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Abstract: In this paper, we outline and illustrate concepts that are essential to achieve fast, highly scalable virtual 
machine planning and failover at the Virtual Machine (VM) level in a data center containing a large number 
of servers, VMs, and disks. To illustrate the concepts a solution is implemented and analyzed for IBM’s 
Cloud Managed Services enterprise cloud. The solution enables at-failover-time planning, and keeps the 
recovery time within tight service level agreement (SLA) allowed time budgets via parallelization of 
recovery activities. The initial serial failover time was reduced for an order of magnitude due to parallel VM 
restart, and to parallel VM restart combined with parallel storage device remapping.  

1 INTRODUCTION 

Cloud computing is being rapidly adopted across the 
IT industry as a platform for increasingly more 
demanding workloads, both traditional and a new 
generation of mobile, social and analytics 
applications.  In the cloud, customers are being led 
to expect levels of availability that until recently 
were available only to the largest of enterprises. 

Cloud computing is changing the way high 
availability (HA) of a data center can be 
implemented. It is widely recognized that the 
standardization, virtualization, modularity and cross 
system management capabilities of cloud computing 
offer a unique opportunity to provide highly resilient 
and highly available systems. Resilience techniques 
can build on a well-defined and uniform framework 
for providing recovery measures for replicating 
unresponsive services, and recovering failed services 
to respond to disaster scenarios. Since virtualization 
allows packaging of workloads — operating system, 
applications, and data — into a portable virtual 
machine image container, it facilitates transfer of 
workloads from one server to another. High 
availability features can migrate a VM image from 
one physical server to another within the same data 
center if the original server suffers any failure, 
performance loss, or to perform scheduled 
maintenance.    

However, clouds and the workloads that run on 
them are big. Many high availability systems were 

originally designed for smaller managed 
environments, and do not scale well as the system 
size and complexity increases. Detecting failures, 
determining appropriate failover targets, re-mapping 
storage to those failover targets, and restarting the 
virtual workload have to be carefully designed and 
parallelized in order to meet the service level 
agreement (SLA) for large systems. 

This paper describes a highly scalable parallel 
virtual machine planning and recovery method that 
enables high availability at the Virtual Machine 
(VM) level for large data centers comprising many 
high-capacity servers, many VMs, and a large 
number of disks in a storage area network (SAN).  
The system enables on-the-fly failover planning and 
execution for a compute environment with a large 
number of servers and storage devices.    

The functionality described in this paper has 
been released as part of IBM’s enterprise cloud 
offering known as CMS (Cloud Managed Services), 
where it was used to provide scalable HA for the 
AIX Logical Partitions (LPARs) running on the 
CMS Power Systems (Sinharoy et al., 2015) servers. 
To stay within this context, the paper will continue 
to use the Power LPAR terminology. However, the 
concepts described here apply equally well to any 
platform that is similarly structured. While in this 
paper we focus only on the infrastructure level 
resiliency, CMS cloud implements all application 
level high availability approaches. However, they  
are not in scope of this paper, and will not be 
discussed here.  
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2 BACKGROUND AND 
POSITION STATEMENTS 

2.1 Virtual Machine-Level and 
Application-Level High Availability 
Are Complimentary 

There are multiple approaches to provide a high 
availability solution in a virtual environment.  One 
approach is to provide HA at the application level, 
using what are commonly known as HA Clustering 
techniques. Another approach is to provide 
availability at the infrastructure level, using VM-
level HA. 

Application-level high availability techniques are 
built around application clustering technology. 
These solutions are used to improve the availability 
of applications by continuously monitoring the 
application’s resources and their physical server 
environment, and invoking recovery procedures 
when failures occur. These solutions typically use 
multiple virtual machines which are working 
together in order to ensure that an application is 
always available. These VMs are arranged in active-
passive or active-active configuration.  When one 
VM fails, its functionality is taken over by the 
backup VM in the cluster.  Examples of these 
solutions are IBM PowerHA (IBM, 2008), Microsoft 
Clustering Services (Microsoft, 2003), Veritas 
Storage Foundation, and LinuxHA. 

HA solutions at the infrastructure level are 
designed to ensure that the virtual resources meet 
their availability targets. This is accomplished by 
continuously monitoring the infrastructure 
environment, detecting a failure, and invoking 
recovery procedures when a failure occurs.  
Typically, such recovery procedures involve 
restarting the failed VM, either on the same or a 
different physical server.  

Although this paper will not discuss application-
level HA in detail, we have found that application-
level HA and infrastructure-level HA can operate 
beneficially together with no mutually destructive 
effects. A tidy separation of concerns exists - 
infrastructure-level HA restarts VMs when 
appropriate (sometimes on alternate servers), while 
application-level HA sees these restarts as simple 
system crashes and recoveries, which it is designed 
to tolerate anyhow. In addition, recovery of the VMs 
in a cluster on another server after the originating 
server fails restores the redundancy that the 
application-level HA cluster relies upon, minimizing 

the time during which that cluster is operating with 
degraded resiliency. 

2.2 Dynamic Storage Mapping Is 
Preferable to Static Mapping 

Virtualized infrastructures can be designed such that 
either all physical servers in a server pool are 
statically mapped to all the storage devices that may 
be used by the virtual machines, or all physical 
machines are dynamically mapped to only the 
storage devices that are needed to support the virtual 
workload running on the respective physical 
machines. The first design choice has the merits of 
being simpler to operate, since no remapping of 
storage is required as virtual machines migrate or 
failover within the pool. However, it is unsuitable 
for high-scale cloud environments where the pool 
may consist of hundreds or more servers, supporting 
thousands of virtual machines, which in turn use 
even more storage devices. In this environment, the 
architectural and design limits of the hypervisor 
running on each physical server cannot support the 
huge number of simultaneous connections required 
to support all possible VM-storage device mapping. 
Instead, it is desirable to have a physical server only 
possess storage mappings for those VMs that are 
actually running on that physical server, and this is 
the design point utilized in this paper. The 
disadvantage of this approach are that, if it is 
necessary to migrate or failover a VM from one 
server to another, it is necessary to map that VM’s 
storage to the destination physical server, and unmap 
that storage from the source physical server. 

2.3 Parallelization of Recovery Is 
Critical to Maintaining SLAs 

Complex recovery activities consist of a number of 
sequential steps that must often be executed using 
tools, processes, and infrastructure elements that 
have limited recovery performance and concurrency. 
Given the large scale of a recovery operation 
(recovery of potentially thousands of virtual 
machines across dozens of physical servers), it is 
absolutely necessary to judiciously parallelize these 
recovery actions and eliminate bottlenecks to meet 
tight SLAs. The limited space herein does not permit 
a full exposition of these position statements, but we 
will partially illustrate them using an implemented 
case study based on the IBM Cloud Managed 
Services (CMS) architecture. 
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3 CMS POD ARCHITECTURE 

CMS is a cloud computing offering for enterprise 
customers. It is designed to bring the advantages of 
cloud computing to the strategic outsourcing 
customers of IBM.  It provides standardized, 
resilient, and secure IBM infrastructure, tools, and 
services with full ITIL management capabilities 
(Cannon, 2011).  CMS offers functions such as 
consumption-based metrics and automated service-
management integration.   

The design of the CMS is based upon a unit 
called the point of delivery (PoD). A PoD contains 
many physical managed resources (server, storage, 
and network) that are virtualized, and provided to 
customers as an infrastructure offering.  A CMS PoD 
contains Intel-based servers to support virtual and 
bare metal Windows and Linux workloads, and IBM 
Power servers to support virtual AIX workloads. The 
Power virtual machines are called Logical Partitions, 
or LPARs. This paper focuses on the recovery of the 
AIX workloads, contained in LPARs, in the event 
that a Power server fails.  

A PoD is designed to be highly available, with 
the physical infrastructure architected to eliminate 
single points of failure. The customer is offered 
selectable availability SLAs, which are contractual 
obligations and may include penalties for 
noncompliance. These availability agreements are 
only for unplanned outages and refer to Virtual 
Machine availability. CMS supports multiple levels 
of availability ranging from 98.5% to 99.9%.  A 
more detailed description of the CMS can be found 
in (Salapura, 2013).  

PoDs also contain a number of managing servers 
which host management tools for storage 
management, backup, and performance monitoring.  

3.1 Fault Model: Permanent  Failure of 
a Power Server 

The remainder of this paper will describe the 
architecture we have created for recovering LPARs 
on other physical servers when one or more Power 
Systems physical servers hosting those LPARs has 
failed.   

In this failure mode, a Power Server suffers a 
hardware failure from which it cannot recover in a 
short time (for example, 10 minutes) and for which 
maintenance/repair is required. In this case, the 
failover process will restart all affected LPARs on 
another Server. The function implementing this 
recovery process is called Remote Restart. The 

recovered LPARs need to use the same network 
storage disks – referred to as LUNs (logical unit 
number) that the original Server was using. Restarts 
are prioritized by SLA. Recovery from other types 
of outages and transient failures are covered by 
means not described in this paper.  

4 REMOTE RESTART 
ARCHITECTURE 

The architecture of the Remote Restart solution used 
in CMS PoDs is illustrated in Figure 1. There are 
one or several managing servers, indicated in the 
upper part of the figure, and a number of managed 
servers with storage are illustrated in the lower part 
of the figure. The managing servers host tools for 
controlling, provisioning, managing and monitoring 
of the workload on managed servers. Relevant 
managing tools are Provisioning engine, which uses 
a DB to maintain all the PoD management 
information, a Storage management engine, and a 
Hardware Maintenance Console (HMC) for server 
management. The Remote Restart software and 
collected configuration data resides on a 
management server for Virtualization management. 

The managed servers host LPARs running 
customers’ AIX workload. Each managed Power 
server also contains dedicated LPARs called Virtual 
I/O Servers (VIOS) that virtualize external storage 
and present it to the customer’s LPARs. 

4.1 Overview of Recovery Procedure 

The tasks that the Remote Restart solution performs 
are as follows:  
Periodic data gathering and persistence:  

configuration and status of LPARs in a PoD is 
collected periodically. The time interval for data 
gathering is configurable, and is given later in 
this paper. There are two sources of collecting 
needed information:  
o information about physical servers in the 

PoD, all LPARs and their hosts, and their 
storage and network configuration; this 
information is collected via HMC;  

o SLA availability information for all 
LPARs; this information is obtained by 
querying the Provisioning engine database. 

Server failure detection:  the health of all servers in 
a PoD is monitored in order to detect their 
failure.  A failure of a server is detected via 
HMC when it returns an ERROR state. 
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Figure 1: Remote Restart architecture. 

Server fencing:  once a server is determined faulty, it 
is powered off via HMC commands. 

Failover planning: provides an evacuation plan. Our 
Remote Restart implementation uses a 
“Dynaplan” (Harper, 2011) algorithm to 
determine the optimal failover targets. 

VIOS configuration for failover: in this step, virtual 
SCSI devices are created via HMC on the 
failover server for LPARs to be restarted. 

SAN configuration for failover: LUNs are not 
connected to all servers in a PoD, and the 
connecting of LUNs to the failover servers 
according to the evacuation plan is performed in 
this step. 

LPAR restart: once virtual SCSI devices are created 
and LUNs and connected to the failover server, 
an LPAR is restarted on the failover server via 
HMC commands. 

The Remote Restart scripts performs these steps 
by issuing ssh commands to the HMC, via database 
queries to the Provisioning engine, and by issuing 
commands for storage configuration. 

4.2 Failover Planner 

Failover planning is based on a parallelized 
algorithm evolved from the prior dynamic resource 
planner described in (Harper, 2011).  The planner 
formulates a schedule to restart a large collection of 

interdependent VMs on a large collection of 
resources.  There are a number of constraints the 
planner has to meet, for example that recovery time 
objective is met, that the maximum number of the 
most important dependency groups is started, that 
VMs within a dependency group are started in the 
proper order, and that the capabilities of the 
environment (e.g., restart bandwidth and capacities) 
are not exceeded. 

Restart priority is a partial ordering of all VMs 
into priority classes. Within a given priority class, all 
VMs can be restarted in parallel, subject to restart 
parallelism constraints of the physical environment 
and application start order dependencies. A “restart 
rules” language allows customization of the restart 
priority based on restart rules. A restart rule template 
can be automatically populated by discovery tools 
and/or manually edited. 

The restart priority is automatically and 
dynamically determined based on a number of VM 
properties, such as SLAs, application priority, 
application topology, and other rules as determined 
by the dynamic restart priority calculator and a given 
set of rules. Priority aggregation rules convert the 
various restart rules into the VM restart partial 
priority order while taking into account application 
dependencies.  

The cost of running the planner is low, so it is run 
at failure-handling time. In addition, the failover 
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planner is run once per day for each server in a PoD 
to determine any resource constraint, for example to 
determine if there are capacity problems so that not 
all LPARs can be hosted on the remaining hosts.  If 
this condition is detected, a warning notification is 
sent to the cloud administrators for the purposes of 
planning. 

5 IMPLEMENTATIONS AND 
RESULTS 

5.1 Initial Implementation: Serial 
Restart 

The restart priority of LPARs is based on their SLA. 
Thus, in case of failover, the highest SLA workloads 
would be restarted first followed by the next highest 
SLA. Within the same SLA level, restart priority is 
random. In an early CMS release, restart capability 
was needed only for workloads with the two highest 
level SLAs. This initial Remote Restart 
implementation was implemented as a single process 
which, after the failure of a server is detected, and 
the need for a failover process was determined, 
would initiate the failover process. 

For each LPAR on the affected server, the 
failover planner determines a destination server, and 
the restart process starts. The failover process is 
performed for the highest priority LPARs first, 
configuring the storage and network for these 
LPARs to their destination servers, and restarting 
them at the destination server. After all LPARs with 
the highest restart priority are restarted at their target 
servers, the next lower priority level LPARs are 
processed. 

There are two significant time components to 
executing the restart. The first is the process of 
unmapping the LUNs from the (failed) original 
server and mapping them to the designated failover 
server. This time is proportional to the number of 
LUNs connected to the LPAR. The second time 
component is the process of restarting the LPAR on 
the designated failover server.  

In this early CMS release, each LPAR was 
allowed to have up to two LUNs.  For the case where 
only the top two SLAs were to be restarted, with up 
to two LUNs per LPAR, the SLA time budget was 
readily met. 

However, in the subsequent releases of CMS, the 
number of disks per LPAR was continuously 
increased. In addition, it was necessary to extend 
restart capabilities to all SLA levels. With these 

increases, it was clear that we needed a solution for 
Remote Restart which would handle restarts for a 
larger number of LPARs containing more LUNs, 
within the SLA time limits.  

5.2 Parallel Restart  

The requirement for an increased number of LUNs 
per LPAR, and the increased number of LPARs 
which need to be restarted motivated us to improve 
the Remote Restart solution using parallel processes.  
We chose to use server-level parallelism in which the 
level of parallelism depends on the number of 
operational servers in the PoD.  

In our parallelization scheme, one restart process 
is launched for each destination server. For example, 
in a PoD with 6 servers, and one failed server, there 
would be up to 5 destination failover servers. One 
restart process is initiated for each destination server.  
LPARs assigned for restart on that particular server 
are restarted sequentially, starting with the highest 
priority LPARs in that group.  For each LPAR, 
storage is mapped, storage and network drivers are 
reconfigured for the target server, and the LPAR is 
restarted at the destination server.  Once all highest 
priority LPARs assigned to that destination server 
are restarted, the next SLA priority level LPARs are 
processed.  A similar process is performed in parallel 
for all destination servers. 

These parallelization steps ensured that the 
failover time was well within the allowed SLA for 
the subsequent releases of CMS. 

5.3 Parallel Disk Mapping 

However, the disk capacity in CMS continues to 
increase. For the current release, each LPAR can 
have up to 24 LUNs and up to 96 TB of storage. For 
a large number of LPARs on a single server, this can 
lead to the case where a very large number of storage 
LUNs has to be mapped to different servers in short 
time. 

Analysis indicated that the procedure that was 
taking the most amount of time was the process of 
mapping disks to the destination server, so our next 
improvement focused on parallel disk mapping.  In 
this implementation, in addition to the number of 
parallel failover processes that is started, we also 
initiate the mapping of multiple disks attached to a 
single LPAR in parallel. We limit the number of 
simultaneous mappings of disks for a single failover 
stream to four to avoid potential bottleneck at the 
storage management interface. By measuring the 
time needed for restarting individual LPARs with a 
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different number of LUNs and time measured for 
parallel failover streams, we analyzed failover time 
needed for parallel disk restart.  

The analysis shows that adding this additional 
level of parallel processing brings the failover time 
requirements well within the available time budget 
for the worst-case configuration known to date.   

6 CONCLUSIONS AND FUTURE 
WORK 

In this paper, we presented a highly scalable parallel 
virtual machine planning and failover method that 
enables high availability at a VM level in a data 
center. This solution is efficient for large data centers 
comprising many high-capacity servers, many VMs, 
and a large number of disks.  The solution is 
implemented and used in IBM’s CMS enterprise 
private cloud. 

The system enables at-failover-time failover 
planning and execution for a compute environment 
with a large number of servers and storage.  The 
described system keeps the recovery time within 
limits to a service level agreement (SLA) allowed 
time budget. With this design, we reduce the initial 
failover time requirements by more than an order of 
magnitude by using parallel failover and parallel 
storage mapping implementation.  

As our future work, we plan to explore the 
applicability of this solution for disaster recovery 
(DR), where a whole PoD needs to be restarted at a 
failover data center within the allowed recovery time 
objective (RTO). 
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