
Automating Resources Discovery for Multiple Data Stores Cloud
Applications

Rami Sellami, Michel Vedrine, Sami Bhiri and Bruno Defude
Computer Science Departement, Institut Mines-Telecom,
Telecom SudParis, CNRS UMR Samovar, Evry, France

firstname.lastname@telecom-sudparis.eu

Keywords: NoSQL Data Stores, Relational Data Stores, Polyglot Persistence, Manifest based Discovery, ODBAPI.

Abstract: The production of huge amount of data and the emergence of cloud computing have introduced new require-
ments for data management. Many applications need to interact with several heterogeneous data stores de-
pending on the type of data they have to manage: traditional data types, documents, graph data from social
networks, simple key-value data, etc. Interacting with heterogeneous data models via different APIs, multi-
data store applications imposes challenging tasks to their developers. Indeed, programmers have to be familiar
with different APIs. In addition, developers need to master and deal with the complex processes of cloud
discovery, and application deployment and execution. Moreover, the execution of join queries over hetero-
geneous data models cannot, currently, be achieved in a declarative way as it is used to be with mono-data
store application, and therefore requires extra implementation effort. In this paper we propose a declarative
approach enabling to lighten the burden of the tedious and non-standard tasks of discovering relevant cloud
environment and deploying applications on them while letting developers to simply focus on specifying their
storage and computing requirements. A prototype of the proposed solution has been developed and is currently
used to implement use cases from the OpenPaaS project.

1 INTRODUCTION

Cloud computing has recently emerged as a new com-
puting paradigm enabling on-demand and scalable
provision of resources, platforms and software as ser-
vices. Cloud computing is often presented at three
levels (Baun and et al., 2011): the Infrastructure as
a Service (IaaS) giving access to abstracted view on
the hardware, the Platform-as-a-Service (PaaS) pro-
vides to the developers programming and execution
environments, and the Software as a Service (SaaS)
enables end users to run cloud software applications.

Due to its elasticity property cloud computing pro-
vides interesting execution environments for several
emerging applications such as big data management.
According to the National Institute of Standards and
Technology1 (NIST), big data is data which exceed
the capacity or capability of current or conventional
methods and systems. It is based on the 3-Vs model
where the three Vs refer to volume, velocity and vari-
ety properties (McAfee and Brynjolfsson, 2012). Vol-
ume means the process of large amounts of informa-
tion. Velocity signifies the increasing rate at which

1http://www.nist.gov/

data flows. Finally, variety refers to the diversity of
data sources. Against this background, the challenges
of big data management result from the expansion of
the 3Vs properties. In our work we focus mainly on
the variety property and more precisely on multi-data
store applications in the cloud.

In order to satisfy different storage requirements,
cloud applications usually need to access and inter-
act with different relational and NoSQL data stores
having heterogeneous APIs. The heterogeneity of the
data stores induces several problems when develop-
ing, deploying and migrating multi-data store appli-
cations. Below, we list the main 4 problems which
we are tackling in this paper.

Pb1. Heavy workload on the application developer:
Nowadays data stores have different and het-
erogeneous APIs. Developers of multi-data
store applications need to be familiar with all
these APIs when coding their applications.

Pb2. No declarative way for executing join queries:
Due to the heterogeneity of the data models,
there is currently no declarative way to define
and execute complex queries over several data
stores. That means developers have to cope

397



themselves with the implementation of such
complex queries.

Pb3. Code adaptation: When migrating applications
from one cloud environment to another, ap-
plication developers have to re-adapt the ap-
plication source code in order to interact with
new data stores. Developers have potentially to
learn and master new APIs.

Pb4. Tedious and non-standard processes of discov-
ery and deployment: Once an application is
developed or migrated, developers have to de-
ploy it into a cloud provider. Discovering the
most suitable cloud environment providing the
required data stores and deploying the applica-
tion on it is a tedious and meticulous provider-
specific process.

In our work, we are are coping with these prob-
lems in order to support the developer during a mul-
tiple data stores based application life cycle. In a
previous work, we proposed ODBAPI (OPEN-PaaS-
DataBase API) a streamlined and a unified REST-
based API (Sellami et al., 2014) for executing CRUD
operations on relational and NoSQL data stores. The
highlights of ODBAPI are twofold: (i) decoupling
cloud applications from data stores in order to facil-
itate the migration process, and (ii) easing the de-
velopers task by lightening the burden of managing
different APIs. In contrast, we present in this pa-
per a declarative approach for discovering appropri-
ate cloud environments and deploying applications
on them while letting developers to simply focus on
specifying their storage and computing requirements.
A prototype of the proposed solution has been de-
veloped and is currently used to implement use cases
from the OpenPaaS project.

The remainder of the paper is organized as fol-
lows. In section 2, we introduce the context and
present a motivating example. In section 3, we give an
overview of our approach and we detail in sections 4
the discovery step. In section 5, we present the imple-
mentation and validation of our solution. In Section
6, we discuss the related work. Section 7 concludes
our paper and outlines directions of future work.

2 MOTIVATION

Our work is done in the context of the OpenPaaS
project 2 aiming at developing a PaaS technology
dedicated to enterprise collaborative applications de-

2This work has been partly funded by the French FSN
OpenPaaS grant (https://research.linagora.com/display/
openpaas/Open+PAAS+Overview)

ployed on hybrid clouds (private/public). It is a plat-
form that allows to design and deploy applications
based on proven technologies provided by partners
such as collaborative messaging system, integration
and workflow technologies that will be extended in
order to address Cloud Computing requirements. Tar-
get applications of OpenPaaS are applications that use
multiple data stores that corresponds to what is pop-
ularly referred to as the polyglot persistence. For in-
stance, an application can interact with three hetero-
geneous data stores at the same time: a relational data
store, a document data store that is CouchDB, and a
key value data store which is Riak. But, this exam-
ple exposes some limits. Linking an application with
multiple data stores is very complex due to the differ-
ent APIs, data models, query languages and consis-
tency models. If the application needs to query data
coming from different data sources (e.g joining data,
aggregating data, etc.), it can not do it declaratively
unless some kinds of mediation have been done be-
fore. Finally, the different data stores may use differ-
ent transaction and consistency models (for example
classical ACID and eventual consistency). It is not
easy for developers to understand these models and to
maintain its properties while coding their application.
Moreover, it is more complicated when it comes to
execute complex queries and especially join queries.
But first, the developer has to discover all data stores
capabilities of the available cloud providers in order
to elect the most suitable cloud provider to his ap-
plication requirements to deploy it. However this in
itself is a tedious and meticulous work. In this paper,
we will tackle these problems and we will propose an
end-to-end solution and we will focus on the step of
the cloud data stores discovery.

3 OVERVIEW OF OUR
APPROACH

The lion’s share of the contribution of our work is
dedicated to application developers. Indeed, we at-
tempt to simplify the developer task during the life
cycle of an application (i.e. development, discovery
and deployment, and execution) using multiple and
heterogeneous data stores in its source code. The de-
veloper has (i) to write the source code of his applica-
tion using various APIs, (ii) to discover data stores of
each cloud provider in order (iii) to deploy his appli-
cation, and (iv) to execute queries.

Hence, for the purpose of simplifying the devel-
opers task and getting them rid of all their onerous
responsibilities, we propose our solution that is based
on three points: (i) using a unique API enabling the

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

398



coding and the execution of multiple data store based
application, (ii) enabling join queries execution over
heterogeneous data stores, and (iii) ensuring a neutral
application deployment in a cloud provider that is al-
ready automatically discovered.

In Fig 1, we showcase an overview of our solution
including the different steps of the application life cy-
cle. Indeed, we depict the following four steps:

� Development Step: The first step is the appli-
cation development. For this purpose, we pro-
pose to use a unique API enabling the interac-
tion with relational and NoSQL data stores. In
a previous work (Sellami et al., 2014), we defined
a generic resources model defining the different
concept used in each type of data store. These
resources are managed by ODBAPI a stream-
lined and a unified REST API enabling to execute
CRUD operations on different NoSQL and rela-
tional databases. ODBAPI decouples cloud appli-
cations from data stores alleviating therefore their
migration. Moreover it relieves developers task by
removing the burden of managing different APIs.

� Discovery Step: The second step consists in dis-
covering data stores capabilities of each cloud
provider. So, we can decide which cloud provider
can support our application requirements. Doing
so, the developer describe his requirements in the
Abstract application manifest and sends it to the
discovery module. The discovery module inter-
acts with the cloud providers in order to discover
the capabilities of each cloud provider in term of
data store services. Then, it obtains as a result
the offer manifest. Based on these two manifests,
the Matching module elects the most appropriate
cloud provider to the application in order to de-
ploy it and edit its deployment manifest.

� Deployment Step: The third step represents the
application deployment. An important part in
this phase consists in generating the application
executable and adding the execution manifest to
it. This manifest contains the endpoint of the
ODBAPI server or/and the data stores endpoints
that the application requires. We propose to de-
ploy an application by any deployment API (e.g.
COAPS API(Sellami and et al., 2013), roboconf
API3, etc.). In our work, we are building on the
COAPS API that is proposed in our team and al-
lows human and/or software agents to provision
and manage PaaS applications. This API provides
a unique layer to interact with any cloud provider
based on manifests. We model the deployment

3Roboconf home page: http://roboconf.net/fr/ in-
dex.html

manifest based on the manifest of COAPS API
and we enrich it with information about data
stores to support ODBAPI-based application.

� Execution Step: The fourth step is the application
execution. In this step, an application can exe-
cute two types of queries. On the one hand, it can
execute CRUD queries; hence it interacts directly
with the target data store based on its execution
manifest. In this case, it uses a unique API like
ODBAPI. On the other hand, it can execute join
queries by interacting with virtual data stores. A
virtual data store is created automatically for exe-
cuting join queries. When a virtual data store re-
ceives a join query, it parses this query, rewrites
it into sub-queries written in the ODBAPI syn-
tax, and sends these sub-queries to the target data
stores. Once a virtual data store receives the result
of each sub-query, it forms the final result and re-
turns it to the application. It is worth noting that
when the user edits the Abstract application mani-
fest, he has to precise that his application will ma-
nipulate complex queries. Hence, a virtual data
store will be created and its endpoint will be added
to the execution manifest also.

In the following section, we will focus only on the
discovery of the data stores capabilities and the de-
ployment of an ODBAPI-based application.

4 DISCOVERY OF DATA STORES
OF CLOUD PROVIDERS

In this section, we present our logic to discover the
capabilities of data stores of cloud providers meeting
the application requirements (see Figure2). The de-
veloper coded an ODBAPI application and describes
its requirements in the abstract application manifest
in term of data stores and deployment. Then, he gives
it as an input to the matching algorithm. This algo-
rithms interacts with the data stores directory in or-
der to obtain the data stores capabilities of each cloud
provider stored in the offer manifest. This manifest
represents the second input of this algorithm in order
to obtain the deployment manifest. The data stores
directory is automatically updated by interacting with
the cloud providers using their APIs.

In the rest of this section, we introduce UML
diagram classes illustrating the Abstract application
manifest and offer manifest description. In addition,
we introduce our matching algorithm.

Automating�Resources�Discovery�for�Multiple�Data�Stores�Cloud�Applications

399



Figure 1: Overview of our solution.

Figure 2: Zoom-in on the discovery module.

4.1 Abstract Application Manifest

This manifest contains two categories of require-
ments. First, we have requirements in term of data
stores. The developer provides five information about
the required data stores: its type, its name, its version,
it size and the query type to execute. It is worth not-
ing that when the developer fills this manifest, he has
the freedom to specify one or multiple information.
For each information, he gives a constraint expressed
by a constant value, a joker (denoting any values) or
some conditions (expressed as inequalities). Hence,
we will ensure more flexibility in our model. For in-
stance, one developer precises that he wants a data
store having name MongoDB and type document and
another developer precises that he wants a data store
of type document without specifying its name (in this
case any data store of type document fulfill the speci-
fication). Whereas the second category of the require-
ments is dedicated to the application deployment. In-
deed, the developer precises the number of the virtual
machines that he needs to run his application. In ad-
dition, he describes the executable of his application
by giving its name, its type and its location.

We depict in Figure 3 an UML class diagram il-
lustrating the Abstract application manifest model.
The root class of our model is the Abstract applica-
tion manifest class and it is identified by the attribute
name. This class contains these following classes:

� The User Information Class: This class represents
the required authentication information required
to access the discovery module and consult the
data stores repository. This class contains the user
login class and the user password class that repre-
sents the developer identifiers.

� The environment class: This class represents the
environment where an application will be de-
ployed and it is instantiated from an environment
template element that is characterized by a name
attribute and a memory value. Each environment
template contains at least one node class that rep-
resents resources in a cloud provider. A node class
is identified by an id and a content type attributes.
This latter can be a container or a database to de-
note respectively engine resources to host and run
services and storage resources. This class con-
tains a name class and a version class. When
the content type attribute is equal to database, the
node class contains also a type class, query type
class, and a size class to denote the type of data
storage services, the query type (CRUD queries
or join queries) and its size.

� The application class: This class represents the
constraints that the user requires to deploy his ap-
plication. It is characterized by a unique name at-
tribute and the environment attribute where the ap-
plication will be deployed. It has at least one ver-
sion class that is identified by a name and a label.
Each version class contains two types of classes:
deployable class and instance class. The deploy-
able class represents the application executable
file. It is identified by a unique id attribute, a
content type attribute defining the executable file
type, a name attribute denoting its name, a loca-
tion attribute containing their URL, and a multi-
tenancy level attribute indicating the application
tenancy degree. Whereas the instance class rep-
resents the running application instances required
by the user. This class is identified by a unique
id attribute, a name attribute, initial state attribute

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

400



Figure 3: Abstract application manifest model.

defining the state of the application (e.g. running,
stopped, etc) and default instance attribute repre-
senting the running instances by default.

4.2 Offer Manifest

The offer manifest contains information about the
capabilities of data stores of each discovered cloud
provider. In Figure 4, we present a offer manifest
modeling based on a class diagram. Indeed, the
root class is offer manifest and it is identified by the
name attribute. It contains one or multiple cloud
provider class. This class represents a discovered
cloud provider and it is identified by a unique id at-
tribute. It contains the name class defining the cloud
provider name and the environment response class
representing the capabilities that a cloud provider ex-
poses according to an abstract application manifest.
The environment response class is composed by one
or multiple offer class that contains one or multiple
node class. This class is similar to the node element
in the abstract application manifest modeling.

Figure 4: Offer manifest model.

4.3 Deployment Manifest

The deployment manifest’s structure is closest to the
abstract application manifest and it is defined based
on the COAPS API’s manifest (Sellami and et al.,
2013) (see Figure 5). Hence, in order to avoid the
repetition, we do not describe this manifest structure
in details. However, we will present we extend the
COAPS API manifest structure. In fact, we add new
attributes about data stores services in the paas node
class. These attributes are the size attribute, the type
attribute and the version attribute.

Figure 5: Deployment manifest model.

4.4 Matching Algorithm

In algorithm 1, we introduce the matching algorithm
that elects the cloud provider that supports the best
the application requirements in terms of data stores.
We need a flexible matching allowing to elect a cloud
provider which does not fulfill all the application’s re-
quirements but it is closed to them (that is the role of
the computed distance). Furthermore, we impose that
the result is a single cloud provider. First, the algo-
rithm constructs the offer manifest using the operation
queryDataStoresRepository by interacting with the
data stores repository (line 4). We introduce this op-
eration in Algorithm2. Second, it calculates for each
cloud provider the number of differences between its
capabilities and the user requirements described in the
abstract application manifest (lines 6-18). Numbers
of differences are stored in the data structure distance.
These values are calculated as follows: for each prop-
erty in the two manifest, if they are not corresponding
then we update the distance by adding the appropri-
ate penalty to the property. The two properties corre-
spond if the actual value of the offer manifest property
fulfill the requirement expressed by the abstract appli-
cation manifest property (which is either a constant, a
joker or a condition). These penalties are customized
according to the property importance. By default, all
penalties are fixed at 1; however the user can config-
ure these penalties according to the importance that he
gives to the properties. Once this step is achieved, we
can now elect a cloud provider and construct the de-
ployment manifest (lines 19-20). This is done through
the operation electCP that takes as inputs the the data
structure distance and the threshold and returns the
identifier of the elected cloud provider if any. This
identifier is the smallest value bounded between 0 and
the threshold.

In algorithm 2, we present in more details the
operation queryDataStoresRepository that returns a
super-set of the result from the data stores repository.
In fact, for each cloud provider it extracts all data
stores corresponding to the data types of the abstract
application manifest. If there are no corresponding
data stores, the cloud provider is rejected (lines 10-

Automating�Resources�Discovery�for�Multiple�Data�Stores�Cloud�Applications

401



Algorithm 1: Matching algorithm.
1: input AAM: the abstract application manifest
2: input threshold: the threshold to limit the number of differences
3: output DM: the deployment manifest
4: OM queryDataStoresRepository(AAM) # see Algorithm 2#
5: i 0
6: while (exist(Cloud Provider CP in OM)) do
7: while (exist(Offer O in OM)) do
8: distance[i] 0
9: for each node N in AAM do

10: for each property prop in N do
11: if (!valid(prop, OM:CP:O:node:prop)) then
12: distance[i]  distance[i]+ updateDistance(prop,

OM:CP:O:node:prop)
13: end if
14: end for
15: end for
16: i i+1
17: end while
18: end while
19: electedCP electCP(distance, threshold)
20: return createDM(AAM, OM, electedCP)

Algorithm 2: The queryDataStoresRepository algorithm.
1: input AAM: the abstract application manifest
2: output OM: the offer manifest
3: length 0
4: for each node N in AAM do
5: if (content-type == ”database”) then
6: T [length] getType(N)
7: length length+1
8: end if
9: end for

10: for each Cloud Provider CP in the data stores directory do
11: for i=0 to length do
12: if (CP contains T[i]) then
13: Add all names of this type to the tree of the current CP
14: else
15: Reject the current CP
16: end if
17: end for
18: end for
19: return the resulted trees as the OM

18). For ease of presentation of this algorithm, we
build ourselves on the Figure 6. Indeed, in the left side
of the figure, we construct from the abstract applica-
tion manifest a simple graph in which nodes represent
the type elements in the node elements. This graph
is a kind of a sample that will be used to construct
the offer manifest. In the right side of Figure, we il-
lustrate a data stores repository of a cloud provider
having four types of data stores. Based on this repos-
itory and the graph based sample, we extract the list
of the cloud provider’s offers that we represent in the
form of a graph. Once we check all cloud providers,
we collect all the offers in the offer manifest (line 19).

Figure 6: Generating the offer manifest.

5 IMPLEMENTATION AND
VALIDATION

In this section, we present the tool implementing
the matching module. Hence, in order to show the
feasibility of this module, we propose to discover
data stores of cloud foundry and open shift as cloud
providers to deploy an ODBAPI-based application.
This application is intended to handle the admin-
istration of relational and NoSQL data stores in a
cloud provider. To do so, we propose to implement
the manifests modeling with XML. We give in this
section the example of the abstract application mani-
fest (see Listing 1). Indeed, the developer provides
user1 as a login and pswd as a password. Then, he
describes the environment that he requires in order
to deploy his ODBAPI based application. Indeed, he
chooses as name for the environment ODBAPIEnv
and for the environment template ODBAPIEnvTemp.
In this template, the user wants tomcat as an ap-
plication container, a document data store without
precising any name by filling the element name
with the character � and MySQL as a relational data
stores. Regarding the application configuration, the
user names his application ODBAPIApplication. He
precises that the application is a runnable file and he
requires to have two application instances: one is
running by default and the other is stopped. In this
section we present only the XML based represen-
tation of the abstract application manifest for lack
of space. We wish to emphasize that we provide
our tools and videos demonstration at http://www-
inf.int-evry.fr/�sellam r/Tools/ODBAPI/index.html
for more details.

1 <a b s t r a c t a p p l i c a t i o n m a n i f e s t name=”AAM”>
2 <u s e r i n f o r m a t i o n>
3 <u s e r l o g i n>u s e r 1</ u s e r l o g i n>
4 <u s e r p a s s w o r d>pswd</ u s e r p a s s w o r d>
5 <q u e r y t y p e>complex</ q u e r y t y p e>
6 </ u s e r i n f o r m a t i o n>
7 <e n v i r o n m e n t name =”ODBAPIEnv”>
8 <t e m p l a t e name=”ODBAPIEnvTemp” memory=” 128 ”>

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

402



9 <node i d =” 1 ” c o n t e n t t y p e =” c o n t a i n e r ”>
10 <name> t o mc a t </ name>
11 <v e r s i o n></ v e r s i o n>
12 </ node>
13 <node i d =” 2 ” c o n t e n t t y p e = ” d a t a b a s e ”>
14 <name>�</ name>
15 <v e r s i o n> 1 . 0 </ v e r s i o n>
16 <t y p e> document </ t y p e>
17 <s i z e> l a r g e </ s i z e>
18 </ node>
19 <node i d =” 3 ” c o n t e n t t y p e = ” d a t a b a s e ”>
20 <name> mysql </ name>
21 <v e r s i o n> � </ v e r s i o n>
22 <t y p e> r e l a t i o n a l </ t y p e>
23 <s i z e> s m a l l </ s i z e>
24 </ node>
25 </ t e m p l a t e>
26 </ e n v i r o n m e n t>
27 <a p p l i c a t i o n name=” ODBAPIApplicat ion ” e n v i r o n e m e n t =
28 ”ODBAPIEnv”>
29 <v e r s i o n name=” v e r s i o n 1 . 0 ” l a b e l =” 1 . 0 ”>
30 <d e p l o y a b l e i d =” 1 ” c o n t e n t t y p e =” a r t i f a c t ”
31 name=” ODBAPIApplicat ion . war ” l o c a t i o n =” 1444 d7 ”
32 m u l t i t e n a n c y l e v e l =” S h a r e d I n s t a n c e ” />
33 <i n s t a n c e i d =” 1 ” name=” I n s t a n c e 1 ”
34 i n i t i a l s t a t e =” 1 ” d e f a u l t i n s t a n c e =” t r u e ” />
35 <i n s t a n c e i d =” 2 ” name=” I n s t a n c e 2 ”
36 i n i t i a l s t a t e =” 1 ” d e f a u l t i n s t a n c e =” f a l s e ” />
37 </ v e r s i o n>
38 </ a p p l i c a t i o n>
39 </ a b s t r a c t a p p l i c a t i o n m a n i f e s t>

Listing 1: XML based representation of the abstract ap-
plication manifest.

We programmed also a tool ensuring the discov-
ery of cloud providers and the automatic deployment
of an ODBAPI-based application. Indeed, the ap-
plication programmer describes his requirements in
the abstract application manifest and he uploads it
through the interface that we illustrate in Fig. 7. Once
this manifest is uploaded, this tool executes the mani-
fest based matching algorithm to elect the appropriate
cloud provider that supports the ODBAPI client re-
quirements and returns the user the deployment man-
ifest. Based on the deployment manifest, we deploy
the ODBAPI client by the mean of COAPS API.

Figure 7: Screenshot of the interface allowing to select the
user manifest in order to get the deployment manifest.

In our work, we deploy an ODBAPI-based client
intended to handle the administration of relational and
NoSQL data stores in a cloud provider. In Fig. 8,
we show an overview of the databases created in
each data store in the Cloud Foundry. Indeed, there
is a MySQL database called world and it contains

Figure 8: Screenshot of all databases overview.

three entity sets: city, country, and countrylanguage.
Added to that, we have the MongoDB database that is
named person and it is composed by two entity sets:
Student and Teacher. We show also an overview of
the entities of the city entity set.

6 RELATED WORK

In our previous work (Sellami and Defude, 2013),
we focused on existing solutions of the state-of-the-
art supporting multiple data stores based applications
in the cloud environment. More precisely, (i) we de-
scribed different scenarios related to the way applica-
tions use data stores, (ii) we defined the data require-
ments of applications in cloud environment, and (iii)
we analyzed and classified existing works on cloud
data management, focusing on multiple data stores
requirements. As a result, we pointed out six require-
ments of using multiple data stores in a cloud environ-
ment. One of these requirements consists in choos-
ing a data store based on a data requirements. We
present three sub-requirements: defining application
needs and requirements towards data, defining data
store capabilities, and defining application needs and
data stores capabilities matching.

Against this background, we find several worksq
(Truong and et al., 2012),(Truong and et al.,
2011),(Vu and et al., 2012), (Ghosh and Ghosh,
2012), (Ruiz-Alvarez and Humphrey, 2011), (Ruiz-
Alvarez and Humphrey, 2012) enabling an appli-
cation to negotiate its Data Management Contract
(DMC), often referred to as data agreement or data li-
cense, with various clouds and to bind to the specific
DBMSs according to its DMC. Truong et al. (Truong
and et al., 2012), (Truong and et al., 2011), (Vu and
et al., 2012) propose to model and specify data con-
cerns in data contracts to support concern-aware data
selection and utilization. For this purpose, they de-
fine an abstract model to specify a data contract and
the main data contract terms. Moreover, they propose
some algorithms and techniques in order to enforce
the data contract usage. In fact, they present a data

Automating�Resources�Discovery�for�Multiple�Data�Stores�Cloud�Applications

403



contracts compatibility evaluation algorithm and they
define how to construct, compose and exchange a data
contract. In (Truong and et al., 2011), they intro-
duce their model for exchanging data agreements in
the Data-as-a-Service (DaaS) based on a new type of
services which is called Data Agreement Exchange as
a Service (DAES). This model is called DEscription
MOdel for DaaS (DEMODS) (Vu and et al., 2012).
However, Truong et al. propose this data contract for
data and not to store data or to help the developer to
choose the appropriate data stores for his application.
In (Ghosh and Ghosh, 2012), Ghosh et al. identify
non-trivial parameters of the Service Level Agree-
ment (SLA) for Storage-as-a-Service cloud which are
not offered by the present day cloud vendors. More-
over, they propose a novel SLA monitoring frame-
work to facilitate compliance checking of Service
Level Objectives by a trusted third part. Although
Ghosh et al. try to enrich the SLA parameters to
support the Storage-as-a-Service, this is still inade-
quate for our purpose in this paper. In (Ruiz-Alvarez
and Humphrey, 2011), (Ruiz-Alvarez and Humphrey,
2012), Ruiz-Alvarez et al. propose an automated ap-
proach to selecting the PaaS storage service according
an application requirements. For this purpose, they
define a XML schema based on a machine readable
description of the capabilities of each storage system.
The goal of this XML schema is twofold: (i) express-
ing the storage needs of consumers using high-level
concepts, and (ii) enabling the matching between con-
sumers requirements and data storage systems offer-
ings. Nevertheless, they consider in their work that an
application may interact with only one data store and
they did not invoke the polyglot persistence aspect.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we proposed a manifest-based solution
for data stores discovery and automatic application
deployment. Indeed, once the developer has com-
pleted the development of his application, we pro-
vided him the possibility to express his application
requirements in terms of data stores in the abstract
application manifest. Then, he sends it to the dis-
covery module. This module interacts with the data
stores directory to discover the capabilities of data
stores of each cloud provider and constructs the of-
fer manifest. Based on that, this module implements
the matching algorithm in order to elect the adequate
cloud provider to the application requirements. This
algorithm takes as input the abstract application man-
ifest and offer manifest, and returns the deployment

manifest of the application. Once it is done, we de-
ploy the application using the COAPS API that takes
as input the deployment manifest.

Currently, we are working on applying our solu-
tion to other qualitatively and quantitatively various
scenarios in the OpenPaaS project. This allows us
to identify possible discrepancies and make our work
more reliable for real use. Our second perspective is
to implement virtual data stores in order to execute
join queries across NoSQL and relational data stores
and to introduce more elaborate query processing op-
timization techniques.

REFERENCES

Baun, C. and et al. (2011). Cloud Computing - Web-Based
Dynamic IT Services. Springer.

Ghosh, N. and Ghosh, S. K. (2012). An approach to
identify and monitor sla parameters for storage-as-
a-service cloud delivery model. In Workshops Pro-
ceedings of the Global Communications Conference,
GLOBECOM 2012, 3-7 December, Anaheim, Califor-
nia, USA, pages 724–729.

McAfee, A. and Brynjolfsson, E. (2012). Big data: The
management revolution. (cover story). Harvard Busi-
ness Review, 90(10):60–68.

Ruiz-Alvarez, A. and Humphrey, M. (2011). An automated
approach to cloud storage service selection. In Pro-
ceedings of the 2Nd International Workshop on Scien-
tific Cloud Computing, ScienceCloud ’11, pages 39–
48.

Ruiz-Alvarez, A. and Humphrey, M. (2012). A model and
decision procedure for data storage in cloud comput-
ing. In 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, CCGrid 2012,
Ottawa, Canada, May 13-16, pages 572–579.

Sellami, M. and et al. (2013). Paas-independent provision-
ing and management of applications in the cloud. In
2013 IEEE Sixth International Conference on Cloud
Computing, Santa Clara, CA, USA, June 28 - July 3,
2013, pages 693–700.

Sellami, R., Bhiri, S., and Defude, B. (2014). ODBAPI:
a unified REST API for relational and NoSQL data
stores. In The IEEE 3rd International Congress on Big
Data (BigData’14), Anchorage, Alaska, USA, June 27
- July 2, 2014.

Sellami, R. and Defude, B. (2013). Using multiple data
stores in the cloud: Challenges and solutions. In Data
Management in Cloud, Grid and P2P Systems - 6th
International Conference, Globe 2013, Prague, Czech
Republic, August 28-29, 2013. Proceedings, pages
87–98.

Truong, H. L. and et al. (2011). Exchanging data agree-
ments in the daas model. In 2011 IEEE Asia-Pacific
Services Computing Conference, APSCC 2011, Jeju,
Korea (South), December 12-15, pages 153–160.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

404



Truong, H. L. and et al. (2012). Data contracts for cloud-
based data marketplaces. IJCSE, 7(4):280–295.

Vu, Q. H. and et al. (2012). Demods: A description model
for data-as-a-service. In IEEE 26th International Con-
ference on Advanced Information Networking and Ap-
plications, AINA, 2012 , Fukuoka, Japan, March 26-
29, pages 605–612.

Automating�Resources�Discovery�for�Multiple�Data�Stores�Cloud�Applications

405


