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Abstract: Provenance has been thought of a mechanism to verify a workflow and to provide workflow reproducibility. 
This provenance of scientific workflows has been effectively carried out in Grid based scientific workflow 
systems. However, recent adoption of Cloud-based scientific workflows present an opportunity to 
investigate the suitability of existing approaches or propose new approaches to collect provenance 
information from the Cloud and to utilize it for workflow reproducibility on the Cloud infrastructure. This 
paper presents a novel approach that can assist in mitigating this challenge. This approach can collect Cloud 
infrastructure information along with workflow provenance and can establish a mapping between them to 
provide a Cloud-aware provenance. The reproducibility of the workflow execution is performed by: (a) 
capturing the Cloud infrastructure information (virtual machine configuration) along with the workflow 
provenance, (b) re-provisioning the similar resources on the Cloud and re-executing the workflow on them 
and (c) by comparing the outputs of workflows. The evaluation of the prototype suggests that the proposed 
approach is feasible and can be investigated further. Since there is no reference model for workflow 
reproducibility on Cloud exists in the literature, this paper also attempts to present a model that is used in 
the proposed design to achieve workflow reproducibility in the Cloud environment. 

1 INTRODUCTION 

The scientific community is processing and 
analysing huge amounts of data being generated in 
modern scientific experiments that include projects 
such as DNA analysis (Foster et al., 2008), the Large 
Hadron Collider (LHC) (http://lhc.cern.ch), and 
projects such as neuGRID (Mehmood et al., 2009) 
and its follow-on neuGRIDforUsers (Munir et al., 
2013, 2014). In particular the neuGRID community 
is utilising scientific workflows to orchestrate the 
complex analysis of neuro-images to diagnose 
Alzheimer disease. A large pool of compute and data 
resources are required to process this data, which has 
been available through the Grid (Foster et al., 1999) 
and is now also being offered by the Cloud-based 
infrastructures.  

Cloud computing (Mell and Grance, 2011) has 
emerged as a new computing and storage paradigm, 
which is dynamically scalable and usually works on a 
pay-as-you-go cost model. It aims to share resources 
to store data and to host services transparently among 
users at a massive scale (Mei et al., 2008). Its ability 
to provide an on-demand computing infrastructure 

enables distributed processing of scientific 
workflows (Deelman et al., 2008) with increased 
complexity and data requirements. Recent work 
(Juve and Deelman 2010) is now experimenting with 
Cloud infrastructures to assess the feasibility of 
executing workflows on the Cloud. 

An important consideration during this data 
processing is to gather provenance (Simmhan et al., 
2005) information that can provide detailed 
information about both the input and the processed 
output data, and the processes involved in a 
workflow execution. This information can be used to 
debug the execution of a workflow, to aid in error 
tracking and reproducibility. This vital information 
can enable scientists to verify the outputs and iterate 
on the scientific method, to evaluate the process and 
results of other experiments and to share their own 
experiments with other scientists (Azarnoosh et al., 
2013). The execution of scientific workflows in the 
Cloud brings to the fore the need to collect 
provenance information that is necessary to ensure 
the reproducibility of these experiments on the Cloud 
infrastructure 

A research study (Belhajjame et al., 2012) 

49



conducted to evaluate the reproducibility of 
scientific workflows has shown that around 80% of 
the workflows cannot be reproduced, and 12% of 
them are due to the lack of information about the 
execution environment. This information affects a 
workflow on two levels. It can affect a workflow’s 
overall execution performance and also job failure 
rate. For instance, a data-intensive job can perform 
better with 2GB of RAM because it can 
accommodate more data in RAM, which is a faster 
medium than hard disk. However, the job’s 
performance will degrade if a resource of 1GB RAM 
is allocated to this job as less data can be placed in 
RAM. Moreover, it is also possible that jobs will 
remain in waiting queues or fail during execution if 
their required hardware dependencies are not met. 
This becomes a more challenging issue in the 
context of Cloud in which resources can be created 
or destroyed at runtime.  

The dynamic and geographically distributed 
nature of Cloud computing makes the capturing and 
processing of provenance information a major 
research challenge (Vouk 2008, Zhao et al., 2011). 
Since the Cloud presents a transparent access to 
dynamic execution resources, the workflow 
parameters including execution resource 
configuration should also be known to a scientist 
(Shamdasani et al., 2012) i.e. what execution 
environment was used for a job in order to reproduce 
a workflow execution on the Cloud. Due to these 
reasons, there is a need to capture information about 
the Cloud infrastructure along with workflow 
provenance, to aid in the reproducibility of workflow 
experiments. There has been a lot of research related 
to provenance in the Grid (Foster et al., 2002, 
Stevens et al., 2003) and a few initiatives (Oliveira et 
al., 2010, Ko et al., 2011) for the Cloud. However, 
they lack the information that can be utilised for re-
provisioning of resources on the Cloud, thus they 
cannot create the similar execution environment(s) 
for workflow reproducibility. In this paper, the terms 
“Cloud infrastructure” and “virtualization layer” are 
used interchangeably. 

This paper presents a theoretical description of an 
approach that can augment workflow provenance 
with infrastructure level information of the Cloud and 
use it to provision similar execution environment(s) 
and repeat a given workflow. Important points 
discussed in this paper are as follows: section 2 
presents some related work in provenance related 
systems. Section 3 presents a reproducibility model 
designed after collecting guidelines used and 
discussed in literature. Section 4 presents an 
overview of the proposed approach. Section 5 

presents an evaluation of the developed prototype. 
And finally section 6 presents some conclusions and 
directions for future work. 

2 RELATED WORK 

Significant research (Foster et al., 2002, Scheidegger 
et al., 2008) has been carried out in workflow 
provenance for Grid-based workflow management 
systems. Chimera (Foster et al., 2002) is designed to 
manage the data-intensive analysis for high-energy 
physics (GriPhyN) (GriPhyN 2014) and astronomy 
(SDSS) (SDSS 2014) communities. It captures 
process information, which includes the runtime 
parameters, input data and the produced data. It 
stores this provenance information in its schema, 
which is based on a relational database. Although 
the schema allows storing the physical location of a 
machine, it does not support the hardware 
configuration and software environment in which a 
job was executed. Vistrails (Scheidegger et al., 
2008) provides support for scientific data exploration 
and visualization. It not only captures the execution 
log of a workflow but also the changes a user makes 
to refine his workflow. However, it does not support 
the Cloud virtualization layer information. Similar is 
the case with Pegasus/Wings (Kim et al. 2008) that 
supports evolution of a workflow. However, this 
paper is focusing on the workflow execution 
provenance on the Cloud, rather than the provenance 
of a workflow itself (e.g. design changes).  

There have been a few research studies (Oliveira 
et al., 2010, Ko et al., 2011) performed to capture 
provenance in the Cloud.  However, they lack the 
support for workflow reproducibility. Some of the 
work in Cloud towards provenance is directed to the 
file system (Zhang et al., 2011, Shyang et al 2012) 
or hypervisor level (Macko et al., 2011). However 
such work is not relatable to our approach because 
this paper focuses on virtualized layer information of 
the Cloud for workflow execution. Moreover, the 
collected provenance data provides information 
about the file access but it does not provide 
information about the resource configuration. The 
PRECIP (Azarnoosh et al., 2013) project provides an 
API to provision and execute workflows. However, 
it does not provide provenance information of a 
workflow.  

There have been a few recent projects (Chirigati 
et al., 2013, Janin et al., 2014) and research studies 
(Perez et al., 2014a) on collecting provenance and 
using it to reproduce an experiment. A semantic-
based approach (Perez et al., 2014b) has been 
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proposed to improve reproducibility of workflows in 
the Cloud. This approach uses ontologies to extract 
information about the computational environment 
from the annotations provided by a user. This 
information is then used to recreate (install or 
configure) that environment to reproduce a 
workflow execution. On the contrary, our approach 
is not relying on annotations rather it directly 
interacts with the Cloud middleware at runtime to 
acquire resource configuration information and then 
establishes mapping between workflow jobs and 
Cloud resources. The ReproZip software (Chirigati 
et al., 2013) uses system call traces to provide 
provenance information for job reproducibility and 
portability. It can capture and organize files/libraries 
used by a job. The collected information along with 
all the used system files are zipped together for 
portability and reproducibility purposes. Since this 
approach is useful at individual job level, this does 
not work for an entire workflow, which is the focus 
of this paper. Moreover, this approach does not 
consider the hardware configuration of the 
underlined execution machine. Similarly, a Linux-
based tool, CARE (Janin et al., 2014), is designed to 
reproduce a job execution. It builds an archive that 
contains selected executable/binaries and files 
accessed by a given job during an observation run. 

3 WORKFLOW  
REPRODUCIBILITY  
MODEL ON CLOUD 

As per our understanding of the literature, there is 
not a standard reproducibility model proposed so far 
for scientific workflows, especially in Cloud 
environment. However, there are some guidelines or 
policies, which have been highlighted in literature to 
reproduce experiments. There is one good effort 
(Sandve et al., 2013) in this regard, but it mainly 
talks about reproducible papers and it does not 
consider execution environment of workflows. In 
this section, we have gathered basic points to present 
an initial workflow reproducibility model in Cloud 
that can provide guidelines for future work in this 
regard. These points are discussed as follows. 

• Share Code and Data  
The need for data and code sharing in computational 
science has been widely discussed (Stodden 2010). 
In computational science conservation, in particular 
for scientific workflow executions, it is emphasized 
that the data, code, and the workflow description 

should be available in order to reproduce an 
experiment.  

• Execution Infrastructure details 
The execution infrastructure provided by the Grid or 
Cloud to execute a workflow is composed of a set of 
computational and storage resources (e.g. execution 
nodes, storage devices, networking). The physical 
approach, where actual computational hardware are 
made available for long time period to scientists, 
often conserves the computational environment 
including supercomputers, clusters, or Grids (Perez 
et al., 2014b). As a result, scientists are able to 
reproduce their experiments on the same hardware 
environment. However, this luxury is not available 
in the Cloud environment in which resources are 
virtualized and provisioned dynamically on-demand. 
A little focus is given to the underlying 
infrastructure, especially Cloud, in computational 
conservation in literature. This challenge has been 
tackled in this paper by collecting this information at 
runtime from the Cloud infrastructure. From 
resource provisioning point of view, parameters such 
as RAM, vCPU and Hard Disk are important in 
selecting appropriate resource especially on the 
Cloud and should be made part of the collected 
provenance. All these factors contribute to the job's 
execution performance as well as to its failure rate. 
For instance, a job will fail if it is scheduled to a 
resource with insufficient available RAM. 

• Software Environment 
Apart from knowing the hardware infrastructure, it 
is also essential to provide information about the 
software environment. A software environment 
determines the operating system and the libraries 
used to execute a job. Without the access to required 
libraries information, a job execution will fail. For 
example, a job, relying on MATLAB library, will 
fail in case the required library is missing. One 
possible approach (Howe et al., 2012) to conserve 
software environment is thought to conserve VM 
that is used to execute a job and then reuse the same 
VM while re-executing the same job. One may argue 
that it would be easier to keep and share VM images 
with the research community through a common 
repository, however the high storage demand of VM 
images remains a challenging problem (Zhao et al., 
2014). In the prototype presented in this paper, the 
OS image used to provision a VM is conserved and 
thought to present all the software dependencies 
required for a job execution in a workflow. 
Therefore, the proposed solution should also retrieve 
the image information to build a virtual machine on 
which the workflow job was executed. 
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• Workflow Versioning  
Capturing only a provenance trace is not sufficient 
to allow a computation to be repeated – a situation 
known as workflow decay (Roure et al., 2011). The 
reason is that the provenance systems can store 
information on how the data was generated, however 
they do not store copies of the key actors in the 
computation i.e. workflow, services, data. This paper 
(Sandve et al. 2013) suggests to archive the exact 
versions of all programs and enable version control 
on all scripts used in an experiment. This is not 
supported in the presented prototype, but it will be 
incorporated in next iterations. 

• Provenance Comparison 
The provenance traces of two executed workflows 
should be compared to determine workflow 
reproducibility. The main idea is to evaluate the 
reproducibility of an entire execution of a given 
workflow, including the logical chaining of activities 
and the data. To provide the strict reproducibility 
functionality, a system must guarantee that the data 
are still accessible and that the corresponding 
activities are accessible (Lifschitz et al. 2011). Since 
the focus of this paper is on workflow 
reproducibility on the Cloud infrastructure, the 
execution infrastructure should also be part of the 
comparison. Therefore the provenance comparison 
should be made at different levels; workflow 
structure, execution infrastructure, and workflow 
input and output. A brief description of this 
comparison is given below. 

a) Workflow structure should be compared to 
determine that both workflows are similar.  
Because it is possible that two workflows are 
having similar number of jobs but with 
different job execution order.  

b) Execution infrastructure (software 
environment, resource configuration) used on 
the Cloud for a workflow execution should also 
be compared.  

c) Comparison of input and output should be 
made to evaluate workflow reproducibility. 
There could be a scenario that a user repeated a 
workflow but with different inputs, thus 
producing different outputs. It is also possible 
that changes in job or software library result 
into different workflow output. There are a few 
approaches (Missier et al. 2013), which 
perform workflow provenance comparison to 
determine differences in reproduced 
workflows. The proposed approach in this 
paper incorporates the workflow output 

comparison to determine the reproducibility of 
a workflow. 

• Pricing Model 
This point can be important for experiments in 
which cost is also a main factor. The resource 
provisioned on the Cloud has associated cost, which 
is based on the resource type and the amount of time 
it has been used for. This information can assist in 
reproducing an experiment with the same cost as 
was incurred in earlier execution. This point is not 
incorporated in the proposed design at the moment. 

4 CLOUD-AWARE 
PROVENANCE APPROACH  

An abstract view of the proposed architecture is 
presented in this section. This architecture is 
designed after evaluating the existing literature and 
keeping in mind the objectives of this research 
study. The proposed architecture is inspired by the 
mechanism used in a paper (Groth et al., 2009) for 
executing workflows on the Cloud. Figure 1 
illustrates the proposed architecture that is used to 
capture the Cloud infrastructure information and to 
interlink it with the workflow provenance collected 
from a workflow management system such as 
Pegasus. This augmented or extended provenance 
information compromising of workflow provenance 
and the Cloud infrastructure information is named as 
Cloud-aware provenance. The components of this 
architecture are briefly explained below. 

 

Figure 1: An abstract architecture of the proposed 
approach. 

• Workflow Provenance: This component is 
responsible for receiving provenance captured at 
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the application level by the workflow management 
system (Pegasus). Since workflow management 
systems may vary, a plugin-based approach is 
used for this component. Common interfaces are 
designed to develop plugins for different 
workflow management systems. The plugin also 
translates the workflow provenance according to 
the representation that is used to interlink the 
workflow provenance along with the information 
coming from the Cloud infrastructure. 

• Cloud Layer Provenance: This component is 
responsible for capturing information collected 
from different layers of the Cloud. To achieve re-
provisioning of resources on Cloud, this 
component focuses on the virtualization layer and 
retrieves information related to the Cloud 
infrastructure i.e. virtual machine configuration. 
This component is discussed in detail in section 
4.1. 

• Provenance Aggregator: This is the main 
component tasked to collect and interlink the 
provenance coming from different layers as shown 
in Figure 1. It establishes interlinking connections 
between the workflow provenance and the Cloud 
infrastructure information. The provenance 
information is then represented in a single format 
that could be stored in the provenance store 
through the interfaces exposed by the Provenance 
API. 

• Provenance API: This acts as a thin layer to 
expose the provenance storage capabilities to other 
components. Through its exposed interfaces, 
outside entities such as the Provenance Aggregator 
would interact with it to store the workflow 
provenance information. This approach gives 
flexibility to implement authentication or 
authorization in accessing the provenance store. 

• Workflow Provenance Store: This data store is 
designed to store workflows and their associated 
provenance. This also keeps mapping between 
workflow jobs and the virtual compute resources 
in the Cloud infrastructure. This also keeps record 
of the workflow and its related configuration files 
being used to submit a user analysis on the Cloud. 
This information is later retrieved to reproduce the 
execution. However, it does not support workflow 
evolution in its current design.  

4.1 Job to Cloud Resource Mapping 

The CloudLayerProvenance component is designed 
in a way that interacts with the Cloud infrastructure 
as an outside client to obtain the resource 
configuration information. As mentioned earlier, this 

information is later used for reprovisioning the 
resources to provide a similar execution 
infrastructure to repeat a workflow execution. Once 
a workflow is executed, Pegasus collects the 
provenance and stores it in its own internal database. 
Pegasus also stores the IP address of the virtual 
machine (VM) where the job is executed. However, 
it lacks other VM specifications such as RAM, 
CPUs, hard disk etc. The CloudLayerProvenance 
component retrieves all the jobs of a workflow and 
their associated VM IP addresses from the Pegasus 
database. It then collects a list of virtual machines 
owned by a respective user from the Cloud 
middleware. Using the IP address, it establishes a 
mapping between the job and the resource 
configuration of the virtual machine used to execute 
the job. This information i.e. Cloud-aware 
provenance is then stored in the Provenance Store. 
The flowchart of this mechanism is presented in 
Figure 2.  

 

Figure 2: flowchart of job to Cloud resource mapping 
performed by ProvenanceAggregator component. 

In this flowchart, the variable wfJobs – 
representing a list of jobs of a given workflow – is 
retrieved from the Pegasus database. The variable 
vmList – represents a list of virtual machines in the 
Cloud infrastructure – is collected from the Cloud. A 
mapping between jobs and VMs is established by 
matching the IP addresses (see in Figure 2). 
Resource configuration parameters such as flavour 
and image are obtained once the mapping is 
established. flavour defines resource configuration 
such as RAM, Hard disk and CPUs, and image 
defines the operating system image used in that 
particular resource. By combining these two 
parameters together, one can provision a resource on 
the Cloud infrastructure. After retrieving these 
parameters and jobs, the mapping information is 
then stored in the Provenance Store (see in Figure. 
2). This mapping information provides two 
important data (a) hardware configuration (b) 
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software configuration using VM name. As 
discussed in section 3, these two parameters are 
important in recreating a similar execution 
environment. 

4.2 Workflow Reproducibility using 
Cloud-Aware Provenance 

In section 4.1, the job to Cloud resource mapping 
using provenance information has been discussed. 
This mapping is stored in the database for workflow 
reproducibility purposes. In order to reproduce a 
workflow execution, researcher first needs to 
provide the wfID (workflow ID), which is assigned 
to every workflow in Pegasus, to the proposed 
framework to re-execute the workflow using the 
Cloud-aware provenance. It retrieves the given 
workflow from the Provenance Store database (step 
2(a) in Figure 3) along with the Cloud resource 
mapping stored against this workflow (step 2(b) in 
Figure 3). Using this mapping information, it 
retrieves the resource flavour and image 
configurations, and provisions the resources (step 3 
in Figure 3) on Cloud. Once resources are 
provisioned, it submits the workflow (step 4).  

At this stage, a new workflow ID is assigned to 
this newly submitted workflow.  This new wfID is 
passed over to the ProvenanceAggregator 
component to monitor (step 5) the execution of the 
workflow and start collecting its Cloud-aware 
provenance information (see step 6 in Figure 3) This 
is important to recollect the provenance of the 
repeated workflow, as this will enable us to verify 
the provisioned resources by comparing their 
resource configurations with the old resource 
configuration.  

 
Figure 3: The sequence of activities to illustrate workflow 
repeatability in the proposed system. 

4.3 Workflow Output Comparison 

Another aspect of workflow repeatability is to verify 
that it has produced the same output that was 

produced in its earlier execution (as discussed in 
section 3). In order to evaluate workflow 
repeatability, an algorithm has been proposed that 
compares the outputs produced by two given 
workflows. It uses the MD5 hashing algorithm 
(Stalling 2010) on the outputs and compares the 
hash value to verify the produced outputs. The two 
main reasons of using a hash function to verify the 
produced outputs are; a) simple to implement and b) 
the hash value changes with a single bit change in 
the file. If the hash values of two given files are 
same, this means that the given files contain same 
content.  

The proposed algorithm (as shown in Figure 4) 
operates over the two given workflows identified by 
srcWfID and destWfID, and compares their outputs. 
It first retrieves the list of jobs and their produced 
output files from the Provenance Store for each 
given workflow. It then iterates over the files and 
compares the source file, belonging to srcWfID, with 
the destination file, belonging to destWfID. Since the 
files are stored on the Cloud, the algorithm retrieves 
the files from the Cloud (see lines 11 and 12). Cloud 
storage services such as OpenStack Swift, Amazon 
Object Store use the concept of a bucket or a 
container to store a file. This is why src_container 
and dest_container along with src_filename and 
dest_filename are given in the GetCloudFile 
function to identify a specific file in the Cloud. The 
algorithm then compares the hash value of both files 
and increments ComparisonCounter. If all the files 
in both workflows are the same, 
ComparisonCounter should be equal to FileCounter, 
which counts the number of files produced by a 
workflow. Thus, it confirms that the workflows are 
repeated successfully. Otherwise, the algorithms 
returns false if both these counters are not equal. 

 
Figure 4: Pseudocode to compare outputs produced by two 
given workflows. 
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5 RESULTS AND DISCUSSION  

 

Figure 5: Cloud resource's RAM configuration impact on 
job success. 

To demonstrate the effect of Cloud resource 
configuration such as RAM on job failure rate, a 
basic memory-consuming job is written in Java 
language. The job attempts to construct an alphabet 
string of given size (in MB), which is provided at 
runtime. To execute this experiment, three resource 
configurations, (a) m1.tiny, (b) m1.small and (c) 
m1.medium, each with 512 MB, 2048 MB and 4096 
MB RAM respectively were used. Each job is 
executed at least 5 times with a given memory 
requirement on each resource configuration. The 
result in Figure 5 shows that jobs fail if required 
RAM (hardware) requirement is not fulfilled. All 
jobs with RAM requirement less than 500 MB 
executed successfully on all resource configurations. 
However, the jobs start to fail on Cloud resources 
with m1.tiny configuration as soon as the job’s 
memory requirement approaches 500 MB because 
the jobs could not find enough available memory on 
the given resource. This result confirms the 
presented argument (discussed in section 1 and also 
in section 3) regarding the need for collecting Cloud 
resource configuration and its impact on job failure. 
Since a workflow is composed of many jobs, which 
are executed in a given order, a single job failure can 
result in a workflow execution failure. Therefore, 
collecting Cloud-aware provenance is essential for 
reproducing a scientific workflow execution on the 
Cloud.  

To evaluate the presented mapping algorithm, 
which collects the Cloud infrastructure information 
and interlinks it with the workflow provenance, a 
Python based prototype has been developed using 
Apache Libcloud (Apache Libcloud – 
http://libcloud.apache.org), a library to interact with 

the Cloud middleware. The presented evaluation of 
the prototype is very basic currently. However, as 
this work progresses further a full evaluation will be 
conducted. To evaluate this prototype, a 20 core 
Cloud infrastructure is acquired from the Open 
Science Data Cloud (OSDC) 
(https://www.opensciencedatacloud.org/). This 
Cloud infrastructure uses the OpenStack middleware 
(openstack.org) to provide infrastructure-as-a-
Service capability. A small Condor cluster of three 
virtual machines is also configured. In this cluster, 
one machine is a master node, which is used to 
submit workflows, and the remaining two are 
compute nodes. These compute nodes are used to 
execute workflow jobs. Using the Pegasus APIs, a 
basic wordcount workflow application composed of 
four jobs is written. This workflow has both control 
and data dependencies (Ramakrishnan and Plale, 
2010) among its jobs, which is a common 
characteristic in scientific workflows. The first job 
(Split job) takes a text file and splits it into two files 
of almost equal length. Later, two jobs (Analysis 
jobs), each take one file as input, and then calculate 
the number of words in the given file. The fourth job 
(merge job) takes the outputs of earlier analysis jobs 
and calculates the final result i.e. total number of 
words in both files. 

This workflow is submitted using Pegasus. The 
wfID assigned to this workflow is 114. The collected 
Cloud resource information is stored in database. 
Table I. shows the provenance mapping records in 
the Provenance Store for this workflow. The 
collected information includes the flavour and image 
(image name and Image id) configuration 
parameters. The Image id uniquely identifies an OS 
image hosted on the Cloud and this image contains 
all the software or libraries used during the job 
execution. As an image contains all the required 
libraries of a job, this prototype does not extract the 
installed libraries information from the virtual 
machine at the moment for workflow reproducibility 
purpose. However, this can be done in future 
iterations to enable the proposed approach to 
reconfigure a resource at runtime on the Cloud. 

The reproducibility of the workflow using the 
proposed approach  (discussed in section 4.2) has 
also been tested. The prototype is requested to repeat 
the workflow with wfID 114. 
Upon receiving the request, it first collects the 
resource configurations, captured from earlier 
execution, from the database and provisions the 
resources on the Cloud infrastructure. The name of 
re-provisioned resource(s) for the repeated workflow 
has a postfix ‘-rep.novalocal’ e.g. mynova- 
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Table 1: Cloud infrastructure mapped to the jobs of workflow with ID 114. 

 

Table 2: Cloud infrastructure information of repeated workflow (wfIDs: 117 and 122) after repeating workflow 114. 

 

Table 3: Comparing outputs produced by workflows 114 (original workflow) and 117 (repeated workflow). 

 

 
rep.novalocal as shown in Table 2. It was named 
mynova.novalocal in original workflow execution as 
shown in Table 1. From Table 2, one can assess that 
similar resources have been re-provisioned using the 
proposed approach to reproduce the workflow 
execution because the RAM, Hard disk, vCPUs and 
image configurations are similar to the resources 
used for workflow with wfID 114 (as shown in 
Table 1). This preliminary evaluation confirms that 
the similar resources on the Cloud can be re-
provisioned with the Cloud-aware provenance 
information collected using the proposed approach 
(discussed previously in section 4). Table 2 shows 
two repeated workflow instances of original 
workflow 114. 

The other aspect to evaluate the workflow 
reproducibility (as discussed in section 3) is to 
compare the outputs produced by both workflows. 
This has been achieved using the algorithm 
presented in Figure 4 (discussed in section 4.3). Four 
jobs in both the given workflows i.e. 114 and 117 
produce the same number of output files (see Table 
3). The Split job produces two output files i.e. 
wordlist1 and wordlist2. Two analysis jobs, 
Analysis1 and Analysis2, consume the wordlist1 and 
wordlist2 files, and produce the analysis1 and 
analysis2 files respectively. The merge job 
consumes the analysis1 and analysis2 files and 
produces the merge_output file. The hash values of 
these files are shown in the MD5 Hash column of 

wfID Host IP nodename Flavour 
Id 

minRAM 
(MB) 

minHD 
(GB) vCPU Image 

name 
Image 

id 

114 172.16.1.49 osdc-vm3.novalocal 2 2048 20 1 wf_peg_repeat f102960c- 557c-4253-8277-2df5ffe3c169  

114 172.16.1.98 mynode.novalocal 2 2048 20 1 
wf_peg_repeat 

 
102960c- 557c-4253-8277-2df5ffe3c169  

wfID Host IP nodename Flavour 
Id 

minRAM 
(MB) 

minHD 
(GB) vCPU Image 

name 
Image 

id 

117 172.16.1.183 osdc-vm3-rep.novalocal 2 2048 20 1 wf_peg_repeat f102960c- 557c-4253-8277-2df5ffe3c169  

117 172.16.1.187 mynode-rep.novalocal 2 2048 20 1 
wf_peg_repeat 

 
f102960c- 557c-4253-8277-2df5ffe3c169  

122 172.16.1.114 osdc-vm3-rep.novalocal 2 2048 20 1 wf_peg_repeat f102960c- 557c-4253-8277-2df5ffe3c169  

122 172.16.1.112 mynode-rep.novalocal 2 2048 20 1 wf_peg_repeat f102960c- 557c-4253-8277-2df5ffe3c169  

Job WF ID Container Name File Name MD5 Hash 

Split 

114 wfoutput123011  wordlist1  0d934584cbc124eed93c4464ab178a5d  

117 wfoutput125819  wordlist1  0d934584cbc124eed93c4464ab178a5d  

114 wfoutput123011  wordlist2 1bc6ffead85bd62b5a7a1be1dc672006 

117 wfoutput125819  wordlist2  1bc6ffead85bd62b5a7a1be1dc672006 

Analysis
1 

114 wfoutput123011  analysis1  494f24e426dba5cc1ce9a132d50ccbda  

117 wfoutput125819  analysis1  494f24e426dba5cc1ce9a132d50ccbda  

Analysis
2 

114 wfoutput123011  analysis2  127e8dbd6beffdd2e9dfed79d46e1ebc  

117 wfoutput125819  analysis2  127e8dbd6beffdd2e9dfed79d46e1ebc  

Merge 
114 wfoutput123011  merge_output  d0bd408843b90e36eb8126b397c6efed  

117 wfoutput125819  merge_output  d0bd408843b90e36eb8126b397c6efed  
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the Table 3, here both given workflows are 
compared with each other. For instance, the hash 
value of wordlist1 produced by the Split job of 
workflow 117 is compared with the hash value of 
wordlist1 produced by the Split job of workflow 
114. If both the hash values are same, the algorithm 
returns true.  This process is repeated for all the files 
produced by both workflows. The algorithm 
confirms the verification of workflow outputs if the 
corresponding files in both workflows have the same 
hash values. Otherwise, the verification process 
fails.  

6 CONCLUSION AND FUTURE 
DIRECTION  

In this paper, the motivation and the issues related to 
workflow reproducibility due to workflow execution 
on the Cloud infrastructure have been identified. The 
dynamic nature of the Cloud makes provenance 
capturing of workflow(s) and their underlying 
execution environment(s) and their reproducibility a 
difficult challenge. A workflow reproducibility model 
(discussed in section 3) has been presented after 
analysing the literature and workflow execution 
scenario on the Cloud infrastructure. A proposed 
architecture has been presented that can augment the 
existing workflow provenance with the information of 
the Cloud infrastructure. Combining these two can 
assist in re-provisioning the similar execution 
environment to reproduce a workflow execution. The 
Cloud infrastructure information collection 
mechanism has been presented in this paper in section 
4.1. This mechanism iterates over the workflow jobs 
and establishes mappings with the resource 
information available on the Cloud. This job to Cloud 
resource mapping can then be used to reproduce a 
workflow execution. The process of reproducing a 
workflow execution with the proposed approach has 
been discussed in section 4.2. In this paper, the 
workflow reproducibility is verified by comparing the 
outputs produced by the workflows. An algorithm has 
been discussed in section 4.3 (see Figure 4) that 
compares the outputs produced by two given 
workflows. A python-based prototype was developed 
for evaluating the proposed approach. The results 
show that the proposed approach can capture the 
Cloud-aware provenance information (as discussed in 
section 4) by collecting the information related to 
Cloud infrastructure (virtual machines) used during a 
workflow execution. It can then provision a similar 
execution infrastructure i.e. same resource configure-

tion on the Cloud using the Cloud-aware provenance 
information to reproduce a workflow execution. In 
future, the proposed approach will be extended and a 
detailed evaluation of the proposed approach will be 
conducted. Different performance matrices such as 
the impact of the proposed approach on workflow 
execution time, impact of different resource 
configuration on workflow execution performance, 
and total resource provision time will also be 
measured. In this paper, only workflow outputs have 
been used to compare two workflows’ provenance 
traces. In future, the comparison algorithm will also 
incorporate workflow structure and execution 
infrastructure (as discussed in section 3) to verify 
workflow reproducibility. The proposed approach has 
not addressed the issue of securing the stored Cloud-
aware provenance. In future, the presented 
architecture will be extended by adding a security 
layer on top of the collected Cloud-aware provenance. 
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