
Using Cloud-Aware Provenance to Reproduce Scientific Workflow
Execution on Cloud

Khawar Hasham, Kamran Munir and Richard McClatchey
Centre for Complex Computing Systems (CCCS), Faculty of Environment and Technology (FET),

University of the West of England (UWE), Bristol, U.K.
{khawar.ahmad, kamran.munir, richard.mcclatchey}@cern.ch

Keywords: Cloud Computing, Scientific Workflows, Provenance, Reproducibility, Repeatability.

Abstract: Provenance has been thought of a mechanism to verify a workflow and to provide workflow reproducibility.
This provenance of scientific workflows has been effectively carried out in Grid based scientific workflow
systems. However, recent adoption of Cloud-based scientific workflows present an opportunity to
investigate the suitability of existing approaches or propose new approaches to collect provenance
information from the Cloud and to utilize it for workflow reproducibility on the Cloud infrastructure. This
paper presents a novel approach that can assist in mitigating this challenge. This approach can collect Cloud
infrastructure information along with workflow provenance and can establish a mapping between them to
provide a Cloud-aware provenance. The reproducibility of the workflow execution is performed by: (a)
capturing the Cloud infrastructure information (virtual machine configuration) along with the workflow
provenance, (b) re-provisioning the similar resources on the Cloud and re-executing the workflow on them
and (c) by comparing the outputs of workflows. The evaluation of the prototype suggests that the proposed
approach is feasible and can be investigated further. Since there is no reference model for workflow
reproducibility on Cloud exists in the literature, this paper also attempts to present a model that is used in
the proposed design to achieve workflow reproducibility in the Cloud environment.

1 INTRODUCTION

The scientific community is processing and
analysing huge amounts of data being generated in
modern scientific experiments that include projects
such as DNA analysis (Foster et al., 2008), the Large
Hadron Collider (LHC) (http://lhc.cern.ch), and
projects such as neuGRID (Mehmood et al., 2009)
and its follow-on neuGRIDforUsers (Munir et al.,
2013, 2014). In particular the neuGRID community
is utilising scientific workflows to orchestrate the
complex analysis of neuro-images to diagnose
Alzheimer disease. A large pool of compute and data
resources are required to process this data, which has
been available through the Grid (Foster et al., 1999)
and is now also being offered by the Cloud-based
infrastructures.

Cloud computing (Mell and Grance, 2011) has
emerged as a new computing and storage paradigm,
which is dynamically scalable and usually works on a
pay-as-you-go cost model. It aims to share resources
to store data and to host services transparently among
users at a massive scale (Mei et al., 2008). Its ability
to provide an on-demand computing infrastructure

enables distributed processing of scientific
workflows (Deelman et al., 2008) with increased
complexity and data requirements. Recent work
(Juve and Deelman 2010) is now experimenting with
Cloud infrastructures to assess the feasibility of
executing workflows on the Cloud.

An important consideration during this data
processing is to gather provenance (Simmhan et al.,
2005) information that can provide detailed
information about both the input and the processed
output data, and the processes involved in a
workflow execution. This information can be used to
debug the execution of a workflow, to aid in error
tracking and reproducibility. This vital information
can enable scientists to verify the outputs and iterate
on the scientific method, to evaluate the process and
results of other experiments and to share their own
experiments with other scientists (Azarnoosh et al.,
2013). The execution of scientific workflows in the
Cloud brings to the fore the need to collect
provenance information that is necessary to ensure
the reproducibility of these experiments on the Cloud
infrastructure

A research study (Belhajjame et al., 2012)

49

conducted to evaluate the reproducibility of
scientific workflows has shown that around 80% of
the workflows cannot be reproduced, and 12% of
them are due to the lack of information about the
execution environment. This information affects a
workflow on two levels. It can affect a workflow’s
overall execution performance and also job failure
rate. For instance, a data-intensive job can perform
better with 2GB of RAM because it can
accommodate more data in RAM, which is a faster
medium than hard disk. However, the job’s
performance will degrade if a resource of 1GB RAM
is allocated to this job as less data can be placed in
RAM. Moreover, it is also possible that jobs will
remain in waiting queues or fail during execution if
their required hardware dependencies are not met.
This becomes a more challenging issue in the
context of Cloud in which resources can be created
or destroyed at runtime.

The dynamic and geographically distributed
nature of Cloud computing makes the capturing and
processing of provenance information a major
research challenge (Vouk 2008, Zhao et al., 2011).
Since the Cloud presents a transparent access to
dynamic execution resources, the workflow
parameters including execution resource
configuration should also be known to a scientist
(Shamdasani et al., 2012) i.e. what execution
environment was used for a job in order to reproduce
a workflow execution on the Cloud. Due to these
reasons, there is a need to capture information about
the Cloud infrastructure along with workflow
provenance, to aid in the reproducibility of workflow
experiments. There has been a lot of research related
to provenance in the Grid (Foster et al., 2002,
Stevens et al., 2003) and a few initiatives (Oliveira et
al., 2010, Ko et al., 2011) for the Cloud. However,
they lack the information that can be utilised for re-
provisioning of resources on the Cloud, thus they
cannot create the similar execution environment(s)
for workflow reproducibility. In this paper, the terms
“Cloud infrastructure” and “virtualization layer” are
used interchangeably.

This paper presents a theoretical description of an
approach that can augment workflow provenance
with infrastructure level information of the Cloud and
use it to provision similar execution environment(s)
and repeat a given workflow. Important points
discussed in this paper are as follows: section 2
presents some related work in provenance related
systems. Section 3 presents a reproducibility model
designed after collecting guidelines used and
discussed in literature. Section 4 presents an
overview of the proposed approach. Section 5

presents an evaluation of the developed prototype.
And finally section 6 presents some conclusions and
directions for future work.

2 RELATED WORK

Significant research (Foster et al., 2002, Scheidegger
et al., 2008) has been carried out in workflow
provenance for Grid-based workflow management
systems. Chimera (Foster et al., 2002) is designed to
manage the data-intensive analysis for high-energy
physics (GriPhyN) (GriPhyN 2014) and astronomy
(SDSS) (SDSS 2014) communities. It captures
process information, which includes the runtime
parameters, input data and the produced data. It
stores this provenance information in its schema,
which is based on a relational database. Although
the schema allows storing the physical location of a
machine, it does not support the hardware
configuration and software environment in which a
job was executed. Vistrails (Scheidegger et al.,
2008) provides support for scientific data exploration
and visualization. It not only captures the execution
log of a workflow but also the changes a user makes
to refine his workflow. However, it does not support
the Cloud virtualization layer information. Similar is
the case with Pegasus/Wings (Kim et al. 2008) that
supports evolution of a workflow. However, this
paper is focusing on the workflow execution
provenance on the Cloud, rather than the provenance
of a workflow itself (e.g. design changes).

There have been a few research studies (Oliveira
et al., 2010, Ko et al., 2011) performed to capture
provenance in the Cloud. However, they lack the
support for workflow reproducibility. Some of the
work in Cloud towards provenance is directed to the
file system (Zhang et al., 2011, Shyang et al 2012)
or hypervisor level (Macko et al., 2011). However
such work is not relatable to our approach because
this paper focuses on virtualized layer information of
the Cloud for workflow execution. Moreover, the
collected provenance data provides information
about the file access but it does not provide
information about the resource configuration. The
PRECIP (Azarnoosh et al., 2013) project provides an
API to provision and execute workflows. However,
it does not provide provenance information of a
workflow.

There have been a few recent projects (Chirigati
et al., 2013, Janin et al., 2014) and research studies
(Perez et al., 2014a) on collecting provenance and
using it to reproduce an experiment. A semantic-
based approach (Perez et al., 2014b) has been

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

50

proposed to improve reproducibility of workflows in
the Cloud. This approach uses ontologies to extract
information about the computational environment
from the annotations provided by a user. This
information is then used to recreate (install or
configure) that environment to reproduce a
workflow execution. On the contrary, our approach
is not relying on annotations rather it directly
interacts with the Cloud middleware at runtime to
acquire resource configuration information and then
establishes mapping between workflow jobs and
Cloud resources. The ReproZip software (Chirigati
et al., 2013) uses system call traces to provide
provenance information for job reproducibility and
portability. It can capture and organize files/libraries
used by a job. The collected information along with
all the used system files are zipped together for
portability and reproducibility purposes. Since this
approach is useful at individual job level, this does
not work for an entire workflow, which is the focus
of this paper. Moreover, this approach does not
consider the hardware configuration of the
underlined execution machine. Similarly, a Linux-
based tool, CARE (Janin et al., 2014), is designed to
reproduce a job execution. It builds an archive that
contains selected executable/binaries and files
accessed by a given job during an observation run.

3 WORKFLOW
REPRODUCIBILITY
MODEL ON CLOUD

As per our understanding of the literature, there is
not a standard reproducibility model proposed so far
for scientific workflows, especially in Cloud
environment. However, there are some guidelines or
policies, which have been highlighted in literature to
reproduce experiments. There is one good effort
(Sandve et al., 2013) in this regard, but it mainly
talks about reproducible papers and it does not
consider execution environment of workflows. In
this section, we have gathered basic points to present
an initial workflow reproducibility model in Cloud
that can provide guidelines for future work in this
regard. These points are discussed as follows.

• Share Code and Data
The need for data and code sharing in computational
science has been widely discussed (Stodden 2010).
In computational science conservation, in particular
for scientific workflow executions, it is emphasized
that the data, code, and the workflow description

should be available in order to reproduce an
experiment.

• Execution Infrastructure details
The execution infrastructure provided by the Grid or
Cloud to execute a workflow is composed of a set of
computational and storage resources (e.g. execution
nodes, storage devices, networking). The physical
approach, where actual computational hardware are
made available for long time period to scientists,
often conserves the computational environment
including supercomputers, clusters, or Grids (Perez
et al., 2014b). As a result, scientists are able to
reproduce their experiments on the same hardware
environment. However, this luxury is not available
in the Cloud environment in which resources are
virtualized and provisioned dynamically on-demand.
A little focus is given to the underlying
infrastructure, especially Cloud, in computational
conservation in literature. This challenge has been
tackled in this paper by collecting this information at
runtime from the Cloud infrastructure. From
resource provisioning point of view, parameters such
as RAM, vCPU and Hard Disk are important in
selecting appropriate resource especially on the
Cloud and should be made part of the collected
provenance. All these factors contribute to the job's
execution performance as well as to its failure rate.
For instance, a job will fail if it is scheduled to a
resource with insufficient available RAM.

• Software Environment
Apart from knowing the hardware infrastructure, it
is also essential to provide information about the
software environment. A software environment
determines the operating system and the libraries
used to execute a job. Without the access to required
libraries information, a job execution will fail. For
example, a job, relying on MATLAB library, will
fail in case the required library is missing. One
possible approach (Howe et al., 2012) to conserve
software environment is thought to conserve VM
that is used to execute a job and then reuse the same
VM while re-executing the same job. One may argue
that it would be easier to keep and share VM images
with the research community through a common
repository, however the high storage demand of VM
images remains a challenging problem (Zhao et al.,
2014). In the prototype presented in this paper, the
OS image used to provision a VM is conserved and
thought to present all the software dependencies
required for a job execution in a workflow.
Therefore, the proposed solution should also retrieve
the image information to build a virtual machine on
which the workflow job was executed.

Using�Cloud-Aware�Provenance�to�Reproduce�Scientific�Workflow�Execution�on�Cloud

51

• Workflow Versioning
Capturing only a provenance trace is not sufficient
to allow a computation to be repeated – a situation
known as workflow decay (Roure et al., 2011). The
reason is that the provenance systems can store
information on how the data was generated, however
they do not store copies of the key actors in the
computation i.e. workflow, services, data. This paper
(Sandve et al. 2013) suggests to archive the exact
versions of all programs and enable version control
on all scripts used in an experiment. This is not
supported in the presented prototype, but it will be
incorporated in next iterations.

• Provenance Comparison
The provenance traces of two executed workflows
should be compared to determine workflow
reproducibility. The main idea is to evaluate the
reproducibility of an entire execution of a given
workflow, including the logical chaining of activities
and the data. To provide the strict reproducibility
functionality, a system must guarantee that the data
are still accessible and that the corresponding
activities are accessible (Lifschitz et al. 2011). Since
the focus of this paper is on workflow
reproducibility on the Cloud infrastructure, the
execution infrastructure should also be part of the
comparison. Therefore the provenance comparison
should be made at different levels; workflow
structure, execution infrastructure, and workflow
input and output. A brief description of this
comparison is given below.

a) Workflow structure should be compared to
determine that both workflows are similar.
Because it is possible that two workflows are
having similar number of jobs but with
different job execution order.

b) Execution infrastructure (software
environment, resource configuration) used on
the Cloud for a workflow execution should also
be compared.

c) Comparison of input and output should be
made to evaluate workflow reproducibility.
There could be a scenario that a user repeated a
workflow but with different inputs, thus
producing different outputs. It is also possible
that changes in job or software library result
into different workflow output. There are a few
approaches (Missier et al. 2013), which
perform workflow provenance comparison to
determine differences in reproduced
workflows. The proposed approach in this
paper incorporates the workflow output

comparison to determine the reproducibility of
a workflow.

• Pricing Model
This point can be important for experiments in
which cost is also a main factor. The resource
provisioned on the Cloud has associated cost, which
is based on the resource type and the amount of time
it has been used for. This information can assist in
reproducing an experiment with the same cost as
was incurred in earlier execution. This point is not
incorporated in the proposed design at the moment.

4 CLOUD-AWARE
PROVENANCE APPROACH

An abstract view of the proposed architecture is
presented in this section. This architecture is
designed after evaluating the existing literature and
keeping in mind the objectives of this research
study. The proposed architecture is inspired by the
mechanism used in a paper (Groth et al., 2009) for
executing workflows on the Cloud. Figure 1
illustrates the proposed architecture that is used to
capture the Cloud infrastructure information and to
interlink it with the workflow provenance collected
from a workflow management system such as
Pegasus. This augmented or extended provenance
information compromising of workflow provenance
and the Cloud infrastructure information is named as
Cloud-aware provenance. The components of this
architecture are briefly explained below.

Figure 1: An abstract architecture of the proposed
approach.

• Workflow Provenance: This component is
responsible for receiving provenance captured at

Workflow Management System

Condor Condor

Physical Layer

Virtualized Layer

Application Layer Submits
workflow

Provenance Aggregator

Cloud Layer Provenance

Workflow Provenance

Workflow
provenance

Provenance API

Workflow Provenance Store

Cloud-aware
provenance

VM1 VM2

Scientist

Existing tools
Prototype components

Prototype Storage

Infrastructure
information

Cloud environment

Stores/
selects
an
existing
workflow

job job

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

52

the application level by the workflow management
system (Pegasus). Since workflow management
systems may vary, a plugin-based approach is
used for this component. Common interfaces are
designed to develop plugins for different
workflow management systems. The plugin also
translates the workflow provenance according to
the representation that is used to interlink the
workflow provenance along with the information
coming from the Cloud infrastructure.

• Cloud Layer Provenance: This component is
responsible for capturing information collected
from different layers of the Cloud. To achieve re-
provisioning of resources on Cloud, this
component focuses on the virtualization layer and
retrieves information related to the Cloud
infrastructure i.e. virtual machine configuration.
This component is discussed in detail in section
4.1.

• Provenance Aggregator: This is the main
component tasked to collect and interlink the
provenance coming from different layers as shown
in Figure 1. It establishes interlinking connections
between the workflow provenance and the Cloud
infrastructure information. The provenance
information is then represented in a single format
that could be stored in the provenance store
through the interfaces exposed by the Provenance
API.

• Provenance API: This acts as a thin layer to
expose the provenance storage capabilities to other
components. Through its exposed interfaces,
outside entities such as the Provenance Aggregator
would interact with it to store the workflow
provenance information. This approach gives
flexibility to implement authentication or
authorization in accessing the provenance store.

• Workflow Provenance Store: This data store is
designed to store workflows and their associated
provenance. This also keeps mapping between
workflow jobs and the virtual compute resources
in the Cloud infrastructure. This also keeps record
of the workflow and its related configuration files
being used to submit a user analysis on the Cloud.
This information is later retrieved to reproduce the
execution. However, it does not support workflow
evolution in its current design.

4.1 Job to Cloud Resource Mapping

The CloudLayerProvenance component is designed
in a way that interacts with the Cloud infrastructure
as an outside client to obtain the resource
configuration information. As mentioned earlier, this

information is later used for reprovisioning the
resources to provide a similar execution
infrastructure to repeat a workflow execution. Once
a workflow is executed, Pegasus collects the
provenance and stores it in its own internal database.
Pegasus also stores the IP address of the virtual
machine (VM) where the job is executed. However,
it lacks other VM specifications such as RAM,
CPUs, hard disk etc. The CloudLayerProvenance
component retrieves all the jobs of a workflow and
their associated VM IP addresses from the Pegasus
database. It then collects a list of virtual machines
owned by a respective user from the Cloud
middleware. Using the IP address, it establishes a
mapping between the job and the resource
configuration of the virtual machine used to execute
the job. This information i.e. Cloud-aware
provenance is then stored in the Provenance Store.
The flowchart of this mechanism is presented in
Figure 2.

Figure 2: flowchart of job to Cloud resource mapping
performed by ProvenanceAggregator component.

In this flowchart, the variable wfJobs –
representing a list of jobs of a given workflow – is
retrieved from the Pegasus database. The variable
vmList – represents a list of virtual machines in the
Cloud infrastructure – is collected from the Cloud. A
mapping between jobs and VMs is established by
matching the IP addresses (see in Figure 2).
Resource configuration parameters such as flavour
and image are obtained once the mapping is
established. flavour defines resource configuration
such as RAM, Hard disk and CPUs, and image
defines the operating system image used in that
particular resource. By combining these two
parameters together, one can provision a resource on
the Cloud infrastructure. After retrieving these
parameters and jobs, the mapping information is
then stored in the Provenance Store (see in Figure.
2). This mapping information provides two
important data (a) hardware configuration (b)

Get Workflow Jobs (wfJobs)

Start (wfid)

Get VM list from Cloud (vmList)
Pegasus

Establish mapping (wfJobs, vmList)

VM.ip =
job.ip

No

Insert Mapping

Yes

Next record

Insert mapping (job, flavour, image)

Has more
jobs?

Yes

End

No

Workflow jobs

Workflow
Provenance

Store

Using�Cloud-Aware�Provenance�to�Reproduce�Scientific�Workflow�Execution�on�Cloud

53

software configuration using VM name. As
discussed in section 3, these two parameters are
important in recreating a similar execution
environment.

4.2 Workflow Reproducibility using
Cloud-Aware Provenance

In section 4.1, the job to Cloud resource mapping
using provenance information has been discussed.
This mapping is stored in the database for workflow
reproducibility purposes. In order to reproduce a
workflow execution, researcher first needs to
provide the wfID (workflow ID), which is assigned
to every workflow in Pegasus, to the proposed
framework to re-execute the workflow using the
Cloud-aware provenance. It retrieves the given
workflow from the Provenance Store database (step
2(a) in Figure 3) along with the Cloud resource
mapping stored against this workflow (step 2(b) in
Figure 3). Using this mapping information, it
retrieves the resource flavour and image
configurations, and provisions the resources (step 3
in Figure 3) on Cloud. Once resources are
provisioned, it submits the workflow (step 4).

At this stage, a new workflow ID is assigned to
this newly submitted workflow. This new wfID is
passed over to the ProvenanceAggregator
component to monitor (step 5) the execution of the
workflow and start collecting its Cloud-aware
provenance information (see step 6 in Figure 3) This
is important to recollect the provenance of the
repeated workflow, as this will enable us to verify
the provisioned resources by comparing their
resource configurations with the old resource
configuration.

Figure 3: The sequence of activities to illustrate workflow
repeatability in the proposed system.

4.3 Workflow Output Comparison

Another aspect of workflow repeatability is to verify
that it has produced the same output that was

produced in its earlier execution (as discussed in
section 3). In order to evaluate workflow
repeatability, an algorithm has been proposed that
compares the outputs produced by two given
workflows. It uses the MD5 hashing algorithm
(Stalling 2010) on the outputs and compares the
hash value to verify the produced outputs. The two
main reasons of using a hash function to verify the
produced outputs are; a) simple to implement and b)
the hash value changes with a single bit change in
the file. If the hash values of two given files are
same, this means that the given files contain same
content.

The proposed algorithm (as shown in Figure 4)
operates over the two given workflows identified by
srcWfID and destWfID, and compares their outputs.
It first retrieves the list of jobs and their produced
output files from the Provenance Store for each
given workflow. It then iterates over the files and
compares the source file, belonging to srcWfID, with
the destination file, belonging to destWfID. Since the
files are stored on the Cloud, the algorithm retrieves
the files from the Cloud (see lines 11 and 12). Cloud
storage services such as OpenStack Swift, Amazon
Object Store use the concept of a bucket or a
container to store a file. This is why src_container
and dest_container along with src_filename and
dest_filename are given in the GetCloudFile
function to identify a specific file in the Cloud. The
algorithm then compares the hash value of both files
and increments ComparisonCounter. If all the files
in both workflows are the same,
ComparisonCounter should be equal to FileCounter,
which counts the number of files produced by a
workflow. Thus, it confirms that the workflows are
repeated successfully. Otherwise, the algorithms
returns false if both these counters are not equal.

Figure 4: Pseudocode to compare outputs produced by two
given workflows.

RepeatWorkflow

1) Repeat
Workflow (wfid)

Scientist

Workflow
Provenance

Store

2(a) get Workflow (wfid)

2(b) get Cloud
Resource (wfid)

Cloud

3) Provision resource
 (flavour, image,
name)

Condor Condor

ProvenanceAggregator

4) Submit
workflow

5) monitor

6) Collect
provenance
information

VM1 VMn

. . .

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

54

5 RESULTS AND DISCUSSION

Figure 5: Cloud resource's RAM configuration impact on
job success.

To demonstrate the effect of Cloud resource
configuration such as RAM on job failure rate, a
basic memory-consuming job is written in Java
language. The job attempts to construct an alphabet
string of given size (in MB), which is provided at
runtime. To execute this experiment, three resource
configurations, (a) m1.tiny, (b) m1.small and (c)
m1.medium, each with 512 MB, 2048 MB and 4096
MB RAM respectively were used. Each job is
executed at least 5 times with a given memory
requirement on each resource configuration. The
result in Figure 5 shows that jobs fail if required
RAM (hardware) requirement is not fulfilled. All
jobs with RAM requirement less than 500 MB
executed successfully on all resource configurations.
However, the jobs start to fail on Cloud resources
with m1.tiny configuration as soon as the job’s
memory requirement approaches 500 MB because
the jobs could not find enough available memory on
the given resource. This result confirms the
presented argument (discussed in section 1 and also
in section 3) regarding the need for collecting Cloud
resource configuration and its impact on job failure.
Since a workflow is composed of many jobs, which
are executed in a given order, a single job failure can
result in a workflow execution failure. Therefore,
collecting Cloud-aware provenance is essential for
reproducing a scientific workflow execution on the
Cloud.

To evaluate the presented mapping algorithm,
which collects the Cloud infrastructure information
and interlinks it with the workflow provenance, a
Python based prototype has been developed using
Apache Libcloud (Apache Libcloud –
http://libcloud.apache.org), a library to interact with

the Cloud middleware. The presented evaluation of
the prototype is very basic currently. However, as
this work progresses further a full evaluation will be
conducted. To evaluate this prototype, a 20 core
Cloud infrastructure is acquired from the Open
Science Data Cloud (OSDC)
(https://www.opensciencedatacloud.org/). This
Cloud infrastructure uses the OpenStack middleware
(openstack.org) to provide infrastructure-as-a-
Service capability. A small Condor cluster of three
virtual machines is also configured. In this cluster,
one machine is a master node, which is used to
submit workflows, and the remaining two are
compute nodes. These compute nodes are used to
execute workflow jobs. Using the Pegasus APIs, a
basic wordcount workflow application composed of
four jobs is written. This workflow has both control
and data dependencies (Ramakrishnan and Plale,
2010) among its jobs, which is a common
characteristic in scientific workflows. The first job
(Split job) takes a text file and splits it into two files
of almost equal length. Later, two jobs (Analysis
jobs), each take one file as input, and then calculate
the number of words in the given file. The fourth job
(merge job) takes the outputs of earlier analysis jobs
and calculates the final result i.e. total number of
words in both files.

This workflow is submitted using Pegasus. The
wfID assigned to this workflow is 114. The collected
Cloud resource information is stored in database.
Table I. shows the provenance mapping records in
the Provenance Store for this workflow. The
collected information includes the flavour and image
(image name and Image id) configuration
parameters. The Image id uniquely identifies an OS
image hosted on the Cloud and this image contains
all the software or libraries used during the job
execution. As an image contains all the required
libraries of a job, this prototype does not extract the
installed libraries information from the virtual
machine at the moment for workflow reproducibility
purpose. However, this can be done in future
iterations to enable the proposed approach to
reconfigure a resource at runtime on the Cloud.

The reproducibility of the workflow using the
proposed approach (discussed in section 4.2) has
also been tested. The prototype is requested to repeat
the workflow with wfID 114.
Upon receiving the request, it first collects the
resource configurations, captured from earlier
execution, from the database and provisions the
resources on the Cloud infrastructure. The name of
re-provisioned resource(s) for the repeated workflow
has a postfix ‘-rep.novalocal’ e.g. mynova-

Using�Cloud-Aware�Provenance�to�Reproduce�Scientific�Workflow�Execution�on�Cloud

55

Table 1: Cloud infrastructure mapped to the jobs of workflow with ID 114.

Table 2: Cloud infrastructure information of repeated workflow (wfIDs: 117 and 122) after repeating workflow 114.

Table 3: Comparing outputs produced by workflows 114 (original workflow) and 117 (repeated workflow).

rep.novalocal as shown in Table 2. It was named
mynova.novalocal in original workflow execution as
shown in Table 1. From Table 2, one can assess that
similar resources have been re-provisioned using the
proposed approach to reproduce the workflow
execution because the RAM, Hard disk, vCPUs and
image configurations are similar to the resources
used for workflow with wfID 114 (as shown in
Table 1). This preliminary evaluation confirms that
the similar resources on the Cloud can be re-
provisioned with the Cloud-aware provenance
information collected using the proposed approach
(discussed previously in section 4). Table 2 shows
two repeated workflow instances of original
workflow 114.

The other aspect to evaluate the workflow
reproducibility (as discussed in section 3) is to
compare the outputs produced by both workflows.
This has been achieved using the algorithm
presented in Figure 4 (discussed in section 4.3). Four
jobs in both the given workflows i.e. 114 and 117
produce the same number of output files (see Table
3). The Split job produces two output files i.e.
wordlist1 and wordlist2. Two analysis jobs,
Analysis1 and Analysis2, consume the wordlist1 and
wordlist2 files, and produce the analysis1 and
analysis2 files respectively. The merge job
consumes the analysis1 and analysis2 files and
produces the merge_output file. The hash values of
these files are shown in the MD5 Hash column of

wfID Host IP nodename Flavour
Id

minRAM
(MB)

minHD
(GB) vCPU Image

name
Image

id

114 172.16.1.49 osdc-vm3.novalocal 2 2048 20 1 wf_peg_repeat f102960c- 557c-4253-8277-2df5ffe3c169

114 172.16.1.98 mynode.novalocal 2 2048 20 1
wf_peg_repeat

102960c- 557c-4253-8277-2df5ffe3c169

wfID Host IP nodename Flavour
Id

minRAM
(MB)

minHD
(GB) vCPU Image

name
Image

id

117 172.16.1.183 osdc-vm3-rep.novalocal 2 2048 20 1 wf_peg_repeat f102960c- 557c-4253-8277-2df5ffe3c169

117 172.16.1.187 mynode-rep.novalocal 2 2048 20 1
wf_peg_repeat

f102960c- 557c-4253-8277-2df5ffe3c169

122 172.16.1.114 osdc-vm3-rep.novalocal 2 2048 20 1 wf_peg_repeat f102960c- 557c-4253-8277-2df5ffe3c169

122 172.16.1.112 mynode-rep.novalocal 2 2048 20 1 wf_peg_repeat f102960c- 557c-4253-8277-2df5ffe3c169

Job WF ID Container Name File Name MD5 Hash

Split

114 wfoutput123011 wordlist1 0d934584cbc124eed93c4464ab178a5d

117 wfoutput125819 wordlist1 0d934584cbc124eed93c4464ab178a5d

114 wfoutput123011 wordlist2 1bc6ffead85bd62b5a7a1be1dc672006

117 wfoutput125819 wordlist2 1bc6ffead85bd62b5a7a1be1dc672006

Analysis
1

114 wfoutput123011 analysis1 494f24e426dba5cc1ce9a132d50ccbda

117 wfoutput125819 analysis1 494f24e426dba5cc1ce9a132d50ccbda

Analysis
2

114 wfoutput123011 analysis2 127e8dbd6beffdd2e9dfed79d46e1ebc

117 wfoutput125819 analysis2 127e8dbd6beffdd2e9dfed79d46e1ebc

Merge
114 wfoutput123011 merge_output d0bd408843b90e36eb8126b397c6efed

117 wfoutput125819 merge_output d0bd408843b90e36eb8126b397c6efed

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

56

the Table 3, here both given workflows are
compared with each other. For instance, the hash
value of wordlist1 produced by the Split job of
workflow 117 is compared with the hash value of
wordlist1 produced by the Split job of workflow
114. If both the hash values are same, the algorithm
returns true. This process is repeated for all the files
produced by both workflows. The algorithm
confirms the verification of workflow outputs if the
corresponding files in both workflows have the same
hash values. Otherwise, the verification process
fails.

6 CONCLUSION AND FUTURE
DIRECTION

In this paper, the motivation and the issues related to
workflow reproducibility due to workflow execution
on the Cloud infrastructure have been identified. The
dynamic nature of the Cloud makes provenance
capturing of workflow(s) and their underlying
execution environment(s) and their reproducibility a
difficult challenge. A workflow reproducibility model
(discussed in section 3) has been presented after
analysing the literature and workflow execution
scenario on the Cloud infrastructure. A proposed
architecture has been presented that can augment the
existing workflow provenance with the information of
the Cloud infrastructure. Combining these two can
assist in re-provisioning the similar execution
environment to reproduce a workflow execution. The
Cloud infrastructure information collection
mechanism has been presented in this paper in section
4.1. This mechanism iterates over the workflow jobs
and establishes mappings with the resource
information available on the Cloud. This job to Cloud
resource mapping can then be used to reproduce a
workflow execution. The process of reproducing a
workflow execution with the proposed approach has
been discussed in section 4.2. In this paper, the
workflow reproducibility is verified by comparing the
outputs produced by the workflows. An algorithm has
been discussed in section 4.3 (see Figure 4) that
compares the outputs produced by two given
workflows. A python-based prototype was developed
for evaluating the proposed approach. The results
show that the proposed approach can capture the
Cloud-aware provenance information (as discussed in
section 4) by collecting the information related to
Cloud infrastructure (virtual machines) used during a
workflow execution. It can then provision a similar
execution infrastructure i.e. same resource configure-

tion on the Cloud using the Cloud-aware provenance
information to reproduce a workflow execution. In
future, the proposed approach will be extended and a
detailed evaluation of the proposed approach will be
conducted. Different performance matrices such as
the impact of the proposed approach on workflow
execution time, impact of different resource
configuration on workflow execution performance,
and total resource provision time will also be
measured. In this paper, only workflow outputs have
been used to compare two workflows’ provenance
traces. In future, the comparison algorithm will also
incorporate workflow structure and execution
infrastructure (as discussed in section 3) to verify
workflow reproducibility. The proposed approach has
not addressed the issue of securing the stored Cloud-
aware provenance. In future, the presented
architecture will be extended by adding a security
layer on top of the collected Cloud-aware provenance.

ACKNOWLEDGEMENTS

This research work has been funded by a European
Union FP-7 project, N4U – neuGrid4Users. This
project aims to assist the neuro-scientific community
in analysing brain scans using workflows and
distributed infrastructure (Grid and Cloud) to
identify biomarkers that can help in diagnosing the
Alzheimer disease. Besides this, the support
provided by OSDC by offering a free Cloud
infrastructure of 20 cores is highly appreciated. Such
public offerings can really benefit research and
researchers who are short of such resources.

REFERENCES

(2014). GriPhyN: http://www.phys.utb.edu/griphyn/ [Last
visited 30-12-2014].

(2014). SDSS: http://www.sdss.org [Last visited 30-12-
2014].

Azarnoosh, S., Rynge, M., Juve, G., Deelman, E., Niec,
M., Malawski, M., and da Silva, R. (2013).
Introducing precip: An api for managing repeatable
experiments in the cloud. In 5th IEEE Conference on
Cloud Computing Technology and Science
(CloudCom), volume 2, pages 19–26.

Belhajjame, K., Roos, M., Garcia-Cuesta, E., Klyne, G.,
Zhao, J., De Roure, D., Goble, C., Gomez-Perez, J.
M., Hettne, K., and Garrido, A. (2012). Why
workflows break - understanding and combating decay
in taverna workflows. In Proceedings of the 2012
IEEE 8th International Conference on E-Science (e-

Using�Cloud-Aware�Provenance�to�Reproduce�Scientific�Workflow�Execution�on�Cloud

57

Science’12), pages 1–9, USA. IEEE Computer
Society.

Stodden, V. C. (2010). Reproducible research: Addressing
the need for data and code sharing in computational
science. Computing in Science & Engineering, 12.

Chirigati, F., Shasha, D., and Freire, J. (2013). Reprozip:
Using provenance to support computational
reproducibility. In Proceedings of the 5th USENIX
Workshop on the Theory and Practice of Provenance,
TaPP ’13, pages 1–4, Berkeley, USA. USENIX
Association.

Oliveira, D., Ogasawara, E., Bai ̃ao, F., and Mattoso, M.
(2010). Scicumulus: A lightweight cloud middleware
to explore many task computing paradigm in scientific
workflows. In Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, pages 378–385.

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Patil, S., Su, M.-H., Vahi, K., and Livny, M. (2004).
Pegasus: Mapping scientific workflows onto the grid.
In Dikaiakos, M., editor, Grid Computing, volume
3165 of Lecture Notes in Computer Science, pages
11–20. Springer Berlin Heidelberg.

Deelman, E., Gannon, D., Shields, M., and Taylor, I.
(2008). Workflows and e-science: An overview of
workflow system features and capabilities.

Foster, I. and Kesselman, C., editors (1999). The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers Inc., USA.

Foster, I., V ̈ockler, J., Wilde, M., and Zhao, Y. (2002).
Chimera: a virtual data system for representing,
querying, and automating data derivation. In Scientific
and Statistical Database Management, Proceedings.
14th International Conference on, pages 37–46.

Foster, I., Zhao, Y., Raicu, I., and Lu, S. (2008). Cloud
computing and grid com- puting 360-degree
compared. In Grid Computing Environments
Workshop, 2008. GCE ’08, pages 1–10.

Groth, P., Deelman, E., Juve, G., Mehta, G., and
Berriman, B. (2009). Pipeline- centric provenance
model. In Proceedings of the 4th Workshop on Work-
flows in Support of Large-Scale Science, WORKS
’09, pages 4:1–4:8, USA. ACM.

Howe, B. (2012). Virtual appliances, cloud computing,
and reproducible re- search. Computing in Science
Engineering, 14(4):36–41.

Janin, Y., Vincent, C., and Duraffort, R. (2014). Care, the
comprehensive archiver for reproducible execution. In
Proceedings of the 1st ACM SIG- PLAN Workshop
on Reproducible Research Methodologies and New
Publication Models in Computer Engineering, TRUST
’14, pages 1:1–1:7, USA. ACM.

Juve, G. and Deelman, E. (2010). Scientific workflows
and clouds. Crossroads, 16(3):14–18.

Kim, J., Deelman, E., Gil, Y., Mehta, G., and Ratnakar, V.
(2008). Provenance trails in the wings-pegasus system.
Concurr. Comput. : Pract. Exper., 20(5):587–597.

Ko, R., Lee, B., and Pearson, S. (2011). Towards
achieving accountability, auditability and trust in
cloud computing. In Advances in Computing and
Communications, volume 193 of Communications in

Computer and Information Science, pages 432–444.
Springer Berlin Heidelberg.

Lifschitz, S., Gomes, L., and Rehen, S. K. (2011). Dealing
with reusability and reproducibility for scientific
workflows. In Bioinformatics and Biomedicine
Workshops (BIBMW), 2011 IEEE International
Conference on, pages 625–632. IEEE. 38, 69.

Macko, P., Chiarini, M., and Seltzer, M. (2011).
Collecting provenance via the xen hypervisor. 3rd
USENIX Workshop on the Theory and Practice of
Provenance (TAPP).

Mehmood, Y., Habib, I., Bloodsworth, P., Anjum, A.,
Lansdale, T., and McClatchey, R. (2009). A
middleware agnostic infrastructure for neuro- imaging
analysis. In Computer-Based Medical Systems, 2009.
CBMS 2009. 22nd IEEE International Symposium on,
pages 1–4.

Mei, L., Chan, W. K., and Tse, T. H. (2008). A tale of
clouds: Paradigm comparisons and some thoughts on
research issues. In Proceedings of the 2008 IEEE
Asia-Pacific Services Computing Conference, APSCC
’08, pages 464–469, USA. IEEE Computer Society.

Mell, P. M. and Grance, T. (2011). Sp 800-145. the nist
definition of cloud computing. Technical report,
Gaithersburg, MD, United States.

Missier, P., Woodman, S., Hiden, H., and Watson, P.
(2013). Provenance and data differencing for
workflow reproducibility analysis. Concurrency and
Computation: Practice and Experience.

Munir, K., Kiani, S. L., Hasham, K., McClatchey, R.,
Branson, A., and Sham- dasani, J. (2013). An
integrated e-science analysis base for computation
neuroscience experiments and analysis. Procedia -
Social and Behavioral Sciences, 73(0):85 – 92.
Proceedings of the 2nd International Conference on
Integrated Information (IC-ININFO 2012), Budapest,
Hungary, August 30 – September 3, 2012.

Munir, K., Liaquat Kiani, S., Hasham, K., McClatchey, R.,
Branson, A., and Shamdasani, J. (2014). Provision of
an integrated data analysis platform for computational
neuroscience experiments. Journal of Systems and In-
formation Technology, 16(3):150–169.

Ramakrishnan, L. and Plale, B. (2010). A multi-
dimensional classification model for scientific
workflow characteristics. In Proceedings of the 1st
International Workshop on Workflow Approaches to
New Data-centric Science, Wands ’10, pages 4:1–
4:12, USA. ACM.

Roure, D. D., Manuel, J., Hettne, K., Belhajjame, K.,
Palma, R., Klyne, G., Missier, P., Ruiz, J. E., and
Goble, C. (2011). Towards the preservation of
scientific workflows. In Procs. of the 8th International
Conference on Preservation of Digital Objects (iPRES
2011). ACM.

Sandve, G. K., Nekrutenko, A., Taylor, J., and Hovig, E.
(2013). Ten sim- ple rules for reproducible
computational research. PLoS Comput Biol,
9(10):e1003285.

Santana-Perez, I., Ferreira da Silva, R., Rynge, M.,
Deelman, E., P érez- Hern ́andez, M., and Corcho, O.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

58

(2014a). A semantic-based approach to attain
reproducibility of computational environments in
scientific work- flows: A case study. In Parallel
Processing Workshops, volume 8805 of Lecture Notes
in Computer Science, pages 452–463. Springer
International Publishing.

Santana-Perez, I., Ferreira da Silva, R., Rynge, M.,
Deelman, E., Perez- Hernandez, M. S., and Corcho, O.
(2014b). Leveraging semantics to improve
reproducibility in scientific workflows. In The
reproducibility at XSEDE workshop.

Scheidegger, C., Koop, D., Santos, E., Vo, H., Callahan,
S., Freire, J., and Silva, C. (2008). Tackling the
provenance challenge one layer at a time. Concurr.
Comput. : Pract. Exper., 20(5):473–483.

Shamdasani, J., Branson, A., and McClatchey, R. (2012).
Towards semantic provenance in cristal. In Third
International Workshop on the role of Se- mantic Web
in Provenance Management (SWPM 2012).

Simmhan, Y. L., Plale, B., and Gannon, D. (2005). A
survey of data provenance in e-science. SIGMOD
Rec., 34(3):31–36.

SMS, C., CE, P., D, O., MLM, C., and M., M. (2011).
Capturing distributed provenance metadata from
cloud-based scientific workflows. Information and
Data Management, 2:43–50.

Stallings, W. (2010). Cryptography and Network Security:
Principles and Prac- tice. Prentice Hall Press, Upper
Saddle River, NJ, USA, 5th edition.

Stevens, R. D., Robinson, A. J., and Goble, C. A. (2003).
myGrid: personalised bioinformatics on the
information grid, Bioinformatics, 19:i302–i304.

Tan, Y. S., Ko, R. K., Jagadpramana, P., Suen, C. H.,
Kirchberg, M., Lim, T. H., Lee, B. S., Singla, A.,
Mermoud, K., Keller, D., and Duc, H. (2012).
Tracking of data leaving the cloud. 2013 12th IEEE
International Confer- ence on Trust, Security and
Privacy in Computing and Communications, 0:137–
144.

Tannenbaum, T., Wright, D., Miller, K., and Livny, M.
(2002). Beowulf cluster computing with linux. chapter
Condor: A Distributed Job Scheduler, pages 307–350.
MIT Press, Cambridge, MA, USA.

Vouk, M. (2008). Cloud computing #x2014; issues,
research and implementa- tions. In Information
Technology Interfaces, 2008. ITI 2008. 30th Interna-
tional Conference on, pages 31–40.

Zhang, O. Q., Kirchberg, M., Ko, R. K., and Lee, B. S.
(2011). How to track your data: The case for cloud
computing provenance. In Cloud Computing
Technology and Science (CloudCom), 2011 IEEE
Third International Conference on, pages 446–453.
IEEE.

Zhao, X., Zhang, Y., Wu, Y., Chen, K., Jiang, J., and Li,
K. (2014). Liquid: A scalable deduplication file
system for virtual machine images. Parallel and
Distributed Systems, IEEE Transactions on,
25(5):1257–1266.

Zhao, Y., Fei, X., Raicu, I., and Lu, S. (2011).
Opportunities and challenges in running scientific

workflows on the cloud. In Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC), 2011
International Con- ference on, pages 455–462.

Using�Cloud-Aware�Provenance�to�Reproduce�Scientific�Workflow�Execution�on�Cloud

59

