING FRAMEWORK

A. Patching scenario

An important design goal of Shadow Patching is to be
practical and generally applicable. It should be usable by
anyone who possesses the basic system administration skills.
A high level step-by-step process of using SP is described as
follows:

• VM snapshot: VM snapshot allows one to capture
all states of a VM at a particular point in time. The
snapshot can be deleted, reverted, and used to created
additional snapshots and clones of this VM. As shown
in Figure 1, a VM can be running on top of multiple
layers of snapshots. For example, the base image
was snapshotted when the OS was first installed, and
Delta-0 was snapshotted when various software were
installed and configured. We take a snapshot of the
virtual machine before patching, and from which we
will create a clone of it.

• Patching and restarting: Assume VM1 is the original
VM that needs to be patched, we first clone it to
create VM2. Two delta files — Delta-1 and Delta-2
— are created at this time to track changes in the
two VMs. This operation should have virtually no
impact to VM1, and VM2 can be instantiated as an
exact replica of VM1. Patch downloading, installation,
configuration, testing, and any necessary adjustments
will be done in VM2, and all persistent data changes
due to these interactive operations will be captured in
Delta-2. As VM2 is configured exactly the same as
VM1, any operations (e.g., patching, testing) done in
VM2 should yield the same result as if the operations
were performed in VM1.

• Merging deltas. After a patch is applied and tested
in VM2, the VM can be shut down to minimize its
resource usage. During maintenance window, VM1 is
first shutdown so Delta-1 can be kept at a consistent
state, and then the modified data captured in the two
delta files are analyzed and merged. As Delta-1 has

captured data changes due to the running workload
in VM1 and Delta-2 has captured data changes due
to software patching in VM2, merging the delta files
are usually a straight-forward operation. However,
sometimes conflicts do occur, where a file is modified
by both VMs. We propose various conflict resolution
methods in Section III-B2.

• Activating the original system. After the delta files
are merged, Delta-2 can also be discarded. The time
it takes to analyze and merge the delta files is the
downtime that is now required, and these steps are all
done in a batch mode, thus, resulting in much smaller
downtime than the traditional in-place patching. VM1
can be started after the merge operation has completed
and continue its normal operations.

It is worth to note that we do not do less work to achieve
smaller downtime. Instead, the work is simply shifted to a
cloned VM while allowing the primary VM to continue to run
undisrupted. The reduced downtime is a result of compacting
and recording interactive work a sysadmin has done to patch
the cloned system and replaying it on the primary in a batch
mode.

B. Managing delta files

A key component in SP is how it manages delta files.
Specifically, it needs to monitor for data changes so it can
merge them. And in case of conflicts, it is also responsible for
resolving them to minimize human involvement.

1) Monitoring deltas: Keeping track of data changes can
be done at either the data block level or the file system level.
At the data block level, one can directly compare Delta-1 and
Delta-2, block by block. There are several drawbacks to this
approach. Most notable ones are: i) it is specific to the image
format of the delta files, i.e., we would need to implement
one method to compare 2 QCOW delta files and another for 2
VMDK delta files, and ii) we would need to perform a reverse
lookup to find which file a modified data block belongs to, and
this operation is also different for different guest file systems.
On the other hand, at the file system level, modified files can
be found simply by scanning and comparing the entire file
systems of VM1 and VM2. However, as a file system can
easily contain millions of files, we could spent many hours just
scanning through the file systems, which defeats the purpose of
reducing maintenance window. SP monitors for data changes
at the file system level by using inotify [9]. We use what inotify
captures as our delta files.

We have configured inotify to only monitor for data
changes. To track changes of all files and directories in the
file system, inotify recursively monitors I/O events from the
system’s root directory. Four types of events are monitored,
including IN MODIFY, IN MOVE FROM/TO, IN DELETE,
and IN CREATE. Once an event is triggered, inotify captures
this timestamped event. This information is stored in a log file.
Files and directories are frequently modified due to background
system processes and other running applications. To minimize
monitoring overheads, SP configures inotify to maintain a list
files and directories to be excluded, such as device files, pipes,
sockets, temporary directories, log directories, etc.

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 170 CNSM Mini-Conference Paper



(1) External Snapshotting (2) Patching and Restarting

(3) Merging Deltas (4) Activating the Original System

Fig. 1: Scenario of SP session

TABLE I: Time base comparison between files/directories. SS: Snapshot time, T1: Last modification time of file on Deltas-1,
T2: Last modification time of file on Deltas-2

Rules File on Deltas-1 File on Deltas-2 Time conditions Decisions
1 Yes No T1 ≤ SS Delete on Deltas-1
2 No Yes SS ≤ T2 Copy from Deltas-2 to Deltas-1
3 Yes Yes T1 ≤ SS and SS ≤ T2 Copy from Deltas-2 to Deltas-1
4 Yes Yes SS ≤ T1 and SS ≤ T2 Hybrid copy from Deltas-2 to Deltas-1

2) Merging deltas: The underlying technique of merging
deltas between Deltas-1 and Deltas-2 is the proper manage-
ment of files and directories from the file systems of VM1
and VM2. Based on the delta files and exclude list provided
by inotify, SP can determine the modified files and directories.
In particular, the focus of this merging is to decide whether or
not the files or directories in Deltas-1 should be kept, deleted,
or replaced. The rule is based on the modification time of
the file or directory and the snapshot time of VM1. Here, the
modification time of a file or directory can be retrieved from
its inode. Based on these estimated times, Table I lists the rules
made on those files or directories. The details of these rules
are described as follows:

• Rule 1: A file on VM1 has not been written or
modified since the snapshot time. If the cloned version
of this file on VM2 is deleted by a software update,
the file should be deleted.

• Rule 2: A file exists on VM2 but does not on VM1.
This file is most likely created due to patching. It
should be copied back to VM1.

• Rule 3: A file on VM1 has not been accessed or
modified since the snapshot time. However, the cloned
version of this file on VM2 is modified because of a
software update. Thus, the file must be replaced by
the newer version, which is copied back from VM2.

• Rule 4: A file on VM1 and its cloned version on VM2
are modified after the snapshot time. These two files
must be kept on VM1 after the merging by performing
a hybrid copy. Basically, a hybrid copy consists of
three steps: (1) renaming those two files based on their

inode information, so that their names are different;
(2) copying a newly renamed file from VM2 to VM1;
and (3) creating a symbolic link on VM1 based on the
original name of the file. To guarantee that the freshly
copied file will be used once VM1 starts, the symbolic
link is linked to the newly copied file rather than its
original version.

C. Prototype of Shadow Patching

A working prototype of SP is built on a Linux system. SP
requires disk images to be in one of the copy-on-write image
formats, e.g., QCOW, QCOW2, VMDK, etc. Copy-on-write
image formats allows disk images to be externally snapshotted
without having an impact on the running VM. This cannot be
achieved on a raw disk.

To merge deltas, QCoW disk images are exposed as mount
points at the file system level of the host machine. Different
storage utilities can be used to leverage this mounting feature,
such as kvm/qemu-nbd [10] for QCoW/QCoW2, Vmount [11]
for vmdk, and losetup [12] for raw formats. SP benefits
from kvm/qemu-nbd that includes two components: client and
server. As a kernel module, the client handles requests passed
through the device node. These requests are forwarded to the
server that stays at the user level. Then, the server processes
the requests in order to access the data residing on the QCoW
disks.

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 171 CNSM Mini-Conference Paper



(A) - Traditional upgrading (B) - SP upgrading

Fig. 2: Upgrading process of application service

TABLE III: Upgraded application services, inotify overhead, and utilized benchmarks.

Services Old Packages New Packages Overhead BenchmarksVersions Sizes (KB) # Files Versions Sizes (KB) # Files (%)
Bind9 9.4.2 744 36 9.7.0 1.024 51 1.23 DnsPerf
SubVersion 1.4.6 3.400 28 1.6.6 4.204 35 1.30 Collabnet
NFS 1.1.2 504 35 1.2.2 640 43 1.01 IOzone
OpenVPN 2.1 1.060 86 2.1.3 1.208 93 1.34 NetPerf
PostgreSQL 8.3.16 13.884 95 8.4.9 14.804 92 1.40 PGbench
Samba 3.0.28 9.216 43 3.4.7 16.676 55 1.67 Dbench/Netbench
Squid 1.9 1.584 33 2.7 1.892 36 0.95 Web Polygraph
Apache2 2.2.8 4.356 492 2.2.14 8.864 564 1.86 Apache Bench
VsFTPd 2.0.6 396 41 2.2.3 460 44 1.23 Dkftpbench

TABLE II: Testbed setup

Hardware Software
Pentium D 3.4GHz Ubuntu 11.10,

Host 1TB SATA, 2GB RAM kernel 3.0.0-12,
libvirt 0.9.8

Guest Qemu 0.14.1 Ubuntu (10.04,
1 GB RAM 10.10, 11.04)

IV. EXPERIMENTATION

A. Experimental setup

To evaluate the effectiveness of SP, we use two metrics:
correctness and the size of the maintenance window required.
To verify correctness, we run application-specific benchmarks
after patch deployment to check if the patched software has
the right version and achieves the expected functions and
performance. Additionally, as patching in SP is transformed
to file compare, replace, merge, and delete operations, we
scan file systems to verify all files and directories associated
with a patch are correctly placed. The maintenance window is
another key metric. We compare SP with the traditional patch
management method for both success and failure scenarios.
The software and hardware configurations of our test machine
are listed in Table II.

B. When Patch Succeeds

In traditional software patching practice, a maintenance
window is scheduled for making changes to running systems.
The action of applying a patch (usually would succeed) takes
only a few minutes. However, running a regression test and
resolving any unexpected problems would take much longer

time. Thus, maintenance windows are usually scheduled to
range from hours to days depending on the complexity of the
patch. To allow sufficient amount of time to perform problem
diagnosis and resolution, service providers are usually con-
servative in scheduling the maintenance windows. However,
even if the entire window is not used, it would be difficult
for users to salvage any of the remaining time to reduce
service downtime because the patch completion time within
the window is non-deterministic. This traditional process is
illustrated in Figure 2(a), and SP’s is shown in Figure 2(b).

In our experiments, we use Ubuntu’s dpkg to perform
upgrades or patching. Nine applications, listed in Table III,
are selected to be patched. As mentioned before, one method
to ensure correctness post-patch is by running application-
specific regression tests, for which, we ran those commonly
used benchmarks that are also shown in the table. Besides a
detailed specification of each application software, the column
Overhead denotes the results of overhead induced by inotify.
Since inotify works as a part of the Linux’s virtual file system,
it only induces 1-2% overhead on system I/Os, which is fairly
negligible.

We compare user perceived service downtime, which is
shown in Figure 3. In the traditional approach, the time it
takes to apply the patch and perform a regression test will
all be visible to users. However, in the case of SP, patching
and testing occur in a separate cloned VM. This is completely
hidden from users and can be done before the maintenance
window even starts. The downtime is only visible when we
compare and merge disk deltas of the two VMs. In Figure 3,
for each application, the left column shows the user perceived
downtime when the traditional approach is used, and the right
column shows the downtime when SP is used.

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 172 CNSM Mini-Conference Paper



Fig. 3: Individual upgrading application services (lower is better)

We quantify the I/O activities caused by merging deltas
and show the results in Table IV. The columns in the table
are grouped based on the type of activities. Since rules 2 and
3 consist of regular copies, the results of these activities are
combined into one column. Based on these results, we make
the following observations:

• SP significantly shortens service downtime. Because
the tests of upgraded services are conducted on the
cloned VM, the functional testing time, or SP testing,
does not impact on the patching time. As an example,
a thorough test of a patched NFS server using IOzone
can take up to 40 minutes. Running this test on the
cloned VM would take the same time and provide the
same results but without being visible to users.

• SP lowers overhead incurred by software compo-
nent replacement. Comparing two versions of an ap-
plication, if changes are minor, most files and directory
structures will be similar, if not almost identical. If
changes are more extensive, the similarities become
less significant. Traditionally, patching an application
involves three steps: (1) removing current application’s
files and directories, (2) extracting the new version
of the application into a temporary location, and (3)
copying the extracted files and directories into the
right place. For a package whose changes are minor,
this technique causes unnecessary I/Os on files and
directories, which are identical between two versions.
However, SP avoids this redundancy by comparing
inode information of files and directories between two
versions before each delta merge, and thus, resulting
in fewer I/O operations. As an example, our results
show that SP helps Postgresql and Samba minimize
their upgrading time.

• SP does not impact on the number of merging
activities. Application services include sets of files,
which can be unchanged or significantly modified
from their previous versions. SP utilizes this observa-
tion to minimize the number of copies. In addition,
although merging activities include deletes, copies,
and hybrid copies, we can see that the majority of
the activities are regular copies. The number of copies

TABLE IV: Rule-based activities in merging deltas of appli-
cation services: (1) deletes, (2 & 3) copies, and (4) hybrid
copies.

Services Rule 1 Rule 2 & 3 Rule 4
Bind9 2 48 0
SubVersion 4 29 2
NFS 2 35 3
OpenVPN 2 89 0
PostgreSQL 5 82 4
Samba 2 40 8
Squid 3 34 0
Apache2 5 552 6
VsFTPd 5 41 0

occurred on each package depends on the difference
between software versions, rather than its size or the
number of files.

C. When Patch Fails

We further compare SP with the traditional approach when
one or more patches fail. A service pack is a bundle of
many patches to upgrade the current system version to the
next stable version. Patches are applied in a certain order
to satisfy software dependencies, and if any one fails, it is
simply skipped (as well as any dependent ones). However, the
failed patches will eventually need to be resolved within the
maintenance window.

A patch can fail for many reasons, such as insufficient
hardware, driver problems, incompatible setup process, incon-
sistent system configuration, wrong architecture edition, data
loss, permission/access problems, or software bugs. To resolve
a failed upgrade, the following steps are usually taken: (1)
reporting a problem, (2) looking for solutions from different
databases, while waiting for the problem being solved, and
(3) applying solutions to fix the failed upgrade. If a failure
is caused by software bugs, bug-fixing is a non-trivial task.
Generally, the time to fix a bug can be up to 200 days,
although this number depends on the nature of the bug [13].
Recent studies of system configurations to upgrade software
indicate that on average the time to fix one particular issue is
no more than 5 hours [14]. This average time is also known

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 173 CNSM Mini-Conference Paper



Fig. 4: Linux Ubuntu server distribution upgrade across differ-
ent versions (lower is better)

as a fixing effort to denote an effort in person-hours to resolve
an issue. In general, fixing issues existed in separate software
packages can be accomplished in parallel, but requires more
labor. Otherwise, the issues must be fixed sequentially.

Conducting a thorough test on an upgraded system is a
complex and time consuming task. This is because upgrading
a Linux system requires multiple replacements of software
components, including executable binaries, shared libraries,
configuration settings, databases, etc. To verify the accuracy
and stability of upgraded software, various regression tests
should be conducted. However, it is non-trivial to fully un-
derstand and prepare thorough tests for all upgraded software,
and it is also out of scope of this work. Due to this complexity,
we focus on upgrading time, rather than testing time. Basically,
the upgrading time includes the time to replace software
components and the time to reboot the system. For SP, the
upgrading time consists of both the time to reboot the system
and the time to merge deltas. Based on the comparison of
results between the traditional and SP upgrades, which are
shown in Figure 4, we make following observations:

• SP helps a system administrator avoid failed up-
grades. Since many reasons can cause failed upgrades,
if the maintenance window is short (e.g., a few hours)
such failed upgrades may not be resolved. Thus, the
system will not be fully upgraded. Increasing the
maintenance window gives more time to resolve the
problem, however, it also greatly increases the service
downtime. SP is able to address this problem, since
resolving failed upgrades is performed in the cloned
system.

• SP shows a low variation in upgrading time be-
tween different versions of a Linux system. Tradi-
tional software upgrades do not guarantee that a Linux
system can be successfully upgraded after a specific
amount of time. This is because the actual time spent
for an upgrade can vary from one to several hours.
More specifically, the upgrading time induced by SP
depends on not only system’s configuration, but also
the number and type of software packages. Our ex-
perimentation to upgrade different versions of a Linux
system on the same test-bed shows a low variation of
upgrading time. This is due to the similarity between
different versions of the service pack.

V. CONCLUSION

In this paper, we have presented the Shadow Patching (SP)
framework to reduce the maintenance window associated with
deploying software patches. Software patching, testing, and
troubleshooting are all done in a cloned VM so that these
tasks will have no impact on the original VM. File system
changes in the cloned VM are recorded and are subsequently
merged with the original VM. The only down time perceived
by the original VM is when it is taken offline to perform this
merge operation, which is much faster and reliable than what is
done in the traditional method. By hiding post-patch regression
test and troubleshooting steps, the maintenance window can be
significantly shortened.

Through extensive experiments, we have demonstrated that
SP is able to not only avoid failed upgrades, but also signif-
icantly minimize the maintenance windows. We believe that
our framework will help system administrators in enterprise
environments to optimize the software maintenance process.
We also expect that our work will motivate software devel-
opers and system administrators to carefully monitor deltas at
different levels, such as file systems and disk blocks, to shorten
the software upgrading time.

REFERENCES

[1] E. Rescorla, “Security holes... who cares?” in Proceedings of the 12th
conference on USENIX Security Symposium - Volume 12. USENIX
Association, pp. 6–6, 2003.

[2] C. Giuffrida and A. S. Tanenbaum, “A taxonomy of live updates,” in
Proceedings of the 16th Annual Conference of theAdvanced School for
Computing and Imaging (ASCI’10), 2010.

[3] “Windows 2000 clustering: Performing a rolling upgrade,” http://
technet.microsoft.com/en-us/library/bb742504.aspx.

[4] D. E. Lowell, Y. Saito, and E. J. Samberg, “Devirtualizable virtual ma-
chines enabling general, single-node, online maintenance,” in Proceed-
ings of the 11th international conference on Architectural support for
programming languages and operating systems (ASPLOS-XI). ACM,
pp. 211–223, 2004.

[5] T. Dumitraş and P. Narasimhan, “Why do upgrades fail and what can we
do about it? toward dependable, online upgrades in enterprise system,”
in Proceedings of the 10th ACM/IFIP/USENIX International Conference
on Middleware (Middleware’09), 2009.

[6] “Vmware vsphere update manager,” http://www.vmware.com/support/
pubs/vum\ pubs.html [Accessed: January 2012].

[7] “Microsoft Virtual Machine Servicing Tool 3.0,” http://www.microsoft.
com/download/en/details.aspx?displaylang=en\&id=23300.

[8] W. Zhou, P. Ning, X. Zhang, G. Ammons, R. Wang, and V. Bala,
“Always up-to-date: scalable offline patching of vm images in a
compute cloud,” in Proceedings of the 26th Annual Computer Security
Applications Conference (ACSAC’10). ACM, pp. 377–386, 2010.

[9] “inotify monitoring file system events,” http://www.kernel.org/doc/
man-pages/online/pages/man7/inotify.7.html [Accessed: June 2012].

[10] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, “kvm: the
linux virtual machine monitor,” in Proceedings of the Linux Symposium,
pp. 225–230, 2007.

[11] “Vmware DiskMount Utility,” www.vmware.com/pdf/
VMwareDiskMount.pdf [Accessed: June 2012].

[12] “Set up and control loop devices,” http://linux.die.net/man/8/losetup.
[13] S. Kim and E. J. Whitehead, Jr., “How long did it take to fix bugs?”

in Proceedings of the 2006 international workshop on Mining software
repositories (MSR’06). ACM, pp. 173–174, 2006.

[14] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller, “How long will
it take to fix this bug?” in Proceedings of the Fourth International
Workshop on Mining Software Repositories (MSR’07). IEEE Computer
Society, pp. 1–1, 2007.

ISBN 978-3-901882-67-8, 10th CNSM and Workshop ©2014 IFIP 174 CNSM Mini-Conference Paper




