
CoMA: Resource Monitoring of Docker Containers

Lara Lorna Jiménez, Miguel Gómez Simón, Olov Schelén, Johan Kristiansson, Kåre Synnes
and Christer Åhlund

Dept. of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden
flara.lorna.jimenez, miguel.gomez.simon, olov.schelen, johan.kristiansson, kare.synnes, christer.ahlundg@ltu.se

Keywords: Docker, Containers, Containerization, OS-level Virtualization, Operating System Level Virtualization,
Virtualization, Resource Monitoring, Cloud Computing, Data Centers, Ganglia, sFlow, Linux, Open-source,
Virtual Machines.

Abstract: This research paper presents CoMA, a Container Monitoring Agent, that oversees resource consumption of
operating system level virtualization platforms, primarily targeting container-based platforms such as Docker.
The core contribution is CoMA, together with a quantitative evaluation verifying the validity of the mea-
surements reported by the agent for three metrics: CPU, memory and block I/O. The proof-of-concept is
implemented for Docker-based systems and consists of CoMA, the Ganglia Monitoring System and the Host
sFlow agent. This research is in line with the rising trend of container adoption which is due to the resource
efficiency and ease of deployment. These characteristics have set containers in a position to topple virtual
machines as the reigning virtualization technology in data centers.

1 INTRODUCTION

Traditionally, virtual machines (VMs) have been the
underlying infrastructure for cloud computing ser-
vices(Ye et al., 2010). Virtualization techniques
spawned from the need to use resources more effi-
ciently and allow for rapid provisioning. Native vir-
tualization (Type I) (VMware Inc, 2007b)(VMware
Inc, 2007a) is the standard type of virtualization be-
hind cloud services. There are several established
platforms that offer this type of virtualization such
as, Xen hypervisor (Barham et al., 2003), Linux Ker-
nel Virtual Machine (KVM) (Tafa et al., 2011) and
VMware (VMware Inc, 2007a). Full-virtualization,
Para-virtualization and Hardware-assisted virtualiza-
tion are different techniques that attempt to enhance
the effectiveness of VMs, with varying degrees of suc-
cess and certain tradeoffs. However, none of these
techniques are on par with today’s expectations in the
cloud computing industry. It has been demonstrated
that VMs introduce a significant overhead that does
not allow for an optimized use of resources (Xu et al.,
2014). The unfulfilled potential for improvement of
VMs is where OS-level virtualization comes in.

OS-level virtualization has become popular in re-
cent years by virtue of its resource efficiency. This
light-weight type of virtualization executes processes
quasi-natively (Felter et al., 2014),(Xavier et al.,

2013). On top of a shared Linux kernel, several
of what are generally referred to as “containers”
run a series of processes in different user spaces
(Elena Reshetova, 2014). In layman’s terms, OS-
level virtualization generates virtualized instances of
kernel resources, whereas hypervisors virtualize the
hardware. Moreover, containers run directly on top
of an operating system, whereas VMs need to run
their OS on top of a hypervisor which creates a per-
formance overhead (Xu et al., 2014). The downside
of containers is that they must execute a similar OS to
the one that is hosting the containers. There are var-
ious implementations of OS-level virtualization, with
differences in isolation, security, flexibility, structure
and implemented functionalities. Each one of these
solutions is oriented towards different use cases. For
example, chroot() jails (Elena Reshetova, 2014) are
used to sandbox applications and Linux containers
(LXC) 1 are used to create application containers.

In March 2013, the Docker platform was released
as an open-source project based on LXC and a year
later, the environment was moved from LXC to lib-
container 2. Docker is based on the principles of con-
tainerization, allowing for an easy deployment of ap-
plications within software containers as a result of
its innovative and unique architecture (Felter et al.,

1https://linuxcontainers.org/
2http://www.infoq.com/news/2013/03/Docker

145



2014). Docker implements certain features that were
missing from OS-level virtualization. It bundles the
application and all its dependencies into a single ob-
ject, which can then be executed in another Docker-
enabled machine. This assures an identical execu-
tion environment regardless of the underlying hard-
ware or OS. The creation of applications in Docker
is firmly rooted in the concept of versioning (Docker
Inc, 2014b). Modifications of an application are com-
mitted as deltas (Docker Inc, 2014c), which allows
roll backs to be supported and the differences to pre-
vious application versions to be inspected. This is an
exceptional method of providing a reliable environ-
ment for developers. Furthermore, Docker promotes
the concept of reusability, since any object that is de-
veloped can be re-used and serve as a “base image”
to create some other component. Another essential
aspect of Docker is that it provides developers with
a tool to automatically build a container from their
source code.

The main difference between a Docker container
and a VM is that while each VM has its own OS,
dependencies and applications running within it, a
Docker container can share an OS image across mul-
tiple containers. In essence, a container only holds
the dependencies and applications that have to be run
within them. For example, assuming a group of con-
tainers were making use of the same OS image, the
OS would be common to all containers and not be du-
plicated contrary to the case of a VM topology.

Docker has become the flagship in the container-
ization technology arena since its release (Felter et al.,
2014) (Docker Inc, 2013). This open-source project
has gained much notoriety in the field of cloud com-
puting, where major cloud platforms and companies
(e.g. Google, IBM, Microsoft, AWS, Rackspace, Red
Hat, VMware) are backing it up. These companies
are integrating Docker into their own infrastructures
and they are collaborating in Docker’s development.
Recently, a few alternatives to Docker have cropped
up, such as Rocket 3, Flockport 4 and Spoonium 5.

An adequate monitoring of the pool of resources
is an essential aspect of a cloud computing infrastruc-
ture. The monitoring of resources leads to improved
scalability, better placement of resources, failure de-
tection and prevention, and maintenance of architec-
tural consistency, among others. This is relevant for
VMs, and it is just as applicable to OS-level virtual-
ization. Out of this need to monitor containers, within
the paradigm of OS-level virtualization platforms, the
following research questions have been addressed in

3https://coreos.com/blog/rocket/
4http://www.flockport.com/start/
5https://spoon.net/docs

this paper:

� How could an OS-level virtualization platform be
monitored to obtain relevant information concern-
ing images and containers?
This paper presents an investigation of this issue
as well as an implementation of a Container Mon-
itoring Agent.

� Is the resource usage information about the run-
ning containers reported by our Container Moni-
toring Agent valid?
This paper details a quantitative evaluation of the
validity of the measurements collected by the pro-
posed Container Monitoring Agent.

The rest of the paper is organized as follows. Sec-
tion 2 presents state-of-the-art research related to the
monitoring of containers and virtual machines. Sec-
tion 3 explains the different components of the moni-
toring system architecture. Section 4 presents the re-
sults obtained. Section 5 discusses the research ques-
tions. Finally, Section 6 presents the conclusions of
the paper and discusses the possibilities for future
work.

2 RELATED WORK

There is an active interest in industry and in research
to build monitoring solutions (Ranjan and Tai, 2014).
In (Kutare et al., 2010) the term monalytics is coined.
Monalytics refers to a deployment of a dynamically
configurable monitoring and analytics tool for large-
scale data centers, targeting the XEN hypervisor. One
of the monalytics’ topologies defined, matches the
architecture chosen for the monitoring solution pro-
vided in this paper. The research of (Meng et al.,
2012) is centered on providing a state monitoring
framework that analyzes and mitigates the impact
of messaging dynamics. This technique ensures the
trustworthiness of the measurements collected by a
distributed large-scale monitoring tool on XEN-based
virtual machines. Most existing monitoring research
for data center management target virtual machines.
To the best of our knowledge, at the time of writing
this paper, there were no research papers on the topic
of monitoring the Docker platform.

When this monitoring solution for Docker was de-
veloped, there were a lack of open-source implemen-
tations to monitor Docker. However, recently, several
other monitoring systems for Docker have appeared.

Datadog agent (Datadog Inc, 2014) is an open-
source tool developed by Datadog Ink which moni-
tors Docker containers by installing an agent within
the host where the Docker platform is running. It is

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

146



an agent-based system which requires metrics to be
pushed to the Datadog cloud thereby making the task
of monitoring entirely dependent on Datadog’s cloud.
Unlike the Datadog agent, the monitoring agent for
the Docker platform presented in this paper is not only
open-source, but also independent of any particular
collector. It can be integrated within different mon-
itoring architectures after the proper configuration is
done.

cAdvisor is an open-source project created by
Google Inc (Bryan Lee, 2014) to monitor their own
lmctfy containers (Google Inc, 2014). Support to
monitor the Docker platform was later added to it.
Therefore, this monitoring tool provides Docker met-
rics, which are shown in real time but are not stored
for more than one minute. This feature may be use-
ful to test container performance but, due to the small
data time frame displayed, it is not possible to get a
historical of the metrics collected.

The Host sFlow agent (InMon Inc, 2014) is an
open-source tool to monitor the resource consumption
of a host. It has recently incorporated the option to
monitor the Docker platform, making it a viable open-
source monitoring solution for Docker. However, this
agent adheres to the sFlow standard 6, which enforces
constraints on the information it is able to send as
there is no dedicated sFlow structure for Docker. By
contrast, the solution provided in this paper does not
have limitations on the metrics that can be obtained.
The monitoring agent presented here can be modi-
fied to select which metrics, out of all the available,
to monitor.

As shown above, only the solution proposed in
this paper manages to provide a monitoring module
for Docker that is open-source, does not adhere to
a particular collector or monitoring framework pro-
vided some configuration is done, and allows for the
selection of a certain subset of metrics from all the
available ones.

3 SYSTEM ARCHITECTURE

To monitor Docker containers, three separate modules
could be employed: our Container Monitoring Agent
(CoMA), a metrics’ collector and a host monitoring
agent. The solution proposed in this paper, to create
a distributed Docker monitoring system consists of:
CoMA, the Ganglia Monitoring System and the Host
sFlow agent.

In Figure 1, a possible layout of the proposed
monitoring architecture is shown. This figure repre-

6http://www.sflow.org/developers/specifications.php

Figure 1: Cloud topology.

Figure 2: General overview of the host.

sents three clusters. Each one of the monitored hosts
represented in Figure 1 have the structure presented
in Figure 2.

3.1 CoMA: CONTAINER
MONITORING AGENT

We have developed CoMA, the agent that moni-
tors containers of OS-level virtualization platforms
such as Docker. CoMA retrieves information about
the containers and images in the Docker platform.
It also tracks the CPU, memory and block I/O re-
sources being consumed by the running containers.
CoMA can be accessed as an open-source project at
https://github.com/laraljj/CoMA.

The collection of Docker metrics in CoMA is ac-
complished via two modules. One module makes
requests to the platform’s Remote API (Docker Inc,
2014a) to collect data about the containers and im-
ages. These include: the number of Go routines be-
ing executed by the Docker platform; the images that
have been created in each host and information about
these (e.g. size and virtual size); the number of con-
tainers that have been created and from which image
they have been built; the status of all the containers in
the host (i.e. whether they are running or stopped).

The second module obtains information about re-
source usage and resource limitations of the running
containers. These metrics are obtained by accessing
the control groups (cgroups) feature of the Linux ker-
nel (Paul Menage, 2014), which accounts and sets

CoMA:�Resource�Monitoring�of�Docker�Containers

147



limits for system resources within different subsys-
tems. The container resources monitored by this mod-
ule include CPU, memory and block I/O. The num-
ber of measurements recorded by CoMA vary accord-
ing to the number of containers that have been de-
ployed. For the Docker platform as a whole, there
are 18 CPU related metrics. Per container, 18 CPU
related metrics, 24 memory related metrics, and 100
block I/O related metrics are measured. This means
that when a single container is running, there are a to-
tal of 160 measurements available, 142 of these are
container specific and 18 of these are related to the
Docker platform itself. Therefore, when two contain-
ers are running there will be 302 measurements, 142
measurements for one container, 142 measurements
for the other container and 18 measurements for the
Docker platform. The metrics that are being reported
by CoMA can be selected according to the needs of
each specific deployment, so that only the values of
those metrics are dispatched to the collector, instead
of all of them.

3.2 Complementary Components

3.2.1 The Ganglia Monitoring System

The Ganglia Monitoring System (Massie et al., 2012)
is an open-source distributed monitoring platform to
monitor near real-time performance metrics of com-
puter networks. Its design is aimed at monitoring fed-
erations of clusters. The Ganglia Monitoring System
was selected as collector due to its capacity to scale,
its distributed architecture and because it supports the
data collection of the Host sFlow agent. However, in
the interest of fitting the requirements of a different
system, a stand-alone collector could be used instead.

The system is comprised of three different units:
gmond, gmetad and gweb. These daemons are self-
contained. Each one is able to run without the inter-
vention of the other two daemons. However, architec-
turally they are built to cooperate with each other.

Gmond is a daemon that collects and sends met-
rics from the host where it is running to gmetad. This
is not a traditional monitoring agent, as it does not sit
passively waiting for a poller to give the order to re-
trieve metrics. Gmond is able to collect metric values
on its own, but gmond’s built-in metrics’ collection
may be replaced by the Host sFlow agent. This setup
implies that, for the architecture chosen, gmond acts
as in-between software layer for the Host sFlow agent
and gmetad.

Gmetad is a daemon running a simplified version
of a poller, since all the intelligence of metric re-
trieval lays, in our case, with the Host sFlow agent

and gmond. Gmetad must be made aware of from
which gmonds to poll the metrics. Gmetad obtains the
whole metric dump from each gmond, at its own time
interval, and stores this information using the RRD-
tool (i.e. in “round robin” databases).

Gweb is Ganglia’s visualization UI. It allows for
an easy and powerful visualization of the measure-
ments collected, mostly in the form of graphs. New
graphs combining any number of metrics can be gen-
erated, allowing the visualization of metrics to be cus-
tomized depending on individual needs.

3.2.2 The Host sFlow Agent

The Host sFlow agent was selected as the host moni-
toring agent to track the resources consumed by the
OS in the host running the OS-level virtualization
platform. Monitoring resources both at the host level
and at the virtualization platform level makes it possi-
ble to compare the values of the metrics for soundness
checks, tracking problems at both levels.

The Host sFlow agent may retrieve information
from within an OS running on bare metal or from
within the hypervisor if the aim is to monitor virtual
machines. This agent can be run in multiple OSs and
hypervisors. The agent itself obtains the same metrics
as gmond’s built-in collector does. The difference be-
tween these two solutions is that the sFlow standard,
used by the Host sFlow agent to relay metrics, is con-
siderably more efficient than gmond. This is because
each sFlow datagram carries multiple metric values,
which reduces the number of datagrams that need to
be sent over the network. For example, monitoring
1,000 servers with gmond would create the same net-
work overhead as 30,000 servers with the sFlow pro-
tocol (Massie et al., 2012). The sFlow protocol’s ef-
ficiency justifies the usage of the Host sFlow agent in
this monitoring system.

4 EVALUATION

The primary evaluation objective is to assess the va-
lidity of the values of the metrics collected with
CoMA. Validity in this context means to establish, for
the metrics reported by CoMA, whether the measured
values reflect the real values. Given the numerous
metrics reported about CPU, memory and block I/O, a
small subset of these metrics has been selected for the
evaluation. This validity assessment is carried out on
user CPU utilization, system CPU utilization, mem-
ory usage and number of bytes written to disk. User
CPU utilization and system CPU utilization refer to
the percentage of CPU that is employed to execute

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

148



Figure 3: Scenario 1, no workload (baseline).

Figure 4: Scenario 2, workload on host OS.

Figure 5: Scenario 3, workload in container.

code in user space and in kernel space, respectively.
It should be noted that for all tests, Ubuntu 12.04 LTS
and the Docker platform 1.3.1 have been run on the
same Dell T7570 computer. This computer runs an
Intel Pentium D 2.80 GHz (800 MHz) and 2 GB of
RAM at 533 MHz.

The evaluation presented collects for each host:
host-specific metrics (reported by the Host sFlow
agent) and the metrics from the Docker platform (re-
ported by CoMA). The purpose of collecting the val-
ues for both sets of metrics was to compare and con-
trast the host’s resource consumption against the re-
source consumption of the Docker platform, that is,
against the resource consumption of the collection of
containers and images within the host. The objective
of this comparison is to offer a reliable overview of
the system from a resource usage perspective. Com-
paring both sets of metrics, a system administrator can
pinpoint the origin of a particular misbehavior by de-
termining if the issue is due to the Docker platform
(i.e. a specific container) or due to some other prob-
lem within the host but independent of the containers.

4.1 Validity of CPU and Memory
Measurements

Three different scenarios have been set up to assess

Figure 6: Host CPU utilization reported by the Host sFlow
agent.

Table 1: Host CPU utilization reported per scenario. To-
tal CPU is the aggregation of user CPU and system CPU.
Standard Deviation (SD).

the collected values of the memory and CPU-
utilization metrics. For all scenarios, 6 rounds, each
one of 30 minutes have been run. Scenario 1 (Figure
3) presents a baseline of the CPU and memory usage
while the OS is executing Docker, which runs a sin-
gle unlimited container executing /bin/bash, the Host
sFlow Agent and CoMA. The container was not ac-
tively used during this scenario. Scenario 2 (Figure
4) is set up like Scenario 1, except for the fact that a
workload generator was executed natively in the OS.
This means that the process did not run container-
ized. Stress-ng 7 has been used to generate load on
both CPU and memory. In order to create load on the
CPU, two workers were launched so that there would
be a worker per core. Each CPU worker executed
sqtr(rand()) to generate load. To stress the memory,
five workers were started on anonymous mmap, each
one of these workers was set to 420MB. Scenario 3
(Figure 5) has been laid out exactly like Scenario 2,
the only difference being that the stress-ng processes
were executed containerized.

4.1.1 CPU: A Single Container

The data obtained from each scenario were processed.
Figure 6 shows user CPU, system CPU and total CPU
utilization reported at the host level for each scenario.
Figure 7 displays CPU utilization pertaining to the
process or processes running within that single con-
tainer deployed in the three scenarios.

In order to determine that the measurements of the
CPU metrics collected with CoMA are valid, the data

7http://kernel.ubuntu.com/ cking/stress-ng/

CoMA:�Resource�Monitoring�of�Docker�Containers

149



Figure 7: Container CPU utilization reported by CoMA.

Table 2: Container CPU utilization reported by CoMA per
scenario. Note that there are no processes running in Sce-
nario 1 and Scenario 2.

obtained from Scenario 3, which can be visualized in
Figure 6 and 7, has been compared. The total CPU
of Scenario 1 (Table 1), aggregated to the total CPU
of the container reported by CoMA in Scenario 3 (Ta-
ble 2), should resemble the total CPU reported by the
host in Scenario 3 (Table 1). The aggregation of those
first two values (20.42% and 78.41%) results in a total
CPU of 98.83% and a standard deviation of 6.5. The
total CPU utilization of the whole host in Scenario 3
is 98.92% with a standard deviation of 15.29. These
results verify that the values of the CPU metrics gath-
ered by CoMA are valid.

The CPU utilization data retrieved from this eval-
uation allows for other noteworthy observations to be
made. In Figure 6 and Table 1 a small difference of
0.69% can be ascertained, between running the stress-
ng processes natively (Scenario 2) or containerized
(Scenario 3). The disparity that exists between these
two scenarios is due to several reasons. First, the in-
trinsic variable nature of the data collected has a di-
rect impact on the results attained. However, its ir-
regularity is acceptable as the standard deviations cal-
culated demonstrate, since these are reasonable and
valid for these data. Second, the stress-ng processes
themselves may be accountable for a certain variation.

It can also be noticed that there seems to be a ten-
dency in the way these stress-ng processes are ex-
ecuted. When stress-ng was run within a container
more system CPU utilization was accounted for com-
pared to when stress-ng was run natively. The effect
is the exact opposite when it comes to user CPU uti-
lization, as can be visualized in Figure 6. This last
observation has been verified by computing the corre-
lation coefficient between system CPU utilization and
user CPU utilization. A nearly perfect negative corre-

Figure 8: Total CPU utilization of 10 containers, where
each container runs the same process generating a symmet-
ric CPU load across all containers. CoMA reports the values
for the containers and for the Docker platform. The Host
sFlow agent reports the values for the host.

Table 3: Total CPU utilization and standard deviations (SD)
for Figure 8.

lation of -0.99 was obtained for Scenario 2 and -0.98
for Scenario 3.

4.1.2 CPU: Multiple Containers

These scenarios prove that the CPU utilization re-
trieved by CoMA, of one container, is valid. However,
whether the agent is able to properly report the CPU
metrics for multiple simultaneously running contain-
ers should also be demonstrated. For this purpose,
two tests were carried out. For the first test, ten con-
tainers ran the exact same stress-ng process to gen-
erate load on the CPU with two workers, one per
core. In accordance with the default process sched-
uler in Linux, the Completely Fair Scheduler (CFS)
8, the expected outcome of this test is for each con-
tainer to employ a similar portion of the total CPU.
As it can be observed in Figure 8 and Table 3, each
container is granted an average of around 8% of the
CPU. The aggregation of each container’s total CPU
utilization adds up to 80.07% which almost matches

8http://lwn.net/Articles/230501/

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

150



Figure 9: Total CPU utilization of 2 containers with asym-
metric processes running in each container. CoMA reports
the values for the containers and for the Docker platform.
The Host sFlow agent reports the values for the host.

Table 4: Total CPU utilization and standard deviations (SD)
for Figure 9.

the total CPU utilization of the whole Docker plat-
form (80.13%) as reported by CoMA.

This test shows that each container reports its
own set of CPU measurements independently and is
able to do so effectively. However, a different test
was carried out to verify this by running asymmet-
ric processes in two containers. Each container ran
the stress-ng process with different settings so as to
generate an uneven load across the two containers.
As represented by Figure 9 and Table 4, CoMA re-
ported just that. A container used 48.61% of the total
CPU whilst the other container employed 18.57% of
the total CPU. Both containers together used 67.18%,
which resembles the value (67.20 %) reported by
CoMA of the total CPU utilization of the Docker plat-
form.

4.1.3 Memory: A Single Container

The memory data captured for all scenarios is dis-
played in Figure 10. It should be mentioned that there
is a greater fluctuation in the memory-reported values
than in the CPU values. This phenomenon is due to
the manner in which Linux manages its memory. The
memory management methodology applied by Linux
varies according to the needs of the OS at any given
time. This adds another layer of complexity when
analyzing the metrics collected. The host’s mem-
ory usage in Scenario 1 (360.73MB) aggregated to
the container’s memory usage reported by CoMA in

Figure 10: A comparison of the memory usage reported by
the host and the container per scenario.

Table 5: Memory usage and standard deviations (SD) for
Figure 10.

Scenario 3 (1349.09MB), should be somewhat sim-
ilar to the host’s memory consumption in Scenario
3 (1544.37MB). In this case there is a difference of
around 165MB. As it has been explained before, this
discrepancy is caused by the memory management
enforced by Linux, as well as by the error introduced
in the averaging process of the results.

4.1.4 Memory: Multiple Containers

Much like it happens with CPU, the previous sce-
narios establish that the memory metrics provided by
CoMA are valid for a single container. The two CPU
tests performed with multiple simultaneously running
containers, were also carried out for memory. As it
can be observed in Figure 11 and Table 6, when the
same process is running in each container, the mem-
ory usage value presented by CoMA per container has
a greater variability than that observed in the same
test for CPU utilization. As it has been previously
explained, these fluctuations are due to the change-
able nature of how memory is managed by the OS.
However, each container’s memory usage is close to
152MB. The aggregated memory usage of all 10 con-
tainers adds up to 1519.92MB. The Host sFlow agent
reports a memory usage of 1773.62MB for the whole
host during this test. The difference of 253.70MB be-
tween these last two values, represents the memory
being employed by the OS to run non-containerized
processes. A second test, where two containers were

CoMA:�Resource�Monitoring�of�Docker�Containers

151



Figure 11: Memory usage of 10 containers, where each con-
tainer runs the same process. This generates a symmetric
memory use across all containers. CoMA reports the values
for the containers and for the Docker platform. The Host
sFlow agent reports the values for the host.

Table 6: Memory usage and standard deviations (SD) for
Figure 11.

configured to make a disparate use of memory was
also carried out. Figure 12 and Table 7 reflect the re-
sults obtained, which are consistent with the values
gathered when running a symmetric memory load on
10 containers.

4.2 Validity of block I/O Measurements

To evaluate whether the block I/O measurements
gathered by CoMA were solid, the I/O tool fio 9 was
used to write 1000MB directly to the ext4 filesystem
mounted by the host by making use of the –v flag
(Docker Inc, 2014d) on the container. In order to
achieve this, fio was configured to initiate five work-
ers, each worker performing random write operations
of 200 MB in the shared folder between the host and
the container.

The test of writing 1000MB to disk was executed
at 12:00 and it finished by 12:07. As Figure 13 shows,

9http://freecode.com/projects/fio

Figure 12: Memory usage of 2 containers with asymmet-
ric processes running in each container. CoMA reports the
values for the containers and for the Docker platform. The
Host sFlow agent reports the values for the host.

Table 7: Memory usage and standard deviations (SD) for
Figure 12.

exactly 1000MB were reported to have been written
during that time.

A separate test was created, following the same
principle previously explained, to write to disk from
three simultaneously running containers. Fio was
configured for each container with a disparate number
of workers and file sizes. The first container spawned
two workers, each of which had to write 300MB to
the shared folder. The second container initiated three
workers, each with a file size of 250MB. The third
container started five workers, where each worker had
to write 200MB to disk. For each container, the num-
ber of bytes that CoMA reported were written to disk
was exactly right, down to the last byte. The first con-
tainer took 20 minutes to write the 600MB to disk.
The second and third container took around 16 min-
utes to write 750MB and 1000MB to disk, respec-
tively. The time taken for each container to complete
the task of writing these files to memory is closely
linked to the number of workers running and the num-
ber of containers writing to disk.

5 DISCUSSION

This section discusses CoMA as well as the evalua-
tion results obtained in terms of the research questions
proposed.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

152



Figure 13: Bytes written to disk by container.

How could an OS-level virtualization platform be
monitored to obtain relevant information concerning
images and containers?

CoMA retrieves information about the usage of
CPU, memory and block I/O of running contain-
ers from the Linux kernel’s control groups. It also
fetches the data concerning images and containers us-
ing Docker’s Remote API.

Is the resource usage information about the run-
ning containers reported by our Container Monitor-
ing Agent valid?

The evaluation provides validation across the fol-
lowing three blocks of metrics: CPU, memory and
block I/O. The most complex metric to validate was
the memory usage of a container. This is due to the
way memory is managed in an OS, which causes the
memory usage baseline in Scenario 1 to account a
slightly overestimated usage. The authenticity of all
the measurements that can be collected with CoMA
could not be tested because of the number of metrics
that CoMA is able to gather. Nevertheless, since the
values are being reported by the Linux kernel, assess-
ing at least one metric from each group of metrics is
sufficient to establish the validity of CoMA. It should
be mentioned that CoMA can be modified to only dis-
patch a subset of desired metrics.

CoMA’s CPU utilization is dependent on the test-
bed that has been set up. This means that CoMA’s
resource usage is contingent on the hardware that has
been employed, the number of containers that had
been deployed, the number of metrics being sent and
the sampling rate set for CoMA. This last value can
be configured to obtain measurements closer or fur-
ther away from real-time monitoring, depending on
the requirements. There are certain tradeoffs in the
selection of the sampling rate. A higher sampling rate
would mean obtaining more accurate measurements
in terms of time, but more resources would be used in
order to monitor the platform. It is worth mentioning
that CoMA itself consumes around 15.25% of CPU
with a standard deviation of 5.87 for the specific test-
bed presented in the evaluation section. This number
may seem high, but it is relative to the hardware be-
ing employed. An Intel Pentium D 2.8GHz and 2GB

RAM at 533MHz was used in this case. Had con-
ventional cloud computing hardware been used, this
percentage would be much lower. Moreover, in this
test-bed all available metrics are collected, if fewer
of them were collected the percentage of CPU used
would decrease. It should also be mentioned that the
monitoring solution itself shall be optimized so as to
minimize its impact.

It has been previously mentioned that CoMA
could be employed to monitor similar OS-level vir-
tualization platforms. For this to happen, said OS-
level virtualization platform would have to account
resource usage in a similar fashion to Docker, i.e. us-
ing the Linux kernel’s control groups. However, the
information pertaining to the containers and images
that is collected through Docker’s Remote API, is spe-
cific to the Docker platform itself.

6 CONCLUSION AND FUTURE
WORK

Monitoring the resource consumption of OS-level vir-
tualization platforms such as Docker, is important to
prevent system failures or to identify application mis-
behavior. CoMA, the Container Monitoring Agent
presented in this paper, reports valid measurements
as shown by our evaluation. It currently tracks CPU
utilization, memory usage and block I/O of running
containers. CoMA could be configured to gather a
subset of the available metrics to suit the monitoring
needs of a particular system or application. This pa-
per has presented a possible implementation solution
of CoMA to build a distributed and scalable monitor-
ing framework, using the open-source projects Gan-
glia and the Host sFlow agent.

It would be positive to monitor the network us-
age of the containers, since this feature has not yet
been implemented in CoMA. Moreover, establishing
thresholds on certain metrics collected by CoMA to
trigger alarms or actions would be beneficial. Also,
assessing CoMA’s behavior when numerous contain-
ers are deployed on commonly used hardware in data
centers is required. This would be a proper test-bed to
gauge CoMA’s performance in a realistic cloud com-
puting scenario.

Another area for further research would be to
employ machine learning techniques on the values
collected, to maximize resource usage by modify-
ing each container’s resource constraints based on the
needs of the running containers. There is also the pos-
sibility of applying data analytics on the information
captured by CoMA to build an autonomous system for
container placement within a cloud or across clouds.

CoMA:�Resource�Monitoring�of�Docker�Containers

153



There are new and upcoming OS-level virtual-
izations platforms that could rival Docker, such as
Rocket. CoMA could be also employed and evalu-
ated with these recent virtualization platforms.

REFERENCES

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., Neugebauer, R., Pratt, I., and Warfield, A.
(2003). Xen and the art of virtualization. SIGOPS
Oper. Syst. Rev., 37(5):164–177.

Bryan Lee (Accessed: 2014). cAdvisor monitoring
tool. http://blog.tutum.co/2014/08/07/using-cadvisor-
to-monitor-docker-containers/.

Datadog Inc (Accessed: 2014). Docker-ize Datadog with
agent containers . https://www.datadoghq.com/2014/
06/docker-ize-datadog/.

Docker Inc (2013). What is Docker technology ? https://
www.docker.com/whatisdocker/.

Docker Inc (Accessed: 2014a). Docker remote API. https://
docs. docker.com/ reference/api/docker remote api/.

Docker Inc (Accessed: 2014b). Docker working with LXC.
https://docs.docker.com/faq/.

Docker Inc (Accessed: 2014c). File sytem architecture of
the Docker platform . https://docs.docker.com/terms/
layer/.

Docker Inc (Accessed 2014d). Volume system with Docker.
https://docs.docker.com/userguide/dockervolumes/.

Elena Reshetova, Janne Karhunen, T. N. N. A. (2014). Se-
curity of os-level virtualization technologies.

Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2014).
An updated performance comparison of virtual ma-
chines and linux containers. technology, 28:32.

Google Inc (Accessed: 2014). lmctfy: Let Me Contain That
For You . https://github.com/google/lmctfy.

InMon Inc (Accessed: 2014). HostsFlow monitoring tool .
http://host-sflow.sourceforge.net/.

Kutare, M., Eisenhauer, G., Wang, C., Schwan, K., Talwar,
V., and Wolf, M. (2010). Monalytics: Online monitor-
ing and analytics for managing large scale data cen-
ters. In Proceedings of the 7th International Confer-
ence on Autonomic Computing, ICAC ’10, pages 141–
150, New York, NY, USA. ACM.

Massie, M., Li, B., Nicholes, B., Vuksan, V., Alexander,
R., Buchbinder, J., Costa, F., Dean, A., Josephsen, D.,
Phaal, P., and Pocock, D. (2012). Monitoring with
Ganglia. O’Reilly Media, Inc., 1st edition.

Meng, S., Iyengar, A. K., Rouvellou, I. M., Liu, L., Lee, K.,
Palanisamy, B., and Tang, Y. (2012). Reliable state
monitoring in cloud datacenters. In Proceedings of the
2012 IEEE Fifth International Conference on Cloud
Computing, CLOUD ’12, pages 951–958, Washing-
ton, DC, USA. IEEE Computer Society.

Paul Menage (Accessed: 2014). Control Groups (cgroups)
Documentation . https://www.kernel.org/doc/
Documentation/cgroups/cgroups.txt. Available since:
2004.

Ranjan, R., B. R. L. P. H. A. and Tai, S. (2014). A note
on software tools and techniques for monitoring and
prediction of cloud services softw: Pract. exper., 44:
771–775.

Tafa, I., Beqiri, E., Paci, H., Kajo, E., and Xhuvani, A.
(2011). The evaluation of transfer time, cpu con-
sumption and memory utilization in xen-pv, xen-hvm,
openvz, kvm-fv and kvm-pv hypervisors using ftp and
http approaches. In Intelligent Networking and Col-
laborative Systems (INCoS), 2011 Third International
Conference on, pages 502–507.

VMware Inc (2007a). Understanding Full Vir-
tualization, Paravirtualization and Hardware
Assist. http://www.vmware.com/files/pdf/
VMware paravirtualization.pdf. Accessed: 2014
(white paper).

VMware Inc (2007b). Virtualization Overview. http://
www.vmware.com/ pdf/ virtualization.pdf. Accessed:
2014 (white paper).

Xavier, M., Neves, M., Rossi, F., Ferreto, T., Lange, T.,
and De Rose, C. (2013). Performance evaluation of
container-based virtualization for high performance
computing environments. In Parallel, Distributed and
Network-Based Processing (PDP), 2013 21st Euromi-
cro International Conference on, pages 233–240.

Xu, F., Liu, F., Jin, H., and Vasilakos, A. (2014). Man-
aging performance overhead of virtual machines in
cloud computing: A survey, state of the art, and future
directions. Proceedings of the IEEE, 102(1):11–31.

Ye, K., Huang, D., Jiang, X., Chen, H., and Wu, S. (2010).
Virtual machine based energy-efficient data center ar-
chitecture for cloud computing: A performance per-
spective. IEEE-ACM International Conference on
Green Computing and Communications and Inter-
national Conference on Cyber, Physical and Social
Computing, 0:171–178.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

154


