
Choreography-based Consolidation of Interacting Processes Having
Activity-based Loops

Sebastian Wagner1, Oliver Kopp1;2 and Frank Leymann1

1IAAS, University of Stuttgart, Universitaetsstr. 38, Stuttgart, Germany
2IPVS, University of Stuttgart, Universitaetsstr. 38, Stuttgart, Germany

firstname.lastname@iaas.uni-stuttgart.de

Keywords: BPEL, Choreography, Process Consolidation, Loops.

Abstract: Choreographies describe the interaction between two or more parties. The interaction behavior description
might contain loops. In case two parties want to merge their behavior to gain competitive advantage, the
contained loop constructs also have to be merged. This paper presents a language-independent discussion on
loop-structure pairing in choreographies and possible merging strategies. Thereby, the focus is turned on loops
grouping child activities to be iterated. We show the feasibility of the merging strategies by applying them to
BPEL-based choreographies.

1 INTRODUCTION

Business process consolidation (also called “process
merge”) integrates two or more complementing and
hence often interacting business processes into a single
process. From a business perspective, process consol-
idation is applied by companies to regain control of
outsourced business functions (“business process in-
sourcing”). In the scenario in Fig. 1, for instance,
a manufacturer integrates the process of its supplier
in its own process. Beside the business perspective,
there exist also technical drivers for consolidating pro-
cesses. Especially in instance-intensive interaction
scenarios, where hundreds or thousands of process
instances interact with each other, consolidating the
interacting processes may lead to significant perfor-
mance gains (Wagner et al., 2013). They result from
avoiding the costly message transfer steps, i. e., the
message serialization at the sender side, the actual
message transfer and the message deserialization at the
receiver side. Since usually complex XML-based pro-
tocols such as SOAP are used to exchange messages
between processes the message transfer becomes even
more resource intensive (Ng et al., 2004). Another
advantage of consolidating interacting processes is the
decreased number of process instances that have to be
managed by the workflow engines. As typically the
pay-per-use model is applied in Cloud environments,
these performance savings result also in lower costs for
enacting a choreography on a workflow engine being
hosted in the cloud.

To facilitate process consolidation an ap-
proach (Wagner et al., 2012) was developed that
automatically consolidates complementing acyclic
processes, whose interaction behavior is specified by
a choreography, into a single process. The approach
ensures that the consolidated process, called PMerged
in the following, generates the same set of traces
of basic activities as the original choreography. To
accomplish that, the approach also adds additional
control links to PMerged to relate activities originating
from the different processes to be consolidated. So
far, the consolidation approach is just capable to
merge acyclic processes. If processes are merged
that interact via activity-based loops, i. e., loops that
contain activities to be iterated in their loop body, the
consolidated process PMerged becomes invalid. This is
due to the fact, that the additional control links created
by the current consolidation approach may cross
loop boundaries. However, workflow languages that
support activity-based loops, such as BPEL (OASIS,
2007) and BPMN (Object Management Group (OMG),
2011), do not allow control links crossing loops
boundaries. For instance, in Fig. 1 the consolidation
created an invalid process because the generated
control link connects the activities “Syn3” and “Syn4”
that are located in different loops.

This work extends the consolidation approach to
support the consolidation of processes that interact
via activity-based loops. For this purpose, we discuss
different interaction patterns involving activity-based
loops communicating with other loops (e. g., graph-

284

© Sebastian Wagner 8

Example Scenario
M
an
uf
ac
tu
re
r

Loop – Assemble Parts

Su
pp

lie
r

Plan
Manufacturing

Send Parts
Order

Receive Parts
Order

Plan Part
Production

Receive Delivery
Notification

Deliver
Product

Loop – Part Production

Produce Part Send Delivery
Notification

ml1

Assemble
Part

M
an
uf
ac
tu
re
r (
P m

er
ge
d) Loop – Assemble Parts

Plan
Manufacturing

Plan Part
Production

Deliver
Product

Loop – Part Production

Produce Part

Assemble
Part

Consolidate

Cross‐Boundary Link

Order New
Material

Order New
Material

ml2

Syn1 Syn4

Syn2

and

Syn3

and

Figure 1: Consolidation of Interacting Processes.

based loops) by means of a language-independent
workflow meta-model. For each pattern it is discussed
how a consolidation can be performed that keeps the
execution order between basic activities that was de-
fined in the original choreography. We developed
a tool for consolidating interacting BPEL processes.
Therefore, to validate the approach, we will show to
what extend the language-independent patterns can be
mapped to BPEL in order to implement them in the
consolidation tool.

The remainder of the paper is structured as follows.
In Sect. 2 we give a brief overview about the process
consolidation. In Sect. 3 the meta-model of the work-
flow language used in this work is defined. Section 4
describes patterns to resolve the cross-boundary vio-
lations of activity-based loops. In Sect. 5 the patterns
are validated to BPEL and the prototype that imple-
ments the patterns is presented. Section 6 gives an
overview about the related work and in Sect. 7 the
work is concluded.

2 PROCESS CONSOLIDATION
APPROACH

The actual business functions of processes, e. g., hu-
man tasks, data manipulations etc. is implemented by
basic activities, i. e., by activities that do not contain
other activities. The possible set of execution traces
of basic activities during choreography runtime is de-
termined by the control flow constructs (e. g., control
links, loops etc.) and interaction patterns defined in
the choreography. Thus, for being correct, PMerged
must be able to generate the same set of traces of ba-
sic activities (without communication activities that
are removed during consolidation) during runtime as
the original choreography, where PMerged was created
from. The same set of traces can be only generated
if PMerged keeps the execution orders between the ba-
sic activities. The execution order between two basic

activities ai and aj defines that ai must be either per-
formed before, after or parallel to aj. To preserve the
execution order, the consolidation operation performs
the following steps:

At first, a single process named PMerged is created.
Then the activities of all interacting processes of the
choreography along with their incoming and outgoing
control links are copied into PMerged. The basic activ-
ities are left in their parent activities (e. g., “Produce
Part” stays in “Part Production”). This ensures that
in PMerged the originally modeled execution order be-
tween the activities originating from the same process
is preserved.

PMerged still contains communication activities
used by the processes to interact with each other. These
activities are replaced by synchronization activities
that inherit the control links from the communication
activities replaced by them. For instance, in Fig. 1
“Send Parts Order” and “Receive Parts Order” are re-
placed by “Syn1” and “Syn2” respectively. If the data
flow of the workflow language is modeled by control
flow constructs such as in BPEL, the synchronization
activities can be used to emulate the message transfer.
For instance by copying the former message content
from the data object that was read by the sending ac-
tivity, to the data object where the message content
was copied to by the receiving activity. In BPMN the
synchronization activities just act as sources or tar-
gets for the materialized control links but they do not
perform any operations. In a choreography the exe-
cution order between basic activities originating from
different processes is implicitly defined by the interac-
tion specification, i. e., by the message links (ml1 and
ml2 in the example). The asynchronous interaction
between “Send Parts Order” and “Receive Parts Or-
der” via message link ml1 implies that activity “Plan
Manufacturing” is always performed before “Plan Part
Production”. To keep this execution order “control-
flow materialization” is performed, i. e., based on the
interaction type new control links are created. To re-
place an asynchronous interaction the link originates
at the synchronization activity that replaced the send-
ing activity and ends at the synchronization activity
that replaced the receiving activity. These new control
links may cause cross-boundary violations, i. e., they
cross the boundaries of the activity-based loops, as
shown in the example in Fig. 1, which is not permitted
in BPMN or BPEL.

3 PRELIMINARIES

Definition 1 (Process). A process is defined as a di-
rected single entry single exit (SESE) graph P= (A;E).

Choreography-based�Consolidation�of�Interacting�Processes�Having�Activity-based�Loops

285

The set A denotes the set of activities and set E denotes
the set of control links of the graph. The set of control
links is defined as E � A�A�C. C denotes the set
of link conditions. Conditions are logical expressions
that can be evaluated at runtime of P to true or false.

An activity of a process has a set of incom-
ing control links E!(a) = f(ai;a;c)j (a;ai;c) 2
Eg and a set of outgoing control links E (a) =
f(a;ai;c)j (a;ai;c) 2 Eg. The activity where
jE!(a)j= 0 is called “entry activity” aentry of P and
the activity where jE (a)j= 0 is called “exit activity”
aexit of P. The set of directly preceding activities of
an activity a is denoted by �a and the set of directly
succeeding activities of a are denoted by a�.

The function PreDom : A! 2A returns all activ-
ities that are (pre-)dominated by activity a and a it-
self (Koehler et al., 2005). An activity a dominates
another activity b if every path from the entry activity
to b goes through activity a. All activities that are post-
dominated by activity a and a itself are returned by the
function PostDom : A! 2A (Koehler et al., 2005). An
activity a post-dominates another activity b if every
path from b to the exit activity goes through activity a.

The control flow of a process model follows the
token semantics of BPMN (Object Management Group
(OMG), 2011). The entry activity of P propagates a
token to each of its outgoing control links. A link
that receives a token consumes it and evaluates its link
condition. If the link condition evaluates to true the
link is activated, i. e., it produces a token and passes it
to its subsequent target activity. An activity is started
(consumes a token) when at least one of its incoming
links is activated and no more upstream tokens may
reach the activity. Informally, this also holds for OR-
joins. Formally, OR-joins have to be Q-enabled to start.
Q-enabledness is defined by Völzer (Völzer, 2010).
After the activity is completed, one token is passed
on to each of its outgoing links. The exit activity just
consumes tokens. A process is completed when there
are no other upstream tokens.

Definition 2 (Choreography and Message Links). A
choreography C = (P ;ML) consists of a set of pro-
cesses P and message links ML � A�A. Each mes-
sage link ML 2ML connects two activities ai and a j
from different processes P1;P2 2 P . In a message link
ML = (ai;a j) the source activity ai is the sending ac-
tivity and the target activity a j the receiving activity of
a message. An activity must be only source or target of
exactly one message link. A message link is activated,
when ai is started and a j cannot complete until the link
is activated , i. e., a j “hangs” until the link is activated.
Note, that ai sends a message m in a send and forget
manner, i. e., ai completes, even if a j was not started
yet. We refer to all activities that are source or target

of a message link as communication activities.

In the following different types of loops are de-
fined that are provided by the most workflow lan-
guages (van der Aalst et al., 2003). These loop types
are used, to define the patterns for solving cross-
boundary violations introduced in 4.

Definition 3 (Activity-based Loop). An activity-based
loop L is a special type of activity defined as L= (AL�
A;EL � E;c 2 C;evalc = fpre;postg). The loop
body is a SESE graph consisting of the activities AL
and the control links EL. No control link must cross the
boundary of the loop, i. e., 8e 2 EL : p1(e);p2(e) 2 AL,
where pi projects to the ith element of a tuple. evalc
is set to pre if the loop condition must be evaluated
before the first iteration of the loop body (pre-test loop)
or set to post if the loop condition must be evaluated
after the first iteration of the loop body (post-test loop).
The function Body: L! 2A� 2E returns the graph
in the loop body. The loop condition is returned by
function Cond: L!C.

Activity-based loops can be subdivided in “static
activity-based loops” and “dynamic activity-based
loops”. For static activity-based loops, the maximum
possible number of iterations can be determined dur-
ing design time by using data-flow analysis techniques
(Heinze et al., 2012; Kopp et al., 2008). For dynamic
activity-based loops, this is not possible at design time
but only at runtime. The function Max: L! N[f?g
returns the maximum number of iterations of L and re-
turns “?” in the case of dynamic activity-based loops.

The loop body of an activity can be thought of
as a subprocess because it has the same operational
semantics as a process. An activity-based loop that
is started, passes a single token to its entry activity
and the loop completes after all produced tokens were
consumed by its exit activity.

Definition 4 (Graph-based Structured Loop). A graph-
based structured loop L = (AL � A;EL � E) is a sub-
graph of P, such that there is an entry node a 2 AL
and an exit node b 2 AL (which can be the same), such
that every path starting from a visits b and may visit
the loop entry a again and thus forms a cycle. Hence,
all nodes in AL are reachable from a.

In this paper, we focus on structured loops and do
not tackle unstructured loops. Finally, we provide a
definition for interacting loops.

Definition 5 (Interacting Loop). Two loops L1 and L2

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

286

are called interacting loops, if

9ml 2ML :
(p1(ml) 2P1(Body(L1))
^p2(ml) 2P1(Body(L2)))
_(p2(ml) 2P1(Body(L1))
^p1(ml) 2P1(Body(L2)))

Informally, this means that L1 contains a communica-
tion activity ai and that is related to a communication
activity a j in L2 via a message link ml. Note, that Pi
returns the set of ith elements from the given set of
tuples, here the activities of the body of L1 and L2.

4 SOLVING CROSS-BOUNDARY
VIOLATIONS IN
ACTIVITY-BASED LOOPS

This section describes different patterns to solve cross-
boundary violations created in PMerged by the control-
flow materialization while keeping the execution order
between basic activities. The patterns focus on scenar-
ios with two interacting loops L1 and L2, however, they
can be also applied to more interacting loops, as dis-
cussed at the end of this section. One of the loops must
be an activity-based loop as cross-boundary violations
do only occur if activity-based loops are involved.

In the following, we refer to the set of links that are
crossing boundaries of a loop as ECB � E. The source
and target activities of a link eCB 2 ECB are referred
to as synchronization activities. For interacting graph-
based loops L1 and L2 PMerged does not have to be
adapted, as graph-based loops do not have a loop body.
Hence, cross-boundary violations cannot occur. The
pattern to be applied depends on the type of L1 and L2
receptively and also on the types of loops supported
by the workflow language.

The context of a pattern defines, for what types
of interacting loops it can be applied. The solution
describes how the cross-boundary violation can be
resolved. Variations discusses different variants of
the pattern. The discussion describes how the pattern
preserves the control flow order between the atomic
activities that was originally defined in C . The pat-
terns can be only applied to choreographies that are
deadlock free.

Pattern 1: Activity-based Loop Unrolling

Context. A static activity-based loop L1 is related to
another static activity-based loop L2 via one or more
cross-boundary links as shown in Fig. 2. L1 and L2

are not forced to have the same number of iterations.
The workflow language does not support graph-based
structured loops.

Solution. As the number of iterations of L1 and L2
is known at design time loop unrolling (also called
loop unwinding) can be performed on the two loops
to resolve the cross-boundary violations. Algorithm 1
implements loop unrolling for an activity-based loop L.
In line 3 the first iteration of L is unrolled into PMerged.
All other iterations of L (if any) are unrolled in line 7.

To perform the actual duplication of the loop body
graph the loop unrolling algorithm calls the function
Duplicate that is shown in Algorithm 2. The func-
tion creates one copy a0 of each activity of the given
graph G (line 5). The incoming and outgoing links of
each original activity a are also duplicated. These link
copies become the incoming and outgoing links of the
corresponding copy of a, i. e., a0 (lines 10 to 15). This
also includes the cross-boundary links. In lines 4 and 8
Algorithm 1 adds the created activity and link copies
to the process graph. As the duplication is performed n
times, where n denotes the max. number of iterations
of L, n subgraphs G1; : : : ;G1 are created in PMerged.
Subgraph G1

L1 represents the first iteration of L1, G2
L1

the second iteration, etc. For instance, the example
loop L1 in Fig. 2 is unrolled into two subgraphs G1

L1
and G2

L1. Hence, the function Duplicate is called twice
by the loop unrolling algorithm. The first call creates
the activity copies a21 - a51 and second call a22 - a52

along with the corresponding link copies.
To preserve the control flow order between the

unrolled iterations of L, G1; : : : ;Gn have to be linked
sequentially with each other by a new set of n� 1
control links (lines 11 to 14 in Algorithm 1) . There-
fore, each exit activity of the subgraphs G1; : : : ;Gn�1
is connected to an entry activity of G2; : : :Gn by a new
control link enext. To emulate the behavior, that another
iteration of L is only performed if the loop condition
of L evaluates to true, the loop condition of L is also
added to each link enext. To skip all other iterations if
the loop condition evaluates to false after the execution
of an iteration Gi, each exit activity of G1; : : : ;Gn�1 is
linked to all direct successor activities of L via a set
of links eskip (lines 11 - 14). This means, that each
of these links replaces a link from the set of outgo-
ing links of L (E (L)). Note, that each of the links
from E (L) may have also a link conditions assigned.
Hence, each link eskip must be only activated if the loop
condition evaluates to false and if the link condition
of the link from E (L) it replaces, evaluates to false.
The last iteration, i. e., Gn is related to the successor
activities of L in the same way by calling Algorithm 4.

To ensure that the direct predecessor activities of

Choreography-based�Consolidation�of�Interacting�Processes�Having�Activity-based�Loops

287

© Sebastian Wagner 10

Static Loop IEEE

L1
Pre(#2)

a2

a3

a5

a1

a6

eCB

a21

a31

a51

a1

a6

a22

a32

a52

G1
L1

G2
L1

e1nxt

a41

a42

a4

b3

b2
e1skip

e1exit

e1entry

e1CB

e1pre

L2
Pre(#2)

b1

b2

b1

L2
Pre(#2)

b1

Unroll
L2

b4

xor

xor

xor

a21

a31

a51

a1

a6

a22

a32

a52

e1nxt

a41

a42

e1skip

e1exit

e1entry

e1CB

e1pre

b31

b21

b1

b32

b22
e3CB

e2entry

e2nxt

b4
e2exit

e2pre

e2skip
xor

xor

Unroll
L1

Figure 2: Unrolling of Activity-based Loops.

L become the predecessors of the unrolled iterations
of L G1; : : : ;Gn Algorithm 3 is called. The algorithm
links the entry activity of G1 to the direct predecessor
activities of L. For each former incoming link of L
(i. e., E!(L)) a new entry link eentry is created (lines
4 and line 11 in Algorithm 3). If L is a post-test loop,
the link conditions of the entry links inherit the link
conditions of the incoming links E!(L) (line 11 in
Algorithm 3). This ensures the originally modeled
behavior, that the first iteration is always started, if at
least one of the incoming links of L is activated.

If L is a pre-test loop the first iteration of the loop
body must be only started if at least one of the incom-
ing links of L is activated and if the loop condition
evaluates to true. To emulate this behavior, the link
conditions of the entry links are concatenated with the
loop condition of L. To skip the execution of the un-
rolled loop if the pre-test loop condition evaluates to
false another set of links Epre � E is created between
all direct predecessor and successor activities of L

To guarantee that an activity, target of a copy of a
cross-boundary link ei

CB, is performed at most once a
Boolean flag is added to PMerged and accessed by the
link condition of all copies ei

CB of a cross-boundary
link eCB (due to space reasons not shown in the pre-
sented algorithms). This flag carries the name of the
original cross-boundary link and it is set from true
to false when a copy ei

CB was activated. Thus, any
another copy e j

CB of eCB (i 6= j) cannot be activated
anymore, which prevents its target activity from be-

ing executed again. For instance, if in Fig. 2 the path
ha21;a31;a51i is taken, e1

CB is activated and b21 is ex-
ecuted which causes the flag to be set to false. If the
execution continues on the path ha22;a32;a52i the link
condition of e2

CB deactivates this link and prevents b21

from being started again.

Algorithm 1: Loop Unrolling.

1: procedure UNROLL-LOOP(L)
2: i 1
3: Gi DUPLICATE(Body(L))
4: PMerged PMerged [Gi
5: ADD-TO-LOOP-PREDECESSORS(Gi,L)
6: while i <Max(L) do
7: Gi+1 DUPLICATE(Gi)
8: PMerged PMerged [Gi+1
9: enext = (Exit(Gi);Entry(Gi+1);Cond(L))

10: ADD-LINK(PMerged;enext) . Add link to
PMerged

11: for all esucc 2 E (L) do
12: eskip = (Exit(Gi);p2(esucc);

(p3(esucc)^:Cond(L)))
13: ADD-LINK(PMerged;eskip)
14: end for
15: i i+1
16: end while
17: RELATE-TO-LOOP-SUCCESSORS(Gi�1,L)
18: end procedure

Algorithm 2: Graph Duplication.

1: function DUPLICATE(G)
2: A = P1(G) . Original activities
3: A0 = fg;E 0 = fg . Activity and link copies
4: for all a 2 A do
5: a0 = DUPLICATE-ACTIVITY(a)
6: A0 A0[a0

7: end for
8: for all a0 2 A0 do
9: a = GET-ORIGIN(a0) . Get original activity

10: for all ein 2 E!(a) do
11: E 0 E 0[ADD-LINK(p1(ein);a0;p3(ein))
12: end for
13: for all eout 2 E (a) do
14: E 0 E 0[ADD-LINK(a0;p2(eout);p3(eout))
15: end for
16: end for
17: return G0 = (A0;E 0)
18: end function

Variations. For resolving cross-boundary violations
between two interacting static activity-based loops L1
and L2, both loops have to be unrolled. The order
in which L1 and L2 are unrolled by Algorithm 1 is

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

288

not relevant because the loop unrolling technique nei-
ther considers nor changes the structure of the other
loop. Also if L1 and L2 have a different number of
maximal iterations the unrolling can be performed as
the cross-boundary links are duplicated for each itera-
tion. Which, in turn, keeps the control flow relations
between each unrolled iteration of L1 and L2.

A dynamic activity-based loop L1 without
synchronization activities on alternative paths in
its loop body can be unrolled, if it interacts with
a static activity-based loop L2 that does not have
synchronization activities on alternative paths either.
The number of unrolled iterations of L1 is implied
by the maximum number of iterations of L2. Each
execution of a synchronization activity a from L1
connected to a synchronization activity b from L2 via
a link ecb(a;b; true) results in an execution of b and
vice versa. Hence, the maximum number of iterations
of L2 implies the maximum number of iterations of L1.

Algorithm 3: Add Loop Predecessors.

1: procedure ADD-TO-LOOP-PREDECESSORS(G,
L)

2: for all epred 2 E!(L) do
3: if evalC(L) = pre then
4: eentry = (p1(epred);Entry(G);

(p3(epred)^Cond(L) = true))
5: ADD-LINK(PMerged;eentry)
6: for all esucc 2 E (L) do
7: epre = (p1(epred);p2(esucc);

(p3(epred)^p3(esucc)^:Cond(L)))
8: ADD-LINK(PMerged;epre)
9: end for

10: else
11: eentry = (p1(epred);Entry(G);p3(epred))
12: ADD-LINK(PMerged;eentry)
13: end if
14: end for
15: end procedure

Algorithm 4: Add Loop Successors.

1: procedure ADD-TO-LOOP-SUCCESSORS(G, L)
2: for all esucc 2 E (L) do
3: eexit = (Exit(G);p2(esucc);
4: (p3(esucc)^:Cond(L))
5: ADD-LINK(PMerged;eexit)
6: end for
7: end procedure

Discussion. The consecutive execution of the iter-
ations of an unrolled loop L is emulated by dupli-
cating the loop body of L n times to the subgraphs

G1
L; : : : ;G

n�1
L and by linking these subgraphs sequen-

tially. The control relations within the activities of
the duplicated loop bodies are preserved as no new
activities or control links are introduced in Gi

L. The
behavior, that no further iteration of L is performed
when its loop condition evaluates to false, is emulated
by the set of additional control links Eskip connecting
the exit activity of each unrolled subgraph Gi

L with the
successor activities of L.

The loop unrolling technique keeps also the con-
trol flow relations between the activities of L1 and L2
implied by C as the links ECB are also duplicated. As-
sume, for instance, that L1 in Fig. 2 can be iterated
up to six times and L2 only up to two times. Hence,
L1 has to be unrolled six times and L2 two times. If
C is deadlock free, the path ha2;a3;a5i in L1 must
be taken exactly in two iterations to execute b2 and
b3. However, it can not be determined at design time,
which iterations take this path. The duplication of
the cross-boundary link eCB ensures, that taking this
path is possible in each unrolled iteration Gi

L1. At the
same time, multiple executions of the same activity
are avoided by using the flag that tracks, if a copy of
a cross-boundary link was already performed. This
also implies that a target activity of one or many cross-
boundary links does not run into deadlocks. If it ran
into a deadlock, none of the source activities of their
incoming cross-boundary link is performed. As each
cross-boundary link represents a former message ex-
change in C , this, in turn, would mean that the target
activity would wait forever for an incoming message.
Hence, C would not be deadlock free which contra-
dicts to our prerequisite.

Pattern 2: Transforming Activity-based
Loops to Graph-based Structured Loops

Context. A dynamic activity-based loop L is related
to another static or dynamic graph-based structured
loop via a set of cross-boundary links as shown in
Fig. 3. The workflow language supports graph-based
structured loops.

Solution. To resolve the cross-boundary violations, L
can be transformed to a graph-based structured loop
LG by copying the loop body GL of L to PMerged and
by creating a control flow cycle between the exit and
entry activity of GL. Algorithm 5 describes the trans-
formation in detail.

The actual duplication of the loop body of L is done
in line 2. To realize the repetitive execution of GL a
control flow cycle between the exit activity aexit and
the entry activity aentry is created in line 5 by adding
the new control link eloop. For instance in Fig. 3, the

Choreography-based�Consolidation�of�Interacting�Processes�Having�Activity-based�Loops

289

© Sebastian Wagner 13

Activity‐based – Graph‐based

L1
Pre(#?)

a2

a3

a5

a1

a6

e1CB
a4

b5

b3

b2

b4

b1

b6

a2

a3

a5

a1

a6

e1CB
a4

b5

b3

b2

b4

b1

b6

Gl1

eloop

eskipL1
Pre(#?)

a2

a3

a5

a1

a6

ml1
a4

b5

b3

b2

b4

b1

b6

xor xor xor xor xor xor

L1
Pre(#?)

a2

a3

a5

a1

a6

e1CB
a4

b5

b3

b2

b4

b1

b6

a2

a3

a5

a1

a6

e1CB
a4

b5

b3

b2

b4

b1

b6

Gl1

eloop

eskip

xor xor xor xor

Figure 3: Activity-based Loops to Graph-based Structured
Loops.

link eloop connects the exit activity a5 with the entry
activity a2. To incorporate GL into the process graph
of PMerged Algorithm 5 calls Algorithm 3 and 4.

As described in pattern 1, Algorithm 3 is used to
ensure that the set of direct predecessor activities of
L become predecessors of the entry activity of GL by
creating a set of entry links (denoted as eentry). This
means, that if L is a post-test loop, the entry links
inherit the link conditions of the original entry links of
L. If L has a pre-test condition, it has to be guaranteed,
that the first iteration of GL is only performed if the
loop condition evaluates to true, otherwise GL must be
skipped.

Algorithm 4 is called, to relate the direct successor
activities of L with the exit activities GL by creating for
each outgoing link of L (e 2 E (L)) a corresponding
exit link eexit. To start the successor activities if and
only if all iterations of GL completed, the link condi-
tion of each exit link is concatenated with a negation
of the loop condition of L.

Algorithm 5: Loop Transformation.

1: procedure LOOP-TRANSFORM(L)
2: GL DUPLICATE(Body(L))
3: PMerged PMerged [GL
4: ADD-TO-LOOP-PREDECESSORS(GL,L)
5: eloop = (Exit(GL);Entry(GL);Cond(L))
6: ADD-LINK(PMerged;eloop)
7: ADD-TO-LOOP-SUCCESSORS(GL,L)
8: end procedure

Variations. Transforming a static structured loop L
to an unstructured loop instead of unrolling it (as
described in Sect. 4), may be useful if L has a high
maximum of iterations. This avoids PMerged to be
“polluted” with unrolled iterations of L.

Discussion. Transforming an activity-based loop L to
a graph-based structured loop LG removes the loop
boundaries of L while preserving all control flow con-
straints implied by C . The control link eloop enables
iterations of the loop body GL to be consecutively exe-
cuted, as long as the loop condition evaluates to true.
As the loop condition is not changed, LG is iterated

© Sebastian Wagner 15

GL2GL1

Dynamic and Dynamic Loop

LL1L2
Post(#?)‐ (cond(L1) OR cond(L2))

aentry

aend

a1 b1

a5 b7

L1
Pre(#?)

a2

L2
Pre(#?)

b2

a3

a4

b3

b6

b5

a1 b1

a5 b7

b4

L1
Pre(#?)

a2

L2
Pre(#?)

b2

a3

a4

b3

b6

b5

a1 b1

a5 b7

b4
a2 b2

a3

a4

b3

b6

b5

b4

e1CB

e2CB

e1CB

e2CB

xor xor

xor

Figure 4: Merging Two Dynamic Activity-based Loops.

as often as L (under the same data assignment). If the
loop condition evaluates to false, link eloop is deacti-
vated and the exit links E (exit) are activated. This
ensures the original behavior, that the successors of L
are started after all iterations of L completed. The orig-
inal control relations between L1 and other loops are
also preserved since the cross-boundary links between
are not changed either.

Pattern 3: Merging Two Dynamic
Activity-based Loops

Context. A dynamic activity-based loop L1 is related
to another dynamic activity-based loop L2 via a set
of cross-boundary links as shown in Fig. 4. The
workflow language does not support graph-based
structured loops.

Solution. Loop unrolling cannot be performed as the
number of iterations of L1 and L2 is unknown at design
time. To resolve the violations, the source and target
activities of these links are moved into the same loop,
referred to as LL1L2. Thus, the activity graphs GL1 and
GL2 have to be merged into a new single loop LL1L2 as
shown in Algorithm 6.

The algorithm creates the new loop LL1L2 in line
4. The loop body GL1L2 of this loop, which consists
of of the loop bodies of L1 and L2, is created in line 5.
Additionally, an entry activity aentry and an exit activ-
ity aexit is added to the loop body. These activities
precede and succeed the entry and exit activities of
GL1 and GL2. They are added to keep the SESE prop-
erty and to ensure that GL1 is only performed, if the
loop condition of L1 becomes true and that GL2 is only
performed, if the loop condition of L2 becomes true.
For this purpose, the transition condition of the entry
link pointing from aentry to GL1 gets the loop condition
of L1 assigned and the the entry link pointing from
aentry to GL2 gets the join condition of L2 assigned.
Moreover, the link condition of the entry link is con-
joined by an additional flag firstIt 7! ftrue; falseg if the
loop body GL1 or GL2 originates from a post-test loop
(lines 10 and 13). If the first iteration of LL1L2 is exe-
cuted the flag is set to true, otherwise it is set to false.
For instance, in Fig. 4 the entry link for eGL2) would be

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

290

defined as (aentry;b2;Cond(L2)_ 0firstIt = true0). The
value of the flag is hold in the variable firstIt that is de-
clared in PMerged (line 8). After the first iteration firstIt
must be set to false (not depicted in Algorithm 6).

LL1L2 is always a post-test loop (see below), no
matter if L1, L2 or both are pre-test loops. The loop
condition of LL1L2 is set to the logical disjunction of
the loop conditions of L1 and L2 (line 16). This en-
sures that GL1L2 is also executed if the condition of L1
evaluates to false while the condition of L2 evaluates
to true (or vice versa). In Fig. 4, for instance, under
a certain data assignment L1 may iterate two times
and L2 five times. To emulate this behavior, LL1L2
must be iterated five times which ensured by its loop
condition. Since the link condition of the entry link
(astart;a2;Cond(L1)) is set to the loop condition of L1
its body GL1 is just performed twice. LL1L2 is wired
into PMerged by connecting it to the predecessor and
successor activities of L1 and L2 (lines 17 and 18).

Algorithm 6: Merging Activity-based Loops.

1: function MERGE-LOOPS(L1;L2)
2: GL1 DUPLICATE(Body(L1))
3: GL2 DUPLICATE(Body(L2))
4: LL1L2 = ADD-LOOP(/0; /0;evalC post)
5: Body(LL1L2) GL1[GL2[(faexitg;

f(Exit(GL1);aexit; true);(Exit(GL2);aexit; true)g)
6: condEntryL1 Cond(L1)
7: condEntryL2 Cond(L2)
8: DECLARE(PMerged; f irstIt) . Adds variable
9: if evalC(L1) = post then

10: condEntryL1 condEntryL1_ 0$firstIt = true0
11: end if
12: if evalC(L2) = post then
13: condEntryL2 condEntryL2_ 0$firstIt = true0
14: end if
15: Body(LL1L2) Body(LL1L2)[(faentryg;

f(aentry;Entry(GL1);condEntryL1);
(aentry;Entry(GL2);condEntryL2)g)

16: Cond(LL1L2) (Cond(L1)_Cond(L2))
17: E!(LL1L2) E!(L1)[E!(L2)
18: E (LL1L2) E (L1)[E (L2)
19: return LL1L2
20: end function

Variations. If a dynamic activity-based loop, with
synchronization activities on alternative paths in
its loop body, is related to a static activity-based
loop, its number of iterations cannot be determined
from the max. number of iterations of the static
loop (refer to pattern 1). Hence, the dynamic loop
cannot be unrolled and has to be merged with the
static loop in the same way as described in the solution.

Discussion. Merging L1 and L2 into LL1L2 keeps the
original control flow order between the activities of

GL1 and GL2 as the control links are not changed. The
loop condition of LL1L2 and the link conditions of the
entry links ensure that the same number of iterations
of GL1 and GL2 are executed as in C (under the same
data assignment). However, the activities of GL1 and
GL2 become iteration-dependent on each other, i. e.,
another iteration i+1 of the activities in GL1 cannot
be performed until all activity iterations i in GL2 com-
pleted (and vice versa). This becomes especially an
issue, if the execution times of the activities within
GL1 and GL2 are very different from each other. It also
postpones the execution of the successor activities of
LL1L2. For instance, in 4 a5 cannot be started until all
iterations of LL1L2 completed, i. e., compared to C its
execution is postponed until all iterations of GL1 com-
pleted. Note, that the postponed execution resulting
from the loop merge may increase the time until the
business outcome is reached, but it does not affect the
overall completion time of PMerged compared to C . The
successful completion of all activities of an instance
of PMerged takes as long as completing all activities of
C (assuming the same data are used for an instance of
PMerged and C).

Combining the Patterns

In the following two algorithms are proposed that
make use of the patterns to solve cross-boundary vi-
olations in PMerged. If graph-based structured loops
are supported by the workflow language, the set of all
dynamic or static activity-based loops being source or
target of a cross-boundary link (denoted as LCB) are
transformed into graph-based structured loops by Al-
gorithm 7. The transformation preserves all sets of
basic activity traces implied by the original loop and
it just adds the two new links eskip and eloop to PMerged.
The runtime of the algorithm is O(n), where n = jLCBj.

Algorithm 7: Transformation to Graph-based Loops.

1: procedure SOLVE-CB-VIOLATIONS(LCB)
2: for all LCB 2 LCB do
3: LOOP-TRANSFORM(LCB)
4: REMOVE-ACT(PMerged;LCB)
5: end for
6: end procedure

If graph-based loops are not supported Algorithm 8
must be applied. It tries to unroll as many loops within
LCB as possible (pattern 1). All loops that cannot be
unrolled, i. e., all interacting dynamic activity-based
loops and all static activity-based loops that interact
with dynamic activity-based loops, are merged into
activity-based loops (pattern 3). Applying pattern 1
decreases the readability of PMerged as it may signif-

Choreography-based�Consolidation�of�Interacting�Processes�Having�Activity-based�Loops

291

icantly increase the number of activities and control
links in PMerged. Especially if a large number of iter-
ations is unrolled. However, as pattern 3 causes the
iteration-dependency issue, pattern 1 is always pre-
ferred to pattern 3.

Algorithm 8: Merging and Unrolling.

1: procedure SOLVE-CB-VIOLATIONS(ECB;LCB)
2: for all L1CB 2 LCB jMAX(L1CB) =? do
3: AL = P1(BODY(L1CB))
4: for all eCB 2 ECB
5: j (p1(eCB)[p2(eCB))\AL 6= /0 do
6: L1CB = PARENT(p1(eCB))
7: L2CB = PARENT(p2(eCB))
8: Lmerged = MERGE-LOOPS(L1CB;L2CB)
9: ADD-ACT(PMerged;Lmerged)

10: LCB (LCB[Lmerged)� (L1CB[L2CB)
11: AL1 = P1(BODY(L1CB))
12: AL2 = P2(BODY(L2CB))
13: EL1L2

CB = feL1L2
CB j 8eL1L2

CB 2 ECB :
((AL1[AL2)\p1(eL1L2

CB)) 6= /0

^((AL1[AL2)\p2(eL1L2
CB)) 6= /0g

14: ECB ECB�EL1L2
CB

15: REMOVE-ACT(PMerged;L1CB)
16: REMOVE-ACT(PMerged;L2CB)
17: L1CB Lmerged
18: AL = P1(BODY(L1CB))
19: end for
20: LCB LCB�Lmerged
21: end for
22: for all eCB 2 ECB do
23: aL1 = p1(eCB); aL2 = p2(eCB)
24: L1CB = PARENT(aL1)
25: L2CB = PARENT(aL2)
26: UNROLL-LOOP(L1CB)
27: UNROLL-LOOP(L2CB)
28: LCB LCB� (L1CB[L2CB)
29: end for
30: end procedure

Algorithm 7 is trivial and not further discussed.
Algorithm 8 is explained by using the example sce-
nario in Fig. 5. In this scenario PMerged contains four
dynamic and two static activity-based loops. The con-
trol flow materialization created six cross-boundary
links. To resolve the violations the algorithm is called
with the parameters ECB and LCB. Thereby, the set
ECB denotes the set of cross-boundary links, here e1CB
to e4CB. LCB contains those loops of PMerged that are
source or target of one or more cross-boundary links,
i. e., in the scenario L1 to L4. In a first step, those loops
within LCB that are related to a dynamic activity-based
loop via a cross-boundary link are merged. For this
purpose the algorithm selects a dynamic activity-based

© Sebastian Wagner 17

Example Solve Violation with Merging and Unrolling

L1
Pre(#?) e1CB

e2CB

L2
Pre(#?)

L3
Post(#3)

L4
Pre(#6)

e3CB e4CB

L5
Pre(#?) e5CB

e6CB

L6
Pre(#2)

Figure 5: Multiple Interacting Activity-based Loops.

loop from LCB (line 4), e. g., L1. All loops contain-
ing activities that are related to activities within the
selected loop via a cross-boundary link (line 4) are pair-
wise merged with the selected loop. For instance, L1
is first merged with L2 and the resulting loop Lmerged is
added to PMerged (line 9) while L2 and L1 are removed
from PMerged (lines 15 and 16). As the cross-boundary
violations between the merged loops are resolved, all
cross-boundary links between them are removed from
the set ECB in line 13 (but not from PMerged). Hence,
after L1 and L2 were merged e1CB and e2CB are re-
moved. Then all loops that are related to the merged
loop via cross-boundary links are merged with Lmerged,
i. e., in our example the static loop L3 is merged with
Lmerged. The new merged loop consisting of the loop
bodies of L1, L2 and L3 is then, in turn, merged with
L4. As this new loop has no cross-boundary links to
other loops, it is removed from the set LCB (line 20)
and another dynamic loop whose activities are source
or target of cross-boundary links is selected (if any).
In our example this would be L5 or L6, which are also
merged with each other.

After the dynamic loops were merged with other
dynamic or static loops, PMerged contains only cross-
boundary links between static loops. These loops are
unrolled and added to PMerged. Our example does only
contain static loops that are transitively connected to
dynamic loops. Hence, no loop unrolling is performed
here. The runtime of the algorithm is also O(n) (where
n = jLCBj), even though it has two nested for-loops.
However, the for-loop in line reduces the iterations of
its parent for-loop (line) by removing cross-boundary
loops from the set LCB.

5 VALIDATION:
CONSOLIDATION OF BPEL
PROCESSES WITH
INTERACTING LOOPS

To validate the process consolidation approach we
developed a tool (Dadashov, 2013) that merges inter-
acting BPEL processes being part of a BPEL4Chor
choreography (Decker et al., 2009) into a single pro-
cess. So far, the prototype was not capable to merge
BPEL processes with interacting loops. To support
these interaction scenarios, we applied the patterns
of Sect. 4 to BPEL and extended the prototype ac-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

292

cordingly. The prototype gets a ZIP file as input, that
contains an XML representation of BPEL4Chor chore-
ography along with the processes to be merged. To per-
form the consolidation, the prototype creates PMerged
and copies all activities of the processes within the
BPEL4Chor choreography into PMerged. Based on the
message links and the communication activities in the
BPEL4Chor choreography the prototype performs the
control flow materialization.

5.1 Control Flow Semantic of BPEL

Besides control links BPEL uses join conditions to
determine if an activity can be started. A join condi-
tion specifies which links have to be activated to start
this activity. This requires the status of all links to be
known before the join condition is evaluated. More-
over, BPEL is using a dead path elimination control
flow semantics (DPE) that determines all activities in
the control flow that cannot be executed anymore. Due
to the DPE semantics and the fact that all links of an
activity have to be evaluated before it can be started,
BPEL does not support graph-based loops.

To enable repetitive execution of activities, BPEL
offers three types of activity-based loops, the pre-
test loops while and forEach and the post-test loop
repeatUntil. while and repeatUntil loops are de-
fined in the same way as the activity-based loops de-
fined in Sect. 3, i. e., they consist of a Boolean loop
condition and an activity graph in their loop body. For
simplicity reasons, we assume that the loop body is a
SESE graph, even though this not stipulated by BPEL
. The forEach activity has no Boolean expression as
loop condition but a From and To attribute, represent-
ing the start and end value of the iteration counter. The
attribute Counter provides the name of the counter
variable that is increased by one in each iteration. The
attribute values can be determined at runtime but they
must be constant during the execution of the forEach.
All iterations have to be executed in order to com-
plete the forEach loop. The completionCondition
attribute for modeling at-least-n-out-of-m semantics is
not considered here.

5.2 Applying the Patterns to BPEL

This section describes how patterns 1 and 3 from
Sect. 4 are applied to BPEL. Pattern 2 is not further
considered here as BPEL does not support graph-
based structured loops.

Activity-based Loop Unrolling. To determine the
maximum iterations of a BPEL loop the data flow anal-
ysis techniques introduced by Heinze et al. (Heinze

et al., 2012) are used. However, the pattern cannot
be applied to arbitrary static activity-based loops. Be-
cause BPEL’s link semantic requires that all incoming
links of an activity are evaluated before it is started.
However, if a loop is unrolled also the cross-boundary
links ECB are duplicated. This results in n multiple
copies of eCB targeting the same activity, where each
copy has its source in one of the unrolled iterations
G1

L; : : : ;G
n
L of the loop L. Hence, the source activity of

each copy of eCB must be performed before the target
activity of eCB can be executed. In Fig. 2, for instance,
activity b21 is not started until a31 and a32 completed.
In the example, this just leads to a postponed execution
of b21 compared to C where the first iteration of b2
can complete after the first iteration of a3 is performed
(if we assume that messages are instantly delivered).
If L2 would contain an activity that is source of a link
e2CB targeting an activity within the unrolled loop L1,
this would even lead to a deadlock.

This issue is circumvented by ensuring that the
activities AL1 and AL2 in the unrolled loops GL1 and
GL2 have at most one incoming cross-boundary link
ei

CB:

8a 2 AL1[AL2 : j(E!(a)[E (a))\ECBj � 1

This, in turn, requires the source and target activities
of ECB to be performed during each iteration. Thus,
there must be no potential alternative paths in L1 or
L2 preventing synchronization activities from being
executed during an iteration of L1 or L2:

8aL12AL1 j (E!(aL1)[E (aL1)) 2 ECB :
PreDom(aL1)[PostDom(aL1) = AL1

8aL22AL2 j (E!(aL2)[E (aL2)) 2 ECB :
PreDom(aL2)[PostDom(aL2) = AL2

If the aforementioned prerequisite is fulfilled, a copy
of a cross-boundary link has to be connected to a
source and target activity part of the subgraph Gi

L1
and Gi

L2 in the same iteration, i. e., the source and tar-
get activities must dominate the same number of sync.
activities Asyn:

8ei
CB 2 ECB :

jPreDom(p1(ei
CB))\ACBj

= jPreDom(p2(ei
CB))\ACBj

ACB =
[

e2ECB

p1(e)[p2(e)

The set ACB denotes the set of activities of L1 and L2
having an incoming or outgoing cross-boundary link.

Figure 6 shows a while loop L1 (Max(L1) = 2) in-
teracting with a repeatUntil loop L2 (Max(L2) = 2)
that meet the aforementioned properties (in the figure

Choreography-based�Consolidation�of�Interacting�Processes�Having�Activity-based�Loops

293

© Sebastian Wagner 12

Static Unrolling of BPEL Loops (without Chor)

L1 – While
Pre(#2)

a2 – Assign

L2 – RepeatUntil
Post(#2)

b2 – Empty

a3 – Opaque

a4 – Empty

b3 – Opaque

b4 – Assign

a21 – Assign b21 – Empty

a31 – Opaque

a41 – Empty

b31 – Opaque

b41 – Assign

a22 – Assign b22 – Empty

a32 – Opaque

a42 – Empty

b32 – Opaque

b42 – Assign

e11CB

e1CB

e2CB

e21CB

e11CB

e21CB

e1skip
e2nxt

a1 – Assign b1 – Assign

a1 – Assign b1 – Assign

a5 – Assign b5 – Assign

a5 – Assign b5 – Assign

e1nxt

e1pre

e2skip

Figure 6: Unrolling Two Static BPEL Loops.

the opaque activities encapsulate some business
logic). As there is no alternative flow in L1 and
L2 they have to exchange messages during each
iteration. This also implies that they always perform
the same number of iterations. Hence, the copies
of the cross-boundary links (e11

CB, e12
CB and e21

CB,
e21

CB) between the unrolled loop GL1 and GL2 must
only connect activities from the same iterations. As
shown in Figure 6, while or repeatUntil loops are
unrolled in the same way as described in the pattern,
i. e., the loop bodies are unrolled and added to the
container activity of L1 and L2 (not depicted here).
The set of links Enxt, Eskip, Eentry, Eexit connects the
unrolled iterations with each other and with the direct
predecessor and successor activities of L. The link
epre has to be only added for the pre-test loops while
or forEach. In contrast to the pattern, for an unrolled
forEach loop no loop condition is assigned to enxt as
a sequential forEach cannot be interrupted, i. e., the
maximum number of iterations is always performed.
Thus, the set of links Eskip is not required either.

Merging Two Dynamic Activity-based Loops. If
the interacting loops L1 and L2 are while loops the
pattern can be directly applied. Then LL1L2 is also a
while loop whose loop condition is the disjunction of
the loop conditions of L1 and L2. The loop body of
LL1L2 is created as described in the pattern. If one of
the entry links of GL1 or GL2 evaluates to f alse, DPE
ensures that the activities within GL1 or GL2 are not
performed.

If one of the loops L1 or L2 is a repeatUntil loop
the variation of the pattern for post-test loops has to be
applied, i. e., LL1L2 must be also a repeatUntil loop.

If a forEach loop interacts with a while loop the
merged loop LL1L2 must be a while loop because the
loop condition of a forEach loop cannot specify com-
plex logical expressions such as disjunctions. To spec-
ify the loop condition of LL1L2, the interval defined
by the From and To attributes of the forEach is trans-
formed to a logical expression on the counter variable.
In a forEach the counter variable is automatically in-
creased with each iteration. This has to emulated in

© Sebastian Wagner 17

ForEach‐While

L1 – While
($a < 3)

a1 – Opaque

L2 – ForEach
From:3
To: $N

Counter: $incr

b1 – Opaque

a2 – Assign b2 – Empty

a1 – Opaque

LL1L2 – While
($a < 3 OR 3 ≤ $incr≤ $N)

a2 – Assign

b3 – Assign

def: var $incr := 3

$incr:=$incr+1

b1 – Opaque

b2 – Empty

aexit – Empty

aentry– Empty
3≤$incr≤$N$a<3

eCBeCB

Figure 7: Merging While Interacting with ForEach.

LL1L2 by defining the counter variable before LL1L2
is started and by initializing it with the value of the
From attribute. The counter can be increased by us-
ing an assign activity that increments the counter
when LL1L2 completes. Figure 7 shows how the while
loop L1 and the forEach loop L2 are merged into
LL1L2. The counter variable incr is initialized with
the value 3 from the From attribute. The loop condi-
tion of the forEach is transformed to the expression
3� $incr � N and forms a disjunction with the loop
condition of L1. assign b3 increments the counter
variable incr at the end of the LL1L2. As the name of
the counter variable is kept the activities of the loop
body of the former forEach accessing the counter
variable do not have to be adapted. Analogously, LL1L2
must be a repeatUntil if the forEach interacts with
a repeatUntil loop.

For two interacting forEach loops L1 and L2 the
values of the From and To attributes may be unknown
at design time and the name of the counter variables
used may be different. Hence, they cannot be merged
into a forEach loop as only one counter variable can
be declared there. Instead they can be also merged into
a while. Thereby, two counter variables have to be
defined before LL1L2, one for counting the iterations
of GL1 and another one for counting the iterations of
GL2. In BPEL, a single assign activity can perform
multiple assignments, i. e., an assign following GL1
and GL2 can iterate both counter variables.

6 RELATED WORK

Existing approaches focus on merging semantically
equivalent processes, which is different from our ap-
proach that merges complementing processes into a
single process. For instance, Küster et al. (Küster et al.,
2008) discuss how different variants of the same origi-
nal process can be merged into a single process by em-
ploying change logs. Mendling and Simon (Mendling
and Simon, 2006) describe an approach for merging
Event Driven Process Chains (EPC) (Scheer et al.,
2005) where semantically equivalent elements of an
EPC have to be defined manually and based on this
semantic mapping, the EPCs are merged.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

294

Loop unrolling and merging is widely discussed
in the area of compiler theory (Muchnick, 1997), es-
pecially, for optimizing parallel or embedded sys-
tems (Qian et al., 2002). Similar to our approach, in
these works also loop conditions have to be combined
and data analysis has to be performed to determine if
a loop can be unrolled or merged (Darte, 1999). In
contrast to our approach loop unrolling and merging
in this context is employed for optimizing the runtime
of short running programs in embedded systems and
the language constraints of a programming language
are different from those of a workflow language.

Kiepuszewski et al. (Kiepuszewski et al., 2013)
also discuss activity and graph-based loops. How-
ever, in their work they focus on the transformation of
graph-based loops into activity-based loops to struc-
ture unstructured workflows.

We investigated how cross-boundary link vio-
lations can be solved in parallel BPEL forEach
loops (Wagner et al., 2014). But there we neither con-
sidered sequential forEach activities nor other BPEL
loop types and the approach described there focuses
only on BPEL workflows.

7 CONCLUSION AND OUTLOOK

In this work we extended the existing approach to
support the automatic consolidation of processes inter-
acting via activity-based loops. The focus was turned
on activity-based loops, as the boundaries of these
loops must not be crossed by the control links created
by the control-flow materialization. To be universally
applicable, the patterns for merging the loops were
described independently of a concrete workflow lan-
guage and different types of loops were considered
that might be supported by a workflow language. All
merge patterns keep the originally modeled execution
order between the basic activities of the processes to be
merged. However, when two dynamic activity-based
loops are merged (pattern 3), additional control flow
constraints are implicitly added to the merged pro-
cess. The new constraints adhere to execution order
defined the choreography but they may increase the
time until a business outcome is reached. Hence, if the
workflow language supports graph-based loops, inter-
acting dynamic activity-based loops should be always
transformed to graph-based structured loops. This also
prevents the resulting process from getting too compli-
cated in terms of number of activities and links (e. g.,
if loop unrolling is performed).

We also discussed the applicability of the patterns
to the executable workflow language BPEL. As BPEL
has a different control flow semantics compared to

the workflow meta-model, we used to describe the
patterns, the loop unrolling pattern had to be restricted
in order to avoid deadlocks in BPEL processes.

In future works we have to investigate how to solve
the link violations for activity-based loops interacting
with activities in an acyclic graph. We also have to
discuss how nested activity-based loops have to be
treated. This includes the description of a formal algo-
rithm that applies the patterns to activity-based loops
interacting with several (nested) loops.

ACKNOWLEDGEMENTS

This work was partially funded by the BMBF project
ECHO (01XZ13023G) and the BMWi project NE-
MAR (03ET40188).

REFERENCES

Dadashov, E. (2013). Choreography-based Business Process
Consolidation in One-To-Many interactions. Master
thesis, University of Stuttgart.

Darte, A. (1999). On the complexity of loop fusion. In Par-
allel Architectures and Compilation Techniques, 1999.
Proceedings. 1999 International Conference on, pages
149–157.

Decker, G., Kopp, O., Leymann, F., and Weske, M. (2009).
Interacting services: From specification to execution.
Data & Knowledge Engineering, 68(10):946–972.

Heinze, T., Amme, W., and Moser, S. (2012). Control flow
unfolding of workflow graphs using predicate analysis
and SMT solving. In ZEUS.

Kiepuszewski, B., ter Hofstede, A. H. M., and Bussler, C.
(2013). On structured workflow modelling. In Semi-
nal Contributions to Information Systems Engineering,
pages 241–255.

Koehler, J., Hauser, R., Sendall, S., and Wahler, M. (2005).
Declarative techniques for model-driven business pro-
cess integration. IBM Systems Journal, 44(1):47–65.

Kopp, O., Khalaf, R., and Leymann, F. (2008). Deriving Ex-
plicit Data Links in WS-BPEL Processes. In IEEE In-
ternational Conference on Services Computing. IEEE.

Küster, J., Gerth, C., Förster, A., and Engels, G. (2008). A
tool for process merging in business-driven develop-
ment. In Proceedings of the Forum at the CAiSE.

Mendling, J. and Simon, C. (2006). Business process design
by view integration. In BPM Workshops. Springer.

Muchnick, S. (1997). Advanced Compiler Design and Im-
plementation. Morgan Kaufmann.

Ng, A., Chen, S., and Greenfield, P. (2004). An Evaluation
of Contemporary Commercial SOAP Implementations.
In AWSA.

OASIS (2007). Web Services Business Process Execution
Language Version 2.0 – OASIS Standard.

Choreography-based�Consolidation�of�Interacting�Processes�Having�Activity-based�Loops

295

Object Management Group (OMG) (2011). Business Pro-
cess Model and Notation (BPMN) Version 2.0. OMG
Document Number: formal/2011-01-03.

Qian, Y., Carr, S., and Sweany, P. H. (2002). Loop fusion
for clustered vliw architectures. In LCTES-SCOPES,
pages 112–119.

Scheer, A.-W., Thomas, O., and Adam, O. (2005). Pro-
cess Aware Information Systems, chapter Process Mod-
eling Using Event-Driven Process Chains. Wiley-
Interscience.

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kie-
puszewski, B., and Barros, A. P. (2003). Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–
51.

Völzer, H. (2010). A new semantics for the inclusive con-
verging gateway in safe processes. In BPM 2010.

Wagner, S., Kopp, O., and Leymann, F. (2012). Towards
Verification of Process Merge Patterns with Allen’s
Interval Algebra. In ZEUS, Bamberg. CEUR.

Wagner, S., Kopp, O., and Leymann, F. (2014).
Choreography-based Consolidation of Multi-Instance
BPEL Processes. In CLOSER. SciTePress.

Wagner, S., Roller, D., Kopp, O., Unger, T., and Leymann,
F. (2013). Performance optimizations for interacting
business processes. In IC2E. IEEE.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

296

