
The Docker Ecosystem Needs Consolidation

René Peinl and Florian Holzschuher
Institute of Information Systems, Hof University, Alfons-Goppel-Platz 1, Hof, Germany

{rene.peinl, florian.holzschuher2}@iisys.de

Keywords: Cloud Computing, Management Tools, Micro-services, System Integration, Docker, Container.

Abstract: Docker provides a good basis to run composite applications in the cloud, especially if those are not cloud-
aware, or cloud-native. However, Docker concentrates on managing containers on one host, but SaaS provi-
ders need a container management solution for multiple hosts. Therefore, a number of tools emerged that
claim to solve the problem. This paper classifies the solutions, maps them to requirements from a case study
and identifies gaps and integration requirements. We conclude that the Docker ecosystem could help moving
from IaaS and PaaS solutions towards a runtime environment for SaaS applications, but needs consolidation.

1 INTRODUCTION

Although lightweight operating system (OS)
virtualization techniques like Solaris Zones and
OpenVZ are long established, it was the release of
Docker in March 2013 (Rosen, 2014) that led to mass
adoption and even a hype around containerization
(Kratzke, 2014). Docker aims at making container
technologies easy to use and among other things
encourages a service-oriented architecture and
especially the micro-service architecture style
(Turnbull, 2014). Containers impose less overhead
than machine virtualization but still provide less
isolation (Scheepers, 2014). In a Software as a
Service scenario (SaaS), you therefore cannot
guarantee that activities of one customer won’t
negatively affect other customers, if you are using
containers only.

The need for a kind of “application package
format” as a basis for composite SaaS offerings
following the SOA principles (service-oriented
architecture (Papazoglou, 2003)) was already
discussed in (Mietzner et al., 2008). Originating from
a Platform as a Service (PaaS) use case, Docker
should be a good basis to handle the components of a
composite application offered in the cloud. It
provides an easy and convenient way to create,
deploy and configure containers (Rosen, 2014), incl.
links to dependent containers on the same host.
Micro-services can be briefly summarized as a
“loosely coupled service oriented architecture with
bounded contexts” (Cockcroft, 2014), where loosely
coupled denotes that each service should be

independently deployable and bounded contexts
means that the service does not have to know
anything about its surroundings, but can discover
them on its own (cf. Evans, 2003). Enterprise
applications are typically complex composite
applications, which consist of multiple individual
components (Binz et al., 2014) and therefore match
micro-services. However, the Docker tools soon
reach their limits when it comes to managing
containers in a cluster or creating links across
multiple hosts (Kratzke, 2014). To overcome those, a
myriad of tools is currently in development. We
found over 60 tools in “The Docker Book” (Turnbull,
2014), a special issue of the German “developer
magazine” dedicated to Docker (Roßbach, 2014) and
the “Docker ecosystem” mindmap (“Docker
Ecosystem Mindmap”, n.d.) with relevance for
building an automated Docker cluster solution similar
to OpenStack on the IaaS level (Peinl, 2015 for a full
list). Docker Inc even counts 50,000 third-party
projects on GitHub that are using Docker (Docker,
Inc., 2014). Our hypothesis is, that despite the
benefits of competition, the time has come to work
together on a common cluster project similar to
OpenStack to form a comprehensive integrated
solution and stable interfaces for the required
components in order to make them interchangeable,
instead of building yet another tool that solves parts
of the challenges, but not all of them and is not
integrated with others.

Our methodology was guided by (Chauhan and
Babar, 2011), so the rest of the paper is structured as
follows. We briefly describe our SaaS project that

535

serves as a case study to derive requirements. We
continue listing and explaining the requirements and
then compare them to the functionality of existing
tools. We categorize those tools and elaborate on
consistent definitions for those categories. We
conclude with remaining challenges and an outlook.

2 CASE DESCRIPTION

The goal of the SCHub project (Social Collaboration
Hub, funded by the BMBF as part of the FHprofUnt
funding, https://www.sc-hub.de) is to develop a
distribution-like collaboration solution based on open
source software (OSS) that provides end-users with a
consistent experience across all systems while using
a modular micro-service approach (Cockcroft, 2014).
It therefore represents a composite application
(Coffey et al., 2010). The solution will be available as
Software as a Service (SaaS) in the cloud as well as
on premise installation. In order to do that, a number
of well-known OSS systems have to be migrated to
the cloud and Docker is an obvious choice for
supporting that. Since not all systems are capable of
handling multiple tenants and customization
possibilities are better that way, SCHub uses
individual instances of all frontend systems (portal,
groupware, …) per tenant and only shares backend
systems across tenants (database, mail server, …).
Each instance is packaged into a Docker container. To
guarantee isolation between instances of different
tenants, virtual machines (VM) are used additionally.
The VM becomes the Docker host in this case.
OpenStack serves as the basis (Sefraoui et al., 2012).
Initially, there is only one VM per tenant. When
resource limits of this VM are reached, additional
VMs are allocated and some containers are migrated
to a new host. Storage is provided by Ceph, a software
defined storage solution (Koukis, 2013) as either
block-level or object storage, depending on the
requirements of the service.

Since off-the-shelf systems are used that are
integrated with our add-ons, we wanted to change
those systems as little as possible in order to stay
upwards compatible and benefit from future releases.
Therefore, the usage of a PaaS platform was not
feasible as it would require adapting the systems to
that platform. However, many components of a PaaS
solution are still needed, e.g. a load balancer, a central
authentication system, database as a service and so
on. It turned out, that a new category of cloud offering
would be ideal for this case, a kind of runtime
environment for SaaS applications (RaaS). Where
PaaS targets developers, RaaS targets application

administrators. The following chapter lists the
requirements for such a solution.

3 REQUIREMENTS

From a provider’s perspective, automating the
management of the offered services is of vital
importance, because management and operation of IT
is one of the biggest cost factors today (Binz et al.,
2014). Many of the required features are simply a
transfer of IaaS management features to Docker.
There should be a central list of containers (r1) with
an overview of resource usage, IP address, open ports,
dependencies and so on. You need a detail view of a
container (r2) including a way to change the
configuration using the Web UI concerning
networking, storage and dependencies. Since the
application is built from multiple services and
therefore containers, it would be helpful to be able to
centrally define a kind of blueprint (r3) that includes
all the dependencies and to instantiate the whole
solution instead of single containers (r4).

For doing so, the management solution should
monitor resource usage of hosts (r5) and
automatically choose one with free resources, based
on an editable placement strategy (r6). Monitoring
should include CPU, RAM, storage and networking,
as well as application health. You should be able to
configure thresholds so that high CPU utilization over
a specified timeframe or low available memory
trigger an alert (r7) which in turn can trigger an action
like migrating a container to another host. Migration
(r8) could be performed by stopping the container,
unmounting the storage, starting an identical
container on a new host, updating service references
(r8b) and mounting the storage (r9) there. Besides
storage, there should also be an easy way to pass
configuration data to the application inside the
container (r10). This data has to be stored in a
distributed key/value store (r8a).

For communication between containers across
hosts (r11), you ideally need an overlay network or a
software defined network (SDN) (Jain and Paul,
2013). Its configuration should be accessible directly
from the Docker management UI, e.g., for defining IP
address ranges (r12). The Web UI of the SDN could
be simply integrated. You need routing of external
requests with URLs to tenant-specific container IPs
(r13). This routing should include load balancing if
multiple container instances are available (r14). There
should be a way to review the list of available images
(r15) including versions and ideally an association to
the containers running that image. If an image is

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

536

updated, the admin should be able to trigger a
mechanism that propagates the updates to the running
instances (r16), e.g. analogous to the migration
described above. There should be a way to access the
container’s console or open an SSH shell respectively
(r17) and review the log files (r18), both using the
Web UI.

It would also be desirable to have an integration
of the underlying IaaS solution, so that you can create
new hosts (VMs) from within the Docker Web UI
(r19). Finally, there should be an integration with a
tenant / customer management solution (r20) where
both administrators and customers can review
information like the list of Docker containers per
tenant, the resulting resource usage, the number of
total and monthly active users as well as respective
billing information. It could be further argued, that an
authentication solution is needed, but we are skipping
this requirement, since Docker itself currently has no
working mechanism for that anyway.

4 EXISTING SOLUTIONS

We’ve concentrated our analysis on open source
components, although there are a few impressive
commercial tools available like StackEngine. The
descriptions of the tools capabilities are based on the
projects’ websites. We have installed and tested only
the most promising systems.

4.1 Host Operating System

In principle, Docker can run on any modern Linux
system. However, a few specialized Linux
distributions have emerged that propose to bring
exactly what is needed to smoothly run Docker
containers and nothing more. CoreOS is the most
prominent one and was launched briefly after Docker.
Redhat has reacted quickly and initiated project
Atomic, which is developed in close cooperation with
Redhat’s own PaaS solution OpenShift. Canonical
has only recently announced an own solution in this
field called snappy Ubuntu core. It abandons
traditional package managers and uses snappy, a new
tool tailored for containerized apps. Boot2Docker is
based on Tiny Core Linux and seems to address
developers more than cloud hosters as it provides
Windows and Mac OS X integration. OpenStack
ships with CirrOS as a minimal image for virtual
machines. However, CirrOS brings no Docker
integration by default.

4.2 Image Registry

Docker uses layered images as a package format.
Similar to a disk image of a virtual machine, the
Docker image contains all the files necessary to run
the container and do something meaningful. The
image registry stores them and can be used to retrieve
an image, if it is not already present on the host (r15).
Docker Inc. provides a public image registry called
Docker Hub (https://hub.docker.com) and an open
source implementation for running a private registry.
It is not a service registry (see service discovery).
Dogestry is an alternative implementation using
Amazon S3 compatible storage as a backend. The
OpenStack counterpart of this category is Glance.

4.3 Container Management

Docker itself only provides a command-line interface
(CLI) and a RESTful API for managing containers.
This is fine for scripting and automating things, but
there is still a need for a Web UI (r1, r2), e.g. for self-
service administration by a customer. As the name
implies, DockerUI provides exactly that missing
WebUI for Docker, while the other candidates in this
category provide additional functionality like
management of composite applications (Panamax, r3)
or broader management of containers and VMs
(mist.io and Cockpit, r19). Direct terminal access to
the containers via Web UI (r17) is currently under
development by mist.io and already implemented by
Rancher (see section 4.10). The OpenStack
counterpart is Horizon.

4.4 Cluster Management

While Docker itself can only list and manage
containers of a single host, a cluster management
solution should allow the management of a cluster of
Docker hosts and all containers on them, including
the resource-aware placement of new containers (r6),
automatic failover and migration of containers due to
resource bottlenecks (Mills et al., 2011). We found
four solutions providing parts of this functionality
incl. a CLI (Apache Brooklyn, Citadel, CoreOS fleet
and Docker Swarm). Decking is similar, but has
additional orchestration capabilities (r3). Apache
Mesos was originally dedicated to hosting solutions
like Hadoop and Spark. Since version 0.20 it also
supports running Docker containers. Other solutions
like Shipyard build on them and provide a Web UI
(r1, r2). Clocker additionally provides some
orchestration (r3, r4) and networking functionality
(r11), so that it is getting close to the management

The�Docker�Ecosystem�Needs�Consolidation

537

Table 1: Overview of Docker software tools with fulfilled requirements (parentheses means partly fulfilled).

Software Requirements Software Requirements
Image Registry Service Discovery

Docker Hub 15 DoozerD 14
Dogestry 15 etcd 8a

Container Mgmt Registrator 8b
Cockpit 1, 2, 19 SkyDNS 8a
DockerUI 1, 2 SkyDock 8b
mist.io 1, 2, 7, 19, (17, 18) WeaveDNS 8a
Panamax 1, 2, 3 Zookeeper 14

Cluster Management Software Defined Network
Brooklyn (6) Flannel 11, 12
Citadel (6) Open vSwitch 11
Clocker 3, 4, 11 Pipework 11, 12
Decking 3 Socketplane 11, 12
Fleet (6) Weave 11, 12
Flocker 3, 4, 6, 9, (11) Load Balancer
Mesos (6) HAProxy 13, 14
Shipyard 1, 2 nginx 13, 14
Swarm (6) Vulcan 13, 14

Orchestration Monitoring
Compose (3, 4) cAdvisor (18)
Crane Grafana (18)
Fig Heapster (18)
Helios 3 Kibana 18
Maestro logstash 18
Maestro NG 3 Management Suites
Shipper 3 CF BOSH 3, 4, 6, (9, 18)
Wire 3, 11 Flocker 3, 4, 6, 8, 9

Service Discovery Kubernetes 3, 4, 6, 8
confd 10 Rancher 1, 2, (3, 4, 6, 9), 17, 18
Consul / Consul UI 8a OpenStack Docker Driver 1, 2, 3, 4, 6, 19,

(9, 11) dnsmasq 8a

suites (see section 4.10). Flocker doesn’t provide a
Web UI but also has additional functionality like
basic orchestration and networking. It stands out due
to its unique solution of linking storage to containers
in a portable way (r9). Nova is kind of fulfilling this
cluster management job in OpenStack, especially the
Nova scheduler.

4.5 Orchestration

Service orchestration is an important feature for
composite applications in an SaaS offering. When
different components are deployed on different hosts
to meet the scalability requirements, those separate
deployments should appear as a single coherent
subsystem to other components (Chauhan and Babar,
2011). BPEL and WSCI are examples of
orchestration languages in SoA (Bucchiarone and
Gnesi, 2006). Docker orchestration solutions mainly
use YAML instead. Orchestration tools should be

able to add links between Docker containers that are
distributed across multiple hosts (r3). Some tools
found in literature like Crane, Fig and Maestro
(formerly Dockermix) are not able to do that and
concentrate on single hosts. The developers of Helios,
Maestro NG and Shipper all decided not to build upon
cluster management solutions and instead connect to
the different hosts on their own. All three come
without a Web UI. Shipper seems to be the least
mature of the three. Wire is an interesting tool, as it
builds on Fig as well as Open vSwitch and dnsmasq
to configure interdependent containers across hosts.
The OpenStack counterpart of this category is Heat.

4.6 Service Discovery

Service discovery has always been an issue in SOA
and has never been solved satisfactory in practice
(Bachlechner et al., 2006). Recently, a new proposal
was made for service discovery in a cloud context

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

538

based on OpenTosca, an Enterprise Service Bus and
Chef (Vukojevic-Haupt et al., 2014). Within the
Docker ecosystem, the proposed tools often represent
more of a service registry and leave it up to the
application developer to use the provided lookup
mechanism (r10).

Etcd and Consul are two well-known
representatives of this category. They provide a
distributed key-value store in order to store ports, IP
addresses or other characteristics of services running
inside Docker containers. Zookeeper and DoozerD
work in similar ways, but are less dedicated to
Docker. Other tools like SkyDNS, dnsmasq and
WeaveDNS try to solve the problem by reusing DNS
for which there are discovery implementations in
every OS. Tools like SkyDock or registrator automate
the registration process (r8b) by monitoring Docker
events and publishing information in the service
registries. Confd stands out from the rest of the
candidates, as it facilitates applications’ usage of the
configuration data from those service registries (r10).
It reads data from service registries or environment
variables and updates configuration files accordingly.
In OpenStack, there is no dedicated service discovery
tool, since it is focused on IaaS.

4.7 Software Defined Network

Within Docker, every container gets a private IP only
visible on the same host. Ideally, an SDN is used to
connect containers between multiple hosts (Costache
et al., 2014, r11). Furthermore, isolation is beneficial,
so that every customer (tenant) of the SaaS solution
gets an own virtual network (Drutskoy et al., 2013).
In an SDN, a logically centralized controller manages
the collection of switches through a standard
interface, letting the software control virtual and
physical switches from different vendors (ibid.).
Open vSwitch is a popular SDN solution that is also
used by default in OpenStack’s Neutron. It is also a
central part of the larger OpenDaylight initiative.
Socketplane and Pipework are overlay networks that
make use of Open vSwitch and are tailored for
Docker. They manage IP assignment (r12) and
routing of messages between networks of multiple
hosts. Flannel and Weave promise to do the same, but
without support for Open vSwitch and therefore with
less flexibility.

4.8 Load Balancer

The cloud can limit the scalability of a software load
balancer due to security requirements. Amazon EC2
for example disabled many layer 2 capabilities, such

as promiscuous mode and IP spoofing so that
traditional techniques to scale software load balancers
will not work (Liu and Wee, 2009). HAProxy and
Nginx are forwarding traffic on layer 7 which limits
scalability due to SSL termination (ibid.). However
they are commonly used and fulfill our requirements
(r13-14).

4.9 Monitoring

Monitoring is an essential part of cloud computing
(Aceto et al., 2013). For monitoring Docker
containers, you can use common solutions like
Nagios that provide extensions for cloud scenarios, or
some specialized tools like Sensu that are built for
scalability from the ground up (Aceto et al., 2013).
Within the Docker ecosystem, the most specialized
solution is Google’s cAdvisor, as it is tailored for
monitoring containers. It brings its own Web UI.
Logstash on the other hand is a general purpose tool
for log file management (r18) and is often used in
conjunction with elasticsearch as a NoSQL database
and Kibana as a Web UI (Ward and Barker, 2014).
Grafana is similar to Kibana and uses InfluxDB or
other time series databases as data stores. It can be
used in conjunction with cAdvisor since the latter can
export data to InfluxDB. This seems advisable, since
the Web UI of cAdvisor is limited to the latest data
and does not show historical data. The combination
can be further enhanced with Google Heapster which
directly supports Kubernetes clusters. The container
management solution mist.io does also include
monitoring and seems to be the only one to support
alerts based on thresholds (r7). Nagios is the default
monitoring tool in OpenStack.

4.10 Management Suites

Suites are the most comprehensive tools in our review
and at least include cluster management and
orchestration capabilities (r3, r4, r6). They either
build on multiple other solutions in order to cover the
required functionality (e.g. Kubernetes, which relies
on the CoreOS tools etcd, fleet and flannel) or are
large monolithic solutions from the micro-service
perspective (e.g. BOSH). Kubernetes is popular and
further supports container migration (r8). The
OpenStack Docker driver allows managing Docker
containers just like KVM VMs in OpenStack and
therefore reusing a large part of the OpenStack
modules. In principle, this is the right way to go (r19).
However, it does not match our use case very well
(Docker inside KVM-based VMs), since you have to
decide per host which hypervisor to run (KVM, Xen

The�Docker�Ecosystem�Needs�Consolidation

539

Figure 1: Docker ecosystem with dependencies (own illustration).

or Docker). Furthermore, not all modules are already
updated to be used with Docker. A promising but still
premature (alpha) candidate is Rancher.io. It aims at
solving the multi-host problems of Docker by
providing a Web-based UI, storage and networking
capabilities. Version 0.3 from January 2015 allows
starting and stopping containers on multiple hosts,
linking containers across hosts and assigning storage
(r9). They are also dedicated to support Docker
Swarm and have a terminal agent that offers Web-
based terminal sessions with containers (r17). BOSH
is part of Pivotal’s PaaS solution Cloud Foundry. It is
able to start and stop containers on multiple hosts, but
seems to be missing an overlay network component.

Figure 1 gives an overview of tools in the Docker
ecosystem. The ellipses represent tools. The thick
lines demarcate areas of functionality that are labeled
in the rectangles. A position closer to the center of the
figure within one category indicates that the tool has
more functionality than others in the outer areas.
Solid arrows represent dependencies between tools.
Dashed arrows indicate that the tool is directly
supported. It becomes obvious, that there already are
some dependencies and interactions between tools.
However, it is far from ideal and the most promising
candidates of different categories are often developed
side-by-side instead of hand-in-hand. Table 1
summarizes our findings more formally.

5 DISCUSSION

Despite the fact that the Docker ecosystem is huge,
there still are requirements not fulfilled by any of the
tools (r16, r20) and some are only fulfilled by a single
tool (r7, r8b, r9). Many tools emerged quite recently
and therefore must be considered premature.

Managing tenant data is maybe the most
important missing part. (Lindner et al., 2010) argue,
that there should be a complete supply chain for the
cloud starting with deployment and monitoring and
ending with accounting and billing. The economic
part of this supply chain is currently not present in the
Docker ecosystem. Updating a container can be
emulated with a couple of Docker commands
replacing it, since containers should be immutable.
Still there should be a way to automate this.
Registering a service in the registry is also a neglected
requirement. Some tools do it, but our impression is
that it is a better idea to use IP addresses and an SDN
for routing instead of relying on one of the service
discovery solutions when containers are migrated to
another host. Storage is handled quite well by
Flocker, but in our setup with Docker inside VMs
there is still a problem. Volumes have to be mounted
by the VM and mapped into the container. If the
container moves, the volume has to be unmounted
from the VM and mounted on the new host of the
container. That means, that every container needs its
own volume. If the space on the volume runs low,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

540

growing it won’t be easy. The Linux Device Mapper
with its thin provisioning strategy can attenuate that
problem but is not an ideal solution.

6 CONCLUSIONS

A Docker-based open source cloud environment to
easily run composite applications as SaaS offerings
would be a good basis for initiatives like the Open
Cloud Alliance (Crisp Research, 2014) that aim at
simplifying the process of bringing your applications
to the cloud while preserving the freedom of choice
and openness of the offering. In our paper, we have
shown that many components are needed to fulfill the
requirements for such a solution, which we dubbed
runtime environment for SaaS applications (RaaS). It
is similar to an IaaS environment, as we have shown
with OpenStack, and includes some components from
PaaS like load balancing and logging, but also has
unique features like service orchestration and
discovery. Not all requirements are currently fulfilled
and despite first integration approaches, there is a
need for closer cooperation within the Docker
ecosystem. We plead for an embracing ecosystem
project that serves as a coordination center for the
tools that contribute to mastering the Docker
management challenge. From our tests, Kubernetes
with etcd, fleet and flannel seems the most usable
combination right now. Mesos also seems a solid
basis and integrations from other tools are currently
in development (e.g. Compose/Swarm).

REFERENCES

Aceto, G., Botta, A., De Donato, W. and Pescapè, A.
(2013), “Cloud monitoring: A survey”, Computer
Networks, Vol. 57 No. 9, pp. 2093–2115.

Bachlechner, D., Siorpaes, K., Fensel, D. and Toma, I.
(2006), “Web service discovery-a reality check”, 3rd
European Semantic Web Conference, Vol. 308.

Binz, T., Breitenbücher, U., Kopp, O. and Leymann, F.
(2014), “TOSCA: Portable Automated Deployment and
Management of Cloud Applications”, Advanced Web
Services, Springer, pp. 527–549.

Bucchiarone, A. and Gnesi, S. (2006), “A survey on
services composition languages and models”,
International Workshop on Web Services–Modeling
and Testing (WS-MaTe 2006), p. 51.

Chauhan, M.A. and Babar, M.A. (2011), “Migrating
service-oriented system to cloud computing: An
experience report”, Cloud Computing (CLOUD) 2011,
IEEE Int. Conf. on, IEEE, pp. 404–411.

Cockcroft, A. (2014), “State of the Art in Microservices”,

DockerCon Europe 14, Amsterdam, The Netherlands.
Coffey, J., White, L., Wilde, N. and Simmons, S. (2010),

“Locating software features in a SOA composite
application”, Web Services (ECOWS), 2010 IEEE 8th
European Conference on, IEEE, pp. 99–106.

Costache, C., Machidon, O., Mladin, A., Sandu, F. and
Bocu, R. (2014), “Software-defined networking of
Linux containers”, 13th RoEduNet Conf., IEEE.

Crisp Research. (2014), Open Cloud Alliance - Openness
as an Imperative (Strategy paper), Crisp Research,
available at: http://bit.ly/1ArYcyc.

“Docker Ecosystem Mindmap”. (n.d.). MindMeister,
available at: http://bit.ly/1BjDgtW.

Docker, Inc. (2014), “About”, Docker Homepage, available
at: http://bit.ly/1OjEBLl.

Drutskoy, D., Keller, E. and Rexford, J. (2013), “Scalable
 network virtualization in software-defined networks”,

Internet Computing, IEEE, Vol. 17 No. 2, pp. 20–27.
Evans, E. (2003), Domain driven design: Tackling

Complexity in the Heart of Software, Addison-Wesley,
Boston.

Jain, R. and Paul, S. (2013), “Network virtualization and
software defined networking for cloud computing: a
survey”, Communications Magazine, IEEE, Vol. 51
No. 11, pp. 24–31.

Koukis, V. (2013), “Flexible storage for HPC clouds with
Archipelago and Ceph”, 8th Workshop on Virtuali-
zation in High-Performance Cloud Computing, ACM.

Kratzke, N. (2014), “Lightweight Virtualization Cluster
How to Overcome Cloud Vendor Lock-In”, J. of Com-
puter and Communications, Vol. 2 No. 12, pp. 1–7.

Lindner, M., Galán, F., Chapman, C., Clayman, S.,
Henriksson, D. and Elmroth, E. (2010), “The cloud
supply chain: A framework for information,
monitoring, accounting and billing”, 2nd Int. Conf. on
Cloud Computing.

Liu, H. and Wee, S. (2009), “Web server farm in the cloud:
Performance evaluation and dynamic architecture”,
Cloud Computing, Springer, pp. 369–380.

Mietzner, R., Leymann, F. and Papazoglou, M.P. (2008),
“Defining composite configurable SaaS application
packages using SCA, variability descriptors and multi-
tenancy patterns”, ICIW 2008, IEEE.

Mills, K., Filliben, J. and Dabrowski, C. (2011),
“Comparing VM-placement algorithms for on-demand
clouds”, Cloud Computing Technology and Science
(CloudCom), IEEE 3rd Int. Conf. on, IEEE, pp. 91–98.

Papazoglou, M.P. (2003), “Service-oriented computing:
Concepts, characteristics and directions”, Web
Information Systems Engineering (WISE 2003). 4th Int.
Conf. on, IEEE, pp. 3–12.

Peinl, R. (2015), “Docker ecosystem on Google Docs”,
available at: http://bit.ly/1DJ0eS4.

Rosen, R. (2014), “Linux containers and the future cloud”,
Linux Journal, Vol. 2014 No. 240, p. 3.

Roßbach, P. (2014), “Docker Poster”, Entwickler Magazin
Docker spezial, Vol. 2014 No. Docker spezial.

Scheepers, M.J. (2014), “Virtualization and
Containerization of Application Infrastructure: A
Comparison”, 21st Twente Student Conference on IT,

The�Docker�Ecosystem�Needs�Consolidation

541

University of Twente, Twente, The Netherlands.
Sefraoui, O., Aissaoui, M. and Eleuldj, M. (2012),

“OpenStack: toward an open-source solution for cloud
computing”, International Journal of Computer
Applications, Vol. 55 No. 3, pp. 38–42.

Turnbull, J. (2014), The Docker Book: Containerization is
the new virtualization, James Turnbull.

Vukojevic-Haupt, K., Haupt, F., Karastoyanova, D. and
Leymann, F. (2014), “Service Selection for On-demand
Provisioned Services”, Enterprise Distributed Object
Computing Conference (EDOC), 2014 IEEE 18th
International, IEEE, pp. 120–127.

Ward, J.S. and Barker, A. (2014), “Observing the clouds: a
survey and taxonomy of cloud monitoring”, Journal of
Cloud Computing: Advances, Systems and
Applications, Vol. 3 No. 1, p. 40.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

542

