
Performance and Cost Evaluation for the Migration of a Scientific
Workflow Infrastructure to the Cloud
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Abstract: The success of the Cloud computing paradigm, together with the increase of Cloud providers and optimized
Infrastructure-as-a-Service (IaaS) offerings have contributed to a raise in the number of research and industry
communities that are strong supporters of migrating and running their applications in the Cloud. Focusing on
eScience simulation-based applications, scientific workflows have been widely adopted in the last years, and the
scientific workflow management systems have become strong candidates for being migrated to the Cloud. In
this research work we aim at empirically evaluating multiple Cloud providers and their corresponding optimized
and non-optimized IaaS offerings with respect to their offered performance, and its impact on the incurred
monetary costs when migrating and executing a workflow-based simulation environment. The experiments show
significant performance improvements and reduced monetary costs when executing the simulation environment
in off-premise Clouds.

1 INTRODUCTION

In the last years the workflow technology has been
widely adopted in several domains, e.g. business or
eScience, which often have different domain-specific
requirements in terms of supported functionalities
and expected behavior of the underlying infrastruc-
ture. Focusing on eScience applications, simulation
workflows are a well-known research area, as they
provide scientists with the means to model, provi-
sion, and execute automated and flexible long running
simulation-based experiments (Sonntag and Karastoy-
anova, 2010). Such simulation-based experiments typ-
ically comprise large amounts of data processing and
transfer and consume multiple distributed simulation
services for long periods of time. Due to the access
and resource consumption nature of such simulation
environments, previous works have targeted the mi-
gration and adaptations of such environments to be
deployed, provisioned, and executed in Cloud infras-
tructures (Juve et al., 2009; ?; Vukojevic-Haupt et al.,
2013; Zhao et al., 2014).

The Cloud computing paradigm has led in the last
years to an increase in the number of applications
which are partially or completely running in different
Everything-as-a-Service Cloud offerings. The increase
of available and optimized Cloud services has intro-

duced further efficient alternatives for hosting applica-
tion components with special resources consumption
patterns, e.g. computationally or memory intensive
ones. However, such a wide landscape of possibilities
has become a challenge for deciding among the differ-
ent Cloud providers and their corresponding offerings.
Previous works targeted such a challenge by assisting
application developers in the tasks related to selecting,
configuring, and adapting the distribution of their ap-
plication among multiple services (de Oliveira et al.,
2011; Gómez Sáez et al., 2014a). There are multiple
decision points that can influence the distribution of an
application, e.g. cost, performance, security concerns,
etc. The focus of this research work is to provide an
overview, evaluate, and analyze the trade-off between
the performance and cost when migrating a simulation
environment to different Cloud providers and their
corresponding Infrastructure-as-a-Service (IaaS) offer-
ings. The contributions of this work can therefore be
summarized as follows:

� the selection of a set of viable and optimized IaaS
offerings for migrating a previously developed sim-
ulation environment,

� an empirical evaluation focusing on the perfor-
mance and the incurred monetary costs, and,

� an analysis of the performance and cost trade-off

352



when scaling the simulation environment work-
load.

The remaining of this paper is structured as fol-
lows: Section 2 motivates this work and depicts the
problems that aim to be achieved. The simulation en-
vironment used for evaluation purposes in this work
is introduced in Section 3. Section 4 presents the ex-
periments on evaluating the performance and incurred
costs when migrating the simulation environment to
different IaaS offerings, and discusses our findings.
Finally, Section 5 summarizes related work and Sec-
tion 6 concludes with some future work.

2 MOTIVATION & PROBLEM
STATEMENT

Simulation workflows, a well-known topic in the field
of eScience, describe the automated and flexible ex-
ecution of simulation-based experiments. Common
characteristics of such simulation workflows are that
they are long-running as well as being executed in an
irregular manner. However, during their execution a
wide amount of resources are typically provisioned,
consumed, and released. Considering these character-
istics, previous works focused on migrating and exe-
cuting simulation environments in the Cloud, as Cloud
infrastructures significantly reduce infrastructure costs
while coping with an irregular but heavy demand of
resources for running such experiments (Vukojevic-
Haupt et al., 2013).

Nowadays there exists a vast amount of con-
figurable Cloud offerings among multiple Cloud
providers. However, such a wide landscape has be-
come a challenge for deciding among (i)the different
Cloud providers and (ii)the multiple Cloud offering
configurations offered by such providers. We focus
in this work on IaaS solutions, as there exists a lack
of Platform-as-a-service (PaaS) offerings that enable
the deployment and execution of scientific workflows
in the Cloud. IaaS offerings describe the amount and
type of allocated resources, e.g. CPUs, memory, or
storage, and define different VM instance types within
different categories. For example, the Amazon EC21

service does not only offer VM instances of differ-
ent size, but also provides different VM categories
which are optimized for different use cases, e.g. com-
putation intensive, memory intensive, or I/O intensive.
Similar offerings are available also by other providers,

1Amazon EC2: http://aws.amazon.com/ec2/
instance-types/
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Figure 1: System Overview of the SimTech Scientific Work-
flow Management System (SWfMS).

e.g. Windows Azure2 or Rackspace3. The offered per-
formance and incurred cost significantly vary among
the different Cloud services, and depend on the simu-
lation environment resource usage requirements and
workload. In this work, we aim to analyze the perfor-
mance and cost trade-off when migrating to different
Cloud offerings a simulation environment developed
and used as case study, as discussed in the following
section.

3 THE OPAL SIMULATION
ENVIRONMENT

A Scientific Workflow Management System (SimTech
SWfMS) is being developed by the Cluster of Excel-
lence in Simulation Technology (SimTech4), enabling
scientists to model and execute their simulation exper-
iments using workflows (Sonntag and Karastoyanova,
2010; Sonntag et al., 2012). The SimTech SWfMS
is based on conventional workflow technology which
offers several non-functional requirements like robust-
ness, scalability, reusability, and sophisticated fault
and exception handling (Görlach et al., 2011). The
system has been adapted and extended to the special
needs of the scientists in the eScience domain (Son-
ntag et al., 2012). During the execution of a workflow
instance the system supports the modification of the
corresponding workflow model, which is then propa-
gated to the running instances. This allows running
simulation experiments in a trial-and-error manner.

The main components of the SimTech SWfMS
shown in Fig. 1 are a modeling and monitoring
tool, a workflow engine, a messaging system, sev-
eral databases, an auditing system, and an application
server running simulation services. The workflow en-
gine provides an execution environment for the work-

2Windows Azure: http://azure.microsoft.com/en-us/
3Rackspace: http://www.rackspace.com/
4SimTech: http://www.iaas.uni-stuttgart.de/forschung/

projects/simtech/
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Figure 2: Simplified Simulation Workflows Constituting the OPAL Simulation Environment (Sonntag and Karastoyanova,
2013).

flows. The messaging system serves as communica-
tion layer between the modeling- and monitoring tool,
the workflow engine, and the auditing system. The
auditing system stores data related to the workflow
execution for analytical and provenance purposes.

The SimTech SWfMS has been successfully ap-
plied in different scenarios in the eScience domain;
one example is the automation of a Kinetic Monte-
Carlo (KMC) simulation of solid bodies by orchestrat-
ing several Web services being implemented by mod-
ules of the OPAL application (Sonntag et al., 2011a).
The OPAL Simulation Environment is constituted by
a set of services which are controlled and orchestrated
through a main OPAL workflow (the Opal Main pro-
cess depicted in Figure 2). The simulation services
are implemented as Web services and divided into two
main categories: (i) resource management, e.g. dis-
tributing the workload among the different servers, and
(ii) wrapped simulation packages depicted in (Binkele
and Schmauder, 2003; Molnar et al., 2010). The main
workflow can be divided in four phases as shown in
Fig. 2: preprocessing, simulation, postprocessing, and
visualization. During the preprocessing phase all data
needed for the simulation is prepared. In the simu-
lation phase the workflow starts the Opal simulation
by invoking the corresponding Web service. In regu-
lar intervals, the Opal simulation creates intermediate
results (snapshots). For each of these snapshots the
main workflow initiates the postprocessing which is
realized as a separate workflow (Opal Snapshot pro-
cess in Figure 2). When the simulation is finished and
all intermediate results are postprocessed, the results
of the simulation are visualized.

4 EXPERIMENTS

4.1 Methodology

As shown in Fig. 2, the OPAL Simulation Environment
is comprised of multiple services and workflows that
compose the simulation and resource management ser-
vices. The environment can be concurrently used by
multiple users, as the simulation data isolation is guar-
anteed through the creation of independent instances
(workflows, services, and temporal storage units) for
each user’s simulation request. The experiments must
therefore consider and emulate the usage of the envi-
ronment by multiple users concurrently.

The migration of the simulation environment to
the Cloud opens a wide set of viable possibilities for
selecting and configuring different Cloud services for
the different components of the OPAL environment.
However, in this first set of experiments we restrict
the distribution of the simulation environment compo-
nents by hosting the complete simulation application
stack in one VM, which is made accessible to mul-
tiple users. Future investigations plan to distribute
such environment using different Cloud offerings, e.g.
Database-as-a-Service (DBaaS) for hosting the audit-
ing databases. We therefore focus this work on driving
a performance and cost analysis when executing the
OPAL Simulation Environment in on- and off-premise
infrastructures, and using different IaaS offerings and
optimized configurations.

Table 1 shows the different VM categories, based
on their characteristics and offered prices by three ma-
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Table 1: IaaS Ubuntu Linux On-demand Instances Categories per Provider (in January 2015).

Instance
Category

Cloud Provider Instance Type vCPU Memory
(GB)

Region Price
(U$/h)

on-premise micro 1 1 EU (Germany) 0.13
Micro AWS EC2 t2.micro 1 1 EU (Ireland) 0.014

Windows Azure A1 1 1.75 EU (Ireland) 0.06
Rackspace General 1 1 1 USA 0.06
on-premise large 2 4 EU (Germany) 0.26

General AWS EC2 m3.large 2 7.5 EU (Ireland) 0.154
Purpose Windows Azure A2 2 3.5 EU (Ireland) 0.12

Rackspace General 2 2 2 USA 0.074
on-premise compute3.large 4 4 EU (Germany) 0.52

Compute AWS EC2 c3.large 2 3.75 EU (Ireland) 0.120
Optimized Windows Azure D2 2 7 EU (Ireland) 0.23

Rackspace Compute 1-3.75 2 3.75 USA 0.1332
on-premise memory4.large 2 15 EU (Germany) 0.26

Memory AWS EC2 r3.large 2 15.25 EU (Ireland) 0.195
Optimized Windows Azure D3 4 14 EU (Ireland) 0.46

Rackspace Memory 1-15 2 15 USA 0.2522

jor Cloud providers: Amazon AWS, Windows Azure,
and Rackspace. In addition to the off-premise VM
instances types, multiple on-premise VM instances
types were created in our virtualized environment, con-
figured in a similar manner to the ones evaluated in
the off-premise scenarios, and included in such cate-
gories. The on-premise VM instances configurations
are based on the closest equivalent to the off-premise
VM configurations within each instance category. The
encountered providers and offerings showed two lev-
els of VM categories, i.e. based on the optimization
for custom use cases (Micro, General Use, Compute
Optimized, and Memory optimized), and based on a
quantitative assignment of virtualized resources. This
fact must be taken into consideration in our evaluation
due to the variation in the performance, and its im-
pact on the final incurred costs for running simulations
in different Cloud offerings. The pricing model for
the on-premise scenarios was adopted from (Walker,
2009) as discussed in the following section, while for
the off-premise scenarios the publicly available infor-
mation from the providers was used (Andrikopoulos
et al., 2013), taking into account on-demand pricing
models only.

4.2 Setup

The scientific workflow simulation environment is
constituted by two main systems: the SimTech
SWfMS (Sonntag and Karastoyanova, 2010; Sonntag
et al., 2012), and a set of Web services bundling re-
source management and the KMC simulation tasks
depicted in (Binkele and Schmauder, 2003; Molnar
et al., 2010). The former comprises the following

middleware stack:

� an Apache Orchestration Director Engine (ODE)
1.3.5 (Axis2 distribution) deployed on

� an Apache Tomcat 7.0.54 server with Axis2 sup-
port.

� The scientific workflow engine (Apache ODE) uti-
lizes a MySQL server 5.5 for workflow administra-
tion, management, and reliability purposes , and

� provides monitoring and auditing information
through an Apache ActiveMQ 5.3.2 messaging
server.

The resource management and KMC simulation ser-
vices are deployed as Axis2 services in an Apache
Tomcat 7.0.54 server. The underlying on- and off-
premise infrastructure configurations selected for the
experiments are shown in Table 1. The on-premise
infrastructure aggregates an IBM System x3755 M3
server5 with an AMD Opteron Processor 6134 expos-
ing 16 CPU of speed 2.30 GHz and 65GB RAM. In
all scenarios the previously depicted middleware com-
ponents are deployed on an Ubuntu server 14.04 LTS
with 60% of the total OS memory dedicated to the
SWfMS.

For all evaluation scenarios a system’s load of 10
concurrent users sequentially sending 10 random and
uniformely distributed simulation requests/user was
created using Apache JMeter 2.9 as the load driver.
Such a load aims at emulating a shared utilization of
the simulation infrastructure. Due to the asynchronous

5IBM System x3755 M3: http://www-03.ibm.com/
systems/xbc/cog/x3755m3 7164/x3755m3 7164aag.html
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nature of the OPAL simulation workflow, a custom plu-
gin in JMeter was realized towards receiving and cor-
relating the asynchronous simulation responses. The
perceived by the user latency for each simulation was
measured in milliseconds (ms). Towards minimizing
the network latency, in all scenarios the load driver
was deployed in the same region as the simulation
environment.

The incurred monetary costs for hosting the
simulation environment on-premise are calculated
considering firstly the purchase, maintenance, and
depreciation of the server cluster, and secondly by
calculating the price of each CPU time. (Walker,
2009) proposes pricing models for analyzing the cost
of purchasing vs. leasing CPU time on-premise and
off-premise, respectively. The real cost of a CPU/hour
when purchasing a server cluster, can be derived using
the following equations:

(1�1=
p

2)�å
Y�1
T=0

CT
(1+k)T

(1� (1=
p

2)Y )�TC
(1)

where CT is the acquisition (C0) and maintenance
(C1::N) costs over the Y years of the server cluster,
k is the cost of the invested capital, and

TC = TCPU�H�µ (2)

where TCPU depicts the total number of CPU cores
in the server cluster, H is the expected number of oper-
ational hours, and µ describes the expected utilization.
The utilized on-premise infrastructure total cost breaks
down into an initial cost (C0) of approximately 8500$
in July 2012 and an annual maintenance cost (C1::N) of
7500$, including personnel costs, power and cooling
consumption, etc. The utilization rate of such cluster is
of approximately 80%, and offers a reliability of 99%.
Moreover, the server cluster runs six days per week, as
one day is dedicated for maintenance operations. Such
a configuration provides 960K CPU hours annually.
As discussed in (Walker, 2009), we also assumed in
this work a cost of 5% on the invested capital. The
cost for the off-premise scenarios was gathered from
the different Cloud provider’s Web sites.

Table 1 depicts the hourly cost for the CPUs con-
sumed in the different on-premise VM configurations.
In order to get a better sense of the scope of the accrued
costs, the total cost calculation performed as part of the
experiments consisted of predicting the necessary time
to run 1K concurrent experiments. Such estimation
was then used to calculate the incurred costs of hosting
the simulation environment in the previously evalu-
ated on- and off-premise scenarios. The monetary cost
calculation was performed by linearly extrapolating
the obtained results for the 100 requests to a total of
1K requests. The scientific library Numpy of Python

2.7.5 was used for performing the prediction of 1K
simulation requests. The results of this calculation, as
well as the observed performance measurements are
discussed in the following.

4.3 Evaluation Results

4.3.1 Performance Evaluation

Figure 3 shows the average observed latency for the
different VM categories depicted in Table 1 for the dif-
ferent Cloud providers. The latency perceived in the
scenarios comprising the selection of Micro instances
have been excluded from the comparison due to the im-
possibility to finalize the execution of the experiments.
More specifically, the on-premise micro-instance was
capable of stably running approximately 80 requests
(see Figure 4(a)), while in the off-premise scenarios
the load saturated the system with 10 requests approxi-
mately in the AWS EC2 and Windows Azure scenarios
(see Figures 4(b) and 4(c), respectively). For the sce-
nario utilizing Rackspace, the VM micro instance was
saturated immediately after sending the first set of 10
concurrent simulation requests.

With respect to the remaining instance categories
(General Purpose, Compute Optimized, and Memory
Optimized), the following performance variation be-
haviors can be observed:

1. the on-premise scenario shows in average a latency
of 320K ms. over all categories, a 40% higher av-
erage than the perceived latency in the off-premise
scenarios.

2. However, the performance is not constantly im-
proved when migrating the simulation environ-
ment off-premise. For example, the General Pur-
pose Windows Azure VM instance shows a de-
graded performance of 11%, while the Windows
Azure Compute Optimize VM instance shows only
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Figure 4: Performance Analysis per Provider & VM Category.

a slightly performance improvement of 2%, when
compared with the on-premise scenario.

3. The performance when migrating the simulation
environment to the Cloud improves by approx-
imately 56% and 62% for the AWS EC2 and
Rackspace General Purpose VM instances, respec-
tively,

4. 54%, 2%, and 61% for the AWS EC2, Windows
Azure, and Rackspace Compute Optimized VM
instances, respectively, and

5. 52%, 19%, and 63% for the AWS EC2, Windows
Azure, and Rackspace Memory Optimized VM
instances, respectively.

When comparing the average performance improve-

ment among the different optimized VM instances, the
Compute Optimized and Memory Optimized instances
enhance the performance by 12% and 6%, respectively.

Figure 4 shows the perceived requests’ latency in-
dividually. It can be observed when executing the
simulation environment in the Rackspace infrastruc-
ture that the performance highly varies when increas-
ing the number of requests (see Figure 4(d)). Such
performance variation decreases in the on-premise,
AWS EC2, and Windows Azure infrastructures (see
Figures 4(a), 4(b), and 4(c), respectively). In all sce-
narios, the network latency does not have an impact in
the performance due to the nature of our experimental
setup described in the previous section.

When comparing the performance improvement

Performance�and�Cost�Evaluation�for�the�Migration�of�a�Scientific�Workflow�Infrastructure�to�the�Cloud

357



General Purpose Compute Optimized Memory Optimized
0

5

10

15

20

25

30

35

40

45

C
o
st

 (
U

$
)

29.74

23.27
21.99

4.96 4.86 5.37
6.91

17.66

41.11

1.54 1.26 1.17

Cost for Running 1000 Experiments
On-Premise

AWS EC2

Windows Azure

Rackspace

Figure 5: Cost Comparison extrapolated to 1K Simulation
Requests (in January 2015 Prices).

among the different VM instances categories, the Win-
dows Azure infrastructure shows the greater when se-
lecting a Compute Optimized or Memory Optimized
VM instance over a General Purpose VM instance
(see Figure 4(c)).

4.3.2 Cost Comparison

Figure 5 presents an overview of the expected costs
for running 1K experiments among 10 users. The
following pricing variations can be observed:

1. The incurred costs of hosting the simulation envi-
ronment on-premise is 25$ in average.

2. When migrating the simulation infrastructure off-
premise, the cost descends in average 80%, 12%,
and 94% when utilizing the AWS EC2, Windows
Azure, and Rackspace IaaS services.

3. When comparing the incurred costs among the
different VM categories, the Memory Optimized
categories are in average 61% and 47% more ex-
pensive when compared to the Compute Optimized
and General Purpose VM categories, respectively.

4. Among the different off-premise providers, Win-
dows Azure is in average 900% more expensive
for running the simulation environment.

4.4 Discussion

The experiments driven as part of this work have con-
tributed to derive and report a bi-dimensional anal-
ysis focusing on the selection among multiple IaaS
offerings to deploy and run the OPAL Simulation En-
vironment. With respect to performance, it can be
concluded that:

1. The migration of the simulation environment to
off-premise Cloud services has an impact on the

system’s performance, which is beneficial or detri-
mental depending on the VM provider and cate-
gory.

2. The selection of Micro VM instances did not offer
an adequate availability to the simulation environ-
ment in the off-premise scenarios. Such a negative
impact was produced by the non-automatic alloca-
tion of swap space for the system’s virtual memory.

3. When individually observing the performance
within each VM category, the majority of the se-
lected off-premise IaaS services improved the per-
formance of the simulation environment. How-
ever, the General Purpose Windows Azure VM
instances showed a degradation of the performance
when compared to the other IaaS services in the
same category.

4. The perceived by the user latency was in average
reduced when utilizing Compute Optimized VM
instances. Such an improvement is in line with the
compute intensity requirements of the simulation
environment.

The cost analysis derived the following conclusions:

1. There exists a significant monetary cost reduction
when migrating the simulation environment to off-
premise IaaS Cloud services.

2. Despite of the improved performance observed
when running the simulation environment in the
Compute Optimized and Memory Optimized VM
instances, scaling the experiments to 1K simulation
requests incurred in an average increase of 9%
and 61% with respect to the General Purpose VM
instances cost, respectively.

3. The incurred monetary costs due to the usage of
Windows Azure services tend to increase when
using optimized VM instances, i.e. Compute Op-
timized and Memory Optimized. Such behavior
is reversed for the remaining off-premise and on-
premise scenarios.

4. Due to the low costs demanded for the usage of
Rackspace IaaS services (nearly 40% less in av-
erage), the final price for running 1K simulations
is considerably lower than the other off-premise
providers and hosting the environment on-premise.

The previous observations showed that the IaaS ser-
vices provided by Rackspace are the most suitable for
migrating our OPAL Simulation Environment. How-
ever, additional requirements may conflict with the
migration decision of further simulation environments,
e.g. related to data privacy and transfer between EU
and USA regions, as Rackspace offers a limited set of
optimized VMs in their European region.
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5 RELATED WORKS

We consider our work related to the following major
research areas: performance evaluation of workflow
engines, workflow execution in the Cloud, and mi-
gration and execution of scientific workflows in the
Cloud.

When it comes to evaluating the performance of
common or scientific workflow engines, a standardized
benchmark is not yet available. A first step towards
this direction is discussed in (Skouradaki et al., 2015),
but propose approach is premature and could not be
used as the basis for this work. Beyond this work,
performance evaluations are usually custom to spe-
cific project needs. Specifically for BPEL engines
not much work is currently available. For example
(Röck et al., 2014) summarize nine approaches that
evaluate the performance of BPEL engines. In most
of the cases, workflow engines are benchmarked with
load tests with a workload consisting of 1-4 work-
flows. Throughput and latency are the metrics most
frequently used.

There are only few Cloud providers supporting the
deployment and execution of workflows in a Platform-
as-a-Service (PaaS) solution. The WSO2 Stratos Busi-
ness Process Server (Pathirage et al., 2011) and Busi-
ness Processes on the Cloud is offered by IBM Busi-
ness Process Manager6 offer the necessary tools and
abstraction levels for developing, deploying and moni-
toring workflows in the Cloud. However, such services
are optimized for business tasks, rather than for sup-
porting simulation operations.

Scientific Workflow Management Systems are ex-
ploiting business workflows concepts and technolo-
gies for supporting scientists towards the use of sci-
entific applications (Sonntag et al., 2011b; Sonntag
and Karastoyanova, 2010). Zhao et al. (Zhao et al.,
2014) develop a service framework for integrating Sci-
entific Workflow Management Systems in the Cloud
to leverage from the scalability and on-demand re-
source allocation capabilities. The evaluation of their
approach mostly focuses on examining the efficiency
of their proposed PaaS based framework.

Simulation experiments are driven in the scope of
different works (Binkele and Schmauder, 2003; Mol-
nar et al., 2010). Later research efforts focused on
the migration of simulations to the Cloud. Due to the
diverse benefits of Cloud environments the approaches
evaluate the migration with respect to different scopes.
The approaches that study the impact of migration to
the performance and incurred monetary costs is con-
sidered more relevant to our work. In (de Oliveira

6http://www-03.ibm.com/software/products/en/business-
process-manager-cloud

et al., 2011) the authors examine the performance of
X-Ray Crystalography workflows executed on the Sci-
Cumulus middleware deployed in Amazon EC2. Such
workflows are CPU-intensive and requires the execu-
tion of high parallel techniques. Likewise, in (Juve
et al., 2009) the authors compare the performance of
scientific workflows migrated from Amazon EC2 to a
typical High Performance Computing system (NCSA’s
Abe). In both approaches the authors conclude that
migration to the Cloud can be viable but not equally ef-
ficient to High Performance Computing environments.
However, Cloud environments allow the provisioning
of specific resources configurations irregularly dur-
ing the execution of simulation experiments (Strauch
et al., 2013). Moreover, the performance improvement
observed in Cloud services provide the necessary flexi-
bility for reserving and releasing resources on-demand
while reducing the capital expenditures (Ostermann
et al., 2010). Research towards this direction is a fertile
field. Juve et al. (Juve et al., 2013) execute nontrivial
scientific workflow applications on grid, public, and
private Cloud infrastructures to evaluate the deploy-
ments of workflows in the Cloud in terms of setup,
usability, cost, resource availability, and performance.
This work can be considered complementary to our
approach, although we focused on investigating more
on public Cloud providers and took into account the
different VM optimization categories.

6 CONCLUSION AND FUTURE
WORK

Simulation workflows have been widely used in the
eScience domain due to their easiness to model, and
flexible and automated runtime properties. The char-
acteristics of such workflows together with the usage
patterns of simulation environments have made these
type of systems suitable to profit from the advantages
brought by the Cloud computing paradigm. The exis-
tence of a vast amount of Cloud services together with
the complexity introduced by the different pricing mod-
els have become a challenge to efficiently select which
Cloud service to host the simulation environment. The
main goal of this investigation is to report the perfor-
mance and monetary cost findings when migrating the
previously realized OPAL simulation environment to
different IaaS solutions.

A first step in this experimental work consisted
of selecting a set of potential IaaS offerings suitable
for our simulation environment. The result of such
selection covered four major deployment scenarios: (i)
in our on-premise infrastructure, and in (ii) three off-
premise infrastructures (AWS EC2, Windows Azure,
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and Rackspace). The selection of the IaaS offerings
consisted of evaluating the different providers and their
corresponding optimized VM instances (Micro, Gen-
eral Purpose, Compute Optimized, and Memory Opti-
mized). The simulation environment was migrated and
its performance evaluated using an artificial workload.
A second step in our analysis consisted on extrapolat-
ing the obtained results towards estimating the incurred
costs for running the simulation environment on- and
off-premise. The analyses showed a beneficial impact
in the performance and a significant reduction of mon-
etary costs when migrating the simulation environment
to the majority of off-premise Cloud offerings.

Despite our efforts towards analyzing and finding
the most efficient IaaS Cloud service to deploy and run
our simulation environment, our experiments solely fo-
cused on IaaS offerings. Future works focus on analyz-
ing further service models, i.e. Platform-as-a-Service
(PaaS) or Database-as-a-Service (DBaaS), as well as
evaluating the distribution of the different components
constituting the simulation environment among multi-
ple Cloud offerings. Investigating different autoscaling
techniques and resources configuration possibilities is
also part of future work, e.g. feeding the application
distribution system proposed in (Gómez Sáez et al.,
2014b) with such empirical observations.

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the FP7 EU project ALLOW Ensembles
(600792), the German Research Foundation (DFG)
within the Cluster of Excellence in Simulation Technol-
ogy (EXC310), and the German DFG project Bench-
Flow (DACH Grant Nr. 200021E-145062/1).

REFERENCES

Andrikopoulos, V., Song, Z., and Leymann, F. (2013). Sup-
porting the migration of applications to the cloud
through a decision support system. In Cloud Com-
puting (CLOUD), 2013 IEEE Sixth International Con-
ference on, pages 565–572. IEEE.

Binkele, P. and Schmauder, S. (2003). An atomistic Monte
Carlo Simulation of Precipitation in a Binary System.
Zeitschrift für Metallkunde, 94(8):858–863.

de Oliveira, D., Ocaña, K. A. C. S., Ogasawara, E. S., Dias,
J., Baião, F. A., and Mattoso, M. (2011). A Perfor-
mance Evaluation of X-Ray Crystallography Scientific
Workflow Using SciCumulus. In Liu, L. and Parashar,
M., editors, IEEE CLOUD, pages 708–715. IEEE.
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