
Cloud Spreadsheets Supporting Data Processing
in the Encrypted Domain

D. A. Rodríguez-Silva1, L. Adkinson-Orellana1, B. Pedrero-López1 and F. J. González-Castaño2
1Gradiant, Edif. CITEXVI, Campus de Vigo, 36310, Pontevedra, Spain

2AtlantTIC, Escuela de Ingeniería de Telecomunicación, Universidade de Vigo, 36310, Pontevedra, Spain
{darguez, ladkinson}@gradiant.org, javier@det.uvigo.es

Keywords: Cloud Computing, Security, Privacy, Homomorphic Encryption, Spreadsheet.

Abstract: Security has become one of the main barriers for the adoption of cloud services. A range of legal initiatives
that require support mechanisms such as access control and data encryption have been proposed to ensure
privacy for data moved to the cloud. Although these mechanisms are currently feasible in situations in
which the cloud acts as a mere data storage system, they are insufficient in more complex scenarios
requiring processing in external cloud servers. Several new schemes have been proposed to overcome these
shortcomings. Data Processing in the Encrypted Domain (DPED) permits arithmetic operations over
ciphered data and the generation of encrypted results, without exposure of clear data. In such a set-up, the
servers have no access to the information at any point of the process. In this paper we describe, as a case
study of secure cloud data processing, a cloud spreadsheet that relies on DPED libraries to perform
operations in the encrypted domain. Tests performed on local servers and in the Google cloud through the
Google App Engine platform show that representative real applications can benefit from this technology.
Because the proposed solution is PaaS-oriented, developers can apply the libraries to other applications.

1 INTRODUCTION

Security and privacy are both major concerns for
Cloud Computing users. As reported in the
European CIOs and Cloud Services research study
(2010), around 71% of European companies are
worried about security and privacy, especially when
it comes to storing or processing sensitive data in the
cloud. Security has thus become a significant barrier
to full adoption of cloud services.

Concerns regarding security and privacy have
been addressed in part by different legal initiatives
within the European Union, such as Directive
95/46/EC of the European Parliament and the
Council of October 24 1995 (Data Protection
Directive, 1995), which proposes a set of
recommendations for protecting personal data during
transfer and processing. In Spain there are several
specific laws to protect and regulate the management
of personal and corporate data used by cloud
applications, including the Data Protection
Regulation, of Law 15/1999 on Personal Data
Protection (LOPD, 1999) and the Royal Decree
1720/2007, which approves the development of the
LOPD (RDLOPD, 2007). As an example of the

recommended proposals, the 85th article of the
RDLOPD states that security measures applied to
personal data in communication networks, public or
not, should guarantee at least the same security level
as that offered by local access systems.

Due to their very nature, data processed in the
cloud will presumably be affected by international
data transfers, primarily because many web
applications are hosted on foreign servers.
International data movement is regulated by the data
protection regulation, which forbids international
data transfers between countries that do not offer
sufficient security guarantees according to the
LOPD, although there are some exceptions explicitly
indicated in the reference regulation. In addition, this
regulation sets out several legal requirements, such
as transfer notification to the Spanish Data
Protection Agency.

Because legal procedures are slow, new
technological mechanisms are required until the
situation is completely regulated. Authentication on
the client side and use of security mechanisms such
as data encryption during data transmission are good
solutions for interception attacks and servers that do
not offer sufficient guarantees of reliability. To
increase security, the client can cipher data using a

514

private key, thereby hiding the information from the
server. Although this option is valid when the cloud
acts as a mere storage service, there are cases in
which it would be insufficient, for example when
performing certain calculations on the server or
when processing a query to a database with ciphered
data.

To overcome the above shortcomings, new
server-side schemes have been proposed, such as the
use of cryptographic hardware or Data Processing in
the Encrypted Domain (DPED). Cryptographic
hardware can be used to perform cryptographic
operations and to store keys securely, but it is
expensive (specific trusted anti-tampering devices
are required) and it needs to be physically integrated
into the provider’s infrastructure. DPED overcomes
these problems, but at the expense of increased
processing time. It enables operations over ciphered
data that generate encrypted results, thereby
allowing server-side operations without revealing
the original information. This adds an additional
security level to the cloud paradigm by means of
complex homomorphic algorithms. The
computational requirements may not be a problem
thanks to the scalability and flexibility of the cloud
paradigm.

In this paper we describe a cloud spreadsheet
application that uses the DPED concept to perform
operations in the encrypted domain. We have tested
it on our local servers and in the Google cloud
through the Google App Engine (GAE) platform.
Section 2 discusses related work and section 3
explains the implementation details of our
application. Section 4 presents the tests performed,
and finally, section 5 concludes the paper.

2 RELATED WORK

Many office cloud applications allow users to work
with spreadsheets. Some well-known examples are
Microsoft Office 365, Google Drive Spreadsheets,
Thinkfree Calc and Zoho Sheet. Nevertheless, none
of these applications currently offers full protection
mechanisms for user data, meaning that privacy,
when available, is supported by external means.
Indeed, most current solutions are designed for
Google Drive, not for spreadsheets. Furthermore,
although there are solutions that are completely
integrated with the Google Drive interface that
encrypt documents transparently to users (Adkinson-
Orellana et al., 2010), most simply use the cloud to
store the encrypted documents (CryptRoll, 2013;
ZecurePC, 2011; and CloudLock, 2015).

DPED allows certain operations to be performed
over ciphered data without the need to access the
clear version. In particular, arithmetic operations can
be performed efficiently in the encrypted domain
thanks to the concept of additive and multiplicative
privacy homomorphisms (Brickell and Yacobi,
1987). In 2009, Gentry presented the first fully
homomorphic encryption scheme. He described
public key encryption using ideal lattices (Gentry,
2009). In the same year, M. Van Dijk described a
“somewhat homomorphic” encryption scheme based
on elementary modular arithmetic, and used
Gentry’s techniques to convert it to a full
homomorphic scheme (M. Van Dijk et al., 2009)
that implemented addition and multiplication over
integers rather than ideal lattices over a polynomial
ring.

There have been other contributions in this
direction. A. F. Chan formulated a privacy
homomorphism for operating over ciphered data
with two different encryption schemes, where data
could be processed directly in an encrypted form
(Chan, 2009). H. Hacigümüş, in turn, described
different techniques for executing SQL queries over
encrypted data (Hacigümüş et al., 2002). The
strategy involves processing as much of the query as
possible at the service provider site, without
decrypting data. Decryption and the remainder of the
query processing takes place at the client side. They
also explored an algebraic framework to split the
query to minimize computation at the client side.

The innovative idea in this paper is to enable
DPED processing in cloud applications. We are not
aware of any previous DPED-enabled complex
cloud applications, although, in a previous work, we
presented a toy example that demonstrated that
DPED could strengthen the privacy of simple
mathematical operations in the cloud (Rodriguez-
Silva et al., 2011).

3 SECURE CLOUD
SPREADSHEET

3.1 Arithmetic Calculations in the
Encrypted Domain

The spreadsheet application is composed of two
modules: a client module and a server module. The
client module presents the spreadsheet interface,
which is used to enter data, cipher its content, send it
to the server, and decipher and present the results in
the corresponding spreadsheet cell. The server

Cloud�Spreadsheets�Supporting�Data�Processing�in�the�Encrypted�Domain

515

module, in turn, executes arithmetic operations on
the encrypted data received from the client by means
of adequate privacy homomorphisms. The supported
encrypted operations are listed in Table 1.

Due to the low efficiency of complete
homomorphisms in the current state-of-the-art, our
implementation uses a variation of the additive
homomorphic encryption described by Paillier
(Paillier, 1999) as the basis of our cryptographic
system. One or more additional rounds of
communication between the client and the server
will also be needed depending on the complexity of
the operation requested.

Table 1: Encrypted operations supported by the
spreadsheet.

Operation Description Example
AVERAGE Average value AVERAGE (A1:A5)

DEGREES Degree conversion DEGREES (A1:A5)

FFT Fast Fourier Transform FFT (A1:A5)

PROD Product PROD (A1:A5)

RADIANS Radian conversion RADIANS (A1:A5)

SPROD Scalar product SPROD(A1:A5;B1:B5)

STDEV Standard deviation STDEV (A1:A5)

SUM Addition SUM (A1:A5)

VADD Vector addition VADD (A1:A5;B1:B5)

VAR Variance VAR (A1:A5)

VPROD Vector product VPROD(A1:A5;B1:B5)

VSUB Vector substraction VSUB (A1:A5;B1:B5)

The encryption methods used are based on
asymmetric key algorithms. The libraries present
different options, such as threads and JNI (Java
Native Interface), thereby increasing efficiency

thanks to the use of C libraries. The encryption
libraries also allow operations with scalars and
vectors, unlike the version in our previous work,
which only offered basic operations for unary
values.

3.2 Ciphered Cloud Spreadsheet
Implementation

The spreadsheet allows operations over a range of
cells, with no limitations in terms of the number of
operators involved. The implementation relies on
Java technology, as this is the most common PaaS
language. It uses the Java Runtime Environment
(JRE) classes available to create applets and tables
(JTable, TableModel, etc.), meaning that results can
be easily embedded on a web page. The
development environment used to create the
spreadsheet and the associated technologies are the
same as those used for the encrypted calculator
(Rodriguez-Silva et al., 2011): Java Servlets and
IDE Eclipse 3.5 (Galileo) for the server and Java
applets and Oracle IDE Netbeans 6.8 for the client,
with the corresponding plugin to create graphical
user interfaces. Again, GAE was selected as the
cloud platform to deploy the application. Due to the
restrictions of this PaaS, the encryption libraries had
to be adapted, since the platform has a limited
support for multithreading (a characteristic that the
libraries use to improve efficiency).

By default, some of the applet functionalities
(e.g. reading or writing files on disk) are restricted
through a security policy implemented by the
security controller of the browser Java Virtual

Figure 1: Ciphered cloud spreadsheet interface.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

516

Machine (JVM) plugin. However, the spreadsheet
applet needs these functionalities to store its content
in a local file and to obtain and save the user keys to
cipher data. For this reason, the user must accept the
applet signature, granting certain restricted
functionalities. All the libraries except
au.com.bytecode.opencsv (required to save the
content of the spreadsheet in .CSV format) and the
DPED libraries are available on the JRE used by the
browsers. Other libraries are downloaded when the
applet starts.

The client is composed of two modules: one for
the graphic interface and the other for parsing and
communicating with the server. The graphic module
is in charge of the visual interface, intercepting user
events and presenting results. Its design was based
on typical spreadsheet software, such as Google
Spreadsheet, OpenOffice.org and Microsoft Excel
(Figure 1). The client parser analyses formulae
expressions to obtain the data required to perform
the operations. Finally, the communication module
exchanges data with the server using HTTP
tunnelling.

Figure 2: Client module flowchart according to user
interaction.

To perform a spreadsheet operation, the first step
is to start the application (applet) and load the
libraries. The user then introduces his/her login and
password, using his/her Google user account if the
application is deployed in GAE. If access is granted,
the user keys —required to cipher and decipher the
data and perform encrypted operations— are loaded

from binary files. When the process is complete, the
spreadsheet graphic interface is shown. At this point,
the application is ready to process events generated
by user interaction (see Figure 2):
 Finish cell edition. The application checks the

type of data entered in the cell, such as
formulae, a number or other data types. The
formulae are analysed, the type of operation
and the references to the cells are extracted,
and in the case of numbers, these are ciphered.
With this information a new communication
object is created to be sent to the server. In the
case of other data types, the cell content is
directly inserted in the communication object.
Once this object has been created, a new
communication thread is thrown to send the
object to the server. In other words, the
interface thread is released to receive new user
events. The communication thread remains
open until confirmation is received that the
number or object has been correctly received
at the server side or until the operation defined
by the formula has finished. This is indicated
by the communication round. The result is
then decrypted and displayed to the client.

 Save on server. The client creates an object
with the order to save the spreadsheet at the
server side. A new thread is created
specifically to send the petition containing this
object. This thread will receive a response
indicating the success or failure of the request.

 Select a menu option. The selected option is
performed at the client or the server side,
depending on the actions involved, e.g.,
create/load user keys, add/remove rows or
columns, copy/paste cells, etc.

Dependencies between the values of the cells
must be taken into account. When the value of a cell
changes, it can affect other related cells, resulting in
the execution of multiple parallel operations. To
manage this situation, a new thread is thrown for
each dependent operation, creating a new client.
This ensures that the different operations executed
do not interfere with each other, but it requires more
processing load for the application during the
initialization of a new module.

We considered two possible server deployment
scenarios: a private cloud (local) and a public cloud
(GAE). The private cloud does not have all the
resources and services offered by GAE, such as user
accounts and persistent storage. In this case users are
authenticated through a local mechanism and
persistent storage is simulated by saving the
spreadsheet in a local file, identified by the user

Cloud�Spreadsheets�Supporting�Data�Processing�in�the�Encrypted�Domain

517

login. In this way, when a user enters the
application, the saved spreadsheet will be retrieved
and deciphered if and only if he/she has the
appropriate private key.

The server is a servlet composed of two
modules: the communication module and the data
processing module. The communication module
performs the same actions as on the client side,
while the data processing module is in charge of
storing or processing the data received in the
encrypted domain and recovering the stored
spreadsheet.

On the server side, the first step is to initialize
the servlet, which will keep listening to incoming
petitions from the clients. When a request is
received, the thread recovers the object and retrieves
the data it contains. The selected action is then
executed, i.e. the data received is saved, the cell
value is deleted, the module is initialized, the
encrypted operation is performed, etc.

The client and server modules must store the
status of each operation requested, indicating the
current execution round. If several operations are
requested at once, several modules for the client and
the server will be instantiated, and those associated
with the same operation will be identified by a
unique identifier. Thus, each time an operation is
requested, it will be possible to execute it in the
corresponding module, avoiding result
inconsistencies when several rounds are being
carried out.

Communication between the client and the
server takes place through a Java object, which is
used to retrieve and store information. This object is
sent through HTTP tunnelling, facilitating data
transmission through different elements (firewalls,
proxies, etc.) that typically limit connection to web
resources. In addition, the object is used to send and
receive different types of data, such as encrypted
data to be stored by the server, information related to
the operation performed and the cells involved,
encrypted results received from the server, etc.

The application also supports the generation of
the keys required to cipher and decipher data. These
keys offer two levels of security: short-term and
medium-term. While short-term security speeds up
encryption and decryption, medium-term security is
stronger, as it would take approximately ten times
longer to break up its keys (e.g., ten years vs 1 year).

4 PERFORMANCE TEST

The test layout comprised a client computer (Intel

Core i3-2120 @ 3.3 GHz, 3870 MB RAM, Ubuntu
10.4) and a local server (with the same
characteristics) to perform the encrypted operations
under Jetty 7.5.4. The cloud application applet was
executed through the Google Chrome 17 browser.
We also used GAE servers equipped with Jetty to
deploy the applications.

The operation selected to evaluate the
performance of the spreadsheet was a Fast Fourier
Transform (FFT), as this is a complex operation that
permits representative performance results. The FFT
was applied to vectors with lengths of 64, 128 and
512 points.

The current version of the spreadsheet encrypts
and sends each data item to the server individually.
When an operation (the FFT in this case) is selected
at the client side, the server simply receives the
operation and the cells involved, since it has already
the ciphered values. Therefore, the total time needed
to perform an operation comprises two times: a data
entry time, including the management of the data in
the cells in the spreadsheet and the time needed to
encrypt and send each operand to the server, and a
running time, which is the time needed to perform
an encrypted operation on the server and present the
result on the client side.

We used four test scenarios:
 Local, with threads and JNI. The encrypted

FFT was executed on the local server. There
were five parallel threads in the server and the
client. JNI was used to improve efficiency.

 Local, without threads or JNI. As in the
previous case, the operation was executed on
the local server. Neither threads for parallel
executions nor C functions were used in this
scenario.

 Local, clear FFT. We executed the FFT using
clear data on the local server. The FFT
algorithm was implemented by a Java
function.

 Remote, deployed on a GAE server. GAE does
not allow the use of threads or JNI, so the
server was subject to these restrictions. At the
client side five threads were used, in addition
to C functions through JNI.

The client was executed on the same machine
and used the same browser in all four scenarios.

In each scenario, 10 FFT operations were
performed for randomly generated vectors for the
three lengths. We used both the short- and medium-
term security levels to perform these tests. Tables 2
and 3 show the corresponding results based on the
following times:
 Entry time (ET). Time from the moment an

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

518

operand is entered in the spreadsheet to the
moment the client receives the response from
the server (indicating that the encrypted data
have been correctly stored).

 Server execution time (SE). Time taken by the
server to perform the encrypted FFT
operation.

 Running time (RT). The sum of
communication time required to exchange
data between the client and the server, the
time needed by the server to perform an
ciphered FFT (SE) and the time needed to
decrypt the result for the client.

Each pair of values represents the average
execution time () and its standard deviation (σ),
both in milliseconds.

The tests were unfeasible for the 512-point FFT
in the remote scenario because the time needed to
generate and return a response in GAE is limited to
30-60 seconds and the 512-point FFT needs longer.
These results are therefore not shown in the tables.

The use of longer keys improves security
considerably, but increases effective operating time.
On comparing Table 2 and Table 3, we can see that
the time required to perform the same operation is
considerably higher for the medium-term security
level. This mainly affects ciphered operation time
(i.e., server execution time). The different level of
security does not have an impact on data entry time,
as this includes the ciphering of data but not the
execution of the encrypted operations.

The use of threads and JNI considerably reduced
the execution time in both cases, primarily due to the
improved efficiency of the execution of the
algorithm on the server and the improved efficiency
of the decoding process. Although this test scenario
cannot be translated to GAE, its results can give us
an idea of how the performance could be improved
with JNI and threads in GAE or other compatible
PaaS.

The running time with GAE was much higher
than in the equivalent local case without threads or
JNI. Besides of the Internet delay, GAE servers took
approximately 10 times longer to execute the same
algorithm, probably because GAE is optimized for
applications with short response times, typically of
hundreds of milliseconds.

The total execution time for the best DPED
scenario (local, threads and JNI) was much longer
than with unencrypted data (local, clear FFT). This
is obviously due to the time spent on encrypting data
and decrypting the result, and the efficiency of the
DPED FFT algorithm, which is over 200 times

slower than the algorithm used to calculate the FFT
with unencrypted data.

Table 2: Data entry time, server execution time and
running time using the short-term security level (ms).

Test scenario 64 128 512

Local, no
threads or
JNI

ET
=524.2

σ=23.5
=897.9

σ =43.3
=6888.4

σ =114.4

SE
=581.4

σ=152.7
=1177.9

σ =137.8
=6013.7

σ =120.1

RT
=1206.6

σ=140.4
=2256.7

σ =135.1
=9918.4

σ =131.5

Local,
threads and
JNI

ET
=565.1

σ =21.9
=936.1

σ =21.3
=8642.9

σ =127.6

SE
=76.9

σ=9.4
=140.9

σ =31.7
=545.8

σ =62.5

RT
=239.1

σ =18.3
=356.3

σ =41.4
=1108.8

σ =103.6

Remote
(GAE)

ET
=16539.3

σ =538.9
=34056.3

σ =1355.2

SE
=5595.2

σ=294.3
=13793.8

σ =858.8

RT
=6339.3

σ =365.7
=14688.0

σ =881.2

Local, clear
FFT

ET
=475.6

σ =23.9
=790.3

σ =41.3
=6250.7

σ =118.3

SE
=0.159

σ=0.086
=0.516

σ =0.307
=1.318

σ =0.422

RT
=6,5

σ =1.5
=6.9

σ =2.5
=10.4

σ =2.0

Table 3: Data entry time, server execution time and
running time using medium-term security level (ms).

Test scenario 64 128 512

Local, no
threads or
JNI

ET
=1132.3

σ=35.1
=1916.8

σ=36.9
=8308.8

σ=192.5

SE
=2382.4

σ=500.8
=4538.1

σ=623.2
=20909.2

σ=742.1

RT
=6127.7

σ=550.3
=11129.8

σ=567.9
=46873.3

σ=1314.3

Local,
threads
and JNI

ET
=589.9

σ=53.6
=995.1

σ=38.3
=6983.7

σ=137.4

SE
=173.6

σ=23.2
=337.0

σ=35.7
=1558.2

σ=287.5

RT
=597.4

σ=46.6
=1031.6

σ=35.1
=4062.7

σ=491.0

Remote
(GAE)

ET
=16733.6

σ=1113.3
=34709.2

σ=2410.8

SE
=22045.1

σ=915.4
=52640.6

σ=1033.4

RT
=23007.0

σ=926.6
=54172.3

σ=1111.0

Local, clear
FFT

ET
=475.6

σ =23.9
=790.3

σ =41.3
=6250.7

σ =118.3

SE
=0.159

σ=0.086
=0.516

σ =0.307
=1.318

σ =0.422

RT
=6,5

σ =1.5
=6.9

σ =2.5
=10.4

σ =2.0

Cloud�Spreadsheets�Supporting�Data�Processing�in�the�Encrypted�Domain

519

5 CONCLUSIONS

Cloud computing provides an adequate environment
for deploying applications following a Software-as-
a-Service (SaaS) model. However, security and
privacy are key concerns when sensitive data
managed by applications is moved to cloud
infrastructures for processing or storage.

In this paper we have proposed, as a case study
of a real-life secure cloud application, a spreadsheet
capable of performing DPED operations on cloud
servers. The application was tested on a private
cloud and on GAE, with analysis of the time
required to perform a ciphered FFT operation.
Although the test results demonstrate that
homomorphic encryption is a feasible solution for
secure data processing on cloud infrastructures, the
efficiency of current encrypted domain libraries
needs to be improved to achieve commercial status.
Nevertheless, although the times for encrypted
operations are quite long, they are satisfactory for
applications with a light processing load, such as the
proposed spreadsheet. To apply this model in a
PaaS, cloud providers should support DPED
libraries on their servers.

This solution could be applied to other real-life
applications, such as enterprise resource planning
(ERP) or e-Health SaaS, where confidentiality is
crucial.

ACKNOWLEDGEMENTS

This research was supported by the SAFECLOUD
grant (09TIC014CT), funded by Xunta de Galicia
(Spain), and partially supported by the HIGEA grant
(IPT-2012-1218-300000), funded by the Spanish
Ministry of Economy and Competitiveness, the
PRISMED grant (IPT-2011-1076-900000), funded
by the Spanish Ministry of Science and Innovation.
This research was conducted with the collaboration
of GPSC research group of the University of Vigo,
which provided the DPED libraries, and Fundación
Barrié.

REFERENCES

Adkinson-Orellana, L., Rodríguez-Silva, D. A., Gil-
Castiñeira, F., and Burguillo-Rial, J., 2010. Privacy for
Google Docs: Implementing aTransparent Encryption
Layer. In Proc. of 2nd Cloud Computing International
Conference–CloudViews 2010 (pp. 20-21).

Brickell, E. F., Yacobi, Y., 1987. On Privacy
Homomorphisms. In Advances in Cryptology–
EUROCRYPT 87 (pp. 117-125). Springer Berlin
Heidelberg.

Chan, A. F., 2009. Symmetric-key homomorphic
encryption for encrypted data processing. In
Communications, 2009. ICC'09. IEEE International
Conference on (pp. 1-5). IEEE.

CloudLock. [Online]. [Accessed 6 January 2015].
Available from: http://www.cloudlock.com/

CryptRoll.2013. [Online]. [Accessed 6 January 2015].
Available from: http://cryptroll.android.informer.com/

Data Protection Directive. [Online]. [Accessed 6 January
2015]. Available from: http://ec.europa.eu/justice/data.
protection/index_en.html.

European CIOs and Cloud Services, 2010. [Online].
[Accessed 6 January 2015]. Available from:
http://www.colt.net/cio-research.

Gentry, C., 2009.Fully Homomorphic Encryption Using
Ideal Lattices. In41st ACM Symposium on Theory of
Computing–STOC (Vol. 9, pp. 169-178).

Hacigümüş, H., Iyer, B., Li, C., and Mehrotra, S., 2002.
Executing SQL over encrypted data in the database-
service-provider model. In Proceedings of the 2002
ACM SIGMOD international conference on
Management of data (pp. 216-227). ACM.

LOPD, Ley orgánica 15/1999 de Protección de Datos de
Carácter Personal, Boletín Oficial del Estado (in
Spanish), 1999.[Online].[Accessed 6 January 2015].
Available from: https://www.boe.es/

Paillier, P. (1999). Public-key cryptosystems based on
composite degree residuosity classes. In Advances in
cryptology–EUROCRYPT’99 (pp. 223-238).Springer
Berlin Heidelberg.

RDLOPD, Real Decreto 1720/2007, Reglamento de
Desarrollo de la LOPD, BoletínOficialdel Estado (in
Spanish), 2007.[Online]. [Accessed 6 January 2015].
Availablefrom: https://www.boe.es/

Rodriguez-Silva, D. A., González-Castaño, F. J.,
Adkinson-Orellana, L., Fernández-Cordeiro, A.,
Troncoso-Pastoriza, J. R., and González-Martínez, D.,
2011. Encrypted Domain Processing for Cloud
Privacy. Concept and Practical Experience. In
Proceedings of 1st International Conference on Cloud
Computing and Services Science–CLOSER 2011.

Van Dijk, M., Gentry, C., Halevi, S., and Vaikuntanathan,
V., 2010. Fully homomorphic encryption over the
integers. In Advances in Cryptology–EUROCRYPT
2010 (pp. 24-43). Springer Berlin Heidelberg.

ZecurePC. 2011. [Online]. [Accessed 6 January 2015].
Available from: http://www.zecurex.com/.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

520

