
Executing Bag of Distributed Tasks on Virtually Unlimited Cloud
Resources

Long Thai, Blesson Varghese and Adam Barker
School of Computer Science, University of St Andrews, Fife, U.K.

fltt2, varghese, adam.barkerg@st-andrews.ac.uk

Keywords: Cloud Computing, Bag of Distributed Tasks, Cost vs Performance Trade-off, Decentralised Execution.

Abstract: Bag-of-Distributed-Tasks (BoDT) application is the collection of identical and independent tasks each of
which requires a piece of input data located around the world. As a result, Cloud computing offers an effective
way to execute BoT application as it not only consists of multiple geographically distributed data centres but
also allows a user to pay for what is actually used. In this paper, BoDT on the Cloud using virtually unlim-
ited cloud resources is investigated. To this end, a heuristic algorithm is proposed to find an execution plan
that takes budget constraints into account. Compared with other approaches, for the same given budget, the
proposed algorithm is able to reduce the overall execution time up to 50%.

1 INTRODUCTION

Bag-of-Tasks (BoT) is the collection of identical and
independent tasks executed by the same application
in any order. Bag-of-Distributed-Tasks (BoDT) is a
subset of BoT in which each task requires data from
somewhere around the globe. The location where a
task is executed is essential for keeping the execution
time of the BoDT low, since data is transferred from
a geographically distributed location. It is ideal to as-
sign tasks to locations that would be in geographically
close proximity to the data.

The centralised approach for executing BoDT, in
which data from multiple locations are transferred and
executed at a single location, tends to be ineffective
since some data resides very far from the selected lo-
cation and takes a long time to be downloaded. An-
other approach is to group the tasks of the BoDT in
such a way that each group can be executed near the
location of the data. However, this approach requires
an infrastructure which is decentralised and globally
distributed. Cloud computing is ideally suited for
this since public cloud providers have multiple data
centres which are globally distributed. Furthermore,
since clouds are available on a pay-as-you-go basis,
it is cost effective as a user only pays for Virtual Ma-
chines (VMs) that are required.

Cloud computing can facilitate the execution of
BoDT, and at the same time introduce the challenge
of assigning tasks to VMs by considering the loca-
tion for processing each task, the user’s budget con-

straint, as well as the desired performance, i.e. exe-
cution time, for executing the task. In an ideal case,
it is expected that maximum performance is obtained
while minimising the costs.

In our previous paper (Thai et al., 2014b), we ap-
proached this problem by assuming limited resources
were available. However, as Cloud providers offer
virtually unlimited resources, the limit should be de-
termined based on the user’s budget constraint. In this
paper, we present our approach for executing BoDT
on the Cloud with virtually unlimited resources and
is only limited by a user specified budget constraint.
Compared with other approaches, with the same given
budget, our algorithm is able to reduce the overall ex-
ecution time up to 50%.

The contributions of this paper are i) a mathemat-
ical model of executing a BoDT application on the
Cloud with budget constraints, ii) a heuristic algo-
rithm which assigns tasks to Cloud resources based
on their geographical locations, and iii) an evaluation
comparing our approach with centralised and round
robin approaches.

The remainder of paper is structured as follow.
Section II presents the mathematical model of the
problem. Section III introduces the heuristic algo-
rithms producing an execution plan based on the
user’s budget constraint. Section IV evaluates the ap-
proach. Section V presents the related work. Finally,
this paper is concluded in section VI.

373

2 PROBLEM MODELLING

Let L = fl1:::lmg be the list of Cloud locations, i.e.
location of Cloud provider’s data centres, and V M =
fvm1:::g be the list of Cloud VMs. For vm 2 V M,
lvm 2 L denotes the location in which vm is deployed.
Let V Ml �V M be the list of all VMs deployed at lo-
cation l 2 L. The number of items in V M is not fixed
since a user can initiate as many VMs as possible.

Let T = ft1:::tng be the list of tasks, and sizet de-
note the size of a task. The time (in seconds) taken
to transfer data from a task’s location to a Cloud lo-
cation is denoted as transt;l . Similarly, transt;vm for
vm 2 V M is the cost of moving t to vm (or to a loca-
tion on which vm in running; transt;vm = transt;lvm).
We assume that there is only one type of VM is used,
hence, the cost of processing one unit of data is iden-
tical and is denoted as comp.

The time taken to execute task t at vm is:

exect;vm = exect;lvm = (transt;vm + comp)� sizet (1)

Let Tvm � T be the list of tasks executed in vm 2
V M. All tasks must be executed and is represented as
the following constraint:[

vm2V M

Tvm = T (2)

One task should not be executed in more than one
location expressed as an additional constraint:

Ti\Tj = /0 for i; j 2V M and i 6= j (3)

The execution time of all tasks on vm 2V M is:

execTvm = å
t2Tvm

exect;vm (4)

As it takes some times to create a VM, the over-
head associated with the start up of each VM denoted
as start up. The execution time of vm 2 V M to exe-
cute all tasks in Tvm is:

execvm = start up+ execTvm (5)

It should be noted that Equation 5 can only be ap-
plied if there are task(s) assign to a VM, i.e. Tvm 6= /0.
Otherwise, it is unnecessary to create a VM, thus its
execution time is zero.

Assuming each VM is charged by hour, i.e. 3600
seconds, the number of charged time blocks is:

tbvm = dexecvm

3600
e (6)

Equation 6 contains the ceiling function, which
means the execution time is rounded up to the near-
est hour in order to calculate the number of used time
blocks. In other words, a user has to pay for a full
hour even if only a fraction of the hour is used.

Let P = fTvm1 :::Tvmpg be the execution plan,
whose each item is a group of tasks assigned to one
vm 2 V M. Let V MP denote the list of VMs used by
execution plan P. Similarly, let LP be the list of loca-
tions where all VMs of plan P are deployed. More-
over, Pl denotes the execution plan for location l 2 L,
which means LPl = flg and V MPl =V Ml .

As all VMs are running in parallel, the execution
time of a plan is equal to slowest VM’s:

execP = max
vm2V MP

execvm (7)

The total number of time blocks used is the sum
of the time blocks used by each VM, represented as:

tbP = å
vm2V MP

tbvm (8)

The budget constraint is the amount of money that
a user is willing to pay for executing the BoDT. Even
though Cloud providers charge users for using com-
pute time on virtual machines and transferring data,
only the renting cost is considered as the amount of
downloaded is unchanged for any given problem, i.e.
regardless the execution plan, the same amount of
data is downloaded, thus the data transferring cost.

The budget constraint is mapped onto the number
of allowed time blocks tbb by dividing the budget to
the cost of one time block (this is possible, because
of the assumption that there is only one VM type).
Hence, the problem of maximising the performance
of executing a BoDT on the Cloud with a given bud-
get constraint is to find an execution plan P in order
to minimise execP while keeping tbP = tbb and satis-
fying constraints in Equations 2 and 3.

3 ALGORITHMS

As stated in the previous section, the optimal plan for
executing BoDT on the Cloud with budget constraint
can be found by solving the mathematical model.
However, solving the mathematical model can take
considerable amount of time since it involves consid-
ering multiple possibilities of assigning tasks to dif-
ferent VMs at multiple Cloud locations. In this sec-
tion, we propose an alternative approach which is a
heuristic algorithm for finding an executing plan for a
BoDT based on a user’s budget constraint.

3.1 Select Initial Number of VMs at
Each Location

The main idea of the approach presented in this pa-
per is to specify a set of VMs for each location, then

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

374

to reduce the number until the total number of VMs
across all locations is tbb.

In order to determine the initial number of VMs at
each location, we make an assumption that it is pos-
sible to limit each VM to be executing in one time
block, i.e. if a VM finishes its execution in more than
one time block, its tasks can be split and scheduled
onto two VMs. Then, the total number of time blocks
is equal to the total number of VMs across all loca-
tions. Thus, the constraint tbb also limits the total
number of VMs, each of which uses no more than
one time block. Hence, initially, the number of VMs
at each location, i.e. V Ml for l 2 L, can be set to tbb.

3.2 Find Execution Plan based on
Budget Constraint

Let Pnl be the plan in which tasks are assigned to their
nearest location, i.e. the location in which exect;l is
minimum. Each item in Pnl represents the list of tasks
assigned to a location (not a VM).

Algorithm 1: Find Execution Plan based on Budget Con-
straint.

1: function FIND PLAN(tbb;Pnl ;V M)
2: P /0

3: for l 2 LPnl do
4: Pl ASSIGN(Tl ;V Ml)
5: if tbPl > tbb then
6: FAIL
7: end if
8: P Pl
9: end for

10: P REDUCE(P; /0;T RUE)
11: if tbP > tbb then
12: P REDUCE(P; /0;FALSE)
13: end if
14: if tbP > tbb then
15: FAIL
16: end if
17: P BALANCE(P)
18: return P
19: end function

Algorithm 1 finds a plan with minimum execution
time based on the budget constraint tbb. The nearest
plan Pnl and the initial list of virtual machines V M are
provided as input. The algorithm uses three functions,
namely ASSIGN, REDUCE and BALANCE.

First of all, the algorithm assigns tasks to VMs
deployed in their nearest locations (From Line 3 to
9). Line 5 checks if the number of used time block in
a location is more than the budget constraint. If that

is the case, then it is impossible to find an execution
plan satisfying the given budget constraint.

Secondly, some VMs are removed by moving its
tasks to other ones until the budget constraint is sat-
isfied (From Line 10 to 13). The reassignment can
be performed between VMs in the same location or
across multiple locations. If after reducing, the num-
ber of VMs is still higher than tbb, it is impossible to
satisfy the budget constraint (Lines 14 and 15).

Finally, as the execution times between VMs are
different (for example, one VM can take longer to fin-
ish than the other ones) it is necessary to balance out
the execution times between all VMs so that they can
finish at the same time, thus reduce the overall execu-
tion time (Line 17).

3.3 Assign Tasks to VMs

Algorithm 2 aims to evenly distributed tasks from T 0

to the set of receiving VMs.

Algorithm 2: Assign Tasks to VMs.

1: function ASSIGN(T 0;V M0)
2: T 0 T 0 sorted by �exect;l for t 2 T 0

3: for t 2 T 0 do
4: V M0 V M0 filtered execvm + exect;vm �

3600
5: if V M0 = /0 then
6: FAIL
7: end if
8: V M0 V M0 sorted by (transt;vm;execvm)

for vm 2V M0

9: V M0 argminvm2V M0 transt;vm
10: vm V M0[0]
11: Tvm Tvm[ftg
12: end for
13: Pnl fTvm for vm 2V M0g
14: return Pnl
15: end function

First of all, tasks are sorted in descending order
based on their execution times (Line 2). Then, for
each task, all the VMs which can execute it without
requiring more than one time block is selected (Line
4). If there is no VM selected, i.e. it will take more
than one time block if a task is assigned to any given
VMs, the function fails (Lines 5 and 6).

All the selected VMs are sorted based on the dis-
tance between VM’s location and the task’s location,
and by their current execution time (Lines 8). The
task is assigned to the first VM in the sorted collec-
tion (Lines 10 and 11). In other words, Algorithm 2
tries to assign a task to the nearest VM with the lowest
execution time.

Executing�Bag�of�Distributed�Tasks�on�Virtually�Unlimited�Cloud�Resources

375

3.4 Reduce the Number of VMs

Algorithm 3 is used to reduce the number of VMs by
moving all tasks from one VM to others which are ei-
ther in the same or on different locations. It is a recur-
sive process which takes the current plan Pn, and the
list of VMs which cannot be removed from the plan
Ign, and the boolean value indicating if the reducing
process is applied locally or globally is local.

Algorithm 3: Reduce VMs.

1: function REDUCE(P; Ign; is local)
2: vm argminvm2V MP

execvm
3: if is local = T RUE then
4: V M0 V Mlvm � vm
5: else
6: V M0 V MP� vm
7: end if
8: P0 ASSIGN(Tvm;V M0)
9: if tbP0 < tbP then

10: P P0

11: else
12: Ign Ign[fvmg
13: end if
14: if tbP = tbb or Ign =V MP then
15: return V Ml for l 2 L
16: else
17: return LOCAL REDUCE(Pn; Ign)
18: end if
19: end function

First, a VM with lowest execution time is selected
(Line 2). Then the remaining VMs, which can be ei-
ther in the same (Line 4) or on different Cloud loca-
tion (Line 6), are selected as receiving VMs.

After that, all tasks from selected VM are reas-
signed to other VMs (Line 8) by reusing the Algo-
rithm 2. Notably, the receiving VMs are not empty
but already contain some tasks.

If the reassignment reduces the number of VMs
(Line 9), the current plan is updated (Line 10). Other-
wise, the selected VM is added into the ignore list Ign
(Line 12). If the total time block satisfies the given
constraint or all VMs are ignored (Line 14), the pro-
cess stops and returns the current plan (Line 14), oth-
erwise it continues (Line 17).

3.5 Balance Tasks between VMs

After the budget constraint is satisfied, the execution
times between VMs can be uneven, i.e. some VMs
can have higher execution times than the others. As
the execution time of the plan execP is based on the

VM with highest execution time, it is necessary to
balance out execution time between them.

Algorithm 4: Balancing Algorithm.

1: function BALANCE(P)
2: vm argminvm2V MP

execvm
3: T 0vm Tvm sorted by �exect;vm
4: for t 2 T 0vm do
5: V M1 (V Mp�fvmg) sorted by transt;vm
6: vm0 NULL
7: for vm1 2V M1 do
8: if t is never in vm1 then AND rtc1 +

exect;c1 < rtc0
9: vm0 vm1

10: BREAK
11: end if
12: end for
13: if vm0 6= NULL then
14: BREAK
15: end if
16: end for
17: if vm0 6= NULL then
18: T 0vm Tvm� t
19: T 0vm0

 Tvm0 [ftg
20: P (P�fTvm;Tvm0g)[fT 0vm;T

0
vm0
g

21: go to 2
22: end if
23: return P
24: end function

Algorithm 4 is an iterative process which tries to
move tasks from a VM with highest execution time
(Line 2) to the nearest VM possible. There are two
conditions for selecting a receiving VM: the selected
task is never assigned to it and its execution time after
receiving the task is not higher than the current exe-
cution time of the giving VM (Line 8).

3.6 Dynamic Scheduling To Avoid Idle
VM

Even though Algorithm 1 aims to build the plan in
which all VMs finish their execution nearly at the
same time, due to the instability of the network and
other unaccountable factors, e.g. service failure, it is
not unusual for one VM to finish before others. As
the cost of a full hour is already paid, it is necessary
to utilise the remaining time of the finished VMs in
order to reduce not only idle and unpaid time but also
the execution time of other VMs.

Let rtvm be the actual running time of a VM.
Let evm and Trvm be the estimated remaining ex-
ecution time and remaining tasks of vm 2 V M.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

376

terminate time denote the time it take for a VM to be
shut down. Finally, thr1 and thr2 are two threshold
values indicating the required remaining execution
time and number of tasks. As unfinished VMs are still
running when the reassignment is being performed,
those thresholds aim to avoid reassigning tasks al-
ready executed by one VM to another. The idea of
dynamic rescheduling is to move Trvm of a VM to an-
other finished one while satisfying thr1 and thr2 in
order to reducing its evm.

In order to support dynamic scheduling, we add a
feature which monitors the execution of VMs, keeps
track of the remaining tasks and execution times, and
detects a VM which has just finished its execution.

Algorithm 5: Dynamic Reassignment.

1: function REASSIGN(vm)
2: if 3600� rtvm < terminate time then
3: FAIL
4: end if
5: V M1 fV MP�fvmgg sorted by �evm1 for

vm1 2V M1
6: vm0 NULL
7: for vm1 2V M1 do
8: if evm1 � thr1 AND Trvm1

� thr2 then
9: vm0 vm1

10: BREAK
11: end if
12: end for
13: if vm0 = NULL then
14: FAIL
15: end if
16: T 0r Trvm sorted by transt;vm for t 2 T 0r
17: T /0

18: el 3600� rtvm� terminate time
19: for t 2 T 0r do
20: exec0T execT + exect;vm

21: if exec0T �
evm0�thr1

2 OR exec0T > el then
22: BREAK
23: end if
24: T T [ftg
25: T 0r T 0r �ftg
26: end for
27: Trvm Trvm �T 0r
28: Tvm T
29: T IME OUT (vm;el)
30: end function

Algorithm 5 is invoked every time a VM that has
just finished its execution. First, it check whether
there is enough time in a finished VM to execute some
tasks (Line 2). This check ensures that the finished
VM is able to be terminated before using another time
block. Then, the VM which not only has the highest

remaining execution time but also satisfies thr1 and
thr2 is selected (Lines 5 to 15).

After that, some of the tasks are moved from the
selected VM to the finished one until some conditions
are met: i) the execution time of the finishes VM is
greater or equal half of the remaining execution time
of the giving one, or, ii) the finished VM will take
more than one time block to finish its execution if
more tasks are added (from Lines 16 to 26).

Notably, Algorithm 5 is invoked only one at a
time, i.e. if there are multiple VMs that have com-
pleted executing their tasks, only one of them is reas-
signed tasks while other VMs wait.

Finally, the timeout feature is added to prevent the
finished VM, which is just assigned some more tasks,
to use more than one time block. Basically, it takes
the VM and the allowed execution time as arguments
(Line 29), if the VM is still running when time out,
it is automatically terminated and the remaining tasks
are moved to another VM with lowest remaining exe-
cution time, i.e. the one that is likely to finish first.

4 EXPERIMENTAL EVALUATION

4.1 Set-up

In order to evaluate our proposed approach, we de-
veloped a word count application in which each task
involved downloading and counting the number of
words in a file from a remote server. Those files were
located on PlanetLab (PL), a test-bed for distributed
computing experiments (Chun et al., 2003). We had
5700 files across 38 PL nodes and the total amount
of data for each experiment run was more than 12 gi-
gabytes. The VMs were deployed on eight Amazon
Web Service (AWS) regions.

Prior to the experiment, we ran the test with fewer
tasks in order to collect the computational cost, i.e.
comp, and communicational costs between all AWS
regions and PlanetLab Nodes (i.e. trans).

Based on our algorithm, at least four VMs were
required to execute all 5700 tasks. We then set tbb =
f4;6;8;10;12;14;16;18;20g, i.e. the number of time
block (or VMs) that we wanted to use. For each value
of tbb, we ran the execution three times to find the
mean and standard deviation.

For comparison, we implemented two simple ap-
proaches for executing BoDT on the Cloud:

� Centralised approach: one cen-
tralised location was selected as lc =
argminl2L (åt2T transt;l � sizet), i.e. the cost
of moving all tasks to this location is a minimum

Executing�Bag�of�Distributed�Tasks�on�Virtually�Unlimited�Cloud�Resources

377

when compared to other locations. This approach
was developed based on the centralised approach
introduced in our previous paper (Thai et al.,
2014b), however, instead of using only one
VM at the selected location, in this paper, the
number of VMs was equal to the one used by
our proposed approach. In other words, this
centralised approach enjoyed the same execution
parallelism as the proposed one.

� Round Robin approach: for this approach, all
Cloud locations was sorted in ascending order
based on their costs of moving all tasks to them.
This means the first Cloud location was the one
selected by the centralised approach. After that,
VMs were added to each location in circular or-
der, e.g. the first VM was added to the first Cloud
location in the sorted list.

For both approaches, Algorithm 2 was used to
evenly distribute tasks to all VMs.

4.2 Dynamic Reassignment

Before going into the main experiment, it is neces-
sary to demonstrate the need of using dynamic reas-
signment for VMs that finish executing their assigned
tasks earlier than others. Figure 1 presents the result
of running the same execution plan with tbb = 4, i.e.
there were four VMs. Each bar represents the exe-
cution time of a VM. Without reassignment, one VM
took longer to finish its execution thus increasing the
overall execution time. Dynamic reassignment helped
to balance out the execution time between VMs so
that all VMs could finish at about the same time,
which in turn reduced the overall execution time. Dy-
namic reassignment is applied for the remaining ex-
periments presented in this section.

4.3 Experimental Results

Figure 2 presents the execution times corresponding
for each value of the number of VMs for all three ap-
proaches. The centralised approach had the highest
execution times as even though it selected the loca-
tion with lowest transfer cost for all tasks but some
tasks were very far from the Cloud location which re-
sulted in the high data transfer time. On the other
hand, the round robin approach performed better as
it deployed VMs at multiple Cloud locations, which
means it was possible for tasks to be executed near
their data sources. Finally, it is evident that for the
same number of VMs (or budget) our approach al-
ways had the lowest execution time in comparison
with other two.

Without_Reassignment With_Reassignment

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

0
10
00

20
00

30
00

40
00

ap-southeast-1
ap-southeast-2
us-east-1
us-west-2

Figure 1: Compare execution without and with reassign-
ment.

Number of VMs

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

4 6 8 10 12 14 16 18 20

0
60
0

18
00

30
00

42
00

54
00

Centralised
Decentralised
Round Robin

Figure 2: Execution Times.

A reason for the improvement is that our approach
not only deployed VMs at multiple locations but also
carefully selected those locations so that the major-
ity of tasks could be executed near their data sources.
The two simple approaches decided the location(s) of
VMs based on all tasks, by assuming all tasks were
assigned to one Cloud location. On the other hand,
our approach took a more fine-grain method by as-
signing each task to its nearest location first and then
reassigning them to others location until the budget
constraint was satisfied.

As the result, with the same given budget con-
straint, our approach was 30% to 50% faster than
the centralised approach. In comparison to the round
robin approach, ours was able to reduce the execution
times up to 30%.

Figure 3 presents the number of actual time
blocks, which can be mapped onto actual cost, con-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

378

4 6 8 10 12 14 16 18 20

Number of VMs

N
um

be
r o

f T
im

e
B

lo
ck

s

0
5

10
15

20
Decentralised Approach
Centralised Approach
Round Robin Approach

Figure 3: Actual Number of Used Time Blocks, i.e. cost.

sumed by three approaches. It shows that our ap-
proach was able to satisfy the budget constraint in all
cases. Moreover, when there were four VMs, the cen-
tralised and round robin approaches were more ex-
pensive than the decentralised one. It was because
each of their VMs required more than one hour to fin-
ish executing all the assigned tasks and the overall ex-
ecution time was higher than 3600 seconds, as shown
by Figure 2. Which means that the constraint tbb = 4
could only be satisfied by the decentralised approach.

4.4 Trade-off between Cost and
Performance

As presented in Figure 2, the higher the budget con-
straint is (i.e. more VMs), the better the performance
is. In theory, it is possible to keep adding more VMs
in order to achieve better performance. However, the
performance gain for each additional VM also de-
creases as the total number of VMs increases.

Hence, it is up the user to decide how much im-
provement in performance can be afforded. There
are some simple criteria to consider such as a defined
budget constraint, the desired execution time or defin-
ing a threshold in the performance gain (for example,
stop adding more VM(s) if the performance gain is
less than 60 seconds).

A user can also make the decision of how many
VMs to use based on the trade-off between perfor-
mance and cost, as mentioned in (Thai et al., 2014b).

5 RELATED WORK

In the Grid environment in which the resources are
shared between multiple organisations, the overall

performance of a distributed framework by process-
ing data in close proximity to where it resides is im-
proved (Ranganathan and Foster, 2002). Similarly, a
heuristic algorithm is proposed to improve the perfor-
mance of executing independent but file-sharing tasks
(Kaya and Aykanat, 2006). An auto-scaling algorithm
is proposed to satisfy deadline and budget constraints
when each task requires distributed data from multi-
ple sources (Venugopal and Buyya, 2005).

However, the application of Grid computing re-
search on Cloud computing is limited because: i)
the Cloud resources are (virtually) unlimited, hence
a user is free to add or remove VMs whenever she
wants but ii) the monetary cost factor has to be con-
sidered as the resource is not available free-of-charge.

Recently, running application on the Cloud has re-
ceived attention from many researchers. Statistical
learning had been used to schedule the execution of
BoT on the Cloud (Oprescu and Kielmann, 2010).
The method for scaling resource based on given bud-
get constraint and desired application performance
was also investigated (Mao et al., 2010). Neverthe-
less, those papers do not consider the location of data.

Cloud computing is employed for improving the
performance of data intensive application, such as
Hadoop, whose data is globally located (Ryden et al.,
2014). Research that takes geographical distance
into account while executing workflows is also re-
ported (Luckeneder and Barker, 2013; Thai et al.,
2014a). However, recent researches on applying
Cloud computing for applications with geographi-
cally distributed data only focus on improving the per-
formance without considering the monetary cost.

Our previous work (Thai et al., 2014b) aimed to
determine a plan for executing BoDT on the Cloud,
however, it made an assumption that there was only
one VM that could be deployed at each Cloud region.

Our paper differentiates itself from prior research
by taking advantage of the decentralised infrastruc-
ture of Cloud computing in executing BoDT applica-
tion. We tries to decide not only the amount of re-
sources but also the locations where resources, i.e.
VMs, must be located. Moreover, our research ex-
ploits of the virtually unlimited resources of Cloud
computing by letting a user decides how much re-
sources that she wants based on her budget. Fi-
nally, the trade-off between performance gain and ad-
ditional cost is also presented.

6 CONCLUSION

Due to its decentralised infrastructure and virtually
unlimited resources, Cloud computing is suitable to

Executing�Bag�of�Distributed�Tasks�on�Virtually�Unlimited�Cloud�Resources

379

execute BoDT, whose data is globally distributed all
over the world. It is challenging to decide how to as-
sign tasks to Cloud VMs based on a user’s budget con-
straint while minimising the execution time.

The above problem was mathematically modelled
in this paper. We also proposed a heuristic approach
which assigned BoDT to Cloud VM(s) in order to
maximise performance and to satisfy the allowed cost
provided by a user.

Furthermore, we implemented a dynamic reas-
signment feature to utilise the idle time of a VM
that completes execution ahead of others by assigning
tasks from other VMs onto it. This feature reduces the
overall execution time when a number of VMs take
longer to finish their execution due to service failure
or network instability.

Our approach was evaluated and able to provide
execution plans which satisfied given budget con-
straints. Compared to the centralised and round robin
approaches, our approach reduced the execution time
on average by 27%. Our approach was also able to
satisfy the low budget while the others did not.

In the future, we plan to further improve dynamic
resource provisioning and tasks scheduling so that
they can be performed during execution in order to
handle expected events, e.g. network instability or
machine failure. Moreover, the different types of
Cloud instances, which have varying performance and
cost will be taken into account.

ACKNOWLEDGEMENTS

This research is supported by the EPSRC grant
‘Working Together: Constraint Programming and
Cloud Computing’ (EP/K015745/1), a Royal Society
Industry Fellowship, an Impact Acceleration Account
Grant (IAA) and an Amazon Web Services (AWS)
Education Research Grant.

REFERENCES

Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L.,
Wawrzoniak, M., and Bowman, M. (2003). Planet-
lab: An overlay testbed for broad-coverage services.
SIGCOMM Comput. Commun. Rev., 33(3):3–12.

Kaya, K. and Aykanat, C. (2006). Iterative-improvement-
based heuristics for adaptive scheduling of tasks shar-
ing files on heterogeneous master-slave environments.
Parallel and Distributed Systems, IEEE Transactions
on, 17(8):883–896.

Luckeneder, M. and Barker, A. (2013). Location, location,
location: Data-intensive distributed computing in the

cloud. In In Proceedings of IEEE CloudCom 2013,
pages 647–653.

Mao, M., Li, J., and Humphrey, M. (2010). Cloud auto-
scaling with deadline and budget constraints. In Grid
Computing (GRID), 2010 11th IEEE/ACM Interna-
tional Conference on, pages 41–48.

Oprescu, A. and Kielmann, T. (2010). Bag-of-tasks
scheduling under budget constraints. In Cloud Com-
puting Technology and Science (CloudCom), 2010
IEEE Second International Conference on, pages
351–359.

Ranganathan, K. and Foster, I. (2002). Decoupling compu-
tation and data scheduling in distributed data-intensive
applications. In Proceedings of the 11th IEEE Interna-
tional Symposium on High Performance Distributed
Computing, HPDC ’02, pages 352–, Washington, DC,
USA. IEEE Computer Society.

Ryden, M., Oh, K., Chandra, A., and Weissman, J. B.
(2014). Nebula: Distributed edge cloud for data in-
tensive computing.

Thai, L., Barker, A., Varghese, B., Akgun, O., and Miguel,
I. (2014a). Optimal deployment of geographically dis-
tributed workflow engines on the cloud. In 6th IEEE
International Conference on Cloud Computing Tech-
nology and Science (CloudCom 2014).

Thai, L., Varghese, B., and Barker, A. (2014b). Execut-
ing bag of distributed tasks on the cloud: Investi-
gating the trade-offs between performance and cost.
In Cloud Computing Technology and Science (Cloud-
Com), 2014 IEEE 6th International Conference on,
pages 400–407.

Venugopal, S. and Buyya, R. (2005). A deadline and bud-
get constrained scheduling algorithm for escience ap-
plications on data grids. In in Proc. of 6th Inter-
national Conference on Algorithms and Architectures
for Parallel Processing (ICA3PP-2005, pages 60–72.
Springer-Verlag.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

380

