
Towards Dynamic QoS Monitoring in Service Oriented Architectures

Norman Ahmed1,2 and Bharat Bhargava1
1Department of Computer Science, Purdue University, 305 N. University St., W. Lafayette, IN 47906, U.S.A.

2Air Force Research Laboratory/RIS, 525 Brooks Rd, Rome, NY 13441, U.S.A.
{ahmed24, bbshail}@cs.purdue.edu

Keywords: Service Oriented Architecture, Web Services, Aspect Oriented Programming, Web Services Security, Cloud
Computing, Quality of Service.

Abstract: Service Oriented Architecture (SOA) is an architectural style that provides agility to align technical
solutions to modular business Web Services (WS) that are well decoupled from their consumers. This
agility is established by interconnecting WS family of standards specification protocols (commonly referred
to as WS-* (WS-star)) to enable security, ease of service interoperability and orchestration complexities
when extending services across organizational boundaries. While orchestrating services or chaining services
in varying ways to satisfy different business needs, on highly scalable cloud platforms is undeniably useful,
it is increasingly challenging to effectively monitor Quality of Service (QoS), especially, service response
time. This is due to a) lack of proper formulation of the WS-star interconnections mechanisms, and b) the
transient performance behaviour intrinsic to the heterogeneity of the hardware and shared virtualized
network and IO resources built on the cloud platforms. We present an analysis of WS-star standards,
classifying and discussing their inter-dependencies to provide a basis for QoS monitoring context on
protocol formulation. We then illustrate a practical implementation of a dynamic QoS monitoring
mechanism using runtime service instrumentation with Aspect Oriented Programming (AOP). Preliminary
evaluations show the efficiency of computing QoS on a transient performance cloud platform.

1 INTRODUCTION

Service Oriented Architecture (SOA) is the
architectural style that provides agility to align
technical solutions to modular business Web
Services (WS) that are well decoupled from their
consumers in the cloud environment. Built on a
Virtualization of heterogeneous hardware and
software stack on a SOA-based architecture as its
technical foundation, cloud computing is a
computing model that enables socio-economic
benefits due to its on demand computing resource
availability.

In this computing model, service providers and
consumers are typically decoupled by means of
common universal registries known as Universal
Description Discovery and Integration (UDDI) and
mediation mechanisms. Service capabilities,
interface options, Quality of Service (QoS), and
security constraints are described in the Service
Level Agreement (SLA) (Overton, 2002) that is
typically published in the UDDI.

The SLA document represents a contractual

agreement for obligating the service provider to
comply both functional and non-functional
parameters of the registered service. The non-
functional parameters are QoS attributes, such as
service response time and service up time (i.e. 95%-
99.999%) that are not known by the consumers
before runtime (Erl, 2005) nor by the provider when
orchestrating variable services to satisfy different
business needs.

To ease the interoperability complexity and
security concerns, especially for web services, SOA
encourages the use of WS-* standardized
specification, referred to WS-star. The forefronts of
these protocol specifications are the ones used for
data transport (i.e. SOAP/HTTP(s), WS_Security,
and WS_SecureConversation) message level
security. Typically, services are developed and
deployed by multiple software designers and system
integrators without prior knowledge of their
effective protocol interconnections when service are
orchestrated, the process of chaining services in
various ways to satisfy different business needs.

Due to the magnitude of the available standards,
chained services have higher chance of overlapping

163

some functionality, especially security
functionalities, that hinder the overall QoS
advertised in the published SLA. Coupled with the
transient performance behaviour inherent in cloud
platforms, further complicates this mixture of
standard-based design and contractual compliance
requirements to guarantee QoS.

Consider a realistic scenario where two or more
orchestrated services deployed in the cloud that
implement WS_Security to enforce encryption and
digital signatures for both inbound and outbound
traffic. The overall response time across the chain
will be highly impacted due to the potential security
functionalities overlap across the services. The main
reason is that each service performs encryption and
digital signature, which is typically a performance
hog. One alternative solution in this case is the use
of WS_SecureConversation. However, detecting
such overlap is increasingly challenging due to the
nature of these services’ development and
deployment by multiple teams in different times.
Typically, a Business Process Execution Language
(BPEL) is used during orchestration to either
determine response time by waiting till response is
received or configure it with a proper timeout. Note
that these response time evaluations are statically
performed in nature.

In addition, there is transient variable
performance behaviour of the clouds’ VM network
and IO interfaces due to multi tenant resource
sharing (Mei, et. Al. 2013). For example, over 300
million test cases conducted on nine cloud providers
over seven days (Alistair, 2011) have shown
performance time-of-the-day variability in
virtualized environments. Later studies (Zhonghong,
2012) showed such transient performance behaviour
is due to the hardware heterogeneity that the cloud is
built of. Therefore, it is prudent to dynamically
uncover QoS friendly alternatives at runtime to
improve service response time, thus, the main
objective of our work.

There is a large array of research that addresses
WS performance issues; to name a few, some QoS
monitoring research have been designed around
service selection (Fung, 2005), (Tian, 2004)
composition (Mietzner, 2010), (Fung 2005), and
dynamic soft QoS guaranteeing (Abdelzaher, 1999).
An area that has been substantially overlooked and
poorly studied is the understanding of the underlying
WS-* standard specification behaviour under the
cloud, especially, regarding service response time
for web services.

In this work, we propose a dynamic QoS
monitoring scheme on SOA-based services on

virtualized shared cloud platforms. The goal is to
capture the improper protocol formulation and the
underlying platform performance variations to
effectively compute service response time without
any modification to the service code to improve hard
QoS guaranteeing on virtualized environments.

In this paper, we present analysis of WS-* (WS-
star) by classifying and discussing their
interdependencies to show QoS impacts on improper
protocol formulation. We then illustrate dynamic
QoS monitoring mechanisms in a widely adopted
service container (JBoss). Thus, our contribution is
two fold:

 We developed an effective scheme for
dynamically monitoring orchestrated
services and computing service response
time in cloud environments without service
code modification or recompilation.

 While the proposed instrumentation scheme
is designed for QoS monitoring, it can also
be used to detect malicious service in the
chain, simply, by instrumenting the method
calls that reach beyond its intended service
end point.

The rest of the paper is organized as follows.
Section 2 gives a brief overview of SOA ecosystem
with especial emphasis on web services. We then
discuss WS-security protocols and their
interdependencies in section 3. We show our
proposed approach in section 4 followed by the
implementation and experimentation to illustrate the
effectiveness of our approach in section 5 and the
related work in section 6. Finally, section 7 provides
the conclusion and future work.

2 SOA ECO SYSTEM

SOA is an architectural style that promotes a high
degree of service decoupling and rapid system
development and deployment that span across
traditional organization boundaries. The traditional
SOA triangle paradigm consists of a service registry
(i.e. UDDI), a service provider and a consumer as
depicted in Figure 1.

Figure 1: SOA Triangle System Model.

At a high level, web service (WS) is an approach of
building web accessible services where the service

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

164

providers publish/register their service in the UDDI
registry and the service consumers discover and
invoke it. The two wide spread paradigms for
building services compliant with WS protocols are a
Representational State Transfer (REST) (Erl, 2012),
referred to RESTful services, and the Simple Object
Access Protocol (SOAP)-based services (discussed
next).

WS are built on standard specifications to
facilitate their integration and secure execution. The
core of the WS architecture (WS Architecture, 2002)
outlines a set of service characterization that enables
these complex functionalities to co-exist. However,
the actual specifications of the standards have been
collaborated and authored by many organizations
such as; W3C, OASIS, OMG, IBM, Microsoft,
Oracle, and xmlsoap.org, which makes difficult to
fully realize the goals of their interactions.

There has been a considerable research effort
that addresses the magnitude of the available
standards, their cross-referencing design and
development difficulties. For example, in (Gamble,
2011), authors proposed a Security Meta-Language
for guiding the formulation of secure messages in
WS architecture that model the security relevant
portions of the standard for their consistent,
comprehensive, and correct applications.

Others have addressed this through the use of
enterprise-level integration (i.e. Apache Camel),
meditation (i.e. Enterprise Service Bus), and
Orchestration (i.e. BPEL) tools. However,
dynamically monitoring these critical protocol
functionalities over transient performance platforms
has not been sufficiently addressed in these tools and
in a generic fashion.

2.1 RESTful Services

The RESTful Services paradigm is a lightweight
service implementation scheme that avoids
preserving service state and the use of the
underlying message level security. In other words,
the traditional encryption and digital signatures are
not employed in this service model due to its
computational and bandwidth requirements.
RESTful services are stateless services where
responding in a timely manner to every service
request is critical, thereby widely used in non-
critical applications such as; gmail access, facebook
updates, amazon consumer interactions, etc.

A transport security layer (TSL) or SSL over
HTTP (https) is typically used to secure RESTful
services. Such security solutions are sufficient for
point-to-point connection oriented where a service

call is authenticated and securely responds to the
request. However, this point-to-point security
solutions are ill suited in orchestrated/chained
service interactions where a service request from a
consumer has to reach out to other services in which
these services further reach other services in the
chain that are possibly in different domains in order
to respond to such request.

To remedy these limitations, the use of message-
level security is introduced in the standard protocols
such as: WS_Security, WS_SecureConversation, and
WS_Policy. The key idea of message level security
is to structure and wrap the message (both the
request and response) by sealing it in an envelope
(SOAP) and associating it with security attributes
(saml token) to safeguard its access and on transit.

2.2 SOAP-based Services

SOAP-based services provide granular message
level security using WS-* family of protocols in
which WS-Security is at the forefront.
Cryptographic and digital signature techniques are
the core of protecting SOAP messages from attacks.
As a consequent, this introduces a performance
overhead to the services (Liu, 2005). As the services
are orchestrated, these performance overheads
increase in the order of magnitude due to the
overlaps of the security functionalities. Detecting
these overlaps of such critical security
functionalities to improve QoS is the focus of our
work.

In order to effectively illustrate the
interconnection of the performance-degrading
protocol formulation and avoid hiding the concept in
a myriad of protocol standards, we limit our protocol
interdependency analysis (discussed next) to only
those protocols that impact QoS, specificaly policy
enforcement and message level security protocols,
confidentiality and integrity.

3 WEB SERVICE PROTOCOL
INTERDEPENDENCIES

WS decoupling is typically achieved by means of
common registries known as Universal Description
and Discovery Integration (UDDI). Services
deployed in UDDI are discoverable through either
WS Application Language (WADL) or WS
Description Language (WSDL) standard
specifications as depicted in Figure 2 (top left box),
and access control protocols (bottom left box).

Towards�Dynamic�QoS�Monitoring�in�Service�Oriented�Architectures

165

WADL and WSDL are the two defacto standards
for defining web service capabilities. These include:
service URI, services, security capabilities, and QoS
attributes using WS_PolicyAttachment for
encryption, signatures, policies, and WS-Addressing
for end point service response delivery. Discovery
and access control protocols have no impact on QoS,
therefore, in this work; we only give special
emphasis on confidentiality and integrity protocols.

Figure 2: Anatomy of End-to-End Web Service Security
Protocols - Service Discovery (top left box), Access
Control (lower left box), and Confidentiality and Integrity
for message level security (right box).

WS-Security is the core of WS-star protocol for
confidentiality and integrity of the service. The WS-
Security standard describes the security attributes of
service and task delegation between services to
facilitate secure authentication, authorization and
invocations. Each new security concept or interface
specification defined in WS-Security brings
additional WS-* family of standards which play a
significant role in expressing a web service’s
security posture.

For example, bridging communication between
secure environments require protocols to specify
cross-domain access controls. The Security
Assertion Markup Language (SAML) provides the
authentication and authorization among and across
services, even in different security domains (Oasis-
open, 2007), and eXtensible Access Control
Language (XACML) provides the security policy
enforcements for the authorizations that cross the
organizational boundaries (Oasis-open, 2012).

Further, WS-Trust is required to broker
authentication information, however, WS-Trust does
not describe the security functionality of services
and its capacity to fulfill the security needs. Instead,
it delegates to WS-SecurityPolicy to describe the
security policy which in turn uses WS-Policy. WS-
Policy exchanges policy decisions and enforcement
capabilities for every request, introducing more

latency for QoS constraint services, especially if
such capabilities deployed in a remote service
domains.

In addition, WS-Security defines XML-Signature
and XML-Encryption standards for digital signatures
and encryption of XML documents to ensure the
integrity of the exchanged SOAP
messages/envelope. The more security capabilities
added the more standard protocols needed. Thus, the
SOAP message size increases, which consequently
require more bandwidth and computationally
intensive operations in encryption, signature, and
verifications in which contribute to other QoS
issues, especially when services are deployed across
cloud domains or consumers with resource
constrained devices (mobile).

QoS violations are imminent when improper
protocol formulation is coupled with the transient
performance behaviour of the underlying platform.
A recent study (Zhonghong, 2012) shows that the
virtualized heterogeneous hardware built on the
cloud has performance variations that can reach up
60% between instances. Thus, dynamically
intercepting and monitoring orchestrated services on
such platforms are crucial in order to improve QoS
guarantees and consequently prevent SLA
violations.

4 SYSTEM MODEL

A motivating example of cross-domain service
orchestration scenario is depicted in Figure 3 below.

Figure 3: High-level architecture for orchestrated services
across private and public clouds.

The high-level architecture above depicts a typical
orchestrated service deployment across security
domains, public and private. The top arrows marked
(1-Publish Service) and (2-Discovered Service)
show the service registration flow to the UDDI by
the service provider where then the consumer client
(depicted as the laptop) discovers that service. The
client invokes that service as shown by the arrow-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

166

marked (3a-Request/Response (RR)) and gets back a
response. The arrow marked (3b-RR) between the
clouds show the cross-domain service invocation
that jointly satisfy the consumers’ request. Note that
all arrows represent a bio-directional data flow.

Chaining services in such environments is
typically configured using BPEL. However, once
services are deployed in the service container or
application servers (eg. Jboss, Oracle, IBM
Glassfish, etc.), these configurations are static, and
thereby, fail to adapt to the changes of the
underlying cloud platforms. Computing service
response time in such setting typically requires
reconfiguring or even re-designing the services.

We approached this problem by deploying
interceptors in the service containers to seamlessly
collect service information at runtime and compute
response times while considering the transient
behaviour of the deployed cloud platform. Service
information can then be analyzed by machine
learning to predict future QoS attributes,
dynamically update SLA in the registry, or even
migrate services instances to cloud platforms that are
experiencing less performance issues in different
regions. In this work, we focus on the detection
scheme only.

4.1 QoS Criteria

There are several non-functional QoS metrics
categories and service performance attributes in
SOA-based WS. In this work, we only consider WS
performance, specifically service response time for
orchestrated services on cloud platforms.

4.2 Approach Overview

Most QoS attributes in SOA are not a one-size-fit-all
for all consumer requests. A priori knowledge of any
given QoS attribute for the prospective consumer is
difficult to predict (Erl, 2005). Several QoS
monitoring approaches offered solutions that
improve QoS over the years. However, none have
addressed the impact of the overlapping security
protocols due to their criticality of the service
protection coupled with the performance variability
of the underlying cloud platforms.

The basic idea of our approach is to non-
intrusively instrument services without introducing
overhead. Our design is based on two steps,
detection and aggregation. We use Aspect Oriented
Programming (AOP), a dynamic application
instrumentation framework first introduced in
(Kiczales, 1997). AOP allows service code

instrumentation without modifications or
recompilation of the code. The instrumented data
collected/detected at runtime from each service is
then forwarded to the QoS auditor web service
(referred as QAudit) to aggregate and then compute
response time.

4.3 Service Instrumentation with AOP

Typically, collecting accurate QoS information at
runtime is achieved by inserting general purpose
logging statements in pre-compile time and during
service composition. QoS metrics can then be based
on the aggregate of these logs. Such techniques are
inefficient and ill suited in cloud computing
platforms due to the performance variability
behaviour that are not under the control of the
service provider. Since accurate QoS attributes
cannot be predicted during service registration,
dynamic service instrumentation is critical.

We achieve such dynamicity with AOP. A basic
AOP model defines two instrumentation primitives
known as pointcut designators (PCD) and advice.
The PCD's are typically points in the program where
inserting instrumentation is not too hard, for
example, method calls are very often used as one of
the fundamental PCD. These PCD's are simple
instrumentation primitives that can gather critical
information without any modifications to the code.

On the other hand, the advice is the point where
an aspect to be instrumented can be weaved in. The
result of PCD and advice generated will then
forwarded to externally configured component, in
our case, QAudit. QAudit web service evaluates the
best QoS metrics under that given cloud platforms
performance behaviour or overlapping security
functionalities on the services, in which the service
provider can take any action necessary such as;
either update the SLA for the prospective users,
reconfigure security protocols or project future QoS
metrics of the given time of the day.

Figure 4: Service Anatomy and AOP Instrumentation
Module inside the Jboss service container or app server.

AOP enables user level service interception
capabilities within application servers. As depicted

Towards�Dynamic�QoS�Monitoring�in�Service�Oriented�Architectures

167

in Figure 4, we used an AOP plugin as a module in
the Jboss Application server where our services are
deployed, known as JbossAOP (JbossAOP, 2003).
JbossAOP instruments services deployed in the
service container by intercepting the execution of all
aspects of the program, such as specific object on
the program, a function parameter values, or method
calls within or across program calls.

The performance overhead of the AOP depends
on the knowledge of the application (Alexanderson,
2010). For QoS monitoring, the overhead is
proportion to the number of the interception points
within the services. To limit such overhead, we only
intercept WS-Security related function calls,
specifically, prior and post encryption, and signature
operations in which are negligible when tested in
public cloud environment as shown in our previous
work (Azarmi, et. al. 2012). Note that one can also
instrument communication methods if needed to
uncover rogue/compromised service reaching
outside its intended endpoints.

4.4 QoS Auditor Web-service

As depicted in service anatomy diagram in Figure 4
above, the service container enables hooks to
instrument the services’ business logic where the
instrumented data can then be sent to the listening
service, QoS Auditor (QAudit) web service. The
QAudit receives the pre and post WS_Security
function call timing information collected from the
diverse orchestrated services under the current
performance of the services’ environment (VM’s).
For example, some services are deployed in cloud
platforms that are built on different hardware,
hypervisor, and possibly running VM migration and
load balancing algorithms by the cloud provider to
accommodate between the tenants.

4.5 QoS Monitoring in Orchestrated
Services

The WS Business Process Execution Language
(WSBPEL) defines the orchestration of WS standard
language for service chaining and execution.
Identifying performance bottlenecks in orchestrated
services from multiple providers within BPEL
engines is a challenging task given the dynamicity of
the cloud platforms that’s not known a priori.

As described in the previous section, AOP
instruments services deployed in the service
container by intercepting the execution of all aspects
of the program (i.e. method calls) across program
calls. Since orchestrated services are also program

calls across domains, AOP can effectively intercept
orchestrated WS. We will describe our
implementation approach in the next section.

5 IMPLEMENTATION AND
EXPERIMENTATION

We are interested in computing service response
time for secure web services orchestrated across
cloud platforms (public/private) as illustrated in the
high-level architecture in Figure 3. In this section,
we discuss our prototype and show the preliminary
evaluations on private cloud deployments, and the
proposed QoS computations scheme.

5.1 Experimental Setup

Our experimental cloud platform uses a private
cloud built on OpenStack, a cloud management
software stack, on a cluster of 4 machines (Dell
Z400) with Intel Xeon 3.2 GHz Quad-Core with
8GB of memory. At a high-level, OpenStack
consists of a controller and computing management
applications. We divided our four machines into one
controller node and 3 compute nodes. As the name
implies, the controller node is to simplify cloud
platform management by enabling on demand
elasticity, i.e., provision/de-provisioning VM
instances, adding/removing hardware and instantly
making it available in the computing resource pool.

The three compute nodes allow us provisioning
20 virtual CPU’s (vCPU) in which we assigned 10
small VM instances, 2 vCPU per instance for service
deployments. We used a total of 10 VMs with
Ubuntu Linux for service consumer (clients) and
secure services in all of our experiments.

5.2 Implementation

We developed a CXF-based secure web services
(WS_Security and WS_SecureConversation enabled)
and deployed in Jboss application server. The
integration of AOP with Jboss container was done
using JbossAOP (JbossAOP, 2003) library, a
pluggable user specified instrumentation module for
Jboss application servers. We leveraged AspectJ
(AspectJ, 2001), a stand-alone Java implementation
of AOP, as the service instrumentation algorithms
for intercepting the WS-Security method calls.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

168

5.3 Preliminary Results

It has been previously reported that performance
difference between WS-Security and
WS_SecureConversation in web services are in the
order of magnitude higher in WS-Security (Liu, et.al.
2005). To illustrate in the context of service
orchestration under the transient performance
behaviour of the cloud, we configured three secure
services that implement WS_Security with 3 others
that implement WS_SecureConversation with the
same logic, a secure weather report, deployed in a
Linux virtual machines described above.

We orchestrated the 3 services with different
configurations while assuring the security of the
service. Service configuration is application and
domain specific, thus, to illustrate the basic concept;
we chained and invoked services in the following
format:

Req1 Sws Sws Sws Sws …
Req2 Sws Ssc Sws Ssc …

Reqn ...

The requests Reqn interacts with service Sws

implemented with WS_Security and then Ssc

implemented with WS_SecureConversation and so on.
To mimic the performance variability of the

cloud platforms, services requests and responses
were performed while the system is running cpu and
memory intensive applications. We observed the
system performance using the built in Ubuntu
system monitor (krell) showing a load over 50%-
70% usage of the memory and cpu. The service
response times received by QAudit service, when
aggregated, ranged between microseconds to
seconds; thus, clearly show QoS impacts on security
function overlaps.

These observations show the non-intrusive way
of computing QoS in cloud platforms. However, the
actual results may vary depending on the service
logic and other factors when expended into the
public cloud deployments, thereby, considering it in
our future work.

6 RELATED WORK

To the best of our knowledge, there is no in-depth
analysis of WS-star protocol formulation in SOA in
the context of QoS monitoring that reflect the
transient performance behaviour of the underlying
cloud platforms. Thus, we divide our related work
section into two parts; we first discuss works in WS-
* performance improvements and next we provide

QoS Management tools and techniques that are
relevant to our work.

6.1 WS*- Performance Improvements

There are large volumes of research that employ
different methods to address performance
improvements on web-services. To name a few:
SOAP header envelope reduction techniques,
efficient XML parsing and compression methods,
and binary and canonicalization techniques.

With the rise of business heterogeneity,
orchestrated services pose further callings for
selecting and complying with an accurate advertised
QoS attributes, especially service response time. As
these schemes have set the foundation of WS
performance improvement, our approach was
inspired by such mechanisms and further extended
to dynamically monitor orchestrated services in a
virtualized environment.

6.2 QoS Management

QoS management can be classified into three
categories: resource allocation, service composition,
monitoring and fine-tuning QoS parameters within
the services. In this work, we focused on the latter
two. It’s intuitive to see that an effective resource
sharing can aid QoS guarantees; moreover, service
composition or selection also plays a critical role in
such guarantees.

To highlight some studies in this category, early
works, such as (Abdelzaher and Shin, 1999),
proposed a virtual service that enables the selection
of multiple deployed concrete services depending on
the users’ QoS interest. A set of cooperative
autonomous agents that enable optimal web service
composition is proposed in (Brahmi, 2013). Within
the context of service selection, similar to QAudit
approach, Q-Peer (Li, et.al. 2007), a distributed QoS
registry is proposed to monitor and collect
information on running services to assist consumers
for the reliability of the service where as we focus
on service response time improvements.

It has been noted that the inaccuracy and
violations of QoS in various papers and spurred a
wide range of research approaches, to name a few;
QoS verifications during service registration
(Abdelzaher and Shin, 1999), extending UDDI
functionalities (ShaikhAli et. al, 2003), introducing
new protocol languages to define SLA (Lamanna,
2003), SLA template adjustments (Spillner and
Schill, 2009) and new frameworks for dynamic
service monitoring and selections in a realistic

Towards�Dynamic�QoS�Monitoring�in�Service�Oriented�Architectures

169

environment (Tian, et. al, 2004). Along the lines of
the WS protocol research, a modification of WS-
Agreement protocol to enable dynamic run-time
renegotiation and SLA adjustments to guarantee
QoS when SLA violation is expected to occur is
proposed in (Modica, et. al, 2007).

All of the above approaches face adaptability
challenges due to the proposed changes required in
the protocol standards. Our work can accurately and
non-intrusively detects the transient behaviour of the
cloud platforms to prevent SLA violations without
modifying the service code or the standard
protocols. Furthermore, our work will complement
the works of fine-tuning QoS parameters for
efficient service composition, selection and
monitoring schemes to maximize QoS and prevent
SLA violations.

7 CONCLUSIONS

Guaranteeing hard QoS on orchestrated web-
services in SOA and virtualized cloud platforms are
increasingly challenging due to security critical
functionality overlaps and the transient performance
behaviour of such platforms. In this paper, we
developed an effective mechanism to dynamically
monitor orchestrated services and compute service
response tme while considering the underlying
performance behaviour of the cloud platforms.

We implemented our proposed approach with
Aspect Oriented programming (AOP) and illustrated
with a practical scenario to validate our design using
three secure services deployed in a private cloud. In
our future work, we consider experimental traces
over periods of time in our private with public (i.e.
Amazon) cloud instances deployed in different
geographic locations.

ACKNOWLEDGEMENTS

Authors would like to thank Jim Hanna at AFRL for
setting up the experimental platform, and special
thanks to the reviewers for their valuable feedback
that made this paper more readable.

REFERENCES

Abdelzaher, T. F., & Shin, K. G., 1999. QoS Provisioning
with qContracts in Web and Multimedia Servers. In
the 20th IEEE Real-Time Systems Symposium.

Alexanderson, R., Ohman, P., and Karlson, J., 2010.
Aspect Oriented Implementation of Fault Tolerance:
An assessment Overhead. In Computer Safety,
Reliability, and Security. Lecture Notes in Computer
Science, Volume 6351, pp 466-479.

Alistair C., 2011. Cloud Performance From the Users
Prospective. http://www.bitcurrent.com/download/
cloud-performance-from-the-end-user-perspective/.

AspectJ, 2001. http://eclipse.org/aspectj/
Azarmi, M., Angin, P., Bhargava, B., Ahmed, N., et al.,

2012. End-to-End Security in Service Oriented
Architecture, In SRDS12, the 31st IEEE Int.
Symposium on Reliable Distributed Systems.

Brahmi, Z., 2013. QoS-aware Automatic Web Service
Composition based on Cooperative Agents. In
WETICE, The 22nd IEEE International Workshops on
Enabling Technologies: Infrastructure for
Collaborative Enterprises.

Erl, T., 2005. Service-Oriented Architecture: Concepts,
Technology, and Design, Prentice Hall.

Erl T., et al, 2012. SOA with REST, Prentice Hall. 1st ed.
Fung, C. et al., 2005. A Study of Service Composition

with QoS Management. In ICWS’05, IEEE
International Conference on Web Services.

Gamble, R. and Baird, R., 2011. Developing Security
Meta-language Framework. In Proceedings of the 44th
Hawaii Int. Conference on System Sciences.

JbossAOP, 2003. http://www.jboss.org/jbossaop.
Kiczales, et al., 1997. Aspect-Oriented Programming. In

ECOOP’97, Object-Oriented Programming, lecture
Notes in CS. Vol. 1241, pp. 220–242.

Lamanna, D., Skene, J., and Emmerich, W., 2003. SLAng:
A Language for Service Level Agreements. In the 9th
IEEE Workshop on Future Trends of Distributed
Computing Systems. FTDCS.

Li, F., et al., 2007. Q-Peer: A Decentralized QoS Registry
Architecture for Web Services. In ICSOC’07,
International Conference on Service Oriented
Computing. LNCS 4749,pp.145-156.

Liu, H., Pallikara, S., and Fox, G., 2005. Performance of
Web Service Security. In Proceedings of the 13th
Annual Mardi Gras Conference.

Mei, Y. et al., 2013, Performance Analysis of Network I/O
Workloads in Virtualized Data Centers. In IEEE
Transactions on Service Computing.

Mietzner, et al., 2010. Combining Horizontal and Vertical
Composition of Services. In Proceedings of the IEEE
International Conference on Service-Oriented
Computing and Applications.

Modica, G., et al., 2007. Dynamic Re-negotiations of SLA
in Service Composition Scenarios. In SEAA07,
EuroMICRO conference of Software Engineering and
Advance Applications.

Oasis-open.org, 2007. Security Assertion Markup
Language (SAML). https://www.oasis-open.
org/committees/download.php/27819/sstc-saml- tech-
overview-2.0-cd-02.pdf.

Oasis-open.org, 2012. eXtensible Access Control
Language (XACML). https://www.oasis-open.org/com
mittees/tc_home.php?wg_abbrev=xacml#C URRENT.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

170

Overton, C. 2002, On the Theory of Internet SLAs.
Journal of Computer Resource Measurement, (106):
32-45.

ShaikhAli, A., Rana, O. F., Al-Ali, R., and Walker, D. W.,
2003. Uddie: An Extended Registry for Web Services.
In Proceedings of IEEE Workshop on Applications
and the Internet. pp. 85-89.

Spillner, J., & Schill, A., 2009, Dynamic SLA Template
Adjustments based on Service Property Bonitoring.
In CLOUD'09. IEEE International Conference on
Cloud Computing. pp. 183-189.

Tian, M. et al., 2004. Efficient Selection and Monitoring
of QoS-aware with the WS-QoS Framework. In
WI’04, IEEE/WIC/ACM International Conference on
Web Intelligence. pp.152-158.

WS Architecture, 2002. http://www.w3.org/TR/ws-arch/.
Zhonghong, O., et al., 2012. Exploiting Hardware

Heterogeneity within the Same Instance Type of
Amazon EC2. In Proceedings of the 4th USENIX
Conference on Hot Topics in Cloud Computing.

Towards�Dynamic�QoS�Monitoring�in�Service�Oriented�Architectures

171

