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Abstract—Virtual Machine (VM) live migration is key for
implementing resource management policies to optimize metrics
such as server utilization, energy consumption, and quality-of-
service. A fundamental challenge for VM live migration is its
impact on both user and resource provider sides, including
service downtime and high network utilization. Several VM live
migration studies have been published in the literature. However,
they mostly consider only system level metrics such as CPU,
memory, and network usage to trigger VM migrations. This
paper introduces ALMA, an Application-aware Live Migration
Architecture that explores application level information, in ad-
dition to the traditional system level metrics, to determine the
best time to perform a migration. Based on experiments with
three real applications, by considering application characteristics
to trigger the VM live migration, we observed a substantial
reduction in data transferred over the network of up to 42%
and the total live migration time decrease of up to 63%.

Keywords-Live Migration; Cloud Computing; Performance
Prediction; Virtualization;

I. INTRODUCTION

Virtual Machine (VM) live migration techniques try to
satisfy a given objective, such as cost reduction, through
consolidation of several workloads to a few servers, or the
performance increase of an application via load balancing. In
general, VM migrations happen without the analysis of the
VM workload and state. Moreover, live migration techniques
and optimizations [1] [2] usually do not consider the state
of the data center (e.g. live migrations in course and current
network traffic). The absence of a control, for knowing when
is the right moment for migrating a virtual machine, can lead
to resource waste, poor customer experience, and even Service
Level Agreement (SLA) penalties.

Our hypothesis is that choosing the right moment to trigger
a live migration can lead to significant improvements, such as
decreasing the VM downtime or avoiding network congestion.
Live migration techniques are very sensitive to memory usage
(at least, pre-copy [3], and post-copy [4] algorithms). Hence
identifying the current VM resource type utilization (e.g. mem-
ory, CPU, I/O) can help speed-up a live migration. One key
aspect we explore in this paper is that applications may have
cycles that utilize more resources than others. For instance,
scientific applications can have parallel processes that need
to synchronize at time intervals or web servers can be more
utilized during the day than during the night.

This paper introduces the Application-aware Live Migration

Architecture (ALMA) that supports live migration policies,
considers the application-level workload, and carries out a
cycle identification. The architecture exploits the fact that
understanding application characteristics can assist in better
live migration decisions. The paper also presents an evaluation
of the architecture by investigating the main metrics (VM
downtime, total migration time, and network data transfer) in a
set of experiments. The experiments also show that knowing
the live migration overhead can help evaluate, before hand,
whether a VM migration will be worthwhile. Compared to
existing work [1], [5]–[12], we couple objective functions
(consolidation, load balancing, etc.) with live migration con-
trols, and identify application resource consumption cycles to
trigger VM live migrations.

Therefore, the main contributions of this paper are:
• Introduction of an architecture for VM live migration

that considers the application-level workload and a cycle
identification;

• A method to quantify and predict the application degra-
dation during the live migration and identify application
cycles using Fast Fourier Transformation;

• Evaluation of the architecture considering metrics related
to quality-of-service and resource management using real
applications from different domains and a testbed with
real servers.

II. SYSTEM ARCHITECTURE

A. Architecture Overview
In an architecture where no Live Migration control exists,

once the new VM-to-Host map1 is computed, it is submitted
to hosts without any control and is subject to problems like
network congestion [13]. In architectures where there is a
Live Migration control it is implemented in the hypervisor
layer, and does not interact with the objective function module.
Usually, this control is designed to avoid network congestion
and does not consider the application’s behavior. Another im-
portant difference between our proposed architecture and the
other two are the evaluated metrics. Most VM live migration
architectures make decisions according to system metrics and
not according to application characteristics.

Our architecture, the Application-aware Live Migration Ar-
chitecture (ALMA), computes the objective function to the cur-

1VM-to-Host map: selection of Hosts to run a given group of VMs.
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rent VM map. The new map is transferred to a module called
Live Migration Control Engine (LMCE), which decides when
to migrate the VMs. The orchestration of the live migration
aims to minimize the network and application overhead and,
mainly, unnecessary migrations.

B. Live Migration Control Engine

The Live Migration Control Engine (LMCE) module sits
between the physical hosts and the objective function compu-
tation module. Once the new Host-to-VM map is computed it
is applied by LMCE to analyze which VMs can be migrated
according to the application workloads2 and cyclic analyses.

Based on data collected from the VMs, LMCE can decide
when and which VMs are the best candidates for migration.
This information can be used in future to make cycle iden-
tification. If the application presents a cyclic behavior (e.g.
synchronization barriers, which are network intensive, of a
parallel application), LMCE could avoid live migrations during
this time interval.

LMCE accepts the configuration of two time constraints.
The first one is the maximum time allowed to postpone a live
migration. The second one is the live migration cost, since
the provider (or the cloud customer) can adjust an acceptable
overhead for the application. LMCE analyzes the application
resource consumption (e.g. memory, CPU, I/O) behaviour over
time in order to trigger or postpone a live migration applied
by the objective function computation.

C. Migration Cost Prediction

We define overhead as the amount of additional time to
finish the workload once the live migration is committed. In
order to compute the overhead, it is necessary to normalize
the execution time in the hosts involved. Since hosts can have
different processor technologies, the time to finish a given
workload will be different too. In this paper we considered
only processor-related metrics. First, it is necessary to compute
the processor ratio between hosts. Once the ratio is computed,
the overhead (OA!B) of the live migration from host A to
host B is given by:

OA!B =
⇥�

TmA!B - tA
�

+ tTB

⇤
- TB , where:

TmA!B : Total execution time of the application workload
when migrating from host A to B;

tA: Application elapsed time executing on host A;
tTB : Application elapsed time executing on host A, but

converted to time on host B (using the processing ratio);
TB : Total execution time of the entire application workload

on host B (without live migration occurrences).

The prediction PA!B of how long a workload will run when
migrating a virtual machine from host A to B, given that the
workload already runs for a certain time interval in host A is:

2Application workload: the stage in which the application is regarding the
type of resource consumption, such as CPU, memory, and I/O.

PA!B = tA +
�
TB - tTB

�
+ OA!B

This prediction model considers the migration overhead
and, more importantly, the hardware differences of the hosts
involved in the live migration (the source host and the target
host). As observed by Birk et al. [14], the Cloud is built on
servers of different generations with different capacities and
performance, hence this scenario should be part of any live
migration prediction strategy and evaluation.

D. Cycle Identification

Many application workloads have a cyclic (or temporal) be-
haviour pattern [15]. Knowing in advance a likely application
workload behavior can be useful for live migration strategies.
An application that is about to stress a given resource type
(CPU, memory, I/O) can have the migration request postponed
to the near future, when its resource consumption is known
to be more appropriate for a live migration. The estimation
of the cycle size uses the Fast Fourier Transformation (FFT),
which is used in other science fields (like physics) to identify
cyclic patterns in natural events.

This kind of analysis can be done by storing the application
workload history. The collected data is submitted to the FFT,
which estimates the cycle size. The cycle is split in two parts,
one with propitious live migration moments and the other with
the moments that are not good for live migration (by splitting
in two we could reduce the search space for the next step).
Finally, to obtain in which moment the application is in terms
of resource consumption at a given instant, we calculate the
module (rest of the division) of the current instant and the size
of the cycle (the pseudo code is presented in Figure 1).

Let an application with a cyclic behavior and metric values
collected twice an hour, resulting in a total of 48 samples a
day. Each sample is composed of workload details of various
resources, such as memory, CPU, and I/O usage. Based on
these metrics, we classify each sample as suitable or unsuitable
to perform live migration (e.g. at moments with high paging
rate, we classify the workload as an unsuitable moment). The
sample is submitted to FFT, which gives us the cycle size.
FFT could return a cycle size of 8 hours; i.e. every 8 hours
the workload is restarted. During the cycle period of 8 hours,
we may observe several oscillations between suitable and un-
suitable moments for live migration. Hence, knowing the cycle
size and how the oscillation between suitable and unsuitable
moments will occur inside the cycle, we can estimate which
moments to migrate a VM.

For LMCE to work properly and make the right decisions,
it is necessary to receive data from three sources:

• User Information: Application deadline, which can
come from either a cloud service provider or an end user;

• Objective Function Information: A new set of Hosts-
to-VM maps must be provided;

• Virtual Machine Application Classification Informa-
tion: VMs must send data about the application classifi-
cation to LMCE. This classification can have two values:
Live Migration (LM) and Non Live Migration (NLM),
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Require: An array C with classification data from a VM for a
certain time interval. Each classification sample must be chrono-
logically ordered.

CycleSize FFT (C) . Find the cycle size using FFT.

LMCount 1

NLMCount 1

for i = 1 to CycleSize do . Split cycle in two Arrays:
ArrayLM and ArrayNLM.

if C[i] == LM then
ArrayLM [LMCount] i

LMCount LMCount+ 1

else
ArrayNLM [NLMCount] i

NLMCount NLMCount+ 1

end if
end for
now  CurrentMoment mod CycleSize . Find in which
moment inside the cycle we are.

if find(now,ArrayNLM) then
nextLM  findNextBigger(now,ArrayLM) . Find

the next moment, greater than now, in ArrayLM.
remainingT ime nextLM � now

else
remainingT ime 0 . Inside a LM moment.

end if
return remainingT ime

Fig. 1: Algorithm to identify workload cycles.

which present that the moment is right for migration or
not, respectively. This data can be sent at different fre-
quencies. The more data available, the better the accuracy
of the application classification.

III. EVALUATION

This section presents the experiments of ALMA. We used
most common metrics of Live Migration (LM) [16] in two sets
of experiments. The first set is based in artificial benchmarks,
with well defined behaviour and artificial cycles. The second
experiment set comprises three real applications, with their
own cycle patterns. In addition we present the evaluation of
the prediction model.

A. Testbed Configuration

We built a Cloud environment composed of five physical
servers and a Network Attached Storage (NAS). We connected
all components to a 24-port switch and created three separate
networks from each other: a network for live migrations
only, one network for NAS data transfer and a network for
administrative tasks. We configured ten virtual machines with
three configuration profiles. The small configuration has one
vCPU and 768MB of memory, the Medium configuration has
two vCPUs and 1GB of memory and the Large one with
two vCPUs and 2GB of memory. The software configura-
tion comprises OpenSuse Linux 12.1 with 3.1.10 Kernel on
physical hosts. Xen 4.1.3 [17] was used as hypervisor and the
Virtual Machine was installed with CentOS 5.9 and Kernel

2.6.18. ALMA was implemented in Perl (modules used to
cycle calculation) and Python (due to a better API with Xen).

B. Benchmark Experiments

In this experiment set, we compare ALMA against a tradi-
tional consolidation (called SysConsolidation) which consists
in consolidating all VMs, in specific moments during the
workload, in two hosts (host B and host E). Figure 4 presents
the VM placements after the consolidation. We run this test
for 10 times, and in a given moment VMs were consolidated.
During the tests the workload run from start to finish. After
that we submitted consolidation at the same specific moments,
but under ALMA control.

TABLE I: Benchmark workload experiments.

Metric-Policy vm03 A vm01 D vm02 C
MigrTime-SysConsol 29.5 ±17.9 31.7 ±21.2 98.9 ±32.6
MigrTime-ALMA 14.0 ±5.2 15.3 ±4.9 37.7 ±0.6
Downtime-SysConsol 16.0 ±5.4 23.4 ±12.5 23.5 ±6.3
Downtime-ALMA 14.5 ±4.4 22.9 ±15.1 16.4 ±6.3
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Fig. 2: Cycle Identification Accuracy: Benchmark Exp.

The evaluation of the proposed architecture uses the follow-
ing metrics:

• Total Migration Time: This metric measures the time,
in seconds, between the start of the migration submission
and the moment that VM is completely released from the
source host. This data was collected using the Xen log
in debug mode;

• Downtime Duration: Time interval, in seconds, in which
the VM is unreachable. This metric was collected using
ICMP protocol, and the time interval which requests did
not receive an answer, we considered it as downtime;

• Network Data Transfer: Amount of data, in MB, trans-
ferred in the network during the live migration. This data
was collected from the switch;

• Cycle Accuracy Identification: This metric, in percent-
age, measured how accurate the Fast Fourier Transforma-
tion estimated the cycle size. This metric is the difference
between the calculated cycle and the measured one. The
closer to zero, the better the accuracy.

The benchmarks used to create artificial cycles are described
in Table II. The workload was configured in three VMs
(vm02 C, vm03 A and vm01 D, the darker VMs in Figure
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Fig. 3: Evaluation of consolidation moments for benchmark workloads: ALMA consolidations tend to be closer to the beginning
or inside the suitable LM moments.
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Fig. 4: After Consolidation.

TABLE II: Benchmarks Descriptions.

Benchmark Workload Type Description
SPEC [18] CPU Bound Used the twolf bench-

mark, which spends most
of the execution time in
internal loops doing math-
ematical calculations.

NAS NPB [19] Memory Bound Performs several changes
in memory during the ex-
ecution and consumes a
considerable amount of
RAM. We used class D of
NPB.

IOZone [20] I/O Bound Used random read and
write in files larger than
physical memory (to avoid
cache effects). The bench-
mark performs read and
write operations in blocks
of 4kb.

4) in order to improve the accuracy of measured metrics. The
other VMs were idle during the experiment, but all VMs were
migrated to create noise in network.

Figure 3 presents the moments of consolidation using
SysConsolidation (in dashed red). The blue line represents
the workload of VMs across time and the Classification of
the interval. The valleys represent moments for Non Live Mi-

gration (NLM) and peaks represent the Live Migration (LM)
moments. When the SysConsolidation was submitted, all VMs
were migrated simultaneously to consolidate in Host B and
Host E. When using ALMA, the consolidation was postponed
to a more favourable moment to migrate the VM (line in
black). This figure shows that ALMA was able to identify
and submit the LM in suitable moments to the application
workload (during the peaks). The green line in Figure 3 is the
cycle size estimated by FFT. The pattern before the green line
repeats during the workload, showing that FFT has a good
approximation for the workload with benchmarks.

When using ALMA, it was possible to improve the first
analysed metric, Total Migration Time (Table I), in 61%
(vm02 C). The total migration time experienced a great reduc-
tion due to the reduction of the amount of data transferred over
the network. In the best case scenario (where vm02 C takes
112 seconds to migrate, against 39 seconds using ALMA)
host C transferred 98% more data in 17 cycles of pre-copy
algorithm. When using ALMA, copy occurred in 30 cycles,
but the amount of data transferred was substantially reduced.
For the second evaluated metric, the Downtime (Table I), there
is no improvement. In some cases, the average showed a
little improvement, but the standard deviation was virtually
the same. The reason for no improvement in this metric is
that the network infrastructure created by the VMM is not
part of the pre-copy migration algorithm, it is an independent
process that takes place just after the LM finishes. It suffers
much more influence from the computational resources of the
involved hosts than from the LM algorithm.

In the Data Transferred metric, we observed a considerable
improvement: SysConsolidation: 10±2 and ALMA 10±2. Us-
ing ALMA, the reduction of data transferred over the network
was about 42% (about 5GB less data transferred). Finally,
the Cycle Accuracy Identification (Figure 2) metric shows
the error between the FFT cycle calculation and the size of
cycle actually measured. The workload submitted to vm02 C
presented the highest error. This is due to the BT benchmark
(memory intensive workload) which has a greater fluctuation
during its execution (memory sensitive). Nevertheless, this
error (about 6%) does not affect the ALMA benefits.
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Fig. 5: Evaluation of consolidation moments for application workloads: ALMA consolidations tend to be closer to the beginning
or inside the suitable LM moments.

C. Experiments with Real Applications
In this experiment set, ALMA is compared using three

applications. We choose two scientific applications, with inten-
sive usage of Memory and IO (major part of the workload) and
some periods of CPU usage. The third application is a database
running the TPC-H workload. The application description is
summarized in Table III.

TABLE III: Application Description.

Application Description VM
OpenModeller
[21]

Biological scientific appli-
cation. It aims to find the
likelihood of a specie to
occur given a topography,
vegetation and the climate
of a region.

vm03 A

BRAMS [22] Brazilian atmospheric
modelling application.
Used to weather forecast.

vm02 C

TPC-H [23] Simulates an decision sup-
port system (Business In-
teligence). It is composed
of 22 queries that access a
huge amount of data.

vm01 D

In Figure 5 it is plotted the workload classification (blue
line) over the time. As previous test set, lines in red represent
the SysConsolidation and lines in black represent consolida-
tion postponed by ALMA. The green line is the cycle size.
This figure shows that ALMA was able to identify the cycle
pattern of the application and trigger the migration at the
proper moment.

TABLE IV: Real application’s workload experiments.

Metric-Policy vm03 A vm01 D vm02 C
MigrTime-SysConsol 28.7 ±3.4 27.3 ±9.9 43.2 ±1.6
MigrTime-ALMA 10.8 ±0.4 10.1 ±1.1 36.6 ±0.7
Downtime-SysConsol 19.1 ±10.1 19.0 ±6.9 20.1 ±9.9
Downtime-ALMA 16.8 ±9.0 20.3 ±10.9 22.5 ±11.9

D. Prediction Model Experiment
Next, we present the Total Migration Time when using

no control over the LM and when using the ALMA archi-
tecture (Table IV). We observe an improvement up to 67%
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Fig. 6: Cycle Identification Accuracy: Application Exp..

(vm03 A and vm01 D). The improvement of vm02 C was
not so significant due to hardware differences of target hosts.
The vm02 C machine is consolidated in Host B, with less
memory. So, to reserve the amount of memory for vm02 C,
Host B called the Balloon Driver many times (several calls to
Balloon Driver3 were logged in Xen log file). But, even with
these constant calls, we observed an improvement of 15%. As
in the previous test set, we did not observe any improvement
for Downtime metric for the same reasons (Table IV). The
statistical differences are irrelevant and no difference can be
observed when using ALMA or SysConsolidation.

The Data Transfer during the LM was improved by 20%
when using ALMA to postpone the LM: SysConsolidation
10±2 and ALMA 10±2. We observed a reduction of up to
2.3GB of data when ALMA architecture was used. Finally,
the precision of FFT cycle estimation is presented in Figure
6. As can be observed, the accuracy of FFT when dealing
with real workloads is deprecated. This is due to the expected
fluctuation behaviour of the applications during its execution.
But even with an accuracy deprecated, the error is still low
(up to 7%).

To evaluate the prediction model, we executed the same
applications of the second test set. We chose different moments
to trigger the LM and calculated the time the workload would
take to finish using our prediction model and compared it with
the actual measured time.

Th abscissa axis of Figure 7 represents the moment (after the
workload started) where the LM was submitted. The ordinate

3Balloon Driver: It is a mechanism used to force the guest Operating System
to give up of some unused memory pages. The unused pages return to the
VMM to allocate to other VMs. This mechanisms allows to overcommit the
memory available in host between the guests.
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(b) Application prediction on vm02 C.
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(c) Application prediction on vm01 D.

Fig. 7: Prediction model experiments.

axis is the elapsed time finish the workload. The prediction
model showed a good accuracy, the average error for vm03 A
was about 4 minutes (±1.69), 2 minutes (±1.07) for vm02 C
and 4 minutes (±2.86) for vm01 D.

We observed that during intensive I/O workloads the predic-
tion accuracy is decreased (vm01 D running TPC workload
and vm03 A running the OpenModeller). This is due to
the non-deterministic behaviour of I/O operations. The I/O
requests issued by the VM can be answered in different
times, which will depend on several variables. Memory and
CPU workloads have a better behaved profile of execution,
improving the accuracy of the prediction.

IV. CONCLUDING REMARKS

This paper presented an architecture that allows the coex-
istence of objective functions and a controlled live migration.
The main differences from the existing literature are (1) the use
of application-level metrics instead of system-level metrics to
evaluate the workload and avoid workloads that harm the live

migration process, (2) cycle identification that can postpone
or avoid unnecessary migrations and (3) a prediction model
that evaluates the migration cost and hardware differences to
avoid live migrations that could, potentially, cause an SLA or
QoS violation. We also explored the use of Fast Fourier Trans-
formation to identify application cycles to assist the migration
decisions. Our main findings are that: (1) when considering the
application behaviour for live migration, there are considerable
reductions in total live migration time and data transferred
over the network and (2) considering hardware differences and
migration costs when performing live migrations can improve
live migration prediction models and should be considered.
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