
Supporting Multiple Persistence Models for PaaS
Applications using MDE
Issues on Cloud Portability

Elias Adriano Nogueira da Silva1, Daniel Lucrédio2, Ana Moreira3 and Renata Fortes1

1ICMC-USP, São Carlos, Brazil
2DC-UFSCar, São Carlos, Brazil

3NOVA-LINCS, FCT - UNL, Lisboa, Portugal
feliasnog,renatag@icmc.usp.br, daniel@dc.ufscar.br, amm@fct.unl.pt

Keywords: Cloud Computing, Model-driven Engineering, Platform-as-a-Service, Portability, Persistence.

Abstract: In cloud computing, lock-in refers to the difficulty of porting an application from one platform to another. An
example of such difficulty can be witnessed when porting an application from Platform-as-a-Service Google
App Engine to Microsoft Azure. Differences in their implementations are substantial, yielding non-portable
applications. Standardization could address this problem, but existing initiatives are still to be accepted. This
paper addresses lock-in by proposing a model-driven engineering design approach that decouples platform
specific code from the application logic. The resulting platform-independent models, as well as corresponding
model transformations, can be reused to generate distinct platform-specific implementations, hence reducing
the programming effort spent coding repetitive tasks. Such transformations can be made available for reuse on
a repository for cloud providers. We have implemented transformations to handle persistence for Google App
Engine and Azure, and discuss how model-driven engineering can reconcile the differences between features
of the persistence models of GAE and Azure.

1 INTRODUCTION

In a recent report, the IEEE Computer Society1 high-
lights 22 technologies with potential to change the
scenario of computer science and its role in industry
until 2022 (Alkhatib et al., 2014). Apart from fore-
seeing relevant research roadmaps, it also discusses a
vision for each of those technologies. One such tech-
nology is cloud computing.

Cloud computing is not a new technological
model, but the integration of technologies from the
past (Chen et al., 2011). What is new though, is the
different ways in which it is used to provide comput-
ing power as-a-service through the Internet. Accord-
ing to Armbrust et al., cloud computing permits ac-
quiring computing resources on demand, enables pay-
ment according to the utilization volume, and allows a
company to ignore the sources of the resources (Arm-
brust et al., 2009).

Several technological requirements are needed for
the cloud model to operate properly. The most com-
mon are virtualization technologies, standards and in-

1http://www.computer.org/

terfaces that allow shared access, facilitated instan-
tiation and management of virtual servers (IaaS –
Infrastructure-as-a-Service). Moreover, there are dif-
ferent kinds of resources in the cloud. Load balanc-
ing, data persistence and analytics are just some of
the many options available for application developers.
Given this variety, and depending on its field of exper-
tise, each cloud provider offers a different set of com-
putational resources. Some even provide a complete
development platform (PaaS – Platform-as-a-Service)
that puts together many different resources under con-
trol of the cloud provider.

Both the heterogeneity and diversity of cloud
services result in increased complexity as well as
reduced reuse and portability of the applications
(da Silva et al., 2013). In practice, some applications
need to be highly specialized with respect to a partic-
ular type of resource (e.g. hardware, platform and/or
set of services), yielding the lock-in problem (Arm-
brust et al., 2009). For example, when choosing a par-
ticular PaaS provider, the application developer usu-
ally has to follow a specific data management system
and programming style. This typically reduces porta-

331



bility, resulting in applications “locked-in” to that par-
ticular environment.

Some strategies based on standardization have
been proposed to address that portability issue (Arm-
brust et al., 2009; Petcu and Vasilakos, 2014). How-
ever, standards take time to define and approve, and
require time to be accepted by a large part of devel-
opment community. Currently, there are so many dif-
ferent standards being proposed (Petcu and Vasilakos,
2014) that even choosing one may be a difficult task.
Moreover, cloud providers may wish to use specific
technologies to create solutions that are aligned with
their own business requirements, hence choosing not
to follow the standards. Thus, until standardization
becomes a fact, the portability problem, and in partic-
ular lock-in, remains.

We have been exploring how Model-Driven Engi-
neering (MDE) (see Section 2) can be used to address
portability (da Silva et al., 2013) Approaches based
on MDE (France and Rumpe, 2007) have been inves-
tigated in several other contexts and may constitute
an interesting alternative to address the problem. Our
long-term goal is to build a repository of MDE trans-
formations and use code generation to reduce the de-
velopment effort for each platform, consequently re-
ducing repetitive programing tasks, increasing porta-
bility and minimizing the lock-in effects.

The present paper takes Google App Engine
(GAE) and Microsoft Azure, two well-known plat-
forms available in the market, and shows how MDE
conciliates the differences between their cloud persis-
tence models. We show how these differences can be
hidden behind a single conceptual model and discuss
a set of MDE artifacts to support this idea. This can
be seen as an abstraction layer that allows specifying
entities and a set of code generators that use these en-
tities to build similar persistence models even if the
storage mechanisms are different.

The two central points of the idea are (i) using
a DSL for modeling entities and (ii) building a set
of transformations that can generate code for dif-
ferent targets from the same set of source models.
Such code-generation approach allows developers fo-
cusing on platform-independent models, thus achiev-
ing portability by reducing the lock-in effects. Both
the models created using DLS and their respective
transformations for various different platforms can be
made available in a repository for reuse.

In a previous paper (da Silva et al., 2013) we dis-
cuss the general approach, but we do not show how
persistence is dealt with, which is one of the most
interesting parts of our work. Here we extend that
work, presenting the differences between the persis-
tence models of GAE and Azure. We also show

details of how these differences can be conciliated
through an MDE process, resulting in applications
that can be more easily ported between these two
cloud providers.

As our approach is generic, transformations con-
sidering standards may also be added to the repository
later. Although the typical claimed MDE-benefits are
expected (e.g., facilitated maintenance and increased
productivity), an analysis of the economic viability of
creating and maintaining a repository of transforma-
tions is out of the scope of this paper2.

The rest of this paper is organized as follows. Sec-
tion 2 presents some conceptual background, includ-
ing a more detailed definition of the lock-in problem,
the different types of cloud portability, concepts of
MDE and an overview of the previously proposed
MDE approach. Section 3 discusses the two plat-
forms that were the subject of this study (GAE and
Azure), focusing on the differences in their persis-
tence models. Section 4 presents our proposed solu-
tion using MDE and Section 5 discusses some points
about the performed evaluation of the proposal. Sec-
tion 6 presents related work and, finally, Section 7
concludes with some final remarks and future work.

2 BACKGROUND

This section starts with a discussion of lock-in and
known types of portability. It then introduces model-
driven engineering, and finishes with a summary of
our vision on the use of MDE to support PaaS porta-
bility.

2.1 The Lock-in Problem

Lock-in is the difficulty faced to move data and pro-
grams from one cloud platform to run on another one
(Armbrust et al., 2009). This is a major issue in the
PaaS scenario: in order to take advantage of a very
flexible cloud architecture, the applications are devel-
oped conforming to the specificity of the chosen plat-
form. For example, to offer great elasticity, the GAE
PaaS provider imposes a specific programming style
and specific data management policy. Thus, an ap-
plication developed for it may not be easily ported to
a different PaaS provider, nor can its data. Even if
the developer wants to host an application in his own
private cloud later, considerable effort may be neces-
sary to rebuild the code, redeploy it, and migrate all

2Mohaghegi and Dehlen presented a review of experi-
ences from applying MDE in industry (Mohagheghi and
Dehlen, 2008).

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

332



the data. This lack of portability causes the lock-in
effect.

The possibility of becoming “locked in” on a par-
ticular platform, not being able to choose a different
one later (customer lock-in), leaves developers in a
difficult position. They mostly fear being charged
abusive fees later, or having their applications un-
available due to lack of service quality (Armbrust
et al., 2009).

2.2 Types of Portability

Prior to deciding on the adoption of a cloud model,
an organization should take into account the viabil-
ity of the one that better fits its business. It must
carefully analyze the constraints related to cloud plat-
forms, both technical and organizational (da Silva
et al., 2013), as well as its business requirements
(Khajeh-Hosseini et al., 2011).

Portability is a key attribute for the improvement
and dissemination of the cloud model.The existing
literature discusses four main types of portability in
the cloud scenario: (i) portability of virtual machines
between cloud providers, (ii) portability of applica-
tions in the context of IaaS, (iii) portability of PaaS
applications and (iv) data portability between cloud
providers(Bozman, 2010; Petcu et al., 2013; Ran-
abahu and Sheth, 2010; Shirazi et al., 2012).

This paper focuses on portability of PaaS appli-
cations. However, the code generators and repository
proposed here can be used in other contexts. Petcu
et al. present a list of initiatives to handle portability
(Petcu and Vasilakos, 2014). They also discuss the
reasons, scenarios, taxonomies, measurements, and
requirements for portability. Several other authors are
also looking at the problem and proposing alternatives
to address it (see Section 6). One such alternative is
the use of model-driven engineering (MDE).

2.3 Model-Driven Engineering(MDE)

Despite the advancements of the software develop-
ment techniques, concerns about reuse, productivity,
maintenance, documentation, validation, optimiza-
tion, portability and interoperability are still under
discussion.

Model-Driven Engineering (MDE) aims at solv-
ing some of those issues (Kleppe et al., 2003), shift-
ing the focus of modern development methodologies
from implementation to conceptual modeling. Thus,
models are now first-class citizens, and transforma-
tion mechanisms are used to generate code from them,
reducing developers’ effort (Kleppe et al., 2003) and
increasing portability and productivity (da Silva et al.,

2013). The vision is that MDE will reduce the acci-
dental complexity by increasing the level of abstrac-
tion used to develop software.

According to Schmidt, MDE technologies ”offer
a promising approach to address the inability of third-
generation languages to alleviate the complexity of
platforms and express domain concepts effectively”
(Schmidt, 2006). That is exactly our goal: use MDE
to abstract away platform-specific details, building
conceptual domain models that express the essence
and logic of the domain. From these models, applica-
tions can then be generated through automatic trans-
formations, thus reducing the development effort for
implementations on different platforms.

Such models are abstract descriptions or specifi-
cations of the system and are usually represented as a
combination of graphical (Domain-Specific Modeling
Languages – DSML) and textual elements (Domain-
Specific Languages – DSL) (Brambilla et al., 2012).
DSLs are small languages focused on a particu-
lar problem/domain, and are normally declarative
(Deursen et al., 2000). The language definition usu-
ally requires a metamodel which is capable of cap-
turing the common and variable points of a specific
domain (Brambilla et al., 2012; Deursen et al., 2000).

2.4 A Model-driven Approach for
Cloud PaaS Portability

In a previous study (da Silva et al., 2013) we dis-
cussed a vision for using MDE to increase cloud PaaS
portability, and discussed how to build a DSL and
a set of code transformations, based on the Model-
View-Controller (MVC) architecture, to reduce the
effort of developing cloud applications. We also pre-
sented a DSL metamodel, samples of code trans-
formations, the grammar of the DSL and a quasi-
experiment (Wohlin et al., 2000; Juristo and Moreno,
2010) showing that MDE helps both reducing the de-
velopment effort and achieving portability. Fig. 1
summarizes the methodology followed.

Adopting a typical MDE life-cycle, this method-
ology obeyed to the following strategy:

1. Case studies were developed to identify the main
concepts of PaaS. These studies involved a care-
ful analysis of the different providers’ documen-
tation, as well as the development of sample ap-
plications for different platforms.

2. Next, these concepts were used to prototype a
specification language. This language serves
to support the creation of platform-independent
models that developers will use to specify the ap-
plications’ structure and logic. This step involves

Supporting�Multiple�Persistence�Models�for�PaaS�Applications�using�MDE�-�Issues�on�Cloud�Portability

333



Figure 1: A MDE approach for cloud PaaS portability.

the development of a domain metamodel and a
concrete syntax.

3. Based both on the case studies and on the specifi-
cation language, transformations were defined to
automatically generate code for cloud platforms.

4. Tests were performed to verify the conformance
between the generated code and the platforms’ re-
quirements.

3 PERSISTENCE IN PaaS

The PaaS model leverages the flexibility of the cloud
model, by providing a complete platform for soft-
ware development. A cloud platform hides many of
the complexities of developing cloud software, there-
fore increasing scalability and elasticity. In the PaaS
model, the development platform is provided as-a-
service. Applications that are developed for this par-
ticular platform can benefit from a specific program-
ming model that can be fully, fine grained, managed
by the platform provider.

Among the existing platforms, we selected two
well-known ones for developing our prototype: the
Google App Engine3 (GAE) and the Windows Azure.
However, as the developed DSL is platform indepen-
dent (although domain dependent), it can be used to
generate code for any other platform. One of the ser-
vices managed by the provider is data persistence. By
defining its own way to store data, a provider may in-
corporate services such as load balancing, automatic
data distribution and optimized querying. This is so
for the two selected platforms for our study. Both
GAE and Azure offer PaaS solutions incorporating
NoSQL storage. This service is provided to applica-
tions through simple configuration steps.

3https://cloud.google.com/appengine

Actually, Azure offers two types of cloud services:
IaaS and PaaS. It is not hard porting an IaaS applica-
tion because this offer is based on virtual machines
(VM). Just migrating a VM from one provider to an-
other causes little impact on the systems being virtu-
alized, as all that is needed for them to run is a copy
of the virtual disk. The Open Virtualization Format
(OVF4) makes this task even easier, by providing a
standard format so that there is little effort to port a
virtual machine from one provider to another, as long
as both support this format. The main issue in this
case is to choose a different provider that accepts the
same VM format5.

However, in terms of PaaS, both Azure and GAE
offer solutions based on Java servlets and JSP with
NoSQL storage. Even if they allow the same set of
technologies (Java based), applications implemented
for them are not portable. This happens mainly be-
cause of the differences between their persistence
models. (Section 3 discusses these models in detail.)
Indeed, Gorton in a post6 at Software Engineering In-
stitute’s blog and Armbrust et al. (Armbrust et al.,
2010) highlight that the differences in data manage-
ment technologies make applications less reusable by
different providers.

The next subsections present specific details of
each platform persistence model, and finish with a
discussion of the main issues found.

3.1 Google App Engine

Google App Engine DataStore is typically one of the
first choices for big data applications. The DataStore
is GAE’s native API and its scalability is managed by
the platform itself, which means that the user does not
need to worry about the actual storage details.

GAE’s DataStore offers two mechanisms to spec-
ify persistent entities: Java Data Objects7 (JDO) and
Java Persistence API8 (JPA) . The JDO and JPA inter-
faces are implemented using the Datanucleus9 plat-
form, which is an open-source implementation of
JDO and JPA. With JDO/JPA, GAE allows the def-
inition of simple entity relationships. As a result,
even without direct relational support from the actual

4OVF: http://www.dmtf.org/standards/ovf
5Paasify may be an interesting solution to select com-

patible PaaS: http://www.paasify.it/vendors.
6http://blog.sei.cmu.edu/post.cfm/importance-software-

architecture-big-data-systems-013
7http://www.oracle.com/technetwork/java/index-jsp-

135919.html
8http://www.oracle.com/technetwork/java/javaee/tech/

persistence-jsp-140049.html
9http://www.datanucleus.org/

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

334



database system, applications can use GAE’s DataS-
tore to manage related entities.

For simplicity reasons, we chose JDO for this
study. To persist an entity in GAE’s DataStore, all
that is necessary is to annotate a class according to
the JDO specification. Related entities (one-to-one
and one-to-many) are also managed by GAE automat-
ically through proper annotations.

Let us consider a simple example: a clinical labo-
ratory system must maintain a record of customers,
doctors and examinations; each customer has one
doctor, and each doctor may choose among a set of
examinations to be performed.

The first step is to annotate the classes that repre-
sent persistent entities according to the JDO specifi-
cation. After this, calls to JDO’s CRUD10 methods
can be used directly. In summary, all that is needed to
make an entity persistent are some annotations. The
actual storage of the entity and its related entities is
performed by the platform.

It is important to stress that even with the possibil-
ity to define simple relationships through annotations,
the GAE DataStore service is a NoSQL solution. If a
relational solution is needed, a fully-fledged SQL so-
lution, such as the MySQL-based service offered by
GAE (Google Cloud SQL), is recommended. A trade-
off between scalability and robustness is necessary in
these cases.

3.2 Windows Azure

Windows Azure is the Microsoft’s cloud platform,
which offers different services, such as virtualization,
storage and web hosting. Similarly to GAE, Azure’s
PaaS solution supports regular web-based applica-
tions (pages, controllers and other classes/libraries),
but with a wider choice of languages (.Net, Node.js,
PHP, Java, etc.).

Azure offers persistence through four main stor-
age options:

� Table Storage: this is Azure’s NoSQL persis-
tence solution. It is a simple persistence model
that allows applications to store basic data types
(e.g., integer, string, boolean). It is a highly scal-
able solution, but with three major restrictions.
First, Azure’s Table Storage structures do not di-
rectly support relationships between entities. Sec-
ond, there is a limit of 255 properties per entity,
and every entity must define at least two proper-
ties for identification, which leaves 253 properties
for general use. Third, data in a single entity can-
not exceed one MByte.

10CRUD: Create, Retrieve, Update and Delete.

� SQL Database: formerly known as SQL Azure,
this is a fully managed relational database service.
Being a relational database, it is not as scalable as
the NoSQL service.

� SQL Server in Windows Azure VM: if the de-
veloper wants more control over the DBMS, he
may opt to deploy his own instance of SQL Server
in a virtual machine. This renders more control,
but also requires more effort to setup, manage the
database server, and the virtual machine.

� Blob Storage: this service supports the storage of
large, non-structured data. It has great scalability,
but it is focused on files like audio and video.

As Azure also allows NoSQL services, which of-
fer a good combination between storage and scala-
bility for big data applications, we also chose this
model in Azure for our study. However, unlike GAE
JDO/JPA-based implementation, Azure does not have
an official support for JPA/JDO. As a result, the de-
veloper has to deal with relationships manually. Ad-
ditionally, there are many restrictions in Azure, for
example: persistence is defined through inheritance,
and not annotations as in GAE; the identification field
(primary key) has to be manually managed.

In Azure Table Storage, entities are stored in table
structures called partitions. One partition can store
multiple entities, which may be of different types.
An entity has a unique identification field. Partition
names and identification fields are both strings, and
are inherited by the entity classes.

To perform CRUD operations, the Table Storage
API has some predefined methods. Listing 1 shows
an example of how an entity can be persisted. The
method “saveOrUpdate” (line 1) is used to either cre-
ate or update an entity. First, a table client object is
obtained (“tableClient”), based on some predefined
connection string (line 2). Next, a table operation is
created, in this case, to insert or replace an entity (line
3). Then, the table (partition) is created, if it does
not exist already (line 5). Finally, the operation is ex-
ecuted (line 6). In this example, for simplicity, the
name of the partition and of the entity class will be
the same.

Listing 1: Persisting an entity in Azure.

1 public void saveOrUpdate(
TableServiceEntity tse) {

2 CloudTableClient tableClient =
CloudStorageAccount.parse(
storageConnectionString).
createCloudTableClient();

3 TableOperation tableOperation =
TableOperation.
insertOrReplace(tse);

4 try {

Supporting�Multiple�Persistence�Models�for�PaaS�Applications�using�MDE�-�Issues�on�Cloud�Portability

335



5 tableClient.getTableReference
(tse.getClass().
getSimpleName()).
createIfNotExist();

6 tableClient.execute(tse.
getClass().getSimpleName
(), tableOperation);

7 } catch (StorageException e) {
... }

8 }

Dealing with relationships requires manual man-
agement of the id fields. For one-to-one relationships,
it is possible to simply store the id field of the related
(dependent) entity as a property in the container en-
tity. For example, in the customer-has-a-doctor one-
to-one relationship, to obtain the doctor for a given
customer, first we obtain its id field, and then we per-
form a query in the Doctor table.

For one-to-many or many-to-many relationships,
the strategy is to maintain a separate entity for rela-
tionships. Listing 2 illustrates the idea. In this exam-
ple, “Relationship” (line 1) is a persistent entity that
merely stores two string values: the “end1” and the
“end2” (lines 2 and 3), each representing an end of
the relationship. This entity will be stored in a parti-
tion of its own, called “Relationship” (line 5).

Listing 2: Persistent relationship in Azure.

1 public class Relationship extends
TableServiceEntity {

2 private String end1;
3 private String end2;
4 public Relationship() {
5 this.partitionKey = "

Relationship";
6 }
7 ... setters and getters ...
8 }

The “Relationship” entity from Listing 2 can be
used to establish a relationship between any two en-
tities. A Method “saveRelationship” realises a rela-
tionship between two entities, instantiating the “Rela-
tionship” entity and persisting it using calls to Azure’s
API.

Once the relationship is established, retrieving all
related entities can be done by searching through the
“Relationship” partition. The example of Listing 3
shows a way to implement this strategy. The method
“getAllRelatedEntities” (line 1) gets all entities re-
lated to a given entity. The id of the containing en-
tity and the class of the related entity are provided as
arguments. First, all relationships are retrieved (line
2) through the “getAll” method, which is not shown
here but should be trivial to imagine. Then, the re-
sulting list is iterated in search for instances that have

a matching “end1” property (lines 4-5). For those
matching relationships, the instance corresponding to
the “end2” is retrieved and added to the result (line 6).
A method “retrieve”, which is not shown here, looks
into the partition of the corresponding entity class and
returns the instance itself.

Listing 3: Retrieving related entities in Azure.

1 public List getAllRelatedEntities(
String end1Id , Class end2Class) {

2 List <Relationship > temp = getAll(
Relationship.class);

3 List result = new ArrayList();
4 for (Relationship r : temp) {
5 if (r.getEnd1().equals(end1Id

)) {
6 result.add(retrieve(

end2Class , c.getEnd2
()));

7 }
8 }
9 return result;

10 }

The implementation of Listing 3 is not very ef-
ficient, as it examines all relationships every time.
However, it is not difficult to optimize this code with
more refined structures such as trees or hash func-
tions.

3.3 Difficulties in Conciliating Both
Persistence Models

Although both GAE and Azure offer NoSQL services,
GAE adds a layer that facilitates the management of
relationships between persistent entities, while Azure
demands some additional effort to be able to de-
liver similar functionality. The problem, however, is
not the extra effort required by Azure. In fact, the
jpa4azure11 third-party API, adds an object-relational
mapping layer to Azure, similar to what is natively
available in GAE. (At the time we started our re-
search, this API was not stable, at least according to
our tests; so we decided to implement our own layer.)
The problem, really, is that even allowing the use of
the same set of technologies, the differences between
the platforms impose specific programming styles on
developing for each one. For this reason, the effort
spent on specific programing tasks cannot be reused.
Even considering the existence of a common API, the
problem remains, due to the differences between the
implementations and storage philosophies. Standard-
ization could be an alternative, but as we discussed
before, it is not the path followed in this work.

11https://jpa4azure.codeplex.com/

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

336



Hence, despite the apparent similarities of the
platforms (which use the same set of technologies:
Java back-end, web-based front-end, and NoSQL per-
sistence), the resulting applications have considerable
differences. If for a small application like the one pre-
sented here the differences are so substantial, in a real
case, managing thousands of persistent entities, the
effort of developing such a system can increase very
fast. If we consider other platforms, supporting differ-
ent technologies such as Redis12 or memcacheDB13,
the problem becomes even worse.

We argue that MDE can solve the portability prob-
lem in a more fundamental way, reaching flexibil-
ity levels that no API or standard can provide. The
next section describes our proposal, based on a single
platform-independent development model that hides
the details of the platforms. This proposal also helps
to reduce the extra effort needed by Azure, or any
other platform that uses different technology.

4 SUPPORTING MULTIPLE PAAS
PERSISTENCE MODELS
USING MDE

This section presents a model implemented using the
previously developed DSL, discusses the specific de-
tails of the generated code for GAE and Azure, gives a
synthesis of the whole generation process, and offers
some highlights on the work done.

Listing 4 presents the model for the clinical labo-
ratory system. This example uses the language pre-
sented in a previous work (da Silva et al., 2013),
which is summarized next. First, the model defines
some basic configuration properties, such as the ap-
plication name (line 1), visual theme (line 2), version
(line 3), title (line 4), and a set of tabs to be displayed
in the main interface (lines 5-10). Next are the entities
and their relationships. The syntax is straightforward.
Some points to highlight are the definition of the pri-
mary keys (lines 14, 27 and 34), which are inspired by
JDO’s annotations, and the possibility to define cus-
tom labels to be displayed in the main interface (line
36).

Listing 4: Model of the clinical laboratory system.

1 application weblab {
2 theme = "default"
3 version 1
4 title "WebLab - Exam Requests"
5 tab tab1 {

12http://redis.io/
13http://memcachedb.org/

6 title "Requests"
7 contains : Customer
8 contains : Examination
9 contains : Doctor

10 }
11 }
12

13 entity Customer {
14 pk { id:Key(strategy=IDENTITY)

readOnly=true }
15 property name : String
16 property address : String
17 property email : String
18 property phone1 : String
19 property phone2 : String
20 property birth : Date
21 property doctor : Doctor
22 property gender : String
23 property examinations : Examination

[]
24 }
25

26 entity Examination {
27 pk { id:Key(strategy=IDENTITY)

readOnly = true }
28 property name : String
29 property material : String
30 property price : Double
31 }
32

33 entity Doctor {
34 pk { id:Key(strategy=IDENTITY)

readOnly= true }
35 property name : String
36 property nr : String title = "

License Number"
37 }

Listing 4 also shows the relationships established
for this system. One customer has one doctor (line
21) and many examinations (line 23 - the [] suffix in-
dicates that a property may have multiple instances).
These appear in the model as properties mapped to
other entities.

We developed two sets of transformations, one for
GAE and another for Azure. A more generic view of
this process can be seen in previous work (da Silva
et al., 2013). Here we extend that description by de-
tailing how persistence can be handled. The result-
ing transformations are to be collected to populate our
repository.

4.1 Generating Persistence Code for
GAE

Since GAE has JDO support, the transformations are
not too difficult to define. One JDO-annotated Java
class is generated for each persistent entity, includ-
ing its properties and relationships. There is a single,

Supporting�Multiple�Persistence�Models�for�PaaS�Applications�using�MDE�-�Issues�on�Cloud�Portability

337



generic, non-generated data-access object (DAO) that
performs basic CRUD operations. The invocations of
the CRUD operations for each entity are generated
in specific controller classes. One controller class is
generated for each entity.

Listing 5 shows part of the generated controller
class for the “Customer” entity in GAE. The method
“saveCustomer” (line 3) persists a customer, given its
properties and the doctor’s id. Among other actions,
such as obtaining parameters from the HTTP request
and dealing with errors and page re-directions, this
controller method retrieves the corresponding doctor
(line 5), associates it with the customer being per-
sisted (line 6), and saves the instance (line 7). Please,
note the calls to the generic DAO in lines 5 and 7.

Listing 5 also shows how one-to-many relation-
ships are persisted. The method “addExaminationTo-
Customer” (line 11) first obtains the related entities,
in this case, customer (line 13) and examination (line
14), then it adds the examination to the customer’s list
of examinations (line 15), and finally it asks DAO to
persist the customer and its examinations (line 16).
Please note the calls to the generic DAO in lines 13,
14 and 16.

Listing 5: Generated Controller for GAE.

1 public class CustomerController {
2 ... // other controller actions
3 public void saveCustomer(Customer

c, int doctorId) {
4 ... // other actions
5 Doctor d = (Doctor)

GenericDAOJDO.INSTANCE.
retrieve(Doctor.class ,
doctorId);

6 c.setDoctor(d);
7 GenericDAOJDO.INSTANCE.save(c

);
8 ... // other actions
9 }

10

11 public void
addExaminationToCustomer(int
customerId , int examinationId
) {

12 ... // other actions
13 Customer c = (Customer)

GenericDAOJDO.INSTANCE.
retrieve(Customer.class ,
customerId);

14 Examination e = (Examination)
GenericDAOJDO.INSTANCE.

retrieve(Examination.
class , examinationId);

15 c.addExamination(e);
16 GenericDAOJDO.INSTANCE.save(c

);
17 ... // other actions
18 }

19 }

4.2 Generating Persistence Code for
Azure

For Azure, one class per persistent entity is generated.
For basic CRUD operations, as well as for dealing
with relationships manually, there is a single, generic,
non-generated data-access object (DAO). Listings 1,
2 and 3 illustrate the idea of how this generic DAO
works. Finally, invocations to the CRUD operations
are generated in controller classes, similarly to GAE.
Listing 6 shows part of the generated controller class
for the “Customer” entity in Azure. It is similar to the
GAE controller, with the following three differences:

� the relationship between customer and doctor
(one-to-one) is based exclusively on the doctor’s
id (line 5);

� ids need to be manually managed. In this case,
and for simplicity, a random unique id is gener-
ated whenever a new entity is persisted (line 6);

� the relationship between customer and examina-
tion (one-to-many) is established by persisting a
new relationship entity (line 13). This “saveRela-
tionship” method is related to relationship shown
in Listing 2.

Listing 6: Generated Controller for Azure.

1 public class CustomerController {
2 ... // other controller actions
3 public void saveCustomer(Customer

c, String doctorId) {
4 ... // other actions
5 c.setDoctor(doctorId);
6 c.setId(UUID.randomUUID().

toString());
7 TableStorage.INSTANCE.save(c)

;
8 ... // other actions
9 }

10

11 public void
addExaminationToCustomer(
String customerId , String
examinationId) {

12 ... // other actions
13 TableStorage.INSTANCE.

saveRelationship(
customerId , examinationId
)

14 ... // other actions
15 }
16 }

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

338



4.3 The Code Generation Process

The architecture of the generated applications is sim-
ilar for GAE and Azure. Two JSP pages (for editing
and listing entities) are generated for each entity, as
well as one persistent class and one controller. Figure
2 illustrates this architecture.

Figure 2: Architecture of the generated applications (GAE
and Azure). Shaded elements are generated. White ele-
ments are non-generated. Black elements represent plat-
form services.

However, there are significant differences between
these two platforms. In GAE, there is no need to man-
ually deal with relationships or identification fields.
Hence, the generated application is simpler, with an-
notated entities and basic controller classes being gen-
erated straightforwardly. A simple, generic DAO was
enough for basic CRUD operations.

For Azure, the generated applications are less sim-
ple. The extra layer to deal with relationships resulted
in a more complex generic DAO. There is also the
need to deal with identification fields.

5 FINAL DISCUSSION

The strategy presented here is similar to Object-
relational mapping (ORM) frameworks like Hiber-
nate. However, while Hibernate uses annotated java
classes or a relational-entity model to generate SQL
commands and other elements of the software such as
classes, views, controllers and database structure, we
use a DSL for modeling entities and generate MVC
applications including annotated classes, based on
specific details of each PaaS embedded in MDE trans-
formations. Both strategies use code generation, but
our approach can be considered as a level above and
could even include ORM frameworks. Once the trans-

formations are defined, the developer no longer needs
to worry about platform-specific details. As long
as the transformations are correct, s/he only needs
to work on the platform-independent model. In the
end, applications developed with our approach can
be made as portable as necessary, by including new
transformations to support other platforms or tech-
nologies.

Adjustments and adaptations in the code genera-
tion process, if necessary, become less frequent over
time, and the investment made through this extra ef-
fort eventually pays off. In this research, the initial in-
frastructure described here was built by a single devel-
oper in a period of 3.2 months, including the time to
study the related technologies (Xtext14 and Xtend15).

From an evidence-based point of view (see for
example (Tichy, 1998; Juristo and Moreno, 2010;
Wohlin et al., 2000)), the case study discussed con-
stitutes some evidence that it is possible to use our
approach to deal with different persistence models at
an higher level of abstraction and to port applications
between different cloud providers. But to reinforce
such evidence, we performed a more careful evalua-
tion.

We defined a set of test cases, which 10 users ex-
ecuted on the same application generated for the two
platforms (GAE and Azure). After executing the tests,
the users perceived no difference in terms of function-
ality, what indicates an evidence that portability can
be achieved by means of our approach. We also ob-
served considerable gains in productivity, due to the
automation power of MDE transformations.

From that evaluation, we concluded that it was
possible to port an application between cloud plat-
forms in such a way that the final users do not perceive
the differences when using the two versions. This is
particularly interesting if we consider that the under-
lying data management mechanisms are different, as
discussed in Section 3. This promotes MDE as a pos-
sible alternative to port application between different
cloud providers.

6 RELATED WORK

There are several different proposals for developing
portable cloud applications, being standardization and
open source software the more popular in the industry.
In academia, many authors also attempt to use MDE
to solve to lock-in problem.

Sharma and Sood (Sharma R., 2011) present a
model-driven approach for interoperability in SaaS

14https://eclipse.org/Xtext/
15http://eclipse.org/xtend/

Supporting�Multiple�Persistence�Models�for�PaaS�Applications�using�MDE�-�Issues�on�Cloud�Portability

339



(Software-as-a-Service). They define the models at
different abstraction levels, based on the separation
of concerns between CIM (Computation Indepen-
dent Model), PIM (Platform Independent Model) and
PSM (Platform Specific Model), hence building on
MDA16. Each level can be composed by one or more
models to specify the structural, functional and be-
havioral aspects of a system. For PIMs a formal defi-
nition of the operations offered by the service is used,
which can be accessed through an interface that must
later be composed with other services to build a com-
plete system. Business rules are specified through the
declaration of restrictions, pre-conditions and post-
conditions and invariants in OCL (Object Constraint
Language). Transformations convert the PIM into
a Web-Service Description Language (WSDL) PSM.
The final step is the transformation of the WSDL PSM
into WSDL specifications. The main difference from
our work is that they use MDE to generate WSDL.
Their approach is for SOA while ours is specific for
cloud PaaS.

Miranda et al. present their vision on how MDE
can support the development of adaptive multi-cloud
applications, thus integrating MDE and Software
Adaptation techniques (Miranda et al., 2013). De-
velopers are requested to tag the components indi-
cating in which cloud they will be deployed. MDE
techniques are then applied to generate an XML-
based cloud deployment plan. The source code and
the XML deployment plan are processed to gener-
ate cloud compliant artifacts to access the underlying
cloud services. This work aims at generating the de-
ployment plan while our targets the design and devel-
opment time.

MODAClouds17 (MOdelDriven Approach for the
design and execution of applications on multiple
Clouds) aims at supporting system developers and op-
erators in exploiting multiple clouds and in migrat-
ing their applications from cloud to cloud as needed
(Ardagna et al., 2012). Its main objective is to provide
methods, a decision support system, an open source
IDE and runtime environment for the high-level de-
sign, early prototyping, semi-automatic code gener-
ation, and automatic deployment of applications on
multiple clouds. It also helps administrators to mon-
itor the services and measure their quality. While
the project is developing a post-fact adoption standard
(Petcu, 2011) with CloudML, a domain-specific mod-
eling language and runtime environment that facili-
tates the specification of cloud application provision-
ing, deployment, and adaptation, we argue that each
enterprise can build its own language or generation

16http://www.omg.org/mda/
17http://www.modaclouds.eu/

strategy more aligned with their business.
The REMICS project proposes an approach for

migrating legacy systems to the cloud (Mohagheghi
and Sæ andther, 2011; Mohagheghi and Dehlen,
2008). Formed by a consortium of several research
institutions, consulting and cloud users, the REMICS
has a robust design. Its main purpose is to specify,
develop and evaluate a tool for migrating services us-
ing MDE. The proposed migration process consists
of understanding the legacy system in terms of its
architecture and functionality, and designing a new
Service-Oriented Architecture (SOA) application that
provides the same or better functionality. This project
is more related to reenginering and migration strate-
gies for legacy applications while ours is for new
ones.

All these approaches use MDE to protect the de-
veloper from platform details, which is one of the in-
tended uses of MDE. Our approach focuses on PaaS
portability, with special emphasis on persistence. Our
results are similar to what is seen in the literature,
combining the portability of MDE with its inherent
productivity benefits, we expect that our efforts sup-
port the leveraging of this new computation model.

A strategy to solve the portability without MDE is
described in (Giove et al., 2013). Giove et al. propose
a library called CPIM (Cloud Provider Independent
Model), that encapsulates PaaS-level services such as
message queues, noSQL, and caching. Instead of re-
lying on the providers following a standard, they add
a mediation layer that hides the details of the under-
lying PaaS provider and exposes a common API that
allows platform-independent code to be developed on
top of it. The result is that applications can be more
easily ported between providers, as long as both sides
of the implementation (application and supporting li-
brary) comply with the mediation layer. Their cur-
rently supported platforms are GAE and Azure, but
new platforms can be added by providing a proper li-
brary to the layer.

Both our approach and the CPIM library attempt
to deal with the differences between PaaS services.
Both agree that standardization may not be the only
solution. And both allow platform-independent ap-
plications to be specified. Our proposal has the ad-
vantage of allowing developers to work on a higher
abstraction level. Therefore, we can collect additional
benefits in terms of productivity and maintenance. On
the other hand, CPIM requires no effort to setup a
modeling and code generation environment, resulting
in less upfront investment and being easier to adopt.
In fact, an hybrid solution, combining MDE and a
mediation layer, could bring benefits from both ap-
proaches.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

340



More research issues and approaches related to the
development of systems to the cloud model can be
found in Armbrust et al. (Armbrust et al., 2009) and
our previous work (da Silva et al., 2013). Cloud com-
puting is still evolving, and research opportunities are
still being identified. The presented approaches are
still being investigated and are far from being mature.
More research and evaluations are still necessary.

7 CONCLUDING REMARKS AND
FUTURE WORK

This paper shows how the differences in cloud per-
sistence models can make an application difficult to
reuse and/or be ported to a different provider. It ex-
tends our previous work (da Silva et al., 2013) on ex-
ploring the use of MDE to overcome portability in
cloud computing, and shows how that previous ap-
proach can be used to solve the persistence related
lock-in issue.

The main contribution of our work is to show that
there is an alternative path to the standardization of
cloud technologies. MDE can increase the portability
of the applications, but it can also lead to additional
benefits inherently associated with it, consequently,
reducing the impacts of lock-in.

Our approach is focused on persistence, and there-
fore it has good support for CRUD operations.

A limitation of our approach, that is inherent to
most MDE approaches, is that if the generated code
needs to be adapted or modified, the MDE life-cycle
can be broken. Changes in the generated code have to
be replicated, either in the models or in the transfor-
mations, which is not a trivial task. This is why it is
often recommended to leave generated code unmodi-
fied18.

In the near future we plan to include more plat-
forms to implement the repository of models and
transformations, and to perform some more evalua-
tions, which includes applying our approach to other
case studies.

ACKNOWLEDGEMENTS

We would like to thank FAPESP (processes
2012/24487-3 and 2012/04549-4), Coordination of
Superior Level Staff Improvement - CAPES and

18There are some efforts to solve the inconsistencies
between changes made manually in generated code (An-
tkiewicz and Czarnecki, 2006; Hettel et al., 2008). Such
research area is often called round-trip engineering.

Brazil-Europe Erasmus Mundus project (process
BM13DM0002) for partially funding this research.

REFERENCES
Alkhatib, H., Faraboschi, P., Frachtenberg, E., Kasahara,

H., Lange, D., Laplante, P., Merchant, A., Milojicic,
D., and Schwan, K. (2014). IEEE CS 2022 Report.

Antkiewicz, M. and Czarnecki, K. (2006). Framework-
specific modeling languages with round-trip engineer-
ing. Model Driven Engineering Languages and Sys-
tems, pages 692–706.

Ardagna, D., Di Nitto, E., Mohagheghi, P., Mosser, S.,
Ballagny, C., D’Andria, F., Casale, G., Matthews, P.,
Nechifor, C.-S., Petcu, D., and Others (2012). Moda-
clouds: A model-driven approach for the design and
execution of applications on multiple clouds. In Mod-
eling in Software Engineering (MISE), 2012 ICSE
Workshop on, pages 50–56. IEEE.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., and Zaharia, M. (2009). Above the clouds:
A Berkeley view of cloud computing. Dept. Electrical
Eng. and Comput. Sciences, University of California,
Berkeley, Rep. UCB/EECS, 28.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., and Zaharia, M. (2010). A view of cloud
computing. Commun. ACM, 53(4):50–58.

Bozman, J. (2010). Cloud Computing: The Need for Porta-
bility and Interoperability. IDC Analyze the Future,
Sponsored by Red Hat, Inc.

Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-
driven software engineering in practice. Synthesis
Lectures on Software Engineering, 1(1):1–182.

Chen, Y., Li, X., and Chen, F. (2011). Overview and analy-
sis of cloud computing research and application. In E
-Business and E -Government (ICEE), 2011 Interna-
tional Conference on, pages 1–4.

da Silva, E. A. N., Fortes, R. P. M., and Lucredio, D. (2013).
A Model-Driven Approach for Promoting Cloud PaaS
Portability. In Anual International Conference on
Software Engineering-CASCON.

Deursen, V., , Klint, A., and Paul and Visser, J. (2000).
Domain-specific languages: An annotated bibliogra-
phy. ACM Sigplan Notices, 35(6):26–36.

France, R. and Rumpe, B. (2007). Model-driven Devel-
opment of Complex Software: A Research Roadmap.
In 2007 Future of Software Engineering, FOSE ’07,
pages 37–54, Washington, DC, USA. IEEE Computer
Society.

Giove, F., Longoni, D., Yancheshmeh, M. S., Ardagna, D.,
and Di Nitto, E. (2013). An approach for the devel-
opment of portable applications on paas clouds. Pro-
ceedings of CLOSER, pages 591–601.

Hettel, T., Lawley, M., and Raymond, K. (2008). Model
synchronisation: Definitions for round-trip engineer-
ing. Theory and Practice of Model Transformations,
pages 31–45.

Supporting�Multiple�Persistence�Models�for�PaaS�Applications�using�MDE�-�Issues�on�Cloud�Portability

341



Juristo, N. and Moreno, A. M. (2010). Basics of soft-
ware engineering experimentation. Springer Publish-
ing Company, Incorporated.

Khajeh-Hosseini, A., Sommerville, I., Bogaerts, J., and
Teregowda, P. (2011). Decision Support Tools for
Cloud Migration in the Enterprise. In Cloud Comput-
ing (CLOUD), 2011 IEEE International Conference
on, pages 541–548.

Kleppe, A., Jos, W., and Wim, B. (2003). MDA Ex-
plained, The Model-Driven Architecture: Practice and
Promise. Addison-Wesley.

Miranda, J., Guillén, J., Murillo, J. M., and Canal, C.
(2013). Development of Adaptive Multi-cloud Appli-
cations - A Model-Driven Approach. In Proceedings
of the 1st International Conference on Model-Driven
Engineering and Software Development, pages 321–
330. SciTePress - Science and and Technology Publi-
cations.

Mohagheghi, P. and Dehlen, V. (2008). Where is the proof?-
A review of experiences from applying MDE in indus-
try. In Model Driven Architecture–Foundations and
Applications, pages 432–443.

Mohagheghi, P. and Sæ andther, T. (2011). Software Engi-
neering Challenges for Migration to the Service Cloud
Paradigm: Ongoing Work in the REMICS Project. In
Services (SERVICES), 2011 IEEE World Congress on,
pages 507–514.

Petcu, D. (2011). Portability and interoperability between
clouds: challenges and case study. In Towards a
Service-Based Internet, pages 62–74. Springer.

Petcu, D., Macariu, G., Panica, S., and Crăciun, C. (2013).
Portable cloud applications—from theory to practice.
Future Generation Computer Systems, 29(6):1417 –
1430. Including Special sections: High Performance
Computing in the Cloud & amp; Resource Discovery
Mechanisms for fP2Pg Systems.

Petcu, D. and Vasilakos, A. V. (2014). Portability in clouds:
approaches and research opportunities. Scalable Com-
puting: Practice and Experience, 15(3).

Ranabahu, A. and Sheth, A. (2010). Semantics Centric So-
lutions for Application and Data Portability in Cloud
Computing. In Cloud Computing Technology and Sci-
ence (CloudCom), 2010 IEEE Second International
Conference on, pages 234–241.

Schmidt, D. C. (2006). Model-driven engineering.
Computer-IEEE computer society-, 39(2):25.

Sharma R., S. M. S. D. (2011). Modeling cloud SaaS with
SOA and MDA. Communications in Computer and
Information Science, 190 CCIS(PART 1):511–518.

Shirazi, M. N., Kuan, H. C., and Dolatabadi, H. (2012).
Design Patterns to Enable Data Portability between
Clouds’ Databases. In Computational Science and Its
Applications (ICCSA), 2012 12th International Con-
ference on, pages 117–120.

Tichy, W. F. (1998). Should computer scientists experiment
more? Computer, 31(5):32–40.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2000). Experimentation in
Software Engineering: An Introduction. Kluwer Aca-
demic Publishers, Norwell, MA, USA.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

342


