
Context-aware MapReduce for Geo-distributed Big Data

Marco Cavallo, Giuseppe Di Modica, Carmelo Polito and Orazio Tomarchio
Department of Electrical, Electronic and Computer Engineering, University of Catania, Catania, Italy

ffirstname.surnameg@dieei.unict.it

Keywords: Big Data, MapReduce, Hierarchical Hadoop, Context Awareness, Partition Number.

Abstract: MapReduce is an effective distributed programming model used in cloud computing for large-scale data anal-
ysis applications. Hadoop, the most known and used open-source implementation of the MapReduce model,
assumes that every node in a cluster has the same computing capacity and that data are local to tasks. How-
ever, in many real big data applications where data may be located in many datacenters distributed over the
planet these assumptions do not hold any longer, thus affecting Hadoop performance. This paper addresses
this point, by proposing a hierarchical MapReduce programming model where a toplevel scheduling system
is aware of the underlying computing contexts heterogeneity. The main idea of the approach is to improve
the job processing time by partitioning and redistributing the workload among geo-distributed workers: this is
done by adequately monitoring the bottom-level computing and networking context.

1 INTRODUCTION

In the last few years, the pervasivity and the
widespread diffusion of information technology ser-
vices such as social computing applications and smart
city services produced a significant increase of the
amount of digital data, which in a single day may even
reach a few petabytes (Facebook, 2012).

The new term “Big Data” has been created to indi-
cate this phenomenon: it refers to collections of very
large datasets, that require unconventional tools (e.g
non-relational DBMS) to be managed and processed
within a reasonable time (Zikopoulos, P. and Eaton,
C., 2011). Big data analysis requires adequate in-
frastructure capable of processing so large amount of
data: parallel and distributed computing techniques
are commonly used to efficiently manipulate such
data. MapReduce is probably the most known parallel
programming paradigm that is nowadays used in the
context of Big Data (Dean and Ghemawat, 2004). It
is based on two functions, Map and Reduce: the first
one generates data partitions based on a given user de-
fined function, and the second one performs a sort of
summary operation on Map outputs. Apache Hadoop
is an open source implementation of the MapReduce
approach (The Apache Software Foundation, 2011);
in the last few years it has evolved by including many
features and reaching a high level of adoption both in
industry than in academic community. Hadoop has
been designed mainly to work on clusters of homoge-

neous computing nodes belonging to the same local
area network; data locality is one of the crucial factors
affecting its performance. However, in many recent
Big Data scenarios, it is not uncommon the need to
deal with data which are geographically distributed.
In fact, the design of geo-distributed cloud services
is a widespread trend in cloud computing, through
the distribution of large amounts of data among data
centers located in different geographical locations. In
these scenarios, the data required to perform a task
is often non-local, which, as mentioned before, may
severely affect the performance of Hadoop.

In this paper, we propose a novel job scheduling
strategy that is aware of data location. The proposed
approach takes into account the actual heterogeneity
of nodes, network links and of data distribution. Our
solution follows a hierarchical approach, where a top-
level entity will take care of serving a submitted job:
this job is split into a number of bottom-level, inde-
pendent MapReduce sub-jobs that are scheduled to
run on the sites where data reside. The remainder
of the paper is organized as follows. Section 2 pro-
vides some motivation for the work and also discusses
some related work. In Section 3 we introduce the sys-
tem design and provide the details of the proposed
strategy. Section 4 provides the details of the strategy
adopted to partition data and distribute the workload.
Finally, Section 5 concludes the work.

414

2 BACKGROUND AND
RATIONALE

Well know implementations of MapReduce have been
conceived to work on a single or on a few clusters
of homogeneous computing nodes belonging to a lo-
cal area network. Hadoop (The Apache Software
Foundation, 2011), the most famous open source im-
plementation of the MapReduce paradigm, performs
very poorly if executed on data residing in geographi-
cally distributed datacenters which are interconnected
to each other by means of links showing heteroge-
neous capacity (Heintz et al., 2014).

The main problem is that Hadoop is unaware of
both nodes’ and links’ capacity, nor it is aware of the
type of application that is going to crunch the data.
This may yield a very bad performance in terms of job
execution time, especially in the case a huge amount
of data are distributed over many heterogeneous data-
centers that are interconnected to each other’s through
disomogeneous network links. In the literature two
main approaches are followed by researchers to ef-
ficiently process geo-distributed data: a) enhanced
versions of the plain Hadoop implementation which
account for the nodes and the network heterogeneity
(Geo-hadoop approach) ; b) hierarchical frameworks
which gather and merge results from many Hadoop
instances locally run on distributed clusters (Hierar-
chical approach).

Geo-hadoop approaches (Kim et al., 2011; Mat-
tess et al., 2013; Heintz et al., 2014; Zhang et al.,
2014) reconsider the phases of the job’s execution
flow (Push, Map, Shuffle, Reduce) in a perspective
where data are distributed at a geographic scale, and
the available resources (compute nodes and network
bandwidth) are disomogeneous. In the aim of reduc-
ing the job’s average makespan1, phases and the rela-
tive timing must be adequately coordinated.

Hierarchical approaches (Luo et al., 2011; Jay-
alath et al., 2014; Yang et al., 2007) envision two (or
sometimes more) computing levels: a bottom level,
where several plain MapReduce computations occur
on local data only, and a top level, where a central en-
tity coordinates the gathering of local computations
and the packaging of the final result. A clear advan-
tage of this approach is that there is no need to mod-
ify the Hadoop algorithm, as its original version can
be used to elaborate data on a local cluster. Still a
strategy needs to be conceived to establish how to re-
distribute data among the available clusters in order to
optimize the job’s overall makespan.

1The execution time of a job. It is measured from the
time the job is submitted to the time results are gathered

The solution we propose belongs to the hierarchi-
cal category. We address the typical scenario of a
big company which has many branches distributed all
over the world producing huge amounts of business-
sensitive data that need to be globally processed on
demand. Examples of application domains that fall
in this scenario are electronic commerce, content de-
livery networks, social networks, cloud service provi-
sioning and many more. The Hadoop seems to offer
the computing model that best suits this situation, be-
cause of its capability of providing parallel computa-
tion on multiple pieces of data. Unfortunately, com-
pany sites may be disomogeneous in terms of com-
puting capabilities and the amount of stored raw data.
Also, the inter-site network links have very limited
and unbalanced bandwidth that is usually employed
to support many types of inter-site communication.
This makes the plain Hadoop unfit for the depicted
scenario.

We believe a hierarchical computing model may
help since it decouples the job/task scheduling from
the actual computation. The approach we propose in-
troduces a novel job scheduling algorithm which ac-
counts for the discussed disomogeneity to optimize
the job makespan. Basically, when a job is submitted,
a top-level entity (“Orchestrator” in the remainder of
the paper) will take care of serving the job. In par-
ticular, the job is split into a number of bottom-level,
independent MapReduce sub-jobs that are scheduled
to run on the sites where data reside. According to
the original data localization, the computing capac-
ity of involved sites and the available inter-site band-
width, the Orchestrator may decide to migrate data
(or pieces of them) from site to site before bottom-
level MapReduce jobs are eventually started. Finally,
the results of MapReduce sub-jobs are forwarded to
a top-level Reducer that will package and deliver the
final result. Unlike previous works, our job schedul-
ing algorithm aims to exploit fresh information con-
tinuously sensed from the distributed computing con-
text (available site’s computing capacity and inter-site
bandwidth) to guess each job’s optimum execution
flow.

3 DESIGN OVERVIEW

According to the MapReduce paradigm, a generic
computation is called job (Dean and Ghemawat,
2004). A generic job is submitted to a scheduling sys-
tem which is responsible for splitting the job in several
tasks and mapping tasks to a set of available machines
within a cluster. The performance of a job is measured
by its completion time (some refers to it with the term

Context-aware�MapReduce�for�Geo-distributed�Big�Data

415

Top-Level Job

Output Data

Result

Local Hadoop Job

Orchestrator

Top Level

1

3

9

5

4

Data Transfer

MasterGlobal Reducer

Execute Top-Level

MapTask

6

6

7

7

Reduce

8

2

Bottom Level

10

PushResult

TJEP

getTJEP

MoveData

Site1

Site3 Site2

Push Top-Level

Map Result

Site4

MapReduce

MapReduce

8

11

Figure 1: Overall architecture.

makespan), i.e., the time for a job to complete. That
time heavily depends on the job’s execution flow de-
termined by the scheduling system and the computing
power of the cluster machines where the tasks are ac-
tually executed.

In a scenario where computing machines belong
to many geographically distributed clusters there is an
additional parameter that may affect the job perfor-
mance. Communication links among clusters (inter-
cluster links) are often disomogeneous and have a
much lower capacity than the communication links
among machines within a cluster (intra-cluster links).
Basically, if a scheduling system does not account for
the unbalanced capacity of both machines and com-
munication links, the overall job’s performance may
degrade dramatically.

The key point of our proposal for a hierarchical
MapReduce programming model is the need of a top-
level scheduling system which is aware of the un-
derlying computing context’s heterogeneity. We ar-
gue such awareness has to be created and augmented
by periodically “sensing” the bottom-level computing
context. Information retrieved from the computing
context is then used to drive the generation of the par-
ticular job’s execution flow which maximizes the job
performance.

In Figure 1 the basic reference scenario addressed
by our proposal is depicted. Sites (datacenters) pop-
ulate the bottom level of the hierarchy. Each site
stores a certain amount of data and is capable of run-
ning plain Hadoop jobs. Upon receiving a job, a site
transparently performs the whole MapReduce process
chain on the local cluster(s) and returns the result of

the elaboration. All the system business logic de-
voted to the management of the geo-distributed paral-
lel computing resides in the top-level of the hierarchy.
Upon the submission of a Hadoop job, the business
logic schedules the set of sub-jobs to be disseminated
in the distributed context, gathers the sub-job results
and packages the overall computation result.

In particular, the system business logic is com-
posed of the following entities:

� Orchestrator. It is responsible for the generation
of a Top-level Job Execution Plan (TJEP). A TJEP
contains the following information:

– the Data Logistic Plan (DLP), which states how
data targeted by the job have to be re-organized
(i.e., shifted) among sites;

– the Sub-job Scheduling Plan (SSP), which de-
fines the set of Hadoop sub-jobs to be submitted
to the sites holding the data.

� Master. It is the entity to which Hadoop Jobs are
submitted. It calls on the Orchestrator for the gen-
eration of the TJEP, and is in charge of enforcing
the TJEP according to the information contained
in the DLP and the SSP.

� Global Reducer. It performs the top-level reduc-
tion of the results obtained from the execution of
Hadoop sub-jobs.

At design time two important assumptions were
made. First, at the moment only one Global Reducer
is responsible for collecting and reducing the data
elaborated by bottom-level sites. One may argue this
choice impacts on the overall performance, neverthe-
less it does not invalidate the approach. Anyway, this
assumption is going to be relaxed in future work. Sec-
ond, being this approach a pure hierarchical approach,
the top-level MapReduce job must be coded in such a
way that the applied operations are “associative”, i.e.,
may be performed recursively at each level of the hi-
erarchy and the execution order of the operations does
not affect the final result (Jayalath et al., 2014).

In the scenario of Figure 1 four geo-distributed
sites are depicted that hold company’s business data
sets. The numbered arrows describe a typical execu-
tion flow triggered by the submission of a top-level
job. This specific case envisioned a shift of data from
one site to another one, and the run of local MapRe-
duce sub-jobs on two sites. Here follows a step-by-
step description of the actions taken by the system to
serve the job:

1. A Job is submitted to the Master, along with the
indication of the data set targeted by the Job.

2. The Master forwards the Job request to the Or-
chestrator, to get the TJEP;

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

416

3. The Orchestrator elaborates and delivers a TJEP.
For the elaboration of the plan the Orchestrator
makes use of information like the distribution of
the data set among sites, the current computing
capabilities of sites, the topology of the network
and the current capacity of its links. A TJEP is
broken down in two section: 1) the DLP contain-
ing data-shift directives and 2) the SSP containing
data-elaboration directives;

4. The Master enforce the DLP. In particular, Site1
is ordered to shift data to Site4;

5. The actual data shift from Site1 to Site4 takes
place.

6. The Master enforces the SSP. In particular, top-
level Map tasks are triggered to run on Site2 and
Site4 respectively. We remind that a top-level Map
task corresponds to a Hadoop sub-job;

7. Site2 and Site4 executes local Hadoop jobs on
their respective data sets;

8. Results obtained from local execution are sent to
the Global Reducer;

9. The Global Reducer performs the reduction of
partial data;

10. Final result is pushed to the Master;

11. Final result is returned to the Job submitter.

One of the Orchestrator’s tasks is to monitor the
distributed context’s resources, i.e., the sites’ avail-
able computing capacity and the inter-site bandwidth
capacity. In Figure 2 the context monitoring infras-
tructure is depicted.

Top Level

Bottom Level

Site1

Site3 Site2

SDN-Enabled

Switch

Site4

Orchestrator

Nominal Capacity

Slot Capacity

Computing Availability Table

Slot Nom Avg ….

Site1

Site2

Site3

Site4

HeartBeat

Nominal

Free

Bandwidth Availability Table

Free Nom Avg ….

Link1

Link2

Link3

…

Figure 2: Context monitoring infrastructure.

As for the monitoring of the computing capac-
ity, each site periodically advertises its capacity to
the Orchestrator. Such capacity is expressed in ter-
aFlops, and represents the overall computing capac-
ity of the site for MapReduce purposes (overall nomi-
nal capacity). Further, we assume that sites enforce
a computing capacity’s allocation policy which re-
serves a given, fixed amount of capacity to any sub-
mitted MapReduce job. Since the amount of com-
puting capacity potentially allocable to a single job
(slot capacity) may differ from site to site, sites are
also required to communicate that amount along with
the overall nominal capacity. By using this informa-
tion, the Orchestrator is able to build and maintain a
Computing Availability Table that keeps track of ev-
ery site’s instant and future capacity, average capac-
ity in time, and other useful historical statistics about
the computing capacity. The available inter-site link
capacity is instead “sensed” through a network in-
frastructure made of SDN-enabled (Open Networking
Foundation, 2012) switches. Switches are capable of
measuring the instant bandwidth occupied by incom-
ing and outgoing data flows. The Orchestrator period-
ically enquires the switches to retrieve the bandwidth
occupation that is then fed to a Bandwidth Availabil-
ity Table, where statistics on the inter-site bandwidth
occupation are reported.

Information contained in these two tables are ex-
tremely useful to the Orchestrator when it comes to
elaborate an execution plan for a submitted job. The
awareness of the underlying distributed computing
context will guide the Orchestrator in defining a path
which minimizes the overall job’s makespan. The
search for the path is committed to a scheduling sys-
tem that is embedded in the Orchestrator. In the fol-
lowing section, details on the strategy implemented
by the scheduling system are disclosed.

3.1 Job Scheduling System

Basically, the goal of the job scheduling system is to
generate a number of possible execution paths, and
to give each path a score. The path with the best
score will eventually be chosen as the execution path
to enforce. The calculation of the score for a given
path consists in the estimation of the path’s comple-
tion time; in the end, the path exhibiting the lowest
completion time (best score) will be selected.

If it may appear clear that the sites’ computing ca-
pacity and the inter-site bandwidth affect the overall
path’s completion time, some words have to be spent
on the impact that the type of MapReduce application
may have on that time. In (Heintz et al., 2014) authors
introduce the expansion/compression factor a, that

Context-aware�MapReduce�for�Geo-distributed�Big�Data

417

represents the ratio of the output size of the Map phase
to its input size. In our architecture focus is on the en-
tire MapReduce process (not just the Map phase) that
takes place in a site. Therefore we are interested in
profiling applications as a whole. We then introduce a
data Compression factor bapp, which represents the
ratio of the output data size of an application to its
input data size:

bapp =
Out putDataapp

InputDataapp
(1)

The bapp parameter may be used to calculate the
amount of data that is produced by a MapReduce job
at a site, traverses the network and reaches the Global
Reducer. Based on that amount, the data transfer
phase may seriously impact on the overall top-level
job performance. The exact value for bapp may not
be a priori known (MapReduce is not aware of the ap-
plication implementation). Section 3.2 will present an
approximate function that provides a good estimate.

We adopt a graph model to represent the job’s ex-
ecution path. Basically, a graph node may represent
either a data computing element (site) or a data trans-
port element (network link). Arcs between nodes are
used to represent the sequence of nodes in an exe-
cution path. A node is the place where a data flow
arrives (input data) and another data flow is gener-
ated (output data). A node representing a computing
element elaborates data, therefore it will produce an
output data flow whose size is different than that of
input; a node representing a data transport element
just transports data, so input and output data coin-
cide. Nodes are assigned an attribute that describes
the Throughput, i.e., the rate at which node is capa-
ble of “processing” the input data. In the case of a
computing node the throughput represents the speed
at which the application’s input data are actually pro-
cessed, whereas in the case of a transport node the
throughput coincides with the link capacity. Actu-
ally, the throughput of a computing node is the rate
at which the node is capable of “processing” data
when running that specific application. This param-
eter is strictly application bound, as it depends on
how heavy is the type of computation requested by
the application. Like for the bapp value, the exact
Throughput value is not a priori known; Section 3.2
discusses a sample based procedure employed to de-
rive the throughput of a computing node for a certain
application.

Nodes are also characterized by the bnode at-
tribute, which in the case of a computing node is an
application-dependent parameter measuring the ratio
between input data and output data (bapp), while in
the case of a transport node it will assume the fixed

value 1 (in fact, a network link applies no data com-
pression).

Arcs between nodes are labeled with a number
representing the size of data leaving a node and reach-
ing the next one. The label value of the arc connecting
the j-th node with the (j+1)-th node is given by:

DataSize j; j+1 = DataSize j�1; j�b j (2)

In Figure 3 an example of a branch made of two
nodes and a connecting arc is depicted:

DataSize

DataSize

DataSize

[]Node

Node

j, j+i

j+1

j-1, j

j+1, j+2

j
β

Throughput
j

j

β

Throughput
j+1

j+1[]

Figure 3: Nodes’ data structure.

Next, for the generic node j we define the execu-
tion time as:

Tj =
DataSize j�1; j

T hroughput j
(3)

When a top-level job is submitted to the Master,
the scheduling system is requested to search for the
best execution path. The hard part of the scheduling
system’s work is the generation of all the potential
execution paths, each of which is going to be modeled
as a graph. The algorithm used to generate execution
paths is discussed in Section 4. We now put the focus
on how to calculate the execution time of a specific
execution path.

Figure 4 depicts a scenario of seven distributed
sites (S1 through S7) and a geographic network which
interconnects the sites. One top-level job is requesting
to run a MapReduce application on the data sets (5 GB
sized each) located in the site S5 and S6 respectively.
Let us assume that one of the execution-paths gen-
erated by the scheduling system involves the move-
ment of data from S6 site to S3, which will perform
the bottom-level MapReduce sub-job. Data placed
in site S5, instead, will be processed by the site it-
self; this case does not require any data transfer. The
Global reduce of the partial results produced by local
MapReduce sub-jobs will be executed in the node S1
(so partial results will have to move to that site before
the reducing occurs).

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

418

S4

S6
S7

S5

S1

S2

S3Sx

Sx

I

L63

S5

S6

S5

Sx

Reduce
Execution Flow

S3

5GB

β=0.8

L51

4GB

S1

L31

4GB

4GB

Rb

Ra

Rn

5GB

4GB

5GB

β=0.8

Map
Execution Flow

Link

Global Reducer
Node

Input Data Node

Mapper Node

Switch/Router

Preview https://drive.draw.io/#G0B_W8Th_ziojNTTl5RVY1anBSZWs

1 of 1 24/03/2015 9.16

Figure 4: Example of graph modeling an execution path.

In the right part of the picture the graph that mod-
els the execution-path for the just discussed configu-
ration is represented. Basically, a graph has as many
branches as the number of bottom-level MapReduce.
Branches are independent from each other’s and exe-
cute in parallel. Every branch starts at the node I (ini-
tial node) and ends at the Global reducer’s node. Next
to node I is the node where the data set interested by
the MapReduce computation initially resides. In the
example, the graph is composed of two branches. The
left branch models the elaboration of data initially re-
siding in the node S5, that are map-reduced by node
S5 itself, and results are finally pushed to node S1 (the
Global reducer) through link L51. Similarly, on the
right branch data residing in node S6 are moved to
node S3 through link L63, are map-reduced by node
S3 and results are pushed to node S1 through link L31.

We define the execution time of a branch to be the
sum of the execution times of the nodes belonging to
the branch; note that the Global reducer node’s execu-
tion time is left out of this sum. In particular, for the
left and the right branches of Figure 4 the execution
times will be respectively:

Tle f t =
5

T hroughputS5

+
4

T hroughputL51

Tright =
5

T hroughputL63

+
4

T hroughputS3

+
4

T hroughputL31

So in general, the execution time of a branch is
expressed as:

Tbranch =
N�1

å
j=1

DataSize j; j+1

T hroughput j+1
(4)

being N the number of nodes in the branch.
Next we calculate the execution time for the

Global reducer node. The data pushed to that node
is the sum of the data coming from the two branches.
In the example, the execution time is given by:

TGR =
4+4

T hroughputS1

So generalizing, the execution time of the Global
reducer is given by the summation of the sizes of the
data sets coming from all the branches over the node’s
estimated throughput. Let DataSize(K)N�1;N be the
data size of the k-th branch reaching the Global re-
ducer node. The execution time for the Global reducer
will be:

TGR =
å

P
K=1 DataSize(K)N�1;N

T hroughputGR
(5)

being P the total number of branches in the graph.
Finally, the overall execution time estimated for the
specific execution path represented by the graph is
defined as the sum of the Global reducer’s execution
time and the maximum among the branches’ execu-
tion times:

Tpath = max
1�K�P

(T (K)branch)+T hroughputGR (6)

In this formula we are assuming that the global
reduce phase will start as soon as the slowest (i.e.,
the one with the highest execution time) branch has
finished its execution.

Context-aware�MapReduce�for�Geo-distributed�Big�Data

419

The scheduling system can generate many job’s
execution paths. For each, the execution time is cal-
culated. In the end, the best to schedule will be, of
course, the one showing the lowest execution time.

3.2 Application Profiling

As mentioned earlier, both the computing node’s
Throughput, and the Compression factor bapp are two
parameters strictly dependent on the type of applica-
tion requested by the top-level job. The estimate of
these parameters is determined by an application pro-
filing procedure executed prior to the run of the job
on the requested data. The adopted approach, that re-
calls the one proposed in (Jayalath et al., 2014), is to
request sites that hold the data sets to run the job’s ap-
plication on a sample of data. The results will provide
an estimate of the parameters that will be used by the
scheduling system to calculate the best execution path
for the job.

The estimate is performed on a reference machine
having a computing power of 1 Gflops. Regarding the
Throughput, the objective is to evaluate the nominal
capability of a 1 Gflops machine to process the data
sample. So, the nominal Throughput is obtained by
dividing the sample data size by the data processing
time; the nominal bapp, as well, is given by the ratio
between the output result size and the input sample
data size.

The nominal values obtained from the sites are
adequately averaged, and will constitute the official
estimate parameters for that specific application. In
particular, when it comes to calculate the Through-
put of a certain computing node of the graph (repre-
senting a site), that value is calculated by multiplying
the nominal Throughput times the number of Gflops
advertised by the node. This estimate makes the as-
sumption that the Throughput is a linear function of
the computing power.

4 EXECUTION PATHS
GENERATION

The scheduling system is in charge of generating a
number of potential execution paths for each top-level
job that is submitted. The variables that impact on
the generation of paths are the number of sites de-
voted to the running of MapReduce and the amount
of data each of those sites will be assigned. The num-
ber of potential paths may be very huge (and thus very
hard to compute in an acceptable time) if you consider
that data sets targeted by an application might be frag-
mented at any level of granularity, and each fragment

might potentially be moved to any of the available
sites for bottom-level computation.

We now formulate the problem of data fragmen-
tation and discuss the combinatorial approach we
adopted to generate the execution paths. Let us as-
sume that n, m and D be the number of nodes, the
number of mappers and the Application data size re-
spectively. In order to limit the number of potential
paths, the basic assumption we make is that all data
fragments must have the same size, and that the num-
ber of data fragments must be equal to the number of
sites available for computation (N f rag = n). The re-
sulting fragment size will then be:

Fragsize =
D
n

(7)

A node may be assigned zero, one ore more frag-
ments to work on. Our algorithm will schedule
which nodes have to be appointed top-level mappers
and how many data fragments to assign each Map-
per. In order to generate all possible combinations
of mappers and the related assigned data fragments,
we leverage on the combinatorial and on the partition
number theory (Andrews, 1976).

By the notation P(n;m) we refer to the number
of partitions of the integer number n in the order m,
where m is the number of addends in which n is to be
partitioned. For instance, P(5;2) is the number of par-
titions of the number 5 in 2 addends. It is easy to un-
derstand that P(5;2) = 2 (being the two combinations
1+4 and 2+3). If we had to partition the number 5 in
3 addends we would obtain P(5;3) = 2 (combinations
1+2+2 and 1+3+1). We are going to use this tech-
nique to guess the number of possible ways the data
of an application may be partitioned into a bunch of
fragments. So, in the case that we have 5 data frag-
ments to distribute over 2 sites, two configurations are
possible: 1) 1 fragment on one site, 4 fragments on the
other one: 2) 2 fragments on one site, 3 on the other
one. Generalizing, the overall number of partitions of
a number n in all the orders m=1,2,..,n is:

P(n) =
n

å
m=1

P(n;m) (8)

Of course, the fragment configuration tell us just
the ways to “group” fragments for distribution, but the
distribution phase complicates the problem, as there
are many possible ways to distribute group of frag-
ments among sites. In the example concerning the
P(5;2), 1 fragment may go to mapper1 (in site1) and
4 fragments may go to mapper2 (in site2), or vicev-
ersa. So for the distribution of fragments we have to
call on the partial permutation theory. The number of
possible ways of placing m mappers in n nodes is:

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

420

Dn;m =
n!

(n�m)!
(9)

In the end, the calculus of the number of all the
execution paths for a certain application has to con-
sider both the fragment distribution configuration (eq.
8) and the partial permutation of mappers (eq. 9):

Nexepath =
n

å
m=1

P(n;m)� n!
(n�m)!

(10)

For example, in the case of n=7 the number of gen-
erated paths will be around 18.000. For n=8 more
than 150.000 configurations were obtained. Treating
the problem of the generation of execution paths as an
integer partitioning problem allowed us to apply well
known algorithms working in constant amortized time
that guarantee acceptable time also on off-the-shelf
PCs (Zoghbi and Stojmenovic, 1994). For each con-
figuration generated by the algorithm, a correspond-
ing graph is built. On each graph’s node, parame-
ters (computing capacity, link capacity, b) are then
assigned. Finally the graph’s execution time is com-
puted.

5 CONCLUSION

The increasing rate at which data grow have stimu-
lated through the years the search for new strategies
to overcome the limits showed by legacy tools that
have been used so far to analyze data. MapReduce,
and in particular its open implementation Hadoop, has
attracted the interest of both private and academic re-
search as the programming model that best fit the need
for coping with big data. In this paper we address
the peculiar need to handle big data which by their
nature are distributed over many sites geographically
distant from each other. Plain Hadoop was proved to
be inefficient in that context. We propose a strategy
which inspires to hierarchical approaches prior pre-
sented in other literature’s works. The strategy lever-
ages on the partition number and the combinatorial
theory to partition big data into fragments and effi-
ciently distributes the workload among datacenters.
With respect to previous works, this exploits fresh
context information like the available computing and
the inter-site link capacity.

REFERENCES

Andrews, G. E. (1976). The Theory of Partitions, volume 2
of Encyclopedia of Mathematics and its Applications.

Dean, J. and Ghemawat, S. (2004). MapReduce: simplified
data processing on large clusters. In OSDI04: Pro-
ceeding of the 6th Conference on Symposium on op-
erating systems design and implementation. USENIX
Association.

Facebook (2012). Under the Hood: Scheduling
MapReduce jobs more efficiently with Corona.
https://www.facebook.com/notes/facebook-
engineering/under-the-hood-scheduling-mapreduce-
jobs-more-efficiently-with-corona.

Heintz, B., Chandra, A., Sitaraman, R., and Weissman, J.
(2014). End-to-end Optimization for Geo-Distributed
MapReduce. IEEE Transactions on Cloud Comput-
ing, PP(99):1–1.

Jayalath, C., Stephen, J., and Eugster, P. (2014). From
the Cloud to the Atmosphere: Running MapReduce
across Data Centers. IEEE Transactions on Comput-
ers, 63(1):74–87.

Kim, S., Won, J., Han, H., Eom, H., and Yeom, H. Y.
(2011). Improving Hadoop Performance in Intercloud
Environments. SIGMETRICS Perform. Eval. Rev.,
39(3):107–109.

Luo, Y., Guo, Z., Sun, Y., Plale, B., Qiu, J., and Li, W. W.
(2011). A Hierarchical Framework for Cross-domain
MapReduce Execution. In Proceedings of the Second
International Workshop on Emerging Computational
Methods for the Life Sciences, ECMLS ’11, pages 15–
22.

Mattess, M., Calheiros, R. N., and Buyya, R. (2013). Scal-
ing MapReduce Applications Across Hybrid Clouds
to Meet Soft Deadlines. In Proceedings of the 2013
IEEE 27th International Conference on Advanced In-
formation Networking and Applications, AINA ’13,
pages 629–636.

Open Networking Foundation (2012). Software-Defined
Networking: The New Norm for Networks. White
paper, Open Networking Foundation.

The Apache Software Foundation (2011). The Apache
Hadoop project. http://hadoop.apache.org/.

Yang, H., Dasdan, A., Hsiao, R., and Parker, D. S. (2007).
Map-reduce-merge: Simplified relational data pro-
cessing on large clusters. In Proceedings of the 2007
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’07, pages 1029–1040.

Zhang, Q., Liu, L., Lee, K., Zhou, Y., Singh, A.,
Mandagere, N., Gopisetty, S., and Alatorre, G. (2014).
Improving Hadoop Service Provisioning in a Geo-
graphically Distributed Cloud. In Cloud Computing
(CLOUD), 2014 IEEE 7th International Conference
on, pages 432–439.

Zikopoulos, P. and Eaton, C. (2011). Understanding Big
Data: Analytics for Enterprise Class Hadoop and
Streaming Data. McGraw Hill.

Zoghbi, A. and Stojmenovic, I. (1994). Fast algorithms for
generating integer partitions. International Journal of
Computer Mathematics, 80:319–332.

Context-aware�MapReduce�for�Geo-distributed�Big�Data

421

