

CLOSER 2015
Proceedings of the

5th International Conference on
Cloud Computing and Services Science

Lisbon, Portugal

20 - 22 May, 2015

Sponsored by
INSTICC – Institute for Systems and Technologies of Information, Control and Communication

In Cooperation with
ACM SIGMIS – ACM Special Interest Group on Management Inform ation Systems

Copyright © 2015 SCITEPRESS – Science and Technology Publications
All rights reserved

Edited by Markus Helfert, Donald Ferguson and Víctor MéndezMuñoz

Printed in Portugal

ISBN: 978-989-758-104-5

Depósito Legal: 391663/15

http://closer.scitevents.org

closer.secretariat@insticc.org

BRIEF CONTENTS

INVITED SPEAKERS . IV

ORGANIZING AND STEERING COMMITTEES . V

PROGRAM COMMITTEE . VI

AUXILIARY REVIEWERS . X

SELECTED PAPERS BOOK . X

FOREWORD . XI

CONTENTS . XIII

III

INVITED SPEAKERS

Victor Chang

Leeds Beckett University

U.K.

Paolo Traverso

Center for Information Technology - IRST (FBK-ICT)

Italy

Omer Rana

Cardiff University

U.K.

Chung-Sheng Li

IBM

U.S.A.

Cornel Klein

Siemens AG

Germany

IV

ORGANIZING AND STEERING COMMITTEES

CONFERENCE CHAIR

Markus Helfert, Dublin City University, Ireland

PROGRAM CO-CHAIRS

Víctor Méndez Muñoz, Universitat Autònoma de Barcelona, UAB, Spain

Donald Ferguson, Dell, U.S.A.

PROCEEDINGS PRODUCTION

Bruno Encarnação, INSTICC, Portugal

Lúcia Gomes, INSTICC, Portugal

Ana Guerreiro, INSTICC, Portugal

Raquel Pedrosa, INSTICC, Portugal

Vitor Pedrosa, INSTICC, Portugal

Sara Santiago, INSTICC, Portugal

José Varela, INSTICC, Portugal

CD-ROM PRODUCTION

Pedro Varela, INSTICC, Portugal

GRAPHICS PRODUCTION AND WEBDESIGNER

André Lista, INSTICC, Portugal

Mara Silva, INSTICC, Portugal

SECRETARIAT

Carla Mota, INSTICC, Portugal

WEBMASTER

Susana Ribeiro, INSTICC, Portugal

V

PROGRAM COMMITTEE

Antonia Albani , University of St. Gallen,
Switzerland

Vasilios Andrikopoulos, University of Stuttgart,
Germany

Claudio Ardagna, Universita‘ degli Studi di
Milano, Italy

Alvaro Arenas, Instituto de Empresa Business
School, Spain

José Enrique Armendáriz-Iñigo, Universidad
Pública de Navarra, Spain

Muhammad Atif , Australian National University,
Australia

Amelia Badica, Faculty of Economics and
Business Administration, University of Craiova,
Romania

Costin Badica, University of Craiova, Romania

Costas Bekas, IBM Zurich Research Lab,
Switzerland

Adam S. Z. Belloum, University of Amsterdam,
The Netherlands

Simona Bernardi, Centro Universitario de la
Defensa - Academia General Militar, Spain

Karin Bernsmed, SINTEF ICT, Norway

Nik Bessis, University of Derby, U.K.

Luiz F. Bittencourt , IC/UNICAMP, Brazil

Stefano Bocconi, TU Delft, The Netherlands

Anne Boyer, Loria - Inria Lorraine, France

Ivona Brandi ć, Vienna UT, Austria

Iris Braun , Dresden Technical University,
Germany

Andrey Brito , Universidade Federal de Campina
Grande, Brazil

John Brooke, University of Manchester, U.K.

Anna Brunstrom , Karlstad University, Sweden

Rebecca Bulander, Pforzheim University of
Applied Science, Germany

Tomas Bures, Charles University in Prague, Czech
Republic

Massimo Cafaro, University of Salento, Italy

Manuel Isidoro Capel-Tuñón, University of
Granada, Spain

Miriam Capretz , University of Western Ontario,
Canada

Noel Carroll , National University of Ireland,
Galway, Ireland, Ireland

John Cartlidge, University of Bristol, U.K.

Valentina Casola, University of Naples Federico II,
Italy

Rong N. Chang, IBM T. J. Watson Research
Center, U.S.A.

Augusto Ciuffoletti , Università di Pisa, Italy

Daniela Barreiro Claro , Universidade Federal da
Bahia (UFBA), Brazil

José Cordeiro, E.S.T. Setúbal, I.P.S, Portugal

Thierry Coupaye, Orange, France

António Miguel Rosado da Cruz, Instituto
Politécnico de Viana do Castelo, Portugal

Eduardo Huedo Cuesta, Universidad
Complutense de Madrid, Spain

Eliezer Dekel, IBM Research Haifa, Israel

Yuri Demchenko, University of Amsterdam, The
Netherlands

Frédéric Desprez, LIP / INRIA, France

Ake Edlund, Royal Institute of Technology,
Sweden

Erik Elmroth , Umeå University and Elastisys AB,
Sweden

Robert van Engelen, Florida State University,
U.S.A.

Antonio Espinosa, Universitat Autònoma de
Barcelona, Spain

Donald Ferguson, Dell, U.S.A.

Tomás Fernández, Univ. Santiago de Compostela,
Spain

Stefano Ferretti, University of Bologna, Italy

VI

PROGRAM COMMITTEE (CONT.)

Mike Fisher, BT, U.K.

Geoffrey Charles Fox, Indiana University, U.S.A.

Chiara Francalanci, Politecnico di Milano, Italy

David Genest, Université d’Angers, France

Chirine Ghedira , IAE - University Jean Moulin
Lyon 3, France

Lee Gillam, University of Surrey, U.K.

Katja Gilly , Miguel Hernandez University, Spain

Tristan Glatard , CNRS, Canada

Andrzej Goscinski, Deakin University, Australia

Patrizia Grifoni , CNR, Italy

Stephan Groß, T-Systems Multimedia Solutions,
Germany

Dirk Habich , Dresden University of Technology,
Germany

Benjamin Heckmann, University of Applied
Sciences Darmstadt, Germany

Dong Huang, Chinese Academy of Sciences, China

Marianne Huchard , Lirmm Université Montpelier
2, France

Mohamed Hussien, Suez Canal University, Egypt

Sorin M. Iacob, Thales Nederland B.V., The
Netherlands

Ilian Ilkov , IBM Nederland B.V., The Netherlands

Anca Daniela Ionita, University Politehnica of
Bucharest, Romania

Fuyuki Ishikawa , National Institute of Informatics,
Japan

Hiroshi Ishikawa , Tokyo Metropolitan University,
Japan

Ivan Ivanov, SUNY Empire State College, U.S.A.

Martin Gilje Jaatun , SINTEF ICT, Norway

Keith Jeffery , Independent Consultant (previously
Science and Technology Facilities Council), U.K.

Meiko Jensen, Independent Centre for Privacy
Protection Schleswig-Holstein, Germany

Yiming Ji , University of South Carolina Beaufort,
U.S.A.

Ming Jiang, University of Leeds, U.K.

Xiaolong Jin, Chinese Academy of Sciences, China

Carlos Juiz, Universitat de les Illes Balears, Spain

David R. Kaeli, Northeastern University, U.S.A.

Yücel Karabulut , VMware, U.S.A.

Gabor Kecskemeti, MTA SZTAKI, Hungary

Attila Kertesz , MTA SZTAKI, Hungary

Claus-Peter Klas, GESIS Leibniz Institute for the
Social Sciences, Germany

Carsten Kleiner, University of Applied Sciences &
Arts Hannover, Germany

Geir M. Køien, University of Agder, Norway

Dimitri Konstantas , University of Geneva,
Switzerland

George Kousiouris, National Technical University
of Athens, Greece

László Kovács, MTA SZTAKI, Hungary

Marcel Kunze, Karlsruhe Institute of Technology,
Germany

Young Choon Lee, University of Sydney, Australia

Miguel Leitão, ISEP, Portugal

Wilfried Lemahieu , KU Leuven, Belgium

Fei Li , Siemens AG, Austria, Austria

Donghui Lin , Kyoto University, Japan

Shijun Liu , School of computer science and
technology, Shandong University, China

Xumin Liu , Rochester Institute of Technology,
U.S.A.

Francesco Longo, Università degli Studi di
Messina, Italy

Pedro Garcia Lopez, University Rovira i Virgili,
Spain

Suksant Sae Lor, HP Labs, U.K.

Joseph P. Loyall, BBN Technologies, U.S.A.

VII

PROGRAM COMMITTEE (CONT.)

Simone Ludwig, North Dakota State University,
U.S.A.

Glenn Luecke, Iowa State University, U.S.A.

Hanan Lutfiyya , University of Western Ontario,
Canada

Theo Lynn, Dublin City University, Ireland

Shikharesh Majumdar, Carleton University,
Canada

Elisa Marengo, Free University of Bozen-Bolzano,
Italy

Ioannis Mavridis , University of Macedonia,
Greece

Jose Ramon Gonzalez de Mendivil, Universidad
Publica de Navarra, Spain

Mohamed Mohamed, IBM Research, Almaden,
U.S.A.

Owen Molloy, National University of Ireland,
Galway, Ireland

Marco Casassa Mont, Hewlett-Packard
Laboratories, U.K.

Kamran Munir , University of the West of England
(Bristol, UK), U.K.

Víctor Méndez Muñoz, Universitat Autònoma de
Barcelona, UAB, Spain

Hidemoto Nakada, National Institute of Advanced
Industrial Science and Technology (AIST), Japan

Philippe Navaux, UFRGS - Federal University of
Rio Grande Do Sul, Brazil

Jean-Marc Nicod, Institut FEMTO-ST, France

Bogdan Nicolae, IBM Research, Ireland

Karsten Oberle, Alcatel-Lucent Bell Labs,
Germany

Sebastian Obermeier, ABB Corporate Research,
Switzerland

David Padua, University of Illinois at
Urbana-Champaign, U.S.A.

Federica Paganelli, CNIT - National
Interuniversity Consortium for
Telecommunications, Italy

Claus Pahl, Dublin City University, Ireland

Michael A. Palis, Rutgers University, U.S.A.

Nikos Parlavantzas, IRISA, France

David Paul, The University of Newcastle, Australia

Siani Pearson, HP Labs, Bristol, U.K.

Mikhail Perepletchikov , RMIT University,
Australia

Juan Fernando Perez, Imperial College London,
U.K.

Giovanna Petrone, University of Torino, Italy

Agostino Poggi, University of Parma, Italy

Antonio Puliafito , Università degli Studi di
Messina, Italy

Francesco Quaglia, Sapienza Università di Roma,
Italy

Cauligi (Raghu) Raghavendra, University of
Southern California, Los Angeles, U.S.A.

Rajendra Raj, Rochester Institute of Technology,
U.S.A.

Arcot Rajasekar, University of North Carolina at
Chapel Hill, U.S.A.

Arkalgud Ramaprasad, University of Illinois at
Chicago, U.S.A.

Manuel Ramos-Cabrer, University of Vigo, Spain

Nadia Ranaldo, University of Sannio, Italy

Andrew Rau-Chaplin, Dalhousie University,
Canada

Christoph Reich, Hochschule Furtwangen
University, Germany

Norbert Ritter , University of Hamburg, Germany

Luis Rodero-Merino, Spain

Jerome Rolia, Hewlett Packard Labs, Canada

Pedro Frosi Rosa, UFU - Federal University of
Uberlandia, Brazil

Elena Sanchez-Nielsen, Universidad De La
Laguna, Spain

Patrizia Scandurra, University of Bergamo, Italy

Erich Schikuta, Universität Wien, Austria

VIII

PROGRAM COMMITTEE (CONT.)

Lutz Schubert, Ulm University, Germany

Uwe Schwiegelshohn, TU Dortmund University,
Germany

Wael Sellami, Faculty of Sciences Economics and
management, Sfax, Tunisia

Giovanni Semeraro, University of Bari Aldo
Moro, Italy

Carlos Serrao, ISCTE-IUL, Portugal

Armin Shams, Sharif University of Technology,
Iran, Islamic Republic of

Keiichi Shima, IIJ Innovation Institute, Japan

Marten van Sinderen, University of Twente, The
Netherlands

Richard O. Sinnott, University of Melbourne,
Australia

Frank Siqueira, Universidade Federal de Santa
Catarina, Brazil

Cosmin Stoica Spahiu, University of Craiova -
Faculty of Automation, Computers and Electronics,
Romania

Josef Spillner, Technische Universität Dresden,
Germany

Ralf Steinmetz, Technische Universität Darmstadt,
Germany

Burkhard Stiller , University of Zürich,
Switzerland

Yasuyuki Tahara, The University of
Electro-Communications, Japan

Cedric Tedeschi, IRISA - University of Rennes 1,
France

Gilbert Tekli , Nobatek, France, Lebanon

Joe Tekli, Antonine University (UPA), Lebanon

Patricia J. Teller , University of Texas at El Paso,
U.S.A.

Guy Tel-Zur , Ben-Gurion University of the Negev
(BGU), Israel

Orazio Tomarchio, University of Catania, Italy

Johan Tordsson, Umea University and Elastisys,
Sweden

Francesco Tusa, University College London, U.K.

Astrid Undheim , Telenor ASA, Norway

Geoffroy Vallee, Oak Ridge National Laboratory,
U.S.A.

Luis M. Vaquero , HP Labs, U.K.

Sabrina de Capitani di Vimercati, Università
degli Studi di Milano, Italy

Bruno Volckaert , Ghent University, Belgium

Hiroshi Wada, NICTA, Australia

Maria Emilia M. T. Walter , University of Brasilia,
Brazil

Chen Wang, CSIRO ICT Centre, Australia

Dadong Wang, CSIRO, Australia

Martijn Warnier , Delft University of Technology,
The Netherlands

Hany F. El Yamany, Suez Canal University, Egypt

Bo Yang, University of Electronic Science and
Technology of China, China

Zhifeng Yun, University of Houston, U.S.A.

Michael Zapf, Georg Simon Ohm University of
Applied Sciences, Germany

Wolfgang Ziegler, Fraunhofer Institute SCAI,
Germany

IX

AUXILIARY REVIEWERS

Márcio Assis, Unicamp, Brazil

Maria Estrela Ferreira da Cruz, Instituto
Politécnico de Viana do Castelo, Portugal

Fernando Gómez-Folgar, Centro Singular de
Investigación en Tecnoloxías da Información, Spain

Mehdi Khouja, University of Gabes, Tunisia

Amardeep Mehta, Umeå University, Sweden

Athina Provataki, University of Macedonia,
Greece

Eduardo Roloff, UFRGS, Brazil

SELECTED PAPERS BOOK

A number of selected papers presented at CLOSER 2015 will be published by Springer-Verlag in a CCIS Series
book. This selection will be done by the Conference Chair and Program Co-chairs, among the papers actually
presented at the conference, based on a rigorous review by the CLOSER 2015 Program Committee members.

X

FOREWORD

This book contains the proceedings of the 5th International Conference on Cloud Computing
and Services Science (CLOSER 2015) which was organized and sponsored by the Institute
for Systems and Technologies of Information, Control and Communication (INSTICC). This
conference was held in Cooperation with the Association for Computing Machinery - Special
Interest Group on Management Information Systems.

The technical program of CLOSER 2015 covered areas like “Cloud Computing Fundamen-
tals”, “Services Science Foundation for Cloud Computing”, “Cloud Computing Platforms
and Applications”, “Cloud Computing Enabling Technology” and “Mobile Cloud Compu-
ting and Services”. We expect that these proceedings will appeal to a broad audience of
engineers, scientists and business people interested in cloud computing and service systems.
We further believe that the papers in these proceedings demonstrate new and innovative
solutions, and highlight technical problems in the mentioned areas that are challenging and
worthwhile.

The conference was also complemented with the second edition of the Emerging Software
as a Service and Analytics Workshop – EsaaSA 2015 (co-chaired by Victor Chang, Muthu
Ramachandran, Gary Wills, Robert Walters, Verena Kantere and Chung-Sheng Li). CLO-
SER 2015 received 146 paper submissions from all continents. From these, 23 papers were
published and presented as full papers, 64 were accepted as short papers. These numbers,
leading to a full-paper acceptance ratio of 15,8 % and an oral paper acceptance ratio of
60%, show the intention of preserving a high quality forum for the next editions of this
conference.

The high quality of the CLOSER 2015 programme was enhanced by five keynote lectures,
delivered by experts in their fields, including: Victor Chang (Leeds Beckett University,
United Kingdom), Paolo Traverso (Center for Information Technology - IRST (FBK-ICT),
Italy), Omer Rana (Cardiff University, United Kingdom), Chung-Sheng Li (IBM, United
States) and Cornel Klein (Siemens AG, Germany).

The meeting was also complemented with a Doctoral Consortium on “Cloud Computing
and Services Science” chaired by Prof. Paulo Novais.

The high number and high quality of the papers received imposed difficult choices in the
review process. Each paper was reviewed by at least two experts. Those papers that, ac-
cording to the reviews, were considered adequately balanced in terms of quality, originality
and relevance to the conference themes were selected. We hope that these Conference Pro-
ceedings, submitted for indexation to Thomson Reuters Conference Proceedings Citation
Index, INSPEC, DBLP, EI and Scopus, may help the Cloud Computing community to find
interesting research work. All presented papers will be available at the SCITEPRESS digital
library. Furthermore, a short list of presented papers will be selected and their authors invi-
ted to submit an extended and revised version of their paper to be included in a forthcoming

XI

book of CLOSER Selected Papers to be published in CCIS Series by Springer during 2015.
A short list of papers will also be selected for publication in a special issue of the Springer’s
Computing journal and Grid Computing journal.

At the closing session, awards based on the best combined marks of paper reviewing, as
assessed by the Program Committee, and the quality of the presentation, as evaluated by
session chairs at the conference venue, were conferred to the best papers and the best
student papers submitted to the conference. The best paper award for this year´s edition
was sponsored by Dell.

As a final point, we would like to express our thanks, first of all, to the authors of the
technical papers, whose work and dedication make possible to put together a program that
we believe is very exciting and of high technical quality. Next, we would like to thank all
the members of the program committee and auxiliary reviewers, who helped us with their
expertise and time. We would also like to thank the invited speakers for their invaluable
contribution and for sharing their vision with the CLOSER 2015 audience. Special thanks
should be addressed to the INSTICC Steering Committee whose invaluable work made this
event possible and finally, a word of appreciation for the hard work of the secretariat: or-
ganizing a conference of this level is a task that can only be achieved by the collaborative
effort of a dedicated and highly capable team.

Markus Helfert
Dublin City University, Ireland

Víctor Méndez Muñoz
Universitat Autònoma de Barcelona, UAB, Spain

Donald Ferguson
Dell, U.S.A.

XII

CONTENTS

INVITED SPEAKERS

KEYNOTE SPEAKERS

Cloud Computing and Big Data Can Improve the Quality of Our Life

Victor Chang
IS-5

Change Alone is Unchanging - Continuous Context-aware Adaptation of Service-based Systems for

Smart Cities and Communities

Paolo Traverso
IS-7

In-transit Analytics on Distributed Clouds - Applications and Architecture

Omer Rana
IS-9

At Scale Enterprise Computing

Chung-Sheng Li
IS-11

Software- and Systems Architecture for Smart Vehicles

Cornel Klein
IS-13

CLOUD COMPUTING FUNDAMENTALS

FULL PAPERS

Effects of Active Cooling on Workload Management in High Performance Processors

Won Ho Park and C. K. Ken Yang
5

A Mathematical Programming Approach to Multi-cloud Storage

Makhlouf Hadji
17

Cloud Provider Transparency - A View from Cloud Customers

Daniela Cruzes and Martin Gilje Jaatun
30

OCCI and TTCN-3 - Towards a Standardized Cloud Quality Assessment Framework

Yongzheng Liang
40

Using Cloud-Aware Provenance to Reproduce Scientific Workflow Execution on Cloud

Khawar Hasham, Kamran Munir and Richard McClatchey
49

Addressing Issues of Cloud Resilience, Security and Performance through Simple Detection of

Co-locating Sibling Virtual Machine Instances

John O’Loughlin and Lee Gillam
60

SHORT PAPERS

P-TOSCA Portability of SOA Applications

Marjan Gusev, Magdalena Kostoska, Sasko Ristov and Aleksandar Donevski
71

A Cloud-based Data Analysis Framework for Object Recognition

Rezvan Pakdel and John Herbert
79

Factors Affecting Cloud Adoption and Their Interrelations

Radhika Garg and Burkhard Stiller
87

XIII

A Comparative Study of Current Open-source Infrastructure as a Service Frameworks

Theo Lynn, Graham Hunt, David Corcoran, John Morrison and Philip Healy
95

CSP Formulation for Scheduling Independent Jobs in Cloud Computing

M’hamed Mataoui, Faouzi Sebbak, Kadda Beghdad Bey and FaridBenhammadi
105

Quality of Service Trade-offs between Central Data Centers and Nano Data Centers

Farzaneh Akhbar and Tolga Ovatman
113

Cloud Readiness Assessment of Legacy Application

Flavio Corradini, Francesco De Angelis, Andrea Polini and Samuele Sabbatini
119

Development of an Anything Relationship Management Prototype for the Smart Factory

Jonathan Knoblauch, Rebecca Bulander and Thomas Greiner
127

Redefining the Cloud based on Beneficial Service Characteristics - A New Cloud Taxonomy Leads

to Economically Reasonable Semi-cloudification

Bastian Kemmler and Dieter Kranzlmüller
135

CoMA: Resource Monitoring of Docker Containers

Lara Lorna Jiménez, Miguel Gómez Simón, Olov Schelén, JohanKristiansson, Kåre Synnes and
Christer Åhlund

145

A Survey of Trust Management Models for Cloud Computing

Flavio Corradini, Francesco De Angelis, Fabrizio Ippolitiand Fausto Marcantoni
155

Towards Dynamic QoS Monitoring in Service Oriented Architectures

Norman Ahmed and Bharat Bhargava
163

Reality Vs Hype - Does Cloud Computing Meet the Expectations of SMEs?

Katie Wood and Kevan Buckley
172

Offline Scheduling of Map and Reduce Tasks on Hadoop Systems

Aymen Jlassi, Patrick Martineau and Vincent Tkindt
178

A Generalized Service Replication Process in Distributed Environments

Hany F. El Yamany, Marwa F. Mohamed, Katarina Grolinger and Miriam A. M. Capretz
186

Implementation of Cloud ERP - Moderating Effect of Compliance on the Organizational Factors

Shivam Gupta and Subhas C. Misra
194

User Requirement and Behavioral Aspects in Web Service Discovery

Wala Ben messaoud, Khaled Ghédira and Youssef Ben Halima
199

PaaSword: A Holistic Data Privacy and Security by Design Framework for Cloud Services

Yiannis Verginadis, Antonis Michalas, Panagiotis Gouvas,Gunther Schiefer, Gerald Hübsch and
Iraklis Paraskakis

206

Classifying Security Threats in Cloud Networking

Bruno M. Barros, Leonardo H. Iwaya, Marcos A. Simplício Jr.,Tereza C. M. B. Carvalho, András Méhes
and Mats Näslund

214

Setting Priorities - A Heuristic Approach for Cloud Data Center Selection

Ronny Hans, David Steffen, Ulrich Lampe, Björn Richerzhagen and Ralf Steinmetz
221

XIV

SERVICES SCIENCE FOUNDATION FOR CLOUD COMPUTING

SHORT PAPERS

Business Process Generation by Leveraging Complete Search over a Space of Activities and Process

Goals

Dipankar Deb, Nabendu Chaki and Aditya Ghose
233

“BPELanon” - Protect Business Processes on the Cloud

Marigianna Skouradaki, Vincenzo Ferme, Frank Leymann, Cesare Pautasso and Dieter H. Roller
241

Automated Mapping of Business Process Execution Language to Diagnostics Models

Hamza Ghandorh and Hanan Lutfiyya
251

Cross-layer Service Adaptation - State-of-the-Art, Shortcoming Analysis, and Future Research

Directions

Ameni Meskini, Yehia Taher, Rafiqul Haque and Yahya Slimani
260

The Influence of the Provider’s Service Fairness on the Customer’s Service Recovery Satisfaction

and on Positive Behavioral Intentions in Cloud Computing

Montri Lawkobkit and Roland Blomer
268

Context-aware Security@run.time Deployment

Wendpanga Francis Ouedraogo, Frederique Biennier, Catarina Ferreira Da Silva and Parisa Ghodous
276

Choreography-based Consolidation of Interacting Processes Having Activity-based Loops

Sebastian Wagner, Oliver Kopp and Frank Leymann
284

Key Requirements for Predictive Analytical IT Service Management - Architectural Key

Characteristics for a Cloud based Realization

Christopher Schwarz, Hans-Peter Bauer, Lukas Blödorn and Erwin Zinser
297

BPMN Extensions for Decentralized Execution and Monitoring of Business Processes

Jonas Anseeuw, Gregory Van Seghbroeck, Bruno Volckaert andFilip De Turck
304

A Smart Decisional Cognitive System based on Self-adaptability of Web Services to the Context

Faîçal Felhi, Marwa Ayadi and Jalel Akaichi
310

CLOUD COMPUTING PLATFORMS AND APPLICATIONS

FULL PAPERS

Secure Evidence Collection and Storage for Cloud Accountability Audits

Thomas Ruebsamen, Tobias Pulls and Christoph Reich
321

Supporting Multiple Persistence Models for PaaS Applications using MDE - Issues on Cloud

Portability

Elias Adriano Nogueira da Silva, Daniel Lucrédio, Ana Moreira and Renata Fortes
331

A Lightweight Tool for Anomaly Detection in Cloud Data Centres

Sakil Barbhuiya, Zafeirios Papazachos, Peter Kilpatrick and Dimitrios S. Nikolopoulos
343

Performance and Cost Evaluation for the Migration of a Scientific Workflow Infrastructure to the

Cloud

Santiago Goméz Sáez, Vasilios Andrikopoulos, Michael Hahn, Dimka Karastoyanova, Frank Leymann,
Marigianna Skouradaki and Karolina Vukojevic-Haupt

352

XV

SHORT PAPERS

An Approach in the Design of Common Authentication Solution for a Multi-Platform Cloud

Environment

Primož Cigoj, Borka Jerman Blažič and Tomaž Klobučar
365

Executing Bag of Distributed Tasks on Virtually Unlimited Cloud Resources

Long Thai, Blesson Varghese and Adam Barker
373

Automatic Abstraction of Flow of Control in a System of Distributed Software Components

Nima Kaviani, Michael Maximilien, Ignacio Silva-Lepe and Isabelle Rouvellou
381

Towards Cross-layer Monitoring of Cloud Workflows

Eric Kübler and Mirjam Minor
389

Automating Resources Discovery for Multiple Data Stores Cloud Applications

Rami Sellami, Michel Vedrine, Sami Bhiri and Bruno Defude
397

MusicBeetle - Intelligent Music Royalties Collection and Distribution System

Carlos Serrão, Hélder Carvalho and Nelson Carvalho
406

Context-aware MapReduce for Geo-distributed Big Data

Marco Cavallo, Giuseppe Di Modica, Carmelo Polito and Orazio Tomarchio
414

CLOUD COMPUTING ENABLING TECHNOLOGY

FULL PAPERS

Secure Keyword Search over Data Archives in the Cloud - Performance and Security Aspects of

Searchable Encryption

Christian Neuhaus, Frank Feinbube, Daniel Janusz and Andreas Polze
427

A Many-objective Optimization Framework for Virtualized Datacenters

Fabio López Pires and Benjamín Barán
439

CloudMPL: A Domain Specific Language for Describing Management Policies for an Autonomic

Cloud Infrastructure

Marwah M. Alansari, Andre Almeida, Nelly Bencomo and BehzadBordbar
451

Dynamic Testing and Deployment of a Contract Monitoring Service

Ellis Solaiman, Ioannis Sfyrakis and Carlos Molina-Jimenez
463

ANY2API – Automated APIfication - Generating APIs for Executables to Ease their Integration

and Orchestration for Cloud Application Deployment Automation

Johannes Wettinger, Uwe Breitenbücher and Frank Leymann
475

A Modelling Concept to Integrate Declarative and Imperative Cloud Application Provisioning

Technologies

Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Frank Leymannand Johannes Wettinger
487

SHORT PAPERS

A Hedonic Price Index for Cloud Computing Services

Persefoni Mitropoulou, Evangelia FIliopoulou, StavroulaTsaroucha, Christos Michalakelis and
Mara Nikolaidou

499

XVI

New Approach to Partitioning Confidential Resources in Hybrid Clouds

Kaouther Samet, Samir Moalla and Mahdi Khemakhem
506

Cloud Spreadsheets Supporting Data Processing in the Encrypted Domain

D. A. Rodríguez-Silva, L. Adkinson-Orellana, B. Pedrero-López and F. J. González-Castaño
514

SLAFM - A Service Level Agreement Formal Model for Cloud Computing

Lucia De Marco, Filomena Ferrucci and M-Tahar Kechadi
521

Towards High Performance Big Data Processing by Making Use of Non-volatile Memory

Shuichi Oikawa
529

The Docker Ecosystem Needs Consolidation

René Peinl and Florian Holzschuher
535

Container-based Virtualization for HPC

Holger Gantikow, Sebastian Klingberg and Christoph Reich
543

Towards Self-Protective Multi-Cloud Applications - MUSA – a Holistic Framework to Support the

Security-Intelligent Lifecycle Management of Multi-Cloud Applications

Erkuden Rios, Eider Iturbe, Leire Orue-Echevarria, Massimiliano Rak and Valentina Casola
551

High Performance Virtual Machine Recovery in the Cloud

Valentina Salapura and Richard Harper
559

Adopting an Agent and Event Driven Approach for Enabling Mutual Auditability and Security

Transparency in Cloud based Services

Moussa Ouedraogo, Eric Dubois, Djamel Khadraoui, Sebastien Poggi and Benoit Chenal
565

MOBILE CLOUD COMPUTING AND SERVICES

FULL PAPERS

The Case for Visualization as a Service - Mobile Cloud Gaming as an Example

Abdelmounaam Rezgui and Zaki Malik
577

Cloud-side Execution of Database Queries for Mobile Applications

Robert Pettersen, Steffen Viken Valvåg, Åge Kvalnes and DagJohansen
586

SHORT PAPER

Telco Clouds - Modelling and Simulation

Jakub Krzywda, William Tärneberg, Per-Olov Östberg, MariaKihl and Erik Elmroth
597

AUTHOR INDEX 611

XVII

INVITED SPEAKERS

KEYNOTE SPEAKERS

Cloud Computing and Big Data Can Improve the Quality of Our Life

Victor Chang
Leeds Beckett University, U.K.

Abstract: The rise of Cloud Computing and Big Data has played influential roles in the evolution of IT services and
has made significant contributions to different disciplines. For example, there are ten services that cannot be
achieved without the combined effort from Cloud Computing and Big Data techniques: They are Storage as
a Service, Health Informatics as a Service, Financial Software as a Service, Business Intelligence as a
Service, Education as a Service, Big Data Processing as a Service, Integration as a Service, Security as a
Service, Social Network as a Service and Data Visualization as a Service (Weather Science) respectively, in
which the keynote speaker will summarize the motivation, methods, results and contributions in each
service. He will explain how the unique services can improve the quality of our life by understanding the
complex biological and physiological science and ensuring the best approaches of treatments and actions
can be adopted. These include development projects and successful deliveries in brain segmentation and
learning, proteins and body defense mechanisms, tumor studies and DNA sequencing. Research and
enterprise contributions to other disciplines are available which include Business Intelligence as a Service to
provide accurate and up-to-date tracking of risk and prices with regard to the investment, as well as
contributions for weather data visualization and forecasting to inform the general public about the
consequences of the extreme weather.

BRIEF BIOGRAPHY

Dr. Victor Chang is a Senior Lecturer in the School
of Computing, Creative Technologies at Leeds
Beckett University, UK and a visiting Researcher at
the University of Southampton, UK. He is an expert
on Cloud Computing and Big Data in both academia
and industry with extensive experience in related
areas since 1998. Dr Chang completed a PGCert
(Higher Education) and PhD (Computer Science)
within four years while working full-time. He has
over 70 peer-reviewed published papers. He won
£20,000 funding in 2001 and £81,000 funding in
2009. He was involved in part of the £6.5 million
project in 2004, part of the £5.6 million project in
2006 and part of a £300,000 project in 2013. Dr
Chang won a 2011 European Identity Award in
Cloud Migration. He was selected to present his
research in the House of Commons in 2011 and won
the best student paper in CLOSER 2012. He has
demonstrated Storage as a Service, Health
Informatics as a Service, Financial Software as a
Service, Education as a Service, Big Data Processing
as a Service, Integration as a Service, Security as a
Service, Social Network as a Service, Data
Visualization as a Service (Weather Science) and
Consulting as Service in Cloud Computing and Big
Data services in both of his practitioner and

academic experience. His proposed frameworks
have been adopted by several organizations. He is
the founding chair of international workshops in
Emerging Software as a Service and Analytics and
Enterprise Security. He is a joint Editor-in-Chief
(EIC) in International Journal of Organizational and
Collective Intelligence and a founding EIC in Open
Journal of Big Data. He is the Editor of a highly
prestigious journal, Future Generation Computer
Systems (FGCS). He is a reviewer of numerous
well-known journals. He has 27 certifications with
97% on average. He is a keynote speaker of
CLOSER/WEBIST/ICT4AgeingWell 2015. Dr
Chang has published three books on Cloud
Computing which are available on Amazon website.

IS-5

Change Alone Is Unchanging
Continuous Context-aware Adaptation of Service-based Systems for Smart Cities

and Communities

Paolo Traverso
Center for Information Technology - IRST (FBK-ICT), Italy

Abstract: Service-based systems have to deal with highly dynamic environments in which they must often operate.
Consider for instance the case of smart cities and communities, i.e., communities of people who actively
participate to the creation and use of ICT-based solutions to improve their quality of life within their own
city or region. Within a smart city and community, the context in which applications must operate
continuously changes, as well as the situation, the accessibility to (ICT-based) services, the people, their
interactions, requirements, and preferences. Moreover, most often, the only way applications can react to
such changing environment is at run-time, since we cannot predict a priori different situations, requirements,
interactions, and availability of (ICT) services. Continuous context-aware and incremental adaptation
becomes therefore the key enabling property for the delivery of ICT based value added services to cope with
the dynamics of the continuously changing environment.
In my talk, I will present some of the compelling needs for context aware incremental adaptation in the case
of service-based applications for smart cities and communities. I will discuss some alternative approaches,
some lessons learned from applications we have been working with in this field, and the still many related
open research challenges.

BRIEF BIOGRAPHY

Paolo Traverso is the Director of FBK ICT irst,
Centre for Information Technology at FBK
(Fondazione Bruno Kessler) since 2007. The Centre
counts about 200 people working on software and
services, cloud computing, embedded systems,
content and semantics, perception and interaction.
He was also CEO of Trento RISE (the Trento
Research, Innovation, and Education System) from
2011 until June 2014, the association between FBK
and the University of Trento, which is part of the
European Institution of Innovation and Technology
(EIT) in ICT, the EIT ICT Labs.

Paolo joined IRST after working in the advanced
technology groups of companies for management
information consulting in Chicago, London, and
Milan, where he led projects for the development of
safety critical systems, data and knowledge
management, and service oriented applications. He
contributed to research in automated planning and
service oriented computing.

He was Program Chair of the International
Conference on Automated Planning and Scheduling
(ICAPS), General and Program Chair of the
International Conference on Service-Oriented

Computing (ICSOC), and Program Chair of the
Extended Semantic Web Conference (ESWC). His
recent research interests are in the monitoring,
adaptation, evolution of service oriented
applications, and in the development of new-
generation services delivery platforms for improving
individual and societal quality of life.

IS-7

In-transit Analytics on Distributed Clouds
Applications and Architecture

Omer Rana
Cardiff University, U.K.

Abstract: The increasing deployment of sensor network infrastructures (in a variety of applications, ranging from
environmental monitoring, "Smart Cities", energy demand forecasting, social media analysis to emergency
response) has led to large volumes of data becoming available, leading to new challenges in storing,
processing, analysing and transferring such data. This is especially true when data from multiple sensors is
pre-processed prior to delivery to users. Where such data is processed in-transit (i.e. from data capture to
delivery to a user) over a shared distributed computing infrastructure, and due to the increasing availability
of software defined networks, it is necessary to provide some Quality of Service (QoS) guarantees to each
user. This talk provides: (i) scenarios of applications that have these types of characteristics; (ii) a
computational architecture for supporting QoS for multiple concurrent scientific workflow data streams
being processed (prior to delivery to a user) over a shared infrastructure. The architecture is used to
demonstrate how a streaming pipeline, with intermediate data size variation (inflation/deflation), can be
supported and managed using a dynamic control strategy at each node. Such a strategy supports end-to-end
QoS with variations in data size between the various nodes involved in the workflow enactment process.

BRIEF BIOGRAPHY

Omer Rana is Professor of Performance Engineering
at Cardiff School of Computer Science &
Informatics. He was formerly the deputy director of
the Welsh eScience Centre at Cardiff University --
where he had an opportunity to collaborate with a
number of scientists working in computational
science and engineering. He holds a PhD in "Neural
Computing and Parallel Architectures" from
Imperial College (University of London, UK). His
research interests are in the areas of high
performance distributed computing, data mining and
analysis and multi-agent systems. Prior to joining
Cardiff University he worked as a software
developer with Marshall BioTechnology Limited in
London, working on projects with a number of
international biotech companies, such as Merck,
Hybaid and Amersham International. He has been
involved in the Distributed Programming
Abstractions and the 3DPAS themes at the UK
National eScience Institute. He is an associate editor
of the ACM Transactions on Autonomous and
Adaptive Systems, IEEE Transactions on Cloud
Computing, series co-editor of the book series on
"Autonomic Systems" by Birkhauser publishers, and
on the editorial boards of "Concurrency and
Computation: Practice and Experience" (John

Wiley), the Journal of Computational Science
(Elsevier) and the recently launched IEEE Cloud
Computing magazine. Along with his co-
researchers, he was recipient of the best paper award
at CLOSER 2013 (Aachen, Germany).

IS-9

At Scale Enterprise Computing

Chung-Sheng Li
IBM, U.S.A.

Abstract: At scale computing” is becoming one of the most disruptive trends in recent technology history, and is
becoming the central theme for the post distributed computing era and likely to become the primary driver
for the innovation and IT transformation during the coming decade.
At scale computing describes a computing environment that may involves very large amount of
computation, transactions, large amount of data, large number of users, or any combinations of the above.
Recent examples of at scale computing include AWS/Google datacenters, Amazon/Alibaba e-Commerce
activities, Facebook, Google search, Netflix, etc. These are in direct contrast with more traditional at scale
enterprise such as Walmart, UPS, VISA/Mastercard/Amex.
At scale computing is a paradigm shift from the traditional distributed computing. It is both a blessing and a
curse: Very large scale of computation offers new opportunities to rethink how to achieve resiliency
without having to pay for redundancy. It definitely promotes the possibility of “fail in place” as opposed to
having to perform field service of a failed component in the environment as soon as it happens. It also
offers great opportunity to amortize the potential investment involved in optimization and customization.
At scale does impose severe challenge on just about every aspect of a large scale system, including system
architecture, hardware, software and the continuous operations. It stresses the importance of continuous
availability, extreme scalability, and maniac focus on cost efficiency (capex, opex) as every penny counts in
this at scale environment.
In this keynote, we will discuss this new “at scale” era - which we believed has started, and perhaps well
under way. Nearly all exciting innovations for enterprise computing during the past decade originated from
this environment. These innovative technologies were often motivated by at scale business models. All of
these at scale business models started small. They invariably found the recipe for creating a virtuous cycle
among the “addictive” services or content they provided, and the community and ecosystem created on top
of it. In such a virtuous cycle, addictive content or services attracted new members into the community
(either as direct consumers or developers), which in turn generate more content or develop more services.
This virtuous cycle often leads to winner takes all in nearly all case studies.

BRIEF BIOGRAPHY

Dr. Chung-Sheng Li is currently the director of the
Commercial Systems Department, PI for the IBM
Research Cloud Initiatives, and the executive
sponsor of the Security 2.0 strategic initiative. He
has been with IBM T.J. Watson Research Center
since May 1990. His research interests include cloud
computing, security and compliance, digital library
and multimedia databases, knowledge discovery and
data mining, and data center networking. He has
authored or coauthored more than 130 journal and
conference papers and received the best paper award
from IEEE Transactions on Multimedia in 2003. He
is both a member of IBM Academy of Technology
and a Fellow of the IEEE. He received BSEE from
National Taiwan University, Taiwan, R.O.C., in
1984, and the MS and PhD degrees in electrical

engineering and computer science from the
University of California, Berkeley, in 1989 and
1991, respectively.

IS-11

Software- and Systems Architecture for Smart Vehicles

Cornel Klein
Siemens AG, Germany

Abstract: Both fully automated driving and electromobility are promising approaches to address the challenges of
mobility with regards to sustainability, urbanization and demographic change. Moreover, they also change
the usage patterns and concepts for future passenger vehicles and enable new kinds of applications for
special purpose vehicles, for instance in logistics. Recently, many projects and demonstrators have shown
the feasiblity and tremendous potential of driving automation for building such “Smart vehicles”. However,
we are convinced that for the cost-effective development, validation and deployment of automation
functions current vehicle architectures are insufficient. Therefore, we present results and research directions
in software- and systems architectures. Moreover, we discuss their relevance for the efficient
implementation of new vehicle functions and innovative applications.

BRIEF BIOGRAPHY

Cornel Klein is Software Architect and Project
Manager for the Technology & Innovation Project
“eCar” at Siemens Corporate Technologies in
Munich. He is project manager and coordinator for
RACE (Robust and reliable Automotive Computing
Environment for future eCars) which aims at the
development of an advanced automotive E/E
architecture. In various positions at Siemens, he has
been responsible for software technologies and SW
based innovations. Starting his career 1998 at
Siemens Public Networks, he has gained an
extensive knowledge in communication networks,
embedded systems, IT platforms and SW
architecture as well as in application domains like
eCars and smart environments. He holds a master
and a PhD degree in Computer Science from the
Technical University of Munich.

IS-13

CLOUD COMPUTING FUNDAMENTALS

FULL PAPERS

Effects of Active Cooling on Workload Management in
High Performance Processors

Won Ho Park and C. K. Ken Yang
Department of Electrical Engineering, UCLA, Los Angeles, U.S.A.

wonhopark80@gmail.com, yang@ee.ucla.edu

Keywords: Power-aware Systems, Workload Scheduling, Server Provisioning, Electronic Cooling, Data Centers,
Thermal Management.

Abstract: This paper presents an energy-efficient workload scheduling methodology for multi-core multi-processor
systems under actively cooled environment that improves overall system power performance with minimal
response time degradation. Using a highly efficient miniature-scale refrigeration system, we show that
active-cooling by refrigeration on a per-server basis not only leads to substantial power-performance
improvement, but also improves the overall system performance without increasing the overall system
power including the cost of cooling. Based on the measured results, we present a model that captures
different relations and parameters of multi-core processor and the refrigeration system. This model is
extended to illustrate the potential of power optimization of multi-core multi-processor systems and to
investigate different methodologies of workload scheduling under the actively cooled environment to
maximize power efficiency while minimizing response time. We propose an energy-efficient workload
scheduling methodology that results in total consumption comparable to the spatial subsetting scheme but
with faster response time under the actively cooled environment. The actively cooled system results in
≥29% of power reduction over the non-refrigerated design across the entire range of utilization levels. The
proposed methodology is further combined with the G/G/m-model to investigate the trade-off between the
total power and target SLA requirements.

1 INTRODUCTION

Increase in energy consumption due to the
tremendous growth in the number and size of data
centers presents a whole new set of challenges in
maintaining energy-efficient infrastructure. While
data centers’ energy consumption had accounted for
2% of the total energy budget of the USA in 2007, it
is expected to reach 4% by the year 2011. This
number is equivalent to $7.4 billion per year on
electric power where this number has changed by
60% since 2006 (U.S. EPA, 2007).

Worldwide trend of energy consumption in data
centers tracks the US trend (Rajamani, 2008). Fig. 1
shows the number of data center installations,
worldwide new server spending, and electric power
and cooling costs. Despite the steady increase of
installed base of data centers over the last decade,
new server spending has stayed relatively constant
due to the decrease in electronic costs. As the data
center infrastructure becomes denser, power density
has been increasing by approximately 15% annually

(Humphreys, 2006), hence increasing electricity
consumption for operating servers and cooling. It is
likely that IT operating cost will soon outweigh the
initial capital investment.
Detailed energy breakdown of different types of data
centers can be found in (Rajamani, 2008), (Tschudi,
2003), (Lawrence Berkeley National Labs, 2007),
(Patterson, 2008). A data center can consist of
hundreds or even thousands of server racks where
each rack can draw more than 20kW of power.
Relative percentage of various contributors to
energy usage varies considerably among data
centers, but up to 90% of the total energy is
attributed to the energy dissipated by the computer
load and the energy required by the Computer Room
Air Conditioning unit (CRAC) Additionally, there is
a strong relation between the energy consumed by
the computer load and the CRAC units since any
reduction in electronic heat can be compounded in
the cooling system. For example, CRAC energy
efficiency of data centers can increase by 1% per
degree Celsius.

5

Figure 1: (a) Number of worldwide installed bases of data
center. (b) Worldwide spending on new servers and
operation cost. Adopted from (Rajamani, 2008).

Reducing the overall energy usage is an area of
interest across multiple disciplines. The focus of
most efforts on energy/power saving in server
systems is on processor elements (Jing, 2011),
(Chaparro, 2007), (Ma, 2003), (Tschanz, 2003),
(Brooks, 2000), (Sato, 2007), (Ghosh, 2011),
(Rabaey, 2003). Approaches for power saving of
processors often adopt both the software-based
energy-aware workload scheduling (Jing, 2011),
(Lin, 2011), (Luo, 2013) and hardware-based circuit
and architectural power management techniques to
effectively optimize energy usage. A typical
software-based workload scheduling algorithm
controls energy by distributing workloads to
processors in a way to reduce both the electric and
cooling costs. The basis of these approaches relies
on powering-off servers that are not utilized by
concentrating the workload on a subset of the
servers. This method is known as spatial subsetting,
and has been shown to successfully tackle the issue
of idle server power consumption (Jing, 2011),
(Pinheiro, 2001), (Chase, 2001).

Figure 2: Configuration of a multi-processor computing
server unit with a refrigerated-cooling.

Moreover, energy savings from the off-power
servers is compounded in the cooling systems that
consume power to remove the heat dissipated in the
servers. While this approach significantly reduces
idle power, it raises a concern of degraded response
time in computing systems, due to the power-latency
trade off.

To address the problem of degraded response
time in spatial subsetting, one solution is to employ
an over-provisioning scheme (Chen, 2005), (Ahmad,
2010). The over-provisioning algorithm can be
considered as a power and response time
optimization problem. By predicting how many
servers are required to service the requested
workload, the workload management software
assigns a subset of processors to remain at idle state
to absorb sudden increases in the load. Determining
the number of server to be held at idle state often
relies on a good model that successfully plans
capacity depending on the upcoming workloads. For
instance, G/G/m-models from queueing theory have
been used to obtain useful measures like average
execution velocity and average wait time to support
capacity and workload planning of multi-processor
systems in order to satisfy target SLA requirements
(Chen, 2005), (Ahmad, 2010), (Müller-Colstermann,
2007).

Figure 3: (a) Layout and (b) photograph of the
refrigeration system for electronic cooling.

Often the software utilizes special hardware
supports (Jing, 2011), such as dynamic voltage
frequency scaling (McGowen, 2006), (Burd, 2000),

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

6

(Nowka, 2002), or thread migration (Zhang, 2005),
stopping a processor through power gating (Tschanz,
2003), (Zhang, 2005), (Henzler, 2005), or body
biasing (Tschanz, 2003). However, these techniques
not only induces area penalty but also require some
transition time in and out of the low-power state and
imply performance degradation.

Figure 4: Configuration of a multi-processor computing
server unit with a refrigerated-cooling.

Along with these techniques, actively cooling the
processors using refrigeration has attracted recent
interest as a practical option to ease the power
problems in high performance computing units
(Copeland 2005), (Mahajan, 2006), (Nnanna, 2006),
(Chu, 2004), (Trutassanawin, 2006). Operating
CMOS circuitry at sub-ambient temperatures for
higher performance has been shown over the past
few decades (Carson, 1989), (Aller, 2000). While
the speed improvement can be traded for lower
power dissipation of the electronics, the cost of
cooling can limit the overall system power
performance. Recent work (Park, 2010), (Park,
2010), has shown that active cooling not only can
lead to overall power improvement that includes the
cost of cooling power without performance
degradation; the results show that the amount of
power savings is roughly proportional to the ratio of
leakage power to total power due to the exponential
sensitivity of leakage power to temperature,
irrespective of type of workload. For instance,
cooling a processor that dissipates 175.4W of power
with 30% electronic leakage power resulted in a
total system power consumption of 133W. This
performance is 25% better than the non-cooled
reference design (Park, 2010). Focus of this paper is
to explore the effectiveness of workload scheduling
to improve power efficiency of multi-core multi-

processor systems in an actively cooled environment
using a highly efficient refrigeration system. Results
presented in this paper suggest that there exists a
methodology under actively cooled environment that
optimizes power efficiency while minimizing
response time in and out of the low-power state.
Furthermore, we combine our proposed
methodology with the G/G/m-models to reduce both
total power and response time degradation while
meeting target SLA requirements.

2 MULTI-CORE PROCESSOR
UNDER THE
ACTIVELY-COOLED
ENVIRONMENT

A miniature-scale refrigeration system for electronic
cooling that is capable of operating at a reduced
temperature with high efficiency has been developed
and experimentally tested in (Park, 2010). The
compressor used in our miniature refrigeration
system has cooling capacity in the several hundred-
watt ranges, indicating that this refrigeration system
can potentially be configured to simultaneously cool
multi-processor servers. We envision a possible
configuration of the HPC server unit as illustrated in
Fig. 2.

A layout and photograph of the refrigeration
system for electronic cooling is shown in Fig. 3. A
configuration of the refrigeration system charged
with R-134a refrigerant consists of a compressor,
condenser, an expansion valve, a cold plate,
evaporator, and a cooling fan. A 12V power supply
provided the required power. Additionally, a motor
drive board is installed to control the compressor
speed and modulate the refrigeration capacity at
different loads. K-type bead probes are taped to the
evaporator and the condenser for temperature
measurements. Power meters are used to measure
power consumptions of the cooler and the heat
source. By controlling the speed of the compressor,
we cool the microprocessor at different heat loads
and temperatures in order to obtain minimal total
system power. Specific chip junction temperature
would be the temperature that resulted in the lowest
system power. The detailed description of the
experimental setup and performance of our
miniature refrigeration system for electronic cooling
can be found in (Park, 2010). We characterize the
power performance of a 4-core processor at different
operating conditions using this refrigeration system.
It is important to mention that while our analysis

Effects�of�Active�Cooling�on�Workload�Management�in�High�Performance�Processors

7

Figure 5: Power consumption before and after cooling across different processor utilization levels when (a) 4, (b) 2, or (c) 1
core out of the 4-core processor is powered up based on the model and measured data. The associated power savings after
electronic cooling is also shown.

uses a system that can be enclosed in a server
chassis, and vapor compression refrigeration
systems can achieve considerably higher efficiency
with larger cooling capacity at the expense of larger
volume. Such systems can potentially cool entire
racks of servers with the coolant distributed with
parallel flow through the server blades as shown in
Fig. 4. The results discussed in this paper can be
directly applied.

The mechanisms for power dissipation of digital
CMOS ICs are well understood. The total power
dissipation can be estimated by the sum of the active
power and leakage power (Rabaey, 2003),
(Chandrakasan, 1992).

Pelectric Pactive Pleakage (1)

Pelectric *Cswitched * fclk *Vdd
2
 (2)

Pleakage Vdd * I0 exp(
Vth

kTjunction /q
) (3)

The active power, Pactive depends on the activity

factor, α , and the amount of power that dissipates
charge/discharge capacitive nodes between the
supply voltage (Vdd) and ground when executing the
logic, CswitchedfclkVdd

2. At nano-meter scale
technology, the switches that implement the logic
results in a leakage current to flow through each
logic gate even when the logic is not active. This
leakage becomes a significant component of total
chip power in modern era processors. The leakage
power, Pleakage, has an exponential relation with the
degree that a transistor’s ON/OFF threshold, Vth,
exceeds the thermal voltage, KTjunction/q. The Pleakage
equation simplifies the dependence of leakage power
by lumping (1) the number and size of logical
switching paths in a computational unit, (2) the
carrier properties in the transistor, and (3)

dependence of leakage on the logical structure of
each logic gate of a digital processor into a single
constant I0.

For a digital processor, power dissipation and
computing performance are closely related. The
Equation (4) shows this relationship for the delay of
a logic gate. The current is a function of temperature
and primarily depends on the carrier mobility. A
designer can typically trade-off any improved speed
performance by reducing the supply voltage, Vdd.

Delay RC
Vdd

Ilog ic

 (4)

Lower temperatures lead to improved performance
of electronic devices. Lower power and higher speed
results from (1) an increase in carrier mobility and
saturation velocity, (2) an exponential reduction in
sub-threshold currents from a steeper sub-threshold
slope (KT/q), (3) an improved metal conductivity for
lower delay, and (4) better threshold voltage control
enabling to lower Vth.

For coolers and refrigerators, the efficiency is
represented in terms of COP defined by

cooling

electric

P

P
COP (5)

where Pcooling represents the cooling power of the
refrigeration system required to lift the total amount
of heat (Pelectric) generated by the processor.
Furthermore, the cooling power can be expressed in
terms of COP and the COP of the Carnot cycle with
Eq. (6) and (7) where Tevap is the cold-end
temperature of the evaporator, Tcond is the
temperature at the condenser, and is the second

law of efficiency.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

8

Figure 6: Power consumption across different utilization level before and after cooling using PG and CG as the core
stopping techniques for (a) 2-core and (b) 1-core processor.

Pelectric

Pcooling

COPcarnot (
Tevap

Tcond Tevap

) (6)

Pcooling
Pelectric

(
Tcond

Tevap

1) (7)

Equating Eq. (1) and (7) results in total system
power of

Ptotal Pelectric Pcooling (8)

that includes the cooling power consumption in
order to quantify whether the system offers an
overall power reduction at different operating
temperature. The model serves as a useful tool to
evaluate overall system performance including
optimal operating temperatures and the amount of
total power reduction.

Using this approach, we explore the optimal
operating conditions of the system across different
processor utilization. In order to experimentally
quantify the power consumption of compute-
intensive processors, the workload used in all our
experiments is Intel’s LINPACK, workload, which
is CPU bound. Note that our model tracks well with
measured data (Park, 2010), (Park, 2010). It is also
important to emphasize that our experiment not only
uses voltage scaling to trade-off the improved speed
performance into a power reduction but also controls
refrigeration system to modulate the cooling
capacity in order to obtain minimal system power.
The speed performance of the processor is kept
constant across utilization level. The results are used
to build a model of the 4-core processor operating at
reduced temperatures and applied to multi-core
multi- processors in later sections.

The 4-core processor can be configured such that
1, 2 or 4 cores are active while unused cores are
completely turned off to address the problem of idle

power consumption. The refrigeration system is used
to cool the microprocessor at different
configurations. The amount of total power before
and after cooling and the associated power saving
across different process utilization levels for
different number of cores is shown in Fig. 5. Here,
total power before cooling represents forced air
cooling that includes the fan power. As can be seen,
the result shows that the total power savings of at
least 3, 7 and 13 percent can be obtained across the
entire range of processor utilization for 1, 2, and 4
cores respectively. The detailed temperature and
voltage operating points and the breakdown of the
total system power in terms of active, leakage, and
cooling components at different utilization with and
without active cooling components are shown in
(Park, 2010). Effectiveness of cooling is
proportional to utilization level. This result suggests
that the energy- conscious provisioning would need
to concentrate the workload on a minimal active set
of cores that run near a maximum utilization level,
while other excess cores transition to low-power
states to reduce the energy cost. However, using
power gating (PG) technique to power on/off cores
comes at a price of response time degradation since
powering up a core that is completely shut down
requires up to 1000 cycles (Kumar, 2003).

Figure 7: Generic workload scheduling management for
multi-core multi-processor computing system.

Effects�of�Active�Cooling�on�Workload�Management�in�High�Performance�Processors

9

Figure 8: Power at different utilization (a) before and (b)
after electronic cooling for different methodologies

On the other hand, a simpler way to stop a core
with minimal response time degradation is to clock
gate (CG) the core (Tschanz, 2003), (Kurd, 2001).
Main advantage of this power saving technique is
the state of the processor can be preserved since
supply voltage is not cut. This provides a response
time which is orders of magnitude faster than
waking from power gating or powering up a
processor. However, in terms of power consumption,
this technique stops dynamic power dissipation, but
since power is not entirely cut-off, the core
continues dissipating leakage power. Operating
CMOS circuitry at reduced temperatures
substantially reduces the power since leakage power
depends exponentially on temperature. The result
that captures the impact of CG at reduced
temperatures is shown in Fig. 6.

Before cooling, the CG processor consumes
considerably higher power as compared to the PG
processor, due to the increase in leakage power. As
expected, lowering the temperature of the CG
processor exponentially reduces leakage power and
results in total power that is comparable to PG
processors. At 100% utilization level, power savings
from cooling with CG and PG are 36% and 20%,
respectively, for a 2-core processor. Results are
more significant for a 1-core processor where power
savings from cooling with CG and PG are 40% and
12%, respectively. For both cases, CG appears to be
a better core stopping technique under the actively

cooled environment. In this way, response time
significantly improves at the expense of negligible

(~2.5W) power penalty.
The model that captures different relations and

parameters of our 4-core processor and the
refrigeration system is extended to illustrate the
potential of power optimization of multi-core multi-
processor systems and investigate different
methodologies of workload scheduling under the
actively cooled environment.

3 WORKLOAD SCHEDULING
METHODOLOGY

With our model derived in Section 2, energy-aware
workload scheduling algorithms assign incoming
workload to available processors such that power
consumption is minimized as constrained by
response time requirements.

The server platform we analyze consists of a 4-
processor server system with 4-cores per processor
under the actively cooled environment. In particular,
we are interested in aspects where the effects of
electronic cooling change the conventional way of
assigning workloads. Detailed results and
discussions are presented in this section.
Fig. 7 provides generic management architecture for
multi-core multi-processor computing systems
where 5 out of 16 cores are utilized. This particular
HPC server unit has total of 100% utilization level
where each core is responsible for 6.25%. The
methodologies we evaluate are the following:
 Spatial Subsetting (S.S.): We assume that unused

cores power off by PG. The next core can turn up
upon arrival of the workload when the current
core is fully occupied.

 1 Core Over-provision with PG (1 O.P. w/ PG):
Similar to spatial subsetting but one core
remains at idle state to absorb sudden peaks in
loading.

 1 Core Over-provision with CG (1 O.P. w/ CG):
Similar to 1 Core over- provision with PG but
uses CG for the core stopping mechanism.

 Processor based Over-provision (Processor
based O.P.): Neither PG nor CG is employed
and unused cores remain at idle state.

For all cases, the next processor powers up after all
four cores within the active processor are fully
utilized to prevent idle power consumption.

For comparison purposes, we show the amount
of total power consumption before and after cooling
for different types of methodologies across varying

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

10

utilization levels in Fig. 8 (a) and (b). Note that the
total power after cooling includes the cost of
cooling. The impact of cooling on different schemes
can be seen through the associated power savings as
illustrated in Fig. 9. Several observations can be
made based on the results. First, spatial subsetting
clearly consumes the least amount of power, but the
advantage diminishes under the cooled environment.
Second, the processor based over-provision scheme
dissipates the largest amount of power but has no
response time degradation. Third, the 1 core over-
provision with CG scheme achieves an excellent
compromise that provides the largest amount of
power reduction from cooling. Finally, since the
next processor powers up after all four cores within
the active processor are fully utilized, three power-
up transition delays are unavoidable for all cases.
They occur from 25% to 31.25%, 50% to 56.25%,
and 75% to 81.25%.

Figure 9: Associated power savings at different utilization
level from electronic cooling for different workload
assignment methodologies.

Next, we show a new way of assigning
workloads under refrigerated cooling and the
approach is described in Fig. 10. We demonstrate
that the proposed way reduces both the power
consumption and the response time requirements at
reduced temperature, resulting in power comparable
to spatial subsetting but provides a similar response
time as 1 core over-provision with CG. Example of
the approach is shown in Fig. 10.a; given a workload
that requires 4 cores at 100% utilization, the
workload scheduling is such that 4 cores are
assigned equally to 2 processors. Total power
consumption of 196W and 127W is measured,
before and after cooling, resulting in a 35% power
reduction. On the other hand, the system employing
(b) the spatial subsetting scheme and (c) the 1 core
over-provision with CG scheme consumes 179W
and 127W and 199W and 140W before and after
cooling, respectively. The amount of total power
saving of the proposed approach is considerably

higher compared to (b) and (c), which has 29% and
30% of power savings.

Figure 10: (a) Proposed methodology compared with (b)
spatial subsetting and (c) 1 core over-provision with CG.

To be complete, we show the proposed workload
scheduling methodology for different utilization
levels in Fig. 11. Since power-up events are
necessary when a new processor is brought online,
three power-up transition delays are unpreventable.
These events occur when (B) transitions to (C), (D)
transitions to (E), and (F) transitions to (G). In
between these transitions and at higher utilizations
beyond (G), performance does not degrade with
increasing utilization besides the response delay of a
few cycles due to CG. Fig. 12 plots the power
dissipation and the percentage savings before and
after cooling for each of the conditions shown in
Fig. 11.

Although conclusions in this section are drawn
from a given platform, the intent is not to restrict to
a particular platform. The absolute amount of power
saving number would be different as different type
of systems would have different electronic profile.
However, we suggest applying the idea to larger
systems where the proposed workload scheduling
methodology is applied after cooling. Leveraging the
benefits of clock gating at reduced temperatures, our
methodology reduces both the power consumption
and the response time requirements at reduced
temperatures, resulting in power comparable to the
spatial subsetting scheme but provides a faster
response time since our scheme does not power-off
processor cores.

Effects�of�Active�Cooling�on�Workload�Management�in�High�Performance�Processors

11

Figure 11: Proposed methodology across different utilization levels.

4 ASSIGNMENT OF WORLOAD
BASED ON SLA

As an extension to the proposed methodology, we
combine it with the G/G/m-model to reduce both the
total power consumption and the response time
degradation while meeting specific SLA
requirements. Results from the queuing theory have
been used to obtain measures like average execution
velocity and average wait time to support capacity
and workload planning of multi-processor systems
for different workload variability (z). Using the
approximation formulas for a G/G/m-model, we can
reach an optimal agreement between high utilization
of the processors (energy-conscious provisioning)
and the target SLA requirements. For simplicity,
consider a scenario where a specific workload
requires 8 cores at 98% of utilization level, and
assume that this workload can be linearly mapped to
9 and 10 cores at 87% and 78%, respectively as
shown in Fig. 13. Fig. 14 shows the execution
velocity for each of these 3 workload scenarios.

Execution velocity is the average ratio for the
total amount of workload units that are served
without any delay. The value ranges from 0 to 100
where the value 100 means that the workload does
not encounter any wait delays for the system
resources while the value 0 means that all work is
delayed. Fig. 14 is derived using the formula given
in (Müller-Colstermann, 2007). When setting the SLA
for execution velocity of >60%, using 10 processors
to a utilization of 78% satisfies the requirement. On
the other hand, using 8 processors result in an
unacceptable execution velocity of 6.5%. Moreover,
it is important to note that by increasing the number

of processors, there is no transition delay due to
powering up a processor, and the only performance
degradation results from the response delay of CG.

Figure 12: Power consumption at corresponding utilization
levels of Fig. 10. Number in the figure represents the
associated power saving from electronic cooling.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

12

Figure 13: Required utilization level across different
number of processors for the proposed methodology.

Figure 14: Execution velocity vs. number of processors.
Number in the figure represents required utilization level.

Next, we evaluate the normalized average wait
time, E[W], for different values of workload

variability, z, where the normalization is performed
with respect to the service time to the length of one
unit. Here, workload variation represents the
variation of request inter-arrival times and request
sizes. We consider 0 ≤ E[W] ≤ 0.5 for the good
quality of service level. Similarly, notice how the
system requires 10 processors at 78% of utilization
to meet the average wait time requirements for z ≤ 5
(see Fig.15).

Figure 15: Normalized average wait time vs. number of
processors as function of workload variability z=0.5, 1.0,
2.0, 5.0.

Finally, we summarize the results of our
proposed methodology by comparing with spatial
subsetting. The total amount of power consumption
before and after cooling for the two schemes is
shown in Fig. 16. As expected, the actively cooled
system with the proposed methodology dissipates
power that is comparable to the spatial subsetting
scheme but enables superior response time for
different levels of SLA. Analysis also shows that the
overall system power savings of 35, 30, and 29% are
obtained when using 8, 9, and 10 cores, respectively.
It is worth noting that the amounts of saving
decreases as we increase the number of cores as the
cores now operate at lower utilization levels. Using a
larger number of cores at lower utilization levels
inevitably increases the total power consumption,
but the system operates with much improved SLA.
For instance, using 10 processors instead of 8
increase the total power consumption by 25%, but
the system now operates at execution velocity of
>60% and normalized wait time of ≤ 0.5.

Effects�of�Active�Cooling�on�Workload�Management�in�High�Performance�Processors

13

Figure 16: Power consumption vs. number of processors (a) before and (b) after cooling.

5 CONCLUSIONS

An energy-efficient workload scheduling
methodology for HPC servers is presented using a
highly efficient miniature scale refrigeration system
for electronic cooling. By leveraging the benefits of
clock gating at reduced temperatures, our proposed
methodology results in total power consumption that
is comparable to the spatial subsetting scheme.
Moreover, it provides a response time of disabling
clock gating which is orders of magnitude faster
than waking from power gating or powering up a
processor. Our actively cooled system results in ≥
29% power reduction over the non-refrigerated
design across the entire range of utilization levels.
Furthermore, combining our proposed methodology
with the G/G/m-model, we show the trade-off
between power and SLA requirements. Setting the
target SLA requirement to execution velocity of
>60% and normalized wait time of ≤ 0.5, the number
of required processors to execute a particular
workload inevitably increased, leading to the 25%
increase in total power consumption. Nevertheless,
this still maintains 29% of power reduction,
compared to non-cooled design.

While the results discussed in this paper can be
directly applied to large-scale multi-server systems,
overall system realization is still a big challenge and
some important design issues of building such
systems are overall power consumption, reliability,
and cost. Furthermore, thorough understanding of
the strong coupling between refrigerated server
racks and CRAC units (cascaded cooling system) is
needed for future research. Nevertheless, current
data centers can consume up to 90% of the total
energy from computer load and the energy required
by the CRAC units. Decreasing the power dissipated
or by the computer load is imperative as any

reduction in electronic heat can be compounded in
the cooling system.

Finally, it would be interesting to explore
different feedback-driven control solutions that
provide capability to adapt to diverse environment,
workload, and user constraints. This is relegated to
future work. A model-based software framework
that predicts and senses upcoming workloads and
provides real-time information to refrigeration and
electronic systems to tune compressor speed,
temperature, and supply voltage are worthy of being
studied in order to achieve optimal power
performance.

REFERENCES

U.S. EPA. Report to congress on server and data center
energy efficiency. In U.S. Environmental Protection
Agency, Tech Report, 2007.

K. Rajamani, C. Lefurgy, J. Rubio, S. Ghiasi, H. Hanson,
and T. Keller, “Power management for computer
systems and data centers”, Tutorial presented at the
2008 International and Symposium on Low Power
Electronics and Design, August, 2008.

J. Humphreys and J. Scaramella, “The impact of power
and cooling on data center infrastructure,” Market
Research Report, IDC, 2006.

Tschudi, et al., “Data Centers and Energy Use – Let’s
Look at the Data”, ACEEE, 2003.

Lawrence Berkeley National Labs, Benchmarking: Data
Centers, Dec 2007.

M. Patterson, “The effect of data center temperature on
energy efficiency,” Proceedings ITHERM, pp. 1167-
1174, 2008.

Jing, S., Ali, S., She, K., Zhong, Y., State-of-the-art
Research Study for Green Cloud Computing. Journal
of Supercomputing, Special Issue on Cloud
Computing, 2011

M. Lin, A. Wierman, L. Andrew, and E. Thereska,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

14

“Dynamic Right-Sizing for Power-Proportional Data
Centers,” Proc. IEEE INFOCOM, 2011.

J. Luo, L.Rao, and X. L. Liu, “Data center energy cost
minimization: a spatio-temporal scheduling approach,”
in Proceedings of the INFOCOM 2013.

P. Chaparro, et al., “Understanding the Thermal
Implications of Multicore Architectures,” IEEE
Transactions on Parallel and Distributed Systems, vol.
18, no. 8, pp. 1055-1065, August 2007.

M. Ma, S. Gunther, B. Greiner, N. Wolff, C. Deutschle,
and Tawfik Arabi, “Enhanced Thermal Management
for Future Processors,” IEEE Symposium on VLSI
Circuits of Technical Papers, pp. 201-204, June 2003.

J. Tschanz, S. Narendra, Y. Ye, B. Bloechel, S. Borkar,
and V. De, “Dynamic Sleep Transistor and Body Bias
for Active Leakage Power Control of
Microprocessors,” IEEE Journal of Solid-State
Circuits, vol. 38, no. 11, pp. 1838-1845, November
2003.

D. Brooks, V. Tiwari, and M. Martonosi, “Wattch: A
framework for architectural-level power analysis and
optimizations,” In International Symposium on
Computer Architecture, June 2000.

T. Sato and T. Funaki, “Power-Performance Trade-off of a
Dependable Multicore Processor,” in 13th Pacific Rim
International Symposium on Dependable Computing
(PRDC), 2007.

R. Ghosh, V. K. Naik, and K. S. Trivedi, “Power-
Performance Trade-offs in Iaas Cloud: A Scalable
Analytic Approach,” in IEEE/IFIP DSN Workshop on
Dependablity of Clouds, Data Centers and Virtual
Computing Environments (DCDV), 2011.

E. Pinheiro, R. Bianchini, E. V. Carrera, and T. Heath,
“Load balancing and unbalancing for power and
performance in cluser-based systems,” Workshop on
Compiliers and Operating Systems for Low Power,
2001.

J. Chase, D. Anderson, P. Thakur, and A. Vahdat,
“Managing Energy and Server Resources in Hosting
Centers,” Proceedings of the 18th Symposium on
Operating systems Principles SOSP’01, Octorber
2001.

Y. Chen, A. Das, W. Qin, A. Sivasubramaniam, J. Srebric, Q.
Wang, and J. Lee, “Managing Server Energy and
Operational Costs in Hosting Centers,” SIGMETRICS
Performance Evaluation Review, vol. 33, no. 1, pp. 303-314,
2005.

F. Ahmad and T. Vijaykumar, “Joint optimization of idle and
coolingpower in data centers while maintaining response
time,” Architectural Support for Programming Languages
and Operating Systems, 2010.

B Müller-Clostermann, “Using G/G/m-Models for Multi-Server
and Mainframe Capacity Planning,” ICB Research Report,
no. 16, May 2007.

R. McGowen, C. A. Poirier, C. Bostak, J. Igonowski, M.
Millican, W. H. Parks, and S. Naffziger, “Power and
temperature control on a 90-nm Itanium family processor,”
IEEE Journal of Solid-State Circuits, vol. 41., no 1, pp. 228-
236, January 2006.

T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen,
“A Dynamic Voltage Scaled Microprocessor System,” IEEE
Journal of Solid-State Circuits, vol. 35, no. 11, pp. 1571-
1580, November 2000.

K. J. Nowka, G. D. Carpenter, E. W. MacDonald, H. C. Ngo, B.
C. Brock, K. I. Ishii, T. Y. Nguyen, and J. L. Burns, “A 32-bit
PowerPC System-on-a-Chip With Support for Dynamic
Voltage Scaling and Dynamic Frequency Scaling,” IEEE
Journal of Solid-State Circuits, vol. 37, no. 11, November
2002.

S. Heo, K. Barr, and K. Asanovic, “Reducing power
density through activity migration,” International
Symposium on Low Power Electronics and Design,
Aug. 2003.

K. Zhang et al., “SRAM design on 65-nm CMOS
technology with dynamic sleep transistor for leakage
reduction,” IEEE Journal of Solid-State Circuits, vol.
40, no. 4, April 2005, pp. 895-901.

S. Henzler, T. Nirschl, S. Skiathitis, J. Berthold, J. Fischer,
P. Teichmann, F. Bauer, G. Georgakos, and D.
Schimitt-Landsiedel, “Sleep transistor circuits for fine-
grained power switch-off with short power-down
times,” in Proc. Int. Sold-State Circuits Conf., 2005,
pp. 302-303.

D. Copeland, “64-bit Server Cooling Requirements,”
IEEE SEMI-THERM Symposium, 2005.

R. Mahajan, C. P. Chiu, and G. Ghrysler, “Cooling a
Microprocessor Chip,” in Proceedings of the IEEE,
vol. 94, no. 8, Aug. 2006.

A. G. Agwu Nnanna, “Application of refrigeration system
in electronics cooling,” Applied Thermal Engineering,
vol. 26, pp. 18-27, 2006.

R. C. Chu, R. E. Simons, M. J. Ellsworth, R. R. Schimidt,
and V. Cozzolino, “Review of Cooling Technologies
for Computer Products,” IEEE Trans. on Device and
Material Reliability, vol. 4, no. 4, pp. 568-585, Dec.
2004.

P. E. Phelan, V. A. Chiriac, and T. T. Lee, “Current and
Future Miniature Cooling Technologies for High
Power Microelectronics,” IEEE Trans. on Components
and Packaging Technologies, vol. 25, no. 3, pp. 356-
365, Sep. 2002.

S. Trutassanawin, E. Groll, V. Garimella, and L.
Cremaschi, “Experimental Investigation of a
Miniature-Scale Refrigeration System for Electronics
Cooling,” IEEE Trans. on Components and Packaging
Technologies, vol. 29, no. 3, pp. 678-687, Sep. 2006.

D. M. Carson, D. C. Sullivan, R. E. Bach, and D. R.
Resnick, “The ETA-10 liquit-nitrogen-cooled
supercomputer sytem,” IEEE Trans. Electron.
Devices, vol. 36, no. 8, pp. 1404-1413, Aug. 1989.

Won Ho Park, Tamer Ali, and C.K. Ken Yang, “Analysis
of Refrigeration Requirements of Digital Processors in
Sub-ambient Temperatures,” Journal of
Microelectronics and Electronic Packaging, vol. 7,
no. 4, 4th Qtr 2010.

Won Ho Park and C.K. Ken Yang, “Effects of Using
Advanced Cooling Systems on the Overall Power
Consumption of Processors,” accepted for IEEE

Effects�of�Active�Cooling�on�Workload�Management�in�High�Performance�Processors

15

Transactions on Very Large Scale Integration
Systems.

I. Aller et al., “CMOS Circuit Technology for Sub-
Ambient Temperature Operation,” Proc. Int. Solid-
State Circuits Conf., 2000, pp. 214-215, Feb. 2000.

J. Rabaey, A. Chandrakasan, and B. Nikolic, Digital
Integrated Circuits: A Design Perspective; 2nd ed.,
2003.

A. P. Chandrakasan, S. Sheng, and R. W. Brodersen,
“Low-Power CMOS Digital Design,” IEEE Journal of
Solid-State Circuits, vol. 27, no. 4, pp. 473-484, April
1992.

R. Kumar, K. Farkas, N.P. Jouppi, P. Ranganathan, and
D.M. Tullsen, “Single-ISA Heterogeneous Multi-
Core Architectures: The Pontential for Processor
Power Reduction,” Proc. Int’l Symp.
Microarchitecture, Dec. 2003.

N. A. Kurd, J. S. Barkatullah, R. O. Dizon, T. D. Fletcher,
and P. D. Madland, “A multigigaherz clocking scheme
for Pentium 4 microprocessor,” IEEE Journal of
Solid-State Circuits, vol. 36, pp. 1647-1653,
November 2001.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

16

A Mathematical Programming Approach to Multi-cloud Storage

Makhlouf Hadji
Technological Research Institute SystemX, Palaiseau, Saclay, France

fmakhlouf.hadjig@irt-systemx.fr

Keywords: Cloud Computing, Distributed Storage, Data Replication, Encryption, Broker, Optimization.

Abstract: This paper addresses encrypted data storage in multi-cloud environments. New mathematical models and
algorithms are introduced to place and replicate encrypted data chunks and ensure high availability of the
data. To enhance data availability, we present two cost-efficient algorithms based on a complete description
of a linear programming approach of the multi-cloud storage problem. Performance assessment results, using
simulations, show the scalability and cost-efficiency of the proposed multi-cloud distributed storage solutions.

1 INTRODUCTION

Cloud storage has emerged as a new paradigm to host
user and enterprize data in cloud providers and data
centers. Cloud storage providers (such as Amazon,
Google, etc.) store large amounts of data and vari-
ous distributed applications (AWS, 2014) with differ-
entiated prices. Amazon provides for example stor-
age services at a fraction of a dollar per Terabyte per
month (AWS, 2014)). Cloud service providers pro-
pose also different SLAs in their storage offers. These
SLAs reflect the different cost of proposed availabil-
ity guarantees. End-users interested in more reliable
SLAs, must pay more, and this leads to cause high
costs when storing large amounts of data. The cloud
storage providers to attract users do not charge for
initial storage or put operations. Retrieval becomes
unfortunately a hurdle, a costly process and users are
likely to experience data availability problems. A way
to avoid unavailability of data is to rely on multiple
providers by replicating the data and actually chunk
the data and distribute it across the providers so none
of them can actually reconstruct the data to protect it
from any misuse. This paper aims at improving this
type of distributed storage across multiple providers
to achieve high availability at reasonable (minimum)
storage service costs by proposing new scalable and
efficient algorithms to select providers for distributed
storage. The objective is to optimally replicate data
chunks and store the replicates in a distributed fash-
ion across the providers. In order to protect the data
even further, the chunks are encrypted.

1.1 Paper Contributions and Structure

We propose data chunk placement algorithms to
tradeoff data availability and storage cost and pro-
vide some guarantees on the performance of the dis-
tributed storage. We assume end-users involved in
PUT (write) and GET (read) operations of data ob-
jects stored in an encrypted manner and distributed
optimally in different data centers require a specified
level of data availability during data retrieval. More
specifically, after data encryption and partition oper-
ations which consist to split the data into encrypted
chunks to be distributed across multiple data centers,
our main work focuses on improving and optimizing
two operations:

� Data Chunks Placement Optimization: through
a novel, efficient, scalable algorithm that mini-
mizes placement cost and meets data availability
requirements given probabilities of failure (or un-
availability) of the storage systems and hence the
stored data.

� Chunk Replication: to meet a required high level
of availability of the data using optimal replica-
tion of chunks to reduce the risk of inaccessibility
of the data due to data center failures (or storage
service degradations).

To realize these objectives, we derive a number of
mathematical models to be used by a broker (real or
logical broker) to select the storage service providers
leading to cost-efficient and reliable data storage. The
proposed broker collaborates with the providers hav-
ing different storage costs and reliability (storage ser-
vice availability), as depicted in detail in Figure 1.

17

We assume that the providers propose storage ser-
vices to the broker and to end-users with same reli-
ability but with different prices (prices for a real bro-
ker for instance will be lower than those proposed to
end-users).

It is consequently assumed that there exist ben-
efits for a storage service brokerage that optimally
distributes encrypted data across the most appropriate
providers. Thus, the aim of this paper consists to pro-
pose a scalable and polynomial algorithm spanning a
cost efficient chunk placement model that can achieve
optimal solutions, when guaranteeing high data avail-
ability to end-users.

Section 2 presents related work on cloud storage
and optimization. In Section 3, we use the well known
Advanced Encryption Standard (AES) algorithm (Se-
ungmin et al., 2014) to encrypt end-user data and
divide them into jN j chunks. In the same section,
we propose mathematical models to deal with chunk
placement and replication in an optimal manner for
given server costs and availabilities. Performance as-
sessments and results are reported in Section 4. Con-
clusion and future work are reported in Section 5.

2 RELATED WORK

Data storage and data replication has received a lot of
attention at the data management, distribution and ap-
plication level since the distribution of original data
objects and their replicas is crucial to overall sys-
tem performance, especially in the cloud environment
where data are supposed to be protected and highly
available in different data centers. The current liter-
ature concerns essentially the cloud storage problem
in tandem with replication techniques to improve data
availability, but to our knowledge, does not consider
data transfer in/out costs, or migration costs, etc. We
will nevertheless cite some of the related work even if
it can not be directly compared to the proposed algo-
rithms in this paper.

In (Mansouri et al., 2013), authors dealt with the
problem of multi-cloud storage with a focus on avail-
ability and cost criteria. The authors proposed a first
algorithm to minimize replication cost and maximize
expected availability of objects. The second algo-
rithm has the same objective subject to budget con-
straints. However, this paper did not embed security
aspects apart from dividing the data into chunks or ob-
jects. In our work, we propose to divide data into en-
crypted chunks, that will be optimally stored and dis-
tributed through various data centers with minimum
costs while satisfying the QoS required by end-users.
Moreover, the proposed algorithm in (Mansouri et al.,

2013) is a simple heuristic without any convergence
guarantee to the optimal solution. Our proposed algo-
rithm converges in few seconds to optimal solutions
benchmarked by the Bin-Packing algorithm.

In (Thanasis et al., 2012), authors present Scalia,
a system to deal with the problem of multi cloud data
storage under availability and durability requirements
and constraints. The authors note the NP-Hardness
of the considered problem, and propose algorithms to
solve small instances of the problem. In our work, we
propose a new efficient and scalable solution capable
of handling large instances in a few seconds. Clearly,
the proposed solution in (Thanasis et al., 2012) suffers
from scalability challenges to handle on with larger
instances, when our algorithms are able to quickly
solve large instances of the defined problem.

To avoid failure and achieve higher availability
when storing data in the cloud, reference (Yanzhen
and Naixue, 2012) proposes a distributed algorithm to
better replicate data objects in different virtual nodes
instantiated in physical servers. According to the traf-
fic load of all considered nodes, the authors consid-
ered three decisions or actions as replicate, migrate,
or suicide to better meet end-user requirements and
requests. However, the proposed approach consists
only in checking the feasibility of migrating a virtual
node, performs suicide actions or replicating a copy
of a virtual node, without optimizing the system. In
our work, we propose optimization algorithms based
on a complete description of the convexe hull of the
defined problem, leading to reach optimal solutions
even for large instances.

Reference (Srivastava et al., 2012) proposes a sim-
ple heuristic to give stored data greater protection and
higher availability by splitting a file (data) into sub-
files to be placed in different virtual machines belong-
ing to the physical resources (data centers for exam-
ple) of one provider or different providers. The paper
dealt with PUT and GET operations to distribute and
retrieve the required subfiles (data) without encrypt-
ing them. The proposed heuristic in (Srivastava et al.,
2012) can only reach suboptimal solutions, leading to
considerable gaps compared to the optimal solutions.
We propose a new scalable and cost efficient solution
to deal with the multi-cloud storage problem.

Aiming to provide cost-effective availability and
improve performance and load balancing of cloud
storage, the authors of reference (Qingsong et al.,
2010) propose CDRM as a cost-effective dynamic
replication management scheme. CDRM consists in
maintaining a minimal number of replica for a given
availability requirement, and proposes a replica place-
ment based on the blocking probability of data nodes.
Moreover, CDRM allows us to dynamically adjust the

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

18

replica number according to changing workload and
node capacities. However, the paper focuses only on
the relationship between availability and replica num-
ber, and there is no proposal to deal with the optimal
placement of replicas.

To achieve high performance and reduce data loss
when we require storage services in the cloud, dif-
ferent papers in the literature propose various algo-
rithms that are useful only for small instances due to
the NP-Hardness of the problem. In (Bonvin et al.,
2010), the authors propose a key-value store named
Skute, which consists in dynamically allocating the
resources of a data cloud to several applications in
a cost effective and fair way using game theoretical
models. To guarantee cloud object storage perfor-
mance, the authors of (Jindarak and Uthayopas, 2012)
propose a dynamic replication scheme to enhance the
workload distribution of cloud storage systems. The
authors of (Chia-Wei et al., 2012) conduct a study
based on a dynamic programming approach, to deal
with the problem of selecting cloud providers offer-
ing storage services with different costs and failure
probabilities.

Reference (Abu-Libdeh et al., 2010) proposes
a distributed storage solution named RACS, to
avoid vendor lock-in, reduce the cost of switch-
ing providers, and better tolerate provider outages.
The authors applied erasure coding (see references
(Weatherspoon and Kubiatowicz, 2002), (Li and Li,
2013) and (Rodrigo and Liskov, 2005)) to design the
proposed solution RACS. In the same spirit, refer-
ences (Ford et al., 2010), (Myint and Thu, 2011), (Ne-
gru et al., 2013) and (Zhang et al., 2012) addressed the
cloud storage problem described above, under differ-
ent constraints including energy consumption, budget
limitation, limited storage capacities, and the avail-
ability of the stored data.

In (Varghese and Bose, 2013), authors propose
a new solution to guarantee the data integrity when
stored in a cloud data center. The proposed solution is
based on homomorphic verifiable response and hash
index hierarchy. This kind of solutions can be inte-
grated to our work to reenforce data security and pri-
vacy for reticent users. An other reference on secured
multi cloud storage can be found in (Balasaraswathi
and Manikandan, 2014). Authors presented a crypto-
graphic data splitting with dynamic approach for se-
curing information. The splitting approach of the pro-
posed solution is not deeply studied. This may lead to
not select cost efficient providers.

3 SYSTEM MODEL

To store encrypted data in multiple DCs belonging
to various cloud providers system, while optimizing
storage costs and failure probabilities, we separate
the global problem into a number of combinatorial
optimization sub-problems. To derive the model we
make a simplifying assumption regarding the pricing
scheme between cloud service providers, the broker
and end-users. We assume that the proposed stor-
age price by a service cloud provider to end-users is
higher than that proposed to the broker. This can be
explained by the large amount of demands that will
be required by the broker aggregating the demands
of a finite set of end-users seeking to avoid vendor
lock-in and higher availability. One can assume that
prices proposed by cloud providers are smaller as the
volume of data is larger. Note that the broker will
guarantee a minimum storage cost meeting end-users
requirements, ensuring that the proposed cost to end-
users can never exceed a certain threshold.

We first propose to use the well known AES (Ad-
vanced Encryption Standard) algorithm (Seungmin
et al., 2014) for efficient data encryption. This will
generate different encrypted chunks to be distributed
in the available storage nodes or data centers. This en-
cryption ensures the confidentiality of the stored data.
Moreover, the used solution permits to construct di-
verse chunks (with small sizes) to facilitate PUT and
GET requests as is shown in Figures 1 and 2.

We derive two algorithms to handle encrypted data
chunk placement and replication to guarantee data
high availability, and storage cost efficiency. This can
be summarized as follows:
� Data Chunk Placement: The first important ob-

jective of our paper consists in guaranteeing the
availability of all chunks of stored data by opti-
mally distributing them to a cost-efficient set of
selected data centers (see Figure 1). This avoids
user lock-in, and reduces the total cost of the stor-
age service. This optimization is performed under
end-user or data owner constraints and require-
ments such as the choice of a minimum number of
data centers to be involved in storing the chunks
of the data. This can reinforce the availability of
data for given data centers failure probabilities.

� Data Chunk Replication: After optimally stor-
ing the encrypted chunks of a data, we determine
a replication algorithm based on bipartite graph
theory, to derive optimal solutions of the problem
of storing replica chunks. This ensures high data
availability since content can be retrieved even if
some servers or data centers are not available.
Once all data chunk are placed in different data

A�Mathematical�Programming�Approach�to�Multi-cloud�Storage

19

Figure 1: The system model: PUT requests.

Figure 2: The system model: GET requests.

centers, end-users may solicit the data by GET re-
quests (download data). The broker needs to gather
all the data chunks, sort them, decrypt them, and fi-
nally deliver the entire data to the end-user. Figure 2
gives more details on GET operations.

In the following, we suppose that each data object
(chunk) has r replicas. Finding the optimal number
of replicas of each chunk, is not in the scope of this
paper. A well-known example on the choice of r is
the Google storage solution based on r = 3 replicas of
each stored data chunk (Ghemawat et al., 2003).

3.1 Data Encryption Algorithm

While consumers have been willing to trade privacy
for the convenience of cloud storage services, this is
not the case for enterprises and government organi-
zations. To achieve high data security and privacy,
we propose to divide the requested user data to store
into encrypted chunks. This facilitates PUT and GET
requests by considering small files (chunks), and rein-
forces the security of data (thanks to the encryption)
in the same time.

To preserve the confidentiality of data, we seek
algorithms that can encrypt and decrypt multiple
chunks in a small time. To deal with this problem, we
propose to use the symmetric encryption algorithm
noted AES for Advanced Encryption Standard (Se-
ungmin et al., 2014). The AES algorithm is a fast
solution to handle with large amount of data as it is
shown in Figure 3 where three different keys (128
bits, 192 bits and 256 bits) are used to encrypt and
decrypt data sizes ranging from 1 Megabyte to 4 Gi-
gabytes in a time interval ranging from 200 seconds
to 800 seconds.

The key sizes are chosen by end-users depending
on the privacy level of their data. In our proposal,
we suppose that the broker proposes an encryption
solution in which generated private keys are well kept
within end-users with a key size of 128 bits.

Note that more details on the encryp-
tion/decrytpion algorithms used in this paper,
can be found in the literature (see for example
(Seungmin et al., 2014) and (NIST, 2014)). A deep
study of these solutions is not in the scope of this
paper.

Figure 3: Encryption and decryption’s time evolution with
data size.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

20

3.2 Data Placement Cost Minimization:
b-Matching Formulation

We start data chunks placement model by consider-
ing each data D of a user u, as a set of chunks (noted
by N), resulting from the AES algorithm. Let S be
the set of all available data centers able to host and
store end-user data. We investigate an optimal place-
ment by storing all the chunks in the ”best” available
data centers. Each cloud provider with a data center
s 2 S proposes a storage cost per Gigabyte and per
month noted by µs. This price varies for different
reasons: varying demands and workloads, data cen-
ter reliability, geographical constraints, etc. End-user
requests are submitted to the broker which will relay
them to cloud service providers, in an encrypted form
with optimized storage costs. The broker guarantees
end-users high data availability with minimum cost
by choosing a set of cloud providers (or DCs) meet-
ing the requirements (see Figure 1 for more details).

In the following, we will address chunks place-
ment optimization model based on different con-
straints as the probability of failure of a data center or
a provider, and a limited storage capacity. Each data
center (or provider) has a probability of data avail-
ability (according to the number of nines in the pro-
posed SLA), and a failure probability (f) is then equal
to 1�probability of data availability. Moreover, the
limited storage capacity is given by a storage quota
proposed by the provider to the broker according to a
negotiated pricing menue.

Our optimization problem is similar to a classical
Bin-Packing formulation, in which bins can be repre-
sented by the different Data Centers, and the items can
be seen as the data chunks. Reference (Korte and Vy-
gen, 2001) has shown a while ago the NP-Hardness
of the Bin-Packing problem. Thus, we deduce the
complexity (NP-Hardness) of our chunks’ placement
problem.

For this reason, and the fact that workloads and re-
quests to store date arrive overtime, the broker seeks a
dynamic chunk placement solution that will be regu-
larly and rapidly updated to remain cost-effective and
ensure data high availability.

Each data chunk i2N has a certain volume noted
by ni. We graphically represent the storage of a chunk
i in a data center k as an edge e = (i;k) (with the ini-
tial extremity (i= I(e)) of e corresponding to a chunk,
and the terminal extremity (k = T (e)) of e) represent-
ing the data center (see Figure 4).

Based on this configuration, one can construct a
new weighted bipartite graph G = (N [S ;E), where
N is the set of vertices representing encrypted chunks
to be stored, and S is the set of all available data cen-

Figure 4: Complete bipartite graph construction.

ters (see Figure 4). E is the set of weighted edges
between N and S constructed as described:
there is an edge e = (i;k) between each encrypted
chunk i and each available data center k, and the
weight of e is given by µkni.

We now introduce the well known ”minimum
weight b-matching problem” to build a combinato-
rial optimization solution. The b-matching is a gen-
eralization of the minimum weight matching problem
and can be defined as follows (see (Korte and Vygen,
2001) for more details):

Definition Let G be an undirected graph with inte-
gral edge capacities: u : E(G)!N[¥ and numbers
b : V (G)! N. Then a b-matching in G is a func-
tion f : E(G)!N with f (e)� u(e), 8e 2 E(G), and
åe2d(v) f (e)� b(v) for all v 2 V (G).

In the above, d(v) represents the set of incident edges
of v. To simplify notation, with no loss in generality,
we use E and V for the edges and vertices of G. That
is we drop the G in E(G) and V (G).

From the definition, finding a minimum weight b-
matching in a graph G consists in identifying f such
that åe2E ge f (e) is minimum, where ge is an associ-
ated cost to edge e. This problem can be solved in
polynomial time since the full description of its con-
vex hull is given in (Korte and Vygen, 2001).

Proposition 3.1. Let G = (N [S ;E) be a weighted
complete bipartite graph built as described in Figure
4. Then, finding an optimal chunk placement solution
is equivalent to an uncapacitated (u � ¥) minimum
weight b-matching solution, where b(v) = 1 if v 2N
(v is a chunk) and for all vertices v2 S , we put b(0) =
0, and for v� 1, we have

A�Mathematical�Programming�Approach�to�Multi-cloud�Storage

21

b(v) =

&
jN j�å

v�1
k=0 b(k)

b

’
(1)

where b is the minimum number of data centers to
be used to store the data chunks. This parameter is
required by end-users to avoid vendor lock-in.

To mathematically formulate our model, we asso-
ciate a real decision variable xe to each edge e in the
bipartite graph. As shown in Figure 4, each edge links
a chunk to a data center. After optimization, if the de-
cision is xe = 1 then chunk i (i = I(e) initial extrem-
ity) will be stored in data center j (j = T (e) terminal
extremity). Since the solution of a b-matching prob-
lem is based on solving a linear program, an integer
solution of the minimum weight b-matching is found
in polynomial time. This is equivalent to the optimal
solution of the chunk placement problem described in
this section.
According to the storage costs listed previously and
by defining the probability of failure of a data cen-
ter (or a provider) noted by f , we assign each chunk
to the best data center with minimum cost. We note
by Costplac the total cost of placing jN j chunks in an
optimal manner. We can formulate the objective func-
tion as follows:

minCostplac = å
e2E;e=(i; j)

�
µ j

1� f j
ni

�
xe (2)

where ni is the volume of chunk i, and (1� f) is
the probability of data center availability (or provider
availability).

This optimization is subject to a number of linear
constraints. For instance, the broker has to consider
the placement of all data chunks, and each chunk will
be assigned to one and only one data center (the chunk
replication problem will be discussed in the next sec-
tion). This is represented by (3):

å
e2d(v)

xe = 1;8v 2N (3)

Each data center s has a capacity Qs. This leads to
the following constraints:

jN j

å
C=1

nCxCs � Qs;8s 2 S (4)

According to end-user requirements and to guar-
antee high data availability, chunks will be deployed
in different data centers to avoid vendor lock-in. This
is given by the following inequality:

jN j

å
C=1

xCs � b(s);8s 2 S (5)

Using the b-matching model with constraints (4),
enables the use of the complete convex hull of b-
matching and makes the problem easy in terms of
combinatorial complexity theory.

Reference (Korte and Vygen, 2001) gives a com-
plete description of the b-matching convex hull ex-
pressed in constraints (3), (4) and (5). These families
of constraints are reinforced by blossom inequalities
to get integer optimal solutions with continuous vari-
ables:

å
e2E(G(A))

xe + x(F)�
�

åv2A bv + jF j
2

�
;8A 2N [S ;

(6)
where F � d(A) and åv2A bv + jF j is odd, and

d(A) = åi2A; j2A x(i j). E(G(A)) represents a subset of
edges of the subgraph G(A) generated by a subset of
vertices A. An in depth study of blossom constraints
(6) is out of the scope of this paper, but more details
can be found in (Grotschel et al., 1985).

Based on the bipartite graph G, we constructed a
polynomial time approximation scheme of the data
chunks placement problem by identifying the b-
matching formulation. The blossom constraints (6)
are added to our model to get optimal integer solu-
tions of the placement problem whose model is finally
given by:

minCostplac = å
jS j
s=1 å

jN j
C=1

µs
1� fs

nCxCs

S:T: :8>>>>>>>><>>>>>>>>:

å
jS j
s=1 xCs = 1;8C 2N

å
jN j
C=1 nCxCs � Qs;8s 2 S

å
jN j
C=1 xCs � b(s);8s 2 S

åe2E(G(A)) xe + x(F)�
j

åv2A bv+jF j
2

k
;8A 2N [S

F � d(A);åv2A bv + jF j is odd
xCs 2R+;8C 2N ; 8s 2 S

(7)
The variables and constants used in the final

model are summarized as follows:

3.3 Data Replication Algorithm

To enhance performance and availability of end-user
stored data, we propose a replication model of data
chunks depending on data center failure probabilities,
and expected availability (noted by Aexpec) required
by each user. The objective consists in finding the
optimal trade-off between data center availability and
storage costs. This leads to avoiding expensive data
centers with high failure probability.

We assume that each data chunk is replicated r
times, and reconstituting a file data needs to get one

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

22

Table 1: Variables and constants of the model.

Variables Meaning
N set of data chunks
S set of data centers
nC volume of a data chunk C
µ j storage cost per Gigabyte/month of

provider j
xe real variable indicating if e is so-

licited or not
bv upper bound of the degree of v
d(A) = åi2A; j2A x(i j)
d(v) set of incident edges to v
b minimum number of providers

copy of all chunks (i.e. jN j chunks among r� jN j
are necessary to reconstruct a data). Figure 5 gives
more details and shows chunks replication procedure.

It is important to note that initially, each en-
crypted chunk will be replicated by the selected host-
ing providers within their data centers, and the bro-
ker can reinforce this mechanism by proposing to add
more replicas guaranteeing higher data availability.

Figure 5: Data replication.

In the following, we would like to replicate jN j
chunks into jS j data centers according to various
costs (storage costs) and performance requirements
such as the data availability. We suppose that S =�

s1;s2; : : : ;sjSj
	

and for the sake of simplicity (due to
the problem NP-Hardness), we suppose w.l.o.g. each
data center has a large amount of storage resources
able to host data chunks and replicas. We associate

each data center s 2 S with a probability of failure fs.
We suppose (as cited above) that each data chunk

C (C = 1; jN j) has r replicas to place in r data centers
that do not contain the chunk C. Thus we ask the
following question: How do we replicate data chunks
through available data centers so that the total cost of
storage is optimal (minimal) and data availability is
maximal?

Thus, for each chunk C, the problem consists in
selecting a subset jC of r available data centers that
do not contain C, leading to a minimum storage cost
and a high probability of data availability.

We note by P(C) the probability of chunk C avail-
ability (respect. P(C) is the probability of non-
availability of a chunk C). P(D) is the probability
of data availability (respect. P(D) is the probability
of non-availability of data D). Note that a chunk C
is not available if all of its copies are not available
(see Figure 5). In other words, a block in Figure 5
with r replicas is non available if all of the data cen-
ters storing this block are non available. By supposing
the data centers are independent, we get the following
proposition:

Proposition 3.2. P(C) = Õs2jC
fs

Proof.

P(C) = P(C1 and C2 and : : : and Cr)

= P(C1)�P(C2)� : : :�P(Cr)

= Õ
s2jC

fs

Proposition 3.3. P(D) = Õ
jN j
C=1

�
1�Õs2jC

fs
�

Proof. A data D with r � jN j chunks, is entirely
available if all chunks are available. According to
Proposition (3.2), the probability of data file availabil-
ity (i.e. P(D)) is then given by:

P(D) =
jN j

Õ
C=1

P(C)

=
jN j

Õ
C=1

1� Õ

s2jC

fs

!

The QoS requirement for end-users is presented
by the data availability. This is noted by Aexpect (as
used in (Mansouri et al., 2013) for example). Thus,
to meet end-user QoS requirement, the broker should
replicate each D in a selected sub-set of data centers
that satisfies:

jN j

Õ
C=1

1� Õ

s2jC

fs

!
� Aexpect (8)

A�Mathematical�Programming�Approach�to�Multi-cloud�Storage

23

We derive a mathematical model to efficiently re-
duce the replication costs noted by Costrep, under the
QoS requirements described by the inequality (8). As
the number of replicas of each chunk is supposed to
be r, we seek an optimal sub-set of data centers of
size r to store the replicas of each chunk. Moreover,
our solution should not put all the chunks within the
same data center to avoid vendor lock-in. Thus, in
the following, we address a mathematical optimiza-
tion model to efficiently replicate all the chunks of a
data D.

minjC Costrep = å
jN j
C=1 ås2jC

µsnC
S:T: :(

Õ
jN j
C=1

�
1�Õs2jC

fs
�
� Aexpect ; ;

jjCj= r; 8C = 1; jN j;
(9)

To solve the model (9), we can resort to dynamic
programming approach as the objective function of
(9) is separable and monotone. As these methods re-
sort to recursion technique, they can prove to be ex-
pensive in certain cases due to the exponential number
of data centers subsets to enumerate. For this reason,
and for the sake of scalability, we prefer to address a
simple, scalable and succinct algorithm to reach near
optimal solutions for large instances in few seconds.

Solving the model (9) is equivalent to find a sub-
set of data centers able to host chunks in a cost ef-
ficient manner, and that satisfies the requirement (8).
We propose a simple and scalable algorithm to solve
(9) in few seconds for large number of data centers
and data chunks. Without loss of generality, we
assume that minimizing a function Z is approxima-
tively equivalent to minimize ln(Z). Thus, for each
chunk C, we seek a subset of data centers that min-
imizes ln(Õs2jC

fs). This is equivalent to minimize
ås2jC

ln(fs). Moreover, We construct a new bipar-
tite graph G2 = (V2 [S2;E2), where V2 is the set of
chunks to be stored and S2 is the set of all available
data centers (see Figure 6). E2 is the set of weighted
edges between the two parts of vertices of G2. There
is an edge between each chunk C and each data center
s (not containing a copy of chunk C) with a weight
given by ln(fs). If a data center s has already stored a
copy of chunk C, then the weight of the edge (C;s) is
equal to 2. Figure 6 gives more details.

From graph G2, we identify a minimum weight b-
matching with a given vector b as follows :

� for each v2V2, degree of v is equal to b(v)= r�1,
� the degree of each vertex v 2 S2 is equal to b(v)

given by (1).

To summarize, we give the following algorithm,

Figure 6: New bipartite graph G2 to replicate chunks.

leading to find the best subset of data centers to repli-
cate all the chunks in a cost efficient manner, verifying
condition (8).

Algorithm 1: Data replication algorithm.

Step 0: Construct the bipartite graph G2 (see Fig-
ure 6);
Step 1: Compute a b-Matching with a minimum
cost solution using the vector b;
Step 2: Check if (8) is satisfied;
Step 3: If (8) is not satisfied, GOTO Step 0, by in-
crementing the degrees of vertices in S2;

The algorithm 1 is deployed to replicate efficiently
r�1 copies of each chunk C of a data D.

3.4 Data Chunk Splitting

In this section, we discuss the rational number of
chunks (jN �j) to be used to split the data according to
data center failure probabilities (fs for a DC s), num-
ber of replicas (r) of each chunk, and the data avail-
ability expected by end-users (Aexpect).

According to Proposition (3.3), we seek a ratio-
nal number of encrypted chunks to get after splitting
the data when satisfying end-users QoS represented
by data availability Aexpect . We get the following in-
equality :

PD =
jN j

Õ
C=1

PC =
jN j

Õ
C=1

1� Õ

s2jC

fs

!
� Aexpect (10)

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

24

As Aexpect < 1 and Õ
jN j
C=1

�
1�Õs2jC

fs
�
< 1, in-

equality (10) leads to the following one:

ln

jN j

Õ
C=1

1� Õ

s2jC

fs

!!
� ln(Aexpect) (11)

We also note that for each chunk indexed by C,
we have r replicas and then jjCj = r. For the sake of
simplicity, we also suppose that the failure probabil-
ity of each data center is close to the average failure
probability given by f . This allows us to deduce :

Õ
s2jC

fs =
�

f
�r (12)

And following inequality (11), we get:

jN j� ln
�
1� f r�� ln(Aexpect) (13)

According to (13), we deduce the number of data
chunks as follows :

jN �j �
ln(Aexpect)

ln
�
1� f r� (14)

4 NUMERICAL RESULTS

To evaluate and assess performance, our algorithms
have been implemented and evaluated using simula-
tions and an experimental platform managed by an
instance of OpenStack (Openstack, 2014). The lin-
ear programming solver CPLEX (CPLEX, 2014) was
used to derive the b-matching solution and the Bin-
Packing solution used to benchmark our heuristic.

As our goal in this paper is to analyze and discuss
the applicability and the interest of storage brokering
services in interaction with multiple data centers or
cloud providers, we devote some numerical results to
cross validating our proposed algorithms and assess-
ing their cost efficiency and scalability for large data
sizes. It is obvious to remark that the Bin-Packing
model used to place data chunks invokes a branch and
bound approach leading to explore the entire space of
all the existing solutions. This leads to find ”optimal”
solutions for small data sizes serving as a benchmark
for other approaches and algorithms. As the data size
increases, the optimal solution for data chunk place-
ment can only be found in exponential time. Thus, for
large data, we resort to our heuristic solution based on
graph theory and the b-matching approach.

In addition, our performance evaluation seeks to
identify the limits of the discussed problem in terms
of algorithmic complexity, and its suitability for op-
timizing real life instances. We will also determine

the gap between the suboptimal heuristic solutions
and the optimal solution provided by the Branch and
Bound model when it can be reached in acceptable
times.

4.1 Simulation Environment

The proposed algorithms in this paper were evaluated
using a 1:70 GHz server with 6 GBytes of available
RAM. We used data files with sizes ranging from 100
Megabytes to 4 Gigabytes. These data were stored in
a distributed manner over a number of available data
centers or providers ranging from 10 to 50. We asso-
ciate with each data center, a data price per Gigabyte
and per month, uniformly generated between 0 $ and
1 $. Each data is splitting multiple chunks and each
chunk size is equal to 1 Megabyte. This configura-
tion leads to construct a full mesh bipartite graph as
described above. The number of generated bipartite
graphs was set to 100 in our simulations yielding an
average value reported in the following curves and ta-
bles. Without loss of generality, we suppose that each
data center has an unlimited storage capacity.

In addition, we also used a platform of 20 servers
running a Havana instance of OpenStack (Openstack,
2014) in a multi-node architecture. Each server (as-
similated to a data center in real life) proposes Swift
containers (Swift, 2014) to store data chunks. We as-
sociate a storage cost to each container (or DC) as
described above. It is important to note that we used
Swift API only to guarantee PUT and GET operations
from and to the broker by intercepting and hosting en-
crypted chunks, without considering Swift replication
policy. To improve our broker functionalities, we will
add an S3 compatible interface allowing end-users to
request the broker storing their data within Amazon
S3.

4.2 Performance Evaluation

The first experiment consists in comparing the Bin-
Packing and b-Matching (heuristic) approaches in
terms of delay to derive the optimal and suboptimal
solutions, respectively. We report different scenarios
in Table 2, varying the number of data centers able
to store end-users data (from 12 to 700 DCs), and the
number of chunks ranging from 50 chunks to 2000
chunks, which is equivalent to store data size of 50
Megabytes to 2000 Megabytes, as each chunk is of 1
Megabyte.

To get a better grasp of the relative performance
of the two algorithms, we generate 100 runs and take
the average value of each instance, as reported.

The performance of the heuristic algorithm com-

A�Mathematical�Programming�Approach�to�Multi-cloud�Storage

25

pared to the optimal solution is represented by a gap
defined as the percentage difference between the cost
of the optimal and the heuristic solutions:

Gap(%) = 100� bMsol�BPsol

BPsol
(15)

where BPsol is the cost of the exact solution pro-
vided by the Bin-Packing algorithm (to use as a ref-
erence or benchmark) and bMsol is the cost of the b-
Matching solution.

Table 2 reports the results of the evaluation and
clearly shows the difficulty to reach optimal solutions
using the Bin-Packing (Branch and Bound) algorithm
whose resolution times become prohibitive for the
scenarios of a data file of 2 Gigabytes to be distributed
on a selected set of data centers among 300, 500 and
700 providers or data centers. Our heuristic solution
performs close to optimal with Gap not exceeding 6%
for the evaluated cases. More specifically the gap is
in the interval [0.65%; 5.93%].

The results shown in Table 2 illustrate the diffi-
culty to optimally solve the data chunks placement
problem (see case of a data of 50 Mb with 25 DCs).
At the same time, they demonstrate that the heuris-
tic approach can find good and near-optimal solutions
whose cost is quite close to the optimum (see case
of data with 2000 MB and 700 DCs). Our algorithm
provides an excellent trade-off between convergence
time, optimality, scalability and cost. With respect to
convergence time as seen in the third column of Table
2, it converges in a few seconds for the scenario with
2000 chunks and 700 DCs (54 secs compared to more
than 3 hours for Bin-Packing).

To get a better grasp of the relative performance
of the two algorithms used in this paper, a data file of
100 Megabytes is used and split into 100 encrypted
chunks to be stored in a number of data centers rang-
ing from 20 to 200. Figure 7 shows the characteristics
of the algorithms. The b-matching algorithm achieves
the best cost performance since it has consistently in-
curred the smallest cost, very close to the Bin-Packing
which does not scale (as seen in Table 2). Exception-
ally, one can remark in Figure 7 (the scenario with
20 to 40 available DCs), the cost found by the b-
Matching is slightly lower than the cost of the Bin-
Packing leading to negligible SLA violations caused
by the quality of the upper bound given by equation
(1) which should be enhanced in a future work. This
is explained by the difficulty to optimally store and
place all the data chunks in different data centers.

Another experiment consists in evaluating the pro-
posed heuristic solution to determine the trade-off be-
tween storage cost and data availability. We associate
with each user a required percentage of its data avail-
ability, denoted by Aexpect . We reformulate Aexpect in

Table 2: Encrypted data chunks placement: b-Matching al-
gorithm performances.

jN j jS j b-
Matching
Time (sec)

Bin-
Packing
Time (sec)

Gap (%)

50
12 0.15 0.16 2.24
25 0.15 0.16 5.93
40 0.17 0.18 2.06

100
25 0.17 0.20 3.08
50 0.18 0.20 0.65
75 0.20 0.22 2.98

500
100 1.10 2.11 1.94
250 1.27 3.68 4.37
350 1.33 4.20 0.97

1000
200 7.22 12.7 5.36
400 8.5 17.5 1.37
700 10.4 22.6 3.66

2000
300 30.7 > 3H 1.45
500 45.2 > 3H 4.3
700 54.8 > 3H 0.81

Figure 7: Storage cost gap.

terms of the number of nines required by a user. We
simulated a cloud storage market of 15 data centers
belonging to different providers having different fail-
ure rates. For example, Amazon S3 (AWS, 2014) of-
fers two levels of services: ”Standard Storage” witch
has 11 nines of storage availability for 0:03$ per Giga-
byte per month, while ”Amazon S3 Reduced Redun-
dancy Storage (RRS)” has 4 nines of data availability
for 0:024$ per GB per month. The simulated market
is summarized in Table 3.

We consider a user data of 100 Gigabytes, and we
investigate four methods to find the trade-off between
a maximum data availability and a minimum price
(cost). We use the following scenarios:

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

26

Figure 8: Data storage cost and availability trade-off.

� Minimum Price: A user selects simply the
cheapest provider in the market (Provider 15
proposing a price of $0:01 per Gigabyte and per
month in Table 3) without concerns on data avail-
ability (3 nines). Following this approach, the
data will be stored with a total minimum costs of
1$ and a weak data availability (3 nines in Fig-
ure 8). Moreover, the user is locked-in within one
cloud provider with a weak data availability. This
can lead to disrupting services and loss of data.

� Maximum Availability: A user selects the
provider with high availability in the simulated
market (Provider 1 with 10 nines in Table 3). Ac-
cording to pricing proposal of Provider 2, the total
storage cost is higher than the cost of the first sce-
nario (10 $ in Figure 8). This may also lead to
users’ lock-in within the same provider.

� Average Price: In this case, we use the average
price of the market, and we store the data within
the provider with equivalent price (Provider 9
with 0:06$ per Gigabyte per month in Table 3).
The total data cost in this case is equal to 6$ with
6 nines of data availability (according to the pro-
posal of Provider 6). This scenario presents higher
data availability than scenario 1 with a consider-
able cost increase. In this case, we also solicited
one provider to store the data, which may cause
user lock-in.

� Distributed Storage: We used our proposed ap-
proach (Algorithm 1) to find the trade-off between
data availability and price. As depicted in Fig-
ure 8, our solution reaches a maximum availabil-
ity of 8 nines with a minimum cost of 4$. This
is due to data distribution over a set of selected
providers with high availability and reasonable
prices, avoiding user lock-in at the same time.

Table 3: Storage market costs and data availability.

Providers Price
($/GB/month)

Data Avail-
ability

Prov 1 0.1 99.99999999%
Prov 2 0.095 99.99999995%
Prov 3 0.09 99,9999999%
Prov 4 0.085 99,9999995%
Prov 5 0.08 99,999999%
Prov 6 0.075 99,999995%
Prov 7 0.07 99.99999%
Prov 8 0.065 99,99995%
Prov 9 0.06 99,9999%
Prov 10 0.055 99,9995%
Prov 11 0.05 99,999%
Prov 12 0.04 99,995%
Prov 13 0.03 99.99%
Prov 14 0.02 99.95%
Prov 15 0.01 99.9%

A last experiment consists in evaluating the be-
havior of the number of replicas (noted by r) of
each chunk with the evolution of the number of data
chunks (jN �j) identified in (14) for example. We sup-
posed that the average value of data centers failure
probability is equal to 10�3, when the expected data
availability required by cloud consumers is equal to
99:9999%.

Figure 9 depicts the evolution of r for different
chunks number ranging from 1 to 60. Thus, we re-
mark that for a number of chunks jN �j � 43, the
number of required replicas is equal to 2, and for
jN �j � 44 chunks, the number of replicas converges
to 3 and there is no need to replicate more even for
larger number of chunks. This may lead to store large
data volumes with reduced costs when satisfying the
required QoS (data availability). Note that this result
is very similar than that determined by the Google
File System solution (Ghemawat et al., 2003).

Figure 9: Data chunks replication behavior.

A�Mathematical�Programming�Approach�to�Multi-cloud�Storage

27

5 SUMMARY AND FUTURE
WORK

In this paper we considered an encrypted and dis-
tributed solution allowing to store users’ data in dif-
ferent providers’ data centers offering storage ser-
vices with different prices and SLAs. To eliminate
user lock-in and to liberate user data from a unique
provider, we proposed a new efficient and scalable
solution based on b-Matching theory to optimize the
storage cost and the data failure at the same time. The
b-Matching algorithm works in tandem with a replica-
tion solution allowing to efficiently increase the data
availability of end-users. This replication algorithm is
based on a simple and fast approach giving near opti-
mal solutions even for large problem instances.

In future work, we will reinforce our mathematical
model of data chunk placement based on b-Matching
theory, to consider network constraints when users are
involved in PUT and GET operations. This may lead
cloud consumers to combine requests of compute (as
EC2 instances (EC2, 2014)) services with storage ser-
vices (as Google Drive (Google, 2014)) at the same
time. Thus, we will reinforce our broker’s function-
alities to give cloud consumers various means to con-
sume proposed cloud resources in a more secure man-
ner with reduced cost.

REFERENCES

Abu-Libdeh, H., Princehouse, L., and Weatherspoon, H.
(2010). Racs: A case for cloud storage diversity.
In Proceedings of the 1st ACM Symposium on Cloud
Computing, SoCC ’10, pages 229–240, New York,
NY, USA. ACM.

AWS (2014). http://aws.amazon.com/fr/s3/pricing/.
Balasaraswathi, V. and Manikandan, S. (2014). Enhanced

security for multi-cloud storage using cryptographic
data splitting with dynamic approach. In Advanced
Communication Control and Computing Technologies
(ICACCCT), 2014 International Conference on, pages
1190–1194.

Bonvin, N., Papaioannou, T., and Aberer, K. (2010). A
self-organized, fault-tolerant and scalable replication
scheme for cloud storage. In Proceedings of the 1st
ACM Symposium on Cloud Computing, SoCC ’10,
pages 205–216, New York, NY, USA. ACM.

Chia-Wei, C., Pangfeng, L., and Jan-Jan, W. (2012).
Probability-based cloud storage providers selection al-
gorithms with maximum availability. In Parallel Pro-
cessing (ICPP), 2012 41st International Conference
on, pages 199–208.

CPLEX (2014). http://www-01.ibm.com/software/
commerce/optimization/cplex-optimizer/.

EC2 (2014). http://aws.amazon.com/fr/ec2/.

Ford, D., Labelle, F., Popovici, F., Stokely, M., Truong,
V., Barroso, L., Grimes, C., and Quinlan, S. (2010).
Availability in globally distributed storage systems. In
Proceedings of the 9th USENIX Symposium on Oper-
ating Systems Design and Implementation.

Ghemawat, S., Gobioff, H., and Leung, S. (2003). The
google file system. SIGOPS Oper. Syst. Rev.,
37(5):29–43.

Google (2014). drive.google.com/.
Grotschel, M., Lovsz, L., and Shrijver, A. (1985). Ge-

ometric algorithms and combinatorial optimization.
Springer.

Jindarak, K. and Uthayopas, P. (2012). Enhancing cloud
object storage performance using dynamic replication
approach. In Parallel and Distributed Systems (IC-
PADS), 2012 IEEE 18th International Conference on,
pages 800–803.

Korte, B. and Vygen, J. (2001). Combinatorial optimiza-
tion: theory and algorithms. Springer.

Li, J. and Li, B. (2013). Erasure coding for cloud storage
systems: A survey. Tsinghua Science and Technology,
18(3):259–272.

Mansouri, Y., Toosi, A., and Buyya, R. (2013). Brokering
algorithms for optimizing the availability and cost of
cloud storage services. In Proceedings of the 2013
IEEE International Conference on Cloud Computing
Technology and Science - Volume 01, CLOUDCOM
’13, pages 581–589, Washington, DC, USA. IEEE
Computer Society.

Myint, J. and Thu, N. T. (2011). A data placement algo-
rithm with binary weighted tree on pc cluster-based
cloud storage system. In Cloud and Service Comput-
ing (CSC), 2011 International Conference on, pages
315–320.

Negru, C., Pop, F., Cristea, V., Bessisy, N., and Jing, L.
(2013). Energy efficient cloud storage service: Key
issues and challenges. In Emerging Intelligent Data
and Web Technologies (EIDWT), 2013 Fourth Inter-
national Conference on, pages 763–766.

NIST (2014). Announcing the advanced encryption stan-
dard (aes).

Openstack (2014). https://www.openstack.org/.
Qingsong, W., Veeravalli, B., Bozhao, G., Lingfang, Z., and

Dan, F. (2010). Cdrm: A cost-effective dynamic repli-
cation management scheme for cloud storage cluster.
In Cluster Computing (CLUSTER), 2010 IEEE Inter-
national Conference on, pages 188–196.

Rodrigo, R. and Liskov, B. (2005). High availability in
dhts: Erasure coding vs. replication. In Peer-to-Peer
Systems IV 4th International Workshop IPTPS 2005,
Ithaca, New York.

Seungmin, K., Bharadwaj, V., and KhinMiMi, A. (2014).
Espresso: An encryption as a service for cloud storage
systems. Monitoring and Securing Virtualized Net-
works and Services, pages 15–28.

Srivastava, S., Gupta, V., Yadav, R., and Kant, K. (2012).
Enhanced distributed storage on the cloud. In Com-
puter and Communication Technology (ICCCT), 2012
Third International Conference on, pages 321–325.

Swift (2014). http://docs.openstack.org/developer/swift/.
Thanasis, G. P., Bonvin, N., and Aberer, K. (2012). Scalia:

An adaptive scheme for efficient multi-cloud storage.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

28

In Proceedings of the International Conference on
High Performance Computing, Networking, Storage
and Analysis, SC ’12, pages 20:1–20:10, Los Alami-
tos, CA, USA. IEEE Computer Society Press.

Varghese, L. and Bose, S. (2013). Integrity verification in
multi cloud storage. In Proceedings of International
Conference on Advanced Computing.

Weatherspoon, H. and Kubiatowicz, J. (2002). Erasure cod-
ing vs. replication: A quantitative comparison. In Re-
vised Papers from the First International Workshop
on Peer-to-Peer Systems, IPTPS ’01, pages 328–338,
London, UK, UK. Springer-Verlag.

Yanzhen, Q. and Naixue, X. (2012). Rfh: A resilient,
fault-tolerant and high-efficient replication algorithm
for distributed cloud storage. In Parallel Processing
(ICPP), 2012 41st International Conference on, pages
520–529.

Zhang, Q., Xue-zeng, P., Yan, S., and Wen-juan, L. (2012).
A novel scalable architecture of cloud storage sys-
tem for small files based on p2p. In Cluster Com-
puting Workshops (CLUSTER WORKSHOPS), 2012
IEEE International Conference on, pages 41–47.

A�Mathematical�Programming�Approach�to�Multi-cloud�Storage

29

Cloud Provider Transparency
A View from Cloud Customers

Daniela S. Cruzes and Martin Gilje Jaatun
SINTEF – ICT, Postboks 4760 Sluppen, 7465 Trondheim, Norway

{danielac, martin.g.jaatun}@sintef.no

Keywords: Cloud, Provider, Customer, Security, Privacy, Accountability, Transparency.

Abstract: A major feature of public cloud services is that data are processed remotely in unknown systems that the users
do not own or operate. This context creates a number of challenges related to data privacy and security and
may hinder the adoption of cloud technology. One of these challenges is how to maintain transparency of the
processes and procedures while at the same time providing services that are secure and cost effective. This
paper presents results from an empirical study in which the cloud customers identified a number of
transparency requirements to the adoption of cloud providers. We have compared our results with previous
studies, and have found that in general, customers are in synchrony with research criteria for cloud service
provider transparency, but there are also some extra pieces of information that customers are looking for.

1 INTRODUCTION

Cloud computing, which allows for highly scalable
computing and storage, is increasing in importance
throughout information technology (IT). Cloud
computing providers offer a variety of services to
individuals, companies, and government agencies,
with users employing cloud computing for storing
and sharing information, database management and
mining, and deploying web services, which can range
from processing vast datasets for complicated
scientific problems to using clouds to manage and
provide access to medical records (Paquette, 2010).

Several existing studies emphasize the way
technology plays a role in the adoption of cloud
services, and most of these studies conclude that the
most important challenges are related to security,
privacy and compliance (Kuo, 2011), (Gavrilov and
Trajkovik, 2012), (AbuKhousa et al., 2012),
Rodrigues et al. 2013), (Ahuja et al. 2012). Cloud
service users may hand over valuable and sensitive
information to cloud service providers without an
awareness of what they are committing to or
understanding of the risks, with no control over what
the service does with the data, no knowledge of the
potential consequences, or means for redress in the
event of a problem.

In the European A4Cloud research project
(http://a4cloud.eu), our focus is on accountability as
the most critical prerequisite for effective governance
and control of corporate and private data processed by

cloud-based IT services. We want to make it possible
to hold cloud service providers accountable for how
they manage personal, sensitive and confidential
information in the cloud, and for how they deliver
services. This will be achieved by an orchestrated set
of mechanisms: preventive (mitigating risk),
detective (monitoring and identifying risk and policy
violation) and corrective (managing incidents and
providing redress). Used individually or collectively,
they will make the cloud services in the short- and
longer-term more transparent and trustworthy for:

• users of cloud services who are currently not
convinced by the balance of risk against
opportunity

• their customers, especially end-users who do not
understand the need to control access to
personal information

• suppliers within the cloud eco-system, who need
to be able to differentiate themselves in the
ultimate commodity market.

In this paper we report on the results of an
elicitation activity related to transparency
requirements from the perspective of cloud
customers. A Cloud Customer in our context is an
entity that (a) maintains a business relationship with,
and (b) uses services from a Cloud Provider;
correspondingly, a Cloud Provider is an entity
responsible for making a [cloud] service available to
Cloud Customers.

Transparency is the property of an accountable
system that is capable of ‘giving account’ of, or

30

providing visibility of, how it conforms to its
governing rules and commitments (Felici et. al,
2013). Transparency involves operating in such a way
as to maximize the amount of and ease-of-access to
information which may be obtained about the
structure and behavior of a system or process. An
accountable organization is transparent in the sense
that it makes the policies on treatment of personal and
confidential data known to relevant stakeholders, can
demonstrate how these are implemented, provides
appropriate notifications in case of policy violation,
and responds adequately to data subject access
requests. In an ideal scenario, the user knows the
information requirements and is able to communicate
that clearly to the provider, and in return, the provider
is transparent and thus willing to address the
regulatory and legislative obligations required with
regard to the assets.

The rest of the paper is organized as follows.
Section 2 presents some background from the
literature. Section 3 explains the methodology that we
used to elicit the views of the stakeholders. In section
4 we present the results, and in section 5 we discuss
our findings compared to related work. We draw our
conclusions in section 6.

2 RELATED WORK

Transparency is closely connected to trust (Yang and
Tate, 2012). Onwubiko (2010) affirms that trust is a
major issue with cloud computing irrespective of the
cloud model being deployed. He says that cloud users
must be open-minded and must not whole-heartedly
trust a provider just because of the written-down
service offerings without carrying out appropriate due
diligence on the provider; where certain policies are
not explicit, users should ensure that missing policies
are included in the service contract. By understanding
the different trust boundaries, each cloud computing
model assists users when making decision as to which
cloud model they can adopt or deploy.

Khorshed et al. highlight the gaps between cloud
customers' expectations and the actually delivered
services, as shown in Figure 1 (Khorshed et al., 2012).
They affirm that cloud customers may form their
expectations based on their past experiences and
organizations’ needs. They are likely to conduct some
sort of survey before choosing a cloud service
provider similar to what people do before choosing an
Internet Service Provider (ISP). Customers are

Figure 1: Understanding Cloud Computing Gaps adapted from Khorshed et al. (2012).

Organiza ons’
Needs

Past
Experience

Survey on
Cloud Providers

Expected Service
Confiden ality

Integrity

Availability

I will trust
you, if you are
Transparent

Perceived Service

GAP

You need to
trust me on

every level. My
company policy
won’t allow me
to be 100%
Transparent

Trust Threats Risks

GAP

Agreement

Cloud
Customer

Cloud Service
Provider

Cloud�Provider�Transparency�-�A�View�from�Cloud�Customers

31

expected to also establish to what extent providers
satisfy confidentiality, integrity and availability
requirements. On the other hand, cloud service
providers may promise a lot to entice a customer to
sign a deal, but harsh reality is frequently
accompanied by insurmountable barriers to keeping
some of their promises. Many potential cloud
customers are well aware of this, and are
consequentially still sitting on the sidelines. They will
not venture into cloud computing unless they get a
clear indication that all gaps are within acceptable
limits.

Durkee (2010) says that transparency is one of the
first steps to developing trust in a relationship, and
that the end customer must have a quantitative model
of the cloud’s behavior. The cloud provider must
provide details, under NDA if necessary, of the inner

workings of their cloud architecture as part of
developing a closer relationship with the customer.
Durkee also says that this transparency can only be
achieved if the billing models for the cloud clearly
communicate the value (and avoided costs) of using
the service. To achieve such clarity, the cloud vendor
has to be able to measure the true cost of computing
operations that the customer executes and bill for
them.

Pauley (2010) proposed an instrument for
evaluating the transparency of a cloud provider. It is
the only empirical evaluation that we found that
focuses on transparency in the cloud as a subject of
study. The study aims to help businesses assess the
transparency of a cloud provider’s security, privacy,
auditability, and service-level agreements the

Table 1: Pauley’s Cloud Provider Transparency Scorecard.

Aspect Criteria Mentioned in
Interviews?

Business
factors

1. Length in years in business > 5?
2. Published security or privacy breaches?
3. Published outages?
4. Published data loss?
5. Similar customers?
6. Member of ENISA, CSA, CloudAudit, OCCI, or other

cloud standards groups?
7. Profitable or public?

No
Yes
Yes
Yes
Yes
No

No

Security 8. Portal area for security information?
9. Published security policy?
10. White paper on security standards?
11. Does the policy specifically address multi-

tenancy issues?
12. Email or online chat for questions?
13. ISO/IEC 27000 certified?
14. COBIT, NIST SP800-53 security certified?
15. Offer security professional services (assessment)?
16. Employees CISSP, CISM, or other security certified?

Yes
Yes
Yes
Yes
No

Partially
Partially

No
Partially

Privacy 17. Portal area for privacy information?
18. Published privacy policy?
19. White paper on privacy standards?
20. Email or online chat for questions?
21. Offer privacy professional services (assessment)?
22. Employees CIPP or other privacy certified?

Yes
Yes
Yes
No
No

Partially
External
audits or

certifications

23. SAS 70 Type II
24. PCI-DSS
25. SOX
26. HIPAA

No
No
No
No

Service-level
agreements

27. Does it offer an SLA?
28. Does the SLA apply to all services
29. ITIL-certified employees?
30. Publish outage and remediation?

Yes
No
No
Yes

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

32

the transparency of a cloud provider’s security,
privacy, auditability, and service-level agreements
via self-service Web portals and publications. Pauley
designed a scorecard (Table 1) to cover the
assessment areas frequently raised in his research,
and to begin to establish high-level criteria for
assessing provider transparency. He concludes that
further research is needed to determine the standard
for measuring provider transparency. In our research
we used a different strategy than Pauley; we have
interviewed customers of cloud services to see what
kind of information they would like to get from the
cloud providers.

3 METHODOLOGY

As part of the project, we were responsible for
running a set of stakeholder workshops for eliciting
requirements for accountability tools. In total, our
elicitation effort has involved more than 300
stakeholders, resulting in 149 stakeholder
requirements. The first workshop dealt with eliciting
initial accountability requirements, serving as a
reality-check on the three selected business use cases
we had constructed (Bernsmed et al., 2014). The
second workshop dealt with risk perception. The aim
was to focus on the notion of risk and trust assessment
of cloud services, future Internet services and
dynamic combinations of such services (mashups).
After the first two workshops, we decided to organize
multiple smaller, local workshops on each theme to
ease participation of cloud customers and end users.
The third set of workshops presented stakeholders
with accountability mechanisms to gather their
operational experiences and expectations about
accountability in the cloud.

Of particular importance to this study was the risk
workshop, where 15 tentative requirements related to
transparency where identified. This workshop
comprised 20 international stakeholders from the
manufacturing industry, telecom, service providers,
banking industry and academia, and the tentative
transparency requirements were subsequently
presented to our interviewees as a starting point for
the discussion.

In addition to the stakeholder requirements, we
have devised a set of high-level requirements which,
from an organizational perspective, set out what it
takes to be an accountable cloud provider (Jaatun et
al., 2014). These requirements intend to supplement
the requirements elicitation process by providing a set
of high-level "guiding light" requirements,
formulated as requirements that accountable

organizations should meet. In short, these
requirements state that an accountable organization
that processes personal and/or business confidential
data must 1) demonstrate willingness and capacity to
be responsible and answerable for its data practices 2)
define policies regarding their data practices, 3)
monitor their data practices, 4) correct policy
violations, and 5) demonstrate policy compliance.

From these activities we have created a repository
with requirements from all elicitation workshops, the
guiding lights requirements as well as a number of
more technical requirements that have originating
from the conceptual work and technical packages in
the project. These have been classified in terms of
whether they are functional requirements, which are
directly related to the actors involved in the cloud
service delivery chain, or requirements for
accountability mechanisms, which are related to the
tools and technologies that are being developed in the
project.

For refining and confirming the elicited
requirements of transparency, we have performed an
interview study with eight interviewees, followed by
an in-depth analysis of the collected information.

Invitations were sent to our list of contacts in
Norwegian software companies. Participation was
voluntary. Eight people accepted to participate in the
interviews. The participants were all IT security
experts working with cloud related projects. The
participants represented six different organizations: a
consultancy, 2 cloud service providers (1 public, 1
private), an application service provider, a
distribution service provider, and a tertiary education
institution.

The interviews were performed on Skype and
lasted about one hour. The main questions of the
interview were:

1. What is the most important information you
think should be provided to the cloud customer
when buying services from cloud service
providers?

2. In which parts would you like to be involved
in making the decisions? In which parts would
you like just to be informed of the decisions?

3. What would increase your trust that the data is
secure in this scenario?

4. What do you want to know about how the
provider corrects data security problems?

The eight interviews for this study were
transcribed into text documents based on the audio
recordings. For further analysis of the transcription,
we followed the Thematic Synthesis recommended
steps proposed by Cruzes and Dybå (2011). Thematic
synthesis is a method for identifying, analyzing, and

Cloud�Provider�Transparency�-�A�View�from�Cloud�Customers

33

reporting patterns (themes) within data. It comprises
the identification of the main, recurrent or most
important (based on the specific question being
answered or the theoretical position of the reviewer)
issues or themes arising from a body of evidence. The
level of sophistication achieved by this method can
vary; ranging from simple description of all the
themes identified, through to analyses of how the
different themes relate to one another in a conceptual
map. Five steps were performed in this research:
initial reading of data/text (extraction), identification
of specific segments of text, labeling of segments of
text (coding), translation of codes into themes,
creation of the model and assessment of the
trustworthiness of the model.

4 RESULTS

For the question "What is the most important
information you think should be provided to the cloud
customer in this scenario?" the participants talked
mostly about nine themes (Figure 2):

1. clear statements of what is possible to do
with the data,

2. conformance to data agreements,
3. how the provider handles data,
4. location,
5. who else other than the provider is

participant of the value chain,
6. multi-tenant situations,
7. what the provider does with the data,
8. procedures to leave the service
9. assurance that the user still owns the right to

the data.
One respondent commented that even though he

would like to have clear statements of what is possible
to do with the data: “100 pages document could be
written about this, but for some non-technical people
it would not help at all”. Another one said: “I would
like to have a [web] page where they could tell me
about security mechanisms, for example, firewalls,
backup etc.”

On the conformance to data agreements, the
respondents agree that having Data Agreements
helps, but it is mainly for technicians, not for non-
technical people. On how the provider handles data,
the respondents said that they would like to have
functional, technical and security related information
about how the providers handle the data. On location,
the respondents are concerned about where the data is
physically stored, and the legal jurisdiction of the
services. Another important piece of information is
about sub-providers, if there are any; where they are

located and whether they meet legal requirements of
the customer's location. Multi-tenant situations are a
concern of the customers, and they would like to have
this information transparent. Also, information on
how the providers ensure that data from one customer
will not be accessed by another customer.

It is also important for transparency to know what
the provider does to protect customers’ data. One
respondent said that he would like to have
information on: “How to protect the information or
how the information is protected; not much in detail
for the end-user, but only for enterprises.” It was also
highlighted that they would like to have the
procedures to leave the service and on how to move
data from one service to another transparent. Besides,
they would like to have the assurance that they still
own the rights to their data.

On the question "What would increase your trust
that the data is secure in this scenario?" the
participants mentioned eight different themes: 1)
upfront transparency; 2) community discussions, 3)
customer awareness; 4) way out; 5) reputation; 6)
encryption; 7) data processor agreements; and 8)
location.

Some answers were overlapping towards the
answers from the first question: upfront transparency,
location and conformance to data processor
agreement. Interesting answers for this question were
related to community discussions, customer
awareness and reputation. The respondents said that
it increases their trust in a cloud provider if they know
that the provider has an active security research team,
or participates in security communities. The
respondents also said that for security: “Customers
should be proactive and make sure that all the
documentation is there”. And another one commented
on the importance of having webpages telling what
customers could do to keep the data safe. Two
participants also mentioned “Way out”, meaning that
they would like to have webpages telling them what
to do to remove the data from the service provider.

On the questions: "In which parts would you like
to be involved in making the decisions? In which
parts would you like just to be informed of the
decisions?" it was surprising that the participants
mostly answered that they would like to be informed
but not really taking part of every decision (Figure 4);
the exceptions were when the provider was moving
data to another country, other parties are introduced
in the service provider value chain, or there are
significant changes in the initial terms of contract.

One participant said: “Some customers sometimes
have some requests, but in general they do not care
about taking part in the decisions”, and another one

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

34

said: “there are some decisions that we don't need to
explicitly know about, but it has to be regulated by
some other agreement about the responsibility of each
one towards the data”. One respondent also said: “I
would like to be involved in decisions on moving my
data to another country in most situations. Unless for

example a disaster and there is the need to move to
another country.” Some respondents said that they
would like to be informed when the data is transferred
from one actor to the next, one of them added: “For
example if calling to the call center your data will be
transferred to another country then the customers has

Figure 2: Important Upfront Information for Transparent Services.

What is the most important
information you think should
be provided to the cloud
customer in this scenario?

Clear statements
of what is possible
to do with the data

The providers should have some kind of standard certification level of description or standard language that they
have to make the situation easier to the buyer to evaluate which security level do we need, what is required from
us and what is the provider offering.

I would like to have a page that they could tell me about security mechanisms, for example, firewalls, backup etc

That I can choose what is possible to do with my data

100 pages document could be written about this but for some non-technical people it would not help.

Conformance to
Data Agreements

Data Agreement helps. How data is handled, how it is stored, the procedures. And having this documentation
available it helps. But mainly for technicians not for non technical people

For example, your data is encrypted in transferred and stored. In a safe harbor, And
also behave adhered to the norwegian data act or norwegian protection framework

Legal contracts sometimes are too big and overkilling. Something in between too high level information and the big contracts.

Show that follows the data handling agreement to the type of data that is in question.

How the Provider
handles data

What the provider does with the data. Of course, problems are the same as with old HOST
systems. You don't really know what the software provider does with your data.

Functional, technical and security wise information about how they handle the data.

If sensitive information is stored on the cloud, they should provide very good
information of how the data is stored and who has access to it.

How the providers will handle data. What is the responsibilities of the parts involved in the agreement

How do the providers manage their systems

All the security aspects of the data are important to be evidenced, before they get a contract with the provider

How many employees have access to the data.

Location

Geographically where my data is stored

Which country it is stored? We are very concerned that it is outside of Norway.

Location. Geographical and Legal location

Locations of the providers
It is important to know where it is located. It might be ok if its in Norway or
not, but it depends on the data the consumers will put on the cloud.

Who else other than the
provider is participant of
the value chain

Which provider is actually stored at.

Information about sub providers if there are. Where they are
located and whether they meet legal requirements of Norway.

What does the whole data
privacy stack looks like.

but providers are quite reluctant to comply to this.

Can other parties get access to your data? For example call centers?
That are located in another country for cost saving purposes?

Who are the participants of the cloud side. Which parties are involved. Are
there others involved? Is this a sole company providing the service?

I would like to know how the service is set up. Who is involved
with who. And that people can see how things are set up.

Multi Tenant Situations

If they are combining my data with other data about me in their servers.

How the customers are separated from each other, in case of multi-tenant services

How the providers assure that data from one customer will not be accessed by another customer.

How they protect the data privacy part.

What the provider
does to protect my
data

How to protect the information or how the information is protected not much in detail for the end-user, but only for enterprises.

That there are mechanisms that secure data not only for data loss but also for data privacy vulnerabilities.

A document that cover some kind of standard level of mechanisms for preventing intrusion.

The default should be maximum security as default and the user decides if they change to
another level of security. But it can also be that the enterprise decides which level they want to do.

The agreement go to the level of saying for example, we need two data centers.

I take for granted that secure rooms, security systems and backup are in place. but of course I would like to hear about it

Encryption

What are the procedures to leave the service?
How do I move data from one service to another?

It is needed good standardization of APIs. 5OL

5OL

What is the exit strategy? How can we be out of the service if we want?

Assurance that you still owns the
right to your data

Do you retain full rights to your data or you lose some of them?

What they can do with the data

Who actually have control of your data and what they can do with it?

Things that you can regulate in contract. Ensuring that the provider
can't sell your data, that the consumer has the rights to the data

Others

Cloud�Provider�Transparency�-�A�View�from�Cloud�Customers

35

Figure 3: Transparency on Correction of Data Security Problems.

Figure 4: Involvement on making Decisions.

to be involved in the decision about that. So he can
take an informed decision.” On changes in the initial
terms of Contract, one respondent said: "the providers
should be very aware of what they changed since the
contract with the customer [was signed], and inform
them about the changes that happen. Never leave the
customer in the dark.”

When asked on what they would want to know
about how the provider corrects data security
problems, it was again surprising to learn that the
participants have not thought much on what they
could expect from the providers if some security issue
happens. Most of the respondents needed further
elaboration of the question before they would start
saying something. Then, the participants stated that
they would like to know what is planned before

something happens; when something happens they
want to know how the providers are handling the
situation, why the problem happened, and when will
the services be back online. Interesting was also the
fact that the participants wanted to know how the
providers are improving their services after
something happens, based on lessons learned. These
responses are collated in the taxonomy shown in
Figure 3.

5 DISCUSSION

After analyzing all the collected information we
compiled a list of requirements elicited in the
interviews, as shown in Table 2. The main “topics”

What do you want to
know about how the
provider corrects data
security problems?

Before Something Happens, what is planned

When Something Happens

what happened

why did it happened

what are the procedures that
they are taking to correct .

when will services be
back working normally.

After Something Happened,what are the lessons learned

In which parts would you like to be
involved in making the decisions?
In which parts would you like just to
be informed of the decisions?

Informed YES, taking part of decisions NO

Taking part of Decisions

Moving data to
another country

I would like to be involved in decisions on moving my data to
another country in most situations. Unless for example a disaster
and there is the need to move to another country.

I would like to be part of the decision if the service provider
move the location of the data, for example Ireland or US.

Country is important to know. The level of
trust is different from country to country.

Other Parties
will be involved

I want to be updated when other parties are
involved than the ones I have the contract with.

If they move the data, so someone else will handle the data on
behalf of them. For example, changes of sub providers.

Informed when
the data is trans-
ferred from one
actor to the next

For example if calling to the call centre your
data will be transferred to another country then
the consumer has to be involved in the decision
about that. So he can take an informed decision.

Is there any change in the value chain.

The service provider is merging with another company.

Changes in the
initial terms of
Contract

There should not be any changes on the initial information
that they gave to the customer at the contract time. And if
changes happen, the customer should be informed.

The providers should be very aware of what they changed since
the contract with the customer. And inform them about the
changes that happens. Never leave the customer in the dark.

Anything that changes the initial agreement that you
have with the provider

Anything that is outside of the initial agreement should be informed.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

36

Table 2: List of Requirements from Transparency interviews.

List of Elicited Requirements

What is possible to
do with the data

The provider should show clear statements of what is possible to do with the data
The provider should allow the cloud customer to choose what is possible to do with
his/data data

The provider should have a page that they could tell the cloud customer about security
mechanisms, e.g., firewalls, backup etc.

The provider should have some kind of standard certification level of description or
standard language that they have to make the situation easier to the buyer to evaluate
which security level do we need, what is required from us and what is the provider
offering.

The provider should have a document explaining what are the procedures to leave the
service and take the data out of their servers.

The provider should have a document in which they describe the ownership of the data.

Conformance to
Data Agreement

The provider should make available the technical documentation on how data is handled,
how it is stored, and the procedures.

There should be documentation of procedures in different levels of abstraction, for
example for technical staff or for cloud subjects

The provider should show that they follow the data handling agreement to the type of
data that is in question.

The provider should provide geographical information of where the data is stored.

Data Handling

The provider should provide functional, technical and security wise information about
how they handle the data.

The provider should provide very good information of how the data is stored and who
has access to it.

Value chain

In case of using services from other parties, the provider should inform cloud customers
on what are the responsibilities of the parts involved in the agreement.

In case of using services from other parties, the provider should inform about the
existence of sub providers, where they are located and whether they meet legal
requirements of the country of the cloud customer.

Multi-Tenant
Services

The provider should inform the cloud customers on cases of multi-tenant services.
In case of multi-tenant services, the provider should inform how the customers are
separated from each other.

In case of multi-tenant services, the provider should inform how they assure that data
from one customer will not be accessed by another customer.

Protection of the
data

The provider should inform the cloud customer on how to protect the information or how
the information is protected not much in detail for the end-user, but only for enterprises.

The provider should have a document describing the mechanisms that secure data not
only for data loss but also for data privacy vulnerabilities.

Decisions
The cloud providers should get the consent of the cloud customer before moving the data

to another country, in cases where new parties will be involved in the value chain and
on changes on the initial terms of contract.

Correction of the
data

The cloud provider should have a document stating what are the procedures and
mechanisms planned for cases of security breaches on customers' data.

In case of security breaches, the cloud provider should inform the cloud customers on
what happened, why did it happen, what are the procedures they are taking to correct
the problem and when will services be normalized.

Cloud�Provider�Transparency�-�A�View�from�Cloud�Customers

37

mentioned by the respondents were related to what is
possible to do with the data, conformance to data
agreements, data handling, value chain, multi-tenant
situations, protection of the data, decisions and
corrections of the data.

Pauley (2010) designed a scorecard reproduced in
Table 1 to cover the assessment areas frequently
raised in the research, and to begin to establish high-
level criteria for assessing provider transparency.
When comparing our list of elicited requirements to
Pauley’s scorecard (Table 2), we can see some slight
differences in the criteria that Pauley described as
information that should be provided by the cloud
providers and the information that the customers are
looking for (Table 2). In the criteria about the
business factors, the customers did not mention being
concerned about the number of years in business, nor
about membership of CSA, CloudAudit, OCCI, or
other cloud standards groups, or if the providers are
profitable or public. There is a possibility that the
respondents did not mention these criteria because (a)
companies in Norway are usually stable, and (b)
membership of a group or association does not in
itself guarantee good performance or compliance,
even if the group or association promotes a certain
standard.

On the security and privacy aspects, the customers
mentioned all the criteria, but they did not mention
directly the standards/certifying bodies, such as
ISO/IEC 27000, COBIT and NIST, but they
mentioned that it would be nice to know if the
provider was certified somehow, based on some
criteria. The customers also did not mention the need
to know about “external” audits. One of the reasons
for not mentioning security standards and
certification bodies may be that companies that we
have investigated are predominantly private
companies in Norway, where there are not strong
requirements from the certification bodies yet.

One important aspect not very much explored in
Pauley’s scorecard is that customers would like
providers to be transparent about what is possible to
do with the data. In addition, customers were quite
concerned about transparency on exit procedures
(“way out”) and ownership of the data. The concern
over data ownership is interesting seen in the light of
Hon et al. (2012), who found no evidence of cloud
contracts leading to loss of Intellectual Property
Rights.

Another aspect further mentioned by the
customers is on the decisions made on “ongoing”
services, where the customers would like that: “The
cloud providers should get the consent of the cloud
customer before moving the data to another country,

in cases where new parties will be involved in the
value chain and on changes on the initial terms of
contract.”

Physical location and legal jurisdiction, as well as
specific information on the value chain was a very
important aspect to be transparent about for the cloud
customers, and it was not explicitly mentioned in
Pauley’s scorecard.

The interviewees did not show a desire for the
kind of detailed information Durkee (2010) deems
necessary (the inner workings of their cloud
architecture as part of developing a closer relationship
with the customer), and as also pointed out by
Durkee, some respondents were also aware that the
costs of such clarity may be prohibitive, and we might
add that this level of disclosure seems highly unlikely
for ordinary customers of commodity cloud services.

Many of the transparency mechanisms that
customers expressed a desire for are actually being
developed by the A4Cloud project (Jaatun et al.,
2014). For end-users, the Data Track tool (Fischer-
Hübner et al., 2014) enhances transparency by
tracking which personal data has been released to
whom. Furthermore, a central theme of A4Cloud is
the development of the Accountability PrimeLife
Policy Language (A-PPL), which allows end users to
specify a privacy policy that also covers
accountability requirements, including transparency
(Azraoui et al., 2014). A4Cloud is developing an A-
PPL Engine which will serve as a Policy Decision
Point for the associated policies at each cloud
provider. Other tools developed by A4Cloud include
the Cloud Offerings Advisory Tool (COAT), which
allow cloud customers to select an appropriate cloud
provider based on relevant accountability
requirements, including transparency (Alnemr et al.,
2014). This will eventually allow transparency
requirements to be built into standard cloud service
level agreements (SLAs), where transparency is just
one of several security attributes (Jaatun et al., 2012).

6 CONCLUSIONS

Cloud computing has been receiving a great deal of
attention, not only in the academic field, but also
amongst the users and providers of IT services,
regulators and government agencies. The results from
our study focus on an important aspect of
accountability of the cloud services to customers:
transparency.

The customers made explicit all the information
that they would like the providers to be transparent
about. Much of this information can be easily

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

38

provided at a provider's website. Our contention is
that being transparent can be a business advantage,
and that cloud customers who are concerned with,
e.g., privacy of the data they put into the cloud, will
choose providers who can demonstrate transparency
over providers who cannot.

Our study increases the body of knowledge on the
criteria needed for more accountable and transparent
cloud services, and confirms the results from previous
studies on these criteria. The list of requirements in
Table 2 complements, in part, the existing criteria.

An area for future research is to further evaluate
how cloud providers currently make the information
required by cloud customers available. In addition,
what are the effects of having transparent services in
terms of costs and benefits to cloud customers and
providers. Besides, we plan to increase the number of
participants responding to our interview guide and
adding strength to the evidence provided in this paper.
Another aspect we would like to investigate, is if the
results will be different for users of the different types
of services (e.g., SaaS vs IaaS).

ACKNOWLEDGEMENTS

This paper is based on joint research in the EU FP7
A4CLOUD project, grant agreement no: 317550.

REFERENCES

AbuKhousa, E., Mohamed, N., and Al-Jaroodi, J., “e-health
cloud: Opportunities and challenges,” Future Internet,
vol. 4, no. 3, pp. 621–645, 2012.

Ahuja, S. P., Mani, S. and Zambrano, J., “A Survey of the
State of Cloud Computing in Healthcare,” Network and
Communication Technologies, vol. 1, no. 2, p. 12,
2012.

Alnemr, R., Pearson, S., Leenes, R., and Mhungu, R.,
“COAT: Cloud Offerings Advisory Tool”. Proc. of the
2014 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom 2014)
95-100, 2014.

Azraoui, M., Elkhiyaoui, K., Önen, M., Bernsmed, K.,
Sendor, J., and Santana de Oliveira, A., “A-PPL: An
accountability policy language”, in DPM, 9th
International Workshop on Data Privacy Management,
10 September 2014.

Bernsmed, K., Tountopoulos, V., Brigden, P., Rübsamen,
T., Felici, M., Wainwright, N., Santana De Oliveira, A.,
Sendor, J., Sellami, M., and Royer, J.-C., “Consolidated
use case report”, A4Cloud Deliverable D23.2, October
2014 http://www.a4cloud.eu/sites/default/files/D23.2%
20Consolidated%20use%20case%20report.pdf.

Cruzes, D. S. and Dybå, T., Recommended Steps for
Thematic Synthesis in Software Engineering. ESEM
2011: 275-284, 2011.

Durkee, D., Why cloud computing will never be free.
Commun. ACM 53(5): 62-69 , 2010.

Felici, M., Koulouris, T. and Pearson, S., “Accountability
for Data Governance in Cloud Ecosystems”, Proc. of
the 2013 IEEE International Conference on Cloud
Computing Technology and Science (CloudCom
2013), 2013.

Fischer-Hübner, S., Angulo, J., and Pulls, T., “How can
Cloud Users be Supported in Deciding on, Tracking and
Controlling How their Data are Used?”, Privacy and
Identity Management for Emerging Services and
Technologies, IFIP Advances in Information and
Communication Technology Vol. 421, 2014, pp 77-92.

Gavrilov, G. and Trajkovik V., “Security and privacy issues
and requirements for healthcare cloud computing,” in
Proceedings of ICT Innovations, 2012.

Hon, W.K., Millard, C. and Walden, I., “Negotiating Cloud
Contracts - Looking at Clouds from Both Sides Now”
(May 9, 2012). 16 STAN. TECH. L. REV. 81 (2012);
Queen Mary School of Law Legal Studies Research
Paper No. 117/2012.

Jaatun, M.G., Bernsmed, K., and Undheim, A.: "Security
SLAs – an idea whose time has come?", Proc. CD-
ARES, Prague, LNCS Volume 7465, pp 123-130, 2012.

Jaatun, M.G., Pearson, S., Gittler, F., and Leenes, R.,
“Towards Strong Accountability for Cloud Service
Providers”, Proc. of the 2014 IEEE International
Conference on Cloud Computing Technology and
Science (CloudCom 2014), 2014.

Khorshed, M. T., Ali, A.S. and Wasimi, S.A.: A survey on
gaps, threat remediation challenges and some thoughts
for proactive attack detection in cloud computing.
Future Gener. Comput. Syst. 28(6), 833–851 (2012).

Kuo, A. M.-H., “Opportunities and challenges of cloud
computing to improve health care services,” J. Med.
Internet Res., vol. 13, no. 3, p. e67, 2011.

Onwubiko, C., (2010) "Security Issues to Cloud
Computing", in Cloud Computing: Principles, Systems
& Applications, (Eds) Nick Antonopoulos and Lee
Gillam, Springer-Verlag, August, 2010.

Paquette S., Jaegar, P. T. and Wilson, S. C. Identifying the
security risks associated with governmental use of
cloud computing, Journal of Government Information
Quarterly 27, pages 245-253, April, 2010.

Pauley, W.A., “Cloud Provider Transparency: An
Empirical Evaluation,” IEEE Security & Privacy (8)6,
pp. 32– 39, 2010.

Rodrigues, J. J., Torre, I. de la, Fernandez, G., and Lopez-
Coronado, M., “Analysis of the security and privacy
requirements of cloud-based electronic health records
systems,” J. Med. Internet Res., vol. 15, no. 8, p. e186,
2013.

Yang, H. and Tate, M., "A Descriptive Literature Review
and Classification of Cloud Computing Research,"
Communications of the Association for Information
Systems: Vol. 31, Article 2, 2012.

Cloud�Provider�Transparency�-�A�View�from�Cloud�Customers

39

OCCI and TTCN-3
Towards a Standardized Cloud Quality Assessment Framework

Yongzheng Liang
bwcon GmbH, Breitscheidstrasse 4, 70174 Stuttgart, Germany

liang@bwcon.de

Keywords: Cloud Quality Assessment, Standardized Testing, TTCN-3, Cloud Standards, OCCI, Software Defined
Network, Network Functions Virtualization.

Abstract: Impacting basically all types of IT infrastructures The Cloud is one of the most important evolving IT
paradigms. A standard-based Cloud quality and compliance assessment framework will be therefore of
utmost importance. Bringing together the Open Cloud Computing Interface OCCI and the ETSI
standardized test specification language TTCN-3 and related test methodologies this paper is going to
demonstrate initial steps towards such a framework. Taking into account the diversity of Cloud
infrastructures, of service providers, and related architectural, harmonization and standardization effort this
approach is mainly motivated by studying Cloud-related effort of the NIST Cloud Computing Program and
the ETSI Cloud Standards Coordination (CSC). Reflecting the “Cloudiness” of the Software Defined
Network (SDN) and ETSI Network Functions Virtualization (NFV) this paper is considering these
initiatives as necessary elements of the scope of every future standardized Cloud quality assessment
framework as well.

1 INTRODUCTION

Impacting basically all types of IT infrastructures
“The Cloud” is one of the most important evolving
IT paradigms. A standard-based Cloud quality and
compliance assessment framework will be therefore
of utmost importance. Bringing together the Open
Cloud Computing Interface OCCI and the ETSI
standardized test specification language TTCN-3
and related test methodologies this paper is going to
demonstrate initial steps towards such a framework.
Taking into account the diversity of Cloud
infrastructures, of service providers, and related
architectural, harmonization and standardization
effort our approach is motivated by studying Cloud-
related effort of the NIST Cloud Computing
Program, NIST CC, the ETSI Cloud Standards
Coordination (CSC). Reflecting the “Cloudiness” of
the Software Defined Network (SDN) and ETSI
Network Functions Virtualization (NFV) this paper
is considering theses initiatives as necessary
elements of the scope of every future standardized
Cloud quality assessment framework.
The rest of the paper is organized as follows:
Chapter 2 is introducing pertinent work of NIST CC

and ETSI CSC– here the role of the OCCI standard
becomes already visible. The methodological look at
NIST/ETSI will follow the triple “use cases –
standards – testing” and corresponding mappings.
Chapter 3 describes how, following the
virtualization paradigm, the “Software Defined
Network”, SDN, and ETSI NFV have met the
Cloud. It will be noticed that the NFV use case
“IMS as a Service” (IMSaaS) has in its original
3GPP and ETSI context an elaborated TTCN-3
framework.
Chapter 4 introduces the OGF OCCI standard.
Chapter 5 decribes some OCCI related effort of
relevance in the given context.
Chapter 6 introduces TTCN-3, the “Testing and Test
Control Notation Version 3” the test specification
language standardized by ETSI. Chapter 7 describes
relevant TTCN-3 effort.
Chapter 8 describes “TTCN-3 on top of OCCI” for
both a subset of the ETSI Interoperability test cases
and for BonFIRE – a large European Multi-Cloud
project.
Chapter 9 resumes the paper and gives an outlook on
future work.

40

2 TOWARD A STANDARDIZED
CLOUD QUALITY
ASSESSMENT FRAMEWORK

Influenced by and possibly influencing the evolution
of Cloud ecosystems potential Cloud adopters have
developed related use cases of different abstraction
level above the basic technologies in question. At
the same time and in a similar interdependency
relation in numerous bodies Cloud standards have
evolved and are still evolving. In such a situation
mapping use cases to compatible or even
“integrated” standards is one of the natural important
steps to happen next. Eventually, addressing
different test types such as conformance,
performance etc. test cases will be specified. Being a
simplified one, this process is nevertheless a typical
and necessary element in the evolution towards a
quality assessment framework.
Following this process and given the sheer weight of
the US Government as a Cloud adopter and the
important role of ETSI concerning high-quality
standards and formal testing methodologies we are
going to use the NIST Cloud Computing Program
and the ETSI Cloud Standard Coordination effort in
order to argue for a TTCN-3- and OCCI-oriented,
standardized Cloud quality assessment framework.

2.1 NIST CC Program

The NIST (National Institute of Standards and
Technology) designed its Cloud Computing
Program, CC, “to support accelerated US
government adoption, as well as leverage the
strengths and resources of government, industry,
academia, and standards organization stakeholders
to support cloud computing technology innovation”
(NIST, 2014). The cited document “US Government
Cloud Computing Technology Roadmap” compri-
sing the Volume I “High-Priority Requirements to
Further USG Agency Cloud Computing Adoption”
and Volume II “Useful Information for Cloud
Adopters” summarizes the results of now the
finalized Phase I and defines and relates ten “high-
level requirements” to the different NIST CC
working groups for Phase II.
Key documents of Phase I are concerning Cloud
taxonomy and vocabulary, reference architecture,
standards and security; for references see (NIST,
2014).
The NIST projects and working groups apply a use
case methodology to define business and technical
operational scenarios and requirements. The NIST-
chaired public Cloud Computing Business Use Case

Working Group (CCBUCWG) has produced use
cases at the functional mission level. Those
“business use case are decomposed into a list of
high-level requirements, then into successively more
detailed requirements, until they can ultimately be
mapped to technical requirements that are required
to identify and executed” as “technical use cases”.
Dealt with by the group “Standards Acceleration to
Jumpstart the Adoption of Cloud Computing”
(SAJACC) the latter use cases are “designed to
facilitate the qualitative testing of standards through
the use of third-party APIs implemented in
adherence to candidate specifications and emerging
standards”. SAJACC use cases represent single
activities, such as the “deletion of data, and the
actions needed to successfully execute that activity
(receive the request, respond to the request, execute
the request, etc.)”.
Without any ambition towards formalization in
terms of possible map-ability and automated
processing, for the description of use cases two types
of templates have been developed.
A particular set of standards in relation to a use
cases was termed “compatible standards” – no
specific exercise was undertaken to consider the
“integration” of those specific standards in question
– e.g. CDMI and OCCI; see also below (Edmonds,
2011) However, concerning the “current state of
conformity assessment in Cloud Computing”,
(NIST, 2014), section 6.2.4 states: In some cases,
such as the CDMI, OCCI, OVF, and CIMI
standards… industry-sponsored testing events and
“plug-fests” are being advertised and conducted with
participation from a variety of vendors and open
source projects and community-based developers. In
other cases, either the standards are not yet mature
enough to permit such testing, or the participants
have not yet exposed the conformity assessment
processes to public view. – In this spirit NIST
representatives gave presentations at the “First
Cloud Interoperability Week” (Sill, 2013); see also
(Liang, 2013a). Finally, in order to cope with
questions like “is the proposed quality assessment
framework not overkill?” - it should be mentioned
that the NIST is considering Cloud ecosystems as
eventually big, complex and potentially endangered
by “catastrophes” comparable to the famous Internet
or global power grid breakdowns. Accordingly –
with participation of the OGF Research Group on
Grid Reliability and Robustness - NIST has started
the “Complex Information Measurement Project -
Koala” (NIST, 2015).
It should be noticed that so far NIST doesn’t deal
with SDN or NFV issues, see below.

OCCI�and�TTCN-3�-�Towards�a�Standardized�Cloud�Quality�Assessment�Framework

41

2.2 ETSI CSC

Being part of the European Commission’s Cloud
related strategy the so-called key action “Cutting
through the jungle of standards” was assigned by
DG Connect to the specifically created ETSI
working group “Cloud Standards Coordination”,
CSC. The latter in its mission’s final step 3 created
three “Specification identification gap analysis”
working groups: SLAs – Security & Privacy – and –
Interoperability, Data port, Reversibility. Launched
in December 2012, the CSC provided a final report
(ETSI, 2013). This report stated that “the Cloud
Standards landscape is complex but not chaotic and
by no means a 'jungle' “.
In this report ETSI CSC introduces vocabulary and
taxonomies applicable to Cloud Actors and their
Roles within Use Cases. The analysis of Use Cases
comprises the following dimensions: “Phases and
Activities”, “Perspectives” (SLAs, Interoperability,
Security), generic domains (e.g. “Applications in the
Cloud”, “Cloud Bursting” etc.), and “Phases and
Activities”. This schema is then used in a mapping
of use cases to standards.
Gaps related to SLAs, security and privacy are dealt
with in the final report. Interoperability is
specifically covered by the Technical Specification
“CLOUD; Test Descriptions for Cloud
Interoperability” (ETSI, 2013b). The standards dealt
with herein are OCCI, see below, and CDMI,
CAMP, OVF and CIMI. In Chapter 8 below we are
going to demonstrate some initial work related to the
OCCI-related test cases.
It should be mentioned that also ETSI CSC
expresses a positive view concerning OCCI
(together with CDMI and OVF): “OCCI as the
universal and extensible interface description for the
provisioning of virtualised computing resources.”
ETSI CSC has called for a 2nd Phase of work to be
started in early 2015 – and in close cooperation with
NIST CC.
Without any further explanation the ETSI CSC final
report provides a list of the ETSI NFV
specifications; see next chapter.

3 ETSI NFV, SDN AND THE
CLOUD

Instrumental as a key concept and as enabler of
many aspects of computing , storage and networking
“Virtualization“ lies at the ground of both the Cloud
and concepts or initiatives such as the “Software

Defined Network”, SDN (ONF, 2011) and ETSI’s
“Network Function Virtualization”, NFV (ETSI,
2012).
SDN has evolved as a potential solution to both the
growing management complexity of the overly
successful Internet and, in turn, the growing
“ossification” of the latter. Aiming at more
flexibility and dynamicity of network services
through programmability of network hardware boxes
such as routers, switches, firewalls etc. the
OpenFlow™ protocol and API is a key element in
the context. Launched in 2011 by Deutsche
Telekom, Facebook, Google, Microsoft, Verizon,
and Yahoo!, the Open Networking Foundation
(ONF) is a non-profit organization with more than
140 members whose mission is to accelerate the
adoption of open, standardized OpenFlow-based
SDN.
Used as generic term “software defined networking”
is also addressed by the “Network Functions
Virtualization - Industry Specification Group”,
NFV(ISG). Initiated in 2012 within ETSI by seven
telecom operators the group was joined by over 200
companies including network operators, telecoms
equipment vendors. Opposed to SDN, NFV was
primarily driven by concerns related to OPEX and
CAPEX of typical telecom hardware appliances and
service agility. NFV aims to use “advanced IT
virtualization techniques” (aka Cloud plus Cloud
enablers i.e. hypervisors etc.) in order to convert
typical telecom appliances and service frameworks
into “X as a Service” instances, the latter class being
instantiated even into “IMS as a Service”, IMSaaS.
SDN and NFV are highly complementary to and
independent of each other.
In order to promote NFV trough OpenFlow-based
SDN in March 2014 ONF and ETSI agreed on a
related strategic partnership.
The NFV(ISG) has produced since five
specifications covering NFV use cases,
requirements, the architectural framework, and
terminology. The fifth specification defines a
framework for coordination and promotion of public
demonstrations of Proofs of Concept, PoC (ETSI,
2014). The PoC demonstrate key aspects of NFV
use cases – specifically the explicitly Cloud-related
“NFV Infrastructure as a Service” (NFVIaaS), the
“Virtual Network Functions as a Service”
(VNFaaS), the “Service Chain Forwarding Graphs”
(VNF FG), the “Virtual Network Platform as a
Service” (VNPaaS) and the mobility–oriented
“Virtualization of the Mobile Core Network and
IMS”. The first results of the NFV PoC have been
showcased.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

42

While aiming at vendor and product neutrality the
Cloud “core” of the PoC was the OpenDaylight
Hydrogen release of OpenStack comprising inter
alia the OpenStack Neutron component as
OpenFlow oriented SDN controller.
Here, in the context of this paper, it should be
noticed that this whole architecture is controlled by a
(super-)set of the OpenStack RESTful APIs; see
below the MCN project.
Finally, it should be mentioned that ETSI NFV
doesn’t refer to ETSI CSC or the ETSI TC MTS, the
Technical Committee Methods for Testing and
Specification (ETSI, 2015); specifically, there is no
hint given to the ample, standardized TTCN-3-
oriented test framework (ETSI, 2015a).

4 OCCI

The Open Grid Forum’s (OGF) ‘Open Cloud
Computing Interface’ (OCCI) is a well-defined,
RESTful Cloud management protocol and interface,
which can be applied to and extended from its initial
target IaaS to functional and non-functional aspects
also of PaaS and SaaS – even in Multi-Cloud
ecosystems.
The definition of OCCI comprises a “Core” and a
meta-model aspect according to the following figure,
see (OCCI, 2011b).
The “Core” describes the foundation of the OCCI
type system – “what types of resources can be out
there”. This is orthogonal and complementary to the
wire”.
The meta-model aspect represents the descriptive
part allowing for extensibility, hierarchies, dynamic
runtime modifications of resource instances and
tagging via Mixins, and introspection via the
mandatory discovery interface (Edmonds, 2012).
Members of the OCCI specification group
developed a related conformance platform in Python
(OGF, 2012b and OGF, 2012a). This work was not
continued after 2012; it is/was not directly targeting
whole OCCI-controlled Cloud systems but the
conformance of (language) specific OCCI
implementations.
The OCCI Working Group of the OGF is actively
pursuing the further development of the OCCI
standard; a completed specification is available e.g.
for JSON rendering; a “Monitoring” specification
and a related “Notification” specification are almost
ready, and there is work for a “Platform” (PaaS)
specification; see (OGF, 2014).
At the same time the WG is present at many related
Cloud events such as the Cloud Interoperability

Figure 1: The OCCI “Core” Model.

Week mentioned above. Basically all WG members
are also present in NIST CC or EGI (EGI, 2015) and
MCN; see below.

5 OCCI-RELATED EFFORT

In order to further argue for the “robustness” of the
OCCI case, in the following we are going to shortly
mention effort covering technical and “market”
aspects of OCCI applicability.

5.1 OCCI Technical Versatility

In (Edmonds, 2011) a standards conformant
“integration scenario” of OCCI, CDMI and OVF is
presented.

The “First Open Cloud Broker” developed in the
CompatibleOne project and initiative is an early
example for the extensibility of OCCI beyond IaaS
(CompatibleOne, 2015).

The EU project MCN - Mobile Cloud –
Networking, 2012-2015, “is motivated primarily by
an ongoing transformation that drives the
convergence between the Mobile Communications
and Cloud Computing industry enabled by the
Internet” (MCN, 2014). MCN’s two scenarios are
“Exploiting Cloud Computing for Mobile Network
Operations” and “The End-To-End Mobile Cloud”.
While not fully concurrent with ETSI’s NFV PoC
architectural principles MSC is about to realize a
comparable SDN/NFV framework wherein the
Cloud component will be represented by OpenStack
too. In contrast to ETSI’s PoC non-standard set of
related RESTful interfaces MCN is targeting OCCI.
Referring to Core meta-model mechanisms, (MCN,
2013) section “2.4.1 OCCI Extensions” and “2.4.2
OpenStack Extensions”, the project has defined
necessary extensions to both OCCI and OpenStack.

OCCI�and�TTCN-3�-�Towards�a�Standardized�Cloud�Quality�Assessment�Framework

43

Finally, among the set of MCN’s XaaS to be
provided we are specifically mentioning MaaS,
Monitoring as a Service (see also below the
BonFIRE project) and IMSaaS, IMS as a Service.

The OCCI work in MCN is well aligned with the
OCCI WG.

5.2 OCCI in Large Infrastructures

“The European Grid Infrastructure (EGI) is building
a federated, standards-based IaaS Cloud platform,
building on its decade-long experience in delivering
a reliable, federated Grid infrastructure for scientific
computing and e-Research across Europe and
worldwide.” “Federations are enabled by a set of
core services such as seamless authentication and
authorization of users, gathering of accounting
information, information discovery, monitoring and
VM management across multiple cloud domains; see
(EGI, 2015)
In the given context it is of relevance that EGI
Engage, the next large project of the initiative, is
targeting well defined OCCI extensions in order to
increase functions and performance of its pan-
European Cloud federation. This work is closely
aligned with the OCCI WG.
Our tests below are using the so-called rOOCI, an
OCCI implementation in ruby. The rOCCI is part of
the EGI effort.

6 TTCN-3

TTCN-3, the “Testing and Test Control Notation
Version 3” is a successful Test Specification
Language standardized by ETSI. Initially targeted at
protocol conformance testing e.g. for IPv6, or SIP,
the coverage of TTCN-3 was extended to new
technical domains such as the Web, embedded and
real-time systems, and new sectors such as Health,
Automotive and “Intelligent Transport Systems”
(ITS). Related organizations are e.g. 3GPP, OMA
and AUTOSAR. The ETSI TTCN-3 standards have
also been adopted by International Telecom-
munication Union (ITU-T) in the Z.160 series. The
main characteristics of TTCN-3 are: Multi-
Separation of Concerns by dividing a test system
into an abstract but executable Test Specification
Layer (“ATS” in Figure 2), and Concrete Codec and
System-Adaptation Layers; see again Figure 2. From
an effort point of view codec and adapter represent a
major piece of (initial) work, paving the way
towards a potential large testing framework at ATS
level. This separation between concrete and abstract

layer is also allowing for a high degree of
reusability. Targeting testing by design TTCN-3
provides an elaborated mechanism for the
construction of Templates the latter to be used as test
oracles; see e.g. (Schieferdecker, 2012). A related
powerful Template matching mechanism then serves
to validate output from the “System under Test”
(SUT) on the level of the ATS; compare this e.g.
with the language dependencies in (OGF, 2012a). -
Related global Verdicts are computed, possibly
composed from local Verdicts.

Figure 2: Layout of a TTCN-3 Executable Test Suite.

7 TTCN-3 RELATED EFFORT

In following, the first section is shortly describing
effort related to TTCN-3 language developments.
Section two is showing TTCN-3 as an element of
ETSI’s effort towards model-based testing.

7.1 TTCN-3 Development

TTCN-3 related effort is devoted to both the
development of the language as such (via well- --
defined formal procedures within the ETSI); an
example of relevance in context is “MTS The
Testing and Test Control Notation version 3; Part
11: Using JSON with TTCN-3” - and other aspects.
Such work may be carried out e.g. in cooperation
with tool providers – to improve the efficiency of the
coding/decoding process in a Web service
environment would be an example. For a recent
overview see (Stepien, 2014).

7.2 TTCN-3 in the ETSI TC MTS

TTCN-3 is not “just another standalone test
specification language” but is part of an overall

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

44

effort within ETSI to further the development of
methodologies in the spirit of “model-based testing”
(ETSI, 2015).
Initially targeting communicating systems the ETSI
MTS is addressing the formalization and
mechanization/automation of a stack of processes
and specifications ranging from requirements
solicitation and “notation” over test and test purpose
to test case specification.
Herein TTCN-3 is placed at the bottom layer.
Looking at the table format of the NIST technical
and the ETSI CSC use cases the corresponding TC
MTS historical effort is TPLan, ETSI ES 202 553.
At present the TC MTS is pursuing with the TDL,
Test Description Language, a more rigorous
approach: integrating and unifying test description
and test purpose specification layer above TTCN-3
TDL raises the abstraction layer of the latter and
allows at the same time for down-mapping from the
requirements layer; see (Makedonski, 2014).

8 TTCN-3 AND OCCI

“TTCN-3 on top of OCCI” was, to our knowledge,
presented for the first time at the “Cloud
Interoperability Week Workshop”, (Liang, 2013a)
and at the UCAAT 2013 (Liang, 2013b). This work
was related to the initial version of ETSI “Test
Descriptions for Cloud Interoperability” (ETSI,
2013b).
We improved and extended this effort in the
following way:
- We wrote new versions of the Codec and the
System Adapter allowing specifically for a complete
treatment of all coding and systems requirements of
the OCCI tests of (ETSI, 2013b); see Figure 2 and
Figure 3 again for the positioning these
components.
- Using the current version of the ETSI document, so
far we carried out all the OCCI Core and
Infrastructure tests against a rOCCI-based EGI
Cloud test infrastructure (EGI, 2015).
- We run initial tests of the BonFIRE Multi-Cloud
project “Elasticity as a Service” (for “BonFIRE and
OCCI” see below), (BonFIRE, 2014).

8.1 TTCN-3 and OCCI Mapping

The Figure 3 below shows the functional
components and potential mappings of a TTCN-3
test system and those of an OCCI controlled Cloud
system:

Figure 3: Mapping TTCN-3 - OCCI.

Elements formatted according to the OCCI
specification can be expressed in terms of a TTCN-3
Abstract Test Specification. The rendering of the
different MIME types will be accomplished by the
Codec. The OCCI transport via HTTP will be
provided by the System Adaptor.

For example, the OCCI “Category” can be
abstracted into the following TTCN-3 Data type:

Category {
 charstring category,
 CategoryValue category_value
}
type set CategoryValue {
 charstring term,
 charstring scheme,
 charstring class,
 charstring title optional,
 charstring rel optional,
 charstring location optional,
 charstring attributes optional,
 charstring actions optional
}
type set of Category CategoryList;
type record Category {
 charstring category,
 CategoryValue category_value
 }

 type set CategoryValue {
 charstring term,
 charstring scheme,
 charstring class,
 charstring title optional,
 charstring rel optional,
 charstring location optional,
 charstring attributes optional,
 charstring actions optional
}
type set of Category CategoryList;

In order to carry out the ETSI test case
“TD/OCCI/INDRA/CREATE/004: Create an OCCI
Compute Resource” one has to create the following
TTCN-3 request template:

OCCI�and�TTCN-3�-�Towards�a�Standardized�Cloud�Quality�Assessment�Framework

45

template OCCIReq
Req_TD_OCCI_INFRA_CREATE_004 :={

 url_req :={
 scheme := "http://",
 authority :=

"rocci.herokuapp.com",
 path := "/compute/"
},
category_list := {
 {
 category := "Category",
 category_value := {
 term := "compute",
 scheme :=

"http://schemas.ogf.org/occi/infrastruc
ture#",

 class := "kind"
 }
 },
 {
 category := "Category",
 category_value := {
 term := "small",
 scheme :=

"http://my.occi.service/occi/infrastruc
ture/resource_tpl#",

 class := "mixin"
 }
 },
 {
 category := "Category",
 category_value := {
 term := "my_os",
 scheme :=

"http://my.occi.service/occi/infrastruc
ture/os_tpl#",

 class := "mixin"
 }
 }
 },
 link_list := omit,
 x_occi_attribute_list := omit
}

This template represents the test oracle, i.e. the
expected response of the SUT, for this conformance
test.
The related HTTP verbs GET, POST, PUT and
Delete and the OCCI rendering have to be
parameterized as follows:

/* select HTTP verb */
modulepar boolean Create := true;
modulepar boolean Read := false;
modulepar boolean Update := false;
modulepar boolean Delete := false;

/* select OCCI Rendering */
modulepar charstring ContentType :=

"text/occi";
modulepar charstring AcceptValue :=

"text/occi";

The annotated Figure 4 shows the corresponding
result of the test:

Figure 4: Creating an Infrastructure OCCI Compute
resource modified by two mixins.

The tool window (TTworkbench, 2015) is showing:
- the list of all the implemented ETSI tests - the
currently executed is highlighted (left upper corner)
- the action “create” and the related content type
“text/occi”
- a “compute” “kind” modified by the two “mixins”
(large window, middle right; see Figure 1 again for
terminology); (the small window, upper corner right,
is showing that the compute resource was created on
a server of the PaaS provider HEROKU used by EGI
for testing purposes).
- the OCCI Request/Response message exchange
between the System_under_Test and the Test
System (graphical window right bottom; the Verdict
“pass” message is just not visible;).

8.2 TTCN-3 and “BonFIRE OCCI”

BonFIRE a recent EU project has realized and is
providing a multi-site testbed on top of seven Cloud
infrastructures operated by seven project partners.
BonFIRE IaaS offers heterogeneous compute,
storage and network resources, (BonFIRE, 2014).
In the given context, the main features of the
BonFIRE (BF) architecture are the following:
- BF implements an “almost” OCCI-based resource
manager on top of the participating IaaS testbed sites
(no Categories etc., no MIXINS).
- The rendering uses the private type
“application/vnd.bonfire+xml”
- BF provides a monitoring capability at both the
VM and physical level. Under user control events
generated by (Zabbix) monitoring agents are
transported via AMQP to an “Aggregator”. From a
functional point of view, the BF monitoring fits well
the “Focused Technical (security) Requirements” of
(NIST, 2014) Part II, “Visibility/Control for
Consumers”.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

46

- BF provides an experimental EaaS – Elasticity as a
Service - across the test bed sides.
 Formally, according to the BF data model, the BF
user carries out “Experiments”. In a full OCCI
setting “Experiments” would be defined as a
Category above the participating infrastructures.
Except for the description part and the fixed
allocation of monitoring agents to user created VMs
the monitoring architecture is close to the proposal
presently discussed within the OGF OCCI WG.
The annotated Figure 5 shows:

Figure 5: Creating a BonFIRE elasticity group.

- the creation of a elasticity group distributed over
several BonFIRE geographical sites in France, the
UK and Germany - in response to the request
template (upper part right)
- the related action is (naturally) “create”
- (left below) the rendering’s private type
“application/vnd.bonfire+xml”
- the verdict “pass” message (graphical window
part).

Not considering the only “almost” OCCI compliance
of the project BonFire is a clear and working
example for the potential of OCCI beyond its initial
specification.

9 SUMMARY AND OUTLOOK

Using Cloud related work of NIST and ETSI we
have presented standardized testing of standard-
based Cloud infrastructures as a necessary element
of a Cloud quality assessment framework. We have
shown that OCCI is well positioned to play a pivotal
role within that context.
Assuming a key role of SDN/NFV in future Cloud
provisioning we have also pointed to work using
OCCI in SDN/NFV settings of Cloud
infrastructures.
Then we have introduced the ETSI effort towards
model-based testing – comprising TTCN-3 at the
lowest layer.

In summary we propose – as strategically vision
behind our effort - to adopt the Cloud world as the
next big application field of the well-established
ETSI TTCN-3-related testing methodologies.
Finally, as a proof-of-concept we demonstrated
“standardized” TTCN-3 test cases against OCCI
controlled Cloud test beds.
In order to gather and solicit support for our vision
future work will include true interoperability tests in
the spirit of ETSI CSC and further test types such as
performance tests. If SDN/NFV Cloud
infrastructures such as in the OCCI-oriented MCN
become available tests exploiting advanced features
both of TTCN-3 and OCCI are foreseen.

ACKNOWLEDGEMENTS

We would like to thank – Boris Parák of CESNET
for support in using the rOCCI/EGI infrastructure –
the former colleagues of BonFIRE for provision of
the BonFIRE testbed – Prof. Ina Schieferdecker for
guidance in the TTCN-3 world – Testing
Technologies for the friendly provision of their
TTCN-3 tool TTworkbench. The paper is partly
funded by the EU project CloudSocket H2020-
644690.

REFERENCES

BonFIRE, 2014. www.bonfire-project.eu/. Accessed
January 06, 2015.

CompatibleOne, 2015. CompatibleOne The Open Source
Cloud broker. http://www.compatibleone.org/.
Accessed January 06, 2015.

Edmonds, A., Metsch, T., Luster, E., 2011. An Open,
Interoperable Cloud.
http://www.infoq.com/articles/open-interoperable-
cloud. Accessed January 06, 2015.

Edmonds, A. et al. Towards an Open Cloud Standards.
IEEE Internet Computing. July/August 2012.

EGI, 2015. EGI European Grid Infrastructure.
https://www.egi.eu/infrastructure/cloud/.

ETSI, 2012. http://www.etsi.org/technologies-clusters/
technologies/nfv. Accessed January 06, 2015.

ETSI, 2013a. Cloud Standards Coordination Final Report
November 2013 VERSION 1.0. November 2013.

ETSI, 2013b. TS 103 142 V2.0.2 (2013-09) CLOUD; Test
Descriptions for Cloud Interoperability.

ETSI, 2014. NFV Proofs of Concept.
http://www.etsi.org/technologies-
clusters/technologies/nfv/nfv-poc. Accessed January
06, 2015.

ETSI, 2015. TC Methods for Testing and Specification
http://www.etsi.org/images/files/ETSI

OCCI�and�TTCN-3�-�Towards�a�Standardized�Cloud�Quality�Assessment�Framework

47

TechnologyLeaflets/MethodsforTestingand
Specification.pdf. Accessed January 06, 2015.

ETSI, 2015a. http://www.etsi.org/technologies-
clusters/technologies/testing/ims-testing.
Accessed January 27, 2015.

Liang, Y., 2013a. Harnessing TTCN-3 Test Framework
for OCCI-based Cloud Ecosystems. In DMTF, ETSI,
OASIS, OCEAN Project, OGF, OW2 and SNIA. First
Cloud Interoperability Week Santa Clara, USA,
September 16-18 and Madrid, Spain, September 18-
20, 2013 (co-hosted with the EGI and SDC
conferences)
http://www.cloudplugfest.org/events/past-plugfest-
agendas/cloud-interoperability-week/workshop
Accessed December 14, 2014.

Liang, Y., 2013b. Towards a TTCN-3 test framework for
OCCI-based Cloud ecosystems. In UCAAT, 1st User
Conference on Advanced Automated Testing. Paris
22-24 October 2013. http://ucaat.etsi.org/2013/
program_conf.html Accessed December14, 2014.

Makedonski, P. et al., 2014. Bringing TDL to Users: A
Hands-on Tutorial. http://www.swe.informatik.uni-
goettingen.de/sites/default/files/publications/TDL%20
Tutorial.pdf. Accessed January 06, 2015.

MCN, 2014. Mobile Cloud Networking project.
http://www.mobile-cloud-networking.eu/site/
(accessed December 14, 2014).

MCN 2013 FUTURE COMMUNICATION
ARCHITECTURE FOR MOBILE CLOUD
SERVICES. FP7-ICT-2011-8 Project No: 318109.
D3.1 Infrastructure Management Foundations –
Specifications & Design for Mobile Cloud framework.
08 November 2013.

NIST, 2014. Special Publication 500-293. Version 2. US
Government Cloud Computing Technology Roadmap.
Volume I. High-Priority Requirements to Further USG
Agency Cloud Computing Adoption. Volume II.
Useful Information for Cloud Adopters
http://dx.doi.org/10.6028/NIST.SP.500-293. October
2014.

NIST, 2015. Koala. In “Measurement Science for
Complex Information Systems”. http://www.nist.gov/
itl/antd/emergent_behavior.cfm. Accessed January 06,
2015.

NIST, 2014b. Special Publication 500-299. Draft. NIST
Cloud Computing Security Reference Architecture.

OCCI, 2011a. http://occi-wg.org/about/. Accessed January
06, 2015.

OCCI, 2011b. Core Specification: http://ogf.org/
documents/GFD.183.pdf.

OCCI, 2011c. Infrastructure: http://ogf.org/
documents/GFD.184.pdf.

OCCI, 2011d. HTTP Rendering: http://ogf.org/
documents/GFD.185.pdf.

OGF, 2012a. Grokking OCCI Syntax: OCCI ANTLR
Grammar. http://occi-wg.org/2012/02/29/occi-antlr-
grammar/. Accessed January 06 2015.

OGF, 2012b. Do you Speak OCCI? http://occi-
wg.org/2012/03/05/do-you-speak-occi/.

OGF, 2014. OGF42 Updates from the Group. http://occi-
wg.org/2014/09/15/updates_from_ogf42/. Accessed
January 06 2015.

ONF, 2011. https://www.opennetworking.org/. Accessed
January 06, 2015.

Schieferdecker, I. Oracles in TTCN-3 and UTP. In
CREST Workshop. 2012, May 22nd, London.

Stepien, B. Peyton, L. 2014 “Innovation and Evolution in
Integrated Web Application Testing with TTCN-3”,
International Journal on Software Tools for
Technology Transfer. June 2014, Volume 16, Issue 3,
pp 269-283.

Sill, A., 2013. SAJACC: The NIST Cloud Use Case Test
Definition Project. In - same as (Liang, 2013a).

TTCN-3, 2013. http://www.ttcn-3.org/. Accessed January
06, 2015.

TTworkbench, 2015. http://www.testingtech.com/
products/ttworkbench.php.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

48

Using Cloud-Aware Provenance to Reproduce Scientific Workflow
Execution on Cloud

Khawar Hasham, Kamran Munir and Richard McClatchey
Centre for Complex Computing Systems (CCCS), Faculty of Environment and Technology (FET),

University of the West of England (UWE), Bristol, U.K.
{khawar.ahmad, kamran.munir, richard.mcclatchey}@cern.ch

Keywords: Cloud Computing, Scientific Workflows, Provenance, Reproducibility, Repeatability.

Abstract: Provenance has been thought of a mechanism to verify a workflow and to provide workflow reproducibility.
This provenance of scientific workflows has been effectively carried out in Grid based scientific workflow
systems. However, recent adoption of Cloud-based scientific workflows present an opportunity to
investigate the suitability of existing approaches or propose new approaches to collect provenance
information from the Cloud and to utilize it for workflow reproducibility on the Cloud infrastructure. This
paper presents a novel approach that can assist in mitigating this challenge. This approach can collect Cloud
infrastructure information along with workflow provenance and can establish a mapping between them to
provide a Cloud-aware provenance. The reproducibility of the workflow execution is performed by: (a)
capturing the Cloud infrastructure information (virtual machine configuration) along with the workflow
provenance, (b) re-provisioning the similar resources on the Cloud and re-executing the workflow on them
and (c) by comparing the outputs of workflows. The evaluation of the prototype suggests that the proposed
approach is feasible and can be investigated further. Since there is no reference model for workflow
reproducibility on Cloud exists in the literature, this paper also attempts to present a model that is used in
the proposed design to achieve workflow reproducibility in the Cloud environment.

1 INTRODUCTION

The scientific community is processing and
analysing huge amounts of data being generated in
modern scientific experiments that include projects
such as DNA analysis (Foster et al., 2008), the Large
Hadron Collider (LHC) (http://lhc.cern.ch), and
projects such as neuGRID (Mehmood et al., 2009)
and its follow-on neuGRIDforUsers (Munir et al.,
2013, 2014). In particular the neuGRID community
is utilising scientific workflows to orchestrate the
complex analysis of neuro-images to diagnose
Alzheimer disease. A large pool of compute and data
resources are required to process this data, which has
been available through the Grid (Foster et al., 1999)
and is now also being offered by the Cloud-based
infrastructures.

Cloud computing (Mell and Grance, 2011) has
emerged as a new computing and storage paradigm,
which is dynamically scalable and usually works on a
pay-as-you-go cost model. It aims to share resources
to store data and to host services transparently among
users at a massive scale (Mei et al., 2008). Its ability
to provide an on-demand computing infrastructure

enables distributed processing of scientific
workflows (Deelman et al., 2008) with increased
complexity and data requirements. Recent work
(Juve and Deelman 2010) is now experimenting with
Cloud infrastructures to assess the feasibility of
executing workflows on the Cloud.

An important consideration during this data
processing is to gather provenance (Simmhan et al.,
2005) information that can provide detailed
information about both the input and the processed
output data, and the processes involved in a
workflow execution. This information can be used to
debug the execution of a workflow, to aid in error
tracking and reproducibility. This vital information
can enable scientists to verify the outputs and iterate
on the scientific method, to evaluate the process and
results of other experiments and to share their own
experiments with other scientists (Azarnoosh et al.,
2013). The execution of scientific workflows in the
Cloud brings to the fore the need to collect
provenance information that is necessary to ensure
the reproducibility of these experiments on the Cloud
infrastructure

A research study (Belhajjame et al., 2012)

49

conducted to evaluate the reproducibility of
scientific workflows has shown that around 80% of
the workflows cannot be reproduced, and 12% of
them are due to the lack of information about the
execution environment. This information affects a
workflow on two levels. It can affect a workflow’s
overall execution performance and also job failure
rate. For instance, a data-intensive job can perform
better with 2GB of RAM because it can
accommodate more data in RAM, which is a faster
medium than hard disk. However, the job’s
performance will degrade if a resource of 1GB RAM
is allocated to this job as less data can be placed in
RAM. Moreover, it is also possible that jobs will
remain in waiting queues or fail during execution if
their required hardware dependencies are not met.
This becomes a more challenging issue in the
context of Cloud in which resources can be created
or destroyed at runtime.

The dynamic and geographically distributed
nature of Cloud computing makes the capturing and
processing of provenance information a major
research challenge (Vouk 2008, Zhao et al., 2011).
Since the Cloud presents a transparent access to
dynamic execution resources, the workflow
parameters including execution resource
configuration should also be known to a scientist
(Shamdasani et al., 2012) i.e. what execution
environment was used for a job in order to reproduce
a workflow execution on the Cloud. Due to these
reasons, there is a need to capture information about
the Cloud infrastructure along with workflow
provenance, to aid in the reproducibility of workflow
experiments. There has been a lot of research related
to provenance in the Grid (Foster et al., 2002,
Stevens et al., 2003) and a few initiatives (Oliveira et
al., 2010, Ko et al., 2011) for the Cloud. However,
they lack the information that can be utilised for re-
provisioning of resources on the Cloud, thus they
cannot create the similar execution environment(s)
for workflow reproducibility. In this paper, the terms
“Cloud infrastructure” and “virtualization layer” are
used interchangeably.

This paper presents a theoretical description of an
approach that can augment workflow provenance
with infrastructure level information of the Cloud and
use it to provision similar execution environment(s)
and repeat a given workflow. Important points
discussed in this paper are as follows: section 2
presents some related work in provenance related
systems. Section 3 presents a reproducibility model
designed after collecting guidelines used and
discussed in literature. Section 4 presents an
overview of the proposed approach. Section 5

presents an evaluation of the developed prototype.
And finally section 6 presents some conclusions and
directions for future work.

2 RELATED WORK

Significant research (Foster et al., 2002, Scheidegger
et al., 2008) has been carried out in workflow
provenance for Grid-based workflow management
systems. Chimera (Foster et al., 2002) is designed to
manage the data-intensive analysis for high-energy
physics (GriPhyN) (GriPhyN 2014) and astronomy
(SDSS) (SDSS 2014) communities. It captures
process information, which includes the runtime
parameters, input data and the produced data. It
stores this provenance information in its schema,
which is based on a relational database. Although
the schema allows storing the physical location of a
machine, it does not support the hardware
configuration and software environment in which a
job was executed. Vistrails (Scheidegger et al.,
2008) provides support for scientific data exploration
and visualization. It not only captures the execution
log of a workflow but also the changes a user makes
to refine his workflow. However, it does not support
the Cloud virtualization layer information. Similar is
the case with Pegasus/Wings (Kim et al. 2008) that
supports evolution of a workflow. However, this
paper is focusing on the workflow execution
provenance on the Cloud, rather than the provenance
of a workflow itself (e.g. design changes).

There have been a few research studies (Oliveira
et al., 2010, Ko et al., 2011) performed to capture
provenance in the Cloud. However, they lack the
support for workflow reproducibility. Some of the
work in Cloud towards provenance is directed to the
file system (Zhang et al., 2011, Shyang et al 2012)
or hypervisor level (Macko et al., 2011). However
such work is not relatable to our approach because
this paper focuses on virtualized layer information of
the Cloud for workflow execution. Moreover, the
collected provenance data provides information
about the file access but it does not provide
information about the resource configuration. The
PRECIP (Azarnoosh et al., 2013) project provides an
API to provision and execute workflows. However,
it does not provide provenance information of a
workflow.

There have been a few recent projects (Chirigati
et al., 2013, Janin et al., 2014) and research studies
(Perez et al., 2014a) on collecting provenance and
using it to reproduce an experiment. A semantic-
based approach (Perez et al., 2014b) has been

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

50

proposed to improve reproducibility of workflows in
the Cloud. This approach uses ontologies to extract
information about the computational environment
from the annotations provided by a user. This
information is then used to recreate (install or
configure) that environment to reproduce a
workflow execution. On the contrary, our approach
is not relying on annotations rather it directly
interacts with the Cloud middleware at runtime to
acquire resource configuration information and then
establishes mapping between workflow jobs and
Cloud resources. The ReproZip software (Chirigati
et al., 2013) uses system call traces to provide
provenance information for job reproducibility and
portability. It can capture and organize files/libraries
used by a job. The collected information along with
all the used system files are zipped together for
portability and reproducibility purposes. Since this
approach is useful at individual job level, this does
not work for an entire workflow, which is the focus
of this paper. Moreover, this approach does not
consider the hardware configuration of the
underlined execution machine. Similarly, a Linux-
based tool, CARE (Janin et al., 2014), is designed to
reproduce a job execution. It builds an archive that
contains selected executable/binaries and files
accessed by a given job during an observation run.

3 WORKFLOW
REPRODUCIBILITY
MODEL ON CLOUD

As per our understanding of the literature, there is
not a standard reproducibility model proposed so far
for scientific workflows, especially in Cloud
environment. However, there are some guidelines or
policies, which have been highlighted in literature to
reproduce experiments. There is one good effort
(Sandve et al., 2013) in this regard, but it mainly
talks about reproducible papers and it does not
consider execution environment of workflows. In
this section, we have gathered basic points to present
an initial workflow reproducibility model in Cloud
that can provide guidelines for future work in this
regard. These points are discussed as follows.

• Share Code and Data
The need for data and code sharing in computational
science has been widely discussed (Stodden 2010).
In computational science conservation, in particular
for scientific workflow executions, it is emphasized
that the data, code, and the workflow description

should be available in order to reproduce an
experiment.

• Execution Infrastructure details
The execution infrastructure provided by the Grid or
Cloud to execute a workflow is composed of a set of
computational and storage resources (e.g. execution
nodes, storage devices, networking). The physical
approach, where actual computational hardware are
made available for long time period to scientists,
often conserves the computational environment
including supercomputers, clusters, or Grids (Perez
et al., 2014b). As a result, scientists are able to
reproduce their experiments on the same hardware
environment. However, this luxury is not available
in the Cloud environment in which resources are
virtualized and provisioned dynamically on-demand.
A little focus is given to the underlying
infrastructure, especially Cloud, in computational
conservation in literature. This challenge has been
tackled in this paper by collecting this information at
runtime from the Cloud infrastructure. From
resource provisioning point of view, parameters such
as RAM, vCPU and Hard Disk are important in
selecting appropriate resource especially on the
Cloud and should be made part of the collected
provenance. All these factors contribute to the job's
execution performance as well as to its failure rate.
For instance, a job will fail if it is scheduled to a
resource with insufficient available RAM.

• Software Environment
Apart from knowing the hardware infrastructure, it
is also essential to provide information about the
software environment. A software environment
determines the operating system and the libraries
used to execute a job. Without the access to required
libraries information, a job execution will fail. For
example, a job, relying on MATLAB library, will
fail in case the required library is missing. One
possible approach (Howe et al., 2012) to conserve
software environment is thought to conserve VM
that is used to execute a job and then reuse the same
VM while re-executing the same job. One may argue
that it would be easier to keep and share VM images
with the research community through a common
repository, however the high storage demand of VM
images remains a challenging problem (Zhao et al.,
2014). In the prototype presented in this paper, the
OS image used to provision a VM is conserved and
thought to present all the software dependencies
required for a job execution in a workflow.
Therefore, the proposed solution should also retrieve
the image information to build a virtual machine on
which the workflow job was executed.

Using�Cloud-Aware�Provenance�to�Reproduce�Scientific�Workflow�Execution�on�Cloud

51

• Workflow Versioning
Capturing only a provenance trace is not sufficient
to allow a computation to be repeated – a situation
known as workflow decay (Roure et al., 2011). The
reason is that the provenance systems can store
information on how the data was generated, however
they do not store copies of the key actors in the
computation i.e. workflow, services, data. This paper
(Sandve et al. 2013) suggests to archive the exact
versions of all programs and enable version control
on all scripts used in an experiment. This is not
supported in the presented prototype, but it will be
incorporated in next iterations.

• Provenance Comparison
The provenance traces of two executed workflows
should be compared to determine workflow
reproducibility. The main idea is to evaluate the
reproducibility of an entire execution of a given
workflow, including the logical chaining of activities
and the data. To provide the strict reproducibility
functionality, a system must guarantee that the data
are still accessible and that the corresponding
activities are accessible (Lifschitz et al. 2011). Since
the focus of this paper is on workflow
reproducibility on the Cloud infrastructure, the
execution infrastructure should also be part of the
comparison. Therefore the provenance comparison
should be made at different levels; workflow
structure, execution infrastructure, and workflow
input and output. A brief description of this
comparison is given below.

a) Workflow structure should be compared to
determine that both workflows are similar.
Because it is possible that two workflows are
having similar number of jobs but with
different job execution order.

b) Execution infrastructure (software
environment, resource configuration) used on
the Cloud for a workflow execution should also
be compared.

c) Comparison of input and output should be
made to evaluate workflow reproducibility.
There could be a scenario that a user repeated a
workflow but with different inputs, thus
producing different outputs. It is also possible
that changes in job or software library result
into different workflow output. There are a few
approaches (Missier et al. 2013), which
perform workflow provenance comparison to
determine differences in reproduced
workflows. The proposed approach in this
paper incorporates the workflow output

comparison to determine the reproducibility of
a workflow.

• Pricing Model
This point can be important for experiments in
which cost is also a main factor. The resource
provisioned on the Cloud has associated cost, which
is based on the resource type and the amount of time
it has been used for. This information can assist in
reproducing an experiment with the same cost as
was incurred in earlier execution. This point is not
incorporated in the proposed design at the moment.

4 CLOUD-AWARE
PROVENANCE APPROACH

An abstract view of the proposed architecture is
presented in this section. This architecture is
designed after evaluating the existing literature and
keeping in mind the objectives of this research
study. The proposed architecture is inspired by the
mechanism used in a paper (Groth et al., 2009) for
executing workflows on the Cloud. Figure 1
illustrates the proposed architecture that is used to
capture the Cloud infrastructure information and to
interlink it with the workflow provenance collected
from a workflow management system such as
Pegasus. This augmented or extended provenance
information compromising of workflow provenance
and the Cloud infrastructure information is named as
Cloud-aware provenance. The components of this
architecture are briefly explained below.

Figure 1: An abstract architecture of the proposed
approach.

• Workflow Provenance: This component is
responsible for receiving provenance captured at

Workflow Management System

Condor Condor

Physical Layer

Virtualized Layer

Application Layer Submits
workflow

Provenance Aggregator

Cloud Layer Provenance

Workflow Provenance

Workflow
provenance

Provenance API

Workflow Provenance Store

Cloud-aware
provenance

VM1 VM2

Scientist

Existing tools
Prototype components

Prototype Storage

Infrastructure
information

Cloud environment

Stores/
selects
an
existing
workflow

job job

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

52

the application level by the workflow management
system (Pegasus). Since workflow management
systems may vary, a plugin-based approach is
used for this component. Common interfaces are
designed to develop plugins for different
workflow management systems. The plugin also
translates the workflow provenance according to
the representation that is used to interlink the
workflow provenance along with the information
coming from the Cloud infrastructure.

• Cloud Layer Provenance: This component is
responsible for capturing information collected
from different layers of the Cloud. To achieve re-
provisioning of resources on Cloud, this
component focuses on the virtualization layer and
retrieves information related to the Cloud
infrastructure i.e. virtual machine configuration.
This component is discussed in detail in section
4.1.

• Provenance Aggregator: This is the main
component tasked to collect and interlink the
provenance coming from different layers as shown
in Figure 1. It establishes interlinking connections
between the workflow provenance and the Cloud
infrastructure information. The provenance
information is then represented in a single format
that could be stored in the provenance store
through the interfaces exposed by the Provenance
API.

• Provenance API: This acts as a thin layer to
expose the provenance storage capabilities to other
components. Through its exposed interfaces,
outside entities such as the Provenance Aggregator
would interact with it to store the workflow
provenance information. This approach gives
flexibility to implement authentication or
authorization in accessing the provenance store.

• Workflow Provenance Store: This data store is
designed to store workflows and their associated
provenance. This also keeps mapping between
workflow jobs and the virtual compute resources
in the Cloud infrastructure. This also keeps record
of the workflow and its related configuration files
being used to submit a user analysis on the Cloud.
This information is later retrieved to reproduce the
execution. However, it does not support workflow
evolution in its current design.

4.1 Job to Cloud Resource Mapping

The CloudLayerProvenance component is designed
in a way that interacts with the Cloud infrastructure
as an outside client to obtain the resource
configuration information. As mentioned earlier, this

information is later used for reprovisioning the
resources to provide a similar execution
infrastructure to repeat a workflow execution. Once
a workflow is executed, Pegasus collects the
provenance and stores it in its own internal database.
Pegasus also stores the IP address of the virtual
machine (VM) where the job is executed. However,
it lacks other VM specifications such as RAM,
CPUs, hard disk etc. The CloudLayerProvenance
component retrieves all the jobs of a workflow and
their associated VM IP addresses from the Pegasus
database. It then collects a list of virtual machines
owned by a respective user from the Cloud
middleware. Using the IP address, it establishes a
mapping between the job and the resource
configuration of the virtual machine used to execute
the job. This information i.e. Cloud-aware
provenance is then stored in the Provenance Store.
The flowchart of this mechanism is presented in
Figure 2.

Figure 2: flowchart of job to Cloud resource mapping
performed by ProvenanceAggregator component.

In this flowchart, the variable wfJobs –
representing a list of jobs of a given workflow – is
retrieved from the Pegasus database. The variable
vmList – represents a list of virtual machines in the
Cloud infrastructure – is collected from the Cloud. A
mapping between jobs and VMs is established by
matching the IP addresses (see in Figure 2).
Resource configuration parameters such as flavour
and image are obtained once the mapping is
established. flavour defines resource configuration
such as RAM, Hard disk and CPUs, and image
defines the operating system image used in that
particular resource. By combining these two
parameters together, one can provision a resource on
the Cloud infrastructure. After retrieving these
parameters and jobs, the mapping information is
then stored in the Provenance Store (see in Figure.
2). This mapping information provides two
important data (a) hardware configuration (b)

Get Workflow Jobs (wfJobs)

Start (wfid)

Get VM list from Cloud (vmList)
Pegasus

Establish mapping (wfJobs, vmList)

VM.ip =
job.ip

No

Insert Mapping

Yes

Next record

Insert mapping (job, flavour, image)

Has more
jobs?

Yes

End

No

Workflow jobs

Workflow
Provenance

Store

Using�Cloud-Aware�Provenance�to�Reproduce�Scientific�Workflow�Execution�on�Cloud

53

software configuration using VM name. As
discussed in section 3, these two parameters are
important in recreating a similar execution
environment.

4.2 Workflow Reproducibility using
Cloud-Aware Provenance

In section 4.1, the job to Cloud resource mapping
using provenance information has been discussed.
This mapping is stored in the database for workflow
reproducibility purposes. In order to reproduce a
workflow execution, researcher first needs to
provide the wfID (workflow ID), which is assigned
to every workflow in Pegasus, to the proposed
framework to re-execute the workflow using the
Cloud-aware provenance. It retrieves the given
workflow from the Provenance Store database (step
2(a) in Figure 3) along with the Cloud resource
mapping stored against this workflow (step 2(b) in
Figure 3). Using this mapping information, it
retrieves the resource flavour and image
configurations, and provisions the resources (step 3
in Figure 3) on Cloud. Once resources are
provisioned, it submits the workflow (step 4).

At this stage, a new workflow ID is assigned to
this newly submitted workflow. This new wfID is
passed over to the ProvenanceAggregator
component to monitor (step 5) the execution of the
workflow and start collecting its Cloud-aware
provenance information (see step 6 in Figure 3) This
is important to recollect the provenance of the
repeated workflow, as this will enable us to verify
the provisioned resources by comparing their
resource configurations with the old resource
configuration.

Figure 3: The sequence of activities to illustrate workflow
repeatability in the proposed system.

4.3 Workflow Output Comparison

Another aspect of workflow repeatability is to verify
that it has produced the same output that was

produced in its earlier execution (as discussed in
section 3). In order to evaluate workflow
repeatability, an algorithm has been proposed that
compares the outputs produced by two given
workflows. It uses the MD5 hashing algorithm
(Stalling 2010) on the outputs and compares the
hash value to verify the produced outputs. The two
main reasons of using a hash function to verify the
produced outputs are; a) simple to implement and b)
the hash value changes with a single bit change in
the file. If the hash values of two given files are
same, this means that the given files contain same
content.

The proposed algorithm (as shown in Figure 4)
operates over the two given workflows identified by
srcWfID and destWfID, and compares their outputs.
It first retrieves the list of jobs and their produced
output files from the Provenance Store for each
given workflow. It then iterates over the files and
compares the source file, belonging to srcWfID, with
the destination file, belonging to destWfID. Since the
files are stored on the Cloud, the algorithm retrieves
the files from the Cloud (see lines 11 and 12). Cloud
storage services such as OpenStack Swift, Amazon
Object Store use the concept of a bucket or a
container to store a file. This is why src_container
and dest_container along with src_filename and
dest_filename are given in the GetCloudFile
function to identify a specific file in the Cloud. The
algorithm then compares the hash value of both files
and increments ComparisonCounter. If all the files
in both workflows are the same,
ComparisonCounter should be equal to FileCounter,
which counts the number of files produced by a
workflow. Thus, it confirms that the workflows are
repeated successfully. Otherwise, the algorithms
returns false if both these counters are not equal.

Figure 4: Pseudocode to compare outputs produced by two
given workflows.

RepeatWorkflow

1) Repeat
Workflow (wfid)

Scientist

Workflow
Provenance

Store

2(a) get Workflow (wfid)

2(b) get Cloud
Resource (wfid)

Cloud

3) Provision resource
 (flavour, image,
name)

Condor Condor

ProvenanceAggregator

4) Submit
workflow

5) monitor

6) Collect
provenance
information

VM1 VMn

. . .

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

54

5 RESULTS AND DISCUSSION

Figure 5: Cloud resource's RAM configuration impact on
job success.

To demonstrate the effect of Cloud resource
configuration such as RAM on job failure rate, a
basic memory-consuming job is written in Java
language. The job attempts to construct an alphabet
string of given size (in MB), which is provided at
runtime. To execute this experiment, three resource
configurations, (a) m1.tiny, (b) m1.small and (c)
m1.medium, each with 512 MB, 2048 MB and 4096
MB RAM respectively were used. Each job is
executed at least 5 times with a given memory
requirement on each resource configuration. The
result in Figure 5 shows that jobs fail if required
RAM (hardware) requirement is not fulfilled. All
jobs with RAM requirement less than 500 MB
executed successfully on all resource configurations.
However, the jobs start to fail on Cloud resources
with m1.tiny configuration as soon as the job’s
memory requirement approaches 500 MB because
the jobs could not find enough available memory on
the given resource. This result confirms the
presented argument (discussed in section 1 and also
in section 3) regarding the need for collecting Cloud
resource configuration and its impact on job failure.
Since a workflow is composed of many jobs, which
are executed in a given order, a single job failure can
result in a workflow execution failure. Therefore,
collecting Cloud-aware provenance is essential for
reproducing a scientific workflow execution on the
Cloud.

To evaluate the presented mapping algorithm,
which collects the Cloud infrastructure information
and interlinks it with the workflow provenance, a
Python based prototype has been developed using
Apache Libcloud (Apache Libcloud –
http://libcloud.apache.org), a library to interact with

the Cloud middleware. The presented evaluation of
the prototype is very basic currently. However, as
this work progresses further a full evaluation will be
conducted. To evaluate this prototype, a 20 core
Cloud infrastructure is acquired from the Open
Science Data Cloud (OSDC)
(https://www.opensciencedatacloud.org/). This
Cloud infrastructure uses the OpenStack middleware
(openstack.org) to provide infrastructure-as-a-
Service capability. A small Condor cluster of three
virtual machines is also configured. In this cluster,
one machine is a master node, which is used to
submit workflows, and the remaining two are
compute nodes. These compute nodes are used to
execute workflow jobs. Using the Pegasus APIs, a
basic wordcount workflow application composed of
four jobs is written. This workflow has both control
and data dependencies (Ramakrishnan and Plale,
2010) among its jobs, which is a common
characteristic in scientific workflows. The first job
(Split job) takes a text file and splits it into two files
of almost equal length. Later, two jobs (Analysis
jobs), each take one file as input, and then calculate
the number of words in the given file. The fourth job
(merge job) takes the outputs of earlier analysis jobs
and calculates the final result i.e. total number of
words in both files.

This workflow is submitted using Pegasus. The
wfID assigned to this workflow is 114. The collected
Cloud resource information is stored in database.
Table I. shows the provenance mapping records in
the Provenance Store for this workflow. The
collected information includes the flavour and image
(image name and Image id) configuration
parameters. The Image id uniquely identifies an OS
image hosted on the Cloud and this image contains
all the software or libraries used during the job
execution. As an image contains all the required
libraries of a job, this prototype does not extract the
installed libraries information from the virtual
machine at the moment for workflow reproducibility
purpose. However, this can be done in future
iterations to enable the proposed approach to
reconfigure a resource at runtime on the Cloud.

The reproducibility of the workflow using the
proposed approach (discussed in section 4.2) has
also been tested. The prototype is requested to repeat
the workflow with wfID 114.
Upon receiving the request, it first collects the
resource configurations, captured from earlier
execution, from the database and provisions the
resources on the Cloud infrastructure. The name of
re-provisioned resource(s) for the repeated workflow
has a postfix ‘-rep.novalocal’ e.g. mynova-

Using�Cloud-Aware�Provenance�to�Reproduce�Scientific�Workflow�Execution�on�Cloud

55

Table 1: Cloud infrastructure mapped to the jobs of workflow with ID 114.

Table 2: Cloud infrastructure information of repeated workflow (wfIDs: 117 and 122) after repeating workflow 114.

Table 3: Comparing outputs produced by workflows 114 (original workflow) and 117 (repeated workflow).

rep.novalocal as shown in Table 2. It was named
mynova.novalocal in original workflow execution as
shown in Table 1. From Table 2, one can assess that
similar resources have been re-provisioned using the
proposed approach to reproduce the workflow
execution because the RAM, Hard disk, vCPUs and
image configurations are similar to the resources
used for workflow with wfID 114 (as shown in
Table 1). This preliminary evaluation confirms that
the similar resources on the Cloud can be re-
provisioned with the Cloud-aware provenance
information collected using the proposed approach
(discussed previously in section 4). Table 2 shows
two repeated workflow instances of original
workflow 114.

The other aspect to evaluate the workflow
reproducibility (as discussed in section 3) is to
compare the outputs produced by both workflows.
This has been achieved using the algorithm
presented in Figure 4 (discussed in section 4.3). Four
jobs in both the given workflows i.e. 114 and 117
produce the same number of output files (see Table
3). The Split job produces two output files i.e.
wordlist1 and wordlist2. Two analysis jobs,
Analysis1 and Analysis2, consume the wordlist1 and
wordlist2 files, and produce the analysis1 and
analysis2 files respectively. The merge job
consumes the analysis1 and analysis2 files and
produces the merge_output file. The hash values of
these files are shown in the MD5 Hash column of

wfID Host IP nodename Flavour
Id

minRAM
(MB)

minHD
(GB) vCPU Image

name
Image

id

114 172.16.1.49 osdc-vm3.novalocal 2 2048 20 1 wf_peg_repeat f102960c- 557c-4253-8277-2df5ffe3c169

114 172.16.1.98 mynode.novalocal 2 2048 20 1
wf_peg_repeat

102960c- 557c-4253-8277-2df5ffe3c169

wfID Host IP nodename Flavour
Id

minRAM
(MB)

minHD
(GB) vCPU Image

name
Image

id

117 172.16.1.183 osdc-vm3-rep.novalocal 2 2048 20 1 wf_peg_repeat f102960c- 557c-4253-8277-2df5ffe3c169

117 172.16.1.187 mynode-rep.novalocal 2 2048 20 1
wf_peg_repeat

f102960c- 557c-4253-8277-2df5ffe3c169

122 172.16.1.114 osdc-vm3-rep.novalocal 2 2048 20 1 wf_peg_repeat f102960c- 557c-4253-8277-2df5ffe3c169

122 172.16.1.112 mynode-rep.novalocal 2 2048 20 1 wf_peg_repeat f102960c- 557c-4253-8277-2df5ffe3c169

Job WF ID Container Name File Name MD5 Hash

Split

114 wfoutput123011 wordlist1 0d934584cbc124eed93c4464ab178a5d

117 wfoutput125819 wordlist1 0d934584cbc124eed93c4464ab178a5d

114 wfoutput123011 wordlist2 1bc6ffead85bd62b5a7a1be1dc672006

117 wfoutput125819 wordlist2 1bc6ffead85bd62b5a7a1be1dc672006

Analysis
1

114 wfoutput123011 analysis1 494f24e426dba5cc1ce9a132d50ccbda

117 wfoutput125819 analysis1 494f24e426dba5cc1ce9a132d50ccbda

Analysis
2

114 wfoutput123011 analysis2 127e8dbd6beffdd2e9dfed79d46e1ebc

117 wfoutput125819 analysis2 127e8dbd6beffdd2e9dfed79d46e1ebc

Merge
114 wfoutput123011 merge_output d0bd408843b90e36eb8126b397c6efed

117 wfoutput125819 merge_output d0bd408843b90e36eb8126b397c6efed

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

56

the Table 3, here both given workflows are
compared with each other. For instance, the hash
value of wordlist1 produced by the Split job of
workflow 117 is compared with the hash value of
wordlist1 produced by the Split job of workflow
114. If both the hash values are same, the algorithm
returns true. This process is repeated for all the files
produced by both workflows. The algorithm
confirms the verification of workflow outputs if the
corresponding files in both workflows have the same
hash values. Otherwise, the verification process
fails.

6 CONCLUSION AND FUTURE
DIRECTION

In this paper, the motivation and the issues related to
workflow reproducibility due to workflow execution
on the Cloud infrastructure have been identified. The
dynamic nature of the Cloud makes provenance
capturing of workflow(s) and their underlying
execution environment(s) and their reproducibility a
difficult challenge. A workflow reproducibility model
(discussed in section 3) has been presented after
analysing the literature and workflow execution
scenario on the Cloud infrastructure. A proposed
architecture has been presented that can augment the
existing workflow provenance with the information of
the Cloud infrastructure. Combining these two can
assist in re-provisioning the similar execution
environment to reproduce a workflow execution. The
Cloud infrastructure information collection
mechanism has been presented in this paper in section
4.1. This mechanism iterates over the workflow jobs
and establishes mappings with the resource
information available on the Cloud. This job to Cloud
resource mapping can then be used to reproduce a
workflow execution. The process of reproducing a
workflow execution with the proposed approach has
been discussed in section 4.2. In this paper, the
workflow reproducibility is verified by comparing the
outputs produced by the workflows. An algorithm has
been discussed in section 4.3 (see Figure 4) that
compares the outputs produced by two given
workflows. A python-based prototype was developed
for evaluating the proposed approach. The results
show that the proposed approach can capture the
Cloud-aware provenance information (as discussed in
section 4) by collecting the information related to
Cloud infrastructure (virtual machines) used during a
workflow execution. It can then provision a similar
execution infrastructure i.e. same resource configure-

tion on the Cloud using the Cloud-aware provenance
information to reproduce a workflow execution. In
future, the proposed approach will be extended and a
detailed evaluation of the proposed approach will be
conducted. Different performance matrices such as
the impact of the proposed approach on workflow
execution time, impact of different resource
configuration on workflow execution performance,
and total resource provision time will also be
measured. In this paper, only workflow outputs have
been used to compare two workflows’ provenance
traces. In future, the comparison algorithm will also
incorporate workflow structure and execution
infrastructure (as discussed in section 3) to verify
workflow reproducibility. The proposed approach has
not addressed the issue of securing the stored Cloud-
aware provenance. In future, the presented
architecture will be extended by adding a security
layer on top of the collected Cloud-aware provenance.

ACKNOWLEDGEMENTS

This research work has been funded by a European
Union FP-7 project, N4U – neuGrid4Users. This
project aims to assist the neuro-scientific community
in analysing brain scans using workflows and
distributed infrastructure (Grid and Cloud) to
identify biomarkers that can help in diagnosing the
Alzheimer disease. Besides this, the support
provided by OSDC by offering a free Cloud
infrastructure of 20 cores is highly appreciated. Such
public offerings can really benefit research and
researchers who are short of such resources.

REFERENCES

(2014). GriPhyN: http://www.phys.utb.edu/griphyn/ [Last
visited 30-12-2014].

(2014). SDSS: http://www.sdss.org [Last visited 30-12-
2014].

Azarnoosh, S., Rynge, M., Juve, G., Deelman, E., Niec,
M., Malawski, M., and da Silva, R. (2013).
Introducing precip: An api for managing repeatable
experiments in the cloud. In 5th IEEE Conference on
Cloud Computing Technology and Science
(CloudCom), volume 2, pages 19–26.

Belhajjame, K., Roos, M., Garcia-Cuesta, E., Klyne, G.,
Zhao, J., De Roure, D., Goble, C., Gomez-Perez, J.
M., Hettne, K., and Garrido, A. (2012). Why
workflows break - understanding and combating decay
in taverna workflows. In Proceedings of the 2012
IEEE 8th International Conference on E-Science (e-

Using�Cloud-Aware�Provenance�to�Reproduce�Scientific�Workflow�Execution�on�Cloud

57

Science’12), pages 1–9, USA. IEEE Computer
Society.

Stodden, V. C. (2010). Reproducible research: Addressing
the need for data and code sharing in computational
science. Computing in Science & Engineering, 12.

Chirigati, F., Shasha, D., and Freire, J. (2013). Reprozip:
Using provenance to support computational
reproducibility. In Proceedings of the 5th USENIX
Workshop on the Theory and Practice of Provenance,
TaPP ’13, pages 1–4, Berkeley, USA. USENIX
Association.

Oliveira, D., Ogasawara, E., Bai ̃ao, F., and Mattoso, M.
(2010). Scicumulus: A lightweight cloud middleware
to explore many task computing paradigm in scientific
workflows. In Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, pages 378–385.

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G.,
Patil, S., Su, M.-H., Vahi, K., and Livny, M. (2004).
Pegasus: Mapping scientific workflows onto the grid.
In Dikaiakos, M., editor, Grid Computing, volume
3165 of Lecture Notes in Computer Science, pages
11–20. Springer Berlin Heidelberg.

Deelman, E., Gannon, D., Shields, M., and Taylor, I.
(2008). Workflows and e-science: An overview of
workflow system features and capabilities.

Foster, I. and Kesselman, C., editors (1999). The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann Publishers Inc., USA.

Foster, I., V ̈ockler, J., Wilde, M., and Zhao, Y. (2002).
Chimera: a virtual data system for representing,
querying, and automating data derivation. In Scientific
and Statistical Database Management, Proceedings.
14th International Conference on, pages 37–46.

Foster, I., Zhao, Y., Raicu, I., and Lu, S. (2008). Cloud
computing and grid com- puting 360-degree
compared. In Grid Computing Environments
Workshop, 2008. GCE ’08, pages 1–10.

Groth, P., Deelman, E., Juve, G., Mehta, G., and
Berriman, B. (2009). Pipeline- centric provenance
model. In Proceedings of the 4th Workshop on Work-
flows in Support of Large-Scale Science, WORKS
’09, pages 4:1–4:8, USA. ACM.

Howe, B. (2012). Virtual appliances, cloud computing,
and reproducible re- search. Computing in Science
Engineering, 14(4):36–41.

Janin, Y., Vincent, C., and Duraffort, R. (2014). Care, the
comprehensive archiver for reproducible execution. In
Proceedings of the 1st ACM SIG- PLAN Workshop
on Reproducible Research Methodologies and New
Publication Models in Computer Engineering, TRUST
’14, pages 1:1–1:7, USA. ACM.

Juve, G. and Deelman, E. (2010). Scientific workflows
and clouds. Crossroads, 16(3):14–18.

Kim, J., Deelman, E., Gil, Y., Mehta, G., and Ratnakar, V.
(2008). Provenance trails in the wings-pegasus system.
Concurr. Comput. : Pract. Exper., 20(5):587–597.

Ko, R., Lee, B., and Pearson, S. (2011). Towards
achieving accountability, auditability and trust in
cloud computing. In Advances in Computing and
Communications, volume 193 of Communications in

Computer and Information Science, pages 432–444.
Springer Berlin Heidelberg.

Lifschitz, S., Gomes, L., and Rehen, S. K. (2011). Dealing
with reusability and reproducibility for scientific
workflows. In Bioinformatics and Biomedicine
Workshops (BIBMW), 2011 IEEE International
Conference on, pages 625–632. IEEE. 38, 69.

Macko, P., Chiarini, M., and Seltzer, M. (2011).
Collecting provenance via the xen hypervisor. 3rd
USENIX Workshop on the Theory and Practice of
Provenance (TAPP).

Mehmood, Y., Habib, I., Bloodsworth, P., Anjum, A.,
Lansdale, T., and McClatchey, R. (2009). A
middleware agnostic infrastructure for neuro- imaging
analysis. In Computer-Based Medical Systems, 2009.
CBMS 2009. 22nd IEEE International Symposium on,
pages 1–4.

Mei, L., Chan, W. K., and Tse, T. H. (2008). A tale of
clouds: Paradigm comparisons and some thoughts on
research issues. In Proceedings of the 2008 IEEE
Asia-Pacific Services Computing Conference, APSCC
’08, pages 464–469, USA. IEEE Computer Society.

Mell, P. M. and Grance, T. (2011). Sp 800-145. the nist
definition of cloud computing. Technical report,
Gaithersburg, MD, United States.

Missier, P., Woodman, S., Hiden, H., and Watson, P.
(2013). Provenance and data differencing for
workflow reproducibility analysis. Concurrency and
Computation: Practice and Experience.

Munir, K., Kiani, S. L., Hasham, K., McClatchey, R.,
Branson, A., and Sham- dasani, J. (2013). An
integrated e-science analysis base for computation
neuroscience experiments and analysis. Procedia -
Social and Behavioral Sciences, 73(0):85 – 92.
Proceedings of the 2nd International Conference on
Integrated Information (IC-ININFO 2012), Budapest,
Hungary, August 30 – September 3, 2012.

Munir, K., Liaquat Kiani, S., Hasham, K., McClatchey, R.,
Branson, A., and Shamdasani, J. (2014). Provision of
an integrated data analysis platform for computational
neuroscience experiments. Journal of Systems and In-
formation Technology, 16(3):150–169.

Ramakrishnan, L. and Plale, B. (2010). A multi-
dimensional classification model for scientific
workflow characteristics. In Proceedings of the 1st
International Workshop on Workflow Approaches to
New Data-centric Science, Wands ’10, pages 4:1–
4:12, USA. ACM.

Roure, D. D., Manuel, J., Hettne, K., Belhajjame, K.,
Palma, R., Klyne, G., Missier, P., Ruiz, J. E., and
Goble, C. (2011). Towards the preservation of
scientific workflows. In Procs. of the 8th International
Conference on Preservation of Digital Objects (iPRES
2011). ACM.

Sandve, G. K., Nekrutenko, A., Taylor, J., and Hovig, E.
(2013). Ten sim- ple rules for reproducible
computational research. PLoS Comput Biol,
9(10):e1003285.

Santana-Perez, I., Ferreira da Silva, R., Rynge, M.,
Deelman, E., P érez- Hern ́andez, M., and Corcho, O.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

58

(2014a). A semantic-based approach to attain
reproducibility of computational environments in
scientific work- flows: A case study. In Parallel
Processing Workshops, volume 8805 of Lecture Notes
in Computer Science, pages 452–463. Springer
International Publishing.

Santana-Perez, I., Ferreira da Silva, R., Rynge, M.,
Deelman, E., Perez- Hernandez, M. S., and Corcho, O.
(2014b). Leveraging semantics to improve
reproducibility in scientific workflows. In The
reproducibility at XSEDE workshop.

Scheidegger, C., Koop, D., Santos, E., Vo, H., Callahan,
S., Freire, J., and Silva, C. (2008). Tackling the
provenance challenge one layer at a time. Concurr.
Comput. : Pract. Exper., 20(5):473–483.

Shamdasani, J., Branson, A., and McClatchey, R. (2012).
Towards semantic provenance in cristal. In Third
International Workshop on the role of Se- mantic Web
in Provenance Management (SWPM 2012).

Simmhan, Y. L., Plale, B., and Gannon, D. (2005). A
survey of data provenance in e-science. SIGMOD
Rec., 34(3):31–36.

SMS, C., CE, P., D, O., MLM, C., and M., M. (2011).
Capturing distributed provenance metadata from
cloud-based scientific workflows. Information and
Data Management, 2:43–50.

Stallings, W. (2010). Cryptography and Network Security:
Principles and Prac- tice. Prentice Hall Press, Upper
Saddle River, NJ, USA, 5th edition.

Stevens, R. D., Robinson, A. J., and Goble, C. A. (2003).
myGrid: personalised bioinformatics on the
information grid, Bioinformatics, 19:i302–i304.

Tan, Y. S., Ko, R. K., Jagadpramana, P., Suen, C. H.,
Kirchberg, M., Lim, T. H., Lee, B. S., Singla, A.,
Mermoud, K., Keller, D., and Duc, H. (2012).
Tracking of data leaving the cloud. 2013 12th IEEE
International Confer- ence on Trust, Security and
Privacy in Computing and Communications, 0:137–
144.

Tannenbaum, T., Wright, D., Miller, K., and Livny, M.
(2002). Beowulf cluster computing with linux. chapter
Condor: A Distributed Job Scheduler, pages 307–350.
MIT Press, Cambridge, MA, USA.

Vouk, M. (2008). Cloud computing #x2014; issues,
research and implementa- tions. In Information
Technology Interfaces, 2008. ITI 2008. 30th Interna-
tional Conference on, pages 31–40.

Zhang, O. Q., Kirchberg, M., Ko, R. K., and Lee, B. S.
(2011). How to track your data: The case for cloud
computing provenance. In Cloud Computing
Technology and Science (CloudCom), 2011 IEEE
Third International Conference on, pages 446–453.
IEEE.

Zhao, X., Zhang, Y., Wu, Y., Chen, K., Jiang, J., and Li,
K. (2014). Liquid: A scalable deduplication file
system for virtual machine images. Parallel and
Distributed Systems, IEEE Transactions on,
25(5):1257–1266.

Zhao, Y., Fei, X., Raicu, I., and Lu, S. (2011).
Opportunities and challenges in running scientific

workflows on the cloud. In Cyber-Enabled Distributed
Computing and Knowledge Discovery (CyberC), 2011
International Con- ference on, pages 455–462.

Using�Cloud-Aware�Provenance�to�Reproduce�Scientific�Workflow�Execution�on�Cloud

59

Addressing Issues of Cloud Resilience, Security and Performance
through Simple Detection of Co-locating Sibling Virtual Machine

Instances

John O’Loughlin and Lee Gillam
Department of Computing, University of Surrey, Guildford, GU2 7XH, Surrey, U.K.

{john.oloughlin, l.gillam}@surrey.ac.uk

Keywords: Virtualisation, Xen, Cloud Computing, Co-location, Security, Performance.

Abstract: Most current Infrastructure Clouds are built on shared tenancy architectures, with resources shared amongst
large numbers of customers. However, multi tenancy can lead to performance issues (so-called “noisy
neighbours”) and also brings potential for serious security breaches such as hypervisor breakouts.
Consequently, there has been a focus in the literature on identifying co-locating instances that are being
affected by noisy neighbours or suggesting that such instances are vulnerable to attack. However, there is
limited evidence of any such attacks in the wild. More beneficially, knowing that there is co-location
amongst your own Virtual Machine instances (siblings) can help to avoid being your own worst enemy:
avoiding your instances acting as your own noisy neighbours, building resilience through ensuring host-
based redundancy, and/or reducing exposure to a single compromised host. In this paper, we propose and
demonstrate a test to detect co-locating sibling instances on Xen-based Clouds, as could help address such
needs, and evaluate its efficacy on Amazon’s EC2.

1 INTRODUCTION

Infrastructure Clouds offer compute resources for
rent on-demand, typically on a per hour basis
(Armbrust et al, 2009). One of the most popular
offerings is the virtual server, which is the mainstay
of providers of Infrastructure Clouds such as
Amazon, Google and Microsoft. Infrastructure
Clouds use virtualisation technologies such as Xen
and KVM to offer physical servers as (often,
multiple) virtual servers. Customers can rapidly
acquire virtual servers, use them for as long as
required, then release them back to the provider
when no longer needed, with the equivalent resource
then available for use by other customers.

At any given time, a physical server in a Public
Cloud could be running virtual servers, also referred
to as instances, for a number of different users
(customers). From the user’s perspective, shared
tenancy raises various concerns, of which security
and performance are key. For security, one particular
concern is hypervisor breakouts, where hypervisor
security can be compromised and a resulting
privilege escalation can be used to obtain data from
other customers’ instances. For performance, one
such concern is noisy neighbours, where

performance degradation occurs in one instance due
to the (legitimate and not necessarily malicious)
resource consuming actions of another.

In such cases, the concern tends to focus on the
security or performance impact from other users.
Consequently, research has tended to be focused on
identifying vulnerable instances, or hiding from
potential attackers. However, identifying co-locating
instances may be of even more use for the majority
of users with respect to their own instances. We will
refer to instances started by the same user,
irrespective of when, as sibling instances in the
remainder of this paper.

Sibling instances that are co-located on the same
host may be undesirable for the following reasons:

1. They may degrade the performance of each
other when running compute bound
workloads.

2. They are all vulnerable to failure, or
degradation, of the underlying host.

3. They are all vulnerable to other noisy
neighbours.

4. There is a greater exposure to a security
compromise on a single host.

Determining co-location is difficult, and to date,
no simple methods have been proposed that would
reliably allow for such detection. This paper aims to

60

address this problem by exploring one kind of trace
left by virtualization on Xen based Clouds - domain
ids (domids). The rest of this paper is structured as
follows: In section 2 we review relevant related
work to offer background to the problem; in section
3, we discuss the Xen hypervisor and the generation
of domain ids, and in section 4 we discuss the results
of domids collected from a small sample (100) of
virtual servers in the Amazon Cloud, and use this as
a basis for tests for co-location in section 5. In
section 6 we use domids collected from further
samples to demonstrate likely recycling of resources.
Finally, in section 7 we present our conclusions, and
future directions of this work.

2 RELATED WORK

The ability for one instance to degrade the
performance of other co-located instances is well
known, and is referred to as noisy neighbours. Intel
identifies the primary cause of the problem as the
sharing of resources, such as the L2 cache, which
cannot be partitioned (Intel, 2014); that is, there is
no mechanism to limit how much of the resource an
instance may consume. Consequently, it is possible
for instances to use such resources
disproportionately, to the detriment others.

The standard metric for compute performance is
execution time. Identifying if a running task is likely
to suffer from poor performance i.e. need increased
execution time, is difficult. On their production
clusters, Google detects likely poor performance by
repeatedly measuring a task’s cycles per instruction
(CPI), i.e. the number of cycles required to execute
an instruction, and comparing with the known CPI
distribution (Zhang et al, 2013). If more outliers
(defined as more than 2 standard deviations from the
mean) are detected than expected, then performance
of the task is likely to be poor. The protagonist, i.e.
the noisy neighbour, is identified by correlating
other instances’ CPU usages with the increase in
CPI outliers for the victim.

On a Public Cloud, information about when an
instance is scheduled for CPU time by the
hypervisor is only available to the provider, and is
not subsequently made available to customers. As
such, it is not possible to precisely state when an
instance is running or not. A coarser approach would
be to attempt to correlate instance performance using
compute benchmarks. Such an approach would
likely require a minimum number of co-located
instances on a given host in order to be successful,
and so this already requires co-location to be
knowable, and there is the potential to miss a small
degree of co-location per host.

The problem of extracting information between
co-locating virtual machines has been investigated
by a number of authors. In (Zhang et al, 2012) the
sharing of an L2 cache between VMs was shown to
be vulnerability when it was demonstrated that one
VM may extract cryptographic keys from another
VM on the same host. Such an attack is known as an
access driven side channel attack. Particularly
noteworthy, is the fact that the attack was
demonstrated on an SMP system. In this case the
challenge of core migrations i.e. the scheduling of
VMs onto different cores during its lifetime, as
would be encountered in a Cloud environment,
needs to be overcome. However, the demonstration
was on a standalone Xen system rather than on a
Public Cloud.

The vulnerability of a shared cache relies, in
part, on exploiting hypervisor scheduling. Methods
to increase the difficulty of successfully using such
attacks are under development (Lui, Ren and Bai,
2014), and indeed, are already being integrated into
Xen. Whilst such work mitigates fine grained
attacks, denial of service attacks, which seek to
obtain a large share of the L2 cache, are considered
viable.

This has led to work on targeted attacks in the
Cloud, whereby an attacker seeks to co-locate with a
specific target. This requires methods for
determining co-location with the target before the
attack can be launched. In (Ristenpart, Tromer,
Shacham and Savage, 2010) a number of network
based probes have been proposed, for example ping
trip time and common IP address of dom0. In order
to test the veracity of these methods they also use
access timings of shared drives. No details are
provided of the type of drive being used (local or
network) or how the disk is being shared.

However, as the authors state, a provider can
easily obfuscate network based probes and this
already appears to the case. From our experiments
we can confirm this. Whilst access times to shared
drives may potentially be used for detecting co-
locating siblings, there are a number of issues not
discussed that need require further investigation.
Perhaps most importantly, is the widely reported
variation in disk read/write timings on EC2
(Armbrust et al, 2009), which clearly needs to be
accounted for in any test that proposes to use them.

In (Bates et al, 2013) watermarking of network
flows is proposed and demonstrated on a variety of
stand- alone virtual systems. However, as the
authors state, there a number of defences against
watermarking in place in Public Clouds, and in
particular on EC2, which prevented them from
successfully using the tests.

In (Zhang, Juels, Oprea and Reiter, 2011) a
cache avoidance strategy is used so that instances

Addressing�Issues�of�Cloud�Resilience,�Security�and�Performance�through�Simple�Detection�of�Co-locating�Sibling�Virtual
Machine�Instances

61

can co-ordinate their use (or avoidance) of the L2
cache and measure resulting cache use. This, then, is
a basis for detecting co-locating siblings. The
method is applicable to Xen-based Clouds but
requires modification of how the guest OS kernel
manages memory, and has a performance overhead
when cache use is turned off. Such an approach is
technically challenging, as it involves kernel
changes, and this is likely beyond the capabilities of
most Cloud users.

In summary, neither simple network probes nor
network flows watermarking co-location tests work
on EC2 due to measures in place, whilst cache
avoidance technically challenging. There is a need
for simple methods then.

3 THE XEN HYPERVISOR

The Xen system (Xen, no date) is a widely deployed
hypervisor in Infrastructure Cloud systems, and is in
use at Amazon, Rackspace, IBM and GoGrid,
amongst others. The Xen system consists of the Xen
hypervisor together with a privileged VM called
domain 0 or dom0. Xen is a bare-metal hypervisor,
started by the BIOS, which in turn starts dom0. The
dom0 is a privileged VM and can directly access
hardware such as network cards and local disk
storage. Dom0 provides a management interface for
the Xen system, from which system administrators
can launch and manage the life cycle of VMs. These
VMs are unprivileged domains and are referred to as
domUs.

The Xen hypervisor is responsible for scheduling
VM CPU time, managing memory, and handling
interrupts. On an x86 CPU, dom0 privilege
escalation is provided by running dom0 in ring 1,
whilst the Xen hypervisor runs in ring 0 (and the
unprivileged VMs, domUs, run in ring 3). DomUs
gain access to hardware devices such as disks and
network cards via calls to dom0.

Each domain is given two identifiers, a domid
and a UUID. The UUID is a unique identifier
amongst a deployment of multiple Xen systems; that
is, it uniquely identifies a domain amongst the set of
all domains across the Xen systems. For example on
EC2, the UUID assigned to a new instance will (in
theory) be unique to that instance, at least within the
Region it was launched in.

In addition, a newly launched domain is assigned
a domain identifier, referred to as the domid. This
uniquely identifies domains on the physical server
only. On EC2, instances on the same physical server
will have different domids. However, these may well
clash with domids for instances on other hosts. The
domid is a 16 bit integer and allocation is

monotonically increasing - Xen assigns the next
available domid. This means that instances that are
started one after the other will obtain consecutive
domids. On EC2, therefore, we would expect co-
locating instances, started at the same time, to have
consecutive domids – or, with other requests also
being satisfied, being quite close to each other.

Xen domids have a rather interesting property,
and one which will be crucial to us later: an instance
can increase its own domid simply by rebooting. An
instance’s new domid will be its old domid plus the
number of instances that have started on the same
host since it was last rebooted, plus the number of
reboots that have occurred. Domids do not, however,
seem to survive an underlying host reboot, and in
this case the next available domid is reset to 1.

A user does not have administrative access to
Xen on EC2 (or indeed any Public Cloud). However,
we can determine an instance’s domid via Xenstore.
Xenstore (Xenstore, 2014) is a data area exported
from dom0 to domUs, the interface of which is a
pseudo file system which can be mounted on
/proc/xen within a guest. This is analogous to the
/proc and /sys pseudo file systems in Linux which
provide an interface for user space processes to the
Linux kernel. Under a standard Xen system, a
domain can extract information such as the domids
of all the running domains and the CPU weightings
assigned to them. As one would expect, on EC2 the
data exported to the instances via Xenstore is
restricted, and does not allow a domain to obtain any
information other than about itself. However, it is
particularly useful, for our purposes that a domain
can obtain its own domid.

In the next section we present the results of
domids collected on EC2 via Xenstore from some
120 instances.

4 COLLECTING DOMIDS

We can initially collect domids from instances
launched on EC2, and examine the extent to which
these hint at co-location. Using an Ubuntu precise
12.04 AMI, we can readily launch 20 m1.small
instances as a single request in the Region US-East-
1, in AZ us-east-1b. Each instance gets xenstore-
utils installed, and has the exported Xen store file
system mounted on /proc/xen. In this setup, it is then
possible to obtain an instance’s domid, uuid and
cpuid.

In Table 1, below, we list 20 domids obtained
from just such a setup (on 07/10/2014), which are
readily organised into three sequences of
consecutive domids. For all instances, the CPU
model was an E5-2651.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

62

Table 1: Consecutive Domids.

Seq Domids
1 563, 564, 565, 566, 567 and 568
2 723, 724, 725, 726, 727, 728 and 729
3 752, 753, 754, 755, 756, 757 and 758

The simplest explanation for these consecutive
domids is that the 20 instances are allocated to just
three hosts. It may also be possible that these
sequences are obtained simply by chance across a
large number of hosts that are churning VMs at
similar rates, and we discuss this possibility in
section 5.

The AZ us-east-1b appears homogeneous (just
one CPU model) for the account we were using. To
simplify concerns further, we instead examine
domids in us-east-1a as this provides heterogeneous
hosts. This helps to improve clarity over co-location
since instances with consecutive domids on different
CPU models are clearly not co-located, and so here
the consecutive domids are more likely to indicate
co-locating instances – unless, of course, cpuid and
domid values are spoofed.

We ran 5 requests, with 20 instances per request,
on Amazon’s spot market for us-east-1b. Of the 100
instances started, 3 were reclaimed and so we have
results for just 97 instances. As before, we determine
the domid, uuid and cupid. After this information
was obtained, the instances were released. Each
request was made at a different time over a 2 day
period, from 07/10/2014 to 08/10/2014. In Table 2,
below, we list only the sequences with consecutive
domids found in each request, together with the
instance CPU models – one of E5645, E5507 or E5-
2650.

Table 2: Domids from Multiple Time-Separated Requests.

Request, Date
& Time

Consecutive Domids and CPU Model

1
07/10/2014
17:05

242,243,244 – E6545
469,470 – E5645
1499,1500 – E5645
1671, 1672 – E5645 + E5-2650
2627, 2628, 2629 – E5-2650

2
07/10/2014
17:58

None

3
07/10/2014
21:57

250, 251, 252, 253, 254, 255 ,256 – E5645
732, 733 – E5507
1501, 1502 – E5645
2630, 2631, 2632 – E5-2650

4
08/10/2014
10:25

263, 264, 265, 266 – E5645
501,502 – E5645
1505, 1506 – E5645
2637, 2638, 2639, 2640 – E5-2650

5
08/10/2014
21:50

None

3 out of 5 of the requests evidence consecutive
domids with E5645 CPUs, and all three contain at
least 2 such sequences. The most common pattern is
of two consecutive domids, and the longest sequence
is 7. We note consecutive domids in request 1 of
1671 and 1672, with different CPU models – E5645
and E5-2650 respectively – which clearly cannot be
co-located (unless, again, the cpuid is spoofed). In
request 1, it would appear that 10 of 20 instances are
not host separated, in request 3 this is 14, and in
request 4 it is 12.

5 CO-LOCATION TEST

Based on the discussion and results in section 4 we
can state that for any pair of instances the following
initial conditions must be satisfied if the instances
are more likely to be co-located:

1. Same CPU model
2. Values of domids are sufficiently close to

each other

For the second condition, we do not require that
the domids be consecutive but should be sufficiently
close to each other. In order to understand why
consider the following: two sibling instances are
scheduled onto the same host, but in between them
being launched an existing instance is rebooted. In
this case then, they will not have consecutive domids
but the domids will differ by (at least) 2. We discuss
how close is ‘sufficiently close’ later in this section.

Whilst the two conditions listed above are
necessary for co-location, they are not sufficient. It
is entirely possible that the instances have been
allocated to hosts whose next available domids were
within the domid distance simply by chance. Indeed,
this becomes more likely if the hardware platform
and configuration is identical, and if the churn rate
of VMs is the same. In fact, we have already seen an
example in batch 1 of instances with domids of 1671
and 1672 that had different CPU models.

For the second condition, closeness of the
domids depends in large part on how many instances
a host has been configured to support. If a host
supports k instances, then any instances started
within a short period of time on the host would
likely have their domids within k of each other. We
cannot state this for certain, since it’s possible that
within that period (1) a number of instances on the
host were rebooted (2) a number of instances were
terminated, and a number more were started.

We also cannot state the value of k for a host
with certainty, since it depends on its CPU model,
the CPU configuration, how many sockets the host
has, and the degree of over commitment. As an
example, we have previously shown (blind ref, no

Addressing�Issues�of�Cloud�Resilience,�Security�and�Performance�through�Simple�Detection�of�Co-locating�Sibling�Virtual
Machine�Instances

63

date) that m1.small instances on EC2 may be backed
by 6 different CPU models, including the AMD
2218 and the Intel Xeon E5-2651. The former is a
dual core CPU, so a host with dual socket can have
at most 4 cores. The latter, however, has 10 cores
per socket and dual socket would have 20 cores.
Further, if hyper threading is enabled (as is common
practice on EC2), the core count rises to 40. Finally,
the configured ratio of vCPUs to physical cores
determines k. As EC2 does not advertise socket
count, and only specifies vCPU to cores for some
instance type, as a rule of thumb we will take ‘close’
to be 2 times the core count of a CPU, and times
again by 2 if the CPU supports hyper threading.

In table 3 below we list the 6 models we have
identified to date as backing m1.small instances
together with a domids closeness range based on the
above reasoning:

Table 3: CPU model and Domid Range.

CPU Model Domid Range
(m1.small only)

AMD 2218 4
Intel Xeon E5430 8
Intel Xeon E5507 8
Intel Xeon E5645 24
Intel Xeon E5-2650 32
Intel Xeon E5-2651 40

We are naturally led to the question of the
likelihood that non-co-locating instances have
domids near to each other. This question is similar to
the well known ‘birthday’ and ‘almost birthday’
problems. The birthday problem can be stated like
this: How many people do we need in a room in
order for there to be a 0.5 chance that at least 2
people will share the same birthday? In this case the
answer is 23. As we are interested in near domids
our problem is more akin the ‘almost birthday
problem’: In a room of 23 people how likely is it to
have at least one pair of consecutive birthdays? An
analytic solution to this is presented in (Dasgupta,
2004), with the answer 0.89.

Monte Carlo methods can be used to tackle the
birthday problems stated above. We can assume that
a birthday is equally likely to fall on any day in the
year. We then generate random samples, of size 23,
drawn from the uniform distribution. For each
sample we record a success if there is the matching
(or consecutive, depending upon the problem of
interest) birthday. The number of successes divided
by the number of trials is then the estimate of the
probability.

We note that the assumption that birthdays are
uniformly distributed is not entirely accurate and
that seasonal variations do exist. However, the

uniform distribution does provide a good
approximation.

Can we apply such methods to estimate the
probabilities of instances having consecutive, or
near, domids by chance – and not because they are
necessarily co-locating? An immediate requirement
is a reasonable approximation for the distribution of
domids across hosts. In theory, a domid is in the
range [1, 65536], however we have so far only
observed domids within a restricted range. Further,
the domid distribution is likely CPU dependent to
some degree. CPUs with more cores, such as the
E5-2651, will likely increment domids at a different
rate to the E5645, as they can run more instances.

We could assume that the range of domids for
hosts with the same CPU model is equally likely to
be between the observed minimum and maximum.
Applying this to the E5645, that would be between
252 and 20708. Using a Monte Carlo simulation, we
find that 20 non co-located instances, placed on
randomly selected hosts with E5645 CPUs, will
have at least one pair of consecutive domids with a
probability of 0.009. That is, approximately 1 in 100
batches of 20 instances would have at least one pair
with consecutive domids.

However, it is not obvious that we can model the
problem in a manner similar to the birthday
problems. Consider for example, a power failure in
one portion of a data centre resulting in a large
number of E5645 hosts being rebooted. In this case
then, we initially have a large number of E5645
hosts with small domids. Instances allocated to these
hosts would have a far greater chance of
consecutive, or near, domids then our estimate
would imply. Whereas birth dates do not tend to
change in such a way.

Indeed, it is not clear that the domid range should
be well approximated by any statistical distribution.
Further, the VM allocation mechanisms in use,
which are not advertised, may well produce domid
ranges whereby near domids are more likely, and
perhaps considerably so, than our assumptions
would allow for. As such, developing a model to
accurately represent domid distribution across hosts
is beyond the scope of this paper, so we do not rely
on purely statistical arguments and instead look for
further evidence for co-location, which we describe
now.

We have already seen that when an instance is
rebooted it acquires a new domid. This will be the
number of new instances started on the host plus the
number of instance reboots. This observation allows
us to add an additional condition:

Suppose, then, that we have two instances both
on hosts with the same CPU model. If they have
identical domids they are not on the same host.
Suppose that the instances’ domids are different and

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

64

within a host’s domid range (from Table 3). We
denote the lower domid by m, and refer to the
instance with this domid by A. We refer to the
higher domid by n and the instance with this domid
by B. Upon rebooting A, its new domid must,
simply, be greater than the domid of B.

We now state this as a third necessary condition
for co-location:

3. A and B are instances with domids (m,n)
respectively, where m < n. If A and B are
co-locating, then upon rebooting B, its new
domid, p, must satisfy p > n.

Of course, we still do not have a sufficient
condition – instances may satisfy the above by
chance. However, a user is free to reboot their
instances as often as the like. So we can strengthen
the condition as follows:

a. Reboot the instance A, which has
domid p, k times. When rebooted,
the instance with domid n will
obtain a new domid, q, that must
satisfy q > p + k.

Whilst again this may be satisfied by chance,
further repetition should lead to greater confidence
as co-locating instances will satisfy these conditions

To test this, we used 2 pairs of instances, the first
pair with domids (7635, 7638) respectively, and the
second pair (9536, 9538). As the first pair of
instances were on E5-2650 hosts (condition 1), and
have close domids (condition 2) they are good
candidates for co-location. However, upon rebooting
instance with domid 7635, its new domid was 7636,
and so cannot be co-locating with the instance with
domid 7638 (due to condition 3). For the second
pair, again both with CPU model of E5-2650
(condition 1) when rebooting the instance with
domid 9536, its new domid was 9539, and so greater
than 9538 (condition 3). We rebooted this instance a
further 5 times and after the last reboot its domid
was 9544. We then rebooted the instance with domid
9538, after which its domid was 9545 (condition 3a).
This more strongly suggests co-location, and we
note again that a user is of course free to set the
domid distance to any value they like by rebooting
(we set to 6), and to repeat as many times as they
wish.

To now, we only considered instances started
within a short space of time of each other. A user
may have long running instances, and want to know
if newly started instances are co-located with any
long running instance. In this case, a long running
instance’s domid is likely not representative of the
current domids available from the host due to
requests and reboots in the intervening period. In
this case, rebooting the long running instance will
update its domid, and bring the domid into range of

new instances, allowing for further confirmatory
tests to be run.

We now state our test for co-location as follows:
Two instances, A and B, chosen because they have
domids, m and n, such that m < n are likely co-
locating if they satisfy the following:

1. Same CPU model
2. Values of domids are in range (by

Table 3). That is, n –m <= k where k is
the CPU domid range in Table 3.

3. Upon rebooting instance A, its new
domid satisfies p > n.

If 3 is satisfied, then we strengthen the condition as
follows:

 3a. Upon rebooting instance A a further k
times, a reboot of B results in a new domid, q
satisfying q > p + k.

We reiterate that (3a) can be carried out as many
times as the user wishes, for any value of k.

6 RECYCLED RESOURCES

In addition to some degree of co-location, we also
observe that instances started from later requests
appear to be scheduled onto the same hosts as earlier
ones. This observation is also based on domids, as
we explain now.

In request 1 we obtain instances with domids
1499 and 1500, and both have E5645 CPUs. In
request 3 we obtain instances with domids of 1501
and 1502, and in request 4 we have 1505 and 1506 –
again all E5645. One explanation is that these
instances were scheduled onto just one host. As
another example, we have the domids 2627, 2628
and 2629 in request 1, followed by 2630, 2631 and
2632 in request 3 and then followed by 2637, 2638,
2639 and 2640 in request 4. All of the instances
were running on a host with a E5-2650 CPU, so
could again have been scheduled onto just one same
host.

In a follow up experiment, we launched 100
instances and found 4 consecutive domids. We
terminated these instances, and 5 minutes later
started another 100 instances (5 of which were
reclaimed). The domids in the two sets ranged
between 759 and 7292. Comparing domids in the
first set to the second, we found a remarkable 51
domids in the first set with consecutive domids in
the second set, 27 domids in the first set with a ‘plus
2’ in the second, 7 at ‘plus three’ and 1 at ‘plus 4’.
The likelihood of our second set of instances being
on a completely different set of hosts to the first, but
having domids so close to the first set would appear
to be small.

Addressing�Issues�of�Cloud�Resilience,�Security�and�Performance�through�Simple�Detection�of�Co-locating�Sibling�Virtual
Machine�Instances

65

Running 3 further requests, again of size 100, we
find the same behavior of later instances appearing
to be scheduled on to previously used hosts. This is
also not just a feature of either on-demand or spot
instances, as we observe this for both. Indeed, when
running a batch of spot instances after a batch of on-
demand, we again observe such behavior, suggesting
that requests are being satisfied from the same
resource pool.

It is unclear whether this might be a temporal or
spatial issue. In the former, it may simply be the
case that whilst there is a large amount of available
resource, instances started shortly after earlier ones
are scheduled back on to previously obtained hosts.
In the latter, it may be that a user is restricted to a
subset of the available resources. We know that EC2
is vast in scale, with 28 AZs, most of which
comprise at least 2 data centres - with the largest AZ
having 6 - and each data centre houses between
50,000 to 80,000 physical servers (Vanian, 2014).
For each user, an AZ identifier, such as us-east-1a,
relates to some pool of resources out of which
requests are served. It is possible that AZ identifiers
may map to a data centre in an AZ, or indeed to
some rather smaller subset thereof.

Recycling of resources has the clear potential to
impact on a user’s ability to separate co-locating
instances. In this case, a user may be interested in
the number of attempts needed, and so the cost, to
ensure separation. Perhaps more intriguingly, if a
user is restricted to a subset of resources then
launching a targeted attack against them on EC2
would be much harder - you would only be able to
target users that you share the same resource
partition with. With sufficient data, it may be
possible to answer these questions, and also estimate
the size of resource pool available for use. From this,
one might also estimate a likely number of people
with whom the resource pool is shared, and could
use this number to suggest the risk of security and
performance issues arising.

Finally, given the well established problem of
performance variation due to the heterogeneous
(Osterman et al, 2010, Iosup, Nezih and Dick, 2011)
nature of Public Clouds, there has been interest in
so-called ‘instance seeking’ or ‘deploy and ditch’
strategies (Farley et al, 2012, Zhuang, Liu, Ou and
Arberer, 2013). The assumption behind these
strategies is that a poorly performing instance can be
released and a new, better performing one, found.
However, as the performance of an instance is
determined by the hosts it is running on, such
strategies are rather less likely to produce
performance gains in the face of resource recycling.

7 CONCLUSIONS

Identifying when sibling instances are co-locating is
beneficial to users in a number of situations:

1. Co-located instances may degrade the
performance of each other when running
compute bound workloads.

2. Co-located instances are all vulnerable to
failure, or degradation, of the underlying
host.

3. Co-located instances are all vulnerable to
other noisy neighbours.

4. Co-located instances imply is a greater
exposure to a security compromise on a
single host.

Determining co-location is challenging,
particularly so on Public Clouds. The simple
approach we have presented in this paper is based on
information provided from Xen, which is currently
the dominant hypervisor technology used in Public
Infrastructure Clouds. Xenstore provides an
interface for domains to obtain information such as
domids and uuids. However, as would be expected,
on EC2 the interface is restricted so a domain can
only obtain information about itself. But the domid
is still very useful for our purposes. On a standard
Xen system, domids are assigned consecutively
when starting domains and are not recycled – except
when the range itself cycles. Instances are assigned
the next available (new) domid when rebooted.
Domids also do not survive host reboots, which
resets the next available domid to 1.

These characteristics of domids allow for the
formulation of the simple test for co-locating sibling
instances as described, based on the same CPU
model and close domids (per Table 3 for the various
CPU models we have observed backing m1.small
instance types). It is still, as we have elaborated,
possible that such instances have close domids
simply by chance, and indeed we have seen such
examples. Simulation methods could be employed to
determine the likelihood of this, but assumptions
regarding the distribution of domids are required, the
validity of which is difficult to establish. Whilst
nearness hints at co-location, further evidence is
required.

Further evidence is provided by the observation
that one instance can restrict the possible range of
values for another instance’s domid – simply via
rebooting itself and so increasing the next available
domid value. The second instance, upon a reboot,
can then in turn restrict possible domid values for the
first instances. This process can be repeated as often
as a user chooses, and at the domid distance the user
chooses (the reboot value), and therefore each time
this is done the probability that this happens by

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

66

chance decreases. Further, this is not limited to
instances started close to each other in time, but can
be used when any pair of instances is suspected of
co-locating.

We should be clear that whilst passing the tests
described in section 5 decreases the likelihood that
the instances are not co-locating, increasingly so
when repeated, we cannot say for certain that the
instances are co-locating. From a pragmatic point of
view, a user must balance the risk of having co-
located instances with the cost of (determining and
then ensuring) separation.

Determining such costs may be difficult as there
appears to be a degree of recycling of resources, as
described in section 6. This also has an immediate
and significant consequence for the probability of
success in carrying out a targeted side channel attack
on a Public Cloud. Indeed, from our work here, we
find the chance of intentionally co-locating with
sibling instances to be fairly small. Co-locating with
any intended target would therefore be more
unlikely still, if it is indeed possible at all. We also
note the impacts for so-called ‘performance seekers’,
whereby a user releases back underperforming
instances in the hope of acquiring better performing
new instances. A user may simply be paying to
obtain resources they have already had.

In summary, our test is simple to implement and
works on Linux, Windows and FreeBSD Operating
Systems, with the appropriate Xenstore client tool.
Future work is largely aimed at further exploration
and confirmation of the ideas discussed in this paper.
In particular, we would like to be able to identify
behaviours of instances that can be detected by
others as would confirm co-location, without
incurring the effort involved with rewriting (for
Linux) kernel memory management features to spot
avoidance of shared cache use, and further ensuring
that any such observation are not due to chance.

REFERENCES

Armbrust, M. et al. (2009) “Above the clouds: a Berkely
view of cloud computing”. Technical Report EECS-
2008-28, EECS Department, University of California,
Berkeley.

Intel, (2014) [Online]. Available at: www.intel.com/
content/dam/www/public/use/en/documents/white-
papers/intel-saa-performance-white-paper.pdf.
[Accessed on 02/01/2015]

Zhang, X. et al. (2013) CPI^2: CPU performance isolation
for shared compute clusters, Proc of EuroSys 2013, pp
379-391.

Zhang, Y. et al. (2012) Cross-VM Side Channels and their
use to Extract Private Keys, Proc of the 2012 ACM

Conference on Computer and communications
Security, pp305-316.

Ristenpart, T. Tromer, E. Shacham, H. Savage, S. (2010)
Hey you get off my Cloud, Proc of the 16th ACM
Conference on Computer and communications
Security, pp199-212.

Bates, A. et al (2013) On Detecting Co-resident Cloud
Instances using Network Flow Watermarking
Techniques, International Journal of Information
Security, Vol 13, Issue 2, pp 171-189.

Lui, F. Ren, L. Bai, H. (2014) Mitigating Cross-VM Side
Channel Attacks on Multiple Tenants Cloud Platform,
Journal of Computers, Vol 9, No 4, pp1005-1013.

Zhang, Y. Juels, A. Oprea, A. Reiter, M.K. (2011) Home
Alone: Co residency detection in the cloud via side
channel analysis, Proc 2011 IEEE Symposium on
Security and Privacy, pp313-328.

Xen, (no date) [Online]. Available at: www.xenproject.org
[Accessed: 08/02/2015].

Xenstore, (2014) [Online]. Available at:
http://wiki.xen.org/wiki/XenStoreReference
[Accessed: 08/02/2015].

Blind Ref, no date:
Dasgupta, A. (2004) The Matching, Birthday and Strong

Birthday Problem: A Contemporary Review, Journal
of Statistical Planning and Inference 130, pp377-389,
2004.

Vanian, J., 2014. [Online]. Available at: https://gigaom.
com/2014/11/12/amazon-details-how-it-does-
networking-in-its-data-centers/ [Accessed:
08/02/2015].

Osterman, S., et al. (2010) A performance analysis of EC2
cloud computing services for scientific computing,
Cloud Computing, Lecture Notes of the Institute for
Computer Sciences, Social-Informatics and
Telecommunications Engineering, vol 34, pp115-131.

Iosup, A. Nezih, Y. and Dick, E. (2011) On the
performance variability of production cloud services.
In Cluster, Cloud and Grid Computing (CCGrid),
2011.

Farley, B. et al. (2012) “More for your money: exploiting
performance heterogeneity in Public Clouds”, in Proc.
of the Third ACM Symposium on Cloud Computing,
article no. 20.

Zhuang, H. Liu, X. Ou, Z. Arberer, A. (2013) “Impact of
Instance Seeking Strategies on Resource Allocation in
Cloud Data Centres”, in Proc. Of the IEEE Sixth
International Conference on Cloud Computing, pp27-
34.

Addressing�Issues�of�Cloud�Resilience,�Security�and�Performance�through�Simple�Detection�of�Co-locating�Sibling�Virtual
Machine�Instances

67

SHORT PAPERS

P-TOSCA Portability of SOA Applications

Marjan Gusev, Magdalena Kostoska, Sasko Ristov and Aleksandar Donevski
University Ss. Cyril and Methodius, Faculty of Computer Sciences and Engineering, 1000 Skopje, Macedonia

{marjan.gushev, magdalena.kostoska, sashko.ristov}@finki.ukim.mk, aleksandar.donevski@outlook.com

Keywords: Application Portability, SOA, Cloud Computing.

Abstract: Even more frequently, the customers express their increasing need to change the cloud provider and/or the
operating cloud environment in order to avoid vendor lock-in. We analyze portability as the transferability of
an application from on-premise onto a cloud (migration) andamong different clouds (porting). The contribu-
tion of this paper is twofold: 1) demonstration of the P-TOSCA model for automated migration and porting of
SOA applications onto a cloud and/or switch between cloud providers, and 2) evaluation of a significant time
reduction in migration and porting.

1 INTRODUCTION

The Service Oriented Architecture (SOA) is com-
monly used architecture in the past few years, espe-
cially for enterprise applications. It became popu-
lar due to the benefits and flexibilities of integrating
loosely-coupled and reusable services (Erl, 2004)

Cloud offers a scalable and elastic environment
for hosting SOA applications as computing utilities
(Buyya et al., 2009). It saves not only companies’
OPEX and CAPEX, but also management and ad-
ministration costs (Rana, 2014). As more customers
adopt and use cloud technologies, they encounter tur-
bulence along the increasing number of SOA appli-
cations hosted on clouds. A variety of cloud service
providers (CSPs) with different service level agree-
ments (SLAs) are now available on the market.

Customers appreciate being able to switch among
CSPs and environments, so as to choose the most
suitable one to their needs. The ability of a soft-
ware to run on different cloud platforms in general
defines the cloud portability. It presents a hot topic
research challenge, although CSPs do not think to of-
fer mechanisms to enable migration of applications
onto clouds or to enable a possibility to transfer them
between clouds. Mostly, CSPs are stuck to the phi-
losophy that the best solution on the market will be-
come a standard. However, we analyze a possibility
to define a specification and build an engine that will
enable portability and migration. Our research also
includesmigrationas a process of transferring an ap-
plication onto a cloud. Actually, we aim to present a
sophisticated procedure to realize the transfer process

to make the application run in the new cloud environ-
ment, which is realized manually by cloud experts.

Cloud application portabilityis a general ability
to move applications between CSPs, no matter which
cloud environment they are using as infrastructure.
Cloud application portability is not considered as a
data or service transfer between clouds, but as a trans-
fer of a whole set of functionally organized services
and data. Our goal isautomated cloud application
portability by defining an automated procedure that
will realize migration or porting, without or with min-
imal user intervention.Porting is a complex process
that usually needs a lot of support by cloud vendors,
and especially by CSPs. Our goal is to use stan-
dard interfaces to cloud management, which will re-
alize porting as a process. These cloud management
features used by most of the existing operating sys-
tems (OS) and cloud environments integrate essential
cloud management functions, such as invocation of
virtual machines (VMs), instantiation, customization
and management.

The approach for automated porting of a SOA ap-
plication between different CSPs (or cloud environ-
ments) is based on the P-TOSCA model and practical
implementation (Kostoska et al., 2014b). This model
enables automated porting of Platform-as-a-Service
(PaaS) hosted applications from one cloud environ-
ment to another as an extension of TOSCA 1.0 stan-
dard (OASIS, 2014).

Cloud portability requires the CSPs to enable
cloud interoperability (Toosi et al., 2014). It means
that a CSP must be able to replicate the application
environment and enable application deployment.

71

2 RELATED WORK

As more CSPs and cloud environment vendors be-
come available, users at some point would like to
transfer their data and applications from one CSP to
another, but there is no standard to do it seamlessly. A
nice overview about cloud portability approaches and
opportunities is given by Petcu and Vasilakos (2014).
Gonidis et al. (2013) have classified three types of
cloud portability solutions: 1) adoption of existing
or emerging standards (like TOSCA, CDMI, OCCI,
OCF), 2) usage of intermediary levels (like jClouds or
mOSAIC) and 3) adoption of semantics and model-
based solutions. Several approaches have been ana-
lyzed in (Ortiz Jr, 2011). IEEE P2301 is just one ini-
tiative to design a roadmap for application portability,
management and interoperability interfaces, as well
as for file formats and operating conventions.

Open Virtualization Format (OVF) (DMTF, 2010)
establishes a transport mechanism for moving VMs
from one hosted platform to another. It is an approach
for definition of an open standard for packaging and
distributing virtual appliances or more generally soft-
ware to be run in multiple VMs. Their approach is
based on using different hypervisors.

The OCCI, OVF and similar approaches work on
IaaS level. When analyzed on PaaS level, the most
promising approach is defined by TOSCA (OASIS,
2014) as a portable and manageable specification of
services and applications deployed on any CSP. Our
research with TOSCA specification was initially di-
rected to test the feasibility of a TOSCA model de-
ployment. Recently, analyzing this process we have
identified critical points where original TOSCA spec-
ification requires further refinement and extended the
specification with additional cloud-specific elements
to enable automated porting (Kostoska et al., 2014b).

No commercial solution supports processing of
TOSCA specification at this moment. (Binz et al.,
2013) present the OpenTOSCA environment for im-
perative Cloud Service Archive (CSAR) processing.
Unlike this proposal, P-TOSCA offers declarative
processing and implementation for multiple cloud
environments. Other initiatives include creation of
visual environments for TOSCA specifications like
Winery (Kopp et al., 2013) and Vino4TOSCA (Bre-
itenbücher et al., 2012). Some approaches were con-
cerned with creation of TOSCA specification for ex-
isting projects (Li et al., 2013; Kostoska et al., 2014a).

Petcu and Vasilakos (2014) also give an overview
of tools and services that support a certain degree
of portability, including Aoleus (cloud management
software, written in Ruby), CompatibleOne (cloud
broker, defining a language for management of cloud

services), CloudFoundry (works on top of VMware-
based IaaS), ConPaaS (federation support), Docker
(deployment engine), mOSAIC (API that allows de-
ployment and configuration management), Nimbus
(a virtual site layer for dynamic provisioning of dis-
tributed resources), etc.

Katsratos et al. (2014) present a proof of con-
cept for the portability problem on OpenStack cloud.
They use Opscode Chef as a configuration manage-
ment tool that describes and manages system con-
figuration using a Ruby based domain-specific lan-
guage. It automates the cloud management tasks that
are obtained by translating a TOSCA-based applica-
tion specification into Chef environment. Similar ap-
proaches are used by the existing EU funded research
projects, such as SeaClouds, Remics, Cloud4SOA,
Optimis, Contrail, Artist, PaaSage, MODAClouds, or
even RighScale or CloudFoundry. Instead of build-
ing a TOSCA engine, these approaches translate a
TOSCA-based application specification into a speci-
fication that can use cloud management tools, such as
CAMP, Brooklyn, Chef, Puppet etc. However, our ap-
proach uses a practical implementation of P-TOSCA
engine and direct application porting between clouds.

The concept of SOA services is based on uni-
fied communication and collaboration to produce the
desired result (OASIS, 2014). It offers many ben-
efits due to scalability and adaptability. The main
SOA characteristics are Discoverable and Dynami-
cally Bound, Self-Contained and Modular, Interop-
erability, Loose Coupling, Location Transparency,
Composability, and Self-Healing (Valipour et al.,
2009).

SOA applications consist of independent service
elements orchestrated to communicate and exchange
information in order to achieve the desired functional-
ity. The services can be composed as applications (as-
sembly of services and components bound by applica-
tion logic), service federations (collections of services
bound in large service domain) and service orchestra-
tion (execution of one business process by multiple
successful service invocation) (Valipour et al., 2009).

Building and deploying a distributed SOA de-
pends upon successful orchestration to enable ser-
vices to be orchestrated in unified and defined pro-
cess, successful deployment to enable proper config-
uration of security, reliability, scalability and success-
ful management (Papazoglou and Heuvel, 2007).

3 P-TOSCA CONCEPTS

A P-TOSCA specification of an application contains
XML description of the application topology (types,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

72

Interface Module

Core Module

Data Module

E
x

te
rn

a
l

li
b

ra
ri

es

P-TOSCA engine

Users

Other

P-TOSCA

engine

Other

P-TOSCA

engine

Cloud

controller

Cloud

controller

VM

instances

VM

instances

Figure 1: Context diagram of P-TOSCA engine.

templates and artifacts). This specification along with
the required artifacts is packed in a CSAR. Artifacts
represent files needed for application deployment or
configuration like scripts, war files, zip files, libraries
etc. The P-TOSCA approach is used to:Migrate an
application onto a cloud; orPort an application from
one CSP to another.

In our earlier work (Kostoska et al., 2014b), we
have identified several TOSCA weaknesses and ambi-
guities and suggested extensions to enable a fully au-
tomated application life-cycle management. Most of
these identified problems arise because the main goal
of TOSCA is to be cloud, technology and hardware
agnostic, while the real implementation needs proper
definitions of several hardware based specific param-
eters, such as: a) Specifying the external namespace
of ServerProperties; b) Specifying the initial num-
ber of instances child element to the ServerProper-
ties element; c) Extending the ServerProperties el-
ement of Node Template with ServerIPAddress ele-
ment; d) Specifying the external namespace of Scrip-
tArtifact Properties; e) Extending the Properties el-
ement of Node Template with ServerSecurityProper-
ties element; and f) Introducing XML defined plan.

All these extensions still keep the P-TOSCA cloud
and technology agnostic. It just defines all those spe-
cific elements required for real implementation.

Details on the practical P-TOSCA engine im-
plementation are also described in (Kostoska et al.,
2014b). The software is hosted on a separate VM by
the CSP and its architecture is presented in Fig. 1.

The interface module contains two parts, one to
establish communication to the users and the other to
collaborate with other P-TOSCA engine implemen-
tations. The core module is responsible for manag-
ing the CSAR archives. It executes the artifact plans
and communicates with the cloud controller to man-
age, invoke and revoke various instances. All rele-
vant data are stored and managed by the correspond-
ing database module. Software is developed in Java
programming language using Linux specifics.

The first use case, which presents thecloud mi-
gration (to migrate an application onto a cloud), is
performed by a direct user interaction with a web ap-
plication provided by the platform. The second use

User

P-TOSCA

Engine

4. Plan selection

Cloud

Controller

2. Creation

of application

topology

3. Creation

of application

instances

5. Execute plan

App

instance1
App

instance1
App

instance1

1. Authentication &

CSAR delivery

Figure 2: P-TOSCA based migration.

User

Target

P-TOSCA

Engine

1. Authentication

(local and remote)

Cloud

Controller

4. Creation

of application

topology

5. Creation

of application

instances

7. Plan execution

Source

P-TOSCA

Engine

3. Application

Definitions

and artifacts

App

instance1
App

instance1
App

instance1

2. Application selection

6. Plan selection

Figure 3: P-TOSCA porting.

case, which presents thecloud application portabil-
ity (porting of an application from one CSP to an-
other), is performed by a direct user interaction with
a web application and communication between plat-
forms using web services.

Both use cases may require only two clicks by the
customer, one to select and upload the CSAR archive
(or to select the appropriate application to be ported
together with the P-TOSCA engine), and another for
plan selection. We assume that the customer had al-
ready prepared the CSAR archive and the execution
plan. As the plan selection may be a part of a script
file, the complete transfer can be done automatically.

Fig. 2 presents a conceptual diagram of a sequence
of activities to realize the cloud migration using the P-
TOSCA platform. This use case includes the follow-
ing actions: 1) A user authenticates at the P-TOSCA
engine platform and uploads the CSAR archive; 2)
The platform processes the archive and requires cre-
ation of instances according to the topology of the
application; 3) The cloud controller creates the in-
stances; 4) The user selects execution plans; 5) The
platform executes the plans on the created instances.

The conceptual diagram describing the sequence
of activities that realize interaction between the user
and the P-TOSCA engine for cloud application porta-
bility is shown in Fig. 3. Porting an application from
one CSP to another using P-TOSCA includes the fol-
lowing actions: 1) A user authenticates to the P-
TOSCA engine, selects the remote P-TOSCA engine
and authenticates to the remote platform; 2) The user

P-TOSCA�Portability�of�SOA�Applications

73

selects an application to be ported from the remote
platform; 3) Application’s definitions and artifacts are
obtained from the remote platform via web services;
4) The platform requires creation of instances accord-
ing to the specified application topology; 5) The cloud
controller creates the instances; 6) The user selects
execution plans; 7) The platform executes the plans
on the created instances.

4 P-TOSCA DEMONSTRATION

A modified version of the eBay SOA Shopper project
(Hansen, 2007) is used as a proof-of-concept of trans-
ferring a SOA application between clouds using the
P-TOSCA model. The developed application uses the
eBay SOAP API to retrieve offers from eBay by given
search terms. It offers different interfaces (web ser-
vice and application for web browser). It is a typical
transaction-based application realized with the SOA
approach that consumes services from one provider
and offers services to other parties. This application is
selected as SOA demo since it represents both a con-
sumer and a service provider in same type (i.e. covers
the two important aspects of SOA).

One Java EE container hosts the application. It
consists of two main modules:Interface modulethat
contains the services, which are offered as web inter-
face, REST and SOAP services;Core and consumer
module, which consumes services from eBay using
the eBay SOAP API and converts the data in the re-
quired format. When an application user accesses an
interface service (whether using SOAP, XML mes-
sage or HTTP parameter), then the appropriate soft-
ware module is invoked. The control then continues
with the SOA Finder API (which represents a wrap-
per) with goal to invoke eBay services. Finally the
result is returned to the user via corresponding inter-
face. The application is hosted on one VM instance.

The application topology describes the application
deployment architecture. The orchestration of appli-
cation required elements is needed for: a) Enabling
a platform independency; b) Easier installation; c)
Cloud deployment. Orchestration, in this context, de-
scribes the way the services are invoked and managed.

TOSCA specifies the application topology nodes
by node types divided in three main categories:Base
type, which defines the basic components required
by the application, such as OS, web server and web
application; Specific typesused to define the spe-
cific components required by the application topol-
ogy, such as Linux OS, GlassFish web server and Java
EE Web Application. The deployment and configura-
tion of the application also requires usage of Maven

Tier

Base node type

eBay Finder

Application

Custom node type

GlassFish

Web Server

Specific node type

Linux OS

Specific node type

hosted

on

hosted

on

hosted

on

Maven

Specific node type

Ant

Specific node type

depends

on

hosted

on

depends

on

hosted

on

Basic Type

Specific Type

Custom Type

Figure 4: eBay Finder SOA application’s topology tem-
plate.

<NodeTemplate id="Tier"
name="Instance for eBay Finder App"
type="Tier">

<Properties>
<ServerProperties>
<NumCpus>2</NumCpus>
<Memory>2048</Memory>
<Disk>10</Disk>
<InitialNumInstances>
1

</InitialNumInstances>
<ServerSecurityProperties>
<ServerSecurityProperty>
<protocol>TCP</protocol>
<port>80</port>

</ServerSecurityProperty>
<ServerSecurityProperty>
<protocol>TCP</protocol>
<port>443</port>

</ServerSecurityProperty>
</ServerSecurityProperties>

</ServerProperties>
</Properties>
...

</NodeTemplate>

Listing 1: Tier node template definition.

and Ant tools. For that reason these tools are defined
as specific types;Custom typesthat define the compo-
nents developed specifically for the eBay Finder Ap-
plication.

The application topology template of the eBay
Finder SOA application is presented in Fig. 4. Each
node of the topology is specified by a node template,
and the relationships between the nodes are specified
using relationship template, depicted by blue color ar-
rows. Same as nodes, the relationship types are ini-
tially set in the specification and each relationship
template specifies the type of relationship. All el-
ements are defined by XML. P-TOSCA model uses
external namespaces for different custom defined ele-
ments, but they will be intentionally omitted from the
further listings for clearer representation.

Tier node template definition is presented in List-
ing 1. In this context we use P-TOSCA extended
specification of theServerPropertieselement with
the following: Initial number of instances to be

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

74

CloudGlassFish server

Maven Ant

eBay Finder App

eBay Finder App VM

Deny all other

Allow ports

80 and 443

Figure 5: Communication layout of the eBay Finder.

<NodeTemplate id="GlassFishWebServer"
name="GlassFish Web Server"
type="GlassFishWebServer">

<Properties>
<httpport>80</httpport>
<httpsport>443</httpsport>
<username>admin</username>
<password>adminadmin</password>

</Properties>
</NodeTemplate>

Listing 2: GlassFishWebServernode template definition.

1; Server security properties with TCP protocol
and port 80 (for HTTP); Server security properties
with TCP protocol and port 443 (for HTTPS). The
ServerPropertieselement was extended by definition
of the ServerSecurityPropertyelement with corre-
sponding port identification for HTTP and HTTPS
protocols. It specifies details of the communication
layout presented in Fig. 5.

Listing 2 shows definition of the GlassFish server
node template. According to the P-TOSCA extended
specification we define thePropertieselement with
Port 80 (for HTTP) and Port 443 (for HTTPS). The
user credentials are also defined within theProperties
element.

Listing 3 shows the definition of the artifact tem-
plate for configuration of the GlassFish server. The
ScriptArti f actPropertieselement within theArtifact
Templatewas extended with theInputParametersel-
ement used to define the input ports and user creden-
tials. Note that these parameters correspond to the al-
ready defined properties of the GlassFish Web Server
node template.

Unlike the standard TOSCA specification (that
suggest usage of BPMN and BPEL languages), P-
TOSCA uses XML defined plans. XML definition is
used instead of use of BPMN and BPEL languages
due to the ambiguity of these languages and the lack
of BPMN processing engine at the moment when this
project was developed (Kostoska et al., 2014b). List-
ing 4 shows the definition of the XMLPlan element
for application deployment.

EachPlan element contains the node templates
and their operations for execution of the required ac-

<ArtifactTemplate id="glassfish-configsh" type="ScriptArtifact">
<Properties>
<ScriptArtifactProperties>
<ScriptLanguage>sh</ScriptLanguage>
<PrimaryScript>
scripts/GlassFishWebServer/configure.sh

</PrimaryScript>
<InputParameters>
<InputParameter
nodeTemplateId="GlassFishWebServer"
property="httpport"/>

<InputParameter
nodeTemplateId="GlassFishWebServer"
property="httpsport"/>

<InputParameter
nodeTemplateId="GlassFishWebServer"
property="username"/>

<InputParameter
nodeTemplateId="GlassFishWebServer"
property="password"/>

</InputParameters>
</ScriptArtifactProperties>

</Properties>
<ArtifactReferences>
<ArtifactReference

reference="scripts/GlassFishWebServer">
<Include pattern="configure.sh"/>

</ArtifactReference>
</ArtifactReferences>

</ArtifactTemplate>

Listing 3: GlassFish Artifact template.

<Plan id="InstallApplication"
<NodeTemplateOperations>

<NodeTemplateOperation ref="GlassFishWebServer">
<Operation name="install"/>
<Operation name="configure"/>

</NodeTemplateOperation>
<NodeTemplateOperation ref="Maven">

<Operation name="install"/>
</NodeTemplateOperation>
<NodeTemplateOperation ref="Ant">

<Operation name="install"/>
</NodeTemplateOperation>
<NodeTemplateOperation ref="eBayFinderApp">

<Operation name="install"/>
<Operation name="configure"/>

</NodeTemplateOperation>
</NodeTemplateOperations>

</Plan>

Listing 4: XML Planelement for eBay Finder deployment.

tion. The operations specified in the plan are exe-
cuted sequentially in the order of description, unless
some operation defines precondition (that should be
executed before the operation).

The first activity of the P-TOSCA portability se-
quence is the preparatory step, where the user authen-
ticates and prepares the CSAR archive.

All definitions and the required artifacts are
packed in the CSAR archive as a zip file. The CSAR
archive for the eBay Finder SOA application contains:
1) Java EE 7 installation (which represents a zip file);
2) The application deployment artifact (war file); 3)
Scripting artifacts for GlassFish; 4) Configuration, in-
stallation and deployment scripts. The final archive
has a substantial size (over 90MB) due to the size of
Java EE 7 installation file.

The next step includes copying to the P-TOSCA
engine and starting a procedure defined by the cor-
responding migration or porting scenario. All these

P-TOSCA�Portability�of�SOA�Applications

75

On-premise

B
ef
o
re

A
ft
er

On-premise

SOA

APP

VM

SOA

APP

VM

a)

b)

On-premise

B
ef
o
re

A
ft
er

On-premise

SOA

APP

VM

SOA

APP

VM

B
ef
o
re

A
ft
er

SOA

APP

VM

SOA

APP

VM

SOA

APP

VM

P-TOSCA

c)

SOA

APP

VM

P-TOSCA

SOA

APP

VM

Figure 6: Three scenarios.

steps are performed in a sequence. The user interac-
tion is required only to specify the execution plans.

5 TESTING METHODOLOGY

The test goal was to evaluate the functionality and
deployment performance of the P-TOSCA portabil-
ity model, and to provide a proof-of-concept of au-
tomated cloud application portability. A demonstra-
tion will be successful if the application migration and
porting can be realized by using a P-TOSCA engine
following the definitions of the P-TOSCA model. Per-
formance evaluation will show if transferring the ap-
plication using this approach is realized by a click of
a button and consumes less time. Further on, we dis-
cuss details on the testing environment, test cases, and
test data.

For testing purposes we used two cloud environ-
ments: OpenStack and Eucalyptus, isolated in sepa-
rated VLANs. The OpenStack cloud was installed on
one server with Ubuntu server 12.04 LTS. The server
hosts all the OpenStack elements: node, cluster and
tiers. The Eucalyptus cloud was installed on three
physical servers with CentOS 6.5 in such a way that
each server uses one Eucalyptus element.

Both frameworks were set with a P-TOSCA en-
gine, which can communicate with the user and
the cloud controller. Communication with other P-
TOSCA engines is realized by web services.

Fig. 6 presents three different scenarios, where
Eucalyptus is presented as the target cloud.Manual
migration onto a cloud (MM)is a test scenario to eval-
uate the performance of application migration on the
cloud, where the user manually creates an instance,

deploys the application and sets authentication and se-
curity rules (Fig. 6 a);P-TOSCA based migration onto
a cloud (PTM)is a test scenario to evaluate the perfor-
mance of activities to upload the defined CSAR and to
deploy the application using the web interface of the
P-TOSCA engine (Fig. 6 b);P-TOSCA based porting
the application from one cloud to another (PTP)is a
test scenario to evaluate the performance to transfer a
PaaS hosted application from one cloud environment
to other using web services (Fig. 6 c).

The target cloud to migrate or transfer the applica-
tion is either OpenStack or Eucalyptus cloud. Since
both cloud frameworks are used for the three test sce-
narios, there are a total of 6 use cases.

Functionality testing is realized by testing the ap-
plication after its deployment on the target cloud for
its proper functioning. For this purpose we have
selected several characteristic input parameters and
specified the expected output. The functionality test
actually realizes matching of the expected output and
the real obtained output for the same input. Perfor-
mance testing is defined by evaluation of the total time
needed for deployment of the use case.

In the manual migration use case, the time mea-
surement starts with user authentication and the ac-
tivity of manual preparation, including collection of
necessary files and packing into a zip archive, fol-
lowed by the manual copying of the archive, manual
extracting, and manual starting of the scripts, VM in-
stantiation, execution plans and ends when the final
installation and deployment activity is finished.

In the P-TOSCA based migration and porting, all
activities are performed automatically by the corre-
sponding scripts. The time is measured from the mo-
ment when the user authenticates, followed by start-
ing the initial script and finishes with realization of
the execution plan. In this use case we have defined
user interaction for selection of an appropriate exe-
cution plan, although it can also be automated by a
corresponding script.

6 EVALUATION

In addition to the original TOSCA specification, our
P-TOSCA model gives details on implementation
specifics, such as initial number of instances, used
protocols and ports for communication, and relevant
data about CPUs, memory, disks etc. This infor-
mation is required for implementation and deploying
purposes. XML specified plans and exiting P-TOSCA
engine cannot support the full coverage of architec-
ture configurations and deployments as those by the
BPEL engine, but this is planned for next P-TOSCA

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

76

Table 1: Average time for use case scenarios.

Use case id sec id sec
MM Td(O) 1918 Td(E) 1914
PTM Tm(O) 1247 Tm(E) 1205
PTP Tp(O) 1093 Tp(E) 1022

software release. Currently all sequential deployment
and installation activities can be successfully applied
by P-TOSCA.

Recently we have presented demo cases by using
the P-TOSCA approach: a demo on a small SOA ap-
plication (Ristov et al., 2014) and a demo of porting
theN-tier applications (Gusev et al., 2014). Here we
extend the approach on a more general SOA appli-
cation and give comprehensive details on P-TOSCA
application, along with functional and performance
evaluation.

Proof of concept is demonstrated for all 6 use
cases although OpenStack is not specifically de-
signed neither for interoperability nor portability
(Toosi et al., 2014). The overall application port-
ing from Eucalyptus to OpenStack and vice verse
are correspondingly demonstrated in the publicly
available videos: http://youtu.be/92KaHt0CyxE and
http://youtu.be/NRnqrPqO41k. Some performance
related results are presented next to explore the in-
fluence of the cloud infrastructure.

Table 1 presents the average of 10 success-
ful test case executions, calculated for manual, P-
TOSCA based migration and for P-TOSCA based
porting, where OpenStack and Eucalyptus are the
target clouds, correspondingly. We observe similar
results for both cloud platforms, that is, P-TOSCA
based cloud migration is faster than the manual. P-
TOSCA based porting is even faster, since the transfer
is realized directly between the clouds. Letc∈{O,E}
identifies the cloud environment, whereO stands for
OpenStack andE for Eucalyptus. Denote byTd the
time for default manual migration (MM),Tm(c) for P-
TOSCA based migration (PTM), andTp(c) the time
for P-TOSCA based porting (PTP).

The target cloud infrastructure is important for
the overall deployment process. The obtained re-
sults show that migration and porting using P-TOSCA
model is faster on Eucalyptus for 3.5% in case of mi-
gration and 6.95% in case of porting on Eucalyptus
as target cloud instead of on OpenStack. This is due
to the different cloud infrastructure used for hosting
the cloud environment. The OpenStack cloud envi-
ronment uses one server as infrastructure to host the
node controller, cluster and tier, while the Eucalyptus
uses three different physical servers as infrastructure.
These results actually show that the better the infras-
tructure is, the faster the deployment.

The time needed for initial migration using P-
TOSCA is slightly greater than the time for porting
between the clouds because during the initial migra-
tion we access the platform from outer network. The
reason is in the setting of the cloud environment and
the duration of the copying process, which is due to
the network latencies and throughput.

The experiment environment uses user interaction
with WAN (Wide Area Network) protocol, while both
clouds (OpenStack and Eucalyptus) are connected
with 1Gb LAN (Local Area Network). So, the data
transfer time for archive upload requires more time
when using WAN, while the data transfer between
clouds was faster due to the faster LAN protocol.

Although the size of the archive is greater than
90MB, most of the time differences between the man-
ual and P-TOSCA migration are due to the time re-
quired by the user to access the visual interface of the
cloud and to manually execute the actions.

Another time-consuming activity is introduction
of the new cloud environment. In the conducted ex-
periments we do not analyze the time needed for
learning the environments (i.e. we assume them as
known environment). In real life, the time needed
for manual migration may be significantly longer if
the users meet the new cloud environment for the first
time. It takes time to get acquainted to the interface
and the options offered by the CSP.

During this process the user does not have control
over the instances (as in manual migration), since the
platform uses specific security policies and authenti-
cation, but at the end of the process the user specific
requirements are set.

Other SOA characteristic is modularity. If the
SOA application consists of several loosely-coupled
modules, each module can be defined as a separate
node in the application topology and can be deployed
on a dedicated instance, while at the same time the
relationships between the modules can be described
using the relationship template.

Our approach described on a PaaS level can
be evaluated by the approach (Petcu and Vasilakos,
2014) with a high portability degree, since, no code
has to be rewritten and recompiled, no restructuring
of data and applications are required and no services
are re-configured. All activities are realized straight
forward and automatically, starting from archiving,
transferring of archives, deployment and installation.

7 CONCLUSION

So far, TOSCA can be used with the BPEL engine, or
extended to P-TOSCA and using the P-TOSCA en-

P-TOSCA�Portability�of�SOA�Applications

77

gine. All other published research results concern de-
velopment of various tools that support the process,
while the on-going projects translate the TOSCA def-
initions in specification used by specific cloud man-
agement tools. One of the benefits of the P-TOSCA
platform is that the user does not have to learn and
use the native interfaces of CSPs, making the man-
agement of hosting a SOA application an easy task.

A proof-of-concept of automated cloud applica-
tion portability was demonstrated in this paper using
P-TOSCA portability in case of migration or porting
of a transaction-based SOA application.

The demonstration of migration and porting on
OpenStack and Eucalyptus cloud environments can
be used also for other cloud environments, since P-
TOSCA uses a generalized approach for specifica-
tion and modeling of an application, and provides a
scripting mechanism for automated sequence of ac-
tivities. The main benefit is the possibility to easily
switch CSPs and port the application between clouds.
It seems that this functionality is unattractive to CSPs,
since they prefer vendor lock-in and would prefer not
to give the customer an easy way out of their cloud.
This looks similar to the ongoing fight for mobile
phone devices by mobile providers. However, as the
time goes by, the customers would prefer portability
and easy way in and easy go out options from future
CSPs. It is not a question of should CSPs do it, but
when to do it.

REFERENCES

Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann,
F., Nowak, A., and Wagner, S. (2013). OpenTOSCA –
a runtime for TOSCA-based cloud applications.11th

Int. Conf. on Service-Oriented Computing, LNCSvol.
8274, pages 692–695. Springer.

Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., and
Schumm, D. (2012). Vino4TOSCA: A visual no-
tation for application topologies based on TOSCA.
OTM 2012, Part I, LNCSvol. 7565, pages 416–424.
Springer-Verlag.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and
Brandic, I. (2009). Cloud computing and emerging
it platforms: Vision, hype, and reality for delivering
computing as the 5th utility.Future Gener. Comput.
Syst., 25(6):599–616.

Distributed Management Task Force (2010). Open virtual-
ization format specification version 1.1.0.

Erl, T. (2004). Service-oriented architecture: Concepts,
Technology, and Design. Prentice Hall.

Gonidis, F., Simons, A. J., Paraskakis, I., and Kourtesis,

D. (2013). Cloud application portability: an initial
view. 6th Balkan Conf. in Informatics, pages 275–
282. ACM.

Gusev, M., Kostoska, M., and Ristov, S. (2014). Cloud
P-TOSCA porting of N-tier applications.22nd Int.
TELFOR Forum, IEEE Conf. Publications, pages
935–938.

Hansen, M. D. (2007).SOA Using Java Web Services. Pear-
son Education, Inc, Upper Saddle River, NJ.

Katsaros, G., Menzel, M., Lenk, A., Revelant, J. R., Skipp,
R., and Eberhardt, J. (2014). Cloud application porta-
bility with TOSCA, Chef and Openstack.Cloud Engi-
neering (IC2E), 2014 IEEE Int. Conf., pages 295–302.

Kopp, O., Binz, T., Breitenbücher, U., and Leymann,
F. (2013). Winery – modeling tool for TOSCA-
based cloud applications.11th Int. Conf. on Service-
Oriented Computing, LNCS vol. 8274, pages 700–
704. Springer.

Kostoska, M., Chorbev, I., and Gusev, M. (2014a). Cre-
ating portable TOSCA archive for iKnow university
management system.Federated Conf. Computer Sci-
ence and Information Systems (FedCSIS), IEEE Conf.
Publications, pages 767–774.

Kostoska, M., Gusev, M., and Ristov, S. (2014b). P-TOSCA
portability model for PaaS hosted applications. Tech.
Report LiiT:22/2014, University Ss Cyril and Method-
ius, Computer Science and Engineering.

Li, F., Vogler, M., Claessens, M., and Dustdar, S. (2013).
Towards automated IoT application deployment by a
cloud-based approach.Service-Oriented Computing
and Applications (SOCA), 6th IEEE Int. Conf., pages
61–68.

OASIS (2014). Online files.
Ortiz Jr, S. (2011). The problem with cloud-computing

standardization.IEEE Computer, 44(7):13–16.
Papazoglou, M. and Van Den Heuvel, W.-J. (2007). Service

oriented architectures: approaches, technologies and
research issues.The VLDB Journal, 16(3):389–415.

Petcu, D. and Vasilakos, A. V. (2014). Portability in clouds:
approaches and research opportunities.Scalable Com-
puting: Practice and Experience, 15(3):251 – 270.

Rana, O. (2014). The costs of cloud migration.Cloud Com-
puting, IEEE, 1(1):62–65.

Ristov, S., Kostoska, M., and Gusev, M. (2014). P-TOSCA
portability demo case.2014 IEEE 3rd Int. Conf. on
Cloud Networking (CLOUDNET), pages 269–271.

Toosi, A. N., Calheiros, R. N., and Buyya, R. (2014). In-
terconnected cloud computing environments: Chal-
lenges, taxonomy, and survey.ACM Comput. Surv.,
47(1):7:1–7:47.

Valipour, M., Amirzafari, B., Maleki, K., and Daneshpour,
N. (2009). A brief survey of software architecture
concepts and service oriented architecture.Computer
Science and Information Technology, 2009. ICCSIT
2009. 2nd IEEE Int. Conf., pages 34–38.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

78

A Cloud-based Data Analysis Framework for Object Recognition

Rezvan Pakdel and John Herbert
Department of Computer Science, University College Cork, Cork, Ireland

frp3, j.herbertg@cs.ucc.ie

Keywords: Cloud-based Big Data Analytics, Big Data, OpenCV, Machine Learning, Real-time Object Recognition.

Abstract: This paper presents a Cloud-based framework using parallel data processing to identify and recognize an object
from an image. Images contain a massive amount of information. Features such as shape, corner, color, and
edge can be extracted from images. These features can be used to recognize an object. In a Cloud-based data
analytics framework, feature detection algorithms can be done in parallel to get the result faster in comparison
to a single machine. This study provides a Cloud-based architecture as a solution for large-scale datasets to
decrease processing time and save hardware costs. The evaluation results indicate that the proposed approach
can robustly identify and recognize objects in images.

1 INTRODUCTION

Object recognition is one of the fundamental chal-
lenges in computer vision. Object recognition
by computers has been active for more than two
decades(Torralba et al., 2010) and includes image
processing algorithms which extract features from an
image to detect an object. Detection and recognition
depend on the quality of the amount of images, noise,
and occlusion. Nowadays, the number of collections
of images is increasing quickly, especially in critical
areas such as medicine, health, astronomy. Process-
ing these images therefore has a key role in science.

In this paper, features such as edge, corner, shape,
and color are used. Basically, finding an unknown
object is easy, however recognizing it, is difficult.
For being able to recognize what an object is, im-
age features are helpful however one feature is not
enough to recognize an object. A combination of fea-
tures is needed to have better object recognition accu-
racy(Hetzel et al., 2001). The features can be used to
make a unique object signature. In this work, eleven
classification models with a machine learning model
are used in parallel to recognize an object from an im-
age. Each classification model has one or more image
features.

High performance processing of a huge amount
of data across multiple machines in parallel requires
much resources and a reliable infrastructure. Cloud
Computing can be used to solve this issue by lever-
aging distributed data, computing resources and ser-
vices. Cloud Computing has several advantages.

First, the multi-core architecture decreases hardware
cost and increases computing power and storage ca-
pacity. It also is the widespread adoption of Services
Computing and Web applications. It is the exponen-
tially growing data size(Foster et al., 2008).

2 STATE OF THE ART AND
RELATED WORK

Finding and identifying objects in an image is an im-
portant task in computer vision. Humans can recog-
nize objects with irrespective view, size/scale, and ro-
tation or translation. Extracting some features from
an image, then applying some machine learning clas-
sifier to the extracted features, is a method that is used
in Image Processing(Rosten et al., 2010). Various ap-
proaches have been used to detect objects accurately
in images, such as geometry-based, appearance-based
and feature-based approaches (Yang, 2009). Feature
extraction is the main element in most object recogni-
tion methods.

The image features can be divided into two
groups, Global and Local. Local features calculate
features over the results of subdivision of the image
based on the image segmentation or edge detection.
On the other hand, global features calculate features
over the entire image or just regular sub-area of an
image(Choras, 2007). So, the global features describe
the visual content of the entire image. Global features
like shape and texture, are attractive because they pro-
duce very compact representations of images, where

79

each image corresponds to a point in a high dimen-
sional feature space. Also, standard classification al-
gorithm can be used for global features(Lisin et al.,
2005).

There are several algorithms and methods pro-
posed for extracting features from images. Harris cor-
ner detection is a method to detect and match point
features like corners or edges(Schmid and Mohr,
1997). Canny edge detection, developed by John F.
Canny in 1986(OpenCV,), uses a multi-stage algo-
rithm to detect a wide range of edges in images. Re-
gion and contour detectors are also methods for object
recognition. Detectors using image contours or region
boundaries, should be less likely to be disrupted by
cluttered backgrounds near object boundaries. Region
detectors are used for category recognition(Andrew
and Brady, 2004) but are not practical for a large num-
ber of images representing different categories. The
performance for object class recognition approaches
is often reported for entire methods (Berg et al., 2005;
Fergus et al., 2003). Recognizing an object can be
done by extracting these features from an image. Re-
search shows a combination of methods can be use-
ful to recognize objects in an image(S.Arivazhagan1,
2010). Feature detectors can use machine learning al-
gorithms. For instance a corner detector can create a
model and then apply it directly to the image(Rosten
et al., 2010). Lots of different machine learning algo-
rithms are used for image classification. After consid-
ering various machine learning algorithms including
Bayesian Nets, Decision Trees, Genetic Algorithms,
Nearest Neighbors and Neural Nets, J48 decision tree
is used for this work. Decision trees are popular be-
cause they are easy to understand. Rules can also be
extracted from decision trees easily.

In this work, the OpenStack Cloud Computing
platform is used. The framework contains eleven
models, each of which is assigned to a worker role in
the Cloud environment. The models are created based
on labeled objects in images. When new image data is
sent to the Cloud, each worker role creates a signature
for each object in order to recognize it. There will be
11 results for an object. The evaluation component
of our architecture, processes the results and provides
the most accurate result.

3 CLOUD-BASED DATA
ANALYSIS ARCHITECTURE

In this work, a Cloud-based data analytics framework
is proposed. It will use classification models for ob-
ject recognition utilizing machine learning methods.
Utilizing the Cloud infrastructure will provide a better

performance of smart-phones, laptops and computers
even with limited computational resource.

Analyzing large volumes of heterogeneous data
can be done by data analysis methods such as ma-
chine learning, computational mathematics, and arti-
ficial intelligence. A Cloud-based architecture is cho-
sen for this work, due to its scalability, efficiency, and
manageability. As Cloud Computing is designed for
the distributed systems with fault tolerance, it uses a
pools of resources to deploy a virtual machine. (Han
et al., 2010) presents the average cost of parallel im-
age pattern recognition tasks in Cloud, supercom-
puters and clusters and shows that the cost for run-
ning the task in the Cloud is cheaper. Virtual ma-
chine instance can be simply moved or scaled up or
down to make the best use of the hardware without
compromising performance. It significantly improves
the cost efficiency under the limitation of comput-
ing power of smart-phones, computers and etc. One
of the other advantages of a Cloud-based data anal-
ysis framework is that with a queue-based architec-
ture an asynchronous scheme is applied where worker
roles are asynchronously coupled. This means that
scaling or adding/removing instances does not af-
fect other worker roles. Furthermore, (L.S.Kmiecik,
2013) pointed out that the size of the classifier model
is independent of the size of the training data whereby
even though the training dataset is very huge the
model does not need to be very big. Huge amounts
of training data can be stored in the Cloud as backup
for future analysis.

The Cloud framework consists of four types of
queues:
� Data Queue. It is used to communicate between

the Client and the Controller Node. This queue
is considered as a general queue. When a Client
uploads data into the Blob the URL of the link is
added into the Data Queue.

� Task Queue. There is separate Task Queue for
each worker roles. The Controller reads data from
the Data Queue and assigns it into different Task
Queues.

� Model Queue. When the result of each worker
role is prepared and evaluated, it will be sent to
this queue as the evaluation result .

� Response Queue. The best result, identified ob-
ject label and its class will be in this queue for
users.
The Cloud framework also consists of four types

of worker roles. Here are the definitions of these
worker roles.
� Controller Node. This controls and manages the

incoming data and adding the new messages to the

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

80

Figure 1: Structure of The Object Recognition System.

Task Queue are the main role of this queue. It also
stores the incoming data to the Blob storage.

� Machine Learning Nodes. Each of the Machine
Learning Nodes reads a message from its own
Task Queue and starts producing a model based
on a machine learning classifier with different fea-
tures. It generates a data record from the extracted
features and uses its own classifier model to iden-
tify the data’s label and class. It then submits
the data record, its label, and the accuracy to the
Model Queue.

� Evaluation Node. This worker role will check if
all models produced results. If yes, it will find the
best model. The best label satisfying the threshold
will be submitted to the result queue.

� Response Node. This worker role will show the
result to the user.

In this framework, RabbitMQ, which is a queue
service provider, is used as a messaging system be-
tween worker roles. A dedicated virtual machine is
assigned for the RabbitMQ service. Also, one vir-
tual machine is assigned for each Machine Learning
Node. Each of Controller, Evaluation, and Response
worker roles is assigned a virtual machine. They have
different responsibilities in order to finish a task.

The process of Cloud-based data analysis is il-
lustrated in Figure 1, Once the client uploads new
data, the URL of the data is collected by the Con-
troller node and assigned as different tasks to ma-
chine learning worker roles. Each of the worker roles
is designed to handle a machine-learning task. Each
machine learning classifier generates and evaluates a
model. Based on all evaluation results of all models
in the Evaluation node the best model is identified.
The best identified label and class for the recognized
object will be presented to the user by the Response
node.

In this system, a comprehensive Cloud-based data
analysis framework is developed by combining big
data analytics and Cloud Computing technologies.
This provides analysis as a service from data deliv-

Figure 2: Overview of The Object Recognition System.

ery and analysis to storage, in order to optimize data
analysis. An overview of the Cloud-based data analy-
sis framework is presented in Figure 2.

4 CASE STUDY OF OBJECT
RECOGNITION

In the case study of object recognition, a Cloud-based
architecture is designed and used. It is deployed in the
OpenStack Cloud environment. We use nine phys-
ical machines to implement our private Cloud envi-
ronment, four of them to be used for compute nodes
(Nova), one for the controller node, one for the block
storage (Cinder), one for object storage (Swift), one
for dashboard and accessing the Cloud environment
(horizon), one for neutron. The process of control
flow is shown as follows:

� Training Model:
1) Dataset is collected and manually labeled. 2)
The dataset is processed, by passing it to the
eleven machine learning. 3) Eleven models will
be created, each by a worker role. 4) Eleven mod-
els are stored.

� Testing Model:
1) User sends data to the Cloud-based Data Anal-
ysis framework. 2) Data is loaded into the frame-
work. 3) Data will be passed to each worker role.
4) Worker roles will process the data by using the
existing models. 5) The results containing labels

A�Cloud-based�Data�Analysis�Framework�for�Object�Recognition

81

of the data and accuracy, will be prepared. 6) Re-
sults will be compared and the best model is cho-
sen. 7)The labeled data will be presented to the
user.

There is a set of features for each worker role
and classifier model. Color, Shape, and some basic
features such as Edge, Corner. There are also two
shape signature methods proposed by the authors of
this work, Ordered and Sorted Signature. Here is an
explanation of each model.
1. M1: Basic features (Edge and corner)
2. M2: Color (Three color schemes, RGB, YCbCr,

and HSV, and also the combination of all of them)
3. M3: The Ordered-Signature.
4. M4: The Sorted-Signature.
5. M5: Basic feature and Color.
6. M6: Ordered-Signature and Basic features.
7. M7: Sorted-Signature and Basic features.
8. M8: Ordered-Signature and Color features.
9. M9: Sorted-Signature and color features.

10. M10: Color, Ordered-Signature, and Basic fea-
tures.

11. M11: Color, Sorted-Signature, and Basic features.
Each of these eleven models has a different set of fea-
tures. Each worker role assigns to a model has a set
of image processing algorithms to extract the needed
features and build data for model evaluation. The data
is evaluated by a stored model of each worker role and
a label and the accuracy of its evaluation will be pre-
sented as an output. When all eleven worker roles
finish their jobs, another worker role will check all
results. It will find the best model by checking the ac-
curacy and will then send the best result back to the
user.

4.1 Data Collection

The dataset used in this paper consists of 219 leaf
images. The dataset is divided into 3 classes, type3
(Pittosporum Tobira), type14 (Betula Pendula), and
type21 (Cercis Siliquastrum). Each image is 255 by
255 pixels and in JPEG format. A total of 120 im-
ages are used as the Training set (T) and the remain-
ing 99 images as the Testing set (S). Figure 3 shows
the dataset leaf types.

Figure 3: Dataset: type3 (Pittosporum Tobira), type14 (Be-
tula Pendula), and type21 (Cercis Siliquastrum).

4.2 Feature Extraction

Image feature extraction is at the heart of this frame-
work. In this work, Four methods are used to recog-
nize an object in an image.

4.2.1 Edge Detection

Edge is an important feature and digital image
processing, edge detection is an important subject
(Nadernejad et al., 2008). The boundaries between
regions in an image are defined as edges(Nadernejad
et al., 2008). There are several algorithms to perform
edge detection. The Canny edge detector is an edge
detection operator that uses a multi-stage algorithm
to detect a wide range of edges in images. Figure 4
shows the Canny edge detection for one type of the
leaf.

Figure 4: Left Side: Original Image. Right Side: Canny
Edge Operator Applied.

4.2.2 Corner Detection

The corner is defined as a location in the image where
the local autocorrelation function has a distinct peak.
There are various methods to detect corners in com-
puter vision. Harris corner detection is used to extract
information in this work(Malik et al., 2011). Har-
ris Corner Detection is based on the autocorrelation
of image intensity values or image gradient values.
The corner features extracted by using Harris cor-
ner detector method are analyzed different values of
sigma, threshold and radius(K.Velmurugan and Ba-
boo, 2011). Figure 5 shows the Harris Corner Detec-
tion for one type of the leaf.

Figure 5: Left Side: Original Image. Right Side Harris Cor-
ner Detector Applied.

4.2.3 Shape Detection

Shape representation and description techniques can
be generally classified into two classes: contour-
based and region-based methods(Shotton, 2005).
Several methods that have been developed by past re-
searchers for the shape detection such as using gen-
eralized Hough transform (Duda and Hart, 1972),

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

82

and template matching(Korman et al., 2013). The
contour-based method is used as the shape detec-
tor in this work. Contour shape techniques only
exploit shape boundary information. Contour-based
approaches are more popular than region-based ap-
proaches. This is because human beings are thought
to discriminate shapes mainly by their contour fea-
tures. Another reason is because, in many of the shape
applications, the shape contour is of interest. While
the shape interior content is not important (Zhang and
Lu, 2004). The shape detection signature algorithm
has been designed and developed by the authors of
this work.

Figure 6: (a) Contour of Object, (b) Clock-wise Lines
(c)Intersection of Lines and Contour.

In figure 6, (a) contour detection is used to detect
the outer boundary of an object. Then based on the
contour, the center of the object and radius is calcu-
lated. In the mask image that is shown in (b), the
lines are drawn based on an angle step. This is the
angle between successive radius lines drawn from the
center to the boundary. For example, In Figure 6, an
angle step of 45 degree produces eight lines from the
center of the circle to the boundary. The overlap of
(a) and (b) will produce (c). From (c), the intersection
of object outer boundary and lines can be extracted.

The distance between the center of the object and
the intersections are absolute distance. Absolute dis-
tance does not work well, as it depends on scale.
However, if the absolute distance is divided by the ra-
dius of the circle, it is gives us a scale invariant num-
ber between zero to one. By using this technique, it
does not matter how small or big the object is and the
numbers produced by this technique will be the same
for any size of the same object. If the same object is
rotated, the center of the object and radius are possi-
bly different. So, our solution is to divide the absolute
distance by the longest radius distance of each object.
It gives better results for the same object with differ-
ent sizes and rotations.

Starting from the longest radius line and continu-
ing clockwise, the list of radius lengths for an object
produces a signature, called the Ordered-Signature.
Sorting this list from high to low produces an-
other signature, the Sorted-Signature. Our results
shows better shape recognition accuracy for Sorted-
Signature. These two techniques are size and rotation
invariant.

4.2.4 Color Detection

There are different color spaces in images such as
RGB, HSV, YCbCr, to distinguish an object in an
image(Patil et al., 2011). The first step in this work
was to resize the image to 256 by 256 pixels. Sec-
ond, calculating the average of each space like R,G
and B for all pixels. This process will be done
for all spaces and finally nine numbers will be pro-
duced. The next step is to get a histogram to calculate
their statistical moments (mean, std and skewness).
After applying this process we will get 27 features
of each image(3*(rgb+YCrCb+HSV component))* 3
features(mean, std, skewness value)). Figure 7 shows
the three color spaces.

Figure 7: Color Model.

4.3 Machine Learning Classifier

In this work, machine learning is used for classifica-
tion. The general idea of any feature-based method is
to first find a set of discriminative features that can
help distinguish between objects in an image, then
run a machine learning model based on those fea-
tures over a training set. Finally apply the model
to classify a new object in an image. The machine
learning classifier was trained to produce the classi-
fication model. The Weka machine-learning pack-
age(Witten and Frank, 2005) was used in this study
to develop the machine learning mechanism for the
object detection and recognition. There are various
classifier algorithms in Weka for classification such
as Naive-Bayes, Neural Network, NB-three, Decision
Tree known as J48. J48 is used because it is an open
source Java implementation of the C4.5 algorithm in
the Weka data mining tool.

5 EXPERIMENT AND RESULT

The framework requires a machine learning model
classifier for each model. There are 11 worker roles
each of which needs a model classifier in order to rec-
ognize an object in an image. The model classifier
should be trained properly. The training process is
done with 120 images for all three classes of leaf type.
Once the training process is done, 11 trained model
classifiers will be assigned to 11 Machine Learning
Nodes. In the test process, our dataset contains 99

A�Cloud-based�Data�Analysis�Framework�for�Object�Recognition

83

images for all classes of leaf type. We start the test
process by sending 99 requests to the framework. We
discuss the model accuracy as well as the worker roles
performance below.

Figure 8 reports the accuracy of distinguishing ob-
jects based on their features for each model. The
result shows that the retrieval accuracy is increased
in the models that contain the Sorted-Signature fea-
ture. Three models, Basic (Corner and Edge), Sorted-
Signature and color features and Sorted-Signature and
Basic features have good performance. There are
89 images are correctly recognized by these features.
Figure 8 shows that the color model we use, does
not provide good results. Analyzing the result shows
that either the color feature or the method we used
needs to be replaced or improved. Figure 9 also

Figure 8: Model Validation: M1-Basic features M2-
Color M3-Ordered-Signature M4-Sorted-Signature M5-
Basic feature and Color M6-Ordered-Signature and Ba-
sic features M7-Sorted-Signature and Basic features M8-
Ordered-Signature and Color features M9-Sorted-Signature
and color features M10-Color, Ordered-Signature, and Ba-
sic features M11- Color, Sorted-Signature, and Basic fea-
tures.

shows the validity of object recognition for three dif-
ferent leaf classes. The accuracy of the framework
depends on the training datasets and the type of the
test images. Object recognition process flow con-
sists of Data-Created, Controller-Received, Waiting-
To-Process, Processed, and Evaluated statuses. First,
a user sends data to our framework (Data-Created).
The Controller node receives the data (Controller-
Received) and puts the data into Task Queues for
Machine Learning nodes to process (Waiting-To-
Process). After processing, the result will be sent to
the Model Queue (Processed). The evaluation node
reads all the results, evaluates them, and finds the best
result for the requested data (Evaluated). The final
result will be sent to the user in the final step. As fig-
ure 10 shows, the waiting time for processing data is
different for each model. This step is where the data
is in the queue to be processed and waiting for a com-
puting node to take and process it. The waiting time

Figure 9: Class Validation

Figure 10: Detailed Framework Performance Configuration
A.

is higher when the actual processing time for a model
is higher. It helps us to detect the models that has
higher processing time. As this is a dynamic Cloud
environment, then a controller can increase the num-
ber of compute nodes for the detected model when
it’s required. The model with Sorted-Signature fea-
ture has the highest processing time and the model
with basic features has the best. The Cloud environ-
ment provides us the opportunity to control the num-
ber of worker roles and compute nodes in order to
utilize the current nodes and add more nodes in or-
der to improve performance. This would not happen
in a local environment. Figure 11 shows our second
experiment with the same data but with the different
configuration. In this experiment, we twice the num-
ber of worker roles but not the number of compute
nodes (VMs). As it is obvious in the Figure 11, with
the new configuration we could achieve a better per-
formance as the processing time for the worst model
became one third less in comparison to the first ex-
periment. It also improve the overall performance as
the evaluation is 33% faster. An intelligent controller

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

84

Figure 11: Detailed Framework Performance Configuration
B.

Figure 12: Processing Time In Local and Cloud Environ-
ment.

can help to make our framework providing a better
performance that is in our future work.

5.1 Processing Time Cloud Vs. Local

Comparing our framework in our private Cloud envi-
ronment with a local machine provides us an overview
of the differences between them. We could not run our
framework for more than 14 images in a local ma-
chine as the processing time was significantly high.
Figure 12 shows the difference between the local and
Cloud performance for 14 images. The local machine
for small number of data is better than a Cloud envi-
ronment. However, when we have Big Data, the local
machine is not helpful. As the figure shows, the lo-
cal machine is faster for less than 7 images, but as
the number of images are increased, the performance
is worst than our Cloud framework. The processing
time is as important as the accuracy. Figure 13 shows
the average processing time for each model. The aver-
age processing time for the models with Basic feature
and with Color feature is about 15 seconds. The mod-
els with more than one feature has a higher processing

Figure 13: Average Processing Time.

time like the model with Basic and Color features that
has an average of 35 seconds. The most significant
processing time is related to our Ordered-Signature
and Sorted-Signature algorithms that is very helpful
in the accuracy.

6 FUTURE WORK

In our future work, there will be a controller node de-
ciding to add or remove nodes to the framework, send
the request to an appropriate node, and resend a re-
quest to another node when a response for a specific
request does not show up before a threshold wait-
ing time. So in order to improve the performance
of Cloud-based data analytics, new mechanisms is
needed to be exploited to dynamically allocate system
resources for different machine learning nodes based
on the performance of each machine learning classi-
fier. There also will be a reusable mechanism for the
output of the models with one feature for reusing in
the models with multiple features in order to reduce
the processing time. It is planned to further evaluate
this work with datasets that are bigger in size, and va-
riety.

7 CONCLUSION

In this paper, we proposed a robust approach of object
recognition using hierarchical classification by com-
bining feature detection and machine learning algo-
rithms. With integration of the Cloud infrastructure,
the system provides superior scalability and availabil-
ity for data analysis and model management. The data
analysis and model evaluation are conducted remotely
in the Cloud. The experimental results show that fea-
ture detection algorithms can be done in parallel in
the Cloud to get the result in a fast efficient way.

A�Cloud-based�Data�Analysis�Framework�for�Object�Recognition

85

REFERENCES

Andrew and Brady, M. (2004). An Affine Invariant Salient
Region Detector. In European Conference on Com-
puter Vision, pages 228–241.

Berg, A. C., Berg, T. L., and Malik, J. (2005). Shape match-
ing and object recognition using low distortion corre-
spondence. In In CVPR, pages 26–33.

Choras, R. S. (2007). Image feature extraction techniques
and their applications for cbir and biometrics systems.
International Journal of Biology and Biomedical En-
gineering.

Duda, R. O. and Hart, P. E. (1972). Use of the hough trans-
formation to detect lines and curves in pictures. Com-
mun. ACM, 15(1):11–15.

Fergus, R., Perona, P., and Zisserman, A. (2003). Ob-
ject class recognition by unsupervised scale-invariant
learning. In In CVPR, pages 264–271.

Ferzli, R. and Khalife, I. (2011). Mobile cloud comput-
ing educational tool for image/video processing algo-
rithms. In 2011 Digital Signal Processing and Sig-
nal Processing Education Meeting, DSP/SPE 2011,
pages 529–533. Affiliation: Microsoft Corp., Uni-
fied Communications Group, Redmond, WA, United
States; Affiliation: Group of Inf. and Comm. Sys.,
Scientific Park, Universitat de Valencia, Spain; Corre-
spondence Address: Ferzli, R.; Microsoft Corp., Uni-
fied Communications Group, Redmond, WA, United
States; email: rferzli@ieee.org.

Foster, I., Zhao, Y., Raicu, I., and Lu, S. (2008). Cloud
Computing and Grid Computing 360-Degree Com-
pared. 2008 Grid Computing Environments Workshop,
pages 1–10.

Han, L., Saengngam, T., and van Hemert, J. (2010). Accel-
erating data-intensive applications: a cloud comput-
ing approach image pattern recognition tasks. In The
Fourth International Conference on Advanced Engi-
neering Computing and Applications in Sciences.

Hetzel, G., Leibe, B., Levi, P., and Schiele, B. (2001). 3d
object recognition from range images using local fea-
ture histograms. In Proceedings of CVPR 2001, pages
394–399.

Korman, S., Reichman, D., Tsur, G., and Avidan, S.
(2013). Fast-match: Fast affine template matching.
In CVPR’13, pages 2331–2338.

K.Velmurugan and Baboo, L. D. S. (2011). Article: Im-
age retrieval using harris corners and histogram of ori-
ented gradients. International Journal of Computer
Applications, 24(7):6–10. Full text available.

Lisin, D. A., Mattar, M. A., Blaschko, M. B., Benfield,
M. C., and Learned-miller, E. G. (2005). Combining
local and global image features for object class recog-
nition. In In Proceedings of the IEEE CVPR Workshop
on Learning in Computer Vision and Pattern Recogni-
tion, pages 47–55.

L.S.Kmiecik (2013). Cloudcentered,smartphonebasedlong-
termhumanac- tivity recognition solution. IEEE
Transactions on Image Processing.

Malik, J., Dahiya, R., and Sainarayanan, G. (2011). Article:
Harris operator corner detection using sliding window

method. International Journal of Computer Applica-
tions, 22(1):28–37. Full text available.

Nadernejad, E., Sharifzadeh, S., and Hassanpour, H. (2008).
Edge detection techniques: Evaluations and compar-
ison. Applied Mathematical Sciences, 2(31):1507–
1520.

OpenCV. OpenCV.
Patil, N. K., Yadahalli, R. M., and Pujari, J. (2011).

Article: Comparison between hsv and ycbcr color
model color-texture based classification of the food
grains. International Journal of Computer Applica-
tions, 34(4):51–57. Full text available.

Rosten, E., Porter, R., and Drummond, T. (2010). Faster
and better: A machine learning approach to corner
detection. IEEE Trans. Pattern Anal. Mach. Intell.,
32(1):105–119.

S.Arivazhagan1, R.Newlin Shebiah1, S. N. L. (Oct 2010).
Fruit recognition using color and texture features bib-
tex. Journal of Emerging Trends in Computing and
Information Sciences.

Schmid, C. and Mohr, R. (1997). Local grayvalue invariants
for image retrieval. IEEE Trans. Pattern Anal. Mach.
Intell., 19(5):530–535.

Shotton, J. (2005). Contour-based learning for object detec-
tion. In In Proc. ICCV, pages 503–510.

Torralba, A., Murphy, K. P., and Freeman, W. T. (2010).
Using the forest to see the trees: Exploiting context
for visual object detection and localization. Commun.
ACM, 53(3):107–114.

Witten, I. H. and Frank, E. (2005). Data Mining: Practi-
cal Machine Learning Tools and Techniques, Second
Edition (Morgan Kaufmann Series in Data Manage-
ment Systems). Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

Yang, M.-H. (2009). Object recognition. In LIU, L. and
ZSU, M., editors, Encyclopedia of Database Systems,
pages 1936–1939. Springer US.

Zhang, D. and Lu, G. (2004). Review of shape representa-
tion and description techniques. Pattern Recognition,
37(1):1 – 19.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

86

Factors Affecting Cloud Adoption and Their Interrelations

Radhika Garg and Burkhard Stiller
Communication Systems Group CSG, University of Zürich UZH, Binzmühlstrasse 14, CH-8050, Zürich, Switzerland

{garg, stiller}@ifi.uzh.ch

Keywords: Cloud Computing, Cloud-based Services, Cloud Adoption, Technical Factors, Economical Factors,
Organizational Factors.

Abstract: Cloud Computing has emerged as a paradigm that relies on sharing resources over the network and,
therefore, potentially has cost advantages in terms of lower variable and capital cost. However, the adoption
of cloud-based technology for a given IT (Information Technology) setting is a complex decision as it is
influenced by multiple interdependent factors. To successfully adopt cloud-based services and evaluate their
consequential impact, relevant factors, which denote the performance of such services, have to be identified.
This paper, therefore, analyzes and identifies relevant technical, economical, and organizational factors.
This is performed as exploratory research consisting of performing (a) a literature review and (b) multiple
case-studies with 17 organizations, who have adopted or plan to adopt cloud-based services. Also, as these
factors are not mutually exclusive, this paper discusses interrelations of these factors and its complexity.

1 MOTIVATION AND
INTRODUCTION

Ever since the advent of Cloud Computing (CC)
numerous definitions have been proposed. The
definition provided by NIST (Badger, 2012) states,
“Cloud computing is a model for enabling
ubiquitous, convenient, on-demand network access
to a shared pool of configurable computing
resources (e.g., networks, servers, storage,
applications, and services) that can be rapidly
provisioned and released with minimal management
effort or service provider interaction.” In addition to
the explicit listing of major technical characteristics
of CC, this definition also hints at an economical
and organizational impact of CC.

CC is based on computing technologies such as
of virtualization, Service-oriented Architecture, Web
2.0, Web 3.0, and Distributed Computing. The major
benefits being pay-as-you-go model, on-demand
scalability, business agility, increase in economies of
scale. Depending on the provisioning location, CC
has four deployment models (1) Private Cloud, (2)
Public Cloud, (3) Hybrid Cloud, and (4) Community
Model. Initially, CC delivered three fundamental
service models: Software-as-a-Service (SaaS),
Platform-as-a-Service (PaaS), and Infrastructure-as-
a-Service (IaaS). But, today it is extended to XaaS
(Anything-as-Service), which can include anything

such as Network–as-Service, Database-as-a-Service,
or Communication-as-a-Service.

As numerous cloud-based alternative solutions
are available, in order to successfully adopt one in
an organization it is important to evaluate value and
impact of incorporating the cloud into business for
fulfilling IT (Information Technology) requirements.
Currently, many organizations tend to fail to retrieve
the best return from the cloud-based solution. This is
due to the lack of complete understanding of factors
(both by cloud providers and customers) that impact
organizations, which adopt cloud-based services to
fulfill their IT requirements. Factors that affect CC
depend on (a) requirements of the cloud-customer,
(a) type of service model, and (c) deployment
model. Therefore, in order to formalize the impact of
cloud-based services, and to take a decision whether
to adopt cloud or not, identifying factors from
technical, economic, and organizational perspective
is necessary (Garg, 2014b).

The identification of factors in this paper here is
done based on exploratory research. In exploratory
research, conclusions are based on the review of
available literature/data, or qualitative approaches
such as discussions, focus group, or case-studies.
Therefore, for identfying major factors from the
technical, economical, and organizational
perspective, this paper uses (a) review of available
literature and (b) case-studies with 17 organizations,

87

who have adopted cloud-based services, or plan to
do so. Once relevant factors are identified, the
method to identify interelations between these
factors is discussed. This leads to assisting
organizations in successfully adopting cloud-based
services and predicting impact with a possibility of
preparing counter-measures in advance in case a
failure occurs in future.

The remainder of this paper is structured as
follows. Section 2 discusses related work done in the
field of the identication of relevant factors from all
perspectives influencing the adoption of clouds in an
organization. It also highlights existing gaps in this
field and how this paper bridges them. Section 3
determines the research metholodolgy followed in
terms of research questions addressed, the design,
and the study. Section 4 summarizes and analyzes
key findings and explains how interrelations
between identified factors can be identified. Section
5 summarizes and concludes the paper.

2 RELATED WORK

According to a recent report of 2014 by the
International Data Corporation (IDC), spending on
public IT cloud services would increase to a
compound annual growth rate of 22.8 percent over
the next five years, hence making it a $127 billion
value (IDC, 2014). In order to completely utilize
benefits of CC, industry and research have tried to
understand and solve challenges affecting the cloud
adoption, such as that of security and privacy.
However, these efforts have been concentrated
mainly toward addressing technical issues, such as
multi-tenancy, scalability, monitoring of cloud-
architecture, or performance (Tang, 2014), (Kaur,
2013), (Kuyoro, 2011). There are some efforts
toward optimizing cost or Return-of-Investment
(ROI) of adopting cloud-based services (Chaisiri,
2012), (Misra, 2011). In addition, there are studies to
understand and calculate how cloud-based services
conserve capital and reduce ongoing cost.
Comparing Total Cost of Ownership (TCO) of
cloud-based service and on premise solution leads to
an assessment of total costs involved in deploying
these two models (Walterbusch, 2013), (Martens,
2012). However, efforts in both of these directions
follow a narrow approach and do not identify and
analyze the impact of adopting cloud-based services
from all perspectives (Garg, 2014a).

There was effort invested in the direction of
addressing how the decision of adopting cloud-based
services can be taken (Geczy, 2012), (Hoesseini,

2011), (Saripalli, 2011). They do identify that this
decision is influenced by multiple factors that can be
interrelated. However, neither do these approaches
list factors that should be considered to take such a
decision nor do they identify that these factors
belong to all technical, economical, and
organizational fields. Also, the identification of
interrelations is only restricted to the analysis of
their relative importance and it does not include their
interdependence in terms of their performance
requirements and evaluation.

Table 1: Comparison of Related Work with Respect to
Main Characteristics of Current Work.

Features Methods for
Decision of
Adoption of
Cloud

Methods for
Optimizing
Technical
Factors

Methods for
Optimizing
Cost

Technical
Analysis

✕ ✓ ✕

Economical
Analysis

✕ ✕ ✓

Organizational
Analysis

✕ ✕ ✕

Inter-relations
Between Factors

✓
(partially)

(only between
technical
factors)

✕

As shown in Table 1, gap still exists in research
efforts in terms of identifying factors, which
influences the decision of cloud adoption. The
comparison of related work to the work done in this
paper is based on four key features; “✓” describing
the presence and “✕” denoting the lack of that
feature. This paper, therefore, fills this gap by (a)
identifying factors from all perspectives-technical,
economical, and organizational, and (b) identifying
interrelations between these factors.

3 RESEARCH METHODOLOGY

Given the lack of empirical data for these factors
that should be considered, while evaluating impact
of cloud-based services or decision to adopt cloud,
this paper follows an exploratory method. This is a
qualitative approach, to understand information in
depth and analyze diverse and complex data. In
order to identify relevant factors, two methods were
used. First is that of a case study, wherein semi-
structured interviews were conducted with
organizations. Second is that of analyzing available
literature, both from industrial and academic
surveys.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

88

3.1 Case Study Design

Case studies are useful for collecting data, where
little or no information exists. It helps to understand
a “case” from holistic and real-world perspective
(Yin, 2013). This paper here lists and analyzes data
collected from case studies conducted with 17
organizations, who have adopted or plan to adopt
cloud-based services for fulfilling their IT
requirements. These interviews were conducted
between June 2013 and October 2014, and their
duration varied between 45 and 60 minutes. These
interviews were either conducted on landline phone
or as face-to-face meetings.

3.1.1 Selection of Participants for Case
Studies

The selection of organizations interviewed was
based on random and convenience sampling.
Random sampling is considered as a fair way of
selecting a sample from a given population since
every member is given equal opportunities of being
selected (Gravetter, 2010). This was combined with

Table 2: Details of Organizations involved in Case
Studies.

Org Domain of Expertise Organiza-
tion’s Sizea

Geographic
Scope Served

C1 ICT Provider 60000 Europe, USA,
Singapore

C2 Health Insurance 450 Switzerland
C3 Communications 20000 Switzerland
C4 IT Infrastructure

Provider
5000 Europe, USA,

Australia,
China

C5 Financial Services 2600 Worldwide
C6 Property and

Life Insurance
4000 Switzerland

C7 Professional
Services

180000 Worldwide

C8 Networking Solutions 67000 Worldwide
C9 ICT Association - Switzerland
C10 Financial Services 140000 Worldwide
C11 Banking Services 255000 Worldwide
C12 Technology and

Consulting
431000 Worldwide

C13 Technology and
Consulting

305000 Worldwide

C14 IT services 318000 Worldwide
C15 IT Infrastructure

Provider
107000 Worldwide

C16 Life Insurance 3000 Switzerland
C17 Digital Media

Solutions
12000 Worldwide

a Number of employees as per October 2014.

convenience sampling, due to the availability and
proximity of participants. Convenience sampling
helps to collect information in more depth as
participants are in proximity (Gravetter, 2010).
Bias, which can often result from convenience
sampling, was avoided with two countermeasures:
(a) Participants were selected with varied
geographical scope and domain of expertise. This
helped in collecting data, which can be
representative of the complete population. (b)
Questions were based on interviewees’ experience
of adoption of cloud-based services (varied as per
their domain of expertise) and with general benefits
or challenges associated with the adoption of cloud-
based services, therefore, making generalizations
possible. Details of organizations are listed in Table
2. Interviewees from these organizations were senior
decision-makers with experience of assessing
various cloud alternatives. Participation was
voluntary and their identity is kept anonymous,
while reporting and analyzing the data collected.
This was mainly due to the confidentiality and
sensitivity of data and opinions shared by the
decision makers of various organizations.

3.1.2 Research Questions

These case studies were conducted as semi-
structured interviews. Owing to the semi-structured
format of the interview, the interviewer was able to
adapt the interview based on individual
circumstances. All topics discussed (major ones
listed below) within this interview supported two
research questions that served as trigger point for
discussion.

• What are the factors (technical, economical, and
organizational) that should be considered while
making a decision to adopt cloud-based services
for fulfilling IT requirements?
o Key reasons for adopting a cloud-based

solution.
o Factors that decide the eligibility of candidate

to be migrated to cloud-based solution
o Limiting factors and risks for selecting a

cloud-based service.
o Factors that decided which deployment

model will be selected.
• Are these factors interdependent? If yes, then

how?
o Impact of migration to cloud-based service on

organization.
o Evaluation of success or failure of adoption

Factors�Affecting�Cloud�Adoption�and�Their�Interrelations

89

3.2 Literature Study

The literature review is used as the second method to
collect data in terms of factors affecting the adoption
of clouds in an organization. This covered reviewing
various technical and economic papers, white
papers, and surveys provided by industry and
academic research. Even though these efforts do not
list factors from all relevant perspectives, they
collectively give a valuable insight into challenges
and benefits of the cloud adoption decision.

The topics covered in literature available can be
broadly categorized into the following categories:
• Security and privacy issues related to the

adoption of cloud computing
• Technical issues in migrating and integrating

cloud-based services with existing systems to
fulfill IT requirements

• Generalized benefits and challenges of adopting
cloud-based services

• Structural changes in ROI and TCO models,
including cost benefits

4 KEY FINDINGS AND
ANALYSIS

The data analysis in this paper was based on the
targeted result of identifying factors and their
interrelations. In order to avoid any
misinterpretations all case studies were fully
transcribed. The data (both of case studies and
literature review) was aggregated, converged, and
aligned in a database, thereby helping in identifying
multiple occurrences of factors and cross case-study
synthesis. This enabled the identification of
regularities and differences across and within
various data sources and provided for plausible
explanations on importance of a particular factor.
Also, due to the presence of multiple data sources,
result credibility was ensured. The qualitative data
was categorized in three categories (technical,
economic, and organizational). Factors, found in the
exploratory research, can have a different priority or
relevance for different organizations. This depends
on overall requirements and expectations from the
cloud-based service. Thus, key findings of this
exploratory research in terms of technical,
economic, and organizational factors and their
interdependencies are derived as follows.

4.1 Technical Factors

CC has major benefits in terms of its technical

Table 3: Relevant Technical Factor.

Scalability
Availability
Elastic Resourcing
Network Quality
• Bandwidth
• Connectivity

Interoperability
Speed/Latency
Quality of Service
Portability
Compliance and Standards
Usability
• Application Launch Time
• Graphics Agility
• Simplicity
Data Loss
Reliability

• Elasticity
• Disaster Recovery

Privacy
Compatibility with Existing Systems
Software Assurance
Customization
Integration
Management and
Maintenance of Identity Platform
Management of Authentication Platform
Security Configuration and Maintenance
• Confidentiality
• Integrity
• Availability
• Auditability
• Multi-tenant Trust
Functionality
Triability
Delay in Migration and Data Transfer
Vendor Lock-in
Process Redesign
Accessibility
Standards for API
Backup
• Data
• Application

Workload Management
• Classification
• Capacity Planning
• Performance Management

Configuration Management
• Mission Criticality

Multi-tenancy

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

90

characteristics. Table 3 lists the key factors, which
must be evaluated before adopting a cloud-based
service. An IDC report reported 75% of the
respondents mentioned security as one of most
important factor to be evaluated, while adopting
cloud-based services (Sultan, 2011). This is of
utmost importance for the public cloud. Another
important factor is that of sensitivity of data. As the
provider has full access to the data, responsibility of
data theft, loss, and adherence to legal and regulative
guidelines for storage of data has to be carefully
evaluated. This factor has higher priority in cases,
when public or hybrid deployment models are
selected (as compared to private deployment model).
For Small and Medium Enterprises (SME), it is
important to take measures to increase the network
quality in terms of bandwidth and connectivity
(Yeboah-Boateng, 2014). Network quality is
important, because in many cloud architectures (e.g.,
Amazon Elastic Block Store (EBS) architecture) the
data storage layer is abstracted in the compute layer
of the application. These compute and data storage
nodes are connected via a network. If the network is
not of good quality, the application can fail to
respond (Joyent, 2014).

As pointed out by every organization, which
participated in these case studies, vendor lock-in is
an obstacle for a successful adoption of cloud-based
services. It also has high negative impact in terms of
cost and interoperability in case when the service
provider has to be switched. It highlights the need of
common standards for APIs across cloud-service
providers, so that interoperability is possible. Public
cloud tends to get significant advantage over private
cloud for all organizations, which participated in the
case study, because of its capability to handle
unexpected hike in workloads. Therefore, a flexible
infrastructure capacity and a provisioning time
determine a critical factor for the adoption of a
cloud. Organizations participating in this case study
also mentioned usability and functionality as
deciding factors. Not only the technological know
how is important for a successful adoption of cloud
based services, but also the ease-of use is crucial for
these organization

4.2 Economic Factors

As found in these case studies (specifically pointed
out by SMEs) and within the literature review,
cloud-based services reduce upfront costs and
operational complexities of converting small
businesses into larger ones (Chaisiri, 2012), (Misra,
2011). These costs are shifted to data centers, which

benefit from economics of scale and scalability. CC
follows the Operating Expenditure (OPEX) model
and offer elasticity in terms of scaling resources as
per demand. This transfers the risk of over- or
under-provisioning to the service provider.
However, customers should evaluate, if scaling-up
of resources (e.g., increasing the power of server) or
scaling-out of resources (e.g., increasing the number
of servers) is more appropriate for their specific use-
case. This is specifically required as clouds operate
at the large scale (Hasan, 2012). For example, in
some cases, where the number of customers pre-
decides the number of software licenses, increasing
them later for an unexpected increase in demand will
be very expensive or even impossible. Table 4 lists
the key factors from the economic perspective.

All organizations, irrespective of its size and
geographical scope, considered the reduction of their
carbon footprint as one of the major goals. This
leads to evaluation of alternatives of cloud-based
services so that a best trade-off is achieved between
performance, Quality-of-Service (QoS), and energy
consumption of storing, processing, and
transportation (Mouftah, 2012). Service Level
Agreements (SLA) indicate the description of an
agreed upon service, service level parameters,
guarantees, actions, and penalties in case of failure
or violations (Wu, 2012). SLAs help the
organization to monitor the performance and billing
of the service provider. If any of the guaranteed
metric is not fulfilled, the provider incurs penalties.

Table 4: Relevant Economical Factors.

Cost
• License
• Maintenance
• Back-up
• Energy
• Hardware
• Migration
• Future Requirements
• Performance
• Data Loss
• Switching Providers
• Integration
Operating Cost (OPEX)
Marginal Cost and Profit
Energy Use and Carbon Emission (Carbon Foot Print)
Contracts and Service Level Agreements (SLA)
Billing and Metering of Resource Usage
Traceability and Audibility

• Data
• Application

Return-of-Investment (ROI)
Total Cost of Ownership (TCO)
Migration Time

Factors�Affecting�Cloud�Adoption�and�Their�Interrelations

91

However, the major consequence of this is on the
business continuity of the customer. Consequent
economical losses due to failure of any cloud-based
services can be very high. Another important factor
is the calculation of the Return-of-Investment (ROI).
For calculating ROI of a traditional IT infrastructure,
the initial cost of project, the investment made, and
the cost savings done owing to the new
investment has to be identified (Chang, 2012).
However, for calculating the ROI associated with
cloud-based services, increase in profit, reductions
in cost, license cost, and any implicit cloud costs
have to be identified also. Based on the calculated
ROI, the suitability of an adoption of a specific
cloud-based service can be recognized (Misra,
2011).

4.3 Organizational Factors

As determined from both, literature review and case
studies, currently organizational factors are the least
evaluated factors for the decision on a cloud
adoption. This is because understanding the
significance and extent of impact of an adoption of
cloud-based services in an organization on the
management and operation of IT infrastructure is a
challenge. However, the evaluation of a cloud-based
service from this perspective is equally important.
To name a few required changes in an organization
due to CC are a change in the accounting model, the
security model, compliance requirements, and the
project management (Hoesseini, 2011). Table 5 lists
other key factors from the organizational
perspective, which must be evaluated before
adopting a cloud-based service.

CC has a distinct disadvantage in terms of loss of
control of both data and resources. This leads to
issues of privacy and security. Also, as cloud-based
services lack transparency in terms of location where
data is stored and performance levels of the
application as compared to the terms in the SLA, it
raises problems related to legal and regulative issues
(Battey, 2012). Legal risks also include the liability
of the service provider to protect the data from
security threats and privacy breaches. Security
threats include the deletion of data, multi-level risks,
physical attacks, and isolation failure (Kuyoro,
2011). On one hand, CC has advantage in terms of
improved process efficiency and increased employee
productivity by better internal collaboration. On
other hand, CC can have a major disadvantage in the
overall efficiency and productivity of the
organization, if employees are unable to adapt
themselves to changes brought by CC. A successful

adoption of cloud-based services is dependent on
how easily can the new technology be learnt by
employees of the organization (Saini, 2012). As
identified by organizations, which participated in
case studies, CC has the capability of transforming
business, as the employees need to concentrate only
on the innovation of application, the cloud-service
provider handles everything else. However, to
achieve this, technical support from service-
providers and the competence of employees of the
organization are two crucial factors.

Table 5: Relevant Organizational Factors.

Size of Organization
Degree of Centralization
Managerial Structure
Competence of Employees
Control
Transparency
Business Flexibility and Agility
User and Technical Support from the Provider
Legal and Regulative Compliance
Skills and Expertise of the Cloud Providers

4.4 Relation between Factors

The factors outlined above can have numerous and
complex interrelations based on use case-specific
requirements of the organization. Therefore,
understanding and identifying these interrelations is
equally important to completely evaluate any cloud-
based service. Figure 1 illustrates an example of how
factors can be interrelated. Scalability leads to cost
savings, which can be used in acquiring end user
systems and training. To manage failures, such as
that of an uptime time failure or a data loss, many
cloud-service providers recommend customers to
maintain multiple levels or redundancy. This,
however, leads to higher capital and operational cost
for establishing and maintaining such a system. The
lack of standards causes major difficulties, when a
decision is made to move applications or data
between clouds. These problems include (a) security
levels, (b) handling data movement and encryption
of data, and (c) setting up of network with the same
configuration as that of the source cloud. These
issues consequently have an economic impact in
terms of cost and ROI. Security and privacy issues
associated with cloud computing include multiple
issues as that of (a) regulatory compliance in terms
of liability of data, location of data storage, (b)
proper means of data segregation so that availability,
reliability, and confidentiality of data is ensured
(Kaur, 2013), and (c) a cloud-based solution that has
be able to replicate data across multiple sites to
ensure proper recovery in case of any disaster

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

92

(Kuyoro, 2011). These issues affect the cost,
performance, and control an organization has on a
cloud-based service. The costs of cloud-based
services are lower, mainly owing to the sharing of
resources. This, however, means less guarantees of
performance. Therefore, it is important to have strict
SLAs, where each relevant performance metric is
identified with an expected level of performance.

 Scalability

Availability

Interoperability

Quality of Service

Standards

Privacy

Migration Time

Security

Data Loss

Elasticity

Cost

OPEX

SLA

Billing and
Metering

ROI

TCO

Control

Legal and
Regulative
Compliance

Competence of
Employees and
Service Provider

Business
Flexibility and
Agility

Migration Time

Transparency

Managerial
Structure

Factor A effects B

Figure 1: Interrelations between Factors.

As cloud-based services allow scalability and
variable levels of resource usage, billing and
metering as per the usage is essential. Cloud-based
services contribute primarily to business agility and
flexibility, but it also restricts an organization in
terms of control it has on its own data and
applications. Cases of data loss or the need to move
data between cloud providers can lead to huge
losses. A successful adoption of a cloud-based
service is also dependent on the adaptability of the
organization in terms of its managerial roles,
structure, and competence. Identification of
interrelations leads to a systematic evaluation for all
tradeoffs and risks involved in considering specific
clouds (Garg, 2014b).

5 SUMMARY AND
CONCLUSIONS

This paper has bridged the existing gap between
identifying relevant technical, economic, and
organizational factors and their interrelations. To

achieve this, exploratory research was used in terms
of a literature review and 17 case studies with
organizations that have either adopted or plan to
adopt cloud-based service in the future. In turn, the
work showed that interrelations exist between
factors of multiple domains and how these relations
can be identified.

In conclusion, these factors and their
interrelations have a clear influence on (a) the
decision of the adoption of cloud-based services and
(b) on the impact analysis of a cloud-based service.
These lists of factors developed classify available
cloud-based services. This classification can be done
on the basis of a capability of cloud service
providers to fulfill the expected level of performance
for each of these factors, thereby aiding
organizations to select the best alternative as per IT
requirements and business objectives. Furthermore,
organizations can ensure that all relevant and critical
factors are specified in the SLA with a guaranteed
level of expected performance. Lastly, it has also
been identified that areas of standardization,
interoperability, security, and privacy need to evolve
(e.g., ease in encryption of data while in transit
between cloud service provider). This is because of
their wide impact in terms of technical, economic,
and business value.

ACKNOWLEDGEMENTS

This work was partly funded by FLAMINGO, the
Network of Excellence Project ICT-318488,
supported by the European Commission under its
Seventh Framework Program.

REFERENCES

Badger, L., Grance, T., Patt-Corner, R, Voas, J (2012).
“Cloud Computing Synopsis and Recommendations”.
Computer Security Division, Informational
Technology Laboratory, National Institute of
Standards and Technology, MD, USA.

Battey, J., Coyner, D., Krass, P., Mangelsdorf, J. (2012).
“The Connected Consumer - Challenging Traditional
Financial Roles”. Sapardanis. C., (Editor). CSC
World- Summer.

Chaisiri, S., Lee, B. S., Niyato, D. (2012). “Optimization
of Resource Provisioning Cost in Cloud Computing”.
IEEE Transactions on Services Computing. Vol. 5,
No. 2, pp. 164-177.

Chang, V., Wills, G., Walters, R. J., Currie, W. (2012).
“Towards a Structured Cloud ROI: The University of
Southampton Cost”. Sustainable ICTs and

Factors�Affecting�Cloud�Adoption�and�Their�Interrelations

93

Management Systems for Green Computing, IGI
Global, pp. 179-200.

Garg, R., Stiller, B. (2014a). “Design and Evaluation of an
Impact Analysis Methodology for the Adoption of
Cloud-based Services (IAMCIS)”. 10th International
Conference on Network and Service Management
(CNSM 2015), Rio de Janerio, Brazil, pp. 260–263.

Garg, R., Stiller, B. (2014b). “Trade-off-based Adoption
Methodology for Cloud-based Infrastructures and
Services”. 8th International Conference on
Autonomous Infrastructure, Management and Security
(AIMS 2014): "Monitoring and Securing Virtualized
Networks and Services", Brno, Czech Republic, pp 1–
13.

Gravetter, F., Forzano, B., L. (2010). “Research Methods-
For Behavioral Sciences”. 4th Edition, Warsworth
Cengage Learning.

Geczy, P., Izumi, N., Hasid, K. (2012). “Cloudsourcing:
Managing Cloud Adoption”. Global Journal of
Business Research. Vol. 6, No. 2, pp. 57-70.

Hasan, M. Z., Magana, E., Clemm, A., Tucker, L.,
Gudreddi, S. L. D. (2012). “Integrated and Autonomic
Cloud Resource Scaling”. IEEE Network Operations
and Management Symposium (IM 2012), Hawaii,
USA, pp. 1327-1334.

Hoesseini, K.A., Greenwood, D., Smith, W. J.,
Sommervillle, I. (2011). “The Cloud Adoption
Toolkit: Supporting Cloud Adoption Decisions in the
Enterprise”. Software: Practice and Experience,
Special Issue: Software and Architectures and
Application Development Environments for Cloud
Computing. Vol. 42, No. 4, pp. 447-465.

IDC (2014). “IDC Forecasts Public IT Cloud Services
Spending Will Reach $127 Billion in 2018 as the
Market Enters a Critical Innovation Stage”.
http://www.idc.com/
getdoc.jsp?containerId=prUS25219014. Last accessed
in February 2015.

Joyent. (2014). “Joyent vs. Amazon Web Services”.
https://www.joyent.com/products/public-cloud/aws-
comparison. Last accessed in November 2014.

Kaur, K., Vashisht, S. (2013). “Data Separation Issues in
Cloud Computing”. International Journal for Advance
Research in Engineering and Technology, Vol. 1, No.
X, pp. 26-29.

Kuyoro S. O., Ibikunle F. & Awodele O. (2011). “Cloud
Computing Security Issues and Challenges”.
International Journal of Computer Networks. Vol. 3,
No. 5, pp. 247-255.

Martens, B., Walterbusch, M. Teuteberg, F. (2012).
“Costing of Cloud Computing Services: A Total Cost
of Ownership Approach”. 45th IEEE Hawaii
International Conference on System Science (HICSS
2012). Hawaii, USA, pp. 1563-1572.

Misra, C. S., Mondal, A. (2011). “Identification of a
Company’s Suitability for the Adoption of Cloud
Computing and Modeling its Corresponding Return of
Investment”. Mathematical and Computer Modeling.
Vol. 35, pp. 504-521.

Mouftah, H. T., & Kantarci, B. (2012). “Energy-efficient
Cloud Computing–A Green Migration of Traditional
IT”. Handbook of Green Communications, Academic
Press, pp. 295-329.

Saini, I., Khanna, A., Kumar. V. (2012). "ERP Systems:
Problems and Solution with Special Reference to
Small & Medium Enterprises". International Journal
of Research in IT & Management. Vol. 2, No. 2, pp.
715-725.

Saripalli, P., Pingali, G. (2011). “MADMAC: Multiple
Attribute Decision Methodology for Adoption of
Clouds”. 4th IEEE International Conference on
Cloud Computing (CLOUD 2011), Washington DC,
USA, pp. 316-323.

Sultan, N.A. (2011). "Reaching For the “Cloud”: How
SMEs can manage". International Journal of
Information Management. Vol. 31, pp. 272–278.

Tang, B., Sandhu, R., Li, Q. (2014). “Multi�tenancy
Authorization Models for Collaborative Cloud
Services”. Concurrency and Computation: Practice
and Experience, John Wiley & Sons, Ltd.

Walterbusch, M., Martens, B., Teuteberg, F. (2013).
“Evaluating Cloud Computing Services From a Total
Cost of Ownership Perspective”. Management
Research Review. Vol. 36, No.6, pp. 63-638.

Wu, L., & Buyya, R. (2012). “Service Level Agreement
(SLA) in Utility Computing Systems”. Grid and
Cloud Computing: Concepts, Methodologies, Tools
and Applications. IGI Global, pp. 286-310.

Yeboah-Boateng, E.O., Essandoh, K.A. (2014), “Factors
Influencing the Adoption of Cloud Computing by
Small and Medium Enterprises in Developing
Economies”, International Journal of Emerging
Science and Engineering. Vol. 2, No. 4, pp. 13-20.

Yin, R. K. (2013). “Case Study Research: Design and
Methods”. Sage Publications.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

94

A Comparative Study of Current Open-source Infrastructure as a
Service Frameworks

Theo Lynn, Graham Hunt, David Corcoran, John Morrison and Philip Healy
Irish Centre for Cloud Computing, Dublin 9, Ireland

{theo.lynn, graham.hunt, david.corcoran}@dcu.ie, {j.morrison, p.healy}@cs.ucc.ie

Keywords: Cloud Computing, Open Source, IaaS, Openstack, Cloudstack, Opennebula, Eucalyptus.

Abstract: With the growth of cloud computing in recent years, several commercial and open source IaaS frameworks
have emerged. The development of open source IaaS solutions offers a free and flexible alternative to
commercial cloud services. The main contribution of this paper is to provide a qualitative comparative of
current open-source IaaS frameworks. Existing research papers examining open source IaaS frameworks
have focused on comparing OpenStack with a small number of alternatives. However, current research fails
to adequately compare all major open source frameworks in a single study and notably lacks the inclusion of
CloudStack. Our research paper provides the first overview of the five main open source cloud IaaS
frameworks – OpenStack, CloudStack, OpenNebula, Eucalyptus and Nimbus. As such, this review provides
researchers and potential users with an up to date and comprehensive overview of the features of each
solution and allows for an easy comparison between the open source solutions.

1 INTRODUCTION

Cloud Computing technologies have seen significant
adoption in recent years by enterprises, researchers
and individuals. It is forecast that the Cloud
Computing industry will reach a market size of $241
billion by 2020 (Reid and Kilster, 2011). Cloud
Computing has become an important tool in
delivering Infrastructure as a Service (IaaS) for users
that require a high level of flexibility and
management of their software stack.

The last eight years has seen the rapid
proliferation of vendors in the IaaS market, which
includes major enterprise players such as Amazon
(Amazon, n.a.), Microsoft (Mircosoft, n.a), Google
(Google, n.a.), and IBM (Google, n.a.). While these
services may offer flexibility to the user,
commentators cite cost, lack of portability and lack
of interoperability as drawbacks to enterprise IaaS
(Mahjoub et al., 2011; Zhang et al., 2013). With
each vendor promoting its own infrastructure and
incompatible standards, users can suffer from vendor
lock-in (Mahjoub et al, 2011; Zhang et al., 2013;
Wen et al., 2012).

In some environments it may be preferable for an
organization to develop their own cloud, based on an
open source framework. Open source frameworks
offer an alternative to enterprise clouds by offering

the freedom to modify the source code and build a
cloud that is pluggable and open to extensions while
reducing costs and avoiding vendor lock-in (Zhang
et al., 2013; Wen et al. 2012; Bist et al., 2013). The
development of open source solutions is of particular
importance for the further proliferation of private
and hybrid clouds (Sefraoui, 2012).

The decision to select the most appropriate open
source solution can be a challenge for organizations
given each framework’s specific characteristics.
While previous studies (Zhang et al., 2013; Dukarić,
R. and Jurič, 2013; Endo et al., 2010; Yaday, 2013)
have compared these frameworks, most have
focused only on OpenStack and OpenNebula,
neglecting CloudStack or have focused on
comparing frameworks with different hypervisors
(Ristov et al., 2013; Cordeiro , 2010).

The purpose of this paper is to provide a
qualitative review of the top five open source IaaS
frameworks and present a comparative analysis to
aid in framework selection decisions. The
frameworks included in this paper have been chosen
based on literature reviews and perceived industry
acceptance. The open source frameworks detailed in
this paper are OpenStack, CloudStack, OpenNebula,
Eucalyptus and Nimbus.

The paper is structured as follows. In Section II,
we present a background to the study providing an

95

overview of the benefits of Cloud Computing
adoption and discuss the different service models.
Section III provides a qualitative review concerning
the five chosen frameworks and examines their
components. This section also provides a short
overview of closed vs. open source IaaS solutions.

Drawing on the review presented in Section III,
Section IV provides a comparative analysis of the
identified frameworks based on selected criteria.
Finally, Section V will discuss our conclusions and
recommendations for future developments.

2 BACKGROUND

The National Institute of Standards and Technology
(NIST) defines Cloud Computing as “a model for
enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable
computing resources (e.g., networks, servers,
storage, applications, and services) that can be
rapidly provisioned and released with minimal
management effort or service provider interaction”
(Mell and Grance, 2011). Today it is the most
widely cited and accepted definition. This definition
can be expanded to include five additional
characteristics of cloud computing. These
characteristics have also become widely accepted
and cited; they are on-demand self-service, broad
network access, resource pooling, rapid elasticity,
and measured service. The NIST definition of cloud
computing outlines three service models: software as
a service (SaaS); platform as a service (PaaS); and
infrastructure as a service (IaaS). In addition, it
outlines four deployment models: private cloud;
community cloud; public cloud; and hybrid cloud.

2.1 Service Models

Cloud Computing is typically classified according to
a variety of service models. In recent years, service
models such as Storage as a Service (Fielder et al.,
2012) and Business Process as a Service (Lynn et
al., 2014) have emerged. However, the most
common differentiation of service models remains
as Infrastructure as a Service (IaaS), Platform as a
Service (PaaS), and Software as a Service (SaaS), all
of which have been given a definition by NIST.

Software as a Service is when the supplier
provides working applications running on their own
cloud infrastructure, typically these applications
would be accessed through a web browser or some
other type of web interface or application (Mell and
Grance, 2011).

Platform as a Service is when the supplier
provides the user with the tools required for
deploying an app onto the cloud infrastructure (Mell
and Grance, 2011).

Finally, Infrastructure as a Service, the focus of
this paper, is when the supplier provides the
consumer with processing, memory, storage,
networks, and other computing resources (Mell and
Grance, 2011).

3 OPEN SOURCE IaaS
FRAMEWORKS

Enterprise Solutions (or closed frameworks)
typically supply servers and storage to their
customers using their own infrastructure through a
public cloud development (Zhang et al., 2013). Open
source IaaS frameworks take advantage of open
source code which can be modified by users to
create a single functional package that can be
applied to a network of servers and storage to
produce IaaS (Zhang et al., 2013). While open
source solutions are typically used to develop private
clouds they are also suitable for hybrid and public
cloud development models (Salih and Zang, 2012;
Ristov et al., 2013; Wen et al., 2012). Recent
acquisitions such as Citrix’s purchase of CloudStack
(Keeps, 2014) suggest that we are likely to see
further development of public clouds based on open
source frameworks, leading to improved
interoperability between different clouds.

The main player offering enterprise solutions is
Amazon Web Services, with growing competition
from competitors including Microsoft, Google, and
IBM (Gartner, 2014). The remainder of this paper
will discuss open source frameworks.

Five major projects, OpenStack, Apache
CloudStack, OpenNebula, Eucalyptus, and Nimbus
dominate the market for Open Source IaaS. A survey
conducted in July 2014, by Linux.com, of 550 Open
Source cloud computing experts found that
OpenStack, CloudStack, OpenNebula, and
Eucalyptus are the most popular Open Source IaaS
options with all others receiving less than 2% of the
result (Williams, 2014). OpenStack was favoured
with 63 per cent of the vote, followed by
CloudStack, OpenNebula, and Eucalyptus,
respectively. OpenStack was also found to be the
most popular overall Open Source Cloud Computing
project. One of the reasons suggested for
OpenStack’s popularity is that the strength of the
OpenStack community and the prestige and size of
the companies who back OpenStack has given it a

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

96

significant advantage over its alternatives (Voras et
al., 2013). Another reason suggested is that with the
maturation of the market there has been a focus on
the bigger projects available in search of a de facto
standard (Voras et al., 2013).

An alternative view is that no one Open Source
IaaS framework will dominate the market, as each
framework is suited to different end use scenarios or
applications. For example it is proposed that
OpenNebula is more suited to security-sensitive and
smart-city scenarios while OpenStack is more suited
for time-constrained scenarios (Kostantos, 2013).

At this stage in the market’s maturation, the
likelihood of new entrants is slim (Voras et al.,
2013). Considering the lead the five mentioned
projects have over their alternatives, we have
decided to focus our analysis on these projects for
the purpose of this paper. In the remainder of this
section we provide a short discussion of the
qualitative features of the different open source IaaS
frameworks.

3.1 OpenStack

Announced in 2010, OpenStack is an entirely open
sourced IaaS project for private and public clouds.
Initially developed by Rackspace Hosting and
NASA, it has since developed into a global
collaboration of developers and cloud computing
technologists. With over 4500 members, 850
companies, and support from major tech industry
companies, OpenStack has a very powerful
foundation. The OpenStack Open Source Cloud
Mission is “to produce the ubiquitous Open Source
Cloud Computing platform that will meet the needs
of public and private clouds regardless of size, by
being simple to implement and massively scalable”
(Openstack, n.a.).

OpenStack has three core official software
programs, Compute (Nova), Object Storage (Swift),

Figure 1: Conceptual OpenStack Architecture, Source:
Openstack, n.a..

and Image Service (Glance).
Nova is the computing engine behind

OpenStack. It is the cloud computing fabric
controller and the central element of the IaaS system
(Openstack, n.a.). It manages all the compute
resources of the OpenStack cloud. It includes an API
(nova-api) server that accepts requests for creating
virtual machines (VM), and their local or remote
disks (Baset, 2012), and associated metadata in a
VM. Other processes within Nova include:
 nova-schedule – takes a VM request and

determines where it should be placed.
 nova-compute – creates and terminates VM

instances through a hypervisors’ API. It
includes support for Xen, XenServer/XCP,
KVM, VMware vSphere, LXC, QEMU, UML,
Hyer-V, etc.

Swift offers cloud storage software enabling the
storage and access of objects across different nodes
using a simple API. It is designed to be extremely
scalable in size and capacity.

Glance provides image services for OpenStack. It
provides a catalogue and repository of VM images,
also allowing them to be used as templates when
deploying new VM instances (Kumar et al., 2014).

Other official OpenStack programs include
Cinder, Neutron, Horizon, Keystone, Ceilometer,
Heat, and Trove.

Cinder is the block storage component of
OpenStack. It provides persistent block level storage
devices for use with OpenStack compute instances.

Neutron is OpenStack Networking; it provides
networking capabilities to OpenStack and manages
networks and IP addresses (Kumar et al., 2014).

Horizon is the dashboard behind OpenStack. It
provides a graphical interface for users and
administrators.

Keystone provides identity services to
OpenStack. It is a means of access to the OpenStack
services available to different users.

Ceilometer provides billing services to
individual users of the cloud. It also keeps an
account of the users’ usage of different components
of OpenStack.

Heat uses a template based orchestration
mechanism to launch multiple composite cloud
applications. The templates are in the form of text
files that are treated like code and define what
resources are necessary for the code.

Trove is a database as a service for OpenStack.
It provides functionality for both relational and non-
relational database engines.

The latest OpenStack release, Icehouse, was
released in April 2014. This release saw

A�Comparative�Study�of�Current�Open-source�Infrastructure�as�a�Service�Frameworks

97

approximately 350 new features and 2,902 bug fixes
added. Features added included support for rolling
upgrades, the new feature discoverability that
improves workflow, mandatory testing for external
drivers, automated scaling of additional resources
across the platform.

3.2 CloudStack

CloudStack was developed by Cloud.com and in
2010 released the majority of the project’s source
code. In 2011 CloudStack were acquired by Citrix
who subsequently released the remainder of
CloudStack’s code. In April 2012 Citrix donated
CloudStack to the Apache Software Foundation
(ASF). It was accepted into the Apache Incubator
and then graduated from the Apache Incubator in
March 2013 to become a Top Level Project of ASF
(Cloudstack, n.a.) CloudStack doesn’t have quite the
same foundation of users as OpenStack but a
number of large companies do use Apache
CloudStack including Apple, British Telecom, Dell,
Nokia, and Fujitsu.

CloudStack consists of the management server
and the resources to be managed. The management
server is the CloudStack software that manages the
cloud resources and allocates resources in the cloud
deployment. It provides a web interface for
administrators and end users, as well as API
interfaces for CloudStack API and also the Amazon
EC2 interface. The management server also manages
assignment of guest VMs, assignment of IP
addresses, allocates storage during VM instantiation,
and manages snapshots, disk images, and ISO
images. It is a single point of configuration for the
IaaS cloud and during deployment the user informs
it of the resources to be managed.

The CloudStack deployment is organised with
hosts contained within clusters, clusters contained
within pods, pods contained within zones, and zone
contained within regions. Regions are the largest
available units in the CloudStack deployment.

Regions essentially consist of a number of
available zones, with zones roughly being the
equivalent of a data enter. Regions can be used to
provide fault tolerance and achieve higher
availability and scalability. Zones, as mentioned
typically correspond to a single data centre, but a
data centre can also contain multiple zones. Pods
often represent a single rack. Clusters are a way to
group hosts; hosts in a cluster will all have identical
hardware and run the same hypervisor. Hosts are
single computers and provide the resources that run
guest VMs. Figure 2 provides an outline of the

Figure 2: CloudStack Architecture, Source: Cloudstack.

conceptual architecture of a simple CloudStack
deployment, note that does not include regions since
these would not be necessary for a simple smaller
scale deployment (Cloudstack).
The latest version of Apache CloudStack is 4.4.0
and was released in August 2014 and had a number
of updates including updating to the latest version of
Java.

3.3 OpenNebula

OpenNebula was initially released in 2008 and now
operates as an open source project. While it is most
commonly used for private cloud, it also supports
public and hybrid clouds. The OpenNebula mission
is “to become the simplest cloud enabling
platform for the enterprise” and their purpose is “to
bring simplicity to the private and hybrid enterprise
cloud”. OpenNebula has a large user base with
telecommunication companies (e.g. Telefonica),
system integrators (e.g. Logica), supercomputing
centers (e.g. SARA), etc. (Kostantos et al., 2013).
Additionally, in March 2010 the main authors of
OpenNebula founded C12 Labs to provide a value-
added professional service, which many enterprises
require for internal adoption, and to enhance
OpenNebulas long-term sustainability (Yadav,
2013).

The OpenNebula architecture is a classical
cluster with a front end and a set of cluster nodes to
run the VMs. At least one physical network is
needed for connecting all cluster nodes with the
front end (OpenNebula, n.a.). This architecture is
flexible and modular, making it easier to integrate
multiple storages, network infrastructures and
hypervisor technologies than using OpenStack
(Wen, 2012).

The OpenNebula software consists of three
layers: tools, drivers, and core. An example of an

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

98

Figure 3: OpenNebula Architecture, Source (OpenNebula,
n.a.).

architecture reference model for IaaS clouds is
shown in Figure 3.

The Tools layer provides interfaces to
communicate with users and allows users to manage
VMs through the interfaces, which include
command line interface (CLI) and libvirt API (Wen,
2012). This layer also contains a scheduler that
manages the functionality of the core layer (Wen,
2012).

The Drivers layer contains components that
communicate directly with the underlying operating
system and capture the underlying infrastructure as
an abstract service (Wen, 2012).

The Core layer (Figure 3) contains the
components used to perform user requests and
control resources. In this layer, disk images for
VMs are stored using datastores (referred to as
Image Repositories in previous releases). The
monitoring subsystem gathers information on the
hosts and the VMs, such as basic performance
indicators and capacity consumption, and it also
contains the authentication system, which comes
with a built-in user/password authentication driver
and the choice from SSH Authentication, X509
Authentication, and LDAP Authentication also.

The latest OpenNebula update is version 4.8.0,
Lemon Slice, released on the 12th of August 2014.
The release saw improvements to the hybrid model,
changes to virtual networks that can now include
any combination of ranges to accommodate any
address distribution, and several other improvements
throughout every other OpenNebula component.

3.4 Eucalyptus

Eucalyptus was developed by the University of
California-Santa Barbara as an open source
Infrastructure as a service and was released in 2008.
It allows for the installation of private and hybrid
clouds. Eucalyptus target is hybrid installations with

its compatibility with Amazon Web Service AWS.
Eucalyptus’ scalability is limited in comparison to
some of the alternative open source IaaS solutions
and, as such, has lost some of the popularity it had in
the earlier days of its release (Sefraoui et al., 2012).
The introduction of Scalable Object Storage has
helped improve the scalability of Eucalyptus.

Eucalyptus has six components (one being an
optional component) (Ristov et al., 2013): Cloud
Controller (CLC), Scalable Object Storage (SOS),
Cluster Controller (CC), Storage Controller (SC),
VMware Broker components and Node Controller
(NC). These components are divided into three
layers: Cloud Layer, Cluster Layer and Cloud
Controller.

Cloud Controller is contained in the Cloud
Layer and is the entry-point for administrators,
developers, project managers, and end users. It
queries the other components in Eucalyptus for
information and makes requests to the Cluster
Controllers. It is responsible for exposing and
managing the underlying virtualized resources and
offers a web-based administrative interface.

Scalable Object Storage is also contained in the
Cloud Layer; this is the Eucalyptus equivalent to
Amazon Web Services Simple Storage Service (S3).
SOS allows for the implementation of scale-out
storage that implements the S3 interface. Eucalyptus
also provides a basic storage solution known as
Walrus, suitable for smaller cloud deployments.

Cluster Controller is contained in the Cluster
Layer. It communicates with the SC and NC and
manages the execution of VM instances on specific
NCs. The CC must have network connectivity to the
machines running the CLC and the machines
running the NC.

Storage Controller is also contained in the
Cluster Layer. It communicates with the CC and the
NC and manages the VM volumes and snapshots
from volumes in the cloud. This component
functions similarly to the Amazon Elastic Block
Store.

The VMware Broker is the final component in
the Cluster Layer and is the only optional
component. It mediates interactions between the CC
and VMware and can connect directly to ESX/ESXi
hosts or to vCenter Server.

Node Controller is the sole component in the
Node Layer. The Node Controller is written in C,
hosts the VM instances and manages the virtual
network endpoint (Eucalyptus, n.a.).

The latest release of Eucalyptus is version 4.0.1,
a maintenance update for version 4.0.0 that was
released on the 30th of May 2014. Some of the

A�Comparative�Study�of�Current�Open-source�Infrastructure�as�a�Service�Frameworks

99

Figure 4: Eucalyptus Architecture, Source: Eucalyptus,
n.a..

changes in this release include the possibility to have
multiple user-facing services, the possibility to use
different object storage backends, and more
improvements throughout most of the Eucalyptus
software.

3.5 Nimbus

Nimbus is an open source IaaS project that was
initially released in 2009. Nimbus’ mission is “to
evolve the infrastructure with emphasis on the needs
of science”. Nimbus is built with three goals in
mind:
 Enable resource owners to provide their

resources as an infrastructure cloud.
 Enable cloud users to access infrastructure

cloud resources more easily.
 Enable scientists and developers to extend and

experiment with both sets of capabilities.

The main infrastructure components are the
Workspace Service site manager, a web services
resource framework (WSRF) based remote protocol
implementation, an EC2 based remote protocol
implementation of their SOAP and Query APIs,
Cumulus, RM API, the cloud client, the reference
client, the Workspace Pilot, the workspace-control
agent, and the metadata server.

Figure 5: Nimbus Architecture, Source: Nimbus, n.a..

The Workspace Service is a site VM manager
that different remote protocol frontends can invoke.
The metadata server responds to HTTP queries
from VMs. The Cloud Client is the component that
enables users to launch instances quickly. The
workspace-control is a program that can start, stop
and pause VMs, implement VM image
reconstruction and management, connect the VMs to
the network, and deliver contextualization
information.

4 COMPARISON OF OPEN
SORUCE SOLUTIONS

While the IaaS frameworks discussed in Section III
are designed to allow users to manage their own
virtual infrastructures, they have different features
that should be considered when selecting a
framework. This will differ depending on the
expected use case and organization. These
qualitative features are summarized in Table 1. The
set of criteria outlined in Table 1 are derived from a
review of the supporting framework documentation
and related literature. Based on this review 19
criteria emerged as the main discussed points when
comparing open source IaaS frameworks. These
criteria are outlined below:
 Philosophy: Concerns the main use cases for

the frameworks deployment (Wen et al., 2012).
 Suitability: Different frameworks will better

service the needs of different users. As a result,
large commercial organizations are likely to
adopt a different framework than research
institutes.

 Architecture: The architecture of the platform
provides details on how the framework was
built and how it operates (Mahjoub et al., 2011)

 API Support: Cloud APIs are application
programming interfaces that are used to build
applications (Wen et al., 2012; Endo et al.,
2010; Semolinski and Thain, 2010).

 Amazon Support: Given that AWS is the
predominant enterprise cloud framework,
compatibility with such public clouds is an
important factor for many users (Wen et al,
2012).

 Cloud Implementation: The cloud deployment
models (Mell & Grance, 2011) that are suitable
for the IaaS framework.

 Hypervisor: A hypervisor also known as a VM
Manager (VMM) is used to describe a technique
to allow multiple guests to run concurrently on a

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

100

Table 1: Comparison of Open Source IaaS Solutions.

Capability/features OpenStack CloudStack Eucalyptus OpenNebula Nimbus

Established 2010 2010 2008 2008 2009
Origin Rackspace, NASA, Dell,

Citrix, Cisco, Canonical
etc.

Cloud.com Santa Barbara
university,
Eucalyptus System
Company

European Union University of Chicago

Philosophy Offers Cloud Computing
services

Mimic Amazon EC2 Private, highly
customizable cloud

Cloud tailored to
scientific researchers

Suitability Enterprises, service
providers and researchers

Enterprises, service
providers and researchers

Large commercial
enterprises, Research
institutions

Large commercial
companies and public
institutions

Research institutions

Architecture Integration of OpenStack
object and OpenStack
compute

Hierarchical with four
main components:
- Management Server,
- Availability Zone,
- Pod,
- Computer Nodes.

Hierarchically
grouped from CLC
via the CC to the NC
; - Hierarchical
- Five components
- Minimum two
servers

Three modules contain all
components; - Centralized
- Three components
- Minimum two servers

Three modules contain all
components; - Centralized
- Three components
- Minimum two servers

API Support Native API, Amazon EC2
API, CloudFiles REST
API.

Amazon EC2 API, S3 Amazon EC2 API, Native API in Ruby and
JAVA. XML-RPC API for
interfaces creation. OGF
OCCI & Amazon EC2
APIs.

EC2 APIs, S3 APIs, JAVA
client APIs.

Amazon Support EC2, S3 EC2, S3 EC2, S3, EBS, IAM,
AMI

EC2, EBS, AMI EC2, S3

Cloud
Implementation

(deployment)

Public
Hybrid
Private

Public
Hybrid
Private

Private
Hybrid

Private
Hybrid

Private
Community

Hypervisor KVM, Xen, VMware
ESX, ESXi, Hyper-v,
LXC, QEMU, UML,
PowerVM, Bare metal

VMware, Oracle VM,
KVM, XEN

KVM, Xen, VMware KVM, Xen, VMware ESX,
ESXi

Python, Bash, Ebtables,
Libvirt, KVM, Xen

Programming
Language

Python Java Java, C, Python Java, Ruby and C++ Java, Python

Community +++++ ++++ +++ +++ ++

Release Frequency <4 months 4 months >4 months >6 months <4 months

Ease of use +++++ +++++ ++ +++ +++

Supported OS Linux, Windows, Requires
x86 Server

Depending on the
Hyperviser and hardware -
Mac OS X, Asianux,
CentOS, Debian, DOS,
Fedora, FreeBSD, Novell
Netware, Oracle
Enterprise Linux, Ubuntu,
Red Hat Enterprise Linux,
Sun Solaris, SUSE Linex
Enterprise, Windows.

Linux (Ubuntu,
Fedora, CentOS,
OpenSUSE et
Debian)

CentOS, Debian, Fedora,
RHEL open-SUSE, SLES,
and Ubuntu.

Most Linux distributions

Storage Object and block storage
supported. Volumes are
persistent (data retained
until the volume is
deleted, independently
from the VM).
File storage is supported
through Swift (organizing
the files in containers).

Supports for iSCSI, NFS,
SMB/CIFS; support for
OpenStack Swift and
Amazon S3

Support for iSCSI,
EBS, Amazon S3.
Hardware support for
industry-standard
Storage Hardware.

Hardware support for Fibre
Channel, iSCSI, NAS
shared storage, SCSI / SAS
/ SATA. Non-shared and
shared file systems (NFS,
LVM with CoW, VMFS,
etc.).

Networking VLAN NO VLAN Public
IP's Private IP's SDN IDS
Load- balance Firewalls
VPN; OpenStack Compute

VLAN, Public IP, VLAN NO VLAN
Public IP's Private
IP's; DHCP server on
the cluster controller

VLAN NO VLAN Public
IP's Private IP's Ebtables
OVSwitch; Manual
configuration

DHCP server installed on
nodes

User Interface Web interface (i.e.
Dashboard) and Command
line interface to deploy
VMs and a console to
manage the VMs.

Web interface and
Command Line Interface
(CLI)

euca2ools (CLI) Web interface and
Command Line interface
(CLI)

Web-Services,
specifically: Nimbus Web

Security API includes protection
against DoS attacks or
faulty clients.
The project concept is
introduced by Nova,
allowing administrators to
manage other user
accounts and the project
resources. Keystone used
for identity management.

CloudStack Secuirty
Groups

The Cloud Controller
generates a
public/private key
code pairing for user
authentication

Authentication by
passwords,
secure shell and RSA key
code pairings Lightweight
Directory Access Protocol ;
Authentication framework
based on passwords, SSH
RSA key-pairs or LDAP.
Various administration
roles. Multi-tenancy for
public clouds.

Public Key Infrastructure

Error Robustness Replication Replication Separate clusters
reduce likelihood of
correlated errors;
Cluster controller’s
separation

Permanent database to
store information about
hosts, networks and virtual
machines; Database
backend (registers virtual
machine information)

Regular check and backup
of worker nodes; Periodic
verification of cloud
nodes

Load Balancing The Cloud Controller TCP Load Balancer The Cloud Controller Nginx Le Context Broker

Licensing ApacheLicence Version2 ApacheLicence Version2 BSD-Licence ApacheLicence Version2 ApacheLicence Version2

Document Support +++++ +++++ +++ +++ ++

A�Comparative�Study�of�Current�Open-source�Infrastructure�as�a�Service�Frameworks

101

host machine (Mahjoub et al., 2011; Wen et al.,
2012; Von Laszewski et al., 2010).

 Programming Language: Concerns the
scripting language in which the framework is
written.

 Community: A community may consist of
individuals, teams or organizations that are
users, developers or service providers. While all
may not contribute to the development, the size
of the community is a good indication of future
developments of the framework (Wen et al.,
2012).

 Release Frequency: The strength of the
community will influence the regularity of
updates to the open source frameworks.
Typically these range from between 4-6 month
release cycles.

 Ease of Use: The complexity of setting up the
system and managing VMs. This can be
impacted by the supporting documentation
available (Wen et al., 2012). Easy of
management is crucial for successful
implementing Infrastructure as a service (Voras
et al., 2013).

 Supported OS: Concerns the operating systems
that are implemented on the machines.

 Storage: Concerns the support for storage
technologies such as network-attached storage,
direct-attached storage and backup technologies
(Voras et al., 2013). How data is stored on the
virtualized pools is critical to achieving
flexibility, scaling and ease of use (Wen et al.,
2012; Voras et al., 2013).

 Network: Cloud frameworks must give
attention to virtual networks to ensure optimal
performance (Voras et al, 2013). Networks can
be considered a means of using services
deployed on the VMs and managing the cloud
environment (Voras et al, 2013; Von Laszewski
et al., 2013). This includes support for VLAN,
and firewalls.

 Interface: Refers to how the user will access
and manage their resources, typically through a
command line interface (CLI) or browser
interface (Mahjoub et al., 2011; Wen et al.,
2012).

 Security: Given the perceived security treat of
cloud computing, the protection of data is
imperative to any IaaS framework Lynn et al.,
2014; Mahjoub et al., 2011).

 Error Robustness: Concerns how the system
will tolerate component failure and continue to
operate effectively if there is a component
failure (Mahjoub et al., 2011).

 Load Balancing: In computer networking
terminology, load balancing denotes how a
workload is distributed across multiple
machines to optimize resource utilization
(Mahjoub et al., 2011).

 Licensing: Refers to the restrictions of the user
on distributing and modifying the software with
or without the payment or royalties (Wen et al.,
2013). The most common license of open
source IaaS frameworks is Apache License
Version 2.0 (Openstack, n.a.; Cloudstack, n.a.,
Von Laszewski et al., 2012).

 Documentation Support: The level of
documentation available to users will impact on
the ease of use for setup and management. One
of the challenges is keeping documentation
updated in line with frequent new releases

5 CONCLUSIONS

In this paper, we present an up to date qualitative
review of the main open source infrastructure as a
service frameworks. Building on this, we deliver a
means of comparison between these frameworks
based on a set of criteria developed to evaluate open
source frameworks. The paper adds to the literature
by providing a comparison of five open source
solutions based on the latest releases. We believe
that the evaluation will to help potential adopters
understand the functions of these frameworks and
aid in the early stage adoption decision-making
process. This work aims to illustrate the difference
offerings for each of the IaaS frameworks and that
user requirements may be significantly different,
impacting on their framework selection.

In future research, the criteria outlined in this
paper will be used to expand this study to compare
open and closed IaaS frameworks. We also look to
develop performance criteria that can be combined
with the existing paper to develop a comprehensive
quantitative and qualitative comparison tool.

ACKNOWLEDGEMENTS

The research work described in this paper was
supported by the Irish Centre for Cloud Computing
and Commerce, an Irish national Technology Centre
funded by Enterprise Ireland and the Irish Industrial
Development Authority.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

102

REFERENCES

Amazon Web Services Homepage.
http://aws.amazon.com/.

Baset, S. (2012). Open Source Cloud Technologies.
Proceedings of the Symposium on Cloud Computing –
SoCC’12, 28-27.

Bist, M., Wariya, M., & Agarwal, A. (2013, February).
Comparing delta, open stack and Xen Cloud
Platforms: A survey on open source IaaS. In Advance
Computing Conference (IACC), 2013 IEEE 3rd
International, 96-100.

CloudStack Homepage. http://cloudstack.apache.org/.
Cordeiro, T. D., Damalio, D. B., Pereira, N. C. V. N.,

Endo, P. T., de Almeida Palhares, A. V., Gonçalves,
G. E., Mångs, J.-E. (2010). Open Source Cloud
Computing Platforms. 2010 Ninth International
Conference on Grid and Cloud Computing, 366–371.

Dukarić, R., & Jurič, M. B. (2013). A Taxonomy and
Survey of Infrastructure-as-a-Service Systems. Lecture
Notes on Information Theory, 1(1), 29–33.

Endo, P. T., Gonçalves, G. E., Kelner, J., & Sadok, D.
(2010, May). A survey on open-source cloud
computing solutions. In Brazilian Symposium on
Computer Networks and Distributed Systems. , 3–16.

Eucalyptus Homepage. https://www.eucalyptus.com/.
Fielder, A., Alleweldt, F., Kara, S., Brown, I., Weber, V.,

& McSpedden-Brown, N. (2012) Cloud Computing
Study. For the European Parliament’s Committee on
Internal Market and Consumer Protection.
IP/A/IMCO/ST/2011-18.

Gartner. (2014). Magic Quadrant for Cloud Infrastructure
as a Service. Available: http://www.gartner.com/
technology/reprints.do?id=1-1UKQQA6&ct=140528
&st=sb. Last accessed 30th Sept 2014. Last accessed
30th Sept 2014.

Google Cloud Platform Homepage. https://cloud.google.
com/compute/.

IBM IaaS Homepage. http://www.ibm.com/cloud-
computing/ie/en/iaas.html.

Keeps, B. (2014). Cloudstack exces take the money and
run or were they pushed. Available:
http://www.forbes.com/sites/benkepes/2014/09/04/on-
the-three-year-anniversary-cloudstack-execs-take-the-
money-and-run-or-were-they-pushed/. Last accessed
30th Sept 2014.

Kostantos, K., Kapsalis, A., Kyriazis, D., Themistocleous,
M., & Rupino de Cunha, P. (2013). Open-Source IaaS
Fit For Purpose: A Comparison Between OpenNebula
and OpenStack, International Journal of Electronic
Business Management, 11(3), 191-201.

Kostantos, K., Kapsalis, A., Kyriazis, D., Themistocleous,
M., & Rupino, P. (2013). OPEN-source iaas fit for
purpose : a comparison between opennebula and
openstack, 11(3), 192–202.

Kumar, R., Gupta, N., Charu, S., Jain, K., & Jangie, S.
(2014) Open Source Solution for Cloud Computing
Platform Using OpenStack. International Journal of
Computer Science and Mobile Computing, 3(5), . 89-
98.

Lynn, T., O’ Carroll, N., Mooney, J., Helfert, M.,
Corcoran, D., Hunt, G., Van Der Werff, L., &
Morrison, J. (2014) Towards a Framework for
Defining and Categorising Business Process-As-A-
Service (BPaaS), Proceedings of the 21st International
Product Development Management Conference.

Mahjoub, M., Mdhaffar, A., Halima, R. Ben, & Jmaiel, M.
(2011). A Comparative Study of the Current Cloud
Computing Technologies and Offers. 2011 First
International Symposium on Network Cloud
Computing and Applications, 131–134.

Mell, P., & Grance, T. (2011) The NIST definition of
cloud computing. Recommendations of the National
Institute of Standards and Technology, Washington,
D.C. (NIST Special Publication 800-145).

Microsoft Azure Homepage. https://azure.microsoft.com.
Nimbus Homepage. http://www.nimbusproject.org/.
OpenNebula Homepage. http://www.opennebula.org/.
OpenStack Homepage. http://www.openstack.org/.
Reid, S., Kilster, H., “Sizing the Cloud”, Forrester

Research Report, 2011.
Ristov, S., Gusev, M., & Donevski, A. (2013). OpenStack

cloud security vulnerabilities from inside and outside.
In CLOUD COMPUTING 2013, The Fourth
International Conference on Cloud Computing,
GRIDs, and Virtualization, 101-107.

Salih, N. K., & Zang, T. (2012). Survey and comparison
for Open and closed sources in cloud
computing. arXiv preprint arXiv:1207.5480.

Sefraoui, O., Aissaoui, M., & Eleuldj, M. (2012).
Comparison of multiple IaaS Cloud platform
solutions. 7th WSEAS International Conference on
Computer Engineering and Applications, (Milan-CEA
13). 978-1000.

Sempolinski, P., & Thain, D. (2010). A Comparison and
Critique of Eucalyptus, OpenNebula and Nimbus.
2010 IEEE Second International Conference on Cloud
Computing Technology and Science, 417–426.

Vaquero, L. M., Rodero-Merino, L., Caceres, J., &
Lindner, M. (2009) A break in the clouds: towards a
cloud definition, ACM SIGCOMM Computer
Communication Review, 39(1), 50-55.

Von Laszewski, G., Diaz, J., Wang, F., & Fox, G. (2012,
June). Comparison of multiple cloud frameworks.
In Cloud Computing (CLOUD), 2012 IEEE 5th
International Conference on, 734-741.

Voras, I., Orlic, M., & Mihaljevic, B. (2013). The Effects
of Maturation of the Cloud Computing Market on
Open Source Cloud Computing Infrastructure
Projects, Proceedings of the ITI 2013 35th
International Conference on Information Technology
Interfaces. 101-106.

Wen, X., Gu, G., Li, Q., Gao, Y., & Zhang, X. (2012).
Comparison of open-source cloud management
platforms: OpenStack and OpenNebula. 2012 9th
International Conference on Fuzzy Systems and
Knowledge Discovery, (Fskd), 2457–2461.

Williams, A. (2014). The Top Open Source Cloud Projects
of 2014 Available: http://www.linux.com/news/
enterprise/cloud-computing/ 784573 -the-top- open-

A�Comparative�Study�of�Current�Open-source�Infrastructure�as�a�Service�Frameworks

103

source-cloud-projects-of-2014. Last accessed 30th
Sept 2014.

Yadav, S. (2013). Comparative Study on Open Source
Software for Cloud Computing Platform: Eucalyptus,
Openstack and Opennebula, International Journal of
Engineering and Science, 3(10), 51-54.

Zhang, Z., Wu, C., & Cheung, D. W. (2013). A survey on
cloud interoperability: taxonomies, standards, and
practice. ACM SIGMETRICS Performance Evaluation
Review, 40(4), 13-22.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

104

CSP Formulation for Scheduling Independent Jobs in Cloud Computing

M’hamed Mataoui1, Faouzi Sebbak2, Kada Beghdad Bey2 and Farid Benhammadi2

1IS & DB Laboratory, Ecole Militaire Polytechnique, Algiers, Algeria
2AI Laboratory, Ecole Militaire Polytechnique, Algiers, Algeria

mataouimhamed@umbb.dz, faouzi.sebbak@gmail.com,{beykadda, benhammadif}@yahoo.fr

Keywords: Scheduling Algorithms, Cloud Computing, Job Scheduling, Resource Allocation, CSP Formulation.

Abstract: This paper investigates the use of Constraint SatisfactionProblem formulation to schedule independent jobs in
heterogeneous cloud environment. Our formulation provides a basis for computing an optimal Makespan using
job and machine reordering heuristics based on Min-min algorithm result. The combination of these heuristics
with the weighted constraints allows improving the efficiency of the tree search algorithm to schedule jobs with
considerable space search reduction. The proposed CSP model is validated through simulation experiments
against clusters of 10 virtual machines. The results demonstrate that our model is able to efficiently allocate
resources for jobs with significant performance gains between 18% - 40% compared to the Min-Min heuristic
results to optimize the Makespan.

1 INTRODUCTION

Nowadays heterogeneous cloud computing is expand-
ing its services to data-intensive computing on cloud
platforms because each job (application) of users runs
on a separate virtual machine. In these platforms,
the jobs are independent and different from one an-
other and it needs an optimal maximal completion
time (Makespan). Hence the Scheduling process in
cloud computing systems is useful for several dif-
ferent user needs. Static or dynamic heuristics are
proposed for cloud to find an optimal solution to the
scheduling. Static heuristics define a schedule at com-
piled time based on the knowledge of the processors
availability and tasks to be executed. Dynamic heuris-
tics, on the other hand, are applied when the tasks ar-
rival time is not beforehand known and therefore the
system needs to schedule tasks as they arrive (Bar-
bosa and Moreira, 2009). The scheduling strategy
defines the instants when the scheduling algorithm
is called to produce a schedule based on forecasting
resources performances and independent tasks to be
executed. The aim of task scheduler in cloud com-
puting environment is to determine a proper assign-
ment of resources to the tasks of jobs to complete
all the jobs received from clients. Large numbers
of jobs scheduling heuristics are available for maxi-
mizing profit via resources allocation in cloud com-
puting systems (Kuribayashi, 2011; Abirami and Ra-
manathan, 2012; Gouda et al., 2013; Irugurala and

Chatrapati, 2013).
The challenge that needs to be addressed is how

efficiently schedule jobs in cloud computing based on
the job completion time’s optimization to increase re-
source utilization. In this paper, we consider the prob-
lem of resource allocation in heterogeneous cloud
environment. The proposed solution in this work
is based on the computing power parameter for re-
sources allocation in cloud environment. Clients
in our case are jobs decomposed into various tasks
where each task should be assigned to one of the
resources, which is best suited for its execution to
maximize the profit. The proposed approach uses
constraint satisfaction problem formulation to sched-
ule independent jobs in heterogeneous cloud environ-
ment. Our formulation provides a basis for comput-
ing an optimal Makespan using job and machine re-
ordering heuristics based on Min-min algorithm re-
sult. The combination of these heuristics with the
weighted constraints allows improving the efficiency
of the tree search algorithm to schedule jobs with
considerable space search reduction. The proposed
CSP model is validated through simulation experi-
ments. Our evaluation shows that the proposed ap-
proach can improve efficiency and effectiveness of
heterogeneous cloud computing systems with signif-
icant performance gains between 18% - 40% com-
pared to the Min-Min heuristic results to optimize the
Makespan.

This paper is organized as follows. Related works

105

about resources allocation strategies in cloud comput-
ing environment are introduced in Section 2. Section
3 presents the makespan optimization problem defini-
tion. Section 4 describes the proposed solution in re-
source allocation in heterogeneous cloud computing
environments, assuming both task arrive simultane-
ously and machine available time updated. The simu-
lation results are presented in Section 5 and Section 6
concludes this paper.

2 RELATED WORK

There has been a large amount of work focusing
on static scheduling approaches on cloud computing
platforms and are currently prevalent in clouds. These
approaches use static heuristics which are suitable for
known prior time execution of jobs. Yuan et al. (Yuan
et al., 2011) propose an intelligent scheduler which
can handle heterogeneous resources. , and be able
to allocate resources according to user needs. The
proposed intelligent scheduler shows an improved
scheduling algorithm for making efficient resources
allocation in cloud. Zhang et al. (Xie et al., 2012) uses
the a dynamic constraint programming to solve the
problem of virtual cloud resource allocation model.
This approach takes into account both users’ QoS re-
quirements and the cost of virtual cloud resources.
The simulation results show that the proposed ap-
proach can efficiently allocate and manage the virtual
resources of the cloud platform, and are in agreements
with those of (Zhang et al., 2013). Goudarzi and Pe-
dram (Goudarzi and Pedram, 2011), address the Ser-
vice Level Agreements (SLA)-based resource alloca-
tion problem for cloud and a distributed solution for
this problem is proposed. The response time of the
request based on the different allocation of resources
for different servers and the cluster is modeled and
used in the profit optimization problem.

In (Santos et al., 2002), the authors propose a
mathematical formulation for the resource allocation
problem in clusters. The authors describe a method
to find the best resource assignment in a cluster in
the case that the application has certain resource re-
quirements. Experimental results proved that the pro-
posed method was able to realize best load balanc-
ing and reasonable resources utilization. In (Li et al.,
2010), an adaptive resource allocation algorithm for
the cloud system with preemptable tasks is consid-
ered. The proposed algorithms adjust the resource al-
location adaptively based on the updated of the actual
task executions. A. Kundu et al (Kundu et al., 2010)
proposed the memory utilization method in cloud
computing environment based on transparency. The

proposed mechanism enables users to access mem-
ories depending on the predefined criteria. The re-
source allocation is made based on the selection crite-
ria which will improve the efficiency of the cloud en-
vironment. The memory manager is responsible for
allocating memory resources to the clients. The au-
thors introduced a cloud service based memory uti-
lization which is an effective mechanism for allocat-
ing memories in cloud computing environment. A
scheduling algorithm named as Linear Scheduling for
Tasks and Resources (LSTR) is designed in (Abi-
rami and Ramanathan, 2012). This algorithm per-
forms tasks and resources scheduling respectively.
The combination of Nimbus and Cumulus services
are imported to a server node to establish the IaaS
cloud environment. The virtualization technique used
with the scheduling algorithm will yield higher re-
source utilization, and improve the performance of the
cloud resources.

Chen et al. (Chen and Tseng, 2012) intro-
duced an Improved Load Balanced algorithm on the
ground of Min-Min algorithm to reduce the Makespan
and increase resource utilization. Another optimal
joint multiple resource allocation method based on
the above resource allocation model is presented in
(Kuribayashi, 2011). The Author develops a resource
allocation model for cloud computing environments,
assuming both processing ability and bandwidth are
allocated simultaneously to each service request and
rented out on an hourly basis. Gouda et al. (Gouda
et al., 2013) proposed a new approach that allocates
resource with minimum wastage and provides max-
imum profit. This approach used priority algorithm
which decides the allocation sequence for different
jobs requested among the different users after consid-
ering the priority based on some optimum threshold
decided by the cloud owner. An innovative admis-
sion control and scheduling algorithms for efficient
resource allocation to maximize profit by minimizing
cost and improving customer level is introduced in
(Irugurala and Chatrapati, 2013). The authors showed
that the algorithms work well in a number of scenar-
ios and give the maximum profit among all proposed
algorithms by varying all types of QoS parameters.

Silva et al. (Silva et al., 2008) presented a heuris-
tic for optimizing the number of machines that should
be allocated for processing an analytical task so that
maximum speedup can be achieved within a limited
budget. The traffic of web applications is dynamic
and random; hence predicting the optimal number
of machines for the completion of the client appli-
cations in real time and within budget is not a triv-
ial task. Gomathi and Karthikeyan (Krishnasamy and
Gomathi, 2013) proposed Hybrid Particle Swarm Op-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

106

timization (HPSO) based scheduling heuristic to bal-
ance the load across the entire system while trying to
minimize the makespan as well as to utilize the re-
sources in an efficient way in cloud environment. In
addition, the results are in agreement with those of
(Guo et al., 2012).

In (Katyal and Mishra, 2014), authors have dis-
cussed a selective algorithm for resources alloca-
tion in cloud environment to end-users on-demand
basis. The proposed algorithm is based on min-
min and max-min conventional task scheduling algo-
rithms. The selective algorithm uses certain heuristics
to select between the two algorithms so that overall
makespan of tasks on the machines is minimized. In
(Han et al., 2013), the authors presented a QoS guided
task scheduling model based on Sufferage-Min-Min
heuristic algorithm. An efficiency improvement has
been obtained by dividing the tasks and resources into
two groups of high QoS level.

3 RESOURCES ALLOCATION
STRATEGY

To meet the increasing computational requirements
of scientist needs, cloud computing environments are
promising platforms which ensure the resources al-
location with high quality of service. Therefore the
essential challenge of cloud computing scheduler is
to provide an optimal scheduling of the jobs based on
Makespan optimization to allocate jobs on suitable re-
sources.

The scheduling problem of finding the optimal
Makespan is a known NP-complete problem. The
scheduling problem that we consider can be stated as
follows. LetJ= { j1, j2, · · · , jn} denote the set of jobs
which are independent and letM = {m1,m2, · · · ,mn}
be the set of machines in the cloud computing envi-
ronment. We assume that each machine can estimate
how much time is required to perform each job. In
(Minarolli and Freisleben, 2011), Expected Time to
Compute(ETC) is anm×n matrix, used to estimate
the expected execution time of the jobJj on the ma-
chine mi . In ETC matrix, n is the number of jobs
and m is the number of machines. One column of
theETCmatrix contains the estimated execution time
for a given job on each machine. Similarly one row
of the ETC matrix contains the estimated execution
time of a given machine for each job. Hence, for a
given jobJj and a given machinemi , ETCi j is the es-
timated execution time of jobJj on machinemi . For
this problem, we assume take the hypothesis that the
computing capacity of each resource and the running
time of each job are known.

The Makespan is equal to maximum completion
time of all jobs and can be estimated using the fol-
lowing equation (Eq.1):

makespan= maxi∈{1,··· ,m}{ ∑
j∈Jmi

ETCi j } (1)

whereJmi is the set of the jobs mapped on the machine
mi .

4 OUR STATIC SCHEDULING AS
CSP FORMULATION

In this study we start with a presentation to the prac-
tical part of our Constraint Satisfaction problem mod-
elling for independent tasks scheduling to improve the
Min-Min algorithm result. Thereafter we show that
this problem can be described using this formalism
using the Min-Min developed job and machine order-
ing heuristics. These heuristics aim to minimize the
total completion time (Makespan).

4.1 SCSP Problem Formulation

The Constraint Satisfaction Problem model is widely
used to represent and solve various AI related prob-
lems such as Scheduling or Optimization. A SCSP
(Scheduling CSP) is defined by a set of jobs, a set
of allowed estimated execution time of machines
(the domain) is associated to each job and a Global
Completion Time constraint (GCT). Solving a SCSP
means finding an assignment for each job on one ma-
chine that satisfies a GCT constraint.

Based on the Min-min scheduling results, we
present a formal model for minimizing the completion
time obtained by this algorithm. Using this model, we
formulate the static scheduling problem for indepen-
dent job scheduling in heterogeneous environment as
a constraint satisfaction problem (CSP). Our formula-
tion provides a basis for computing an optimal com-
pletion time based on several CSP search strategies to
refine the Makespan obtained by Min-min algorithm.

The SCSP consists of:

• N jobs J1,J2, · · · ,Jn, and M machines
M1,M2, · · · ,Mm.

• D = {D1, · · · ,Dn} is a set ofn domains where
eachDn = {ETCn1,ETCn2, · · · ,ETCnm} is asso-
ciated withJn.

• GCTm = ∑ j ETCjm < (1−α)×Cmax for all m∈
{1, · · · ,M}. GCT is the global completion time
constraint on the machinem. The parameterα ∈
[0,1[represents the improvement of theCmax ob-
tained by the Min-Min algorithm. The search

CSP�Formulation�for�Scheduling�Independent�Jobs�in�Cloud�Computing

107

Table 1: An ETC matrix example.

Jobs Completion Time
Machines j1 j2 j3 j4 j5 j6
m1 129 109 42 218 113 168 779
m2 89 73 33 178 83 106 562
m3 164 141 45 305 148 221 1024

Table 2: Execution results of Min-Min algorithm.

Jobs Total
Machines j1 j2 j3 j4 j5 j6
m1 0 0 0 218 113 0 331
m2 0 73 33 0 0 106 212
m3 164 0 0 0 0 0 164

space can be reduced by applying this parameter
as mentioned in experimental section. Ifα = 0 we
use theCmax of the Min-Min algorithm to avoid
the systematic search assignation which explores
systematically the whole search space. So using
this GCT constraint, we minimize the maximum
completion time for all machines. Note that the
Cmax value is modified in the search process ac-
cording to the obtained maximal completion time.

As example, consider a simple SCSP of 3 ma-
chinesm1, m2 and m3 and 6 jobsJ1, J2, · · · , J6.
A scenario of ETC (durations) is given in Table 1.
First, Min-Min algorithm determines that the mini-
mum completion time forJ3 will be achieved onm2,
and makes this assignment. After the first assign-
ment, Min-Min algorithm continues to schedule the
jobs J2, J5, J1, J6 andJ4 as well onm2, m1, m3, m2,
m1 machines respectively. Consequently, this algo-
rithm finds that the maximum completion time is 331
seconds onm1 as reported on Table 2. The schedul-
ing, like the following can be expressed as SCSP:

• (06) JobsJ1, J2, J3, J4, J5 andJ6 as variables

• (06) Domains D1 = {89,129,164}, D2 =
{73,109,141}, · · · , andD6 = {106,168,221}.

• GCT< (1−α)×331

Most algorithms for solvingCSPs search system-
atically through the possible assignments of values to
variables. These algorithms seek any solution or all
solutions of a CSP. Or they try to prove that no solu-
tion exists. In the present work, we have adapted the
Forward Checking (FC) algorithm to find all SCSP
solutions because the original algorithm aimed simply
at finding a feasible solution. So we use FC algorithm
with an incremental and modified maximal comple-
tion time process. However, the order in which jobs
are considered for allocation on machines (instantia-
tion) has a dramatic effect on the time taken to solve
our SCSP, relatively to the order in which each job’s
ETCs are considered. There are general principles

which are commonly used in selecting the jobs and
their ETC values on the machines ordering. The job
and machine ordering may be either a static or dy-
namic ordering according to the current state of the
search. In our approach, we use both job and ma-
chine ordering heuristics. The job ordering uses the
inverse job order obtained by the Min-Min algorithm.
The machine ordering heuristic is based on the global
completion time of each machine under hypothesis
that all jobs are affected to the same machine.

The SCSP formalism allows defining the space of
a combinatorial search as a tree. To cut branches in
the search tree based on our adapted FC algorithm,
we add job and machine ordering heuristics with the
incremental maximal completion time as follow:

• The job ordering heuristic uses the orderJ4 ≪
J6 ≪ J1 ≪ J5 ≪ J2 ≪ J3 which is the inverse order
obtained by Min-Min algorithm. (see Fig.1)

• The value (machine) ordering heuristic uses the
completion time reported in Table 1. So we ob-
tainedm2 ≪ m1 ≪ m3 for J4. (see Fig.1)

• Modification of the maximal completion time
Cmax in the GCT constraint in the search tree pro-
cess.

Applying our search algorithm, more work per
node but, presumably, the extra effort will be com-
pensated by the reduction on the number of visited
nodes. Fig. 2 shows an example of search space re-
duction obtained by our FC algorithm. As can be seen
the use of theCmax modification in the search pro-
cess offers more reduction of the visited nodes to skip
the instantiations with no possibleCmax improvement.
For instance, the new obtainedCmax= 260 allows to
cut practically the whole branches in the rest of the
search tree. So for this example, our algorithm visited
only 117 nodes instead of 1093. For example, our
algorithm FC has detected that the partial assignment
with GCTm3 = 305 is inconsistent with the global con-
straint (GCTm3 >Cmax= 260), and the algorithm will

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

108

Figure 1: Search tree for the instance: 6 jobs and 3 machines (data from Table 1).

Figure 2: The search tree generated by our algorithm (withα = 0).

Figure 3: The search of tree generated by our algorithm (α = 0.2).

therefore backtrack immediately.
In order to make our search algorithm more effi-

cient, another preprocessing treatment can be added
that initially introduces theα parameter value for the
global completion time constraint. Hence, if we fix
α = 0.2, the space of a combinatorial search tree will

be reduced to only 66 visited nodes (Fig. 3).

5 SIMULATION RESULTS

Simulation evaluations of our formalism have been

CSP�Formulation�for�Scheduling�Independent�Jobs�in�Cloud�Computing

109

Table 3: The resulting Makespans compared to Min-Min algorithms for 20 jobs (α = 0).

Cmax

Machines Time Total nodes Explored nodes Min-Min Proposed Makespan
Algorithm approach Improvement

2 2.00 2097151 33794 1074 973 9%
3 18.22 5.23E+09 434382 744 692 7%
4 58.73 1.47E+12 1718228 684 562 18%
5 80.73 1.19E+14 2747020 571 480 16%

performed. The SCSP resolution uses the inverse of
the obtained total order from the Min-Min algorithm
to optimize the maximum completion time. The de-
tails of the simulation setting are presented in the
following. In the literature, many heuristic-based
techniques have been proposed for independent job
scheduling in heterogeneous environment. The Min-
Min heuristic algorithm is the most efficient and used
one.

The proposed scheduling algorithm has been ap-
plied on simulated data, with 3 different types of ETC
matrices up to 3 heterogeneous machines, and up to
20 randomly generated heterogeneous jobs used in
(Ibarra and Kim, 1977). These different types of ETC
matrices are generated based on the following proper-
ties (Inomata et al., 2011):

• Job Heterogeneity – represents the amount of
variance among the jobs execution times for a
given machine. The job heterogeneity is defined
as:J(l): Job low andJ(h): Job high.

• Machine Heterogeneity – represents the varia-
tion among the execution times for a given job
across all machines. The machine heterogeneity
is defined as:M(l): Host low andM(h): Host
high.

• Consistency – an ETC matrix is said to be con-
sistent (c) whenever a machinem executes all
jobs faster than another machine and the incon-
sistency (i) if the machinem may be faster than
another machine for some jobs and slower for
others. Partially-consistent (s) matrices are in-
consistent matrices that include a consistent sub-
matrix of a predefined size and are a combination
of consistent and inconsistent matrices (Minarolli
and Freisleben, 2011). Instances are labeled as
J(x)M(y)C(z) as follows:x indicates the job het-
erogeneity,y represents the machine heterogene-
ity andzshows the type of consistency.

Table 3 shows the results of the maximum com-
pletion times compared to the Min-Min algorithm for
scheduling 20 jobs(J(l)M(l)c(c)) based on theCmaxof
this algorithm(α = 0). The results are based on the
computation of job completion times across explored
nodes. As can be seen the search space can be reduced

by applying our heuristics where the total explored
nodes are widely lower compared to the total nodes of
the search space. Moreover, we obtain minimal com-
pletion times with the improvements 9%, 7%, 18%
and 16% for 2, 3, 4 and 5 machines respectively.

Table 4 reports the speed-ups for the same in-
stance with different values ofα parameter. The ef-
ficiency observed is very good where the computa-
tion time’s decrease for all instances compared to the
above results from 1 to 5 machines. Also, it is ob-
served that for 6, 7, 8, 9 and 10 machine instances,
the execution times are considerably reduced. For ex-
ample, for the last instance (20 jobs on 10 machines)
the execution time 2748 seconds and is reduced to
3.79 seconds withα = 40.45. It is interesting to note
that the execution time is reduced by 99.85% for 10
machines and we note that the resulting Makespan of
Min-Min heuristic is constant starting from 571 be-
cause the Min-Min algorithm does not maximize the
use of resources. Overall, our results demonstrate that
where there is a consistency for low jobs, and having
large number of machines, we obtains an efficiency
superior to 95% withα >= 30%.

Finally, Table 5 presents the results of the com-
pletion times compared to Min-Min heuristic using
maximal values of the parameterα. It is interesting to
note that our heuristic outperforms the Min-Min al-
gorithm in all cases (job heterogeneity, machine het-
erogeneity and consistency) by obtaining the minimal
Makespan. Clearly, with the use of an adequateα
value, our algorithm performs well in all cases and
reduces the tree space search and the execution time
to schedule these instances from many hours to a few
minutes. A remark has to be made on the computation
time irregularity observed for the inconsistent cases
for high jobs and low machines. So a major drawback
of α values determined by our simulations is that the
execution times for the same scheduling problem can
be very different from an execution to another for dif-
ferent types of ETC matrix up to 10 heterogeneous
machines, and up to 20 randomly generated heteroge-
neous jobs of the same instance category. An impor-
tant point to notice is that our approach cannot consid-
ered as very effective for large scheduling problems.
To be efficient we remedied the poor performance of

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

110

Table 4: The computation time reduction using different values ofα parameter for 20 jobs.

Cmax

Machines Time Total nodes Explored nodes α(%) Min-Min Proposed
(second) Algorithm approach

2 01.53 2097151 24990 10 1074 973
3 11.50 5.23E+09 266832 8 744 692
4 39.75 1.47E+12 1167804 18 684 562
5 49.73 1.19E+14 1683660 15 571 480
6 51.92 4.39E+15 1945518 23.5 571 434
7 89.72 9.31E+16 3690876 30.29 571 398
8 27.67 1.32E+18 1215384 33.97 571 377
9 10.09 1.37E+19 469152 38.01 571 353
10 03.79 1.11E+20 185420 40.45 571 340

Table 5: Makespan results for all heterogeneity and consistency cases.

Cmax

Instance Time (s) α(%) Min-Min Algorithm Proposed approach
J(l)M(l)C(c) 03.79 40 571 340
J(l)M(h)C(c) 35.1 32 17271 11627
J(h)M(l)C(c) 1029.4 13 10640 8167
J(h)M(h)C(c) 36.3 37 685303 427236
J(l)M(l)C(i) 1290.4 10 442 397
J(l)M(h)C(i) 62.7 35 22947 14734
J(h)M(l)C(i) 1304.2 38 11495 7109
J(h)M(h)C(i) 1265.9 38 1068180 654517
J(l)M(l)C(s) 7.3 18 341 278
J(l)M(h)C(s) 6.37 16 20025 14734
J(h)M(l)C(s) 3.86 22 10286 6992
J(h)M(h)C(s) 8.82 22 969294 654517

our FC search algorithm by avoiding the recursive tree
traversal based on a parallel computation for global
completion time constraint. This parallelization uses
decomposition methods which distribute the search
tree at a particular depth level (Habbas et al., 2005).

6 CONCLUSION

In this work, a static scheduling problem in cloud en-
vironment based on a combination of a CSP formu-
lation and Min-Min job ordering heuristic. To im-
prove the Min-Min algorithm result a refinement pro-
cess uses the incremental maximal completion time
as weighted global constraint.

We used various ETC matrixes to investigate ef-
ficiency of our approach based on different degrees
of job and machine heterogeneities and consistencies.
The results indicated that our CSP solver provides to
reach an optimal completion time in very short time
for small instances compared to Min-Min algorithm.
However, our approach cannot considered as very ef-

fective for large instances.
For future work, there are still some aspects for

further investigation in our CSP job scheduling al-
gorithm especially for parallel CSP solver using de-
composition strategy of the search tree in cloud en-
vironment and prediction model for the job comple-
tion time distribution that is applicable to making de-
cisions in scheduling.

REFERENCES

Abirami, S. and Ramanathan, S. (2012). Linear scheduling
strategy for resource allocation in cloud environment.
International Journal on Cloud Computing: Services
and Architecture (IJCCSA), 2(1):9–17.

Barbosa, J. and Moreira, B. (2009). Dynamic job schedul-
ing on heterogeneous clusters. InEighth International
Symposium on Parallel and Distributed Computing,
2009. ISPDC’09., pages 3–10. IEEE.

Chen, C.-Y. and Tseng, H.-Y. (2012). An exploration of
the optimization of excutive scheduling in the cloud
computing. InAdvanced Information Networking and

CSP�Formulation�for�Scheduling�Independent�Jobs�in�Cloud�Computing

111

Applications Workshops (WAINA), 2012 26th Interna-
tional Conference on, pages 1316–1319. IEEE.

Gouda, K., Radhika, T., and Akshatha, M. (2013). Prior-
ity based resource allocation model for cloud com-
puting. International Journal of Science, Engineering
and Technology Research (IJSETR), ISSN, 2(1):2278–
7798.

Goudarzi, H. and Pedram, M. (2011). Maximizing profit
in cloud computing system via resource allocation.
In 31st International Conference on Distributed Com-
puting Systems Workshops (ICDCSW), 2011, pages 1–
6. IEEE.

Guo, L., Zhao, S., Shen, S., and Jiang, C. (2012). Task
scheduling optimization in cloud computing based on
heuristic algorithm. Journal of Networks, 7(3):547–
553.

Habbas, Z., Krajecki, M., and Singer, D. (2005). Decompo-
sition techniques for parallel resolution of constraint
satisfaction problems in shared memory: a compar-
ative study. International Journal of Computational
Science and Engineering, 1(2):192–206.

Han, H., Deyui, Q., Zheng, W., and Bin, F. (2013). A
qos guided task scheduling model in cloud comput-
ing environment. InFourth International Conference
on Emerging Intelligent Data and Web Technologies
(EIDWT), 2013, pages 72–76. IEEE.

Ibarra, O. H. and Kim, C. E. (1977). Heuristic algorithms
for scheduling independent tasks on nonidentical pro-
cessors.Journal of the ACM (JACM), 24(2):280–289.

Inomata, A., Morikawa, T., Ikebe, M., Okamoto, Y.,
Noguchi, S., Fujikawa, K., Sunahara, H., and Rah-
man, M. (2011). Proposal and evaluation of a dy-
namic resource allocation method based on the load
of vms on iaas. In4th IFIP International Conference
on New Technologies, Mobility and Security (NTMS),
2011, pages 1–6. IEEE.

Irugurala, S. and Chatrapati, K. S. (2013). Various schedul-
ing algorithms for resource allocation in cloud com-
puting.The International Journal Of Engineering And
Science (IJES), 2(5):16–24.

Katyal, M. and Mishra, A. (2014). Application of selec-
tive algorithm for effective resource provisioning in
cloud computing environment.International Jour-
nal on Cloud Computing: Services and Architecture
(IJCCSA),, 4(1):1–10.

Krishnasamy, K. and Gomathi, B. (2013). Task scheduling
algorithm based on hybrid particle swarm optimiza-
tion in cloud computing environment.Journal of The-
oretical & Applied Information Technology, 55(1):33–
38.

Kundu, A., Banerjee, C., Guha, S. K., Mitra, A.,
Chakraborty, S., Pal, C., and Roy, R. (2010). Mem-
ory utilization in cloud computing using transparency.
In 5th International Conference on Computer Sci-
ences and Convergence Information Technology (IC-
CIT), 2010, pages 22–27. IEEE.

Kuribayashi, S.-i. (2011). Optimal joint multiple resource
allocation method for cloud computing environments.
International Journal of Research & Reviews in Com-
puter Science, 2(1).

Li, J., Qiu, M., Niu, J.-W., Chen, Y., and Ming, Z. (2010).
Adaptive resource allocation for preemptable jobs in
cloud systems. In10th International Conference on
Intelligent Systems Design and Applications (ISDA),
2010, pages 31–36. IEEE.

Minarolli, D. and Freisleben, B. (2011). Utility-based re-
source allocation for virtual machines in cloud com-
puting. InIEEE Symposium on Computers and Com-
munications (ISCC), 2011, pages 410–417. IEEE.

Santos, C., Zhu, X., and Crowder, H. (2002). A mathemat-
ical optimization approach for resource allocation in
large scale data centers.Technical Report HPL-2002-
64, HP Labs, March 2002.

Silva, J. N., Veiga, L., and Ferreira, P. (2008). Heuristic for
resources allocation on utility computing infrastruc-
tures. InProceedings of the 6th international work-
shop on Middleware for grid computing , MGC ’08,
pages 1–6. ACM.

Xie, W.-j., Tang, Z., Yang, L., and LI, R.-f. (2012). Re-
search on the virtual machine placement algorithm in
cloud computing based on stochastic programming.
Computer Engineering & Science, 5(5):95–100.

Yuan, J.-B., Lee, Y.-C., Wu, W., Young, H.-C., and Liang,
K.-H. (2011). Building an intelligent provisioning en-
gine for iaas cloud computing services. In13th Asia-
Pacific Network Operations and Management Sympo-
sium (APNOMS), 2011, pages 1–6. IEEE.

Zhang, L., Zhuang, Y., and Zhu, W. (2013). Constraint
programming based virtual cloud resources allocation
model. International Journal of Hybrid Information
Technology, 6(6):333–344.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

112

Quality of Service Trade-offs between Central Data Centers and
Nano Data Centers

Farzaneh Akhbar and Tolga Ovatman
Department of Computer Engineering, Istanbul Technical University, 34469, Istanbul, Turkey

{akhbar, ovatman}@itu.edu.tr

Keywords: Nano Data Center, Distributed Cloud Architectures, Quality of Service in Cloud Services.

Abstract: Nano data centers are one of the latest trends in cloud computing aiming towards distributing the computing
power of massive data centers among the clients in order to overcome setup and maintenance costs. The
distribution process is done over the already present computing elements in client houses such as tv
receivers, wireless modems, etc. In this paper we investigate the feasibility of using nano data centers
instead of conventional data centers containing accumulated computing power. We try to draw the lines that
may affect the decision of nano data center approach considering important parameters in cloud computing
such as memory capacity, diversity of user traffic and computing costs. We also investigate the thresholds
for these parameters to find out the conditions that make more sense to set up nano data centers as the best
replacement of Central Data Centers. We use a CloudSim based simulator, namely CloudAnalyst, for Data
Center performance experiments in java. Our results show that 1 gigabyte memory capacity can be seen as a
threshold for response time improvement of nano data centers. For nano data centers with more memory
capacity there will not be any improvement in response times that leverages the performance cost. We also
combine the results of response time and performance cost to provide a similar threshold.

1 INTRODUCTION

Cloud computing is continuously getting more
mature over time as the challenges retaining the
concept (Qi Zhang et al. 2010) keeps evolving.
Challenges like energy efficient computing in cloud
environments (Kliazovich et al., 2010) and optimal
resource management (Adami et al., 2013) is heavily
studied while new concepts like nano data centers
(NaDa) are proposed as well through time (Laoutaris
et al., 2008) NaDa concept is based on the idea of
distributing the computing power of central data
centers (CDC) among the customers of the
computing service by using relatively less powerful
computing devices at customer site. However, CDC
should manage requests of different servers, NaDa
could consent request of their local users, which are
in edge of their networks, for example their home
gateways or set-top-boxes.

The basis drive in the development of NaDa is
the thriving towards pertaining QoS issues where
continuous low latency (Ousterhout et al., 2011)
(Zeng and Veeravalli, 2012) is an important
parameter to improve. Even more importantly,
inducing the cost (Papagianni et al., 2013) to setup

and maintain a large CDC may increase the cost of
services (Sravan Kumar and Saxena, 2011).

In this paper we show that distributed data
centers as a new version of data centers have
advantages in contrast to current CDC in cloud
based infrastructures. We use CloudAnalyst
simulator (Wickremasinghe et al., 2010) to study the
behavior of data centers in both central and
distributed topologies. After that we present the
tradeoff between data center properties: memory
capacity, computing costs and latency under
different configurations of data centers to study if
they can be used in the decision process of migrating
to a distributed NaDa approach. Finaly, we take into
consideration parameters like the number of user
bases: cumulated areas of incoming user traffic and
the ratio between CDC’s memory capacity and a
single node’s capacity in the distributed nano
network.

The rest of the paper is organized as follows: In
Section 2 we present related work on NaDa. In
Section 3 we present our simulation environment
and in Section 4 we discuss the results obtained from
our experiments. In the last section we conclude our
study and present future work.

113

2 RELATED WORK

As cloud computing is a modern technology,
recently a lot of studies on different aspects have
been done. Since, in these studies data centers play
an important role, always attaining big attention.
Majority of articles that exist in literature consider
only energy consumption of data centers in their
studies. In this study we try to find some thresholds
to adjust different characteristics of our nano data
centers as a replacement for current central ones.

For example, Ning Liu et al suggested an
optimization model for energy consumption (Ning
Liu et al., 2013). They used greedy algorithm for
allocating tasks to different open server and
maintained the response time and energy
consumption and compared results with the results
of random task scheduling in Internet. Their results
show greedy task scheduling gives less energy
consumption and at the same time less response
time. Another research proposed genetic algorithm
based approach, namely GABA for virtual machine
online reconfiguration in large-scale cloud
computing data centers with aim of energy
efficiency. In the study by Lin Yuan et al. GABA
algorithm is suggested to conserve consumption
energy by decreasing the number of physical
machine that should be turn on when tasks get
arrived in cloud based infrastructures (Haibo Mi et
al., 2010).

Moreno and Xu suggested Nano data center
again for energy conservation in a way that data
centers be located at the edge of the network, like
home gateways or set-top-boxes, and cooperate in a
peer-to-peer manner (Moreno and Xu, 2011).
Valancius et al. applied NaDa in video on demand
(VoD) services in cloud computing environment and
verified energy utilization in traditional current
centric data centers and the new version of data
centers, NaDa (Valancius et al., 2009). In this study
NaDa utilized ISP-controlled home gateways to
provide computing and storage services and adopts a
managed peer-to-peer model to form a distributed
data center infrastructures. By developing energy
consumption pattern with using a large set of
empirical VoD access data in traditional and in
NaDa data centers they demonstrated, even under
the most pessimistic scenarios, NaDa saves at least
20% to 30% of the energy compared to traditional
data centers. In the study, it is claimed such kind of
energy savings is result of cooling costs avoidance,
or reduction of network energy consumptions.

3 SIMULATION ENVIRONMENT

In contrast with traditional data centers that provide
services for a large variety of consumers, NaDa
supply just local consumers. Since cloud computing
developed with the aim to as needed service, so
equipment in cloud based infrastructure, should have
enough facilities to resolve the requests they take
and this may cause data centers and virtual machines
over provision. In all, Disadvantages of traditional
data centers include majorly three factors (Valancius
et al., 2009): 1) over-provisioning, 2) height cost of
heat dissipation and 3) increased distance to end-
users. In this paper we show how NaDa could
overcome these three factors in best. Actually our
aim is to find a threshold could guarantee privilege
of NaDa in comparison of CDC, while NaDa get
maximum proficiency.

We simulate the performance of traditional DCs
and Nano ones. We use Cloud Analyst simulator in
Java with Intel Core i7-3537U-2.0GHz. During the
paper we show response time and performance costs
in both traditional and NaDa, and compare them to
prove that NaDa works more better than the current
CDC and reach the saturation points in which NaDa
give their best QoS. We show results as performance
cost and response time in charts.

3.1 Cloud Analyst Simulator

Cloud Analyst simulator (CA) have written in java.
CA built on Cloudsim, which is a toolkit for
modeling and simulation of cloud computing
environment and evaluation of resource provisioning
algorithms and studying the data center's response
time patterns (Buyya et al., 2009) In CA whole
worlds considered as 6 different regions. These
regions could hosts data centers and user bases. For
studying the traditional data centers as CDC, we
define a data center in central region and distribute
users in all around regions but for NaDa we define
one data center for every user. The topology of
CDCs in our simulator, model the configuration of
CDCs in real world. We put a datacenter in central
region of simulator for investigate CDCs
performance, because current central data centers
receive tasks from lots of consumer and different
machines all over their environment, so by placing a
CDC in central region we try to force that data
center to get task from all user bases in all regions
around to act like real central data centers. For
modeling NaDas, we try to put users in shortest
distance, by placing them in the same region as a
NaDa data center is in. NaDas could communicate

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

114

Figure 1: Cloud Analyst Regions.

peer to peer to get their required data instead they
send their requests via internet to the servers and
waste lots of time and energy during their transfer.

With this simulator we could change
different data center's configurations and user bases
properties. Figure 1 shows regions distribution in
Cloud Analyst simulator. UB1 near R2 shows we
have one user in region 2 and DC1 close to R0
shows there is one data center in region 0.

We show the result of our investigation for
different configuration of data centers and user
bases. By these results we can determine which
configuration make NaDa work better. Results are in
forms of the response time in millisecond and
performance cost. In Table1 there are the
characteristics of our CDC. These characteristics are
default in our cloud analyst simulator. In fact these
values are the average amount of specification we
need in our data centers totally (Qi Zhang et al.,
2010). Below amount are the average values which
guarantee satisfying quality of services in a normal
size data center with small task of video demand or
such kind of tasks (Pepelnjak, 2014).

Table 1: Properties of CDC.

Central Data Center
Band Width(Mb/s) 1000000
Memory Capacity(Mb) 204800
Processor Speed(MHz) 10000

4 SIMULATION RESULTS AND
EVALUATION

For next step at first we consider bandwidth
fluctuation. As shown in Figure 2, we consider
bandwidth between 1Mbps and 25Mbps. As we
expected, by increasing the bandwidth amount,
response time decreases. We can see behavior of the

Figure 2: NaDa bandwidth effect on response times.

lines almost are linearly and the same for all sizes of
bandwidth. Also we can see when the number of
user bases exceeds the 100, response time going to
stay constant near the 50 ml second.

Figure 3 demonstrates pattern of response time
when we change the amounts of processor speed.
The amounts interval is between 2 and 6 GHz.
Although response time for different amounts of
processor speed at first act differently but as the
number of user bases increase it goes to be constant
again near 50 ml second. So based on our purpose,
network structure or the number of user bases; we
could select the bandwidth size. Then we start
investigate the memory changes effects on response
time behavior. We can see from Figure 4, after we
increase NaDa's memory storage capacity more than
1GB, response time show the constant behavior,
with 50mls value. It means, with this threshold we
will have no concern about response time
fluctuations and guarantee the average response time
for consumer whose their data centers has this
amount of memory capacity in their local data
center. In other mean with help of these results we
can design local Data center that provides lower
response time.

Figure 3: NaDa processor speed effect on response times.

Quality�of�Service�Trade-offs�between�Central�Data�Centers�and�Nano�Data�Centers

115

Figure 4: NaDa memory storage effect on response times.

Up to this point we examine bandwidth,
processor speed and memory capacity that are the
most important properties in data centers. For
demonstrating how the behavior of distributed NaDa
and central ones are different, we collect the
maximum response time value in NaDa and CDC
for all three properties that we have examined for
different user bases in Table 2. In this way we can
see the difference between NaDa and CDC response
times. As we can see there is a significant difference
between response time values of NaDa and CDC.

Between the characteristic we have checked,
memory capacity has some kind of exception; cause
after a point response time become a horizontally
line for all different number of user bases. These all
lead us to consider the memory capacity proportion
of traditional data center on our NaDa, till we
explore more precisely point of memory storage
value which NaDa gain their best performance and
could be substitute with traditional data centers in
best way. Maybe proportion comparison could help
more, because the central datacenter which will be
replace with NaDa could have different memory
storage amount in different places, depends on
network structures or some other parameters. But
this time we pay attention to the performance cost
values, because we knew how response time
fluctuations based on Figure 4.

Figure 5 presents performance cost pattern of
NaDa memory capacity on CDC memory capacity.

Table 2: Comparison of CDC and NaDa Response Times.

of
Users

CDC
Response

Time

NaDa
Bandwidth

NaDa
Mem.Cap.

NaDa Proc.
Speed

Worst Case
Response Time

6 309.89 94.86 84 65.8
18 308.36 65.5 58.38 69.01
30 308.68 57.72 54.96 55.7

100 307.95 51.52 50.42 52.49
500 309.01 50.98 50.12 50.23

Figure 5: The effect of memory capacity ratio on
performance cost with respect to small number of users.

There may be other interpretations for this chart; for
example for different number of user bases after
almost 0.05 point, we see horizontal constant
response time. In deed for one CDC substitution we
could consider the NaDa with memory capacity that
make this proportion, till NaDa get the best quality
and service. Another amassing thing in Figure 5, is
lines are close to each other after number of user
bases increase from 20, and this shows, as the
numbers of consumer of NaDa increase, response
time going to be close to each other and it could give
us more opportunity to choose the user base number
to ascribe local data center as a NaDa. In Figure 5
we consider 640 GB for our central for being sure
that the 0.05 points for memory proportion is a
correct point.

Data size is another important factor that affect
data center behavior drastically. Hence we choose
data size for our next investigation. we start to verify
the effect of transferring data in different size
between user bases and data centers in different
CDC and NaDa, so we consider three different CDC
with different data sizes and also three different
NaDa with the same data size values.

Figure 6: NaDa and CDC Response Times for Different
Data Sizes.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

116

Figure 7: NaDa and CDC Performance Cost for Different
Data Sizes.

Figure 6 shows average response time of CDC
and NaDa. As we can see in chart, for all three, 0.5,
1 and 1.5 MB data sized packets, response time has
less amount for NaDa in comparison with CDC.

NaDa response time has smaller amount than
CDC, but we except performance cost be higher for
NaDa. So we start check it and surprisingly we
realize performance cost of all CDC and NaDa have
the same amount for different data packet sizes.
Figure 7 demonstrates the results. In all for data
packet size properties again we see our NaDa have
better proficiency than the CDC. Less response time
with equal performance cost really satisfying to
substitute NaDa with current traditional central ones.

Finally for having the better perspective of how
our research could help construct the NaDa for
replacing with CDC, we put the results of
performance cost and average response time in one
chart together till we could have better comparison.
Because user bases number and memory capacity
are both of most important properties, at Figure 8
and Figure 9 we have results of them respectively.

As we can see for 1.5MB data packet sizes,
response time line and cost line intersect with each
other at one point which belong to a user base, so
based on our aim, if less response time is important
for us or less performance cost, we could replace a
CDC with nano one for apparent number of user
bases we reach in our charts till we get best
proficiency.

In Figure 9, we repeat showing the result of
performance cost and response time in one diagram
this time vs. the proportion of memory capacity of
nano data center on memory capacity of CDC for 50
user bases. This chart fluctuation is less, because as
you can see response time always has constant
amount near 50 milliseconds.

Figure 8: Average Response Performance Cost vs.
Number of User Bases.

If we need to have less response time in contrast
with performance cost we need to give the amount
of memory to NaDa in a way they have more than
0.02 ratio of the previous CDC's memory capacity,
because response time line is under the performance
cost line after 0.02 ratio. In our studies we examine
distributed data centers as nano data center to find
the properties that make nano data center as a good
replacement for central data centers. We find
response time and performance cost for different
properties amounts like memory capacity,
bandwidth, processor speed and user bases. For
example our research shows for more than 1
Gigabyte memory capacity response time will not
change. This approach could help people who
concern with data centers performance to construct
needed data center in a way they could reach
maximum quality of services in different cloud
architectures.

Figure 9: Average Response Time and Performance Cost
vs. Memory Capacity Ratio.

Quality�of�Service�Trade-offs�between�Central�Data�Centers�and�Nano�Data�Centers

117

5 CONCLUSIONS AND FUTURE
WORK

We reach threshold points for different properties of
NaDas, include: memory capacity, bandwidth and
processor speed. We show how NaDa could have
it’s maximum quality of services in these points. We
also show Our NaDas performance while giving
services to different number of user bases. In all of
our simulations neighbor NaDas could ask services
from each other in peer to peer form. Trying other
ways of communication between neighbor data
centers could be considered as a next level of
performance investigation.

In addition, our studies can be extended by using
real cloud based architectures for experiments. The
ways of how it could help the industry for more
financial profit and improvement could be another
charming spark to use this approach. Web
application providers could adopt their products
based on our new thresholds for NaDa for get better
QoS values and in follow reach more profit. This
work shows that maybe we should investigate cloud
structure more precisely and researchers should look
at our work as a spark for more and deeper
investigation.

Our studies show that still there are gap in cloud
computing structures and shows we could prepare
data centers in a way they be more proportional. Our
threshold can be used almost in all of the application
served over Internet. ISP Provider or who other
adjust the data centers characteristics could consider
our work to reach the better performance and QoS.
The thresholds in this study give hints for adjusting
the properties of the NaDa to improve their services
by having the minimum response time of task
delivery, or less performance cost.

REFERENCES

Adami, D., Martini, B., Gharbaoui, M., Castoldi, P.,
Antichi, G., Giordano, S., 2013. Effective resource
control strategies using OpenFlow in cloud data
center. IM, page 568-574. IEEE.

Buyya, R., Ranjan, R. and Calheiros, R.N., 2009.
Modeling and Simulation of Scalable Cloud
Computing Environments and the CloudSim Toolkit:
Challenges and Opportunities. Proceedings of the 7th
High Performance Computing and Simulation
Conference HPCS2009, IEEE Computer Society.

Haibo Mi, Huaimin Wang, Gang Yin, Yangfan Zhou,
Dianxi Shi, Lin Yuan, 2010. Online Self-
reconfiguration with Performance Guarantee for

Energy-efficient Large-scale Cloud Computing Data
Centers. IEEE SCC, page 514-521.

Kliazovich, D., Bouvry, P., Audzevich, Y., Khan, S.U.,
2010. GreenCloud: A Packet- Level Simulator of
Energy-Aware Cloud Computing Data Center .
GLOBECOM, page 1-5. IEEE.

Laoutaris, N., Rodriguez, P., Massoulie, L., 2008.
ECHOS: Edge Capacity Hosting Overlays of Nano
Data Centers. Computer Communication Review
38(1):51-54.

Moreno, I.S., Jie Xu, 2011. Customer-Aware Resource
Overallocation to Improve Energy Efficiency in Real-
Time Cloud Computing Data Centers. SOCA, page 1-
8. IEEE.

Ning Liu, Ziqian Dong, Rojas-Cessa, R., 2013. Task
Scheduling and Server Provisioning for Energy-
Efficient Cloud-Computing Data Centers. ICDCS
Workshops, page 226-231. IEEE.

Ousterhout, J., Agrawal, P., Erickson, D., Kozyrakis, C.,
Leverich, J., Mazières, D., Mitra, S., Narayanan, A.,
Parulkar, G., Rosenblum, M., Rumble, S.M.,
Stratmann, E., Stutsman R., 2011. The Case For
RAMClouds. Commun. ACM 54(7):121-130.

Papagianni, C., Leivadeas, A., Papavassiliou, S., Maglaris,
V., Cervello-Pastor, C., Monje, A., 2013. On the
Optimal Allocation of Virtual Resources in Cloud
Computing Networks. IEEE Trans. Computers
62(6):1060-1071.

Pepelnjak, I., 2014. Data Center Design Case Studies. In
Space Publication. First edidtion.

Qi Zhang, Lu Cheng, Boutaba, R., 2010. Cloud
computing: state-of-the-art and research challenges.
Journal of Internet Services and Applications In
Journal of Internet Services and Applications. Vol. 1,
No. 1. pp. 7-18.

Sravan Kumar, R., Saxena, A. R., 2011. Data Integrity
Proofs in Cloud Storage. COMSNETS, page 1-4.
IEEE.

Valancius, V., Laoutaris, N., Massoulié, L., Diot, C.,
Rodriguez, P., 2009. Greening the Internet with Nano
Data Centers . CoNEXT. page 37-48. ACM.

Wickremasinghe, B., Calheiros, R.N., Buyya, R., 2010.
CloudAnalyst: A CloudSim-based Visual Modeller for
Analysing Cloud Computing Environments and
Applications. AINA, page 446-452. IEEE Computer.

Zeng, Z., Veeravalli, B., 2012. Do More Replicas of
Object Data Improve the Performance of Cloud Data
Centers. UCC, page 39-46. IEEE.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

118

Cloud Readiness Assessment of Legacy Application

Flavio Corradini, Francesco De Angelis, Andrea Polini and Samuele Sabbatini
School of Computer Science, University of Camerino, Via delBastione 1, Camerino, Italy

{name.surname}@unicam.it

Keywords: Cloud Assessment, Cloud Migration, Software Evaluation, Reengineering, Cloud Application Portability,
Cloud Governance.

Abstract: Applications and services hosted in the cloud are increasing continuously. Cloud technology offers important
perspectives (performance, high availability, elasticity) and it enables new business models. Unfortunately,
this new paradigm faces unprecedent requirements not addressed in legacy application (multi-tenancy, scala-
bility, etc.). This leads to complex re-engineering phasesin order to to migrate existing software into a cloud
environment. Before starting a migration, it is important to analyze the cloud compliance of the application,
what to expect after the migration and the effort required tofulfill these expectations. This paper assesses
a way to extract an index that describes the feasibility of the re-engineering. We test the metric with a real
application that needs to be migrated to a private cloud.

1 INTRODUCTION

Migrate legacy application to the cloud is one of the
biggest challenges that cloud paradigm has brought
(Buyya et al., 2010). Although the concept of util-
ity computing was introduced about fifty years ago
(Parkhill, 1966) , it began to be a commercial need
only in the early 2000s. The fact that this new
paradigm is driven by commercial aspects and not
from a real scientific study has led to the creation of
different definitions (Vaquero et al., 2008) depending
on the commercial context. NIST (Mell and Grance,
2011) provides the most used definition of cloud. The
cloud is totally revolutionary in software develop-
ment as foundries have been in the hardware industry
(Armbrust et al., 2009). This model is completely de-
tached from the past, but it results in some problems.
One of the main being the ability to migrate legacy ap-
plication developed with previous methodologies into
a new environment and making them cloud compli-
ant. This challenge is due to the fact that legacy appli-
cation have been implemented with previous methods
without taking into considerations concepts unknown
until the advent of cloud (i.e. elasticity and scalabil-
ity) (Menychtas et al., 2013). To migrate a legacy
application in a cloud environment, it is necessary to
update the application to exploit these new capabil-
ities. To do this, it is necessary to evaluate the ap-
plication to migrate how and where the application is
to be evolved. On the other hand, as mentioned previ-
ously, the cloud is not a unique concept, and so this as-

sessment should also take into account the technology
used in the cloud infrastructure. This article presents
the definition of a metric to evaluate the compliance
of an application respect to a cloud environment. This
proposed research is related to the Open City Platform
project (OCP project) founded by the Italian Min-
istry (Ministero dellIstruzione, dellUniversita e della
Ricerca) in the Smart Cities and Communities and
Social Innovation initiative(OCP, 2014). This project
aims to migrate the applications used by some Public
Administration in an private cloud infrastructure. In
this context, the metric will be based mainly on tech-
nological concepts, ignoring the change in business
models nedeed in a migration to a public cloud. The
presented metric will be based on the specific request
of this environment, and it will also be portable in or-
der to be applied in other contexts. In Section II, the
state of the art is analyzed. In Section III, the met-
ric is proposed. Section IV will focus on the results
provided by the metric. In Section V the application
context is presented. The paper finishes with a section
of Conclusions.

2 RELATED WORK

These last years, the issue of cloud migration was
faced by researchers and industrials and a quite va-
riety of solutions were presented.

Di Biase (Biase, 2013) proposes a questionnaire

119

to evaluate both organizational and application migra-
tion in order to identify which migration type can be
applied. Hosseini et al. (Khajeh-Hosseini et al., 2012)
propose a migration tool-kit that involves all decision
making in order to evaluate the feasibility of the ap-
plication. Related to our work the application assess-
ment is a list of question divided in different areas. Vu
et al. (Vu and Asal, 2012) proposes a methodology
approach is presented in order to establish which step
are needed in legacy application evaluation process.

ARTIST (Artist, 2014) and REMICS (Remics,
2014) are two projects very closed to the aim of the
research herein. These projects are funded by the
European Community, and they focus their aim on
migration using Model Driven Engineering (OMG,
2014). Both projects aim to develop different tools
of different part of the migration. REMICS ended in
the 2013 and it focused the attention on the recov-
ery, migration, validation and supervising processes
of the migration itself. However this project did not
cover challenges such as elasticity, multi-tenancy and
other non-functional properties. ARTIST focuses on
migrating legacy software written in Java and C. The
project is still open and it tries to support the migra-
tion in every aspect. Strictly related to the purpose of
this article, ARTIST presents a work (Alonso et al.,
2013) strictly related to the purpose of this article,
where the pre-migration phase of the project is pro-
posed. The method used to elaborate the maturity of
the software is a questionnaire that has to be answered
by a person with a good knowledge of technical and
businesses aspects.

The evaluation of legacy application is a busi-
ness used also by big cloud infrastructure player.
Company such as Ibm (IBM, 2014), Cisco (CISCO,
2014), VmWare (VmWare, 2014) and other (RedHat,
2014) (Rackspace, 2014) (Amazon, 2014) offer a self-
assessment tool or whitepaper to evaluate the advan-
tages to migrate the application in their cloud. How-
ever, the problem of these approaches is that they are
based on closed proprietary tools that are not widely
available; and they are often accompanied by expen-
sive consultancy periods. The advantage of our pro-
posed metric is to create an agile process in order to
fill out complex questionnaires readily.

3 EVALUATION CRITERIA

This section will presents the metric to assess if a
legacy application is cloud compliant. This metric an-
alyzes a series of questions that are asked to the soft-
ware engineer. These questions are used to analyze
the current state of the application and the status that

should be achieved by migrating to the cloud. For
the realization, the following categories were taken
into account: (a) Workload, (b) Application Type,
(b) Component, (c) Loose Coupling, (d) Distributed
application, (e) Security, (f) Multi-Tenancy and (g)
Database. Each category was then divided into sev-
eral sub-categories in order to be able to identify the
level of applications cloud compliant relating to spe-
cific category.

3.1 Workload

To migrate an application from in-house environment
to cloud, it is necessary to take into account the work-
load. In Cloud computing patterns (Leymann et al.,
2013) presents 5 different workloads: (a) Static, (b)
Periodic, (c) Once a life, (d) Continuously grow and
(e) Elastic. This paragraph goes in details of each type
of load will be presented.

An application withstatic workloaddoes not take
any advantage to be migrated into cloud. This is due
to the elasticity concept. Indeed, a static workload
needs the same resources over the time, this means
that having the automation in the allocation and deal-
location of resources is almost useless. The migra-
tion of application withperiodic workloadinto cloud
will exploit the concept of resources elasticity. On the
other hand, this workload is often too easy to be pre-
dicted, so it is possible to avoid the cloud by providing
the necessary resources to meet the peak load and this
would lead to a waste of resources during other pe-
riods. Once a life workloadconsists in a static load
with rare peak of resources utilizations. This It re-
sults to be more advantageous than periodic load due
to the fact that the single peak cannot be predicted so
if in-house solution is used it would be probable to re-
main without sufficient resources.Continuously grow
workloadnearly represents the optimal case in which
cloud migration will adds many advantages. In this
type of load, the necessary resources grow with time
and an automation of resource allocation would bring
many benefits. In a static environment (in-house), this
type of load would result in many problems as there
would be either a state of over-sizing of the allocated
resources or a lack of resources when the load has
exceeded its capacity. This then leads to a waste of
money when the available resources are greater than
the actual demand, and it lacks of reliability and per-
formance when the required resources are greater than
those actually available. The cloud instead, thanks
to its elasticity, allows the resources provided to be
exactly those needed. For that reasonElastic work-
load is the optimal load for which the migration to
the cloud is essentially required.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

120

3.2 Architecture Type

The number of layer by which is divided the appli-
cation is very important. The layers are a logical di-
vision that separate the various application processes
and make them independent. Obviously, this type of
classification is related to the server part. The ap-
plications that are taken into account are the classic:
(a) 1-Layer: Monolithic, (b) 2-Layer, (c) 3-Layer (or
more), (d) client-server.

1-Layer applicationhas no subdivision, stateless
and stateful components are related to each other and
then it becomes difficult to carry out policies of scala-
bility. In 2-Layer application, it is possible to iden-
tify a data layer and a Presentation & Logic layer.
This division helps the migration phase due to the fact
that a division between stateful and stateless compo-
nents has already been executed. Thus, the top layer
can scale without any problem and not having to deal
with the data redundancy. Applications with3 or
more layerhave a physical and logical subdivision
already well defined. Each layer is able to be inde-
pendent and satisfy a given operation. In a cloud en-
vironment, this subdivision allows a migration faster
than the other cases giving the chance to each layer
to scale. Client-Server applicationis another com-
mon architecture used in legacy application. This type
of architecture has different problems when it is mi-
grated into the cloud. In the cloud model the client
part of the application has to be converted to work in
a cloud infrastructure. However, if the migration af-
fects only the server, this type of application could be
seen as one of the previous specification.

3.3 Component

The analyses of components that would be migrated
is an important aspect to be considered when a mi-
gration in cloud is performed. With the termcompo-
mentwe consider a software element that conforms
to a component model and can be independently de-
ployed and composed without modification accord-
ing to a composition standard. Regards this cate-
gory three different components are take into account
herein: (a) Stateful with Strict Consistency, (b) State-
ful with Evenutal Consistency, (c) Stateless.

Stateful with Strict Consistency componentsbeing
the most difficult to migrate to cloud. The consistency
must be guaranteed in all its replicas, thus the system
must be able to keep synchronized all copies. The
system needs a lot of work to fulfil this problem and
when the number of replicas grows exponentially the
performance of the system highly decreases.Stateful
componentscan be accessed without having read the

most updated data. It is not possible to use this model
on critical components, which are the ones where in-
formation must be precise. That is why it is impor-
tant to make sure data are as up-to-date as possible
when read. In case of several instances, the updates
are not executed synchronously but asynchronously,
thus allows a better response. In a cloud view, this
kind of component is able to scale much more easily
than the previous one.Stateless componentshave no
information that needs to be duplicated or updated in
the other instances. This means it does not undergo
efficiency loss as the number of replicas increases.n
a cloud environment, the resources for components
would be 100% exploitable, as they do not need any
policy to be implemented and the updating of the data
could be both asynchronous and synchronous.

3.4 Database

The database level is probably the most delicate to
migrate. In order to achieve a good level of scal-
ability the usage of NoSQL databases is recom-
mended. However most legacy application uses Re-
lational DataBase (RDB). Great might be the effort
to migrate data from this databases to NoSQL, both
in terms of to reengineering the database and migrate
the data. This might result in discouraging this migra-
tion. Therefore, it is important to consider that com-
ponents are only stateful at this level and data must
remain intact. So, the issues to be considered are re-
markable. The following list shows different database
types: (a) relational database with stored procedure
(SP), (b) RDB without SP, (c) RDB divided by area
and (d) NoSQL.

Relational databases with Stored Proceduresare
the worst cases of migration to cloud. Until the ad-
vent of the cloud, using stored procedures was rec-
ommended as they were able to speed up and op-
timize the process. This also allowed to not have
large deployment of resources for components that
were not DB. With cloud and the theoretical avail-
ability of infinite and elastic resources, it is better
to demand processing and workload to components
able to scale without problems. Consequently, the
part of the application more difficult to scale will be
weighed down by stored procedures that load static
components. As mentioned before, stored procedures
are not recommended in cloud environment, due to
the fact that they load components difficult to scale.
Without stored procedures, the database must perform
only the necessary operations on the data, without ex-
cessively overloading the database. All applications
that usemultiple relational databases without stored
procedureapply to another sub-category of Database

Cloud�Readiness�Assessment�of�Legacy�Application

121

classification. The data layer of the application con-
sists of multiple databases where each database has
specific competences. In this case, the migration to
cloud is better than in the previous cases since the
size of the components different types of access are
created, and the overhead of an area does not affect
the performance of the other.NoSQL databasesare
the best for the migration to cloud. All non-relational
database are included in this category. They are very
useful because they can scale very easily and there-
fore the bottleneck that relational databases have is
no longer present.

3.5 Loose Coupling

Loose coupling is another feature to be considered
when an application is migrated to cloud environment
is the component autonomy. A component is consid-
ered autonomous when its changes do not affect the
other ones or vice-versa. With reference to the appli-
cation elasticity in the cloud, components with a low
level of autonomy make them difficult to divide, and
then it becomes difficult to manage the scalability of
a single component. Components with high auton-
omy can be scaled without affecting the other com-
ponents with which it interacts. Starting from the 7
levels presented in (Krafzig et al., 2005), 5 levels of
components autonomy were considered relevant dur-
ing the migration: (a) Physical, (b) Format, (c) Time,
(d) Reference, (e) Platform.

The highest level of coupling is thePhysicalone,
in this configuration the migration in the cloud is very
difficult to accomplish unless a review of the applica-
tion is performed. A direct physical connection has a
number of limitations. In this context, it is very com-
plicated to undertake policies of scalability is since
the increase of instances of a component implies ma-
jor changes on how it interacts with the other com-
ponents. Format couplingis intended for the com-
ponents that are interfaced through a common for-
mat. The limitations are minor compared to a phys-
ical coupling carrying this specific type of applica-
tions on cloud has relevant advantages. However, this
dependency leads to great limitations to the compo-
nent.A component that does not have to be synchro-
nized with other components falls intoTime clou-
pling. The level of autonomy in this case starts to
become significant, and the advantages resulting from
the migration to cloud become clear. At this level, a
component can exchange data with another one even
if it is not available or it works at different speeds.
In a cloud environment the component is easily scal-
able, thus achieving the benefits of scalability with
little difficulty.A component is autonomous at arefer-

ence levelwhen it does not need to know the address
of other components to interact with them. In this
case, the autonomy of the component is very high so
moving component in a cloud environment does not
create problems. With aplatform autonomy, the com-
ponent does not have any binding to the others, it can
be implemented in any technology, and this would not
affect the behavior of components around him. It is
the best solution for a migration to cloud, each com-
ponent is in fact completely independent on the other
and it can perform all the operations without interfere
with the other components.

3.6 Distributed Application

The migration on cloud of a distributed application
can be easier that migrating other applications. In-
deed, this means that Loose Coupling and Compo-
nents concepts have already been taken into account.
There are 3 different classification in distributed ap-
plication: (a) pipe based through message, (b) process
based, (c) layer based.

In pipe based through messagedistributed appli-
cation, the division is made through the data. The
components expect a certain input and provide cer-
tain output. Often, pipes and filters are used check
the data format to ensure that the ”chain” between all
components works. Aprocess baseddistributed ap-
plication is an application that focuses on decomposi-
tion based on business models. In this kind of appli-
cations, it is necessary to have an engine for the man-
agement of the processes, which manages each step
of the application and ensures a proper work and the
order of the components. Alayer baseddistributed
application decomposes the application into separate
logical layers. Each layer is made of application com-
ponents providing a certain function. Components are
restricted to access components of the same layer or
one layer below.

3.7 Multi-tenancy

Multi-tenancy is basis concept of cloud environment,
that terms indicate the use of a single instance of the
software by multiple tenants. The value defined to this
category are: (a) multiple instance in separate hard-
ware, (b) hardware in common with dedicated virtual
machine for each tenant, (c) shared middle-ware with
separated address space and multiple application in-
stances and different db, (d) shared middle-ware with
separated address space and multiple application in-
stances and (e) shared middle-ware and one applica-
tion instance.

In multiple instance in separate hardware, the

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

122

multi-tenancy is not yet implemented. Each client
organization has a dedicated stack from hardware to
application level. Inhardware in common with ded-
icated virtual machine for each tenant, the various
tenants are located in the same physical machine in
which VM were created specifically for each tenant.
This configuration is not yet possible to be considered
as multi-tenancy due to the fact that a large part of the
stack is completely dedicated.Shared middle-ware
with separated address space and multiple applica-
tion instances and different dbmanages the multi-
tenancy for a large part of the stack. Middle-ware in
this case is in common, and only the application part
is still runing at one instance per tenant. Although
middle-ware is shared in this configuration, it is pos-
sible to see that the database uses different structures
and tables depending on the tenant reference.Shared
middle-ware with separated address space and mul-
tiple application instancesis similar to the previous
one, the only noticeable difference is in the manage-
ment of data. In this case, the data of the various ten-
ant reside on the same tables and there are no ded-
icated tables for each tenant. The rest remains un-
changed, with middle-ware shared among multiple
tenants and an application instance for each tenant.
In shared middle-ware and one application instance
the entire stack is managed through the multi-tenancy
model. The tenant access to the same application in-
stance and so the entire stack is shared. This is the
best case for a migration to cloud because it makes
the most out of this paradigm.

3.8 Security

Security is another key issue for cloud environment,
even if in our context this problem is very mitigated.
In our case, we are talking about private cloud where
will run own applications. This differentiates our
model from the classic scene where public cloud is
taken into account. Despite the context fades this is-
sue, it is always important to take security into con-
sideration. In our case the security concerns basically
two aspects: permissions and data protection. This is
the only category that is divided in other categories
due to the different meaning of security. The result of
this category is the sum of the value of Authorization
and Data Protection.

3.8.1 Authorization

The first aspect of security taken into account con-
cerns the Permissions. Access management is very
important in cloud because of the multi-tenancy, that,
as explained above, must manage multiple tenants on
the same instance. For this reason, the applications

were classified as: (a) application without login, (b)
application with simple login, (c) application with lo-
gin managed by roles

3.8.2 Data Protection

The data protection is the second aspect to be consid-
ered in security. The classification in this case con-
cerns the type of data, considering whether they are
sensitive or not, and whether they are encrypted or
not. This classification is due to the fact that having a
shared environment requires special attention to data
protection and it is extremely important for the data
not to be violated by unauthorized users.

4 MIGRATION ASSESMENT

The objective of the metric is to provide to the user the
cloud compliance of an application. To define a clear
output, two modes were defined: a numeric output
represented by three values, and a graphical output.
To perform the assessment, for each category and sub-
category we assigned a specific value (Table 1). The
values assigned in this article have been set accord-
ing to our infrastructure. However it can be changed
depending on the needs of the cloud service provider
that delivers the platform and the questionnaire of the
assessment.

In order to calculate the metric, the users fills out
a questionnaire of technical questions in order to de-
fine the positioning of the application in the various
criteria. In addition, the questionnaire presents some
questions to determine which would be the goal of
the migration. Indeed, to exploit the potential of the
cloud, it is not necessary that the application reaches
the maximum value in each category to exploit the
potential of the cloud. The metric provides values
for the current state (equation 3) and the final one
(equation 4) for each category. These extracted val-
ues are then processed according to the equations 5
and 6. These values represent the percentage of ac-
tual (equation 5) and future (equation 6) application
compliance respect to the cloud provider (equation
5). These two values are used to extract the percent-
age of fulfilment of the desired objective (equation 7).
This is the most important value of the metric. This
value can be used to estimate the effort of the migra-
tion in terms of time. This calculation can be made
taking into account the costs of the implementation
of the software until now, and relate them to the in-
dex presented in equation 7. Although this effort is
not predictable in a precise way, the index can help in
the estimation when it is calculated for more that one

Cloud�Readiness�Assessment�of�Legacy�Application

123

Table 1: Weight of Categories and Sub-Categories.

WORKLOAD 10
- Unknown 0
- Static 2
- Periodic 6
- Once a life 7
- Continuously grow 9
- Elastic 10

LOOSE COUPLING 8
- Physical 0
- Format 2
- Time 4
- Reference 7
- Platform 10

NUMBER OF LAYER 7
- No (1-Layer) 0
- client-server 2
- 2-Layer 5
- 3+-Layer 10

DISTRIBUTED APPLICATION 5
- No 0
- Pipe Based through message 7
- Process Based 9
- Layer Based 10

DATABASE 9
- RDB with SP 0
- RDB without SP 4
- RDB divided by area 7
- NoSQL 10

COMPONENT 8
- Stateful with Strict Consistency 2
- Stateful with Evenutal Consistency 6
- Stateless 10

MULTI-TENANCY 9
- Multiple instances in different separate

hardware
0

- Hardware in common with VM for each
tenant

2

- Shared middelware, separated address
space, multiple application instances,
different DB

6

- Shared middelware, separated address
space, multiple application instances

8

- Shared middelware and one application
instance

10

SECURITY 8
- AUTHORIZATION 5

No Login 0
Simple Login 2
Login with specific role 5

- DATA PROTECTION 5
Non encypted sensitive data 0
Non encrypted non sensitive data 2
Encrypted sensitive data 4
Encrypted non sensitive data 5

application, the underline implementation technology
is comparable, and we know the effort made in other
migrations.

n= Number of Categories (1)

Wi = Weight of the Category i (2)

Vi,x = Current value of the Category i (3)

Vi,y = Desidered value of the Category i (4)

V1 =
∑n

i=1(Wi ·Vi,x)

∑n
i=1(Wi ·Vi,max)

·100 (5)

V2 =
∑n

i=1(Wi ·Vi,y)

∑n
i=1(Wi ·Vi,y)

·100 (6)

V3 =V1/V2 ·100 (7)

A radar chart was chosen to represent graphically
the results. The choice fell on this type of chart be-
cause it gives the possibility to have a rough assess-
ment of the status of the application and to understand
what are the gaps to be faced. The various categories
are represented in each edge of the chart. By means of
the questionnaire previously issued, each edge shows
two values representing the score obtained by the ap-
plication in a category. The first value is related to
the current state of the application, while the second
one refers to the value that should be achieved when
migrating to the cloud. As mentioned above, each
category has a different score, so before the chart is
drawn, all the values are normalized according to the
weight of the category. The difference lies in the ef-
fort that must be put in before the migration. More-
over, radar chart allows the increasing or decreasing
of various edges without changing the meaning of
it, that advantage permit to export the assessment in
other environments only configuring the metric.

Figure 1: Example of radar results after the evaluation.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

124

4.1 Metric Utilization Example

In this section we introduce an example of the metrics
presented above using an application that handles the
calculation of vehicle taxes.

4.1.1 Questionnaire

The questionnaire is composed of a set of questions
with multiple answers, each answer is needed to ex-
trapolate one of the value presented in the Table 1.The
set of questions regarding ”database” criteria is pre-
sented in Fig. 2 as example. The question regards
both current status of the application (i.e. Q1-Q2-
Q3) and future status (i.e. Q4). When the question-
naire is completed the system elaborates the answer to
select proper value. In example, Fig. 2 shows how the
first three questions allow us to extrapolate the current
value of the application (i.e. RDB with SP”, value =0)
whereas the fourth one refers to the value the applica-
tion would have after the migration (i.e. RDB divided
by area, value=7).

Figure 2: Database’s questionnaire section.

4.1.2 Results

In this section we present the results of the application
tested. The results of the questionnaire are presented
in Table 2(the database values are already explained
in the previous section). These values are then used
to calculate the indexes presented earlier. The results
of the elaboration are:V1 = 32.25 %, V2 = 56.125
%, V3 = 57,461 %. As said in the previous para-
graph,V3 is the important value. Indeed, this value
can be used in particular application (such as homo-
geneous applications) to estimate the effort needed for
the migration. Considering the effort used until now
to achieveV3, it is possible to estimate the effort nec-
essary to complete the migration. The figure shown
previously (Fig.1) represents the results of this elabo-
ration in a graphical manner. Every edge has a max-
imum value fixed to 100 (Wmax·Vmax), the value of
the current application (dark grey) is(Wi ·Vi,x) (in the

Table 2: Questionnaire’s results of example application.

CATEGORY CURRENT
VALUE

FUTURE
VALUE

Workload(10) Periodic(6) Periodic(6)
Loose Cou-
pling(8)

Time (4) Reference(7)

N Layer(7) 3+ -Layer(10) 3+ -Layer(10)
Distributed
App.(5)

No (0) Layer Based
(10)

Database(9) RDB with SP
(0)

RDB divided
by area(7)

Component(8) Stateful with
eventual con-
sistency(6)

Stateful with
eventual con-
sistency(6)

Multi-
Tenancy(9)

Multiple in-
stances in
different sepa-
rate hardware
(0)

Shared middel-
ware, separated
address space,
multiple app.
instances, diff.
DB (6)

Security(8) Simple Login +
Encrypted sen-
sitive data(7)

Simple Login +
Encrypted sen-
sitive data(7)

example 9·0= 0) and the desired value (light grey) is
(Wi ·Vi,y) (in the example 9·7= 63).

5 FUTURE WORK AND
CONCLUSIONS

The next step will test the assessment other applica-
tion involved in OCP project in order to better validate
the index. Moreover, the presented metric is used to
evaluate software engineering aspects. However, the
adoption of cloud computing involves all the aspects
of the enterprise. The aim is to integrate this evalu-
ation metric with other metrics that evaluate business
and organizational aspects. The integration with other
metrics imply the automation of the metric in order to
have a migration methodology to automate the entire
process (Fig. 3). The idea is to use Model Driven En-
gineering to extract information directly from the arti-
facts in order to have as accurate information. In this
way the questionnaire to submit will undergo to some
changes. The defined weights will also be automated
in order to have the assessment made automatically
from a data storage in which patterns and services
of the cloud infrastructure are described. The cru-
cial aspect of this assessment is the value presented in
equation 7 that is used to estimate the effort needed to
the migration. The proposed estimation of effort uses
generic assumption. The idea is to study in depth how

Cloud�Readiness�Assessment�of�Legacy�Application

125

it would be possible to improve the accuracy of the
estimation effort by transforming it to person/month
or other valuable metrics. Another output will gener-
ate documents describing the weakness of this evalu-
ation. These documents will be used as an input by
the modernization process of the application that will
perform an evolution of the application even going
to insert, where possible, specific patterns of the in-
frastructure to create optimal Platform Specific Model
(PSM). The objective of these implementations is: (a)
to have a precise and clear situation through auto-
mated processes, (b) to make the metric portable in
other contextes.

Figure 3: High level architecture diagram of a migration
phase related with the metric.

Public institutions suffer the issue of legacy ap-
plication migration to the cloud. They offers a wide
range of heterogeneous services to citizen, company
and other institution and they could take advantage
from cloud computing handling automatically and dy-
namically resources. The metric proposed in this pa-
per is intended to helps public institution that wants
to create private cloud infrastructure with services in-
stalled in it. Considering the context of the OCP
project, in which this research is performed, it was
decided to consider only the technological part of the
migration ignoring aspects of business. At the same
time, a platform independent setting was given not to
limit the metric only to this case but to apply it in other
areas.

ACKNOWLEDGEMENTS

This work has been supported by the Open City Plat-
form project and EUREKA project funded by Re-
gione Marche, UNICAM and APRA SpA.

REFERENCES

Alonso, J. et al. (2013). Cloud modernization assess-
ment framework: Analyzing the impact of a poten-
tial migration to cloud. InMaintenance and Evo-
lution of Service-Oriented and Cloud-Based Systems
(MESOCA), pages 64–73. IEEE.

Amazon (2014). http://media.amazonwebservices.com/-
cloudmigration-main.pdf.

Armbrust, M. et al. (2009). M.: Above the clouds: A berke-
ley view of cloud computing.

Artist (2014). Artist project. http://www.artist-project.eu/.
Biase, F. D. (2013). Legacy to cloud migration: Assessing

the cloud readiness of legacy software systems. Mas-
ter’s thesis, University of Applied Sciences Western
Switzerland.

Buyya, R., Ranjan, R., and Calheiros, R. N. (2010). Inter-
cloud: Utility-oriented federation of cloud computing
environments for scaling of application services. In
Algorithms and architectures for parallel processing,
pages 13–31. Springer.

CISCO (2014). . http://www.ciscowebtools.com/cloud.
IBM (2014). http://www-01.ibm.com/software/rational/

info/cloud-services/self-assessment.htmls.
Khajeh-Hosseini, A., Greenwood, D., Smith, J. W., and

Sommerville, I. (2012). The cloud adoption toolkit:
supporting cloud adoption decisions in the enterprise.
Software: Practice and Experience, 42(4):447–465.

Krafzig, D., Banke, K., and Slama, D. (2005).Enter-
prise SOA: service-oriented architecture best prac-
tices. Prentice Hall Professional.

Leymann, C. F. F., Retter, R., Schupeck, W., and Arbitter,
P. (2013). Cloud computing patterns.

Mell, P. and Grance, T. (2011). The nist definition of cloud
computing.

Menychtas, A. et al. (2013). Artist methodology and frame-
work: A novel approach for the migration of legacy
software on the cloud. InSymbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC), 2013 15th
International Symposium on, pages 424–431. IEEE.

OCP (2014). Open city platform project. http://
www.opencityplatform.eu/.

OMG (2014). Mda. http://www.omg.org/mda/.
Parkhill, D. F. (1966). Challenge of the computer utility.
Rackspace (2014). http://www.rackspace.com/cloud/hybrid.
RedHat (2014). https://engage.redhat.com/forms/cloud-

readiness-assessment.
Remics (2014). Remics project. http://www.remics.eu/.
Vaquero, L. M., Rodero-Merino, L., Caceres, J., and Lind-

ner, M. (2008). A break in the clouds: towards a cloud
definition. ACM SIGCOMM Computer Communica-
tion Review, 39(1):50–55.

VmWare (2014). http://www.cloudflightcheck.com/.
Vu, Q. H. and Asal, R. (2012). Legacy application mi-

gration to the cloud: Practicability and methodology.
In Services (SERVICES), 2012 IEEE Eighth World
Congress on, pages 270–277. IEEE.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

126

Development of an Anything Relationship Management Prototype for
the Smart Factory

Jonathan P. Knoblauch, Rebecca Bulander and Thomas Greiner
Pforzheim University of Applied Sciences, Tiefenbronner Str. 65, 75175 Pforzheim, Germany

{jonathan.knoblauch, rebecca.bulander, thomas.greiner}@hs-pforzheim.de

Keywords: Anything Relationship Management, Customer Relationship Management, Industrial Internet, Smart
Factory, Internet of Things, Services and Data.

Abstract: The Internet of Things, Services and Data (IoTSD) enters into more and more areas of the business, private
and public sector. Typical areas are Smart Factory, Smart Home, Smart Grid, Connected Vehicles and
Smart City. The area of Smart Factory (also called industrial internet) will be the most important one in the
manufacturing sector. For several years There has been another development in information and
communications technology (ICT) observable, called Anything Relationship Management (xRM), trying to
systematically manage all stakeholders, physical objects and virtual entities of an enterprise through the use
of powerful IT platforms. xRM can be used as a cloud management platform for smart industrial production
units combined with stakeholder management. In this paper we use xRM to develop a top-down prototype
in the Smart Factory environment. The main objective is to demonstrate how xRM could be used in the
future Smart Factory. We therefore recreate the structure of an existing machine for mixing liquids as a
service on an xRM cloud platform. Furthermore typical data exchange activities between machine and an
xRM cloud platform as well as customers and production machine are simulated. The xRM prototype
demonstrates why using an xRM cloud platform is helpful for flexile production environments.

1 INTRODUCTION

The Internet of Things, Services and Data enters into
more and more areas of the business, private and
public sector. Typical areas are Smart Factory Smart
Home, Smart Grid, Connected Vehicles and Smart
City or newer areas like Smart Farming. Cisco
estimates that by 2020, 50 billion devices and
objects will be connected to the internet (Evans,
2011). This progress will lead to a huge “Value at
Stake” and bring new innovations which are not
imaginable today. Cisco believes that the internet of
Things and Services will create $14.4 trillion in
“Value at Stake” from 2013 to 2022 (Bradley, 2013,
p. 1). The area of Smart Factory (also called
industrial internet) will be the most important one in
the manufacturing sector.

For several years there has been another
development in information and communications
technology observable, called Anything Relationship
Management, trying to systematically manage all
stakeholders, physical objects and virtual entities of
an enterprise through the use of powerful IT
platforms. xRM can be used as a management

platform for smart industrial production units
combined with stakeholder management.

In this paper we use xRM to develop a top-down
prototype in the Smart Factory environment. The
main objective is to demonstrate how xRM could be
used in the future Smart Factory. We therefore
recreate the structure of an existing machine for
mixing liquids as a service on an xRM cloud
platform. Furthermore typical data exchange
activities between machine and xRM cloud platform
and customers and machine are simulated. The xRM
prototype demonstrates why using an xRM cloud
platform is helpful for flexile production
environments. The benefit of using xRM is that a
flexile cloud platform is provided with the ability to
map and create almost any entity, relationship and
process in business flieds and to manage them
systematically. Next to the field of Smart Factory
there are other areas, where to use xRM; just to
mention some examples: Business Partner
Relationship Management, Emplyee Relationship
Management bust also Patient Relationship
Management at an hospital or Student Relationship
Management at an university.

127

2 FUNDAMENTALS

2.1 Definition of xRM

The term xRM has already been defined several
times in a variety of ways. In a previsous paper we
did an extensive literatur review about the term xRM
(see Knoblauch and Bulander, 2014). In most
definitions xRM is seen as the further stage of
Customer Relationship Management (CRM) as well
as the realization of the theoretical foundations of
relationship management. In addition, xRM includes
a technological component (IT system or platform)
and a conceptual component (management concept
and strategy). In newer definitions xRM is seen as
an opportunity to manage objects in the IoTSD
(Internet of Things, Services and Data, also called
Internet of Everything in an intersectoral way). The
following definition covers the main aspects of
xRM: “Anything Relationship Management, as an
advancement of CRM, is a consistent and holistic
concept of Relationship Management between and
in-between enterprises, people, physical things and
virtual assets. It is based on one or more flexible,
modular and scalable IT platforms, which can be
focussed on different branches. xRM helps
enterprises to capture, coordinate and analyse
entities and their relationships as well as processes
in the Internet of Everything” (Knoblauch and
Bulander, 2014).

2.2 xRM Cloud Platforms

In this section a brief overview about xRM
platforms is given. An xRM platform as an
extensible foundation provides core functionalities
which can be used by multiple modules; each
module can interact with each other through defined
interfaces (Tiwana et al., 2010). Most xRM
platforms use Cloud Computing technologies based
on the fundamentals of SOA. xRM platforms
provide high-value functions that improve the
relationship structures and also any related
applications. Business logic and associated user
interfaces are based on the defined model. Also the
creation of business objects as well as their
networking is supported at a conceptual level.

The architecture of an xRM platform can be
divided into three layers. The management layer in
xRM describes the conceptual approach to manage
the n:n interaction, coordination and collaboration
between all entities. The middleware layer
interconnects people, enterprises, virtual assets and
smart objects to create virtual organizations and

cross-company business processes. This layer has to
be implemented as a highly efficient and dynamical
platform with the capability of interoperability. The
back-end layer integrates various systems in a
homogeneous system landscape. Besides ERP and
SCM systems this layer also has to integrate
intelligent physical things like Cyber Physical
Systems (CPS) or virtual things such as cloud
computing services.

xRM platforms should be highly connected and
integrated in multiple ways, also across business
operations and domain boundaries. The provisioning
of electively networked, cooperating, and human-
interactive systems will be an essential component in
the adoption of such solutions in the future.

In our research project we did also an extensive
xRM market analysis over 26 software suppliers
which offer CRM platforms with xRM
functionnalities. We want just mention some global
players out of this analysis to underline the
importance of this topic: Microsoft with Dynamics
CRM 4.0, Salesforce with their Salesforce1
Plattform or Selligent GmbH with CRM &
Interactive-Marketing-Suite (see Knoblauch and
Bulander, 2014).

2.3 Advantages through xRM

By using xRM platforms and appropriate
management concepts a range of advantages for
enterprises are given. In the following the most
important ones are summarized.

xRM as platform-as-a-Service (PaaS) provides a
cloud-based software development environment for
xRM applications (Britsch et al., 2012, p. 86). Such
a platform has a flexible and scalable infrastructure
as well as the ability of interoperability. Thus, the
use of well-defined communication models and
communication protocols is necessary (Günthner
and Hompel, 2010, p. 79). The software
development environment includes components like
a repository or has debug functions and the ability to
install plug-ins.

Another advantage of xRM is the existence of a
configurable framework. Such a framework provides
an implementation of important application services
like access management or administration functions
and a first area of application (typically CRM).

One benefit of xRM is the possibility to build
Point-and-Click apps and to customize them easily
out of the box. This is one of the core principles that
xRM brings along and therefore allows apps to be
built fast and easily without the need for extensive
implementation skills.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

128

Furthermore, the data models of xRM platforms
don’t have a fixed schema but a flexible and
extensible one. This means, that xRM platforms can
hold any data model and can generate or extend the
data model without much programming knowledge.

xRM enables the mapping of any kind of entity
(stakeholder, virtual asset or physical object) in an
application. This allows comprehensive business
requirements to be fulfilled on one IT platform. The
next level of xRM is integrating smart objects or
shared virtual objects through the Internet Things,
Services and Data.

Many xRM platforms follow the service
orientation paradigm and are built on a service-
oriented architecture (SOA). This allows the
platform consumer to be served with service
orientated capabilities like immediate availability
and well-defined behavior of servicers or service
composition.

With xRM company-wide and system-wide
workflows can be established more easily, since one
or more interoperable platforms or well-defined
communication standards are in place. This leads to
less workflow disruptions and a faster cycle time as
well as a more consistent management of workflows
and business processes.

Finally any graphical user interface (GUI) of an
xRM application can be customized by the user.
Depending on user preferences and access
restrictions one and the same xRM application can
have a completely different GUI.

2.4 xRM, IoTSD and Smart Factory

The Internet of Things, Services and Data is “a
dynamic global network infrastructure with self-
configuring capabilities based on standards and
interoperable communication protocols where
physical and virtual "things" [like services] have
identities, physical attributes and virtual
personalities and use intelligent interfaces and are
seamlessly integrated into the information network”
(Martinez, 2012, p. 3). In the Internet of Things,
Services and Data xRM can be used to define clear
relationship structures and to link real and virtual
entities dynamically with the right context (Britsch
et al., 2012, p. 87). Furthermore, xRM enables the
stakeholders of an organization to be connected to
enterprise services, virtual assets and physical
things. In a nutshell, xRM brings people, things,
services and data together on a business platform
that allows the systematic management of all
relevant business objects.

xRM must also be considered in the context of

the Smart Factory. According to acatech (2013)
there are three overarching aspects for implementing
the Smart Factory (in Germany called “Industry
4.0”): A horizontal integration through value
networks, a holistic integration of engineering across
the entire value chain and a vertical integration
along networked manufacturing systems (acatech,
2013, pp. 20). By using xRM concepts and platforms
it will be possible to build powerful solutions across
the vertical integration by reconfiguring whole
manufacturing systems over an xRM user interface
with regards to business use cases. xRM platforms
will help to make connections between multiple
companies as well as stakeholders in the horizontal
integration of interoperable, to share business
context and to extend value networks.

3 REQUIREMENTS
ENGINEERING

The definition of objectives are essential in the
requirements engineering process of software
development. We want to highlight the main
objectives of the xRM prototype, demonstrate the
added value, describe the software development
items and explain restrictions in this chapter.

3.1 Achievable Objectives

Objective 1: The proposed xRM prototype should
map and link customers, suppliers, employees,
business partners and the industrial production units
within the xRM application.

Objective 2a: The proposed xRM prototype
should simulate an industrial production unit for
mixing liquids as a service.

Objective 2b: The service of mixing liquids is
explained as an example for an industrial production
unit.

Objective 3: The xRM prototype sensors of the
industrial production unit should receive fictive
sensor values and save them within the entity.

Objective 4: A saved sales order can also be
saved as an XML file that could be sent to an
industrial production unit for further processing.

Objective 5: A business process of the sales
order via the mixed liquid as a service should be
demonstrated.

Development�of�an�Anything�Relationship�Management�Prototype�for�the�Smart�Factory

129

3.2 Advantages and Added Value of
the Prototype

Different advantages and added values are shown
through the implementation of the corresponding
xRM prototype. The main advantage of the xRM
prototype is to demonstrate how xRM can be used in
the Smart Factory as a platform for relationship
management and value network design. The xRM
prototype refers to a use case of process engineering.
Tt is not useful to think in objects (e. g. with RFID-
Tags or barcodes) in process engineering, but rather
to think in the category of sales orders and their
items as well as production services. The xRM
prototype elucidates why this is necessary and useful
in the Smart Factory. The elements of the industrial
production unit of the Smart Factory are called
Cyber Physical Production Systems (CPPS), since
they are CPS for production.

The tracing of ingredients, products, batches etc.
can be carried out with the xRM prototype.
Furthermore monitoring and maintenance of the
production machine is enabled by receiving
important key figure values like temperature, power
consumption, number of revolutions or plant
utilization in real-time. This in turn enables
machines and their components to be checked
remotely through specific xRM GUIs. Key figures
can also be used to alert if values are out of range.
Moreover an improved accounting and reporting by
using actual material and production plant
consumption is possible. A stronger relationship
between customers und customer needs is given by
thinking in services. The customer becomes the
producer of his product with the xRM prototype.
Customers can choose their production services and
start their production process over the cloud.

3.3 Development Items

In this section we want to give an overview of the
chosen development items for the xRM prototype.
There are three basic development items that are
described in the following section.

The objective of the first development item is to
model an industrial production unit with all existing
components on an xRM platform. The industrial
production unit is used to mix two different liquids.
Furthermore customers, suppliers, employees,
business partners and ingredients are also modeled.
Therefore, a suitable entity relationship model
(ERM) is needed. After the specification of the ERM
this can be used to build the logic on an xRM
platform via Point-and-Click-Customization. This is

the primary development item of the xRM
prototype.

In the second development item the objective is
to transfer a sales order with corresponding order
items into an XML file that can be sent to an
industrial production unit. Besides information about
the customer information about the product and the
industrial production unit also has to be saved in the
created XML file. The idea behind this development
item is that information saved as XML can easily be
merged in a data exchange format like PLCopen
XML. We also want to backtrace the effort that is
needed to implement such a function with this
development item.

In the last development item we want to
implement a simulation of the real-time data
exchange of the industrial production unit and the
xRM platform. Data out of the machine sensors is
saved in the related xRM entity of the xRM
platform. Furthermore, each new sensor value is
saved within the entity. The current sensor value is
always set to the main sensor value attribute. Older
sensor values are saved in an XML file.

3.4 Restrictions of the Prototype

The xRM prototype has some restrictions that have
to be mentioned. Even though the xRM prototype
simulates an existing industrial production unit,
there is no direct communication linkage for now.
The xRM prototype follows the top-down approach
since a working smart industrial production unit is
unavailable. Additionally, the data sent to the xRM
prototype is randomly generated data. Finally, the
generated XML files of the sales order are not sent
directly to the industrial production unit, they are
saved in a storage location for further processing.

4 IMPLEMENTATION

4.1 xRM Software (SugarCRM)

The xRM platform SugarCRM was chosen to
implement the xRM prototype. In its basics
SugarCRM is a Customer Relationship Management
application that was founded in 2004 as an open
source project for Silicon Valley companies. Today
there are different product editions of SugarCRM
existing. These are a Community Edition (open
source), that is licensed under the GNU General
Public License and several fee-based software
editions. The SugarCRM platform is written in the
programming language PHP. SugarCRM has

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

130

evolved into an xRM platform over the last years,
fulfilling xRM principles like the existence of a
configurable framework, a plugin installation
module and a Point-and-Click functionality. The
reason why SugarCRM was chosen is listed below.

1. The platform in its community edition is
open source and therefore free in use.

2. SugarCRM offers a big community and
there have been lots of installations.

3. The platform can be installed as on-premise
software or used as an on-demand service.

4. SugarCRM allows the software developer to
easily access and modify the code as well as
the database.

5. The platform offers good functions to build
Point-and-Click applications.

6. SugarCRM has a consistently good
usability.

The Sugar Community Edition 6.5.17 was the
chosen version for developing the xRM prototype.

4.2 Data Model and Business Logic of
the Prototype

A corresponding data model is needed first for
implementing the structure of a smart machine for
mixing liquids. This data model includes the
following entities.

In figure 1, the data model of the xRM prototype
is visualized. In order to reduce complexity not all
attributes of the entities are shown.

Table 1: Entities of the xRM prototype – Part 1.

Entity Description
Customer A customer is an external stakeholder

who wants to buy a certain amount of
mixed liquid.

Sales Order A customer places a sales order to buy

mixed liquid.
Order Item Each sales order has one or more order

items that describe what the customer
wants to have mixed, with which

mixing ratio, how much and in which
volume per filling.

Product/
Ingredient

A mixed liquid is made up out of at
least two ingredients/products.

Therefore, an order item always
includes at least two ingredients.

Supplier The ingredients are delivered by a
supplier.

CPPS-
Service

A CPPS-Service is a virtual entity.
Thus, mixing liquids is defined as a

service.
CPPS-
Module

The physical modules of a CPPS-
Service are named CPPS-Module. A

CPPS-Module is a distinguishable part
of a machine that is responsible for a

specific task in the production process.

Figure 1: Data model of the xRM prototype.

Development�of�an�Anything�Relationship�Management�Prototype�for�the�Smart�Factory

131

Table 2: Entities of the xRM prototype – Part 2.

CPPS-
Component

A CPPS-Module is built up out of
smaller components called CPPS-
Components. For example these

elements can be seen as the sensors and
the actuator of the module.

Event
Document

In a CPPS-Component different events
are triggered form inside or outside.
These events get saved in an entity

named Event Document which is linked
to the corresponding entity.

Owner Each CPPS-Service and CPPS-Module
has an Owner who is responsible for

maintenance, order processing etc. The
Owner can be an employee of the
organization, a department of the
organization or a business partner.

An xRM platform enables an application to be built
out of this data model with the Point-and-Click
functionality. In SugarCRM this is carried out in the
function “Module Builder”. This data model was
transferred one-to-one on the xRM platform. A
customer places a sales order with order items. Each
order item has two ingredients (liquid for mixing)
that are delivered by a supplier. In addition, each
order item gets a mixing service allocated. This
mixing service (CPPS-Service) is responsible for the
production of the mixed liquid. A CPPS-Service is
constructed out of CPPS-Modules that can be seen
as parts of an industrial production unit. A CPPS-
Module in turn has various sensors and actuators
(CPPS-Components).

CPPS-Components also have an Event-
Document that records activities. Furthermore
CPPS-Components and CPPS-Services have an
Owner who is responsible for production and

predictive maintenance.
The next step is to fill the entities with content.

Here we focus on the content of the industrial
production unit for liquid mixing. Figure 2 shows a
liquid mixing service we have defined with five
CPPS-Modules that have sensors and actuators.

4.3 Sales Orders via XML

In future customers will configure and produce their
own products in the Smart Factory over the cloud.
We simulated what such a business process could
look like with the xRM prototype (see section 4.5).
The customer selects which liquids he wants to have
mixed, defines the mixing ratio and the boxing
(bottles, barrels etc.) over the xRM cloud interface.
Additionally, the customer also chooses a CPPS-
Service which will produce his mixed liquid. After
the order item is saved the production can be
triggered by sending the data of the item to a CPPS-
Service.

We implemented a function on the SugarCRM
platform in the main menu of the sales order
interface that allows the creation of an XML file that
contains all relevant data of an order item. This can
be done by defining own PHP-classes that are
extensions of the class DOMElement.

The XML file can be sent via HTTP-POST to an
existing cloud server of the industrial production
unit. Communication via SOAP web services is also
feasible. In the following, there is a short example
what content in the XML file might look like.

This generated example contains information
about an order item that wants to have the liquids
cola and soda mixed in five bottles with the mixing
ration 90/10.

Figure 2: Elements of the liquid mixing service.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

132

Figure 3: Example of an XML file for data exchange.

4.4 Real-time Data Exchange via Web
Services

The exchange of data is necessary to trace the
production process of the mixing liquid service. In
SugarCRM data can be sent directly to the platform
entities (SugarCRM calls them “Modules”) via web
services. We implemented a PHP script for the xRM
prototype that sends data to all of the CPPS-
Components of a CPPS-Service. This PHP script
simulates how a mixing liquid production process
would actually send data to the SugarCRM platform.
Thus, it enables employees to monitor the
production process in real-time. Besides monitoring
sensor values, finished process steps and status can
also be visualized through the platform interface.
The following figure illustrates the interface to
monitor values of CPPS-Components.

Figure 4: Interface to monitor production process values.

To evaluate past data every new sensor value can
also be saved in the entity Event Document that has
a relationship to the corresponding CPPS-
Component. This event document is linked to an
XML file which saves sensor values and time
stamps. Hence, it is possible to evaluate past data by
analysis tools. Through this approach we want to
emphasize the importance of saving data in the
entity it belongs to and not to save unstructured data
somewhere else.

4.5 Implemented Business Scenario

To illustrate the big picture of the implemented
business scenario a corresponding business process
is shown in the Business Process Management
Notation (BPMN) in figure 5. Thereby, only the
important process steps were depicted.

Figure 5: Business process of the xRM prototype.

The business process starts with the event

Development�of�an�Anything�Relationship�Management�Prototype�for�the�Smart�Factory

133

“Customer wants to mix liquid”. While placing the
sales order and the order items it is verified if
necessary ingredients are in stock. If not, they are
ordered from a supplier through a purchase system.
Afterwards a CPPS-Service for mixing liquids as a
Service is chosen by the customer or by the
employee (if customer doesn’t have the skills or
permissions). Depending on the chosen CPPS-
Service the business process on the one hand is
transferred to a business partner (if its own
organization cannot accept the sales order) and on
the other hand further processed in its own
organization. If the sales order is transferred to a
business partner this is registered and will lead to a
brokerage for the organization.

The further process steps inits own organization
are the scheduling for the manufacturing, the final
saving of sales order with an acknowledgment via
email and the start of the manufacturing process
when possible or desired. The two filling tanks are
first filled with the chosen ingredients of the order
item in the manufacturing process. The next step is
to mix these ingredients in the mixing tank and to
send notification to the customer when finished. In
the third step the mix liquid gets pumped to the final
holding tank. The last step is to fill the mixed liquid
out of the holding tank in chosen volumes per filling
(bottles etc.) of the order item and to send another
email to the customer when completed. After the
manufacturing process is finish the mixed liquid is
prepared for shipping to the customer.

5 CONCLUSIONS

Organizations are confronted with a rapidly
changing environment today in which relationship
management is more important than ever. By using
xRM concepts and xRM platforms an approach is
given to handle the increasing complexity. In future,
production services will also be able to
automatically allocate their sales orders among their
related industrial production units.

We predict that industrial production units will
independently configure themselves according to the
relations in the xRM. As an example the liquid
mixing service we have shown could have a third
filling tank added on the xRM platform. This would
create a task in the Smart Factory that ends up by
adding such a tank to the industrial production unit
and connecting it to the other modules. Vice versa,
adding a new tank cloud also automatically creates
the relationship in xRM.

Regardless of the data flow direction, xRM

platforms and their relationship networks will
become more and more important in the future.

ACKNOWLEDGEMENTS

The authors would like to thank the research
program of Karl Steinbuch of the MFG Innovation
Agency for ICT and Media for the financial support
of the research project “Ma-x-RM – Management
concept of Anything Relationship Management”.

REFERENCES

acatech, 2013. Recommendations for implementing the
strategic initiative INDUSTRIE 4.0. URL http://
www.forschungsunion.de/pdf/industrie_4_0_final_rep
ort.pdf, (accessed 10/10/2014).

Bradley, J., Barbier, J., Handle, D., 2013. Embracing the
Internet of Everything To Capture Your Share of $14.4
Trillion. URL: http://www.cisco.com/web/about/ac79/
docs/innov/IoE_Economy.pdf, (accessed 12/05/2014).

Britsch, J., Schacht, S., Mädche, A., 2012. Anything
Relationship Management. In: Business & Information
Systems Engineering : BISE (4:2), pp. 85-87.

Evans, D., 2011. The Internet of Things. How the Next
Evolution of the Internet Is Changing Everything,
Cisco. URL: https://www.cisco.com /web/about/ac79/
docs/innov/IoT_IBSG_0411F INA L.pdf (accessed:
09/03/2014).

Günter, B., Helm, S., 2006. Kundenwert. Grundlagen –
Innovative Konzepte – Praktische Umsetzungen.
Wiesbaden: Gabler Verlag.

Günthner, W., Hompel, M. (2010): Internet der Dinge in
der Intralogistik. Berlin, Heidelberg: Springer-Verlag
(VDI-Buch).

Knoblauch, J. P.; Bulander, R., 2014. Literature Review
and an Analysis of the State of the Market of Anything
Relationship Management (xRM) – xRM as an
Extension of Customer Relationship Management. In:
Proceedings of 11th International Conference on E-
Business and Telecommunications (ICE-B),
INSTICC, Wien, Austria, 28–30 August, 2014, pp.
236–244.

Martinez, C., 2012. Objective ICT-2013.1.4 - A reliable,
smart and secure Inter- net of Things for Smart Cities.
URL: http://www.oko-ist.cz/calls/ncp-infoday_12-06-
19/Obj_1_4.pdf (accessed: 10/12/2014).

Mertic, J., 2009. The Definitive Guide to SugarCRM -
Better Business Applications. USA: Apress.

Tiwana, A., Konsynski, B., Bush, A. A. 2010. Platform
evolution: coevolution of platform architecture,
governance, and environmental dynamics. Information
Systems Research 21 (4), pp. 675–687.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

134

Redefining the Cloud based on Beneficial Service Characteristics
A New Cloud Taxonomy Leads to Economically Reasonable Semi-cloudification

Bastian Kemmler and Dieter Kranzlmüller
Leibniz Supercomputing Centre (LRZ), Bavarian Academy of Sciences and Humanities,

Boltzmannstr. 1, 85748 Garching n. Munich, Germany
kemmler@lrz.de

Keywords: Cloud, Semi-cloud, Service, Cloud Service, Semi-cloud Service, Service Management.

Abstract: Cloud services promise benefits for customers and providers such as scalability, elasticity and reduced invest-
ment costs. Unfortunately, many of the promised benefits are not fulfilled by today’s cloud offerings and not
every service can be cloudified, e.g. if the service’s intrinsic structure contains unavoidable time-consuming
or manual tasks. A new cloud definition, based on a survey and comparison of existing cloud definitions, but
derived from beneficial cloud characteristics, leads to a service-oriented understanding of clouds and provides
an extension to the usual cloud service types. The characteristics of the given cloud definition uncover the
so-called ”MOUSETRAPS” of cloud services. The term ”semi-cloudification” for the transformation of ser-
vices towards a cloudified state presents a solid foundation for further discussions on the topic and enables
the improvement of non-cloudifiable services by semi-cloudification. Even services which partly consist of
unavoidable time-consuming or manual tasks qualify for semi-cloudification.

1 INTRODUCTION

Cloud computing influences the way today’s IT re-
lated businesses work. The percentage of compa-
nies which utilize clouds continually increases (Wall-
raf and Pols, 2014, p. 15). According to Gartner the
use of cloud services is growing faster than the over-
all enterprise IT market. (...) Cloud computing is set
to have a considerable impact on business in the fu-
ture. (...) Three key factors (...) will significantly im-
pact enterprise cloud use in the near to midterm fu-
ture (Rivera and Meulen, 2013):

1. Cloud services will be primarily used as a solu-
tion for specific problems with limited scope.

2. Cloud services will have an increased business
impact, while the use of cloud services moves
up the service chain from infrastructure towards
business process services.

3. Cloud solutions will lead to a more diverse so-
lution portfolio, widely varying in timelines, re-
source requirements, benefit profiles, business
criticality and complexity.

Although the migration challenges for the cloud
service customer are debated extensively (Khajeh-
Hosseini et al., 2010a, Khajeh-Hosseini et al., 2011,
Khajeh-Hosseini et al., 2010b, Kaisler and Money,

2011,Ward et al., 2010, Andrikopoulos et al., 2013,
Paulus and Riemann, 2013), there is little discussion
on the service provider challenges for transforming
legacy services into cloud services.

Besides other aspects, the three key factors in-
dicate four major requirements, which will be high-
lighted in this work:

1. Cloud taxonomies need to consider the promised
benefits of the cloud.

2. Services besides the general well-known clas-
sification Infrastructure-as-a-Service (IaaS),
Platform-as-a-Services(PaaS) and Software-as-
a-Service(SaaS) need to be included in a more
generalistic approach to the cloud. Especially, so-
lutions with limited scope, IT-related services of
the service chain towards business processes and
highly complex services should be considered.

3. Cloud taxonomies should enable and improve
discussions about the emerging service provider
challenges, which accompany the transformation
of a legacy service towards a cloud service.

4. Cloud services in the long run have the potential to
substitute the vast majority of legacy IT services
(Münzl et al., 2009, p. 22). Therefore, the cloud
service definition needs to be based on a solid def-
inition for IT services.

135

Based on this list, we extract the following:

� Which benefits are expected from a cloud service?

� Which of the existing cloud definitions support
these benefits?

Unfortunately, the promised benefits of cloud ser-
vices are often not fulfilled. A potential reason for the
lack of fulfilled benefits could stem from a major de-
sign fault in existing cloud definitions. Therefore, we
need to ask the question:

� Which cloud service characteristics need to be ful-
filled for a service to become a cloud service, thus
fulfilling the promised benefits?

In order to evaluate these questions, we also need
to investigate the following:

� Which services are cloudifiable, which are not?

� Which cloud service characteristics can be ful-
filled for non-cloudifiable services?

Following this introduction, Section 2 discusses
cloud benefits, that are promised in relevant literature.
Of these benefits several are still unfulfilled in exist-
ing cloud implementations. Section 3 compares ex-
isting cloud definitions and presents their inherent in-
ability to fulfill the promised benefits, while Section 4
proposes a new cloud taxonomy. By focusing on the
limits of cloudification Section 5 introduces the term
semi-cloud as a midway point for cloudification and
a possible solution for non-cloudifiable IT services.
To give an example for the use of the benefit oriented
approach Section 6 presents a scenario and a possible
solution. Section 7 concludes the paper and provides
an outlook on future work.

2 CLOUD SERVICE BENEFITS

2.1 Promised Benefits

Several research papers and practitioner reports
promise cloud service benefits, which are listed in
this subsection. Particularly we included the research
done by Khajeh-Hosseini et. al., who identified the
benefits and risks of using public IaaS clouds [...] by
reviewing over 50 academic papers and industry re-
ports (Khajeh-Hosseini et al., 2011). The (promised)
benefits of cloud computing depend on the enter-
prises perspective and can be distinguished into cloud
service customer benefits and cloud service provider
benefits.

Promised Cloud Service Customer Benefits

B1 DISTRIBUTED ACCESS1: Enhanced mobile and
geographically distributed access enables cus-
tomers (and consumers) to access cloud services
almost anywhere. Cloud services provide (end-
user-)device mobility, which improves collabo-
ration, and geo-distribution of similar cloud ser-
vices, thereby increasing existing backup facili-
ties, availability and continuity capabilities.

B2 INCREASED SCALABILITY1: Customers ben-
efit from scale-up/-down capabilities of cloud
services by adjusting their cloud service usage
according to the existing workload. Under-/ and
overprovisioning can be reduced.

B3 ELASTICITY2: Elasticity is the degree to which
a system is able to adapt to workload changes
by provisioning and deprovisioning resources in
an autonomic manner, such that at each point
in time the available resources match the cur-
rent demand as closely as possible (Nikolas Ro-
man Herbst et al., 2013).

B4 IMPROVED ORGANIZATIONAL FLEXIBILITY

AND AGILITY3: Cloud services can be flexi-
bly adjusted to business needs. A higher IT ab-
straction level leads to (IT-related) business de-
cisions which focus on core business activities
and not on IT details. Organizational changes
are less restricted by the local IT environment.

B5 TERM TRANSFORMATION OF INVEST-
MENT4: The use of services transforms capital
expenditures (CAPEX) for investments like
hardware or software into operational expen-
ditures (OPEX)(Etro, 2011, p. 12). Thereby
longer, unmodifiable investment periods, which
can last up to several years, are transformed
into several much shorter terms, which can
be adjusted on short notice. The frequently
occurring charge-per-use or pay-as-you-go
accounting-models for cloud services greatly
encourages this transformation.

B6 REDUCED TIME TO MARKET1: Cloud services
enable the faster creation of new or redesigned
services or products. The timeframe between
idea and service/product is reduced.

1(Khajeh-Hosseini et al., 2011; Carroll et al., 2011;
Phaphoom et al., 2012; Wallraf and Pols, 2014)

2(Khajeh-Hosseini et al., 2011)
3(Khajeh-Hosseini et al., 2011; Carroll et al., 2011;

Wallraf and Pols, 2014)
4(Etro, 2011; Khajeh-Hosseini et al., 2011; Wallraf and

Pols, 2014)

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

136

B7 ENTRY BARRIER REDUCTION5: Initial re-
source demand for new or redesigned services
can be decreased. The term transformation of
investment reduces the constraints on entry and
promotes business creation (Etro, 2011, p. 12).

B8 LOWER ADMINISTRATION COSTS1: The ex-
penditure for administration, maintenance and
general operation is reduced for the customer.

B9 IMPROVED AVAILABILITY AND PERFOR-
MANCE1: Both can be improved due to the huge
resources of cloud service providers. Quality
assurance and control is centralized.

B10 ENHANCED DATA SECURITY6: Professional
centralized security management, which is
transferred to the service provider, is often bet-
ter than the security management of customers.

B11 DISASTER RECOVERY7: Centralized disaster
recovery and geo-distribution of resources is
beneficial for cloud customers.

Promised Cloud Service Provider Benefits

B12 IMPROVED MANAGEMENT EFFI-
CIENCY8: Economies of scale lead to more
efficient management and provider automation.

B13 ENERGY EFFICIENCY9: The aggregation of
system components should also have a positive
effect on the level of power consumed on hard-
ware and software(Rajan and Jairath, 2011).10

B14 ECONOMIES OF SCALE2:Because computing,
storage and other service needs are aggregated
at provider level, cloud services make better use
of economies of scale.

B15 IMPROVED CAPACITY MANAGE-
MENT11: Providers benefit by an improved
capacity management through using otherwise
idle system components.

2.2 Unfulfilled Benefits

A study based on the contributions of users, develop-
ers, consultants, entrepreneurs and researchers to the
Cloud Computing Google Group indicates, that the

5(Etro, 2011)
6(Carroll et al., 2011; Phaphoom et al., 2012; Wallraf

and Pols, 2014)
7(Khajeh-Hosseini et al., 2011; Phaphoom et al., 2012)
8(Byung et al., 2013; Khajeh-Hosseini et al., 2011; Car-

roll et al., 2011)
9(Rajan and Jairath, 2011; Carroll et al., 2011)

10Although this needs further proof.
11(Khajeh-Hosseini et al., 2011; Carroll et al., 2011)

promised benefits B8, B9 and B10 have not been fully
achieved, while the results on the benefits B2 and B5
demonstrate their fulfillment. (Phaphoom et al., 2012)

Moreover, KPMG and BITKOM state, that the ini-
tial goals B1, B2 and B4 have been achieved by the
majority of enterprise cloud users. The promised ben-
efits B6, B8, B9, B10 and reduced IT investment costs
still lack fulfillment.(Wallraf and Pols, 2014, p. 26)

Obviously the benefits B13, B14 and B15 could
not be achieved, because if otherwise, IT investment
costs could have been reduced. Additionally, the fail-
ure to achieve benefit B6 also indicates the failure in
achieving benefit B7.

Although benefit B5 can be considered fulfilled,
because of the general construction of IT services,
there is no real proof that management efficiency
could be improved (B12) by providing cloud services.
For the benefit of existing cloud service implementa-
tion it can be assumed that B11 is fulfilled, due to
the existing experience with legacy IT services. Un-
fortunately, there is no proof for the (un)fulfillment
of benefit B3. Even though the argumentation in
this section mainly follows a paper which summarizes
contributions of the Google Cloud Computing Group
(Phaphoom et al., 2012) and a report which describes
the situation in Germany (Wallraf and Pols, 2014)
it can be assumed that many of the presented unful-
filled benefits are also unfulfilled worldwide. Other-
wise, globalisation and the ubiquitous nature of the
cloud would ruin any cloud service provider in the US
(Google Cloud Computing Group) and in Germany
shortly. An overview of the fulfilled and unfulfilled
benefits is given in Table 1.

Nevertheless, eight out of ten enterprise users tes-

Table 1: Fulfilled and unfulfilled cloud benefits.

Fulfilled B1 Distributed Access
Cloud B2 Increased Scalability
Benefits B4 Improved Organizational

Flexibility and Agility
B5 Term Transformation of

Investment
B11 Disaster Recovery

Unfulfilled B6 Reduced Time to Market
Cloud B7 Entry Barrier Reduction
Benefits B8 Lower Administration Costs

B9 Improved Availability and
Performance

B10 Enhanced Data Security
B13 Energy Efficiency
B14 Economies of Scale
B15 Improved Capacity

Management
Undecided B3 Elasticity

B12 Improved Management
Efficiency

Redefining�the�Cloud�based�on�Beneficial�Service�Characteristics�-�A�New�Cloud�Taxonomy�Leads�to�Economically
Reasonable�Semi-cloudification

137

tify that the utilization of a cloud is beneficial for
them.(Wallraf and Pols, 2014, p. 24)

3 EXISTING CLOUD
TAXONOMY

Almost any big player in the business of software and
computer services12 and additionally several com-
panies in the business of technology hardware and
equipment13 use the term ”cloud” as an integral part
of their advertising language. Despite widely used
for several IT environments, the terms ”cloud” and
”cloud computing” are still not used with a commonly
accepted understanding.14

3.1 Characteristics of Existing Cloud
Definitions

The ongoing research on cloud computing resides on
several incomplete and in parts contradictory defini-
tions, like the definitions of NIST(Mell and Grance,
2011), Forrester(Staten, 2008), Gartner(Cearley,
2010), European Commission(EC)(European Com-
mission, 2010, p. 8), BITKOM(Münzl et al., 2009,
p. 16) and BSI(Federal Office for Information Secu-
rity, 2011, p. 13). These definitions describe the cloud
with specific characteristics like access, service type,
customer type, business benefits and provisioning fea-
tures, which are listed in detail in the following.

Cloud Access Characteristics15

AC1 ubiquitous
AC2 on-demand
AC3 self-service
AC4 over a private

network

AC5 over a public
network

AC6 over a broad
network only

AC7 API

12like Microsoft, Google, IBM, Oracle and SAP, listed
in the Financial Times global top 500(Financial Times,
2014),which provides an annual snapshot of the world’s
largest companies (Dullforce, 2014)

13like Apple, Intel, Cisco and EMC, listed in the Finan-
cial Times global top 500(Financial Times, 2014)

14The iCloud connects you and your Apple device[,]
safely store[s] all your presentations, spreadsheets, PDFs,
images, and other kinds of documents (Apple, 2014), finds
your Apple device and protects it against theft; IBM is
building a smarter planet with IBM SmartCloud cloud com-
puting (IBM, 2014) and Microsoft brings higher education
into the cloud [Microsoft Deutschland GmbH, 2012-10-11].

15Convenient access is also a possible characteristic
which is required by the NIST definition. But since con-
venience is only measurable subjectively and depends very
much on the users point of view, it does not qualify as a
cloud characteristic.

Cloud Service Type Characteristics
SC1 IT service
SC2 SaaS, PaaS, IaaS
SC3 XaaS 16

SC4 configurable service
parameters

Cloud Customer Characteristics
CC1 public
CC2 private

CC3 community
CC4 hybrid

Cloud Business Characteristics

BC1 measured (priced) service
BC2 specified level of quality
BC3 tailored to a market need
BC4 CAPEX) OPEX

Cloud Provisioning Characteristics
PC1 elastic
PC2 scalable
PC3 rapid
PC4 real-time

PC5 pooling

PC6 no management
effort or provider in-
teraction17

3.2 Comparison of Existing Cloud
Definitions

By using the extracted definition characteristics to
take a closer look at these cloud definitions, the dif-
ferences become visible (see Table 2).

Especially if the introduced expected benefits (see
Section 2) of the cloud are also considered, the
deficits of existing cloud definitions are obvious. A
mapping between the expected benefits of the cloud
and their counterparts (characteristics, see Table 3)
applied to the definitions of the NIST, Forrester,
Gartner, EC, BITKOM and BSI clearly shows those
deficits (see Table 4). Therefore, a clean definition set
for the terms cloud, cloud computing, cloud service,
cloud service provider and cloudification is essential
for further scientific work regarding the limits of the
cloud and non-cloudifiable services.

4 CLOUD TAXONOMY
PROPOSAL

As discussed above, cloud taxonomy (see Figure 1)
should be build on top of the definition for the generic

16besides S/P/IaaS
17Some definitions use terms like with minimal manage-

ment effort or minimal provider interaction. From a theoret-
ical approach this is synonymous with no management ef-
fort or no provider interaction, because minimal is nothing
if there are no constraints and with unspecified constraints
minimal is meaningless.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

138

Table 2: Comparison of cloud definitions.
D

im
en

si
on

C
ha

ra
ct

er
is

tic

N
IS

T

Fo
rr

es
te

r

G
ar

tn
er

E
C

B
IT

K
O

M

B
SI

A
cc

es
s

AC1 4
AC2 4
AC4 4 6 4
AC5 4 4 4 4 4
AC6 4
AC3 4 4
AC7 4

Se
rv

ic
e

Ty
pe

SC1 4 4 4 4 4
SC2 4 (4) 4 4
SC3 6 6 4
SC4 4 4

C
us

to
m

er CC1 4 4 4
CC2 4 6
CC3 4 6
CC4 4 6

B
us

in
es

s BC1 4 4 4 4
BC2 4
BC3 4 4
BC4 4

Pr
ov

is
io

ni
ng

PC1 4 4 4 (4) 4
PC2 4
PC3 4
PC6 4 6
PC4 4
PC5 4

4: cloud definition contains characteristic
6: cloud definition contradicts characteristic

Figure 1: Cloud taxonomy.

sc
o
p
e
o
f
th
is
p
ap
er

Service

IT Service (XaaS)

Cloud

Service

Cloud

Service

Provider

Cloud

Cloud Customer

Cloud Provider

Cloud Consumer

Cloud Computing

Figure 1: Cloud taxonomy.

service.18 In this paper only the terms ”service”,
”IT service”, ”cloud service” and ”cloud” will be de-
fined. All other terms listed in Figure 1 can be derived

18Byung et al.(Byung et al., 2013) also state that the man-
agement of some cloud services is more efficient than the
management of standard IT services.

Table 3: Benefits targeted by cloud definition characteris-
tics.

B
en

efi
t Essential Nice-to-have

Definition Definition
Characteristics Characteristics

C
us

to
m

er

B1 AC1 AC5
B2 AC7, PC2, PC3 AC2
B3 PC1 AC2, AC7, SC4, PC2
B4 AC2, PC2 CC3, CC4
B5 BC4 BC1
B6 AC2, AC3, AC7 BC2, BC3
B7 AC3, BC4 BC2, AC7, BC3
B8 AC7, BC3
B9 AC1, AC2, BC2, AC4, AC5, AC6

PC1, PC2
B10 BC2 CC2
B11 AC1

Pr
ov

id
er

B12 BC3, PC6
B13 PC5
B14 AC3, AC7, BC1, PC5

PC2, PC6
B15 BC2, PC2 PC5

Table 4: Benefits targeted by essential cloud definition char-
acteristics.

B
en

efi
t

N
IS

T

Fo
rr

es
te

r

G
ar

tn
er

E
C

B
IT

K
O

M

B
SI

C
us

to
m

er

B1 4
B2 m m
B3 4 4 4 (4) 4
B4 m m
B5 4
B6 m m m
B7 m m m
B8 m 4
B9 m m m m m
B10 4
B11 4

Pr
ov

id
er B12 m m m

B13 4
B14 m m m m m m
B15 m m m m

4: targeted by at all essential cloud def. characteristics
m: targeted by at least one essential cloud def. char.

easily and are omitted due to space limitations.

4.1 IT Service

According to ITIL (Iqbal and Nieves, 2007, page 16)
a service is defined as follows19:

Definition 1 (Service). A service is a means of de-
livering value to customers by facilitating outcomes

19See also ISO/IEC 20000-1:2011; a service is a means
of delivering value to customers by facilitating outcomes
customers want to achieve (ISO/IEC, 2011, 3.26).

Redefining�the�Cloud�based�on�Beneficial�Service�Characteristics�-�A�New�Cloud�Taxonomy�Leads�to�Economically
Reasonable�Semi-cloudification

139

customers want to achieve without the ownership of
specific costs and risks.

Definition 2 (IT Service). An IT service is a service,
which consists at least partly of IT-related aspects.

Generally spoken, an IT service can be created by
a specific business unit utilizing assets of the IT orga-
nization to add value to the customers business. These
assets A can be segmented into sets like management
Am, organization Ao, processes Apr, knowledge Akn,
people Appl , information Ain f , applications Aapp, in-
frastructure Ai and financial capital A f c (see (Iqbal
and Nieves, 2007, page 39)) and their subsets like
Aapp

i ; i 2 N, which hold the following:

S
type := fm;o; pr;kn; ppl; in f ;app; i; f cg (1)

A =
[

k2Stype

Ak (2)

8k 2 S
type9n 2 N : Ak =

n[
i=1

Ak
i (3)

Definition 3 (XaaS). The value of an IT service is
generated by providing X-as-a-Service (XaaS), which
(as of today) can be segmented into the following ser-
vice types:

� Management-as-a-Service (MaaS), like interim
management

� Organization-aaS (OaaS), like franchising
� Processes-aaS (PRaaS), like franchising
� Knowledge-aaS (KNaaS), which splits into

Education-aaS (EDUaaS) and consulting
� People-aaS (PPLaaS), like temporary work
� Information-aaS (INFaaS), like Reuters or

Bloomberg
� Application-aaS (APPaaS), which splits into

Software-aaS (SaaS) and Platform-aaS (PaaS)
� Infrastructure-aaS (IaaS), which splits into

Hardware-aaS (HaaS), virtual-Infrastructure-aaS
(vIaaS) and Desktop-aaS (DaaS)

� and Capital-aaS (FCaaS), like a call loan or a
credit facility

Mixtures of these service types are also XaaS.

In accordance to the definition of XaaS (Defini-
tion 3) an IT service can be characterized by service
type and the needed input assets iAk and output assets
oAk, which can be split up into provider assets PiAk

and PoAk and customer assets CiAk and CoAk.
Furthermore, an IT service can also be created by

a specific business unit, additionally utilizing avail-
able XaaS of the IT organization to add value to
the customers’ business. As already discussed, those
XaaS S can also be segmented into sets like manage-
ment Sm, organization So, processes Spr, knowledge

Skn, people Sppl , information Sin f , applications Sapp,
infrastructure Si and financial capital S f c and their
subsets like Sapp

i ; i 2 N
Altogether, these assets and services are the build-

ing blocks of a generic IT service. They serve as input
parameters to the service function

fS : CiA�CiS�PiA�PiS!CoA�CoS�PoA�PoS
(4)

which creates the service according to a service level
agreement (SLA) or an operational level agreement
(OLA). These agreements specify the the level, scope
and quality of the service in detail.

Definition 4 (Service Level Agreement (SLA)). SLAs
are the documents agreed with the customers that
specify the level, scope and quality of service to be
provided (Lloyd et al., 2007, page 24)).

Definition 5 (Operational Level Agreement (OLA)).
OLA are any underpinning agreements necessary to
deliver the quality of service agreed within the SLA
(Lloyd et al., 2007, page 24)).

Additionally the SLA/OLA may contain specifi-
cations about occurring customer obligations. The
provided service itself is an entity of the set CoS.
Therefore the SLA can be defined as the function

fSLA : CiAjSLA� CiSjSLA! CoSjSLA (5)
Figure 2: Generic service model.

PiA PoA

PiS PoS

CiA CoA

CiS CoS

fS

+

+

+

SLA

SLA

SLA

Figure 2: Generic service model.

Finally, the service may contain a configurable
service parameter vector p, which leads to

fSp : CiA�CiS�PiA�PiS
!CoA�CoS�PoA�PoS (6)

and fSLAp : CiAjSLAp
� CiSjSLAp

! CoSjSLAp
(7)

4.2 Cloud Service

Based on the discussions above a new cloud definition
can be derived, which, on the one hand gives, a solid
foundation to fulfill customers/providers expectancy

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

140

Table 5: Benefits targeted by cloud definition characteristics
without service benefits and characteristics.

B
en

efi
t Essential Nice-to-have

Definition Definition
Characteristics Characteristics

C
us

to
m

er

B1 AC1 AC5
B2 AC7, PC2, PC3 AC2
B3 PC1 AC2, AC7, PC2
B4 AC2, PC2 CC3, CC4
B6 AC2, AC3, AC7 BC2
B7 AC3 BC2, AC7
B8 AC7
B9 AC1, AC2, BC2, AC4, AC5, AC6

PC1, PC2
B10 BC2 CC2
B11 AC1

Pr
ov

id
er

B12 PC6
B13 PC5
B14 AC3, AC7, BC1, PC5

PC2, PC6
B15 BC2, PC2 PC5

and, on the other hand, considers the already listed
commonly accepted cloud characteristics. The most
important cloud service characteristics can be sum-
marized by the acronym ”MOUSETRAPS”.

Definition 6 (Cloud Service). A cloud service is a
M easured, O n-demand, U biquitous, S calable
and E lastic IT service T ailored to a market need
with a specified level of quality (SLA/OLA). It is provi-
sioned, deprovisioned or reconfigured R apidly with-
out provider interaction, by using an A PI, P ooling
mechanisms and a S elf-service. The service should
be accessible over a broad network.

By utilizing the previously given definition for an
IT service (see Definition 1 and 2) benefit B5 and the
cloud characteristics SC1, SC2, SC3, SC4, BC3 and
BC4 already have been fully included. Thus Table 3
can be significantly reduced as shown in Table 5. Ad-
ditionally, the inclusion of SC3 already disqualifies
the definitions of NIST and BITKOM (see Table 2).

Particularly, the mandatory SLA/OLA of cloud
services enable customers to conduct an appropriate
risk-analysis for the cloud operation and migration of
legacy customer systems. This enables customers to
migrate even mission-critical systems into the cloud.

Definition 7 (Cloud). A cloud is a multitenant elec-
tronic marketplace, accessible by a broad network,
with strictly defined interfaces for customers and
provider(s), where cloud services can be traded20.
Access to the cloud can be restricted to a private,
community, public or hybrid audience.

20General linguistic usage: Services do not ”leave” the
cloud. They ”live” in the cloud.

Table 6: Comparison of cloud definitions without service
characteristics.

D
im

en
si

on

C
ha

ra
ct

.

N
IS

T

Fo
rr

es
te

r

G
ar

tn
er

E
C

B
IT

K
O

M

B
SI

D
ef

.7

D
ef

.1
0

A
cc

es
s

AC1 4 4 4
AC2 4 4 4
AC4 4 6 4 4
AC5 4 4 4 4 4 4
AC6 4 4
AC3 4 4 4 4
AC7 4 4 4

C
us

to
m

er CC1 4 4 4 4 4
CC2 4 4 4
CC3 4 4 4
CC4 4 4 4

B
us

in
es

s

BC1 4 4 4 4 4 4
BC2 4 4 4

Pr
ov

is
io

ni
ng

PC1 4 4 4 4 4 4
PC2 4 4 4
PC3 4 4
PC6 4 6 4
PC4 4
PC5 4 4 4

Table 7: Benefits targeted by all essential and nice-to-have
cloud definition characteristics.

B
en

efi
t

N
IS

T

Fo
rr

es
te

r

G
ar

tn
er

E
C

B
IT

K
O

M

B
SI

D
ef

.7

D
ef

.1
0

C
us

to
m

er

B1 4 4
B2 4
B3 4
B4 4 4 4
B6 4 4
B7 4 4
B8 4 4 4
B9 4
B10 4 4
B11 4 4

Pr
ov

id
er B12 4

B13 4 4 4
B14 4
B15 4 4

This newly defined cloud definition fulfills all
needed characteristics to achieve the promised ben-
efits (see Tables 6 and 7), and therefore gives a bet-
ter understanding of the cloud. Although the char-
acteristic PC4 could be dropped, because according
to Table 6 it is not beneficial to any of the promised
benefits, it is included in Definition 6. Obviously, the
dependence between AC2 and PC4 cannot be fully
denied.

Consequently ”cloudification” can be defined as:

Redefining�the�Cloud�based�on�Beneficial�Service�Characteristics�-�A�New�Cloud�Taxonomy�Leads�to�Economically
Reasonable�Semi-cloudification

141

Definition 8 (Cloudification). Cloudification is the
transformation by which an IT service becomes a
cloud service which is provisioned using a cloud.

5 LIMITS OF CLOUDIFICATION

Unfortunately, not every IT service can be fully cloud-
ified. IT services like the hardware maintenance of
desktop computers or laptops, full service copier lease
with ink refill service, education, consulting or other
services which at least partly consist of physical work
in not properly standardized environments, do not
qualify for cloudification, because of their unavoid-
able manual (and time consuming) work load. Ad-
ditionally, full service cloudification would be very
costly and contradicts benefits which target the over-
all reduction of costs. By dropping the cloud charac-
teristics AC4, AC5, AC6, PC3 and PC6 an econom-
ically more reasonable definition can be found. The
new terms, ”semi-cloud service”, ”semi-cloud” and
”semi-cloudification” should be used as terms to dis-
cuss those ”nearly” cloudified services. The most im-
portant semi-cloud service characteristics can again
be summarized by the acronym ”MOUSETrAPS”.

Definition 9 (Semi-Cloud Service). A semi-cloud
service is a M easured, O n-demand, U biquitous
and S calable IT service T ailored to a market
need with a specified level of quality (SLA/OLA). It
is provisioned, deprovisioned or reconfigured with
E conomically reasonable provider interaction, by
using an A PI, P ooling mechanisms and a S elf-
service.

Definition 10 (Semi-Cloud). A semi-cloud is a multi-
tenant electronic marketplace with strictly defined in-
terfaces for customers and provider(s), where semi-
cloud services can be traded. Access to the semi-
cloud can be restricted to a private, community, pub-
lic or hybrid audience.

Definition 11 (Semi-Cloudification). Semi-
cloudification is the transformation by which an
IT service becomes a semi-cloud service which is
provisioned using a semi-cloud.

As can be seen in Table 7, only the benefits B1,
B2, B9, B12 and B14 are not fully targeted by the
semi-cloud as defined in Definition 10. Further in-
vestigation shows, that these benefits are only slightly
missed:

B1. All essential definition characteristics fulfilled

B2. Only PC3 unfulfilled

B9. All essential definition characteristics fulfilled

B12. Benefit B12 is based on characteristic PC6.21

B14. Only PC6 unfulfilled

Altogether, the shortcomings of the proposed defini-
tion for the semi-cloud focus around the missing char-
acteristics PC3 and PC6, which were omitted on pur-
pose to encourage the development of designs which
balance investment in the semi-cloud systems with
economical benefits. Additionally, non-cloudified
services which at least partly consist of unavoidable
manual tasks, can be semi-cloudified. Therefore the
term semi-cloud can be considered a substantial ex-
tension to the cloud taxonomy.

6 APPLICATION SCENARIO

To show some real-life aspects of the given approach
towards (semi-)cloudification, we introduce the fol-
lowing scenario and observe possible solutions. By
the nature of a scenario, the given problems and the
solution can not touch the full extend of this work,
but give an impression on the change of perspective
set by the new cloud taxonomy.

6.1 Scenario

Consider a midsize IT company which started busi-
ness activities in 1965 by selling copying machines
and fulfilling corresponding maintenance contracts.
In 1985 the CEO decided to include office print-
ers for personal computers into the product range.
Later on the company began selling PCs, servers and
network equipment always together with their corre-
sponding maintenance contracts until in 2005 the new
CEO introduced a new service oriented strategy. To-
day the enterprise has around 200 employees, 5 VIP-
Customers (three of those since 1965) and around 400
SME customers total. The company mainly provides
four services: printing (on-site and off-site), printing
and mailing, desktop management and virtual root
servers, which are located at a company owned fa-
cility. Last year an ISO/IEC 20000 certification was
achieved. Most of the employees are booked to capac-
ity and there is little time left for innovative projects.
In the last two years the CEO heard about the cloud
and its benefits but deferred a project to enable cloud
computing for his customers, because of the resources
involved with the organizational transformation to-
wards ISO/IEC 20000. Although the budget is tight
the CEO expects his new CIO to ”cloudify” his com-
pany. He privately assumes that the company will es-
pecially benefit from the resulting management effi-

21which is dropped deliberately

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

142

ciency, energy efficiency and the improved capacity
management of the cloud. By this, he believes, his
company will reach the turning point towards making
profit again. With great commitment the CIO initiates
the cloud project.

6.2 Problems

In this setting, besides many other, several problems
arise which were discussed in this paper.
1) Each of the company’s employees has a slightly

different understanding of the cloud:
� The customer relationship manager looks for-

ward to the new cloud service, which will be
added to the company’s service lines and is
highly demanded by the company’s customers.
� The infrastructure department head expects

benefits by accommodating desperately needed
resource demands with an external cloud
provider.
� The hardware maintenance group thinks, that

the cloud is a topic for the software guys.
� The virtualisation specialists state, that cloud

computing is already their daily business.
� Another approach is given by the head of re-

search and development, who proposes to in-
stall a software called FreeStack.

2) The CEO wants to fully cloudify the company.
But the CIO thinks, that many services of the
company can not be cloudified. Installing the
proposed IaaS software FreeStack for virtual ma-
chines provisioning, which also provides inter-
faces to external cloud providers, could be a so-
lution for the VM service. But who is going to
manage the emerging new cloud service, if most
of the employees are booked to capacity?

3) The CIO’s project budget is limited. Therefore
she would like to focus on the most important ben-
efits and implement an economically reasonable
cloud solution. But which are these and which
one of the several available cloud definitions sup-
port these benefits?

4) Especially the VIP customers might stick to their
legacy services and refuse the new cloud services.

6.3 Solution with the Given Approach

By introducing the employees to the benefit oriented
cloud taxonomy of Section 4, a commonly accepted
understanding of the cloud can be reached (Prob-
lem 1). Especially because of the benefit oriented ap-
proach, the characteristics in the given definitions can
be directly connected to the CEOs desires.

Additionally, a structural analysis and proper de-
composition of the company’s services according
to Subsection 4.1 reveals that the services printing
(on-site and off-site), printing and mailing, desk-
top management can not be cloudified, but semi-
cloudified because of their unavoidable manual work-
load. Moreover, existing services should be trans-
formed into semi-cloud services with at least equal
service features one-by-one to free employees from
working on legacy services (Problem 2).

An Interview with the CEO based on the given list
of benefits in Section 2 reveals, that he is especially
interested in gaining the benefits B12, B13 and B15.
Semi-Cloudification of the company’s services with
a special focus on characteristics PC5, BC2 and PC2
will specifically address benefits B13 and B15 (see
Table 5), while characteristic PC6 and therefore bene-
fit B12 contradicts the budget constraints(Problem 3).
A moderate, cost-conscious automation of service
production steps seems to be advisable.

By the transformation of existing services VIP
customers can be migrated without loss of the existing
service features (Problem 4).

7 SUMMARY AND OUTLOOK

As indicated by our analysis, most of the promised
cloud benefits are not addressed by existing cloud def-
initions. This presents a possible root cause for the
unfulfillment of most of those benefits. Based on an
analysis of the generic IT service and by identifying
beneficial cloud service characteristics, the so-called
MOUSETRAPS, a new cloud definition has been de-
rived, which focusses intensely on the desired ben-
efits of the cloud. The terms ”semi-cloud”, ”semi-
cloud service” and ”semi-cloudification” present a
solid base terminology for further discussions of the
topic. On the one hand, semi-cloudification can be
understood as a midway point towards full cloudifi-
cation and, on the other hand, many of the existing
non-cloudifiable services can be semi-cloudified.

Further studies are needed to analyze the trans-
formation process between the steps non-cloudified,
semi-cloudified and cloudified to improve the cloud-
ification of legacy services. Generally cloud re-
search should shift towards a more benefit-oriented
approach, especially, when it comes to subjects re-
garding the service provider and their motives for im-
plementing cloud solutions. Service providers have
to realize that the impact of (semi-)cloudification will
not only enhance their own services, but also services
of their competitors, resulting in a tighter, but better
focused service portfolio for each service provider.

Redefining�the�Cloud�based�on�Beneficial�Service�Characteristics�-�A�New�Cloud�Taxonomy�Leads�to�Economically
Reasonable�Semi-cloudification

143

REFERENCES

Andrikopoulos, V., Binz, T., Leymann, F., and Strauch, S.
(2013). How to Adapt Applications for the Cloud En-
vironment. Computing, 95(6):493–535.

Apple (2014). iCloud. http://www.apple.com/icloud/.
04.12.2014.

Byung, C. T., Urgaonkar, B., and Sivasubramaniam, A.
(2013). Cloudy with a Chance of Cost Savings. Par-
allel and Distributed Systems, IEEE Transactions on,
24(6):1223–1233.

Carroll, M., van der Merwe, A., and Kotze, P. (2011). Se-
cure Cloud Computing: Benefits, Risks and Controls.
In 2011 Information Security for South Africa (ISSA),
pages 1–9.

Cearley, D. W. (2010). Cloud Computing: Key Initiative
Overview. http://www.gartner.com/it/initiatives/pdf/
KeyInitiativeOverview CloudComputing.pdf.
21.11.2014.

Dullforce, A.-B. (2014). FT 500 2014 Introduction
and Methodology. http://www.ft.com/intl/cms/
s/0/6fdb9d70-fdf5-11e3-bd0e-00144feab7de.html.
08.07.2014.

Etro, F. (2011). The Economics of Cloud Computing. IUP
Journal of Managerial Economics, 9(2):7–22.

European Commission (25.01.2010). The Future Of Cloud
Computing. http://cordis.europa.eu/fp7/ict/ssai/docs/
cloud-report-final.pdf. 02.01.2013.

Federal Office for Information Security (2011). Security
Recommendations for Cloud Computing Providers:
Minimum information security requirements.
https://www.bsi.bund.de/SharedDocs/Downloads/
EN/BSI/Publications/Minimum information/
Security Recommendations Cloud Computing
Providers.html. 2015-01-05.

Financial Times (2014). Global 500 Companies
Ranked by Sector. http://im.ft-static.com/content/
images/70710ff2-fded-11e3-bd0e-00144feab7de.xls.
08.07.2014.

IBM (2014). http://www-07.ibm.com/hk/cloud/cloud-
computing/. 04.12.2014.

Iqbal, M. and Nieves, M. (2007). Service Strategy. ITIL.
TSO (The Stationery Office), London, 2 edition.

ISO/IEC (2011). ISO/IEC 20000-1:2011 - Information
Technology - Service Management, Part 1: Service
Management system requirements.

Kaisler, S. and Money, W. (2011). Service Migration in
a Cloud Architecture. In System Sciences (HICSS),
2011 44th Hawaii International Conference on, pages
1–10.

Khajeh-Hosseini, A., Greenwood, D., and Sommerville, I.
(2010a). Cloud Migration: A Case Study of Migrating
an Enterprise IT System to IaaS. In 2010 IEEE Inter-
national Conference on Cloud Computing (CLOUD),
pages 450–457.

Khajeh-Hosseini, A., Sommerville, I., Bogaerts, J., and
Teregowda, P. (2011). Decision Support Tools for
Cloud Migration in the Enterprise. In 2011 IEEE
4th International Conference on Cloud Computing
(CLOUD), pages 541–548.

Khajeh-Hosseini, A., Sommerville, I., and Sriram, I.
(2010b). Research Challenges for Enterprise Cloud
Computing. CoRR, abs/1001.3257.

Lloyd, V., Rudd, C., and Taylor, S. (2007). ITIL - Service
Design: [IT service management practices; ITIL v3
core publications]. TSO, London.

Mell, P. and Grance, T. (2011). The NIST Definition of
Cloud Computing: Recommendations of the National
Institute of Standards and Technology: Special Pub-
lication 800-145. Computer Security Division, Infor-
mation Technology Laboratory, National Institute of
Standards and Technology, Gaithersburg, MD.

Microsoft Deutschland GmbH (2012-10-11). Hochschulen
in der Wolke: Immer mehr Bildungsein-
richtungen setzen auf Cloud Computing.
http://www.microsoft.com/germany/newsroom/
pressemitteilung.mspx?id=533628. 05.12.2014.

Münzl, G., Przywara, B., Reti, M., Schäfer, J., Son-
dermann, K., Weber, M., and Wilker, A. (2009).
Cloud Computing: Evolution in der Technik,
Revolution im Business: BITKOM-Leitfaden.
http://www.bitkom.org/files/documents/BITKOM-
Leitfaden-CloudComputing web.pdf. 02.01.2013.

Nikolas Roman Herbst, Samuel Kounev, and Ralf Reussner
(2013). Elasticity in Cloud Computing: What It Is,
and What It Is Not. In Proceedings of the 10th Inter-
national Conference on Autonomic Computing (ICAC
13), pages 23–27, San Jose, CA. USENIX.

Paulus, S. and Riemann, U. (2013). An Approach for a
Business-Driven Cloud Compliance Analysis Cover-
ing Public Sector Process Improvement requirements.
CoRR, abs/1310.2832.

Phaphoom, N., Oza, N., Wang, X., and Abrahamsson, P.
(2012). Does Cloud Computing Deliver the Promised
Benefits for IT Industry? In Männistö, T., editor, the
WICSA/ECSA 2012 Companion Volume, page 45.

Rajan, S. and Jairath, A. (2011). Cloud Computing: The
Fifth Generation of Computing. In Communication
Systems and Network Technologies (CSNT), 2011 In-
ternational Conference on, pages 665–667.

Rivera, J. and Meulen, R. v. d. (2013). Gartner Says
the Road to Increased Enterprise Cloud Usage Will
Largely Run Through Tactical Business Solutions
Addressing Specific Issues. http://www.gartner.com/
newsroom/id/2581315. 05.12.2014.

Staten, J. (2008). Is Cloud Computing Ready
For The Enterprise? A Client Choice Re-
port: Not Yet, But This Disruptive Innovation
Is Maturing Fast. https://www.forrester.com/
Is+Cloud+Computing+Ready+For+The+Enterprise/
fulltext/-/E-RES44229? 05.12.2014.

Wallraf, B. and Pols, A. (2014). Cloud-Monitor 2014:
Cloud-Computing in Deutschland – Status quo
und Perspektiven. http://www.kpmg.com/DE/de/
Documents/cloudmonitor-2014-kpmg.pdf.
05.12.2014.

Ward, C., Aravamudan, N., Bhattacharya, K., Cheng, K.,
Filepp, R., Kearney, R., Peterson, B., Shwartz, L.,
and Young, C. (2010). Workload Migration into
Clouds Challenges, Experiences, Opportunities. In
2010 IEEE International Conference on Cloud Com-
puting (CLOUD), pages 164–171.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

144

CoMA: Resource Monitoring of Docker Containers

Lara Lorna Jiménez, Miguel Gómez Simón, Olov Schelén, Johan Kristiansson, Kåre Synnes
and Christer Åhlund

Dept. of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden
flara.lorna.jimenez, miguel.gomez.simon, olov.schelen, johan.kristiansson, kare.synnes, christer.ahlundg@ltu.se

Keywords: Docker, Containers, Containerization, OS-level Virtualization, Operating System Level Virtualization,
Virtualization, Resource Monitoring, Cloud Computing, Data Centers, Ganglia, sFlow, Linux, Open-source,
Virtual Machines.

Abstract: This research paper presents CoMA, a Container Monitoring Agent, that oversees resource consumption of
operating system level virtualization platforms, primarily targeting container-based platforms such as Docker.
The core contribution is CoMA, together with a quantitative evaluation verifying the validity of the mea-
surements reported by the agent for three metrics: CPU, memory and block I/O. The proof-of-concept is
implemented for Docker-based systems and consists of CoMA, the Ganglia Monitoring System and the Host
sFlow agent. This research is in line with the rising trend of container adoption which is due to the resource
efficiency and ease of deployment. These characteristics have set containers in a position to topple virtual
machines as the reigning virtualization technology in data centers.

1 INTRODUCTION

Traditionally, virtual machines (VMs) have been the
underlying infrastructure for cloud computing ser-
vices(Ye et al., 2010). Virtualization techniques
spawned from the need to use resources more effi-
ciently and allow for rapid provisioning. Native vir-
tualization (Type I) (VMware Inc, 2007b)(VMware
Inc, 2007a) is the standard type of virtualization be-
hind cloud services. There are several established
platforms that offer this type of virtualization such
as, Xen hypervisor (Barham et al., 2003), Linux Ker-
nel Virtual Machine (KVM) (Tafa et al., 2011) and
VMware (VMware Inc, 2007a). Full-virtualization,
Para-virtualization and Hardware-assisted virtualiza-
tion are different techniques that attempt to enhance
the effectiveness of VMs, with varying degrees of suc-
cess and certain tradeoffs. However, none of these
techniques are on par with today’s expectations in the
cloud computing industry. It has been demonstrated
that VMs introduce a significant overhead that does
not allow for an optimized use of resources (Xu et al.,
2014). The unfulfilled potential for improvement of
VMs is where OS-level virtualization comes in.

OS-level virtualization has become popular in re-
cent years by virtue of its resource efficiency. This
light-weight type of virtualization executes processes
quasi-natively (Felter et al., 2014),(Xavier et al.,

2013). On top of a shared Linux kernel, several
of what are generally referred to as “containers”
run a series of processes in different user spaces
(Elena Reshetova, 2014). In layman’s terms, OS-
level virtualization generates virtualized instances of
kernel resources, whereas hypervisors virtualize the
hardware. Moreover, containers run directly on top
of an operating system, whereas VMs need to run
their OS on top of a hypervisor which creates a per-
formance overhead (Xu et al., 2014). The downside
of containers is that they must execute a similar OS to
the one that is hosting the containers. There are var-
ious implementations of OS-level virtualization, with
differences in isolation, security, flexibility, structure
and implemented functionalities. Each one of these
solutions is oriented towards different use cases. For
example, chroot() jails (Elena Reshetova, 2014) are
used to sandbox applications and Linux containers
(LXC) 1 are used to create application containers.

In March 2013, the Docker platform was released
as an open-source project based on LXC and a year
later, the environment was moved from LXC to lib-
container 2. Docker is based on the principles of con-
tainerization, allowing for an easy deployment of ap-
plications within software containers as a result of
its innovative and unique architecture (Felter et al.,

1https://linuxcontainers.org/
2http://www.infoq.com/news/2013/03/Docker

145

2014). Docker implements certain features that were
missing from OS-level virtualization. It bundles the
application and all its dependencies into a single ob-
ject, which can then be executed in another Docker-
enabled machine. This assures an identical execu-
tion environment regardless of the underlying hard-
ware or OS. The creation of applications in Docker
is firmly rooted in the concept of versioning (Docker
Inc, 2014b). Modifications of an application are com-
mitted as deltas (Docker Inc, 2014c), which allows
roll backs to be supported and the differences to pre-
vious application versions to be inspected. This is an
exceptional method of providing a reliable environ-
ment for developers. Furthermore, Docker promotes
the concept of reusability, since any object that is de-
veloped can be re-used and serve as a “base image”
to create some other component. Another essential
aspect of Docker is that it provides developers with
a tool to automatically build a container from their
source code.

The main difference between a Docker container
and a VM is that while each VM has its own OS,
dependencies and applications running within it, a
Docker container can share an OS image across mul-
tiple containers. In essence, a container only holds
the dependencies and applications that have to be run
within them. For example, assuming a group of con-
tainers were making use of the same OS image, the
OS would be common to all containers and not be du-
plicated contrary to the case of a VM topology.

Docker has become the flagship in the container-
ization technology arena since its release (Felter et al.,
2014) (Docker Inc, 2013). This open-source project
has gained much notoriety in the field of cloud com-
puting, where major cloud platforms and companies
(e.g. Google, IBM, Microsoft, AWS, Rackspace, Red
Hat, VMware) are backing it up. These companies
are integrating Docker into their own infrastructures
and they are collaborating in Docker’s development.
Recently, a few alternatives to Docker have cropped
up, such as Rocket 3, Flockport 4 and Spoonium 5.

An adequate monitoring of the pool of resources
is an essential aspect of a cloud computing infrastruc-
ture. The monitoring of resources leads to improved
scalability, better placement of resources, failure de-
tection and prevention, and maintenance of architec-
tural consistency, among others. This is relevant for
VMs, and it is just as applicable to OS-level virtual-
ization. Out of this need to monitor containers, within
the paradigm of OS-level virtualization platforms, the
following research questions have been addressed in

3https://coreos.com/blog/rocket/
4http://www.flockport.com/start/
5https://spoon.net/docs

this paper:

� How could an OS-level virtualization platform be
monitored to obtain relevant information concern-
ing images and containers?
This paper presents an investigation of this issue
as well as an implementation of a Container Mon-
itoring Agent.

� Is the resource usage information about the run-
ning containers reported by our Container Moni-
toring Agent valid?
This paper details a quantitative evaluation of the
validity of the measurements collected by the pro-
posed Container Monitoring Agent.

The rest of the paper is organized as follows. Sec-
tion 2 presents state-of-the-art research related to the
monitoring of containers and virtual machines. Sec-
tion 3 explains the different components of the moni-
toring system architecture. Section 4 presents the re-
sults obtained. Section 5 discusses the research ques-
tions. Finally, Section 6 presents the conclusions of
the paper and discusses the possibilities for future
work.

2 RELATED WORK

There is an active interest in industry and in research
to build monitoring solutions (Ranjan and Tai, 2014).
In (Kutare et al., 2010) the term monalytics is coined.
Monalytics refers to a deployment of a dynamically
configurable monitoring and analytics tool for large-
scale data centers, targeting the XEN hypervisor. One
of the monalytics’ topologies defined, matches the
architecture chosen for the monitoring solution pro-
vided in this paper. The research of (Meng et al.,
2012) is centered on providing a state monitoring
framework that analyzes and mitigates the impact
of messaging dynamics. This technique ensures the
trustworthiness of the measurements collected by a
distributed large-scale monitoring tool on XEN-based
virtual machines. Most existing monitoring research
for data center management target virtual machines.
To the best of our knowledge, at the time of writing
this paper, there were no research papers on the topic
of monitoring the Docker platform.

When this monitoring solution for Docker was de-
veloped, there were a lack of open-source implemen-
tations to monitor Docker. However, recently, several
other monitoring systems for Docker have appeared.

Datadog agent (Datadog Inc, 2014) is an open-
source tool developed by Datadog Ink which moni-
tors Docker containers by installing an agent within
the host where the Docker platform is running. It is

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

146

an agent-based system which requires metrics to be
pushed to the Datadog cloud thereby making the task
of monitoring entirely dependent on Datadog’s cloud.
Unlike the Datadog agent, the monitoring agent for
the Docker platform presented in this paper is not only
open-source, but also independent of any particular
collector. It can be integrated within different mon-
itoring architectures after the proper configuration is
done.

cAdvisor is an open-source project created by
Google Inc (Bryan Lee, 2014) to monitor their own
lmctfy containers (Google Inc, 2014). Support to
monitor the Docker platform was later added to it.
Therefore, this monitoring tool provides Docker met-
rics, which are shown in real time but are not stored
for more than one minute. This feature may be use-
ful to test container performance but, due to the small
data time frame displayed, it is not possible to get a
historical of the metrics collected.

The Host sFlow agent (InMon Inc, 2014) is an
open-source tool to monitor the resource consumption
of a host. It has recently incorporated the option to
monitor the Docker platform, making it a viable open-
source monitoring solution for Docker. However, this
agent adheres to the sFlow standard 6, which enforces
constraints on the information it is able to send as
there is no dedicated sFlow structure for Docker. By
contrast, the solution provided in this paper does not
have limitations on the metrics that can be obtained.
The monitoring agent presented here can be modi-
fied to select which metrics, out of all the available,
to monitor.

As shown above, only the solution proposed in
this paper manages to provide a monitoring module
for Docker that is open-source, does not adhere to
a particular collector or monitoring framework pro-
vided some configuration is done, and allows for the
selection of a certain subset of metrics from all the
available ones.

3 SYSTEM ARCHITECTURE

To monitor Docker containers, three separate modules
could be employed: our Container Monitoring Agent
(CoMA), a metrics’ collector and a host monitoring
agent. The solution proposed in this paper, to create
a distributed Docker monitoring system consists of:
CoMA, the Ganglia Monitoring System and the Host
sFlow agent.

In Figure 1, a possible layout of the proposed
monitoring architecture is shown. This figure repre-

6http://www.sflow.org/developers/specifications.php

Figure 1: Cloud topology.

Figure 2: General overview of the host.

sents three clusters. Each one of the monitored hosts
represented in Figure 1 have the structure presented
in Figure 2.

3.1 CoMA: CONTAINER
MONITORING AGENT

We have developed CoMA, the agent that moni-
tors containers of OS-level virtualization platforms
such as Docker. CoMA retrieves information about
the containers and images in the Docker platform.
It also tracks the CPU, memory and block I/O re-
sources being consumed by the running containers.
CoMA can be accessed as an open-source project at
https://github.com/laraljj/CoMA.

The collection of Docker metrics in CoMA is ac-
complished via two modules. One module makes
requests to the platform’s Remote API (Docker Inc,
2014a) to collect data about the containers and im-
ages. These include: the number of Go routines be-
ing executed by the Docker platform; the images that
have been created in each host and information about
these (e.g. size and virtual size); the number of con-
tainers that have been created and from which image
they have been built; the status of all the containers in
the host (i.e. whether they are running or stopped).

The second module obtains information about re-
source usage and resource limitations of the running
containers. These metrics are obtained by accessing
the control groups (cgroups) feature of the Linux ker-
nel (Paul Menage, 2014), which accounts and sets

CoMA:�Resource�Monitoring�of�Docker�Containers

147

limits for system resources within different subsys-
tems. The container resources monitored by this mod-
ule include CPU, memory and block I/O. The num-
ber of measurements recorded by CoMA vary accord-
ing to the number of containers that have been de-
ployed. For the Docker platform as a whole, there
are 18 CPU related metrics. Per container, 18 CPU
related metrics, 24 memory related metrics, and 100
block I/O related metrics are measured. This means
that when a single container is running, there are a to-
tal of 160 measurements available, 142 of these are
container specific and 18 of these are related to the
Docker platform itself. Therefore, when two contain-
ers are running there will be 302 measurements, 142
measurements for one container, 142 measurements
for the other container and 18 measurements for the
Docker platform. The metrics that are being reported
by CoMA can be selected according to the needs of
each specific deployment, so that only the values of
those metrics are dispatched to the collector, instead
of all of them.

3.2 Complementary Components

3.2.1 The Ganglia Monitoring System

The Ganglia Monitoring System (Massie et al., 2012)
is an open-source distributed monitoring platform to
monitor near real-time performance metrics of com-
puter networks. Its design is aimed at monitoring fed-
erations of clusters. The Ganglia Monitoring System
was selected as collector due to its capacity to scale,
its distributed architecture and because it supports the
data collection of the Host sFlow agent. However, in
the interest of fitting the requirements of a different
system, a stand-alone collector could be used instead.

The system is comprised of three different units:
gmond, gmetad and gweb. These daemons are self-
contained. Each one is able to run without the inter-
vention of the other two daemons. However, architec-
turally they are built to cooperate with each other.

Gmond is a daemon that collects and sends met-
rics from the host where it is running to gmetad. This
is not a traditional monitoring agent, as it does not sit
passively waiting for a poller to give the order to re-
trieve metrics. Gmond is able to collect metric values
on its own, but gmond’s built-in metrics’ collection
may be replaced by the Host sFlow agent. This setup
implies that, for the architecture chosen, gmond acts
as in-between software layer for the Host sFlow agent
and gmetad.

Gmetad is a daemon running a simplified version
of a poller, since all the intelligence of metric re-
trieval lays, in our case, with the Host sFlow agent

and gmond. Gmetad must be made aware of from
which gmonds to poll the metrics. Gmetad obtains the
whole metric dump from each gmond, at its own time
interval, and stores this information using the RRD-
tool (i.e. in “round robin” databases).

Gweb is Ganglia’s visualization UI. It allows for
an easy and powerful visualization of the measure-
ments collected, mostly in the form of graphs. New
graphs combining any number of metrics can be gen-
erated, allowing the visualization of metrics to be cus-
tomized depending on individual needs.

3.2.2 The Host sFlow Agent

The Host sFlow agent was selected as the host moni-
toring agent to track the resources consumed by the
OS in the host running the OS-level virtualization
platform. Monitoring resources both at the host level
and at the virtualization platform level makes it possi-
ble to compare the values of the metrics for soundness
checks, tracking problems at both levels.

The Host sFlow agent may retrieve information
from within an OS running on bare metal or from
within the hypervisor if the aim is to monitor virtual
machines. This agent can be run in multiple OSs and
hypervisors. The agent itself obtains the same metrics
as gmond’s built-in collector does. The difference be-
tween these two solutions is that the sFlow standard,
used by the Host sFlow agent to relay metrics, is con-
siderably more efficient than gmond. This is because
each sFlow datagram carries multiple metric values,
which reduces the number of datagrams that need to
be sent over the network. For example, monitoring
1,000 servers with gmond would create the same net-
work overhead as 30,000 servers with the sFlow pro-
tocol (Massie et al., 2012). The sFlow protocol’s ef-
ficiency justifies the usage of the Host sFlow agent in
this monitoring system.

4 EVALUATION

The primary evaluation objective is to assess the va-
lidity of the values of the metrics collected with
CoMA. Validity in this context means to establish, for
the metrics reported by CoMA, whether the measured
values reflect the real values. Given the numerous
metrics reported about CPU, memory and block I/O, a
small subset of these metrics has been selected for the
evaluation. This validity assessment is carried out on
user CPU utilization, system CPU utilization, mem-
ory usage and number of bytes written to disk. User
CPU utilization and system CPU utilization refer to
the percentage of CPU that is employed to execute

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

148

Figure 3: Scenario 1, no workload (baseline).

Figure 4: Scenario 2, workload on host OS.

Figure 5: Scenario 3, workload in container.

code in user space and in kernel space, respectively.
It should be noted that for all tests, Ubuntu 12.04 LTS
and the Docker platform 1.3.1 have been run on the
same Dell T7570 computer. This computer runs an
Intel Pentium D 2.80 GHz (800 MHz) and 2 GB of
RAM at 533 MHz.

The evaluation presented collects for each host:
host-specific metrics (reported by the Host sFlow
agent) and the metrics from the Docker platform (re-
ported by CoMA). The purpose of collecting the val-
ues for both sets of metrics was to compare and con-
trast the host’s resource consumption against the re-
source consumption of the Docker platform, that is,
against the resource consumption of the collection of
containers and images within the host. The objective
of this comparison is to offer a reliable overview of
the system from a resource usage perspective. Com-
paring both sets of metrics, a system administrator can
pinpoint the origin of a particular misbehavior by de-
termining if the issue is due to the Docker platform
(i.e. a specific container) or due to some other prob-
lem within the host but independent of the containers.

4.1 Validity of CPU and Memory
Measurements

Three different scenarios have been set up to assess

Figure 6: Host CPU utilization reported by the Host sFlow
agent.

Table 1: Host CPU utilization reported per scenario. To-
tal CPU is the aggregation of user CPU and system CPU.
Standard Deviation (SD).

the collected values of the memory and CPU-
utilization metrics. For all scenarios, 6 rounds, each
one of 30 minutes have been run. Scenario 1 (Figure
3) presents a baseline of the CPU and memory usage
while the OS is executing Docker, which runs a sin-
gle unlimited container executing /bin/bash, the Host
sFlow Agent and CoMA. The container was not ac-
tively used during this scenario. Scenario 2 (Figure
4) is set up like Scenario 1, except for the fact that a
workload generator was executed natively in the OS.
This means that the process did not run container-
ized. Stress-ng 7 has been used to generate load on
both CPU and memory. In order to create load on the
CPU, two workers were launched so that there would
be a worker per core. Each CPU worker executed
sqtr(rand()) to generate load. To stress the memory,
five workers were started on anonymous mmap, each
one of these workers was set to 420MB. Scenario 3
(Figure 5) has been laid out exactly like Scenario 2,
the only difference being that the stress-ng processes
were executed containerized.

4.1.1 CPU: A Single Container

The data obtained from each scenario were processed.
Figure 6 shows user CPU, system CPU and total CPU
utilization reported at the host level for each scenario.
Figure 7 displays CPU utilization pertaining to the
process or processes running within that single con-
tainer deployed in the three scenarios.

In order to determine that the measurements of the
CPU metrics collected with CoMA are valid, the data

7http://kernel.ubuntu.com/ cking/stress-ng/

CoMA:�Resource�Monitoring�of�Docker�Containers

149

Figure 7: Container CPU utilization reported by CoMA.

Table 2: Container CPU utilization reported by CoMA per
scenario. Note that there are no processes running in Sce-
nario 1 and Scenario 2.

obtained from Scenario 3, which can be visualized in
Figure 6 and 7, has been compared. The total CPU
of Scenario 1 (Table 1), aggregated to the total CPU
of the container reported by CoMA in Scenario 3 (Ta-
ble 2), should resemble the total CPU reported by the
host in Scenario 3 (Table 1). The aggregation of those
first two values (20.42% and 78.41%) results in a total
CPU of 98.83% and a standard deviation of 6.5. The
total CPU utilization of the whole host in Scenario 3
is 98.92% with a standard deviation of 15.29. These
results verify that the values of the CPU metrics gath-
ered by CoMA are valid.

The CPU utilization data retrieved from this eval-
uation allows for other noteworthy observations to be
made. In Figure 6 and Table 1 a small difference of
0.69% can be ascertained, between running the stress-
ng processes natively (Scenario 2) or containerized
(Scenario 3). The disparity that exists between these
two scenarios is due to several reasons. First, the in-
trinsic variable nature of the data collected has a di-
rect impact on the results attained. However, its ir-
regularity is acceptable as the standard deviations cal-
culated demonstrate, since these are reasonable and
valid for these data. Second, the stress-ng processes
themselves may be accountable for a certain variation.

It can also be noticed that there seems to be a ten-
dency in the way these stress-ng processes are ex-
ecuted. When stress-ng was run within a container
more system CPU utilization was accounted for com-
pared to when stress-ng was run natively. The effect
is the exact opposite when it comes to user CPU uti-
lization, as can be visualized in Figure 6. This last
observation has been verified by computing the corre-
lation coefficient between system CPU utilization and
user CPU utilization. A nearly perfect negative corre-

Figure 8: Total CPU utilization of 10 containers, where
each container runs the same process generating a symmet-
ric CPU load across all containers. CoMA reports the values
for the containers and for the Docker platform. The Host
sFlow agent reports the values for the host.

Table 3: Total CPU utilization and standard deviations (SD)
for Figure 8.

lation of -0.99 was obtained for Scenario 2 and -0.98
for Scenario 3.

4.1.2 CPU: Multiple Containers

These scenarios prove that the CPU utilization re-
trieved by CoMA, of one container, is valid. However,
whether the agent is able to properly report the CPU
metrics for multiple simultaneously running contain-
ers should also be demonstrated. For this purpose,
two tests were carried out. For the first test, ten con-
tainers ran the exact same stress-ng process to gen-
erate load on the CPU with two workers, one per
core. In accordance with the default process sched-
uler in Linux, the Completely Fair Scheduler (CFS)
8, the expected outcome of this test is for each con-
tainer to employ a similar portion of the total CPU.
As it can be observed in Figure 8 and Table 3, each
container is granted an average of around 8% of the
CPU. The aggregation of each container’s total CPU
utilization adds up to 80.07% which almost matches

8http://lwn.net/Articles/230501/

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

150

Figure 9: Total CPU utilization of 2 containers with asym-
metric processes running in each container. CoMA reports
the values for the containers and for the Docker platform.
The Host sFlow agent reports the values for the host.

Table 4: Total CPU utilization and standard deviations (SD)
for Figure 9.

the total CPU utilization of the whole Docker plat-
form (80.13%) as reported by CoMA.

This test shows that each container reports its
own set of CPU measurements independently and is
able to do so effectively. However, a different test
was carried out to verify this by running asymmet-
ric processes in two containers. Each container ran
the stress-ng process with different settings so as to
generate an uneven load across the two containers.
As represented by Figure 9 and Table 4, CoMA re-
ported just that. A container used 48.61% of the total
CPU whilst the other container employed 18.57% of
the total CPU. Both containers together used 67.18%,
which resembles the value (67.20 %) reported by
CoMA of the total CPU utilization of the Docker plat-
form.

4.1.3 Memory: A Single Container

The memory data captured for all scenarios is dis-
played in Figure 10. It should be mentioned that there
is a greater fluctuation in the memory-reported values
than in the CPU values. This phenomenon is due to
the manner in which Linux manages its memory. The
memory management methodology applied by Linux
varies according to the needs of the OS at any given
time. This adds another layer of complexity when
analyzing the metrics collected. The host’s mem-
ory usage in Scenario 1 (360.73MB) aggregated to
the container’s memory usage reported by CoMA in

Figure 10: A comparison of the memory usage reported by
the host and the container per scenario.

Table 5: Memory usage and standard deviations (SD) for
Figure 10.

Scenario 3 (1349.09MB), should be somewhat sim-
ilar to the host’s memory consumption in Scenario
3 (1544.37MB). In this case there is a difference of
around 165MB. As it has been explained before, this
discrepancy is caused by the memory management
enforced by Linux, as well as by the error introduced
in the averaging process of the results.

4.1.4 Memory: Multiple Containers

Much like it happens with CPU, the previous sce-
narios establish that the memory metrics provided by
CoMA are valid for a single container. The two CPU
tests performed with multiple simultaneously running
containers, were also carried out for memory. As it
can be observed in Figure 11 and Table 6, when the
same process is running in each container, the mem-
ory usage value presented by CoMA per container has
a greater variability than that observed in the same
test for CPU utilization. As it has been previously
explained, these fluctuations are due to the change-
able nature of how memory is managed by the OS.
However, each container’s memory usage is close to
152MB. The aggregated memory usage of all 10 con-
tainers adds up to 1519.92MB. The Host sFlow agent
reports a memory usage of 1773.62MB for the whole
host during this test. The difference of 253.70MB be-
tween these last two values, represents the memory
being employed by the OS to run non-containerized
processes. A second test, where two containers were

CoMA:�Resource�Monitoring�of�Docker�Containers

151

Figure 11: Memory usage of 10 containers, where each con-
tainer runs the same process. This generates a symmetric
memory use across all containers. CoMA reports the values
for the containers and for the Docker platform. The Host
sFlow agent reports the values for the host.

Table 6: Memory usage and standard deviations (SD) for
Figure 11.

configured to make a disparate use of memory was
also carried out. Figure 12 and Table 7 reflect the re-
sults obtained, which are consistent with the values
gathered when running a symmetric memory load on
10 containers.

4.2 Validity of block I/O Measurements

To evaluate whether the block I/O measurements
gathered by CoMA were solid, the I/O tool fio 9 was
used to write 1000MB directly to the ext4 filesystem
mounted by the host by making use of the –v flag
(Docker Inc, 2014d) on the container. In order to
achieve this, fio was configured to initiate five work-
ers, each worker performing random write operations
of 200 MB in the shared folder between the host and
the container.

The test of writing 1000MB to disk was executed
at 12:00 and it finished by 12:07. As Figure 13 shows,

9http://freecode.com/projects/fio

Figure 12: Memory usage of 2 containers with asymmet-
ric processes running in each container. CoMA reports the
values for the containers and for the Docker platform. The
Host sFlow agent reports the values for the host.

Table 7: Memory usage and standard deviations (SD) for
Figure 12.

exactly 1000MB were reported to have been written
during that time.

A separate test was created, following the same
principle previously explained, to write to disk from
three simultaneously running containers. Fio was
configured for each container with a disparate number
of workers and file sizes. The first container spawned
two workers, each of which had to write 300MB to
the shared folder. The second container initiated three
workers, each with a file size of 250MB. The third
container started five workers, where each worker had
to write 200MB to disk. For each container, the num-
ber of bytes that CoMA reported were written to disk
was exactly right, down to the last byte. The first con-
tainer took 20 minutes to write the 600MB to disk.
The second and third container took around 16 min-
utes to write 750MB and 1000MB to disk, respec-
tively. The time taken for each container to complete
the task of writing these files to memory is closely
linked to the number of workers running and the num-
ber of containers writing to disk.

5 DISCUSSION

This section discusses CoMA as well as the evalua-
tion results obtained in terms of the research questions
proposed.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

152

Figure 13: Bytes written to disk by container.

How could an OS-level virtualization platform be
monitored to obtain relevant information concerning
images and containers?

CoMA retrieves information about the usage of
CPU, memory and block I/O of running contain-
ers from the Linux kernel’s control groups. It also
fetches the data concerning images and containers us-
ing Docker’s Remote API.

Is the resource usage information about the run-
ning containers reported by our Container Monitor-
ing Agent valid?

The evaluation provides validation across the fol-
lowing three blocks of metrics: CPU, memory and
block I/O. The most complex metric to validate was
the memory usage of a container. This is due to the
way memory is managed in an OS, which causes the
memory usage baseline in Scenario 1 to account a
slightly overestimated usage. The authenticity of all
the measurements that can be collected with CoMA
could not be tested because of the number of metrics
that CoMA is able to gather. Nevertheless, since the
values are being reported by the Linux kernel, assess-
ing at least one metric from each group of metrics is
sufficient to establish the validity of CoMA. It should
be mentioned that CoMA can be modified to only dis-
patch a subset of desired metrics.

CoMA’s CPU utilization is dependent on the test-
bed that has been set up. This means that CoMA’s
resource usage is contingent on the hardware that has
been employed, the number of containers that had
been deployed, the number of metrics being sent and
the sampling rate set for CoMA. This last value can
be configured to obtain measurements closer or fur-
ther away from real-time monitoring, depending on
the requirements. There are certain tradeoffs in the
selection of the sampling rate. A higher sampling rate
would mean obtaining more accurate measurements
in terms of time, but more resources would be used in
order to monitor the platform. It is worth mentioning
that CoMA itself consumes around 15.25% of CPU
with a standard deviation of 5.87 for the specific test-
bed presented in the evaluation section. This number
may seem high, but it is relative to the hardware be-
ing employed. An Intel Pentium D 2.8GHz and 2GB

RAM at 533MHz was used in this case. Had con-
ventional cloud computing hardware been used, this
percentage would be much lower. Moreover, in this
test-bed all available metrics are collected, if fewer
of them were collected the percentage of CPU used
would decrease. It should also be mentioned that the
monitoring solution itself shall be optimized so as to
minimize its impact.

It has been previously mentioned that CoMA
could be employed to monitor similar OS-level vir-
tualization platforms. For this to happen, said OS-
level virtualization platform would have to account
resource usage in a similar fashion to Docker, i.e. us-
ing the Linux kernel’s control groups. However, the
information pertaining to the containers and images
that is collected through Docker’s Remote API, is spe-
cific to the Docker platform itself.

6 CONCLUSION AND FUTURE
WORK

Monitoring the resource consumption of OS-level vir-
tualization platforms such as Docker, is important to
prevent system failures or to identify application mis-
behavior. CoMA, the Container Monitoring Agent
presented in this paper, reports valid measurements
as shown by our evaluation. It currently tracks CPU
utilization, memory usage and block I/O of running
containers. CoMA could be configured to gather a
subset of the available metrics to suit the monitoring
needs of a particular system or application. This pa-
per has presented a possible implementation solution
of CoMA to build a distributed and scalable monitor-
ing framework, using the open-source projects Gan-
glia and the Host sFlow agent.

It would be positive to monitor the network us-
age of the containers, since this feature has not yet
been implemented in CoMA. Moreover, establishing
thresholds on certain metrics collected by CoMA to
trigger alarms or actions would be beneficial. Also,
assessing CoMA’s behavior when numerous contain-
ers are deployed on commonly used hardware in data
centers is required. This would be a proper test-bed to
gauge CoMA’s performance in a realistic cloud com-
puting scenario.

Another area for further research would be to
employ machine learning techniques on the values
collected, to maximize resource usage by modify-
ing each container’s resource constraints based on the
needs of the running containers. There is also the pos-
sibility of applying data analytics on the information
captured by CoMA to build an autonomous system for
container placement within a cloud or across clouds.

CoMA:�Resource�Monitoring�of�Docker�Containers

153

There are new and upcoming OS-level virtual-
izations platforms that could rival Docker, such as
Rocket. CoMA could be also employed and evalu-
ated with these recent virtualization platforms.

REFERENCES

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., Neugebauer, R., Pratt, I., and Warfield, A.
(2003). Xen and the art of virtualization. SIGOPS
Oper. Syst. Rev., 37(5):164–177.

Bryan Lee (Accessed: 2014). cAdvisor monitoring
tool. http://blog.tutum.co/2014/08/07/using-cadvisor-
to-monitor-docker-containers/.

Datadog Inc (Accessed: 2014). Docker-ize Datadog with
agent containers . https://www.datadoghq.com/2014/
06/docker-ize-datadog/.

Docker Inc (2013). What is Docker technology ? https://
www.docker.com/whatisdocker/.

Docker Inc (Accessed: 2014a). Docker remote API. https://
docs. docker.com/ reference/api/docker remote api/.

Docker Inc (Accessed: 2014b). Docker working with LXC.
https://docs.docker.com/faq/.

Docker Inc (Accessed: 2014c). File sytem architecture of
the Docker platform . https://docs.docker.com/terms/
layer/.

Docker Inc (Accessed 2014d). Volume system with Docker.
https://docs.docker.com/userguide/dockervolumes/.

Elena Reshetova, Janne Karhunen, T. N. N. A. (2014). Se-
curity of os-level virtualization technologies.

Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2014).
An updated performance comparison of virtual ma-
chines and linux containers. technology, 28:32.

Google Inc (Accessed: 2014). lmctfy: Let Me Contain That
For You . https://github.com/google/lmctfy.

InMon Inc (Accessed: 2014). HostsFlow monitoring tool .
http://host-sflow.sourceforge.net/.

Kutare, M., Eisenhauer, G., Wang, C., Schwan, K., Talwar,
V., and Wolf, M. (2010). Monalytics: Online monitor-
ing and analytics for managing large scale data cen-
ters. In Proceedings of the 7th International Confer-
ence on Autonomic Computing, ICAC ’10, pages 141–
150, New York, NY, USA. ACM.

Massie, M., Li, B., Nicholes, B., Vuksan, V., Alexander,
R., Buchbinder, J., Costa, F., Dean, A., Josephsen, D.,
Phaal, P., and Pocock, D. (2012). Monitoring with
Ganglia. O’Reilly Media, Inc., 1st edition.

Meng, S., Iyengar, A. K., Rouvellou, I. M., Liu, L., Lee, K.,
Palanisamy, B., and Tang, Y. (2012). Reliable state
monitoring in cloud datacenters. In Proceedings of the
2012 IEEE Fifth International Conference on Cloud
Computing, CLOUD ’12, pages 951–958, Washing-
ton, DC, USA. IEEE Computer Society.

Paul Menage (Accessed: 2014). Control Groups (cgroups)
Documentation . https://www.kernel.org/doc/
Documentation/cgroups/cgroups.txt. Available since:
2004.

Ranjan, R., B. R. L. P. H. A. and Tai, S. (2014). A note
on software tools and techniques for monitoring and
prediction of cloud services softw: Pract. exper., 44:
771–775.

Tafa, I., Beqiri, E., Paci, H., Kajo, E., and Xhuvani, A.
(2011). The evaluation of transfer time, cpu con-
sumption and memory utilization in xen-pv, xen-hvm,
openvz, kvm-fv and kvm-pv hypervisors using ftp and
http approaches. In Intelligent Networking and Col-
laborative Systems (INCoS), 2011 Third International
Conference on, pages 502–507.

VMware Inc (2007a). Understanding Full Vir-
tualization, Paravirtualization and Hardware
Assist. http://www.vmware.com/files/pdf/
VMware paravirtualization.pdf. Accessed: 2014
(white paper).

VMware Inc (2007b). Virtualization Overview. http://
www.vmware.com/ pdf/ virtualization.pdf. Accessed:
2014 (white paper).

Xavier, M., Neves, M., Rossi, F., Ferreto, T., Lange, T.,
and De Rose, C. (2013). Performance evaluation of
container-based virtualization for high performance
computing environments. In Parallel, Distributed and
Network-Based Processing (PDP), 2013 21st Euromi-
cro International Conference on, pages 233–240.

Xu, F., Liu, F., Jin, H., and Vasilakos, A. (2014). Man-
aging performance overhead of virtual machines in
cloud computing: A survey, state of the art, and future
directions. Proceedings of the IEEE, 102(1):11–31.

Ye, K., Huang, D., Jiang, X., Chen, H., and Wu, S. (2010).
Virtual machine based energy-efficient data center ar-
chitecture for cloud computing: A performance per-
spective. IEEE-ACM International Conference on
Green Computing and Communications and Inter-
national Conference on Cyber, Physical and Social
Computing, 0:171–178.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

154

A Survey of Trust Management Models for Cloud Computing

Flavio Corradini, Francesco De Angelis, Fabrizio Ippoliti and Fausto Marcantoni
Computer Science Division, University of Camerino, Via del Bastione 1, 62032, Camerino, Italy
fflavio.corradini, francesco.deangelis, fabrizio.ippoliti, fausto.marcantonig@unicam.it

Keywords: Cloud Computing, Privacy, Security, Trust Relationship, Trust Model, Trust Management.

Abstract: Over the past few years, cloud computing has been widely adopted as a paradigm for large-scale infrastruc-
tures. In such a scenario, new security risks arise when different entities or domains share the same group
of resources. Involved organizations need to establish some kind of trust relationships, able to define appro-
priate rules that can control which and how resources and services are going to be shared. The management
of trust relationships represents a key challenge in order to meet high security requirements in cloud comput-
ing environments. This allows also to boost consumers confidence in cloud services, promoting its adoption.
Establishing trust with cloud service providers supports to have confidence, control, reliability, and to avoid
commercial issues like lock in. This paper proposes a survey of existing trust management models addressing
collaboration agreements in cloud computing scenarios. Main limitations of current approaches are outlined
and possible improvements are traced, as well as a future research path.

1 INTRODUCTION

Over the past few years, cloud computing has been
widely adopted in almost every kind of organizations,
for providing flexible and on-demand infrastructures,
platforms and software as a service. Customers ben-
efit from cloud services in their daily life, sometimes
without even being aware that they are using services
developed on a cloud computing infrastructure. In ad-
dition to the well-known benefits resulting from cloud
computing adoption, several issues have emerged dur-
ing its evolution: most of them relate to security, pri-
vacy and trust management. In particular, its prolifer-
ation has placed even more attention to trust manage-
ment, representing one of the key challenges in the
adoption of cloud computing technologies.

The speed and flexibility of adjustment to ven-
dor offerings have motivated correct understanding
of cloud computing paradigm, but, at the same time,
this fact has introduced a higher risk to data privacy
and security (Pearson and Benameur, 2010). From
the cloud customer point of view, who may be either
citizens, businesses or organizations, this represents
a crucial concern, especially when entrusting cloud
service providers (CSPs) for private or sensitive in-
formation, like financial or health data or business-
confidential information. The resulting lack of trust
is a key inhibitor to cloud adoption in domains where
confidential or sensitive information is involved.

Indeed, according to a study presented by re-
searchers at UC Berkeley (Armbrust et al., 2010),
trust management and security aspects are ranked
among the top 10 obstacles for adopting cloud com-
puting. A more recent survey conducted by KPMG
(KPMG International, 2013) affirms that major con-
cerns affecting cloud adoption are about control and
data security. In particular, CSPs report that cus-
tomers main concern over switching to cloud is los-
ing control, an issue voiced by almost half of all re-
spondents. A even more recent white paper by Cloud
Industry Forum addressing the UK scenario (Cloud
Industry Forum, 2014), confirms that among most
significant concerns about cloud adoption there are:
data security (61%); data privacy (54%); fear of loss
of control/manageability (24%); respectively as first,
second and fourth reasons.

Lack of consumer trust is confirmed too from a
study about attitudes on data protection and elec-
tronic identity in the European Union (European
Commission, 2011), where less than one-third of Eu-
ropean citizens surveyed trust phone companies, mo-
bile phone companies and Internet service providers.
Besides, 70% of them are concerned about their per-
sonal data held by companies being used for different
aims than the agreed ones.

Main contribution of this work is to present a sur-
vey of most relevant approaches of trust models for
cloud computing, categorized in different classes. Af-

155

ter this exhaustive comparison, major limitations of
existing models are outlined and possible improve-
ments are traced, as well as a future research path.

The remainder of this paper is organized as fol-
lows: the concepts of trust and reputation, starting
from their origin to the the definition in computer sci-
ence are described in section 2. Section 3 provides
a classification of trust management models and for
each group a detailed description of most relevant
works in literature. Section 4 presents main limita-
tions of current trust models and possible improve-
ments. Finally, section 5 traces some conclusions and
future work to be realized.

2 BACKGROUND

Trust and reputation concepts have their origin in the
social sciences that study the nature and behavior of
human societies (Gambetta, 1988), basically repre-
senting an act of faith. Trust management was orig-
inally developed by (Blaze et al., 1996), addressing
important issues in network services security: cen-
tralized control of trust relationships, inflexibility to
support complex trust relationships in large scale net-
works, and the heterogeneity of policy languages.
Moreover, a widely accepted definition of trust, com-
ing from cross-disciplinary set of academic literature,
states as follows (Rousseau et al., 1998): ”Trust is a
psychological state comprising the intention to accept
vulnerability based upon positive expectations of the
intentions or behaviour of another”. What arises from
these general definitions is that trust is basically an
attitude, a form of confidence in another, a belief that
the other, despite a capacity to harm, will do the right
thing in relation to the trustor (Nissenbaum, 1999).
So, dealing with trust presupposes the acceptance of
some kind of risk, even if its nature may be unclear
or ambiguous. Moreover, trust cannot be just a com-
mon value that can be identified by a user and valid
for every aspects of cloud services.

Furthermore, trust relates not only to technolog-
ical aspects, but also social factors like reputation.
Reputation is maybe a company’s most valuable as-
set (Nissenbaum, 1999).

2.1 Defining Trust in Computer Science

Trust represents an essential aspect of every system
where different entities have to collaborate. For such
a complex concept, there is no universally accepted
scholarly definition. However, trust relies to the com-
petence of an entity to act dependably, securely and
reliably within a specified context, as discussed in

(Grandison and Sloman, 2000). Usually, trust lifecy-
cle composes of three activities, that are: trust estab-
lishment, trust update and trust revocation. Moreover,
trust is often divided into two classes: direct trust and
recommended trust (Zhu et al., 2003). Direct trust
represents the trust based on own experience with the
other entity. Instead, when two entities have no direct
interactions, then trust relationship can be established
by another entity’s recommendation, called recom-
mended trust.

Another fundamental aspect of trust is the sub-
jectivity, making even more complex its assessment.
The term subjective relates to the perception of a sub-
ject toward an object. The properties and qualities
assigned to an object depend on the subjects percep-
tion: for this reason, it may differ from one individual
subject to the other (Solhaug and Stølen, 2012).

For these reasons, the notion of trust implies the
modeling of trust management systems. A trust man-
agement system is a specific technique, normally used
in distributed scenarios, able to manage and validate
trust relationships agreed between different entities.
A trust relationship is a particular kind of relation
that defines privileges and restrictions. In this way, a
trustor relies upon a trustee according to its ability to
perform a specific action or provide a specific service,
within a particular context (Grandison and Sloman,
2000). In case the reader is interested, in (Perez et al.,
2014) a work providing a taxonomy of trust relation-
ships in authorization domains for cloud computing
can be found.

2.2 Trust in Cloud Deployment Models

Cloud services can be deployed in different ways,
depending on the organizational structure and the
provisioning location. Four deployment models are
loosely distinguished, namely public, private, com-
munity, and hybrid cloud (Mell and Grance, 2011).
The questions related to trust differ across various de-
ployment models (Kumar et al., 2013).

Trust management in a private cloud does not rep-
resent a main concern if the organization does not rely
on third-party CSPs. Public cloud model is the most
common, but it introduced many risks about security
and loss of control over data. Community cloud can
be owned and managed by the same organizations in
the community, a third party, or some combination
of them. If there is a third party involved, the prob-
lem will occur as well as the corresponding case of
the private model. Otherwise the problem is limited
to trust relationships discussed and agreed between
community subjects. In hybrid cloud, a private cloud
is involved in the deployment model, besides a public

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

156

one. For this reason, trust management issues related
to the public model shift to the hybrid one as well.
This happens when the private cloud involved needs
to scale out relying to the public model: issues about
security and privacy become part of the scenario.

2.3 Cloud Transparency Initiatives

CSA (Cloud Security Alliance, 2014c), an interna-
tional nonprofit organization, provides an important
contribution: it aims to promote diffusion and use
of best practices for providing security assurance
within cloud computing. Among its initiatives, there
is one gaining particular attention: ”Security, Trust
& Assurance Registry” (STAR) (Cloud Security Al-
liance, 2011). STAR program is a comprehensive
set of contribution for cloud provider trust and as-
surance. It is based upon two components: the
”Cloud Controls Matrix” (CCM) (Cloud Security Al-
liance, 2014a) and the ”Consensus Assessments Ini-
tiative Questionnaire” (CAIQ) (Cloud Security Al-
liance, 2014b). CCM is a meta-framework of cloud-
specific security controls, referred to leading stan-
dards, best practices and regulations. While CAIQ is
a set of questions a cloud consumer and cloud auditor
may wish to ask of a CSP. It provides a series of ”yes
or no” control assertion questions which can then be
customized to suit each unique customer’s demands.

However, despite these efforts, the overall situa-
tion shows indecision about if some kind of formal
accreditation from a trusted independent organization
would be advantageous for the cloud market.

3 TRUST MODELS

Trust modeling is the evaluation process of a system
trust, as described in subsection 2.1. This model-
ing recognizes issues affecting trust of a system and
helps in identifying areas where low levels of trust
may discredit the system usability (Sanchika Gupta
and Abraham, 2013). There exist several classifica-
tion approaches of trust models for cloud computing
present in literature (Firdhous et al., 2012b), (Huang
and Nicol, 2013), (Kanwal et al., 2013). (Firdhous
et al., 2012b) focuses the categorization according to
a specific set of cloud computing parameters the au-
thors have selected. For each trust model analysed in
the paper, they analyse some features such as: if an
identity management and/or authentication system is
involved, which cloud deployment layers are involved
or if a Service Level Agreements (SLAs) takes part in
the model. (Huang and Nicol, 2013) discusses exist-
ing trust mechanisms for cloud, identifying the fol-

lowing categories: reputation based, SLA verification
based, cloud transparency, trust as a service, and fi-
nally further analysis about formal accreditation, au-
dit, and standards. Furthermore, (Kanwal et al., 2013)
proposes a five classes sorting of trust models: Agree-
ment based, Certificate/Secret keys-based, Feedback
based, Domain based, and Subjective trust.

Our approach presents a different, simplified clas-
sification aiming to reduce the topic complexity, in
order to provide a high-level analysis. Following in
this section, trust models are categorized, described
and briefly analysed upon the following groups:

� Policy Based;

� Recommendation Based;

� Reputation and Feedback Based.

We decided to simplify the classification, avoiding
complexity and ambiguity while categorizing specific
trust models that might belong to different groups, as
it usually happens with some hybrid models. A small
overview is also reserved to biological techniques for
defining trust models, since they are gaining some at-
tention in the literature.

However, due to limitations of space, we are un-
able to present all the existing body of literature. For
this reason, priority has been assigned to last years’
efforts, while less recent papers are in some case
cited.

3.1 Policy Based

Trust management models in this group are based on
contracts and agreements signed by CSPs for the de-
livery of their services to customers. The most com-
mon agreements are SLA and service policy state-
ments (SPS), providing the basis for trust establish-
ment. In particular, SLA play an important role to
make the service trustworthy: it is a negotiation in-
volving from one side CSPs and, from the other one,
cloud customers. Various security concerns and qual-
ity of service attributes are included in contracts and
agreements to establish trust on CSP. A relevant issue
of this category is represented by the fact that SLA fo-
cuses just on the ”visible” elements of cloud service
performance (Huang and Nicol, 2013).

(Alhamad et al., 2010). This paper describes the
requirements and benefits of using information con-
tained in SLAs, to manage trust in cloud environ-
ment, providing a high level architecture capturing
major features required, as well as a protocol for the
trust model. Aim of the proposed solution is to de-
fine reliable criteria for the selection process of CSPs.
In other words, its goal is to recommend the ”most
related and trusted resources” among several CSPs,

A�Survey�of�Trust�Management�Models�for�Cloud�Computing

157

meaning that analysed services match all the identi-
fied functional requirements. With the term of func-
tional requirements, the authors refer to the detec-
tion of the average of several specific dataset or other
kinds of data statistical analysis. Whereas, examples
of non-functional requirements are represented by the
level of privacy to ensure secure data storage or the
time used to perform assessment tasks.

(Sato et al., 2010). In the work, the authors
introduce the notion of contracted trust that check
CSPs services, according to contracts and related doc-
uments, such as SPS. The fundamental idea is to pro-
vide a two levels hierarchy for trust, namely internal
trust and contracted trust. The first one is established
directly on the cloud platform, if every basic oper-
ations are in full control of the customers. Internal
trust is achieved via Trusted Platform Module (TPM)
that assesses and validates the virtual machine con-
figurations, keeping track of every processes running
on cloud platform that assures the process execution
control on cloud. On the other hand, the contracted
trust is based on SPS, meaning that CSP are involved
in this trust layer by negotiating the desired security
and QoS requirements of customers.

(Chakraborty and Roy, 2012). The authors show
a framework that evaluates trustworthiness of a CSP
service using a quantitative trust model. They identi-
fied and formalized two classes of parameters, namely
pre-SLA parameters and post-SLA parameters. The
first case is the simple one, that is when an initial set
of relevant parameters can be obtained directly from
SLA statements or other description about the service,
available from the CSP. Instead, the second group can
be extracted from the session histories or logs. A cus-
tomer needs to obtain at least one pre-SLA parameter
to estimate initial trust value of a CSP. However, mea-
suring trustworthiness based on that is biased toward
the single parameter and is not an advantageous solu-
tion. For this reason, a user should try to obtain and
evaluate as many parameters as possible to obtain a
complete trust value about a CSP. In addition, a third
party auditor may also be involved in this assessment.

(Marudhadevi et al., 2014). The work presents
a trust mining model (TMM) to identify trusted cloud
services while negotiating an SLA. The challenge for
the user is to monitor the services provided from the
CSP and check if they meet the conditions mentioned
in the agreement. To perform this, the user needs
further information such as prior data or knowledge
about what is happening on the CSP side, which can
help him to better realize the effective QoS. The trust
model evaluates the trust degree on the prior data ob-
tained about the service at the time of the SLA. Then,
this information is divided into multiple common at-

tributes like the number of service denials, average
response time, task success ratio and number of com-
plaints registered by the users. Usually, attributes
used to formulate any trust model can be either ob-
jective or subjective, while this work uses both types
of values. In this way, advantages introduced with
this approach are both for CSPs and end users. From
one side, the CSP can monitor the performance and
improve its services to establish better trust relations
with the users. And from the other side, the customer
can perceive as secure working with the CSP.

3.2 Recommendation Based

Recommended trust occurs when two entities, the
trustor and the trustee have no previous interaction
background with each other. In such a scenario, when
there is no information that the end user can relate on,
the trust relationship can be established by another en-
tity’s recommendation, usually a third-party auditor.
In this way, end users can have a baseline to evaluate
services or providers.

(Kong and Zhai, 2012). The work proposes a
particular mechanism, called Trust-based Recommen-
dation System in service-oriented Cloud computing
(TRSC), which evaluates CSP services based on the
trust of them. In TRSC, the resulting trust value is
obtained combining direct trust and recommendation
trust. Direct trust of an user on a cloud service is com-
puted as usual, that is according on the direct interac-
tion. While the recommended trust is evaluated tak-
ing into account opinions coming from users, or other
authority of the field, who are trusted by the user, con-
sidering that this kind of trust is more reliable.

(Noor et al., 2013). The authors developed a
platform for a credibility-based trust management of
cloud services, called Cloud Armor. The key fea-
tures of the presented platform are: i) usage of a web
crawling approach to automatically discover cloud
services; ii) an adaptive and robust credibility model
to evaluate credibility of feedbacks; and iii) a trust-
based recommender to recommend trustworthy cloud
services that suit the users needs. Cloud Armor pro-
vides an environment where customers can give feed-
backs and request trust assessment for a particular
cloud service.

(Rizvi et al., 2014). Aim of the authors is to
propose objective trust model, since it involves third-
party auditors to develop unbiased trust between CSP
and users. In this way, customers have a baseline to
assess services and CSPs. In this case, third-party
auditor assigns score for each CSP, basing on prede-
termined criteria significant to trust. More precisely,
when a CSP is willing to enter the cloud market, it ap-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

158

plies to be scored by the third-party auditor. The eval-
uation can be done using different set of criteria, such
as those proposed by CSA (Cloud Security Alliance,
2013). However, when scoring a CSP, the customer
feedback is taken into account too. For each crite-
ria identified and evaluated by the third-party auditor,
the obtained score will be integrated with feedback
coming from end users. Like other recommendation-
based systems, the approach used in this case is simi-
lar to ones adopted by the e-commerce trust models.

(Singh and Chand, 2014). This work proposes
a trust evaluation framework able to determine final
trust of CSP. The mechanism takes into account, in
addition to the user’s past experiences, also friends
and third party’s recommendations. The proposed
solution has been simulated through a typical cloud
computing scenario.

Similar recommendation based models can be
found in (Han et al., 2009) and (Li and Ping, 2009).

3.3 Reputation and Feedback Based

Even if some work in literature discusses about this
two groups in a separate way, we prefer to refer to
them as a whole class. Because of their similarity, in
this way the aim is avoiding ambiguity. The reputa-
tion of an entity is the aggregated opinion of a com-
munity towards that entity (Huang and Nicol, 2013).
Thus, an entity with high reputation is the one trusted
by various entities in the community. In this way, an
entity that needs to retrieve trust opinion on a trustee,
may use the reputation to evaluate the trust level of
that subject. The reputation of a CSP helps end users
(especially individual users) in choosing a cloud ser-
vice from many options without particular require-
ments. A similar approach is defined as ”social trust”.
As already said, this group includes trust models that
collect feedback and opinions from other users, evalu-
ating the trust on services and providers. Trust model
collects and manages the feedback regarding differ-
ent QoS and security parameters offered by CSPs.
Based on this information, users will prefer the CSP
that guarantees all the necessary QoS and security at-
tributes for its customers.

(Krautheim et al., 2010). In this work, a trust
model called Trusted Virtual Environment Module
(TVEM) is presented as a software appliance. For
cloud environments already provided with Trusted
Platform Module (TPM) virtualization techniques,
TVEM introduces better features like improved appli-
cation program interface (API), cryptographic algo-
rithm flexibility, and a configurable modular architec-
ture. Also a unique Trusted Environment Key is intro-
duced, combining trust from the information owner,

and the CSP to create a dual root of trust for the
TVEM that is distinct for every virtual environment
and separate from the platforms trust. The TVEM
software is protected by hardware enforced memory
and process isolation via Intels Virtualization Tech-
nology for Directed I/O (VT-d) (Abramson, 2006) and
Trusted eXecution Technology (TXT) (Intel Corpora-
tion, 2010).

(Habib et al., 2011). This paper describes a
trust model based on prepositional logic terms (PLT),
called multi-faceted trust management system, to help
the cloud service customers to assess trustworthy
CSPs. Aim of the proposed solution is to model am-
biguity of trust information collected from various
sources using a specific set of QoS properties like
security, latency, availability, and customer support.
The trust model becomes able to integrate two differ-
ent trust management techniques including reputation
and recommendation where logic operators are used.

(Noor and Sheng, 2011). This approach
overviews the design and implementation of a Trust as
a Service framework. The proposed system is based
on a credibility model, responsible for distinguishing
between the believable and the malicious trust feed-
backs, taking into account the majority consensus of
feedbacks too. In addition to the credibility model,
the other salient feature of the discussed framework
is that it allows trust feedback assessment and stor-
age to be managed distributively, avoiding common
drawbacks of centralized architectures.

(Pawar et al., 2012). The authors propose an un-
certainty model, which calculates trust values based
on different parameters, namely (i) SLA monitoring
compliance, (ii) service provider ratings, and (iii) ser-
vice provider behavior. More in detail, the SLA mon-
itoring defines the opinion about a CSP from the es-
tablished SLAs about its services. Each of them are
provided with a single SLA that includes several com-
mon indicators, such as CPU, memory, disk space us-
age, number of virtual machines. For each indicator
of an SLA, a monitor evaluating the compliance/non-
compliance of the indicator is provided. Then, CSP
ratings are determined with the computation of all rat-
ings, based on consensus and conjunction ratings. To
calculate trust values, the model take into account fea-
tures like belief, disbelief, uncertainty, and base rate.

Similar approaches can be found in (Firdhous
et al., 2011a), (Firdhous et al., 2011b), and (Wang
et al., 2014). Before the rise of cloud computing,
other reputation-based techniques have been devel-
oped in the following trust models: Peertrust (Xiong
and Liu, 2004), Trummar (Derbas et al., 2004),
Patrol-F (Tajeddine et al., 2006), Patrol (Tajeddine
et al., 2007), and CuboidTrust (Chen et al., 2007).

A�Survey�of�Trust�Management�Models�for�Cloud�Computing

159

3.4 Biological Techniques

Approaches coming from biological sciences have
been recently introduced to improve the definition of
trust models for cloud computing. Since this activity
is a complex task, the application of this kind of algo-
rithms and techniques that have already been used in
fields different from the biological one.

(Wang et al., 2010a), (Wang et al., 2010b). The
proposed model discussed in these works is inspired
by the biologic gene technique. The discussed solu-
tion, called Cloud Trust model based on Family Gene
(CTFG), is composed of three steps: initialization,
identification, and the assignment of the family gene
system in the cloud. The work proposes also a for-
mal definition of a model and correlation conception
of family gene, cloud family, trust relation, gene iden-
tification, and gene assignment.

(Firdhous et al., 2012a). The authors propose
that the Bees Algorithm that was used to solve is-
sues in diverse fields could be successfully adapted
to address the trust issue in the cloud computing sys-
tem. The Bees Algorithm is a population based search
and optimization algorithm developed based on the
food foraging behaviour of honey bees. The work is
inspired by some comparative studies carried out on
cloud computing and the bees environments.

Another work, referring to trust management in
P2P networks, can be found in (Wang et al., 2006)
where the authors describe a reputation based trust
model inspired by swarm intelligence paradigm.

4 DISCUSSION

As previously discussed, the first step of cloud com-
puting adoption is the end user choice: when a cus-
tomer needs to decide if he can entrust a particular
CSP or not. This becomes way more relevant when
the decision involves confidential or sensitive data.

For what concerns policy based models, in partic-
ular those which rely on SLAs, a major concern can
be identified since SLAs rarely focus on character-
istics such as security and privacy, concentrating on
elements easier to assess and to monitor too. These
last features include the set of service performances
such as network bandwidth, services uptime, usage
condition of virtual machine, and so forth. Moreover,
there is a lack of tools for end users to effectively ver-
ify SLA conditions observance. Action that, in many
cases, may be performed by a third-party auditor.

About the recommendation based models, some
constraints emerge because of the lack of a standard-
ization process: from one side the selection of which

criteria about services provided by a CSP are suitable
to be evaluated and then be recommended is tricky;
and from the other side, how and by whom a third-
party auditor could be professionally certified is not
always clear.

For reputation based models, the main limitation
is usually the improbable chance to retrieve a huge
number of customers to evaluate the CSP, giving a
specific rate, for a wide set of complex and detailed
criteria. So, in this case, more efforts need to be
focused on criteria definition. Moreover, cloud cus-
tomers do not get any kind of reward for giving their
feedback, which is another important challenge for
reputation based approaches.

What arises from the presented scenario is that
management, mitigation and solving of presented lim-
itations, through the definition of complex trust mod-
els, can actually represent the key enabler to boost
cloud computing adoption, where constrained be-
cause of trust reasons. A correct and wise definition
of trust models can surely help customers in the selec-
tion process of the CSP that is providing more trust-
worthy services.

5 CONCLUSIONS

After giving an exhaustive analysis of the origin of
trust relationships management and its relevance in
the cloud computing scenario, we presented major
contributions to address the issue. Actually, cloud
computing environment still presents trust issues as
an ambiguous area, representing a barrier to cloud
adoption for particular real cases. A higher trust can
attract customers that currently are avoiding cloud so-
lutions because they are afraid for their data and seek-
ing a greater confidence level. The lack of a com-
monly reliable and efficient trust evaluation system is
to consider a major issue. Several trust models have
been proposed and discussed, but what is missing is
an accepted criteria to evaluate the effectiveness of
such models for a cloud computing scenario.

As future work, it could be of particular interest
realize a systematic literature review on trust mod-
els, also considering accountability (Pearson, 2011;
Jaatun et al., 2014): the work might settle an ex-
haustive analysis of the trust management scenario
for cloud paradigm. Furthermore, another important
issue to address is represented by the trust evaluation
and definition of trust models for multi-cloud environ-
ments. In this case, the assessment of trustworthiness
of multi-cloud service providers is more complex and
may be achieved with different approaches compared
to single-cloud scenario.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

160

REFERENCES

Abramson, D. (2006). Intel virtualization technology for
directed i/o. Intel technology journal, 10(3):179–192.

Alhamad, M., Dillon, T., and Chang, E. (2010). Sla-based
trust model for cloud computing. In Network-Based
Information Systems (NBiS), 2010 13th International
Conference on, pages 321–324. IEEE.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., et al. (2010). A view of cloud computing.
Communications of the ACM, 53(4):50–58.

Blaze, M., Feigenbaum, J., and Lacy, J. (1996). Decentral-
ized trust management. In Proceedings., 1996 IEEE
Symposium on Security and Privacy, pages 164–173.
IEEE.

Chakraborty, S. and Roy, K. (2012). An sla-based frame-
work for estimating trustworthiness of a cloud. In
Trust, Security and Privacy in Computing and Com-
munications (TrustCom), 2012 IEEE 11th Interna-
tional Conference on, pages 937–942. IEEE.

Chen, R., Zhao, X., Tang, L., Hu, J., and Chen, Z. (2007).
Cuboidtrust: a global reputation-based trust model
in peer-to-peer networks. In Autonomic and Trusted
Computing, pages 203–215. Springer.

Cloud Industry Forum (2014). Cloud uk: Uk cloud
adoption snapshot & trends for 2015, the nor-
malisation of cloud in a hybrid it market. http://
cloudindustryforum.org/downloads/whitepapers/
CIF WP 14.pdf. Accessed: 2014-12-15.

Cloud Security Alliance (2011). Cloud security al-
liance - security, trust & assurance registry (star).
https://cloudsecurityalliance.org/star/. Accessed:
2014-12-15.

Cloud Security Alliance (2013). The notorious nine
cloud computing top threats in 2013. https://
downloads.cloudsecurityalliance.org/initiatives/
top threats/The Notorious Nine Cloud Computing
Top Threats in 2013.pdf. Accessed: 2014-12-15.

Cloud Security Alliance (2014a). Cloud secu-
rity alliance - cloud controls matrix (ccm).
https://cloudsecurityalliance.org/research/ccm/.
Accessed: 2014-12-15.

Cloud Security Alliance (2014b). Cloud security al-
liance - consensus assessments initiative questionnaire
(caiq). https://cloudsecurityalliance.org/research/cai/.
Accessed: 2014-12-15.

Cloud Security Alliance (2014c). Cloud security alliance
website. https://cloudsecurityalliance.org/. Accessed:
2014-12-15.

Derbas, G., Kayssi, A., Artail, H., and Chehab, A. (2004).
Trummar - a trust model for mobile agent systems
based on reputation. In Pervasive Services, 2004.
ICPS 2004. IEEE/ACS International Conference on,
pages 113–120. IEEE.

European Commission (2011). Attitudes on data protec-
tion and electronic identity in the european union.
http://ec.europa.eu/public opinion/archives/ebs/
ebs 359 en.pdf. Accessed: 2014-12-15.

Firdhous, M., Ghazali, O., and Hassan, S. (2011a). A
trust computing mechanism for cloud computing. In
Kaleidoscope 2011: The Fully Networked Human?-
Innovations for Future Networks and Services (K-
2011), Proceedings of ITU, pages 1–7. IEEE.

Firdhous, M., Ghazali, O., and Hassan, S. (2011b). A trust
computing mechanism for cloud computing with mul-
tilevel thresholding. In Industrial and Information
Systems (ICIIS), 2011 6th IEEE International Confer-
ence on, pages 457–461. IEEE.

Firdhous, M., Ghazali, O., and Hassan, S. (2012a). Ap-
plying bees algorithm for trust management in cloud
computing. In Bio-Inspired Models of Networks, In-
formation, and Computing Systems, pages 224–229.
Springer.

Firdhous, M., Ghazali, O., and Hassan, S. (2012b). Trust
management in cloud computing: A critical review.
arXiv preprint arXiv:1211.3979.

Gambetta, D. (1988). Trust: Making and breaking cooper-
ative relations.

Grandison, T. and Sloman, M. (2000). A survey of trust
in internet applications. Communications Surveys &
Tutorials, IEEE, 3(4):2–16.

Habib, S. M., Ries, S., and Muhlhauser, M. (2011). To-
wards a trust management system for cloud comput-
ing. In Trust, Security and Privacy in Computing and
Communications (TrustCom), 2011 IEEE 10th Inter-
national Conference on, pages 933–939. IEEE.

Han, S.-M., Hassan, M. M., Yoon, C.-W., and Huh, E.-N.
(2009). Efficient service recommendation system for
cloud computing market. In Proceedings of the 2nd
international conference on interaction sciences: in-
formation technology, culture and human, pages 839–
845. ACM.

Huang, J. and Nicol, D. M. (2013). Trust mechanisms
for cloud computing. Journal of Cloud Computing,
2(1):1–14.

Intel Corporation (2010). Enhanced data protection with
hardware-assisted security - intel trusted execution
technology. http://www.intel.com/content/www/us/
en/architecture-and-technology/trusted-execution-
technology/malware-reduction-general-
technology.html. Accessed: 2014-12-15.

Jaatun, M. G., Pearson, S., Gittler, F., and Leenes, R.
(2014). Towards strong accountability for cloud ser-
vice providers. In Cloud Computing Technology and
Science (CloudCom), 2014 IEEE 6th International
Conference on, pages 1001–1006. IEEE.

Kanwal, A., Masood, R., Ghazia, U. E., Shibli, M. A., and
Abbasi, A. G. (2013). Assessment criteria for trust
models in cloud computing. In Green Computing and
Communications (GreenCom), 2013 IEEE and Inter-
net of Things (iThings/CPSCom), IEEE International
Conference on and IEEE Cyber, Physical and Social
Computing, pages 254–261. IEEE.

Kong, D. and Zhai, Y. (2012). Trust based recommenda-
tion system in service-oriented cloud computing. In
Proceedings of the 2012 International Conference on
Cloud and Service Computing, pages 176–179. IEEE
Computer Society.

A�Survey�of�Trust�Management�Models�for�Cloud�Computing

161

KPMG International (2013). Breaking through the
cloud adoption barriers. http:// www.kpmg.com/
Global/en/IssuesAndInsights/ArticlesPublications/
cloud-service-providerssurvey/Documents/cloud-
service-providerssurvey.pdf. Accessed: 2014-12-15.

Krautheim, F. J., Phatak, D. S., and Sherman, A. T. (2010).
Introducing the trusted virtual environment module: a
new mechanism for rooting trust in cloud computing.
In Trust and Trustworthy Computing, pages 211–227.
Springer.

Kumar, V., Chejerla, B., Madria, S., and Mohania, M.
(2013). A survey of trust and trust management in
cloud computing. Managing Trust in Cyberspace,
page 41.

Li, W. and Ping, L. (2009). Trust model to enhance security
and interoperability of cloud environment. In Cloud
Computing, pages 69–79. Springer.

Marudhadevi, D., Dhatchayani, V. N., and Sriram, V. S.
(2014). A trust evaluation model for cloud computing
using service level agreement. The Computer Journal,
page bxu129.

Mell, P. and Grance, T. (2011). The nist definition of cloud
computing.

Nissenbaum, H. (1999). Can trust be secured online? a
theoretical perspective.

Noor, T. H. and Sheng, Q. Z. (2011). Trust as a service:
A framework for trust management in cloud environ-
ments. In Web Information System Engineering–WISE
2011, pages 314–321. Springer.

Noor, T. H., Sheng, Q. Z., Ngu, A. H., Alfazi, A., and Law,
J. (2013). Cloud armor: a platform for credibility-
based trust management of cloud services. In Pro-
ceedings of the 22nd ACM international conference
on Conference on information & knowledge manage-
ment, pages 2509–2512. ACM.

Pawar, P. S., Rajarajan, M., Nair, S. K., and Zisman, A.
(2012). Trust model for optimized cloud services. In
Trust Management VI, pages 97–112. Springer.

Pearson, S. (2011). Towards accountability in the cloud.
Proc. IEEE Internet Computing, pages 64–69.

Pearson, S. and Benameur, A. (2010). Privacy, security
and trust issues arising from cloud computing. In
Cloud Computing Technology and Science (Cloud-
Com), 2010 IEEE Second International Conference
on, pages 693–702. IEEE.

Perez, J. M. M., Bernabe, J. B., Calero, J. M. A., Clemente,
F. J. G., Perez, G. M., and Skarmeta, A. F. G. (2014).
Taxonomy of trust relationships in authorization do-
mains for cloud computing. The Journal of Super-
computing, pages 1–25.

Rizvi, S., Ryoo, J., Liu, Y., Zazworsky, D., and Cappeta, A.
(2014). A centralized trust model approach for cloud
computing. In Wireless and Optical Communication
Conference (WOCC), 2014 23rd, pages 1–6. IEEE.

Rousseau, D. M., Sitkin, S. B., Burt, R. S., and Camerer,
C. (1998). Not so different after all: A cross-
discipline view of trust. Academy of management re-
view, 23(3):393–404.

Sanchika Gupta, P. K. and Abraham, A. (2013). Cloud com-

puting: Trust issues, challenges, and solutions. Man-
aging Trust in Cyberspace, page 13.

Sato, H., Kanai, A., and Tanimoto, S. (2010). A cloud trust
model in a security aware cloud. In Applications and
the Internet (SAINT), 2010 10th IEEE/IPSJ Interna-
tional Symposium on, pages 121–124. IEEE.

Singh, S. and Chand, D. (2014). Trust evaluation in
cloud based on friends and third party’s recommen-
dations. In Engineering and Computational Sciences
(RAECS), 2014 Recent Advances in, pages 1–6. IEEE.

Solhaug, B. and Stølen, K. (2012). Uncertainty, subjectiv-
ity, trust and risk: How it all fits together. In Security
and Trust Management, pages 1–5. Springer.

Tajeddine, A., Kayssi, A., Chehab, A., and Artail, H.
(2006). PATROL-F - A comprehensive reputation-
based trust model with fuzzy subsystems. Springer.

Tajeddine, A., Kayssi, A., Chehab, A., and Artail, H.
(2007). Patrol: A comprehensive reputation-based
trust model. International Journal of Internet Tech-
nology and Secured Transactions, 1(1):108–131.

Wang, T., Ye, B., Li, Y., and Yang, Y. (2010a). Family gene
based cloud trust model. In Educational and Network
Technology (ICENT), 2010 International Conference
on, pages 540–544. IEEE.

Wang, T., Ye, B., Li, Y., and Zhu, L. (2010b). Study on en-
hancing performance of cloud trust model with fam-
ily gene technology. In Computer Science and In-
formation Technology (ICCSIT), 2010 3rd IEEE In-
ternational Conference on, volume 9, pages 122–126.
IEEE.

Wang, W., Zeng, G., and Yuan, L. (2006). Ant-based repu-
tation evidence distribution in p2p networks. In Grid
and Cooperative Computing, 2006. GCC 2006. Fifth
International Conference, pages 129–132. IEEE.

Wang, X., Su, J., Hu, X., Wu, C., and Zhou, H. (2014). Trust
model for cloud systems with self variance evaluation.
In Security, Privacy and Trust in Cloud Systems, pages
283–309. Springer.

Xiong, L. and Liu, L. (2004). Peertrust: Supporting
reputation-based trust for peer-to-peer electronic com-
munities. Knowledge and Data Engineering, IEEE
Transactions on, 16(7):843–857.

Zhu, H., Bao, F., and Deng, R. H. (2003). Computing of
trust in distributed networks. IACR Cryptology ePrint
Archive, 2003:56.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

162

Towards Dynamic QoS Monitoring in Service Oriented Architectures

Norman Ahmed1,2 and Bharat Bhargava1
1Department of Computer Science, Purdue University, 305 N. University St., W. Lafayette, IN 47906, U.S.A.

2Air Force Research Laboratory/RIS, 525 Brooks Rd, Rome, NY 13441, U.S.A.
{ahmed24, bbshail}@cs.purdue.edu

Keywords: Service Oriented Architecture, Web Services, Aspect Oriented Programming, Web Services Security, Cloud
Computing, Quality of Service.

Abstract: Service Oriented Architecture (SOA) is an architectural style that provides agility to align technical
solutions to modular business Web Services (WS) that are well decoupled from their consumers. This
agility is established by interconnecting WS family of standards specification protocols (commonly referred
to as WS-* (WS-star)) to enable security, ease of service interoperability and orchestration complexities
when extending services across organizational boundaries. While orchestrating services or chaining services
in varying ways to satisfy different business needs, on highly scalable cloud platforms is undeniably useful,
it is increasingly challenging to effectively monitor Quality of Service (QoS), especially, service response
time. This is due to a) lack of proper formulation of the WS-star interconnections mechanisms, and b) the
transient performance behaviour intrinsic to the heterogeneity of the hardware and shared virtualized
network and IO resources built on the cloud platforms. We present an analysis of WS-star standards,
classifying and discussing their inter-dependencies to provide a basis for QoS monitoring context on
protocol formulation. We then illustrate a practical implementation of a dynamic QoS monitoring
mechanism using runtime service instrumentation with Aspect Oriented Programming (AOP). Preliminary
evaluations show the efficiency of computing QoS on a transient performance cloud platform.

1 INTRODUCTION

Service Oriented Architecture (SOA) is the
architectural style that provides agility to align
technical solutions to modular business Web
Services (WS) that are well decoupled from their
consumers in the cloud environment. Built on a
Virtualization of heterogeneous hardware and
software stack on a SOA-based architecture as its
technical foundation, cloud computing is a
computing model that enables socio-economic
benefits due to its on demand computing resource
availability.

In this computing model, service providers and
consumers are typically decoupled by means of
common universal registries known as Universal
Description Discovery and Integration (UDDI) and
mediation mechanisms. Service capabilities,
interface options, Quality of Service (QoS), and
security constraints are described in the Service
Level Agreement (SLA) (Overton, 2002) that is
typically published in the UDDI.

The SLA document represents a contractual

agreement for obligating the service provider to
comply both functional and non-functional
parameters of the registered service. The non-
functional parameters are QoS attributes, such as
service response time and service up time (i.e. 95%-
99.999%) that are not known by the consumers
before runtime (Erl, 2005) nor by the provider when
orchestrating variable services to satisfy different
business needs.

To ease the interoperability complexity and
security concerns, especially for web services, SOA
encourages the use of WS-* standardized
specification, referred to WS-star. The forefronts of
these protocol specifications are the ones used for
data transport (i.e. SOAP/HTTP(s), WS_Security,
and WS_SecureConversation) message level
security. Typically, services are developed and
deployed by multiple software designers and system
integrators without prior knowledge of their
effective protocol interconnections when service are
orchestrated, the process of chaining services in
various ways to satisfy different business needs.

Due to the magnitude of the available standards,
chained services have higher chance of overlapping

163

some functionality, especially security
functionalities, that hinder the overall QoS
advertised in the published SLA. Coupled with the
transient performance behaviour inherent in cloud
platforms, further complicates this mixture of
standard-based design and contractual compliance
requirements to guarantee QoS.

Consider a realistic scenario where two or more
orchestrated services deployed in the cloud that
implement WS_Security to enforce encryption and
digital signatures for both inbound and outbound
traffic. The overall response time across the chain
will be highly impacted due to the potential security
functionalities overlap across the services. The main
reason is that each service performs encryption and
digital signature, which is typically a performance
hog. One alternative solution in this case is the use
of WS_SecureConversation. However, detecting
such overlap is increasingly challenging due to the
nature of these services’ development and
deployment by multiple teams in different times.
Typically, a Business Process Execution Language
(BPEL) is used during orchestration to either
determine response time by waiting till response is
received or configure it with a proper timeout. Note
that these response time evaluations are statically
performed in nature.

In addition, there is transient variable
performance behaviour of the clouds’ VM network
and IO interfaces due to multi tenant resource
sharing (Mei, et. Al. 2013). For example, over 300
million test cases conducted on nine cloud providers
over seven days (Alistair, 2011) have shown
performance time-of-the-day variability in
virtualized environments. Later studies (Zhonghong,
2012) showed such transient performance behaviour
is due to the hardware heterogeneity that the cloud is
built of. Therefore, it is prudent to dynamically
uncover QoS friendly alternatives at runtime to
improve service response time, thus, the main
objective of our work.

There is a large array of research that addresses
WS performance issues; to name a few, some QoS
monitoring research have been designed around
service selection (Fung, 2005), (Tian, 2004)
composition (Mietzner, 2010), (Fung 2005), and
dynamic soft QoS guaranteeing (Abdelzaher, 1999).
An area that has been substantially overlooked and
poorly studied is the understanding of the underlying
WS-* standard specification behaviour under the
cloud, especially, regarding service response time
for web services.

In this work, we propose a dynamic QoS
monitoring scheme on SOA-based services on

virtualized shared cloud platforms. The goal is to
capture the improper protocol formulation and the
underlying platform performance variations to
effectively compute service response time without
any modification to the service code to improve hard
QoS guaranteeing on virtualized environments.

In this paper, we present analysis of WS-* (WS-
star) by classifying and discussing their
interdependencies to show QoS impacts on improper
protocol formulation. We then illustrate dynamic
QoS monitoring mechanisms in a widely adopted
service container (JBoss). Thus, our contribution is
two fold:

 We developed an effective scheme for
dynamically monitoring orchestrated
services and computing service response
time in cloud environments without service
code modification or recompilation.

 While the proposed instrumentation scheme
is designed for QoS monitoring, it can also
be used to detect malicious service in the
chain, simply, by instrumenting the method
calls that reach beyond its intended service
end point.

The rest of the paper is organized as follows.
Section 2 gives a brief overview of SOA ecosystem
with especial emphasis on web services. We then
discuss WS-security protocols and their
interdependencies in section 3. We show our
proposed approach in section 4 followed by the
implementation and experimentation to illustrate the
effectiveness of our approach in section 5 and the
related work in section 6. Finally, section 7 provides
the conclusion and future work.

2 SOA ECO SYSTEM

SOA is an architectural style that promotes a high
degree of service decoupling and rapid system
development and deployment that span across
traditional organization boundaries. The traditional
SOA triangle paradigm consists of a service registry
(i.e. UDDI), a service provider and a consumer as
depicted in Figure 1.

Figure 1: SOA Triangle System Model.

At a high level, web service (WS) is an approach of
building web accessible services where the service

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

164

providers publish/register their service in the UDDI
registry and the service consumers discover and
invoke it. The two wide spread paradigms for
building services compliant with WS protocols are a
Representational State Transfer (REST) (Erl, 2012),
referred to RESTful services, and the Simple Object
Access Protocol (SOAP)-based services (discussed
next).

WS are built on standard specifications to
facilitate their integration and secure execution. The
core of the WS architecture (WS Architecture, 2002)
outlines a set of service characterization that enables
these complex functionalities to co-exist. However,
the actual specifications of the standards have been
collaborated and authored by many organizations
such as; W3C, OASIS, OMG, IBM, Microsoft,
Oracle, and xmlsoap.org, which makes difficult to
fully realize the goals of their interactions.

There has been a considerable research effort
that addresses the magnitude of the available
standards, their cross-referencing design and
development difficulties. For example, in (Gamble,
2011), authors proposed a Security Meta-Language
for guiding the formulation of secure messages in
WS architecture that model the security relevant
portions of the standard for their consistent,
comprehensive, and correct applications.

Others have addressed this through the use of
enterprise-level integration (i.e. Apache Camel),
meditation (i.e. Enterprise Service Bus), and
Orchestration (i.e. BPEL) tools. However,
dynamically monitoring these critical protocol
functionalities over transient performance platforms
has not been sufficiently addressed in these tools and
in a generic fashion.

2.1 RESTful Services

The RESTful Services paradigm is a lightweight
service implementation scheme that avoids
preserving service state and the use of the
underlying message level security. In other words,
the traditional encryption and digital signatures are
not employed in this service model due to its
computational and bandwidth requirements.
RESTful services are stateless services where
responding in a timely manner to every service
request is critical, thereby widely used in non-
critical applications such as; gmail access, facebook
updates, amazon consumer interactions, etc.

A transport security layer (TSL) or SSL over
HTTP (https) is typically used to secure RESTful
services. Such security solutions are sufficient for
point-to-point connection oriented where a service

call is authenticated and securely responds to the
request. However, this point-to-point security
solutions are ill suited in orchestrated/chained
service interactions where a service request from a
consumer has to reach out to other services in which
these services further reach other services in the
chain that are possibly in different domains in order
to respond to such request.

To remedy these limitations, the use of message-
level security is introduced in the standard protocols
such as: WS_Security, WS_SecureConversation, and
WS_Policy. The key idea of message level security
is to structure and wrap the message (both the
request and response) by sealing it in an envelope
(SOAP) and associating it with security attributes
(saml token) to safeguard its access and on transit.

2.2 SOAP-based Services

SOAP-based services provide granular message
level security using WS-* family of protocols in
which WS-Security is at the forefront.
Cryptographic and digital signature techniques are
the core of protecting SOAP messages from attacks.
As a consequent, this introduces a performance
overhead to the services (Liu, 2005). As the services
are orchestrated, these performance overheads
increase in the order of magnitude due to the
overlaps of the security functionalities. Detecting
these overlaps of such critical security
functionalities to improve QoS is the focus of our
work.

In order to effectively illustrate the
interconnection of the performance-degrading
protocol formulation and avoid hiding the concept in
a myriad of protocol standards, we limit our protocol
interdependency analysis (discussed next) to only
those protocols that impact QoS, specificaly policy
enforcement and message level security protocols,
confidentiality and integrity.

3 WEB SERVICE PROTOCOL
INTERDEPENDENCIES

WS decoupling is typically achieved by means of
common registries known as Universal Description
and Discovery Integration (UDDI). Services
deployed in UDDI are discoverable through either
WS Application Language (WADL) or WS
Description Language (WSDL) standard
specifications as depicted in Figure 2 (top left box),
and access control protocols (bottom left box).

Towards�Dynamic�QoS�Monitoring�in�Service�Oriented�Architectures

165

WADL and WSDL are the two defacto standards
for defining web service capabilities. These include:
service URI, services, security capabilities, and QoS
attributes using WS_PolicyAttachment for
encryption, signatures, policies, and WS-Addressing
for end point service response delivery. Discovery
and access control protocols have no impact on QoS,
therefore, in this work; we only give special
emphasis on confidentiality and integrity protocols.

Figure 2: Anatomy of End-to-End Web Service Security
Protocols - Service Discovery (top left box), Access
Control (lower left box), and Confidentiality and Integrity
for message level security (right box).

WS-Security is the core of WS-star protocol for
confidentiality and integrity of the service. The WS-
Security standard describes the security attributes of
service and task delegation between services to
facilitate secure authentication, authorization and
invocations. Each new security concept or interface
specification defined in WS-Security brings
additional WS-* family of standards which play a
significant role in expressing a web service’s
security posture.

For example, bridging communication between
secure environments require protocols to specify
cross-domain access controls. The Security
Assertion Markup Language (SAML) provides the
authentication and authorization among and across
services, even in different security domains (Oasis-
open, 2007), and eXtensible Access Control
Language (XACML) provides the security policy
enforcements for the authorizations that cross the
organizational boundaries (Oasis-open, 2012).

Further, WS-Trust is required to broker
authentication information, however, WS-Trust does
not describe the security functionality of services
and its capacity to fulfill the security needs. Instead,
it delegates to WS-SecurityPolicy to describe the
security policy which in turn uses WS-Policy. WS-
Policy exchanges policy decisions and enforcement
capabilities for every request, introducing more

latency for QoS constraint services, especially if
such capabilities deployed in a remote service
domains.

In addition, WS-Security defines XML-Signature
and XML-Encryption standards for digital signatures
and encryption of XML documents to ensure the
integrity of the exchanged SOAP
messages/envelope. The more security capabilities
added the more standard protocols needed. Thus, the
SOAP message size increases, which consequently
require more bandwidth and computationally
intensive operations in encryption, signature, and
verifications in which contribute to other QoS
issues, especially when services are deployed across
cloud domains or consumers with resource
constrained devices (mobile).

QoS violations are imminent when improper
protocol formulation is coupled with the transient
performance behaviour of the underlying platform.
A recent study (Zhonghong, 2012) shows that the
virtualized heterogeneous hardware built on the
cloud has performance variations that can reach up
60% between instances. Thus, dynamically
intercepting and monitoring orchestrated services on
such platforms are crucial in order to improve QoS
guarantees and consequently prevent SLA
violations.

4 SYSTEM MODEL

A motivating example of cross-domain service
orchestration scenario is depicted in Figure 3 below.

Figure 3: High-level architecture for orchestrated services
across private and public clouds.

The high-level architecture above depicts a typical
orchestrated service deployment across security
domains, public and private. The top arrows marked
(1-Publish Service) and (2-Discovered Service)
show the service registration flow to the UDDI by
the service provider where then the consumer client
(depicted as the laptop) discovers that service. The
client invokes that service as shown by the arrow-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

166

marked (3a-Request/Response (RR)) and gets back a
response. The arrow marked (3b-RR) between the
clouds show the cross-domain service invocation
that jointly satisfy the consumers’ request. Note that
all arrows represent a bio-directional data flow.

Chaining services in such environments is
typically configured using BPEL. However, once
services are deployed in the service container or
application servers (eg. Jboss, Oracle, IBM
Glassfish, etc.), these configurations are static, and
thereby, fail to adapt to the changes of the
underlying cloud platforms. Computing service
response time in such setting typically requires
reconfiguring or even re-designing the services.

We approached this problem by deploying
interceptors in the service containers to seamlessly
collect service information at runtime and compute
response times while considering the transient
behaviour of the deployed cloud platform. Service
information can then be analyzed by machine
learning to predict future QoS attributes,
dynamically update SLA in the registry, or even
migrate services instances to cloud platforms that are
experiencing less performance issues in different
regions. In this work, we focus on the detection
scheme only.

4.1 QoS Criteria

There are several non-functional QoS metrics
categories and service performance attributes in
SOA-based WS. In this work, we only consider WS
performance, specifically service response time for
orchestrated services on cloud platforms.

4.2 Approach Overview

Most QoS attributes in SOA are not a one-size-fit-all
for all consumer requests. A priori knowledge of any
given QoS attribute for the prospective consumer is
difficult to predict (Erl, 2005). Several QoS
monitoring approaches offered solutions that
improve QoS over the years. However, none have
addressed the impact of the overlapping security
protocols due to their criticality of the service
protection coupled with the performance variability
of the underlying cloud platforms.

The basic idea of our approach is to non-
intrusively instrument services without introducing
overhead. Our design is based on two steps,
detection and aggregation. We use Aspect Oriented
Programming (AOP), a dynamic application
instrumentation framework first introduced in
(Kiczales, 1997). AOP allows service code

instrumentation without modifications or
recompilation of the code. The instrumented data
collected/detected at runtime from each service is
then forwarded to the QoS auditor web service
(referred as QAudit) to aggregate and then compute
response time.

4.3 Service Instrumentation with AOP

Typically, collecting accurate QoS information at
runtime is achieved by inserting general purpose
logging statements in pre-compile time and during
service composition. QoS metrics can then be based
on the aggregate of these logs. Such techniques are
inefficient and ill suited in cloud computing
platforms due to the performance variability
behaviour that are not under the control of the
service provider. Since accurate QoS attributes
cannot be predicted during service registration,
dynamic service instrumentation is critical.

We achieve such dynamicity with AOP. A basic
AOP model defines two instrumentation primitives
known as pointcut designators (PCD) and advice.
The PCD's are typically points in the program where
inserting instrumentation is not too hard, for
example, method calls are very often used as one of
the fundamental PCD. These PCD's are simple
instrumentation primitives that can gather critical
information without any modifications to the code.

On the other hand, the advice is the point where
an aspect to be instrumented can be weaved in. The
result of PCD and advice generated will then
forwarded to externally configured component, in
our case, QAudit. QAudit web service evaluates the
best QoS metrics under that given cloud platforms
performance behaviour or overlapping security
functionalities on the services, in which the service
provider can take any action necessary such as;
either update the SLA for the prospective users,
reconfigure security protocols or project future QoS
metrics of the given time of the day.

Figure 4: Service Anatomy and AOP Instrumentation
Module inside the Jboss service container or app server.

AOP enables user level service interception
capabilities within application servers. As depicted

Towards�Dynamic�QoS�Monitoring�in�Service�Oriented�Architectures

167

in Figure 4, we used an AOP plugin as a module in
the Jboss Application server where our services are
deployed, known as JbossAOP (JbossAOP, 2003).
JbossAOP instruments services deployed in the
service container by intercepting the execution of all
aspects of the program, such as specific object on
the program, a function parameter values, or method
calls within or across program calls.

The performance overhead of the AOP depends
on the knowledge of the application (Alexanderson,
2010). For QoS monitoring, the overhead is
proportion to the number of the interception points
within the services. To limit such overhead, we only
intercept WS-Security related function calls,
specifically, prior and post encryption, and signature
operations in which are negligible when tested in
public cloud environment as shown in our previous
work (Azarmi, et. al. 2012). Note that one can also
instrument communication methods if needed to
uncover rogue/compromised service reaching
outside its intended endpoints.

4.4 QoS Auditor Web-service

As depicted in service anatomy diagram in Figure 4
above, the service container enables hooks to
instrument the services’ business logic where the
instrumented data can then be sent to the listening
service, QoS Auditor (QAudit) web service. The
QAudit receives the pre and post WS_Security
function call timing information collected from the
diverse orchestrated services under the current
performance of the services’ environment (VM’s).
For example, some services are deployed in cloud
platforms that are built on different hardware,
hypervisor, and possibly running VM migration and
load balancing algorithms by the cloud provider to
accommodate between the tenants.

4.5 QoS Monitoring in Orchestrated
Services

The WS Business Process Execution Language
(WSBPEL) defines the orchestration of WS standard
language for service chaining and execution.
Identifying performance bottlenecks in orchestrated
services from multiple providers within BPEL
engines is a challenging task given the dynamicity of
the cloud platforms that’s not known a priori.

As described in the previous section, AOP
instruments services deployed in the service
container by intercepting the execution of all aspects
of the program (i.e. method calls) across program
calls. Since orchestrated services are also program

calls across domains, AOP can effectively intercept
orchestrated WS. We will describe our
implementation approach in the next section.

5 IMPLEMENTATION AND
EXPERIMENTATION

We are interested in computing service response
time for secure web services orchestrated across
cloud platforms (public/private) as illustrated in the
high-level architecture in Figure 3. In this section,
we discuss our prototype and show the preliminary
evaluations on private cloud deployments, and the
proposed QoS computations scheme.

5.1 Experimental Setup

Our experimental cloud platform uses a private
cloud built on OpenStack, a cloud management
software stack, on a cluster of 4 machines (Dell
Z400) with Intel Xeon 3.2 GHz Quad-Core with
8GB of memory. At a high-level, OpenStack
consists of a controller and computing management
applications. We divided our four machines into one
controller node and 3 compute nodes. As the name
implies, the controller node is to simplify cloud
platform management by enabling on demand
elasticity, i.e., provision/de-provisioning VM
instances, adding/removing hardware and instantly
making it available in the computing resource pool.

The three compute nodes allow us provisioning
20 virtual CPU’s (vCPU) in which we assigned 10
small VM instances, 2 vCPU per instance for service
deployments. We used a total of 10 VMs with
Ubuntu Linux for service consumer (clients) and
secure services in all of our experiments.

5.2 Implementation

We developed a CXF-based secure web services
(WS_Security and WS_SecureConversation enabled)
and deployed in Jboss application server. The
integration of AOP with Jboss container was done
using JbossAOP (JbossAOP, 2003) library, a
pluggable user specified instrumentation module for
Jboss application servers. We leveraged AspectJ
(AspectJ, 2001), a stand-alone Java implementation
of AOP, as the service instrumentation algorithms
for intercepting the WS-Security method calls.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

168

5.3 Preliminary Results

It has been previously reported that performance
difference between WS-Security and
WS_SecureConversation in web services are in the
order of magnitude higher in WS-Security (Liu, et.al.
2005). To illustrate in the context of service
orchestration under the transient performance
behaviour of the cloud, we configured three secure
services that implement WS_Security with 3 others
that implement WS_SecureConversation with the
same logic, a secure weather report, deployed in a
Linux virtual machines described above.

We orchestrated the 3 services with different
configurations while assuring the security of the
service. Service configuration is application and
domain specific, thus, to illustrate the basic concept;
we chained and invoked services in the following
format:

Req1 Sws Sws Sws Sws …
Req2 Sws Ssc Sws Ssc …

Reqn ...

The requests Reqn interacts with service Sws

implemented with WS_Security and then Ssc

implemented with WS_SecureConversation and so on.
To mimic the performance variability of the

cloud platforms, services requests and responses
were performed while the system is running cpu and
memory intensive applications. We observed the
system performance using the built in Ubuntu
system monitor (krell) showing a load over 50%-
70% usage of the memory and cpu. The service
response times received by QAudit service, when
aggregated, ranged between microseconds to
seconds; thus, clearly show QoS impacts on security
function overlaps.

These observations show the non-intrusive way
of computing QoS in cloud platforms. However, the
actual results may vary depending on the service
logic and other factors when expended into the
public cloud deployments, thereby, considering it in
our future work.

6 RELATED WORK

To the best of our knowledge, there is no in-depth
analysis of WS-star protocol formulation in SOA in
the context of QoS monitoring that reflect the
transient performance behaviour of the underlying
cloud platforms. Thus, we divide our related work
section into two parts; we first discuss works in WS-
* performance improvements and next we provide

QoS Management tools and techniques that are
relevant to our work.

6.1 WS*- Performance Improvements

There are large volumes of research that employ
different methods to address performance
improvements on web-services. To name a few:
SOAP header envelope reduction techniques,
efficient XML parsing and compression methods,
and binary and canonicalization techniques.

With the rise of business heterogeneity,
orchestrated services pose further callings for
selecting and complying with an accurate advertised
QoS attributes, especially service response time. As
these schemes have set the foundation of WS
performance improvement, our approach was
inspired by such mechanisms and further extended
to dynamically monitor orchestrated services in a
virtualized environment.

6.2 QoS Management

QoS management can be classified into three
categories: resource allocation, service composition,
monitoring and fine-tuning QoS parameters within
the services. In this work, we focused on the latter
two. It’s intuitive to see that an effective resource
sharing can aid QoS guarantees; moreover, service
composition or selection also plays a critical role in
such guarantees.

To highlight some studies in this category, early
works, such as (Abdelzaher and Shin, 1999),
proposed a virtual service that enables the selection
of multiple deployed concrete services depending on
the users’ QoS interest. A set of cooperative
autonomous agents that enable optimal web service
composition is proposed in (Brahmi, 2013). Within
the context of service selection, similar to QAudit
approach, Q-Peer (Li, et.al. 2007), a distributed QoS
registry is proposed to monitor and collect
information on running services to assist consumers
for the reliability of the service where as we focus
on service response time improvements.

It has been noted that the inaccuracy and
violations of QoS in various papers and spurred a
wide range of research approaches, to name a few;
QoS verifications during service registration
(Abdelzaher and Shin, 1999), extending UDDI
functionalities (ShaikhAli et. al, 2003), introducing
new protocol languages to define SLA (Lamanna,
2003), SLA template adjustments (Spillner and
Schill, 2009) and new frameworks for dynamic
service monitoring and selections in a realistic

Towards�Dynamic�QoS�Monitoring�in�Service�Oriented�Architectures

169

environment (Tian, et. al, 2004). Along the lines of
the WS protocol research, a modification of WS-
Agreement protocol to enable dynamic run-time
renegotiation and SLA adjustments to guarantee
QoS when SLA violation is expected to occur is
proposed in (Modica, et. al, 2007).

All of the above approaches face adaptability
challenges due to the proposed changes required in
the protocol standards. Our work can accurately and
non-intrusively detects the transient behaviour of the
cloud platforms to prevent SLA violations without
modifying the service code or the standard
protocols. Furthermore, our work will complement
the works of fine-tuning QoS parameters for
efficient service composition, selection and
monitoring schemes to maximize QoS and prevent
SLA violations.

7 CONCLUSIONS

Guaranteeing hard QoS on orchestrated web-
services in SOA and virtualized cloud platforms are
increasingly challenging due to security critical
functionality overlaps and the transient performance
behaviour of such platforms. In this paper, we
developed an effective mechanism to dynamically
monitor orchestrated services and compute service
response tme while considering the underlying
performance behaviour of the cloud platforms.

We implemented our proposed approach with
Aspect Oriented programming (AOP) and illustrated
with a practical scenario to validate our design using
three secure services deployed in a private cloud. In
our future work, we consider experimental traces
over periods of time in our private with public (i.e.
Amazon) cloud instances deployed in different
geographic locations.

ACKNOWLEDGEMENTS

Authors would like to thank Jim Hanna at AFRL for
setting up the experimental platform, and special
thanks to the reviewers for their valuable feedback
that made this paper more readable.

REFERENCES

Abdelzaher, T. F., & Shin, K. G., 1999. QoS Provisioning
with qContracts in Web and Multimedia Servers. In
the 20th IEEE Real-Time Systems Symposium.

Alexanderson, R., Ohman, P., and Karlson, J., 2010.
Aspect Oriented Implementation of Fault Tolerance:
An assessment Overhead. In Computer Safety,
Reliability, and Security. Lecture Notes in Computer
Science, Volume 6351, pp 466-479.

Alistair C., 2011. Cloud Performance From the Users
Prospective. http://www.bitcurrent.com/download/
cloud-performance-from-the-end-user-perspective/.

AspectJ, 2001. http://eclipse.org/aspectj/
Azarmi, M., Angin, P., Bhargava, B., Ahmed, N., et al.,

2012. End-to-End Security in Service Oriented
Architecture, In SRDS12, the 31st IEEE Int.
Symposium on Reliable Distributed Systems.

Brahmi, Z., 2013. QoS-aware Automatic Web Service
Composition based on Cooperative Agents. In
WETICE, The 22nd IEEE International Workshops on
Enabling Technologies: Infrastructure for
Collaborative Enterprises.

Erl, T., 2005. Service-Oriented Architecture: Concepts,
Technology, and Design, Prentice Hall.

Erl T., et al, 2012. SOA with REST, Prentice Hall. 1st ed.
Fung, C. et al., 2005. A Study of Service Composition

with QoS Management. In ICWS’05, IEEE
International Conference on Web Services.

Gamble, R. and Baird, R., 2011. Developing Security
Meta-language Framework. In Proceedings of the 44th
Hawaii Int. Conference on System Sciences.

JbossAOP, 2003. http://www.jboss.org/jbossaop.
Kiczales, et al., 1997. Aspect-Oriented Programming. In

ECOOP’97, Object-Oriented Programming, lecture
Notes in CS. Vol. 1241, pp. 220–242.

Lamanna, D., Skene, J., and Emmerich, W., 2003. SLAng:
A Language for Service Level Agreements. In the 9th
IEEE Workshop on Future Trends of Distributed
Computing Systems. FTDCS.

Li, F., et al., 2007. Q-Peer: A Decentralized QoS Registry
Architecture for Web Services. In ICSOC’07,
International Conference on Service Oriented
Computing. LNCS 4749,pp.145-156.

Liu, H., Pallikara, S., and Fox, G., 2005. Performance of
Web Service Security. In Proceedings of the 13th
Annual Mardi Gras Conference.

Mei, Y. et al., 2013, Performance Analysis of Network I/O
Workloads in Virtualized Data Centers. In IEEE
Transactions on Service Computing.

Mietzner, et al., 2010. Combining Horizontal and Vertical
Composition of Services. In Proceedings of the IEEE
International Conference on Service-Oriented
Computing and Applications.

Modica, G., et al., 2007. Dynamic Re-negotiations of SLA
in Service Composition Scenarios. In SEAA07,
EuroMICRO conference of Software Engineering and
Advance Applications.

Oasis-open.org, 2007. Security Assertion Markup
Language (SAML). https://www.oasis-open.
org/committees/download.php/27819/sstc-saml- tech-
overview-2.0-cd-02.pdf.

Oasis-open.org, 2012. eXtensible Access Control
Language (XACML). https://www.oasis-open.org/com
mittees/tc_home.php?wg_abbrev=xacml#C URRENT.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

170

Overton, C. 2002, On the Theory of Internet SLAs.
Journal of Computer Resource Measurement, (106):
32-45.

ShaikhAli, A., Rana, O. F., Al-Ali, R., and Walker, D. W.,
2003. Uddie: An Extended Registry for Web Services.
In Proceedings of IEEE Workshop on Applications
and the Internet. pp. 85-89.

Spillner, J., & Schill, A., 2009, Dynamic SLA Template
Adjustments based on Service Property Bonitoring.
In CLOUD'09. IEEE International Conference on
Cloud Computing. pp. 183-189.

Tian, M. et al., 2004. Efficient Selection and Monitoring
of QoS-aware with the WS-QoS Framework. In
WI’04, IEEE/WIC/ACM International Conference on
Web Intelligence. pp.152-158.

WS Architecture, 2002. http://www.w3.org/TR/ws-arch/.
Zhonghong, O., et al., 2012. Exploiting Hardware

Heterogeneity within the Same Instance Type of
Amazon EC2. In Proceedings of the 4th USENIX
Conference on Hot Topics in Cloud Computing.

Towards�Dynamic�QoS�Monitoring�in�Service�Oriented�Architectures

171

Reality Vs Hype
Does Cloud Computing Meet the Expectations of SMEs?

Katie Wood and Kevan Buckley
Department of Computer Science, Faculty of Science and Engineering, Wolverhampton University, Woverhampton, U.K.

{k.wood, k.buckley}@wlv.ac.uk

Keywords: Cloud Computing (CC), Security, Risk Management, Small and Medium Enterprises (SMEs), Cloud
Service Providers (CSP).

Abstract: Small and Medium Enterprises (SMEs) have become a primary target audience for Cloud Service Providers
(CSP), such as Amazon and Microsoft to promote their cloud offering. CSP strong marketing campaigns of
‘promised’ benefits from using their clouds is an attractive offer for SMEs especially where resources are
limited and they wish to become more agile and reduce IT costing to be competitive with larger rivals. This
paper argues that once SMEs remove the hype surrounding the concept of cloud computing (CC), the reality
of significant benefits do not materialize for SMEs. This paper demonstrates, through working with SMEs
considering the options of CC that the challenges and risks associated with cloud might actually hinder the
business, rather than providing any real long term value.

1 INTRODUCTION

Cloud computing (CC) has gained increased
attention and momentum within a short period of
time, even those the technology is still very much in
its infancy. The increase interest into this form of
distributed system has been fuelled by the strong
marketing campaigns form Cloud Service Providers
(CSP) that have promoted the promised of benefits.
It is frequently reported that CC offers a variety of
benefits including cost-saving, agility, efficiency,
resource consolidation, business opportunities and
Green IT (Chang et al., 2010) Even so, cloud is still
a young and evolving paradigm that incorporates the
evolutionary development of many existing
computing technologies. This paper defines hyper
surrounding CC as being the extravagant or
intensive positive promotion of CC technologies by
CSP and through the media. Such extravagant
promotions, has lead to SMEs within this study to
consider using CC as significant benefits, especially
in term of cost saving and improved performance
were expected. However the observations and
findings of this study, suggest that in reality such
expectations have not be achieved.

This study identified there a lack of
understanding surrounding the terminology of CC
and the changing variable within CC makes it
challenging to alignment with SMEs needs.

Concerns surrounding security are noted as being a
majority issue for SMEs in terms of establishing
their role and the CSPs in protecting the systems.

The remainder of this paper is organized as
follows: Section 2 provides a brief outline of the
background and rational for undertaking a research
project. Section 3, presents an overview of unique
features of cloud where benefits are clamed. The
section continues through a detailed discussion of
the issues and how these limit the chance of any
business value of using cloud technology for SMEs,
if not understood or assessed during the decision
making process. Section 4 outlines the need for risk
assessment to be conducted and awareness of risks
associated of CC. Section 5 presents considerations
as part of a risk assessment that could be part of
assessing CC suitable. Section 6 concludes the
paper. Finally, section 7 outlines further work that
the authors have planned to continue on this project.

2 PRIMARY OBSERVATIONS

The findings outlined in this paper are from research
undertaken with SMEs in the West Midlands, UK.
SMEs from different industries where selected to
take part in a study to access SMEs understanding of
CC and what cloud technologies were currently
being used or considered. Initially a questionnaire

172

survey was used to collect data. 50 SMEs in the
West Midlands took part in this stage. Businesses
were selected based on the fact they heavily used
forms of technology in their operations, but were not
deemed as a business in the IT sector. The rationale
behind this selection was to access people who have
an average level of IT usage and experience of IT,
who would understand and interact successfully with
cloud technology without the need to be an IT
expert. The questionnaire survey allowed the
authors to gather valuable information and gauge
SMEs general understanding of the concept of CC
and establish the level of interest and use from the
SME community. From the results of stage 1,
several SMEs were then invited to take part in a
deeper analysis. During this stage semi-structured, in
depth interviews were used and acted as the primary
data collection method for the project. The SMEs
selected were based on the responses from stage one.
SMEs selected for this stage were based on the
following criteria:

Table 1: Criteria for SME involved in stage 2 of study.

The business was involved in the initial
questionnaire stage of the project.

Staff had a fairly good level of IT skills
There was an interest in understanding more about

cloud and some evidence of some form of cloud
computing has been used.

The business wanted to consider using PaaS in the
future.

The business uses websites, email and database
applications, which would be suitable applications to
use and store within a form of cloud environment.

Each interview was individually conducted between
the author and participant and took around 45
minutes. A combination of closed and open
questions were selected relating to the business use
of IT, the business rationale for considering CC and
the participants understanding of use of CC. Results
and transcripts from the interviews have not been
shared or compromised at any point during the
project or discussed in this paper order to ensure
confidentiality and participant’s anonymity.

This paper outlines some of the responses from
the participants from both stage 1 and stage 2 to
highlight growing concerns of issues relating to
cloud computing and evidence of limited benefits
emerging. The findings overall conclude a growing
interest in the topic, however when it came to
practically using cloud, SMEs either had
experienced problems and disappointment through
using the technology, or the complexity led to the
decision to migrate to cloud being terminated. This

paper outlines several areas where SMEs stated
complexity and where potential benefits promoted
by the CSP have not materialized to produce overall
benefits.

3 CHALLENGES OF CLOUD

3.1 What Actually Is Cloud
Computing?

To establish the participants understanding of CC,
the first sets of questions asked to participants
during the interviews were to assess their
understanding of the concept of CC and user
experience. All participants involved in this study
had heard of the concept CC, so you might wonder
why the question “Do you know what cloud
computing is?” was even asked? According to
results from a survey conducted in 2012 (Chang et
al., 2010). Participants in that study were asked to
explain the concept “the cloud” The majority
responded with the view it either referred to an
actual cloud (specifically a “fluffy white thing”) in
the sky or something related to the weather (29
percent). Only 16 percent of participants thought it
was related to computer networking to aid storage,
access and share data from Internet-connected
devices.

It this particular research project with SMEs
participants the results from this question concluded
that only 30% of the participants could actually
provide some clearly definition on what the term
means in the context of computing. Surprisingly
over half the participants believed they have actual
use a form of cloud technology, even those they
were not sure what was meant by the term CC. From
a security point of view, this statement is concerning
as participants are not aware of what technology,
services or systems they are actually using and the
risk associated.

Given the relatively immature nature of CC and
that it is still evolving. It is not surprising that end
users and businesses are finding it difficult to
understand what is exactly meant by the term cloud
computing. There has been work in recent years to
establish a benchmark and suitable definition for
cloud. Currently however there is still no precise
definition (Interworkscloud, 2013) for cloud, which
makes it a challenge for businesses to understand the
different elements that are required for a successful
uptake of CC. This has led to arguments by
researchers that the term “cloud computing” is far
too broad making it difficult to develop a single and

Reality�Vs�Hype�-�Does�Cloud�Computing�Meet�the�Expectations�of�SMEs?

173

clear definition. (Wood Katie, 2012) Currently, there
are over 20 different definitions. The most regularly
used definition is by the National Institute of
Standards and Technology (National Institute of
Standards and Technologies, 2009) Basically, `CC'
as an umbrella term being applied to different
situations and their solutions. It is the next stage in
the distributed and shared computing. This form of
computing provides a range of computation
facilities, storage and scalable functions and services
that are accessible anywhere via a connection to the
Internet.

3.2 SMEs Concerns

Graph 1: Results from stage 1 – Questionnaires Shows the
range of concerns SMEs have with cloud technologies.

Graph 1 shows the different categories that
SMEs had concerns over using cloud technologies.
47/50 participants identified security has their major
concern. This was followed by a high proportion of
participants stating concerns over loss or control
43/50 and performance 41/50. Concerns highlighted
above led to a follow up question directly linked to
this during the interview stage in order to see if any
of the concerns raised by SMEs have also
materialize into real problems for SMEs that had
used cloud technologies. Unsurprisingly SMEs had
encountered problems in most of the categories
previously outline which showed that there is
evidence to back up the concerns from SMEs that
might still be weighting up the options of cloud.
26% of SME in stage 2 identified that they have
encountered security problems and 23% as having
experience performance problems. As semi
structured questions were used during this stage,
some SMEs further explained that the problems they
had occurred several times over a short period of
time. In once case led to a SME to reconsider using
cloud services to store data as the performance of the
system led to performance and available problems
which was seriously hindering the operational side
of the business. Cost of using cloud technologies did
not appear to be a concern by SME participants in

this study. There was a consensus from participants
that there is a wide option of price plans offered by
different CSPs which allowed for flexibly.

Graph 2: Results from stage 2 – Interviews Shows the
range of concerns SMEs have with cloud technologies.

3.3 Migration and Section

One of the first challenges for any potential cloud
user is dealing with selecting the correct cloud. CC
can be classified into three categories: Infrastructure
as a Service (IaaS), Platform as a Service (PaaS) and
Software as a Service (SaaS). To further complex
the situation, CC can also be offered in different
deployment formation - public, private, community
and hybrid clouds. Each form of cloud and
deployment bring a whole set of different potential
benefits and associated risk. Therefore the first
challenge is assessing which form of cloud is
suitable for that business. In order to benefit from
cloud systems and services a business needs to have
an understanding of the difference between the
forms or clouds as well as looking at several CSPs.

Graph 3: Results from stage 1 – Questionnaires. Shows the
percentage of participants that feel there is not enough
advice, support or training available for SMEs.

As shown in graph 3. Participants for this study
felt strongly that training, education and support on
the subject of CC is currently lacking. Participants in
this study felt there is not enough advice, support or
training in dealing with the starting process over
selection and migration of systems and applications
and also the legal aspects to ensure their data and
rights are protected.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

174

3.4 Compatibility

Linking to the migration to clouds, all businesses in
this study highlighted the need for cloud services
that are compatible with existing services and
application. Participants felt that there is not enough
guidelines or support in terms of how suitable clouds
are to meet their needs and also their compatibly
with exist systems and applications the business
might still require. As businesses has already invest
in systems prior to considering the option of cloud it
is important those systems and applications are not
ignored if these are still fit for purpose. There is
limited documentation and advice on the matter to
aid businesses in finding suitable and available tools
and techniques to support this objective. 80% of the
participants during stage 1 stated if cloud systems
where used, they would still feel current systems and
application would have to remain for certain tasks.
Therefore this would be increase outgoing costs of
maintaining both an existing systems and cloud
system, therefore not providing the businesses with
any cost saving.

3.5 Security

CSP often claiming that security in the cloud is
tighter than in most enterprises (David Binning,
2009) however the following questions need clear
and defined answers for CSPs. Will SMEs data be
safe in the cloud? What about data protection? What
will happen if security threats or breeches occur on
the cloud even those the technology has been around
for several years now, Gartner warned in 2013 that
there are still six major security issues that
businesses should tackle when considering cloud
adoption. (Warwick Ashford, 2013) Each cloud is
unique, offering different benefits and ways to
reduce costing. However there are also significant
drawbacks of cloud systems, particularly in security.
The variation of security threats and possible
breaches that the system could encounter, further
complicates cloud. [7 Distributed denial of service
attacks are on the raise on cloud systems, as clouds
host services for different customers on their severs,
so it’s no surprise these systems are a hot target for
cybercrimes. The fact that different businesses and
users sharing the cloud space also increases the risk
of access errors and leading to data been vulnerable
and at risk of being accessed by others. How data is
moved across and between CSP and the end user
also places greater risk and vulnerabilities.

One major downside of clouds is that the
provider has control of the user’s data. Users have to

relay and trust their provider will protect their data
and privacy. Privacy is an important issue for cloud
computing, both in terms of legal compliance and
user trust and this need to be considered at every
phase of design. (S. Srinivasamurthy and D. Q. Liu,
2010) Privacy has yet to be fully acknowledged as a
serious problem by policy makers and CSP. The
limited regulations and legislation being enforced on
privacy and user protection rights reflect this.
According to a recent Cloud Security Alliance
Report, insider attacks are the third biggest threat in
cloud computing. (Top Threats to Cloud Computing
v1.0, 2014) The reasons for this may vary, from
users not understanding the system and the
configuration processors, through to users who are
motivated to create damage and misuse.
Administrators and development need to deal with
this situation in a more consistent manner across
different cloud platforms. Therefore it is essential to
access the dynamics of a range of configuration
techniques and tools to evaluate and distinguish the
impact these issues have on a cloud.

The survey used in stage 1 showed that (75%) of
the SMEs stated concerns over employees IT
knowledge and felt that employees would have to
receive additional education and support in order to
use the technology effectively. (50%) of these
businesses further stated they are currently not in a
position to invest in providing such support for
employees at the moment. This further outlines
drawback to using cloud technologies that
businesses are assuming that high investment in
education and training would be required to use
these systems, when in fact the role of using clouds
could be to simplify certain IT tasks, for example
updates security countermeasures.

3.6 Costing

One of most hyped aspect of cloud computing is
surrounding cost savings. Yet has stated in early
sections of this paper, If SMEs have to continue
using existing systems and applications along a
cloud system there are no financial benefits.
Businesses and individuals considering using cloud,
expect appropriately reliable and timely service
delivery, easy-to-use interfaces, collaborative
support, information about their services, etc.(M. A.
Vouk, 2008) Such high exceptions are
understandable as the CSP have promoted their
cloud service as being able to achieve such goals.
All CSP will be affect at some point by downtime,
for example during upgrades. There was been recent
cases of security breaches in Amazon, Gmail and

Reality�Vs�Hype�-�Does�Cloud�Computing�Meet�the�Expectations�of�SMEs?

175

Hotmail. The user is often unaware of such problems
unless their CSP informs them or they are affected
by the security breach. There is currently no
legislation in place which states the CSP must
inform users of all security breaches on their
systems.

3.7 Performance

Clouds promote the benefits of scalability and
flexibility for customers as cloud computing shifts
everything from local, individual devices to
distributed, virtual, and scalable resources, thereby
enabling end-users to utilize the systems, storage,
and other application resources (which forms the
“cloud”) on-demand (Hayes, 2008). The term multi-
tenancy refers to the ability to run multiple
customers on a single software instance installed on
multiple servers. These systems have recently
become popular due to the multi-tenancy features
within which allows businesses to benefit from
reduced costs yet continue to gain access to data and
applications. (Wood and Anderson, 2011) Reliance
on cloud infrastructure provides issues for the end
user in terms of the reliability and availability of the
CSP and cloud services. It is crucial that CSPs
ensure they meet the privacy requirements of users
and legislative requirements. Reports on privacy
failure and loss of user data have had serious impact
on the creditability of Cloud technology and the
overall expansion of cloud services, as well as on the
end user. This clearly demonstrates the risk
associated with reducing control of own data

4 RISK ASSESSMENT

Given the nature of CC and its key characteristics
several risks can be determined. Some of these risks
are traditional risk and concerns that are common
with any form of networking technology. However,
there are also specific risks relating to cloud.
Businesses need to understand, analyse, and evaluate
important economics and elasticity capabilities of
different forms of cloud systems and technologies
and providers before making any commitment to
CC. Any selection should be based on the suitability
for meeting the business requirements and
alignment, rather than being motivated with
marketing and the desire for the least technologies.
For any business it is important to consider all the
options available. In the case of SMEs, it is more
critical given their limited budget to get outsider exit
advice – i.e. consultancy services to aid the decision

making process, due to financial constraints.

5 CONSIDERATIONS IN
TACKLING CLOUD
CHALLENGES

5.1 Testing and Evaluating

The development and integration of different system
hardware, storage, networks, interfaces,
administration and so on, should be careful planned
out. However businesses are not always sure what IT
they require in the short and long term. Before
committing to any cloud technologies, it is critical
that businesses assess and evaluate their business
needs as well as exploring the difference cloud
options available. This might appear time-
consuming and costly; however the right decision
must be made. There are too many different CSP
available and packages; therefore it is useful to
research against the business requirements a few
different CSP to see what is being offered. Several
CSP offer limited access to service as a free tail
approach in an attempt to entice users to commit to a
contract. These free trials can provide an opportunity
for businesses to compare and evaluate different
services and functionalities between providers.

5.2 Assurance Measures

Businesses that wish to explore cloud must seek
assurance from the CSP over how potential risks
will be prevented. It is important to check CSP
reliability reports to determine how often breaches
have occurred and the impacts to see if that CSP has
a good track record and provide the required level of
protection and support. Checking through blogs and
internet sites over any reports of major security
breaches or problems that other users have
experience can provide valuable insight into the
cloud culture.

5.3 Training, Education and Cloud
Awareness

Graph 3 shows that SMEs would consider using
clouds if more advice, support and training were
made available.

There need to inquire about what the
system/services are being offered and the privacy
policies that CSP has. This must be conducted
before users commit and hand over their data. A

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

176

Graph 3: Shows the percentage of SMEs that would
consider using clouds if more advice, support and training
were made available.

contract which includes the Terms of Service (TOS)
and also s Privacy Policies and Service Level
Agreement (SLA) will insure a level of assurance
for users. This also provides grounds for legal action
against the CSP if the provider does not maintain
their side of the contract. For example, passing user
details on to a 3rd party. It is also essential that users
are aware of the data protection laws as their data
could be transferred across into regions which are
not as strict on data protection. This could result in
invasion of privacy. Like all forms of technology,
clouds are changing, aspects are being improved and
other forms of risks are emerging therefore users
need to be aware of changes to their cloud systems.
What applications are being updates or removed for
example, and how these might impact?

6 CONCLUSIONS

This paper has highlighted that CC often does not
meet the expectations of SMEs. Finding suggested
this is because SMEs have unrealistic expectations
from using CC and the fact that CSP promote a
range of benefits which can’t be achieved for all. CC
is not a one size fit all technology and as every
business differ in size, resources and IT experience it
is difficult to compare and contracts how CC
benefits can be achieved for the masses. Therefore
SMEs need to conduct an in depth risk assessment
and evaluation of existing systems and CC options
in order to access if CC is more suitable to that
particular business.

7 FUTURE WORK

Further work and support is required for SMEs to
actually deploy a cloud system that can be
integration with existing applications and systems.
Therefore the author’s further work will include
explores risks relating to the more technical aspects

of cloud and SMEs role in these, for example
configuration management and access rights in a
cloud system. Alongside this, a book will be
produced which will provide a framework to act as a
set of risk and support guidelines for SMEs during
the change cycle of migrating to a cloud.

REFERENCES

Chang, V., Bacigalupo, D., Wills, G. and De Roure, D.
(2010) A Categorisation of Cloud Computing
Business Models. In: CCGrid 2010, The 10th
IEEE/ACM International Symposium on Cluster,
Cloud and Grid Computing, May 17-20, Melbourne,
Australia. pp. 509-512.

Interworkscloud. (2013) How much do people know about
the cloud really? [Online] Available from: http://
blog.interworkscloud.com/how-much-do-people-know
-about-the-cloud-really/ [Accessed: 19th June 2012]

Korri. T (2009) “Cloud computing: utility computing over
the Internet” Seminar on Internetworking 2009.

Wood Katie, "Exploring security issues in cloud
computing" (2012). UK Academy for Information
Systems Conference Proceedings 2012. Paper 30.
http://aisel.aisnet.org/ukais2012/30.

National Institute of Standards and Technologies; Draft
NIST Working Definition of Cloud Computing, May
14, 2009.

David Binning 24 April 2009 ‘Top five cloud computing
securityissues’ http://www.computerweekly.com/
news/2240089111/Top-five-cloud-computing-
security-issues#2.

Warwick Ashford [Friday 22 March 2013] ‘Six security
issues to tackle before encrypting cloud data’
http://www.computerweekly.com/news/2240180087/S
ix-security-issues-to-tackle-before-encrypting-cloud-
data.

Wood. K (2012) ‘Understanding Configuration
Management with Cloud Computing’ International
Conference on Computational Informatics and
Technology Enhanced Education (ICCITEE> 2012)
Amsterdam, Netherlands.

S. Srinivasamurthy and D. Q. Liu, "Survey on Cloud
Computing Security", Proc. Conf. on Cloud
Computing, CloudCom.'10.

Top Threats to Cloud Computing v1.0". Cloud Security
Alliance. Retrieved 24/10/2014.

M. A. Vouk Cloud computing — issues, research and
implementations Journal of Computing and
Information Technology - CIT 16, 2008, 4, 235–246
doi:10.2498/cit.1001391.

Hayes, B. “Cloud Computing,” Communications of the
ACM, 51(7):9–11 (2008).

Wood. K and Anderson. M (2011) ‘Understanding the
complexity surrounding multi-tenancy in cloud
computing’ 8th IEEE International Conference on e-
Business Engineering, Tsinghua University, (ICEBE
2011).

Reality�Vs�Hype�-�Does�Cloud�Computing�Meet�the�Expectations�of�SMEs?

177

Offline Scheduling of Map and Reduce Tasks on Hadoop Systems

Aymen Jlassi1,2, Patrick Martineau2 and Vincent Tkindt2
1Cyres Group, 19 rue Edouard Vaillant, 37000 Tours, France

2University François-Rabelais of Tours, CNRS, LI EA 6300, OC ERL CNRS 6305, Tours, France
jlassi.aymen@etu.univ-tours.fr, {patrick.martineau, vincent.tkindt}@univ-tours.fr

Keywords: Big Data, MapReduce Model, Hadoop Scheduling Problem, Time Indexed Formulation.

Abstract: MapReduce is a model to manage quantities massive of data. It is based on the distributed and parallel
execution of tasks over the cluster of machines. Hadoop is an implementation of MapReduce model, it is
used to offer BigData services on the cloud. In this paper, we expose the scheduling problem on Hadoop
systems. We focus on the offline-scheduling, expose the problem in a mathematic model and use the time-
indexed formulation. We aim consider the maximum of constraints of the MapReduce environment.
Solutions for the presented model would be a reference for the on-line Schedules in the case of low and
medium instances. Our work is useful in term of the problem definition: constraints are based on
observations and take into account resources consumption, data locality, heterogeneous machines and
workflow management; this paper defines boundaries references to evaluate the online model.

1 INTRODUCTION

Manage and access efficiently massive data is
becoming more and more important for companies.
Google (Dean, 2004) introduced the model
MapReduce as a distributed and parallel Model for
data intensive computing. Every job is composed of
a set of “map” and “reduce” tasks, which is executed
in a distributed fashion over a cluster of machines.
Map tasks have to be executed before reduce tasks.
Tasks have to be executed as near as possible to the
needed data input. Data output of tasks map are
transferred to the reduce tasks using the network.
MapReduce model is characterized by its simplicity:
users wanting to access to data, create “map” and
“reduce” tasks, which are next scheduled by
specified middleware. The general idea is to
schedule those tasks over nodes, which contain data
because moving computation near data is less
expensive than moving data where computation
units are running. For example, in figure 1, average
of input set of integers is calculated.
Hadoop (Hadoop, 2005) is one of the most well-
known implementation of MapReduce model. It is
based on two main components: Hadoop
mapReduce and Hadoop distributed file system. The
computation level (mapReduce) is composed of
three elements. It assures synchronization over
different elements and distributes resources between
jobs. The Node Manager (NM) is the responsible for

resources exploitation per slave machine. The
Application Master (AM) is responsible for
managing the lifecycle of a job; it negotiates with
the RM to obtain needed resources (containers) and
manages the execution of job’s tasks.
Hadoop distributed file system (HDFS) is composed
of NameNode (NN) as a server and DataNode (DN)
as a slave. Files in HDFS are from megabytes up to
terabytes size. The number of map tasks depends on
the number of chunks of data (Zhou, 2012), one map
per data block slice. When the scheduler cannot
assign tasks to machines where data are stored,
bandwidth on the network is allocated to migrate
blocks towards. This paper presents an offline model
of scheduling problem on Hadoop with
mathematical programming based on the time-
indexed formulations which received much attention
due to its important impact on approximation
algorithms and the quality of its linear programming
relaxation.

Figure 1: Example of mapreduce job's execution.

178

It is often used in optimization and approximation
for machine scheduling problems. Besides, its linear
relaxation yields concise lower bounds than bounds
obtained by other integer programming formulations
(Queyranne, 1997). Work like (Sousa, 1992) and
(Lionel, 2013) argue that scheduling algorithms
using LP-relaxation of time-indexed formulations
have a constant ratio on their worst-case
performance in parallel machine scheduling
problems. Researches on the online version of
problem suffer from a lack of evaluation: how the
efficiency of online algorithms can be evaluated?
One way to answer this question is to consider the
offline version of the problem, its' optimal solution
can be considered as “ideal” reference schedules for
online algorithms. In this work, the main motivation
is to compute optimal solutions for medium
instances of the offline problem.
The remainder is introduced as follows. Section ΙΙ
presents the offline problem of scheduling “map”
and “reduce” tasks. In Section ΙII its' mathematical
model is introduced. Data generation and model
evaluation is presented in Section IV. Section V
summarizes the related work. Lastly, Section VI
concludes the paper and provides directions of future
work.

2 RELATED WORK

The scheduling problem in Hadoop is widely treated
in the literature: (Lim, 2014) present a constraint
programming formulation of the problem. The
objective of the model is to minimize the number of
late jobs, which is characterized by its service level
agreements (SLA). Authors consider the scheduling
of mapReduce jobs comprising an earliest start time,
execution time and end-to-end deadline. In this
work, authors take into consideration only compute
resources (slots), neither RAM nor hard disk are
considered. They neglect the relation between data
and tasks locations that present a foundation for the
map reduce programming model. The work in
(Verma, 2012) implements a deadline-based
scheduler; it is based on a general model for
computing performances bounds on makespan of a
given set of n tasks that are processed by k servers
(slots). The assignment of tasks to slots is done using
an online greedy algorithm; it assigns each task to the
slot, which has finished its running task the earliest.
(Evripidis, 2014) and (Lin, 2013) propose models,
which aim to minimize the total weighted completion
time. The first considers that each job has at least one

map and one reduce task and each job has at most
one task pre-assigned to each processor.

Table 1: Used Notations in the Hadoop scheduling
problem.

General data: M The number of machines N The number of tasks N Number of map tasks N Number of reduce tasks L Set of map tasks L Set of reduce tasks A Set of blocks on the cluster
T The scheduling horizon

For machines m The number of slots on machine j (m m)m The number of reduce slots on machine jm The number of map slots on machine jm The quantity of RAM of machine j m The hard drive capacity of machine jv , The CPU frequency associated to the slot s of machine j v The CPU frequency of machine j v ∑ v ,α The cost of the use of one unit of ram (1 Mb) per machine j α The cost of the use of one unit of hard drive capacity (1 Mb) per machine j α , The cost of the use of CPU on slot s of machine j
For tasks (map, reduce, Application node) n The quantity of RAM required by task i n The quantity of hard drive required by task i n The number of data block’s manipulated by task i B List of block numbers manipulated by task i b , Maximum bandwidth between tasks i and i n Number of tasks preceding task i E Set of task numbers that must be completed before

task i start. p , Estimated processing time of task i if processed on
slot s of machine j
For HDFS

S The size of a data block in the cluster. r Number of replication block b. D Set of machines on which block b is located.
bwd Bandwidth allocated for migrating a block through

the network
For the Network

G(V, E) The graph modeling the network b The maximum bandwidth associated to any edge e ∈ E
P A set of paths between machines, a path being a set

of edges e P The set of couples of machines (j, j) which use the
edge e

Offline�Scheduling�of�Map�and�Reduce�Tasks�on�Hadoop�Systems

179

The second considers task pre-assignment to
machines and each machine can execute one task at a
time. It models the data transfer from map to reduce
tasks and it considers map and reduce dependency.
(Kodialam, 2012) express the scheduling problem as
an optimization problem using linear programming,
they aim to minimize the total weight completion
time of jobs, they base their work on a set of
assumption: machines can process at most one task at
time, when a set of tasks is assigned to a processor at
the same moment; tasks can be preempt. Fotakis et
al. (Fotakis, 2014) consider the case of unrelated
processors with multiple Map and Reduce tasks per
job. They consider that tasks can be preempted.
They present the first polynomial time approximation
algorithm, it minimizes the total weighted completion
time. However they neglect the data management
aspect and they don’t consider multiple tasks
execution per machine. In this work we associate
resources constraints, network bandwidth
management to the data flow management.

3 THE OFFLINE SCHEDULING
PROBLEM

We summarize in Table 1 the data used in the
scheduling model. It is based on four principal parts:
the first describes the information about machines
and the cost of every resource’s use. The second part
describes tasks consumption. The third part gives
information about data blocks and the fourth
describes networks architecture. We consider non-
pre-emptible tasks because, in practice, tasks will
not be interrupted in Hadoop and when a task fails, it
will rerun as it is newly submitted.
Notice: we assume that bandwidth is booked on the
network from the end of map tasks until the end of
the reduce tasks. The bandwidth reservation avoids
delaying job execution when reduce tasks need to
communicate with maps machines to ensure some
needs (system files, recovers broken data chunks)
(White, 2012).

4 A MATHEMATICAL
FORMULATION

This section presents a time-indexed formulation of
offline scheduling problem in Hadoop. Let us review
the formal definition of the model. We adapt the
interval-relaxation method proposed in (Dyer, 1990)
in single machine case, and in (Schulz, 2002) in

multiple machines, with the context of MapReduce
model. The time horizon T is divided into a set of
irregular intervals. These intervals are defined by the
potential dates of starting and finishing execution of
tasks. For example, in Figure 2, for ∈ 0, 1 ,
the intervals (t , t are used to execute tasks,
where ∈ 0, .

Figure 2: Presentation of the index over time.

We use the following variables:

x , ,
q, the amount of time period, the task i isprocessed on slot s of the machine jin (t , t0, otherwise

Thus x , , p , specify that the task is being

processed on machine j during the time
interval (t , t .

y ,, 1, if block b is on machine j at t , tafter a migration from j 0, otherwise
u ,, 1, if block b is being migrated frommachine j to j at , 0, otherwise

z , ,, 1, if a map task l is processed onmachine j and is finished at time t anda reduce task l is processed on machine jand finished after .0, otherwise
We refer to TST as the total time spent for
processing all tasks on the cluster and TRC as the
total resource cost induced by the execution. The
scheduling problem in Hadoop can be modeled with
the objective functions (1) and (2). The TST (1)
considers the total execution time of tasks (the first
term on the left-hand side of the equation) and the
time of data transfer between map and reduce tasks
(the second term on the right-hand side of the
equation). The TRC (2) considers the resources
machines’ cost when processing tasks (the first term
on the left-hand side of the equation) and the use of
resources due to data transfer (the second term on
the right-hand side of the equation). The constraints
of the model are classified in three categories:
resource constraints, processing constraints and the
network constraints.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

180

Minimize TST x , , p ,
 y ,, S b ,∈,∈ , ∈

(1)

Minimize TRC
x , , α n α nα , (y ,, u ,,)(α n∈α n)

(2)

In the subsection 4.1, constraint (3) guarantees that
no more memory than available is used. Constraints
(4) and (5) guarantee that the number of reduce
(resp. map) tasks running on machine j at time t is
less than the number of reduce slots (resp. map
slots). Constraint (6) ensures that the overall local
disk space used (by the assigned tasks and migrated
data) cannot exceed the availability of each machine.
In the subsection 4.2, the inequality (7) guarantees
the precedence relation between map and reduce
tasks associated to the same job are satisfied. If we
have many map tasks, reduce tasks are scheduled
after the schedule and the end of all map tasks. In
figure 1, we compute average of input data, we will
have wrong result if reduce tasks start before the end
of map tasks. Constraints (7) and (8) ensure that all
map tasks (resp. reduce tasks) must be processed.
In the subsection 4.1, the constraints define the
policy of data blocks management in Hadoop. The
inequality (10) specifies if block b is stored in HDFS
on machine j. The constraints (11) and (13) impose
the relation between y’s and u’s variables, constraint
(13) triggers data migration to ensure that block
must be available on the machine before a map task
starts and constraint (11) ensures if it is available on
a machine after it has been migrated. The
Inequalities (12) disable the start of map tasks
(imposed by the constraint 8) if the manipulated
blocks are not present on the machine on which they
have been assigned. The inequalities (15) enable to

fix the values of the z , ,, variables. When the tasks

map and reduce are on the same machine, we don’t
have network communication and the right part of
inequality (15) will be 0.

4.1 Resources Constraints

n x , , p , m ∀j 1 … M, ∀t 1 … T (3)

x , , p ,∈ 1
∀j 1 … M, ∀t 1 … T, ∀s 1 … m (4)

 x , , p ,∈ 1 (5)

∀j 1 … M, ∀t 1 … T, ∀s 1 … m
n x , , p ,S(b)(y ,, u ,,)∈, m (6)

∀ j 1 … M; ∀t 1 … T
4.2 Tasks Constraints

n ∗ x , , p ,x , , p ,∈ (7)

∀k ∈ L , ∀t 0 … T 1, ∀ j 1 … M, ∀ s1 … m
x , , p , 1
∀ l ∈ L (8)

x , , p , 1 (9)

∀ l ∈ L

Offline�Scheduling�of�Map�and�Reduce�Tasks�on�Hadoop�Systems

181

4.3 Constraints Associated to the
Migration of Data Blocks

y ,, 1 , ∀ j ∈ D 0 , ∀ j ∉ D ∀t 0 … T, ∀b ∈ A (10)

u ,, y ,, (11) ∀ b ∈ A ; ∀t 1 … T 1; ∀ j, j 1 … M; j j′ u ,,u ,, x , , p ,∈
(12)

∀ b ∈ A ; ∀t 0, … , T 1; ∀ j, j 1 … M, j j′x , , p ,y ,, u ,, (13)

∀l ∈ L ; ∀ b ∈ B ; ∀t 0, … , T 1; ∀ j 1 … M
4.4 Network Constraint

These constraints define the use of the network in
terms of bandwidth. Constraint (14) imposes that all
consumed bandwidth (for migration and transfer of
data) is less than the maximum bandwidthb .

bwd u ,, z , ,,∈∈(,)∈
∗ b , b (14)

∀e ∈ E; ∀t 1, … , T 1

x , , " p ,x , , p , 1 , ,,

(15)

∀l ∈ L , ∀l ∈ E ; ∀t 0, … , T 2; ∀t0, … , t ; ∀t"t , … , T 1; ∀ j, j 1 … M, jj
5 EXPERIMENTATION

This article implements a model and tries to find
solutions using CPLEX mathematic solver. Face to
the multi-criteria property of the problem, the model
is concentrated on the time execution aspect and
neglects cost execution of the job. It uses an
experiment setting for the evaluation of the model
using the methodology in (Lionel, 2013). Data input
of the model presents an important deal and imitates
real world tasks executions. Machine configuration is
extracted from AWS (Aws, 2014) and portioned in
three categories of machines. Tasks information
depends on the size of data input computed by every
task. In order to evaluate the persistence of the
model, we generate randomly four input data
concerning tasks following uniform law: memory,
disk consumption, the time execution per task and
location of data blocks (Gupta, 2013). We generate
also network and cluster configuration details. Table
2 synthetizes values of the expected data input of
machines. The first column indicates the category of
the machine.
The second column indicates the number of core
CPU on the machine. The third one contains the
amount of memory per machine. The column number
four indicates the quantity of hard disk in Gb. The
fifth column contains the frequency of one core CPU
on the machine. The sixth column indicates the
bandwidth allocated for network communication.

Table 2: Types of generated physical machines.

Category CPU
node

RAM
(Gb)

SSD (Go) CPU freq per core (GHZ) Bdw
(GB)

α α α , Slots
map

Slots
reduce

c3.2xlarge: co pute
optimized

8 15 160 2.8 Intel Xeon E5-2680v2 1 1 1 2 5 2

i2.2xlarge:
storage optimized

8 61 1600 2.5 Intel Xeon E5-2670v2 1 3 5 2 4 3

r3.xlarge:
memory optimized

4 30.5 160 2.5 Intel Xeon E5-2670v2 2 2 1 1 2 1

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

182

Table 3: Characteristics of used jobs.

Job Tasks reduce Tasks map Type of Job
1 2 3 --
2 2 6 --
3 3 9 --

Columns number seven, eight and nine indicate
respectively the unit cost of the memory use (unit =
16Mb), hard disk (unit = 1Gb), and a core of CPU.
Despite the evolution in Hadoop, we adopt the
principle of separation between slots; the last two
columns contain the number of reduce and map cores
(slots) per machine. The costs of resources
consumption are expressed in columns seven, eight
and nine and they depend on the type of machine.
We generate the completion time needed to treat
tasks; these values depend on the size of the block.
We define: P, TimeStartUpVM S ∗ nt(l)∗ vs(l, j, s) 10 ∗ SpeedProcessorRate (16)

We take into account the needed time to start up
virtual machines TimeStartUpVM, the size of block
and the amount of data computed per GHz per unit
of time SpeedProcessorRate. We benefit from the
last variable to inject the random aspect depending
on the categories of machines: for the category
“compute optimized”, SpeedProcessorRate ∈160,320 for the other types SpeedProcessorRate ∈ 80,160 .The estimation of
memory (n) and hard disk consumption (n)
depends on the type of the job. Table 4 summarizes
used formulas in the generation of data related to the
three types of jobs: the number of tasks per job is
relatively limited; CPLEX limitation imposes this
choice of number of task per job face of the use of
one big job. We inject random values at many levels
of the data input generation. Face to the large
quantity of data generated by the model in time
indexed formulation, we consider S=64Mb and its
replication is equal to one. We consider the same
size (S) and replication properties of data blocks
however we generate randomly the location of the
blocks on machines. The network bandwidth for
block migration is fixed by the formula bwdmin S ∗ 0.2, 128 . Network is generated as a binary
tree. We repeat the following process: at the main
node, we generate a switch; its left child node will
be one physical machine selected randomly, the
right child will be another switch and so on until all
physical machines will be placed on the binary tree.

Table 5 describes scenarios used for the model’s
test. For each scenario, we randomly generate 20
instances. The time horizon depends on scenarios
and it is divided in intervals. To find the correct
value of time horizon, we define an upper bound for
every solution using this formula (17). If there is no
solution for a particular value of the time horizon,
we increment time horizon by a unit of time. We
consider that an interval (t , t from figure 2) is
sufficient to transfer data block between machines.
In conclusion, we limit bandwidth threshold to
migrate blocks and we limit the transfer duration of
a block to one interval. To compute the real
duration’s value of a schedule per scenario, we
define “RealTime” (formula 18) as the real time
needed to execute tasks in a solution. T integer NTotalSlotMapNTotalSlotReduce 2

(17)

RealTime ∑ max () ∈
x , ,

(18)

RealValueOfTimeHorizonUnitRealTime/T (19)

“RealTime” is a posterior computation, after the
compute of the scheduling solution.

Table 4: Basic formulas to generate memory and hard disk
consumptions per task.

Type of
Job

n n ∗ S ∗ XY n (n ∗ S ∗ WZ)/1024
(1) CPU
intensive

XY ∈ 0.3,0.6 WZ ∈ 13,26

(2) RAM
intensive

XY ∈ 0.4,0.8 WZ ∈ 30,46

(3) I/O
intensive

XY ∈ 0.6,1 WZ ∈ 46,76

Table 5: Different scenarios for the generation of tasks,
machines and blocks input data.

Scenarios N1 N2 N3 M1 M2 M3 Blocks N M T
1 1 1 0 1 1 1 10 13 3 3
2 3 0 0 0 2 0 10 15 2 3
3 1 1 1 1 1 1 10 25 3 9
4 3 3 0 0 0 2 10 39 2 155 6 0 0 1 1 1 10 30 3 76 2 3 1 1 1 0 10 46 2 15
7 3 1 1 0 2 0 10 35 2 6

Offline�Scheduling�of�Map�and�Reduce�Tasks�on�Hadoop�Systems

183

Table 6: Computational results (20 instances per scenario).

 #InFeas #Solved MemLimit TimLimit N N N T T Tmax Real value of
unit of T

Sc1 0 20 0 0 0 7.95 132 0 0.45 1 85.66
Sc2 0 20 0 0 27 42.5 164 0 19.04 174 95.66
Sc3 1 18 0 1 4 5357.6 62168 6 97.75 1044 122.4
Sc4 3 16 1 0 0 6675.15 28365 16 292.36 1313 54,8
Sc5 2 18 0 0 40 132.8 1791 10 66.9 757 94.62
Sc6 4 15 0 1 115 142 389 28 185 1641 126.23
Sc7 0 20 0 0 3 61.25 193 5 10.1 22 70.53

It is used to compute the real duration to execute
jobs in a scenario. We define established value as the
time Horizon T per scenario; we compute a value of
a unit of T as regular time horizon with the formula
(19). We enumerate the minimum, maximum and
average of the RealTime over iterations and we
choose the maximum value to compute the value of
a unit of T per scenario. This value is used in the
evaluation of the results of solutions.
To test the model, we use a PC with an Intel(R) Core
(TM) i5-3360M CPU with 4 cores at 2.8 GHz and 4
Gb of RAM. The linear program formulation has
been solved by CPLEX 12.2 with parallel solve (4
threads) and limit time 1800 seconds and memory
limit of 2 Gb of RAM. When the time limit or the
memory limit is reached, the given solution of the
instance will be declared unsolved. Otherwise,
CPLEX will return the best solution. For each
scenario, table 6 presents: the number of infeasible
instances (column #InFeas), the number of instances
solved to optimality (column #Solved). The number
of instances on which CPLEX stops due to the
memory limit (column Mem) and the number of
instances on which CPLEX stops due to the time
limit (column Time). The columns from number six
to number eight provide the minimum, maximum
and average number of nodes explored by CPLEX in
its branch and cut algorithm while solving the
problem. There is no relation between the number of
machines and the number of explored nodes.
Scenarios 4 and 6 have two machines each, however
the number of explored nodes in scenario 4 is largely
higher than the number of nodes explored in
scenario 6. In the same topic, the number of
explored nodes is independent from the number of
scenario 7 for example has a number of tasks to
schedule higher than scenario 5. However, the
number of node explored in scenario 5 is higher than
in scenario 7. The columns from number nine to
number eleven provide minimum, average and
maximum CPU time (in seconds) taken by CPLEX
to solve instances. In this topic, we consider only
instances, which have infeasible or feasible results.

The result shows that there are large disparities
concerning CPU times used to find solution. The last
column presents the real value of the time horizon
unit; it is used as a comparison reference. It is
extracted from the approximate value of the average
completion time per scenario. Results of founded
schedule time of a scenario argue that it depends on
the number of tasks and machines; Scenarios 4 and 6
have largest value of the time horizon. These
scenarios have the largest number of tasks to
schedule. Scenarios 1 and 2 have the smallest
number of tasks and the smallest number of
machines in an instance. Results are function of the
number of tasks and the number of machines in an
instance and some instances take more time to find
solution than others. Scenario 6 for example
schedules 46 tasks on two machines; it has the
largest value of completion time.

6 CONCLUSIONS

In this paper, we propose an offline mathematical
model for the scheduling problem in Hadoop. Two
kinds of tasks are considered: “map” and “reduce”
tasks with dependencies between them. This paper
also presents an in-depth study of the major aspects
of MapReduce model, such as tasks dependency,
network consumption, data flow management and the
non-interruptive tasks executions.
It aims at scheduling tasks with the minimum cost of
used resources and the minimum total processing
duration. We merely focus on a pure scheduling
problem; we propose an offline model assuming that
all data are known. We present a realistic model,
which considers dependence between tasks. We
consider data locality and we model data migration
and transfer between heterogonous machines. All
considered constraints emulate the real world
environment in Hadoop. Heterogeneous machines
cluster and possibility to execute many tasks per
machine are also considered. The proposed model is
based on a time-indexed formulation, which despite

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

184

its pseudo polynomial number of variables. It has
already been shown as an efficient formulation
compared to other integer programming
formulations. We use the commercial solver CPLEX
to find the optimal solution for small and medium
size of instances. We give community a boundary to
reference with and to evaluate their scheduling
algorithms for this size of instances. It turns out that
the offline problem is interesting in it self and can be
used to design good online strategies. Solution for
this model would be a reference for the on-line
schedules in smaller dimension to validate first
result. Future work will deal with the online aspect
concerning the scheduling problem; we plan to
propose a heuristic solution and use this work in the
evaluation.
Online solution considers at first Total completion
time, in a second time we take into account the
resources consumption (energy) in a multi-criteria
scheduling aspect.
The final solution will be implemented over Hadoop
simulation system and evaluated in a large
scalability face to default scheduler in Hadoop.

ACKNOWLEDGMENTS

This work was sponsored in part by the CYRES
GROUP in France and French National Research
Agency under the grant CIFRE n°2012/1403.

REFERENCES

Aws. 2014. Instances-types. Retrieved from Aws:
http://aws.amazon.com/fr/ec2/instance-types/

Dean, J., & Ghemawat, S., 2004. MapReduce: Simplified
Data Processing on Large Clusters. In
Communications of the ACM.

Dyer, M. E., & Wolsey, L. A., 1990. Formulating the
single machine sequencing problem with release dates
as a mixed integer program.

Evripidis Bampis, V. C., 2014. Energy Efficient
Scheduling of MapReduce Jobs. In 20th International
Conference.

Fotakis, D., Milis, I., & Zampetakis, E., 2014. Scheduling
MapReduce Jobs on Unrelated Processors. In the
Workshop Proceedings of the EDBT/ICDT.

Gupta, S., Fritz, C., Price, R., Hoover, R., de Kleer, J., &
Witteveen, C., 2013. Throughput Scheduler: learning
to schedule on heterogeneous Hadoop clusters. In
(ICAC '13), International Conference on Autonomic
Computing.

Hadoop Project, 2005. (A. foundation, Producer)
Retrieved from http://hadoop.apache.org/

Kodialam, M. S., Lakshman, T., Mukherjee, S., Chanwg,
H., & Lee, M. J., 2012. Scheduling in mapreduce like
systems for fast completion time. In Patent
Application Publication.

Lim, N., Majumdar, S., & Ashwood-Smith, P., 2014. A
Constraint Programming-Based Resource
Management Technique for Processing MapReduce
Jobs with SLAs on Clouds.

Lin, M., Zhang, L., Wierman, A., & Tan, J., 2013. Joint
Scheduling of Processing and Shuffle Phases in
MapReduce Systems. In P. o. Conference (Ed.).

Lionel, E.-D., Adrien, L., Patrick, M., Ameur, S., Vincent,
T., & Denis, T., 2013. A Server Consolidation
Problem: Definition and Model. In Proceedings of the
14th conference ROADEF.

Queyranne, M., & Schulz, A., 1997. Polyhedral
Approaches to Machine Scheduling. In Mathematical
Programming.

Schulz, A. S., & Skutella, M., 2002. Scheduling Unrelated
Machines by Randomized Rounding. In SIAM Journal
on Discrete Mathematics.

Sousa, J. P., & Wolsey, L. A., 1992. A time indexed
formulation of non-preemptive single machine
scheduling problems. In Mathematical Programming.

Verma, A., Cherkasova, L., Kumar, V. S., & Campbell, R.
H., 2012. Deadline-based Workload Management for
MapReduce Environments: Pieces of the Performance
Puzzle.

White, T., 2012. Hadoop, The Definitive Guide (3rd
Edition ed.). O'REILLY. 3rd edition.

Zhou, W., Han, J., Zhang, Z., & Dai, J., 2012. Dynamic
Random Access for Hadoop Distributed File System.
In (ICDCSW), Distributed Computing Systems
Workshops.

Offline�Scheduling�of�Map�and�Reduce�Tasks�on�Hadoop�Systems

185

A Generalized Service Replication Process in Distributed
Environments

Hany F. El Yamany1, Marwa F. Mohamed1, Katarina Grolinger2 and Miriam A. Capretz2
1Faculty of Computers and Informatics, Suez Canal University, Old Campus, Ismailia, Egypt

2Department of Computer Engineering, Western University, London, ON, Canada
{hany_elyamany, marwa_fikry}@ci.suez.edu.eg, {kgroling, mcapretz}@uwo.ca

Keywords: Service Replication, Service-Oriented Architecture, Cloud, Mobile Computing, Replication Process, Quality
of Service.

Abstract: Replication is one of the main techniques aiming to improve Web services’ (WS) quality of service (QoS) in
distributed environments, including clouds and mobile devices. Service replication is a way of improving
WS performance and availability by creating several copies or replicas of Web services which work in
parallel or sequentially under defined circumstances. In this paper, a generalized replication process for
distributed environments is discussed based on established replication studies. The generalized replication
process consists of three main steps: sensing the environment characteristics, determining the replication
strategy, and implementing the selected replication strategy. To demonstrate application of the generalized
replication process, a case study in the telecommunication domain is presented. The adequacy of the
selected replication strategy is demonstrated by comparing it to another replication strategy as well as to a
non-replicated service. The authors believe that a generalized replication process will help service providers
to enhance QoS and accordingly attract more customers.

1 INTRODUCTION

Nowadays, the Web is structured as a mesh of
heterogeneous distributed environments including
service-oriented architecture (SOA) (Erl, 2008),
cloud computing (Erl et al., 2013), and mobile
computing (Fling, 2009). Web services have a key
role in managing and encapsulating business
processes inside such environments. Web services
are described, discovered, published, and executed
using standard protocols such as WSDL for service
description, SOAP for message exchange, and
UDDI for service registry and discovery (W3C,
2004; Papazoglou, 2008).

Quality of service (QoS) (Al-Masri et al., 2007;
W3C, 2003) is a significant factor in describing and
establishing the service level agreement (SLA)
among service providers and consumers. In
particular, the SLA is an official contract between
the provider and the consumer which specifies non-
functional requirements, specifically focussing on
performance and availability (Michlmayr et al.,
2009; Papazoglou et al., 2005). Web service
replication is a way of improving WS performance
and availability by creating several copies or replicas
of Web services which may work either in parallel

or sequentially under defined circumstances and
regulations (Salas et al., 2006; May et al., 2009).

This paper introduces a generalized replication
process in distributed environments with the
objective of helping service providers select and
implement an appropriate service replication
strategy and consequently increase the quality of
service provided. The discussed replication process
consists of three main steps: sensing the
environment characteristics, determining the
replication strategy, and implementing the selected
replication strategy. A mobile authentication case
study is presented to demonstrate the use of the
approach.

The rest of this paper is organized as follows:
Section 2 introduces the replication literature review.
Section 3 introduces a generalized replication
process for distributed environments. Section 4
presents the evaluation case study. Finally, Section 5
concludes the paper.

2 REPLICATION LITERATURE
REVIEW

Two main replication types may be distinguished

186

depending on whether the number and location of
replicas change during runtime: static replication
and dynamic replication. In static replication, the
predefined replica communication group does not
change during runtime; when a single replica
becomes unresponsive, this replica is still considered
a member of the communication group. In other
words, the number and position of replicas are fixed
over time (Guerraoui et al., 1997). Static replication
is planned at design time (Słota et al., 2005)
according to predefined parameters, and
implementation is carried out regardless of any
changes that may occur during runtime.

Dynamic replication supports a changing number
of replicas, changes in physical locations, and
selection of running replicas during runtime (Keidl
et al., 2003; Mohamed et al., 2013). It is performed
in two different styles: Dynamic replica selection
(Thakur et al., 2012) and Dynamic replica
placement (Mohamed et al., 2013; Dustdar, 2007).
The replication process can be implemented using
different techniques depending on the components
involved and their characteristics. Salas et al. (2006)
classified the replication process into three
techniques according to the interactions among
replicas and requests: active, passive and semi-
active techniques. Like Salas et al. (2006), May et
al. (2009) also recognized three categories, but the
categories are different: parallel, serial and
composite techniques. Zheng et al. (2008) expanded
the replication techniques from the work of Salas et
al. (2006) by combining active, passive, and time-
replication techniques. Time replication means that a
particular service is invoked a finite number of times
before its status is declared as failed. Liu et al.
(2011) took a very different approach and generated
a diverse group of replication techniques using a
directed acyclic graph (DAG), which are
characterized as active, passive, hybrid, active-
passive, and passive-active. In their study, they
produced a graph model to represent a replication
scheme defined as a directed acyclic graph DAG, G
≡ (V, E), where the vertex set V refers to a set of WS
replicas and the directed edge set E refers to the
replica invocation. In this approach, the directed
edges capture a replication schema.

Several researchers have proposed different
replica selection strategies and algorithms (Sayal et
al., 1998; da Silva et al., 2004; Björkqvist et al.,
2012). Sayal et al. (1998) described six replica
selection algorithms: Fixed, Ping, Hops, Parallel,
Probabilistic, and Refresh. Da Silva et al. (2004)
presented five server selection policies: Random
Selection, Parallel Invocation, HTTPing (or Probe),

Best Last, and Best Median. Finally, Björkqvist et
al. (2012) defined two replica selection algorithms:
Distributed Shortest Queue Selection (D-SQ) and
Distributed Round Robin Selection (D-RR).

Although extensive efforts have been made in
both academia and industry in the area of service
replication, we are not aware of any studies that
discuss a generalized replication process. The
approach introduced in this paper builds on diverse
service replication research to create a generalized
replication process with the objective of helping
service providers increase QoS.

3 GENERALIZED REPLICATION
PROCESS

Distributed environments such as service-oriented
architecture (SOA), cloud computing, and mobile
computing typically use replication technology to
improve operational characteristics, including
availability and performance. Unfortunately,
replication encounters challenges in these
environments.

3.1 Generalized Replication Process:
Overview

To help practitioners determine the most suitable
replication approach for a specific scenario, a
generic replication process is needed. This section
introduces a generalized replication process for
distributed environments based on the replication
approaches presented in the previous sections.
Specifically, the findings from the reviewed studies
are integrated to form a generic replication process.

Figure 1 illustrates the use-case scenario: a client
demands a service through a service provider, where
the target service may be located and published in a
cloud, SOA, or mobile environment. If the service
provider (typically the business service provider or
service owner) on behalf of the client(s) or
consumer(s) detects a delay in answering incoming
requests due to technical problems such as resource
failures, service(s) overload, or network issues, the
service provider should find a solution to speed up
the answering process using service replication.
How this replication process should be implemented
will vary with respect to several metrics, including
the characteristics of the host environment.

For example, in the cloud, the service provider
could deploy a replica in any location where there
are no technical challenges, whereas in a mobile

A�Generalized�Service�Replication�Process�in�Distributed�Environments

187

Figure 1: Replication environment interactions.

Figure 2: Generalized replication process.

environment, the nearest device or station may need
to be selected to host the required replica.

Four major actors must be considered when
designing a generic replication process for different
distributed environments: consumers, service
providers, replication actors, and the environment.
As shown in Fig. 2, the replication process is divided
into four layers representing these actors and their
behaviour:
 The consumer layer represents the users who

are seeking the published services. A service-
level agreement (SLA) is enforced when the
consumer binds with the target service. The
service provider must work within the signed
SLA to achieve the QoS terms listed in the
SLA and attain high consumer satisfaction and
loyalty.

 The service provider layer consists of the
services or business owners. It continuously
interacts with the replication and environment
layers to host, publish, and enhance the
business services that it owns or works on.
Service providers monitor and update their
services to keep current consumers and attract
new consumers.

 The replication layer maintains the QoS
parameters as defined in the SLA by providing
additional replicas as needed.

 The environment layer could be a cloud, SOA,
or mobile environment; in this layer, services
or businesses are located and accessed.
Moreover, this layer might be called the
infrastructure layer because it contains all
required physical and logical resources to host
the services created by the various providers
and targeted by consumers.

3.2 Generalized Replication Process:
Steps

Figure 3 represents the basic interconnections
between the defined replication process activities in
Fig. 2 and the main actors or layers: the consumer,
service provider, replication, and environment
layers. To achieve a robust replication process, the
following steps should be followed, as shown in Fig.
3:

1) Sense the environment characteristics: this
activity occurs between the replication and
environment layers to obtain the current status of the
consumed services in terms of QoS characteristics.

In addition, the capabilities of the available
resources in terms of functional characteristics are
investigated. For example, this activity may search
for a trusted server in a cloud to host a new replica
or assign the nearest node to run the new replica in a
mobile environment. Examples of the detected
characteristics of the various environments are given
in Table 1. The information obtained is saved in a
database located inside the environment layer to be
used in step 2.

Figure 3: Replication process use-case model.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

188

Table 1: Detected environmental characteristics.

Environment Functional
characteristics

Non-functional
characteristics

SOA

Number of hops
Number of servers

Server performance
Server availability
Type of WS:
composite or basic.

Cloud Number of replicas
Trusted servers

Service performance
Service availability
Ensure service
consistency.
Type of service:
deterministic or not

Mobile Mobile battery
power
Number of replicas
Nearest node

Service availability
Network traffic

2) Determine the replication strategy: This step is
composed of the four steps as shown in Fig. 2,
which can be described as follows:
a. Review SLA: this activity checks the signed

SLA contract periodically or when a change in
quality is detected by environmental sensing

with respect to the defined non-functional terms
specified in the SLA. The SLA contract could
be maintained inside the service provider layer
or in the environment layer based on the
agreement between providers, consumers, and
environment owners. First, the SLA items are
reviewed against current environment
characteristics to determine the replication
target (e.g., availability or performance) on
which the replication layer must focus when a
violation occurs. Then it notifies the provider
and the consumer of the result. In addition, it
retrieves the environment and functional
capabilities from the first step to determine the
candidate host for the new replica.

b. Analyze Environment Characteristics: this
activity examines the environment
characteristics collected in Step 1 to match them
with the characteristics of the corresponding
selection algorithm. For example, as shown in
Table 2, if the Hops replication selection
algorithm is selected within a dynamic
replication strategy, the number of hops should

Table 2: Expected strategy requirements.

Replica Selection
Algorithm

Algorithm description ← Replication
Type

← Actions

Ping/Probe The client periodically sends a ping request to all
available replicas and then forwards request(s) to
the replica with minimal ping round-trip time.

Dynamic Service performance

Hops The client sends requests to the nearest replica
according to the number of hops between the
replica and the client.

Static/Dynamic Number of hops

Parallel The client sends requests to all available replicas.
The one which works on the incoming request first
responds to request and communicate with the
consumer directly.

Static/Dynamic In dynamic case, service
availability

Probabilistic Replica selection is based on a probability that has
been calculated and assigned to each replica.
Probability is calculated based on SLA.

Static/Dynamic SLA review

Refresh/Best Last The client sends requests to the server with the
minimal request latency. Latency samples are
refreshed periodically.

Dynamic Service availability and
performance

Best Median Replica selection depends on the lowest median
response time among the set of successful
invocations recorded for each replica used.

Dynamic Service availability and
performance

Shortest Queue Service selection depends on the smallest number
of queued invocations as determined by locally
maintained statistics related to service activities.

Dynamic Service availability and
performance

Round Robin A list of active replicas is maintained and updated
periodically by adding /removing the newly
activated /deactivated replicas. Upon service
replica selection, the requests are rotated around a
list of active replicas.

Static/Dynamic In dynamic case, service
availability

Random Random replica selection Static/Dynamic In dynamic case, service
availability

A�Generalized�Service�Replication�Process�in�Distributed�Environments

189

be considered and estimated. At the end of this
activity, the defined replication actions are
saved in a database to be considered in the
implementation activity.

c. Determine Replication Type: Depending on the
data collected from the previous activities, the
detection process determines the type of
replication, as shown in Table 3. This activity
obtains the required information from the SLA
Review and Analyze Environment
Characteristics processes to make a decision
about the replication type. Section 2 shows two
different types of replication that can be used:
static and dynamic replications. In static
replication, only the active replication technique
can be used. But within dynamic replication, all
replication techniques can be used.

Table 3: Data needed to determine the replication type.

Enviro
nment

Target Characteristic Replicati
on Type

SOA Availability
Performance

Uses a fixed number of
replicas
Servers have average
load performance

Static

Availability
Performance
Responsivenes
s

The number of replicas
is needed during
runtime
Variable servers

Dynamic

Cloud Availability
Security

Services are
deterministic
Multicast consumer
requests

Static

Availability
Security

Services are
deterministic or
nondeterministic
Multicasting not
required

Dynamic

Mobile Availability Always runs in a
dynamic environment

Dynamic

Table 4: Composition of the replication strategy.

Replicatio
n Type →

Replication
Target →

Replication
Techniques

Replication
Strategy

Static Availability Active Parallel
Performance Static load

balancing
Round Robin
Probabilistic

Dynamic

Availability Active –
Passive –
Semi-Active

Ping or Probe,
Refresh, Best
Last, or Best
Median.

Performance Dynamic load
balancing

Distributed
Round Robin
Selection

Responsivenes
s

Dynamic load
balancing

Weighted
Round Robin

Figure 4: Sequence diagram for the Implement the
Selected Replication Strategy activity.

d. Select Replication Technique: Once the
replication type and target have been
determined, the process moves on to selecting
the replication technique. Table 4 shows how
the replication strategy is selected and
composed (Steps 2a to 2d) based on the
replication target, replication type, and selected
replication technique.

3) Implement the Selected Replication Strategy:
The sequence diagram shown in Fig. 4 illustrates
how this process is executed. When a replica is
needed, the implementation process obtains the
strategy type and name to be used from the database.
Basically, it verifies the selected strategy
requirements against the current state of the
deployed environment to ensure a correct replication
process. Once the implementation has been
accomplished successfully, a notification is sent to
both the provider and consumer that their agreed
QoS terms are still being achieved as expected.

4 MOBILE AUTHENTICATION
CASE STUDY

This section describes a scenario from a
telecommunication company in which a huge
number of cell phones are authenticated when
connected to the company network through a
particular Web service called mobile authentication
service. Eventually, this service lacks availability

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

190

and/or performance during peak times. In this paper,
the steps of the introduced replication process are
used to overcome the availability and performance
challenges for this service. The architecture of the
mobile authentication service environment can be
divided into three layers: The mobile layer
represents the users who are seeking mobile
authentication service. The portal layer contains the
replication management middleware which controls
the interaction between consumers and the WSs
replicas. The cloud layer contains all the physical
and logical resources required to host the services. In
such an environment, the replication management
middleware (Portal) will follow the suggested
replication steps as described in Section 3:

1) Sense the environment characteristics: As
outlined in Table 1, the replication management
middleware will collect the information;
specifically, for this use case, the collected
information is listed in Table 5. This case study
assumes that three WS replicas are running on one
virtual machine, but are installed on different ports.
The WS is deterministic because for a given input, it
always produces the same output. The user enters
username and password, and then the system
responds with “successful login” or not.

Table 5: Mobile authentication case study characteristics.

Environmental
characteristics

General Mobile authentication case
study

Functional
characteristics

Number of
replicas

Three replicas used

Trusted servers One virtual server with
Web services installed on
three different ports

Non-
functional

characteristics

Performance Required
Availability Required
Ensure service
consistency

Not required, because the
WSs are retrieving data
from a database. The case
study makes no changes to
data.

Service type:
deterministic
or not

Deterministic service.

2) Determine the replication strategy consists of the
following steps:

a. Review SLA: The replica management
middleware reviews the SLA to determine the
replication target. The target of this case study
is ensuring Web service availability and
performance.

b. Analyze Environment Characteristics: the
replication management middleware will

analyze the strategic requirements depending on
the environmental characteristics and SLA
target. The selection process can be managed by
consumers or the service provider. In this case
study, the service provider manages the
selection process, and therefore the Best Last
and Best Median methods are ignored because
they depend on consumer preferences; the
consumer selects the replicas with lowest
response time or median lowest response time
depending on the invocation history.

Moreover, in this case study, all Web service
replicas are placed on one virtual machine, and
therefore the Hops and Probabilistic strategies are
removed from the selection list. The Random
strategy cannot provide the desired service
availability because the failed copy may be selected,
and therefore it is also removed. Moreover, the aim
of the case study is to forward consumer requests to
the best available WS; the load balancing carried out
by Round Robin is eliminated. Hence, the selection
list contains four strategies: Ping, Parallel, Refresh
and Shortest Queue, as shown in Table 6.

Table 6: Analysis of case-study characteristics.

Replica
selection
algorithm

Strategic requirements Selection
list

Ping/Probe Service availability √
Hops Number of hops X

Parallel Service availability. √
Probabilistic SLA review, host performance

history.
X

Refresh Service availability and
performance

√

Best last Service availability and
performance

X

Best Median Service availability and
performance

X

Shortest
Queue

Service availability and
performance

√

Round Robin Service availability X
Random Service availability X

c. Determine Replication Type: in this step, there
are three options for replication type: static,
dynamic service placement, and dynamic
service selection. Depending on the cloud row
in Table 3, static replication is ignored, and
dynamic replication is used. The mobile
authentication service deals with a large number
of users, so that multicasting of consumers’
requests to provide service availability is
undesirable because it may cause network
failure. Moreover, all replicas are installed on a

A�Generalized�Service�Replication�Process�in�Distributed�Environments

191

private cloud, and therefore dynamic service
selection is chosen. Dynamic service
replacement is preferable when multiple
independent resources are available.

d. Select Replication Technique: according to
Table 6, there are four choices: Ping, Parallel,
Refresh and Shortest Queue. The Parallel
strategy is dropped from the selection list
because multicasting of consumers’ requests is
not supported in this case study. The Shortest
Queue strategy is out of consideration because it
selects the replica with the lowest load to
achieve the shortest response time, which is the
same target as the Refresh strategy. The Ping
selection process is based on the WS host/port
with the lowest ping round-trip time, but the
Refresh strategy depends on the WS with the
lowest response time. Therefore, the preferred
option in this case is the Refresh strategy.

3) Implementation: A simulation of this
environment was constructed and run using the
specifications shown in Table 7.

Table 7: Specifications of simulation environments.

Cloud Google App Engine
(Platform as a Service)

Portal Apache/2.2.11 (Win32) PHP/5.3.0
Processors: Intel(R) core i3

Memory 4 GB
Mobile Smart Phone

The implementation scenario can be described as
follows:
 The replication management middleware

(RMM) ensures that the cloud environment
has three Web service replicas. If not, the
middleware transfers the required replicas to
the cloud environment.

 RMM notifies the users and the telecom
company admin(s) to access the service. Users
access authentication services. Each user types
his/her username and password and presses
Enter.

 RMM passes consumer requests to the best
available mobile authentication service using
the Refresh algorithm.

 The mobile authentication service processes
the consumers’ requests and sends a response
back to replication management middleware.
Then RMM forwards the results to the
consumer.

The experiments were conducted using
ApacheBench Version 2.0.40-dev by passing
different consumer loads (1, 3, 5, 8) over 100 times

(100, 300, 500, 800 requests). Then throughput and
response time were recorded for three cases: the case
without replication and the Ping and Refresh
strategies. As shown in Figs. 5 and 6, the Refresh
replication strategy provides better throughput rates
than non-replication. The Refresh strategy passes
consumer requests to the best available service, so
that the WS used can be changed during runtime;
this leads to a balance in incoming requests between
replicas, but not in an equally likely manner.

In the case of the Ping strategy, before every
request, a ping was sent to all ports, and the port
with minimal round-trip time was selected. The
selection depends on the round-trip time of the ping
message, not on the service response time, and
therefore it is no better than the Refresh strategy.
However, it is better than the case without
replication for high consumer loads (5, 8) because
the port can be changed during runtime, so that load
balancing occurs, but not in an equally likely
manner.

Figure 5: Response time when running 1700 requests.

Figure 6: Throughput when running 1700 requests.

5 CONCLUSIONS

In this paper, a generalized service replication
process was introduced to manage and control
replication inside distributed environments. The

4000
5000
6000
7000
8000
9000

10000
11000

12000

1 3 5 8

R
es

p
on

se
 t

im
e

(m
s)

load (consumers)
Without Replication Ping Refresh

20

30

40

50

60

70

80

1 3 5 8

T
h

ro
u

gh
p

u
t

(r
eq

u
es

t
p

er
 s

)

load (consumers)
Without replication Ping Refresh

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

192

process consists of three steps: sensing the
environment characteristics, planning a complete
replication strategy, and implementing the selected
replication strategy. The application of the
generalized process is demonstrated in a case study
involving a telecommunication scenario. The
selected replication algorithm, the Refresh
algorithm, was compared to the Ping algorithm and
non-replicated service. Results show that the Refresh
algorithm outperformed both Ping and non-
replication in terms of throughput and response time.

Future work will include deploying the
generalized replication process in a real-world
environment and expanding the validation. In
addition, it is planned to extend the review of the
replication process to cover embedded systems and
other distributed environments such as the Internet
of Things (IoT) and cyber physical systems.

REFERENCES

Al-Masri, E. & Mahmoud, Q. H., 2007. QoS-based
discovery and ranking of Web services. In Computer
Communications and Networks, 2007 (ICCCN 2007),
Proceedings of 16th International Conference, pp.
529-534. IEEE.

Björkqvist, M., Chen, L. Y., & Binder, W., 2012.
Dynamic replication in service-oriented systems.
Proceedings of the 2012 12th IEEE/ACM
International Symposium on Cluster, Cloud, and Grid
Computing (CCGRID 2012), pp. 531-538. IEEE
Computer Society.

da Silva, J. A. F. & das Chagas Mendonça, N., 2004.
Dynamic invocation of replicated Web services.
WebMedia and LA-Web, 2004. Proceedings, pp. 22-
29. IEEE.

Dustdar, S. & Juszczyk, L., 2007. Dynamic replication and
synchronization of Web services for high availability
in mobile ad-hoc networks. Service Oriented
Computing and Applications, vol. 1, no. 1, pp. 19-33.

Erl, T., 2008. SOA: Principles of Service Design, vol. 1.
Upper Saddle River: Prentice-Hall.

Erl, T., Puttini, R., & Mahmood, Z., 2013. Cloud
Computing: Concepts, Technology & Architecture.
Pearson Education.

Fling, B., 2009. Mobile Design and Development:
Practical Concepts and Techniques for Creating
Mobile Sites and Web Apps. O’Reilly Media.

Guerraoui, R. & Schiper, A., 1997. Software-based
replication for fault tolerance. Computer, vol. 30, no.
4, pp. 68-74.

Keidl, M., Seltzsam, S., & Kemper, A., 2003. Reliable
Web service execution and deployment in dynamic
environments. In Technologies for E-Services, pp.
104-118. Springer, Berlin, Heidelberg.

Liu, A., Li, Q., & Huang, L., 2011. Quality-driven Web
services replication using directed acyclic graph
coding. In Web Information System Engineering
(WISE 2011), pp. 322-329. Springer, Berlin,
Heidelberg.

May, N. R., Schmidt, H. W., & Thomas, I. E., 2009.
Service redundancy strategies in service-oriented
architectures. Proceedings, Software Engineering and
Advanced Applications, 2009 (SEAA'09) 35th
Euromicro Conference, pp. 383-387. IEEE.

Michlmayr, A., Rosenberg, F., Leitner, P., & Dustdar, S.,
2009. Comprehensive QOS monitoring of Web
services and event-based SLA violation detection.
Proceedings, 4th International Workshop on
Middleware for Service Oriented Computing, pp. 1-6.
ACM.

Mohamed, M. F., ElYamany, H. F., & Nassar, H. M.,
2013. A study of an adaptive replication framework
for orchestrated composite Web services.
SpringerPlus, vol. 2, no. 1, pp. 1-18.

Papazoglou, M. P. & Van den Heuvel, W. J., 2005. Web
services management: A survey. Internet Computing,
IEEE, vol. 9, no. 6, pp. 58-64.

Papazoglou, M., 2008. Web Services: Principles and
Technology. Pearson Education.

Salas, J., Perez-Sorrosal, F., Patiño-Martínez, M., &
Jiménez-Peris, R., 2006. WS-replication: a framework
for highly available Web services. Proceedings of the
15th International Conference on World Wide Web,
pp. 357-366. ACM.

Słota, R., Nikolow, D., Skitał, Ł., & Kitowski, J., 2005.
Implementation of replication methods in the grid
environment. In Advances in Grid Computing (AGC
2005), pp. 474-484. Springer, Berlin, Heidelberg.

Sayal, M., Breitbart, Y., Scheuermann, P., & Vingralek,
R., 1998. Selection algorithms for replicated Web
servers. ACM SIGMETRICS Performance Evaluation
Review, vol. 26, no. 3, pp. 44-50.

Thakur, M. R. & Sanyal, S., 2012. A PAXOS-Based State
Machine Replication System for Anomaly Detection.
arXiv Preprint, arXiv:1206.2307.

W3C Working Group Note: Web Services Architecture,
2004. Available from: http://www.w3.org/TR/ws-arch/
[14 March 2015].

W3C Working Group Note: QoS for Web Services:
Requirements and Possible Approaches, 2003.
Available from http://www.w3c.or.kr/kr-office/TR/
2003/ws-qos/ [14 March 2015].

Zheng, Z., & Lyu, M. R., 2008. A distributed replication
strategy evaluation and selection framework for fault
tolerant Web services. Proceedings, Web Services
2008 (ICWS’08) IEEE International Conference, pp.
145-152. IEEE.

A�Generalized�Service�Replication�Process�in�Distributed�Environments

193

Implementation of Cloud ERP
Moderating Effect of Compliance on the Organizational Factors

Shivam Gupta and Subhas C. Misra
Department of Industrial and Management Engineering, Indian Institute of Technology Kanpur, Uttar Pradesh, India

shivamgt@iitk.ac.in, subhasm@iitk.ac.in

Keywords: Cloud ERP, Compliance, Critical Success Factors (CSF).

Abstract: Cloud ERP has changed the way business can be done for Small and Medium Enterprises (SMEs). The two
important benefits offered by Cloud ERP are: (a) SMEs can log into the internet from any place to access
applications and data services at any point in the time. (b) Pay for the services that are used or needed.
Although Cloud ERP has taken the IT world by storm and with all the advancement that has taken place so
far, there are still issues and challenges that require to be addressed. This paper relates issues pertaining to
Compliance with Organizational factors for successful implementation of Cloud ERP.

1 INTRODUCTION

Cloud ERP is a buzz word in the IT world and with
all the advancement that has taken place so far, there
are still issues and challenges that require to be
addressed. Compliance issues need to be addressed
for Cloud ERP implementation. These are discussed
in detail.

2 CONCERN IN CLOUD ERP:
COMPLIANCE

Compliance plays a vital role in decision making
when any business process is moved into the cloud.
Companies are not sure about the location of the
data stored when it is on cloud. The data which
might be safe in one country may not be safe in
another country. In America, US Patriot Act gives
limitless powers to government and its agencies to
access any data. European Union (EU) has enforced
strict measures so that cloud service providers can
be tried in case of any data theft or breach of laws.
The compliance concerns by EU have led to the
creation US Safe Harbor Privacy Principles. This
insulates European companies from the laws in USA
that virtually gave unlimited powers to government
agencies to snoop on any data. The issues that
revolve around compliance are:

 Cloud based data archiving service should be
able to classify, index, search and retrieve data

in a security-rich manner and complying with
all government and industry regulations. If the
cloud provider is successful in achieving this,
then it helps control rising costs of data storage
with a utility priced cloud-based service. The
cloud user would at all times want to access,
search and retrieve data from the cloud. Not
able to do so can have an impact on decision
making process and operational efficiency
(IBM, 2011).

 Cloud based segregation of duties (SOD) can
minimalize error and fraud occurrences. Any
Individual should not have complete security
access to a series of transactions which could
allow him or her to engage in financial
misconduct. Individual can collude with a
vendor to (a) receive and pay for fictitious
goods or services or (b) pay for services with
company’s money to be used for personal gain.
SOD increases the compliance standards for
data and work handling issues but this can
negatively impact the business efficiency and
also increase costs and staffing requirements.
The mission critical elements of the business
and sensitive data should be brought under the
purview of SOD.

 Global compliance standards and regulations
vary from country to country. There is lack of
governmental regulations which can impose
varying compliance requirements and standards
on the industries. In Germany, it is not
permitted to relocate auditable information

194

which can be considered as critical data to a
server outside the country. This hosting of
information in the cloud outside Germany
violates the German laws (Seitz, 2010).

3 CRITICAL SUCCESS FACTORS
(CSFS) FOR CLOUD ERP:
ORGANIZATIONAL FACTORS

Nguyen (2011) has stated that identification of
CSF’s is important to attain the desired goals laid
down by the business. In relation to CSFs for ERP, it
can be explained as conditions that can lead to a
successful ERP adoption and implementation
(Finney and Corbett, 2007).

The success factors for Cloud ERP
implementation from an organizational point of view
are considered here. These success factors identified
by literature review can be better understood by
going through the existing theories which will
examine the relationship between CSFs and Cloud
ERP.

3.1 Contingency Theory

Suggests that organization culture should be
conducive for any change to take place effectively.
The manner in which any organization reacts to the
change can be critical for the successful adoption
and implementation of Cloud ERP. The employees
should be given adequate training and guidance so
that they do not offer much resistance in
transitioning to the usage of Cloud ERP. The
independent variable organization resistance is
better explained by this theory. Literature review
(LR) which supports this CSF are (Bingi et al., 1999;
Holland and Light, 1999; Ross and Vitale, 2000;
Mehrtens et al., 2001; Kumar et al., 2002; Zhang et
al., 2002; Abdinnour-Helm et al., 2003; Olson et al.,
2007; Saeed et al., 2011; Hasibuan and Dantes,
2012, Utzig et al., 2013).

3.2 Knowledge based View

Lays emphasis on the fact that knowledge can be
utilized to achieve competitive advantage. The
knowledge that is created over a period of time
within an organization acts as a repository which can
always be referred or even build upon any newer
strategy. Independent variables communication
(Kumar et al., 2002; Grant, 2003; Mabert et al.,
2003; Mandal and Gunasekaran, 2003; Somers and

Nelson, 2004; Yusuf et al., 2004; Nah and Delgado,
2006; Hasibuan and Dantes, 2012) and
implementation strategy belongs to this theory
(Bancroft et al., 1998; Davenport, 1998; Cliffe,
1999; Holland and Light, 1999; Trepper, 1999;
Davenport, 2000; Gupta, 2000; O’Leary, 2000; Scott
and Vessey, 2000; Motwani et al., 2002; Robey et
al., 2002; Mandal and Gunasekaran, 2003, Umble et
al., 2003).

3.3 Market based View

Determines the nature of any organization strategy
based on the trends of the industry’s environment.
Rivalry between competitors and threat of new
entrant are factors which shape up the nature of
strategies implemented by companies. A lot of this is
also dependent on the budget of the companies
which are doing business or wanting to enter the
market. Cloud ERP can offer the services at low
rates and this fits well within the financial
limitations for a SME. Project budget is the
independent variable that is best explained by this
theory (Bingi et al., 1999; Holland and Light, 1999;
Davenport, 2000; Al-Mudimigh et al., 2001; Willis
et al., 2001; Ribbers and Schoo, 2002; Trimmer et
al., 2002; Somers and Nelson, 2004; Ellis, 2010;
Hasibuan and Dantes, 2012).

3.4 Social Capital Theory

Stresses upon the various social capital that exists in
an organization like the values and goals. These
goals and values coupled with effective leadership
can lead to successful implementation of Cloud
ERP. Strategic goals and objectives as an
independent variable explains the importance for
successful implementation (Buckhout et al., 1999;
Akkermans and Helden, 2002; Al-Mashari et al.,
2003; Mandal and Gunasekaran, 2003; Somers and
Nelson, 2004; Calogero, 2000; Pabedinskaite, 2010,
Hasibuan and Dantes, 2012).

3.5 Strategic Choice Theory

Focuses that the people of an organization can shape
the environment around them. If the environment in
the organization is nurtured in a way where the
existing as well as new projects can we executed
without much delay, then the transition to a newer
ERP system and its implementation would never
pose any problem. For this, the company should be
comfortable in shaping up the existing processes in a
different manner. The independent variables

Implementation�of�Cloud�ERP�-�Moderating�Effect�of�Compliance�on�the�Organizational�Factors

195

considered here are Business Process Re-
engineering (BPR) (Bingi et al.,1999; Holland and
Light, 1999; Bernroider and Koch, 2000; Al-
Mudimigh et al., 2001; Kraemmergaard and Rose,
2002; Palaniswamy and Frank, 2002; Trimmer et al.,
2002; Zhang et al., 2002; Al-Mashari et al., 2003;
Mabert et al., 2003; Muscatello et al., 2003; Bajwa
et al., 2004; Hasibuan and Dantes, 2012) and
project management for successful Cloud ERP
implementation (Hoffer et al., 1998; Trepper, 1999;
Nah et al., 2003; Akkermans and Helden, 2002;
Zhang et al., 2002; Umble et al., 2003; Somers and
Nelson, 2004; Bhatti, 2005; Nah and Delgado, 2006;
Hasibuan and Dantes, 2012).

4 MEASURING SUCCESS

The biggest beneficiaries out of Cloud ERP
implementation will be cloud user. The cloud
provider aim will be to beat the competition and
generate more and more revenue. This can happen
by adding more clients to their existing user base
and also convincing companies who have never used
ERP solution to switch to an affordable service. But
this is directly related to the user acceptance and
usage of Cloud ERP services. While there can be
different viewpoints about the measure of success,
an a-priori framework is proposed which will
qualitatively address the research objective. This
framework is based on intuition and using
previously published literature on ERP and Cloud
ERP.

From the viewpoint of a project-manager; time,
cost, productivity, and customer satisfaction are the
main ingredients of any project’s successful
completion (Schwaber and Beedle, 2002; PMI,
2004; Parthasarathy, 2007).

Based on balanced scorecard terminology
(Kaplan and Norton, 1996), following are the
success criteria taken for this study:

 S1 Lower Implementation Cost

 S2 Ease of Use and Reporting

 S3 Lower wait time for consumer

 S4 Increase in Customer Retention

 S5 Increased Ability to meet with Current
User Requirements

 S6 Increased Flexibility to meet with
Changing User Requirements

These criteria form the constituents of the dependent
variable (“Success”) in this paper.

5 RESEARCH OBJECTIVE

 RO 1 Development of a framework with the
different determinants of compliance for the
successful implementation of Cloud ERP.

 RO 2 To establish and verify the role of
Compliance on the organizational factors for
successful implementation of Cloud ERP.

6 VARIABLES IN THE MODEL

 Independent Variable: Organizational Factors
 Moderating Variable: Compliance
 Dependent Variable: Cloud ERP Successful

Implementation

7 CONCEPTUAL MODEL

Moderating Effect of Compliance on the
Organizational Factors in Cloud ERP
Implementation can be seen below.

Successful
Implementation of

Cloud ERP

Organizational
Factors

I1
Dependent
Variable

Moderating
Effect
I1*M1

Compliance
M1

Independent
Variable

Moderating
Variable

Figure 1: A-Priori Conceptual Model.

8 CONCLUSIONS

This paper brings out a conceptual model based on
the literature review as well as various theories
which tries to establish the link between CSFs and
Cloud ERP implementation. This model can be
empirically tested so that it can be used as a tool for
assessing the implementation of Cloud ERP.

REFERENCES

Akkermans, H. and Helden, Van (2002), “Vicious and

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

196

virtuous cycles in ERP implementation: a case study
of interrelations between critical success factors”,
European Journal of Information systems.

Al-Mashari, M., Al-Mudimigh, A. and Zairi, M. (2003),
“Enterprise resource planning: a taxonomy of critical
factors”, European Journal of Operational Research,
Vol. 146.

Al-Mudimigh, A., Zairi, M. and Al-Mashari, M. (2001),
“ERP software implementation: An integrative
framework”, European Journal of Information
Systems, Vol. 10.

Bajwa, D.S., Garcia, J.E and Mooney, T. (2004), “An
integrative framework for the assimilation of
enterprise resource planning systems: phases,
antecedents, and outcomes”, Journal of Computer
Information Systems, Vol. 44.

Bancroft, N., Seip, H. and Sprengel, A. (1998),
“Implementing SAP”, 2nd edn., Manning
Publications, Greenwich, CT, USA.

Bernroider, E. and Koch, S. (2000), “Differences in
characteristics of the ERP system selection process
between small, medium and large organizations”,
Proceedings of the Sixth Americas Conference on
Information Systems, Long Beach, California, USA.

Bingi, P., Sharma, M.K. and Godla, J. (1999), “Critical
issues affecting an ERP implementation”, Information
Systems Management, Vol. 16.

Bhatti, T.R (2005), “Critical success factors for the
implementation of enterprise resource planning (ERP):
empirical validation”, The Second International
Conference on Innovation in Information Technology
(IIT).

Buckhout, S., Frey, E. and Nemec, J. (1999), “Making
ERP succeed: turning fear into promise”', Strategy and
Business, Second Quarter Issue 15.

Calogero, B. (2000), “Who is to blame for ERP failure?”,
Sun Server, June Issue.

Cliffe, S. (1999), “ERP implementation”, Harvard
Business Review, Vol. 77.

Davenport, T.H. (1998), “Putting the enterprise into the
enterprise system”, Harvard Business Review, Vol. 76
No. 4.

Davenport, T.H. (2000), “Mission critical: realizing the
promise of enterprise systems”, Harvard Business
School Press.

Ellis, Simon (2010), “Software-as-a-Service ERP versus
on-premises ERP through the lens of total cost of
ownership”, Plex Systems, White Paper.

Finney, S. and Corbett. M. (2007), “ERP implementation:
a compilation and analysis of critical success factors”,
Business Process Management Journal.

Grant, G.G. (2003), “Strategic alignment and enterprise
systems implementation: the case of Metalco”, Journal
of Information Technology, Vol. 18.

Gupta, A. (2000), “Enterprise resource planning: the
emerging organizational value systems”, Industrial
Management and Data Systems, Vol. 100.

Hasibuan, Z.A. and Dantes, G.R. (2012), “Priority of key
success factors (KSFS) on enterprise resource
planning (ERP) system implementation life cycle”,

Journal of Enterprise Resource Planning Studies.
Holland, C.P. and Light, B. (1999), “A critical success

factors model for ERP implementation”, IEEE
Software, Vol. 16.

Hoffer, J.A., George, J.F. and Valacich, J.S. (1998),
“Modern systems analysis and design”, 2nd edn.,
Addison-Wesley Reading, MA, USA.

IBM Data Sheet (2011), “Cloud-based data archiving
service”, IBM Global Technology Services.

Kaplan, R.S. and Norton, D.P. (1996), “Using the
balanced scorecard as a strategic management
system”, Harvard Business Review, Jan-Feb issue.

Kraemmergaard, P. and Rose, J. (2002), Managerial
competences for ERP journeys”, Information Systems
Frontiers, Vol. 4.

Kumar, V., Maheshwari, B. and Kumar, U. (2002), “ERP
systems implementation: best practices in Canadian
government organizations”, Government Information
Quarterly, Vol. 19.

Mabert, V.A., Soni, A. and Venkataramanan, M.A.(2003),
“Enterprise resource planning: managing the
implementation process”, European Journal of
Operational Research, Vol. 146.

Mandal, P. and Gunasekaran, A. (2003), “Issues in
implementing ERP: a case study”, European Journal
of Operational Research, Vol. 146.

Mehrtens, J., Cragg, P.B. and Mills, A.M. (2001), “A
model of internet adoption by SMEs”, Information and
Management, Vol. 39.

Motwani, J., Mirchandani, D., Madan, M. and
Gunasekaran, A. (2002), “Successful implementation
of ERP projects: evidence from two case studies”,
International Journal of Production Economics, Vol.
75.

Muscatello, J.R., Small, M.H. and Chen, I.C., (2003),
“Implementing enterprise resource planning (ERP)
systems in small and midsize manufacturing firms”,
International Journal of Operations and Production
Management, Vol. 23 No. 8.

Nah, F.F.H., Zuckweiler, K.M. and Lau, J.L.S. (2003),
“ERP implementation: chief information officers’
perceptions of critical success factors”, International
Journal of Human-Computer Interaction, Vol. 16, No.
1.

Nah, F.F.H. and Delgado, S. (2006), “Critical success
factors for enterprise resource planning
implementation and upgrade”, Journal of Computer
Information Systems, Vol. 46, No. 5.

Nguyen, H.V. (2011), “Critical success factors for ERP
adoption process: a Vietnamese case approach”, LAP
Lambert.

O‘Leary, D.E. (2000), “Enterprise resource planning
system: systems, life cycle, electronic commerce, and
risk”, Cambridge University Press.

Olson, L.D. (2007), “Evaluation of ERP outsourcing”,
Computers and Operations Research, Volume 34,
Issue 12.

Pabedinskaite, Arnoldina (2010), “Factors of successful
implementation of ERP systems”, Economics and
Management.

Implementation�of�Cloud�ERP�-�Moderating�Effect�of�Compliance�on�the�Organizational�Factors

197

Palaniswamy, R. and Frank, T.G. (2002), “Oracle ERP
and network computing architecture: implementation
and performance, information systems management”,
Vol. 19.

PMI (2004), Project Management Body of Knowledge,
3rd edn., Project Management Institute, USA.

Parthasarathy, S. (2007), “Enterprise resource planning: a
managerial and technical perspective”, New Age
International, New Delhi, India.

Ribbers, P.M.A. and Schoo, K-C. (2002), “Program
management and complexity of ERP implementa-
tions”, Engineering Management Journal, Vol. 14.

Robey, D., Ross, J.W. and Boudreau, M-C. (2002),
“Learning to implement enterprise systems: an
exploratory study of the dialectics of change”, Journal
of Management Information Systems, Vol. 19.

Saeed, Imran, Juell-Skielse, Gustaf and Uppstrom, Elin
(2011), “Cloud enterprise resource planning adoption:
motives and barriers”, Advances in Enterprise
Information Systems II.

Ross, J.W. and Vitale, M.R. (2000), “The ERP revolution:
surviving vs thriving”, Information Systems Frontiers,
Vol. 2.

Schwaber, K. and Beedle, M. (2002), “Agile software
development with scrum”, Prentice Hall, New Jersey,
USA.

Seitz, Timm (2010), “SAP ERP in the cloud”, An Oracle
White Paper.

Scott, J.E. and Vessey, I. (2000), “Implementing
enterprise resource planning systems: the role of
learning from failure”, Information Systems Frontiers,
Vol. 2.

Somers, T.M. and Nelson, K.G. (2004), “A taxonomy of
players and activities across the ERP project life
cycle”, Information and Management, Vol. 41.

Trepper, C. (1999), “ERP project management is a key to
a successful implementation”.

Trimmer, K.J., Pumphrey, L.D. and Wiggins, C. (2002),
“ERP implementation in rural health care”, Journal of
Management in Medicine, Vol. 16.

Umble, E.J., Haft, R.R. and Umble, M.M. (2003)
“Enterprise resource planning: implementation
procedures and critical success factors”, European
Journal of Operational Research, Vol. 146.

Utzig, C., Holland, D., Horvath, M and Manohar, M.
(2013), “ERP in the cloud: is it ready? are you?”,
Booz and Co.

Willis, T.H., Willis-Brown, A.H. and McMillan, A.
(2001), “Cost containment strategies for ERP system
implementation”, Production and Inventory
Management Journal, Vol. 42, No. 2.

Yusuf, Y., Gunasekaran, A. and Abthorpe, M.S. (2004),
“Enterprise information systems project implementa-
tion: a case study of ERP in Rolls-Royce”, Interna-
tional Journal of Production Economics, Vol. 87.

Zhang, L., Lee, M.K.O., Zhang, Z. and Banerjee, P.
(2002), “Critical success factors of enterprise resource
planning systems”, 35th Hawaii International
Conference.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

198

User Requirement and Behavioral Aspects in Web Service Discovery

Wala Ben Messaoud1, Khaled Ghedira1 and Youssef Ben Halima2
1Institute ENSI University of Manouba/SOIE, 41 Liberty Street Bouchoucha, Bardo, Tunisia
2ENSI University of Manouba/RIADI Labs, Manouba University Campus, Manouba, Tunisia

Keywords: Behavioral Aspect, State Chart Scheduling, Web Service, Web Service Discovery, WordNet.

Abstract: In web service (WS) discovery, behavioral aspect has been defined as the sequence of WS operations. The
motivation to introduce the behavioral aspect is to offer to the consumer the possibility to choose his WS
according to his requirements. The aim is to include the execution manner of WS operations as a new
criterion and to apply a selection method if more than one WS candidate is filtered. In this paper, we
envision to implement WS discovery approach based on behavioral aspects to fulfill the selection of the
precise execution order. This approach ensures an execution order of operations in accordance to consumer
needs. The execution manner criterion is defended by state chart as a scheduling method and WordNnet as a
lexical database. Moreover, semantic equivalences have to be considered in order to solve equivalence
between many WS candidates which satisfy consumer needs.

1 INTRODUCTION

The literature on web service discovery is almost
common in recognizing the existence of a major
problem in the WS consumer's requirements.
Current work on service discovery focuses on
discovery types not on the analysis of consumer
intervention.

WS discovery is the process of satisfaction of a
user request according to his requirements. It refers
to the process of finding WS that implements the
technique of search desired, interviewing service
books, to know what WS is available for binding.
Our approach unlike the other discovery approaches,
allows WS consumer to involve his exigency by
entering some sentences as a WS query. The aim is
to satisfy WS consumer by analyzing his inputs.

The WS consumer requires a new aspect
allowing functional phase (organized operations,
free operations) and non functional phase (cost,
time, availability). As a solution, we define the
behavioral aspect as the execution manner of WS
operations. Indeed, a consumer who requires looking
for a WS with a tidy list of exigencies may not be
satisfied by ordinary WS discovery. Actually, the
motivation to introduce the behavioral aspect is to
offer to the consumer the possibility to choose his
WS according to his needs. The aim is to include
requirement criterion as a new aspect and to apply a
selection method if more than one WS candidate are

filtered. The behavior aspect should guarantee
quality of service (cost, reliability, time ...).

Our approach consists on using Statechart as a
scheduling method to highlight the execution order
of WS operations and WordNet as a lexical database
to prove the semantic part of consumer query. We
used BPEL4WS (Business Process Execution
Language for Web Services) to specify and execute
business process for WS composition and
orchestration. More precisely, to explain how WS
operations are invoked and executed.

The remainder of the paper is organized as
follows: Section 2 presents some concepts used in
our approach. Our solution is reported in section 3.
Section 4 explains more our approach by an
example. In section 5, we feature the related work.
Conclusions are presented in section 6.

2 CONCEPTS

Our approach brings answers to many posed issues.
It is based on some concepts facilitating the
implementation of the different phases of the
approach like WordNet, intending to find synonyms
to all consumer inputs.

In the goal to order these inputs, we use state
charts where the WS operations are the transitions
allowing to move from one state to another. Once
we have prepared the state chart part, we launch the

199

semantic aspect of WS discovery, we extract the
BPEL sequencing of each WS found and then we
select the relevant one.

2.1 WordNet

The goal of WordNet was to develop a system that
would be consistent with the knowledge acquired
over the years about how human beings process
language.

In (Miller, 1995), WordNet is defined as a large
lexical database of English. Nouns, verbs, adjectives
and adverbs are grouped into sets of cognitive
synonyms (synsets), each expressing a distinct
concept. Synsets are interlinked by means of
conceptual-semantic and lexical relations.

WordNet is a large semantic network interlinking
words and groups of words by means of lexical and
conceptual relations represented by labeled arcs.
WordNet’s building blocks are synonym sets
(synsets), unordered sets of cognitively synonymous
words and phrases (Christiane, 2005).

The authors in (Morato, 2004), define WordNet
as one of a series of manually compiled electronic
dictionaries, is restricted to no specific domain and
covers most English nouns, adjectives, verbs and
adverbs. WordNet offers researchers a cost-free use
and well-documented open code. It is an ideal tool
for disambiguation of meaning, semantic tagging
and information retrieval.

In our work, the consumer inputs is a set of
keywords that define his requirements. If we don’t
specify clearly these inputs, we risk falling in
linguistic polysemy case. So, we seek to find
synonyms to all consumer inputs to properly filter
the service concerned. That's why we have chosen to
use WordNet as ontology.

2.2 Statecharts - Automaton

In literature, authors define statechart as visual
formalism for description of complex systems
behaviour. Digital controllers, which act as reactive
systems, can be very conveniently modelled with
statecharts and efficiently synthesized in modern
programmable devices (Łabiak, 2010).

In formal grammar, an alphabet Σ is a finite and
not empty set of symbols. Σ * is the closure of Σ. A
language on an alphabet Σ is a subset of the set Σ *.

A transition diagram allows achieving an
operational vision of the concept of language. It is a
finite collection of states and transitions.

The statechart notation was developed by David
Harel (Harel, 1987). Statechart diagrams are useful

for modelling the lifetime of an object. They are
used to describe the system behavior using a finite
automaton.

The automaton is represented as a directed graph
known as state graph which consists of a finite set of
vertices known as nodes, together with a set of
directed links between pairs of vertices called arcs.
Vertices are represented by circles and arcs by
arrows. We can also represent an automaton with a
state-transition table (Bhattacharjee, 2014).

The transition table can be associated to the
automaton which describes extensively the transition
function δ. A column is a character of the alphabet.
A line is a state of the automaton (the initial state is
preceded by an arrow "→", the final state is
preceded by a star "*").

The value δ (q, a) for q ∈ Q, a ∈ Σ corresponds to
the state at the intersection of the row q and the
column a. Note that from this table it is easy to find
all the statements and the alphabet and thus identify
exactly the automaton.

An automaton reads a finite string of symbols a1,
a2, an, where ai ∈ Σ, which is called an input word.
The set of all words is denoted by Σ*. Accepting
word is the word w ∈ Σ* which is accepted by the
automaton if qn ∈ F. An automaton can recognize
a formal language. The language L ⊆ Σ* recognized
by an automaton is the set of all the words that are
accepted by the automaton. The Deterministic Finite
Automata has a finite internal memory available. At
each input letter the state of the internal memory is
changed depending on the letter scanned.

The previous memory state and the input letter
together determine what the next state of the
memory is. The word is accepted if the internal
memory is in an accepting state after scanning the
entire word (Kari, 2013).

In our approach, we use automaton as a
scheduling method of WS operations (where we
order the WS operations in the aim to respect the
non functional/functional properties). Each operation
represents a transition from a state to another. The
automation generates a language (ordering list of
operations) that specify the words to accept.

2.3 WSDL

A WSDL document is, at its simplest, a collection of
elements contained within a root definition element.
These elements describe a service and how an
endpoint implementing that service is accessed
(ALBRESHNE, 2009)

Each WSDL includes two parts, the abstract and
the concrete. Abstract part describes the messages

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

200

sent and received. The operation associates a
message exchange pattern with one or more
messages.

As for concrete part, it specifies transport and
wire format details for one or more interfaces, a port
(an endpoint) associates a network address with a
binding and a service which groups together
endpoints that implement a common interface.

An operation is similar to a function in a high
level programming language. A message exchange
is also referred to as an operation. Operations are the
focal point of interacting with the service.
In our work, we use WSDL for each WS to extract
the execution order of operations.

2.4 BPEL4WS

BPEL for WS is a programming language for the
execution of business processes. It is based on
WSFL (Web Services Flow Language) and XLANG
(XML LANGuage), is derived from XML.

According to (Milanvoic, 2004) and (OASIS,
2007), BPEL composes web services to get a
specific result. The composition result is a named
process, partners are defined as services and
activities are described by exchanged messages. In
other words, a process contains a set of activities and
it invokes external partner services using a WSDL
interface.

BPEL is used to describe the execution of
business process implicating WS. It consists on
business BPEL allowing communication with WS,
handling XML Data and managing exceptions.

BPEL provides several structure activities:
- <sequence>: define an ordered sequence of WS
activities.
- <flow>: define parallel activities.
- <switch>: Case-switch construct for implementing
branches.
- <while>: define loops.
- <pick>: select one of several alternative paths.

In WS discovery, there are three layers;
operational, organizational and intentional.
Intentional layer enables modeling purposes. It is a
conceptualization of strategic needs of required
modeling by an individual subject, group of
individuals, a work unit or organization that
involved in the system development process.

In some cases, the WS consumer cannot be a
domain expert, he launch his query by entering a list
of sentences. These sentences will be transformed to
keywords by an algorithm to facilitate the
satisfaction process. The consumer inputs can be a
list of WS that need to be orchestrated as operations.

3 SOLUTION: BEHAVIORAL
BASED APPROACH

The WS consumer seeks his WS with a list of well-
defined requirements (functional and non-
functional) but he is not satisfied by the ordinary
types of discovery.

Syntactic discovery aims to compare between the
syntactic query based on keywords and syntactic
descriptions of WS. WS consumer launch his query
by entering a set of keywords, the result of the
comparison between syntactic query based on
keywords and syntactic descriptions of the services
is a set of WS that don't satisfy the consumer
exigencies (the WS name is exactly the keyword
entered by the consumer but the content has not the
same meaning sought).

The semantic discovery is mainly based on
ontology, defined as structured set of terms and
concepts representing the meaning of information
field, developed to facilitate knowledge sharing and
reuse. WS consumer launch his query by entering a
set of keywords, the result is a set of WS that don't
satisfy the consumer exigencies. For this reason, we
intend to define a new WS discovery approach based
on behavioral aspect according to our definition. We
define the behavior as the execution manner of WS
operations. WS discovery approach based on
behavioral aspect ensures an execution order of
operations in accordance to consumer needs.

The purpose of this paper is to design a
discovery technique for choosing the WS with the
most relevant behavior. So, the query language to
develop should be based on system statechart. It is
used to check the compatibility of behavior required
by the customer and those of WS found.

The work requires its valuation by an
implementation that acquires to client to get his WS
with the execution order of the desired operations.
This implementation creates a WS automaton
according to the operations order. WS automaton
accepts only languages that correspond to it. These
languages will be generated from BPEL files
(Business Process Execution Language) of WS
operations searched in WS directories. Some
languages will be selected if they are accepted by the
WS automaton.

Figure 1 shows that the implementation is done
in three phases.

User�Requirement�and�Behavioral�Aspects�in�Web�Service�Discovery

201

3.1 Phase 1 - Transform Consumer
Sentences to Keywords

If the WS consumer is not a domain expert, he may
enter his requirements as sentences. An algorithm is
defined to transform each sentence in a keyword
used in Phase 2.

3.2 Phase 2 - Create WordNet File for
Each Keyword - Create Automaton

WordNet is used to define synonyms file for each
keyword entered by the consumer. The analysis of
consumer inputs is done on a semantic level not on a
syntactic level.

In the same time, these keywords allow to create
the automaton corresponding to the behavior of
searched WS (defining the standard language to
accept).

The automaton is defined by an initial state, a list
of transitions and a list of final states. A number of
states are defined according to the consumer inputs.
To switch from a state to another, we must pass
through a transition. Consumer keywords define
transitions.

3.3 Phase 3 - Extract Sequences from
WSDL/BPEL Files of WS Searched
- Select the Relevant WS

Consists on searching WS semantically (Semantic
Aspect) basing on non functional properties (NFP).
For each WS selected, we extract the list of its
operations from WSDL (if it is a simple WS) or
from BPEL file (if it invoke other WS). The
extracted sequencing is transformed to word that
will be accepted or rejected by the automaton

Figure 1: Implementation Steps of Behavioral approach.

already defined.
Accepted words correspond to WS accepted. The

last step in Phase 3 is to select the most relevant WS
basing on functional properties (FP) that we called
(Behavioral Aspect).

4 EXAMPLE: STAY
RESERVATION

Let's consider the example named «Stay
reservation» in Figure 2, where the consumer wishes
to book a plane ticket, rent a car, buy a concert ticket
and book a hotel stay (or rent a house) with a heated
pool. All these operations should guarantee
minimum transfer cost and reduced transfer time.

Figure 2: Behavioral WS discovery.

The consumer launches his query by entering a list
of sentences such as «Plane ticket», «Heated pool»,
«Rent a car», «Hotel stay», «Minimum execution
cost», «Reduced execution time», «Rent a house»,
«Buy concert ticket», «Minimum transfer cost» and
«Reduced transfer time».

The first step is to specify NFP from FP. NFP are
used in semantic aspect as selection properties. In
this example, «Minimum execution cost» and
«Reduced execution time» are NFP. As a result, we
find WS1 named «Stay», WS2 named «Reservation»
and WS3 named «Journey». All of this WS satisfy
the consumer needs semantically.

For the behavioral aspect, «Minimum transfer
cost» and «Reduced transfer time» are chosen as FP
to select the most relevant WS.

To explain in more detail, we follow the steps
mentioned previously:

 Transform consumer sentences to
keywords:

Phase 1 presented in Figure 3 consists on defining an
algorithm to transform consumer inputs to keywords

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

202

usable in phase 2.

Figure 3: Stay Reservation: Phase 1.

 Create WordNet file for each keyword:
The system launches WordNet. As a result, we get
for each keyword a file with a list of its synonyms.
Each row of WordNet file is a keyword synonym.
Figure 4 presents two examples respectively bonded
to keywords «Plane ticket» and «Car rented».

Figure 4: WordNet result.

 Create automaton:
At the same time, to respect consumer's
requirements, we should consider it to create
automaton.

The automaton in Figure 5 shows all states that
the WS «Stay reservation» can be in during the
course of its life. Furthermore, it shows the possible
transitions between the states and the events that
initiate these transitions.

We follow the automaton to check the
compatibility of behavior required by the customer
and those of WS found. The following abbreviations
are used to develop the automaton.

Firstly, we define the states:
0: Stay not reserved
1: Plane Ticket reserved
2: Car rented
3: Hotel Stay reserved
4: House rented
5: Concert Ticket bought

Secondly, we define the transitions by the
following abbreviations:
 Reserve_ticket : P
 Rent_ car : C
 Reserve_Hotel : S
 Rent_ house : H
 Buy_Concert_ticket : B

The WS automaton (Q, Σ, δ, q0, F) is defined by:
Q = {0, 1, 2, 3, 4, 5}: the states number depends on
operations number. (It is equals to the real
operations number +1). The real operations number
is calculated by neglecting free operations and for
the parallel operations we just count one operation.
In our case, we have in general five operations. If we
neglect the free operation (Buy_Concert_ticket) and
we count just one operation for the two parallel
operations (Reserve_Hotel and Rent_House), we
will have a number of four real operations. So, the
states number equals to five (the real operations
number=4 +1).
Σ = {P, C,S,H,B }
δ(0, P)=1, δ(0, B)=5, δ(1, C)=2, δ(1, B)=5,
δ(2, S)=3, δ(2, H)=4, δ(2, B)=5, δ(3, B)=5,
δ(4, B)=5, δ(5, P)=1, δ(5, C)=2, δ(5, C)=3,
δ(5, H)=4

The transitions table is represented by a matrix
where the rows are the states and the columns are
the operations.
q0 = 0 : the initial state is always the 0.
F = {3, 4, 5}: final state is defined if we look over
all the transitions (for the parallel operations, we
count just one). In this example, to achieve 3, we
pass by PBCS. To achieve 5, we pass by PCSB. To
achieve 4, we pass by PBCH.

Figure 5: Automaton of WS «Stay reservation».

Then we deduce the transition table to facilitate the
extraction of language to accept:

Table 1: Transition table.

 P C S H B

→0 {1} Ø Ø Ø {5}
1 Ø {2} Ø Ø {5}
2 Ø Ø {3} {4} {5}
*3 Ø Ø Ø Ø {5}
*4 Ø Ø Ø Ø {5}

*5 {1} {2} {3} {4} Ø

According to the transitions table, the accepted
expressions are:

User�Requirement�and�Behavioral�Aspects�in�Web�Service�Discovery

203

 {PBCS}: 1- Reserve_ticket 2-
Buy_Concert_ticket 3- Rent_ car 4-
Reserve_Hotel.

 {PBCH}: 1- Reserve_ticket 2-
Buy_Concert_ticket 3- Rent_ car 4- Rent_
house.

 {PCBS}: 1- Reserve_ticket 2- Rent_ car 3-
Buy_Concert_ticket 4- Reserve_Hotel.

 {PCBH}: 1- Reserve_ticket 2- Rent_ car 3-
Buy_Concert_ticket 4-Rent_ house.

 {PCSB}: 1- Reserve_ticket 2- Rent_ car 3-
Reserve_Hotel 4- Buy_Concert_ticket.

 {PCHB}: 1- Reserve_ticket 2- Rent_ car 3-
Rent_ house 4- Buy_Concert_ticket.

 {BPCS}: 1- Buy_Concert_ticket 2-
Reserve_ticket 3- Rent_ car 4-
Reserve_Hotel.

 {BPCH}: 1- Buy_Concert_ticket 2-
Reserve_ticket 3- Rent_ car 4- Rent_
house.

So, all other execution enchainment of WS
operations will be rejected.

 Extract sequences from WSDL or BPEL
files of WS searched:

The first step is to launch WS discovery
semantically basing on NFP «Minimum execution
cost» and «Reduced execution time». As a result, we
find WS1« Stay», WS2«Reservation» and
WS3«Journey». This step is an ordinary WS
discovery based on semantic aspect that we can find
in many works like (Kritikos, 2007).

The second step is to extract the sequencing of
WS operations from the concerning file of each WS
filtered. More precisely, to extract words that will be
accepted or rejected by the automaton defined
previously.

Every WSDL file contains the tag <operation>
that defines the list of WS operations. We extract the
execution order and transform it to words. Hence, all
the WS words are ready to be filtered.

If we have composed WS, every BPEL file
contains the tag <sequence> that defines an ordered
sequence of WS activities. We extract this WS
operations sequencing and transform it to word.
Hence, all the WS words are ready to be filtered.

 Select the relevant WS:
Basing on FP «Minimum transfer cost» and
«Reduced transfer time», we launch the selection
phase of the most relevant WS.

The services candidate namely WS1«Stay», WS2
«Reservation» and WS3 «Journey» satisfy the
consumer semantically but only WS2 is selected as
the most relevant WS. Calculations are made in
order to reduce transfer time and transfer cost.

5 RELATED WORK

The WS behaviour in literature is described by
sequences of messages, data types, data constraints
and properties that specify time limits within\where
messages are exchanged (Elabd, 2011).

Previously, Maamar et al. propose an approach
for modelling and specifying behaviours of WS in
(Maamar, 2009). This approach sheds the light on
two types of behaviours: control (that demonstrate
the business logic that supports the functioning of a
WS) and operational (that regulates the execution
progress of this control behaviour by stating actions
to carry out and the constraints to put on this
progress). The idea is to coordinate both behaviours
at run-time by developing conversational messages
and transmit details between these two behaviours.
Unlike (Maamar, 2009), our approach treats
behaviour as a sequence of ordered operations and
abstracts away from considering behaviours
conversation.

Another alternative is to first propose a service
system by describing the overall behaviour of each
consumer, and then to instantiate such consumers
retrieving services exposing a behavioural contract
which is adequate to the matching given behaviour
(Bravetti, 2009).

The work in (Sriharee, 2003) presents an
approach based on ontology to improve descriptions
of WS that are defined in WSDL with ontology-
based behavioural information, the query for
services are based on behavioural constraints and
have a service ontology linked with each WS. It can
benefit from inferring semantics of the service from
the service ontology. This work neglects the
consumer needs, it doesn't depend on the execution
order of WS operations.

The aim of WS discovery based on behavioural
aspect prove that WS consumer is the most
important part in discovery process, whose role is to
specify the WS description as well as its behaviour.

The authors in (Ramollari, 2008) propose an
approach where the service provider enhances the
WSDL document by means of a formal model of the
WS behaviour, expressed in the stream X-machine
formalism (SXM). This model is used by the service
broker during publication and by the service
consumer during discovery.

All these works treat behavioural aspects as
conversational messages exchanged between WS
and abandon the internal structure of WS execution.
That is why the approach that we propose in this
paper, involves the importance of sequencing of WS
operations to guarantee the quality of service.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

204

6 CONCLUSIONS

We hope you find the information in this template
useful in the preparation of your submission.

Service consumers have a choice between
different WS candidates that provide similar
functions. Accordingly, comparing services requires
more sophisticated patterns of discovery.

In this paper, we have proposed a WS discovery
approach based on behavioral aspects. We sought to
satisfy consumer needs by introducing new criteria
based on user requirements. This approach is based
on execution manner of WS operations. To fulfill the
aim of our approach, we arranged consumer
requirements in semantic and behavioral aspect.
Hence, we have organized our work in three phases;
phase1 consists to transform consumer sentences to
keywords if the consumer is a non expert domain.
Phase2 is a semantic WS discovery basing on
WordNet as lexical database and then create the
automaton to put in order WS operations and to
extract the language accepted. Phase3 aims to
extract sequences from WSDL/BPEL files of WS
searched to select the relevant WS.

In future work, we plan implementing our
approach by developing a query language that uses
the underlying automaton to the required WS. A
case study will be set up to explain the objectives of
the approach. Also experimentation should be made
to highlight the advantage of using the approach. A
work is underway to fulfill this objective.

As for Selection phase, we can add other criteria
to select the most appropriate service if many
services satisfy the desired behavior.

REFERENCES

G. A. Miller, 1995. WordNet: A Lexical Database for
English, Communication of the ACM, Vol. 38, No. 11.

F. Christiane, 2005. WordNet and wordnets, In: Brown,
Keith et al. (eds.), Encyclopedia of Language and
Linguistics, Second Edition. Oxford: Elsevier, pages
665-670.

J. Morato et al., 2004. WordNet Applications. GWC 2004
Global Wordnet Conference (poster session).
http://www.fi.muni.cz/gwc2004/. Brno.

G. Łabiak and G. Borowik, 2010. Statechart-based
Controllers Synthesis in FPGA Structures with
Embedded Array Blocks. International Journal of
Electronics and Telecommunications. Volume 56,
Issue 1, Pages 13–24, ISSN (Print) 0867-
6747, DOI: 10.2478/v10177-010-0002-7.

D. Harel, 1987. STATECHARTS: a visual formalism for
complex systems*, Science of Computer

Programming 8, 1987, pages 231-274.
A. Bhattacharjee, B. S. Purkayastha, 2014. A Novel

Approach to Construct Deterministic Finite State
Automata. International Journal Of Engineering And
Computer Science ISSN:2319-7242 Volume 3 Issue 1,
Page No. 3700-3703.

J. Kari, 2013. Automata and formal languages. Fall
semester 2013 University of Turku.

A. ALBRESHNE et al., 2009. Web Services Orchestration
and Composition Case Study of Web services
Composition, WORKING PAPER.

N. Milanvoic, and M. Miroslaw, 2004. Current Solutions
for Web Service composition. s.l.: IEEE Computer
Society.

OASIS, 2007. Web Services Business Process Execution
Language (WSBPEL).

K. Kritikos and D. Plexousakis, 2007. OWL-Q for
Semantic QoS-based Web Service Description and
Discovery, Proceedings of the 6th International
Semantic Web Conference and the 2nd Asian Semantic
Web Conference,.BEXCO, Bussan KOREA. pages
123-137.

Elabd, 2011. Conformité de services Web par rapport à
des spécifications de haut niveau.

Z. Maamar et al., 2009. A New Approach to Model Web
Services Behaviors based on Synchronization.
International Conference on Advanced Information
Networking and Applications Workshops.

M. Bravetti, 2009. Foundational Aspects of Service
Discovery based on Behavioral Contracts, 3rd
International Workshop on Verification and
Evaluation of Computer and Communication Systems.

N. Sriharee and T. Senivongse, 2003. Discovering Web
Services Using Behavioral Constraints and Ontology.
Distributed Applications and Interoperable Systems -
DAIS, pages. 248-259.

E. Ramollari et al., 2008. Towards Reliable Web Service
Discovery through Behavioral Verification and
Validation. Proceedings of the 3rd European Young
Researchers Workshop on Service.

User�Requirement�and�Behavioral�Aspects�in�Web�Service�Discovery

205

PaaSword: A Holistic Data Privacy and Security by Design Framework
for Cloud Services

Yiannis Verginadis1, Antonis Michalas2, Panagiotis Gouvas3, Gunther Schiefer4, Gerald Hübsch5

and Iraklis Paraskakis6

1Institute of Communications and Computer Systems, National Technical University of Athens, Athens, Greece
2Security Lab, Swedish Institute of Computer Science, Stockholm, Sweden

3Ubitech Ltd., Athens, Greece
4Karlsruhe Institute of Technology, Karlsruhe, Germany

5CAS Software AG, Karlsruhe, Germany
6South East European Research Centre, Thessaloniki, Greece

jverg@mail.ntua.gr, antonis@sics.se, pgouvas@ubitech.eu, gunther.schiefer@kit.edu, gerald.huebsch@cas.de,
iparaskakis@seerc.org

Keywords: Data Privacy, Security by Design, Context-aware Security, Symmetric Searchable Encryption, Cloud Com-
puting.

Abstract: The valuable transformation of organizations that adopt cloud computing is indisputably accompanied by a
number of security threats that should be considered. In this paper, we outline significant security challenges
presented when migrating to a cloud environment and propose PaaSword – a novel holistic, data privacy and
security by design, framework that aspires to alleviate them. The envisaged framework intends to maximize
and fortify the trust of individual, professional and corporate users to cloud services. Specifically, PaaSword
involves a context-aware security model, the necessary policies enforcement and governance mechanisms
along with a physical distribution, encryption and query middleware, aimed at facilitating the implementation
of secure and transparent cloud-based applications.

1 INTRODUCTION

Until recently, large-scale computing was available
exclusively to large organizations with an abundance
of in-house expertise. Cloud computing has changed
that to the point where any user with even basic tech-
nical skills can obtain access to vast computing re-
sources at low cost. In the technology adoption life-
cycle, cloud computing has now moved from an early
adopters stage to an early majority, where we typi-
cally see exponential number of deployments (Santos
et al., 2009). Throughout the past few years, many
users have started relying on cloud services without
realizing it. Major web mail providers utilize cloud
technology; tablets and smartphones often default to
automatically uploading user photos to cloud storage
and social networks; finally, several prominent CRM
vendors offer their services using the cloud. In other
words, the adoption of cloud computing has moved
from focused interest to widely spread intensive ex-
perimentation and is now rapidly approaching a phase

of near ubiquitous use.
Enterprises increasingly recognize the compelling

economic and operational benefits of cloud comput-
ing (Micro, 2010). Virtualizing and pooling IT re-
sources in the cloud enables organisations to realize
significant cost savings and accelerates deployment of
new applications, simultaneously transforming busi-
ness and government at an unprecedented pace (CSA,
2013). However, those valuable business benefits can-
not be unlocked without addressing new data security
challenges posed by cloud computing.

Despite the benefits of cloud computing, many
companies have remained cautious due to security
concerns. Applications and storage volumes often re-
side next to potentially hostile virtual environments,
leaving sensitive information at risk to theft, unau-
thorized exposure or malicious manipulation. Gov-
ernmental regulation regarding data privacy and lo-
cation presents an additional concern of significant
legal and financial consequences if data confiden-
tiality is breached, or if cloud providers move regu-

206

lated data across national borders (Paladi and Micha-
las, 2014). The contribution of this position paper
is two-fold. First, we present a list of core security
requirements and challenges that must be considered
when migrating to a cloud environment. These se-
curity requirements were derived based on our expe-
rience with migrating existing applications to a pri-
vate Infrastructure-as-a-Service (IaaS) cloud (Micha-
las et al., 2014). We extend this guide by discussing
important attack vector characteristics for cloud envi-
ronments that will pave the way for providing tighter
security when building cloud services. Second, in or-
der to tackle the critical cloud security challenges we
present PaaSword, an envisaged framework that will
maximize and fortify the trust of individual, profes-
sional and corporate users to cloud services and appli-
cations. PaaSword achieves that by providing storage
protection mechanisms, which improves confidential-
ity and integrity protection of users’ data in the cloud
while it does not affect the data access functionality.

The rest of this paper is organized as follows. In
Section 2, we further elaborate on the main data se-
curity challenges in cloud-enabled services and appli-
cations. In Section 3, we introduce a holistic, data
privacy and security by design, framework enhanced
by sophisticated context-aware access models and ro-
bust policy enforcement and governance mechanisms,
aimed at facilitating the implementation of secure and
transparent cloud-based applications. In Section 4,
we briefly discuss relevant work while in Section 5,
we conclude the paper by presenting the next steps
for the implementation and evaluation of the proposed
framework.

2 DATA SECURITY
CHALLENGES IN THE CLOUD

According to the Cloud Security Alliance (Alliance,
2013), several top security identified threats refer
to information disclosure and repudiation, rendering
data security as realised through data protection, pri-
vacy, confidentiality, and integrity as top priorities.
More precisely, the top four threats identified are:
data leakage, data loss, account hijacking and inse-
cure APIs. The externalized aspect of outsourcing
can make it harder to maintain data integrity and pri-
vacy (IBM, 2011) and organizations should include
mechanisms to mitigate security risks introduced by
virtualization. Especially when they deal with sen-
sitive data, such as health records, the protection of
stored information comes as a top priority. There-
fore, data security can be seen as the foundation upon
which the entire transition to a cloud architecture

should be based. Multiple risks must be addressed
in order for an organization to guarantee the safety of
users’ records. One of the most important aspects is
security of sensitive information. To this end, the de-
ployment must ensure that all sensitive data is stored
in encrypted form. Complementary to this, proper key
management must ensure that encryption keys are not
revealed to malicious users.

Based on this, it becomes evident that the most
critical part of a modern cloud application is the
data persistency layer and the database itself. As
all sensitive information (including user credentials,
credit card info, personal data, corporate data, etc.)
are stored in these architectural parts, the database-
takeover is the ultimate goal for every adversary.

The Open Web Application Security Project1

foundation has categorized the database-related at-
tacks (SQL injection) as the most critical ones. The
importance of this attack vector is also reflected
by respective incident reports. According to the
Web Hacking Incidents Database 2, SQL injections
represents 17% of all security breaches examined.
These injections were responsible for 83% of the to-
tal records stolen, in successful hacking-related data
breaches from 2005 to 2011. The criticality of the per-
sistency layer is therefore evident. Most of the secu-
rity fences that are configured in a corporate environ-
ment target the fortification of the so-called network
perimeter (e.g. routers, hosts and virtual machines).
Although existing intrusion detection systems (IDS)
and intrusion prevention systems (IPS), try to cope
with database-takeover security aspects (like Snort),
the fact that, on the one side, automated exploitation
tools (e.g. SQLMap) are widely spread, and, on the
other side, IPS and IDS evasion techniques have be-
come extremely sophisticated, denote that the risk of
database compromise is greatest than ever. More-
over, by using mechanisms that rely on Web Appli-
cation Firewalls (WAF) an organization can prevent
various types of attacks but it is inadequate to protect
against todays sophisticated SQL Injection and DoS
attacks (Michalas et al., 2010). Additionally, inter-
nal adversaries in terms of cloud vendors or even un-
known vulnerabilities of software platforms and secu-
rity components widely adopted in cloud-based devel-
opment may provide malicious access to personal and
sensitive data. A recent example was the Heartbleed
flaw3 that constituted a serious fault in the OpenSSL
cryptography library, which remained unnoticed for

1https://www.owasp.org/
2http://projects.webappsec.org/w/page/13246995/Web-

Hacking-Incident-Database
3http://www.infosecurity-

magazine.com/news/heartbleed-101/

PaaSword:�A�Holistic�Data�Privacy�and�Security�by�Design�Framework�for�Cloud�Services

207

more than two years and affected over 60% of Web
servers worldwide. Additionally, regarding the post-
exploitation phase, things are even worse in the case
where a symmetric encryption algorithm has been
employed to protect the application data. The already
available cracking toolkits that utilize GPU process-
ing power (e.g. oclHashcat) are able to crack ciphers
using brute-force techniques with an attack rate of
162 billion attempts per second.

While most of the attack vectors are exposed
in any Software-as-a-Service application by the sys-
tem administrators misconfigurations, the database
takeover and the post-exploitation of acquired data is
under the sole responsibility of the application devel-
oper. The application developer is the one responsi-
ble both for sanitizing all HTTP-input parameters that
could be used as attack vectors, and for reassuring that
compromised data will be useless under the existing
brute-forcing and reversing techniques. Nevertheless,
even if the application developer follows strict guide-
lines, the mere utilization of an IaaS provider in or-
der to host a Virtual Machine, or for a Platform-as-
a-Service (PaaS) provider in order to develop a cloud
application, may by itself spawn a multitude of in-
herent vulnerabilities. These vulnerabilities cannot
be tackled effectively as they typically exceed the re-
sponsibilities of an application developer.

3 ENVISIONED FRAMEWORK

In this section, we present PaaSword, a framework
that will allow cloud services to maintain a fully dis-
tributed and encrypted data persistence layer in order
to foster data protection, integrity and confidential-
ity in the presence of malicious adversaries. To this
end, we describe the need for a context-aware security
model which will serve as the basis of a fine-grained
access control scheme, one which allows the per-user
management of access rights. In addition to that, we
describe a physical distribution, encryption and query
middleware that will be based on a searchable encryp-
tion (SE) scheme which will allow legitimate users to
directly search on encrypted data, thus ensuring the
confidentiality and integrity of stored data.

3.1 Context-aware Access Model

We envision a XACML-based4 context-aware access
model, which is needed by the developers in order
to annotate the Data Access Objects of their appli-
cations. This context model should conceptualize the

4OASIS eXtensible Access Control Markup Language
(XACML). https://www.oasis-open.org/

aspects, which must be considered during the selec-
tion of a data-access policy. These aspects may be any
kind of information which is machine-parsable (Dey,
2001); indicatively they may include the user’s IP ad-
dress and location, the type of device that she is us-
ing in order to interact with the application as well
as her position in the company. These aspects can
be interpreted in different ways during the security
policy enforcement. In particular, the context aware
access model determines which data is accessible un-
der which circumstances by an already-authenticated
user.

Access control models are responsible for decid-
ing if a user has the right to execute a certain operation
on a specific object. Objects can be a server, an ap-
plication, an entire database or even a single field in
a table row. The user is considered as the active el-
ement and is called subject. A permission associates
an object with an operation (e.g. read, write etc.). Ac-
cess control models provide a list of permissions that
each subject has on certain objects.

Commonly used access control models are the
Mandatory Access Control (MAC), the Discretionary
Access Control (DAC) and the Role-Based Access
Control (RBAC) (Ferrari, 2010). In our approach, the
process of granting/denying access will be based on
dynamically changing parameters, thus our proposed
model relies on a DAC model with groups. The con-
text parameters are unique for every single user, so for
granting access it is necessary to consider all infor-
mation associated with a single user. Furthermore, an
RBAC model would be inappropriate since for every
change of a context parameter the role of each subject
has to be changed.

To implement the dynamic change of context pa-
rameters in a static access control model, we will use
the, so-called, context switches. Depending on the
current context, a permission can be granted or de-
nied (switched). This could switch dynamically with
every change of the context. Context switches are re-
sponsible for managing operational permissions and
object permissions. An operational permission gives
the right to a subject to perform a specific operation
while an object permission gives the right to perform
an operation on a specific object.

3.2 Policies Access and Enforcement

Another important aspect of our proposed framework
is a middleware that will encapsulate capabilities for
maintaining the access policies model, for annotat-
ing and managing data access object annotations, for
controlling their validity, for dynamically interpreting
them into policy enforcement rules and for enforc-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

208

ing them. This envisaged middleware will provide:
(a) a transparent key usage for efficient authentication
purposes, related to authenticating the origin of the
incoming access requests; (b) annotation capabilities
in the form of a tool (can also involve an IDE plug-
in) for allowing developers to declaratively create the
minimum amount of rule-set that is needed for secu-
rity enforcement purposes; (c) the dynamic interpre-
tation of the data access object annotations into pol-
icy enforcement rules; (d) the governance and quality
control of the annotations and their respective policy
rules; and (e) the formulation and implementation of
the overall policy enforcement business logic.

In terms of this middleware, we also consider the
reuse and proper extension of technologies for de-
veloping an appropriate key management mechanism.
This mechanism is necessary for the authentication of
different parties that will be involved in the encryp-
tion and decryption of data. We aim at constituting
the key-usage, transparent to the application usage.
This involves the key propagation upon authentica-
tion of the user, directly to the security enforcement
middleware. For efficiency, we will employ a hybrid
encryption capitalizing upon the utilization of two dif-
ferent encryption functions. The inner layer will be
encrypted with an algorithm that uses a symmetric
encryption key K, while the outer layer will use an
asymmetric encryption in order to encrypt the sym-
metric key K. Symmetric encryption allows more ef-
ficient schemes but privacy concerns are raised due to
the fact that the involved parties must exchange the
secret key. However, combining both techniques help
to optimize the efficiency of the underlying protocols
without sacrificing security. To this end, PaaSword
will rely on both symmetric and asymmetric encryp-
tion in order to securely distribute K between legiti-
mate users.

Additionally, we will also employ methods and
mechanisms for governance and validity control of
the data object annotations. More specifically, we
will focus on the application of an ontology-driven
governance approach for: i) the basic management of
data object annotations (i.e. storage, retrieval, dele-
tion, etc.), ii) validity checking of the data object an-
notations (e.g. rejecting any contradicting annotations
made by the developer) and iii) dependency tracking
among data objects annotations.

Another critical aspect of this middleware is the
annotations interpretation mechanism. Such a mech-
anism will be used for dynamically generating access
control policies, during application runtime, based on
the interpretation of data object annotations. Such a
mechanism will implement the essential decoupling
between the access decisions and the points of use

(i.e. Policy Enforcement Points (PEP) of the XACML
specification). This interpretation is based on an
XACML compliant context model and it can augment
the offered functionality of any PaaS provider, with
a security-as-a-service layer. To do so, we will use
the OASIS XACML as it supports and encourages
the separation of the access decision from the point
of use.

Figure 1: High level view of XACML Components.

3.3 Threat Model, Secure Storage &
Query Middleware

In this sub-section, we provide a high level descrip-
tion of the protocol that will be used to effectively
protect the stored data from malicious adversaries.
To this end, we first describe the threat model under
which a cloud application will be considered secure.

Threat Model. Similar to existing works in the
area (Paladi et al., 2014; Santos et al., 2009), we
assume a semi-honest cloud provider. In the semi-
honest adversarial model, a malicious cloud provider
correctly follows the protocol specification. However,
she can intercept all messages and may attempt to
use them in order to learn information that otherwise
should remain private. Semi-honest adversaries are
also called honest-but-curious.

Furthermore, for the rest of the participants in
the protocol we share the threat model with (Santos
et al., 2009), which is based on the Dolev-Yao adver-
sarial model (Dolev and Yao, 1983) and further as-
sumes that privileged access rights can be used by a
remote adversary ADV to leak confidential informa-
tion. The adversary, e.g. a corrupted system admin-
istrator, can obtain remote access to any host main-
tained by the provider. However, the adversary can-
not access the volatile memory of any guest virtual
machine (VM) residing on the compute hosts of the
provider. This property is based on the closed-box
execution environment for guest VMs, as outlined in
Terra (Garfinkel et al., 2003) and further developed
in (Zhang et al., 2011).

PaaSword:�A�Holistic�Data�Privacy�and�Security�by�Design�Framework�for�Cloud�Services

209

Secure Storage. A basic tenet of PaaSword is that
sensitive data stored on untrusted servers must be al-
ways encrypted. This effectively reduces the privacy
and security risks since it relies on the semantic se-
curity of the underlying cryptosystem, rendering the
system relatively immune to internal and external at-
tacks. Having this in mind, we propose a forward-
looking design for a cryptographic cloud storage that
will be based on a symmetric searchable encryption
(SSE) scheme similar to the one proposed in (Ka-
mara and Lauter, 2010). We plan to extend the pre-
vious work Cumulus4j (Huber et al., 2013) and Mi-
moSecco (Gabel and Hübsch, 2014) in which an SSE
scheme was presented and it was based on the IND-
ICP security notion (Bösch et al., 2014) that hides re-
lations between different data values of a data row and
creates the base for secure database outsourcing.

An SSE scheme allows a user to search in en-
crypted data without learning any information about
the plaintext data. Let DB = fm1; : : : ;mng be a set
of n messages (w.l.o.g DB can be considered as a
database). For each mi 2DB we extract a set of key-
words which can later be used for executing queries.
This set of keywords is denoted as W = fw1; : : : ;wng.
For each wi 2W we calculate H(wi), where H(�) is
a cryptographically secure hash function under a se-
cret key K0. Then, we encrypt the elements of DB
with a secret key K00 6= K0. By doing this, we create a
searchable encrypted index I where each index entry,
points to an encrypted list of rows that have a cer-
tain keyword. The client can use a trapdoor function
to search the index and determine whether a specific
keyword is contained in the index.

While the above-mentioned scheme is imple-
mented in previous works (Huber et al., 2013; Gabel
and Hübsch, 2014) it has a limitation that we tend
to cover in our proposed framework. More precisely,
the current scheme follows a single write/single read
(S/S) architecture, which makes it unrealistic for our
cloud scenario. To overcome this limitation, we plan
to build an SSE that will support multi write/multi
read (M/M) meaning that a group of users based on
access rights will be able to both read and write on
the encrypted data. To this end, PaaSword will in-
volve a key distribution algorithm that will extend S/S
architecture to M/M. Additionally, a user revocation
function will be implemented in order to exclude a
user, which either acts maliciously or has no longer
access rights. This is a crucial and challenging pro-
cedure, if we consider that many of the existing SSE
schemes (Bösch et al., 2014) do not support user re-
vocation and thus are susceptible to many attacks.

Query Middleware. In order to successfully sup-
port the SSE scheme described above, we aim to de-
velop a persistency layer, called Virtual Database VB
(Figure 2), and will be the intermediary that secures
client data before it gets uploaded to the cloud. Addi-
tionally, this layer will be responsible for processing
user queries. In our framework, the VB plays the role
of a trusted third party. Consider, for example, the
scenario where a user wants to search for a certain
data in PaaSword secured databases. To do so, she
will generate a query (q) containing a set of keywords
that she is interested in and will send the request to the
VB. Upon reception, the VB extracts the keywords
from q calculates their hash values and queries the
databases where the keywords wi are stored. If the
queries are successful and the keywords exist in one
of the tables, the VB will obtain the row from the main
table that contains the encrypted original data. Upon
reception, the VB will reply to the users request by
sending the acquired data.

3.4 Conceptual Architecture

The PaaSword compliant cloud applications that will
be developed will inherit a fully physical distributed
and totally encrypted data persistence layer, which
will be able to determine on an ad-hoc basis whether
an incoming data querying and processing request
should be granted access to the target data during ap-
plication runtime. The transformation process of a
traditional application utilizing the PaaSword frame-
work and the way the transformed application secures
and protects the users’ sensitive data is presented in
Figure 2, which at the same time reveals high level
architectural details of the framework.

In this framework, we consider applications that
adopt and respect the Model-View-Controller (MVC)
development pattern (Krasner and Pope, 1988). As
seen in Figure 2 (step 1) the application developer
imports an existing or creates a new MVC-based ap-
plication in her favorite integrated development en-
vironment (IDE) for which an IDE-specific plug-in
will be provided. During the second step of this pro-
cess the application developer creates annotations at
the DAO of the Controller referring to sensitive data
that should be protected, according to the XACML-
based model and defines the physical distribution, en-
cryption and access rights scheme for each data ob-
ject. In the third step, the DAO annotations will be
checked for their validity and compiled with the over-
all application code. This will allow the transforma-
tion of the application’s controller that has been en-
hanced with XACML-based DAO annotations, lead-
ing to the implementation of a PaaSword secure ap-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

210

plication. In the fourth step, the persistence layer
of the application will be physically distributed and
encrypted at the schema and instance level accord-
ing to the incorporated DAO annotations, impos-
ing the schema and driving query handling capabil-
ities of the VB that augments the actual data persis-
tence layer of the application. At application run-
time (step 5), each query and processing request of
the end-user is forwarded by the enhanced controller
to the query handling mechanism that is responsible
for the database proxy queries synthesis and aposyn-
thesis. In step 6 and before the submission of the en-
hanced query to the VB, the query handling mecha-
nism consults the policy enforcement mechanism to
determine whether the incoming request should be
granted or not. Upon policies enforcement and access
permission, the query handling mechanism submits
(step 7) the enhanced query to the augmented per-
sistence layer (virtual database). The database proxy
that is aware of the physical distribution scheme of
the actual application database realizes the distributed
query to the physically distributed and encrypted parts
of the actual application database (step 8). Next, the
federation of the respective encrypted data from the
distributed parts of the database takes place (step 9).
The federated data synthesis and ad-hoc decryption
utilizing the key of the end-user that is transparently
to the application, propagated to the query handling
mechanism (step 10). Last, the query handling mech-
anism delivers the decrypted data to the application
controller that forwards them to the end-user through
the “view” component of the application.

According to the conceptual view (Figure 2), each
end-user is equipped with a Hardware Security Mod-
ule, such as USB stick or a smart-phone with digital
rights management module, which contains a digital
certificate (e.g. X.509). Part of the certificate includes
keys that can be exported by the PaaS/IaaS provider.
These keys upon export and verification will be trans-
parently handed over to the query middleware which
will be responsible for interacting with the VB, en-
crypting and decrypting the targeted data.

4 RELATED WORK

In an attempt to reinforce the security of remote ser-
vice accesses, researchers introduced the concept of
location-aware access control (LAAC), which allows
a system to grant, or deny, access to users based on
their physical location. LAAC models typically ex-
tend the three basic access control models DAC, MAC
and RBAC (Decker, 2011). Even though LAAC pro-
tocols have been studied extensively (Cleeff et al.,

2010), there is a clear lack of schemes that determine
user access not only on the basis of the users physi-
cal location and credentials, but also on the additional
pertinent contextual information.

The work reported in (Covington et al., 2001) was
the first to introduce the notion of context-aware ac-
cess control (CAAC), motivated by applications for
intelligent homes. More precisely, the authors intro-
duced a set of services which are enabled based on
the location of objects or subjects. The main draw-
back of the proposed model is the fact that it does
not support dynamically generated context, whilst it
fails to address important requirements such as multi-
granularity of position. Other existing CAAC mod-
els are predominantly based on RBAC (Kayes et al.,
2013) and typically target a specific domain (Costa-
bello et al., 2012).These models, however, have not
been designed to provide fine-grained data access
control, e.g. by providing the ability to specify dif-
ferent access rules for different rows of a database.

Regarding the policy management, as shown by
a recent survey of methods in contemporary open
source registry and repository systems (Kourtesis and
Paraskakis, 2012), a major weakness is the lack of
proper separation of concerns. The policy definition
and policy enforcement are entangled in the imple-
mentation of a single software component – the pol-
icy checker. The rules that a policy comprises are typ-
ically encoded in an imperative manner, as part of the
same code that checks for potential policy violations.
This has a number of negative repercussions among
which is the lack of portability and the lack of explicit
representation of policy relationships.

The data distribution and encryption algorithms
are also important aspects towards trusted cloud ser-
vices and applications. In (Gentry, 2009), C. Gen-
try presented the first fully homomorphic encryption
scheme that enables semantically secure outsourcing
to the cloud. The cloud provider operates blindly on
the encrypted data and yields the correct, encrypted
result. Nevertheless, its practicality is in question as
the latest implementations are still orders of magni-
tude slower than just downloading all encrypted data,
decrypting, processing and encrypting it locally and
finally uploading it again. In another interesting ap-
proach (Popa et al., 2011), the concept of onions is
used. Onions are managed monolithically by a proxy,
acting as an adapter between the user and the storage
back-end. Each attribute in a relational table is ini-
tially asymmetrically encrypted. If certain queries for
an attribute are issued, layers of the onion are peeled
off, resulting in another, less secure onion. CryptDB
uses a novel scheme for order preserving encryption
that leaks no information about the data besides or-

PaaSword:�A�Holistic�Data�Privacy�and�Security�by�Design�Framework�for�Cloud�Services

211

Figure 2: PaaSword Framework Conceptual Architecture.

der and thus allows sorting encrypted data securely.
The main drawback of CryptDB is the lack of secu-
rity guarantees to the client. More precisely, the only
guarantee is that an untrusted server will learn only
the information that is necessary to process the query.
This may cause every attribute to be reduced to the
plain text in the worst case. Also, peeling off layers
cannot be reversed, so a single query is sufficient to
lower the security forever.

5 CONCLUSIONS

In this position paper, we proposed the PaaSword
framework that can be exposed as a service at the
level of PaaS. This framework can tackle the identi-
fied cloud security requirements and challenges that
should be considered in order to enhance data protec-
tion, integrity and confidentiality in the presence of
malicious adversaries. The envisaged PaaSword goes
beyond the state-of-the-art and allows cloud services
to maintain a fully distributed and encrypted data per-
sistence layer. Our framework involves a context-
aware security model, the necessary policies enforce-
ment mechanism along with a physical distribution,
encryption and query middleware.

Future work involves the design and implementa-
tion of the proposed framework into a fully functional
solution which will be validated through the follow-
ing five pilots in various industrial contexts: i) En-
crypted persistency as a service in a PaaS provider, ii)
Intergovernmental secure document and personal data
exchange, iii) Secure sensors data fusion and analyt-

ics, iv) Protection of personal data in a multi-tenant
CRM, v) Protection of sensible enterprise information
in multi-tenant ERP. These pilots will allow us to test
PaaSword and validate its added value in a variety of
heterogeneous cases.

Finally, an area that will benefit from PaaS-
word framework is the so called participatory sens-
ing (Michalas and Komninos, 2014). The evolution of
this field is driven by the introduction of sensors into
mobile devices. The openness of such systems and
the richness of user data they entail raise significant
concerns for their storage and processing. Protocol
designers by having PaaSword framework in hands
will be able to incorporate secure cloud computing
techniques in order to facilitate the storage and pro-
cessing of the vast amount of collected data.

ACKNOWLEDGEMENTS

The research leading to these results has re-
ceived funding from the European Union’s Hori-
zon 2020 research and innovation programme under
grant agreement No 644814, the PaaSword project
(www.paasword.eu) within the ICT Programme ICT-
07-2014: Advanced Cloud Infrastructures and Ser-
vices.

REFERENCES

Alliance, C. S. (2013). The notorious nine – cloud comput-
ing top threats in 2013.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

212

Bösch, C., Hartel, P., Jonker, W., and Peter, A. (2014).
A survey of provably secure searchable encryption.
ACM Comput. Surv., 47(2):18:1–18:51.

Cleeff, A. v., Pieters, W., and Wieringa, R. (2010). Benefits
of location-based access control: A literature study. In
Proceedings of the 2010 IEEE/ACM Int’L Conference
on Green Computing and Communications & Int’L
Conference on Cyber, Physical and Social Computing,
GREENCOM-CPSCOM ’10, pages 739–746, Wash-
ington, DC, USA. IEEE Computer Society.

Costabello, L., Villata, S., and Gandon, F. (2012). Context-
aware access control for rdf graph stores. In Raedt,
L. D., Bessire, C., Dubois, D., Doherty, P., Frasconi,
P., Heintz, F., and Lucas, P. J. F., editors, ECAI, vol-
ume 242 of Frontiers in Artificial Intelligence and Ap-
plications, pages 282–287. IOS Press.

Covington, M. J., Long, W., Srinivasan, S., Dev, A. K.,
Ahamad, M., and Abowd, G. D. (2001). Securing
context-aware applications using environment roles.
In Proceedings of the Sixth ACM Symposium on Ac-
cess Control Models and Technologies, SACMAT ’01,
pages 10–20, New York, NY, USA. ACM.

Decker, M. (2011). Modelling of location-aware access
control rules. In Handbook of Research on Mobility
and Computing: Evolving Technologies and Ubiqui-
tous Impacts, pages 912–929. IGI Global.

Dey, A. K. (2001). Understanding and using context. Per-
sonal Ubiquitous Comput., 5(1):4–7.

Dolev, D. and Yao, A. C. (1983). On the security of pub-
lic key protocols. Information Theory, IEEE Transac-
tions, 29(2):198–208.

Ferrari, E. (2010). Access Control in Data Management
Systems. Morgan and Claypool Publishers.

Gabel, M. and Hübsch, G. (2014). Secure database out-
sourcing to the cloud using the mimosecco middle-
ware. In Krcmar, H., Reussner, R., and Rumpe, B.,
editors, Trusted Cloud Computing, pages 187–202.
Springer International Publishing.

Garfinkel, T., Pfaff, B., Chow, J., Rosenblum, M., and
Boneh, D. (2003). Terra: A virtual machine-based
platform for trusted computing. In ACM SIGOPS Op-
erating Systems Review, volume 37, pages 193–206.

Gentry, C. (2009). A Fully Homomorphic Encryp-
tion Scheme. PhD thesis, Stanford, CA, USA.
AAI3382729.

Huber, M., Gabel, M., Schulze, M., and Bieber, A. (2013).
Cumulus4j: A provably secure database abstraction
layer. In Cuzzocrea, A., Kittl, C., Simos, D. E.,
Weippl, E., Xu, L., Cuzzocrea, A., Kittl, C., Simos,
D. E., Weippl, E., and Xu, L., editors, CD-ARES
Workshops, volume 8128 of Lecture Notes in Com-
puter Science, pages 180–193. Springer.

IBM (2011). Security and high availability in cloud comput-
ing environments. Technical report, IBM SmartCloud
Enterprise, East Lansing, Michigan.

Kamara, S. and Lauter, K. (2010). Cryptographic cloud
storage. In Sion, R., Curtmola, R., Dietrich, S., Ki-
ayias, A., Miret, J., Sako, K., and Seb, F., editors,
Financial Cryptography and Data Security, volume

6054 of Lecture Notes in Computer Science, pages
136–149. Springer Berlin Heidelberg.

Kayes, A. S. M., Han, J., and Colman, A. (2013).
An ontology-based approach to context-aware access
control for software services. In Lin, X., Manolopou-
los, Y., Srivastava, D., and Huang, G., editors, WISE
(1), volume 8180 of Lecture Notes in Computer Sci-
ence, pages 410–420. Springer.

Kourtesis, D. and Paraskakis, I. (2012). A registry and
repository system supporting cloud application plat-
form governance. In Proceedings of the 2011 In-
ternational Conference on Service-Oriented Comput-
ing, ICSOC’11, pages 255–256, Berlin, Heidelberg.
Springer-Verlag.

Krasner, G. E. and Pope, S. T. (1988). A cookbook for using
the model-view controller user interface paradigm in
smalltalk-80. J. Object Oriented Program., 1(3):26–
49.

Michalas, A. and Komninos, N. (2014). The lord of
the sense: A privacy preserving reputation system
for participatory sensing applications. In Computers
and Communication (ISCC), 2014 IEEE Symposium,
pages 1–6. IEEE.

Michalas, A., Komninos, N., Prasad, N. R., and Oleshchuk,
V. A. (2010). New client puzzle approach for dos re-
sistance in ad hoc networks. In Information Theory
and Information Security (ICITIS), 2010 IEEE Inter-
national Conference, pages 568–573. IEEE.

Michalas, A., Paladi, N., and Gehrmann, C. (2014). Secu-
rity aspects of e-health systems migration to the cloud.
In e-Health Networking, Applications and Services
(Healthcom), 2014 IEEE 16th International Confer-
ence on, pages 212–218. IEEE.

Micro, T. (2010). The need for cloud computing security.
In A Trend Micro White Paper.

Paladi, N. and Michalas, A. (2014). “One of our hosts in
another country”: Challenges of data geolocation in
cloud storage. In Wireless Communications, Vehicular
Technology, Information Theory and Aerospace Elec-
tronic Systems (VITAE), 2014 4th International Con-
ference on, pages 1–6.

Paladi, N., Michalas, A., and Gehrmann, C. (2014). Do-
main based storage protection with secure access con-
trol for the cloud. In Proceedings of the 2014 Inter-
national Workshop on Security in Cloud Computing,
ASIACCS ’14, New York, NY, USA. ACM.

Popa, R. A., Redfield, C. M. S., Zeldovich, N., and Balakr-
ishnan, H. (2011). Cryptdb: Protecting confidentiality
with encrypted query processing. In Proceedings of
the Twenty-Third ACM Symposium on Operating Sys-
tems Principles, SOSP ’11, pages 85–100, New York,
NY, USA. ACM.

Santos, N., Gummadi, K. P., and Rodrigues, R. (2009). To-
wards trusted cloud computing. In Proceedings of the
2009 Conference on Hot Topics in Cloud Computing,
HotCloud’09, Berkeley, CA, USA. USENIX.

Zhang, F., Chen, J., Chen, H., and Zang, B. (2011). Cloud-
visor: retrofitting protection of virtual machines in
multi-tenant cloud with nested virtualization. In Pro-
ceedings of the Twenty-Third ACM Symposium on Op-
erating Systems Principles, pages 203–216. ACM.

PaaSword:�A�Holistic�Data�Privacy�and�Security�by�Design�Framework�for�Cloud�Services

213

Classifying Security Threats in Cloud Networking

Bruno M. Barros1, Leonardo H. Iwaya1;2, Marcos A. Simplicio Jr.1, Tereza C. M. B. Carvalho1,
András Méhes3 and Mats Näslund3

1Escola Politécnica, Universidade de São Paulo, São Paulo, Brazil
2Karlstad University, Karlstad, Sweden
3Ericsson Research, Stockholm, Sweden

bbarros@larc.usp.br, leonardo.iwaya@kau.se, fmjunior, carvalhog@larc.usp.br,
fandras.mehes, mats.naslundg@ericsson.com

Keywords: Cloud Networking, Cloud Security, Security Threats, Security Taxonomy.

Abstract: A central component of managing risks in cloud computing is to understand the nature of security threats. The
relevance of security concerns are evidenced by the efforts from both the academic community and technolog-
ical organizations such as NIST, ENISA and CSA, to investigate security threats and vulnerabilities related to
cloud systems. Provisioning secure virtual networks (SVNs) in a multi-tenant environment is a fundamental
aspect to ensure trust in public cloud systems and to encourage their adoption. However, comparing existing
SVN-oriented solutions is a difficult task due to the lack of studies summarizing the main concerns of network
virtualization and providing a comprehensive list of threats those solutions should cover. To address this issue,
this paper presents a threat classification for cloud networking, describing threat categories and attack scenar-
ios that should be taken into account when designing, comparing, or categorizing solutions. The classification
is based on the CSA threat report, building upon studies and surveys from the specialized literature to extend
the CSA list of threats and to allow a more detailed analysis of cloud network virtualization issues.

1 INTRODUCTION

The current concept of cloud computing evolved
from technologies such as distributed computing and
resource virtualization, enabling the utilization of
shared computing infrastructures for delivering soft-
ware, platforms and infrastructures to different cus-
tomers over the Internet. Nevertheless, cloud com-
puting has other particular requirements such as (Mell
and Grance, 2011): on-demand provision of the com-
puting resources; broad network access to config-
ure and request computing capabilities; resources are
pooled to be used by multiple customers in a multi-
tenant model; the resources should be elastically pro-
visioned and released; and delivered services should
be transparently measured for managing and billing
purposes. This new model of delivering computing
power takes advantage of economies of scale, allow-
ing cloud providers to deliver services for a reason-
able cost to several institutions and companies. It also
brings advantages to customers, who can pay only for
what they consume instead of obliging them to pur-
chase, install and maintain their own equipment.

Unfortunately, however, the advantages brought

by the cloud are also accompanied by threats and se-
curity vulnerabilities that discourage its full adoption
by many companies.An example is the need of iso-
lating resources, data and communication within the
cloud. Public cloud systems utilize a multi-tenant ar-
chitecture, in which customers should only ”see” the
cloud resources assigned to them, as if they were the
sole user of the infrastructure.

Virtualization technologies play a crucial role in
enforcing this isolation, given that they are the main
building block in provisioning the customers’ infras-
tructure, including virtual machines (VMs) and vir-
tual networks (VNs). Additionally, a virtualization
solution(s) should ensure not only that the VMs op-
erate with isolated resources, but also allow network
traffic monitoring and the creation of secure network
domains. For this reason, enabling SVN in the cloud
computing is currently a subject of intense research
(Sun and Hu, 2012). Many of the existing propos-
als rely on open network virtualization solutions such
as Open vSwitch for defining virtualized network ar-
chitectures with security features (Hao et al., 2010;
Cohen et al., 2013), inserting security modules in-
side VMs and virtual switches (Basak et al., 2010;

214

Barjatiya and Saripalli, 2012), or creating hypervisor-
based network controllers (Mattos and Duarte, 2013).

Nonetheless, it is often hard to clearly identify all
the threats and vulnerabilities that are addressed by
the different network virtualization solutions. Indeed,
there is a myriad of issues that can be targeted, such
as ensuring traffic isolation, preventing sniffing and
address spoofing, as well as detecting and mitigating
Distributed-/Denial-of-Service DoS/DDoS and man-
in-the-middle attacks (Hao et al., 2010; Basak et al.,
2010; Barjatiya and Saripalli, 2012; Cohen et al.,
2013; Mattos and Duarte, 2013). However, it is not
always the case that solutions proposed in the liter-
ature explicitly analyze their (in)ability to cope with
each of the existing threats, even if they are truly able
to prevent them. This makes comparing and evaluat-
ing these solutions a difficult task.

Aiming to address this lack of uniformity in the
treatment of network virtualization security propos-
als, this paper presents a threat classification for
SVNs, describing threat classes and attack scenar-
ios that should be taken into account when design-
ing, comparing, categorizing or evaluating solutions.
This classification is based on technical reports from
cloud standardization organizations such as European
Network and Information Security Agency (ENISA,
2013), the Cloud Security Alliance (CSA, 2013),
and National Institute of Standards and Technol-
ogy (NIST, 2011), as well as on scientific papers
that reviewed problems in this area (Chowdhury and
Boutaba, 2010; Pearce et al., 2013). Given the broad
scope of the security challenges described in these re-
ports, they do not (intend to) provide a framework
to evaluate security issues directly related to network
virtualization in cloud computing. Therefore, the
classification proposed herein aims to fill part of this
gap by focusing specifically on the technical issues re-
lated to virtual networking in the cloud environment.

The rest of this paper is organized as follows.
Section 2 reviews the security threat classification
for cloud computing proposed by CSA (CSA, 2013).
Section 3 presents our proposed threat classification,
which builds upon the CSA work. Section 4 then dis-
cusses, by means of examples, different cloud virtual
networking attacks from each threat category, show-
ing the coverage of the proposed classification. Sec-
tion 5 presents the conclusion and future work.

2 CLOUD SECURITY THREATS

With the widespread adoption and popularization of
cloud-based systems, considerable effort has been
made to identify and classify security threats in this

environment. Some relevant examples include the
security guidelines for cloud computing provided by
the ENISA (Catteddu, 2010; ENISA, 2013), the CSA
(CSA, 2013), and NIST (NIST, 2011).

Among these documents, the CSA “Notorious
Nine” report (CSA, 2013), which identifies important
threats that may occur accidentally or intentionally in
cloud systems, is of especial interest: it provides a
clear view of the most relevant security threats when
deploying and consuming cloud services, ranked ac-
cording to the industry perspective. Therefore, the re-
port highlights the main security aspects that need to
be taken into account by cloud providers for ensur-
ing trust in their services. It is important to notice,
however, that (CSA, 2013) is intended as a general
guideline of relevant security aspects, not focused on
networking issues. Nonetheless, given its importance,
it can be seen as an interesting starting point for iden-
tifying relevant cloud networking threats, which is ex-
actly the approach adopted in this document. Next,
we present a classification method for indentify secu-
rity threats in cloud networking, built upon the CSA
classification for cloud security threats.

3 THREAT CLASSIFICATION

CSA “Notorious Nine” (CSA, 2013) and similar-
purpose reports (CSA, 2011; ENISA, 2013; NIST,
2011; Gonzalez et al., 2012) are important sources
of information about cloud security threats. However,
their main goal is to give a high level description of
potential problems, not on providing a fine-grained
analysis of how each of the many threats identified
apply to specific scenarios (e.g., virtual networking).
On the other hand, there are works in the literature
that investigate SVNs in more depth, such as (Chowd-
hury and Boutaba, 2010; Schoo et al., 2011; Natara-
jan and Wolf, 2012). Unfortunately, since their goal
is to survey solutions and to identify challenges in the
area, they fail to provide a reusable classification of
the virtual networking threats described. Given the
relevance of threat modeling to identify security re-
quirements (Myagmar et al., 2005), those works are
not ideal for the task of comparing and evaluating
different security proposals in virtual networking or
guiding the design of comprehensive solutions for the
most relevant threats. Aiming to bridge this gap, next,
we build upon the CSA “Notorious Nine” threat re-
port for deriving finer-grained threat classification fo-
cused specifically on SVNs.

Classifying�Security�Threats�in�Cloud�Networking

215

3.1 Extending Current Classifications

For the purpose of building the proposed classifi-
cation, the CSA “Notorious Nine” threats were de-
composed into more specific menaces. The result-
ing finer-grained list, containing specific attacks and
countermeasures, was then analyzed aiming to iden-
tify threats that could be associated to virtual network-
ing security issues. The aggregation of the identified
threats according to their characteristics then lead to
the general categories presented as follows.

Before we present the proposed classification,
however, it is important to emphasize that attaining
the right level of abstraction is a considerable chal-
lenge when trying to create a comprehensive view of
virtual networking vulnerabilities in the cloud. Aim-
ing to be both concise and comprehensive, our ap-
proach in the proposed classification involves two
main requirements: (1) threats should have a detailed
enough description to effectively help guide the de-
velopment of innovative solutions; and (2) the number
of threat groups should be small enough to allow the
classification to be applied to the analysis and com-
parison of common solutions. These requirements
have an obvious trade-off: a large number of threat
classes may lead to an overly detailed classification,
but a reduced number of threat groups may lead to a
high level description that may be vague and less use-
ful to comparative studies. As a result, our classifica-
tion proposes a reduced number of categories without
ignoring important aspects of virtual networking.

In addition to those basic requirements, we con-
sidered the different attack scenarios within the cloud
environment, i.e., who the attacker is and who is being
attacked. In each scenario, we then try to identify the
different threat classes to reflect the concerns already
evidenced in the literature.

3.2 Threat Scenarios

The first is the Cloud Provider Network, which in-
cludes all the cloud provider private network re-
sources connecting all the data center infrastructure
that allows the cloud service provision. The second is
the Public Network, which comprises the public In-
ternet that allows users to access the cloud services.
Both networks are illustrated in Figure 1. We have
limit our scope to threats in the Cloud Provider Net-
work, to identify security issues related only to the
cloud computing paradigm and to its technological
mechanisms. We can identify three attack scenarios
involving different entities of the cloud:
1. Tenant-to-Tenant. Threats related to attacks pro-

moted by a legitimate tenant targeting another le-

gitimate tenant. Such attacks are usually per-
formed by exploring vulnerabilities of the cloud
provider network infrastructure

2. Tenant-to-Provider. Threats related to cloud vul-
nerabilities that allow a legitimate tenant to dis-
rupt the operation of the cloud infrastructure, pre-
venting the cloud provider from delivering the ser-
vice in accordance with the service level agree-
ments established with other legitimate tenants.

3. Provider-to-Tenant. Threats related to vulnera-
bilities in the cloud provider infrastructure, which
allows malicious insider attacks from employees
and other agents with direct access to the cloud
infrastructure.
Figure 2 illustrates these three attack scenarios in

the network context previously mentioned. Despite
the interest of provider-to-tenant threats, for the pur-
pose of this research we consider a reliable cloud
provider, focusing our efforts on the tenant-to-tenant
and tenant-to-provider threats.

3.3 Cloud VN Threat Categories

Following the method and the requirements discussed
in Section 3.1, we identified five general classes of
virtual networking security threats, described as fol-
lows. For each class, we also present the CSA-related
threats and the virtual networking attacks obtained
from the decomposing process described in Section
3.1. We note, however, that the inclusion of new
threat classes to this classification should be consid-
ered a matter of continuous work, following new dis-
coveries in the field of cloud security.
1. Physical Isolation. Covers all the vulnerabilities

related to the physical resources of the underlying
network infrastructure being shared by multiple
tenants. Attacks in this class are normally related
to capturing and to analyzing data collected from
shared resources, but can also involve the exhaus-
tion of resources from shared hardware.

2. Logical Isolation. Covers all the vulnerabilities
directly related to situations in which logical re-
sources (e.g., vCPUs, vLANs and vSwitches) are
not adequately isolated, allowing tenants to access
each other’s networking capabilities. Attacks of
this class can exploit vulnerabilities in the cloud

Figure 1: Complementary networks in cloud environments.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

216

Figure 2: Security attack scenarios in cloud VNs.

virtualized network functions and network man-
agement modules.

3. Authentication. Covers all the vulnerabilities re-
lated to inadequate authentication, which allow at-
tackers to mask their real identities. This can be
accomplished by exploiting authentication proto-
cols, acquiring credentials and/or key materials by
capturing data traffic, or via password recovery at-
tacks (e.g., brute force or dictionary attacks).

4. Authorization. Covers all the vulnerabilities re-
lated to authorization problems, allowing granting
or scaling rights, permissions or credentials to or
from an unauthorized user. The attacker can ex-
ploit a vulnerability in the cloud platform autho-
rization modules, or even in the victim computer,
to create or change its credentials in order to ob-
tain privileged rights. Similarly to attacks that ex-
ploit authentication threats, authorization threats
can lead to the leakage of confidential data and
access to management modules.

5. Insecure APIs. Covers all the threats related to
failures, malfunctions and vulnerabilities in APIs
that compose the cloud system. Attacks of this
class try to exploit insecure interfaces for access-
ing or tampering with services running in other
tenants or cloud administrative tools. This may
lead to data loss/leakage, as well as to cause un-
availability of services.

3.4 Correlation with CSA Threats

Table 1 summarizes the correlations between CSA
threats and the network threat categories herein pro-
posed. Analyzing this table, one can notice that
CSA threats related to shared technology vulnera-
bilities, data breaches, and DoS are the most fre-

quently related to network vulnerabilities. Therefore,
they should be the main focus of SVN-oriented solu-
tions, considering both tenant-to-tenant and tenant-to
provider attack scenarios, as discussed in more details
in the next section.

Table 1: Correlation of proposed categories and threats with
CSA notorious top nine threats.

Category Threat Examples CSA Top 9
Side-channel attack DB,

Physical Guest-hoping attack DoS,
Isolation Resource exhaustion STV

Physical man-in-the-middle
Man-in-the-middle DB,

Logical Sniffing DoS,
Isolation Port scanning STV

Replay attacks

Authentication
Spoofing DB,
Compromised-key attack ASH,
Password-based attacks STV

Authorization
Software exploitation DB, MI,
Phishing ACS, STV

Insecure APIs
API exploitation

IIA
Code and Package injection

Abbreviations: data breaches (DB), Denial-of-Service (DoS),
shared technology vulnerabilities (STV), account or service
traffic hijacking (ASH), malicious insiders (MI), abuse of
cloud services (ACS), insecure interfaces and APIs (IIA).

4 CLASSIFICATION ANALYSIS

This section correlates the threat scenarios discussed
in Section 3.2 with the classification proposed in Sec-
tion 3.3, presenting threat examples for each pro-
posed category in both Tenant-to-Tenant and Tenant-
to-Provider scenarios.

4.1 Physical Isolation

Such attacks can be perpetrated if the attacker’s VM
is sharing the same host machine or physical network
node as the victim’s VM. In this scenario, the attacker
can engage in: a side-channel attack, subjecting confi-
dential traffic to cryptanalysis; use DoS/DDoS attacks
to exhaust or to bring physical network resources
down; or to gather information about the services run-
ning in the target machine. Sniffing is one of the most
common attacks: attackers attempt to access informa-
tion from other tenants or cloud provider network by
reading packets going through the physical NICs.
Threat Examples on Tenant-to-Tenant Scenario.
1) Side channel: An encryption algorithm used by

Classifying�Security�Threats�in�Cloud�Networking

217

tenants is subject to cryptanalysis based on timing at-
tacks. 2) Guest hopping: The attacker inserts a VM in
the same host of the victim to exploit shared network
components in subsequent attacks. 3) DoS/DDoS: Ex-
haustion of network resources shared by tenants in-
side the same host.
Threat Examples on Tenant-to-Provider Scenario.
1) Sniffing: By monitoring physical network inter-
faces an attacker may intercept provider management
data. 2) Side channel: An encryption algorithm used
by a provider is subject to cryptanalysis based on tim-
ing attacks. 3) DoS: Amplification attacks performed
from inside the cloud, possibly combined with ad-
dress spoofing can flood provider network infrastruc-
ture.

4.2 Logical Isolation

The cloud provider should ensure isolation of re-
sources among its customers, which includes virtual-
ized network components that compose the cloud log-
ical network and the tenants virtual networks. Tenant-
to-tenant attacks involves breaking this logical isola-
tion, allowing a malicious tenant to get access vic-
tim’s resources. This sort of attack can lead to data
leakage, malicious use of other tenants’ resources,
and/or disruption of network services.

A malicious tenant may also exploit virtual net-
work resources, controllers and other services pro-
vided by the cloud provider. Some examples involve
the use of port scanning and network reconnaissance
mechanisms, so that the attacker can get access to
privileged information, such as the network topology,
list of virtual networks, or configuration messages.
Also, a malicious tenant may use the cloud infras-
tructure to deploy botnets for launching DoS attacks
against the cloud infrastructure, its tenants or any ex-
ternal targets.
Threat Examples on Tenant-to-Tenant Scenario.
1) Port scanning: The attackers scans open ports and
running services in other tenant VMs. 2) Network
reconnaissance: Protocols for network configuration
and identification can be exploited to discover other
virtual networks and/or network topologies pertaining
to other tenants (e.g., using ARP requests) 3) Sniffing:
Sniffing and/or man-in-the-middle attacks due to the
lack of isolation between virtual networks. 4) Mal-
ware (worm): Malicious software that can replicate
itself through and between tenant virtual networks.
5) Botnets: Use the cloud infrastructure to deploy bot-
nets, in which groups of VMs running malicious com-
puter programs target other tenants and shared net-
work resources.
Threat Examples on Tenant-to-Provider Scenario.

1) Network reconnaissance: Use network reconnais-
sance mechanisms to discover other network topolo-
gies, VNs, and services. 2) Malware (worm): Ma-
licious software that can replicate itself through the
provider network infrastructure from a compromised
tenant virtual network. 3) Botnets: Use the cloud in-
frastructure to deploy botnets, targeting shared net-
work resources and network controller nodes. 4) Re-
play attack: replication of control messages that can
impair network services and cloud operations (e.g.,
instantiating duplicated VMs)

4.3 Authentication

Attacks that exploit authentication vulnerabilities can
be performed either in Tenant-to-Tenant and Tenant-
to-Provider scenarios. In both cases the attacker
may exploit the authentication protocols by means of
compromised-key (e.g., leakage of key material infor-
mation) and/or password-based attacks (e.g., dictio-
nary and brute force attacks). Also, the authentication
and identity management modules can be exploited to
force authentication threats. In the case of Tenant-to-
Tenant scenario, the attacker wants to gain access to
the victim’s virtual networks. In Tenant-to-Provider
scenario, the attacker may gain access to the whole
network services and/or controlling modules, affect-
ing the whole cloud.
Threat Examples on Tenant-to-Tenant Scenario.
1) Credential replay: By capturing and replaying a
user’s credential. 2) Spoofing: The malicious tenant
masquerades as another tenant by falsifying data and
thereby gaining illegitimate access to resources.
Threat Examples on Tenant-to-Provider Scenario.
1) Credential replay: The replay of a user’s credential
might allow impersonation of a cloud administrator.
2) Spoofing: The malicious tenant performs a DNS
spoofing attack, inserting bogus data into a DNS name
server cache database and causing the name server to
return an incorrect IP address.

4.4 Authorization

In this case, the attackers try to escalate their privi-
leges in the system. Since network privileges in the
cloud usually make sense only with respect to the
cloud provider, authorization attacks are reasonable
only when we consider Tenant-to-Provider scenario.
For instance, a malicious user may fake its creden-
tials to acquire administrative roles, authorization to
other customers services, or to gain access to services
out of contract.
Threat Examples on Tenant-to-Provider Scenario.
1) Network Reconnaissance: A legitimate tenant can

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

218

escalate its privileges to run network reconnaissance
scripts in the cloud network infrastructure, discover-
ing the cloud provider network topology and using
this information for promoting more precise attacks
against the network resources. 2) Cloud Exploit Kits
(Malware-as-a-Service): Malicious software hosted
inside cloud provider infrastructure and available to
other tenants to attack the provider services through
its network resources. 3) Network Programmability:
The attackers try to escalate their privileges to get ac-
cess to program APIs of the network devices (e.g.,
OpenFlow API).

4.5 Insecure APIs

Attacks to APIs can affect a broad range of cloud
modules, e.g., those responsible for resource alloca-
tion, authentication and identity management, stor-
age, or accounting. The network modules deployed
in VMs, as well as controller, computing and network
nodes, are usually distributed along the cloud infras-
tructure. Therefore, the APIs used for network vir-
tualization and configuration may be target of attacks
and vulnerability exploitation. For instance, attacks
based on code injection techniques may exploit com-
puter errors caused by processing invalid data, under-
mining cloud services and databases. This category
of attack may target either Providers or Tenants.
Threat Examples on Tenant-to-Tenant Scenario:
1) Code injection: The attacker performs SQL injec-
tion using a network controller API (e.g., Neutron) to
erase a tenant data from the cloud network configura-
tion database.
Threat Examples on Tenant-to-Provider Scenario:
1) Code injection: The attacker performs SQL injec-
tion using a network controller API (e.g., Neutron) to
modify (parts of) the network configuration database.

5 CONCLUSIONS AND FUTURE
WORK

The wide variety of threats related to cloud comput-
ing network virtualization makes it difficult to com-
pare or to categorize existing solutions focused on se-
curing virtual networks. This paper proposes a threat
classification for cloud virtual networks built upon
the “notorious nine cloud computing top threats” of
CSA. Moreover, the presented classification allows a
more detailed view of the network threats discussed
in cloud computing literature. This finer-grained ap-
proach makes it easier to identify the technologies
that might be used to solve different security issues

in cloud networking, facilitating the analysis and de-
sign of security solutions.

As future work we plan to employ this threat clas-
sification in a literature review of cloud networking
security solutions. The result expected is a compre-
hensive literature survey that allows not only com-
paring existing solutions, but also the identifying the
gaps and challenges in cloud networking security.

ACKNOWLEDGEMENTS

Innovation Center, Ericsson Telecomunicações S.A.
(Brazil) and CNPq (grant 305350/2013-7).

REFERENCES

Barjatiya, S. and Saripalli, P. (2012). BlueShield: A Layer 2
Appliance for Enhanced Isolation and Security Hard-
ening among Multi-tenant Cloud Workloads. IEEE
Int. Conf. on Utility and Cloud Comp., pages 195–198.

Basak, D., Toshniwal, R., Maskalik, S., and Sequeira, A.
(2010). Virtualizing networking and security in the
cloud. SIGOPS Oper. Syst. Rev., 44(4):86–94.

Catteddu, D. (2010). Cloud computing: Benefits, risks and
recommendations for information security. In Serrão,
C., Aguilera Dı́az, V., and Cerullo, F., editors, Web
Application Security, volume 72 of CCIS, page 17.

Chowdhury, N. and Boutaba, R. (2010). A survey of net-
work virtualization. Comput. Netw., 54(5):862–876.

Cohen, R., Barabash, K., Rochwerger, B., Schour, L.,
Crisan, D., Birke, R., Minkenberg, C., Gusat, M., Re-
cio, R., and Jain, V. (2013). An intent-based approach
for network virtualization. In IFIP/IEEE INM’13.

CSA (2011). Security Guidance for Critical Areas of Focus
in Cloud Computing V3.0. Technical report, CSA.

CSA (2013). The Notorious Nine Cloud Computing Top
Threats in 2013. Technical report, CSA.

ENISA (2013). Threat landscape 2013-overview of current
and emerging cyber-threats. Technical report, ENISA.

Gonzalez, N., Miers, C., Redı́golo, F., Jr. Simplicio, M.,
Carvalho, T., Näslund, M., and Pourzandi, M. (2012).
A quantitative analysis of current security concerns
and solutions for cloud computing. JCC, 1(1):1–18.

Hao, F., Lakshman, T. V., Mukherjee, S., and Song, H.
(2010). Secure Cloud Computing with a Virtualized
Network Infrastructure. In Proc. of the USENIX.

Mattos, L. F. D. and Duarte, O. C. M. B. (2013). A Mech-
anism for Secure Virtual Network Isolation Using to
Hybrid Approach Xen and OpenFlow. In SBSeg’2013.

Mell, P. and Grance, T. (2011). The NIST definition of
cloud computing (draft). Technical report, NIST.

Myagmar, S., Lee, A., and Yurcik, W. (2005). Threat mod-
eling as a basis for security requirements. In SREIS.

Natarajan, S. and Wolf, T. (2012). Security issues in net-
work virtualization for the future internet. In ICNC.

Classifying�Security�Threats�in�Cloud�Networking

219

NIST (2011). Guide to Security for Full Virtualization
Technologies. Technical report, NIST.

Pearce, M., Zeadally, S., and Hunt, R. (2013). Virtual-
ization: Issues, security threats, and solutions. ACM
Computing Surveys (CSUR), 45(2):17.

Schoo, P., Fusenig, V., Souza, V., Melo, M., Murray, P.,
Debar, H., Medhioub, H., and Zeghlache, D. (2011).
Challenges for cloud networking security. In MNM.

Sun, Q. and Hu, Z. (2012). Security for networks virtual
access of cloud computing. In MINES’2012.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

220

Setting Priorities
A Heuristic Approach for Cloud Data Center Selection

Ronny Hans, David Steffen, Ulrich Lampe, Björn Richerzhagen and Ralf Steinmetz
Multimedia Communications Lab (KOM), TU Darmstadt, Rundeturmstr. 10, 64283 Darmstadt, Germany

ronny.hans@kom.tu-darmstadt.de

Keywords: Cloud Computing, Data Center, Quality of Service, Multimedia, Service, Heuristic.

Abstract: A rising number of multimedia applications with Quality of Service requirements is delivered via cloud com-
puting platforms. To reduce latencies between data centers and customers, providers need to enhance and
utilize their cloud infrastructure by providing resources closer to the consumer. For planning such infras-
tructures and efficiently assigning existing resources, capable algorithms to solve the underlying optimization
problem are required. With our priority-based heuristic approach, we are able to reduce the computation time
by up to 99.99% compared to an exact approach, while retaining a favorable solution quality.

1 INTRODUCTION

Over the past years, cloud computing has developed
into a new paradigm for Information Technology (IT)
service delivery. It enables customers to use resources
according to their demand, independently of location
and time. The amount of services which are provided
via cloud data centers grows rapidly. While in 2012,
the ratio of overall Internet traffic caused by commu-
nication with cloud data centers amounted to 46 %, it
has been predicted to reach a share of 69 % in 2017
(Cisco, 2013).

Beside the increasing quantity in demand, the
Quality of Service (QoS) requirements also grow.
Multimedia applications – such as Desktop as a Ser-
vice or cloud gaming – require low latencies, for ex-
ample. Such requirements pose new challenges re-
garding the service delivery for cloud infrastructure
providers. Even in industrial countries such as the
United States, with a well-developed cloud infrastruc-
ture, only a portion of users could be serviced with
sufficiently low latencies to enable services such as
cloud gaming (Choy et al., 2012).

Until a few years ago, cloud providers focused on
huge centralized data centers in only a few physical
locations. With the advent of QoS-aware multime-
dia services, data centers and compute resources that
are located closer to the user gain in importance. For
both, the appropriate planning of such extensive com-
pute infrastructures as well as the efficient resource
allocation in existing infrastructures, appropriate al-
gorithms are required.

The remainder of this paper is structured as fol-
lows: In Section 2, we explain the specific problem.
In Section 3, we briefly present our previously pub-
lished solution approaches including the mathemati-
cal model. In Section 4, we introduce our priority-
based heuristic approach, which is subsequently eval-
uated in Section 5. An overview of related work is
given in Section 6. Section 7 concludes the paper with
a brief summary and outlook on future work.

2 PROBLEM STATEMENT

In this work, we consider a cloud provider who aims
to provide the infrastructure for multimedia service
delivery. Therefore, a set of (potential or exist-
ing) data centers in different geographical locations
is assumed. Each data center may provide resource
units between a lower and a upper capacity bound.
The provider can choose between these data centers.
Thereby, for each data center certain fixed costs, e. g.,
for construction or leasing, accrue. In addition, each
provisioned resource unit results in variable costs. For
the provided resource, the provider defines a set of rel-
evant QoS attributes and states a QoS guarantee with
respect to each user cluster and the defined QoS at-
tribute.

The data centers should serve a set of geographi-
cally distributed user clusters. Thereby, a user cluster
represents a set of user with certain demand, which is
expressed in a standardized resource unit, i. e., num-
ber of servers. Regarding the delivered services, a

221

user cluster has certain QoS requirements with respect
to each QoS attribute.

Under the assumption that prices are determined
by external market conditions, the problem of a
provider is the cost-minimal selection of appropriate
resources, as well as setting the respective resource
capacity. For the resource allocation to different user
clusters, the overall service demands of all user clus-
ters and the QoS requirements must be matched by
corresponding guarantees. In our former work, we re-
ferred to this problem as Cloud Data Center Selection
Problem (CDCSP) (Hans et al., 2013).

3 IP-/LP-BASED OPTIMIZATION
APPROACHES

In this section, we briefly describe the mathematical
model for the CDCSP and previously published solu-
tion approaches.

3.1 Mathematical Model

The presented mathematical model is part of our for-
mer work (Hans et al., 2013). For the model several
formal notations are required. To begin with, we de-
fine the basic entities:

� D = f1;2; :::;D#g: Set of (potential or existing)
data centers

� U = f1;2; :::;U#g: Set of user clusters

� Q = f1;2; :::;Q#g: Set of considered QoS at-
tributes

Based on these basic entities, the associated parame-
ters can be defined as follows:

� Su: Service demand of user cluster u

� Kmin
d 2 R: Minimal capacity of data center d

� Kmax
d 2 R: Maximal capacity of data center d

� CFd 2 R: Fixed costs of selecting data center d

� CVd 2R: Variable costs for per server unit in data
center d

� QGd;u;q 2R: QoS guarantee of data center d w.r.t.
user cluster u for QoS attribute q

� QRu;q 2 R: QoS requirement of user cluster u
w.r.t. QoS attribute q

Finally, in order to model the CDCSP as optimization
problem, we use the following decision variables:

� xd : Selection of a data center d

� yd;u: Number of resource units provided by data
center d to user cluster u

Model 1: Cloud Data Center Selection Problem.

Min. C(x;y) = å
d2D

xd�CFd + å
d2D;u2U

yd;u�CVd

(1)

å
d2D

yd;u � Su 8u 2U (2)

å
u2U

yd;u � xd�Kmax
d 8d 2 D (3)

å
u2U

yd;u � xd�Kmin
d 8d 2 D (4)

yd;u � pd;u�Kmax
d 8d 2 D;8u 2U (5)

pd;u =

(
1 if QGd;u;q � QRu;q 8q 2 Q
0 else

(6)

xd 2 f0;1g 8d 2 D
yd;u 2 N 8d 2 D;8u 2U (7)

. .
xd 2 R;0� xd � 1 8d 2 D

yd;u 2 R;yd;u � 0 8d 2 D;8u 2U (8)

The described objective of the CDCSP constitutes a
linear, mixed-integer program, which is formalized in
Model 1. In the model, Eq. 1 defines the objective of
the problem. Thereby, the total cost C depends on the
decision variables xd and yd;u (Eq. 7) The binary vari-
ables xd indicate if data center d will be constructed
or leased. yd;u are integer variables that denote the
number of resource units a data center d provides to a
user cluster u. Eq. 2 represents the constraint that the
service demand of each user cluster needs to be satis-
fied by the provided service units. Eqs. 3 and 4 assure
that the provided capacity of each data center lies be-
tween the given lower bound Kmin

d and the given upper
bound Kmax

d . Further, they functionally link the deci-
sion variables x and y. In Eq. 5 and Eq. 6 the variables
pd;u restrict the resource allocation between data cen-
ters and user clusters, depending on the fulfillment of
the QoS requirements. In Eq. 8 the binary and inte-
ger decision variables from Eq. 7 are substituted by
corresponding natural variables, which is required for
the LP-relaxed approach (cf. Section 3.2).

3.2 Solution Approaches

As stated earlier, the described model constitutes an
Integer Program (IP) and was published as Cloud
Data Center Selection Problem (Hans et al., 2013).
Such IPs can be solved using off-the-shelf algorithms,
such as branch-and-bound (Domschke and Drexl,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

222

2004). This results in an exact (i. e., optimal) so-
lution. However, since branch-and-bound is based
on the principle of enumeration (Hillier and Lieber-
man, 2005), the computation time grows exponen-
tially with the number of decision variables in the
worst case. To overcome this drawback, we intro-
duced an initial heuristic approach based on the com-
mon concept of LP relaxation (Hans, 2013). Al-
though this approach significantly reduces the com-
putation time, is still needs minutes for large problem
instances, which makes it inapplicable for on-demand
resource assignments.

4 PRIORITY-BASED HEURISTIC
APPROACH

The described CDCSP forms an extension of a ca-
pacitive facility location problem. Such problems can
be solved by using priority based approaches (An-
gelopoulos and Borodin, 2002). To efficiently find
solutions for the CDCSP, we developed a priority-
based heuristic approach, where the user demand is
assigned to potential data centers in a stepwise man-
ner, following specific rules regarding user cluster
and data center selection. Since the approach cal-
culates an initial solution of the optimization prob-
lem, we named it Priority-based Start Heuristic, in
short CDCSP-PBSH. Our approach consists of sev-
eral phases, which are described in the subsequent
sections. Later on, we present a set of prioritization
and cost allocation rules in detail. Since we use a
generic approach, new rules can be easily added. Fi-
nally, we describe the conduction of concrete heuris-
tic approaches.

4.1 Generic Optimization Approach

Our approach is divided into five phases, as illustrated
in Figure 1. In the Selection Phase, the used data cen-
ters are determined. In the Allocation Phase, the fi-
nal resource assignment is done. The purposes of the
other phases, namely the Initialization Phase, the Up-
date Phase, and the Finalization Phase, are primarily
the preparation of the required data structures and the
processing of interim as well as the final results.

4.1.1 Initialization Phase

At the beginning of our procedure, a specific problem
instance of the CDCSP is analyzed and the required
data structure for the subsequent phases is created.
Algorithm 2 shows the corresponding pseudo code.
First of all, user clusters U are added to the list for

the residual user clusters U res. For each user clus-
ter appropriate data centers are determined, which are
able to provide QoS guarantees QGd;u;q according to
the QoS requirements QRu;q of the user cluster for all
QoS parameters q 2 Q (cf. line 7 - 11). The result is
stored in a binary variable pd;u = f0;1g (cf. line 9),
which corresponds to the constraint in Eq. 6 in our
model. The permitted data centers for each user clus-
ter are stored in the list Dper

u (cf. line 12). Further,
variables for the residual demand of the user clusters
Sres

u and for the residual capacities of the data centers
Kres

d are set (cf. line 3 and 16).

Algorithm 2: Initialization.
Start:

1: U res U
2: for all u 2U do
3: Sres

u Su
4: Dper

u /0

5: for all d 2 D do
6: pd;u true
7: for all q 2 Q do
8: if QRu;q < QGd;u;q then
9: pd;u false

10: end if
11: end for
12: if pd;u is true then Dper

u Dper
u [fdg end if

13: end for
14: end for
15: for all d 2 D do
16: Kres

d Kmax
d

17: end for

4.1.2 Selection Phase

In this phase a first feasible solution for the CDCSP is
determined in a stepwise manner. Algorithm 3 shows
the corresponding pseudo code. At the beginning of
each selection step, a user cluster u 2 U res with a
residual service demand Sres

u > 0 as well as a data cen-
ter d 2 Dper

u with a residual capacity Kres
d > 0 are se-

lected (cf. line 3 and 4). The selection of a user cluster
depends on the priority rule (cf. Section 4.2), which
is set at the beginning of this phase. From the set of
possible data centers, the one with the lowest cost per
service unit – depending on the cost allocation rule
(cf. Section 4.3) – is selected (cf. Section 4.3). The
assignment of capacities yd;u depends on the resid-
ual demand of the selected user cluster Sres

u and the
residual capacity Kres

d of the selected data center (cf.
line 5).

Within this phase, a made assignment decision is
final and will not be changed in later iterations. Ac-
cording to the assigned capacities, the residual de-

Setting�Priorities�-�A�Heuristic�Approach�for�Cloud�Data�Center�Selection

223

mand and the residual capacity are reduced (cf. line 6
and 7). All selected data centers are stored in the list
Dopen (cf. line 8). If the demand of a user cluster is
met or the capacity of a data center is exhausted, it
will not be taken into account in the subsequent itera-
tions (cf. line 9 and 12).

Algorithm 3: Determination of an Initial Solution.
Start: Dopen /0

1: while jU resj> 0 do
2: if jDper

u j= 0 then exit without solution end if
3: u SelectUserCluster(U res)
4: d SelectDataCenter(Dper

u)
5: yd;u min(Kres

d ;Sres
u)

6: Kres
d Kres

d � yd;u
7: Sres

u Sres
u � yd;u

8: Dopen Dopen[fdg
9: if Sres

u = 0 then U res U resnfug end if
10: if Kres

d = 0 then
11: for all u0 2U res do
12: Dper

u0 Dper
u0 nfdg

13: end for
14: end if
15: end while

4.1.3 Update Phase

In the previous phase, a set of data centers was opened
and stored in the list Dopen. This list serves as an im-
proved information base and is used instead of the ini-
tial list D, which included all possible data centers. In
the Update Phase, all assignments are reset and the
required data structure is recreated, whereby the pro-
cedure corresponds to the Initialization Phase.

4.1.4 Allocation Phase

The Allocation Phase is comparable to the the previ-
ously described Selection Phase. Again, the solution
is determined in a stepwise manner based on the prior-
itization and cost allocation rules. Since all data cen-
ters were determined in the Selection Phase, at least
the fixed costs arise. Thus, the allocation of resources
can be improved by focusing on different goals, as
implemented by different priority and cost allocation
rules.

4.1.5 Finalization Phase

During the Selection Phase, the relevant data centers
were stored in the list Dopen. Based on its content, val-
ues need to be assigned to the decision variables xd .
Thereby, xd assumes the value one for all data cen-
ters in Dopen. The amount of assigned service units

is stored in yd;u. It assumes the value zero if no ser-
vice units were assigned between a data center and the
corresponding user clusters (cf. Algorithm 4).

Algorithm 4: Finalization of the Approach.
Start:

1: for all d 2 D do
2: if d 2 Dopen then
3: xd 1
4: else
5: xd 0
6: end if
7: for all u 2U do
8: if yu;d = null then yu;d 0 end if
9: end for

10: end for

4.2 Priority Rules

A major challenge of priority based procedures is
the determination of the sequence in which the de-
manders are assigned to the supply locations (Bölte,
1994). Appropriate priority rules are required to sort
the demanders in a specific sequence. Beside the
demander, the selection of the supply locations can
also be supported by priority rules (Angelopoulos and
Borodin, 2002). For the CDCSP we focus on the fol-
lowing three quantity based prioritization rules which
sequences the used clusters w.r.t. the demand, the
available capacities, or both.

The Demand Priority Rule is used to order the
user clusters u �U res according to their residual ser-
vice demand Sres

u > 0. The basic idea behind this rule
is to prefer user clusters with a higher service demand
to ensure a valid solution. Since the assignment takes
place in every single step of the procedure, the priori-
tization of the residual user clusters may change.

In contrast to the previous rule, the Capacity Pri-
ority Rule focuses on residual capacities Kres

d of the
suitable data centers d � Dper

u . Thereby, user clusters
with a lower total service supply are preferred.

Both rules have a low complexity and those may
be able to find solutions with low computational ef-
fort. Nevertheless, they may lead to solutions with
a lower quality since they take only demand or sup-
ply into consideration. Thus, the third quantity based
prioritization rule, Buffer Priority Rule, combines
both preceding rules to overcome their disadvantages.
Thereby, a service buffer as the margin of residual
capacities and residual service demand of each user
cluster is calculated. User clusters with a lower ser-
vice buffer assume a higher priority.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

224

In
it

ia
li

za
ti

o
n

P
h

a
se

S
e
le

c
ti

o
n

P
h

a
se

C
h

o
o

se
 R

e
so

u
rc

e
s

A
c
c
o

u
n

ti
n

g

Solving Selection Problem Solving Allocation Problem Initialization Finalization

In
it

ia
l

F
e
a
si

b
le

S
o

lu
ti

o
n

 o
f
 C

D
C

S
P

S
p

e
c
if

ic
 C

D
C

S
P

P
ro

b
le

m
 I

n
st

a
n

c
e

A
ll

o
c
at

io
n

P
h

a
se

U
p

d
at

e

P
h

a
se

F
in

a
li

za
ti

o
n

P
h

a
se

Update

C
h

o
o

se
 R

e
so

u
rc

e
s

A
c
c
o

u
n

ti
n

g

Figure 1: Phases of the Heuristic Approach.

4.3 Cost Allocation Rules

The selection of the data center is based on its costs,
which consist of variable and fixed costs. Since the
total amount of delivered resources is unknown until
the end of the whole assignment procedure, the spread
of fixed costs is a challenging task. The individual
costs of a service unit yu,d is given by the following
function.

C(u;d;base) =CVd +CFd � (1=base) (9)

Thereby, the spread of the fixed cost depends on the
value of the artificial base parameter. With a larger
value of this parameter, the share of fixed costs per
service unit decreases. Thus, the strategy for the de-
termination of the base parameter directly influences
the service assignment and is given by the cost alloca-
tion rules. In the subsequent section, we present two
main classes of cost allocation rules.

4.3.1 Static Cost Allocation Rules

Within these rules, the value of the base parameter is
determined once at the beginning of a heuristic ap-
proach and will not be changed any more. Within the
Max Capacity Cost Allocation Rule, the maximum ca-
pacity of a data center Kmax

d is considered. This rule
is based on the assumption that a data center is nearly
completely utilized. If this is not the case, the total
costs of a data center may be underestimated.

If a provider expects a utilization near the mini-
mum capacity of a data center Kmin

d , the Min Capacity
Cost Allocation Rule is more appropriate. Thereby,
the minimum capacity serves as the base parameter.
In case of a higher utilization, the costs per service
unit are overestimated.

To strike a balance, the Med Capacity Cost Allo-
cation Rule uses the medium value between the mini-
mum and the maximum capacity of a data center.

For a given set of already opened data centers, an-
other option is to neglect the fixed costs completely.
This could be appropriate if the fixed costs arise in
any case or if the number of provided service units is

very high. In this case, a sufficiently large value for
the base parameter is chosen. The corresponding rule
is named No Fixed Cost Allocation Rule.

4.3.2 Dynamic Cost Allocation Rules

In contrast to the static rules, the dynamic rules in-
clude the already existing assignments in the calcula-
tions. The value of the base parameter is calculated in
each iteration of our heuristic approach and considers
the current utilization of a data center.

The first of our dynamic rules, Penalize First Cost
Allocation Rule, penalizes a user cluster which tends
to open a new data center d 6� Dopen. In such a case,
the full fixed costs are added to the cost function. If a
user cluster gets its services from an already opened
data center, only the variable costs are included into
the calculation. Thus, there is an incentive to use ex-
isting data centers, which is especially important dur-
ing the selection phase.

Another strategy is pursued by the Prefer Minimal
Utilization Cost Allocation Rule. This rule is based
on the assumption that the opened data centers need
to reach their minimum capacity constraint. Thus,
data centers with an utilization lower than the mini-
mum value get a higher priority. The cost function
of such data centers only includes the variable costs,
while cost function for data centers with an utiliza-
tion high than a minimum capacity includes addition-
ally the fixed costs. Especially a scenario with a given
set of data centers, like the Allocation Phase, benefits
from this rule.

The Current Utilization Cost Allocation Rule cal-
culates the fixed costs based on the current utilization
of a data center. Thereby, the allocation of service
units between a data center and an user cluster re-
sults from the minimum of the residual demand and
the residual capacity. In contrast to the previous two
dynamic rules, the value of the fixed costs which is
added to the cost function decreases with a higher uti-
lization.

Setting�Priorities�-�A�Heuristic�Approach�for�Cloud�Data�Center�Selection

225

Rules for Selection Phase

Demand Priority Rule

Capacity Priority Rule

…

Buffer Priority Rule

Max Capacity Cost Allocation Rule

Min Capacity Cost Allocation Rule

Med Capacity Cost Allocation Rule

No Fixed Cost Allocation Rule

Penalize First Cost Allocation Rule

Current Utilization Cost Allocation Rule

…

Max Capacity Cost Allocation Rule

Min Capacity Cost Allocation Rule

Med Capacity Cost Allocation Rule

No Fixed Cost Allocation Rule

Penalize First Cost Allocation Rule

Current Utilization Cost Allocation Rule

…

Rules for Allocation Phase

S
p

ec
if

ic
 H

eu
ri

st
ic

 P
ro

ce
d

u
te

A
b

st
ra

ct
 H

eu
ri

st
ic

 P
ro

ce
d

u
re

Demand Priority Rule

Capacity Priority Rule

…

Buffer Priority Rule

Figure 2: Deduction of Specific Heuristic Approaches.

4.4 Deduction of Specific Heuristic
Approaches

In Section 4.1, we presented a heuristic approach as
an abstract solution approach for the CDCSP. For both
phases, the Selection Phase and the Allocation Phase,
we use priority rules for the user cluster selection
and cost allocation rules to choose the correspond-
ing data centers.For both phases, all described rules
are equally available. Nevertheless, some of them
are more suitable than others, e. g., the selection of
data centers with ignoring the fixed costs very likely
leads to poor solutions. Figure 2 gives an overview of
the previously described rules and shows the deduc-
tion of a specific heuristic approach, i. e., the CDCSP-
PBSH[1], which is described in detail within the eval-
uation (cf. Section 5.2).

5 EVALUATION

5.1 Setup

In order to assess the capability of our heuristic ap-
proach, we prototypically implemented it in Java 8.
As the solver for the exact and the LP-relaxed ap-
proach, we used IBM ILOG CPLEX 12.51, which
was accessed through the JavaILP middleware2.

Our evaluation focused on dependent variables,
computation time and solution quality, i. e., total
costs. As independent variables, we considered the
number of data centers and the number of user clus-
ters. These variables directly influence the number of
decision variables, and hence, the size of the solution
space.

1http://www.ibm.com/software/integration/
optimization/cplex-optimizer/

2http://javailp.sourceforge.net/

According to our former work (Hans et al., 2013),
the problem instance generation was based on the
2010 United States census3. Thereby we set the ser-
vice demands and different cost parameters according
the population of a randomly selected county and its
median income. We focused on latency as our sole
QoS parameter and set it corresponding to the require-
ments of multimedia services. For each test case, we
created 100 problem instances.

Based on the samples, we subsequently computed
the observed mean absolute computation times and
the macro-averaged ratio of total cost along with the
respective 95% confidence intervals based on a t-
distribution (Kirk, 2007). The evaluation was con-
ducted on a workstation, equipped with a Intel Xeon
CPU E5-1620 v3 with 3.50 GHz and 16 GB of mem-
ory, operating under Microsoft Windows 7.

5.2 Results and Discussion

At the beginning we analyzed the performance and
the solution quality, i. e., the ratio cost. We used
the exact approach (CDCSP-EXA.KOM) and the LP-
relaxed approach (CDCSP-REL.KOM) of our for-
mer works and the proposed heuristic approaches
(CDCSP-PBSH.KOM) with all combinations of the
prioritization and cost allocation rules described in
this paper. Due to the large amount of evaluation re-
sults, we decided to present only two of them within
this paper. The first approach was selected due to its
superior solution quality for a large set of test cases,
whereas the second was chosen due to its favorable
computation time.

� CDCSP-PBSH.KOM [1]: Selection: Buffer Prior-
ity Rule, Max Capacity Cost Allocation Rule; Al-
location: Buffer Priority Rule, Penalize First Cost
Allocation Rule

3http://www.census.gov/geo/maps-data/data/
gazetteer.html

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

226

0.001

0.01

0.1

1

10

100

1000

10000

10 / 150 20 / 300 30 / 450 40 / 600

M
ea

n
C

om
pu

ta
tio

n
Ti

m
e

[s
]

Test Case (|D| / |U |)

CDCSP-EXA.KOM
CDCSP-REL.KOM

CDCSP-PBSH.KOM [1]
CDCSP-PBSH.KOM [2]

Figure 3: Computation Time (Small Test Cases).

� CDCSP-PBSH.KOM [2]: Selection: Demand
Priority Rule, Max Capacity Cost Allocation
Rule; Allocation: Demand Priority Rule, Penalize
First Cost Allocation Rule

Figure 3 shows the computation time of the four ap-
proaches. The comparison between the exact and the
second heuristic approach (CDCSP-PBSH.KOM [2])
shows a statistical significant improvement of 98:75%
for the first test case (jDj = 10 / jU j = 150) and up
to 99:99% for the last test case (40 / 600). The so-
lution quality of the approaches is depicted in Fig-
ure 4. The chart shows the ratio of cost compared to
the exact approach. In the last test case (40 / 600),
the LP-relaxed approach causes 5.27% higher costs
compared to the exact approach and our first heuristic
approach (CDCSP-PBMH.KOM [1]) causes 5.68%
higher costs. The fastest approach delivered the poor-
est solution quality with a cost increase of 20.68%.

In a second step, we used test cases with a larger
amount of potential data centers and user clusters to
evaluate the algorithms in large scale environments.
Due to the high computational effort, the exact ap-
proach is not feasible in such scenarios. Again, we
include the previously described heuristic approaches
in this setup.

Especially the results for the heuristic approach
CDCSP-PBSH.KOM [1] are very interesting. For the
chosen number of data centers and user clusters, we
are able to reduce the computation time by about 99%
compared to the LP-relaxed approach (cf. Figure 5),
while retaining the same solution quality, i. e., a cost
ratio of one.

Further, for the heuristic approach CDCSP-
PBSH.KOM [2], with a less complex prioritization
rule, we achieve an even better computation time.
However, the solution quality is significantly worse
compared to the other approaches, with cost increases
ranging from 0.95% to 3.53%.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

10 / 150 20 / 300 30 / 450 40 / 600

R
at

io
of

C
os

t

Problem Size (|D| / |U |)

CDCSP-REL.KOM / CDCSP-EXA.KOM
CDCSP-PBSH.KOM [1] / CDCSP-EXA.KOM
CDCSP-PBSH.KOM [2] / CDCSP-EXA.KOM

Figure 4: Solution Quality (Small Test Cases).

0.01

0.1

1

10

100

1000

100 / 500 200 / 1000 300 / 1500 400 / 2000 500 / 2500

M
ea

n
C

om
pu

ta
tio

n
Ti

m
e

[s
]

Test Case (|D| / |U |)

CDCSP-REL.KOM
CDCSP-PBSH.KOM [1]
CDCSP-PBSH.KOM [2]

Figure 5: Computation Time (Large Test Cases).

6 RELATED WORK

A lot of work focus on data center placement and re-
source allocation with different optimization goals,
such as the reduction of network latency or the re-
duction of total cost. Thereby different solution ap-
proaches like exact approaches or heuristic such as
Tabu Search so Simulated Annealing are used. In this
section, we present a set of selected papers, which are
most relevant regarding the work at hand.

(Chang et al., 2007) investigated in the consolida-
tion of the server infrastructure for the US army. The
authors formulated a optimization problem to mini-
mize the weighted distances between the data centers
and users. (Goiri et al., 2011) also analyze the place-
ment of data centers. Thereby, the objective is the
reduction of total costs under consideration of quality
requirements. The authors formulate an optimization
model and solved it with LP relaxation and a simu-
lated annealing heuristic. Both papers focus on data
center placement and do not provide algorithms for
run time resource allocation.

(Larumbe and Sansò, 2012) formulated an op-
timization problem for cloud computing which in-

Setting�Priorities�-�A�Heuristic�Approach�for�Cloud�Data�Center�Selection

227

cludes: Location data centers, location of software
components, and routing. Therefore, the authors also
consider an exact optimization approach, which is pri-
mary appropriated for planing aspects. (Wang et al.,
2012) focus on mobile cloud gaming and propose an
approach for the minimization of the total costs of a
cloud provider taking the individual quality require-
ments of the users into account. The authors develop
a scheduling algorithm for assigning computation and
networking resources during run time. In contrast to
this work the authors do not formulate an optimiza-
tion problem.

(Choy et al., 2012) focuses in their work on the
availability on cloud gaming in the US. Therefore, the
authors analyze the cloud infrastructure provided by
Amazon and show that only 70 percent of the popula-
tion can use services. They propose the use of addi-
tional data centers or Edge Server to increase the cov-
erage. In contrast to our work, they does not propose
an optimization approach for the efficient placement
of such data centers and servers.

In summary, to the best of our knowledge, our
work is the first to include a detailed analysis of a
priority-based heuristic approach for cost-efficient se-
lection of cloud data centers for QoS-aware services
provisioning. In this context, this paper provides a
generic heuristic approach, which allows substantial
reduction of computation time compared to previ-
ously presented approaches.

7 SUMMARY AND OUTLOOK

In this paper, we presented a heuristic approach to
a previously introduced optimization problem, the
Cloud Data Center Selection Problem. From this
generic approach, a variety of specific heuristic ap-
proaches can be deduced. Depending on the selected
prioritization and cost allocation rules, either very fast
heuristics approaches or heuristics with an outstand-
ing solution quality can be configured.

Based on the presented approach, we plan two ma-
jor enhancements in the future. First, we plan to de-
velop a best-of-breed approach, which combines the
benefits of multiple heuristics. Second, we plan to de-
velop improvement procedures, such as tabu search or
simulated annealing, to further enhance the solution
quality of our approach.

ACKNOWLEDGEMENTS

This work has been sponsored in part by the German
Federal Ministry of Education and Research (BMBF)

under grant no. 01IS12054, by E-Finance Lab e.V.,
Frankfurt a.M., Germany (www.efinancelab.de), and
by the German Research Foundation (DFG) in the
Collaborative Research Center (SFB) 1053 MAKI.
The authors are fully responsible for the content of
this paper.

REFERENCES

Angelopoulos, S. and Borodin, A. (2002). On the Power
of Priority Algorithms for Facility Location and Set
Cover. In Jansen, K., Leonardi, S., and Vazirani, V.,
editors, Approximation Algorithms for Combinatorial
Optimization. Springer.

Bölte, A. (1994). Modelle und Verfahren zur innerbe-
trieblichen Standortplanung. Physica. In German.

Chang, S.-J. F., Patel, S. H., and Withers, J. M. (2007). An
Optimization Model to Determine Data Center Loca-
tions for the Army Enterprise. In IEEE Military Com-
munications Conference.

Choy, S., Wong, B., Simon, G., and Rosenberg, C. (2012).
The Brewing Storm in Cloud Gaming: A Measure-
ment Study on Cloud to End-User Latency. In 11th
Annual Workshop on Network and Systems Support
for Games.

Cisco (2013). Cisco Global Cloud Index: Forecast and
Methodology, 2012-2017. Online Pubication.

Domschke, W. and Drexl, A. (2004). Einführung in Opera-
tions Research. Springer. In German.

Goiri, Í., Le, K., Guitart, J., Torres, J., and Bianchini, R.
(2011). Intelligent Placement of Datacenters for Inter-
net Services. In 31st Int’l Conf. on Distributed Com-
puting Systems.

Hans, R. (2013). Selecting Cloud Data Centers for QoS-
Aware Multimedia Applications. In Zimmermann,
W., editor, PhD Symposium at the 2nd European Conf.
on Service-Oriented and Cloud Computing.

Hans, R., Lampe, U., and Steinmetz, R. (2013). QoS-
Aware, Cost-Efficient Selection of Cloud Data Cen-
ters. In 6th Int’l Conf. on Cloud Computing.

Hillier, F. and Lieberman, G. (2005). Introduction to Oper-
ations Research. McGraw-Hill, 8th edition.

Kirk, R. (2007). Statistics: An Introduction. Wadsworth
Publishing, 5th edition.

Larumbe, F. and Sansò, B. (2012). Optimal Location
of Data Centers and Software Components in Cloud
Computing Network Design. In 12th IEEE/ACM Int’l
Symposium on Cluster, Cloud and Grid Computing.

Wang, S., Liu, Y., and Dey, S. (2012). Wireless Network
Aware Cloud Scheduler for Scalable Cloud Mobile
Gaming. In IEEE Int’l Conf. on Communications.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

228

SERVICES SCIENCE FOUNDATION FOR
CLOUD COMPUTING

SHORT PAPERS

Business Process Generation by Leveraging Complete Search over a
Space of Activities and Process Goals

Dipankar Deb1, Nabendu Chaki1 and Aditya Ghose2
1Dept of Computer Science and Engineering, University of Calcutta, Kolkata, India

2Decision System Lab, School of Computer Science and Software Engineering, University of Wollongong,
Wollongong, NSW, Australia

dipankar.deb@gmail.com, nabendu@ieee.org, aditya@uow.edu

Keywords: Business Process Modeling, Process Redesign, Business Goal, Constraints.

Abstract: An efficient and flexible business process not only helps an organization to meet the requirements of the
evolving surroundings but also may facilitate a competitive advantage over other companies towards delivering
the desired services. This is even more critical for an emerging paradigm like cloud based deployment. In this
paper, we introduce a novel mechanism to generate the business process suitable for specific organizations.
The approach provides an automated way to build the possiblebusiness processes for a given set of tasks
that fulfills the goal and satisfies the constraints of an organization. In step 1, we show how to generate the
finite space of all possible designs for a given set of tasks. Secondly, we accumulate the effect of each step
to deduce the final effect of each possible process design andto ensure that the redesigned set of steps still
realizes the service goal. The designs not meeting the service goals are eliminated from the space. In step 3,
the rest of the designs are checked for the constraint satisfaction subject to some specific cases. The framework
provides a comprehensive, both syntactically and semantically correct, consistent business process generation
methodology that adheres to the target business goals and constraints.

1 INTRODUCTION

There is a need to re-design the business processes
over the cloud based on the requirements so that
services can be offered in an efficient and cost-
effective manner. Different business houses, even in
the same vertical, often have their own set of distinct
goals, policies and constraints. As for example,
two different travel agencies may target customers
of different strata of the society and can set their
goals and constraints accordingly. An appropriate
business process model for a particular organization
should be tailor-made according to these. Given a
set of tasks/activities/services and constraints, this
paper aims to construct a business process for an
organization. The initial set of activities is referred
in rest of the text as capability library. Initially, we
generate all possible set of business process designs
out of these capabilities.

The manuscript is organized as follows: Section 2
presents a survey in the existing literature followed
by a statement on the motivation behind the work.
In section 3, syntactic derivation of the exhaustive
search space is described. This ensures that no pos-

sible design is dropped out during generation of the
intermittent solutions that realize the goals. Section
4 describes the checking for completeness of the
proposed algorithms for generation of all possible
business process models. Semantic extraction of goal
specific business space from the initial syntactically
correct search space followed by a running example
is presented in section 5. Eliminating redundancy
from business space depending on the constraints is
described in section 6. In conclusion, we have dis-
cussed the effectiveness of the proposed approached
in identifying the optimized business process from
the reduced business space. Our approach generates
all the business process designs irrespective of the
business application. However, this is a one-time ex-
ercise depending on the number of tasks and may be
reused for different business verticals. Subsequently,
depending upon the requirements of specific business
houses and their application, the goals and policies
can be imposed on this exhaustive design space to
have client-specific solutions with the most optimal
design. The proposed solution follows the method-
ology of converging to the optimal design from the
exhaustive design space as described in figure 1. The

233

Analyst

User

Generation of
possible process
model out of specific
tasks and
operations

Generation of
goal specific
Business processes

Elimination of
redundancy
depending on
constraints

Identification of
Optimized Business
processes

Specify the number
of tasks
and operation

Specify Goal

Specify
Constraints

Specify Goal

Specify
Constraints

Optimization
criteria

Optimization
criteria

Specify
goal
and
Constraints

Figure 1: Use case for the proposed business process
generation framework.

proposed approach provides an automated way for
business process designs as compared to modeling
with BPMN. The proposed mechanism may be ex-
tended towards deriving a optimal solution based on
one or multiple criteria pertinent to specific clients.

2 RELATED WORK

Services can evolve typically due to changes in struc-
ture, e.g., attributes and operations; or, in behaviour
and policies, e.g., adding new business rules and
regulations, or, in types of business-related events;
and in business protocols as presented by (Papa-
zoglou, 2008). Thus, the issues of service redesign
are very vital. Most of the literatures on business
process redesign(Reijers and Liman Mansar, 2005;
Limam Mansar et al., 2009; Kumar and Bhat, 2011)
do not address the method to arrive at an improved
process from the existing business process. A general
purpose business process modeling language such
as BPMN (BPMN, 2006) or UML activity designs
(UML, 2003) are not designed to support enterprise in
creating models using their own vocabulary and ter-
minology. A business process modeling framework
proposed in (Alotaibi and Liu, 2013) made it easy for
IT people to understand and implement. (Lodhi et al.,
2014) focuses on the relation between evaluation of
business processes and their representation at the

process managerial level.
(Yu et al., 2014) offers a complete methodology

for modeling and validating an e-commerce system
with a third-party payment platform from the view
point of a business process. In another recent work,
(Zhang and Perry, 2014) proposes a technique for
modeling composite activities by including compo-
nents of data, human actors and atomic activities and
represent business processes with composite activ-
ities using process-oriented languages. (Malesevic
and Brdjanin, 2013) presents a software tool for the
automatic visualization of presents a software tool to
automate visualization of the UML activity diagram.
Modeling of medical services based on business pro-
cess model is been described in (Natalia et al., 2013).
A new modular workflow modeling language is pro-
posed in (Combi et al., 2014) allows the designer to
easily express data dependencies and time constraints.
Verification of Business Process Constraints is been
demonstrated in (Gao et al., 2013). A synchroniza-
tion method for change management between process
models on different abstraction levels is proposed
by (Weidmann et al., 2011). (Macek and Necasky,
2010) derives XML formats for communication links
in the conceptual schema of the business process and
optimizes them. (Wu et al., 2011) proposed to model
the business process based on semantics of business
process models and business vocabulary, then used
the method to transform a plain text rule statement
into BPMN files. The literature survey indicates
some limitations and challenges in the domain of
business process generation such as fulfillment of
user demand, post execution analysis, automated tool
support, provisioning of constraint specification and
end to end solution to provide a model for the analyst.
These motivate us to have an end to end solution
to provide a business process design of a specific
business logic incorporating the goal, constraints and
optimization criteria for the analyst.

3 GENERATION OF
EXHAUSTIVE FINITE SPACE

The process starts with a capability library of n
tasks for an organization and set of possible model
constructs such as XOR-split and AND-split which
can be denoted as< T1,T2,Tn,⊗,⊕ > where
T1,T2.....Tn are the capabilities and⊗,⊕ denotes an
XOR-split and AND-split respectively.

We generate all possible business process designs
in the form of tree which is elaborately described
in algorithm 1. A business process design tree is a
tree for a given fixed capability library in which the

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

234

root node is an empty business process design, every
leaf node is a syntactically correct business process
designs, every non-leaf node is a partial (incomplete)
business process design and every child node differs
from a parent node by including a single extra process
model construct (either an extra activity, or an extra
event, or an extra gateway). The algorithm generates
the tree considering all possible constraints for com-
plete generation of all possible process models. The
business process designs are generated on traversal of
the paths of the tree. The complete process models in
the tree are all leaf nodes or some intermediate nodes.
The leaf nodes representing XOR-split or AND-split
are followed by XOR-join or AND-join during the
generation of the process tree. A path end with an
XOR-split or AND-split is discarded. Such types of
constraints are identified during the traversal of the
path and are included in the designed algorithm 2.
Figure 2 shows the tree view for the generation of
process models.

Let us take a domain specific example of Car
rental process where the possible subtasks for realiz-
ing the above goal are Register Request(Task1), Re-
view the request(Task2), Reject the request(Task3),
Allocate Car(Task4), Car allocated(Task5) and Per-
form Transportation(Task6) Using the exhaustive ap-
proach we have all possible business process designs

T2 T3 Tn

Ti+1

Ti+2

Ti

Ti+1

Ti+2

Ti

Start

T1 T2 Tn

Figure 2: Process Model Generating Tree for n tasks.

with the above identified tasks T1, T2, T3, T4, T5 and
T6.

4 COMPLETENESS OF
ALGORITHM FOR
GENERATING ALL POSSIBLE
DESIGNS

The exhaustive set of syntactically correct business
process designs refer to the collection of subtrees
where all the artifacts are operated for the valid
set of operations that are syntactically permissible.
We would establish couple of base cases by manual
checking for n=1, n = 2 and n = 3 and shall prove
Lemma 1, Lemma 2 and Lemma 3 by the method of
induction. In figure 4, we find that all the possible
business process designs for n=2 where each of the
two root tasks at level 1, are having a tree with 4
nodes. Each of these two sub-trees generates two
different models. Similarly, by manual checking for
n=3, we find that the algorithm is generating all the
possible business process designs. The corresponding
tree is shown in Figure 5 where each root task at
level 1 is having 19 nodes in its sub-tree. For brevity
we have not shown all the possible business process
designs in the figure. Again, by manual checking
for n = 4, we find that the algorithm is generating
all possible business process designs where each root
task is having tree size=49.

T1

Start

Figure 3: Process design generating tree for a single task.

Lemma 1: If n be the size of the Capability Li-
brary, i.e. the number of tasks in the capability
library, then the height of the tree is equal to
(3n−4),∀n≥ 2.
Proof: We will prove by induction that∀n ∈ Z and
n≥ 2 the height of the treeHn = 3n−4.
Base Case: If the size of the Capability Library n=1
We have only one task at level 1 of the tree. In other
words, at level 1 of the tree, we have< T1,⊗,⊕ >.
The next element for a task at intermediate level is

Business�Process�Generation�by�Leveraging�Complete�Search�over�a�Space�of�Activities�and�Process�Goals

235

T1

Start

T2

T2 T1

T1

T2T1

T2

T2 T1

Figure 4: Process Model generating tree where number of
tasks =2.

any of n-k tasks where k is used tasks and the value
of k ranges from 1 to n. Therefore there will be no
expansion for the tree for n=1. The tree is shown
in figure 3. Thus height of the tree is 1. If size of
the Capability Library n=2, then its heightH2 will be
[(3x2)−4] = 2. Figure 4 shows the height of the tree
is 2. If the size of the Capability Library n=3, then its
heightH3 will be [(3x3)−4] = 5. Figure 5 shows the
height of the tree is 5.
Inductive Hypothesis
Assume that the theorem is true for number oftasks≤
k.
Inductive Steps: We must prove that the inductive
hypothesis is true for(k+1) numbers of tasks. During
the expansion of the tree with(k + 1) numbers of
tasks, we have the nodes of level 1 of the tree as
< T1,T2,T3,Tk,Tk+1,⊗,⊕>. The generation of the
tree terminates when the number of possible tasks
at all level is equal to 1. Therefore starting with
k+1 number of tasks, the tree expands till used tasks
become(k+1) and the number of possible tasks for
the next level becomes zero.

We get n numbers of edges for n+1 numbers
of tasks. Thus the height of the subtree for tasks
corresponding to a level with n+1 numbers of tasks
will be n. For each of the XOR or AND split in
the corresponding level with n tasks we have 2 to
[(n+ 1)− k + 1] way split where k is used tasks. It
is very obvious that the number of remaining task in
the next level for 3,4,[(n+ 1)− k + 1] way split
will be less than that of 2 way split in the same level.
Therefore the height of the subtree for 2 way split will
be more than that of subtrees of 3,4,[(n+1)− k+
1]way split.The maximum height of the subtree for an
XOR or AND split will correspond to the level with
maximum number of tasks. As the tree expands the
number of tasks will be reduced in increasing level
of the tree. Therefore the corresponding height of the
subtrees for XOR or AND split with lower number of
tasks in the corresponding level will be less than that

Table 1: Height of Subtrees.

No of Tasks No. of Levels Size of Tree
1 1 1
2 2 2
3 5 5
4 8 8
5 11 11
6 14 14
7 17 17
8 20 20

of subtrees for XOR or AND split with higher number
of tasks at corresponding level. Therefore the height
of the tree will be equal to height of subtree created
with 2 way split at level 2. The height of the subtrees
with increasing number of tasks is given in table 1.
SupposeLT n andLT n+1 denotes the subtrees created
with 2 way split at level 2 with n and n+1 number of
task respectively. The height of subtree created with
2 way split at level 2 with n+1 number of task From
the above table it is observed that (by the inductive
hypothesis)

LT n+1 = LT n +3

= (3n−4)+3

= 3n−1

= 3(n+1)−4

Therefore, the height of subtree created with 2 way
split at level 2 with n number of task is 3n-4 and hence
the height of the tree is 3n-4.
Lemma 2: All the subtrees generated with n-1 ca-
pabilities are the subset of the subtrees generated
with n capabilities.
Proof: We will prove by induction that∀n ∈ Z and
n≥ 2. Ti(n−1) is the subtree ofTi(n) whereTi(n−1)
and Ti(n) denotes the tree generated with (n-1) and
n capabilities. SupposeT (n) be the tree generated
with the capability library size n which consists of m
number of subtrees denoted byTi such that

⋃
Ti = T (n)

The start node is at level 0 has the vertices
T1,T2,Tn,⊗,⊕ i.e. n+2 nodes.
Base Case: If the size of the Capability Library is
n=1, then there will be only one process model. If the
size of the Capability Library is n=2 then from figure
4, we find thatTi(1) is the subtree ofTi(2). If the size
of the Capability Library is n=3 then from figure 5,
we find thatTi(2) is the subtree ofTi(3).
Inductive Hypothesis
Assume that the theorem is true for k number of tasks
such thatk < n , i.e. Ti(k−1) is the subtree ofTi(k).
Inductive Steps: We must prove that the inductive

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

236

T2

Start

T3
T1

T2 T3 T1 T3 T1 T2

T3 T2 T2

T3

T2 T3

T3

T2

T3 T2

T3 T2 T2 T3

T3 T1

T1

T3

T1 T3

T3

T1

T3 T1

Figure 5: Process Model generating tree where number of tasks =3.

hypothesis is true for (k+1) numbers of tasks, i.e.
Ti(k) is the subtree ofTi(k + 1). Now, in order to
form the tree forTk+1, the start node at level 0 for
Tk will have the child verticesT1,T2,Tk,Tk+1,⊗,⊕
i.e., a total k+3 nodes will be there below the start
node. In turn, nodeTk in level 1 of theTk+1 tree
will have the child verticesT1,T2,Tk,⊗,⊕. These
nodes will again have their decedents as per procedure
ExhaustiveModelGenration() i.e., the tree withTk as
the root node is essentially a sub-tree ofTk+1. Hence,
it is proved that if the induction hypothesis holds good
for Tk, k < n, then it holds good forTk+1 as well. Thus
the statement of Lemma 2 is proved by induction.
Lemma 3: Tree having the capability library size
n can generate all possible process models.
Proof: We will prove by induction that∀n ∈ Z
and n ≥ 1, Ti(n) produces all the possible process
models with n capabilities whereTi(n) denotes the
tree generated with n capabilities.
Base Case: If the size of the Capability Library is
n=1, then there will be only one process model. If the
size of the Capability Library is n=2 then from figure
4, we find thatTi(2) produces all the possible process
model. If the size of the Capability Library is n=3
then from figure 5, we find thatTi(3) produces all the

possible models.
Inductive Hypothesis
Assume that the theorem is true for k number of tasks
such thatk < n i.e., Ti(k) produces all the possible
process model with capability library size=k.
Inductive Steps: We must prove that the inductive
hypothesis is true for (k+1) numbers of tasks, i.e.,
Ti(k + 1) produces all the possible process model
with capability library size=k+1. As from Lemma
2, it is obvious thatTi(k) is a subtree ofTi(k + 1),
therefore having capable of generating all possible
process models for capability library size k with
Ti(k) with height (3k-4), procedureExhaustiveModel-
Generation() essentially generate all possible process
model for capability library size=k+1 withTi(k+ 1)
with height (3(k+1)-4). Thus the statement of Lemma
3 is proved by induction.
Theorem: The proposed Construction Algorithm
generates the exhaustive set of syntactically cor-
rect business process models.
Proof: Lemma 1, Lemma 2 and Lemma 3 establish
that the algorithm is complete in the sense that it gen-
erates all possible business process designs. Hence,
the statement of the theorem is correct.

Business�Process�Generation�by�Leveraging�Complete�Search�over�a�Space�of�Activities�and�Process�Goals

237

5 EFFECT ACCUMULATION

The primary aim of this work is to redesign the
business process. This means replacing the existing
process model with an improved one on the basis
of better optimization criteria that confirms to the
business goals and constraints. So it is quite essential
that each of the process models, thus generated
are submitted for goal checking done by effect
accumulation mechanism. The approach is domain
specific. Effect accumulation enables the analyst
to provide with immediate effects after each step,
so as to able to calculate the cumulative effect. To
accumulate the effects of each step, we focus on the
formal effect specifications. Let us define a pair-wise
accumulation operator based on one first introduced
in (Hinge et al., 2009). As defined acc(e1, e2) to be
the set of cumulative effects obtained by executing
a step with effect e2, given a prior set of effects e1.
An effect scenario at a given point in a process is
one consistent set of cumulative effect of a process if
it were to execute up to that point. The first step in
effect accumulation is deriving a Scenario level. To
obtain effect scenario at a given point in a process the
set of scenario level is computed at that point.

Considering the case of Car rental process again
all the possible process models generated by our
method can also be termed as scenario levels. Out of
the automatic generated scenario levels, let us take
a particular scenario level< S,T1,G1,T3,G2,T4 >

where S is the start event.
The effect accumulation stage involves the

process of immediate effect annotation for each
of the tasks listed in the scenario using a pair-wise
operation when the immediate effect of S is combined
with the immediate effect of T1, the result being
the cumulative effect of T1. The cumulative effect
at T1 is then combined with the immediate effect
T2 resulting in the cumulative effect at T2 and so
on up to T6. We express the effect annotations in
conjunctive normal form. Let e1 be the cumulative
effect annotation and e2 be the effect annotation at t2
and t3 respectively. KB be the knowledgebase which
is nothing but a rule set:
e1= request registered and request reviewed.
e2= request accepted.
KB= the request is accepted after the review of the
registered request.
We express the above informal representation
formally in CNL (Control Natural Language) and
also can provide an analyst friendly interface by
means of a software.
e1= request(x)∧ request− review(x)
e2= accept− request(x)

KB = (request(x) ∧ requestreview(x)) →
acceptrequest(x)
≡ ¬(request(x) ∧ requestreview(x)) ∨
acceptrequest(x)
The cumulative effect of the two tasks consists of the
effects of the second task plus as many of the effects
of the first tasks. Two alternative effect scenario
during the cumulative effect at T3 arerequest (x),
accept-request(x) and request-review(x), accept-
request(x). We proceed this way to gather final effect
annotation at T6. The goal of Car rental process can
be decomposed in CNL (Control Natural Language)
sentences and may be combined to form a logic
sentence. Let F be the set of final effect scenarios
after effects are accumulated across all the steps in
a service. Let G be the formal representation of the
goals associated with the service. We require that the
constraintF |= G be satisfied. Methodologically, the
redesign of the steps can involve search through a
space of alternative sets of steps (including deletion
or replacement of existing steps, addition of new ones
and so on) provided the constraints are satisfied.

6 CONSTRAINT SPECIFICATION

Relation is an abstract association and connection
that holds between two or more conceptual object.
A constraint is a special kind of relationship that
is restricted or compelled to exist under a given set
of conditions. We have to identify the constraint
between the business processes. A constraint is said
to hold in a given context when the relationship is
maintained in the context. In order to verify whether
a constraint hold for a process we use temporal logic.

Business rules may be annotated as constraints to
specify the behaviors and also to specify the deriva-
tion of conditions that affect the execution flow. These
rules are forms of conditional operations attached to
the process to give data result. The business rules will
be restructured when organizations change the data or
process to accommodate the varying business needs.

When rules are changed, it would be possible to
provide a decision based on the given constraints or
based on business requirements. The correct business
process could also be verified by evaluating or vali-
dating the completeness of the business rule.

However, these rules may lack completeness to
determine the computability of business logic. Thus,
for a specific client, it is necessary to check whether
the rule-set is complete. This can be proved when
the rules are interpreted with temporal logic. We
propose the following steps for constraint satisfaction
checking. First,formally representing the design sets,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

238

secondly,formally representing the constraints and
finally use Prover9 first-order logic theorem-prover
for performing checking constraint satisfaction. The
constraints are considered as the conditions.The user
may go through several forms to assign values to
different constraints definition by example.

7 CONCLUSIONS

In this paper, we introduce a methodology that sup-
ports client-specific constraint checking towards gen-
erating goal-oriented, efficient business process de-
signs. Subsequently, one may apply suitable criteria
for optimized design. The optimization may consider
issues such as delivery time, cost etc. and remains the
future prospect of our current work.

The main concern about the proposed approach
lies in the computation towards generating the ex-
haustive set of process designs. However, this step
is executed offline and a priori for k numbers of tasks
and offered as the template for the analyst.

Our work paves the way for constraint specifi-
cation and checking. We have done completeness
checking for the proposed solution. We are also in
the process of developing a tool support with which
the analyst can derive the optimized business process
as per his/her scope, business goals and identified
constraints in the environment.

ACKNOWLEDGEMENTS

This publication is an outcome of the research work
undertaken in the CoE on Systems Biology and
Biomedical Engineering at University of Calcutta.
Authors thankfully acknowledgement the support
from the CoE.

REFERENCES

Alotaibi, Y. and Liu, F. (2013). Business process modelling
towards derive and implement it goals. InIndustrial
Electronics and Applications (ICIEA), pages 1739–
1744. IEEE.

BPMN (2006). Business process modeling notation specifi-
cation. www.bpmi.org. Final Adopted Specification.

Combi, C., Gambini, M., Migliorini, S., and Posenato, R.
(2014). Representing business processes through a
temporal data-centric workflow modeling language:
An application to the management of clinical path-
ways. IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 44(9):1182 1203.

Gao, J., Chen, W., Wang, Y., Zhao, D., Li, W., and Bo, Z.
(2013). Verification of business process constraints
based on xyz/z. InInternational Conference on Infor-
mation Technology and Applications (ITA), page 479
482. IEEE.

Hinge, K., Ghose, A., and Koliadis, G. (2009). Process
seer: A tool for semantic effect annotation of business
process models. InEnterprise Distributed Object
Computing Conference, 2009. EDOC’09. IEEE Inter-
national, pages 54–63. IEEE.

Kumar, M. and Bhat, J. M. (2011). Process improvement by
simplification of policy, and procedure and alignment
of organizational structure. InAMCIS’11.

Limam Mansar, S., Reijers, H. A., and Ounnar, F. (2009).
Development of a decision-making strategy to im-
prove the efficiency of bpr. Expert Systems with
Applications, 36(2):3248–3262.

Lodhi, A., Köppen, V., Wind, S., Saake, G., and Turowski,
K. (2014). Business process modeling language for
performance evaluation. In47th Annual Hawaii Inter-
national Conference on System Science (HICSS-47).
IEEE.

Macek, O. and Necasky, M. (2010). An extension of
business process model for xml schema modeling. In
Services (SERVICES-1), 2010 6th World Congress on,
pages 383–390. IEEE.

Malesevic, A. and Brdjanin, D.and Maric, S. (2013). Tool
for automatic layout of business process model repre-
sented by uml activity diagram. InIEEE EUROCON,
page 537 542. IEEE.

Natalia, C., Alexandru, M.M.and Mihai, S., Stefan, S.,
and Munteanu, C. (2013). Medical services mod-
elling based on business process model framework.
In IEEE E-Health and Bioengineering Conference
(EHB), page 1 4. IEEE.

Papazoglou, M. (2008). The challenges of service evolu-
tion. In Advanced Information Systems Engineering,
volume 5074 ofLNCS, pages 1–15. Springer.

Reijers, H. A. and Liman Mansar, S. (2005). Best practices
in business process redesign: an overview and qual-
itative evaluation of successful redesign heuristics.
Omega, 33(4):283–306.

UML (2003). Uml 2.0 superstructure specification.
www.omg.org. Final Adopted Specification.

Weidmann, M., Alvi, M., Koetter, F., Leymann, F., Ren-
ner, T., and Schumm, D. (2011). Business process
change management based on process model synchro-
nization of multiple abstraction levels. InService-
Oriented Computing and Applications (SOCA), pages
1–4. IEEE.

Wu, Z., Yao, S., He, G., and Xue, G. (2011). Rules oriented
business process modeling. InIEEE International
Conference on Internet Technology and Applications
(iTAP), pages 1–4. IEEE.

Yu, W., Yan, C., Ding, Z., Jiang, C., and Zhou, M. (2014).
Modeling and validating e-commerce business pro-
cess based on petri nets.Systems, Man, and Cybernet-
ics: Systems, IEEE Transactions on, 44(3):327–341.

Zhang, Y. and Perry, D. (2014). A goal-directed modeling
technique towards business process. InIEEE 8th

Business�Process�Generation�by�Leveraging�Complete�Search�over�a�Space�of�Activities�and�Process�Goals

239

International Symposium on Service Oriented System
Engineering (SOSE), page 110 121. IEEE.

APPENDIX

Algorithm 1: Algorithm for generating tree for n initial
elements.

1: procedure GENERATETREE()
2: Begin
3: Create root for START EVENT at level 0; ⊲

initialization
4: Build level 1 with elements for all of the n distinct

tasks, an XOR split and an AND split;
5: k← 2 ⊲ variable k represents current level
6: T ← n−k+1 ⊲ T is the number of remaining tasks
7: repeat
8: ∀task at level k, 2≤ k ≤ n+1
9: Choose all of the remaining n-k+1 distinct

tasks, an XOR split, and an AND split as possible next
elements;

10: ∀XOR split at level k,
11: Choose the possible next elements in
12: for i = 2 to n−k+1 do
13: Generate all possible ways of i-way split

from n-k+1 task
14: if thenumbero f siblingtask 6= NULL then
15: the next element is an XOR join
16: else
17: return NULL
18: end if
19: end for
20: ∀AND split at level k,
21: Choose possible next elements in
22: for i = 2 to n−k+1 do
23: Generate all possible ways of i-way split

from n-k+1 tasks
24: if thenumbero f siblingtask 6= NULL then
25: the next element is an AND join
26: else
27: return NULL
28: end if
29: end for
30: ∀XOR join at level k, 2≤ k ≤ n+1
31: Choose all of the remaining n-k+1 distinct

tasks, an XOR split, and an AND split as possible next
elements;

32: ∀AND join at level k, 2≤ k ≤ n+1
33: Choose all of the remaining n-k+1 distinct

tasks, an XOR split, and an AND split as possible next
elements;

34: T = T −1;
35: until number of remaining tasksT < 1
36: End

Algorithm 2: Algorithm for extracting all possible process
from the tree for n initial elements.

1: procedure EXHAUSTIVEMODELGENERATION()
2: Begin
3: mark all nodes in the tree as .NOT. REACHED;
4: count = n ⊲ count stores number of nodes yet to be

processed
5: repeat
6: pick any one of the node, say X, at level 1 as

starting node;
7: mark X as REACHED;
8: place X on READY list;
9: count = count−1;

10: repeat
11: pick a node A from the READY list;
12: find the child nods for A;
13: if A represents XOR or ANDthen
14: discard the node;
15: Break;
16: end if
17: if A and its child node represents two con-

secutive XOR or AND splitthen
18: discard the nodes;
19: Break;
20: end if
21: if node A representing XOR or AND split

that do not have siblingsthen
22: discard the nodes;
23: Break;
24: end if
25: if the same tasks occurs after XOR or AND

split or join node thenthen
26: discard the nodes;
27: Break;
28: end if
29: mark the node A as REACHED;
30: add A to READY list;
31: count = count−1;
32: print the READY list;
33: until READY list is empty;
34: until count < 1
35: End

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

240

“BPELanon”
Protect Business Processes on the Cloud

Marigianna Skouradaki1,Vincenzo Ferme2, Frank Leymann1, Cesare Pautasso2, Dieter H. Roller1

1Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, Germany
2Faculty of Informatics, University of Lugano (USI), Lugano, Switzerland

fskourama, dieter.h.roller, leymanng@iaas.uni-stuttgart.de, fvincenzo.ferme, cesare.pautassog@usi.ch

Keywords: Anonymization, BPEL, Workflows, Business Processes.

Abstract: The advent of Cloud computing supports the offering of many Business Process Management applications on a
distributed, per-use basis environment through its infrastructure. Due to the fact that privacy is still an open
issue in the Cloud, many companies are reluctant to move their Business Processes on a public Cloud. Since the
Cloud environment can be beneficiary for the Business Processes, the investigation of privacy issues needs to
be further examined. In order to enforce the Business Process sharing on the Cloud we propose a methodology
(“BPELanon”) for the anonymization of Business Processes expressed in the Web Service Business Process
Execution Language (BPEL). The method transforms a process to preserve its original structure and run-time
behavior, while completely anonymizing its business semantics. In this work we set the theoretical framework
of the method and define a five management layers architecture to support its realization. We developed a tool
that implements the “BPELanon” method, validate its functionality and evaluate its performance against a
collection of real-world process models that were conducted in the scope of research projects.

1 INTRODUCTION

In the recent years the Cloud revolutionized many In-
formation Technologies, one of the affected fields is
this of Business Process Management. In this case
Cloud environments are used to deploy and execute
Business Processes (BP)(Amziani et al., 2012) and pro-
vide them as a Service (BPaaS)(Wang et al., 2010) that
is provisioned through Platform as a Service (PaaS)
(Hahn et al., 2014) solutions. The adoption of a Cloud
solution can be targeted on public, private or hybrid
Cloud solutions (RightScale, 2014). However, when
outsourcing the BP to the public Cloud consumers lose
the control of their data(Chow et al., 2009). Because of
this weakness many companies are reluctant to adopt
public Cloud solutions(Ko et al., 2011).

Cloud solutions have been proven more benefi-
ciary for the companies, in comparison to the iso-
lated business model followed by now (Accorsi, 2011).
Therefore, privacy issues on the Cloud are currently
discussed in the literature (Bentounsi et al., 2012;
Jansen, 2011; Doelitzscher et al., 2010; Anstett et al.,
2009). To reach these objectives we propose a method
and implement a tool to anonymize or pseudonymize
Business Processes expressed in the Business Pro-
cess Execution Language (BPEL). The proposed so-

lution produces an anonymized or a pseudonymized
BP for safe deployment and execution on the Cloud.
The anonymized/pseudonymized BP will maintain
its executional and timing behavior. In the case of
pseudonymization the output of the executed BP can
also be mapped back to the original, non-anonymized
version of the BP.

This work has a focus on the BP, which means
that the data and Web Services that surround the BP
will be simulated in a “dummy” way. Later on, our
solution can be extended or combined with already
existing solutions for data(Sedayao, 2012; Zhang et al.,
2014) and Web Services(Doelitzscher et al., 2010)
anonymization to protect the company’s artifacts to
the maximum possible degree. The contributions of
this work are as follows:

1. identify the requirements of anonymizing or
pseudonymization a BP

2. propose a method (“BPELanon”) that identifies the
critical attributes and exports the anonymized BP
containing the original BPEL BP without its busi-
ness semantics, but solely its executable structure

3. provide and explain a tool that implements the
method introduced

4. validate the tool’s functionality and evaluate its

241

performance through a collection of real-world
BPEL BP that were conducted under the scope of
research projects

This paper extends the work described in (Sk-
ouradaki et al., 2014) in terms of the realization, valida-
tion, and evaluation of a tool that supports “BPELanon”
method. It is structured as follows: Section 2 ana-
lyzes the requirements and upcoming challenges of
the method to be developed; Section 3 describes the
design of the method; Section 4 provides a concrete
realization of our approach; Section 5 validates the
functionality of the “BPELanon” through case studies,
and evaluates its performance against 24 real-world
BP; Section 6 discusses related work that has been
done for anonymization; and Section 7 summarizes
and discusses an outlook to future work.

2 APPROACHING THE
PROBLEM

2.1 Requirements

The design of “BPELanon” must address the follow-
ing initial list of requirements identified during our
work in various research projects, and especially dur-
ing our collaboration with industry partners. The main
requirement and purpose of method is to:
[R1:PSEUDONYMIZATION/ANONYMIZATION]
Support both pseudonymization and anonymization of
BP upon the user’s choice. Pseudonymization is the
technique of masking the data, while maintaining ways
to the original data (Federal Ministry of Justice, 1990).
On the contrary, anonymization changes the critical
data and makes it impossible to trace back the original
version of data (Strauch et al., 2012). Providing the
option of pseudonymization makes it possible for the
originator to trace bugs or inconsistencies found in the
anonymized file, and apply changes to the original.

In order to guarantee the satisfaction of
[R1:PSEUDONYMIZATION/ANONYMIZATION]
a number of other requirements occur. These can be
grouped to requirements that stem from the XML
nature of BPEL. XML-specific requirements:
[R2:NO SENSITIVE INFO]
Scramble the company’s sensitive information that
can be revealed in activity names, variable names,
partner link names, partnerlink type names, port
type names, message names, operation names, role
names, XSD Element names, namespaces, and XPath
expressions. The name choice for these attributes is
usually descriptive, and reflects the actual actions to
which they correspond. So they can reveal a lot of the

BP semantics.
[R3:NO NAMESPACES INFO]
The exported BP must not contain namespace
information in incoming links to external web sites
that reveal business information (backlinks).
[R4:NO BACKLINK INFO]
The exported BP must not contain names (including
activity names, variable names, partner link names,
partnerlink type names, message names, operation
names, role names, and XSD Element names) with
backlinks to business information .
[R5:NO XPATH INFO]
The exported BP must not contain XPath expressions
with backlinks to business information. If no custom
XPath functions are used, [R5:NO XPATH INFO] is
a consequence of requirement [R4:NO BACKLINK
INFO].
[R6:NO DOCUMENTATION INFO]
Remove description containers (comments and
documentation) that reveal critical information and
semantics .

BPEL-specific requirements:
[R7:KEEP STRUCTURE & EXECUTABILITY]
The exported BP must keep the structural information
and executability.
[R8:KEEP RUNTIME]
The exported BP must maintain an equivalent run-time
behavior.
[R9:KEEP TIMING]
The exported BP must maintain equivalent timing be-
havior.

The following requirements are related to the
renaming method that will be applied:
[R10:PREVENT REVERSE ENGINEERING]
It has to be ensured that the scrambled name prevents
reverse engineering to get the original names. For
example if data is encrypted with a known function
(e.g., RSA, MD5) and we know the used key, then it is
easy to obtain the original data.
[R11:AVOID CONFLICTS]
Names must be chosen in a way that conflicts are
avoided between the original and exported file. For
example an easy name choice would be to change
each name with respect to its type followed by
an ascending ID. In this case the name of activity
“Payment” would have been changed to the name
“Activity1”. Nevertheless, this way is not considered
safe. “Activity1” could also have been a possible name
choice for the original BP as it is a word frequently
met in Business Process Management. This would
lead to a sequence of conflicts. Which elements
named “Activity1” correspond to the anonymized
element and which to the one contained in the original
BP?

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

242

[R12:HUMAN READABLE NAMES]
The names must lead to an human-readable exported
file. For example let’s assume that we use UUIDs for
name choice. That would lead to activity names such
as: f81d4fae-7dec-11d0-a765-00a0c91e6bf6.
The exported file would not be easy to read for
humans.

2.2 Challenges

This section analyzes the challenges that stem from
the need to satisfy the requirements described in
Section 2.1. Each BP specification is wrapped in
a package which is a directory containing all de-
ployment artifacts. At the minimum the directory
should contain a deployment descriptor, and one or
more process definitions BPEL, Web Service Defi-
nition Language (WSDL), and XML Schema Defi-
nition Language (XSD) files(Apache Software Foun-
dation, 2013). Many dependency relations among
files as shown in Figure 1 increase the complexity of
anonymization as small changes in a file may lead to
numerous subsequent changes to other BP artifacts
[C1:SUBSEQUENT CHANGES]. The complexity is
also increased by the need to remove all sensitive in-
formation from the BPEL BP package [C2:NO SEN-
SITIVE INFO]. The renaming method also needs to
be carefully examined in order to keep timing, pre-
vent reverse engineering of the anonymization, avoid
conflicts between the names, and use human-readable
names.

The BPEL-specific requirements reveal a new set
of challenges that will be more complex to fulfill.
How do data and data specific decisions affect the run-
time behavior of the anonymized model? [C4:DATA
CHALLENGES]. How is BPEL life-cycle affected
by anonymization? [C5:BPEL LIFECYCLE]. To
what extend will timing behavior be maintained?
[C6:TIMING BEHAVIOUR]. We discuss these chal-
lenges in Section 5 and intend to further investigate
them in future work.

3 DESIGNING THE METHOD

This section describes the method that is used for de-
veloping “BPELanon”. Elements in a BPEL file can
be divided into three groups:
� Free Elements Group: Elements that need to be

anonymized, but are not bound to changes that
occurred in other files.

� Externally Bounded Group: Elements that need
to be changed because they were bounded with

Figure 1: Dependencies of the artifacts of a BPEL BP.

elements that are changed in the WSDL or XSD
files.

� Internally Bounded Group: Elements that need
to be changed because they are bounded to other
changed elements within the same file. Internally
Bounded Groups can be found in both BPEL, XSD
and WSDL files.

The anonymization of “Free Elements Group” is trivial,
as it can be reduced to string replacement. However,
the anonymization of “External Bounded Group” and
“Internally Bounded Group” are more complex tasks.
For its implementation we need a “Registry of Alter-
ations”. This is a registry of metadata that is created
during the anonymization of a file and logs the occur-
ring changes. It must contain at least the following
information: the element’s type, and the corresponding
attributes’ new and old data.

The main idea of the anonymization is to scan each
artifact of the BPEL BP looking for element attributes
that might contain semantics (critical attributes) that
need to be scrambled. Then add to the “Registry of
Alterations” their old and new value. The informa-
tion on which attributes are critical can be stored with
metadata. Next we scan the documents looking for
references to the scrambled elements and update their
values. Below we describe the anonymization method
for the “Externally Bounded Group”.

Anonymization starts with the creation of a meta-
data schema that reflects the interconnections shown
in Figure 1. Next we construct a “Table of Refer-
ences” that shows the relations between a BPEL BP
and its WSDL files. This is done by parsing the
<bpel:import> annotations of the BPEL file. We
then process the WSDL files, which contain the def-
initions for the artifacts that are referenced in BPEL.
We run through each one of the WSDL files in “Table
of References” and start anonymizing the attributes of
the elements step by step. In order to fulfill [R8:KEEP

"BPELanon"�-�Protect�Business�Processes�on�the�Cloud

243

Algorithm 1: Anonymization process of BPEL-WSDL for “WSDL Bounded Group”.

create TableOfReferences by parsing <bpel:import>annotations of BPEL
for all WSDL files W in tableOfReferences do

for all elements E in W do
a getCriticalAttributes(E)
for all a do

updateRegistryOfAlterations(E:type,a:type,a:data,“old”)
applyAnonymizationPattern(a:data)
updateRegistryOfAlterations(E:type,a:type,a:data,“new”)

end for
end for
for all element E in BPEL file do

a getCriticalAttributes(E)
for all a do

resultType findTypeOfInterconnection(E:type,a:type)
a:data getNewValueOfAttribute(resultType,a:data) ffrom registryOfAlterationsg

end for
end for

end for
if anonymization then

delete tableOfReferences
delete registryOfAlterations

end if

RUNTIME] the function of anonymization will pick
random words of an English Dictionary (WinEdt,
2000) as we argue that a word of well known human
language will lead to more readable results with re-
spect of using random strings as IDs. As discussed
in Section 2.1 we only focus on the anonymization
of critical attributes as not every attribute needs to
be anonymized. By maintaining a “Registry of Alter-
ations”, we apply the subsequent changes to the BPEL.
We have created an outer loop that repeats this process
for each WSDL file. Another option would be to parse
all WSDL files and finally apply the changes to BPEL
file in one parse. However, WSDL files might have
common names and this would lead to more complex
solution. We have therefore chosen this safer although
most likely more complex in execution time solution.

At the end of the process “Table of References” and
“Registry of Alterations” are destroyed if the tool is set
to anonymize and not pseudonymize. Algorithm 1 de-
scribes the above procedure. For reasons of simplicity
it focuses to the anonymization of a BPEL-WSDL set.
However, for the anonymization of the complete set of
artifacts presented in Figure 1 a similar process needs
to be followed. The complete process of the BPEL BP
anonymization is realized through the tool described
in this paper.

4 REALIZATION

In this section we present the realization approach of

the “BPELanon” method presented in the previous
section. “BPELanon” is implemented on a Java en-
vironment. As shown in Figure 3 the architecture of
the realization can be separated in five different man-
agement layers. The layer “Interaction Management”
refers to the part of the implementation that interacts
with the user (i.e. the person that want to anonymize
their BP); the layer “File Management” is responsible
for the managements of the BP files; the “Anonymize
Management” for the execution of the BP anonymiza-
tion; the “Rename Management” to provide the new
words to be used and finally the “Registry Manage-
ment” to log the changes to a registry.

At this point we will move one step further, to
the architectural details and see how the components
of the different layers interact with each other for
“BPELanon” realization. The components of the
“Interaction Management” are realized through a
graphical interface. With this the user can navi-
gate through the files of the BPEL BP, configure
if he needs anonymization or pseudonymization
[R1:PSEUDONYMIZATION/ANONYMIZATION],
and finally trigger the selected process. This user
interface is depicted in Figure 2.

When the user selects the BP, then the buttons
“Anonymize” and “Delete originals” become enabled.
The user can choose anonymize to scramble the data
of a BP (pseudonymize) and “Delete Originals” to lead
to complete anonymization of the BPEL BP.

The “Importer” of the interaction layer is responsi-
ble for parsing the files, creating the corresponding

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

244

Figure 2: User Interface of the realization of Interaction Management Layer.

Java objects, and calculates the “Table of References”
that is used to track down the existing dependencies.
With the usage of “Table of References” we are
achieving consistency in the exported file [R7:KEEP
STRUCTURE & EXECUTABILITY]. The mapping
of the dependencies as well as the parsed objects are
then given to the “Anonymizer” component, which is
basically responsible for the anonymization. In order
to calculate the critical elements, their attributes, and
their dependencies between the files, the layer has a
special anonymizer component (BPEL Anonymizer,
XPath Anonymizer, WSDL Anonymizer and XSD
Anonymizer) for each one of the BP artifacts. The
implementation of these components aims to the satis-
faction of the requirements [R3:NO NAMESPACES
INFO], [R4:NO BACKLINK INFO], [R5:NO XPATH
INFO] and [R6:NO DOCUMENTATION INFO].

The “Anonymizer” component, interacts with
the “Name Provider” component that is respon-
sible for fetching and providing random new
words to the “Anonymizer”. To accomplish its
goal the “Name Provider” interacts with an XML
database that realizes an English Dictionary retrieved
from (WinEdt, 2000). With this technique we
achieve to choose the new names in such way
that requirements [R2:NO SENSITIVE INFO],
[R10:PREVENT REVERSE ENGINEERING] and
[R12:HUMAN READABLE NAMES] are satisfied.
The “Anonymizer” interacts also with the “Registry
of Alterations” which as discussed is responsible
for logging the applied changes. By “Registry of
Alterations” we can achieve pseudonymization
[R1:PSEUDONYMIZATION/ANONYMIZATION]
as the changes have been recorded. If the registry is
deleted then we achieve anonymization. Requirement
[R11:AVOID CONFLICTS] is also satisfied through
the “Registry of Alterations” component as we track
the changes, and do the corresponding checks to avoid
conflicts. The anonymizer returns the anonymized
files to the “Exporter” component that will finally save
the anonymized project and notify the user through
the user interface.

The last step of our realization is the execution
of the anonymized BPEL BP. As expected, the
anonymized BPEL BP is searching to invoke services
that are anonymized, and thus nowhere implemented.
In order to make the anonymized BP executable we
need to create dummy services with respect to the new
values. This is implemented through the functionality
of creating mock-up services, offered by SOAP
UI 1. If the timing information has been initially
provided from the provider of the BP, then we can add
corresponding timers to the dummy services in order
to satisfy [R9:KEEP TIMING]. The demonstration of
the executable anonymized BP and evaluation of its
time performance are discussed in Section 5.

5 VALIDATION AND
EVALUATION

This section validates realization of the “BPELanon”
method through case studies. We visualize the pre-
sented BPEL BP with the BPEL Designer of Eclipse
IDE2 and for their execution we have used the Apache
ODE3.

During the validation process we had two limita-
tions: a) we are not allowed to publish our real world
processes and b) most of the real-world BP that are
collected until now are not executable. This is because
of the complexity to reproduce their runtime environ-
ment. For this reasons we make the first demonstration
through an artificial BP. The original artificial BP is
shown on the top part of Figure 5. The anonymized
version is shown at the bottom of the figure. This
BP represents a library BP through which a user can
choose to rent or return a book.

Hence, the BP starts with a “Pick” activity (cf.
“PickRentOrReturn”) in which the user chooses the
desired action. In the case of book rental the user as-

1http://www.soapui.org/
2https://eclipse.org/bpel/
3http://ode.apache.org/

"BPELanon"�-�Protect�Business�Processes�on�the�Cloud

245

Figure 3: Architecture of “BPELanon” realization.

Figure 4: The anonymized real-world BPEL Businsess Process.

signs the ID of the book to rent and the quantity of
copies. The BP waits for some seconds. This is be-
cause the “InvokeSearchService” is asynchronously
invoked, and combined with a correlation activity. The
“Search Service” searches for the book and availabil-
ity of copies and proceeds to the “InvokeRentService”

for the book rental. In the case where the book does
not exist or there is not sufficient number of copies
an exception is thrown. The second flow of the BP
“returnBookProcess” represents the return of a book to
the library. For this the “ReturnService” is invoked (cf.
“InvokeReturnService”) and the message is returned to

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

246

Figure 5: The original and anonymized BPEL Business Process with their execution details.

the user. The full BP package contains the BPEL file,
XSD and WSDL files as shown in Figure 6. There are
also XPath expressions used in many cases. One ex-
ample is the “IfCopiesAreAvailable” statement, where
the number of copies is compared to 0. The window

at the bottom of the BP shows an execution run where
a book rental is chosen.

Moving to the anonymized version of the BP at
the bottom part of Figure 5 we can see the scrambled
names [R2:NO SENSITIVE INFO] of the various ele-

"BPELanon"�-�Protect�Business�Processes�on�the�Cloud

247

Figure 6: The structure of artifacts of the artificial BPEL BP.

ments. These correspond to the “Free Elements” group
as discussed in Section 2.2.

As seen the names are human-readable
[R12:HUMAN READABLE NAMES] and they are
completely independent of the originals so reverse
engineering is prevented [R10:PREVENT REVERSE
ENGINEERING]. The anonymization of the other two
groups (“Externally Bounded Group” and “Internally
Bounded Group”) are basically shown through the
executability of the BP. Namely, if they are not
anonymized consistently the BP cannot be executed.

As seen in Figure 5 the structural information
of the BP and its executability (cf. console to the
bottom right corner) are preserved. Concerning exe-
cutability the user still has the option to pick which
BP flow to execute, input some data, and get a re-
sponse. The timer is also not changed, so the tim-
ing behavior [R9:KEEP TIMING] is maintained as
the rest of the activities are executed right away in
both the original and the anonymized BP. The fact
that the BP is executable proves that the files are
consistently anonymized and that conflicts between
the names in the original and anonymized files were
avoided [R11:AVOID CONFLICTS]. The anonymiza-
tion of namespaces (cf. xmlns:plo=“http://ploidy” in
Figure 5) apply to “Externally Bounded Group” as
they need to be applied consistently to all types of
files (i.e. BPEL, XSD, WSDL). The anonymization
of the name of the element in a complex type in XSD
file corresponds to the “Internally Bounded Group”
(cf. <defected> and <braining> elements in Fig-
ure 5). Finally, as we show in the console the back-
links in the namespaces are also anonymized [R3:NO
NAMESPACES INFO],[R4:NO BACKLINK INFO]
and [R5:NO XPATH INFO].

As the example shown in Figures 5 has simple
structure, we also validate our implementation with a
real-world BP shown in Figure 4. The BP is conducted
in the scope of a research project and was originally a
scientific workflow. The real-world BP are confidential

and thus it cannot be shown in original format. For
this reason we only provide the anonymized version
of the model. Figure 4 shows a selected zoomed-out
representative part of the model to demonstrate the
anonymization. Despite the structural complexity of
the BP it is also anonymized consistently. In the case of
“Else if” elements, the name has been also anonymized,
but the BPEL designer chooses to show by default the
“Else if” keyword to indicate the alternative path.

In order to check the algorithm’s performance we
ran our experiments on a notebook equipped with Intel
Core i7-3520M CPU and 16GB RAM. The machine
is running on Windows 7. As we discussed, we re-
alized the algorithm on a Java environment. For the
experiments we have used a set of 24 real-world BP
that were conducted in the scope of research projects.
Anonymization for each model was executed three
times, and the corresponding timings were collected.
Figure 7 shows how the algorithm performed for
the anonymization of the models. The vertical axis
shows the corresponding average execution times of
the anonymization runs. The horizontal axis shows the
total of XML elements of the BPEL BP artifacts and
was calculated as defined by Equation 1.

åfXMLElementsg e =

(åi2fBPELgXMLelement(i) 2 BPEL)8BPEL f ile+

(åi2fBPELgXMLelement(i) 2 BPEL)8BPEL f ile+

(åk2fWSDLgXMLelement(k) 2WSDL)8WSDL f ile+

(ål2fXSDgXMLelement(l) 2 XSD)8XSD f ile+

å j2fDDgXMLelement(j) 2 DeploymentDescriptor

(1)
As seen in Figure 7 more than half of the models

(14) have up to 1000 XML elements while the rest span
from the values 1000 - 5000 XML elements. Concern-
ing the execution times we can see that the algorithm

Figure 7: Performance of “BPELanon”.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

248

performs in a linear O(n) complexity where n is the
total number of XML elements of the BP. For lower
times we can see more points on the execution time
trendline. This shows that the execution time is highly
related to the number of XML elements. As the BP get
more complicated we can see that the points have some
distance from the execution trendline. This indicates
that the XML elements are not the only factor affecting
the execution times. We suspect that the structure of
the BP, the total number of files to access, and the total
number of the applied replacements also play a role
to the performance. However, this assumption needs
more data and was left for future work.

6 RELATED WORK

Cloud computing has introduced even more privacy
issues, prompting researchers and companies to fo-
cus and propose ways to tackle these issues. Some
of these issues have been resolved through the use of
anonymization of data, Web Services or BP. (Sedayao,
2012) discuss data anonymization in Cloud environ-
ments and state that “data anonymization can ease
some security concerns, allowing for simpler demil-
itarized zone and security provisioning and enabling
more secure cloud computing”. (Zhang et al., 2014)
deal with the challenge of guaranteeing privacy on data
shared in public Cloud infrastructures. They have a fo-
cus on data analysis and propose a privacy-preserving
framework based on MapReduce4 on Cloud. Most of
the approached we were able to find discuss about data
anonymization and since the BP deal also with data,
they can be seen as complementary to our approach.

In the field of Business Process Management we
were not able to find any other approach that describes
a distinct method to anonymize BP expressed in BPEL
language. Nevertheless, anonymized BP are already
used in existing projects. For example in (Kunze
et al., 2011) anonymized models are used in a large
public collection of BP, but the method followed to
anonymize the BP is not discussed, and the BP in this
collection are not in an executable format. Bentounsi
et al. (Bentounsi et al., 2012) propose a method to
publish BP on the Cloud by maintaining privacy. How-
ever, this approach is based on fragmenting the BP
and sharing some parts of it. The sensitive data of the
client are anonymized but the context of the fragment
is maintained. Adopting this approach would not serve
our goal, since we want to encourage the sharing of
the complete BP while completely hiding any business
information.

4http://research.google.com/archive/mapreduce.html

Towards the realization of our method the tools
XMLAnonymizer(XMLanonymizer, 2010) and XM-
LAnonymizerBean(SAPTechnical.COM, 2007) were
found. XMLAnonymizer is a primary approach
to anonymization that focuses on changing the at-
tribute value of the XML file ([R4:NO BACKLINK
INFO] partially covered). The XMLAnonymizerBean
anonymizes elements and attributes by removing the
namespaces of an XML file ([R3:NO NAMESPACES
INFO] partially covered). Overall, these utilities par-
tially satisfy the requirements of “BPELanon”. The
“BPELanon” method is a more complex approach
since it deals with all the requirements and challenges
described in section 2.2.

7 CONCLUSION

In this paper we have proposed a method
(“BPELanon”) for the anonymization of BPEL
BP, that can be valuable when sharing BP on the
Cloud, where privacy of personal data, and compet-
itive assets are an open issue. The anonymization
of a BPEL BP can be complex due to the numerous
artifacts that comprise the BP, and the dependencies
that exist among these files. For anonymization of
a BP one needs to know the critical elements that
need anonymization, and the dependencies between
the participating artifacts, in order to track down
the sequences of changes that need to be applied.
We validated both the method and the tool through
case studies of an artificial BP and a real-world BP.
We evaluated the method’s performance through 24
real-world BP conducted in the scope of research
projects.

In future work we will investigate what is the
impact of anonymization to the BPEL BP life-cycle
and the ways that data and data dependent decisions
are influenced by anonymization. For the complete
anonymization of a BP we need to combine it or im-
plement also methodologies for Web Service and Data
anonymization. It is then essential that the first release
of the complete “BPELanon” will then be distributed
to companies for evaluation and usage on public Cloud
environments.

ACKNOWLEDGEMENTS

This work is funded by BenchFlow project (DACH
Grant Nr. 200021E-145062/1). The authors would
like to thank B. V. Tahil and N. Siddam for their con-
tribution towards the realization.

"BPELanon"�-�Protect�Business�Processes�on�the�Cloud

249

REFERENCES

Accorsi, R. (2011). Business process as a service: Chances
for remote auditing. 35th IEEE COMPSACW, pages
398–403.

Amziani, M., Melliti, T., and Tata, S. (2012). A generic
framework for service-based business process elastic-
ity in the cloud. BPM’12, pages 194–199, Berlin,
Heidelberg. Springer-Verlag.

Anstett, T., Leymann, F., Mietzner, R., and Strauch, S.
(2009). Towards bpel in the cloud: Exploiting dif-
ferent delivery models for the execution of business
processes. ICWS’09, pages 670–677. IEEE Computer
Society.

Apache Software Foundation (2013). Creating a process.
http://ode.apache.org/creating-a-process.html.

Bentounsi, M., Benbernou, S., Deme, C. S., and Atallah,
M. J. (2012). Anonyfrag: An anonymization-based
approach for privacy-preserving bpaas. Cloud-I ’12,
pages 9:1–9:8, New York, NY, USA. ACM.

Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Ma-
suoka, R., and Molina, J. (2009). Controlling data in
the cloud: Outsourcing computation without outsourc-
ing control. CCSW ’09, pages 85–90, New York, NY,
USA. ACM.

Doelitzscher, F., Reich, C., and Sulistio, A. (2010). De-
signing cloud services adhering to government privacy
laws. CIT ’10, pages 930–935.

Federal Ministry of Justice (1990). German Federal Data
Protection Law.

Hahn, M., Sáez, S. G., Andrikopoulos, V., Karastoyanova,
D., and Leymann, F. (2014). SCEMT : A Multi-tenant
Service Composition Engine. SOCA’14, pages 89–96.
IEEE Computer Society.

Jansen, W. (2011). Cloud hooks: Security and privacy issues
in cloud computing. HICSS ’11, pages 1–10.

Ko, S. Y., Jeon, K., and Morales, R. (2011). The hybrex
model for confidentiality and privacy in cloud com-
puting. HotCloud’11, pages 8–8, Berkeley, CA, USA.
USENIX Association.

Kunze, M., Luebbe, A., Weidlich, M., and Weske, M. (2011).
Towards understanding process modeling – the case
of the bpm academic initiative. volume 95 of BPMN
2011, pages 44–58. Springer Berlin Heidelberg.

RightScale (2014). 2014 state of the cloud report from
rightscale. http://www.rightscale.com/lp/2014-state-of-
the-cloud-report.

SAPTechnical.COM (2007). Xml anonymizer bean in
communication channel to remove namespace pre-
fix in xml payload. http://www.saptechnical.com/
Tutorials/XI/XMLPayload/Index.htm.

Sedayao, J. (2012). Enhancing cloud security using data
anonymization. Intel IT, IT@ Intel White Paper. IT
Best Practices, Cloud Computing and Information Se-
curity.

Skouradaki, M., Roller, D., Pautasso, C., and Leymann, F.
(2014). BPELanon: Anonymizing BPEL processes.
ZEUS ’14, pages 9–15.

Strauch, S., Breitenbücher, U., Kopp, O., Leymann, F., and
Unger, T. (2012). Cloud Data Patterns for Confiden-
tiality. CLOSER ’12, pages 387–394. SciTePress.

Wang, M., Bandara, K. Y., and Pahl, C. (2010). Process
as a service. IEEE SCC ’10, pages 578–585. IEEE
Computer Society.

WinEdt (2000). WinEdt Dictionaries. http://
www.winedt.org/Dict/.

XMLanonymizer (2010). XMLanonymizer - utility
to anonymize data of an xml file. https://code.
google.com/p/xmlanonymizer/.

Zhang, X., Liu, C., Nepal, S., Yang, C., and Chen, J. (2014).
Privacy preservation over big data in cloud systems.
Security, Privacy and Trust in Cloud Systems, pages
239–257. Springer Berlin Heidelberg.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

250

Automated Mapping of Business Process Execution Language to
Diagnostics Models

Hamza Ghandorh1 and Hanan Lutfiyya2

1Department of Electrical and Computer Engineering, Western University, London, Ontario, Canada
2Department of Computer Science, Western University, London, Ontario, Canada

fhghandor, hlutfiyyg@uwo.ca

Keywords: Web Service Composition Diagnosis, Codebook Technique, BPMN Mapping.

Abstract: This paper illustrates how a specification of a business process can be automatically mapped to a fault diag-
nostic model. Observed failures at run-time are quickly analyzied through the diagnostic model to determine
the faulty service.

1 INTRODUCTION

Web services are loosely-coupled, self-contained,
and self-describing modules that perform a pre-
determined task. Services can be used in multiple
applications and thus are reusable. A service of a
particular type can be replaced by another service if
necessary. The architectural paradigm for organiz-
ing distributed applications based on a composition
of web services, which may be under different own-
ership, is referred to as a Service-Oriented Architec-
ture (SOA) (Papazoglou and Van Den Heuvel, 2007) .
These compositions can be used to implement a busi-
ness processes (Lins et al., 2012).

A fault (Garza et al., 2007, Alam, 2009) is a defect
in either hardware or software that causes a failure. A
failure occurs when a service deviates from expected
behaviour. To illustrate the relationship between fault
and failure consider the following example. A hard-
ware power loss causes a service to become unavail-
able. The cause of the hardware power loss is the fault
and the failure is that the service has become unavail-
able. In another example an unexpected load may re-
sult in a service provider in not providing a response
in the expected time i.e., a Quality of Service (QoS)
requirement may be violated. The cause of the unex-
pected load is the fault and the failure is the violation
of the QoS requirement.

A fault (or problem) may cause multiple failures
(often referred to as symptoms). For example, a com-
position of services could have service WSi that com-
municates with WS j and WS j communicates with
WSk. If WSk becomes unavailable then WS j may not
be able to complete a request from WSi and thus WSi

observes a failure of WS j. Another example can be
seen in a composition which consists of services WSi,
WS j, WSk and WSl . The first three of these services
are clients of WSl . If the machine that WSl is hosted
on goes down (and thus WSl is not available) then the
other services observe a failure of WSl . Fault diagno-
sis is used to determine a fault and often includes anal-
ysis of notifications of failures (referred to as events).

To provide a robust service experience, it is im-
portant to have an effective and efficient mechanism
for fault diagnosis (Zhang et al., 2012a). Model-based
fault diagnosis performs fault diagnosis through mod-
els. Some of these, e.g., codebook, have been shown
to be effective in practice. Many fault diagnosis mod-
els require knowledge of the application configura-
tion. With the sheer number of possible applications
there is a need to automate the development of a fault
diagnosis model.

This paper proposes an approach to the generation
of a fault diagnosis model based on a notational rep-
resentation of a business process. We show the fault
diagnosis model can be used in the management of
service compositions.

This paper is organized as follows: Section 2 pro-
vides the background, Section 3 presents related work
on fault diagnosis, Section 4 presents the proposed ap-
proach. Section 5 describes the architecture of man-
agement system for a diagnostic module that uses our
approach, Section 6 describes the results of the test-
ing of our implementation, and Section 7 concludes
the paper.

251

2 BACKGROUND

This section describes fault diagnosis and a notation
for describing a business process.

2.1 Fault Diagnosis

The process of fault diagnosis requires the following:
fault detection, fault localization, and testing (Stein-
der and Sethi, 2004). Fault detection is the process
of capturing symptoms (Hanemann, 2007). Detec-
tion techniques can be based on active schemes (e.g,
polling to determine availability) and/or symptom-
based schemes, where a system component indicates
that it has detected a failure. Examples of proposed
fault detection techniques can be found in Angeli et
al (Angeli and Chatzinikolaou, 2004) and Hwang et
al (Hwang et al., 2010).

Fault localization typically requires an analysis of
a set of observed symptoms. The goal of fault local-
ization is to find an explanation of the symptoms’ oc-
currence. The explanations are delivered in the form
of hypotheses. Hypotheses are statements which ex-
plain that each observed symptom is caused by one or
more designated problems. Based on these hypothe-
ses, a testing step is performed in order to determine
the actual problems through the application of a suit-
able testing mechanism (Steinder and Sethi, 2004).

There are several fault localization techniques
techniques. One of these, event correlation, attempts
to associate one symptom with another symptom in
order to infer the relationship between their occur-
rences (Tiffany, 2002). Through an examination of
these associations, a number of possible hypothe-
ses are generated that reflect the symptoms’ occur-
rence. There are several different types of correla-
tions, which are useful for diagnosing problems in a
network. One of these is described in 3.

In this work when we say that we are mapping
a business process specification to a fault diagnosis
model we are specifically referring to a model that
supports fault localization.

2.2 BPMN

One standard that can be used to model business pro-
cesses is referred to as Business Process Modeling
Notation (BPMN)(Alonso et al., 2004) (Endert et al.,
2007). BPMN has several notational elements. An
activity node represents a web service. A link repre-
sents different possible flows and is chosen based on
the result of the evaluation of a condition of an activ-
ity. A gateway represents decision points that repre-
sent a workflow’s conditions. A sequenceflow repre-

sents a link from a gateway node to an activity node.
A pool represents the combination of a composition
of flowobjects, gateways, and sequenceflows. A mes-
sageflow describes the exchange of messages between
pools, and an event describes the start or end point of
workflow. A pool may have an activity flowobject that
can be represented by another pool. Each pool repre-
sents a workflow and a business process is associated
with a set of pools. An example of a business pro-
cesses workflow modelled as a BPMN specification
is presented in Figure 1.

3 RELATED WORK

Steinder et al. (Steinder and Sethi, 2004) proposed a
classification of fault localization techniques which is
derived from graph-theoretic techniques and included
techniques such as codebook, context-free grammar,
and bipartite causality approaches. Graph-theoretic
techniques rely on the use of graphs. The graphs in-
clude nodes that represent symptoms and problems,
while directed edges are used to model the relation-
ship between the problems and symptoms. Essen-
tially edges represent cause-effect relationships be-
tween problems and symptoms or symptoms and
other symptoms. An example is seen in Figure 3(a).
To create such a model, an accurate knowledge of cur-
rent dependencies among the system components is
required. The rest of this section briefly describes
representative work on fault diagnosis based on the
relationships between problems and symptoms.

Tighe et al. (Tighe and Bauer, 2010) imple-
mented a distributed fault diagnosis algorithm, pro-
posed by Peng and Reggia and is referred to as Par-
simonious Covering Theory (Peng and Reggia, 1990),
in a policy-based management tool called BEAT (Best
Effort Autonomic Tool) (Bahati et al., 2007). The al-
gorithm is concerned with the generation of plausi-
ble hypotheses or covers, based on given information
that comes from graph-theoretic models, prior to di-
agnosis. Hypotheses are delivered and grouped in or-
der to generate disorder-and-manifestation statements
that are forwarded to a decision making system for re-
covery actions.

Zhang et al. (Zhang et al., 2012b) proposed a
hybrid diagnosis method to diagnose web services’
problems in service-oriented architectures. Their
method combines dependency matrix-based diagno-
sis and a Bayesian network-based diagnosis. Al-
though the authors considered the reduction of the
computational complexity of services diagnosis, the
hybrid diagnosis method does not cope with the dy-
namic nature of SOA’s services, and Bayesian net-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

252

Figure 1: Simple BPMN example.

work diagnosis provides slow measurement.
Ardissono et al. (Ardissono et al., n.d.) proposed a

model-based diagnostic framework with autonomous
diagnostic capabilities to monitor the state of web ser-
vices. As a partially distributed approach, the frame-
work includes several local diagnosers, which is at-
tached to a web service or a composition, cooperate
with a global diagnostic service. As soon as local di-
agnosers notice a problem, they raise an alarm to the
global diagnostic service to detect it.

Most of the above work focuses on the models.
None of the work investigated shows how to automate
the development of a fault diagnosis model based on a
specification of a business process. However, there is
work (e.g., (Morán et al., 2011)) that takes a business
process specification and maps it to control rules.

4 PROPOSED APPROACH

This section describes our approach to using the
BPMN specification of a business process to a fault
diagnosis model.

4.1 Codebook Technique

Earlier we discussed that a fault may manifest itself in
the unexpected behaviour of a web service that is ob-
served by other web services. For our our fault diag-
nosis model we use a fault propagation model, which
describes which symptoms that may be observed if a
specific fault occurs (Kätker and Paterok, 1997). The
underlying mathematical structure is typically a graph
(Steinder and Sethi, 2004). For this work we chose the
codebook technique (Kliger et al., 1995). This tech-
nique was implemented in a network fault diagnostic
system and the results (Yemini et al., 1996) suggest
that this approach is highly scalable.

The codebook technique or coding technique
(Steinder and Sethi, 2004) uses a causality graph and
problem code (PC) matrix of a web service compo-
sition’s workflow to locate the source of failures. A
causality graph is a bipartite graph whose vertices can

be partitioned into two disjoint subsets V and W such
that each edge connects a vertex from V to one from
W (Caldwell, 1995). A PC matrix is a matrix repre-
sentation of a causality graph used to infer the causes
of observed symptoms. The PC matrix is built based
on the causality graph. An example of the causality
graph and the matrix are illustrated in Figure 3(a) and
3(b), respectively. The matrix consists of a column
that represents symptoms that problems cause. A ma-
trix entry either has the value of zero or one. For ex-
ample, the value of one assigned at PC [1;1] position
in PC matrix indicates that symptom S1 can be ob-
served for problem P1. The value of zero assigned at
PC [1;3] position indicates that symptom S1 can not
be observed for problem P3.

At run-time a problem will cause one or more
symptoms to be generated. From this a string can be
formulated. If the ith symptom was observed then the
ith position in the string is one otherwise it is zero.
This string will be referred to as a current symptoms
vector (CSV).

The diagnosis process uses the Hamming dis-
tance. The Hamming distance is the minimum num-
ber of substitutions that transforms one string into the
another. For example, the Hamming distance between
two words “toned” and “roses” is three letters and the
Hamming distance between the two strings 1011101
and 1001001 is two bits (MacKay, 2005). Each value
in a column in the PC matrix is compared with its
corresponding code in a given CSV. If both values are
identical (i.e, the value in the column in the PC ma-
trix and its corresponding code in the given CSV are
the same), the Hamming distance value is denoted as
zero. Otherwise, the Hamming distance is denoted
as one. The values are then summed to determine
the Hamming distance of the two words. The mini-
mum of the Hamming distance values is an indicator
of the corresponding problems as the causative prob-
lems. For the PC matrix, if the given CSV is 11000,
the Hamming distance is (0,4,4) for columns labeled
P1,P2 and P3 respectively. Thus, the causative prob-
lem was P1. If the given CSV is 11101, the Hamming
distance is (2,2,4) for columns labeled P1, P2 and P3 .
Thus, the causative problems are limited to P1 and P2.

Automated�Mapping�of�Business�Process�Execution�Language�to�Diagnostics�Models

253

Figure 2: Office Business Process BPMN.

(a) Causality Graph (b) PC matrix

Figure 3: Example of causality graph and PC matrix (Stein-
der and Sethi, 2004).

4.2 BPMN Mapping

The BPMN mapping is done through the transforma-
tion from BPMN graphs to a composition dependency
(CD) graph which is done prior to determining the
causality graph. For illustration purposes, Figure 2
presents BPMN model for a office business process,
which is concerned with delivering only important
mails to the manager office through different filters.
The transformation from BPMN to a CD graph is per-
formed as follows: assume that a CD graph is repre-
sented as (V ,E). Each BPMN atomic activity node is
a node in V . If a decision point follows an activity
then the node in V representing the activity will have
two outgoing edges. Edges represent different possi-
ble flows. Figure 4 depicts the CD graph for the office
business process, where P1 represents the Reception-
Representative service, P2 represents the TeaMan ser-
vice, P3 represents the Secretary service,P4 represents
the SecretaryAssistant service, P5 represents the Sec-
retaryAssistant2 service and P6 represents the Man-
ager service. We note that the granularity of the model
is limited to a service. Hence a problem, Pi, corre-
sponds to a service. We will use the notation Pi to
refer to both a problem and to a service.

Assume that the CD graph is represented as (V ,E)
while the causality graph is represented as (V 0,E 0)1.

1The causality graph vertices are known in advance

P6

P5 P4

P3P2P1

Figure 4: Abstract View of Office Business Process.

The set V 0 can be partitioned into two sets W ,X such
that each edge in E 0 connects a vertex from W to a ver-
tex in X . The set W is the set of potential problems.
Since each node in the CD graph represents an activ-
ity and any of these activities can be faulty then the set
of W is the same as the set V . Let v be a node in a CD
graph. This node represents a potential problem. Any
node, u, in the CD graph, for which there exists a path
from it to the node v, potentially could exhibit a fail-
ure condition if v becomes faulty. Any node that could
exhibit a failure condition is in set X . For a node u we
use the notation Pu to represent u as a problem and Su
to represent u as a symptom. Determining the causal-
ity graph of the CD graph requires these two algo-
rithms: Modified Deph-first Search (mdfs), and path-
Generator. The mdfs and pathGenerator algorithms
are presented in algorithm 1 and algorithm 2, respec-
tively. The mdfs algorithm takes as input a CD graph
and does a depth-first traversal. When all child nodes
of node v have been traversed then the pathGenera-
tor algorithm is used to generate all paths from node
v to each leaf node. These paths are used to produce
the causality graph. The causality graph of the office
business process is depicted in Figure 5.

The mdfs algorithm uses two variables: Vertices-
List, and BackTrackEdgesList. VerticesList is a list
that keeps track of each node’s label. The Back-
TrackEdgesList maintains a list of backtrack edges.
A backtrack edge (v,w) indicates that the mdfs algo-

based on the given information from a client about fault and
symptom quantities

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

254

P1

P2 P3

P4

P5

P6

S1

S2
S3

S4

S5

S6

Figure 5: Causality graph of the office business process.

rithm is revisiting node w and that not all of node w’s
children had yet been visited. White is a label that
indicates an unvisited node, which is the initial state
for all nodes. Gray is a label that indicates a node
has been visited but not all of its children have been
traversed. Black is a label that indicates a node has
been visited and all of its children have been pro-
cessed. When the input CD graph is received, mdfs
is triggered (line 1). If the current node being visited
is White, mdfs will assign the Gray label (line 3). The
mdfs algorithm examines each outgoing edge (lines 4-
5). If the node on the other end of the edge is labelled
White then this means that the node has not been vis-
ited and thus no paths have been generated (lines 6-
7). If the node on the other end of the edge is labelled
Gray then the edge is put in the BackTrackEdgesList
(lines 8-9). If there is no unvisited neighbour node for
the current node, mdfs executes the pathGenerator al-
gorithm in order to generate paths (line 12).

The pathGenerator algorithm is executed when all
nodes on the other end of the outgoing edges of node v
have been visited. The pathGenerator uses three vari-
ables: newPath, pathsW, and Paths. The newPath
variable is used to represent a sequence of nodes, and
pathsW represents a set that contains all the paths
from w to all leaf nodes. Paths is a container for all
possible paths. The pathGenerator algorithm is exe-
cuted when a current node v is received from mdfs.
The pathGenerator looks for outgoing edges of node
v. If there are no outgoing edges (line 2), the path-
Generator algorithm creates a new path, appends v
node in this path, and adds the path to Paths (lines
5-7). If there are one or many outgoing edges (line 8),
the pathGenerator algorithm retrieves each path asso-
ciated with w and creates a new path by putting to-
gether v and the path associated with w (lines 10-19).

The execution of the algorithms does not always
provide all paths. This happens where there is a cy-
cle. The existence of backtrack edges indicate a cy-
cle. Assume a backtrack edge: (v,w). The mdfs algo-
rithm will generate all paths from node w to leaf nodes

but the paths generated for node v will not include
those paths that start at w. For example, the edge
(P5,P2) is a backtrack edge in Figure 4. The paths
from the root node (P1) to all nodes in the office CD
graph are: ((P1) , (P1;P2) , (P1;P2;P3) , (P1;P2;P3;P6) ,
(P1;P2;P3;P4) ,(P1;P2;P3;P4;P5)) . After considering
the backtrack edge (P5,P2) , the paths will be: ((P1) ,
(P1;P2) , (P1,P2,P3) , (P1;P2;P3;P6) , (P1;P2;P3;P4)
, (P1;P2;P3;P4;P5) , (P1;P2;P3;P4;P5;P2)) . Paths
generated considering backtrack edges are done after
mdfs terminates. Let (v,w) be a backtrack node. Let
P be the set of paths. For each path that ends with w
create a new path that appends v to the path that ends
with w.

Algorithm 1: Modified depth-first search(mdfs).

Procedure: mdfs executed on receipt Graph G
with root node v

Input : G = (V;E) where
E = f(v;w) jv;w 2Vg and node v is
a zero indegree edge and all nodes
v are initially unvisited.

Variables : VerticesList carrys on all nodes,
White is label for unvisited node
state, Gray is label for the visited
but not finished node state. Black is
label for the finished node state.
BackTrackEdgesList carrys on
edges resulted from visiting Gray
nodes.

1 mdfs(G,v)
2 if VerticesList [v] = White then
3 VerticesList [v] = Gray
4 forall the e 2 G:incidentEdges(v) do
5 w = G:incidentEdges(v;e)
6 if VerticesList [w] = White then
7 mdfs(G;w)
8 else if VerticesList [v] =Gray then
9 putEdge(v,w,BackTrackEdgesList)

10 VerticesList [v] = Black
11 // when there are zero unvisited

nodes, backtrack
12 pathGenerator(v)

4.3 Diagnostic Models

The Codebook technique (Steinder and Sethi, 2004)
is used as our diagnostic model. Each path generated
starts from a node v and ends at a node w. If a problem
occurs in node w then it is possible that symptoms are
detected by each node in the path. Thus each path
generated is represented in PC matrix as a column.
We see this with Figure 5 and Table 1.

Automated�Mapping�of�Business�Process�Execution�Language�to�Diagnostics�Models

255

Algorithm 2: pathGenerator.

Procedure: pathGenerator executed on receipt
a graph G and node v

Input : Graph G and node v from mdfs
Variables : newPath, pathsW, and Paths
Output : Possible set of paths

1 begin
2 if G:incidentEdges(v) == null then
3 // Create a new path, add v

node in this path, and add the
path to Paths

4 newPath = null
5 newPath.append(v)
6 Paths = Paths [newPath
7 else
8 forall the e 2 G.incidentEdges(v) do
9 w = G:incidentEdges(v;e)

10 pathsW = emptySet
11 // Retrieve all previously

generated paths from w to
each leaf node reachable
from w

12 forall the p 2 Paths:get(w) do
13 newPath = null
14 newPath.append(v)
15 newPath.append(p)
16 pathsW.add(p)

17 Paths = Paths [pathsW

Table 1: Problem codes matrix for the office business pro-
cess.

P1 P21 P22 P3 P4 P5 P6
S1 1 1 1 1 1 1 1
S2 0 1 1 1 1 1 1
S3 0 0 1 1 1 1 1
S4 0 0 1 0 1 1 0
S5 0 0 1 0 0 1 0
S6 0 0 0 0 0 0 1

By apply the mdfs and pathGenerator algorithms
on the office CD graph, in Figure 5, since S4 can be
observed for P4, the PC[4;4] is assigned the value of
one. Since symptom S5 can not be observed for P6,
PC[5;6] has been assigned the value 0. All codes as-
signed to present the causality relationships in Fig-
ure 5 are portrayed in table 1. In table 1, there are two
columns representing different patterns that result in
symptoms associated with the web service that is as-
sociated with problem P2. These are represented by
(P21 , P22).

Fault diagnosis assumes a vector of symptoms that
have been reported. It is assumed that these symp-

toms are generated by a failure detection component
located within a composition. The Hamming dis-
tance between the vector and each column is calcu-
lated. The lower the value of the Hamming distance
the more likely that the column explains what is caus-
ing the symptoms.

For the office business process assume that the fol-
lowing symptoms are observed: P1 says that P2 has
timed out, P2 says that P3 has timed out, P3 says that
P4 has timed out, and P4 says that P5 has timed out,
and P5 says that P6 is not responding. For this pat-
tern of symptoms, the CSV is 111110. Based on the
PC matrix for the office business process, the result
list is depicted at Table 2. From Table 2, the causative
web service for the observed symptoms are P2 and
P5 since they have the minimum values between their
peers.

Table 2: Result list of the office business process.

P1 P21 P22 P3 P4 P5 P6
S1 0 0 0 0 0 0 0
S2 1 0 0 0 0 0 0
S3 1 1 0 0 0 0 0
S4 1 1 0 1 0 0 1
S5 1 1 0 1 1 0 1
S6 0 0 0 0 0 0 1
å 4 3 0 2 1 0 3

5 ARCHITECTURE

Section 4 presents an approach to automating the de-
velopment of a fault diagnostic model. This model
is part of the diagnosis module of a third party
third party policy-based management system (Hasan,
2011). The management system allows for Service-
Level Agreements (SLAs) to be negotiated. These
SLAs formalize the QoS requirements. Policies are
used for three types of decisions: service selection,
SLA violation and recovery policies (Hasan, 2011).
The service selection policy is defined by clients to
guide choice of services. The violation policy speci-
fies what constitutes a violation of an SLA. The recov-
ery policy is defined by clients that specifies recovery
actions to be taken when the management system de-
tects a SLA violation.

5.1 TPA

A key component in the management system is the
third party agent (TPA). The TPA carries out these
tasks: (1) allows all clients, providers, and provided
services to be registered with it; (2) negotiates SLAs,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

256

polices, and keeps track of violated SLAs; (3) gen-
erates events to indicate failures and performs recov-
ery actions. An overview of the TPA is presented as
Figure 6. The Registration Gate is responsible for
(1) forwarding a business process specification to the
BPMN Repository, which stores the BPMN specifi-
cation for each composition being managed by the
TPA. This is one of the inputs for the Diagnosis Mod-
ule. (2) forwarding relevant information about clients
and providers to the Negotiator. The Negotiator is re-
sponsible for maintaining an agreement (i.e. SLA)
between a client and a service provider if both parties
have a match between the former’s needs and the lat-
ter’s specification. These agreements are stored in the
Contract Repository. The Event Generator relies on
the stored information found in logs storage, such as,
information related to service invocations. The Event
Generator also “uses SLAs and SLA violation poli-
cies to generate events that represent SLA violations
... when the number [SLA violations] exceeds what
is specified in the SLA violation policy then an event
is generated”(Hasan, 2011). The diagnosis module
receives the generated events and uses the generated
diagnosic model to deliver a diagnostic hypotheses.
The Recovery Agent is responsible for analysing the
diagnosis module’s hypotheses and executing reactive
actions.

Figure 6: TPA with the Client Agent.

5.2 Diagnosis Module Overview

Our proposed diagnosis module provides a hypothe-
sis about the source of symptoms observed in a com-
position. The basic module architecture is presented
in Figure 7. There are main three components: (1)
The Mapper which transforms received BPMN spec-
ifications to PC matrix; (2) The Event Coordinator
which transforms the generated events to CSV; (3)
The Matcher which is responsible for matching PC
matrix and CSV to deliver a hypothesis to the Recov-
ery Agent. The Mapper is only used for new appli-

cations or if an application is modified. Otherwise at
run-time only the Event Coordinator and Matcher are
used. We note that our model narrows the problem to
a service. Further tests could be carried out to further
narrow down the root cause. However, for recovery
purposes it may be sufficient to know the service that
is causing failures and the action could be to select
another instance of the same type.

Figure 7: Diagnosis module with the TPA.

6 EVALUATION

After we implemented the Mapper, the Event Coor-
dinator, and the Matcher components, we tested our
diagnosis module on composition description graphs
to see if the module is able to accurately and correctly
determine the source of events. We ran the diagno-
sis module on a single machine with 2.66 GHz In-
tel Core 2 Duo processor, Mac OS X 10.6.8 , and
eight gigabyte 1.07 GHz memory. We used Netbeans
7.0.1 IDE to run tests and create or manipulate CSVs.
For the transformation from BPMN to the composi-
tion description graphs, we used a tool referred to as
the BPMN Modeler, which is an extension of eclipse
IDE (Eclipse, 2011). The BPMN Modeler is respon-
sible for creating a BPMN for a business process and
forwarding a BPMN textual description to the Map-
per component.

We applied our diagnosis module to nine subjects
which consists of: single or many joins (i.e. sin-
gle or many vertices’ edges ending in one vertex),
single or many splits (i.e. single or many vertices’
edges starting from one vertex and ending at an other
vertex), single or many cycles (i.e. single or many
vertices’ edges starting and ending at the same ver-
tex), self cycles (i.e. single vertex’ edges is starting
and ending at the same vertex), and trees (i.e. single
or more vertices are interconnected in a hierarchical
manner). For each performed test, we assumed that
one fault could happen for each subject. For each sub-
ject we did a test for each web service going down.
All evaluation results and specifications and execu-

Automated�Mapping�of�Business�Process�Execution�Language�to�Diagnostics�Models

257

Table 3: Nine CD graphs specifications.

No CD
Graph

Vertices
Number

Edges
Number

Single
Cycle

Self
Cycle

Many
Cycles

Single
Split

Many
Splits

Single
Join

Many
Joins

Diagnosis
Time 4

Execution
Time 5

1 Office
CD 6 6 � � � 3.2 1.68

2 CD 1 7 9 � � 5.8 1.85
3 CD 2 6 6 � 2 1.65
4 CD 3 10 10 � � 13.2 2.24
5 CD 4 11 12 � � 9 2.30
6 CD 5 16 20 � � 32.8 5.87
7 CD 6 100 114 � � � 328.8 16.16
8 CD 7 9 11 � � 9.4 1.93
9 CD 8 33 34 � � � 32.8 5.43
4 Time measured in milliseconds
5 Time measured in seconds

tion time of composition dependencies graphs are pre-
sented in table 3. A correct diagnosis was found 100%
of the time. In cyclic composition description graphs,
the diagnosis module indicates not only the problem-
atic node but also the closest predecessor node to the
causative node. The reason is that both the causative
node and the predecessor node have the same code in
the PC matrix. Thus, any faults occurring in either
these nodes will generate the same events in the com-
position.

7 CONCLUSION

This paper focused on an automated mapping of a
business process specification to a diagnostic model.
By using our diagnosis module the complexity of di-
agnosis can be hidden from system administrators by
outsourcing this functionality to a third party agent.
The proposed approach enhances the automated di-
agnosis for a large number of compositions. This
section briefly discusses the work and possible future
work.

Scalability. There are two aspects to this. At run-
time there is a need to compare a set of symptoms
with each column of the problem code (PC) matrix.
There has been considerable work on making this fast
as noted in (Steinder and Sethi, 2004) and the work
on a network fault management system (Yemini et al.,
1996) shows that the use of the codebook can be very
effective at run-time. This suggests that this approach
will be scalable at run-time for service compositions.
The second aspect is the generation of the PC ma-
trix. This requires two algorithms: mdfs and path-
Generator. The mdfs algorithm is based on a modified
depth-first search algorithm. Although compositions
may be large, it is unlikely they will be so large that
it would not be feasible to run the algorithms. We

note that the generation of the PC matrix only needs
to be done once for a specific composition. If a web
service is replaced by another web service there is no
need to generate a new PC matrix. If the composition
changes then a new PC matrix needs to be generated.
However, as future work will look at reusing part of
the computation of the PC matrix for an older version
of the application in order to reduce the time to create
a new PC Matrix if the application topology changes.

Granularity. The granularity of the diagnosis
model is limited to each service. If a service is con-
sidered to be a problem then a set of tests needs to be
carried out to investigate why the service is a problem
e.g., is the host down; is the service down. Further-
more it may be possible to use information in error
messages to improve the granularity. This will be a
topic of investigation for further studies. However, we
note that for recovery purposes the level of granularity
may often be satisfactory. If a service often violates
its SLA then it may feasible to replace it with another
service of the same type. The reasons for SLA viola-
tion are not necessarily relevant.

Mappings. This work considered only mapping
from a BPMN model to a codebook fault diagnosis
model. Further work will look at other businesses
processes specifications as well as other fault diag-
nostic approaches. The current version of the diag-
nosis module only uses the the codebook technique.
Since the coding phase is performed only once, the
codebook approach is very fast, robust, and efficient.
However, the accuracy of the codebook technique is
hard to predict when more than one problem occurs
with overlapping sets of symptoms. In addition, since
each change of system configurations requires regen-
erating the codebook, the technique is not suitable for
environments with dynamically changing dependen-
cies (Steinder and Sethi, 2004). We will enable the
module to use several event correlations techniques

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

258

by which the module will be able to regenerate more
efficient diagnostic knowledge bases.

ACKNOWLEDGEMENTS

The research for this paper was financially supported
by the Ministry of Education of Saudi Arabia, and
College of Computer Science and Engineering at
Taibah University2 and the Natural Sciences and En-
gineering Research Council of Canada (NSERC).

REFERENCES

Alam, S. (2009), Fault management of web services, Mas-
ter, University of Saskatchewan.

Alonso, G., Casati, F., Kuno, H. and Machiraju, V. (2004),
Web Services: Concepts, Architectures and Applica-
tions, 1st edition edn, Springer.

Angeli, C. and Chatzinikolaou, A. (2004), ‘Online fault de-
tection techniques for technical systems: A survey’,
International Journal of Computer Science and Ap-
plications 1, 51–64.

Ardissono, L., Console, L., Goy, A., Petrone, G., Picardi,
C. and Segnan, M. (n.d.), ‘Towards self-diagnosing
web services’, http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.75.1874.

Bahati, R. M., Bauer, M. A. and Vieira, E. M.
(2007), Policy-driven autonomic management of
multi-component systems, in ‘Proceedings of 2007
the conference of the center for advanced studies on
Collaborative research’, ACM, pp. 137–151.

Caldwell, C. (1995), ‘Graph Theory Glossary’,
http://www.utm.edu/departments/math/graph/
glossary.html#b. Online; accessed 05-June-2011.

Eclipse (2011), ‘BPMN Modeler’, http://eclipse.org/bpmn/.
Online; accessed 17-Oct-2011.

Endert, H., Hirsch, B., Küster, T. and Albayrak, S. (2007),
Towards a mapping from bpmn to agents, Proceedings
of the 2007 international workshop and 2007 confer-
ence on Service-oriented computing: agents, seman-
tics, and engineering, Springer-Verlag, Berlin, Heidel-
berg, pp. 92–106.

Garza, A., Serrano, J., Carot, R. and Valdez, J. (2007), Mod-
eling and simulation by petri networks of a fault toler-
ant agent node, in ‘Analysis and Design of Intelligent
Systems using Soft Computing Techniques’, Vol. 41
of Advances in Soft Computing, Springer Berlin / Hei-
delberg, pp. 707–716.

Hanemann, A. (2007), Automated IT Service Fault Diag-
nosis Based on Event Correlation Techniques, PhD
thesis, LMU Mnchen: Faculty of Mathematics, Com-
puter Science and Statistics.

2Taibah University site https://www.taibahu.edu.sa/
Pages/AR/Home.aspx

Hasan, M. S. (2011), Policy Based Third Party Web Service
Management, Master, University of Western Ontario.

Hwang, I., Kim, S., Kim, Y. and Seah (2010), ‘A survey
of fault detection, isolation, and reconfiguration meth-
ods’, Control Systems Technology, IEEE Transactions
on 18(3), 636–653.

Kätker, S. and Paterok, M. (1997), Fault isolation and event
correlation for integrated fault management, in ‘Inte-
grated Network Management V’, Springer, pp. 583–
596.

Kliger, S., Yemini, S., Yemini, Y., Ohsie, D. and Stolfo,
S. (1995), A coding approach to event correlation,
in ‘Integrated Network Management IV’, Springer,
pp. 266–277.

Lins, F., Damasceno, J., Souza, A., Silva, B., Aragão, D.,
Medeiros, R., Sousa, E. and Rosa, N. (2012), ‘To-
wards automation of soa-based business processes’,
International Journal of Computer Science, Engineer-
ing and Applications 2(2), 1–17.

MacKay, D. J. (2005), Binary codes, in ‘Information The-
ory, Inference & Learning Algorithms’, Cambridge
University Press, pp. 206–227.

Morán, D., Vaquero, L. M. and Galán, F. (2011), Elasti-
cally ruling the cloud: specifying application’s be-
havior in federated clouds, in ‘Cloud Computing
(CLOUD), 2011 IEEE International Conference on’,
IEEE, pp. 89–96.

Papazoglou, M. P. and Van Den Heuvel, W.-J. (2007), ‘Ser-
vice oriented architectures: approaches, technologies
and research issues’, The VLDB journal 16(3), 389–
415.

Peng, Y. and Reggia, J. A. (1990), Abductive inference mod-
els for diagnostic problem-solving, Springer-Verlag
New York, Inc.

Steinder, M. and Sethi, A. S. (2004), ‘A survey of fault lo-
calization techniques in computer networks’, Science
of Computer Programming 53(2), 165–194.

Tiffany, M. (2002), ‘A Survey of Event Correlation
Techniques and Related Topics’, http://citeseerx.
ist.psu.edu/viewdoc/summary?doi=10.1.1.19.5339.
Online; accessed 19-Dec-2010.

Tighe, M. and Bauer, M. (2010), Mapping policies to a
causal network for diagnosis, in ‘6th International
Conference on Autonomic and Autonomous Sys-
tems’, pp. 13–19.

Yemini, S. A., Kliger, S., Mozes, E., Yemini, Y. and Ohsie,
D. (1996), ‘High speed and robust event correlation’,
Communications Magazine, IEEE 34(5), 82–90.

Zhang, J., Huang, Z. and Lin, K.-J. (2012a), A hybrid
diagnosis approach for qos management in service-
oriented architecture, in ‘Web Services (ICWS),
2012 IEEE 19th International Conference on’, IEEE,
pp. 82–89.

Zhang, J., Huang, Z. and Lin, K.-J. (2012b), A hybrid
diagnosis approach for qos management in service-
oriented architecture, in ‘19th IEEE International
Conference on Web Services’, pp. 82–89.

Automated�Mapping�of�Business�Process�Execution�Language�to�Diagnostics�Models

259

Cross-layer Service Adaptation
State-of-the-Art, Shortcoming Analysis, and Future Research Directions

Ameni Meskini1, Yehia Taher2, Rafiqul Haque3 and Yahya Slimani1
1University of Carthage, INSAT, LISI research Laboratory, Tunis, Tunisia

2Laboratoire PRiSM, Universite de Versailles/Saint-Quentin-en-Yvelines, Versailles, France
3Laboratoire d'InfoRmatique en Image et Systèmes d'information, Université Claude Bernard Lyon 1, Lyon, France

{ameni.meskini, yehia.taher, yahya.slimani, akm-rafiqul.haque}@gmail.com, prism.uvsq.fr,
akm-rafiqul.haque@univ-lyon1.fr, fst.rnu.tn

Keywords: Web Service, Service based Application, Service Adaptation, Cross-layer Adaptation.

Abstract: In the past few years several cross-layer monitoring and adaptation technologies have been proposed.
Although these are cross-layer adaptation technologies, however, in practice they focus on a particular layer.
Some solutions involves two layers, yet none of the existing solutions do not consider all the layers during
adaptation process. Furthermore, cross-layer adaptation approaches generate incompatibility problems. This
is an adaptation coordination problem. Incompatibility refers to the situations where the adaptation is
performed in a layer is not compatible with the constraints exposed by the other layers. This survey aims at
studying and analyzing current approaches for web services adaptation, discussing their shortcomings and
proposing research directions on cross-layer web service adaptation.

1 INTRODUCTION

Service adaptation has drawn enormous research
interests in the area of Service Oriented Computing
(SOC) (Geihs et al, 2009). Adaptation from the
functional point of view can be defined as an ability
of a Service Based Application (SBA) (Bucchiarone
et al, 2009) to adapt changes or requirements that are

needed to guarantee fault-tolerance or to
optimize system performances.

While developing an SBA, it may not be possible
to capture all functional and nonfunctional
requirements because many times the requirements
evolve at runtime. Typically, an application is able
to carry out the operations (at runtime) that are
studied and documented during requirement
analysis. The unprecedented requirements that are
evolved at runtime may lead to failure. In other
words, applications are unable to perform the
operations that have not been realized.

This limitation gave rise to the notion of service
adaptation. Many new techniques such as service
replacement or adding new service have been
proposed to build adaptive SBAs. However, there
are several challenges that cannot be dealt with
efficiently by the existing techniques. One major
challenge is handling the impact of adaptation

operations. For instance, service replacement at
different layers of SBAs. It is worth noting that an
SBA has different layers (Papazoglou et al, 2008).
The notion of multi-layer SBAs relies on the Service
Oriented Architecture (SOA) (Liu et al, 2011)
paradigm. These layers interact with each other.

Thus, if a service is adapted in one layer (e.g.,
BPM layer), it may affect the other layers (e.g.,
orchestration layer). This promotes the notion of
cross-layer adaptation which is the main focus of
this paper. Cross-layer adaptation is a process of
adapting a service in different layers of SBAs. It
promotes configuration challenges. Several
techniques have been proposed to tackle these
challenges. This paper aims to investigate all
existing technologies, methodologies, and
techniques related to cross-layer adaptation. It
presents a comprehensive review of the state-of-the-
art, summarizes their strengths and weaknesses, and
identifies future research direction in this area.

This paper is organized as follows. In Section 2,
we present the review of the state-of-the art. We
discuss our findings in Section 3. A conclusion is
drawn in Section 4.

260

2 SERVICE ADAPTATION
APPROACHES

Although our focus in this paper is cross-layer
adaptation, we cover all the existing technologies
related to service adaptation. The purpose of this
study is to provide a comprehensive understanding
of the strength of service adaptation and also to
outline the limitations why traditional adaptation
technologies are unable to assist in cross-layer
adaptation. It is worth noting that although our study
mainly covers the service based systems, we try to
cover adaptation in the agent based systems as well.

2.1 Interaction-based Adaptation
Approaches

Interaction-based adaptation approaches deals with
interactions between web services such as, actions
required to mediate communications between web
services, and adapting the compositions of web
services in case of failure of a component. Unlike
the approaches that focus on QoS adaptation (of
instance composition), interaction-based adaptation
approaches are concerned with the changes and the
adaptation of interactions within a service
composition.

For example, re-engineering services to ensure
that they can integrate new components by
guaranteeing interoperability. Sometime adaptation
operations such as substitute to repair or to optimize
QoS are not sufficient for efficient adaptation. The
main reason is the emergence of new requirements
and additional constraints which may not be possible
to handle efficiently by he selected services. For
instance, a service may not be able to meet user
needs or may fail to handle heterogeneity of the
interfaces between services or communication
protocols. The objective of adaptation in this case is
not only to manage the QoS adaptation, but also to
ensure that the adaptation measures do not lead to
interaction failures. The composition and the
mediation are the most common solutions in such
situations.

In interactions-based adaptation, existing
approaches realize exchanging messages in service
compositions based on pre-defined policies such as
the policies proposed in (Baresi et al, 2007). This
involves the business processes which are essentially
composition of services. We found several services
composition-based adaptation approaches which we
discuss in this section. Baresi et al. (Baresi et al,
2007) address the problem of substitution of services

and the dynamic binding of the service providers in
order to repair failures. Their work targets the
adaptation of the workflows (defined using BPEL
(IBM, BEA Systems, Microsoft, SAP AG, Siebel
Systems, 2003) at runtime to select between
available alternatives based on nonfunctional
requirements, or to retry a service following in the
first choice. To enable the deployment and the
reconfiguration of service compositions during its
execution, the authors used a specification of BPEL
process which is enriched by a set of rules and
constraints for the discovery or dynamic service
binding until the time to execute.

The choice depends on the criteria defined by the
user during the establishment process. The proposed
framework can also exchange services based on the
events collected during the monitoring phase. It
relies on three actors: the registry service (DIRE)
(Baresi et al, 2007) that can be distributed between
the service providers, the runtime environment
(SCENE) (Baresi et al, 2007) with the rules of
discovery and binding, and monitoring features
(Dynamo) (Baresi et al, 2005) and (Baresi et al,
2007) that produce events to reconfigure the
processes.

The main limitation of this approach is the web
service composition language. The authors in
(Ardagna et al, 2007) propose an implicit approach
for adaptive composition of services within the
flexible processes. This approach is implemented in
business process management layer. The main
objective is to select the best set of services available
at run-time by taking the constraints of business
process, users preferences, and execution contexts
into account.

The authors introduce a new approach to model
the problem of service selection. This approach is
effective for large process and in the case of QoS
constraints are at extreme. In the proposed model,
the problem of service selection is formalized as a
mixed problem of linear programming, the loop
peeling is adopted in optimization, and the
constraints posed by the stateful web services are
considered.

2.2 Mediation-based Adaptation
Approaches

While composing interactions, services may
encounter heterogeneity problems. For instance,
interaction types can be different, incompatible
communication protocols; different semantics of
interactions promote the heterogeneity problem.

These problems may occur in different steps of

Cross-layer�Service�Adaptation�-�State-of-the-Art,�Shortcoming�Analysis,�and�Future�Research�Directions

261

composition. Also, the problems may occur while
adaptation actions carried out such as, during
substitution of a WS by another WS.

The solution of the heterogeneity problem is
called mediation which is critical to achieve
adaptation and composition of services. However,
additional mechanisms are needed for successful
interactions between web services and to perform
different adaptation actions (e.g., substitution, re-
selection, composition, etc.). Adaptation (in this
case “mediation) is an important functionality which
enables integration of business services. Generally
speaking, mediation resolves conflicts between two
actors. In the context of web services, mediation
aims to resolve heterogeneity between web services
in order to enable successful interactions (Chafle et
al., 2006).

One needs to generate a service that ensures
interactions between the two services with two
signatures, different protocols or interfaces, in order
to guarantee interoperability. The requirements of an
adaptation in these approaches stem from two
sources: (i) the level of heterogeneity in the upper
stack of interoperability (e.g., business level,
infrastructure protocols.), and (ii) the diversity of
customers, each one of them supports different
protocols and interfaces. Mediation can be automatic
(Williams et al., 2006) or semi-automatic (Reza et
al, 2007).

Taher et al, 2009 (Taher et al, 2009) propose a
multilayer software architecture. They propose a
framework for transparent and flexible substitution
of a service provider by another with respect to an
existed consumer. A framework for automatic
generation of adapters and service interfaces
modelling using automata was adopted to solve the
problem of incompatibility in the interaction
between two services: a consumer and a new
provider. If incompatibilities between these services
are detected, an adapter is generated automatically
based on the incompatibilities. The generation of the
adapter relies on the automata model. The generated
adapter contains a sufficient detail of the projected
technology called CEP (Complex Event Processing)
engine (Luckham et al, 2001).

However, unfortunately, the complex
incompatibilities were not considered in this tool.
For example, the implementation of several different
operations of customer service and a supplier service
is not possible by this tool.
The solution proposed in (Hau, 2003) uses OWL
(Dean, 2002) to annotate interfaces too. Both
solutions (proposed by Syu and Hau) have an
abstraction layer called meta-data space. Semantic

annotation is used to describe the methods of
services.

Meta-services use these annotations to find
appropriate matches between needs and
implementations. These solutions differ from the
other adaptation approaches. Two distinguished
aspects of these approaches are as follows:

 Their locations are dependent on
architectures in which they are embedded, and an
adoption concerning with the interfaces of web
service is often the responsibility of the service
provider.

 These approaches are platform dependent
such as they are dependent on languages
and composition engines

2.3 Cross-layer Adaptation
Approaches

The cross-layer adaptation refers to a process of
adapting a general system consisting of several
layers, where the technology and processes of each
layer are integrated and controlled by the same
adapter frame. In the context of SOA, this denotes a
consistent adaptation through the service interface of
different layers and applying a SOA system while
maintaining the characteristics such as loose
coupling and service autonomy.

The problem of monitoring and adaptation of
different types of software systems has gained
interests in both the research community and
industry. In recent years, these issues have promoted
interest in the area of SOA. However, the results and
directions are still insufficient. One of the key issues
here is that the proposed approaches are very
fragmented. They deal only with the problems which
are specific to a particular aspect of web service and
a particular functional layer, such as business
process management layer, service composition and
coordination layer, or service infrastructure layer.
However, the implementation of various layers of
web service can be nested in different artifacts. A
layer may contain objects that reside in another
layer. However, such cases are ignored by traditional
monitoring and adaptation solutions.

Consequently, there is a possibility that these
solutions will detect the problems incorrectly which
will lead to inaccurate decisions concerning
adaptation. This shortcoming of existing solution
promotes the need of cross-layer adaptation. In this
section, we study the most recent solutions which
have been proposed to provide a monitoring and
adaptation tools that covers multiple layers. We
found that in these solutions, controlling and

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

262

adaptation are developed by using various
techniques such as, monitoring and event logging,
detecting the patterns of events, and correlation and
mapping between events and appropriate adaptation
strategies, etc.. The solutions proposed in (Gjrven et
al, 2008), (Popescu et al., 2010), (Popescu et al.,
2012), (Zengin et al., 2011), (Zengin et al., 2011)
and (Zeginis et al. 2011) are based on the situation-
action mechanism. The situations correspond to a set
of events and disparities while the actions are
defined as templates for adaptation. These
approaches combine the taxonomies of adaptation
problems and mechanisms based on the events for
guiding the selection process of the adaptation
models based on the degree of correspondence
between events and disparities of adaptation.

In (Gjrven et al, 2008), a middleware called QuA
is presented that provides a multilayer adaptation
coordinated by incorporating multiple mechanisms
of adaptation in the interface and application layers.
However, the proposed middleware is lacking
theflexibility because the adaptation logic is
predefined and static. A multi-layer adaptation
framework is proposed in (Popescu et al., 2010). The
authors use taxonomy and adaptation models
(patterns) which are created during the design phase
to represent the possible solutions to adaptation
problems. In this framework, they designed adaptive
predefined templates to provide a means for
dynamic multi-layers adaptation.

These models define the behaviour of the
adaptation processes. However, this approach does
not consider the infrastructure layer and the authors
do not provide the mechanism for detection
disparities. An adaptation manager called CLAM is
proposed in (Zengin et al., 2011) to handle adaptive
inter-layer and multilayer problems. The authors
have classified a group of adaptation paths of an
adaptation tree which can be built in any layer of
SBAs. The limitation of these approaches is the
execution control which is performed in an isolated
manner. This does not allow an effective analysis of
monitoring data and detected events because events
are analysed and processed independently of each
other and the critical information are not propagated
between layers. This can lead to an incorrect
identification of the original source of the problems.
Also, some approaches do not realize monitoring in
all the layers which affects the final step of
adaptations. For example, the actual problem can
occur in the infrastructure layer, while it is detected
in the composition layer and therefore, it cannot be
properly diagnosed.

Additionally, in (Guinea et al, 2011), it is also

argued that monitoring of the web services is not
sufficient to allow proper and effective adaptation at
runtime. The authors present a framework which
uses various techniques for monitoring different
layers. Also, it uses a centralized agent of adaptation
to collect the events and analyse the violations of
KPIs.

Although the cross-layer adaptation approaches
designed to identify the sources of problems through
analysis and diagnosis that take several layers into
account, the works presented in this section have
some limitations. Based on our analysis, these
approaches can be improved to be more efficient.
For instance, since the adaptation approaches do not
consider the characteristics and requirements of all
the layers of SBAs rather they focus on a specific
layer, the activities of adaptation may fail to achieve
the desired effects. Furthermore, these approaches
may lead to incompatibility problems.

2.4 Adaptation in Agent based Systems

From architectural point of view, there is a similarity
between agent and service based systems. This is
one of the main reasons we studied the adaptation
solutions proposed in this domain. The notion of
agent based system is relatively new. We found a
few research works on adaptive agent based system.

Qureshi and Perini (Nauman et al., 2008)
proposed a methodology called TProcess for
seamless self-adaptation in agent based system. The
methodology is shaped a triangle that includes three
elements include requirement-time, design-time
time, and runtime. The authors argue that adaptation
should be built on the top of these mutual dependent
elements. The critical components of TProcess are
goal models which are defined at requirement-time
step. The goal models contain QoS parameters, their
values and conditions. These are mapped to the
implementation platform in the design-time step.

In (Bernon et al., 2003), the author proposed a
methodology called ADELFE to guide developers to
develop adaptive multi-agent systems. The
methodology is based on object-oriented
methodologies, follows rational unified process and
uses Unified Modeling. In (Ibrahim, 2004), the
author proposed a framework for developing
intelligent adaptive agents.

In the proposed framework, the agents are
defined as systems or machines that utilize
inferential or complex computational methodologies
to modify or change control parameters, knowledge
bases, task plans, problem-solving, methodologies,
course of actions, or other objects in order to

Cross-layer�Service�Adaptation�-�State-of-the-Art,�Shortcoming�Analysis,�and�Future�Research�Directions

263

successfully accomplish a set of tasks that are of
interest to the user. The intelligent adaptive agents
are classified into three based on the agent’s
capabilities on performing external and internal.
These categories are listed below:

 Internal adaptation: In this criterion, the
internal systems of the agent are adaptive;
however, its external actions do not reflect
adaptive behaviour.

 External adaptation: It is simply the
opposite of internal adaptation. In this the
internal systems of agents do not reflect
adaptive behaviour.

 Complete adaptation: Internal systems are
adaptive and external actions reflect
adaptive behavior.

There are a few significant differences between
adaptive SBAs and adaptive agents. In SBAs,
adaptations are performed in different layers, as
these applications rely on multilayer architecture.

However, multilayer adaptation is of the scope of
agent based systems. Additionally, none of the
adaptive agent based solutions is aware of cross-
layer adaption. However, evidently, the service
based systems can be benefited by using the
approaches used in adaptive agent based systems.
Particularly, the notion of context-awareness and
self-adaption can be efficacious for adaptive service
based systems.

3 ANALYSIS AND RESEARCH
DIRECTIONS

In this section, we summarise our findings and
propose a few potential extensions specifically in the
area of cross-layer adaptation. We studied various
solutions published in the literature. It is worth
noting that in this section we limit our discussion in
the context of service based systems which is the
main focus of this study.

3.1 Analysis

We studied different research initiatives that focus
on adaptation problems concerning service
interaction in the service composition layer.
Specifically, we studied the heterogeneity problems
regarding interactions which can be found in the
service interface layer. The heterogeneity problem
may lead to inconsistency with respect to data
exchanged between the services. We found that the
main reason for heterogeneity problem is different

formats of the messages exchanged between
services. For an effective and adaptation
heterogeneity between web services must be dealt
with efficiently.

We found mediation-based adaptation
approaches deals with heterogeneity. They enable
exchanging consistent data between Web services.
However, these approaches have limitations. They
lack of flexibility and the automation needs to be
efficient for a complete and effective adaptation.
Moreover, they are limited to technical and
structural aspects of a system. They do not cover
other aspects. In addition, due to the highly dynamic
and evolving nature of the environment and different
requirements of service users (infrastructure
protocols, and behavior), a manual intervention is
required, especially to define the management tasks
to handle disparities or to specify or adjust the
composition diagram. This is certainly a limitation
to carry out adaptation operations efficiently.

In addition, the adaptation mechanisms are not
rich enough and deals only with the specific
adaptation situations and actions, which does not
cover multiple anomalies that may occur in
execution environments. The cross-layer adaptation
approaches are fragmented and isolated. They do not
consider the effects of changes and modifications on
all the functional layers of the SBAs. The existing
cross-layer, adaptation solutions are designed to
adapt a particular functional layer, namely, the
business layer, the service composition layer, or
infrastructure layer. The realization of different
layers of web service can be nested such as different
artifacts of a layer can refer to the same objects
reside in another layer, while these relationships are
ignored by the current monitoring and cross-layer
adaptation solutions.

Also, these mechanisms are designed to support
quality assurance for adaptation. They deal with the
analysis of adaptation activities against the system
model, and adaptation measures. Table 1 presents a
synthetic summary of the cross-layer adaptation
solutions which we studied in this paper. We
consider three factors, defined by (Reza et al.2007)
adaptation objectives that involves adaptation
requirements (repair, optimization, mediation, etc..),
adaptation methodology, and the layers covered by
the solutions. Also, these mechanisms are designed
to support quality assurance for adaptation.

They deal with the analysis of adaptation
activities against the system model, adaptation
measures, and other adaptations.

Table 1 presents a summary of the approaches
found in the literature. We consider three factors

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

264

Table 1: Classification of cross-layer adaptation approaches.

Approach Adaptation
Objectives

Methodology of
adaptation

Layer affected

(Reza et al, 2007) Fault tolerance Proactive BPM, SCC
(Popescu et al., 2010) Mediation Reactive BPM
(Popescu et al., 2011) Reparation Reactive BPM
(Guinea et al, 2011) Reparation Reactive BPM, SI

(Mos et al. 2009) Monitoring Reactive SI
(Schmieders et al., 2011) Reparation Reactive SCC, SI
(Vidackovic et al., 2009) Optimistaion Reactive BPM

(Gjrven et al, 2008) Configuration Proactive BPM, SCC
(Syu et al, 2004) Mediation Reactive SI

defined by (Reza et al. 2007): (i) adaptation
objectives involves adaptation requirements (repair,
optimization, mediation, etc.., (ii) Adaptation
methodology, and (iii) affected SBA layers which
concerns with the change of locations and adaptation
progress. From the comparison (shown in the above
table) we conclude that none of the current
approaches cover all the layers of service based
systems. The solutions proposed by Reza et al.,
Guinea et al., Schmieders et al., Gjerven et al. are
relatively more efficient as they cover two layers.

However, cross-layer adaptation solution must
cover all three layers of SBAs to deal with various
runtime challenges efficient that evolve in current
service based system such as cloud service based
applications. Remarkably, most of these approaches
cover BPM layer, however, to the best of our
understanding if an event adapted in the BPM layer,
yet it the adaptation has not been propagated to the
bottom layers implies that the adaptation has not be
realized automatically and may not have done
efficiently. This is an important limitation. The
current solutions focus on specific layers (e.g.,
infrastructure layer or Business Process
Management layer). One might think of building a
hybrid solution which can combine two or more of
the existing solutions. However, it will promote a
huge complexity. Developing a hybrid solution
needs a list of complex tasks include the following:

 Analysis of the affected layer,
 Identification of adaptation actions,
 Aggregation of these actions to check their

effects on different layers,
 Launching a coordination system to

coordinate adaptation actions,
 Checking whether the adjustment

performed at one layer is compatible with
the constraints posed by other layers, etc..)
which can be costly in terms of response
time.

3.2 Research Directions

We identified four critical aspects: context
awareness, self-adaptation, completeness,
performance, which should be focused in the topic
of cross layer adaptation.

Context aware adaptation and self-adaptation
have already been studied in agent oriented system.
It is worth noting that context awareness and self-
adaptation are complementary because self-adaptive
system should be aware of the context. Otherwise,
self-adaptation can be difficult.

The Table 1 shown in the previous section
unearthed a very important shortcoming of cross
layer service adaptation technologies. Although
these technologies are known as cross-layer
adaptation solution, to the best of our understanding,
these solutions are complete. These approaches lack
the ability to trace incompatibilities that can be
triggered through adaptation. Therefore, a solution is
needed which can create adaptation loop which runs
adaptation process until new requirements or
changes are adapted by resolving incompatibilities
or conflicts. Adaptation promotes performance
challenge. In other words, the system performance
can be challenged enormously by adaptation. We
found literature reported trade-off between
adaptation and performance. An extensive research
is necessary to develop a solution that can process
adaptation by guaranteeing high efficiency (with
respect to processing time).

We plan to develop an intelligent and fault-
tolerant solution for cross-layer adaptation that can
address the requirements discussed in the above. The
proposed solution will enable to perform adaptation
process by guaranteeing efficiency and
effectiveness. It will be able to perform adaptation in
all the layers of SBAs without any incompatibilities
or conflicts. The solution will be context-aware and
will support self-adaptiveness. This will ensure the
autonomic execution of adaptation operations across

Cross-layer�Service�Adaptation�-�State-of-the-Art,�Shortcoming�Analysis,�and�Future�Research�Directions

265

the SBA layers.
We strongly believe that the genetic algorithms

are potential for our solution especially to optimize
the adaptation process. Genetic algorithms are
widely used to handle cases such as requirement
evolution and performance optimization which are
the two most critical issues.

4 CONCLUSIONS

In this paper we studied adaptation technologies
particularly the cross-layer adaptation technologies.
We discussed the outcomes of our analysis. In
particular, we discussed the limitations of different
approaches of cross-layer service adaptations.

The major limitation we found is the lack of
coordination between adaptation activities that may
lead to conflicts or incompatibilities. According to
our study, the current solutions do not consider the
fact that adaptation in a layer may affect adversely
the other layers of service based systems. According
to our study, current cross-layer adaptation
approaches lack efficient coordination which leads
to conflict and incompatibilities. We believe that
these problem must be addressed for an efficient
cross-layer service adaptation. We presented the
results of a brief study on adaptive agent based
systems. We found in our study that the agent based
adaptive systems have some advanced , features
such as context-awareness, self-adaptation, etc.. The
adaptive SBAs can be benefited by these features
especially, the service based adaptive systems can be
more intelligent and autonomous.

Additionally, based on our understanding we
presented some research directions in the area of
cross layer service adaptations. We strongly believe
that the research in this area should focus on context
awareness, self-adaptation, and performance etc. to
develop highly high-performance solutions. We also
presented a proposal of a solution which are
currently working on.

There are a few limitations of our study. Firstly,
this is merely a literature review. However, the state
of the art could be better reviewed or understood by
benchmarking the existing solutions. A comparison
of adaption technologies in different contexts can be
done by following a set of rigorous protocols. This
paper is missing such an comparison. In our future
work, we plan to conduct an empirical study with
the current cross-layer adaptation technologies.
Also, we plan to conduct a study by covering more
contexts.

REFERENCES

Ardagna, D. , Pernici, B.(2007). Adaptive Service Com-
position in Flexible Processes, IEEE Transactions on
Software Engineering, vol. 33, no. 6, pp. 369-384,
June 2007.

Baresi , L. , Guinea, S. , (2005), Dynamo: Dynamic
Monitoring of WS-BPEL Processes. In 5th
International Conference on Service Oriented
Computing, pages 478–483, 2005.

Baresi, L., Di Nitto, E. , Ghezzi, C., and Guinea, S. ,
(2007) . A Framework for the Deployment of
Adaptable Web Service Compositions, Service
Oriented Computing and Applications, vol. 1, no. 1,
pp.75-91, 2007.

Bernon, C., Gleizes, M. P., Peyruqueou, S., Picard, G.
(2003). ADELFE: a methodology for adaptive multi-
agent systems engineering. In Engineering Societies in
the Agents World III (pp. 156-169). Springer Berlin
Heidelberg.

Bucchiarone, A., Cappiello, C., Di Nitto, E.,
Kazhamiakin, R., Mazza, V., and Pistore, M., (2009).
Design for Adaptation of Service-Based Applications:
Main Issues and Requirements ,ICSOC/ServiceWave
in page 467–476.

Chafle, G., Dasgupta, K. , Kumar, A. , Mittal, S.,and
Srivastava, B. , (2006). Adaptation in Web Service
Composition and Execution, Proc. IEEE Int'l Conf.
Web Services (ICWS '06), pp. 549-557, 2006.

Dean, M., Connolly, D., Harmelen, F., Hendler, J.,
Horrocks, I., Debo-rah L., McGuinness, Peter F.
Patel-Schneider, Andrea Stein, L., (2002). Web
ontology language (OWL) reference version 1.0.
Technical report, www.w3c.org, 2002.

Geihs, K., Reichle, R., Wagner, M., Khan ,M., (2009).
Service-Oriented Adaptation in Ubiquitous
Computing Environments , International Conference
on Computational Science and Engineering.

Gjrven, E., Rouvoy, R., Eliassen, F. , (2008). Cross-layer
self-adaptation of service-oriented architectures,
Proceedings of the 3rd workshop on Middleware for
service oriented computing 2008.

Guinea, S. , Kecskemeti, G. , Marconi, A. , Wetzstein, B. ,
(2011). Multi-layered monitoring and adaptation,

Hau, J., Lee, W. , Newhouse, S. , (2003) . The ICENI
Semantic Service Adaptation Framework. In: UK e-
Science All Hands Meeting (2003).

Ibrahim F. Imam: Adaptive applications of intelligent
agents. ISCC 2004: 7-12.

IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems,
(2003). Business Process Execution Language for
Web Services version 1.1.
http://www.ibm.com/developerworks/library/specificat
ion/wsbpel/. 2004 Imam, I. F. (2004, June). Adaptive
applications of intelligent agents. In Computers and
Communications, 2004. Proceedings. ISCC 2004.
Ninth International Symposium on (Vol. 1, pp. 7-12).
IEEE.

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger,
L., and Leaf, D., (2011). NIST Cloud Computing

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

266

Reference Architecture: Recommendations of the
National Institute of Standards and Technology. NIST
Special Publication 500-292. pp. 10.

Luckham, D., (2001), The Power of Events: An
Introduction to Complex Event Processing in
Distributed Enterprise Systems. Addison-Wesley
Longman (2001).

 Nauman,A., Qureshi, Anna Perini:
An Agent-Based Middleware for Adaptive
Systems. QSIC 2008: 423-428.

Papazoglou, M. P., (2008) . Web Services - Principles and
Technology. Prentice Hall. ISBN 978-0-321-15555-9.
pp. 1-752.

Popescu, R. , Staikopoulos, A. , Liu, P., Brogi, A. ,
Clarke, S. , (2010) . Taxonomy-Driven Adaptation of
Multilayer Applications Using Templates,” saso,
pp.213-222, 2010 Fourth IEEE International
Conference on Self-Adaptive and Self-Organizing
Systems, 2010.

Popescu, R., Staikopoulos, A. , Liu, P. , Brogi, A. , Clarke.
S. (2011). A Formalised, TaxonomyDriven Approach
to Cross-Layer Application Adaptation ACM
Transactions on Autonomous and Adaptive Systems,
ICSOC.

Popescu, R., Staikopoulos, A. , Liu, P. , Brogi, A. ,
Clarke. S., 2012. A Formalised, Taxonomy-Driven
Approach to Cross-Layer Application Adaptation” in
ACM Transactions on Autonomous and Adaptive
Systems, Proceedings of the 9th international
conference on Service-Oriented Computing,
December 05-08, 2011, Paphos, Cyprus.

Reza, H. , Nezhad , M. , Benatallah , B. , Martens , A. ,
Curbera , F. , Casati, F. , (2007). Semi-automated
adaptation of service interactions, Proceedings of the
16th international conference on World Wide Web,
May 08-12, 2007, Banff, Alberta, Canada.

Schmieders, E., Micsik, A., Oriol, M., Mahbub, K., and
Kazhamiakin R., “Combining SLA prediction and
cross layer adaptation for preventing SLA violations”.
In Proceedings of the 2nd Workshop on Software
Services: Cloud Computing and Applications based on
Software Services, Timisoara, Romania, June 2011.

Syu, J.-Y., (2004). An Ontology-Based Approach to
Automatic Adaptation of Web Services”, Department
of Information Management National Taiwan
University, 2004. (http://www.im.ntu.edu.tw/
IM/Theses/r92/R91725051.pdf).

Taher, C., Aït-Bachir, .A, Fauvet, .M, Benslimane,
.M,:Diagnosing Incompatibilities in Web Service
Interactions for Automatic Generation of
Adapters. AINA 2009: 652-659.

Vidackovic, K., Weiner, N., Kett, H., Renner, T.
“Towards business-oriented monitoring and adaptation
of distributed service-based applications from a
process owner's viewpoint”. In: ICSOC/ServiceWave
Workshops. pp. 385394, 2009.

Williams , S.K., Battle , S. A., Cuadrado, J. E. , (2006).
Protocol mediation for adaptation in semantic web
services, Proceedings of the 3rd European conference
on The Semantic Web: research and applications, June

11-14, 2006, Budva, Montenegro.
Zeginis, C., Konsolaki, K. , Kritikos, K. , and Plexousakis,

D. , (2011). Ecmaf: An event-based cross-layer service
monitoring and adaptation framework, In 5th
Workshop on Non-Functional Properties and SLA
Management in Service-Oriented Computing
(NFPSLAM-SOC’11) co-located with ICSOC 2011.
Springer, 2011.

Zeginis, C., Plexousakis, D., (2010). Web Service
Adaptation: State of the art and Research Challenges,
Technical Report 410, ICS-FORTH, October 2010.

Zengin, A. , Marconi, A. , Baresi, L. , Pistore, M. , (
2011). CLAM: Managing cross-layer adaptation in
service based systems, soca, pp.1-8, 2011 IEEE
International Conference on Service-Oriented
Computing.

Zengin, A., Kazhamiakin, R. , Pistore, M.: “CLAM:
Cross-Layer Management of Adaptation Decisions for
Service-Based Applications,” icws, pp.698-699, 2011
IEEE International Conference on Web Services,
2011.

Cross-layer�Service�Adaptation�-�State-of-the-Art,�Shortcoming�Analysis,�and�Future�Research�Directions

267

The Influence of the Provider’s Service Fairness on the Customer’s
Service Recovery Satisfaction and on Positive Behavioral Intentions

in Cloud Computing

Montri Lawkobkit1 and Roland Blomer2
1Faculty of Business Administration, Sripatum University, Bangkok, Thailand

2Institute of Biomedical Informatics, UMIT, University for Health Sciences,
Medical Informatics and Technology, Hall in Tirol, Austria

mlawkobkit@gmail.com, roland@blomer.de

Keywords: Service Fairness, Service Recovery Satisfaction, Behavioral Intentions, Continual Improvement, Structural
Equation Modelling.

Abstract: The study shows a statistically significant positive effect between the provider’s perceived structural service
fairness and the customer’s service recovery satisfaction and, in turn, also shows statistically positive
regression weights between the customer’s service recovery satisfaction and the intension to react positively
in three directions: (1) to continue with the software, (2) to propagate a positive word-of-mouth (WOM), (3)
to give honest feedback. The influence of the provider’s perceived social service fairness on the customer’s
service recovery satisfaction does not appear to be significant but indicates a positive correlation. The study
is based on data collected via a structured questionnaire from qualified users who have subscribed to
Business-to-Business customer relationship management software and who use it as Software-as-a-Service
in the cloud. Structural Equation Modelling was applied for the data analysis in order to confirm the chosen
dependency model. The findings may help service providers to better understand their customers and to
stimulate constructive actions to their continual improvement process.

1 INTRODUCTION

Cloud computing has developed to be one of the
fastest growing markets with an expected value of
approximately US$68 billion by 2018 wherein
customer relationship management (CRM)
applications used in software-as-a-service mode
(SaaS) will capture a market share of about 25%
with a compound annual growth rate (CAGR) of
about 12% (Buyya et al. 2009; Dhar 2012; Pang
2014). More than 500 major vendors and service
providers compete in this arena in which the
customer ultimately decides on the provider’s
business success or failure. Customer satisfaction
(CS) plays the role as the main key performance
indicator in service management and represents an
important control in the continual improvement
process of every service provider.

A particular challenge in service management is
presented when expected and agreed service levels
are – for whatever reason- not met i.e. in the case of
service failure. Disappointed customers will not only

complain and possibly switch provider, but will also
disseminate their bad experiences. Negative word-
of-mouth (WOM) may reach up to 20 other
(potential-)customers and may thus harm the
provider’s business significantly (Zemke 1999).

A service provider should be well-equipped for
service failure recovery so that he can retain
customers and maybe regain CS. This should also
occur in cases of painful service failure (Johnston
1995). Some authors claim that after effective
service recovery, customers might feel higher levels
of satisfaction when compared with previous levels
(known as “service recovery paradox”)
(McCollough & Bhardwaj 1992). Effective service
recovery, however, must be part of any service
provision concept in order to survive and grow in a
highly competitive market.

The main objective of this paper is to design and
to test a model which shows the dependencies
between the perceived internal structures and
processes of a service provider and the service
recovery satisfaction (SRS) of the customer and

268

how, in turn, CS stimulates customer behavioral
outcomes in favor of the current and future business
of the service provider.

Service recovery, moreover, has been an
interesting area for practitioners and marketing
scholars for years (Kau & Loh 2006; Zhou et al.
2013).

This study examines the focal determinants of
fairness based on Greenberg’s (1993) taxonomy of
organizational fairness and their influence on SRS.
The two distinct fairness dimensions are structural
and social fairness. Figure 1 presents the conceptual
model and hypothesized relationships in this study.

The service fairness (structural and social) of the
provider would then positively impact the SRS of
the customer which, in turn, favorably influences the
customer behavior intensions in three directions: (1)
to continue with the software, (2) to propagate
positive word-of-mouth (WOM), (3) to give honest
feedback to the provider and external agencies, such
as consumer protection organizations. In a previous
paper, a similar chain of effects was evident in cases
where the service was performed correctly
(Lawkobkit & Larpsiri 2014).

2 LITERATURE REVIEW AND
HYPOTHESES

2.1 Service Recovery Satisfaction

Levesque and McDougall defined satisfaction as the
“overall customer attitude towards a service
provider” (Levesque & McDougall 1996, p.14). It
means the customer’s overall judgment on the
service provider (McDougall & Levesque 2000) that
a product or service itself, or the product or service
feature, is providing a level of under or over
fulfilment (Tronvoll 2011). A service failure occurs
whenever the service provider fails to deliver his
services as expected by the consumer (Kelly &
Davis 1994). A service failure is basically a flawed
outcome that might indicate a breakdown in
reliability (Berry & Parasuraman 1991).

In the computing area, customer SRS can be
defined as the end-user’s perception when
interacting with a specific application, including
perception, toward service failures and CS or
dissatisfaction with the organization’s approach to
service recovery (Kwok et al. 2009).

Service failures and recoveries and their
determinants have been studied in different contexts
such as public and private service delivery (Zhou et

al. 2013) and can enhance service quality and avoid
negligence (Kuo et al. 2011).

Previous research studied many factors
influencing SRS such as recovery and order (time)
(Boshoff 1997), redress and responsiveness (Hocutt
et al. 2006), distribution, procedural and
interactional justice (Choi & Choi 2014). Past
research has used the term ‘justice’ and ‘fairness’
interchangeably. Here, the term ‘fairness’ is used for
the purpose of consistency.

Previous research shows that service recovery
justice for customers affects their level of
satisfaction (Kuenzel & Katsaris 2009). SRS can
bring several benefits such as positive WOM and re-
purchase intention (Tax & Brown 1998).

The literature suggests that fairness could play a
significant role in service failure and recovery
(Lawkobkit & Larpsiri 2014; Yang & Peng 2009). In
service management, perceptions of fairness are
important antecedents of recovery satisfaction and
lead to recovery satisfaction (Lawkobkit &
Kohsuwan 2012).

The level of SRS results from many factors
although these are all grounded in the customer’s
experience of the application, of the services taken
and the interaction with their service providers.
Therefore, improving the level of CS would be a
very important goal to the service provider.

2.2 The Focal Determinants of Service
Fairness and Service Recovery
Satisfaction

Organizational fairness is one of the important
factors that has been widely studied also in the field
of organizational behavior (Colquitt et al. 2001).
Organizational fairness has also received attention in
the context of employee perceptions of fairness in
the workplace with regard to matters such as job
satisfaction, complaint handling, and human
research management (Folger & Greenberg 1985).

Organizational fairness may be defined as the
perception of fairness by an individual in the
working environment (Byrne & Cropanzano 2001;
Greenberg 1990). Greenberg’s (1993) rudimentary
taxonomy highlights the distinction between the
structural and social determinants of fairness. A
taxonomy is formed with two independent
dimensions: fairness (procedural and distributive),
and focal determinants (structural and social).

One of the major research areas in organizational
psychology has been focused on the concept of focal
determinants (Cropanzano 1993). Some prior
research has discussed focal determinants in the area

The�Influence�of�the�Provider's�Service�Fairness�on�the�Customer's�Service�Recovery�Satisfaction�and�on�Positive
Behavioral�Intentions�in�Cloud�Computing

269

of strategic decision making in leadership and ethics
(Tatum & Eberlin 2007).

In addition, prior studies have revealed a
relationship between social fairness and both
managerial performance (Tatum et al. 2002) as well
as employee behaviors (Masterson et al. 2000).
Social fairness has become one of the important
components of outcome fairness. In a
transformational leadership study, social fairness
had more impact than structural fairness because the
leader cares about the needs and well-being of the
followers and wants to be open and responsive
(Eberlin & Tatum 2005).

Greenberg’s (1993) taxonomy positions the focal
determinants of fairness as the immediate focus of a
just action relative to existing categories of fairness.
The two specific determinants of service fairness can
be briefly characterised by the following:

1) Structural Fairness: This type of fairness
refers to the structural elements of the organization
and focuses on the environmental context within
which interaction occurs (Greenberg 1993).

In cloud service, structural fairness refers to the
structural elements of the service provider that allow
the involvement of their customers in decision-
making and provide a fair distribution of outcomes.
The customer is convinced that he and the supplier
follow the same agenda. When customers perceive
high structural fairness, they will believe that an
unfair outcome is merely an accident and will expect
that structural fairness will still hold.

Satisfied customers will be less likely to
terminate their relationship with their service
providers. Moreover, the level of satisfaction will
increase if their service providers use technological
support to track and monitor their services with on-
line and off-line customers. Several results from
previous studies support the concept of perceived
structural fairness that has impacted directly on
outcomes (Tatum & Eberlin 2007). This
consideration leads to the following hypothesis:

H1: Perceptions of structural service fairness are
positively associated with SRS.

2) Social Fairness: This type of fairness is
recognized also as one of the significant sources of
fairness perception in Greenberg’s study (1993),
who proposed a distinguishable fairness in the
taxonomy. Social fairness focuses on information
exchange on an individual level by “showing
concern for individuals regarding the distributive
outcomes they receive” (Greenberg 1993, p.85), and
“may be sought by providing knowledge about
procedures that demonstrate a regard for people’s
concerns” (Greenberg 1993, p.84).

In cloud service, social service fairness indicates
to customers that the service provider cares about
their well-being and keeps customers informed
before and during changes to the service process.

Information about services is given to customers
who have been involved. The CS resp. SRS level
will increase when they feel the service provider has
treated them with respect, politeness, sincerity and
fairness throughout the service process. Once the
service providers are truthful in all communication
and tailor their explanations to match customer
needs, the level of information fairness will always
be high. The customers perceive a fair information
exchange before, during and after the service
process from the perspective of social fairness, and a
positive customer outcome can occur. From this, the
following hypothesis is developed:

H2: Perceptions of social service fairness are
positively associated with SRS.

These two service fairness factors should have an
impact on SRS, and H1 & H2 address the question of
whether an individual’s perception of structural and
social fairness is strong enough to influence
satisfaction, thus indirectly contributing to continued
usage and behavioral intention.

2.3 Service Recovery Satisfaction and
IS Continuance Intention

SRS is one of the key factors for IS service scholars
(Kassim et al. 2012; Sun et al. 2014; Wu 2013).
Several IS researchers have also found that
satisfaction is a strong predictor of system usage, IS
success, service recovery and continuance behavior
(Kim et al. 2012).

Satisfaction is an influential factor in the re-
consumption intention of customers. In accord with
the study of Bhattacherjee (2001), the post-
acceptance model of IS continuance (PAM) views
relationship satisfaction as a basis for the continued
intention to use IS; satisfaction with prior use has a
strong positive impact on customer intentions to
continue using the system. The more an individual
customer is satisfied with prior usage experience, the
greater the chance that the customer will continue to
use the system.

Continuance behavior may be defined as
explaining user intentions to continue or discontinue
using an IS, where a continuance decision follows an
initial acceptance decision. Therefore, satisfaction is
a main determinant influencing continuance
intention as revealed in various research (Zhou
2013) in previous continuance study contexts such
as shopping (Chen & Chou 2012), e-learning (Cheng

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

270

2014).
This research employs the concept of IS

continuance intention and applies the measurement
approach from Bhattacherjee (2001). This dimension
has three scale items to measure the continued usage
of the SaaS application rather than discontinuing its
use or using an alternative. Thus, the relationship
between satisfaction and continuance intention can
be hypothesized as:

H3: Service recovery satisfaction with IS usage is
positively associated with IS continuance intention.

2.4 Service Recovery Satisfaction and
Behavioral Intentions

Fishbein and Martin (1975) and Ajzen and Fishbein
(1980) developed the Theory of Reasoned Action,
which is a model to predict behavioral intention.
Behavioral intention measures a person's relative
strength of intention to perform a behavior. In this
regard, two customer behaviors are WOM and
feedback to the service provider, both of which are
related to customer retention and the customer’s
long-term relationship with their providers.

WOM refers to “informal communication
between private parties concerning evaluations of
goods and services” (Anderson 1998, p.6), which is
about valence (positive, negative or neutral). A key
motivation for this behavior is a customer’s
experience with the service. This service experience
produces “a tension which is not eased by the use of
the product alone, but must be channeled by ways of
talk, recommendation, and enthusiasm to restore the
balance” (Dichter 1966, p.148). Additionally, WOM
reflects a sense of loyalty (Zhang et al. 2010).

WOM behavior is defined in this study to refer to
the customer’s intention to share favorable
information about the service provider and its
service among peers. We believe that any positive
WOM activity contributes to the viability of a
technology with support services (CRM-SaaS)
because it influences service fairness and can be
exploited by the service provider.

Several previous studies discussed the
relationship between recovery satisfaction and
WOM (Seawright et al. 2008). Many scholars have
revealed the positive relationship between recovery

satisfaction and WOM (Wen & Geng‐qing Chi
2013); therefore, this study proposes the following
hypothesis:

H4: Service recovery satisfaction related to
positive word-of-mouth is positive and strong.

Customer feedback with regard to the second
behavior indicates that positive feedback is always

driven by satisfaction (Saha & Theingi 2009). A
very interesting finding from Söderlund (1998) was
that negative feedback is more likely to be provided
by dissatisfied customers because of the
compensation involved. However, customers always
provide positive feedback without expecting a
reward. In the digitized era, customers can provide
their feedback in various forms of online feedback
mechanism based on the specific category (Liu &
Zhang 2010).

In this study of cloud service, feedback refers to
the communication from customers as service
receivers to their service providers and external
agencies (e.g., consumer protection organizations).
Customers might use satisfaction as a proxy for the
level of service fairness that they should receive.
Previous research revealed a positive relationship
between feedback and satisfaction (Saha & Theingi
2009; Söderlund 1998). On the basis of the above
discussion, the following hypothesis is therefore
proposed:

H5: Service recovery satisfaction related to
positive feedback is positive and strong.

This study applies a conceptual model in which
the perceptions of the focal determinants of service
fairness and satisfaction result from the use of a
technology with support services. This then leads to
continuance intention and customer behavioral
intention including WOM and feedback to their
service provider.

3 METHODS, SAMPLE AND
DATA COLLECTION

A quantitative study was conducted to assess the
relationships between two dimensions of service
fairness and SRS and their further propagation on IS
continuance intention, WOM and feedback to the
service provider.

Previously developed methods have been chosen
as guides in this study for their merit and overall
utility. However, they have been modified in order
to reflect the specific cloud service context, as well
as the targeted users. The service fairness items were
adapted from a number of works but generally
follow (Bies & Moag 1986; Leventhal 1980;
Maxham & Netemeyer 2003; Shapiro et al. 1994).
Other items were adopted from Maxham &
Netemeyer (2002) for SRS. Bhattacherjee (2001) for
IS continuance intention, and finally Zeithaml, Berry
& Parasuranman (1996) for WOM and feedback.

All items were reworded to relate specifically to

The�Influence�of�the�Provider's�Service�Fairness�on�the�Customer's�Service�Recovery�Satisfaction�and�on�Positive
Behavioral�Intentions�in�Cloud�Computing

271

CRM-SaaS. A 7-point Likert-scale was employed
for each survey item, ranging from 1 = “strongly
disagree” to 7 = “strongly agree”.

In order to acquire and develop the most
appropriate pilot version for the questionnaire, an
expert panel reviewed the initial draft. These are
professionals from both sides of service
management: the academics and the industry. The
pilot test (n = 60) showed good results for all
variables on the service fairness concepts,
satisfaction, IS continued usage, WOM, and
feedback. After the various changes were
incorporated and considered, the final version of the
survey was then carried out.

SaaS providers in cloud service providing a
service together with an application is the context of
this study. Individuals from small and medium-sized
enterprises (SMEs) were tapped. Those who use
business-to-business (B2B) CRM-SaaS formed the
population of the study. The pilot and main study
focused on respondents who were B2B SRM SaaS-
users.

Company databases of full-time employees
working in organizations provided the source for
prospective panel members. In all, 30,899
recruitment emails were sent. The first response rate
was 11.62% (3,589). Four stringent screening
questions constraints reduced them to 475
questionnaires, which gives a response rate of
1.54%.

There were 475 sample respondents, and among
them, sixty percent were male while the other forty
were female. The majority of the respondents were
within the age range from thirty to fifty years old,
and nearly ninety percent (88.84%) had over five
years working experience. As shown in the data, the
most common positions were operating staff
(17.24%), supervisors (17.05%) and sales
representatives (14.54%). Half of the respondents
(52.20%) were from organizations employing
between fifty and five hundred employees. The
business service industry covered the highest
percentage of respondents (58.52%).

The sample thus exhibited the following
significant characteristics: they are from an
experienced working-age group, have responsibility
at their present company requiring frequent use of
CRM-SaaS software, and interact with the software
service provider.

4 RESULTS

The analysis results of the descriptive statistics for

internal reliability of the measures ranged from .961
(structural fairness) to .993 (Social fairness) for the
two service fairness dimensions. The other four
measures are .909 for satisfaction, .896 for
continuance intention, .914 for WOM and .751 for
feedback. All the measures included in the
questionnaire showed adequate levels of initial
internal reliability (> .70) (Hair et al. 2009).

Figure 1 and Table 1 present the standardized
estimates and standardized regression weights, with
all five hypotheses supported. The structural model
was accepted and the chi-square was significant
(chi-square = 1532.601; df = 399, p = .000, relative
chi-square = 3.841; NFI = .888; GFI = .808; CFI =
.907; TLI = .907; RMSEA = .077). The path
coefficients for the structural model are shown in
Table 1. The relative effect (standardized regression
weights) between independent and dependent
variables shows a statistical significance for all
hypothesized relationships.

A summary of standardized path coefficients and
the square multiple correlations (R2), of the best-fit
measurement model are shown in Table 1. The
significance of four of five path coefficients to the
model is amplified, even though they are positive
and statistically significant at p > 0.05. Moreover,
most of the R2 values of the observed variables were
greater than 0.50, indicating the reasonably good
convergent validity of the model.

Figure 1: Result of Structural Equation Modelling (SEM).

Table 1: Results of standardized coefficients.

Outcome (R2)
Determinant
(Hypothesis)

Coefficients
(P-value)

SRS (.950)
Structural fairness

(H1)
0.805 (***)

Social fairness (H2) 0.178 (.049)

Contin. .682) SRS (H3) 0.826 (***)

WOM (.682) SRS (H4) 0.826 (***)

Feedback (.688) SRS (H5) 0.829 (***)

Coefficients - Standardized regression weights (*** P-Value < .001)

The analysis of path coefficients indicates that
four hypotheses are supported. The influence of

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

272

structural fairness (coefficient = 0.805) on SRS was
significant. Unfortunately, social fairness
(coefficient = 0.178) on SRS was only nearly
significant (p = 0.49). Moreover, the influence of
SRS on IS continuance intention was significant
(coefficient = 0.826). Similarly the influences of
SRS on WOM (coefficient = 0.826) and on feedback
(coefficient = 0.829) were significant (see Table 1).
The impact of the endogenous variables is indicated
by the R2 values. The highest R2 appeared in
satisfaction (95%) and the next R2 was shown in
feedback (68.8%), and continuance intention and
WOM that had the same values (68.2%). (See Table
1) The results of the research model (H1 – H5) show
that all five hypotheses are supported, so the model
does work well in this context.

5 CONCLUSIONS

One of the key success factors for service
management is related to successful service recovery
when there has been service failure. The service
providers’ actions during service failure can
influence their customer perceptions and the
providers can have lessons to learn in order to be
able to manage more effectively in success and
failure areas in the future (La & Kandampully 2004).

The analytical results of this study showed that
SRS is significantly influenced by the provider’s
structural service fairness. In other words, CS can be
regained by fair and equal treatment of customers.
This SRS in turn furthers the customer’s intention to
continue the service under consideration, to
disseminate favourable information about this
service (WOM), and to enter into a feedback process
with the provider. Other factors that could influences
the co-operation between customer and provider
after a service failure is trust in the service provider
and the commitment of the provider to resolve the
failure.

The findings are consistent with previous
research which placed greater importance on the
information and contact for service recovery in a
Korean context (e.g., Park & Kim 2011) and a
positive relationship between satisfaction and
feedback (e.g., Saha & Theingi 2009).

This study contributes to both academia and
practice. In academia, the study builds on previous
research on the relationships of service recovery
attributes and CS enhancing continuance as well as
behavioral intentions. For practitioners, especially
for managers, the study provides an insight into the
usefulness of service recovery measures to enhance

effectively CS, continued usage, WOM and
feedback to the respective service providers.

In summary, this paper suggests that cloud
service fairness promises to be a fruitful arena for
additional research into the area of customer
satisfaction, continued usage and behavioral
intentions. Practitioners in the service support area
would find additional practices to improve the level
of CS during service recovery after a failure. Service
support management should consider and must
account for these areas.

In regard to the research background, CRM-SaaS
was studied. It is suggested to expand the study to
other cloud service applications in order to
generalize the study by understanding the
characteristics of cloud computing and possible
deviations from the results of this study. Greater
diversity in service recovery would be suggested for
further research.

REFERENCES

Ajzen, I. & Fishbein, M., 1980. Understanding attitudes
and predicting social behaviour, Englewood Cliffs,
NJ: Prentice-Hall.

Anderson, E. W., 1998. Customer satisfaction and word of
mouth. Journal of Service Research, 1(1), pp.5–17.

Berry, L. & Parasuraman, A., 1991. Marketing Services,
New York: The Free Press.

Bhattacherjee, A., 2001. Understanding information
systems continuance: an expectation-confirmation
model. MIS Quarterly, 25(3), pp.351–370.

Bies, R. J. & Moag, J. S., 1986. Interactional justice:
communication criteria for fairness. In R. J. Lewicki,
B. H. Sheppard, & M. H. Bazerman, eds. Research on
Negotiation in Organizations. Greenwich, CT: JAI,
pp. 43–55.

Boshoff, C., 1997. An experimental study of service
recovery options. International Journal of Service
Industry Management, 8(2), pp.110–130.

Buyya, R. et al., 2009. Cloud computing and emerging IT
platforms: vision, hype, and reality for delivering
computing as the 5th utility. Future Generation
Computer Systems, 25(6), pp.599–616.

Byrne, Z. S. & Cropanzano, R., 2001. The history of
organizational justice: the founders speak. In R.
Cropanzano, ed. Justice in the workplace: From
theory to practice. Mahwah, NJ: Lawrence: Erlbaum
Associates, Inc., pp. 3–26.

Cheng, Y.-M., 2014. Extending the expectation-
confirmation model with quality and flow to explore
nurses’ continued blended e-learning intention.
Information Technology & People, 27(3), pp.230–258.

Chen, Y.-T. & Chou, T.-Y., 2012. Exploring the
continuance intentions of consumers for B2C online

The�Influence�of�the�Provider's�Service�Fairness�on�the�Customer's�Service�Recovery�Satisfaction�and�on�Positive
Behavioral�Intentions�in�Cloud�Computing

273

shopping: perspectives of fairness and trust. Online
Information Review, 36(1), pp.104–125.

Choi, B. & Choi, B.-J., 2014. The effects of perceived
service recovery justice on customer affection, loyalty,
and word-of-mouth. European Journal of Marketing,
48(1/2), pp.108–131.

Colquitt, J. A. et al., 2001. Justice at the millennium: a
meta-analytic review of 25 years of organizational
justice research. Journal of Applied Psychology, 86(3),
pp.425–445.

Cropanzano, R., 1993. Justice in the workplace:
approaching fairness in human resource management,
Mahwah, NJ: Lawrence Erlbaum Associates.

Dhar, S., 2012. From outsourcing to cloud computing:
evolution of IT services. Management Research
Review, 35(8), pp.664–675.

Dichter, E., 1966. How word-of-mouth advertising works.
Harvard Business Review, 44(6), pp.147–166.

Eberlin, R. & Tatum, B. C., 2005. Organizational justice
and decision making: when good intentions are not
enough. Management Decision, 43(7/8), p.1040.

Fishbein, M. & Ajzen, I., 1975. Belief, attitude, intention,
and behavior: an introduction to theory and research,
MA: Addison-Wesley.

Folger, R. & Greenberg, J., 1985. Procedural justice: an
interpretive analysis of personnel systems. Research in
Personnel and Human Resources Management, 3,
pp.141–183.

Greenberg, J., 1990. Organizational justice: yesterday,
today, and tomorrow. Journal of Management, 16(2),
pp.399–432.

Greenberg, J., 1993. The social side of fairness:
interpersonal and informational classes of
organizational justice. In R. Cropanzano, ed. Justice in
the Workplace: Approaching Fairness in Human
Resource Management. Hillsdale, NJ: Lawrence
Erlbaum Associates, pp. 79–103.

Hair, J. F. et al., 2009. Multivariate data analysis
Seventh., Englewood Cliffs: Prentice Prentice Hall.

Hocutt, M., Browers, M. & Donavan, D., 2006. The art of
service recovery: fact or fiction. Journal of Service
Marketing, 20, pp.199–207.

Johnston, R., 1995. Service failure and recovery: impact,
attributes and processes. Advance in Services
Marketing and Management: Research and Practice,
4, pp.211–28.

Kassim, E. S. et al., 2012. Information System Acceptance
and User Satisfaction: The Mediating Role of Trust.
International Conference on Asia Pacific Business
Innovation and Technology Management, 57(0),
pp.412–418.

Kau, A.-K. & Loh, E.W.-Y., 2006. The effects of service
recovery on consumer satisfaction: a comparison
between complainants and non-complainants. Journal
of Services Marketing, 20(2), pp.101–111.

Kelly, S. W. & Davis, M. A., 1994. Antecedents to
customer expectations for service recovery. Journal of
the Academy of Marketing Science, 22(11), pp.52–61.

Kim, T., Yoo, J.-E. & Lee, G., 2012. Post-recovery
customer relationships and customer partnerships in a

restaurant setting. International Journal of
Contemporary Hospitality Management, 24(3),
pp.381–401.

Kuenzel, S. & Katsaris, N., 2009. A critical analysis of
service recovery processes in the hotel industry. TMC
Academic Journal, 4(1), pp.14–24.

Kuo, Y.-F., Yen, S.-T. & Chen, L.-H., 2011. Online
auction service failures in Taiwan: typologies and
recovery strategies. Electronic Commerce Research
and Applications, 10(2), pp.183–193.

Kwok, D., Land, L. & Stephens, G., 2009. Multi-
dimensionality of overall consumer satisfaction –
socio-technical perspective. In Proceedings of the
Fifteenth Americas Conference on Information
Systems. p. 310.

La, K. V. & Kandampully, J., 2004. Market oriented
learning and customer value enhancement through
service recovery management. Managing Service
Quality, 14(5), pp.390–401.

Lawkobkit, M. & Kohsuwan, P., 2012. Focal determinants
of service fairness and service recovery satisfaction in
cloud computing. In Chiang Mai: 17th Asia Pacific
Decision Sciences Institute (APDSI) International
Conference, p. 81.

Lawkobkit, M. & Larpsiri, R., 2014. The focal
determinants of service fairness, satisfaction and
behavioral intentions in service management. APHEIT
Humanities-Social Sciences Journal, 21(1), pp.22–36.

Leventhal, G. S., 1980. What should be done with equity
theory? In K. Gergen, M. Greenberg, & R. Willis, eds.
Social exchange: advances in theory and research.
New York: Plenum Press, pp. 27–55.

Levesque, T. & McDougall, G. H. G., 1996. Determinants
of customer satisfaction in retail banking.
International Journal of Bank Marketing, 14(7),
pp.12–20.

Liu, R. R. & Zhang, W., 2010. Informational influence of
online customer feedback: an empirical study. Journal
of Database Marketing & Customer Strategy
Management, 17(2), pp.120–131.

Masterson, S. S. et al., 2000. Integrating justice and social
exchange: The differing effects of fair procedures and
treatment on work relationships. Academy of
Management Journal, 43(4), pp.738–748.

Maxham, J. G. & Netemeyer, R., 2003. Firms reap what
they sow: the effects of shared values and perceived
organizational justice on customers’ evaluations of
complaint handling. Journal of Marketing, 67(1),
pp.46–62.

Maxham, J. G. & Netemeyer, R., 2002. Modeling
customer perceptions of complaint handling over time:
the effects of perceived justice on satisfaction and
intent. Journal of Retailing, 78, pp.239–252.

McCollough, M. A. & Bhardwaj, S. G., 1992. The
recovery paradox: an examination of consumer
satisfaction in relation to disconfirmation, service
quality and attribution based theory. In Marketing
Theory and Applications. American Marketing
Association, p. 119.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

274

McDougall, G. H. & Levesque, T., 2000. Customer
satisfaction with services: putting perceived valued
into the equation. Journal of Services Marketing,
14(5), pp.392–410.

Pang, A., 2014. Worldwide cloud applications market
forecast 2014-2018. Apps Run The Cloud. Available
at: https://www.appsrunthecloud.com [Accessed
December 28, 2014].

Park, M. & Kim, M., 2011. A cross-cultural analysis of
online satisfaction, service failure and recovery: an E-
A-S-Qual approach. Journal of the Korean Society of
Clothing and Textiles, 35(6), pp.700–711.

Saha, G. C. & Theingi, 2009. Service quality, satisfaction,
and behavioral intentions: a study of low-cost airline
carriers in Thailand. Managing Service Quality, 19(3),
pp.350–372.

Seawright, K. K. et al., 2008. An empirical examination of
service recovery design. Marketing Intelligence &
Planning, 26(3), pp.253–274.

Shapiro, D. L., Buttner, E. H. & Barry, B., 1994.
Explanations: what factors enhance their perceived
adequacy? Organizational Behavior and Human
Decision Processes, 58(3), pp.346–368.

Söderlund, M., 1998. Customer satisfaction and its
consequences on customer behaviour revisited: the
impact of different levels of satisfaction on word-of-
mouth, feedback to the supplier and loyalty.
International Journal of Service Industry
Management, 9(2), pp.169–188.

Sun, H., Fang, Y. & Hsieh, J.. P.-A., 2014. Consuming
information systems: an economic model of user
satisfaction. Decision Support Systems, 57(0), pp.188–
199.

Tatum, B. C. et al., 2002. Organizational justice and
performance as measured by 360-degree feedback. In
18th Annual Convention of the Association for
Psychological Science.

Tatum, B. C. & Eberlin, R. J., 2007. Leadership, ethics,
and justice in strategic decision making. Business
Strategy Series, 8(4), p.303.

Tax, S. S. & Brown, S. W., 1998. Recovering and learning
from service failure. Sloan Management Review,
40(1), pp.75–88.

Tronvoll, B., 2011. Negative emotions and their effect on
customer complaint behaviour. Journal of Service
Management, 22(1), pp.111–134.

Wen, B. & Geng�qing Chi, C., 2013. Examine the
cognitive and affective antecedents to service recovery
satisfaction: a field study of delayed airline
passengers. International Journal of Contemporary
Hospitality Management, 25(3), pp.306–327.

Wu, I.-L., 2013. The antecedents of customer satisfaction
and its link to complaint intentions in online shopping:
an integration of justice, technology, and trust.
International Journal of Information Management,
33(1), pp.166–176.

Yang, H.-E. & Peng, K.-H., 2009. Assessing the effects of
service recovery and perceived justice on customer
satisfaction with SEM. In Management and Service

Science, 2009. MASS ’09. International Conference
on 20-22 Sept. 2009. pp. 1 – 4.

Zeithaml, V. A., Berry, L. L. & Parasuraman, A., 1996.
The behavioral consequences of service quality.
Journal of Marketing, 60(2), pp.31–46.

Zemke, R., 1999. Service recovery: turning oops into
opportunity. In Best Practices in Customer Service.
New York, NY: AMA Publications, pp. 279–88.

Zhang, Z. et al., 2010. The impact of e-word-of- mouth on
the online popularity of restaurants: a comparison of
consumer reviews and editor reviews. International
Journal of Hospitality Management, 29(4), pp.694–
700.

Zhou, T., 2013. Understanding continuance usage of
mobile sites. Industrial Management & Data Systems,
113(9), pp.1286–1299.

Zhou, Y. et al., 2013. Recovery strategy for group service
failures: The interaction effects between recovery
modes and recovery dimensions. European Journal of
Marketing, 47(8), pp.1133–1156.

The�Influence�of�the�Provider's�Service�Fairness�on�the�Customer's�Service�Recovery�Satisfaction�and�on�Positive
Behavioral�Intentions�in�Cloud�Computing

275

Context-aware Security@run.time Deployment

Wendpanga Francis Ouedraogo1, Frederique Biennier1, Catarina Ferreira Da Silva2

and Parisa Ghodous2

1Université de Lyon, INSA-Lyon, Villeurbanne Cedex, France
2Université de Lyon, Université de Lyon 1, LIRIS, CNRS, UMR 5205,

20 Avenue Albert Einstein, 69621 Villeurbanne Cedex, France
fwendpanga-francis.ouedraogo, frederique.biennier, catarina.ferreira-da-silva, parisa.ghodousg@liris.cnrs.fr

Keywords: Context Aware Security, Execution Context, Security Patterns, Security Policy, Security as a Service.

Abstract: Taking advantage of the agility and interoperability provided by Service Oriented Architecture (SOA), Web 2.0
and XaaS (Anything as a Service) technologies, more and more collaborative Business Processes (BP) are set
”on demand” by selecting, composing and orchestrating different business services depending on the current
need. This involves re-thinking the way information, services and applications are organized, deployed, shared
and secured among multi-cloud environment. Fitting this de-perimeterized and evolving execution context
requires organising the service protection in a dynamic way in order to provide an up to date and consistent
protection. To fit this goal, we propose to integrate the different protection requirements defined according
to the business environment in a single security policy. Then we plug a context-aware security deployment
architecture on the cloud service middleware to analyse both the security policy and the execution context
to select, compose and orchestrate the convenient protection means. A proof of concept built on Frascati
middleware is used to evaluate the impact of this ”on-line” security mediation.

1 INTRODUCTION

In a highly competitive environment, enterprises are
more and more involved in collaborative strategies to
provide complex services and outstanding products
fitting the customers requirements. Service-Oriented
Architecture (SOA) and Cloud platforms provide ag-
ile and interoperable supports to compose, share and
deploy on the fly complex service-based workflows.
The development of such a de-perimeterized and ag-
ile Information System challenges the development of
dynamic protection strategy, as threats and vulnerabil-
ities evolve continuously depending on to both orga-
nizational and deployment platforms contexts.

The security policy model provided by the OASIS
allows outsourcing security mechanisms from busi-
ness services. Nevertheless, this model may lead to
multiple security policies enactment as services are
”replicated” while they are composed to set a new
business process. This may lead to inconsistent pro-
tection compared to the up-to-date corporate protec-
tion strategy.

To overcome this limitation, we propose to extend
this security policy model to integrate context infor-
mation, avoiding replicating the policy depending on

the business and/or execution context. Then, this uni-
fied security policy is used as a Model@run.time by a
mediation service to select, compose and orchestrate
on the fly the security services deployment depending
on the business context and execution environment.

After presenting a motivation example and the
state of the art in section 2, we introduce our context-
aware security model focusing on the business re-
source protection in section 3. We detail its imple-
mentation in section 4 and evaluate its performance
in section 5.

2 CONTEXT AND MOTIVATION
EXAMPLE

Motivations for defining a unified security policy have
been found in previous projects in Collaborative Net-
worked Organisation (CNO) and Dynamic Supply
Chain environments. The reduced time-frame and the
fast changing environment of these CNOs call for an
opened and agile IT support. This is partly fulfilled
thanks to the composition / orchestration / elastic de-
ployment mechanisms provided by SOA, Web 2.0,

276

XaaS (Anything as a Service) technologies. Develop-
ing such cloud-based business service reusing ability
requires to-rethink the way business service and data
are protected to fit their a priori unknown execution
context.

2.1 Motivation Example

This CNO dynamic protection context can be illus-
trated with a use case picked from a previous project
where a mechanical engineering SME is involved
in different CNOs. This SME uses a key business
service to validate mechanical specifications of new
products. This business service may be invoked in
different business processes (BPs):

� The corporate Computer Aid Design (CAD) mod-
elling system can invoke this service to check
the intermediate specification consistency (75%
of the invocations),

� The Product Lifecycle Management (PLM) sys-
tem can invoke the service to check the product
information before integrating data in its database
(10% of the invocations),

� The service can also be used by some of the part-
ners to validate the engineering requirements they
send. In such case, authorized partners can invoke
the service from their own CAD system (15% of
the invocations).
As the data produced and acceded by the valida-
tion service has a high patrimonial value for the
enterprise, different protections must be deployed:

– Strong authentication to support specification
traceability, i.e., knowing who has achieved/-
worked on the specifications.

– Restricted access control to allow only people
from the enterprise or some authenticated part-
ners to accede the service.

– Exchanged data protection with cryptographic
algorithm.

These protection requirements lead to identify 3 exe-
cution contexts related to the validation service:

� Context 1 - Internal specification checking: This
service is invoked by the corporate CAD services
under the control of members of the enterprise in
a safe environment. In this context, no extra pro-
tection is required as the calling service can be
identified.

� Context 2 - Certified requirement checking: This
service is invoked by the PLM service under the
control of members of the enterprise to check
engineering data validity before storing them.

As it is used to implement a certification, non-
repudiation mechanism is required, involving to
capture user identity, check input and output in-
formation integrity.

� Context 3 - Collaborative specification checking:
This service is invoked by a partner from its CAD
system to validate the specifications sent as en-
gineering requirements. Due to business con-
straints, authentication, authorization and non-
repudiation are necessary, whereas the open ex-
ecution platform requires data encryption.

Most of the time, the business service and the pro-
tection means are orchestrated before being deployed,
without checking the global consistency of the differ-
ent policies on a given asset. To overcome this limita-
tion, we propose to adapt the security policy dynami-
cally so that the protection means fit the (may be new)
business context.

2.2 State of the Art

To overcome the ”lack of trust” and ”unsuitable secu-
rity policy deployment” pointed out by different sur-
veys (Heiser and Nicolett, 2008) (Ban et al., 2010)
regarding Web-based collaborative organizations, se-
curity requirements must be integrated in process
models. Some annotation-based solutions have been
developed to integrate security services in BPMN
(Business Process Model and Notation)1 descriptions
(Rodrı́guez et al., 2007) (Ouedraogo et al., 2013).
As these annotations are related either to a particular
BPMN object or connector, extensions are required to
define a global and consistent end to end process pro-
tection.

More recently, the OASIS Service Reference Ar-
chitecture2 provides a set of models to ”outsource”
the security services (namely Confidentiality, In-
tegrity, Availability, Authentication, Authorization,
Non-Repudiation) from the business service. More-
over, security protocols and standards such as WS-*,
XACML3 or SAML4 have been defined to support in-
teroperable implementation of the necessary security
mechanisms.

Different works are based on the OASIS out-
sourced security policy model to integrate security is-
sues in services composition. Some use security re-
quirements as constraints while selecting and com-

1http://www.omg.org/spec/BPMN/2.0/
2http://docs.oasis-open.org/soa-rm/soa-

ra/v1.0/cs01/soa-ra-v1.0-cs01.html
3http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-

spec-os-en.html
4http://docs.oasis-open.org/security/saml/Post2.0/sstc-

saml-tech-overview-2.0-cd-02.html

Context-aware�Security@run.time�Deployment

277

posing services (Bartoletti et al., 2005) whereas other
define various calculus algebra to decide if a right can
be granted or not (Bartoletti et al., 2006). Paying at-
tention on Business Process (BP) protection require-
ments, (Lang and Schreiner, 2009) has proposed a
Model-Driven Security approach (MDS) to generate
security policies.The generation process is achieved
according to a static environment vision (perimeter-
ized process and well-known deployment platform),
leading to define different policies depending on the
business context. This makes the policy manage-
ment complex and limits a consistent protection evo-
lution as modifications are achieved locally. Further-
more, while some earlier works focus mostly on ac-
cess control (Wolter et al., 2009), extensions are now
defined to capture protection requirements while de-
signing BP (Lucio et al., 2014). In former works,
we have proposed a simplified risk analysis knowl-
edge base to capture protection requirements used to
generate the convenient policy assertions (Ouedraogo
et al., 2013). Even if this user-oriented security engi-
neering strategy allows to identify protection require-
ments and mitigation means adapted to the collabora-
tion context, it can lead to inconsistent protection as
each context-dependent protection policy is defined
separately. To overcome this limitation, the different
protection strategies must be gathered in a single ref-
erence policy attached to each business service and
deployed in a business context-aware mode to miti-
gate the security risks associated to contextual vul-
nerabilities and threats.

3 CONTEXT AWARE SECURITY
SPECIFICATION

We focus on business service protection while cloud-
based deployment allows reusing these protections in
different business contexts. To avoid inconsistent pro-
tection specification, we extend the resource model
introduced in the MDS approach to integrate context
related information so that a unique security policy
can be set. To maintain up-to-date protection, secu-
rity patterns associated to risks mitigation best prac-
tices are also introduced.

3.1 Resource Model

A resource may be a service, some information used
by the service or even a part of a process. Each re-
source (Resk) can be characterized by a name (ResN),
a type (ResT) which can be business service/service
data or a data, a resource application layer (ResL)
(business, service, or infrastructure). A resource can

include sub resources (SubResN) (for e.g. a business
service can include set of others business services
(sub services) and each sub service handles a set of
data (see eq. (1)). As a consequence resource are de-
fined in a recursive way.

Resk = (ResN;ResT ;ResL;fSubRessg) 0 < s <= Ns;
(1)

Where ”Resk” is the resource, ”k” the resource
number, ”SubRess” the name of the sub resource, ”s”
the sub resource number, and ”Ns” the total of the sub
resources.

We enrich this traditional resource definition with
a ”use case” part related to a particular business ex-
tension context. This allows to define the different
mitigation means associated to a particular business
context (see Fig. 1).

Figure 1: Security concepts associated to business service
protection.

3.2 Execution Context Specification

We define the execution context (ExCtx) as a set
of functional (FntCtx), organizational (OrgCtx) and
technical (TecCtx) specifications, which determine the
choice of security countermeasures to perform (see
eq. (2)).

ExCtx = (FntCtx;OrgCtx;TecCtx) (2)

The Functional Context (FntCtx) describes the re-
source set of Functional Requirement (FntReq) i.e.
the type of information (strategic, personal, finan-
cial...) used or handled by the resource and the re-
source information sensitive level (top secret, secret,
confidential, restricted, unclassified) related to its im-
portance (see eq. (3)).

FntCtx = fFntReq f g 0 < f <= N f (3)

Where ”FntReq f ” is a functional requirement, ”f” re-
quirement number, and ”Nf ” the total of the func-
tional requirements. Each FntReq is defined as a tuple
(eq. (4)):

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

278

� FntReqId: is the id of functional requirement,

� FntReqT: is the information type (strategic, per-
sonal, financial...) used or handled by the re-
source,

� FntReqV: is the sensitive level (top secret, secret,
confidential, restricted, unclassified) indicating its
importance based on the risk analysis method.

FntReq = (FntReqId;FntReqT;FntReqV) (4)

The Organizational Context (OrgCtx) is mostly fo-
cused on access control (authentication and autho-
rization), availability and non-repudiation. It allows
defining the obligations and the restriction constraints
in terms of access control, providing answers to the
following questions: Who can access and interact
with the resource? From which locality and at which
time? This Organizational Context (OrgCtx) includes
a set of organizational requirement (OrgReq) (see
eq. (5)).

OrgCtx = fOrgReqog 0 < o <= No (5)

Where OrgReqo is an organizational requirement, ”o”
the requirement number, and ”No” the total of the or-
ganizational requirement. Each OrgReq has a tuple
(see eq. (6)):

� OrgReqId: is the organizational requirement id,

� OrgReqT: is the type of organizational require-
ment (Who, When, FromWhere).

� OrgReqW: defines the way that the requirement
is defined (”UserGroup” or ”individually” for
the ”who” requirement, ”date” or ”dateTime” for
”when”, and ”country” or ”region” or ”IPAd-
dress” for ”FromWhere”).

� OrgReqV: is the value related to OrgReqW, i.e.
the specific user or service which can invoke the
resource, its localization and the period the re-
source can be invoked.

OrgReq=(OrgReqId;OrgReqT;OrgReqT;OrgReqV)
(6)

The Technological Context (TecCtx) includes a set of
Technical Requirements (TecReq) related to the net-
work, devices and deployment platform involved in
the user / resource interaction at runtime (see eq. (7)).

TecCtx = fTecReqtg 0 < t <= Nt (7)

Where TecReqt is a technical requirement, ”t” the re-
quirement number, an ”Nt” the total of the technical
requirement.
Each TecReqt defines which technical mean (net-
works, devices) is used to access the resource. It is
defined as a Tuple including (eq. (8)):

� TecReqId: is the technical requirement id.

� TecReqT: is the type of technical element (device,
network, protocol, etc.) authorized to access or
interact with the resource.

� TecReqV: is the value (Smartphone, PC, IP ad-
dress) related to type of technical element.

TecReq = (TecReqId;TecReqT;TecReqV) (8)

To support a context-aware security deployment, we
integrate this context information in the resource
model (see eq. (9)):

Resk = (ResN;ResT ;ResL;fSubRessg;
fExCtxeg) 0 < e <= Ne (9)

Where ExCtxe is a particular execution context, ”e” is
the execution context number, and ”Ne” the total of
the execution number.

Based on this model, listing 1 presents the Val-
idateSpec resource associated to the specification
checking service from our motivation example.

Listing 1: XML-based syntax representation of the vali-
dateSpec resource from our motivation example.

1 <r e s resN=” / Mechan ica lSys temSpec / v a l i d a t e S p e c ” re sT =”
S e r v i c e ” r e sL =” S e r v i c e ”>

2 <exCtx i d =” 1 ”>
3 <fn tCtx>
4 <fntReq f n t R e q I d =” 2 ” fntReqT =” s t r a t e g i c ”

fntReqV =” S e c r e t ” />
5 </ fn tCtx>
6 <orgCtx>
7 <orgReq orgReqId =” 1 ” orgReqT=”who” orgReqW=”

UserGroup ” orgReqV =”fCADServiceg” />
8 </ orgCtx>
9 <t ecCtx>

10 <tecReq t e c R e q I d =” 2 ” tecReqT=” Network /DNS”
tecReqV =”fmechanicalCompagny . comg” />

11 </ t ecCtx>
12 </ exCtx>
13 <exCtx i d =” 2 ”>
14 <fn tCtx>
15 <fntReq f n t R e q I d =” 2 ” fntReqT =” s t r a t e g i c ”

fntReqV =” S e c r e t ” />
16 </ fn tCtx>
17 <orgCtx>
18 <orgReq orgReqId =” 1 ” orgReqT=”who” orgReqW=”

UserGroup ” orgReqV =”fPDMServiceg” />
19 </ orgCtx>
20 <t ecCtx>
21 <tecReq t e c R e q I d =” 2 ” tecReqT=” Network /DNS”

tecReqV =”fmechanicalCompagny . comg” />
22 </ t ecCtx>
23 </ exCtx>
24 <exCtx i d =” 3 ”>
25 <fn tCtx>
26 <fntReq f n t R e q I d =” 1 ” fntReqT =” s t r a t e g i c ”

fntReqV =” S e c r e t ” />
27 </ fn tCtx>
28 <orgCtx>
29 <orgReq orgReqId =” 1 ” orgReqT=”who” orgReqW=”

UserGroup ” orgReqV =” !fCADService ,
CADServiceg” />

30 </ orgCtx>
31 <t ecCtx>
32 <tecReq t e c R e q I d =” 2 ” tecReqT=” Network /DNS”

tecReqV =” !fmechanicalCompagny . comg” />
33 </ t ecCtx>
34 </ exCtx>
35 </ r e s>

This listing describes the validateSpec resource
(Line 1) and its different execution contexts: Lines 2-
13 for Context 1, Lines 14-25 for Context 2 and Lines

Context-aware�Security@run.time�Deployment

279

26-37 for Context 3. Access control features are de-
fined for each context (see line 7 for Context 1, line
19 for Context 2 and line 31 for Context 3).

3.3 Context Aware Pattern Model

To generate the adapted protection means, the adapted
countermeasures are selected from the OASIS secu-
rity taxonomy. Our countermeasure pattern model is
a tuple (eq. (10)):

Patp = (PatN;PatG;PatL;PatM;fPatCtxcg;
PatR;fPatSetsg;PatCsq)

where 0 < (p;c;s)<= (N p;Nc;Ns)
(10)

� Pattern Name (PatN) is a unique name that refers
to one element of our security taxonomy.

� Pattern Goal (PatG) defines the reason for using
the pattern.

� Pattern layer (PatL) defines the layer of the pat-
tern (Business, Service, Technique).

� Pattern Metric (PatM) is the protection level pro-
vided by pattern (Very High, High, Medium, and
Lower) to fit risk sensitivity level (Top Secret, Se-
cret, Confidential, Restricted).

� Pattern Context (PatCtxc) defines the set of con-
texts in which the pattern is applicable. Each
PatCtxc includes a set of optional conditions
split into functional conditions (FntCdt), or-
ganizational conditions (OrgCdt) and technical
conditions (TecCdt) related to this context (see
eq. (11)).

PatCtxc = (fFntCdt f g;fOrgCdtog;fTecCdttg)
0 < (c; f ;o; t)<= (Nc;N f ;No;Nt)

(11)
The FntCdt includes the information type
(FntCdtT) that the resource has to handle and sen-
sitive level value (FntCdtV) of this information for
which the pattern will be useful (eq. (12)).

FntCdt = (FntCdtT;FntCdtV) (12)

For example data encryption pattern can be used if
the information sensitive level is secret, requiring
a high protection security. The OrgCdt (eq. (13))
defines among 3 organizational conditions which
type of conditions (OrgCdtT) are necessary to
make the pattern applicable:

– The ”who” condition defines the type of user
authorized to access the resource.

– The ”where” condition defines the authorized
location of the user.

– The ”when” condition defines time constraints
to accede to the resource.

Condition applicability (OrgCdtW) specifies the
control strategy. For example the XACML proto-
col can be used if the organizational condition is
defined and the access control mode is by ”User-
Group”.

OrgCdt = (OrgCdtT;OrgCdtW) (13)
The technical condition (TecCdt) (eq. (14)) refers
to platform-dependent protection constraints. It
is used to select a pattern according to the type
of the technical component that is implemented
(TecCdtT) and the related value (TecCdtV).

TecCdt = (TecCdtT;TecCdtV) (14)

� Pattern related (PatR) defines a set of related pat-
terns. For e.g., Authentication pattern can require
a set of different patterns (integrity and encryption
patterns) to secure authentication token.

� Pattern Setting (PatSet) (eq. (15)) describes the
set of parameters (Set) necessary to use a pattern.
These parameters are initialized according to the
execution context.

PatSet = fSetsg 0 < s <= Ns (15)
Where ”s” is the parameter number and ”Ns” the
total number of parameters. Each parameter (Setk)
is defined as a tuple (eq. (16)):

Set = (Setkey;SetValue) (16)
Where Setkey is the parameter name and SetValue
the value of the parameter.

� Pattern Consequence (PatCsq) describes the re-
sults or actions implemented by the pattern. The
set of patterns is defined by (eq. (17)):

Pats = fPat jg where 0 < j <= N j (17)
Where ”j” is the pattern number and ”Nj” the total
number of patterns.
Based on the protection requirement to fulfill and
on information on the current deployment context,
the convenient mitigation pattern can be selected
to generate a security policy rule.

3.4 Reference Security Policy Model

Our formal security policy model, defined as a tuple
(eq. (18)), extends the OASIS policy model. For each
security criteria defined in the OASIS model, a set of
policy rules is defined and related to policy context.
By this way, the security mechanisms that must be de-
ployed to provide a consistent protection can be tuned
depending on the execution context.
Polx = (PolR;PolT;PolG;PolL;PolRls) 0 < x <= Nx

(18)
Where

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

280

� Policy Resource (PolR): is the resource (Business
service, data, etc.) involved in the policy.

� Policy type (PolT): refers to the security ser-
vice taxonomy (Authentication, Confidentiality,
Integrity, Non-repudiation, Availability, etc.)

� Policy Goal (PolG): defines the policy aims.

� Policy Layer (PolL): is the layer (Business, Ser-
vice or Infrastructure) of the involved resource for
this policy.

� Policy Rules (PolRls): is a set of policy rules
(eq. (19)). Each policy rule (PolRlr) defines the
security mechanism to apply according to the re-
source execution context.

PolRls = fPolRlrg 0 < r <= Nr (19)
Where PolRlr is a policy rule, ”r” the policy rule num-
ber, and ”Nr” the total of policy rules. Each policy
rule is also defined as a tuple (eq. (20)):

PolRl = (RlId;RlP;RlM;RlCtx;fRlSetg) (20)

Where:

� Policy Rule Id (Rlid): is the policy rule id,

� Policy Rule Pattern (RlP): is the name of the pat-
tern which matches the resource execution con-
text.

� Policy Rule Metric (RlM): is the pattern associ-
ated metric which matches the resource execution
context. It is the protection level provided by the
pattern.

� RlCxt: includes the part of the pattern context
which matches the resource execution context.

� RlSet: is the initialized pattern settings allowing
to invoke the security mechanism.

Then all the policies associated to a resource are gath-
ered in a single set (eq. (21)):

Pols = fPolRxg where 0 < x <= Nx; (21)

Where ”x” is the policy number and ”Nx” the total
number of policy (for all resources).

Lastly, policy attached to any resource Rk can be
defined by selecting (s) the policy in the Pols set
where the policy resource (PolR) matches with re-
source ”Rk”:

Pols(Rk) = s(Pols:PolR=Rk)(Pols) (22)

This security policy is used to generate a secu-
rity policy file attached to the resource description
(WSDL5 or WADL6 file) that contains all the secu-
rity assertions and their application context. Listing 2

5http://www.w3.org/TR/wsdl
6http://www.w3.org/Submission/wadl/

shows the security policy of the specification valida-
tion operation (validateSpec) of the Mechanical Sys-
tem specification business service, namely authenti-
cation (Lines 2-14) if the calling service is not the cor-
porate CADService, authorization (Lines 27-39), non
repudiation (Line 15-26) and communication channel
protection (Lines 40-54).

Listing 2: validateSpec service security policy expressed
using XML syntax.

1 <p o l s>
2 <pol p o l I d =” 1 ” polR=” / mechan ica lSys t emSpec /

v a l i d a t e S p e c ” polT=” A u t h e n t i c a t i o n ”>
3 <polR r l I d =1 RlP=”LoginPWD” , rlM=” 0 . 5 ”>
4 <r lCtx>
5 <orgCdt orgReqT=”who” orgReqW=” UserGroup ”

orgReqV=” !f CADServiceg” />
6 <tecCdt tecReqT=” Network ” tecReqV=” Network /

DNS” tecReqV=” !fmechanicalCompagny . comg
” />

7 </ r lCtx>
8 <r S e t s><rSe t s e t k e y =” u s e r R e g i s t r y ” s e t V a l u e =”

d a t a / U s e r R e g i s t r y . xml ” />
9 </ r S e t s>

10 </ polR>
11 </ pol>
12 <pol p o l I d =” 2 ” polR=” / mechan ica lSys t emSpec /

v a l i d a t e S p e c ” polT=” NonRepud ia t ion ”>
13 <polR r l I d =” 1 ” RlP=”Log” , rlM=” 0 . 5 ”>
14 <r lCtx>
15 <orgCdt orgReqT=”who” orgReqW=” UserGroup ”

orgReqV=” !f CADServiceg” />
16 <tecCdt tecReqT=” Network ” tecReqV =” IP ” />
17 </ r lCtx>
18 <r S e t s>
19 <rSe t s e t k e y =” l o g F i l e ” v a l u e =” l o g . l o g ” />
20 </ r S e t s>
21 </ polR>
22 </ pol>
23 <pol p o l I d =” 3 ” polR=” / mechan ica lSys t emSpec /

v a l i d a t e S p e c ” polT=” A u t h o r i z a t i o n ”>
24 <polR r l I d =” 1 ” RlP=”ACL” , rlM=” 0 . 5 ”>
25 <r lCtx>
26 <orgCdt orgReqT=”who” orgReqW=” UserGroup ”

orgReqV=” !fCADService , PDMServiceg” />
27 <tecCdt tecReqT=” Network ” tecReqV =” Network /

DNS” tecReqV=” !fmechanicalCompagny . comg”
/>

28 </ r lCtx>
29 <r S e t s>
30 <rSe t s e t k e y =” ACLFile ” v a l u e =” a c l /

A c c e s s C o n t r o l L i s t . xml ” />
31 </ r S e t s>
32 </ polR>
33 </ pol>
34 <pol p o l I d =” 4 ” polR=” / mechan ica lSys t emSpec /

v a l i d a t e S p e c ” polT=” C o n f i d e n t i a l i t y ”>
35 <polR r l I d =” 1 ” RlP=” Encryp t ion AES 128 ” , rlM=”

0 . 7 5 ”>
36
37
38 </ polR>
39 </ pol>
40 <p o l s>

4 CONTEXT AWARE SECURITY
DEPLOYMENT

Taking advantage of the loosely coupled strategy,
we use the middleware online interception capability
to intercept each service/middleware interaction and
routes this interaction to our context aware architec-
ture (Fig. 2) built as an add-on component. It consists
in:

Context-aware�Security@run.time�Deployment

281

� a Context Aware Deployment composite which is
the core component to achieve the dynamic se-
curity deployment. This component is split into
three sub components:

– The Context Aware Security component analy-
ses the calling service requests intercepted by
the middleware and encapsulated into a Re-
quest object. It invokes the policy manager and
the context manager to get the security policy
rules associated to the business services fitting
the context before invoking the required secu-
rity services.

– The Context Manager analyses security poli-
cies associated to the services and identifies the
different policies to be applied according to the
current context.

– The Policy Manager identifies the list of poli-
cies fitting the context from the global policy
file associated to the resource.

� The Security as a Service (SecaaS) composite
gathers implementation of various security ser-
vices (authentication, authorization, integrity con-
trols, etc.) such as:

– The SecaaS component is the composite en-
try point. It analyses the policies sent by the
Context Manager component to identify the se-
curity services (authentication, authorization,
etc.) to call.

– The security components (Authentication,
Authorization, Integrity, Encryption, Non-
Repudiation Availability) invoke the security
service depending on the pattern and parame-
ters specified in the policy.

Figure 2: Context aware security architecture.

5 EVALUATION

To evaluate the impact of our Context Aware Deploy-
ment, we implement a Proof of Concept plugged on
the Frascati middleware (Merle et al., 2011) extend-
ing our Model Driven Policy generator presented in
(Ouedraogo et al., 2013). We then use this prototype

to support various experiments on BP protection poli-
cies specification depending on shared collaborative
context.

5.1 Performance Evaluation

We assume that the cloud oriented service middle-
ware provides a unified environment to invoke busi-
ness services dispatched on a multi-cloud platform.
As a consequence, we set a test on a single machine
environment using Frascati version 1.6 with Oracle
Java Virtual Machine 1.7.0 51 on Microsoft Windows
7 Professional (32 bit) using a 2,54GHz processor In-
tel(R) Core(TM) 2 Duo CPU with 4Go of memory to
compare the dynamic security deployment execution
time with the business service and the protection ser-
vice execution times.

In our example, the ”validateSpec” of the ”me-
chanicalSystemSpec” service and the related informa-
tion must be protected in the different contexts. The
confidentiality requirement impacts both application
layer, which is in charge of the access control, trace-
ability, and transport layer. The systematic composi-
tion of the authorization, traceability and confidential-
ity services may be costly (see the different execution
times reported in Table 1).

Table 1: ValidateSpec Service execution time according to
the three contexts.

Context Security services involved mechanical Specifi-
cation

Execution
time (ms)

Context 1 No security mechanism is required 64
Context 2 Authentication and Non Repudiation 80
Context 3 Context 2 security services + Authorization and

Confidentiality
84

The contextualized security service orchestration
allows invoking only the necessary security mech-
anisms according to the context, avoiding both the
costly over protection and the risky under protection.
This dynamic protection does not impact the daily
used BP and simplifies the security policy consis-
tency controls as new protection requirements are in-
troduced once in the service policy specification and
implemented for the different collaborative BP with-
out impacting the business process deployment.

Other performance simulations have first been
conducted in order to evaluate the performance over-
head involved by the context analysis at run time. We
extend this benchmark to different services (see Ta-
ble 2) to compare the cost of our context-aware ar-
chitecture with the business service execution time.
We set two reference execution contexts, one requir-
ing no security deployment (Context 1) whereas the
other requires the maximum protection (i.e system-
atic protection required in Context 3 from our moti-
vation example). Total execution times are measured

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

282

Table 2: Execution times for a panel of 1000 invocations of business services where the ”no protection” rate evolves from 0%
to 100%.

Systematic
protection

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S1 (10ms) 32000 38000 35800 33600 31400 29200 27000 24800 22600 20400 18200 16000
S5 (50ms) 72000 78000 75800 73600 71400 69200 67000 64800 62600 60400 58200 56000
S10(100ms) 122000 128000 125800 123600 121400 119200 117000 114800 112600 110400 108200 106000

for 1000 invocations split among different occurrence
rate for context 1 (see Table 2). The ratio comparing
the context-aware secured business service execution
time with the systematically secured business service
execution time presents a maximum of 4,92% over-
head for the bigger service to 18,75% for the small-
est one when these services invocation requires the
highest protection (0% of occurrence of the ”no pro-
tection context”). On the opposite, our context aware
security deployment can save from 50% up to 86,89%
of execution time when all invocation do not need
any protection. These results show that the overhead
involved by our architecture can be rather neglected
(from 4,92% to 18,75% of the service execution time
overhead when the highest protection is always re-
quired) compared to the large overhead introduced by
the systematic invocation of (often) useless security
services provided that the ”no protection” invocation
context rate is greater than 30% as shown in Fig. 3.

Figure 3: Variation of context aware security execution cost
for three business services.

6 CONCLUSION

To secure business services used in collaborative envi-
ronment, enterprises have to adapt the protection ac-
cording to the execution context. To this end, we pro-
pose a context aware security model and architecture
used to select and orchestrate security services at run-
time. This architecture, tested on the Frascati middle-
ware, shows that the dynamic security mediation has
a rather low impact on the performance level com-
pared with a systematic deployment of costly over-
protection.

Further works will focus on the integration of
more detailed platform models and on vulnerabilities

monitoring loops so that our coarse-grained vision of
the execution context will be refined to increase the
protection efficiency.

REFERENCES

Ban, L. B., Cocchiara, R., Lovejoy, K., Telford, R., and
Ernest, M. (2010). The evolving role of it managers
and cios.

Bartoletti, M., Degano, P., and Ferrari, G. (2005). Enforc-
ing secure service composition. In Computer Security
Foundations, 2005. CSFW-18 2005. 18th IEEE Work-
shop, pages 211–223.

Bartoletti, M., Degano, P., and Ferrari, G. (2006). Secu-
rity issues in service composition. In Gorrieri, R.
and Wehrheim, H., editors, Formal Methods for Open
Object-Based Distributed Systems, volume 4037 of
Lecture Notes in Computer Science, pages 1–16.
Springer Berlin Heidelberg.

Heiser, J. and Nicolett, M. (2008). ssessing the security
risks of Cloud Computing. Technical report, Gartner.

Lang, U. and Schreiner, R. (2009). Model Driven Security
Management: Making Security Management Man-
ageable in Complex Distributed Systems. In Work-
shop on Modeling Security (MODSEC08) - Interna-
tional Conference on Model Driven Engineering Lan-
guages and Systems (MODELS).

Lucio, L., Zhang, Q., Nguyen, P. H., Amrani, M., Klein, J.,
Vangheluwe, H., and Traon, Y. L. (2014). Chapter 3 -
Advances in Model-Driven Security. In Memon, A.,
editor, Advances in Computers, volume 93, pages 103
– 152. Elsevier.

Merle, P., Rouvoy, R., and Seinturier, L. (2011). A Re-
flective Platform for Highly Adaptive Multi-Cloud
Systems. In International Workshop on Adaptive
and Reflective Middleware (ARM’11) - 12th ACM/I-
FIP/USENIX International Middleware Conference,
pages 14–21. ACM.

Ouedraogo, W. F., Biennier, F., and Ghodous, P. (2013).
Model driven security in multi-context. In Interna-
tional Journal of Electronic Business Management,
volume 11 No. 3, pages 178–190.

Rodrı́guez, A., Fernández-Medina, E., and Piattini, M.
(2007). A BPMN Extension for the Modeling of Se-
curity Requirements in Business Processes. IEICE -
Trans. Inf. Syst., E90-D(4):745–752.

Wolter, C., Menzel, M., Schaad, A., Miseldine, P., and
Meinel, C. (2009). Model-driven business process se-
curity requirement specification. Journal of Systems
Architecture (JSA), pages 211–223.

Context-aware�Security@run.time�Deployment

283

Choreography-based Consolidation of Interacting Processes Having
Activity-based Loops

Sebastian Wagner1, Oliver Kopp1;2 and Frank Leymann1

1IAAS, University of Stuttgart, Universitaetsstr. 38, Stuttgart, Germany
2IPVS, University of Stuttgart, Universitaetsstr. 38, Stuttgart, Germany

firstname.lastname@iaas.uni-stuttgart.de

Keywords: BPEL, Choreography, Process Consolidation, Loops.

Abstract: Choreographies describe the interaction between two or more parties. The interaction behavior description
might contain loops. In case two parties want to merge their behavior to gain competitive advantage, the
contained loop constructs also have to be merged. This paper presents a language-independent discussion on
loop-structure pairing in choreographies and possible merging strategies. Thereby, the focus is turned on loops
grouping child activities to be iterated. We show the feasibility of the merging strategies by applying them to
BPEL-based choreographies.

1 INTRODUCTION

Business process consolidation (also called “process
merge”) integrates two or more complementing and
hence often interacting business processes into a single
process. From a business perspective, process consol-
idation is applied by companies to regain control of
outsourced business functions (“business process in-
sourcing”). In the scenario in Fig. 1, for instance,
a manufacturer integrates the process of its supplier
in its own process. Beside the business perspective,
there exist also technical drivers for consolidating pro-
cesses. Especially in instance-intensive interaction
scenarios, where hundreds or thousands of process
instances interact with each other, consolidating the
interacting processes may lead to significant perfor-
mance gains (Wagner et al., 2013). They result from
avoiding the costly message transfer steps, i. e., the
message serialization at the sender side, the actual
message transfer and the message deserialization at the
receiver side. Since usually complex XML-based pro-
tocols such as SOAP are used to exchange messages
between processes the message transfer becomes even
more resource intensive (Ng et al., 2004). Another
advantage of consolidating interacting processes is the
decreased number of process instances that have to be
managed by the workflow engines. As typically the
pay-per-use model is applied in Cloud environments,
these performance savings result also in lower costs for
enacting a choreography on a workflow engine being
hosted in the cloud.

To facilitate process consolidation an ap-
proach (Wagner et al., 2012) was developed that
automatically consolidates complementing acyclic
processes, whose interaction behavior is specified by
a choreography, into a single process. The approach
ensures that the consolidated process, called PMerged
in the following, generates the same set of traces
of basic activities as the original choreography. To
accomplish that, the approach also adds additional
control links to PMerged to relate activities originating
from the different processes to be consolidated. So
far, the consolidation approach is just capable to
merge acyclic processes. If processes are merged
that interact via activity-based loops, i. e., loops that
contain activities to be iterated in their loop body, the
consolidated process PMerged becomes invalid. This is
due to the fact, that the additional control links created
by the current consolidation approach may cross
loop boundaries. However, workflow languages that
support activity-based loops, such as BPEL (OASIS,
2007) and BPMN (Object Management Group (OMG),
2011), do not allow control links crossing loops
boundaries. For instance, in Fig. 1 the consolidation
created an invalid process because the generated
control link connects the activities “Syn3” and “Syn4”
that are located in different loops.

This work extends the consolidation approach to
support the consolidation of processes that interact
via activity-based loops. For this purpose, we discuss
different interaction patterns involving activity-based
loops communicating with other loops (e. g., graph-

284

© Sebastian Wagner 8

Example Scenario
M
an
uf
ac
tu
re
r

Loop – Assemble Parts

Su
pp

lie
r

Plan
Manufacturing

Send Parts
Order

Receive Parts
Order

Plan Part
Production

Receive Delivery
Notification

Deliver
Product

Loop – Part Production

Produce Part Send Delivery
Notification

ml1

Assemble
Part

M
an
uf
ac
tu
re
r (
P m

er
ge
d) Loop – Assemble Parts

Plan
Manufacturing

Plan Part
Production

Deliver
Product

Loop – Part Production

Produce Part

Assemble
Part

Consolidate

Cross‐Boundary Link

Order New
Material

Order New
Material

ml2

Syn1 Syn4

Syn2

and

Syn3

and

Figure 1: Consolidation of Interacting Processes.

based loops) by means of a language-independent
workflow meta-model. For each pattern it is discussed
how a consolidation can be performed that keeps the
execution order between basic activities that was de-
fined in the original choreography. We developed
a tool for consolidating interacting BPEL processes.
Therefore, to validate the approach, we will show to
what extend the language-independent patterns can be
mapped to BPEL in order to implement them in the
consolidation tool.

The remainder of the paper is structured as follows.
In Sect. 2 we give a brief overview about the process
consolidation. In Sect. 3 the meta-model of the work-
flow language used in this work is defined. Section 4
describes patterns to resolve the cross-boundary vio-
lations of activity-based loops. In Sect. 5 the patterns
are validated to BPEL and the prototype that imple-
ments the patterns is presented. Section 6 gives an
overview about the related work and in Sect. 7 the
work is concluded.

2 PROCESS CONSOLIDATION
APPROACH

The actual business functions of processes, e. g., hu-
man tasks, data manipulations etc. is implemented by
basic activities, i. e., by activities that do not contain
other activities. The possible set of execution traces
of basic activities during choreography runtime is de-
termined by the control flow constructs (e. g., control
links, loops etc.) and interaction patterns defined in
the choreography. Thus, for being correct, PMerged
must be able to generate the same set of traces of ba-
sic activities (without communication activities that
are removed during consolidation) during runtime as
the original choreography, where PMerged was created
from. The same set of traces can be only generated
if PMerged keeps the execution orders between the ba-
sic activities. The execution order between two basic

activities ai and aj defines that ai must be either per-
formed before, after or parallel to aj. To preserve the
execution order, the consolidation operation performs
the following steps:

At first, a single process named PMerged is created.
Then the activities of all interacting processes of the
choreography along with their incoming and outgoing
control links are copied into PMerged. The basic activ-
ities are left in their parent activities (e. g., “Produce
Part” stays in “Part Production”). This ensures that
in PMerged the originally modeled execution order be-
tween the activities originating from the same process
is preserved.

PMerged still contains communication activities
used by the processes to interact with each other. These
activities are replaced by synchronization activities
that inherit the control links from the communication
activities replaced by them. For instance, in Fig. 1
“Send Parts Order” and “Receive Parts Order” are re-
placed by “Syn1” and “Syn2” respectively. If the data
flow of the workflow language is modeled by control
flow constructs such as in BPEL, the synchronization
activities can be used to emulate the message transfer.
For instance by copying the former message content
from the data object that was read by the sending ac-
tivity, to the data object where the message content
was copied to by the receiving activity. In BPMN the
synchronization activities just act as sources or tar-
gets for the materialized control links but they do not
perform any operations. In a choreography the exe-
cution order between basic activities originating from
different processes is implicitly defined by the interac-
tion specification, i. e., by the message links (ml1 and
ml2 in the example). The asynchronous interaction
between “Send Parts Order” and “Receive Parts Or-
der” via message link ml1 implies that activity “Plan
Manufacturing” is always performed before “Plan Part
Production”. To keep this execution order “control-
flow materialization” is performed, i. e., based on the
interaction type new control links are created. To re-
place an asynchronous interaction the link originates
at the synchronization activity that replaced the send-
ing activity and ends at the synchronization activity
that replaced the receiving activity. These new control
links may cause cross-boundary violations, i. e., they
cross the boundaries of the activity-based loops, as
shown in the example in Fig. 1, which is not permitted
in BPMN or BPEL.

3 PRELIMINARIES

Definition 1 (Process). A process is defined as a di-
rected single entry single exit (SESE) graph P= (A;E).

Choreography-based�Consolidation�of�Interacting�Processes�Having�Activity-based�Loops

285

The set A denotes the set of activities and set E denotes
the set of control links of the graph. The set of control
links is defined as E � A�A�C. C denotes the set
of link conditions. Conditions are logical expressions
that can be evaluated at runtime of P to true or false.

An activity of a process has a set of incom-
ing control links E!(a) = f(ai;a;c)j (a;ai;c) 2
Eg and a set of outgoing control links E (a) =
f(a;ai;c)j (a;ai;c) 2 Eg. The activity where
jE!(a)j= 0 is called “entry activity” aentry of P and
the activity where jE (a)j= 0 is called “exit activity”
aexit of P. The set of directly preceding activities of
an activity a is denoted by �a and the set of directly
succeeding activities of a are denoted by a�.

The function PreDom : A! 2A returns all activ-
ities that are (pre-)dominated by activity a and a it-
self (Koehler et al., 2005). An activity a dominates
another activity b if every path from the entry activity
to b goes through activity a. All activities that are post-
dominated by activity a and a itself are returned by the
function PostDom : A! 2A (Koehler et al., 2005). An
activity a post-dominates another activity b if every
path from b to the exit activity goes through activity a.

The control flow of a process model follows the
token semantics of BPMN (Object Management Group
(OMG), 2011). The entry activity of P propagates a
token to each of its outgoing control links. A link
that receives a token consumes it and evaluates its link
condition. If the link condition evaluates to true the
link is activated, i. e., it produces a token and passes it
to its subsequent target activity. An activity is started
(consumes a token) when at least one of its incoming
links is activated and no more upstream tokens may
reach the activity. Informally, this also holds for OR-
joins. Formally, OR-joins have to be Q-enabled to start.
Q-enabledness is defined by Völzer (Völzer, 2010).
After the activity is completed, one token is passed
on to each of its outgoing links. The exit activity just
consumes tokens. A process is completed when there
are no other upstream tokens.

Definition 2 (Choreography and Message Links). A
choreography C = (P ;ML) consists of a set of pro-
cesses P and message links ML � A�A. Each mes-
sage link ML 2ML connects two activities ai and a j
from different processes P1;P2 2 P . In a message link
ML = (ai;a j) the source activity ai is the sending ac-
tivity and the target activity a j the receiving activity of
a message. An activity must be only source or target of
exactly one message link. A message link is activated,
when ai is started and a j cannot complete until the link
is activated , i. e., a j “hangs” until the link is activated.
Note, that ai sends a message m in a send and forget
manner, i. e., ai completes, even if a j was not started
yet. We refer to all activities that are source or target

of a message link as communication activities.

In the following different types of loops are de-
fined that are provided by the most workflow lan-
guages (van der Aalst et al., 2003). These loop types
are used, to define the patterns for solving cross-
boundary violations introduced in 4.

Definition 3 (Activity-based Loop). An activity-based
loop L is a special type of activity defined as L= (AL�
A;EL � E;c 2 C;evalc = fpre;postg). The loop
body is a SESE graph consisting of the activities AL
and the control links EL. No control link must cross the
boundary of the loop, i. e., 8e 2 EL : p1(e);p2(e) 2 AL,
where pi projects to the ith element of a tuple. evalc
is set to pre if the loop condition must be evaluated
before the first iteration of the loop body (pre-test loop)
or set to post if the loop condition must be evaluated
after the first iteration of the loop body (post-test loop).
The function Body: L! 2A� 2E returns the graph
in the loop body. The loop condition is returned by
function Cond: L!C.

Activity-based loops can be subdivided in “static
activity-based loops” and “dynamic activity-based
loops”. For static activity-based loops, the maximum
possible number of iterations can be determined dur-
ing design time by using data-flow analysis techniques
(Heinze et al., 2012; Kopp et al., 2008). For dynamic
activity-based loops, this is not possible at design time
but only at runtime. The function Max: L! N[f?g
returns the maximum number of iterations of L and re-
turns “?” in the case of dynamic activity-based loops.

The loop body of an activity can be thought of
as a subprocess because it has the same operational
semantics as a process. An activity-based loop that
is started, passes a single token to its entry activity
and the loop completes after all produced tokens were
consumed by its exit activity.

Definition 4 (Graph-based Structured Loop). A graph-
based structured loop L = (AL � A;EL � E) is a sub-
graph of P, such that there is an entry node a 2 AL
and an exit node b 2 AL (which can be the same), such
that every path starting from a visits b and may visit
the loop entry a again and thus forms a cycle. Hence,
all nodes in AL are reachable from a.

In this paper, we focus on structured loops and do
not tackle unstructured loops. Finally, we provide a
definition for interacting loops.

Definition 5 (Interacting Loop). Two loops L1 and L2

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

286

are called interacting loops, if

9ml 2ML :
(p1(ml) 2P1(Body(L1))
^p2(ml) 2P1(Body(L2)))
_(p2(ml) 2P1(Body(L1))
^p1(ml) 2P1(Body(L2)))

Informally, this means that L1 contains a communica-
tion activity ai and that is related to a communication
activity a j in L2 via a message link ml. Note, that Pi
returns the set of ith elements from the given set of
tuples, here the activities of the body of L1 and L2.

4 SOLVING CROSS-BOUNDARY
VIOLATIONS IN
ACTIVITY-BASED LOOPS

This section describes different patterns to solve cross-
boundary violations created in PMerged by the control-
flow materialization while keeping the execution order
between basic activities. The patterns focus on scenar-
ios with two interacting loops L1 and L2, however, they
can be also applied to more interacting loops, as dis-
cussed at the end of this section. One of the loops must
be an activity-based loop as cross-boundary violations
do only occur if activity-based loops are involved.

In the following, we refer to the set of links that are
crossing boundaries of a loop as ECB � E. The source
and target activities of a link eCB 2 ECB are referred
to as synchronization activities. For interacting graph-
based loops L1 and L2 PMerged does not have to be
adapted, as graph-based loops do not have a loop body.
Hence, cross-boundary violations cannot occur. The
pattern to be applied depends on the type of L1 and L2
receptively and also on the types of loops supported
by the workflow language.

The context of a pattern defines, for what types
of interacting loops it can be applied. The solution
describes how the cross-boundary violation can be
resolved. Variations discusses different variants of
the pattern. The discussion describes how the pattern
preserves the control flow order between the atomic
activities that was originally defined in C . The pat-
terns can be only applied to choreographies that are
deadlock free.

Pattern 1: Activity-based Loop Unrolling

Context. A static activity-based loop L1 is related to
another static activity-based loop L2 via one or more
cross-boundary links as shown in Fig. 2. L1 and L2

are not forced to have the same number of iterations.
The workflow language does not support graph-based
structured loops.

Solution. As the number of iterations of L1 and L2
is known at design time loop unrolling (also called
loop unwinding) can be performed on the two loops
to resolve the cross-boundary violations. Algorithm 1
implements loop unrolling for an activity-based loop L.
In line 3 the first iteration of L is unrolled into PMerged.
All other iterations of L (if any) are unrolled in line 7.

To perform the actual duplication of the loop body
graph the loop unrolling algorithm calls the function
Duplicate that is shown in Algorithm 2. The func-
tion creates one copy a0 of each activity of the given
graph G (line 5). The incoming and outgoing links of
each original activity a are also duplicated. These link
copies become the incoming and outgoing links of the
corresponding copy of a, i. e., a0 (lines 10 to 15). This
also includes the cross-boundary links. In lines 4 and 8
Algorithm 1 adds the created activity and link copies
to the process graph. As the duplication is performed n
times, where n denotes the max. number of iterations
of L, n subgraphs G1; : : : ;G1 are created in PMerged.
Subgraph G1

L1 represents the first iteration of L1, G2
L1

the second iteration, etc. For instance, the example
loop L1 in Fig. 2 is unrolled into two subgraphs G1

L1
and G2

L1. Hence, the function Duplicate is called twice
by the loop unrolling algorithm. The first call creates
the activity copies a21 - a51 and second call a22 - a52

along with the corresponding link copies.
To preserve the control flow order between the

unrolled iterations of L, G1; : : : ;Gn have to be linked
sequentially with each other by a new set of n� 1
control links (lines 11 to 14 in Algorithm 1) . There-
fore, each exit activity of the subgraphs G1; : : : ;Gn�1
is connected to an entry activity of G2; : : :Gn by a new
control link enext. To emulate the behavior, that another
iteration of L is only performed if the loop condition
of L evaluates to true, the loop condition of L is also
added to each link enext. To skip all other iterations if
the loop condition evaluates to false after the execution
of an iteration Gi, each exit activity of G1; : : : ;Gn�1 is
linked to all direct successor activities of L via a set
of links eskip (lines 11 - 14). This means, that each
of these links replaces a link from the set of outgo-
ing links of L (E (L)). Note, that each of the links
from E (L) may have also a link conditions assigned.
Hence, each link eskip must be only activated if the loop
condition evaluates to false and if the link condition
of the link from E (L) it replaces, evaluates to false.
The last iteration, i. e., Gn is related to the successor
activities of L in the same way by calling Algorithm 4.

To ensure that the direct predecessor activities of

Choreography-based�Consolidation�of�Interacting�Processes�Having�Activity-based�Loops

287

© Sebastian Wagner 10

Static Loop IEEE

L1
Pre(#2)

a2

a3

a5

a1

a6

eCB

a21

a31

a51

a1

a6

a22

a32

a52

G1
L1

G2
L1

e1nxt

a41

a42

a4

b3

b2
e1skip

e1exit

e1entry

e1CB

e1pre

L2
Pre(#2)

b1

b2

b1

L2
Pre(#2)

b1

Unroll
L2

b4

xor

xor

xor

a21

a31

a51

a1

a6

a22

a32

a52

e1nxt

a41

a42

e1skip

e1exit

e1entry

e1CB

e1pre

b31

b21

b1

b32

b22
e3CB

e2entry

e2nxt

b4
e2exit

e2pre

e2skip
xor

xor

Unroll
L1

Figure 2: Unrolling of Activity-based Loops.

L become the predecessors of the unrolled iterations
of L G1; : : : ;Gn Algorithm 3 is called. The algorithm
links the entry activity of G1 to the direct predecessor
activities of L. For each former incoming link of L
(i. e., E!(L)) a new entry link eentry is created (lines
4 and line 11 in Algorithm 3). If L is a post-test loop,
the link conditions of the entry links inherit the link
conditions of the incoming links E!(L) (line 11 in
Algorithm 3). This ensures the originally modeled
behavior, that the first iteration is always started, if at
least one of the incoming links of L is activated.

If L is a pre-test loop the first iteration of the loop
body must be only started if at least one of the incom-
ing links of L is activated and if the loop condition
evaluates to true. To emulate this behavior, the link
conditions of the entry links are concatenated with the
loop condition of L. To skip the execution of the un-
rolled loop if the pre-test loop condition evaluates to
false another set of links Epre � E is created between
all direct predecessor and successor activities of L

To guarantee that an activity, target of a copy of a
cross-boundary link ei

CB, is performed at most once a
Boolean flag is added to PMerged and accessed by the
link condition of all copies ei

CB of a cross-boundary
link eCB (due to space reasons not shown in the pre-
sented algorithms). This flag carries the name of the
original cross-boundary link and it is set from true
to false when a copy ei

CB was activated. Thus, any
another copy e j

CB of eCB (i 6= j) cannot be activated
anymore, which prevents its target activity from be-

ing executed again. For instance, if in Fig. 2 the path
ha21;a31;a51i is taken, e1

CB is activated and b21 is ex-
ecuted which causes the flag to be set to false. If the
execution continues on the path ha22;a32;a52i the link
condition of e2

CB deactivates this link and prevents b21

from being started again.

Algorithm 1: Loop Unrolling.

1: procedure UNROLL-LOOP(L)
2: i 1
3: Gi DUPLICATE(Body(L))
4: PMerged PMerged [Gi
5: ADD-TO-LOOP-PREDECESSORS(Gi,L)
6: while i <Max(L) do
7: Gi+1 DUPLICATE(Gi)
8: PMerged PMerged [Gi+1
9: enext = (Exit(Gi);Entry(Gi+1);Cond(L))

10: ADD-LINK(PMerged;enext) . Add link to
PMerged

11: for all esucc 2 E (L) do
12: eskip = (Exit(Gi);p2(esucc);

(p3(esucc)^:Cond(L)))
13: ADD-LINK(PMerged;eskip)
14: end for
15: i i+1
16: end while
17: RELATE-TO-LOOP-SUCCESSORS(Gi�1,L)
18: end procedure

Algorithm 2: Graph Duplication.

1: function DUPLICATE(G)
2: A = P1(G) . Original activities
3: A0 = fg;E 0 = fg . Activity and link copies
4: for all a 2 A do
5: a0 = DUPLICATE-ACTIVITY(a)
6: A0 A0[a0

7: end for
8: for all a0 2 A0 do
9: a = GET-ORIGIN(a0) . Get original activity

10: for all ein 2 E!(a) do
11: E 0 E 0[ADD-LINK(p1(ein);a0;p3(ein))
12: end for
13: for all eout 2 E (a) do
14: E 0 E 0[ADD-LINK(a0;p2(eout);p3(eout))
15: end for
16: end for
17: return G0 = (A0;E 0)
18: end function

Variations. For resolving cross-boundary violations
between two interacting static activity-based loops L1
and L2, both loops have to be unrolled. The order
in which L1 and L2 are unrolled by Algorithm 1 is

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

288

not relevant because the loop unrolling technique nei-
ther considers nor changes the structure of the other
loop. Also if L1 and L2 have a different number of
maximal iterations the unrolling can be performed as
the cross-boundary links are duplicated for each itera-
tion. Which, in turn, keeps the control flow relations
between each unrolled iteration of L1 and L2.

A dynamic activity-based loop L1 without
synchronization activities on alternative paths in
its loop body can be unrolled, if it interacts with
a static activity-based loop L2 that does not have
synchronization activities on alternative paths either.
The number of unrolled iterations of L1 is implied
by the maximum number of iterations of L2. Each
execution of a synchronization activity a from L1
connected to a synchronization activity b from L2 via
a link ecb(a;b; true) results in an execution of b and
vice versa. Hence, the maximum number of iterations
of L2 implies the maximum number of iterations of L1.

Algorithm 3: Add Loop Predecessors.

1: procedure ADD-TO-LOOP-PREDECESSORS(G,
L)

2: for all epred 2 E!(L) do
3: if evalC(L) = pre then
4: eentry = (p1(epred);Entry(G);

(p3(epred)^Cond(L) = true))
5: ADD-LINK(PMerged;eentry)
6: for all esucc 2 E (L) do
7: epre = (p1(epred);p2(esucc);

(p3(epred)^p3(esucc)^:Cond(L)))
8: ADD-LINK(PMerged;epre)
9: end for

10: else
11: eentry = (p1(epred);Entry(G);p3(epred))
12: ADD-LINK(PMerged;eentry)
13: end if
14: end for
15: end procedure

Algorithm 4: Add Loop Successors.

1: procedure ADD-TO-LOOP-SUCCESSORS(G, L)
2: for all esucc 2 E (L) do
3: eexit = (Exit(G);p2(esucc);
4: (p3(esucc)^:Cond(L))
5: ADD-LINK(PMerged;eexit)
6: end for
7: end procedure

Discussion. The consecutive execution of the iter-
ations of an unrolled loop L is emulated by dupli-
cating the loop body of L n times to the subgraphs

G1
L; : : : ;G

n�1
L and by linking these subgraphs sequen-

tially. The control relations within the activities of
the duplicated loop bodies are preserved as no new
activities or control links are introduced in Gi

L. The
behavior, that no further iteration of L is performed
when its loop condition evaluates to false, is emulated
by the set of additional control links Eskip connecting
the exit activity of each unrolled subgraph Gi

L with the
successor activities of L.

The loop unrolling technique keeps also the con-
trol flow relations between the activities of L1 and L2
implied by C as the links ECB are also duplicated. As-
sume, for instance, that L1 in Fig. 2 can be iterated
up to six times and L2 only up to two times. Hence,
L1 has to be unrolled six times and L2 two times. If
C is deadlock free, the path ha2;a3;a5i in L1 must
be taken exactly in two iterations to execute b2 and
b3. However, it can not be determined at design time,
which iterations take this path. The duplication of
the cross-boundary link eCB ensures, that taking this
path is possible in each unrolled iteration Gi

L1. At the
same time, multiple executions of the same activity
are avoided by using the flag that tracks, if a copy of
a cross-boundary link was already performed. This
also implies that a target activity of one or many cross-
boundary links does not run into deadlocks. If it ran
into a deadlock, none of the source activities of their
incoming cross-boundary link is performed. As each
cross-boundary link represents a former message ex-
change in C , this, in turn, would mean that the target
activity would wait forever for an incoming message.
Hence, C would not be deadlock free which contra-
dicts to our prerequisite.

Pattern 2: Transforming Activity-based
Loops to Graph-based Structured Loops

Context. A dynamic activity-based loop L is related
to another static or dynamic graph-based structured
loop via a set of cross-boundary links as shown in
Fig. 3. The workflow language supports graph-based
structured loops.

Solution. To resolve the cross-boundary violations, L
can be transformed to a graph-based structured loop
LG by copying the loop body GL of L to PMerged and
by creating a control flow cycle between the exit and
entry activity of GL. Algorithm 5 describes the trans-
formation in detail.

The actual duplication of the loop body of L is done
in line 2. To realize the repetitive execution of GL a
control flow cycle between the exit activity aexit and
the entry activity aentry is created in line 5 by adding
the new control link eloop. For instance in Fig. 3, the

Choreography-based�Consolidation�of�Interacting�Processes�Having�Activity-based�Loops

289

© Sebastian Wagner 13

Activity‐based – Graph‐based

L1
Pre(#?)

a2

a3

a5

a1

a6

e1CB
a4

b5

b3

b2

b4

b1

b6

a2

a3

a5

a1

a6

e1CB
a4

b5

b3

b2

b4

b1

b6

Gl1

eloop

eskipL1
Pre(#?)

a2

a3

a5

a1

a6

ml1
a4

b5

b3

b2

b4

b1

b6

xor xor xor xor xor xor

L1
Pre(#?)

a2

a3

a5

a1

a6

e1CB
a4

b5

b3

b2

b4

b1

b6

a2

a3

a5

a1

a6

e1CB
a4

b5

b3

b2

b4

b1

b6

Gl1

eloop

eskip

xor xor xor xor

Figure 3: Activity-based Loops to Graph-based Structured
Loops.

link eloop connects the exit activity a5 with the entry
activity a2. To incorporate GL into the process graph
of PMerged Algorithm 5 calls Algorithm 3 and 4.

As described in pattern 1, Algorithm 3 is used to
ensure that the set of direct predecessor activities of
L become predecessors of the entry activity of GL by
creating a set of entry links (denoted as eentry). This
means, that if L is a post-test loop, the entry links
inherit the link conditions of the original entry links of
L. If L has a pre-test condition, it has to be guaranteed,
that the first iteration of GL is only performed if the
loop condition evaluates to true, otherwise GL must be
skipped.

Algorithm 4 is called, to relate the direct successor
activities of L with the exit activities GL by creating for
each outgoing link of L (e 2 E (L)) a corresponding
exit link eexit. To start the successor activities if and
only if all iterations of GL completed, the link condi-
tion of each exit link is concatenated with a negation
of the loop condition of L.

Algorithm 5: Loop Transformation.

1: procedure LOOP-TRANSFORM(L)
2: GL DUPLICATE(Body(L))
3: PMerged PMerged [GL
4: ADD-TO-LOOP-PREDECESSORS(GL,L)
5: eloop = (Exit(GL);Entry(GL);Cond(L))
6: ADD-LINK(PMerged;eloop)
7: ADD-TO-LOOP-SUCCESSORS(GL,L)
8: end procedure

Variations. Transforming a static structured loop L
to an unstructured loop instead of unrolling it (as
described in Sect. 4), may be useful if L has a high
maximum of iterations. This avoids PMerged to be
“polluted” with unrolled iterations of L.

Discussion. Transforming an activity-based loop L to
a graph-based structured loop LG removes the loop
boundaries of L while preserving all control flow con-
straints implied by C . The control link eloop enables
iterations of the loop body GL to be consecutively exe-
cuted, as long as the loop condition evaluates to true.
As the loop condition is not changed, LG is iterated

© Sebastian Wagner 15

GL2GL1

Dynamic and Dynamic Loop

LL1L2
Post(#?)‐ (cond(L1) OR cond(L2))

aentry

aend

a1 b1

a5 b7

L1
Pre(#?)

a2

L2
Pre(#?)

b2

a3

a4

b3

b6

b5

a1 b1

a5 b7

b4

L1
Pre(#?)

a2

L2
Pre(#?)

b2

a3

a4

b3

b6

b5

a1 b1

a5 b7

b4
a2 b2

a3

a4

b3

b6

b5

b4

e1CB

e2CB

e1CB

e2CB

xor xor

xor

Figure 4: Merging Two Dynamic Activity-based Loops.

as often as L (under the same data assignment). If the
loop condition evaluates to false, link eloop is deacti-
vated and the exit links E (exit) are activated. This
ensures the original behavior, that the successors of L
are started after all iterations of L completed. The orig-
inal control relations between L1 and other loops are
also preserved since the cross-boundary links between
are not changed either.

Pattern 3: Merging Two Dynamic
Activity-based Loops

Context. A dynamic activity-based loop L1 is related
to another dynamic activity-based loop L2 via a set
of cross-boundary links as shown in Fig. 4. The
workflow language does not support graph-based
structured loops.

Solution. Loop unrolling cannot be performed as the
number of iterations of L1 and L2 is unknown at design
time. To resolve the violations, the source and target
activities of these links are moved into the same loop,
referred to as LL1L2. Thus, the activity graphs GL1 and
GL2 have to be merged into a new single loop LL1L2 as
shown in Algorithm 6.

The algorithm creates the new loop LL1L2 in line
4. The loop body GL1L2 of this loop, which consists
of of the loop bodies of L1 and L2, is created in line 5.
Additionally, an entry activity aentry and an exit activ-
ity aexit is added to the loop body. These activities
precede and succeed the entry and exit activities of
GL1 and GL2. They are added to keep the SESE prop-
erty and to ensure that GL1 is only performed, if the
loop condition of L1 becomes true and that GL2 is only
performed, if the loop condition of L2 becomes true.
For this purpose, the transition condition of the entry
link pointing from aentry to GL1 gets the loop condition
of L1 assigned and the the entry link pointing from
aentry to GL2 gets the join condition of L2 assigned.
Moreover, the link condition of the entry link is con-
joined by an additional flag firstIt 7! ftrue; falseg if the
loop body GL1 or GL2 originates from a post-test loop
(lines 10 and 13). If the first iteration of LL1L2 is exe-
cuted the flag is set to true, otherwise it is set to false.
For instance, in Fig. 4 the entry link for eGL2) would be

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

290

defined as (aentry;b2;Cond(L2)_ 0firstIt = true0). The
value of the flag is hold in the variable firstIt that is de-
clared in PMerged (line 8). After the first iteration firstIt
must be set to false (not depicted in Algorithm 6).

LL1L2 is always a post-test loop (see below), no
matter if L1, L2 or both are pre-test loops. The loop
condition of LL1L2 is set to the logical disjunction of
the loop conditions of L1 and L2 (line 16). This en-
sures that GL1L2 is also executed if the condition of L1
evaluates to false while the condition of L2 evaluates
to true (or vice versa). In Fig. 4, for instance, under
a certain data assignment L1 may iterate two times
and L2 five times. To emulate this behavior, LL1L2
must be iterated five times which ensured by its loop
condition. Since the link condition of the entry link
(astart;a2;Cond(L1)) is set to the loop condition of L1
its body GL1 is just performed twice. LL1L2 is wired
into PMerged by connecting it to the predecessor and
successor activities of L1 and L2 (lines 17 and 18).

Algorithm 6: Merging Activity-based Loops.

1: function MERGE-LOOPS(L1;L2)
2: GL1 DUPLICATE(Body(L1))
3: GL2 DUPLICATE(Body(L2))
4: LL1L2 = ADD-LOOP(/0; /0;evalC post)
5: Body(LL1L2) GL1[GL2[(faexitg;

f(Exit(GL1);aexit; true);(Exit(GL2);aexit; true)g)
6: condEntryL1 Cond(L1)
7: condEntryL2 Cond(L2)
8: DECLARE(PMerged; f irstIt) . Adds variable
9: if evalC(L1) = post then

10: condEntryL1 condEntryL1_ 0$firstIt = true0
11: end if
12: if evalC(L2) = post then
13: condEntryL2 condEntryL2_ 0$firstIt = true0
14: end if
15: Body(LL1L2) Body(LL1L2)[(faentryg;

f(aentry;Entry(GL1);condEntryL1);
(aentry;Entry(GL2);condEntryL2)g)

16: Cond(LL1L2) (Cond(L1)_Cond(L2))
17: E!(LL1L2) E!(L1)[E!(L2)
18: E (LL1L2) E (L1)[E (L2)
19: return LL1L2
20: end function

Variations. If a dynamic activity-based loop, with
synchronization activities on alternative paths in
its loop body, is related to a static activity-based
loop, its number of iterations cannot be determined
from the max. number of iterations of the static
loop (refer to pattern 1). Hence, the dynamic loop
cannot be unrolled and has to be merged with the
static loop in the same way as described in the solution.

Discussion. Merging L1 and L2 into LL1L2 keeps the
original control flow order between the activities of

GL1 and GL2 as the control links are not changed. The
loop condition of LL1L2 and the link conditions of the
entry links ensure that the same number of iterations
of GL1 and GL2 are executed as in C (under the same
data assignment). However, the activities of GL1 and
GL2 become iteration-dependent on each other, i. e.,
another iteration i+1 of the activities in GL1 cannot
be performed until all activity iterations i in GL2 com-
pleted (and vice versa). This becomes especially an
issue, if the execution times of the activities within
GL1 and GL2 are very different from each other. It also
postpones the execution of the successor activities of
LL1L2. For instance, in 4 a5 cannot be started until all
iterations of LL1L2 completed, i. e., compared to C its
execution is postponed until all iterations of GL1 com-
pleted. Note, that the postponed execution resulting
from the loop merge may increase the time until the
business outcome is reached, but it does not affect the
overall completion time of PMerged compared to C . The
successful completion of all activities of an instance
of PMerged takes as long as completing all activities of
C (assuming the same data are used for an instance of
PMerged and C).

Combining the Patterns

In the following two algorithms are proposed that
make use of the patterns to solve cross-boundary vi-
olations in PMerged. If graph-based structured loops
are supported by the workflow language, the set of all
dynamic or static activity-based loops being source or
target of a cross-boundary link (denoted as LCB) are
transformed into graph-based structured loops by Al-
gorithm 7. The transformation preserves all sets of
basic activity traces implied by the original loop and
it just adds the two new links eskip and eloop to PMerged.
The runtime of the algorithm is O(n), where n = jLCBj.

Algorithm 7: Transformation to Graph-based Loops.

1: procedure SOLVE-CB-VIOLATIONS(LCB)
2: for all LCB 2 LCB do
3: LOOP-TRANSFORM(LCB)
4: REMOVE-ACT(PMerged;LCB)
5: end for
6: end procedure

If graph-based loops are not supported Algorithm 8
must be applied. It tries to unroll as many loops within
LCB as possible (pattern 1). All loops that cannot be
unrolled, i. e., all interacting dynamic activity-based
loops and all static activity-based loops that interact
with dynamic activity-based loops, are merged into
activity-based loops (pattern 3). Applying pattern 1
decreases the readability of PMerged as it may signif-

Choreography-based�Consolidation�of�Interacting�Processes�Having�Activity-based�Loops

291

icantly increase the number of activities and control
links in PMerged. Especially if a large number of iter-
ations is unrolled. However, as pattern 3 causes the
iteration-dependency issue, pattern 1 is always pre-
ferred to pattern 3.

Algorithm 8: Merging and Unrolling.

1: procedure SOLVE-CB-VIOLATIONS(ECB;LCB)
2: for all L1CB 2 LCB jMAX(L1CB) =? do
3: AL = P1(BODY(L1CB))
4: for all eCB 2 ECB
5: j (p1(eCB)[p2(eCB))\AL 6= /0 do
6: L1CB = PARENT(p1(eCB))
7: L2CB = PARENT(p2(eCB))
8: Lmerged = MERGE-LOOPS(L1CB;L2CB)
9: ADD-ACT(PMerged;Lmerged)

10: LCB (LCB[Lmerged)� (L1CB[L2CB)
11: AL1 = P1(BODY(L1CB))
12: AL2 = P2(BODY(L2CB))
13: EL1L2

CB = feL1L2
CB j 8eL1L2

CB 2 ECB :
((AL1[AL2)\p1(eL1L2

CB)) 6= /0

^((AL1[AL2)\p2(eL1L2
CB)) 6= /0g

14: ECB ECB�EL1L2
CB

15: REMOVE-ACT(PMerged;L1CB)
16: REMOVE-ACT(PMerged;L2CB)
17: L1CB Lmerged
18: AL = P1(BODY(L1CB))
19: end for
20: LCB LCB�Lmerged
21: end for
22: for all eCB 2 ECB do
23: aL1 = p1(eCB); aL2 = p2(eCB)
24: L1CB = PARENT(aL1)
25: L2CB = PARENT(aL2)
26: UNROLL-LOOP(L1CB)
27: UNROLL-LOOP(L2CB)
28: LCB LCB� (L1CB[L2CB)
29: end for
30: end procedure

Algorithm 7 is trivial and not further discussed.
Algorithm 8 is explained by using the example sce-
nario in Fig. 5. In this scenario PMerged contains four
dynamic and two static activity-based loops. The con-
trol flow materialization created six cross-boundary
links. To resolve the violations the algorithm is called
with the parameters ECB and LCB. Thereby, the set
ECB denotes the set of cross-boundary links, here e1CB
to e4CB. LCB contains those loops of PMerged that are
source or target of one or more cross-boundary links,
i. e., in the scenario L1 to L4. In a first step, those loops
within LCB that are related to a dynamic activity-based
loop via a cross-boundary link are merged. For this
purpose the algorithm selects a dynamic activity-based

© Sebastian Wagner 17

Example Solve Violation with Merging and Unrolling

L1
Pre(#?) e1CB

e2CB

L2
Pre(#?)

L3
Post(#3)

L4
Pre(#6)

e3CB e4CB

L5
Pre(#?) e5CB

e6CB

L6
Pre(#2)

Figure 5: Multiple Interacting Activity-based Loops.

loop from LCB (line 4), e. g., L1. All loops contain-
ing activities that are related to activities within the
selected loop via a cross-boundary link (line 4) are pair-
wise merged with the selected loop. For instance, L1
is first merged with L2 and the resulting loop Lmerged is
added to PMerged (line 9) while L2 and L1 are removed
from PMerged (lines 15 and 16). As the cross-boundary
violations between the merged loops are resolved, all
cross-boundary links between them are removed from
the set ECB in line 13 (but not from PMerged). Hence,
after L1 and L2 were merged e1CB and e2CB are re-
moved. Then all loops that are related to the merged
loop via cross-boundary links are merged with Lmerged,
i. e., in our example the static loop L3 is merged with
Lmerged. The new merged loop consisting of the loop
bodies of L1, L2 and L3 is then, in turn, merged with
L4. As this new loop has no cross-boundary links to
other loops, it is removed from the set LCB (line 20)
and another dynamic loop whose activities are source
or target of cross-boundary links is selected (if any).
In our example this would be L5 or L6, which are also
merged with each other.

After the dynamic loops were merged with other
dynamic or static loops, PMerged contains only cross-
boundary links between static loops. These loops are
unrolled and added to PMerged. Our example does only
contain static loops that are transitively connected to
dynamic loops. Hence, no loop unrolling is performed
here. The runtime of the algorithm is also O(n) (where
n = jLCBj), even though it has two nested for-loops.
However, the for-loop in line reduces the iterations of
its parent for-loop (line) by removing cross-boundary
loops from the set LCB.

5 VALIDATION:
CONSOLIDATION OF BPEL
PROCESSES WITH
INTERACTING LOOPS

To validate the process consolidation approach we
developed a tool (Dadashov, 2013) that merges inter-
acting BPEL processes being part of a BPEL4Chor
choreography (Decker et al., 2009) into a single pro-
cess. So far, the prototype was not capable to merge
BPEL processes with interacting loops. To support
these interaction scenarios, we applied the patterns
of Sect. 4 to BPEL and extended the prototype ac-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

292

cordingly. The prototype gets a ZIP file as input, that
contains an XML representation of BPEL4Chor chore-
ography along with the processes to be merged. To per-
form the consolidation, the prototype creates PMerged
and copies all activities of the processes within the
BPEL4Chor choreography into PMerged. Based on the
message links and the communication activities in the
BPEL4Chor choreography the prototype performs the
control flow materialization.

5.1 Control Flow Semantic of BPEL

Besides control links BPEL uses join conditions to
determine if an activity can be started. A join condi-
tion specifies which links have to be activated to start
this activity. This requires the status of all links to be
known before the join condition is evaluated. More-
over, BPEL is using a dead path elimination control
flow semantics (DPE) that determines all activities in
the control flow that cannot be executed anymore. Due
to the DPE semantics and the fact that all links of an
activity have to be evaluated before it can be started,
BPEL does not support graph-based loops.

To enable repetitive execution of activities, BPEL
offers three types of activity-based loops, the pre-
test loops while and forEach and the post-test loop
repeatUntil. while and repeatUntil loops are de-
fined in the same way as the activity-based loops de-
fined in Sect. 3, i. e., they consist of a Boolean loop
condition and an activity graph in their loop body. For
simplicity reasons, we assume that the loop body is a
SESE graph, even though this not stipulated by BPEL
. The forEach activity has no Boolean expression as
loop condition but a From and To attribute, represent-
ing the start and end value of the iteration counter. The
attribute Counter provides the name of the counter
variable that is increased by one in each iteration. The
attribute values can be determined at runtime but they
must be constant during the execution of the forEach.
All iterations have to be executed in order to com-
plete the forEach loop. The completionCondition
attribute for modeling at-least-n-out-of-m semantics is
not considered here.

5.2 Applying the Patterns to BPEL

This section describes how patterns 1 and 3 from
Sect. 4 are applied to BPEL. Pattern 2 is not further
considered here as BPEL does not support graph-
based structured loops.

Activity-based Loop Unrolling. To determine the
maximum iterations of a BPEL loop the data flow anal-
ysis techniques introduced by Heinze et al. (Heinze

et al., 2012) are used. However, the pattern cannot
be applied to arbitrary static activity-based loops. Be-
cause BPEL’s link semantic requires that all incoming
links of an activity are evaluated before it is started.
However, if a loop is unrolled also the cross-boundary
links ECB are duplicated. This results in n multiple
copies of eCB targeting the same activity, where each
copy has its source in one of the unrolled iterations
G1

L; : : : ;G
n
L of the loop L. Hence, the source activity of

each copy of eCB must be performed before the target
activity of eCB can be executed. In Fig. 2, for instance,
activity b21 is not started until a31 and a32 completed.
In the example, this just leads to a postponed execution
of b21 compared to C where the first iteration of b2
can complete after the first iteration of a3 is performed
(if we assume that messages are instantly delivered).
If L2 would contain an activity that is source of a link
e2CB targeting an activity within the unrolled loop L1,
this would even lead to a deadlock.

This issue is circumvented by ensuring that the
activities AL1 and AL2 in the unrolled loops GL1 and
GL2 have at most one incoming cross-boundary link
ei

CB:

8a 2 AL1[AL2 : j(E!(a)[E (a))\ECBj � 1

This, in turn, requires the source and target activities
of ECB to be performed during each iteration. Thus,
there must be no potential alternative paths in L1 or
L2 preventing synchronization activities from being
executed during an iteration of L1 or L2:

8aL12AL1 j (E!(aL1)[E (aL1)) 2 ECB :
PreDom(aL1)[PostDom(aL1) = AL1

8aL22AL2 j (E!(aL2)[E (aL2)) 2 ECB :
PreDom(aL2)[PostDom(aL2) = AL2

If the aforementioned prerequisite is fulfilled, a copy
of a cross-boundary link has to be connected to a
source and target activity part of the subgraph Gi

L1
and Gi

L2 in the same iteration, i. e., the source and tar-
get activities must dominate the same number of sync.
activities Asyn:

8ei
CB 2 ECB :

jPreDom(p1(ei
CB))\ACBj

= jPreDom(p2(ei
CB))\ACBj

ACB =
[

e2ECB

p1(e)[p2(e)

The set ACB denotes the set of activities of L1 and L2
having an incoming or outgoing cross-boundary link.

Figure 6 shows a while loop L1 (Max(L1) = 2) in-
teracting with a repeatUntil loop L2 (Max(L2) = 2)
that meet the aforementioned properties (in the figure

Choreography-based�Consolidation�of�Interacting�Processes�Having�Activity-based�Loops

293

© Sebastian Wagner 12

Static Unrolling of BPEL Loops (without Chor)

L1 – While
Pre(#2)

a2 – Assign

L2 – RepeatUntil
Post(#2)

b2 – Empty

a3 – Opaque

a4 – Empty

b3 – Opaque

b4 – Assign

a21 – Assign b21 – Empty

a31 – Opaque

a41 – Empty

b31 – Opaque

b41 – Assign

a22 – Assign b22 – Empty

a32 – Opaque

a42 – Empty

b32 – Opaque

b42 – Assign

e11CB

e1CB

e2CB

e21CB

e11CB

e21CB

e1skip
e2nxt

a1 – Assign b1 – Assign

a1 – Assign b1 – Assign

a5 – Assign b5 – Assign

a5 – Assign b5 – Assign

e1nxt

e1pre

e2skip

Figure 6: Unrolling Two Static BPEL Loops.

the opaque activities encapsulate some business
logic). As there is no alternative flow in L1 and
L2 they have to exchange messages during each
iteration. This also implies that they always perform
the same number of iterations. Hence, the copies
of the cross-boundary links (e11

CB, e12
CB and e21

CB,
e21

CB) between the unrolled loop GL1 and GL2 must
only connect activities from the same iterations. As
shown in Figure 6, while or repeatUntil loops are
unrolled in the same way as described in the pattern,
i. e., the loop bodies are unrolled and added to the
container activity of L1 and L2 (not depicted here).
The set of links Enxt, Eskip, Eentry, Eexit connects the
unrolled iterations with each other and with the direct
predecessor and successor activities of L. The link
epre has to be only added for the pre-test loops while
or forEach. In contrast to the pattern, for an unrolled
forEach loop no loop condition is assigned to enxt as
a sequential forEach cannot be interrupted, i. e., the
maximum number of iterations is always performed.
Thus, the set of links Eskip is not required either.

Merging Two Dynamic Activity-based Loops. If
the interacting loops L1 and L2 are while loops the
pattern can be directly applied. Then LL1L2 is also a
while loop whose loop condition is the disjunction of
the loop conditions of L1 and L2. The loop body of
LL1L2 is created as described in the pattern. If one of
the entry links of GL1 or GL2 evaluates to f alse, DPE
ensures that the activities within GL1 or GL2 are not
performed.

If one of the loops L1 or L2 is a repeatUntil loop
the variation of the pattern for post-test loops has to be
applied, i. e., LL1L2 must be also a repeatUntil loop.

If a forEach loop interacts with a while loop the
merged loop LL1L2 must be a while loop because the
loop condition of a forEach loop cannot specify com-
plex logical expressions such as disjunctions. To spec-
ify the loop condition of LL1L2, the interval defined
by the From and To attributes of the forEach is trans-
formed to a logical expression on the counter variable.
In a forEach the counter variable is automatically in-
creased with each iteration. This has to emulated in

© Sebastian Wagner 17

ForEach‐While

L1 – While
($a < 3)

a1 – Opaque

L2 – ForEach
From:3
To: $N

Counter: $incr

b1 – Opaque

a2 – Assign b2 – Empty

a1 – Opaque

LL1L2 – While
($a < 3 OR 3 ≤ $incr≤ $N)

a2 – Assign

b3 – Assign

def: var $incr := 3

$incr:=$incr+1

b1 – Opaque

b2 – Empty

aexit – Empty

aentry– Empty
3≤$incr≤$N$a<3

eCBeCB

Figure 7: Merging While Interacting with ForEach.

LL1L2 by defining the counter variable before LL1L2
is started and by initializing it with the value of the
From attribute. The counter can be increased by us-
ing an assign activity that increments the counter
when LL1L2 completes. Figure 7 shows how the while
loop L1 and the forEach loop L2 are merged into
LL1L2. The counter variable incr is initialized with
the value 3 from the From attribute. The loop condi-
tion of the forEach is transformed to the expression
3� $incr � N and forms a disjunction with the loop
condition of L1. assign b3 increments the counter
variable incr at the end of the LL1L2. As the name of
the counter variable is kept the activities of the loop
body of the former forEach accessing the counter
variable do not have to be adapted. Analogously, LL1L2
must be a repeatUntil if the forEach interacts with
a repeatUntil loop.

For two interacting forEach loops L1 and L2 the
values of the From and To attributes may be unknown
at design time and the name of the counter variables
used may be different. Hence, they cannot be merged
into a forEach loop as only one counter variable can
be declared there. Instead they can be also merged into
a while. Thereby, two counter variables have to be
defined before LL1L2, one for counting the iterations
of GL1 and another one for counting the iterations of
GL2. In BPEL, a single assign activity can perform
multiple assignments, i. e., an assign following GL1
and GL2 can iterate both counter variables.

6 RELATED WORK

Existing approaches focus on merging semantically
equivalent processes, which is different from our ap-
proach that merges complementing processes into a
single process. For instance, Küster et al. (Küster et al.,
2008) discuss how different variants of the same origi-
nal process can be merged into a single process by em-
ploying change logs. Mendling and Simon (Mendling
and Simon, 2006) describe an approach for merging
Event Driven Process Chains (EPC) (Scheer et al.,
2005) where semantically equivalent elements of an
EPC have to be defined manually and based on this
semantic mapping, the EPCs are merged.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

294

Loop unrolling and merging is widely discussed
in the area of compiler theory (Muchnick, 1997), es-
pecially, for optimizing parallel or embedded sys-
tems (Qian et al., 2002). Similar to our approach, in
these works also loop conditions have to be combined
and data analysis has to be performed to determine if
a loop can be unrolled or merged (Darte, 1999). In
contrast to our approach loop unrolling and merging
in this context is employed for optimizing the runtime
of short running programs in embedded systems and
the language constraints of a programming language
are different from those of a workflow language.

Kiepuszewski et al. (Kiepuszewski et al., 2013)
also discuss activity and graph-based loops. How-
ever, in their work they focus on the transformation of
graph-based loops into activity-based loops to struc-
ture unstructured workflows.

We investigated how cross-boundary link vio-
lations can be solved in parallel BPEL forEach
loops (Wagner et al., 2014). But there we neither con-
sidered sequential forEach activities nor other BPEL
loop types and the approach described there focuses
only on BPEL workflows.

7 CONCLUSION AND OUTLOOK

In this work we extended the existing approach to
support the automatic consolidation of processes inter-
acting via activity-based loops. The focus was turned
on activity-based loops, as the boundaries of these
loops must not be crossed by the control links created
by the control-flow materialization. To be universally
applicable, the patterns for merging the loops were
described independently of a concrete workflow lan-
guage and different types of loops were considered
that might be supported by a workflow language. All
merge patterns keep the originally modeled execution
order between the basic activities of the processes to be
merged. However, when two dynamic activity-based
loops are merged (pattern 3), additional control flow
constraints are implicitly added to the merged pro-
cess. The new constraints adhere to execution order
defined the choreography but they may increase the
time until a business outcome is reached. Hence, if the
workflow language supports graph-based loops, inter-
acting dynamic activity-based loops should be always
transformed to graph-based structured loops. This also
prevents the resulting process from getting too compli-
cated in terms of number of activities and links (e. g.,
if loop unrolling is performed).

We also discussed the applicability of the patterns
to the executable workflow language BPEL. As BPEL
has a different control flow semantics compared to

the workflow meta-model, we used to describe the
patterns, the loop unrolling pattern had to be restricted
in order to avoid deadlocks in BPEL processes.

In future works we have to investigate how to solve
the link violations for activity-based loops interacting
with activities in an acyclic graph. We also have to
discuss how nested activity-based loops have to be
treated. This includes the description of a formal algo-
rithm that applies the patterns to activity-based loops
interacting with several (nested) loops.

ACKNOWLEDGEMENTS

This work was partially funded by the BMBF project
ECHO (01XZ13023G) and the BMWi project NE-
MAR (03ET40188).

REFERENCES

Dadashov, E. (2013). Choreography-based Business Process
Consolidation in One-To-Many interactions. Master
thesis, University of Stuttgart.

Darte, A. (1999). On the complexity of loop fusion. In Par-
allel Architectures and Compilation Techniques, 1999.
Proceedings. 1999 International Conference on, pages
149–157.

Decker, G., Kopp, O., Leymann, F., and Weske, M. (2009).
Interacting services: From specification to execution.
Data & Knowledge Engineering, 68(10):946–972.

Heinze, T., Amme, W., and Moser, S. (2012). Control flow
unfolding of workflow graphs using predicate analysis
and SMT solving. In ZEUS.

Kiepuszewski, B., ter Hofstede, A. H. M., and Bussler, C.
(2013). On structured workflow modelling. In Semi-
nal Contributions to Information Systems Engineering,
pages 241–255.

Koehler, J., Hauser, R., Sendall, S., and Wahler, M. (2005).
Declarative techniques for model-driven business pro-
cess integration. IBM Systems Journal, 44(1):47–65.

Kopp, O., Khalaf, R., and Leymann, F. (2008). Deriving Ex-
plicit Data Links in WS-BPEL Processes. In IEEE In-
ternational Conference on Services Computing. IEEE.

Küster, J., Gerth, C., Förster, A., and Engels, G. (2008). A
tool for process merging in business-driven develop-
ment. In Proceedings of the Forum at the CAiSE.

Mendling, J. and Simon, C. (2006). Business process design
by view integration. In BPM Workshops. Springer.

Muchnick, S. (1997). Advanced Compiler Design and Im-
plementation. Morgan Kaufmann.

Ng, A., Chen, S., and Greenfield, P. (2004). An Evaluation
of Contemporary Commercial SOAP Implementations.
In AWSA.

OASIS (2007). Web Services Business Process Execution
Language Version 2.0 – OASIS Standard.

Choreography-based�Consolidation�of�Interacting�Processes�Having�Activity-based�Loops

295

Object Management Group (OMG) (2011). Business Pro-
cess Model and Notation (BPMN) Version 2.0. OMG
Document Number: formal/2011-01-03.

Qian, Y., Carr, S., and Sweany, P. H. (2002). Loop fusion
for clustered vliw architectures. In LCTES-SCOPES,
pages 112–119.

Scheer, A.-W., Thomas, O., and Adam, O. (2005). Pro-
cess Aware Information Systems, chapter Process Mod-
eling Using Event-Driven Process Chains. Wiley-
Interscience.

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kie-
puszewski, B., and Barros, A. P. (2003). Workflow
Patterns. Distributed and Parallel Databases, 14(1):5–
51.

Völzer, H. (2010). A new semantics for the inclusive con-
verging gateway in safe processes. In BPM 2010.

Wagner, S., Kopp, O., and Leymann, F. (2012). Towards
Verification of Process Merge Patterns with Allen’s
Interval Algebra. In ZEUS, Bamberg. CEUR.

Wagner, S., Kopp, O., and Leymann, F. (2014).
Choreography-based Consolidation of Multi-Instance
BPEL Processes. In CLOSER. SciTePress.

Wagner, S., Roller, D., Kopp, O., Unger, T., and Leymann,
F. (2013). Performance optimizations for interacting
business processes. In IC2E. IEEE.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

296

Key Requirements for Predictive Analytical IT Service Management
Architectural Key Characteristics for a Cloud based Realization

Christopher Schwarz, Hans Peter Bauer, Lukas Blödorn and Erwin Zinser
Institute of Information Management, FH Joanneu, Gesellschaft mbH, Alte Poststrasse 147, Graz, Austria

{christopher.schwarz, erwin.zinser}@fh-joanneum.at

Keywords: IT Service Management, Predictive Analytics, Business Analytics, Service Oriented Architecture, Service
Bus, Semantic Web Technologies, Semantic Reasoning, Controlled Natural Language, Cloud Computing.

Abstract: While trying to maintain sustainable competitive advantage, IT service providers are challenged with
tremendous service complexity and a low level of flexibility caused by the lack of transparency, constrained
scalability and the missing ability to identify needed service measures proactively. For overcoming these
challenges, this paper presents a well-evaluated set of identified key requirements for a feasible realization of
a highly scalable cloud based architecture that supports predictive analytics in several domains of IT Service
Management. This presented concept goes far beyond traditional approaches and pertinent state-of-the-art
software solutions by focusing on business analyses based on knowledge creation and domain-independent
knowledge sharing. The proposed approach is based on profound analyses of related work as well as modern
service oriented design and business analyses paradigms. It provides semantic complexity handling, structured
and multi-layered service interaction, cloud-enabled scalability management as well as predictive business
analyses based on semantic reasoning, decision-making support and pattern recognition. The derived results
eventually provide solution architects with a feasible and technical independent fundament for architectural
implementation decisions. It ultimately enables IT service providers to cope with modern flexibility needs
and complexity challenges and therefore to continuously satisfy customers to gain competitive advantage.

1 INTRODUCTION

A company's success fundamentally depends on its
ability to develop sophisticated solutions, perfectly
fitting to customers’ requirements. Nevertheless, to
guarantee sustainable success, bearing up customers'
satisfaction is necessary, especially if requirements
change. Hence, a flexible and agile service network is
needed, adaptable to changes, but most of all
adaptable to customers’ requirements.

According to Porter’s Five Forces, competitive
rivalry in the IT area is significantly higher than in
many other branches, primarily caused by a high
threat of new entry and substitution (Fung, 2013, pp.
19,20). The internet and cloud computing eliminate
many physical barriers of entering a new market
(Fung, 2013, pp. 19,20). Due to the variety of IT
services with similar functionality it is easy for
customers to change to substitutes, whereas IT
service providers have to deal with a high range of
competitive companies, serving those customers
(Fung, 2013, pp. 19,20). Thus, albeit it is
comparatively easy to provide IT services, it requires

a lot of effort to keep up with others by continuously
satisfying customers and managing their
requirements not just reactively, but in a proactive
and predictive way for effective decision-making.

The ability for successfully managing services
over a long-time period distinguishes an effective
from an ineffective service provider. The key to
success is flexibility in IT Service Management
(ITSM), by constantly aligning and adjusting the
service offers to the actual market need. Managing
services means managing a network of
interdependent components that have to be
completely coordinated. Disability of coping with
multitenant service dependencies leads to missing
transparency in the service environment, which
affects calculation and billing of services and makes
analytics for business relevant financial decisions
extremely difficult, or even impossible (Schwarz, et
al., 2013, p. 1).

The strong influence of ITSM on Financial
Management indicates the need for balance and
flexibility over multiple domains, which is still an
unhandled problem of current software solutions

297

(Schwarz, et al., 2013, p. 1). IT is the most pervasive
factor in business, affecting every single process and
decision (Addy, 2007, p. 20). Therefore the discipline
of ITSM is applicable for nearly all business domains
relying on any kind of IT based service. Moreover, it
is necessary to control all IT components from a
holistic view, for constantly aligning the business
strategy with the IT strategy, especially when
environmental changes appear (vom Brocke, et al.,
2013, p. 1).

Nevertheless, complexity is considered as the
major challenge in ITSM. Complexity is referred to
the management of service data and its relations
(Benedettini and Neely, 2012, pp. 5,6).
Interdependencies and data flows between services
have to be determined easily and fast, so that possible
effects of changes and events can be recognized
ideally in real-time. Thus, efficient ITSM requires
transparency of service-to-customer, as well as
service-to-service interaction. Besides that,
transparency is necessary between services and its
underlying components, to ensure appropriate service
functionality. In the same way profound knowledge
of service relations is needed for defining and
fulfilling cost-efficient service levels and
consequently to ensure a particular Quality of Service
(QoS) level. Constantly changing requirements
necessitate QoS management techniques that are far
beyond static provisioning of network resources
(Kourtesis, et al., 2014, pp. 306,307). Higher
elasticity and dynamic provisioning is needed, based
on real-time decisions, reasoning and inference
(Kourtesis, et al., 2014, pp. 306,307).

Second, the maintenance and continuous
improvement of a service infrastructure, tightened
influenced by IT outsourcing and cloud-oriented
design, define a new level of complexity (Benedettini
and Neely, 2012, pp. 5,6). Changing requirements
often demand changing functionality, seamlessly
integrated in the working service environment.

Up to a certain level, IT services seem to be
manageable easily. With growing complexity,
however, a point will be reached where the effort of
complexity handling is higher than the services’
benefit, leading to crucial cost inefficiency (Josuttis,
2007, p. 2). Consequently, the service infrastructure
has to be designed and structured in a way that
supports effective management of both mentioned
complexity types on the one hand and enables
seamless integration of new services on the other
hand. The high level of complexity forces IT service
providers to think of new ways for automatically
managing a variety of data, variables and parameters,
necessary for the operation of services and its

resources (Kourtesis, et al., 2014, p. 308).

2 RELATED WORK

In the past years, different approaches have been
presented in the area of ITSM, all with the overall
goal to enhance efficiency, primary by using the
Semantic Web concept. They provide sophisticated
solutions with a precise goal for dealing with
complexity in IT Service Management.

It is beyond doubt that these solutions provide
value in the very specific field they are used, but the
question arising is, if they are adaptable to other
correlating areas as well at an adequate level of effort.
Referring back to the de-facto ITSM standard, the
Information Technology Infrastructure Library
(ITIL), IT Service Management is defined as the
discipline to deal with all processes in the service
lifecycle (van Bon, et al., 2007, pp. 24-26, 42).
Efficient ITSM needs a holistic view, accomplishing
a platform that allows making use of the Service
Oriented Architecture (SOA) and analytical benefits
in any ITSM domain. The ability of using semantic
knowledge must not be limited to one specific
implementation, but has to be realized on a shared
base. The semantic Wiki-based approach of Kleiner
et al. (Kleiner, et al., 2012) perfectly fits to the issue
of complexity in Incident and Problem Management
and thus, it is closely aligned to exactly these ITIL
processes. Although the semantic Wiki allows the
integration of other applications, the platform is still
limited to the information stored in the semantic
Wiki. Jantscher et al. (Jantscher, et al., 2014) focus on
reducing negative business impacts caused by wrong
incident prioritization. They developed an example
for analytical ITSM, the Incident Prioritizer, which is
an AHP decision support system for the prioritization
of incidents based on their business impact. For the
prioritization process, relevant incident data is
provided by an ontology, defining an ITIL-compliant
service catalogue. Valiente et al. (Valiente, et al.,
2012) deal with the service management problem of
integrating service management processes, which are
often specified in natural language. The paper aims to
translate ITSM relevant information, expressed in
natural language, to a computer understandable
format, by using semantic technologies. Thus, Onto-
ITIL is presented in this work, as an OWL based
ontology, tailored to be used in ITSM, to overcome
the gap between natural language process definitions
and IT services, or more generally the gap between
business and IT. Otherwise, the very generic
approach of Freitas et al. (Freitas, et al., 2008) defines

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

298

insufficient structure do be applicable in this stage for
operative use. The idea of a generic ontology, usable
for different domains, has definitely potential in
theory, but not enough alignment to the ITIL
processes for effective ITSM.

What is needed is an overall platform allowing the
seamless integration of ITIL process solutions
throughout the whole service lifecycle. The platform
architecture has to be designed to support flexibility
and to make services adaptable for changes. The
approach of El-Gayar et al. (El-Gayar & Deokar,
2013) with its distributed model environment
presents the key feature of using a service bus for
enabling flexible changing of distributed models,
based on specific problems.

Extending this approach of high flexibility and
easy sharing and reusing of information to the field of
ITSM, a platform can be realized that allows the
integration of process solutions throughout the whole
lifecycle and sharing and using knowledge in the
whole environment.

3 RESEARCH QUESTIONS AND
OBJECTIVES

When focusing on the implementation of existing
concepts in the related work, the need for further
development has been identified, missing a holistic
approach for seamlessly integrating them. Thus, the
presented approach in the upcoming sections tries to
answer the following research questions:

 What are the key requirements for a scalable
architecture to support predictive analysis in
ITSM to be able to cope with the complexity of
service interdependencies and heterogeneity as
well as the lack of transparency?

 Is there a way for seamlessly integrating services
and making use of provided functionality and
commonly used data?

 Is it possible to provide a convenient way for
scalability and extensibility management that
allows flexible and on-demand use of resources?

4 PROPOSED APPROACH

In the first step, a long-term evaluation process was
necessary to identify the major characteristics for
predictive-analytical ITSM. They will be introduced
in this paper as the eight key requirements of IT
Service Management as they combine structure and
process-oriented service management of ITIL, the

architectural advantages of a SOA and the centralized
integration of semantic technologies for handling
service complexities. They have been identified as
follows:

1. Structured Service Interaction

2. Centralized Service Orchestration

3. Multi-layered Software Architecture

4. Scalable Computing Architecture

5. Domain-independent Architecture

6. Common Information Integration

7. Predictive Analyses Integration

8. Natural Language Interface

These key requirements do not specify any
technological implementations and thus provide a
technology-independent, holistic view on an ITSM
concept, tailored to be generic but structured, scalable
and extensible, and applicable for several domains of
ITSM. This overall concept provides an ITSM
environment highly adjustable to any business needs
for a clear alignment to the business processes and a
strong focus on shared processible knowledge
throughout the whole environment. The motivation
for defining these eight key requirements is to provide
a common foundation for the development of any
ITSM approach with a focus on effective and
predictive analytics. This foundation is not just
applicable for dealing with one particular ITSM
problem, but constitutes helpful practices at the
starting point of any effective ITSM development.

4.1 Structured Service Interaction

Extensive service interaction is an indicator for a
well-structured and working service environment.
Each service provides defined functionality that can
or has to be used by other services. Thus, service
communication is inevitable for requesting and
returning service provided information. Service
interaction must not be avoided. It is an indicator for
sophisticated capsulation of functionality and
conforms to the concept of information sharing and
reusing. The only condition for effective service
interaction is to accomplish a structured and
consistent way of communication. Communication
between humans works as long as they understand
each other. The same obtains for communication
between services.

However, a network of services often consists of
heterogenic technologies for service development. It
is nearly impossible, or just manageable with high
effort, to keep a service environment homogeneous,
which is not the goal for effective service

Key�Requirements�for�Predictive�Analytical�IT�Service�Management�-�Architectural�Key�Characteristics�for�a�Cloud�based
Realization

299

communication. Rather, it is necessary, in a network
of various services, to define and enforce a
communication standard valid for all service
interaction.

In combination with a generic language, the
service interaction has to be structured with defined
communication endpoints. Interfacing the
communication ensures that information exchange is
consistent in the whole architecture, which facilitates
the maintenance and extension of the service
environment and supports the Service Transition
phase. Using consistent communication interfaces, it
is clearly defined how new services have to provide
and how to retrieve information from others, which
reduces the risk of incompatibilities in the Release
Management.

4.2 Centralized Service Orchestration

Well-defined interfaces for service requests and
responses are inevitable for service consistency and
service integration and maintenance, but they do not
prevent service networks of reaching a level of
unmanageable complexity. Service communication
has to be orchestrated over a centralized
communication manager, a service bus, to provide a
single point of contact for all service communication.
Instead of directly addressing, services contact the
centralized service bus, which handles the further
processing of the service messages, based on a
consistent and clear addressing schema for services.

However, effective communication management
is not just relaying messages from service A to service
B, without considering possible service downtimes or
overutilization. Effective communication
management has to accept the responsibility of
managing message queuing and load balancing, to
ensure a stable environment that can dynamically
react on service failure. Hence, the service bus can
perform message forwarding, without knowledge of
the actual service location. The message sender and
receiver can be located anywhere, as long as they
reach the service bus communication interfaces,
which enables the possibility for changing service
location, for instance a transformation to the cloud,
without losing connectivity to the service
environment. This flexibility in service providing, in
combination with low maintenance effort, makes
complex service networks manageable, even if
process requirements change. Decisions for
outsourcing of service functionality do not depend on
the service interdependencies anymore and can be
performed completely based on cost and compliance
reasons.

4.3 Multi-layered Software
Architecture

Functionality has to be separated into services to
provide a manageable structure and to be flexible for
changes. Basically, service functionality comprises
the ability to store and retrieve data, to process the
data, if needed based on workflows, and to present the
processed information, which can be described as the
four service functionality layers. For sure, these
layers can be developed for each service
independently, but a structured separation in a
standardized layer design, based on interface
connectivity definitely supports the architecture’s
structure and consistency and prevents unnecessary
heterogeneity. If all services store and retrieve data
based on the same standardized platform for data
storage, maintenance of service data is also limited to
this platform and does not require skills in multiple
technologies.

In addition, the integration of new services or the
replacement of service functionality can be
performed with lower risk of incompatibilities, if
storage communication is accomplished over
specified interfaces to a standardized storage
platform. On the same way, service logic and service
processes have to be implemented. Referring back to
the structured and consistent service interaction,
communication to the data storage and to other
services over the service bus has to be accomplished
over standardizes interfaces, independent from the
logic technology.

The coordination of providing information
through the data, logic and process layers, and the
presentation of this information, in the presentation
layer, is essential for bringing the service value to the
customer. The challenge of this layer is to retrieve
information over the services bus and to bring it into
a specific view. The clear separation between
information processing and information presentation
allows the interaction of different presentation views
with one underlying service module and vice versa.
This structure comes up to the service catalogue
concept, which allows the combination of service
items to different service packages, adjusted to a
customer’s need and flexible for change. Besides that,
this clear separation and the communication
management of the service bus, allow the easy
development of a presentation view for different
devices, without the necessity of changing the service
logic. The described aspects enable value-focused
development of presentation views tailored to the
customers’ needs in all aspects, collecting the
information needed and presenting it in the most

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

300

convenient form. The outcome can be a mobile
application for a maintenance worker or a classic
desktop program for the controller, both accessing
collected and tailored information.

4.4 Scalable Computing Architecture

Maintaining and improving an ITSM environment
demands flexibility in scalability management.
Dynamic reaction on changes is required, at best close
to real-time, to ensure service operation without any
difficulty. Thus, cloud platforms can be used, which
allow dynamic on-demand resource allocation and
flexible scalability as well as location independent
service communication provided by a service bus.

Moreover, the layered design of a service allows
the cloud-transformation of each layer independently
from the other layers. Consequently, the service data
storage could be transferred to the cloud, while the
service logic is still located on premise. This layer
based service design enables scalability management
at component level and thus, provides the maximum
of flexibility in resource provisioning. The emerging
“Big Data” topic necessitates the ability for handling
large datasets and vast amount of data for supporting
predictive decision processes by extracting the
maximum value of data (Kourtesis, et al., 2014, p.
310). Thus, highly scalable systems are needed to
process such large volumes of data in real-time
(Kourtesis, et al., 2014, p. 310).

Besides the advanced scalability management, the
support for various presentation devices is a key
feature of this cloud-enabled design. The driver for
cloud integration is not just improved scalability
management and multi device support. Moreover,
elementary, financial and compliance aspects play a
major role for switching to cloud resources. Thus, it
is important that the ITSM architecture has the
potential to switch to cloud resources with low effort
and low risk of failure. In an effective ITSM
environment, cloud decisions should only depend on
financial and compliance aspects, but definitely must
not be dependent on the technical ability to switch to
the cloud.

4.5 Domain-independent Architecture

Ontology models are, like all models, limited to a
specific area, domain or region. But for providing an
efficient and holistic ITSM environment, limitations
of ontology models and consequently limitations of
knowledge are not eligible. Since it is not possible to
define a model without boundaries, the ITSM
environment has to provide the possibility to define

various ontologies or service modules, respectively,
representing all domains of expertise in ITSM.
Nevertheless, a centralized administration of multiple
models is nearly impossible, because the definition of
each ontology model requires profound knowledge in
this specific area as well as high maintenance effort.
Therefore, a decentralized approach is needed,
allowing clients to define ontology models on their
own and sharing the reusing semantic knowledge
over the service bus. Consequently, a system is
required, which overtakes the management of the
ontology creation, the update of ontologies and rules
and the querying of ontologies.

4.6 Common Information Integration

Service functionality depends on processing data. As
already mentioned, service related data has to be
stored in the service data layer. Each service has its
own specific data, only accessible by the service
itself, independently from other services’ data.
Basically, all information needed by a service can be
stored independently and separated from others, but
this strict separation has one disadvantage. In an
ITSM environment, many services depend on
information that is related to the field of ITSM in
general and commonly used. Thus, a strict separation
of all service data leads to multiple storage of the
same information, which is unnecessary. A better
approach is to divide service related information and
common information, accessible by all services.
Besides the prevention of multiple data storage, a
centralized common data library provides the
possibility of effective maintenance and
improvement of commonly used information without
changing each service implementation.

4.7 Predictive Analysis Integration

For effective IT Service Management, an architecture
that allows flexible collecting and tailoring of
information for a specific customer is definitely
needed and plays a major role for the successful value
creation of a service. Nevertheless, the ability to
provide information does not imply that the given
information is useful for a specific purpose. It is not
the ability of providing information, but the ability of
providing knowledge that makes ITSM powerful -
knowledge in the sense of unknown and implicit
information and its combination and classification
based on rules. Furthermore, this kind of knowledge
defines a new level of predictiveness by solving
complex dependency constructs and revealing
behavioral patterns and further provides the base for

Key�Requirements�for�Predictive�Analytical�IT�Service�Management�-�Architectural�Key�Characteristics�for�a�Cloud�based
Realization

301

proactive pattern recognition processes.
This new level of knowledge creation supports

decision-making processes based on advanced
analyses and the integration in decision support
systems. Therefore both, service logic and service
presentation need access to computable knowledge
they can process, in other words, access to semantic
information, which provides predictive knowledge,
based on inference and reasoning. By using semantic
technologies, the information value provided by
services is extended to a maximum. A maintenance
worker can definitely perform more efficient, if the
given information reveals unknown relations and
supports problem solving, not just reactively but also
proactively, based on semantically processed
analysis, pattern recognition and decision support
systems.

Providing predictive knowledge and analyses in
form of semantic ontology processing is a key
requirement for effective ITSM and has to be
permanently available for all services modules and
presentations. Thus, a connection to the service bus
has to be arranged, which allows all services in the
service environment to access semantic information.
The semantic ontology is also defined as a service,
providing the ability for other services to query
knowledge of a specific domain.

4.8 Natural Language Interface

Predictive knowledge is the key for all advanced
business and service analyses and consequently for
relevant decision making processes in any ITSM
domain. Thus, central availability of knowledge was
already defined as one of ITSM core characteristics.
Nevertheless, providing the formal representation of
semantic knowledge is not applicable in a multi
domain ITSM environment. Knowledge has to be
detached from the technology behind, by providing
Controlled Natural Language (CNL) interfaces,
allowing non-technical users to retrieve pure
knowledge independent from formal language
expressions. Predictive knowledge on-demand is the
process of transforming natural language query
statements of domain specialists into a query
language for RDF like the SPARQL Protocol And
RDF Query Language (SPARQL), returning
knowledge, processible for analyses and decision
making processes.

5 CONCLUSIONS

Flexibility is the major goal and complexity the major

challenge of IT Service Management to continuously
satisfy customers and to gain competitive advantage.
ITIL, SOA, CNL and the capability for predictive
analyses play a major role for effective ITSM, but
have to be applied correctly to disclose their full
potential, which is still unhandled sufficiently in the
related work. Hence, this paper identifies the key
requirements for effective and predictive analysis in
ITSM, to increase the level of flexibility and make
complexity manageable and knowledge available on-
demand. This set of requirements is defined from a
technical independent view, as a profound and
generally feasible fundament for architectural
implementation decisions regarding a holistic and
scalable predictive-analytical ITSM approach. The
consequent step is the conceptual realization of a
sophisticated and detailed architectural design, based
on these key requirements, including technical details
and the implementation process.

REFERENCES

Addy, R., 2007. Effective IT Service Management - To ITIL
and Beyond!. Berlin Heidelberg: Springer.

Benedettini, O. & Neely, A., 2012. Complexity in services:
an interpretative framework. Chicago, s.n.

Breitman, K., Casanova, M. A. & Truszkowski, W., 2007.
Semantic Web: Concepts, Technologies and
Applications. London: Springer.

El-Gayar, O. & Deokar, A., 2013. A semantic service-
oriented architecture for distributed model management
systems. Decision Support Systems (55), 4.pp. 374-384.

Freitas, J., Correia, A. & Brito e Abreu, F., 2008. An
Ontology for IT Services. Gijón, s.n.

Fung, H. P., 2013. Using Porter Five Forces and
Technology Acceptance Model to Predict Cloud
Computing Adoption among IT Outsourcing Service
Providers. Internet Technologies and Applications
Research, pp. 18-24.

Jantscher, M., Schwarz, C. & Zinser, E., 2014.
Development of an innovative AHP-based decision
support system in the field of IT Service Management.
Washington D.C., s.n.

Josuttis, N. M., 2007. SOA in Practice: The Art of
Distributed System Design. Sebastopol, CA: O'Reilly
Media, Inc..

Kleiner, F., Abecker, A. & Mauritczat, M., 2012. Incident
and Problem Management using Semantic Wiki-
enabled ITSM Platform. Vilamoura, s.n.

Kourtesis, D., Alvarez-Rodríguez, J. M. & Paraskakis, I.,
2014. Semantic-based QoS management in cloud
systems: Current and future challenges. Future
Generation Computer Systems (32), pp. 307-323.

Krafzig, D., Banke, K. & Slama, D., 2005. Enterprise SOA:
Service-oriented Architecture Best Practices. New
Jersey: Prentice Hall Professional.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

302

Schwarz, C., Schmidt, S., Sellner, A. & Zinser, E., 2013.
Service Oriented Cost Accounting - Utilization-based
accounting and charging of IT service costs. Los
Angeles, s.n.

Schwitter, R., 2010. Controlled Natural Language for
Knowledge Representation. Beijing, s.n., pp. 1113-
1121.

Valiente, M.-C., Garcia-Bariocanal, E. & Sicilia, M.-A.,
2012. Applying an ontology approach to IT service
management for business-IT integration. Knowledge-
Based-Systems (28), pp. 76-87.

van Bon, J. et al., 2007. Foundations in IT-Service-
Management Based on ITIL v3. Zaltbommel: Van
Haren Publishing.

vom Brocke, J., Braccini, A. M., Sonnenberg, C. &
Spagnoletti, P., 2013. Living IT infrastructures - An
ontology-based approach to aligning IT infrastructure
capacity and business needs. International Journal of
Accounting Information Systems.

Wang, Y. H., Cao, K. & Zhang, X. M., 2013. Complex
event processing over distributed probabilistic event
streams. Computers and Mathematics with
Applications (66), pp. 1808-1821.

Key�Requirements�for�Predictive�Analytical�IT�Service�Management�-�Architectural�Key�Characteristics�for�a�Cloud�based
Realization

303

BPMN Extensions for Decentralized Execution and Monitoring of
Business Processes

Jonas Anseeuw, Gregory Van Seghbroeck, Bruno Volckaert and Filip De Turck
Department of Information Technology, Ghent University, B-9050 Ghent, Belgium

fjonas.anseeuw, gregory.vanseghbroeck, bruno.volckaert, filip.deturckg@intec.ugent.be

Keywords: Cloud Computing, Business Process Management, Monitoring, Business Process as a Service.

Abstract: Software-as-a-service (SaaS) providers are further expanding their offering by growing into the space of busi-
ness process outsourcing (BPO). Therefore, the SaaS provider wants to administer and manage the business
process steps according to a service level agreement. Outsourcing of business processes results in decen-
tralized business workflows. However, current business process modeling languages, e.g. Business Process
Execution Language (BPEL), Business Process Model and Notation (BPMN), are based highly on a central-
ized execution model and current BPMN engines offer limited constructs for federation and decentralized
execution. To guarantee execution of business processes according to a service level agreement, different par-
ties involved in a federated workflow must be able to inspect the state of external workflows. This requires
advanced inspection interfaces and monitoring facilities. Current business process modeling languages must
thus be extended to support monitoring in the specification, support modeling and support deployment of de-
centralized workflows. In this paper, correlation and monitoring extensions for BPMN are described. These
extensions to BPMN are described such that the existing specification can still be used as is in a backwards
compatible way.

1 INTRODUCTION

Software-as-a-service oriented software companies
want to add value to their offering by providing sys-
tematic and controlled delegation of many of the steps
of a company’s business process, also known as busi-
ness process outsourcing (BPO). The companies thus
administer and manage the business process steps ac-
cording to a service level agreement. SLA can be
an agreement on QoS parameters, but this is also an
agreement on the different interfaces between part-
ners.

For example, the process of designing a product
needs both business activities and simulation activi-
ties (often in an interleaved sequence). Business ac-
tivities represent mainly data in and output (e.g. con-
straints, design parameters, etc.) tasks. Simulation
activities take models and parameters as input, and
analyze usually characteristics that are mentioned in
the user-defined constraints and that must be met.
Business activities form a high-level view on the pro-
cess with branches, loops and concurrent activities,
referred as the business workflow. Simulation activ-
ities are usually needed in the course of a business
workflow execution in order to validate design param-

eters early, referred as the simulation workflow. Fig-
ure 1 shows business and simulation workflows and
their relation to each other. The simulation workflows
are pluggable in the business workflow. As depicted
in figure 1, Company A has control over the business
workflow (including the simulation workflows from
Company B and C).

Figure 1: Relation of Business- and Simulation Workflows.

BPO results in decentralized business process
flows: both inter-company flows, i.e. federated busi-
ness process flows that cross the borders of compa-
nies, as well as intra-company workflows, distributed

304

business flows within the datacenters of one company.
The business process modeling languages constructs
offered by the current generation of workflow lan-
guages, e.g. Business Process Execution Language
(BPEL) (OASIS, 2007) or Business Process Model
and Notation (BPMN) ((OMG), 2011), are based
highly on a centralized execution model and current
BPMN engines offer no constructs for federation and
decentralized execution.

The different parties involved in a federated work-
flow must be able to inspect the state of the external
workflows, all the while hiding workflow implemen-
tation details. Business Process Modeling (BPM) lan-
guages must thus be extended to support modeling,
monitoring and deployment of decentralized work-
flows in the specification.

The approach described in this paper is to extend
BPMN using its extensibility such that the extensions
are backwards compatible with the existing BPMN
specification. The remainder of this paper is struc-
tured as follows. In Section 2, relevant related work
is discussed. Sections 3 and 4 handle advanced cor-
relation and monitoring extensions in BPMN respec-
tively. Finally, our conclusions are drawn and future
work is discussed in Section 5.

2 RELATED WORK

Previous research (Van Seghbroeck et al., 2007)(Ste-
fanescu et al., 2014)(Barros, 2015)(Dumas and
Kohlborn, 2015) has come to the same result with re-
gard to the different steps in the development cycle of
decentralized workflows or choreographies depicted
in Figure 2. First, a top-down approach describes the
service choreography, which can be validated. When
the choreography is described, and after validation,
all the different participants’ stubs are extracted. As
a result of the stub extraction and the different im-
plementations, it is possible to use common process
engines to execute a choreography.

Figure 2: The complete development cycle for service
choreographies.

The European Project CHOReOS (Large Scale
Choreographies for the Future Internet) (Autili et al.,
2014), which ended in 2013, resulted in a very
interesting implementation of this development cy-
cle. CHOReOS focusses only on BPMN, to de-
scribe its choreography, and to describe and execute
the different participants parts of the choreography.
CHOReOS, unfortunately, only monitors system level
KPIs. In the monitoring model described in this pa-
per, it is also possible to monitor application specific
data.

The JBoss Savara1 project can be used to cre-
ate service choreographies. It uses Web Ser-
vice Choreography Description Language (WS-CDL)
(Kavantzas et al., 2005) to describe the choreography,
but only some basic tools to monitor and validate the
choreography are available. The Eclipse BPMN Mod-
eler2 can only be used to design choreographies, it
does not have an execution environment incorporated,
nor are there monitoring tools.

Correlating messages in choreographies comes
with another level of complexity, not only do mes-
sages have to be correlated to each participant’s work-
flow instance, but they also have to correlate these in-
dividual participants to the overall choreography in-
stance. To the authors’ knowledge, there is only one
specification, WS-CDL, which has a very elaborate
definition of and view on correlation. Since BPMN
does not offer this, extensions to BPMN are needed.

Since there are no clear choreography execution
environments yet, there are no ready-to-use moni-
toring environments to monitor choreography work-
flows. Monitoring, using the current tools and frame-
works, would entail consolidating and aggregating the
monitoring info from all the different choreography
participants. It is clear that this is a fairly impos-
sible task since every workflow engine has its own
way to store the monitored data and has their own
APIs to reference this information. The lack of a
standardized monitoring API is a real problem here.
Research has dealt with monitoring choreographies
(Wetzstein et al., 2010; Lazovik et al., 2004; Roder
et al., 2011), but very little research has been per-
formed aimed specifically at BPMN. Another way to
monitor a distributed environment is having a central-
ized system in place (e.g. Business Activity Mon-
itoring) that gathers all necessary information from
the individual partner’s workflow engines, either via
a pull or push method, or via monitoring agents. An-
other problem with regards to monitoring is that most
of the current engines only provide monitoring infor-
mation about system-wide aspects (e.g. number of re-

1http://savara.jboss.org
2http://eclipse.org/bpmn2-modeler

BPMN�Extensions�for�Decentralized�Execution�and�Monitoring�of�Business�Processes

305

quests) or about aspects related to particular processes
or particular process instances (e.g. execution time,
a log trace for the different activities of a process).
Adding monitoring points as part of a specific pro-
cess or even application is not possible yet. BPMN is
the only standardized specification that already sup-
ports including monitoring injection points with its
monitoring and auditing element. However, except
for describing extensible placeholders, the specifica-
tion claims details are out of scope and are left to the
implementing BPMN engines.

3 CORRELATION EXTENSIONS

As mentioned in related work, BPMN doesn’t provide
enough functionality to correlate messages in chore-
ographies. BPMN already has some notion of cor-
relation. This is done in the Collaboration defini-
tion, more specifically in its Conversations. A Con-
versation is defined by an array of CorrelationKeys.
The BPMN specification claims that the Correlation-
Keys can be used to tie messages to a specific pro-
cess instance. Correlating messages to process in-
stances may be enough to support centralized work-
flows, but this is insufficient for decentralized work-
flows. In a decentralized context, it is key to also
uniquely and formally define correlations between all
process instances of all parties involved in the decen-
tralized workflow. This requires thorough knowledge
on how all instances are created and on how those in-
stances can be correlated via the messages communi-
cated between them. Such a complex model is pos-
sible in WS-CDL, by means of its Identity types, but
not in BPMN. There is another big difference between
correlation in BPMN and WS-CDL, WS-CDL defines
correlation on ChannelTypes, well-defined communi-
cation endpoints of a Participant, whereas in BPMN
it is all done on the Conversations, which define the
communication potential between two or more Partic-
ipants. There are two possible approaches to improve
correlation in BPMN:

1. Extend the BPMN Correlation mechanism to hold
similar information as the WS-CDL mechanism.

2. Aid the users by improving how correlation is per-
ceived in BPMN, i.e. add semantical meaning to
particular constructs and combinations of conver-
sations.

3.1 Extending BPMN

The first option results in less conversations and most
resembles the usage of ChannelTypes and Identities in

WS-CDL. A BPMN Conversation can be interpreted
as a WS-CDL ChannelType. WS-CDL has four dis-
tinct correlation types: primary, alternate, derived and
association. With these four identity types, it is possi-
ble to create complex correlation relations. BPMN’s
extension mechanism can be used to add an attribute
to the CorrelationKey element. For example the at-
tribute type, which can have the following values: pri-
mary, alternate, derived, or association. This way, we
can mimic WS-CDL correlation types in BPMN.

3.2 Semantical Meaning

In the second option, the user interface will visual-
ize correlation between messages or between con-
versations different. The user only has to be aware
whether CorrelationKeys are used to correlate mes-
sages or conversations. Message CorrelationKeys in
BPMN resemble the Primary and Alternate identities
from WS-CDL. They are used to correlate messages
belonging to the same Conversation. Conversation
CorrelationKeys on the other hand are used to corre-
late conversations. Derived and Association identities
take up this role in WS-CDL.

4 MONITORING EXTENSIONS

BPMN already has two placeholders available, audit-
ing and monitoring, but as the specification mentions
the actual definition of auditing/monitoring is out of
scope of the specification. It is up to the implementers
to specify how these elements are used and extended.
Auditing and monitoring can be defined for all Flow-
Elements (e.g. Activities, Gateways, Events, Data Ob-
jects, Data Associations and Sequence Flows), with
the only limitation, that these FlowElements have to
be part of a Process flow. Auditing and monitoring
can also be set for a Process itself, which can be used
(for instance) to define process-wide actions.

Setting the audit and monitoring tags for each
FlowElement would be too time-consuming and
prone to mistakes. Besides that, in many cases generic
monitoring statements (e.g. log servicetime between
TaskA and TaskB) can be used to define monitoring.
Consequently, it would be more interesting to define
the monitoring in a separate declarative model (as an
extension on BPMN). References to elements in this
new model can be used to connect the FlowElements
and the Process to specific monitoring points. These
monitoring points are described in declarative rules.

The following subsections describe in more de-
tails the declarative monitoring model, monitoring in-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

306

formation, declaration, visualization and implementa-
tion of monitoring.

4.1 Monitoring Model

Several options are available for the Monitoring
Model. Either a procedural model or a declarative
model. Using a declarative model allows to describe
the behaviour of the monitoring framework. Instead
of describing in detail when to place a monitoring
point, the model can describe under which conditions
the framework should place a monitoring point. It is
with a declarative model also possible to have sim-
ple rules that can result in multiple monitoring points.
Some examples:

� after each Activity, log the name of the Activity

� servicetime between TaskB and TaskG

� delay between PartnerA and PartnerB

4.2 Monitoring Information

Metadata

The monitoring metadata describes which data can be
captured from the FlowElements.

local time
The timestamp as set by the participants system.
In the assumption that all servers involved in the
execution of one particular participant’s process
are in sync.

correlation keys
An array of all the instances of the correlation
keys as defined by the BPMN model.

process id
The unique identifier for this process as set by the
participant’s system.

task id
The unique identifier for this task as defined in the
BPMN model.

data context [optional]
An optional array of all data currently used in this
process’ instance. This is used to monitor appli-
cation specific data and is realised by using Data
Objects.

4.3 Describing Monitoring Declarations

There are different types of monitoring points: single
monitoring points, monitoring ranges and monitoring
aggregates. Single monitoring points are associated
with a specific or all FlowElements. This can be a

single Activity (e.g. Task, Sub-Process, Call Activ-
ity), Events, etc. Monitoring ranges are used to mon-
itor data that involves multiple FlowElements (e.g.
monitoring the service time between two FlowEle-
ments). A monitoring range implies that multiple sin-
gle monitoring points are set. Monitoring aggregates
are similar to monitoring ranges, but they aggregate
data within a certain scope (e.g. over all process in-
stances).

Single Monitoring Points

Single monitoring points can be set before, after or
during either all FlowElements or a specific FlowEle-
ment. A FlowElement can be specified by a BPMN
attribute (e.g. id). The second function parameter w

determines where the monitoring point should be set.
Setting monitoring points results in capturing all data
specified by the metadata as specified in section 4.2.
In order to additionally monitor application specific
data, Data Objects can be associated with monitoring
points.

log(FlowElement[: id];w)
� flocal time; :::;data contextg (1)

Monitoring points can be placed depending on the
outcome of a function. For example, function e can
be <, >, =, and, or, not, etc. x and y can be FlowEle-
ments.

e(x;y;w) ! log(FlowElement;w) (2)

Monitoring Ranges

Monitoring ranges are associated with multiple Flow-
Elements. Therefore an ordered list of FlowElements
is passed to function f .

f(FlowElement; : : :) (3)

An example is monitoring the servicetime between
two FlowElements. The function servicetime implies
that a single monitoring point must be placed after
FlowElementA and before FlowElementB.

servicetime(FlowElementA;FlowElementB)
! log(FlowElementA;a f ter) as x
^log(FlowElementB;be f ore) as y

^ y:localtime� x:localtime

Monitoring Aggregates

Monitoring aggregates are similar to ranges, but they
aggregate all monitoring data within a scope (e.g. av-
erage, sum, count, etc.). Parameter a can be function
(1),(2) or (3).

BPMN�Extensions�for�Decentralized�Execution�and�Monitoring�of�Business�Processes

307

g(a;scope) (4)

The monitoring scope can be:

� process instance, e.g. count of all tasks within a
specific process instance.

� process: range of process instances, e.g. count of
all tasks over a range of process instances.

� system: range of processes, e.g. when you want
to know the service time of a particular participant
over different processes.

4.4 Visualization

In order to allow non-developers (business users) to
specify where to place monitoring points, a more vi-
sual representation of monitoring points is discussed
in the next subsections.

Single Monitoring Points

Figure 3 corresponds to the first rule (1). A monitor-
ing point can contain a Data Object for application
data to be logged.

Figure 3: Placement of a single monitoring point.

Figure 4 corresponds to the second rule (2). For ex-
ample a monitoring point will be placed if a Data Ob-
ject and a particular Message Event have occurred.

Figure 4: Placement of a conditional single monitoring
point.

Monitoring Ranges

Figure 5 corresponds to the third rule (3).

Figure 5: Placement of a monitoring range.

4.5 Implementation

Since BPMN is persisted in XML, the declarative
rules should also have an XML counterpart, e.g.
RuleML (a markup language for rules). Implementa-
tion of monitoring in BPMN can then be achieved by
intercepting messages between tasks or by adding a
wrapper around tasks. Automatically adding a wrap-
per around the monitoring tasks allows for more ad-
vanced monitoring capabilities. Figure 6 shows this
wrapper.

Figure 6: Wrapper around tasks to enable monitoring.

All of the supported monitoring operations must be
included in the process. Whether or not they are active
depends on the decisions in the process.

5 CONCLUSIONS

In this paper a number of backwards compatible ex-
tensions to the BPMN business process modeling lan-
guage are presented to support correlation and moni-
toring in decentralized workflows. Correlation in de-
centralized workflows is achieved by using BPMN’s
extensibility. The BPMN correlation mechanism can
than hold similar information as the WS-CDL mech-
anism. Another option is to aid the user by improv-
ing how correlation is perceived in BPMN. BPMN
already has two placeholders available, auditing and

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

308

monitoring, but it is up to the implementers of the
BPMN engine to specify how these elements are used
and extended. Therefore, a declarative monitoring
model as an extension on BPMN is described. This
model results in declarative rules. Since BPMN is
persisted in XML, the declarative rules also have an
XML counterpart, e.g. RuleML. These rules have
also a notation model. Finally, implementation of the
monitoring model can be achieved by adding a wrap-
per around tasks.

Further research will show which correlation ex-
tension option is the more favorable. In future work
tooling will be developed allowing non-developers
(business users) to design and deploy decentralized
business processes. A monitoring API will be de-
signed to monitor these decentralized business pro-
cesses.

ACKNOWLEDGEMENTS

The iMinds D-BASE project is co funded by iMinds
(Interdisciplinary Institute for Technology), a re-
search institute founded by the Flemish Government
with project support of the IWT.

REFERENCES

Autili, M., Inverardi, P., and Tivoli, M. (2014). Choreos:
Large scale choreographies for the future internet. In
Software Maintenance, Reengineering and Reverse
Engineering (CSMR-WCRE), 2014 Software Evolu-
tion Week - IEEE Conference on, pages 391–394.

Barros, A. (2015). Process choreography modelling. In
vom Brocke, J. and Rosemann, M., editors, Handbook
on Business Process Management 1, International
Handbooks on Information Systems, pages 279–300.
Springer Berlin Heidelberg.

Dumas, M. and Kohlborn, T. (2015). From business pro-
cess models to service interfaces. In vom Brocke, J.
and Rosemann, M., editors, Handbook on Business
Process Management 1, International Handbooks on
Information Systems, pages 557–578. Springer Berlin
Heidelberg.

Kavantzas, N., Fletcher, T., Burdett, D., Lafon, Y., Barreto,
C., and Ritzinger, G. (2005). Web services chore-
ography description language version 1.0. Candidate
recommendation, W3C. http://www.w3.org/TR/2005/
CR-ws-cdl-10-20051109/.

Lazovik, A., Aiello, M., and Papazoglou, M. (2004). As-
sociating assertions with business processes and mon-
itoring their execution. In Proceedings of the 2Nd In-
ternational Conference on Service Oriented Comput-
ing, ICSOC ’04, pages 94–104, New York, NY, USA.
ACM.

OASIS (2007). OASIS Web Services Business Process Ex-
ecution Language. http://docs.oasis-open.org/wsbpel/
2.0/OS/wsbpel-v2.0-OS.html.

(OMG), O. M. G. (2011). Business process model and no-
tation (bpmn) version 2.0. Technical report.

Roder, A., Lehmann, M., and Kabitzsch, K. (2011). Moni-
toring service choreographies. In Industrial Informat-
ics (INDIN), 2011 9th IEEE International Conference
on, pages 142–147.

Stefanescu, A., Wieczorek, S., and Schur, M. (2014). Mes-
sage choreography modeling. Software & Systems
Modeling, 13(1):9–33.

Van Seghbroeck, G., De Turck, F., Dhoedt, B., and De-
meester, P. (2007). Web service choreography con-
formance verification in m2m systems through the
pix-model. In Pervasive Services, IEEE International
Conference on, pages 385–390.

Wetzstein, B., Karastoyanova, D., Kopp, O., Leymann, F.,
and Zwink, D. (2010). Cross-organizational process
monitoring based on service choreographies. In Pro-
ceedings of the 2010 ACM Symposium on Applied
Computing, SAC ’10, pages 2485–2490, New York,
NY, USA. ACM.

BPMN�Extensions�for�Decentralized�Execution�and�Monitoring�of�Business�Processes

309

A Smart Decisional Cognitive System based on Self-adaptability of
Web Services to the Context

Faîçal Felhi1, Marwa Ayadi2,3 and Jalel Akaichi1
1BESTMOD Laboratory, High Institute of Management, Tunis University, Tunis, Tunisia

2InterVPNC Laboratory, FSJEGJ Jandouba, Janbouba University, Jandouba, Tunisia
3UEVE University, IBISC Laboratory, Paris, France

{felhi_fayssal, marwaayadi04}@yahoo.fr, jalel.akaichi@isg.rnu.tn

Keywords: Cognitive Stimulation, Pervasive Smart System, Web Services, Workflow, Context Awareness,
Self-Adaptability.

Abstract: Memory loss or cognitive stimulation application for handicapped people is the subject of a recent field of
studies in a information systems. In this way, Web services are a solution for the integration of distributed
information systems, autonomous, heterogeneous and auto adaptable to the context. In this paper, we are
interested in defining a new solution for a smart and decisional cognitive system based on self-adaptability
of Web services to the context and showing this solution by a case study.

1 INTRODUCTION

Cognitive stimulation (Emilie et al., 2007) key many
parts in a person who suffers from a loss of
autonomy such as Psycho-Social, Cognitive and
Functional. It strengthens motivation and verbal and
nonverbal communication. It also keeps the residual
cognitive resources and optimal autonomy and
optimize cognitive functioning (memory, language,
attention,..) and social (motivation, sociability)
preserved by exploiting the capabilities of patients.

System information must meet some specific
constraints surrounding context adaptation in the
case of ubiquitous computing (Weiser, 1993).
Computing applications now operate in a variety of
new settings; for example, embedded in cars or
wearable devices. They use information about their
context to respond and adapt to changes in the
computing environment. They are, in short,
increasingly context aware. Considerable approaches
related to adaptability with different modes of
implementation such as: Aspect Oriented
Programming (Kiczales et al., 1997). This aspect
used by various platforms on the goal to adapt the
Web service (WS, 2004) to the context dynamic
changes of environment. Web services, like any
other middleware technologies, aim to provide
mechanisms to bridge heterogeneous platforms,
allowing data to flow across various programs. The
Web services technology looks very similar to what

most middleware technologies looks like. The
emergence of Web services as a model for
integrating heterogeneous Web information has
opened up new possibilities of interaction and
adaptability to context when offered more potential
for interoperability. However, from a set of
requirements on SOA (Service Oriented
Architecture) (Curbera et al., 2008), and to provide
self adaptation to the context of Web services, we
need to integrate more generic connector that takes
into account all ambient or distant events. The SOA
offer great flexibility that is a great ability to
functional and technical changes. Moreover, this
type of architecture is most often used as Web
services support, which provide the flexibility and
interoperability expected, that is the ability to
communicate between heterogeneous systems. The
application in such information systems that
incorporate SOA need to communicate across the
exchange software (middleware or platforms). These
middleware are the source of our work. It is on them
that will think the same expectations in terms of
flexibility, interoperability and adaptability

Be advised that papers in a technically unsuitable
form will be returned for retyping. After returned the
manuscript must be appropriately modified.

The rest of this paper is organized as follows: In
Section 2, we present our solution for a smart
decisional cognitive system. In section 3 we present
our approach for a context meta-model for a self

310

adaptability of SOA. In Section 4, we review
previous research on context awareness and
adaptability of Web services. Finally, we summarize
our work and discuss future research in Section 5.

2 SMART CONITIVE SYSTEM

2.1 Architecture

Our smart cognitive system helps doctors and
memory handicapped person workers to evaluate
state of patient and use a new event related to patient
and help them to refresh her cognitive memory in a
short time.

In Figure 1, we presented our architecture
general solution for pervasive decisional and smart
cognitive system. This architecture represents the
different tools and components necessary that helps
a doctor to evaluate and treat the condition of a
patient has memory loss.

Figure 1: Smart cognitive system.

Our system is based on a workflow; this
workflow can test a request from a doctor by a rules
engine that will transform the requests in the form of
rules. Our system can also give and automatically
generate Web services that represent different
functionality of the test used by a doctor to evaluate
memory state of patient and host under a registry
“Cognitive Services”. The personal information for
each patient is provided by the middleware stored in
a “Data Base” for subsequent needs state.

Under WComp we have integrated a rule engine
that can provide management rules that deal with
business logic. The rules engine can communicate
with a workflow engine, which helps optimize and
evolution of these assemblies separating the events
produced by the components defined in an
application WComp.

2.2 Modelling

Figure 2: System modelling.

By using our meta model of context, Figure 2
represent the model of our solution to help doctors to
invoke web services related a new event related to
personal information of patient. This model
represents many equipment and resources used in
ambient space.

2.3 Implementation

We chose to implement a decision support for
patients who have memory loss. Our smart system is
a set of ordered tests and uses personal information
for patients, such as privacy in its ambient space,
these contacts, these family, and every time we
introduce events that can refresh his memory.
Thereafter, and end testing stages, the doctor can see
the score as a percentage of correct answers.

Figure 3: Color recognition.

A�Smart�Decisional�Cognitive�System�based�on�Self-adaptability�of�Web�Services�to�the�Context

311

This result helps him to the decision on the patient’s
condition and assesses his memory.

In Figure 3, we present a first step of test. This
step is color recognition, when the patient must
know the color presented.

In Figure 4, we present a Final step of test. This
step is face familial recognition, when the patient
must know the person in her family or her friend.

Figure 4: Face familial recognition.

In Figure 5, we show the end result percentage
test, accurate answers. This result gives an idea of
the patient's memory status and helps the doctor
decide whether to continue treatment taken by the
patient.

Figure 5: Decision result.

3 SELF-ADAPTABILITY OF WEB
SERVICES TO THE CONTEXT

3.1 Architecture

In Figure 6, we presented our research results based
on the needs in terms of self adaptability of service
oriented architecture to the context. Our architecture

Figure 6: System architecture.

is based on objects or components to make the
dynamic reconfiguration of components using more
advanced mechanisms. It qualifies the distribution of
applications across multiple servers and not the
increase in service levels. There is a distributed
architecture whose purpose is to deliver services to
their audience and they will be accessible from any
types of clients. Security and administration are
offered by this system in treating the business logic
from the workflow and rules.

Contextual resource discovery is the use of
context data to discover other resources within the
same context. The invocation of distant and ambient
services is also permitted by this architecture using
technologies dedicated to each type of invocation.

3.2 Context Awareness Modelling

This model (Figure 7) shows the different entities
involved in consideration of context. Contextual
view consists of several entities of contexts such as
the environment (time, location, climate, etc...),
mobility profile of the actor (all information that can
specify the actor, age, gender these studies, the
leisure ...) computing entity at large (especially with
mobile device such as a laptop, PDA, phone, etc...)
etc…

All the information related to the three
dimensions can also be shared by other mobile
applications. Our meta model identifies and adds the
most relevant and generic contextual entities that
will be held in account in modeling any mobile and
context aware application. This context metamodel

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

312

consists of six generic contextual entities and four
deduced entities specific to a category of mobile
applications. The class “ContextView” groups all
contextual entities involved in a given application. It
is identified by name attribute and has two types of
relation: the aggregation “involves” and the
association “belongsTo”. The first relation expresses
that a given “ContextView” is composed of many
“ContextEntity” that are involved in a context-aware
application. The second relation “belongsTo”
expresses the use of historical context information.
A given context entity may have participated in
different context views. This information can be
helpful in the design of future context views. The
second generic entity of the meta model is the
“ContextEntity”. As we see on the figure bellow, it
is specialized in three generic entities: Actor,
Computational Entity and Environnement. Actor
may be a person or another object that has a state
and profile. It evolves in an environment and uses
computational devices to invoke services. With the
Computational entity, the computational device is
used by the actor to access the services and to
capture contextual information from the
environment.

Figure 7: Context awareness meta-model.

Usually, a mobile device is used in context aware
mobile applications, and can obtain information
concerning the type of device it is (PDA, laptop,
cellular phone…), the application, the network, etc.
The environment is constituted of all the information
surrounding the actor and its computational device
that can be relevant for the application. It includes
different categories of information as :(i) Spatial
context information can be location, city, building,

(ii) Temporal context information comprises time,
date, season, (iii) Climate can be temperature, type
of weather…. The last entity is a profile. We are
convinced this entity is important in any user
centered context aware application. In fact, profile is
strongly attached to the actor and contains the
information that describes it. An actor can have a
dynamic and/or a static profile.

The static profile gathers information relevant for
any mobile context-aware application. It can be the
“date of birth”, “name” or “sex”. On the opposite,
dynamic profile includes customized information
depending on the specific type of application and/or
the actor. It can be goals, preferences, intentions,
desires, constraints, etc.

4 STATE OF THE ART

Cognitive stimulation techniques are represented in
the form of applications that offer exercises and
activities to improve and develop cognition of a
person with a loss of autonomy, which needs a
refresh and stimulate his memory.

Several studies show the cognitive stimulation in
several technical and several forms. The Creasoft
group (CREASOFT, 2014) gave us several
applications. PRESCO is a program that focuses on
memory, attention, language, visual spatial and
executive functions. Tvneurones and Words and
head travel are an applications in games form at
different levels. They can stimulate the evocation to
work the lack of the word, vocabulary and memory
strategies proposed by various. MonAgenda
Memory is a personal book; proposes adapted
agendas and cognitive stimulation games. Allows
the elderly and / or disoriented to keep his schedule
and play regularly in cognitive stimulation activities.

The context awareness (Monfort & Felhi, 2010a,
2010b; Monfort et al., 2010) of such applications is
the subject of a recent field of studies in pervasive
computing called: context-aware systems. In
(Monfort & Hammoudi, 2010, 2009; Vale &
Hammoudi, 2008), authors define context-awareness
as the ability of a program or device to sense or
capture various states of its environment and itself.
Referring to these latter definitions a context-aware
application must have the ability to capture the
necessary contextual entities from its environment,
use them to adapt its behavior (run time
environment) and finally present available services
to the user. In (Gu et al., 2005), the authors
introduce another definition in which they insist on
the use of context and the relevance of context

A�Smart�Decisional�Cognitive�System�based�on�Self-adaptability�of�Web�Services�to�the�Context

313

information. The authors consider a system is
context-aware if it uses context to provide relevant
information and/or services to the user, where
relevance depends on the user’s task. In (Emanuele
& Koetter, 2007), the authors considered context is
any information that can be used to characterize the
situation of an entity. An entity is a person, place, or
object that is considered relevant to the interaction
between a user and an application, including the user
and applications themselves. The authors give a
general definition that can be used in a wide range of
context-aware applications. In (Winograd, 2001) the
author approves this definition and claims that it
covers all proposed works in context. However he
considers it as a general definition that does not limit
a context. Thus he proposes his own definition in
which he limits a context in a set of information,
which is structured and shared. It evolves and is
used for interpretation. We stress that the notion of
hierarchy (structure) of context introduced by
(Winograd, 2001) is important. The definition
proposed in (Chen & Kotz, 2000) also presents the
context as hierarchically organized. In this work the
authors differentiate between environmental
information that determines the behavior of mobile
applications and that which is relevant to the
application. They thus define the context as the set
of environmental states and settings that either
determines an application's behavior or in which an
application event occurs and is interesting to the
user.

Web service is the best fitted technology for
implementing Service Oriented Architectures (SOA)
offering flexibility and interoperability. WSs provide
a minimalist mechanism to interconnect different
applications. But one fundamental point is the
importance of the WSDL (Web Services Description
Language) (WSDL, 2007) being the exact interface
of the system. WSDL is responsible for the message
payload, itself described with the equally famous
protocol SOAP (Object Access Protocol) (SOAP,
2007), while data structures are explained by XML
(eXtended Markup Language) (XML, 2012). Very
often, WS are stored in UDDI (Universal
Description Discovery and Integration) (UDDI,
2004) registry.

Many approaches treat the adaptability of SOA
in joining with Web services, to context. Charfi and
al. approach (Charfi & Mezini, 2004) propose a
framework that provides support for middleware
BPEL (Business Process Execution Language)
(BPEL, 2003) engines. The authors apply the
concepts of deployment descriptor and container for
the Web service composition. Ferraz Tomaz and al.

approach (Ferraz et al., 2006) proposed a tool for
weaving aspects for a simple adaptability of the Web
services, implementing aspects of the services as
loosely coupled, where aspects are woven
dynamically. In this approach, aspects are
themselves Web services, thus they are independent
of languages and platforms. Mehdi Ben Hmida
approach (Ben Hmida et al., 2006) extended the
solution proposed by (Ferraz et al., 2006) to specify
BPEL processes adaptable, that is to say, the
adaptability of complex services. Hence the need to
extend the semantic aspects and Web services,
which resulted in the ASW (Aspect Service
Weaver). Aspects are themselves loosely coupled
Web services, they are independent of languages and
platforms, but, this approach has limitations.

Adaptation to context is not taken into account,
that is to say, if an event occurred during a search on
a Web service, this approach does not take into
account this event. In the other approaches we find
those based on context adaptation (Garlan et al.,
2002; Biegel and Cahill, 2004; Anastasopoulos et
al., 2006; Roman and Islam, 2004). The ambient
computing encourages the proliferation of associated
devices. We cited WComp approach (Tigli et al.,
2009a, 2009b, 2009c) which represents the
implementation of experimental models for
lightweight components for service composition
SLCA (Service Lightweight Component
Architecture) which enables the design of ambient
computing applications by assembling software
components, orchestrating access to services through
infrastructure devices from ambient. WComp
supports protocols such as UPnP (Universal Plug
and Play) (UPnP, 2012) and Web services, allowing
components through the proxy to interact with them.
To promote adaptation to context WComp uses
Aspect Assembly paradigm. Aspect Assemblies can
either be selected by a user or fired by a context
adaptation process. It uses a weaver that allows
adding and or suppressing components. With this
architecture WComp allows: i) managing devices
heterogeneity and dynamic discovering by using
UPnP, ii) events driven interactions with devices, iii)
managing dynamic devices connection and
disconnection (dynamic re configuration on run
time) in infrastructure.

In our research work (Felhi & Akaichi, 2012a,
2012b, 2013a, 2013b), we presented a proposal to a
self-adaptable SOA to the context based on
workflow (Workflow, 2006) by presenting the
functional and technical architecture of our
approach. In this architecture we have given
different features in terms of the needs of self-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

314

adaptability offered by the integration of workflow,
which allows the management rules (Rules, 2010)
and a kind of security and administration of Web
services. This solution which can offer management
rules that deal with business logic. Business logic
can help in the development and optimization of
these assemblies separating the events produced by
the components of Web services.

4 CONCLUSIONS AND FUTURE
WORKS

In this paper we have shown the interest of self
adaptability of SOA based on workflow since it
often involves multiple heterogeneous systems, and
in particular for cognitive decisional and smart
system. We proposed our solution helps doctors and
memory handicapped person workers to evaluate
state of patient and use a new event related to patient
and help them to refresh her cognitive memory in a
short time.

We hope in our future work enhance our
approaches another application domain..

ACKNOWLEDGEMENTS

We thank everyone.

REFERENCES

Emilie W., Inge C. K., Jocelyne D. R., Pia G., Florence
M., Fériel B., Aurore R., Martha D. S., & Anne S. R.
(2007). Cognitive stimulation intervention for elders
with mild cognitive impairment compared with normal
aged subjects: preliminary results. Aging Clinical and
Experimental Research. Volume 19, Issue 4, pp 316-
322.

Weiser M. (1993). Some Computer Science Issues in
Ubiquitous Computing. Communications of the ACM.
Volume 36, no. 7, pp. 75–84.

Kiczales G., Lamping J., Maeda C., & Lopes C. (1997).
Aspect-oriented programming. Proceedings European
Conference on Object-Oriented Programming
(ECOOP’97). volume 1241, pp 220–242. Springer-
Verlag, Berlin, Heidelberg, and New York.

WS Retrieved (2004), from http://www.w3.org/TR/ws-
arch/.

Curbera F., Khalaf R., & Mukhi N. Quality of Service in
SOA Environments. An Overview and Research
Agenda (Quality of Service in SOA-Umgebungen). it -
Information Technology. 50(2): 99-107, 2008.

CREASOFT Retrieved (2014), from:

http://www.editions-creasoft.com/
Monfort, V., & Felhi, F. (2010). Context Aware

Management Platform to Invoke remote or local e
Learning Services Application to Navigation and
Fishing Simulator. International Symposium on
Ambient Intelligence, ISAMI'10 Publisher. Special
Volume in Advances in Intelligent and Soft
Computing (Springer), Guimarães, Portugal.

Monfort, V., & Felhi, F. (2010). A contextual approach to
invoke intelligent house Services: an application to
help physically handicapped persons. 1rst
International Workshop on Recent Trends in SOA
Based Information Systems in conjonction with ICEI.
Funchal Madeira, Portugal.

Monfort, V., Khemaja, M., Ammari, N., & Felhi, F.
(2010). Using SaaS and Cloud computing For "On
Demand" E Learning Services: Application to
Navigation and Fishing Simulator. 10th IEEE
International Conference on Advanced Learning
Technologies, Sousse, Tunisia.

Vale, S., & Hammoudi, S. (2008). Context-aware Model
Driven Development by Parameterized
Transformation, Proceedings of MDISIS.

Monfort, V., & Hammoudi, S. (2010). When
Parameterized MDD Supports Aspect Based SOA.
IJEBR International Journal of E-Business Research.

Monfort, V., & Hammoudi, S. (2009). Towards Adaptable
SOA: Model Driven Development, Context and
Aspect. The 7th International Conference on Service
Oriented Computing, Stockholm, Sweden.

Gu, T., Pung, H., & Zhang, D. Q. (2005), A service-
oriented middleware for building context-aware
services, Journal of Network and Computer
Applications, 28 1-18.

Emanuele, J., & Koetter, L. (2007). Workflow
opportunities and challenges in healthcare. BPM &
Workflow Handbook.

Winograd, T. (2001). Architectures for context. Human-
Computer Interaction (HCI) 16(2-4), 401-419.

Chen, G., & Kotz, D. (2000). A survey of context-aware
mobile computing research. Technical Report (ACM),
Dept. of Computer Science, Dartmouth College.

WSDL. Retrieved (2007), from http://www.w3.org/TR/
wsdl20/.

SOAP. Retrieved (2007), from http://www.w3.org/TR
/SOAP .

XML. Retrieved (2012), from http://www.w3.org/XML/.
UDDI. Retrieved (2004), from http://www.uddi.org/pubs

/uddi_ v3.htm.
Charfi, A., & Mezini, M. (2004). Aspect-Oriented Web

Service Composition with AO4BPEL. 2nd European
Conference on Web Services (ECOWS) Publisher.
Volume 3250 of LNCS, Springer, pp. 168-182.

BPEL. Retrieved (2003), from http://www6.software.ibm
.com/software/developer/library/ws-bpel.pdf.

Ferraz Tomaz, R., Ben Hmida, M., M., & Monfort, V.
(2006). Concrete Solutions for Web Services
Adaptability Using Policies and Aspects. JDIM -
Journal of Digital Information Management.
Publisher.

A�Smart�Decisional�Cognitive�System�based�on�Self-adaptability�of�Web�Services�to�the�Context

315

Ben Hmida, M., M., Ferraz Tomaz, R., F., & Monfort, V.
(2006). Applying AOP concepts to increase Web
services flexibility. Journal of Digital Information
Management (JDIM) Publisher.

Garlan, D., Siewiorek, D. P., Smailagic, A., & Steenkiste,
P. (2002). Aura: Toward distraction free pervasive
computing. IEEE Pervasive Computing. Publisher.

Biegel, G., & Cahill, V. (2004). A framework for
developing mobile, context-aware applications. 2nd
IEEE Conference on Pervasive Computing and
Communication. pp.361–365.

Anastasopoulos, M., Klus, H., Koch, J., Niebuhr, D., &
Werkman, E. (2006). DoAmI – a middleware platform
facilitating re-configuration in ubiquitous systems.
System Support for Ubiquitous Computing Workshop,
At the 8th Annual Conference on Ubiquitous
Computing (Ubicomp) Publisher.

Roman, M., & Islam, N. (2004). Dynamically
programmable and reconfigurable middleware
services. Middleware, Springer Publisher. Volume
3231 in LNCS, pp. 372–396.

Tigli, J. Y., Lavirotte, S., Rey, G., Hourdin, V., & Riveill,
M. (2009). Lightweight Service Oriented Architecture
for Pervasive Computing. IJCSI International Journal
of Computer Science Issues. Volume 4, No. 1, ISSN
(Online): 1694-0784, ISSN (Print): 1694-0814.

Tigli, J. Y., Lavirotte, S., Rey, G., Hourdin, V., & Riveill,
M. (2009). Context-aware Authorization in Highly
Dynamic Environments. IJCSI International Journal
of Computer Science Issues. Volume 4, No. 1,, ISSN
(Online): 1694-0784, ISSN (Print): 1694-0814.

Tigli, J. Y., Lavirotte, S., Rey, G., Hourdin, V., Cheung-
Foo-Wo D., Callegari, E., & Riveill, M. (2009).
WComp Middleware for Ubiquitous Computing:
Aspects and Composite Event-based Web Services.
Annals of Telecommunications. Volume 64, n° 3-4, pp
197. ISSN 0003-4347.

UPNP. Retrieved (2012), from http://www.upnp.org/.
Felhi, F., & Akaichi, J. (2012). Adaptation of Web

services to the context based on workflow: Approach
for self-adaptation of service-oriented architectures to
the context. International Journal of Web & Semantic
Technology (IJWesT). Volume3, No.4, Publisher.

Felhi, F., & Akaichi, J. (2012). Towards the self-
adaptability of Service-Oriented Architectures to the
context based on workflow. International Journal of
Advanced Computer Science and Applications
(IJACSA). Volume3, No.12, Publisher.

Felhi, F., & Akaichi, J. (2013). Self-adaptability of SOA
to the context based on workflow in a e-Healthcare
monitoring system. International Conference on Web
and Information Technologies (ICWIT'13).
Hammamet, Tunisia.

Felhi, F., & Akaichi, J. (2013). Pervasive e-healthcare
system based on self-adaptability of SOA to the
context. IEEE International Conference on
Information Technology & e-Services (ICITeS’ 2013).
Sousse, Tunisia.

Workflow Retrieved (2006), from, http://www.bpmbul
letin.com/2006/06/21/difference-entre-workflow-et-
moteur-de-regle/.

Rules Retrieved (2010), from, http://www.vdocsoftware
.com/vdoc/easysite/InVDOC2010/news/innovation/agi
lite-regles-metiers.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

316

CLOUD COMPUTING PLATFORMS AND
APPLICATIONS

FULL PAPERS

Secure Evidence Collection and Storage for Cloud Accountability Audits

Thomas Ruebsamen1, Tobias Pulls2 and Christoph Reich1

1Cloud Research Lab, Furtwangen University, Furtwangen, Germany
2Department of Mathematics and Computer Science, Karlstad University, Karlstad, Sweden

fthomas.ruebsamen, christoph.reichg@hs-furtwangen.de, tobias.pulls@kau.se

Keywords: Cloud Computing, Security, Accountability, Digital Evidence.

Abstract: Cloud accountability audits can be used to strengthen trust of cloud service customers in cloud computing by
providing reassurance regarding the correct processing of personal or confidential data in the cloud. However,
such audits require various information to be collected. The types of information range from authentication and
data access logging to location information, information on security controls and incident detection. Correct
data processing has to be proven, which immediately shows the need for secure evidence record storage that
also scales with the huge number of data sources as well as cloud customers. In this paper, we introduce
Insynd as a suitable cryptographic mechanism for storing evidence for accountability audits in our previously
proposed cloud accountability audits architecture. We present our reasoning for choosing Insynd by showing
a comparison of Insynd properties with requirements imposed by accountability evidence collection as well
as an analysis how security threats are being mitigated by Insynd. Additionally, we describe an agent-based
evidence collection process with a special focus on security and privacy protection.

1 INTRODUCTION

Cloud Computing is known for its on demand com-
puting resource provisioning and has now become
mainstream. Many businesses as well as private in-
dividuals are using cloud services on a daily basis.
The nature of these services varies heavily in terms
of what kind of information is being out-sourced to
the cloud provider. More often than not that data
is sensitive, for instance when Personal Identifiable
Information (PII) is being shared by an individual.
Also, businesses that move (parts of) their processes
to the cloud, for instance by using a Customer Rela-
tionship Management Software as a Service provider,
are actively participating in a major paradigm shift
from having all data on-premise to moving data to the
cloud.

New challenges come along with this trend. Two
of the most important issues are customer trust
and compliance (Jansen and Grance, 2011; Pearson,
2011). These issues are closely tied to the loss of con-
trol over data. When moving to the cloud, direct con-
trol over i) where data is stored, ii) who has access to
it and iii) how it is shared and processed is given up.

Because of this loss of control, cloud customers
have to trust cloud providers that they treat their
data in an appropriate and responsible way. This in-

cludes providing information about data locality, iso-
lation, privacy controls and data processing in gen-
eral. One way to enable that trust is by strengthening
transparency and accountability (Haeberlen, 2009;
Weitzner et al., 2008) of the cloud provider and ser-
vices.

To regain information on the kind of data process-
ing, cloud audits can be used to check how it has been
done. An important part of cloud audits is evidence
collection. Depending on the data processing policies
in place, various sources of evidence need to be con-
sidered. Logs are a very important source of evidence,
when it comes to auditing the cloud operation (e.g.,
access logs and error logs). However, other sources of
information are also important, such as files or events
registered in the cloud management system. To cap-
ture evidence from this variety of sources, centralized
logging mechanisms are not enough. We therefore
propose a system for accountability evidence collec-
tion and audit. With this system, cloud providers are
enabled to demonstrate their compliance with data
handling policies to their customer’s and third-party
auditors in an automated way.

In our previous work, we introduced a sys-
tem (Ruebsamen and Reich, 2013) for cloud account-
ability audits, that enables automated collection of ev-
idential data in the cloud ecosystem with the goal of

321

performing accountability audits. A key mechanism
of this system is the secure and privacy-friendly col-
lection and storage of evidence. In our previous work
we also explored the use of a somewhat homomorphic
encryption scheme to secure evidence collected in the
evidence store (Lopez et al., 2014). In this paper, we
present a more practical alternative that imposes less
restrictions on evidence collection. The contributions
of this paper are:

� An architecture for automated evidence collection
for the purpose of cloud accountability audits

� A process for secure and privacy-protecting evi-
dence collection and storage

The remainder of this follow-up paper is struc-
tured as follows: in Section 2 we present related work
in the area of secure evidence collection and cloud au-
diting. The core principles of Insynd are introduced
in Section 3. Following that, we present in Section 4 a
mapping of typical characteristics of digital evidence
and secure evidence collection in the cloud to how
these are addressed by integrating Insynd in our audit
agent system. In Section 5 we describe the architec-
tural details of the Insynd integration. We present a
scenario-based informal evaluation of our system in
Section 6 and conclude this paper in Section 7.

2 RELATED WORK

Redfield and Date propose a system called
Gringotts (Redfield and Date, 2014) that en-
ables secure evidence collection, where evidence
data is signed at the system that produces it, before
it is sent to a central server for archival using the
Evidence Record Syntax. It is similar to our system
with respect to the automatic collection of evidential
data from multiple sources. However, their focus
is on the archival of evidence, whereas we propose
a system that also enables automated evidence
processing for audits. Additionally, our system also
addresses privacy concerns of evidence collection
in a multi-tenant environment such as the cloud by
introducing evidence encryption, whereas Redfield
and Date focus on archival and preservation of
evidence integrity.

Zhang et al. (Zhang et al., 2013) identify potential
problems when storing massive amounts of evidential
data. They specifically address possible information
leaks. To solve these issues, they propose an efficient
encrypted database model that is supposed to mini-
mize potential data leaks as well as data redundancy.
However, they focus solely on the storage backend

and do not provide a workflow that addresses secure
evidence collection as a whole.

Gupta (Gupta, 2013) identifies privacy issues in
the digital forensics process, when it comes to data
storage devices that typically do not only contain in-
vestigation related data, but may also hold sensitive
information that may breach privacy. He also identi-
fies a lack of automation in the digital investigation
process. To address these issues, Gupta proposes the
Privacy Preserving Efficient Digital Forensic Investi-
gation (PPEDFI) framework. PPEDFI automates the
investigation process by including knowledge about
previous investigation cases, and which kinds of files
were relevant then. With that additional informa-
tion, evidence search on data storage devices is faster.
However, while Gupta acknowledges privacy issues,
the PPEDFI framework is focused on classic digital
forensics and may not be applicable to a cloud ecosys-
tem, where there is typically no way of mapping spe-
cific data objects to storage devices, in full.

The Security Audit as a Service (SAaaS) system
proposed by Doelitzscher et al. (Doelitzscher et al.,
2012; Doelitzscher et al., 2013) is used to monitor
cloud environments and to detect security incidents.
SAaaS is specifically designed to detect incidents in
the cloud and thereby consider the dynamic nature
of such ecosystems, where resources are rapidly pro-
visioned and removed. However, the main focus of
SAaaS is not to provide auditors with a comprehen-
sive way of auditing the cloud provider’s compli-
ance with accountability policies, which requires ad-
ditional security and privacy measures to be consid-
ered in the data collection process.

3 INSYND

Insynd is a cryptographic scheme where a forward-
secure author sends messages intended for clients
through an untrusted server (Pulls and Peeters, 2015b;
Pulls and Peeters, 2015a; Pulls et al., 2013). The
author is forward-secure in the sense that the author
is initially trusted but assumed to turn into an active
adversary at some point in time (Bellare and Yee,
2003). Insynd protects messages sent prior to au-
thor compromise. The server is completely untrusted,
which is possible thanks to the use of Balloon, a
forward-secure append-only persistent authenticated
data structure (Pulls and Peeters, 2015a). This means
that the server storing all messages can safely be out-
sourced, e.g., to traditional cloud services. Clients
are assumed trusted to read messages sent to them by
authors. Insynd contains support for clients to also
be in the forward-security model, by discarding key-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

322

material as messages are read.
Insynd provides the following properties:

Forward Integrity and Deletion Detection. No-
body can modify or delete messages sent prior
to author compromise, as defined by Pulls et
al. (Pulls et al., 2013). This property holds
independently for Balloon (the data structure)
and the Insynd scheme. For Balloon, anyone can
verify the consistency of the data structure, i.e., it
is publicly verifiable (Pulls and Peeters, 2015a).

Secrecy. Insynd provides public-key authenticated
encryption (An, 2001) thanks to the use of
NaCl (Bernstein et al., 2012).

Forward Unlinkability of Events. For each run by
the author of the protocol to send new messages,
all the events sent in that run are unlinkable. This
implies that, e.g., an attacker (or the server) can-
not tell which events belong to which client (Pulls
and Peeters, 2015b). When clients receive their
events by querying the server, if they take ap-
propriate actions including but not limited to ac-
cessing the server over an anonymity network like
Tor (Dingledine et al., 2004), their events remain
unlinkable.

Publicly Verifiable Proofs. Both the author and
client receiving a message can create publicly
verifiable proofs of the message sender (the au-
thor), the receiving client (by registered identity),
and the time the message was sent relative to
e.g. a time-stamping authority (Pulls and Peeters,
2015b). The proof-of-concept implementation
of Insynd uses Bitcoin transactions (Nakamoto,
2008) as a distributed time-stamping server.

Distributed Settings. Insynd supports distributed
authors, where one author can enable other au-
thors to send messages to clients it knows of with-
out requiring any interaction with clients. Client
identifiers (public keys) are blinded in the pro-
tocol, ensuring forward-unlinkable client identi-
fiers between different authors (Pulls and Peeters,
2015b).

Pulls and Peters show that Insynd provides for-
ward integrity and deletion detection, secrecy, pub-
licly verifiable proofs, and forward-unlinkability of
client identifiers in the standard model under the as-
sumptions of the decisional Diffie-Hellman (DDH)
assumption on Curve25519, an unforgeable signa-
ture algorithm, an unforgeable MAC, a collision
and pre-image resistant hash function, and the secu-
rity of the time-stamping mechanism (in our case,
the Bitcoin block-chain) (Pulls and Peeters, 2015b).
Forward unlinkability of events is provided in the
random oracle model under the DDH assumption

on Curve25519 (Pulls and Peeters, 2015b). The
prototype implementation of Insynd shows perfor-
mance comparable to state-of-the-art secure logging
schemes, like PillarBox (Bowers et al., 2014), secur-
ing syslog-sized messages (max 1KiB) in the order of
hundreds of microseconds on average on a commod-
ity laptop. We stress that Insynd is subject to its own
review and evaluation; in this paper, we use Insynd as
a building block to facilitate secure evidence collec-
tion and storage for cloud accountability audits.

4 AUDIT EVIDENCE STORAGE
REQUIREMENTS

In this Section, we present a comparison of general
evidence attributes, how they apply in the context
of evidence collection for cloud accountability audits
and how the integration of Insynd solves key issues in
evidence storage.

4.1 Requirements of Digital Evidence

In (Mohay et al., 2003) the core principles of any ev-
idence are described as:

Admissibility. Evidence must conform to certain le-
gal rules, before it can be put before a jury.

Authenticity. Evidence must be tieable to the inci-
dent and may not be manipulated.

Completeness. Evidence must be viewpoint agnostic
and tell the whole story.

Reliability. There cannot be any doubts about the ev-
idence collection process and its correctness.

Believability. Evidence must be understandable by a
jury.

These principles apply to common evidence as
well as digital evidence. Therefore, the evidence col-
lection process for audits has to consider special re-
quirements, which help in addressing these attributes
and ensure best possible validity in audits and appli-
cability in court.

In Table 1 we present a mapping of the previously
described evidence attributes and how they are sup-
ported by the integration of Insynd as a means of stor-
ing evidence records. We thereby focus on the key
properties of Insynd as described in Section 3.

Admissibility of digital evidence is influenced by
the transparency of the collection process and data
protection regulation. Digital evidence can be any
kind of data (e.g., e-mail messages, social network
messages, files, logs etc.). Insynd does not have any

Secure�Evidence�Collection�and�Storage�for�Cloud�Accountability�Audits

323

direct influence on the admissibility of the evidence
stored in it.

Authenticity of digital evidence before court is
closely related to the integrity requirement put on ev-
idence records. Evidence may not be manipulated in
any way and must be protected against any kind of
tampering (willingly and accidentally). Insynd en-
sures that data cannot be tampered with once it is
stored.

Completeness is not directly ensured by Insynd,
but rather needs to be ensured by the evidence collec-
tion process as a whole. Especially important are the
definition of which evidence sources provide relevant
evidence that need to be considered during the col-
lection phase. Insynd can complement the evidence
collection process by providing assurance of that all
data stored in the evidence store are made available
as evidence, and not cherry-picked.

Reliability is indirectly supported by integrating
necessary mechanisms into the evidence collection
process, such as Insynd.

Believability of the collected evidence is not influ-
enced by implemented mechanisms, but rather by the
interpretation and presentation by an expert in court.
This is due to judges and juries usually being non-
technical, which requires an abstracted presentation
of evidence. Insynd does not influence the believabil-
ity in that sense.

Table 1: Mapping the Impact of Insynd Properties to Evi-
dence Attributes.

Insynd
Forward
Integrity
and
Deletion
Detection

Publicly
Verifiable
Proofs

ES

Admissibility
Authenticity
Completeness
Reliability
Believability

4.2 Privacy Requirements

Not all requirements that a secure evidence storage
has to fulfill can be captured by analyzing the at-
tributes of digital evidence. Other aspects have to be
taken into account to address privacy concerns. Pro-
tecting privacy in the process of evidence collection is
utmost importance, since the collected data is likely to
contain personal data. For cloud computing, one lim-
iting factor may be whether or not the cloud provider

is willing to provide deep insight into its infrastruc-
ture. Table 2 presents a mapping of privacy principles
and properties of our evidence process.

Below we summarise some key privacy principles:

Confidentiality. of data evolves around mechanisms
for the protection from unwanted and unautho-
rized access. Typically, cryptographic concepts,
such as encryption, are use to ensure confidential-
ity of data.

Data Minimization. states that the collection of per-
sonal data should be minimized and limited to
only what is strictly necessary.

Purpose Binding. of personal data entails that per-
sonal data should only be used for the purposes it
was collected for.

Retention Time. is concerned with how long per-
sonal data may be stored and used, before it needs
to be deleted. These periods are usually defined
by legal and business requirements.

Insynd and our evidence process provides various
mechanisms that support these privacy principles.

Confidentiality A central property of Insynd is that
it is always encrypting data using public-key cryp-
tography. By encrypting the evidence store, compro-
mising the privacy of cloud customer data that has
been collected in the evidence collection processes
becomes almost impossible by attacking the evidence
store directly. This goes as far as being able to safely
outsource the evidence store to an untrusted third-
party, a key property of Insynd (Pulls and Peeters,
2015b).

Data Minimisation Furthermore, Insynd provides
forward unlinkability of events and client identifiers,
as described in Section 3, which helps prevent several
types of information leaks related to storing and ac-
cessing data. Collection agents are always configured
for a specific audit task, which is very limited in scope
of what needs to be collected. Agents are never con-
figured to arbitrarily collect data, but are alway lim-
ited to a specific source (e.g., a server log) and data
objects (e.g., a type of log events).

Purpose Binding Neither Insynd nor our evidence
process can directly influence the purpose for which
collected data is used. Indirectly, the use of an ev-
idence process like ours, incorporating secure evi-
dence collection and storage, may serve to differen-
tiate data collected for auditing purposes with other
data collected e.g., for marketing purposes.

Retention time poses a real challenge. In cloud
computing, the precise location of a data object is
usually not directly available, i.e., the actual storage
medium used to store a particular block is unknown,
making data deletion hard. However, if data has been

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

324

encrypted before storage, a reasonably safe way to
ensure “deletion” is to discarding the key material
required for decryption. Insynd supports forward-
secure clients, where key material to decrypt mes-
sages are discarded as messages are read.

Table 2: Mapping of Insynd properties to Evidence Collec-
tion Requirements.

Insynd
Secrecy Forward

Unlink-
ability
of
Events

Forward
Unlink-
ability
of Re-
cipients

ES

Con-
fiden-
tiality
Data
Minimi-
sation
Purpose
Binding
Data
Reten-
tion

In Section 6, we also describe the threat model for
the system described in this paper and present an eval-
uation of how Insynd is used to mitigate these threats.

5 SECURE EVIDENCE STORAGE
ARCHITECTURE

In this Section, we provide an architectural overview
of the integration of Insynd into a secure evidence col-
lection and storage process. We describe the overall
architecture and its components, how the components
of Insynd are mapped into the audit agent system and
which setup process is required to use Insynd for se-
curing evidence collection and storage.

5.1 Architecture

In this Section we discuss the architectural integra-
tion of Insynd as an evidence store in our audit sys-
tem. There are basically three different components
required to perform secure evidence collection. Fig-
ure 1 shows an overview of these components - Evi-
dence Source, Evidence Store and Evidence Process-
ing - as well as the flow of data between them. From
the various sources of evidence in the cloud, evidence
records are collected that will be stored in the evi-
dence store on a per-tenant basis. The evidence store

is thereby located on a separate server. As previously
mentioned, the server may be an untrusted third-party
cloud storage provider. This is important to ensure so
that this approach scales well with a growing number
of tenants, evidence sources and evidence records.

Our architecture is built around using software
agents for evidence collection, evidence evaluation
and controlling the overall system. Agent technology
helps with extensibility by allowing us to easily intro-
duce new evidence sources and processors by build-
ing new agents. On top of that, it allows the audit sys-
tem to address rapid infrastructure changes, which are
very common in cloud infrastructures by easily de-
ploying and destroying agents when needed. We base
our system on the Java Agent DEvelopment Frame-
work (JADE, 2015). This effectively means that any-
where, where a Java runtime environment is available,
a collection agent can be deployed.

5.1.1 Evidence Collection

There are various evidence sources to be considered,
such as logs, cryptographical proofs, documentation
and many more. For each, there needs to be a suit-
able collection mechanism. For instance, a log parser
for logs, a tool for cryptographical proofs or a file re-
triever for documentation. This is done by a software
agent called Evidence Collection Agent that is specifi-
cally developed for the data collection from the corre-
sponding evidence source. The collection agent acts
as an Insynd Author meaning it uses the Sender API to
store evidence into the Evidence Store. The encryp-
tion happens in the Sender API. Typically, this agent
incorporates or interfaces with a tool to collect evi-
dential data, for instance forensic tools, such as file
carvers, log parsers or simple search tools. Another
type of collection agent have client APIs implemented
to interface with more complex tools, such as Cloud
Management Systems (CMS). Generally, these agents
receive or collect information as input and translate
that information into an evidence record, before stor-
ing it in the Evidence Store.

5.1.2 Evidence Storage

From the Evidence Collection Agent, evidence
records are sent to the Evidence Store. The Evidence
Store is implemented by the Insynd Server. Since In-
synd functions as a key-value store for storing ev-
idence records (encrypted messages identified by a
key) NoSQL or RDBMS-based backend for persist-
ing evidence records can be used. All data contained
in the Evidence Store is encrypted. Each record is ad-
dressed to a specific receiver (e.g., an Evidence Pro-
cessing Agent). The receiver’s public key is used in

Secure�Evidence�Collection�and�Storage�for�Cloud�Accountability�Audits

325

Figure 1: Evidence Collection, Storage and Processing Workflow.

the Sender API to encrypt the record on the Evidence
Store. This means that only the receiver is able to ac-
cess the evidence data from the Evidence Store. Iso-
lation between tenants in a single Evidence Store is
achieved by providing one container for each tenant
where his evidence records are stored. However, even
stronger isolation is also possible by providing a sep-
arate Evidence Store hosted on a separate VM. Addi-
tionally, Evidence records require a unique identifier
in the Evidence Store to enable selective retrieval of
records. In our implementation, we use a combination
of a policy identifier and a rule identifier (where a rule
is part of a policy) to enable the receiver to reduce the
amount of records to receive to a manageable size.

5.1.3 Evidence Processing

Evidence Processing components are located at the
receiving end of this workflow. The Receiver API is
used by the processing agent (Insynd Client) to re-
trieve evidence records from the Evidence Store. The
receiver can request multiple records from a period
of time at once. The Client is also in possession
of the corresponding private key to decrypt evidence
records, which means records can only be decrypted
at the Client.

5.2 Identity Management and Key
Distribution

Since asymmetric encryption is such an important
part of our system, we describe the encryption key
distribution sequence next. In this software agent-
based system, the automated setup of key material
and registration with Insynd is particularly important.
Figure 2 depicts the initialization sequence of collec-
tion and processing agents with a focus on key distri-
bution.

In Figure 2 we introduce an additional component
beyond those already described in the general archi-
tecture: the Controller. The Controller serves as an
entry point that controls the agent setup and distribu-
tion process in the audit system. It is an important part
of the lifecycle management of the system’s agents
(e.g., creating and destroying of agents or migration
between platforms).

In Figure 2 we describe the initialization sequence
for a simple scenario, where a particular tenant wishes
to audit compliance with a policy and one rule in-
cluded in that policy in particular. The following steps
have to be performed to setup the evidence collection
and storage process for that particular rule:

1. In the first step, a Processing Agent is created and
configured according to the input policy and rule
respectively for the tenant.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

326

Figure 2: Evidence Collection Setup Sequence.

2. During the setup phase, the Processing Agent
sets up a keypair at the Receiver API. The Re-
ceiver API is a RESTful service that holds pri-
vate key material and is therefore located at the
same servers hosting the Processing Agents (i.e.,
a trusted environment).

3. After the key material has been generated, the
Processing Agent registers itself as a recipient at
the Sender API. For this, it uses a unique identifier
generated from the policy ID and the rule ID (i.e.,
policyID.ruleID).

4. In the last step, the Controller sets up the re-
quired Collection Agents and connects them with
the corresponding Processing Agents by using the
unique recipient identifier.

Now, it is possible for the Collection Agents to
send evidence records to their corresponding Process-
ing Agents. The messages will be encrypted at the
Sender API service before storage, using the provided
recipient’s public key. The Processing Agent then
pulls the evidence records from the Evidence Store
using the Receiver API the records are decrypted us-
ing the receiver’s private key.

6 EVALUATION

In this Section we present an informal security eval-
uation of the system we have implemented for secure
evidence collection. We describe the evidence collec-
tion work flow using a fictitious scenario. By applying
the evidence collection and storage process to the set-
ting described in this scenario, we demonstrate how
the requirements stated in Section 4 are addressed.
Additionally, we provide a model that states threats
and adversaries to the process as well as the mitiga-
tion functions introduced by Insynd.

In this scenario, the CCOMP company is a cus-
tomer of the Infrastructure as a Service provider

CloudIA. In particular, we analyze the security prop-
erties of the evidence collection process by looking at
the data at rest as well as the data in transit protection
at any time during the flow from the evidence source
to its processor. We thereby assume that CloudIA is
using OpenStack (OpenStack, 2015) as a its Cloud
Management System (CMS), since this a widely pop-
ular open source CMS, which we use for developing
our audit agent system. However, any other CMS
could be used as well as long as it provides the needed
monitoring interfaces.

6.1 Scenario

CloudIA is specialized in providing its customers
with virtualized resources in the form of virtual ma-
chines, networks and storage. CCOMP has out-
sourced most of its IT services to CloudIA. Among
them is a service that processes data of CCOMP’s cus-
tomers. For that data, CCOMP has to guarantee data
retention. CCOMP has identified snapshots to be one
major problem with respect to the data retention pol-
icy, since the virtual machine’s storage is duplicated
in the process. This means for CCOMP that in order
to be compliant with the data retention policy, a snap-
shot of that virtual machine may have a maximum
lifetime of one day, which limits its usefulness to e.g.,
backing up before patching. Now, we assume a trust-
worthy but sloppy administrator at CCOMP who cre-
ates a snapshot before patching software on the virtual
machine, but then omits deleting the snapshot after
he is done. However, an automated daily audit of its
cloud resources was put in place by CCOMP to detect
such compliance violations.

6.2 Implementation

The collection agent required for the above scenario
communicates with our OpenStack CMS to gather
evidence of the CMS behavior regarding virtual ma-

Secure�Evidence�Collection�and�Storage�for�Cloud�Accountability�Audits

327

chine snapshots. The processing agent contains the
logic for detecting snapshot violations (i.e., base vir-
tual machine and a maximum age of the snapshot de-
rived from the retention policy). The collection agent
is deployed at the CMS controller node and has access
to OpenStack’s RESTful API. The processing agent
is located on the same trusted host as the controller
agent (see Figure 1 for reference). The evidence store
is located on a separate, untrusted virtual machine.
Now, the following steps are performed:

1. The collection agent opens a connection to the
OpenStack RESTful API on the same host and re-
quests a history of snapshot events for CCOMP’s
virtual machine. Despite there being no commu-
nication over the network, HTTPS is used to se-
cure the communication between the collection
agent and the CMS. Since the policy only requires
information about snapshots to be collected, the
CMS agent limits evidence record generation to
exactly that information, nothing more.

2. The collection agent sets up the receiver of the ev-
idence according to the process depicted in Fig-
ure 2 and sends the collected records to the evi-
dence store (Insynd). The communication chan-
nel is encrypted using HTTPS and the payload
(evidence records) is encrypted with the receiving
agent’s public key.

3. The processing agent pulls records from the ev-
idence store in regular intervals (e.g., every 24
hours), analyses them and triggers a notification
of a detected violation. The communication be-
tween the processing agent and the evidence store
is secured using HTTPS.

4. In the last step, evidence records are deleted be-
cause their retention limit has been reached. This
is done by discarding the keys required for de-
cryption.

6.3 Threat Model

To demonstrate which security threats exist for the ev-
idence collection process and Insynd is used to miti-
gate them, we describe the threat model for this sys-
tem categorized according to the STRIDE(Microsoft
Developer Network, 2015) threat categorization:

� Spoofing Identity

� Tampering with Data

� Repudiation

� Information disclosure

� Denial of Service

� Elevation of Privilege

We have identified the following major threats to
the evidence collection and storage process:

� Unauthorized access to evidence (S,I): the protec-
tion of evidence from being accessed by unautho-
rized persons. Possible adversaries are a mali-
cious third-party evidence storage provider (cloud
service provider), another tenant (isolation fail-
ure) or an external attacker. Using Insynd for ev-
idence collection and storage addresses this threat
since recipients of messages are authenticated us-
ing appropriate mechanisms such as user creden-
tials for API authentication and public keys for en-
cryption.

� Data leakage (S,I): the protection from uninten-
tional data leakage. This could be caused by mis-
configuration (e.g., unencrypted evidence being
publicly available). Using Insynd for evidence
collection and storage addresses this threat by en-
crypting data by default.

� Eavesdropping, (T,I): the protection of evidence
during the collection phase, especially in transit.
Possibly adversaries are another tenant (isolation
failure) or external attackers in case evidence is
transported to an external storage provider or au-
ditor. Using Insynd for evidence collection and
storage addresses this threat by using transport
layer as well as message encryption.

� Denial of Service (D): the protection of the ev-
idence collection and storage process from be-
ing attacked directly with the goal of disabling or
shutting it down completely (e.g., to cover-up si-
multaneous attacks on another service). Possible
adversaries are external attackers. This is a very
generic threat that cannot be addressed by a single
tool or control but rather requires a set a measures
(on the network and application layer) to enhance
denial of service resilience.

� Evidence manipulation (T,R,I): the protection
of evidence from intentional manipulation (e.g.,
deletion of records, changing of contents, manip-
ulation of timestamps). Possible adversaries are
malicious insiders and external attackers. Using
Insynd for evidence collection and storage ad-
dresses this threat, since Insynd provides tamper-
ing and deletion detection.

Some of these threats can be mitigated by imple-
menting appropriate security controls (i.e., using In-
synd for evidence transport and storage). It provides
effective protection by employing security techniques
described in Section 3.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

328

6.4 Requirements Evaluation

In this section, we evaluate the integration of Insynd
against the requirements described in Section 4. In
step 1 of the fictitious scenario, the data minimiza-
tion principle is being followed because the special-
ized agent only collects evidence on the existence of
snapshots.

This workflow is secure as soon as the collection
agent inserts data into the evidence store in step 2.
More precisely, evidence records are tamper-evident
and encrypted. This is true, even though the evi-
dence is actually stored on an untrusted virtual ma-
chine. The only way to compromise evidence now,
is to attack the availability of the server hosting the
Insynd server.

When the processing agent in step 3 retrieves
records for evaluation, it can be assured of the au-
thenticity of the data and that it has been provably col-
lected by a collection agent. Since evidence records
may be subject to maximum data retention regulation,
records that are not needed anymore are deleted.

As previously mentioned in Section 5 we use
JADE as an agent runtime. To secure our system
against non-authorized agents, we use the TrustedA-
gents add-on for the JADE platform. This ensures that
only validated agents are able to join our runtime en-
vironment. This effectively prevents agent injection
attacks, where malicious agents could be inserted at
either the collection or processing side to compromise
our system.

As can be seen, the evidence records are protected
all the way from the evidence source to the processing
agent using only encrypted communication channels
and having an additional layer of security (message
encryption) provided by Insynd. Additionally, while
the evidence is being stored, it remains encrypted.

6.5 Scalability

Obviously, since there is a vast amount of evidence
sources and therefore a potentially equal number of
collection agents, ensuring the scalability of the pro-
cess and the implementation is very important. This
has been considered very early in the design process
by choosing an software agent-based approach for the
system architecture. Software agents are inherently
distributable and allow for complex message flow
modeling in an infrastructure. Therefore, the core
components evidence collection, storage and process-
ing become distributable as well. In our future work,
we’ll focus on the scalability aspects. We will fol-
low a methodology where we focus on the following
technical key scalability indicators:

� Data transfer volume: amount of evidence data
being transferred over the network

� Message volume: amount of evidence message
transmissions over the network

� Storage volume: amount of storage required for
evidence

� Encryption overhead: performance impact intro-
duced by encryption and decryption

Based on the identified performance impact of
each of these indicators, in the second step, we model
different message flow optimization strategies to alle-
viate their impact and ensure scalability.

7 CONCLUSIONS

In this paper, we presented our system design and im-
plementation for secure evidence collection in cloud
computing. The evidence provides the general basis
for performing cloud accountability audits. Account-
ability audits take a large variety of evidence sources
and data processing requirements into account.

We showed what the requirements for a secure
evidence collection process are and demonstrated
how these issues are addressed by incorporating In-
synd into our system. We described how the core prin-
ciples of digital evidence are addressed by our system.
Additionally, we considered data protection princi-
ples for the evidence collection process, how they in-
fluence our approach and how they are addressed in
our system by integrating Insynd. For this, we pre-
sented the relevant architectural parts of our proto-
type.

In our future work, we will focus on the scalabil-
ity of our audit system in general and the scalability
of the components involved in evidence collection in
particular. For that reason, we will focus on the dis-
tribution of the audit system and evidence collection
not only in the same domain (i.e., in the same infras-
tructure), but also taking into account outsourcing and
multi-provider collection scenarios.

ACKNOWLEDGEMENTS

This work has been partly funded from the Euro-
pean Commissions Seventh Framework Programme
(FP7/2007-2013), grant agreement 317550, Cloud
Accountability Project - http://www.a4cloud.eu/ -
(A4CLOUD).

Secure�Evidence�Collection�and�Storage�for�Cloud�Accountability�Audits

329

REFERENCES

An, J. H. (2001). Authenticated encryption in the public-key
setting: Security notions and analyses. IACR Cryptol-
ogy ePrint Archive, 2001:79.

Bellare, M. and Yee, B. (2003). Forward-security in private-
key cryptography. In Topics in Cryptology—CT-RSA
2003, pages 1–18. Springer.

Bernstein, D. J., Lange, T., and Schwabe, P. (2012). The
security impact of a new cryptographic library. In
Hevia, A. and Neven, G., editors, Progress in Cryptol-
ogy - LATINCRYPT 2012 - 2nd International Confer-
ence on Cryptology and Information Security in Latin
America, Santiago, Chile, October 7-10, 2012. Pro-
ceedings, volume 7533 of Lecture Notes in Computer
Science, pages 159–176. Springer.

Bowers, K. D., Hart, C., Juels, A., and Triandopoulos, N.
(2014). PillarBox: Combating Next-Generation Mal-
ware with Fast Forward-Secure Logging. In Research
in Attacks, Intrusions and Defenses Symposium, vol-
ume 8688, pages 46–67. Springer.

Dingledine, R., Mathewson, N., and Syverson, P. F. (2004).
Tor: The second-generation onion router. In Blaze,
M., editor, Proceedings of the 13th USENIX Security
Symposium, August 9-13, 2004, San Diego, CA, USA,
pages 303–320. USENIX.

Doelitzscher, F., Reich, C., Knahl, M., Passfall, A., and
Clarke, N. (2012). An Agent Based Business Aware
Incident Detection System for Cloud Environments.
Journal of Cloud Computing: Advances, Systems and
Applications, 1(1):9.

Doelitzscher, F., Ruebsamen, T., Karbe, T., Reich, C., and
Clarke, N. (2013). Sun behind clouds - on automatic
cloud security audits and a cloud audit policy lan-
guage. International Journal On Advances in Net-
works and Services, 6(1 & 2).

Gupta, A. (2013). Privacy preserving efficient digital foren-
sic investigation framework. In Contemporary Com-
puting (IC3), 2013 Sixth International Conference on,
pages 387–392.

Haeberlen, A. (2009). A case for the accountable cloud.
In Proceedings of the 3rd ACM SIGOPS International
Workshop on Large-Scale Distributed Systems and
Middleware (LADIS’09).

JADE (2015). Java Agent DEvelopement framework.
http://jade.tilab.com.

Jansen, W. and Grance, T. (2011). Sp 800-144. guidelines
on security and privacy in public cloud computing.
Technical report, Gaithersburg, MD, United States.

Lopez, J., Ruebsamen, T., and Westhoff, D. (2014).
Privacy-friendly cloud audits with somewhat homo-
morphic and searchable encryption. In Innovations for
Community Services (I4CS), 2014 14th International
Conference on, pages 95–103.

Microsoft Developer Network (2015). The Stride
Threat Model. https://msdn.microsoft.com/en-
US/library/ee823878(v=cs.20).aspx.

Mohay, G. M., Anderson, A. M., Collie, B., de Vel, O., and
McKemmish, R. D. (2003). Computer and Intrusion
Forensics. Artech House, Boston, MA, USA. For

more information about this book please refer to the
publisher’s website (see link) or contact the authors.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic
cash system. Consulted, 1(2012):28.

OpenStack (2015). Openstack. http://www.openstack.org/.
Pearson, S. (2011). Toward accountability in the cloud. In-

ternet Computing, IEEE, 15(4):64–69.
Pulls, T. and Peeters, R. (2015a). Balloon: A

forward-secure append-only persistent authenticated
data structure. Cryptology ePrint Archive, Report
2015/007.

Pulls, T. and Peeters, R. (2015b). Insynd: Secure one-
way messaging through Balloons. Cryptology ePrint
Archive, Report 2015/150.

Pulls, T., Peeters, R., and Wouters, K. (2013). Distributed
privacy-preserving transparency logging. In Sadeghi,
A.-R. and Foresti, S., editors, WPES, pages 83–94.
ACM.

Redfield, C. M. and Date, H. (2014). Gringotts: Secur-
ing data for digital evidence. In Security and Privacy
Workshops (SPW), 2014 IEEE, pages 10–17.

Ruebsamen, T. and Reich, C. (2013). Supporting cloud ac-
countability by collecting evidence using audit agents.
In Cloud Computing Technology and Science (Cloud-
Com), 2013 IEEE 5th International Conference on,
volume 1, pages 185–190.

Weitzner, D. J., Abelson, H., Berners-Lee, T., Feigenbaum,
J., Hendler, J., and Sussman, G. J. (2008). Information
accountability. Commun. ACM, 51(6):82–87.

Zhang, R., Li, Z., Yang, Y., and Li, Z. (2013). An efficient
massive evidence storage and retrieval scheme in en-
crypted database. In Information and Network Secu-
rity (ICINS 2013), 2013 International Conference on,
pages 1–6.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

330

Supporting Multiple Persistence Models for PaaS
Applications using MDE
Issues on Cloud Portability

Elias Adriano Nogueira da Silva1, Daniel Lucrédio2, Ana Moreira3 and Renata Fortes1

1ICMC-USP, São Carlos, Brazil
2DC-UFSCar, São Carlos, Brazil

3NOVA-LINCS, FCT - UNL, Lisboa, Portugal
feliasnog,renatag@icmc.usp.br, daniel@dc.ufscar.br, amm@fct.unl.pt

Keywords: Cloud Computing, Model-driven Engineering, Platform-as-a-Service, Portability, Persistence.

Abstract: In cloud computing, lock-in refers to the difficulty of porting an application from one platform to another. An
example of such difficulty can be witnessed when porting an application from Platform-as-a-Service Google
App Engine to Microsoft Azure. Differences in their implementations are substantial, yielding non-portable
applications. Standardization could address this problem, but existing initiatives are still to be accepted. This
paper addresses lock-in by proposing a model-driven engineering design approach that decouples platform
specific code from the application logic. The resulting platform-independent models, as well as corresponding
model transformations, can be reused to generate distinct platform-specific implementations, hence reducing
the programming effort spent coding repetitive tasks. Such transformations can be made available for reuse on
a repository for cloud providers. We have implemented transformations to handle persistence for Google App
Engine and Azure, and discuss how model-driven engineering can reconcile the differences between features
of the persistence models of GAE and Azure.

1 INTRODUCTION

In a recent report, the IEEE Computer Society1 high-
lights 22 technologies with potential to change the
scenario of computer science and its role in industry
until 2022 (Alkhatib et al., 2014). Apart from fore-
seeing relevant research roadmaps, it also discusses a
vision for each of those technologies. One such tech-
nology is cloud computing.

Cloud computing is not a new technological
model, but the integration of technologies from the
past (Chen et al., 2011). What is new though, is the
different ways in which it is used to provide comput-
ing power as-a-service through the Internet. Accord-
ing to Armbrust et al., cloud computing permits ac-
quiring computing resources on demand, enables pay-
ment according to the utilization volume, and allows a
company to ignore the sources of the resources (Arm-
brust et al., 2009).

Several technological requirements are needed for
the cloud model to operate properly. The most com-
mon are virtualization technologies, standards and in-

1http://www.computer.org/

terfaces that allow shared access, facilitated instan-
tiation and management of virtual servers (IaaS –
Infrastructure-as-a-Service). Moreover, there are dif-
ferent kinds of resources in the cloud. Load balanc-
ing, data persistence and analytics are just some of
the many options available for application developers.
Given this variety, and depending on its field of exper-
tise, each cloud provider offers a different set of com-
putational resources. Some even provide a complete
development platform (PaaS – Platform-as-a-Service)
that puts together many different resources under con-
trol of the cloud provider.

Both the heterogeneity and diversity of cloud
services result in increased complexity as well as
reduced reuse and portability of the applications
(da Silva et al., 2013). In practice, some applications
need to be highly specialized with respect to a partic-
ular type of resource (e.g. hardware, platform and/or
set of services), yielding the lock-in problem (Arm-
brust et al., 2009). For example, when choosing a par-
ticular PaaS provider, the application developer usu-
ally has to follow a specific data management system
and programming style. This typically reduces porta-

331

bility, resulting in applications “locked-in” to that par-
ticular environment.

Some strategies based on standardization have
been proposed to address that portability issue (Arm-
brust et al., 2009; Petcu and Vasilakos, 2014). How-
ever, standards take time to define and approve, and
require time to be accepted by a large part of devel-
opment community. Currently, there are so many dif-
ferent standards being proposed (Petcu and Vasilakos,
2014) that even choosing one may be a difficult task.
Moreover, cloud providers may wish to use specific
technologies to create solutions that are aligned with
their own business requirements, hence choosing not
to follow the standards. Thus, until standardization
becomes a fact, the portability problem, and in partic-
ular lock-in, remains.

We have been exploring how Model-Driven Engi-
neering (MDE) (see Section 2) can be used to address
portability (da Silva et al., 2013) Approaches based
on MDE (France and Rumpe, 2007) have been inves-
tigated in several other contexts and may constitute
an interesting alternative to address the problem. Our
long-term goal is to build a repository of MDE trans-
formations and use code generation to reduce the de-
velopment effort for each platform, consequently re-
ducing repetitive programing tasks, increasing porta-
bility and minimizing the lock-in effects.

The present paper takes Google App Engine
(GAE) and Microsoft Azure, two well-known plat-
forms available in the market, and shows how MDE
conciliates the differences between their cloud persis-
tence models. We show how these differences can be
hidden behind a single conceptual model and discuss
a set of MDE artifacts to support this idea. This can
be seen as an abstraction layer that allows specifying
entities and a set of code generators that use these en-
tities to build similar persistence models even if the
storage mechanisms are different.

The two central points of the idea are (i) using
a DSL for modeling entities and (ii) building a set
of transformations that can generate code for dif-
ferent targets from the same set of source models.
Such code-generation approach allows developers fo-
cusing on platform-independent models, thus achiev-
ing portability by reducing the lock-in effects. Both
the models created using DLS and their respective
transformations for various different platforms can be
made available in a repository for reuse.

In a previous paper (da Silva et al., 2013) we dis-
cuss the general approach, but we do not show how
persistence is dealt with, which is one of the most
interesting parts of our work. Here we extend that
work, presenting the differences between the persis-
tence models of GAE and Azure. We also show

details of how these differences can be conciliated
through an MDE process, resulting in applications
that can be more easily ported between these two
cloud providers.

As our approach is generic, transformations con-
sidering standards may also be added to the repository
later. Although the typical claimed MDE-benefits are
expected (e.g., facilitated maintenance and increased
productivity), an analysis of the economic viability of
creating and maintaining a repository of transforma-
tions is out of the scope of this paper2.

The rest of this paper is organized as follows. Sec-
tion 2 presents some conceptual background, includ-
ing a more detailed definition of the lock-in problem,
the different types of cloud portability, concepts of
MDE and an overview of the previously proposed
MDE approach. Section 3 discusses the two plat-
forms that were the subject of this study (GAE and
Azure), focusing on the differences in their persis-
tence models. Section 4 presents our proposed solu-
tion using MDE and Section 5 discusses some points
about the performed evaluation of the proposal. Sec-
tion 6 presents related work and, finally, Section 7
concludes with some final remarks and future work.

2 BACKGROUND

This section starts with a discussion of lock-in and
known types of portability. It then introduces model-
driven engineering, and finishes with a summary of
our vision on the use of MDE to support PaaS porta-
bility.

2.1 The Lock-in Problem

Lock-in is the difficulty faced to move data and pro-
grams from one cloud platform to run on another one
(Armbrust et al., 2009). This is a major issue in the
PaaS scenario: in order to take advantage of a very
flexible cloud architecture, the applications are devel-
oped conforming to the specificity of the chosen plat-
form. For example, to offer great elasticity, the GAE
PaaS provider imposes a specific programming style
and specific data management policy. Thus, an ap-
plication developed for it may not be easily ported to
a different PaaS provider, nor can its data. Even if
the developer wants to host an application in his own
private cloud later, considerable effort may be neces-
sary to rebuild the code, redeploy it, and migrate all

2Mohaghegi and Dehlen presented a review of experi-
ences from applying MDE in industry (Mohagheghi and
Dehlen, 2008).

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

332

the data. This lack of portability causes the lock-in
effect.

The possibility of becoming “locked in” on a par-
ticular platform, not being able to choose a different
one later (customer lock-in), leaves developers in a
difficult position. They mostly fear being charged
abusive fees later, or having their applications un-
available due to lack of service quality (Armbrust
et al., 2009).

2.2 Types of Portability

Prior to deciding on the adoption of a cloud model,
an organization should take into account the viabil-
ity of the one that better fits its business. It must
carefully analyze the constraints related to cloud plat-
forms, both technical and organizational (da Silva
et al., 2013), as well as its business requirements
(Khajeh-Hosseini et al., 2011).

Portability is a key attribute for the improvement
and dissemination of the cloud model.The existing
literature discusses four main types of portability in
the cloud scenario: (i) portability of virtual machines
between cloud providers, (ii) portability of applica-
tions in the context of IaaS, (iii) portability of PaaS
applications and (iv) data portability between cloud
providers(Bozman, 2010; Petcu et al., 2013; Ran-
abahu and Sheth, 2010; Shirazi et al., 2012).

This paper focuses on portability of PaaS appli-
cations. However, the code generators and repository
proposed here can be used in other contexts. Petcu
et al. present a list of initiatives to handle portability
(Petcu and Vasilakos, 2014). They also discuss the
reasons, scenarios, taxonomies, measurements, and
requirements for portability. Several other authors are
also looking at the problem and proposing alternatives
to address it (see Section 6). One such alternative is
the use of model-driven engineering (MDE).

2.3 Model-Driven Engineering(MDE)

Despite the advancements of the software develop-
ment techniques, concerns about reuse, productivity,
maintenance, documentation, validation, optimiza-
tion, portability and interoperability are still under
discussion.

Model-Driven Engineering (MDE) aims at solv-
ing some of those issues (Kleppe et al., 2003), shift-
ing the focus of modern development methodologies
from implementation to conceptual modeling. Thus,
models are now first-class citizens, and transforma-
tion mechanisms are used to generate code from them,
reducing developers’ effort (Kleppe et al., 2003) and
increasing portability and productivity (da Silva et al.,

2013). The vision is that MDE will reduce the acci-
dental complexity by increasing the level of abstrac-
tion used to develop software.

According to Schmidt, MDE technologies ”offer
a promising approach to address the inability of third-
generation languages to alleviate the complexity of
platforms and express domain concepts effectively”
(Schmidt, 2006). That is exactly our goal: use MDE
to abstract away platform-specific details, building
conceptual domain models that express the essence
and logic of the domain. From these models, applica-
tions can then be generated through automatic trans-
formations, thus reducing the development effort for
implementations on different platforms.

Such models are abstract descriptions or specifi-
cations of the system and are usually represented as a
combination of graphical (Domain-Specific Modeling
Languages – DSML) and textual elements (Domain-
Specific Languages – DSL) (Brambilla et al., 2012).
DSLs are small languages focused on a particu-
lar problem/domain, and are normally declarative
(Deursen et al., 2000). The language definition usu-
ally requires a metamodel which is capable of cap-
turing the common and variable points of a specific
domain (Brambilla et al., 2012; Deursen et al., 2000).

2.4 A Model-driven Approach for
Cloud PaaS Portability

In a previous study (da Silva et al., 2013) we dis-
cussed a vision for using MDE to increase cloud PaaS
portability, and discussed how to build a DSL and
a set of code transformations, based on the Model-
View-Controller (MVC) architecture, to reduce the
effort of developing cloud applications. We also pre-
sented a DSL metamodel, samples of code trans-
formations, the grammar of the DSL and a quasi-
experiment (Wohlin et al., 2000; Juristo and Moreno,
2010) showing that MDE helps both reducing the de-
velopment effort and achieving portability. Fig. 1
summarizes the methodology followed.

Adopting a typical MDE life-cycle, this method-
ology obeyed to the following strategy:

1. Case studies were developed to identify the main
concepts of PaaS. These studies involved a care-
ful analysis of the different providers’ documen-
tation, as well as the development of sample ap-
plications for different platforms.

2. Next, these concepts were used to prototype a
specification language. This language serves
to support the creation of platform-independent
models that developers will use to specify the ap-
plications’ structure and logic. This step involves

Supporting�Multiple�Persistence�Models�for�PaaS�Applications�using�MDE�-�Issues�on�Cloud�Portability

333

Figure 1: A MDE approach for cloud PaaS portability.

the development of a domain metamodel and a
concrete syntax.

3. Based both on the case studies and on the specifi-
cation language, transformations were defined to
automatically generate code for cloud platforms.

4. Tests were performed to verify the conformance
between the generated code and the platforms’ re-
quirements.

3 PERSISTENCE IN PaaS

The PaaS model leverages the flexibility of the cloud
model, by providing a complete platform for soft-
ware development. A cloud platform hides many of
the complexities of developing cloud software, there-
fore increasing scalability and elasticity. In the PaaS
model, the development platform is provided as-a-
service. Applications that are developed for this par-
ticular platform can benefit from a specific program-
ming model that can be fully, fine grained, managed
by the platform provider.

Among the existing platforms, we selected two
well-known ones for developing our prototype: the
Google App Engine3 (GAE) and the Windows Azure.
However, as the developed DSL is platform indepen-
dent (although domain dependent), it can be used to
generate code for any other platform. One of the ser-
vices managed by the provider is data persistence. By
defining its own way to store data, a provider may in-
corporate services such as load balancing, automatic
data distribution and optimized querying. This is so
for the two selected platforms for our study. Both
GAE and Azure offer PaaS solutions incorporating
NoSQL storage. This service is provided to applica-
tions through simple configuration steps.

3https://cloud.google.com/appengine

Actually, Azure offers two types of cloud services:
IaaS and PaaS. It is not hard porting an IaaS applica-
tion because this offer is based on virtual machines
(VM). Just migrating a VM from one provider to an-
other causes little impact on the systems being virtu-
alized, as all that is needed for them to run is a copy
of the virtual disk. The Open Virtualization Format
(OVF4) makes this task even easier, by providing a
standard format so that there is little effort to port a
virtual machine from one provider to another, as long
as both support this format. The main issue in this
case is to choose a different provider that accepts the
same VM format5.

However, in terms of PaaS, both Azure and GAE
offer solutions based on Java servlets and JSP with
NoSQL storage. Even if they allow the same set of
technologies (Java based), applications implemented
for them are not portable. This happens mainly be-
cause of the differences between their persistence
models. (Section 3 discusses these models in detail.)
Indeed, Gorton in a post6 at Software Engineering In-
stitute’s blog and Armbrust et al. (Armbrust et al.,
2010) highlight that the differences in data manage-
ment technologies make applications less reusable by
different providers.

The next subsections present specific details of
each platform persistence model, and finish with a
discussion of the main issues found.

3.1 Google App Engine

Google App Engine DataStore is typically one of the
first choices for big data applications. The DataStore
is GAE’s native API and its scalability is managed by
the platform itself, which means that the user does not
need to worry about the actual storage details.

GAE’s DataStore offers two mechanisms to spec-
ify persistent entities: Java Data Objects7 (JDO) and
Java Persistence API8 (JPA) . The JDO and JPA inter-
faces are implemented using the Datanucleus9 plat-
form, which is an open-source implementation of
JDO and JPA. With JDO/JPA, GAE allows the def-
inition of simple entity relationships. As a result,
even without direct relational support from the actual

4OVF: http://www.dmtf.org/standards/ovf
5Paasify may be an interesting solution to select com-

patible PaaS: http://www.paasify.it/vendors.
6http://blog.sei.cmu.edu/post.cfm/importance-software-

architecture-big-data-systems-013
7http://www.oracle.com/technetwork/java/index-jsp-

135919.html
8http://www.oracle.com/technetwork/java/javaee/tech/

persistence-jsp-140049.html
9http://www.datanucleus.org/

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

334

database system, applications can use GAE’s DataS-
tore to manage related entities.

For simplicity reasons, we chose JDO for this
study. To persist an entity in GAE’s DataStore, all
that is necessary is to annotate a class according to
the JDO specification. Related entities (one-to-one
and one-to-many) are also managed by GAE automat-
ically through proper annotations.

Let us consider a simple example: a clinical labo-
ratory system must maintain a record of customers,
doctors and examinations; each customer has one
doctor, and each doctor may choose among a set of
examinations to be performed.

The first step is to annotate the classes that repre-
sent persistent entities according to the JDO specifi-
cation. After this, calls to JDO’s CRUD10 methods
can be used directly. In summary, all that is needed to
make an entity persistent are some annotations. The
actual storage of the entity and its related entities is
performed by the platform.

It is important to stress that even with the possibil-
ity to define simple relationships through annotations,
the GAE DataStore service is a NoSQL solution. If a
relational solution is needed, a fully-fledged SQL so-
lution, such as the MySQL-based service offered by
GAE (Google Cloud SQL), is recommended. A trade-
off between scalability and robustness is necessary in
these cases.

3.2 Windows Azure

Windows Azure is the Microsoft’s cloud platform,
which offers different services, such as virtualization,
storage and web hosting. Similarly to GAE, Azure’s
PaaS solution supports regular web-based applica-
tions (pages, controllers and other classes/libraries),
but with a wider choice of languages (.Net, Node.js,
PHP, Java, etc.).

Azure offers persistence through four main stor-
age options:

� Table Storage: this is Azure’s NoSQL persis-
tence solution. It is a simple persistence model
that allows applications to store basic data types
(e.g., integer, string, boolean). It is a highly scal-
able solution, but with three major restrictions.
First, Azure’s Table Storage structures do not di-
rectly support relationships between entities. Sec-
ond, there is a limit of 255 properties per entity,
and every entity must define at least two proper-
ties for identification, which leaves 253 properties
for general use. Third, data in a single entity can-
not exceed one MByte.

10CRUD: Create, Retrieve, Update and Delete.

� SQL Database: formerly known as SQL Azure,
this is a fully managed relational database service.
Being a relational database, it is not as scalable as
the NoSQL service.

� SQL Server in Windows Azure VM: if the de-
veloper wants more control over the DBMS, he
may opt to deploy his own instance of SQL Server
in a virtual machine. This renders more control,
but also requires more effort to setup, manage the
database server, and the virtual machine.

� Blob Storage: this service supports the storage of
large, non-structured data. It has great scalability,
but it is focused on files like audio and video.

As Azure also allows NoSQL services, which of-
fer a good combination between storage and scala-
bility for big data applications, we also chose this
model in Azure for our study. However, unlike GAE
JDO/JPA-based implementation, Azure does not have
an official support for JPA/JDO. As a result, the de-
veloper has to deal with relationships manually. Ad-
ditionally, there are many restrictions in Azure, for
example: persistence is defined through inheritance,
and not annotations as in GAE; the identification field
(primary key) has to be manually managed.

In Azure Table Storage, entities are stored in table
structures called partitions. One partition can store
multiple entities, which may be of different types.
An entity has a unique identification field. Partition
names and identification fields are both strings, and
are inherited by the entity classes.

To perform CRUD operations, the Table Storage
API has some predefined methods. Listing 1 shows
an example of how an entity can be persisted. The
method “saveOrUpdate” (line 1) is used to either cre-
ate or update an entity. First, a table client object is
obtained (“tableClient”), based on some predefined
connection string (line 2). Next, a table operation is
created, in this case, to insert or replace an entity (line
3). Then, the table (partition) is created, if it does
not exist already (line 5). Finally, the operation is ex-
ecuted (line 6). In this example, for simplicity, the
name of the partition and of the entity class will be
the same.

Listing 1: Persisting an entity in Azure.

1 public void saveOrUpdate(
TableServiceEntity tse) {

2 CloudTableClient tableClient =
CloudStorageAccount.parse(
storageConnectionString).
createCloudTableClient();

3 TableOperation tableOperation =
TableOperation.
insertOrReplace(tse);

4 try {

Supporting�Multiple�Persistence�Models�for�PaaS�Applications�using�MDE�-�Issues�on�Cloud�Portability

335

5 tableClient.getTableReference
(tse.getClass().
getSimpleName()).
createIfNotExist();

6 tableClient.execute(tse.
getClass().getSimpleName
(), tableOperation);

7 } catch (StorageException e) {
... }

8 }

Dealing with relationships requires manual man-
agement of the id fields. For one-to-one relationships,
it is possible to simply store the id field of the related
(dependent) entity as a property in the container en-
tity. For example, in the customer-has-a-doctor one-
to-one relationship, to obtain the doctor for a given
customer, first we obtain its id field, and then we per-
form a query in the Doctor table.

For one-to-many or many-to-many relationships,
the strategy is to maintain a separate entity for rela-
tionships. Listing 2 illustrates the idea. In this exam-
ple, “Relationship” (line 1) is a persistent entity that
merely stores two string values: the “end1” and the
“end2” (lines 2 and 3), each representing an end of
the relationship. This entity will be stored in a parti-
tion of its own, called “Relationship” (line 5).

Listing 2: Persistent relationship in Azure.

1 public class Relationship extends
TableServiceEntity {

2 private String end1;
3 private String end2;
4 public Relationship() {
5 this.partitionKey = "

Relationship";
6 }
7 ... setters and getters ...
8 }

The “Relationship” entity from Listing 2 can be
used to establish a relationship between any two en-
tities. A Method “saveRelationship” realises a rela-
tionship between two entities, instantiating the “Rela-
tionship” entity and persisting it using calls to Azure’s
API.

Once the relationship is established, retrieving all
related entities can be done by searching through the
“Relationship” partition. The example of Listing 3
shows a way to implement this strategy. The method
“getAllRelatedEntities” (line 1) gets all entities re-
lated to a given entity. The id of the containing en-
tity and the class of the related entity are provided as
arguments. First, all relationships are retrieved (line
2) through the “getAll” method, which is not shown
here but should be trivial to imagine. Then, the re-
sulting list is iterated in search for instances that have

a matching “end1” property (lines 4-5). For those
matching relationships, the instance corresponding to
the “end2” is retrieved and added to the result (line 6).
A method “retrieve”, which is not shown here, looks
into the partition of the corresponding entity class and
returns the instance itself.

Listing 3: Retrieving related entities in Azure.

1 public List getAllRelatedEntities(
String end1Id , Class end2Class) {

2 List <Relationship > temp = getAll(
Relationship.class);

3 List result = new ArrayList();
4 for (Relationship r : temp) {
5 if (r.getEnd1().equals(end1Id

)) {
6 result.add(retrieve(

end2Class , c.getEnd2
()));

7 }
8 }
9 return result;

10 }

The implementation of Listing 3 is not very ef-
ficient, as it examines all relationships every time.
However, it is not difficult to optimize this code with
more refined structures such as trees or hash func-
tions.

3.3 Difficulties in Conciliating Both
Persistence Models

Although both GAE and Azure offer NoSQL services,
GAE adds a layer that facilitates the management of
relationships between persistent entities, while Azure
demands some additional effort to be able to de-
liver similar functionality. The problem, however, is
not the extra effort required by Azure. In fact, the
jpa4azure11 third-party API, adds an object-relational
mapping layer to Azure, similar to what is natively
available in GAE. (At the time we started our re-
search, this API was not stable, at least according to
our tests; so we decided to implement our own layer.)
The problem, really, is that even allowing the use of
the same set of technologies, the differences between
the platforms impose specific programming styles on
developing for each one. For this reason, the effort
spent on specific programing tasks cannot be reused.
Even considering the existence of a common API, the
problem remains, due to the differences between the
implementations and storage philosophies. Standard-
ization could be an alternative, but as we discussed
before, it is not the path followed in this work.

11https://jpa4azure.codeplex.com/

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

336

Hence, despite the apparent similarities of the
platforms (which use the same set of technologies:
Java back-end, web-based front-end, and NoSQL per-
sistence), the resulting applications have considerable
differences. If for a small application like the one pre-
sented here the differences are so substantial, in a real
case, managing thousands of persistent entities, the
effort of developing such a system can increase very
fast. If we consider other platforms, supporting differ-
ent technologies such as Redis12 or memcacheDB13,
the problem becomes even worse.

We argue that MDE can solve the portability prob-
lem in a more fundamental way, reaching flexibil-
ity levels that no API or standard can provide. The
next section describes our proposal, based on a single
platform-independent development model that hides
the details of the platforms. This proposal also helps
to reduce the extra effort needed by Azure, or any
other platform that uses different technology.

4 SUPPORTING MULTIPLE PAAS
PERSISTENCE MODELS
USING MDE

This section presents a model implemented using the
previously developed DSL, discusses the specific de-
tails of the generated code for GAE and Azure, gives a
synthesis of the whole generation process, and offers
some highlights on the work done.

Listing 4 presents the model for the clinical labo-
ratory system. This example uses the language pre-
sented in a previous work (da Silva et al., 2013),
which is summarized next. First, the model defines
some basic configuration properties, such as the ap-
plication name (line 1), visual theme (line 2), version
(line 3), title (line 4), and a set of tabs to be displayed
in the main interface (lines 5-10). Next are the entities
and their relationships. The syntax is straightforward.
Some points to highlight are the definition of the pri-
mary keys (lines 14, 27 and 34), which are inspired by
JDO’s annotations, and the possibility to define cus-
tom labels to be displayed in the main interface (line
36).

Listing 4: Model of the clinical laboratory system.

1 application weblab {
2 theme = "default"
3 version 1
4 title "WebLab - Exam Requests"
5 tab tab1 {

12http://redis.io/
13http://memcachedb.org/

6 title "Requests"
7 contains : Customer
8 contains : Examination
9 contains : Doctor

10 }
11 }
12

13 entity Customer {
14 pk { id:Key(strategy=IDENTITY)

readOnly=true }
15 property name : String
16 property address : String
17 property email : String
18 property phone1 : String
19 property phone2 : String
20 property birth : Date
21 property doctor : Doctor
22 property gender : String
23 property examinations : Examination

[]
24 }
25

26 entity Examination {
27 pk { id:Key(strategy=IDENTITY)

readOnly = true }
28 property name : String
29 property material : String
30 property price : Double
31 }
32

33 entity Doctor {
34 pk { id:Key(strategy=IDENTITY)

readOnly= true }
35 property name : String
36 property nr : String title = "

License Number"
37 }

Listing 4 also shows the relationships established
for this system. One customer has one doctor (line
21) and many examinations (line 23 - the [] suffix in-
dicates that a property may have multiple instances).
These appear in the model as properties mapped to
other entities.

We developed two sets of transformations, one for
GAE and another for Azure. A more generic view of
this process can be seen in previous work (da Silva
et al., 2013). Here we extend that description by de-
tailing how persistence can be handled. The result-
ing transformations are to be collected to populate our
repository.

4.1 Generating Persistence Code for
GAE

Since GAE has JDO support, the transformations are
not too difficult to define. One JDO-annotated Java
class is generated for each persistent entity, includ-
ing its properties and relationships. There is a single,

Supporting�Multiple�Persistence�Models�for�PaaS�Applications�using�MDE�-�Issues�on�Cloud�Portability

337

generic, non-generated data-access object (DAO) that
performs basic CRUD operations. The invocations of
the CRUD operations for each entity are generated
in specific controller classes. One controller class is
generated for each entity.

Listing 5 shows part of the generated controller
class for the “Customer” entity in GAE. The method
“saveCustomer” (line 3) persists a customer, given its
properties and the doctor’s id. Among other actions,
such as obtaining parameters from the HTTP request
and dealing with errors and page re-directions, this
controller method retrieves the corresponding doctor
(line 5), associates it with the customer being per-
sisted (line 6), and saves the instance (line 7). Please,
note the calls to the generic DAO in lines 5 and 7.

Listing 5 also shows how one-to-many relation-
ships are persisted. The method “addExaminationTo-
Customer” (line 11) first obtains the related entities,
in this case, customer (line 13) and examination (line
14), then it adds the examination to the customer’s list
of examinations (line 15), and finally it asks DAO to
persist the customer and its examinations (line 16).
Please note the calls to the generic DAO in lines 13,
14 and 16.

Listing 5: Generated Controller for GAE.

1 public class CustomerController {
2 ... // other controller actions
3 public void saveCustomer(Customer

c, int doctorId) {
4 ... // other actions
5 Doctor d = (Doctor)

GenericDAOJDO.INSTANCE.
retrieve(Doctor.class ,
doctorId);

6 c.setDoctor(d);
7 GenericDAOJDO.INSTANCE.save(c

);
8 ... // other actions
9 }

10

11 public void
addExaminationToCustomer(int
customerId , int examinationId
) {

12 ... // other actions
13 Customer c = (Customer)

GenericDAOJDO.INSTANCE.
retrieve(Customer.class ,
customerId);

14 Examination e = (Examination)
GenericDAOJDO.INSTANCE.

retrieve(Examination.
class , examinationId);

15 c.addExamination(e);
16 GenericDAOJDO.INSTANCE.save(c

);
17 ... // other actions
18 }

19 }

4.2 Generating Persistence Code for
Azure

For Azure, one class per persistent entity is generated.
For basic CRUD operations, as well as for dealing
with relationships manually, there is a single, generic,
non-generated data-access object (DAO). Listings 1,
2 and 3 illustrate the idea of how this generic DAO
works. Finally, invocations to the CRUD operations
are generated in controller classes, similarly to GAE.
Listing 6 shows part of the generated controller class
for the “Customer” entity in Azure. It is similar to the
GAE controller, with the following three differences:

� the relationship between customer and doctor
(one-to-one) is based exclusively on the doctor’s
id (line 5);

� ids need to be manually managed. In this case,
and for simplicity, a random unique id is gener-
ated whenever a new entity is persisted (line 6);

� the relationship between customer and examina-
tion (one-to-many) is established by persisting a
new relationship entity (line 13). This “saveRela-
tionship” method is related to relationship shown
in Listing 2.

Listing 6: Generated Controller for Azure.

1 public class CustomerController {
2 ... // other controller actions
3 public void saveCustomer(Customer

c, String doctorId) {
4 ... // other actions
5 c.setDoctor(doctorId);
6 c.setId(UUID.randomUUID().

toString());
7 TableStorage.INSTANCE.save(c)

;
8 ... // other actions
9 }

10

11 public void
addExaminationToCustomer(
String customerId , String
examinationId) {

12 ... // other actions
13 TableStorage.INSTANCE.

saveRelationship(
customerId , examinationId
)

14 ... // other actions
15 }
16 }

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

338

4.3 The Code Generation Process

The architecture of the generated applications is sim-
ilar for GAE and Azure. Two JSP pages (for editing
and listing entities) are generated for each entity, as
well as one persistent class and one controller. Figure
2 illustrates this architecture.

Figure 2: Architecture of the generated applications (GAE
and Azure). Shaded elements are generated. White ele-
ments are non-generated. Black elements represent plat-
form services.

However, there are significant differences between
these two platforms. In GAE, there is no need to man-
ually deal with relationships or identification fields.
Hence, the generated application is simpler, with an-
notated entities and basic controller classes being gen-
erated straightforwardly. A simple, generic DAO was
enough for basic CRUD operations.

For Azure, the generated applications are less sim-
ple. The extra layer to deal with relationships resulted
in a more complex generic DAO. There is also the
need to deal with identification fields.

5 FINAL DISCUSSION

The strategy presented here is similar to Object-
relational mapping (ORM) frameworks like Hiber-
nate. However, while Hibernate uses annotated java
classes or a relational-entity model to generate SQL
commands and other elements of the software such as
classes, views, controllers and database structure, we
use a DSL for modeling entities and generate MVC
applications including annotated classes, based on
specific details of each PaaS embedded in MDE trans-
formations. Both strategies use code generation, but
our approach can be considered as a level above and
could even include ORM frameworks. Once the trans-

formations are defined, the developer no longer needs
to worry about platform-specific details. As long
as the transformations are correct, s/he only needs
to work on the platform-independent model. In the
end, applications developed with our approach can
be made as portable as necessary, by including new
transformations to support other platforms or tech-
nologies.

Adjustments and adaptations in the code genera-
tion process, if necessary, become less frequent over
time, and the investment made through this extra ef-
fort eventually pays off. In this research, the initial in-
frastructure described here was built by a single devel-
oper in a period of 3.2 months, including the time to
study the related technologies (Xtext14 and Xtend15).

From an evidence-based point of view (see for
example (Tichy, 1998; Juristo and Moreno, 2010;
Wohlin et al., 2000)), the case study discussed con-
stitutes some evidence that it is possible to use our
approach to deal with different persistence models at
an higher level of abstraction and to port applications
between different cloud providers. But to reinforce
such evidence, we performed a more careful evalua-
tion.

We defined a set of test cases, which 10 users ex-
ecuted on the same application generated for the two
platforms (GAE and Azure). After executing the tests,
the users perceived no difference in terms of function-
ality, what indicates an evidence that portability can
be achieved by means of our approach. We also ob-
served considerable gains in productivity, due to the
automation power of MDE transformations.

From that evaluation, we concluded that it was
possible to port an application between cloud plat-
forms in such a way that the final users do not perceive
the differences when using the two versions. This is
particularly interesting if we consider that the under-
lying data management mechanisms are different, as
discussed in Section 3. This promotes MDE as a pos-
sible alternative to port application between different
cloud providers.

6 RELATED WORK

There are several different proposals for developing
portable cloud applications, being standardization and
open source software the more popular in the industry.
In academia, many authors also attempt to use MDE
to solve to lock-in problem.

Sharma and Sood (Sharma R., 2011) present a
model-driven approach for interoperability in SaaS

14https://eclipse.org/Xtext/
15http://eclipse.org/xtend/

Supporting�Multiple�Persistence�Models�for�PaaS�Applications�using�MDE�-�Issues�on�Cloud�Portability

339

(Software-as-a-Service). They define the models at
different abstraction levels, based on the separation
of concerns between CIM (Computation Indepen-
dent Model), PIM (Platform Independent Model) and
PSM (Platform Specific Model), hence building on
MDA16. Each level can be composed by one or more
models to specify the structural, functional and be-
havioral aspects of a system. For PIMs a formal defi-
nition of the operations offered by the service is used,
which can be accessed through an interface that must
later be composed with other services to build a com-
plete system. Business rules are specified through the
declaration of restrictions, pre-conditions and post-
conditions and invariants in OCL (Object Constraint
Language). Transformations convert the PIM into
a Web-Service Description Language (WSDL) PSM.
The final step is the transformation of the WSDL PSM
into WSDL specifications. The main difference from
our work is that they use MDE to generate WSDL.
Their approach is for SOA while ours is specific for
cloud PaaS.

Miranda et al. present their vision on how MDE
can support the development of adaptive multi-cloud
applications, thus integrating MDE and Software
Adaptation techniques (Miranda et al., 2013). De-
velopers are requested to tag the components indi-
cating in which cloud they will be deployed. MDE
techniques are then applied to generate an XML-
based cloud deployment plan. The source code and
the XML deployment plan are processed to gener-
ate cloud compliant artifacts to access the underlying
cloud services. This work aims at generating the de-
ployment plan while our targets the design and devel-
opment time.

MODAClouds17 (MOdelDriven Approach for the
design and execution of applications on multiple
Clouds) aims at supporting system developers and op-
erators in exploiting multiple clouds and in migrat-
ing their applications from cloud to cloud as needed
(Ardagna et al., 2012). Its main objective is to provide
methods, a decision support system, an open source
IDE and runtime environment for the high-level de-
sign, early prototyping, semi-automatic code gener-
ation, and automatic deployment of applications on
multiple clouds. It also helps administrators to mon-
itor the services and measure their quality. While
the project is developing a post-fact adoption standard
(Petcu, 2011) with CloudML, a domain-specific mod-
eling language and runtime environment that facili-
tates the specification of cloud application provision-
ing, deployment, and adaptation, we argue that each
enterprise can build its own language or generation

16http://www.omg.org/mda/
17http://www.modaclouds.eu/

strategy more aligned with their business.
The REMICS project proposes an approach for

migrating legacy systems to the cloud (Mohagheghi
and Sæ andther, 2011; Mohagheghi and Dehlen,
2008). Formed by a consortium of several research
institutions, consulting and cloud users, the REMICS
has a robust design. Its main purpose is to specify,
develop and evaluate a tool for migrating services us-
ing MDE. The proposed migration process consists
of understanding the legacy system in terms of its
architecture and functionality, and designing a new
Service-Oriented Architecture (SOA) application that
provides the same or better functionality. This project
is more related to reenginering and migration strate-
gies for legacy applications while ours is for new
ones.

All these approaches use MDE to protect the de-
veloper from platform details, which is one of the in-
tended uses of MDE. Our approach focuses on PaaS
portability, with special emphasis on persistence. Our
results are similar to what is seen in the literature,
combining the portability of MDE with its inherent
productivity benefits, we expect that our efforts sup-
port the leveraging of this new computation model.

A strategy to solve the portability without MDE is
described in (Giove et al., 2013). Giove et al. propose
a library called CPIM (Cloud Provider Independent
Model), that encapsulates PaaS-level services such as
message queues, noSQL, and caching. Instead of re-
lying on the providers following a standard, they add
a mediation layer that hides the details of the under-
lying PaaS provider and exposes a common API that
allows platform-independent code to be developed on
top of it. The result is that applications can be more
easily ported between providers, as long as both sides
of the implementation (application and supporting li-
brary) comply with the mediation layer. Their cur-
rently supported platforms are GAE and Azure, but
new platforms can be added by providing a proper li-
brary to the layer.

Both our approach and the CPIM library attempt
to deal with the differences between PaaS services.
Both agree that standardization may not be the only
solution. And both allow platform-independent ap-
plications to be specified. Our proposal has the ad-
vantage of allowing developers to work on a higher
abstraction level. Therefore, we can collect additional
benefits in terms of productivity and maintenance. On
the other hand, CPIM requires no effort to setup a
modeling and code generation environment, resulting
in less upfront investment and being easier to adopt.
In fact, an hybrid solution, combining MDE and a
mediation layer, could bring benefits from both ap-
proaches.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

340

More research issues and approaches related to the
development of systems to the cloud model can be
found in Armbrust et al. (Armbrust et al., 2009) and
our previous work (da Silva et al., 2013). Cloud com-
puting is still evolving, and research opportunities are
still being identified. The presented approaches are
still being investigated and are far from being mature.
More research and evaluations are still necessary.

7 CONCLUDING REMARKS AND
FUTURE WORK

This paper shows how the differences in cloud per-
sistence models can make an application difficult to
reuse and/or be ported to a different provider. It ex-
tends our previous work (da Silva et al., 2013) on ex-
ploring the use of MDE to overcome portability in
cloud computing, and shows how that previous ap-
proach can be used to solve the persistence related
lock-in issue.

The main contribution of our work is to show that
there is an alternative path to the standardization of
cloud technologies. MDE can increase the portability
of the applications, but it can also lead to additional
benefits inherently associated with it, consequently,
reducing the impacts of lock-in.

Our approach is focused on persistence, and there-
fore it has good support for CRUD operations.

A limitation of our approach, that is inherent to
most MDE approaches, is that if the generated code
needs to be adapted or modified, the MDE life-cycle
can be broken. Changes in the generated code have to
be replicated, either in the models or in the transfor-
mations, which is not a trivial task. This is why it is
often recommended to leave generated code unmodi-
fied18.

In the near future we plan to include more plat-
forms to implement the repository of models and
transformations, and to perform some more evalua-
tions, which includes applying our approach to other
case studies.

ACKNOWLEDGEMENTS

We would like to thank FAPESP (processes
2012/24487-3 and 2012/04549-4), Coordination of
Superior Level Staff Improvement - CAPES and

18There are some efforts to solve the inconsistencies
between changes made manually in generated code (An-
tkiewicz and Czarnecki, 2006; Hettel et al., 2008). Such
research area is often called round-trip engineering.

Brazil-Europe Erasmus Mundus project (process
BM13DM0002) for partially funding this research.

REFERENCES
Alkhatib, H., Faraboschi, P., Frachtenberg, E., Kasahara,

H., Lange, D., Laplante, P., Merchant, A., Milojicic,
D., and Schwan, K. (2014). IEEE CS 2022 Report.

Antkiewicz, M. and Czarnecki, K. (2006). Framework-
specific modeling languages with round-trip engineer-
ing. Model Driven Engineering Languages and Sys-
tems, pages 692–706.

Ardagna, D., Di Nitto, E., Mohagheghi, P., Mosser, S.,
Ballagny, C., D’Andria, F., Casale, G., Matthews, P.,
Nechifor, C.-S., Petcu, D., and Others (2012). Moda-
clouds: A model-driven approach for the design and
execution of applications on multiple clouds. In Mod-
eling in Software Engineering (MISE), 2012 ICSE
Workshop on, pages 50–56. IEEE.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., and Zaharia, M. (2009). Above the clouds:
A Berkeley view of cloud computing. Dept. Electrical
Eng. and Comput. Sciences, University of California,
Berkeley, Rep. UCB/EECS, 28.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., and Zaharia, M. (2010). A view of cloud
computing. Commun. ACM, 53(4):50–58.

Bozman, J. (2010). Cloud Computing: The Need for Porta-
bility and Interoperability. IDC Analyze the Future,
Sponsored by Red Hat, Inc.

Brambilla, M., Cabot, J., and Wimmer, M. (2012). Model-
driven software engineering in practice. Synthesis
Lectures on Software Engineering, 1(1):1–182.

Chen, Y., Li, X., and Chen, F. (2011). Overview and analy-
sis of cloud computing research and application. In E
-Business and E -Government (ICEE), 2011 Interna-
tional Conference on, pages 1–4.

da Silva, E. A. N., Fortes, R. P. M., and Lucredio, D. (2013).
A Model-Driven Approach for Promoting Cloud PaaS
Portability. In Anual International Conference on
Software Engineering-CASCON.

Deursen, V., , Klint, A., and Paul and Visser, J. (2000).
Domain-specific languages: An annotated bibliogra-
phy. ACM Sigplan Notices, 35(6):26–36.

France, R. and Rumpe, B. (2007). Model-driven Devel-
opment of Complex Software: A Research Roadmap.
In 2007 Future of Software Engineering, FOSE ’07,
pages 37–54, Washington, DC, USA. IEEE Computer
Society.

Giove, F., Longoni, D., Yancheshmeh, M. S., Ardagna, D.,
and Di Nitto, E. (2013). An approach for the devel-
opment of portable applications on paas clouds. Pro-
ceedings of CLOSER, pages 591–601.

Hettel, T., Lawley, M., and Raymond, K. (2008). Model
synchronisation: Definitions for round-trip engineer-
ing. Theory and Practice of Model Transformations,
pages 31–45.

Supporting�Multiple�Persistence�Models�for�PaaS�Applications�using�MDE�-�Issues�on�Cloud�Portability

341

Juristo, N. and Moreno, A. M. (2010). Basics of soft-
ware engineering experimentation. Springer Publish-
ing Company, Incorporated.

Khajeh-Hosseini, A., Sommerville, I., Bogaerts, J., and
Teregowda, P. (2011). Decision Support Tools for
Cloud Migration in the Enterprise. In Cloud Comput-
ing (CLOUD), 2011 IEEE International Conference
on, pages 541–548.

Kleppe, A., Jos, W., and Wim, B. (2003). MDA Ex-
plained, The Model-Driven Architecture: Practice and
Promise. Addison-Wesley.

Miranda, J., Guillén, J., Murillo, J. M., and Canal, C.
(2013). Development of Adaptive Multi-cloud Appli-
cations - A Model-Driven Approach. In Proceedings
of the 1st International Conference on Model-Driven
Engineering and Software Development, pages 321–
330. SciTePress - Science and and Technology Publi-
cations.

Mohagheghi, P. and Dehlen, V. (2008). Where is the proof?-
A review of experiences from applying MDE in indus-
try. In Model Driven Architecture–Foundations and
Applications, pages 432–443.

Mohagheghi, P. and Sæ andther, T. (2011). Software Engi-
neering Challenges for Migration to the Service Cloud
Paradigm: Ongoing Work in the REMICS Project. In
Services (SERVICES), 2011 IEEE World Congress on,
pages 507–514.

Petcu, D. (2011). Portability and interoperability between
clouds: challenges and case study. In Towards a
Service-Based Internet, pages 62–74. Springer.

Petcu, D., Macariu, G., Panica, S., and Crăciun, C. (2013).
Portable cloud applications—from theory to practice.
Future Generation Computer Systems, 29(6):1417 –
1430. Including Special sections: High Performance
Computing in the Cloud & amp; Resource Discovery
Mechanisms for fP2Pg Systems.

Petcu, D. and Vasilakos, A. V. (2014). Portability in clouds:
approaches and research opportunities. Scalable Com-
puting: Practice and Experience, 15(3).

Ranabahu, A. and Sheth, A. (2010). Semantics Centric So-
lutions for Application and Data Portability in Cloud
Computing. In Cloud Computing Technology and Sci-
ence (CloudCom), 2010 IEEE Second International
Conference on, pages 234–241.

Schmidt, D. C. (2006). Model-driven engineering.
Computer-IEEE computer society-, 39(2):25.

Sharma R., S. M. S. D. (2011). Modeling cloud SaaS with
SOA and MDA. Communications in Computer and
Information Science, 190 CCIS(PART 1):511–518.

Shirazi, M. N., Kuan, H. C., and Dolatabadi, H. (2012).
Design Patterns to Enable Data Portability between
Clouds’ Databases. In Computational Science and Its
Applications (ICCSA), 2012 12th International Con-
ference on, pages 117–120.

Tichy, W. F. (1998). Should computer scientists experiment
more? Computer, 31(5):32–40.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2000). Experimentation in
Software Engineering: An Introduction. Kluwer Aca-
demic Publishers, Norwell, MA, USA.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

342

A Lightweight Tool for Anomaly Detection in Cloud Data Centres

Sakil Barbhuiya, Zafeirios Papazachos, Peter Kilpatrick and Dimitrios S. Nikolopoulos
School of Electronics, Electrical Engineering and Computer Science, Queen’s University Belfast, BT7 1NN, Belfast, U.K.

{sbarbhuiya03, z.papazachos, p.kilpatrick, d.nikolopoulos}@qub.ac.uk

Keywords: Anomaly Detection, Cloud Computing, Data Centres, Monitoring, Correlation.

Abstract: Cloud data centres are critical business infrastructures and the fastest growing service providers. Detecting
anomalies in Cloud data centre operation is vital. Given thevast complexity of the data centre system software
stack, applications and workloads, anomaly detection is a challenging endeavour. Current tools for detecting
anomalies often use machine learning techniques, application instance behaviours or system metrics distribu-
tion, which are complex to implement in Cloud computing environments as they require training, access to
application-level data and complex processing. This paperpresents LADT, a lightweight anomaly detection
tool for Cloud data centres that uses rigorous correlation of system metrics, implemented by an efficient corre-
lation algorithm without need for training or complex infrastructure set up. LADT is based on the hypothesis
that, in an anomaly-free system, metrics from data centre host nodes and virtual machines (VMs) are strongly
correlated. An anomaly is detected whenever correlation drops below a threshold value. We demonstrate and
evaluate LADT using a Cloud environment, where it shows thatthe hosting node I/O operations per second
(IOPS) are strongly correlated with the aggregated virtualmachine IOPS, but this correlation vanishes when
an application stresses the disk, indicating a node-level anomaly.

1 INTRODUCTION

Data centres that host Cloud computing services are
catalysts for the economy and for society. Despite
the success and proliferation of the Cloud computing
paradigm, hosting data centres face immense chal-
lenges in terms of managing the scale and complex-
ity of their hardware infrastructure and their system
software stack. The hosted workloads also become
increasingly complex and diverse. The complexity of
the data centre ecosystem gives rise to frequent dis-
ruption of service, which manifests as lack of respon-
siveness, lower than expected performance, or com-
plete disruption of service. Anomaly detection in data
centres is a recently emerged field of research which
explores methods to automate the detection and di-
agnosis of service disruption in data centres via the
monitoring of system generated logs and metrics.

Log analytic tools (Lou et al., 2010; Xu et al.,
2009) extract features from logs and use statistical
learning techniques to automatically build models that
detect and diagnose system anomalies in data centres.
These models are not easy to understand by human
operators as they may detect problems in a high di-
mensional feature space without providing meaning-
ful explanations for the detected problems. Besides,
learning-based tools require a log parser for mining

the console logs in order to create the features of the
model. Log parsers require the source code of hosted
applications in order to recover the inherited syntax
of logs, and source code may not always be acces-
sible for legacy applications. As an alternative to us-
ing console logs, a number of anomaly detection tools
use system metrics (Tan et al., 2012; Wang, 2009;
Ward and Barker, 2013; Kang et al., 2010; Jiang et al.,
2009). Such metrics can be collected with minimum
overhead and without requiring access to the source
code of hosted applications.

Some tools (Wang, 2009; Kang et al., 2010) use
system metrics for detecting anomalies in Cloud data
centres and are developed to take the elasticity of
Cloud computing environments into consideration.
These tools provide higher accuracy and effective-
ness of detection. However, implementing them in
a large-scale Cloud system is complex as the tools
are configured in multiple layers of data monitoring
and analysis. EbAT (Wang, 2009) implements metrics
distribution, entropy time series construction, and en-
tropy time series processing across multiple monitor-
ing layers, before deploying an online tool for detect-
ing anomalies. Peerwatch (Kang et al., 2010) extracts
correlated behaviours between multiple instances of
individual applications and then applies those ex-
tracted correlations to identify anomalies. The use of

343

application-level metrics in anomaly detection algo-
rithms may raise enormously the volume of data to
process in a large-scale system.

This paper introduces LADT (Lightweight
Anomaly Detection Tool), a lightweight tool
which monitors system-level and virtual machine
(VM)-level metrics in Cloud data centres to detect
node-level anomalies using simple metrics and
correlation analysis. LADT addresses the complexity
of implementing efficient monitoring and analysis
tools in large-scale Cloud data centres, by collecting
and storing the metrics generated by nodes and VMs
using Apache Chukwa (Rabkin and Katz, 2010). The
LADT algorithm performs correlation analysis on
the collected data using Apache Pig (Olston et al.,
2008) and MapReduce jobs in order to complete the
analysis in a timely manner.

As a use case, we deploy LADT to add a new di-
mension in anomaly detection for Cloud data centres,
namely correlation analysis between node-level disk
I/O metrics and VM-level disk I/O metrics. LADT
implements a simple algorithm, which uses Pearson’s
correlation coefficient. When the average correlation
coefficient value for a number of consecutive time in-
tervals drops below a threshold, an alarm is raised
to indicate an anomaly. The metrics data required in
this use case are limited to disk I/O activity data and
the algorithm to detect the anomalies is lightweight.
The major contribution of LADT over other tools in
this context is the ability to efficiently monitor and
detect anomalies in a Cloud data centre without re-
quiring complex algorithms, application source code
availability, or complex infrastructure set up.

We evaluate LADT in a lab-based Cloud ecosys-
tem, where it continuously collects and stores system
metrics from all nodes and VMs. The tool shows that
the disk I/O metrics in each hosted node are strongly
correlated with the aggregate VM disk I/O metrics,
but this correlation vanishes when a disk-stressing ap-
plication is introduced in a node, indicating a node-
level anomaly.

The remainder of the paper is organised as fol-
lows. Section 2 presents background and related work
in anomaly detection. Section 3 and Section 4 pro-
vide detail of the LADT architecture and algorithm,
respectively. Experimental results are presented and
discussed in Section 5. Section 6 concludes the paper
and discusses future work.

2 BACKGROUND AND RELATED
WORK

In this section we describe the challenges of detecting

anomalies in Cloud data centres. A number of differ-
ent tools and methods are considered and placed into
separate categories based on the input they analyse.
We consider two cases for monitoring and detecting
anomalies: console log based anomaly detection and
anomaly detection based on system metrics.

2.1 Anomaly Detection Challenges

Cloud data centres are implemented as large-scale
clusters with demanding requirements for service per-
formance, availability and cost of operation. As a re-
sult of scale and complexity, data centres exhibit large
numbers of system anomalies caused by operator er-
ror (Oppenheimer et al., 2003), resource over/under
provisioning (Kumar et al., 2007), and hardware
or software failures (Pertet and Narasimhan, 2005).
These anomalies are inherently difficult to identify
and resolve promptly via human inspection (Kephart
and Chess, 2003). Thus, automatic system monitor-
ing that captures system state, behaviour and perfor-
mance becomes vital. Computer system logs are the
main source of information for anomaly detection.
Logs can be of two types: structured or unstructured.
Unstructured logs are free-form text strings, such as
console logs, which record events or states of inter-
est and capture the intent of service developers (Lou
et al., 2010), whereas structured logs are numerical
logs, such as logs of system metrics, which capture
workload and system performance attributes, such as
CPU utilisation, memory usage, network traffic and
I/O.

2.2 Console Log based Anomaly
Detection

Analytic tools for anomaly detection based on console
logs, such as SEC (Rouillard, 2004), Logsurfer (The
and Prewett, 2003) and Swatch (Hansen and Atkins,
1993) check logs against a set of rules which define
normal system behaviour. These rules are manually
set by developers based on their knowledge of system
design and implementation. However, rule-based log
analysis is complex and expensive because it requires
significant effort from system developers to manu-
ally set and tune the rules. Moreover, modern sys-
tems consisting of multiple components developed by
different vendors and the frequent upgrades of those
components make it difficult for a single expert to
have complete knowledge of the total system and to
set the rules effectively. This complexity has given
rise to statistical learning based log analytic tools such
as the works of Lou et al. (Lou et al., 2010) and Xu
et al. (Xu et al., 2009), which extract features from

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

344

console logs and then use statistical techniques to au-
tomatically build models for system anomaly identifi-
cation.

Lou et al. (Lou et al., 2010) propose a statisti-
cal learning technique which consists of a learning
process and a detection process. The learning pro-
cess groups the log message parameters and then dis-
covers the invariants among the different parameters
within the groups. For new input logs, the detection
process matches their invariants among the parame-
ters with learned invariants from the learning process.
Each mismatch in the invariants is considered to be
anomalous. Xu et al. (Xu et al., 2009) propose a new
methodology to mine console logs to automatically
detect system problems. This first creates feature vec-
tors from the logs and then applies the PCA (Principal
Component Analysis) algorithm on the feature vec-
tors to detect anomalies. However, the learning based
tools require a custom log parser for mining the con-
sole logs in order to create the features for the learned
model. The log parsers require source code of the
hosted applications to recover the inherent structure
of the logs.

2.3 System Metric based Anomaly
Detection

A number of anomaly detection tools use system met-
rics (Tan et al., 2012; Wang, 2009; Ward and Barker,
2013; Kang et al., 2010; Jiang et al., 2009), which can
be collected with minimum overhead and without re-
quiring any access to the source code of hosted appli-
cations. Using system metrics for detecting anomalies
has advantages over traditional log-based anomaly
detection tools due to consideration of elasticity and
workload evolution in Cloud computing, but also due
to provisioning, scaling, and termination of services
in short periods of time. Some of these tools are based
on feature selection and machine learning outlier de-
tection to flag anomalies (Azmandian et al., 2011).

EbAT (Wang, 2009) is a tool that uses entropy
based anomaly detection. EbAT analyses metric dis-
tributions and measures the dispersal or concentration
of the distributions. The metrics are aggregated by en-
tropy distributions across the Cloud stack in order to
form entropy time-series. EbAT uses online tools like
spike detection, signal processing and subspace meth-
ods to detect anomalies in the entropy time-series.
The tool incurs the complexity of analysing the met-
ric distributions and also requires third party tools to
detect anomalies.

PeerWatch (Kang et al., 2010) uses canonical cor-
relation analysis (CCA) to extract the correlations be-
tween multiple application instances, where attributes

of the instances are system resource metrics such as
CPU utilisation, memory utilisation, network traffic
etc. PeerWatch raises an alarm for an anomaly when-
ever some correlations drop significantly. As a re-
sult of analysing the application instance behaviours
and correlating them, this tool is capable of detecting
application-level or VM-level anomalies. However,
this approach requires statistical metrics analysis and
knowledge of the hosted applications, which is a lim-
itation in large-scale Clouds, where hundreds of dif-
ferent types of applications run on the VMs.

Varanus (Ward and Barker, 2013) uses a gossip
protocol, which is layered into Clouds, groups and
VMs in order to collect system metrics from the VMs
and analyse them for anomalies. This approach al-
lows in-situ collection and analysis of metrics data
without requiring any dedicated monitoring servers to
store the data. However, setting up a dedicated gos-
sip protocol across thousands of VMs in a large-scale
Cloud environment and maintaining the gossip based
overlay network over each of the VMs is a challeng-
ing task.

The metric-based black box detection technique
presented in (Tan et al., 2012) uses the LFD (Light-
Weight Failure Detection) algorithm to detect sys-
tem anomalies. LFD raises an alarm when there is a
lack of correlation between two specific system met-
rics. The anomaly indicates a system problem and
each such problem is associated with a specific sys-
tem metrics pair. LFD is a lightweight algorithm with
lower complexity than EbAT, PeerWatch and Varanus.
Furthermore, LFD does not require any training or
source code and understanding of hosted applications.
The LFD follows a decentralised detection approach,
where each node analyses its own system metrics in
order to achieve higher scalability. However, this
may also limit LFD in large-scale Cloud data centres,
where it may not be feasible to implement LFD on
each node individually, due to overhead.

In this paper we address the limitations of ex-
isting system anomaly detection tools by introduc-
ing LADT. LADT uses Apache Chukwa (Rabkin and
Katz, 2010) for collecting metrics data from all nodes
and VMs in a data centre, and HBase (Vora, 2011)
for storing the data in servers to allow centralised
monitoring of Cloud systems. LADT implements a
new correlation algorithm to perform the correlation
analysis on the centrally stored metrics data. The
LADT algorithm correlates node-level and VM-level
metrics, which is a new approach to correlation anal-
ysis in detecting Cloud system anomalies. Further-
more, the LADT algorithm deals with the synchro-
nisation problem between the node and VM gener-
ated metrics timestamp. This problem arises due to

A�Lightweight�Tool�for�Anomaly�Detection�in�Cloud�Data�Centres

345

latency in storing the VM-level metrics in the moni-
toring server and results in poor correlation analysis.
LADT is lightweight as it uses a simplified infrastruc-
ture set-up for metrics data monitoring and the LADT
algorithm uses the simple Pearson correlation coeffi-
cient for analysing the metrics data. We program the
algorithm using Apache Pig (Olston et al., 2008) to
leverage MapReduce jobs in order to achieve higher
throughput. We use disk I/O metrics from both nodes
and VMs in an actual Cloud set-up to detect I/O per-
formance anomalies.

3 LADT ARCHITECTURE

The following sub-sections describe the architecture
of the LADT tool and its functionality.

3.1 Metrics Data Monitoring

LADT utilises an agent-based monitoring architecture
to retrieve system metrics from the hosting nodes and
VMs in a Cloud data centre. The monitoring agent
extracts system metrics from the nodes and VMs at
regular time intervals. The collector gathers the data
extracted by the agents. LADT uses the agents and
collectors provided by Apache Chukwa’s (Rabkin and
Katz, 2010) runtime monitoring. The Chukwa agent
collects CPU, memory, disk, and network information
from the hosting nodes using sigar (Sigar, 2014) and
from the VMs using Virt-Top (Virt-Top, 2014). The
Chukwa collector then collects the output generated
by the agents. The collector processes the data and
registers the input to HBase, which is installed in the
monitoring node.

Figure 1: LADT Architecture.

Figure 1 illustrates the architectural overview of
LADT. The tool installs one Chukwa agent for col-
lecting both node-level and VM-level metrics on each
monitored node in the data centre. LADT uses

Chukwa collectors running on data analysis servers,
for collecting node-level and VM-level metrics into
HBase. The correlation analysis on the stored met-
rics is performed with Pig Script. Each Chukwa agent
consists of adaptors which are dynamically loadable
modules that run inside the agent process. LADT
sends the metrics from the agents to the Chukwa col-
lectors via HTTP. The primary task of the collector is
to parse the collected data from the agent and store the
extracted information in an HBase database. HBase
runs on top of the Hadoop Distributed File System
(HDFS) (Shvachko et al., 2010).

3.2 Metrics Data Analysis

LADT runs the metrics correlation analysis on the
stored metrics using Apache Pig (Olston et al., 2008),
which in turn executes MapReduce jobs. A Pig Script
written in Pig Latin implements the LADT algorithm
to explore the correlation between the node-level and
VM-level metrics and to detect anomalies. The Pig
Script program first loads both the node-level and
VM-level system metrics from HBase. It then takes
the mean values of the metric samples in 15-second
windows. The program groups the mean values into
5-minute windows and calculates the Pearson Corre-
lation Coefficient between the node-level and VM-
level metrics in each group. Finally, the program
compares the correlation coefficient value with the
threshold value and generates an anomaly alarm if
it finds the coefficient value is below an adjustable
threshold level.

4 LADT Hypothesis and Algorithm

The underlying approach of LADT is based on the
premise of the LFD technique, which identifies two
metrics that are correlated during normal operation
but diverge in the presence of an anomaly.

4.1 LFD: The Baseline Method

LFD is a lightweight technique for anomaly detection
proposed by Tan et al. (Tan et al., 2012). The hypoth-
esis of LFD is that in an anomaly-free system, when-
ever an application requests service, the processing
alternates between two phases: the communication
phase and the compute phase. In the communication
phase, the application responds to requests received
from the user, reads data from the disk, or writes data
to the disk. In the compute phase, the application op-
erates on the received inputs or requests. At the op-
erational level, the compute phase is characterised by

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

346

user-space CPU activity, whereas the communication
phase is characterised by the behaviour of one or more
types of system-level resource consumption, includ-
ing kernel-space CPU time, disk I/O or network I/O.
Behavioural change between the two phases results in
a correlation between user-space CPU utilisation and
system resource consumption. The LFD also hypoth-
esises that in the case of an anomaly, there will be
a significant change in the relationship between the
compute phase and the communication phase. Hence,
there will be lack of correlation between user-space
CPU utilisation and system resource consumption,
based on which anomalies can be detected in the sys-
tem.

4.2 LADT Hypothesis

LADT formulates a new hypothesis, according to
which there is strong correlation between the node-
level and VM-level metrics in a Cloud system. Also,
that this correlation will drop significantly in the event
of any performance anomaly at the node-level and a
continuous drop in the correlation can indicate the
presence of a true anomaly in the node.

4.3 LADT Algorithm

We propose a new algorithm based on LFD, to corre-
late node-level and VM-level metrics. We use disk
I/O metrics as a running example. The algorithm
correlates disk I/O between the hosting node and the
VMs in order to detect anomalies in IaaS Cloud en-
vironments. LADT computes the Pearson correlation
coefficient (ρ) between the hosting node disk IOPS
and the aggregated VM disk IOPS. Pearson’s correla-
tion coefficient is the ratio of the covariance between
the two metrics to the product of their standard devi-
ations as described in Equation 1 and ranges between
-1.0 and 1.0.

ρN ,V =
covariance(N,V)

σNσV
(1)

where N = time-series of node disk IOPS
V = time-series of VM disk IOPS

Similar to the LFD algorithm, there are five tun-
able parameters in the LADT algorithm, which are
summarised in Table 1. LADT collects raw disk I/O
metrics with a 3 second period from both the nodes
and VMs. The metrics collection period is set to
more than a second in order to mitigate the timestamp
synchronisation problem between the node-level and
VM-level metrics, which arises as a result of latency
in storing VM-level metrics in the LADT monitoring
server. Before calculating the correlation coefficient

between the metrics, their mean values are taken in
small windows (LW = 5) in order to reduce noise. An
anomaly alarm is raised when the average ofD con-
secutive values of the correlation coefficient drops be-
low the thresholdT in order to detect the true anoma-
lies by considering a larger range of system behaviour.

We keep the same parameter values as the LFD
algorithm for four parameters (LW = 5,LS = 5,W =
60,D = 10) (Tan et al., 2012), which we experi-
mentally found to achieve best performance. How-
ever, the correlation window slide,S is changed from
12 to 60 as this amortises better the overhead of a
Pig (Hadoop) program, which is used to execute the
LADT algorithm. Therefore, each correlation coeffi-
cient value considers the lastLW ×W = 300 seconds
(5 minutes) of system behaviour.

5 EXPERIMENTAL EVALUATION

This section describes the workload and the exper-
imental set-up used to evaluate LADT. The section
also analyses our experimental results and the func-
tionality of the LADT tool.

5.1 Experimental Set-up

For evaluating LADT we have established a Cloud
testbed with three compute nodes: Host1, Host2, and
Host3 on three Dell PowerEdge R420 servers. Each
node is running CentOS 6.5 with the 2.6.32 Linux ker-
nel and has 6 cores, 2-way hyper-threaded, clocked at
2.20 GHz with 12GB DRAM clocked at 1600 MHz.
Each node includes a 7.2K RPM hard drive with 1TB
of SATA and an onBoard Broadcom 5720 Dual Port
1GBE network card. We run three VMs on each
compute node using KVM. Each VM runs the disk
I/O intensive Data Serving benchmark from Cloud-
Suite (Ferdman et al., 2012). Disk read/write met-
rics are generated every three seconds in the nodes
using sigar (Sigar, 2014) and in the VMs using Virt-
Top (Virt-Top, 2014).

The experiment runs over a time period of 60 min-
utes, where we inject an anomaly in Host1 at the end
of the first 30 minutes. We use a disk stressing ap-
plication which increases the disk read/write opera-
tions and runs for two minutes with a two minute
interval between runs for the remaining 30 minutes.
This anomaly reflects a Blue Pill or a Virtual Machine
Based Rootkit (VMBR) attack on a Cloud system,
where the attacker introduces fake VMs via a hidden
hypervisor on the victim hosting node to get access
to the hardware resources such as CPU, memory, net-
work or disk (Dahbur et al., 2011). This anomaly may

A�Lightweight�Tool�for�Anomaly�Detection�in�Cloud�Data�Centres

347

Table 1: Tunable parameters in LADT Algorithm.

LW , low-pass window width raw samples to take mean
LS, low-pass window slide raw samples to slide

W , correlation window width samples to correlate
S, correlation window slide samples to slide detection window

D, diagnosis window correlation coefficients to consider

also represent a distributed denial-of-service (DDoS)
attack, which forces the cloud service to consume sys-
tem resources such as processor power, memory, disk
space, or network bandwidth to an intolerable level
(Rajasekar and Imafidon, 2010).

Earlier research (Antunes et al., 2008) has already
used system resource-level anomaly analysis to deal
with such attacks. The work of Antunes et al. (An-
tunes et al., 2008) analyses system resource utilisation
to explore the normal system behaviour and builds a
model, based on which it detects the abnormal be-
haviours in the system, and subsequently, the attacks.
However, this approach to detecting attacks requires
a large amount of historical data and use of machine
learning techniques. In contrast, LADT can detect the
attacks using correlation analysis between the node-
level and the VM-level metrics.

LADT is implemented in the testbed, which uses
Chukwa agents in each of the hosting nodes to col-
lect both the hosting node and VM disk read/write
metrics. The tool stores the collected metrics in the
HBase running in the monitoring node, which is an
Intel Xeon E5-2650 server. Finally, in the monitoring
node, LADT analyses the stored metrics by running
the algorithm programmed in Pig Latin, which cal-
culates the correlation between the individual hosting
node disk I/O operations and the aggregated disk I/O
operations of all the VMs in that node, to detect the
anomaly injected in Host1.

5.2 Results and Discussion

We provide experimental results for each host in time-
series of total disk I/O operations per second (IOPS)
and correlation coefficient values between the node
disk IOPS and aggregated disk IOPS of all the VMs
in the node. We present the normalised values of the
IOPS, which are the mean values in small windows of
15 seconds, including 5 samples of metrics data (the
frequency of metrics collection is 3 seconds). The
correlation coefficient values are calculated in corre-
lation windows of 5 minutes, covering 5 minutes of
metrics data. Hence, there are 12 correlation intervals
in the 60 minutes of experiment.

The results presented in Figure 2 shows that
Host1’s disk IOPS remains around 400 for the first
30 minutes and starts fluctuating in the next 30 min-

utes as a result of the injected anomaly, whereas the
aggregated disk IOPS of the VMs remains below 200
throughout the experiment. The reason for the lower
values of the aggregated disk IOPS of the VMs is
the use of the extra software layer of the hypervisor,
which is interposed between guest operating systems
and hardware (Li et al., 2013). The hypervisor mul-
tiplexes I/O devices by requiring guest operating sys-
tems to access the real hardware indirectly and hence
induces an overhead in the I/O context.

The correlation analysis for Host1 in Figure 2
clearly shows that there is a strong correlation be-
tween the hosting node IOPS and the aggregated
IOPS of the VMs for the first half of the experi-
ment, where the correlation coefficient values are of-
ten above 0.5 with an average value of 0.6. However
the correlation value drops below 0.0 suddenly at the
sixth interval when the disk stress starts. The coeffi-
cient value remains very low throughout the second
half with an average value of -0.02. This is a clear re-
flection of the injected anomaly in Host1, which dis-
torts the correlation between the hosting node IOPS
and aggregated IOPS of the VMs.

Mean Value Intervals

IO
P

S

0 50 100 150 200 250

0
20

0
40

0
60

0
80

0
10

00

Correlation Intervals

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1 2 3 4 5 6 7 8 9 10 11 12

Figure 2: (Top) Time-series of node disk IOPS (dashed)
and aggregated VM disk IOPS (solid) in Host1. (Bottom)
Correlation coefficients between the two time-series mea-
surements.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

348

Figure 3 shows that for Host2, the node IOPS and
aggregated IOPS of the VMs are steady and their cor-
relation coefficient average value is 0.4. The low av-
erage is due to the temporary drops, which happen
because of the fluctuation in the overhead of I/O oper-
ations in the VMs (Li et al., 2013). Similar behaviour
is exhibited by Host3 (Figure 4), where in fact there
are more correlation coefficient values above 0.5 and
a better average coefficient value of 0.5.

Mean Value Intervals

IO
P

S

0 50 100 150 200 250

0
10

0
20

0
30

0
40

0
50

0

Correlation Intervals

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1 2 3 4 5 6 7 8 9 10 11 12

Figure 3: (Top) Time-series of node disk IOPS (dashed)
and aggregated VM disk IOPS (solid) in Host2. (Bottom)
Correlation coefficients between the two time-series mea-
surements.

Experimental results also reveal that when using
LADT for disk I/O metric data collection and corre-
lation analysis, a latency of 10 minutes is observed,
where a 5 minute latency is required to hold a his-
torical metrics data set of a 5 minute window and
5 additional minutes are used to analyse the metrics
data. This latency is comparable to the latency of on-
line data centre service troubleshooting tools (Wang,
2009) and, as yet, benefits from no optimisation of the
analysis workflow at the server, which we are explor-
ing in ongoing work.

5.3 LADT Overhead

Our next experiment assesses LADT in terms of
the overhead that it introduces on hosted application
VMs, because of the LADT agents that collect met-
rics simultaneously with the execution of application
workloads. To investigate this we executed a test
where a single VM runs a data serving benchmark for

Mean Value Intervals

IO
P

S

0 50 100 150 200 250

0
10

0
30

0
50

0
70

0
Correlation Intervals

C
or

re
la

tio
n

C
oe

ffi
ci

en
t

2 4 6 8 10 12

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

1 2 3 4 5 6 7 8 9 10 11 12

Figure 4: (Top) Time-series of node disk IOPS (dashed)
and aggregated VM disk IOPS (solid) in Host3. (Bottom)
Correlation coefficients between the two time-series mea-
surements.

the duration of 10000 data operations with a rate of
200 operations/sec. With an agent running concur-
rently with the data serving benchmark, and during
an execution interval of 50 seconds, the average up-
date and read latencies of the benchmark were 0.21
ms and 8.28 ms, respectively. With no agent running
and during the same 50 second execution interval, the
average update and read latencies were 0.21 ms and
6.97 ms, respectively. In both cases we observed the
expected response time from the benchmark and any
differences observed in the average latencies of the
update and read operations were justified by the vari-
ability introduced by the storage medium.

5.4 Further Analysis

We observe that during normal operation there is a
strong correlation between the node disk IOPS and
aggregated disk IOPS of the VMs in all three host-
ing nodes. However, the correlation becomes weaker
during some intervals for short periods. This happens
because in these intervals the overhead on the VM I/O
operations resulting from accessing the disk indirectly
via the hypervisor (Li et al., 2013) rises unpredictably
and degrades the VM IOPS with respect to the cor-
responding node IOPS. Although the correlation co-
efficient value drops in some intervals even when the
hosts are in a stable expected state, this drop is not as
significant as it is in the case of an anomaly. More-
over, the correlation coefficient average drops below

A�Lightweight�Tool�for�Anomaly�Detection�in�Cloud�Data�Centres

349

0 when an anomaly occurs, whereas the average co-
efficient value ranges between 0.4 and 0.6 when the
hosts are anomaly-free. We also observe that, even
though all three hosts are running identical workloads
in their VMs, both the IOPS and the correlation co-
efficient averages vary across the hosts. This again
happens because of the varying overhead in the IOPS
due to the hypervisor layer between the hosts and the
VMs.

We conclude that the correlation coefficient values
require normalisation in order to avoid false alarms
for anomaly, which could arise because of a fluctua-
tion in the overhead on VM IOPS. We detect the true
anomalies by considering a larger period of system
behaviour and this is done by taking the average of
D consecutive coefficient values and checking if it is
below the threshold value, T. The values of T and D
depend on how often the user wishes to get an alarm
for the anomalies. From the results, we observe the
anomaly as the security attack in Host1 when the cor-
relation coefficient value drops significantly and stays
low for a longer period of time.

6 CONCLUSION AND FUTURE
WORK

We presented LADT, a lightweight anomaly detection
tool for Cloud data centres. LADT is based on the
hypothesis that, in an anomaly-free Cloud data cen-
tre, there is a strong correlation between the node-
level and VM-level performance metrics and that this
correlation diminishes significantly in the case of ab-
normal behaviour at the node-level. The LADT al-
gorithm raises an anomaly alarm when the corre-
lation coefficient value between the node-level and
VM-level metrics drops below a threshold level. We
have demonstrated a lightweight distributed imple-
mentation of LADT using Chukwa and also demon-
strated that the tool can detect node-level disk per-
formance anomalies by correlating the hosting node
IOPS with the aggregated hosted VM IOPS. Such
anomalies may arise as a result of security attacks
such as distributed denial-of-service (DDoS). We also
demonstrated that LADT introduces acceptably low
overhead, while recognizing that the implementation
is amenable to optimisation along the entire path of
metrics collection, data aggregation and analysis.

We intend to conduct a detailed analysis of pos-
sible attack models of the system. LADT can
also detect CPU/memory/network related perfor-
mance anomalies, due to the performance implica-
tions of virtualisation and resource management soft-
ware stacks. We wish to explore these anomalies

in more detail, using both controlled and uncon-
trolled set-ups (i.e. production-level set-ups with un-
seen anomalies) in our Cloud testbed. We plan to
conduct a more thorough analysis of LADT perfor-
mance, scalability and intrusion minimisation with re-
spect to the hosted VMs. We are particularly inter-
ested in co-executing VMs with diverse characteris-
tics (e.g. CPU-intensive, I/O-intensive), and latency
sensitivity. Our aim is to understand whether adapt-
ing parameters such as the number of agent adaptors
in the hosts, the frequency of data collection per VM
in the hosts and the number of data aggregation tasks
and cores used by collectors is necessary to keep the
monitoring overhead low.

ACKNOWLEDGEMENTS

This work has been supported by the European Com-
mission and the Seventh Framework Programme un-
der grant agreement FP7-610711 (CACTOS).

REFERENCES

Antunes, J., Neves, N., and Verissimo, P. (2008). Detec-
tion and prediction of resource-exhaustion vulnerabil-
ities. In Software Reliability Engineering, 2008. IS-
SRE 2008. 19th International Symposium on, pages
87–96.

Azmandian, F., Moffie, M., Alshawabkeh, M., Dy, J.,
Aslam, J., and Kaeli, D. (2011). Virtual machine
monitor-based lightweight intrusion detection.ACM
SIGOPS Operating Systems Review, 45(2):38–53.

Dahbur, K., Mohammad, B., and Tarakji, A. B. (2011). A
survey of risks, threats and vulnerabilities in cloud
computing. InProceedings of the 2011 International
Conference on Intelligent Semantic Web-Services and
Applications, ISWSA ’11, pages 12:1–12:6, New
York, NY, USA. ACM.

Ferdman, M., Adileh, A., Kocberber, O., Volos, S., Al-
isafaee, M., Jevdjic, D., Kaynak, C., Popescu, A. D.,
Ailamaki, A., and Falsafi, B. (2012). Clearing the
clouds: a study of emerging scale-out workloads
on modern hardware. InProceedings of the seven-
teenth international conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, ASPLOS ’12, pages 37–48, New York, NY,
USA. ACM.

Hansen, S. E. and Atkins, E. T. (1993). Automated system
monitoring and notification with swatch. InProceed-
ings of the 7th USENIX Conference on System Admin-
istration, LISA ’93, pages 145–152, Berkeley, CA,
USA. USENIX Association.

Jiang, M., Munawar, M. A., Reidemeister, T., and Ward,
P. A. (2009). System monitoring with metric-
correlation models: Problems and solutions. InPro-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

350

ceedings of the 6th International Conference on Au-
tonomic Computing, ICAC ’09, pages 13–22, New
York, NY, USA. ACM.

Kang, H., Chen, H., and Jiang, G. (2010). Peerwatch: A
fault detection and diagnosis tool for virtualized con-
solidation systems. InProceedings of the 7th Inter-
national Conference on Autonomic Computing, ICAC
’10, pages 119–128, New York, NY, USA. ACM.

Kephart, J. O. and Chess, D. M. (2003). The vision of auto-
nomic computing.Computer, 36(1):41–50.

Kumar, V., Cooper, B. F., Eisenhauer, G., and Schwan,
K. (2007). imanage: Policy-driven self-management
for enterprise-scale systems. InProceedings of the
ACM/IFIP/USENIX 2007 International Conference
on Middleware, Middleware ’07, pages 287–307, New
York, NY, USA. Springer-Verlag New York, Inc.

Li, D., Jin, H., Liao, X., Zhang, Y., and Zhou, B. (2013).
Improving disk i/o performance in a virtualized sys-
tem. J. Comput. Syst. Sci., 79(2):187–200.

Lou, J.-G., Fu, Q., Yang, S., Xu, Y., and Li, J. (2010). Min-
ing invariants from console logs for system problem
detection. InProceedings of the 2010 USENIX Con-
ference on USENIX Annual Technical Conference,
USENIXATC’10, pages 24–24, Berkeley, CA, USA.
USENIX Association.

Olston, C., Reed, B., Srivastava, U., Kumar, R., and
Tomkins, A. (2008). Pig latin: A not-so-foreign lan-
guage for data processing. InProceedings of the 2008
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’08, pages 1099–1110, New
York, NY, USA. ACM.

Oppenheimer, D., Ganapathi, A., and Patterson, D. A.
(2003). Why do internet services fail, and what can be
done about it? InProceedings of the 4th Conference
on USENIX Symposium on Internet Technologies and
Systems - Volume 4, USITS’03, pages 1–1, Berkeley,
CA, USA. USENIX Association.

Pertet, S. and Narasimhan, P. (2005). Causes of failure in
web applications. Technical report, CMU-PDL-05-
109.

Rabkin, A. and Katz, R. (2010). Chukwa: A system for re-
liable large-scale log collection. InProceedings of the
24th International Conference on Large Installation
System Administration, LISA’10, pages 1–15, Berke-
ley, CA, USA. USENIX Association.

Rajasekar, N. C. and Imafidon, C. (2010). Exploitation of
vulnerabilities in cloud storage. InProceedings of the
First International Conference on Cloud Computing,
GRIDs, and Virtualization, pages 122–127.

Rouillard, J. P. (2004). Refereed papers: Real-time log file
analysis using the simple event correlator (sec). In
Proceedings of the 18th USENIX Conference on Sys-
tem Administration, LISA ’04, pages 133–150, Berke-
ley, CA, USA. USENIX Association.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R.
(2010). The hadoop distributed file system. InPro-
ceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), MSST
’10, pages 1–10, Washington, DC, USA. IEEE Com-
puter Society.

Sigar (2014). https://support.hyperic.com/display/sigar/home.
Tan, J., Kavulya, S., Gandhi, R., and Narasimhan, P.

(2012). Light-weight black-box failure detection for
distributed systems. InProceedings of the 2012 Work-
shop on Management of Big Data Systems, MBDS
’12, pages 13–18, New York, NY, USA. ACM.

The, J. P. and Prewett, J. E. (2003). Analyzing cluster log
files using logsurfer. Inin Proceedings of the 4th An-
nual Conference on Linux Clusters.

Virt-Top (2014). http://virt-tools.org/about/.
Vora, M. (2011). Hadoop-hbase for large-scale data. In

Computer Science and Network Technology (ICC-
SNT), 2011 International Conference on, volume 1,
pages 601–605.

Wang, C. (2009). Ebat: Online methods for detecting utility
cloud anomalies. InProceedings of the 6th Middle-
ware Doctoral Symposium, MDS ’09, pages 4:1–4:6,
New York, NY, USA. ACM.

Ward, J. S. and Barker, A. (2013). Varanus: In situ mon-
itoring for large scale cloud systems. InProceed-
ings of the 2013 IEEE International Conference on
Cloud Computing Technology and Science - Volume
02, CLOUDCOM ’13, pages 341–344, Washington,
DC, USA. IEEE Computer Society.

Xu, W., Huang, L., Fox, A., Patterson, D., and Jordan,
M. I. (2009). Detecting large-scale system prob-
lems by mining console logs. InProceedings of
the ACM SIGOPS 22Nd Symposium on Operating
Systems Principles, SOSP ’09, pages 117–132, New
York, NY, USA. ACM.

A�Lightweight�Tool�for�Anomaly�Detection�in�Cloud�Data�Centres

351

Performance and Cost Evaluation for the Migration of a Scientific
Workflow Infrastructure to the Cloud

Santiago Gómez Sáez, Vasilios Andrikopoulos, Michael Hahn, Dimka Karastoyanova,
Frank Leymann, Marigianna Skouradaki and Karolina Vukojevic-Haupt

Institute of Architecture of Application Systems, University of Stuttgart, Stuttgart, Germany
fgomez-saez, andrikopoulos, hahn, karastoyanova, leymann, skouradaki, vukojevicg@iaas.uni-stuttgart.de

Keywords: Workflow Simulation, eScience, IaaS, Performance Evaluation, Cost Evaluation, Cloud Migration.

Abstract: The success of the Cloud computing paradigm, together with the increase of Cloud providers and optimized
Infrastructure-as-a-Service (IaaS) offerings have contributed to a raise in the number of research and industry
communities that are strong supporters of migrating and running their applications in the Cloud. Focusing on
eScience simulation-based applications, scientific workflows have been widely adopted in the last years, and the
scientific workflow management systems have become strong candidates for being migrated to the Cloud. In
this research work we aim at empirically evaluating multiple Cloud providers and their corresponding optimized
and non-optimized IaaS offerings with respect to their offered performance, and its impact on the incurred
monetary costs when migrating and executing a workflow-based simulation environment. The experiments show
significant performance improvements and reduced monetary costs when executing the simulation environment
in off-premise Clouds.

1 INTRODUCTION

In the last years the workflow technology has been
widely adopted in several domains, e.g. business or
eScience, which often have different domain-specific
requirements in terms of supported functionalities
and expected behavior of the underlying infrastruc-
ture. Focusing on eScience applications, simulation
workflows are a well-known research area, as they
provide scientists with the means to model, provi-
sion, and execute automated and flexible long running
simulation-based experiments (Sonntag and Karastoy-
anova, 2010). Such simulation-based experiments typ-
ically comprise large amounts of data processing and
transfer and consume multiple distributed simulation
services for long periods of time. Due to the access
and resource consumption nature of such simulation
environments, previous works have targeted the mi-
gration and adaptations of such environments to be
deployed, provisioned, and executed in Cloud infras-
tructures (Juve et al., 2009; ?; Vukojevic-Haupt et al.,
2013; Zhao et al., 2014).

The Cloud computing paradigm has led in the last
years to an increase in the number of applications
which are partially or completely running in different
Everything-as-a-Service Cloud offerings. The increase
of available and optimized Cloud services has intro-

duced further efficient alternatives for hosting applica-
tion components with special resources consumption
patterns, e.g. computationally or memory intensive
ones. However, such a wide landscape of possibilities
has become a challenge for deciding among the differ-
ent Cloud providers and their corresponding offerings.
Previous works targeted such a challenge by assisting
application developers in the tasks related to selecting,
configuring, and adapting the distribution of their ap-
plication among multiple services (de Oliveira et al.,
2011; Gómez Sáez et al., 2014a). There are multiple
decision points that can influence the distribution of an
application, e.g. cost, performance, security concerns,
etc. The focus of this research work is to provide an
overview, evaluate, and analyze the trade-off between
the performance and cost when migrating a simulation
environment to different Cloud providers and their
corresponding Infrastructure-as-a-Service (IaaS) offer-
ings. The contributions of this work can therefore be
summarized as follows:

� the selection of a set of viable and optimized IaaS
offerings for migrating a previously developed sim-
ulation environment,

� an empirical evaluation focusing on the perfor-
mance and the incurred monetary costs, and,

� an analysis of the performance and cost trade-off

352

when scaling the simulation environment work-
load.

The remaining of this paper is structured as fol-
lows: Section 2 motivates this work and depicts the
problems that aim to be achieved. The simulation en-
vironment used for evaluation purposes in this work
is introduced in Section 3. Section 4 presents the ex-
periments on evaluating the performance and incurred
costs when migrating the simulation environment to
different IaaS offerings, and discusses our findings.
Finally, Section 5 summarizes related work and Sec-
tion 6 concludes with some future work.

2 MOTIVATION & PROBLEM
STATEMENT

Simulation workflows, a well-known topic in the field
of eScience, describe the automated and flexible ex-
ecution of simulation-based experiments. Common
characteristics of such simulation workflows are that
they are long-running as well as being executed in an
irregular manner. However, during their execution a
wide amount of resources are typically provisioned,
consumed, and released. Considering these character-
istics, previous works focused on migrating and exe-
cuting simulation environments in the Cloud, as Cloud
infrastructures significantly reduce infrastructure costs
while coping with an irregular but heavy demand of
resources for running such experiments (Vukojevic-
Haupt et al., 2013).

Nowadays there exists a vast amount of con-
figurable Cloud offerings among multiple Cloud
providers. However, such a wide landscape has be-
come a challenge for deciding among (i)the different
Cloud providers and (ii)the multiple Cloud offering
configurations offered by such providers. We focus
in this work on IaaS solutions, as there exists a lack
of Platform-as-a-service (PaaS) offerings that enable
the deployment and execution of scientific workflows
in the Cloud. IaaS offerings describe the amount and
type of allocated resources, e.g. CPUs, memory, or
storage, and define different VM instance types within
different categories. For example, the Amazon EC21

service does not only offer VM instances of differ-
ent size, but also provides different VM categories
which are optimized for different use cases, e.g. com-
putation intensive, memory intensive, or I/O intensive.
Similar offerings are available also by other providers,

1Amazon EC2: http://aws.amazon.com/ec2/
instance-types/

Modeling & Monitoring
Tool

Scientific
Workflow Engine

Messaging
System

DBMS DBMS

Auditing
System

Application Server

Simulation
Servicen

Simulation
Service2

Simulation
Service1

...

Figure 1: System Overview of the SimTech Scientific Work-
flow Management System (SWfMS).

e.g. Windows Azure2 or Rackspace3. The offered per-
formance and incurred cost significantly vary among
the different Cloud services, and depend on the simu-
lation environment resource usage requirements and
workload. In this work, we aim to analyze the perfor-
mance and cost trade-off when migrating to different
Cloud offerings a simulation environment developed
and used as case study, as discussed in the following
section.

3 THE OPAL SIMULATION
ENVIRONMENT

A Scientific Workflow Management System (SimTech
SWfMS) is being developed by the Cluster of Excel-
lence in Simulation Technology (SimTech4), enabling
scientists to model and execute their simulation exper-
iments using workflows (Sonntag and Karastoyanova,
2010; Sonntag et al., 2012). The SimTech SWfMS
is based on conventional workflow technology which
offers several non-functional requirements like robust-
ness, scalability, reusability, and sophisticated fault
and exception handling (Görlach et al., 2011). The
system has been adapted and extended to the special
needs of the scientists in the eScience domain (Son-
ntag et al., 2012). During the execution of a workflow
instance the system supports the modification of the
corresponding workflow model, which is then propa-
gated to the running instances. This allows running
simulation experiments in a trial-and-error manner.

The main components of the SimTech SWfMS
shown in Fig. 1 are a modeling and monitoring
tool, a workflow engine, a messaging system, sev-
eral databases, an auditing system, and an application
server running simulation services. The workflow en-
gine provides an execution environment for the work-

2Windows Azure: http://azure.microsoft.com/en-us/
3Rackspace: http://www.rackspace.com/
4SimTech: http://www.iaas.uni-stuttgart.de/forschung/

projects/simtech/

Performance�and�Cost�Evaluation�for�the�Migration�of�a�Scientific�Workflow�Infrastructure�to�the�Cloud

353

O
pa

l M
ai

n

O
pa

l
Sn

ap
sh

ot

Calculate
Energy
Config.

Run
Opal

Simulation

Configure
Atomic Lattice

Search
Atom

Clusters

Determine
Position
and Size

Create Plot

PostprocessingPreprocessing Simulation Visualization

Process
Opal

Snapshot

Figure 2: Simplified Simulation Workflows Constituting the OPAL Simulation Environment (Sonntag and Karastoyanova,
2013).

flows. The messaging system serves as communica-
tion layer between the modeling- and monitoring tool,
the workflow engine, and the auditing system. The
auditing system stores data related to the workflow
execution for analytical and provenance purposes.

The SimTech SWfMS has been successfully ap-
plied in different scenarios in the eScience domain;
one example is the automation of a Kinetic Monte-
Carlo (KMC) simulation of solid bodies by orchestrat-
ing several Web services being implemented by mod-
ules of the OPAL application (Sonntag et al., 2011a).
The OPAL Simulation Environment is constituted by
a set of services which are controlled and orchestrated
through a main OPAL workflow (the Opal Main pro-
cess depicted in Figure 2). The simulation services
are implemented as Web services and divided into two
main categories: (i) resource management, e.g. dis-
tributing the workload among the different servers, and
(ii) wrapped simulation packages depicted in (Binkele
and Schmauder, 2003; Molnar et al., 2010). The main
workflow can be divided in four phases as shown in
Fig. 2: preprocessing, simulation, postprocessing, and
visualization. During the preprocessing phase all data
needed for the simulation is prepared. In the simu-
lation phase the workflow starts the Opal simulation
by invoking the corresponding Web service. In regu-
lar intervals, the Opal simulation creates intermediate
results (snapshots). For each of these snapshots the
main workflow initiates the postprocessing which is
realized as a separate workflow (Opal Snapshot pro-
cess in Figure 2). When the simulation is finished and
all intermediate results are postprocessed, the results
of the simulation are visualized.

4 EXPERIMENTS

4.1 Methodology

As shown in Fig. 2, the OPAL Simulation Environment
is comprised of multiple services and workflows that
compose the simulation and resource management ser-
vices. The environment can be concurrently used by
multiple users, as the simulation data isolation is guar-
anteed through the creation of independent instances
(workflows, services, and temporal storage units) for
each user’s simulation request. The experiments must
therefore consider and emulate the usage of the envi-
ronment by multiple users concurrently.

The migration of the simulation environment to
the Cloud opens a wide set of viable possibilities for
selecting and configuring different Cloud services for
the different components of the OPAL environment.
However, in this first set of experiments we restrict
the distribution of the simulation environment compo-
nents by hosting the complete simulation application
stack in one VM, which is made accessible to mul-
tiple users. Future investigations plan to distribute
such environment using different Cloud offerings, e.g.
Database-as-a-Service (DBaaS) for hosting the audit-
ing databases. We therefore focus this work on driving
a performance and cost analysis when executing the
OPAL Simulation Environment in on- and off-premise
infrastructures, and using different IaaS offerings and
optimized configurations.

Table 1 shows the different VM categories, based
on their characteristics and offered prices by three ma-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

354

Table 1: IaaS Ubuntu Linux On-demand Instances Categories per Provider (in January 2015).

Instance
Category

Cloud Provider Instance Type vCPU Memory
(GB)

Region Price
(U$/h)

on-premise micro 1 1 EU (Germany) 0.13
Micro AWS EC2 t2.micro 1 1 EU (Ireland) 0.014

Windows Azure A1 1 1.75 EU (Ireland) 0.06
Rackspace General 1 1 1 USA 0.06
on-premise large 2 4 EU (Germany) 0.26

General AWS EC2 m3.large 2 7.5 EU (Ireland) 0.154
Purpose Windows Azure A2 2 3.5 EU (Ireland) 0.12

Rackspace General 2 2 2 USA 0.074
on-premise compute3.large 4 4 EU (Germany) 0.52

Compute AWS EC2 c3.large 2 3.75 EU (Ireland) 0.120
Optimized Windows Azure D2 2 7 EU (Ireland) 0.23

Rackspace Compute 1-3.75 2 3.75 USA 0.1332
on-premise memory4.large 2 15 EU (Germany) 0.26

Memory AWS EC2 r3.large 2 15.25 EU (Ireland) 0.195
Optimized Windows Azure D3 4 14 EU (Ireland) 0.46

Rackspace Memory 1-15 2 15 USA 0.2522

jor Cloud providers: Amazon AWS, Windows Azure,
and Rackspace. In addition to the off-premise VM
instances types, multiple on-premise VM instances
types were created in our virtualized environment, con-
figured in a similar manner to the ones evaluated in
the off-premise scenarios, and included in such cate-
gories. The on-premise VM instances configurations
are based on the closest equivalent to the off-premise
VM configurations within each instance category. The
encountered providers and offerings showed two lev-
els of VM categories, i.e. based on the optimization
for custom use cases (Micro, General Use, Compute
Optimized, and Memory optimized), and based on a
quantitative assignment of virtualized resources. This
fact must be taken into consideration in our evaluation
due to the variation in the performance, and its im-
pact on the final incurred costs for running simulations
in different Cloud offerings. The pricing model for
the on-premise scenarios was adopted from (Walker,
2009) as discussed in the following section, while for
the off-premise scenarios the publicly available infor-
mation from the providers was used (Andrikopoulos
et al., 2013), taking into account on-demand pricing
models only.

4.2 Setup

The scientific workflow simulation environment is
constituted by two main systems: the SimTech
SWfMS (Sonntag and Karastoyanova, 2010; Sonntag
et al., 2012), and a set of Web services bundling re-
source management and the KMC simulation tasks
depicted in (Binkele and Schmauder, 2003; Molnar
et al., 2010). The former comprises the following

middleware stack:

� an Apache Orchestration Director Engine (ODE)
1.3.5 (Axis2 distribution) deployed on

� an Apache Tomcat 7.0.54 server with Axis2 sup-
port.

� The scientific workflow engine (Apache ODE) uti-
lizes a MySQL server 5.5 for workflow administra-
tion, management, and reliability purposes , and

� provides monitoring and auditing information
through an Apache ActiveMQ 5.3.2 messaging
server.

The resource management and KMC simulation ser-
vices are deployed as Axis2 services in an Apache
Tomcat 7.0.54 server. The underlying on- and off-
premise infrastructure configurations selected for the
experiments are shown in Table 1. The on-premise
infrastructure aggregates an IBM System x3755 M3
server5 with an AMD Opteron Processor 6134 expos-
ing 16 CPU of speed 2.30 GHz and 65GB RAM. In
all scenarios the previously depicted middleware com-
ponents are deployed on an Ubuntu server 14.04 LTS
with 60% of the total OS memory dedicated to the
SWfMS.

For all evaluation scenarios a system’s load of 10
concurrent users sequentially sending 10 random and
uniformely distributed simulation requests/user was
created using Apache JMeter 2.9 as the load driver.
Such a load aims at emulating a shared utilization of
the simulation infrastructure. Due to the asynchronous

5IBM System x3755 M3: http://www-03.ibm.com/
systems/xbc/cog/x3755m3 7164/x3755m3 7164aag.html

Performance�and�Cost�Evaluation�for�the�Migration�of�a�Scientific�Workflow�Infrastructure�to�the�Cloud

355

nature of the OPAL simulation workflow, a custom plu-
gin in JMeter was realized towards receiving and cor-
relating the asynchronous simulation responses. The
perceived by the user latency for each simulation was
measured in milliseconds (ms). Towards minimizing
the network latency, in all scenarios the load driver
was deployed in the same region as the simulation
environment.

The incurred monetary costs for hosting the
simulation environment on-premise are calculated
considering firstly the purchase, maintenance, and
depreciation of the server cluster, and secondly by
calculating the price of each CPU time. (Walker,
2009) proposes pricing models for analyzing the cost
of purchasing vs. leasing CPU time on-premise and
off-premise, respectively. The real cost of a CPU/hour
when purchasing a server cluster, can be derived using
the following equations:

(1�1=
p

2)�å
Y�1
T=0

CT
(1+k)T

(1� (1=
p

2)Y)�TC
(1)

where CT is the acquisition (C0) and maintenance
(C1::N) costs over the Y years of the server cluster,
k is the cost of the invested capital, and

TC = TCPU�H�µ (2)

where TCPU depicts the total number of CPU cores
in the server cluster, H is the expected number of oper-
ational hours, and µ describes the expected utilization.
The utilized on-premise infrastructure total cost breaks
down into an initial cost (C0) of approximately 8500$
in July 2012 and an annual maintenance cost (C1::N) of
7500$, including personnel costs, power and cooling
consumption, etc. The utilization rate of such cluster is
of approximately 80%, and offers a reliability of 99%.
Moreover, the server cluster runs six days per week, as
one day is dedicated for maintenance operations. Such
a configuration provides 960K CPU hours annually.
As discussed in (Walker, 2009), we also assumed in
this work a cost of 5% on the invested capital. The
cost for the off-premise scenarios was gathered from
the different Cloud provider’s Web sites.

Table 1 depicts the hourly cost for the CPUs con-
sumed in the different on-premise VM configurations.
In order to get a better sense of the scope of the accrued
costs, the total cost calculation performed as part of the
experiments consisted of predicting the necessary time
to run 1K concurrent experiments. Such estimation
was then used to calculate the incurred costs of hosting
the simulation environment in the previously evalu-
ated on- and off-premise scenarios. The monetary cost
calculation was performed by linearly extrapolating
the obtained results for the 100 requests to a total of
1K requests. The scientific library Numpy of Python

2.7.5 was used for performing the prediction of 1K
simulation requests. The results of this calculation, as
well as the observed performance measurements are
discussed in the following.

4.3 Evaluation Results

4.3.1 Performance Evaluation

Figure 3 shows the average observed latency for the
different VM categories depicted in Table 1 for the dif-
ferent Cloud providers. The latency perceived in the
scenarios comprising the selection of Micro instances
have been excluded from the comparison due to the im-
possibility to finalize the execution of the experiments.
More specifically, the on-premise micro-instance was
capable of stably running approximately 80 requests
(see Figure 4(a)), while in the off-premise scenarios
the load saturated the system with 10 requests approxi-
mately in the AWS EC2 and Windows Azure scenarios
(see Figures 4(b) and 4(c), respectively). For the sce-
nario utilizing Rackspace, the VM micro instance was
saturated immediately after sending the first set of 10
concurrent simulation requests.

With respect to the remaining instance categories
(General Purpose, Compute Optimized, and Memory
Optimized), the following performance variation be-
haviors can be observed:

1. the on-premise scenario shows in average a latency
of 320K ms. over all categories, a 40% higher av-
erage than the perceived latency in the off-premise
scenarios.

2. However, the performance is not constantly im-
proved when migrating the simulation environ-
ment off-premise. For example, the General Pur-
pose Windows Azure VM instance shows a de-
graded performance of 11%, while the Windows
Azure Compute Optimize VM instance shows only

General Purpose Compute Optimized Memory Optimized
0

50000

100000

150000

200000

250000

300000

350000

400000

450000

La
te

n
cy

 (
m

s)

3
2

5
7

8
0

2
9

6
7

3
6 3
3

8
2

5
5

1
4

0
9

8
8

1
3

5
8

2
6

1
5

9
9

8
7

3
6

4
6

8
8

2
9

0
8

9
4

2
7

3
9

6
0

1
2

2
0

6
6

1
1

3
6

5
1

1
2

2
5

8
0

Latency per VM CategoryOn-Premise

AWS EC2

Windows Azure

Rackspace

Figure 3: Average Simulation Latency per Provider & VM
Category.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

356

0 20 40 60 80 100

Requests

0

100000

200000

300000

400000

500000

600000

700000

La
te

n
cy

 (
m

s)

on-premise micro

on-premise general

on-premise compute optimized

on-premise memory optimized

(a) On-premise

0 20 40 60 80 100

Requests

0

50000

100000

150000

200000

La
te

n
cy

 (
m

s)

AWS EC2 micro

AWS EC2 general

AWS EC2 compute optimized

AWS EC2 memory optimized

(b) Amazon EC2

0 20 40 60 80 100

Requests

150000

200000

250000

300000

350000

400000

450000

La
te

n
cy

 (
m

s)

Windows Azure micro

Windows Azure general

Windows Azure compute optimized

Windows Azure memory optimized

(c) Windows Azure

0 20 40 60 80 100

Requests

0

20000

40000

60000

80000

100000

120000

140000

160000

La
te

n
cy

 (
m

s)
Rackspace general

Rackspace compute optimized

Rackspace memory optimized

(d) Rackspace

Figure 4: Performance Analysis per Provider & VM Category.

a slightly performance improvement of 2%, when
compared with the on-premise scenario.

3. The performance when migrating the simulation
environment to the Cloud improves by approx-
imately 56% and 62% for the AWS EC2 and
Rackspace General Purpose VM instances, respec-
tively,

4. 54%, 2%, and 61% for the AWS EC2, Windows
Azure, and Rackspace Compute Optimized VM
instances, respectively, and

5. 52%, 19%, and 63% for the AWS EC2, Windows
Azure, and Rackspace Memory Optimized VM
instances, respectively.

When comparing the average performance improve-

ment among the different optimized VM instances, the
Compute Optimized and Memory Optimized instances
enhance the performance by 12% and 6%, respectively.

Figure 4 shows the perceived requests’ latency in-
dividually. It can be observed when executing the
simulation environment in the Rackspace infrastruc-
ture that the performance highly varies when increas-
ing the number of requests (see Figure 4(d)). Such
performance variation decreases in the on-premise,
AWS EC2, and Windows Azure infrastructures (see
Figures 4(a), 4(b), and 4(c), respectively). In all sce-
narios, the network latency does not have an impact in
the performance due to the nature of our experimental
setup described in the previous section.

When comparing the performance improvement

Performance�and�Cost�Evaluation�for�the�Migration�of�a�Scientific�Workflow�Infrastructure�to�the�Cloud

357

General Purpose Compute Optimized Memory Optimized
0

5

10

15

20

25

30

35

40

45

C
o
st

 (
U

$
)

29.74

23.27
21.99

4.96 4.86 5.37
6.91

17.66

41.11

1.54 1.26 1.17

Cost for Running 1000 Experiments
On-Premise

AWS EC2

Windows Azure

Rackspace

Figure 5: Cost Comparison extrapolated to 1K Simulation
Requests (in January 2015 Prices).

among the different VM instances categories, the Win-
dows Azure infrastructure shows the greater when se-
lecting a Compute Optimized or Memory Optimized
VM instance over a General Purpose VM instance
(see Figure 4(c)).

4.3.2 Cost Comparison

Figure 5 presents an overview of the expected costs
for running 1K experiments among 10 users. The
following pricing variations can be observed:

1. The incurred costs of hosting the simulation envi-
ronment on-premise is 25$ in average.

2. When migrating the simulation infrastructure off-
premise, the cost descends in average 80%, 12%,
and 94% when utilizing the AWS EC2, Windows
Azure, and Rackspace IaaS services.

3. When comparing the incurred costs among the
different VM categories, the Memory Optimized
categories are in average 61% and 47% more ex-
pensive when compared to the Compute Optimized
and General Purpose VM categories, respectively.

4. Among the different off-premise providers, Win-
dows Azure is in average 900% more expensive
for running the simulation environment.

4.4 Discussion

The experiments driven as part of this work have con-
tributed to derive and report a bi-dimensional anal-
ysis focusing on the selection among multiple IaaS
offerings to deploy and run the OPAL Simulation En-
vironment. With respect to performance, it can be
concluded that:

1. The migration of the simulation environment to
off-premise Cloud services has an impact on the

system’s performance, which is beneficial or detri-
mental depending on the VM provider and cate-
gory.

2. The selection of Micro VM instances did not offer
an adequate availability to the simulation environ-
ment in the off-premise scenarios. Such a negative
impact was produced by the non-automatic alloca-
tion of swap space for the system’s virtual memory.

3. When individually observing the performance
within each VM category, the majority of the se-
lected off-premise IaaS services improved the per-
formance of the simulation environment. How-
ever, the General Purpose Windows Azure VM
instances showed a degradation of the performance
when compared to the other IaaS services in the
same category.

4. The perceived by the user latency was in average
reduced when utilizing Compute Optimized VM
instances. Such an improvement is in line with the
compute intensity requirements of the simulation
environment.

The cost analysis derived the following conclusions:

1. There exists a significant monetary cost reduction
when migrating the simulation environment to off-
premise IaaS Cloud services.

2. Despite of the improved performance observed
when running the simulation environment in the
Compute Optimized and Memory Optimized VM
instances, scaling the experiments to 1K simulation
requests incurred in an average increase of 9%
and 61% with respect to the General Purpose VM
instances cost, respectively.

3. The incurred monetary costs due to the usage of
Windows Azure services tend to increase when
using optimized VM instances, i.e. Compute Op-
timized and Memory Optimized. Such behavior
is reversed for the remaining off-premise and on-
premise scenarios.

4. Due to the low costs demanded for the usage of
Rackspace IaaS services (nearly 40% less in av-
erage), the final price for running 1K simulations
is considerably lower than the other off-premise
providers and hosting the environment on-premise.

The previous observations showed that the IaaS ser-
vices provided by Rackspace are the most suitable for
migrating our OPAL Simulation Environment. How-
ever, additional requirements may conflict with the
migration decision of further simulation environments,
e.g. related to data privacy and transfer between EU
and USA regions, as Rackspace offers a limited set of
optimized VMs in their European region.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

358

5 RELATED WORKS

We consider our work related to the following major
research areas: performance evaluation of workflow
engines, workflow execution in the Cloud, and mi-
gration and execution of scientific workflows in the
Cloud.

When it comes to evaluating the performance of
common or scientific workflow engines, a standardized
benchmark is not yet available. A first step towards
this direction is discussed in (Skouradaki et al., 2015),
but propose approach is premature and could not be
used as the basis for this work. Beyond this work,
performance evaluations are usually custom to spe-
cific project needs. Specifically for BPEL engines
not much work is currently available. For example
(Röck et al., 2014) summarize nine approaches that
evaluate the performance of BPEL engines. In most
of the cases, workflow engines are benchmarked with
load tests with a workload consisting of 1-4 work-
flows. Throughput and latency are the metrics most
frequently used.

There are only few Cloud providers supporting the
deployment and execution of workflows in a Platform-
as-a-Service (PaaS) solution. The WSO2 Stratos Busi-
ness Process Server (Pathirage et al., 2011) and Busi-
ness Processes on the Cloud is offered by IBM Busi-
ness Process Manager6 offer the necessary tools and
abstraction levels for developing, deploying and moni-
toring workflows in the Cloud. However, such services
are optimized for business tasks, rather than for sup-
porting simulation operations.

Scientific Workflow Management Systems are ex-
ploiting business workflows concepts and technolo-
gies for supporting scientists towards the use of sci-
entific applications (Sonntag et al., 2011b; Sonntag
and Karastoyanova, 2010). Zhao et al. (Zhao et al.,
2014) develop a service framework for integrating Sci-
entific Workflow Management Systems in the Cloud
to leverage from the scalability and on-demand re-
source allocation capabilities. The evaluation of their
approach mostly focuses on examining the efficiency
of their proposed PaaS based framework.

Simulation experiments are driven in the scope of
different works (Binkele and Schmauder, 2003; Mol-
nar et al., 2010). Later research efforts focused on
the migration of simulations to the Cloud. Due to the
diverse benefits of Cloud environments the approaches
evaluate the migration with respect to different scopes.
The approaches that study the impact of migration to
the performance and incurred monetary costs is con-
sidered more relevant to our work. In (de Oliveira

6http://www-03.ibm.com/software/products/en/business-
process-manager-cloud

et al., 2011) the authors examine the performance of
X-Ray Crystalography workflows executed on the Sci-
Cumulus middleware deployed in Amazon EC2. Such
workflows are CPU-intensive and requires the execu-
tion of high parallel techniques. Likewise, in (Juve
et al., 2009) the authors compare the performance of
scientific workflows migrated from Amazon EC2 to a
typical High Performance Computing system (NCSA’s
Abe). In both approaches the authors conclude that
migration to the Cloud can be viable but not equally ef-
ficient to High Performance Computing environments.
However, Cloud environments allow the provisioning
of specific resources configurations irregularly dur-
ing the execution of simulation experiments (Strauch
et al., 2013). Moreover, the performance improvement
observed in Cloud services provide the necessary flexi-
bility for reserving and releasing resources on-demand
while reducing the capital expenditures (Ostermann
et al., 2010). Research towards this direction is a fertile
field. Juve et al. (Juve et al., 2013) execute nontrivial
scientific workflow applications on grid, public, and
private Cloud infrastructures to evaluate the deploy-
ments of workflows in the Cloud in terms of setup,
usability, cost, resource availability, and performance.
This work can be considered complementary to our
approach, although we focused on investigating more
on public Cloud providers and took into account the
different VM optimization categories.

6 CONCLUSION AND FUTURE
WORK

Simulation workflows have been widely used in the
eScience domain due to their easiness to model, and
flexible and automated runtime properties. The char-
acteristics of such workflows together with the usage
patterns of simulation environments have made these
type of systems suitable to profit from the advantages
brought by the Cloud computing paradigm. The exis-
tence of a vast amount of Cloud services together with
the complexity introduced by the different pricing mod-
els have become a challenge to efficiently select which
Cloud service to host the simulation environment. The
main goal of this investigation is to report the perfor-
mance and monetary cost findings when migrating the
previously realized OPAL simulation environment to
different IaaS solutions.

A first step in this experimental work consisted
of selecting a set of potential IaaS offerings suitable
for our simulation environment. The result of such
selection covered four major deployment scenarios: (i)
in our on-premise infrastructure, and in (ii) three off-
premise infrastructures (AWS EC2, Windows Azure,

Performance�and�Cost�Evaluation�for�the�Migration�of�a�Scientific�Workflow�Infrastructure�to�the�Cloud

359

and Rackspace). The selection of the IaaS offerings
consisted of evaluating the different providers and their
corresponding optimized VM instances (Micro, Gen-
eral Purpose, Compute Optimized, and Memory Opti-
mized). The simulation environment was migrated and
its performance evaluated using an artificial workload.
A second step in our analysis consisted on extrapolat-
ing the obtained results towards estimating the incurred
costs for running the simulation environment on- and
off-premise. The analyses showed a beneficial impact
in the performance and a significant reduction of mon-
etary costs when migrating the simulation environment
to the majority of off-premise Cloud offerings.

Despite our efforts towards analyzing and finding
the most efficient IaaS Cloud service to deploy and run
our simulation environment, our experiments solely fo-
cused on IaaS offerings. Future works focus on analyz-
ing further service models, i.e. Platform-as-a-Service
(PaaS) or Database-as-a-Service (DBaaS), as well as
evaluating the distribution of the different components
constituting the simulation environment among multi-
ple Cloud offerings. Investigating different autoscaling
techniques and resources configuration possibilities is
also part of future work, e.g. feeding the application
distribution system proposed in (Gómez Sáez et al.,
2014b) with such empirical observations.

ACKNOWLEDGEMENTS

The research leading to these results has received fund-
ing from the FP7 EU project ALLOW Ensembles
(600792), the German Research Foundation (DFG)
within the Cluster of Excellence in Simulation Technol-
ogy (EXC310), and the German DFG project Bench-
Flow (DACH Grant Nr. 200021E-145062/1).

REFERENCES

Andrikopoulos, V., Song, Z., and Leymann, F. (2013). Sup-
porting the migration of applications to the cloud
through a decision support system. In Cloud Com-
puting (CLOUD), 2013 IEEE Sixth International Con-
ference on, pages 565–572. IEEE.

Binkele, P. and Schmauder, S. (2003). An atomistic Monte
Carlo Simulation of Precipitation in a Binary System.
Zeitschrift für Metallkunde, 94(8):858–863.

de Oliveira, D., Ocaña, K. A. C. S., Ogasawara, E. S., Dias,
J., Baião, F. A., and Mattoso, M. (2011). A Perfor-
mance Evaluation of X-Ray Crystallography Scientific
Workflow Using SciCumulus. In Liu, L. and Parashar,
M., editors, IEEE CLOUD, pages 708–715. IEEE.

Gómez Sáez, S., Andrikopoulos, V., Leymann, F., and
Strauch, S. (2014a). Design Support for Performance

Aware Dynamic Application (Re-)Distribution in the
Cloud. IEEE Transactions on Services Computing (to
appear).

Gómez Sáez, S., Andrikopoulos, V., Wessling, F., and Mar-
quezan, C. C. (2014b). Cloud Adaptation & Applica-
tion (Re-)Distribution: Bridging the two Perspectives.
In Proceedings EnCASE’14, pages 1–10. IEEE Com-
puter Society Press.

Görlach, K., Sonntag, M., Karastoyanova, D., Leymann,
F., and Reiter, M. (2011). Conventional Workflow
Technology for Scientific Simulation, pages 323–352.
Guide to e-Science. Springer-Verlag.

Juve, G., Chervenak, A., Deelman, E., Bharathi, S., Mehta,
G., and Vahi, K. (2013). Characterizing and Profiling
Scientific Workflows. Future Gener. Comput. Syst.,
29(3):682–692.

Juve, G., Deelman, E., Vahi, K., Mehta, G., Berriman, B.,
Berman, B., and Maechling, P. (2009). Scientific Work-
flow Applications on Amazon EC2. In E-Science Work-
shops, 2009 5th IEEE International Conference on,
pages 59–66.

Molnar, D., Binkele, P., Hocker, S., and Schmauder, S.
(2010). Multiscale Modelling of Nano Tensile Tests
for different Cu-precipitation States in a-Fe. In Proc.
of the 5th Int. Conf. on Multiscale Materials Modelling,
pages 235–239.

Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R.,
Fahringer, T., and Epema, D. (2010). A Performance
Analysis of EC2 Cloud Computing Services for Scien-
tific Computing. In Cloud Computing, pages 115–131.
Springer.

Pathirage, M., Perera, S., Kumara, I., and Weerawarana,
S. (2011). A Multi-tenant Architecture for Business
Process Executions. In Proceedings of the 2011 IEEE
International Conference on Web Services, ICWS ’11,
pages 121–128, Washington, DC, USA. IEEE Com-
puter Society.

Röck, C., Harrer, S., and Wirtz, G. (2014). Performance
Benchmarking of BPEL Engines: A Comparison
Framework, Status Quo Evaluation and Challenges.
In 26th International Conference on Software Engi-
neering and Knowledge Engineering (SEKE), pages
31–34, Vancouver, Canada.

Skouradaki, M., Roller, D. H., Frank, L., Ferme, V., and
Pautasso, C. (2015). On the Road to Benchmarking
BPMN 2.0 Workflow Engines. In Proceedings of the
6th ACM/SPEC International Conference on Perfor-
mance Engineering ICPE 2015, pages 1–4. ACM.

Sonntag, M., Hahn, M., and Karastoyanova, D. (2012).
Mayflower - Explorative Modeling of Scientific Work-
flows with BPEL. In Proceedings of the Demo Track of
the 10th International Conference on Business Process
Management (BPM 2012), CEUR Workshop Proceed-
ings, 2012, pages 1–5. CEUR Workshop Proceedings.

Sonntag, M., Hotta, S., Karastoyanova, D., Molnar, D., and
Schmauder, S. (2011a). Using Services and Service
Compositions to Enable the Distributed Execution of
Legacy Simulation Applications. In Abramowicz, W.,
Llorente, I., Surridge, M., Zisman, A., and Vayssière,
J., editors, Towards a Service-Based Internet, Proceed-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

360

ings of the 4th European Conference ServiceWave 2011,
Poznan, Poland, 2011, pages 1–12. Springer-Verlag.

Sonntag, M., Hotta, S., Karastoyanova, D., Molnar, D., and
Schmauder, S. (2011b). Workflow-based Distributed
Environment for Legacy Simulation Applications. In
ICSOFT (1), pages 91–94.

Sonntag, M. and Karastoyanova, D. (2010). Next Generation
Interactive Scientific Experimenting Based On The
Workflow Technology. In Alhajj, R., Leung, V., Saif,
M., and Thring, R., editors, Proceedings of the 21st
IASTED International Conference on Modelling and
Simulation (MS 2010), 2010. ACTA Press.

Sonntag, M. and Karastoyanova, D. (2013). Model-as-you-
go: An Approach for an Advanced Infrastructure for
Scientific Workflows. Journal of Grid Computing,
11(3):553–583.

Strauch, S., Andrikopoulos, V., Bachmann, T., Karastoy-
anova, D., Passow, S., and Vukojevic-Haupt, K. (2013).
Decision Support for the Migration of the Application
Database Layer to the Cloud. In Cloud Computing
Technology and Science (CloudCom), 2013 IEEE 5th
International Conference on, volume 1, pages 639–646.
IEEE.

Vukojevic-Haupt, K., Karastoyanova, D., and Leymann, F.
(2013). On-demand Provisioning of Infrastructure,
Middleware and Services for Simulation Workflows. In
Service-Oriented Computing and Applications (SOCA),
2013 IEEE 6th International Conference on, pages 91–
98. IEEE.

Walker, E. (2009). The Real Cost of a CPU Hour. IEEE
Computer, 42:35–41.

Zhao, Y., Li, Y., Raicu, I., Lu, S., Lin, C., Zhang, Y., Tian,
W., and Xue, R. (2014). A Service Framework for Sci-
entific Workflow Management in the Cloud. Services
Computing, IEEE Transactions on, PP(99):1–1.

Performance�and�Cost�Evaluation�for�the�Migration�of�a�Scientific�Workflow�Infrastructure�to�the�Cloud

361

SHORT PAPERS

An Approach in the Design of Common Authentication Solution for a
Multi-Platform Cloud Environment

Primož Cigoj1,2, Borka Jerman Blažič2 and Tomaž Klobučar2
1Jožef Stefan International Postgraduate School, Jamova cesta 39, 1000 Ljubljana, Slovenia

2Jozef Stefan Institute, Laboratory for Open Systems and Networks, Jamova cesta 39, 1000 Ljubljana, Slovenia
{primoz, borka, tomaz}@e5.ijs.si

Keywords: Single Sign-on, Identity Management, Identity Federation, Cloud Computing, Security, Cloud Management,
Cloud Provisioning, Infrastructure-as-a-Service, IaaS, Multi-platform Cloud, Access Control, Authentication,
Authorization, Cloud Service Provider, Privacy, Software Platform, Centralized Systems, OpenStack,
VMware.

Abstract: The security provision within multi-platform cloud computing environment is still considered not to be
properly solved due to different problems with technical and human-based origin. This paper presents an
attempt to provide an authentication and authorization solution based on the single sign-on (SSO) approach
for cloud service users and administrators in a multi-platform environment. The problem of authentication in
cloud services is briefly introduced and the approach implemented for cloud environment with two different
proprietary (VMware) and open source (OpenStack) platforms is described.

1 INTRODUCTION

Cloud computing has revolutionized the provision of
computing services, transferring them from local to
locally unspecified remote environments, which are
controlled by third party service providers. The main
cloud computing challenge for vendors, providers and
users of clouds remains protection of the cloud
technology, services and users with adequate security
measures. According to the survey conducted by
Microsoft and the National Institute of Standards and
Technology (NIST), security in the cloud computing
model was the ICT executives’ main concern (Jansen
and Grance, 2011; Microsoft, 2010). Consequently,
many business entities are still not very keen on
adopting cloud computing.

In the cloud users alone have no control over their
data and their cloud identity. Installation procedures
are often complex and there is no adequate and
complete security solution that ensures the safe
deployment of the underlying infrastructure and safe
use of the services. Especially in the multi-platform
clouds and inter-clouds, where multiple cloud
systems can be accessed, users and administrators are
faced with different authentication and authorisation
systems, different login dialogs, and each login dialog
is matched with different credentials. In addition to
being difficult implementing strong authentication at

the user level (Tripathi and Mishra, 2011), it is also
complex to manage and create authentication
mechanisms for several services and several
platforms (Fernandes, Soares, Gomes, Freire and
Inácio, 2014). Identity federation and single sign-on
(SSO) techniques address these issues by allowing
exchange of authentication and authorization
information between two parties, such as an Identity
Provider (IdP) and a Service Provider (SP).

While the identity federation and single sign-on
concepts have been well covered in the literature in
the past years, in general as well as in the cloud
context e.g. (Pérez-Méndez, Pereniguez-Garcia,
Marin-Lopez, López-Millán and Howlett, 2014),
(Cruz Zapata, Fernández-Alemán and Toval, 2014),
there are still practical issues that prevent their
straightforward and simple application in the multi-
platform cloud environments. Our attempt described
in this paper was to design and develop a solution that
would provide trustworthy and secure authentication
and authorization service in such environment. The
proposed solution is based on the SSO principle and
was implemented on two different platforms
(OpenStack and VMware). It was tested and
evaluated within a large National Competence Centre
project on cloud-assisted services for different fields
of application.

The paper discusses the problem and related work
first. Then it introduces the selected SSO- based

365

solution, and describes the development approach and
the implementation course. The presentation ends
with discussion and plans for future work.

2 AUTHENTICATION AND
IDENTITY MANAGEMENT
SERVICES IN
MULTI-PLATFORM CLOUD
INFRASTRUCTURE

According to the Cloud Security Alliance (CSA)
(Simmonds, Rezek and Reed, 2011), the leader in the
field of cloud security, the largest identified cloud
security problem is related to the shared technology
issues. Infrastructure resource sharing can potentially
allow one consumer to peek into another consumer’s
data if the system does not provide strong system for
authorization and authentication. Here, the problems
of account hijacking or user credential theft are also
relevant. The traditional identity management (IdM)
approach is more centralized compared to the current
solution used in cloud computing, and usually is
based on user personal data, such as real name, user
name, e-mail address, identification number, access
permissions, etc. The use of a separate IdM system
within an organisation, and its connection with the
cloud is quite complicated, and there is no simple way
to extend its use to the cloud (Lonea, Tianfield and
Popescu, 2013). In order this to become part of the
cloud system the following actions and the
corresponding implementations are required (Cantor,
Kemp, Philpott and Maler, 2005):
 Registration of identities: Verification of a user

account is needed before proceeding with the
registration in accordance with the relevant
security standards. Organizations that transfer
their user accounts to the cloud must make sure
their user account management system is up-to-
date and safe.

 Authentication: Management and
implementation of the user authentication must
be performed in a trustworthy way. The IdM
systems should allow configuration of the
authentication systems. Another important
property of the system should be the cloud-
providers’ identification disclosure to third
party providers and the use of authentication by
both parties.

 Federation of identities: Federation of
identities allows users to use the same set of
credentials to obtain access to different
resources. User`s electronic identity and

attributes are securely shared across multiple
IdM systems. Federation of identities can be
achieved in several ways; e.g., based on SAML
(Cantor, Kemp, Philpott and Maler, 2005) or
the OpenID solution (Ferg, Fitzpatrick and
Howells, 2007). One of the important
properties is the required compatibility of cloud
providers’ IdM systems.

 Authorization: Authorization specifies the
rights of individual user accounts. It is
important for the cloud the account
management procedures to be set up and for the
rights verification from the highest system
authority. Furthermore, the granted right
should be consistent with the policy.

 Access control: Access control requirements
vary widely according to the type of the end-
user (an individual or an organization). In order
to implement an access control system, an
access control policy must be set, and its
implementation should allow the performed
actions to be traceable.

Apart from these recommendations it becomes
obvious that an optimal system for ensuring
authentication and authorization in a multi-platform
cloud system would also benefit from the single sign-
on approach principles. The Open Group defines SSO
as “a mechanism whereby a single action of user
authentication and authorization can permit a user to
access all computers and systems where that user has
access permission, without the need to enter multiple
passwords” (Group TO, 2014). The most important
security property that the SSO principle brings is the
common secure infrastructure, which can be carefully
managed and protected (Andronache and Nisipasiu,
2011). At the same time, when using the SSO
approach, the cloud services do not have to manage
each user account. Account management can be
carried out by a central authentication system.

Although the concepts of identity federation and
single sign-on are well known in the cloud research
literature there are still some practical design and
implementation issues worth discussing, especially in
the multi-platform cloud environments, cloud
federations, and inter clouds. General proposed
solutions for a multi-platform environment often do
not take into account the current implementation
status, functionalities and openness of the available
cloud platforms, as well as not take advantage of their
existing services. The papers also do not give enough
details of the proposed solutions and their integration
into existing platforms.

Panarello et al., for example, analyse
requirements for IaaS cloud federation (Panarello,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

366

Celesti, Fazio, Villari and Puliafito, 2014). While
they envisage SAML, OpenID and Shibboleth as an
authentication solution, only a standard and general
identity federation model is described without details
and without taking into account the platform
implementation specifics, such as current missing
SAML support in OpenStack and Hyper-V. They also
highlight only one type (OpenQRM) of cloud
platforms.

Different initiatives, projects and libraries on
regulation technologies for the Inter-Cloud
environment are covered in (Grozev and Buyya,
2014), (Toosi, Calheiros and Buyya, 2014). Libraries,
for example JCloud (java library), Apache LibCloud
(python library), or Apache DeltaCloud (ruby
library), and projects such as InterCloud, OPTIMIS,
mOSAIC, STRATOS, Contrail, have been designed
to abstract the programmers from the differences in
the management APIs of clouds and to provide
control over resource provisioning. The EU Contrail
project, for example, provides support for SAML and
oAuth in their latest version. However, this is still not
a practical solution for various cloud platforms, as
they are closed and don't have built-in support for
SAML yet (e.g. Hyper-V).

In (Abdo, Demerjian, Chaouchi, Barbar and
Pujolle, 2013) Abdo et al. discuss the cross-cloud
federation manager and propose a centralised broker-
based approach. A new entity named "broker" is
similar to the centralised solution described in this
paper, but has other goals (change of discovery and
match making).

3 THE APPROACH TAKEN IN
THE SOLUTION DESIGN

The multi-platform cloud infrastructure consisted of
the OpenStack and VMware cloud platforms, two of
the most known and widely used platforms for
provision of a cloud infrastructure as a service.
OpenStack is open source software for the
construction of private and public clouds. It uses a
role-based access control (RBAC) mechanism to
manage accesses to its resources (Ferraiolo et al.,
2001). The identity service in OpenStack is named
Keystone. The service authenticates users and
provides them with authorization tokens that can be
used for accessing the OpenStack services. The
current version of Keystone is centralized, and all its
users need to be registered in the Keystone database.

The other platform, VMware is considered as one
of the most feature-completed platforms in the field.

VMware vCloud Director is a cloud platform
software solution that enables enterprises to build
secure, multi-tenant private clouds by pooling
infrastructural resources into the virtual data centres,
and exposing them to users through the web-based
API and REST interfaces as fully automated,
catalogue-based services. The vCloud Director also
supports RBAC. The authentication method used in
vCenter that helps automate VMware vCloud
Director and other virtualization management system
processes is called “Share a unique session”. vCenter
uses a single set of credentials to enable connection
to the vCloud. The latest release 5.5 of the vCenter
application has introduced a new SSO approach
capability, which allows users to log in just once, and
obtain the valuated authentication for all vCloud’s
components. The vCloud API uses basic HTTP
authentication, which enables clients to obtain
authentication tokens.

By considering these characteristic the solution
for enabling a central SSO facility for both platforms
was designed with an aim to provide flexible and
secure authentication and authorization service for
both platforms. The solution is briefly described in
the next section. It was named Common
Authentication Solution for multi-platform cloud or
shortly CAS.

4 COMMON AUTHENTICATION
SOLUTION FOR
MULTI-PLATFORM CLOUD
SERVICE

4.1 Functional Description

The main objective followed during the development
of the CAS solution was to enable the cloud
infrastructure administrators and the other users to
access heterogeneous cloud’s infrastructure services
using just a single credential. The solution takes into
account cloud platforms’ specifics, as well as the
services and APIs already offered by those platforms,
and extends its usage to authorization and user access
rights management. Other objectives that were
followed during the development were to enable:
 better user experience; users should be able to

move between services securely and
uninterrupted,

 one dashboard for interacting with different
cloud SPs,

 reduction of the processing costs, obtained by
reducing the number of calls,

An�Approach�in�the�Design�of�Common�Authentication�Solution�for�a�Multi-Platform�Cloud�Environment

367

Figure 1: The CAS solution scheme.

 significantly shorter time required for
management of multiple accounts,

 higher level of the information security,
 provision of an audit log of the user operations

and actions.
By following these objectives CAS becomes a

favourable solution that enables administrators,
employees, consumers, and customers to access
clouds and their services with a single credential. In
order to illustrate how CAS works, we are using here
the example of an organisation (e.g. corporation or
university) with several different cloud
infrastructures on site or at a dislocated facility. The
infrastructure consists of different platforms for each
of the cloud, e.g. OpenStack and VMware. CAS is
located on the organisation site, and allows the site
administrator to add multiple cloud platforms, either
inside or outside the organisation. The CAS
application contains a database with the end users of
the organisation enabling the site administrator to
manage the allocation of resources and, the end users
applications in the different system platforms. The
end users need only one login. A user logs into the
CAS system and he finds there virtual machines
assigned to different cloud platforms. Therefore, the
federated approach and SSO in the CAS allows the
successfully authenticated end users to access
additional cloud platforms and services without re-
authenticating, since the relationship of trust had
already been established and was provided by the
CAS system.

The basic operational principles implemented in
the system are shown in Fig. 1. The system is split in
two parts – front end and back end. The first part of
the system is a web interface, built with the help of
the programming languages PHP, HTML, and
JavaScript. This interface enables end users to sign
into a central system with a browser and gain access
to all assigned cloud platforms. An administrator
assigns permissions to end-users, and manages the
access to different cloud platforms through the web
browser. The back end of CAS is responsible for
mapping, synchronizing and removing end users from
the remote cloud platforms. It uses REST access calls
(REST over HTTP protocol) for communication with
a remote terminal. The format of the exchanged data
depends on the end cloud platform accessed (JSON
and XML).

CAS provides two ways of end-user registration;
the first option is self-registration, and the second one
is registration through a social network account
(oAuth2). The oAuth2 solution, which has become a
popular open standard for authorization supported by
Google, Facebook, Twitter, and Yahoo was
implemented to enable another simple access to the
end users. It was designed for web applications with
servers that store confidential information, maintain,
state, and provide a secure way for an application like
CAS without requiring usernames and passwords
(Oracle, 2013). In addition to the oAuth and self-
registration, CAS supports also LDAP or AD
integration.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

368

Before the CAS administrator can manage end-
users, an instance of the remote cloud platform must
be created in the central system. Figure 2 shows the
CAS administrator dashboard, enabling the
administrator to easily add any cloud platform that
becomes part of the CAS. First, the administrator
selects the type of the platform and triggers the
generation of the extra required data fields for the
selected platform type. These fields are needed for
creation of the local instance of the remote platform.
In the case of OpenStack, the fields that belong to the
remote administrator, such as password, token and
tenant, are required to be filled with relevant data.
Once the cloud platform is added, the administrator
can import users from remote cloud platforms or add
them to the remote cloud platform on the CAS
administrator dashboard.

The back end part of the system automatically
adds a new end-user with the help of the REST calls.
In case of OpenStack, the REST calls are used to
insert end-users into the Keystone application. A
more detailed explanation of the end-user mapping by
the central system in the cloud platform can be found
in (Cigoj, 2014).

An end user logs into CAS by providing his CAS
login credentials. After a successful login, the user is
presented with the dashboard of remote platforms that
are accessible to him with a single click on the login
button without a username or a password. The end

user can then create, run and power off virtual
instances.

4.2 Implementation

The implementation of the CAS was based on the
available APIs of the cloud platforms, known
applications, such as CURL, REST, HTTPS, and the
Python programming languages.

For the OpenStack platform PHP scripts with the
support of CURL (a command line tool for
transferring data) were used to ensure the transfer of
end users from CAS into the remote OpenStack and
to automate common end user and administrative
tasks in combination with the CAS. The OpenStack
authentication service provided with the Keystone`s
API interface which is a component that allows the
administrators to manage and map end users into the
remote Keystone database was used for enabling the
end-user authentication process between the CAS and
the remote OpenStack platform. The Keystone
Identity Service enables clients to obtain tokens for
access to the OpenStack cloud services. The
Keystone API is using the RESTful web service
interface where all authentication and operation
requests directed to the Keystone API are performed
with the SSL protocol over the HTTP (HTTPS). Since
Keystone code can be executed by use of the HTTP
sessions, the external authentication methods were

Figure 2: CAS administrative dashboard.

An�Approach�in�the�Design�of�Common�Authentication�Solution�for�a�Multi-Platform�Cloud�Environment

369

applied. The Keystone SQL identity back end facility
was used together within the CAS for mapping the
end users credentials only once and for login them
into the OpenStack dashboard. Their credentials are
supplied to CAS only once. The Keystone API
supports both JSON and XML data serialization
formats, the response format uses JSON by default.
This feature was used in the CAS and the X-Auth-
Token is accompanied with the URLs of the other
services in the cloud.

The vCloud connection with the CAS is similar to
the solution applied in the OpenStack platform. The
vCloud APIs provide rich functionalities for the
management part of the vCloud platform, the vCloud
Director. Two methods were possible to be used for
the interaction of the vCloud Director cells with the
CAS: through a web browser UI or through the
vCloud API. The vCloud APIs are RESTful- based,
they are highly scalable, and use the HTTP or HTTPS
protocol for communication. As the vCloud directory
contains a set of APIs for vCloud’s provisioning and
management controls the programming of the
necessary extensions was relatively easy. The
returned objects from the API follow the XML
scheme where the properties are represented as
elements, and the object values as element attributes.

The prototype code that works across the
OpenStack and vCloud platforms is offered as an
open source code (https://github.com/primozc/sso).

4.3 User Migration and Federation

During the development of CAS a special attention
was given to the migration of the users from the CAS
to the cloud platform. An end user who is migrated to
the cloud and authenticated at CAS is able to access
the cloud platform assigned to him by an
administrator. As all users are registered and
authenticated in the CAS, the management of the end
users in remote identity service is not necessary
anymore.

API operations are performed to map the end
users in the local CAS database to the OpenStack
Keystone and the vCloud user database. These
operations provided by CAS enable administrators to
obtain and validate access tokens, manage users,
tenants, roles, and service endpoints. The
administrative API calls against services require
authentication; the calls to discover services are the
only ones without authentication.

An administration token (token for API calls) is
used for various administrative operations, such as
the integration of the OpenStack with the CAS or user
mapping. The Keystone Identity API verifies the

issued administration token and defines the
administration role. Administration tokens are stored
in the local CAS database system in the process of
adding a new cloud platform. A set of identity
attributes, such as email, username and tenant, are
additionally inserted into the OpenStack Keystone
API when the migration of the users into a cloud
platform is performed

The connection between the vCloud component
of vCloud platform and CAS is similar to the one
described above. CAS connects a user to vCloud on
the user’s request by an API call where user
credentials are passed as parameters. Since vCloud
supports SAML, the open source SimpleSAMLphp
library, which implements the SAML 2.0 standard,
was used for exchange of user messages between
CAS and the remote vCloud platform. In CAS an IdP
was defined according to the vCloud Organization
Federation Settings. End users, user groups’ data and
their roles in vCloud are required to be mapped from
the organization’s database and from the
organization’s SAML provider. This restriction
required additional functionality in CAS to be
developed for provision of the data mapping stored in
the vCloud Director database. As SimpleSAMLphp
application does not support dynamic generation of
metadata in an SP’s remote configuration file, an
additional upgrading code was developed. The
generated XML metadata file from the CAS IdP
contains several certificates and information (e.g.,
SingleLogoutService or AssertionConsumerService)
which are necessary by the vCloud Director to be able
to communicate with the CAS IdP and to validate if
it is sufficiently trustworthy. The generated XML
metadata file from the CAS IdP needs to be uploaded
into the vCloud federation metadata XML form
(VMware, 2012). Since SAML users and groups
cannot be found by use of a search function, user’s
data have to be mapped into vCloud with an
automated API call. Adding this feature to the SSO
the vCloud Director integration became complete.

5 DISCUSION AND
CONCLUDING REMARKS

The security threats in cloud computing can be
removed to a big extent with the system protection
capable to resist the attacks. When business entity
networks are migrated to the cloud, their data and
systems are no longer isolated, they share resources
with many other organizations, and this new status is
becoming much more attractive for malicious

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

370

attackers. In the cloud computing core technologies
identified vulnerabilities are mainly related to the
virtual machine escape, poor password protection,
poor authentication and authorization systems,
session hijacking, and insecure cryptographic
algorithms. The presented work in this paper can be
considered as an attempt to remove some of these
vulnerabilities that are related to the user
authentication and authorization.

Authentication and authorization of the
OpenStack and VMware platforms were carefully
studied before a solution enabling a federated IdM
approach to be applied in cloud computing
environment emerged. The developed solution, the
Common Authentication Solution connects both
platforms and enables secure authentication service
and friendly remote user management. CAS has been
implemented for integrating the user authentication of
the addressed platforms, but it is sufficiently general
to be used for other environment as well. The
Microsoft cloud solution already offers some options.
A SOAP library (Ruby library), for example, can be
used to use the functionality in Windows Remote
Management (WinRM) to call native object in
Windows. This includes, but is not limited to, running
batch scripts, powershell scripts and fetching WMI
variables. This way, we can communicate and map
users between CAS and the Hyper-V cloud. Another
popular open source cloud platform OpenNebula
contains a patch in the authentication system, and two
standard SimpleSAMLphp modules that can be used
to establish connection between CAS and
OpenNebula. Furthermore, Eucalyptus and
CloudStack are still missing the SAML support in
their authentication system, but their aim is to
integrate the SSO SAML support. Despite the lack of
SAML support there can be a patch developed to
support this feature. It is necessary to reiterate at this
point that our aim was to provide a unified interface
for many other well-known cloud providers and
provide simple integration of our platform with other
IaaS platforms.

Acting as a kind of a broker, CAS introduces only
a slight overhead (login to CAS) to the multi-platform
cloud operation from the user point of view when
only one platform is accessed. On the other hand CAS
relieves the user from frustration of having to
remember multiple passwords and enables him easier
access to multiple cloud platforms. CAS functionality
improves administration performance by providing
one interface to manage multiple cloud platforms.
The amount of time spent for logging on to different
cloud platforms is reduced and it provides faster
access to the resources.

Cloud computing still needs much more
development and deployment for provision of secure
and trustworthy services. The future development is
planned to be oriented towards provision of a unified
access point for many other well-known cloud
providers such as Amazon, DigitalOcean, Slicehost,
or Rackspace. For this reason, our future work is
oriented to the extension of the functionality of the
CAS system in order to support other features that are
common to different cloud providers and platforms,
such as management of a cloud network, virtual
machine, image and storage.

REFERENCES

Abdo, J. B., Demerjian, J., Chaouchi, H., Barbar, K., &
Pujolle, G. (2013). Broker-Based Cross-Cloud
Federation Manager. In Internet Technology and
Secured Transactions (ICITST), 2013 8th International
Conference for (pp. 244-251). IEEE.

Andronache I., Nisipasiu C., 2011. Web single sign-on
implementation using the simpleSAMLphp
application. Journal of Mobile, Embedded and
Distributed Systems. 3(1):21-9.

Cantor S., Kemp I.J., Philpott N.R., Maler E., 2005.
Assertions and protocols for the oasis security assertion
markup language. OASIS Standard.

Cigoj P., 2014. Cloud computing security and identity
management in the OpenStack platform. Ljubljana:
Jožef Stefan International Postgraduate School.

Cruz Zapata, B., Fernández-Alemán, J.L., & Toval, A.
(2014). Security in Cloud Computing: a Mapping
Study. Computer Science and Information Systems
12(1):161–184.

Ferg B., Fitzpatrick B., Howells C., Recordon D., Hardt D.,
Reed D., et al. 2007. OpenID authentication 2.0.

Fernandes, D.A.B., Soares, L.F.B, Gomes, J.V., Freire,
M.M., & Inácio, P.R.M., 2014. Security issues in cloud
environments: a survey. International Journal of
Information Security, vol. 13, iss. 2, pp. 113-170.

Ferraiolo D.F., Sandhu R., Gavrila S., Kuhn D.R.,
Chandramouli R., 2001. Proposed NIST standard for
role-based access control. ACM Transactions on
Information and System Security (TISSEC). 4(3):224-
74.

Group TO, 2014. Single Sign On. Available from:
http://www.opengroup.org/security/sso/.

Grozev, N., & Buyya, R. (2014). Inter�Cloud architectures
and application brokering: taxonomy and survey.
Software: Practice and Experience, 44(3), 369-390.

Jansen, W., Grance, T., 2011. Guidelines on security and
privacy in public cloud computing. NIST special
publication. 800:144.

Lonea A.M., Tianfield H., Popescu D.E., 2003. Identity
management for cloud computing. New Concepts and
Applications in Soft Computing: Springer. 175-99.

An�Approach�in�the�Design�of�Common�Authentication�Solution�for�a�Multi-Platform�Cloud�Environment

371

Microsoft. Microsoft Urges Government and Industry to
Work Together to Build Confidence in the Cloud 2010.
Available from: http://www.microsoft.com/en-
us/news/press/2010/jan10/1-20brookingspr.aspx.

Oracle, 2013. Oracle Access Management OAuth Service
2013. Available from: http://www.oracle.com/tech
network/middleware/id-mgmt/overview/oauthservice
white paper-2110557.pdf.

Panarello, A., Celesti, A., Fazio, M., Villari, M., &
Puliafito, A. (2014). A Requirements Analysis for IaaS
Cloud Federation. In 4th International Conference on
Cloud Computing and Services Science, Barcelona,
Spain.

Pérez-Méndez, A., Pereniguez-Garcia, F., Marin-Lopez,
R., López-Millán, G., & Howlett, J. (2014). Identity
Federations Beyond the Web: A survey. IEEE
Communications Surveys & Tutorials, Vol. 16, No. 4.

Simmonds, P., Rezek, C., Reed, A., 2011. Security
guidance for critical areas of focus in cloud computing
v3.0. Cloud Security Alliance. 176 pages.

Tripathi, A., Mishra, A. (2011). Cloud computing security
considerations. In: IEEE International Conference on
Signal Processing, Communications and Computing,
pp. 1–5.

Toosi, A. N., Calheiros, R. N., & Buyya, R. (2014).
Interconnected cloud computing environments:
Challenges, taxonomy, and survey. ACM Computing
Surveys (CSUR), 47(1), 7.

VMware, 2012. vCloud director user's guide, 2012.
Available from: http://pubs.vmware.com/vcd-
51/topic/com.vmware.ICbase/PDF/vcd_51_users_guid
e.pdf.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

372

Executing Bag of Distributed Tasks on Virtually Unlimited Cloud
Resources

Long Thai, Blesson Varghese and Adam Barker
School of Computer Science, University of St Andrews, Fife, U.K.

fltt2, varghese, adam.barkerg@st-andrews.ac.uk

Keywords: Cloud Computing, Bag of Distributed Tasks, Cost vs Performance Trade-off, Decentralised Execution.

Abstract: Bag-of-Distributed-Tasks (BoDT) application is the collection of identical and independent tasks each of
which requires a piece of input data located around the world. As a result, Cloud computing offers an effective
way to execute BoT application as it not only consists of multiple geographically distributed data centres but
also allows a user to pay for what is actually used. In this paper, BoDT on the Cloud using virtually unlim-
ited cloud resources is investigated. To this end, a heuristic algorithm is proposed to find an execution plan
that takes budget constraints into account. Compared with other approaches, for the same given budget, the
proposed algorithm is able to reduce the overall execution time up to 50%.

1 INTRODUCTION

Bag-of-Tasks (BoT) is the collection of identical and
independent tasks executed by the same application
in any order. Bag-of-Distributed-Tasks (BoDT) is a
subset of BoT in which each task requires data from
somewhere around the globe. The location where a
task is executed is essential for keeping the execution
time of the BoDT low, since data is transferred from
a geographically distributed location. It is ideal to as-
sign tasks to locations that would be in geographically
close proximity to the data.

The centralised approach for executing BoDT, in
which data from multiple locations are transferred and
executed at a single location, tends to be ineffective
since some data resides very far from the selected lo-
cation and takes a long time to be downloaded. An-
other approach is to group the tasks of the BoDT in
such a way that each group can be executed near the
location of the data. However, this approach requires
an infrastructure which is decentralised and globally
distributed. Cloud computing is ideally suited for
this since public cloud providers have multiple data
centres which are globally distributed. Furthermore,
since clouds are available on a pay-as-you-go basis,
it is cost effective as a user only pays for Virtual Ma-
chines (VMs) that are required.

Cloud computing can facilitate the execution of
BoDT, and at the same time introduce the challenge
of assigning tasks to VMs by considering the loca-
tion for processing each task, the user’s budget con-

straint, as well as the desired performance, i.e. exe-
cution time, for executing the task. In an ideal case,
it is expected that maximum performance is obtained
while minimising the costs.

In our previous paper (Thai et al., 2014b), we ap-
proached this problem by assuming limited resources
were available. However, as Cloud providers offer
virtually unlimited resources, the limit should be de-
termined based on the user’s budget constraint. In this
paper, we present our approach for executing BoDT
on the Cloud with virtually unlimited resources and
is only limited by a user specified budget constraint.
Compared with other approaches, with the same given
budget, our algorithm is able to reduce the overall ex-
ecution time up to 50%.

The contributions of this paper are i) a mathemat-
ical model of executing a BoDT application on the
Cloud with budget constraints, ii) a heuristic algo-
rithm which assigns tasks to Cloud resources based
on their geographical locations, and iii) an evaluation
comparing our approach with centralised and round
robin approaches.

The remainder of paper is structured as follow.
Section II presents the mathematical model of the
problem. Section III introduces the heuristic algo-
rithms producing an execution plan based on the
user’s budget constraint. Section IV evaluates the ap-
proach. Section V presents the related work. Finally,
this paper is concluded in section VI.

373

2 PROBLEM MODELLING

Let L = fl1:::lmg be the list of Cloud locations, i.e.
location of Cloud provider’s data centres, and V M =
fvm1:::g be the list of Cloud VMs. For vm 2 V M,
lvm 2 L denotes the location in which vm is deployed.
Let V Ml �V M be the list of all VMs deployed at lo-
cation l 2 L. The number of items in V M is not fixed
since a user can initiate as many VMs as possible.

Let T = ft1:::tng be the list of tasks, and sizet de-
note the size of a task. The time (in seconds) taken
to transfer data from a task’s location to a Cloud lo-
cation is denoted as transt;l . Similarly, transt;vm for
vm 2 V M is the cost of moving t to vm (or to a loca-
tion on which vm in running; transt;vm = transt;lvm).
We assume that there is only one type of VM is used,
hence, the cost of processing one unit of data is iden-
tical and is denoted as comp.

The time taken to execute task t at vm is:

exect;vm = exect;lvm = (transt;vm + comp)� sizet (1)

Let Tvm � T be the list of tasks executed in vm 2
V M. All tasks must be executed and is represented as
the following constraint:[

vm2V M

Tvm = T (2)

One task should not be executed in more than one
location expressed as an additional constraint:

Ti\Tj = /0 for i; j 2V M and i 6= j (3)

The execution time of all tasks on vm 2V M is:

execTvm = å
t2Tvm

exect;vm (4)

As it takes some times to create a VM, the over-
head associated with the start up of each VM denoted
as start up. The execution time of vm 2 V M to exe-
cute all tasks in Tvm is:

execvm = start up+ execTvm (5)

It should be noted that Equation 5 can only be ap-
plied if there are task(s) assign to a VM, i.e. Tvm 6= /0.
Otherwise, it is unnecessary to create a VM, thus its
execution time is zero.

Assuming each VM is charged by hour, i.e. 3600
seconds, the number of charged time blocks is:

tbvm = dexecvm

3600
e (6)

Equation 6 contains the ceiling function, which
means the execution time is rounded up to the near-
est hour in order to calculate the number of used time
blocks. In other words, a user has to pay for a full
hour even if only a fraction of the hour is used.

Let P = fTvm1 :::Tvmpg be the execution plan,
whose each item is a group of tasks assigned to one
vm 2 V M. Let V MP denote the list of VMs used by
execution plan P. Similarly, let LP be the list of loca-
tions where all VMs of plan P are deployed. More-
over, Pl denotes the execution plan for location l 2 L,
which means LPl = flg and V MPl =V Ml .

As all VMs are running in parallel, the execution
time of a plan is equal to slowest VM’s:

execP = max
vm2V MP

execvm (7)

The total number of time blocks used is the sum
of the time blocks used by each VM, represented as:

tbP = å
vm2V MP

tbvm (8)

The budget constraint is the amount of money that
a user is willing to pay for executing the BoDT. Even
though Cloud providers charge users for using com-
pute time on virtual machines and transferring data,
only the renting cost is considered as the amount of
downloaded is unchanged for any given problem, i.e.
regardless the execution plan, the same amount of
data is downloaded, thus the data transferring cost.

The budget constraint is mapped onto the number
of allowed time blocks tbb by dividing the budget to
the cost of one time block (this is possible, because
of the assumption that there is only one VM type).
Hence, the problem of maximising the performance
of executing a BoDT on the Cloud with a given bud-
get constraint is to find an execution plan P in order
to minimise execP while keeping tbP = tbb and satis-
fying constraints in Equations 2 and 3.

3 ALGORITHMS

As stated in the previous section, the optimal plan for
executing BoDT on the Cloud with budget constraint
can be found by solving the mathematical model.
However, solving the mathematical model can take
considerable amount of time since it involves consid-
ering multiple possibilities of assigning tasks to dif-
ferent VMs at multiple Cloud locations. In this sec-
tion, we propose an alternative approach which is a
heuristic algorithm for finding an executing plan for a
BoDT based on a user’s budget constraint.

3.1 Select Initial Number of VMs at
Each Location

The main idea of the approach presented in this pa-
per is to specify a set of VMs for each location, then

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

374

to reduce the number until the total number of VMs
across all locations is tbb.

In order to determine the initial number of VMs at
each location, we make an assumption that it is pos-
sible to limit each VM to be executing in one time
block, i.e. if a VM finishes its execution in more than
one time block, its tasks can be split and scheduled
onto two VMs. Then, the total number of time blocks
is equal to the total number of VMs across all loca-
tions. Thus, the constraint tbb also limits the total
number of VMs, each of which uses no more than
one time block. Hence, initially, the number of VMs
at each location, i.e. V Ml for l 2 L, can be set to tbb.

3.2 Find Execution Plan based on
Budget Constraint

Let Pnl be the plan in which tasks are assigned to their
nearest location, i.e. the location in which exect;l is
minimum. Each item in Pnl represents the list of tasks
assigned to a location (not a VM).

Algorithm 1: Find Execution Plan based on Budget Con-
straint.

1: function FIND PLAN(tbb;Pnl ;V M)
2: P /0

3: for l 2 LPnl do
4: Pl ASSIGN(Tl ;V Ml)
5: if tbPl > tbb then
6: FAIL
7: end if
8: P Pl
9: end for

10: P REDUCE(P; /0;T RUE)
11: if tbP > tbb then
12: P REDUCE(P; /0;FALSE)
13: end if
14: if tbP > tbb then
15: FAIL
16: end if
17: P BALANCE(P)
18: return P
19: end function

Algorithm 1 finds a plan with minimum execution
time based on the budget constraint tbb. The nearest
plan Pnl and the initial list of virtual machines V M are
provided as input. The algorithm uses three functions,
namely ASSIGN, REDUCE and BALANCE.

First of all, the algorithm assigns tasks to VMs
deployed in their nearest locations (From Line 3 to
9). Line 5 checks if the number of used time block in
a location is more than the budget constraint. If that

is the case, then it is impossible to find an execution
plan satisfying the given budget constraint.

Secondly, some VMs are removed by moving its
tasks to other ones until the budget constraint is sat-
isfied (From Line 10 to 13). The reassignment can
be performed between VMs in the same location or
across multiple locations. If after reducing, the num-
ber of VMs is still higher than tbb, it is impossible to
satisfy the budget constraint (Lines 14 and 15).

Finally, as the execution times between VMs are
different (for example, one VM can take longer to fin-
ish than the other ones) it is necessary to balance out
the execution times between all VMs so that they can
finish at the same time, thus reduce the overall execu-
tion time (Line 17).

3.3 Assign Tasks to VMs

Algorithm 2 aims to evenly distributed tasks from T 0

to the set of receiving VMs.

Algorithm 2: Assign Tasks to VMs.

1: function ASSIGN(T 0;V M0)
2: T 0 T 0 sorted by �exect;l for t 2 T 0

3: for t 2 T 0 do
4: V M0 V M0 filtered execvm + exect;vm �

3600
5: if V M0 = /0 then
6: FAIL
7: end if
8: V M0 V M0 sorted by (transt;vm;execvm)

for vm 2V M0

9: V M0 argminvm2V M0 transt;vm
10: vm V M0[0]
11: Tvm Tvm[ftg
12: end for
13: Pnl fTvm for vm 2V M0g
14: return Pnl
15: end function

First of all, tasks are sorted in descending order
based on their execution times (Line 2). Then, for
each task, all the VMs which can execute it without
requiring more than one time block is selected (Line
4). If there is no VM selected, i.e. it will take more
than one time block if a task is assigned to any given
VMs, the function fails (Lines 5 and 6).

All the selected VMs are sorted based on the dis-
tance between VM’s location and the task’s location,
and by their current execution time (Lines 8). The
task is assigned to the first VM in the sorted collec-
tion (Lines 10 and 11). In other words, Algorithm 2
tries to assign a task to the nearest VM with the lowest
execution time.

Executing�Bag�of�Distributed�Tasks�on�Virtually�Unlimited�Cloud�Resources

375

3.4 Reduce the Number of VMs

Algorithm 3 is used to reduce the number of VMs by
moving all tasks from one VM to others which are ei-
ther in the same or on different locations. It is a recur-
sive process which takes the current plan Pn, and the
list of VMs which cannot be removed from the plan
Ign, and the boolean value indicating if the reducing
process is applied locally or globally is local.

Algorithm 3: Reduce VMs.

1: function REDUCE(P; Ign; is local)
2: vm argminvm2V MP

execvm
3: if is local = T RUE then
4: V M0 V Mlvm � vm
5: else
6: V M0 V MP� vm
7: end if
8: P0 ASSIGN(Tvm;V M0)
9: if tbP0 < tbP then

10: P P0

11: else
12: Ign Ign[fvmg
13: end if
14: if tbP = tbb or Ign =V MP then
15: return V Ml for l 2 L
16: else
17: return LOCAL REDUCE(Pn; Ign)
18: end if
19: end function

First, a VM with lowest execution time is selected
(Line 2). Then the remaining VMs, which can be ei-
ther in the same (Line 4) or on different Cloud loca-
tion (Line 6), are selected as receiving VMs.

After that, all tasks from selected VM are reas-
signed to other VMs (Line 8) by reusing the Algo-
rithm 2. Notably, the receiving VMs are not empty
but already contain some tasks.

If the reassignment reduces the number of VMs
(Line 9), the current plan is updated (Line 10). Other-
wise, the selected VM is added into the ignore list Ign
(Line 12). If the total time block satisfies the given
constraint or all VMs are ignored (Line 14), the pro-
cess stops and returns the current plan (Line 14), oth-
erwise it continues (Line 17).

3.5 Balance Tasks between VMs

After the budget constraint is satisfied, the execution
times between VMs can be uneven, i.e. some VMs
can have higher execution times than the others. As
the execution time of the plan execP is based on the

VM with highest execution time, it is necessary to
balance out execution time between them.

Algorithm 4: Balancing Algorithm.

1: function BALANCE(P)
2: vm argminvm2V MP

execvm
3: T 0vm Tvm sorted by �exect;vm
4: for t 2 T 0vm do
5: V M1 (V Mp�fvmg) sorted by transt;vm
6: vm0 NULL
7: for vm1 2V M1 do
8: if t is never in vm1 then AND rtc1 +

exect;c1 < rtc0
9: vm0 vm1

10: BREAK
11: end if
12: end for
13: if vm0 6= NULL then
14: BREAK
15: end if
16: end for
17: if vm0 6= NULL then
18: T 0vm Tvm� t
19: T 0vm0

 Tvm0 [ftg
20: P (P�fTvm;Tvm0g)[fT 0vm;T

0
vm0
g

21: go to 2
22: end if
23: return P
24: end function

Algorithm 4 is an iterative process which tries to
move tasks from a VM with highest execution time
(Line 2) to the nearest VM possible. There are two
conditions for selecting a receiving VM: the selected
task is never assigned to it and its execution time after
receiving the task is not higher than the current exe-
cution time of the giving VM (Line 8).

3.6 Dynamic Scheduling To Avoid Idle
VM

Even though Algorithm 1 aims to build the plan in
which all VMs finish their execution nearly at the
same time, due to the instability of the network and
other unaccountable factors, e.g. service failure, it is
not unusual for one VM to finish before others. As
the cost of a full hour is already paid, it is necessary
to utilise the remaining time of the finished VMs in
order to reduce not only idle and unpaid time but also
the execution time of other VMs.

Let rtvm be the actual running time of a VM.
Let evm and Trvm be the estimated remaining ex-
ecution time and remaining tasks of vm 2 V M.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

376

terminate time denote the time it take for a VM to be
shut down. Finally, thr1 and thr2 are two threshold
values indicating the required remaining execution
time and number of tasks. As unfinished VMs are still
running when the reassignment is being performed,
those thresholds aim to avoid reassigning tasks al-
ready executed by one VM to another. The idea of
dynamic rescheduling is to move Trvm of a VM to an-
other finished one while satisfying thr1 and thr2 in
order to reducing its evm.

In order to support dynamic scheduling, we add a
feature which monitors the execution of VMs, keeps
track of the remaining tasks and execution times, and
detects a VM which has just finished its execution.

Algorithm 5: Dynamic Reassignment.

1: function REASSIGN(vm)
2: if 3600� rtvm < terminate time then
3: FAIL
4: end if
5: V M1 fV MP�fvmgg sorted by �evm1 for

vm1 2V M1
6: vm0 NULL
7: for vm1 2V M1 do
8: if evm1 � thr1 AND Trvm1

� thr2 then
9: vm0 vm1

10: BREAK
11: end if
12: end for
13: if vm0 = NULL then
14: FAIL
15: end if
16: T 0r Trvm sorted by transt;vm for t 2 T 0r
17: T /0

18: el 3600� rtvm� terminate time
19: for t 2 T 0r do
20: exec0T execT + exect;vm

21: if exec0T �
evm0�thr1

2 OR exec0T > el then
22: BREAK
23: end if
24: T T [ftg
25: T 0r T 0r �ftg
26: end for
27: Trvm Trvm �T 0r
28: Tvm T
29: T IME OUT (vm;el)
30: end function

Algorithm 5 is invoked every time a VM that has
just finished its execution. First, it check whether
there is enough time in a finished VM to execute some
tasks (Line 2). This check ensures that the finished
VM is able to be terminated before using another time
block. Then, the VM which not only has the highest

remaining execution time but also satisfies thr1 and
thr2 is selected (Lines 5 to 15).

After that, some of the tasks are moved from the
selected VM to the finished one until some conditions
are met: i) the execution time of the finishes VM is
greater or equal half of the remaining execution time
of the giving one, or, ii) the finished VM will take
more than one time block to finish its execution if
more tasks are added (from Lines 16 to 26).

Notably, Algorithm 5 is invoked only one at a
time, i.e. if there are multiple VMs that have com-
pleted executing their tasks, only one of them is reas-
signed tasks while other VMs wait.

Finally, the timeout feature is added to prevent the
finished VM, which is just assigned some more tasks,
to use more than one time block. Basically, it takes
the VM and the allowed execution time as arguments
(Line 29), if the VM is still running when time out,
it is automatically terminated and the remaining tasks
are moved to another VM with lowest remaining exe-
cution time, i.e. the one that is likely to finish first.

4 EXPERIMENTAL EVALUATION

4.1 Set-up

In order to evaluate our proposed approach, we de-
veloped a word count application in which each task
involved downloading and counting the number of
words in a file from a remote server. Those files were
located on PlanetLab (PL), a test-bed for distributed
computing experiments (Chun et al., 2003). We had
5700 files across 38 PL nodes and the total amount
of data for each experiment run was more than 12 gi-
gabytes. The VMs were deployed on eight Amazon
Web Service (AWS) regions.

Prior to the experiment, we ran the test with fewer
tasks in order to collect the computational cost, i.e.
comp, and communicational costs between all AWS
regions and PlanetLab Nodes (i.e. trans).

Based on our algorithm, at least four VMs were
required to execute all 5700 tasks. We then set tbb =
f4;6;8;10;12;14;16;18;20g, i.e. the number of time
block (or VMs) that we wanted to use. For each value
of tbb, we ran the execution three times to find the
mean and standard deviation.

For comparison, we implemented two simple ap-
proaches for executing BoDT on the Cloud:

� Centralised approach: one cen-
tralised location was selected as lc =
argminl2L (åt2T transt;l � sizet), i.e. the cost
of moving all tasks to this location is a minimum

Executing�Bag�of�Distributed�Tasks�on�Virtually�Unlimited�Cloud�Resources

377

when compared to other locations. This approach
was developed based on the centralised approach
introduced in our previous paper (Thai et al.,
2014b), however, instead of using only one
VM at the selected location, in this paper, the
number of VMs was equal to the one used by
our proposed approach. In other words, this
centralised approach enjoyed the same execution
parallelism as the proposed one.

� Round Robin approach: for this approach, all
Cloud locations was sorted in ascending order
based on their costs of moving all tasks to them.
This means the first Cloud location was the one
selected by the centralised approach. After that,
VMs were added to each location in circular or-
der, e.g. the first VM was added to the first Cloud
location in the sorted list.

For both approaches, Algorithm 2 was used to
evenly distribute tasks to all VMs.

4.2 Dynamic Reassignment

Before going into the main experiment, it is neces-
sary to demonstrate the need of using dynamic reas-
signment for VMs that finish executing their assigned
tasks earlier than others. Figure 1 presents the result
of running the same execution plan with tbb = 4, i.e.
there were four VMs. Each bar represents the exe-
cution time of a VM. Without reassignment, one VM
took longer to finish its execution thus increasing the
overall execution time. Dynamic reassignment helped
to balance out the execution time between VMs so
that all VMs could finish at about the same time,
which in turn reduced the overall execution time. Dy-
namic reassignment is applied for the remaining ex-
periments presented in this section.

4.3 Experimental Results

Figure 2 presents the execution times corresponding
for each value of the number of VMs for all three ap-
proaches. The centralised approach had the highest
execution times as even though it selected the loca-
tion with lowest transfer cost for all tasks but some
tasks were very far from the Cloud location which re-
sulted in the high data transfer time. On the other
hand, the round robin approach performed better as
it deployed VMs at multiple Cloud locations, which
means it was possible for tasks to be executed near
their data sources. Finally, it is evident that for the
same number of VMs (or budget) our approach al-
ways had the lowest execution time in comparison
with other two.

Without_Reassignment With_Reassignment

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

0
10
00

20
00

30
00

40
00

ap-southeast-1
ap-southeast-2
us-east-1
us-west-2

Figure 1: Compare execution without and with reassign-
ment.

Number of VMs

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

4 6 8 10 12 14 16 18 20

0
60
0

18
00

30
00

42
00

54
00

Centralised
Decentralised
Round Robin

Figure 2: Execution Times.

A reason for the improvement is that our approach
not only deployed VMs at multiple locations but also
carefully selected those locations so that the major-
ity of tasks could be executed near their data sources.
The two simple approaches decided the location(s) of
VMs based on all tasks, by assuming all tasks were
assigned to one Cloud location. On the other hand,
our approach took a more fine-grain method by as-
signing each task to its nearest location first and then
reassigning them to others location until the budget
constraint was satisfied.

As the result, with the same given budget con-
straint, our approach was 30% to 50% faster than
the centralised approach. In comparison to the round
robin approach, ours was able to reduce the execution
times up to 30%.

Figure 3 presents the number of actual time
blocks, which can be mapped onto actual cost, con-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

378

4 6 8 10 12 14 16 18 20

Number of VMs

N
um

be
r o

f T
im

e
B

lo
ck

s

0
5

10
15

20
Decentralised Approach
Centralised Approach
Round Robin Approach

Figure 3: Actual Number of Used Time Blocks, i.e. cost.

sumed by three approaches. It shows that our ap-
proach was able to satisfy the budget constraint in all
cases. Moreover, when there were four VMs, the cen-
tralised and round robin approaches were more ex-
pensive than the decentralised one. It was because
each of their VMs required more than one hour to fin-
ish executing all the assigned tasks and the overall ex-
ecution time was higher than 3600 seconds, as shown
by Figure 2. Which means that the constraint tbb = 4
could only be satisfied by the decentralised approach.

4.4 Trade-off between Cost and
Performance

As presented in Figure 2, the higher the budget con-
straint is (i.e. more VMs), the better the performance
is. In theory, it is possible to keep adding more VMs
in order to achieve better performance. However, the
performance gain for each additional VM also de-
creases as the total number of VMs increases.

Hence, it is up the user to decide how much im-
provement in performance can be afforded. There
are some simple criteria to consider such as a defined
budget constraint, the desired execution time or defin-
ing a threshold in the performance gain (for example,
stop adding more VM(s) if the performance gain is
less than 60 seconds).

A user can also make the decision of how many
VMs to use based on the trade-off between perfor-
mance and cost, as mentioned in (Thai et al., 2014b).

5 RELATED WORK

In the Grid environment in which the resources are
shared between multiple organisations, the overall

performance of a distributed framework by process-
ing data in close proximity to where it resides is im-
proved (Ranganathan and Foster, 2002). Similarly, a
heuristic algorithm is proposed to improve the perfor-
mance of executing independent but file-sharing tasks
(Kaya and Aykanat, 2006). An auto-scaling algorithm
is proposed to satisfy deadline and budget constraints
when each task requires distributed data from multi-
ple sources (Venugopal and Buyya, 2005).

However, the application of Grid computing re-
search on Cloud computing is limited because: i)
the Cloud resources are (virtually) unlimited, hence
a user is free to add or remove VMs whenever she
wants but ii) the monetary cost factor has to be con-
sidered as the resource is not available free-of-charge.

Recently, running application on the Cloud has re-
ceived attention from many researchers. Statistical
learning had been used to schedule the execution of
BoT on the Cloud (Oprescu and Kielmann, 2010).
The method for scaling resource based on given bud-
get constraint and desired application performance
was also investigated (Mao et al., 2010). Neverthe-
less, those papers do not consider the location of data.

Cloud computing is employed for improving the
performance of data intensive application, such as
Hadoop, whose data is globally located (Ryden et al.,
2014). Research that takes geographical distance
into account while executing workflows is also re-
ported (Luckeneder and Barker, 2013; Thai et al.,
2014a). However, recent researches on applying
Cloud computing for applications with geographi-
cally distributed data only focus on improving the per-
formance without considering the monetary cost.

Our previous work (Thai et al., 2014b) aimed to
determine a plan for executing BoDT on the Cloud,
however, it made an assumption that there was only
one VM that could be deployed at each Cloud region.

Our paper differentiates itself from prior research
by taking advantage of the decentralised infrastruc-
ture of Cloud computing in executing BoDT applica-
tion. We tries to decide not only the amount of re-
sources but also the locations where resources, i.e.
VMs, must be located. Moreover, our research ex-
ploits of the virtually unlimited resources of Cloud
computing by letting a user decides how much re-
sources that she wants based on her budget. Fi-
nally, the trade-off between performance gain and ad-
ditional cost is also presented.

6 CONCLUSION

Due to its decentralised infrastructure and virtually
unlimited resources, Cloud computing is suitable to

Executing�Bag�of�Distributed�Tasks�on�Virtually�Unlimited�Cloud�Resources

379

execute BoDT, whose data is globally distributed all
over the world. It is challenging to decide how to as-
sign tasks to Cloud VMs based on a user’s budget con-
straint while minimising the execution time.

The above problem was mathematically modelled
in this paper. We also proposed a heuristic approach
which assigned BoDT to Cloud VM(s) in order to
maximise performance and to satisfy the allowed cost
provided by a user.

Furthermore, we implemented a dynamic reas-
signment feature to utilise the idle time of a VM
that completes execution ahead of others by assigning
tasks from other VMs onto it. This feature reduces the
overall execution time when a number of VMs take
longer to finish their execution due to service failure
or network instability.

Our approach was evaluated and able to provide
execution plans which satisfied given budget con-
straints. Compared to the centralised and round robin
approaches, our approach reduced the execution time
on average by 27%. Our approach was also able to
satisfy the low budget while the others did not.

In the future, we plan to further improve dynamic
resource provisioning and tasks scheduling so that
they can be performed during execution in order to
handle expected events, e.g. network instability or
machine failure. Moreover, the different types of
Cloud instances, which have varying performance and
cost will be taken into account.

ACKNOWLEDGEMENTS

This research is supported by the EPSRC grant
‘Working Together: Constraint Programming and
Cloud Computing’ (EP/K015745/1), a Royal Society
Industry Fellowship, an Impact Acceleration Account
Grant (IAA) and an Amazon Web Services (AWS)
Education Research Grant.

REFERENCES

Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L.,
Wawrzoniak, M., and Bowman, M. (2003). Planet-
lab: An overlay testbed for broad-coverage services.
SIGCOMM Comput. Commun. Rev., 33(3):3–12.

Kaya, K. and Aykanat, C. (2006). Iterative-improvement-
based heuristics for adaptive scheduling of tasks shar-
ing files on heterogeneous master-slave environments.
Parallel and Distributed Systems, IEEE Transactions
on, 17(8):883–896.

Luckeneder, M. and Barker, A. (2013). Location, location,
location: Data-intensive distributed computing in the

cloud. In In Proceedings of IEEE CloudCom 2013,
pages 647–653.

Mao, M., Li, J., and Humphrey, M. (2010). Cloud auto-
scaling with deadline and budget constraints. In Grid
Computing (GRID), 2010 11th IEEE/ACM Interna-
tional Conference on, pages 41–48.

Oprescu, A. and Kielmann, T. (2010). Bag-of-tasks
scheduling under budget constraints. In Cloud Com-
puting Technology and Science (CloudCom), 2010
IEEE Second International Conference on, pages
351–359.

Ranganathan, K. and Foster, I. (2002). Decoupling compu-
tation and data scheduling in distributed data-intensive
applications. In Proceedings of the 11th IEEE Interna-
tional Symposium on High Performance Distributed
Computing, HPDC ’02, pages 352–, Washington, DC,
USA. IEEE Computer Society.

Ryden, M., Oh, K., Chandra, A., and Weissman, J. B.
(2014). Nebula: Distributed edge cloud for data in-
tensive computing.

Thai, L., Barker, A., Varghese, B., Akgun, O., and Miguel,
I. (2014a). Optimal deployment of geographically dis-
tributed workflow engines on the cloud. In 6th IEEE
International Conference on Cloud Computing Tech-
nology and Science (CloudCom 2014).

Thai, L., Varghese, B., and Barker, A. (2014b). Execut-
ing bag of distributed tasks on the cloud: Investi-
gating the trade-offs between performance and cost.
In Cloud Computing Technology and Science (Cloud-
Com), 2014 IEEE 6th International Conference on,
pages 400–407.

Venugopal, S. and Buyya, R. (2005). A deadline and bud-
get constrained scheduling algorithm for escience ap-
plications on data grids. In in Proc. of 6th Inter-
national Conference on Algorithms and Architectures
for Parallel Processing (ICA3PP-2005, pages 60–72.
Springer-Verlag.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

380

Automatic Abstraction of Flow of Control in a System of
Distributed Software Components

Nima Kaviani1, Michael Maximilien2, Ignacio Silva-Lepe2 and Isabelle Rouvellou2

1University of British Columbia, Vancouver, Canada
2IBM Watson Research Center, New York, U.S.A.

nkaviani@cs.ubc.ca, fmaxim, isilval, rouvelloug@us.ibm.com

Keywords: Platform-as-a-Service (PaaS), CloudFoundry, Introspection.

Abstract: CloudFoundry (CF) provides an open source platform-as-a-service software for deploying scalable software
systems to the cloud. The architecture for CF is distributed by design and consists of several components which
interact with one another through a message-oriented middleware. This message-oriented distributed design
delivers on the scalability and resiliency requirements of the platform. In such a complex distributed multi-
component system, there is a steep learning curve for software developers to understand how components
interact, what messages are exchanged between them, and how the message exchanges affect the behaviour
of the system. In particular developers find it difficult to identify the execution flows, the authentication
flows, interactions with the persistence layer, etc. We have developed a framework that allows interpreting
the behaviour of the system by analyzing the exchanged messages between components, inspecting message
contents, and extracting data and control flow across components. The paramount aim is to improve develop-
ers’ understandability of the system and to examine software resiliency through approaches like bug injection
and message alterations. An initial version of our framework was released to the CF community and we have
collected feedback that indeed show that we are achieving some of our goals.

1 INTRODUCTION

Utilizing open source software (OSS) systems to
manage infrastructure, platforms, or applications is
increasingly popular in the domain of cloud comput-
ing (ope, a)(ope, b). With Openstack (ope, c) and
CloudStack (clo, a) as examples of widely adopted
open source Infrastructure-as-a-Service (IaaS) en-
ablers, and CloudFoundry (clo, b) and Open-
Shift (ope, d) as examples of open source Platform-as-
a-Service (PaaS) enablers, the anticipated role of OSS
in the cloud becomes more apparent than ever before.
As such, a lot of companies have started looking into
understanding, deploying, and extending these open
source platforms for their infrastructure. To name a
few examples, IBM is partnered with Openstack (ibm,
a) and CloudFoundry(ibm, b) to have their software
deployed on its infrastructure; and Baidu (bai, b) has
seven hundred developers working on CloudFoundry
enabled deployments (bai, a).

With the rapid development cycles for these
highly distributed open source cloud platforms, it has
become increasingly more difficult for software de-
velopers to understand and assess the behaviour of an

existing open source cloud platform, track evolutions
of software components across releases, or assess re-
liability of a new release. OpenStack has already
gone through eight major revisions, CloudFoundry
has moved from its first version to the second version,
and Eucalyptus has already made six releases. In such
a fast-evolving software ecosystem, developers and
architects adopting these technologies need to under-
stand the issues aforementioned to accurately answer
the following questions: i) How do the components
in the system interact with one another? What is the
flow of control and data in the system? What message
are exchanged and what are their types and contents?
ii) How is the system evolved from one release to an-
other? iii) How reliable is a new release with respect
to changes or use cases required by a target client?
and iv) How do we detect anomalies in the behavior
of the system?

Many of these cloud platforms share a com-
mon architectural design, i.e., a distributed multi-
component architecture in which component interac-
tions happen through synchronous or asynchronous
message exchanges. We developed an initial hypoth-
esis that by capturing all message exchanges across

381

components in a cloud platform we should be able
to address the above questions as follows: i) through
message correlation and temporal analysis of message
exchanges we should be able to derive message se-
quences and identify the patterns of communication
across all messages in the system; ii) by analyzing and
comparing message contents across different releases
of a platform we should be able to track changes in
message exchange patterns and project on evolutions
at the level of system components; iii) by corrupting
or interfering with the pattern of message exchanges
we should be able to assess the resiliency of the plat-
form from one release to another; and iv) by collect-
ing a long enough history of message exchanges we
should be able to detect anomalies and irregularities
in the behaviour of the system by comparing the ex-
pected patterns of message exchange with the newly
observed message exchange patterns.

In this paper we discuss how using an instrumen-
tation technique we managed to extract sequences of
message exchanges for CloudFoundry, analyze mes-
sage context, and generate valuable information on
the behavior of the system to be shared with the com-
munity of CloudFoundry developers. We also provide
preliminary results of two releases of our framework
to CF developers and users inside IBM as well as to
the CF community at large. Finally, we discuss our
plans to utilize the current technique to provide auto-
mated approaches for software testing and validation.

2 BACKGROUND

2.1 Instrumentation and Profiling

Analyzing system behaviour is done either through
black-box profiling techniques or white box instru-
mentation strategies. In an instrumentation strategy,
code snippets are injected into the original source
code of the system under study in order to collect in-
formation on flow of control or data flow. In a pro-
filing process however, the behaviour of the system
is inferred through collecting footprints of system in-
teractions with the underlying framework, the current
platform, or the operating system which is used. The
collected data then is analyzed or interpreted to form
a view of the system’s behavior (Beschastnikh et al.,
2011). While data collected through black-box profil-
ing is usually insufficient in effectively tracking and
monitoring the behavior of a distributed system, in-
strumentation is also no panacea as it is typically hin-
dered by limited accessibility and comprehension of
system source code. Magpie (Barham et al., 2003),
MANTICORE (Kaviani et al., 2012), and ARM instru-

mentation (arm,) are examples of systems that allow
tracing of code and data through instrumentation. At
the other end, Baset et al. (Baset et al., 2013), Aguil-
era et al. (Aguilera and et al., 2003), and Anandkumar
et al. (Anandkumar et al., 2008) provide solutions on
doing black-box tracking of software systems.

2.2 Aspect-oriented Programming

Aspect-Oriented Programming (AOP) (Kiczales
et al., 2001) provides an abstraction of program
execution with techniques that allow to change flow
of control or data in order to separate crosscutting
concerns spread across multiple abstraction layers in
the system from the functional requirements at each
abstraction layer. AOP is often conceptualized into
the three concepts of joinpoints, pointcuts, and ad-
vice. A joinpoint is a metaprogram event identifying
a distinguished point of interest in the program; a
pointcut defines a query on selecting a certain set
of joinpoints in the program; and an advice is a
function associated with a pointcut to be executed at
a matching joinpoint (Kiczales et al., 2001). AOP has
been widely used to analyze and monitor the behavior
of distributed systems by injecting monitoring and
analysis code into components of a system. The
works by Wohlstadter and Devanbu (Wohlstadter
and Devanbu, 2006) and Whittle et al. (Al Abed and
Kienzle, 2011) are examples of the efforts in utilizing
AOP instrumentation in software development and
modelling.

2.3 CloudFoundry Architecture

CloudFoundry v1.0 consists of the following major
components: the cloud controller manages the over-
all behaviour of the system and instructs the inter-
nal components of CloudFoundry on their roles; The
health manager monitors the well-being of the com-
ponents; the User Authorization and Authentication
(UAA) unit performs authorizations; the stager pre-
pares deployments; the Deployment Agent (DEA) de-
ploys the application and monitors its execution; and
the router directs traffic from outside CloudFoundry
into the deployed applications. Communication be-
tween CF components happens in two ways: a) asyn-
chronously through messages sent to the pub/sub mid-
dleware called the NATS server (nat,) or b) syn-
chronously by exchanging HTTP messages. A typi-
cal workflow in CF starts by a client interface send-
ing a request to the CF controller through the router.
The cloud controller captures the incoming message
and initiates a series of message exchanges with other
components in the system to deliver on the received

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

382

Figure 1: The overall architecture for (a) CloudFoundry
v1.0, and (b) CloudFoundry v2.0.

command. One of the biggest challenges with com-
prehending the platform involves understanding the
type and sequence of message exchanges during the
execution of each command. Figure 1(a) shows the
components in CF v1.0 and their message exchanges.

CloudFoundry v2.0 underwent significant re-
architecture which led to removing some of the com-
ponents and adding new components. The Stager
component was removed and replaced by a compo-
nent called Warden (internal to the DEA) which es-
sentially acts like a container for the deployment of
applications. Additionally, CF v2.0 introduced the
notion of buildpacks to enable new runtimes to be
added dynamically to the platform. However, despite
major architectural changes to some of CF v2.0 com-
ponents, the overall communication model stayed the
same from CF v1.0 to v2.0. Figure 1(b) shows the
architecture of CF v2.0.

3 APPROACH

3.1 Instrumenting CloudFoundry
Components

With CloudFoundry utilizing two methods of com-

munication, i.e., i) asynchronously through NATS
and ii) synchronously through HTTP messages, the
problem of intercepting message exchanges comes
down to understanding the enabling communication
libraries used by each CF component. For dispatch-
ing async NATS messages, CloudFoundry compo-
nents use the NATS client library. Similarly, for sync
messages, CloudFoundry components use the Ruby-
based REST-HTTP-Client library. For both NATS
and HTTP messages, the challenge of instrument-
ing CloudFoundry components, involves altering the
code for these libraries to include the profiling code,
and capturing message types, message content, and
other required information.

Rather than trying to understand the internals of
every CF component and how the communication li-
braries are used, we took a reverse-engineering ap-
proach which led to a more systematic and automatic
approach to profiling the CF components. First, we
studied the internals of the code for the client libraries
(both NATS and REST HTTP) and then used Aquar-
ium (aqu,) - a Ruby AOP framework - to automate
detect calls and weave profiling code into CF compo-
nents. Aquarium builds on the premise of AOP to sep-
arate the main functional code from code that consti-
tutes cross-cutting concerns. Particularly in our case,
the cross-cutting concerns were points of message ex-
change across all components in CloudFoundry.

Let us take the code for Algorithm 1 as an example
of how Aquarium works. The simple code snippet
defines a test method in a Test class. The bottom
of Algorithm 1 presents an aspect defined around the
test method to add print-outs before and after the
original body of the method. At runtime, the aspect
hooks Aquarium to the execution of the Test class
code where it re-writes the body of the Test class to
execute the pre- and post-advice respectively before

1 class Test
2 def test method
3 puts ‘‘Hello World!’’
4 end
5 end
6 Aspect.new :around, :calls to =>
‘‘test method’’,

7 :type and descendents => ‘‘Test’’,
:method options[:public] do |jpt, obj,
*args|

8 puts ‘‘Pre-Aspect Execution.’’
9 result = jpt.proceed

10 puts ‘‘Post-Aspect Execution.’’
11 end

Algorithm 1: Example of using Aquarium to write an as-
pect around the body of the test method from the Test
class.

Automatic�Abstraction�of�Flow�of�Control�in�a�System�of�Distributed�Software�Components

383

1 class Test
2 def aspect saved Test test method
3 puts ‘‘Hello World!’’
4 end
5 def test method *args, &block for method
6 # advice chaining
7 puts ‘‘Pre-Aspect Execution.’’
8 : aspect saved Test test method
9 puts ‘‘Post-Aspect Execution.’’

10 end
11 end

Algorithm 2: The re-written Test class after applying the
aspect from Algorithm 1.

1 Aspect.new
2 :around,
3 :calls to => /(send|receive) data/,
4 :type and descendents =>
5 [/(NATSD|EventMachine)::(.*)/,
6 /(NATS|EventMachine)::(.*)::(.*)/],
7 :method options[:public] do |jpt, obj,

*args|
8 # analyzing captured NATS messages
9 end

Algorithm 3: The aquarium aspect to capture NATS mes-
sages in CloudFoundry.

and after the target method of the aspect. Algorithm 2
shows the modifications Aquarium makes to the body
of the Test class in order to include the advice.

The NATS client used in CloudFoundry compo-
nents is developed on top of the EventMachine (eve,
) library that implements a reactive pattern for asyn-
chronous communications with the NATS server.
When exchanging messages with the NATS server,
the client calls the send method from EventMachine
which then calls an internal C-library to dispatch the
message to the server. When receiving messages
from the server, the NATS client extends the NATS
template from EventMachine by implementing the
receive method which can then extract and interpret
the content of the message received from the NATS
server. In order to capture NATS messages, we de-
veloped an aspect that would mine every CF com-
ponent’s code for the given methods and weave our
profiling code into it. The code to capture NATS
messages is shown in Algorithm 3. Similarly for the
HTTP REST Client, mining its code revealed that
each REST call is done through calling the request
method in the library. This method receives the end-
point URL for the REST call as well as the parameters
to be included, makes the invocation to the endpoint,
and blocks until a response is received.

The process of instrumenting CF components in-
volves having aspects added to the execution entry

point of every component in CF. Starting the com-
ponent engages Aquarium which searches the com-
ponent code to find the matching pointcuts and inject
the advice from the aspect.

3.2 Analyzing CF Message Exchanges

Once the aspects are developed and added to every
component, captured messages are collected and an-
alyzed to extract their functional and temporal corre-
lations. The advice code for all the aspects involves a
short code snippet that dispatches collected message
information to a centralized analysis server. Figure 2
shows the set of tasks done by the analysis server.
The tasks can be categorized into two high level cat-
egories: i) Message Pattern Analysis and Correlation
and ii) Message Sequence Analysis.

Figure 2: The overall architecture for the analysis server.

3.2.1 Message Patterns and Correlations

As shown at the top of Figure 2, message pattern anal-
ysis and correlation involves resolving message types
as well as detecting the source and the target compo-
nent for each message.

For NATS messages, this is done by analyzing
subscriptions and publications to NATS channels for
every CF component. Components in CloudFoundry
announce their registrations to a channel by send-
ing a subscription message through the NATS send
method. The analysis server receives these subscrip-
tion messages and stores a map of all the channels
with their subscribers. At a later point in time, once a
publish message is received by the analysis server, it
searches through all the channels in its directory and
correlates the component sending the message to the
components previously subscribed to the channel.

HTTP communications are done by components
targeting the REST API endpoints of other compo-
nents. The analysis server maintains a list of the APIs
it is aware of at any given time, which it extracts from
the requests it receives as they come in1,2. Upon an

1Cloud controller’s target API is http://api.vcap.me
2UAA’s target API is http://uaa.cvap.me.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

384

HTTP request call, the analysis server identifies the
endpoint where the HTTP message is directed to and
maps the endpoint to its corresponding component.

3.2.2 Message Sequences

As mentioned earlier, a workflow in CloudFoundry
starts by a client interface sending a message to the
cloud controller. In order to be able to capture
message exchange sequences we employed a snap-
shotting technique as follows: we instrumented the
command line interface (CLI) bundles embedded in
CloudFoundry in such a way that it would notify the
analysis server at the beginning and end of any com-
mand execution. When the message arrives at the
server, the server marks the start of a new work-
flow execution and records all message exchanges and
their temporal order to the point it receives a termina-
tion command from the CLI. Upon receiving a ter-
mination command all the captured messages are as-
signed to the latest executed CF command. Generat-
ing the message sequence however, requires two con-
siderations:

1. Not all messages captured during the snapshot-
ting process are dispatched in response to the exe-
cuted command. To accurately capture message se-
quences, the analysis server employs two strategies to
identify and dismiss irrelevant messages: i) Cloud-
Foundry components may dispatch heartbeat mes-
sages or registering/unregistering messages to some
pre-defined NATS channels irrespective of the com-
mand being executed3. The analysis server ignores
messages published to these channels during an snap-
shotting process. ii) Another strategy in reducing
noise comes as a consequence of a prolonged mon-
itoring process of message exchanges. Upon collect-
ing a long enough trace of exchanged messages, the
analysis server goes through all message snapshots
and assigns an occurrence frequency rate to each mes-
sage in a snapshot. Messages whose occurrence fre-
quencies fall below a given threshold can be elimi-
nated from the generated sequence.

2. CloudFoundry allows for more than one CLI
to dispatch messages to the cloud controller. How-
ever distinguishing messages dispatched by different
CLIs requires detailed tracing of data flows which are
not currently implemented into our profiling tool and
analysis server. In order to avoid interference from
several CLIs we run our CF deployment and the CLI
in a completely controlled environment where only
one instance of the CLI is allowed to dispatch mes-
sages to the CF deployment.

3e.g., dea.heartbeat is a channel used by DEA to no-
tify the Health Manager of their well being.

Figure 3 shows an example of the message se-
quence captured by the analysis server. As shown
in the figure, the sequence starts by the vmc CLI
(the embedded CLI for CF v1.0) sending a mes-
sage to the cloud controller which then triggers a se-
quence of message exchanges between CF compo-
nents before returning a response to the CLI. The
generated sequence diagram has the message types
color coded, with the HTTP messages shown as blue
(darker colour in grayscale) arrows and NATS mes-
sages shown as green (lighter colour in grayscale) ar-
rows. For HTTP messages, labels above the arrows
show the HTTP request method and the end point the
message is directed to. For NATS messages the label
shows the name of the channel to which the message
is published.

We code-named the generated documentations as
BlueDocs. The detailed list of all captured message
sequences for all commands both in CF v1.0 and CF
v2.0 can be found under our CloudFoundry BlueDocs
GitHub repository (cfb, a).

4 EVALUATION

For the purpose of our evaluations, we took two strate-
gies: i) tracking evolution from CF v1.0 to CF v2.0 by
analyzing changes in message exchange patterns, and
ii) sharing our results with the community of CF de-
velopers and surveying them to assess the benefits of
our generated documentation.

4.1 Comparing CF v1.0 and v2.0

In our first evaluation, we provided comparison of
message exchange patterns across different versions
of CF. In Section 2, we mentioned that despite archi-
tectural changes from CF v1.0 to CF v2.0 the meth-
ods of synchronous and asynchronous communica-
tion stayed the same. For each version of CF, we gen-
erated documentation on message exchange templates
including the communication channel names and the
message contents. We converted the generated doc-
uments into sorted comparable strings and used the
minimum edit distance algorithm (Atallah and Fox,
1998) to capture differences between the two message
templates. We then compared the generated results
with the message templates we captured through our
prolonged tracing of message exchanges and updated
the comparison results. For the NATS messages, we
detected 24 different communication channels in CF
v1.0. Out of these channels, two had their names
changed from CF v1.0 to v2.0, one channel was re-
moved, and five new channels were added. Also for

Automatic�Abstraction�of�Flow�of�Control�in�a�System�of�Distributed�Software�Components

385

Figure 3: The sequence of exchanged messages for vmc delete with blue arrows showing HTTP messages and green arrows
showing NATS messages.

all message templates captured, we discovered 222
key-value pairs in total out of which 28 keys were
removed from v1.0 to v2.0, 12 were added, and 10
had their types changed. Details are available on the
BlueDocs website (cfb, b).

4.2 Surveying the Developer
Community

For the second evaluation, we presented the results
of our instrumentation and analysis to the developer
community for CloudFoundry. We asked the commu-
nity to fill out a short survey with the following five
questions:

1. Have you ever felt the need for documentation on
internals of CloudFoundry? If yes, how do you
find this documentation?

2. Do you think knowing details of CloudFoundry
components, message types, and message se-
quences helps for the type of work you do with
CloudFoundry?

3. Do you find the BlueDocs on message exchanges
in CloudFoundry helpful?

4. What do you find useful in the auto-generated
BlueDocs documentation for CloudFoundry?

5. What additions or modifications do you like to see
in the BlueDocs CloudFoundry documentation?

We received 12 responses from the CloudFoundry
developers, 6 from within IBM and 6 from the open
source community. All respondents described them-
selves as developers or system architects working on
the internals of CloudFoundry.

When asked about their needs to have documenta-
tions on the internals of CloudFoundry, all 12 respon-
dents replied with a yes. Also, out of all who took
the survey, all except for one thought that such docu-
mentation on the internals of CloudFoundry would be
helpful for the type of work they were doing.

We then asked the CF developers to investigate the
generated BlueDocs documentation and tell us if they
find it useful. The survey showed that 9 out of the 12
participants found the generated documentation help-
ful. When asked about what they found interesting in
the generated BlueDocs, the developers made inter-
esting statements like the followings: “it might allow
for auto-generated ”diffs” of the documentation be-
tween versions. I don’t trust that the APIs of CF will
be stable - the core team doesn’t seem to have API
stability in the heart & soul. So it will be important
for us to identify the changes in the internal APIs.”.
We also received comments that pinpointed problems
such as: “I would rather the message content be for-
malized as classes. The interactions are somewhat
interesting. It doesn’t guarantee that if someone is
posting, that there is in fact a listener who cares”.

The developers continued to make interesting in-
sights and suggestions as a response to our last ques-
tion. The following suggestions were made by our
respondents: “Correlate/integrate BlueDocs with ex-
isting documentation [on CloudFoundry].” or “I’m
looking for flow diagrams, description of each func-
tion, and how each module idempotently operates
for specific application lifecycle functions (e.g., push
app, start app, delete app, create service, bind ser-
vice, identify unresponsive app, etc)”.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

386

5 FUTURE WORK AND
CONCLUSIONS

In this paper we discussed our work developing a
framework that would allow for software analysis,
documentation generation, testing, and debugging,
particularly targeted towards the Ruby-based open
source cloud platform: CloudFoundry. The aim of the
work is to enable developers to better understand and
analyze patterns of message exchange across compo-
nents in CloudFoundry. Our early analysis of the re-
sults showed significant interest from the open source
community in having this type of analysis in place.
We are extending the framework to enable message
tacking, data flow analysis, resiliency testing, and in-
creased automation in order to improve the accuracy
of collected data and make it more readily available
to the open source developer community.

Throughout the development process of our anal-
ysis framework, we encountered several challenges
that we had to resolve in order to make the framework
functional. The first challenge is inherent to AOP. For
our type of instrumentation, defined pointcuts were
tightly coupled to the signature of the target methods
of interest. This is restrictive in that our aspects code
are only good for as long as the methods in the tar-
get libraries preserve their signature. Any change in
the signature of the methods of interest would result
in unmatched pointcuts. A more generic approach
could search for all functions of a library establish-
ing a network connection and then capture exchanged
messages. A second challenge was with respect to in-
jecting the profiling code into every CF component’s
code. Ruby, as a scripting interpreter-based language,
does all the loading and linking at runtime. For the
profiling code to capture and instrument the target
methods in a Ruby program, it should be added to
the component’s code after the library of interest is
loaded. We are developing a Domain Specific Lan-
guage (DSL) in Ruby that could be utilized for auto-
matic runtime injection of aspects to the code while
verify if a given library is already loaded.

For the future work, we intend to focus on the fol-
lowing: (i) Software Resiliency: We believe our de-
veloped framework can help with software resiliency
through interrupting, corrupting, or modifying mes-
sage exchanges. In the current implementation, the
analysis server makes no interferences to the content,
order, or pattern of message exchanges. However, to
test resiliency, the analysis server can have a more ac-
tive role by allowing messages to be dropped, or by
modifying message content, and monitoring how the
change in the content or pattern of messages affects
the overall behaviour of the system. (ii) Testing & De-

bugging: One major issue with debugging distributed
systems is that often times the source of a problem
is not in close proximity of where the failure is ob-
served. When debugging, the long history of infor-
mation for message exchanges allows to see for each
component fan-in and fan-out of message exchanges
to track a message back to the source of a discrepancy.
Our strategy for testing and debugging relies on col-
lecting a long enough history of messages exchanged
and testing the newly arriving messages against the
expected pattern of a given workflow.

REFERENCES

OpenStack - Online: http://www.openstack.org/.
CloudStack - Online: http://cloudstack.apache.org/.
CloudFoundry - Online: http://www.cloudfoundry.com/.
OpenShift - Online: https://www.openshift.com.
Baidu Corp. - Online: http://baidu.com.
ARM - Online: http://www.opengroup.org/tech/

management/arm/.
NATS library - Online: https://github.com/derekcollison/

nats/.
Aquarium: Aspect-Oriented Programming for Ruby - On-

line: http://aquarium.rubyforge.org/.
EventMachine - Online: https://github.com/eventmachine/

eventmachine.
CloudFoundry BlueDocs - Online: https://github.com/

nkaviani/cloudfoundry-bluedocs/.
CloudFoundry BlueDocs version comparison - Online:

http://rawgit.com/nkaviani/cloudfoundry-bluedocs/
master/cf-v2/docs/output.html.

(2012). In Openness is Winning in the Cloud - Online:
https://www.linux.com/news/featured-blogs/200-
libby-clark/577866-marten-mickos-openness-is-
winning-in-the-cloud.

(2012). IBM Announces Platinum Sponsorship
of the New OpenStack Foundation - Online:
http://www.openstack.org/blog/2012/04/openstack-
foundation-update/.

(2013). The role of open source in cloud infrastruc-
ture - Online: http://www.informationweek.in/
informationweek/news-analysis/176401/role-source-
cloud-infrastructure.

(2013). IBM and Pivotal to Accelerate Open Cloud Inno-
vation with Cloud Foundry - Online: http://www-03.
ibm.com/press/us/en/pressrelease/41569.wss.

(2013). Baidu report on CloudFoundry - Online:
http://www.slideshare.net/wattersjames/baidu-
cloudfoundry-english-24626493.

Aguilera, M. K. and et al. (2003). Performance debugging
for distributed systems of black boxes. SIGOPS Oper.
Syst. Rev., 37(5):74–89.

Al Abed, W. and Kienzle, J. (2011). Aspect-Oriented Mod-
elling for Distributed Systems. volume 6981, pages
123–137.

Automatic�Abstraction�of�Flow�of�Control�in�a�System�of�Distributed�Software�Components

387

Anandkumar, A., Bisdikian, C., and Agrawal, D. (2008).
Tracking in a spaghetti bowl: monitoring transac-
tions using footprints. In Proceedings of the 2008
ACM SIGMETRICS international conference on Mea-
surement and modeling of computer systems, SIG-
METRICS ’08, pages 133–144, New York, NY, USA.
ACM.

Atallah, M. J. and Fox, S., editors (1998). Algorithms and
Theory of Computation Handbook. CRC Press, Inc.,
Boca Raton, FL, USA, 1st edition.

Barham, P., Isaacs, R., Mortier, R., and Narayanan, D.
(2003). Magpie: Online Modelling and Performance-
aware Systems. In HotOS, pages 85–90.

Baset, S. A., Tang, C., Tak, B., and Wang, L. (2013). Dis-
secting Open Source Cloud Evolution: An OpenStack
Case Study. In HotCloud, pages 333–340. IEEE.

Beschastnikh, I., Brun, Y., Schneider, S., Sloan, M., and
Ernst, M. D. (2011). Leveraging existing instrumenta-
tion to automatically infer invariant-constrained mod-
els. In SIGSOFT FSE, pages 267–277. ACM.

Kaviani, N., Wohlstadter, E., and Lea, R. (2012). MAN-
TICORE: A framework for partitioning software ser-
vices for hybrid cloud. In CloudCom, pages 333–340.
IEEE.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., and Griswold, W. G. (2001). An Overview of As-
pectJ. In Proceedings of the 15th European Confer-
ence on Object-Oriented Programming, pages 327–
353.

Wohlstadter, E. and Devanbu, P. (2006). Transactions on
Aspect-Oriented Software Development II. pages 69–
100. Springer-Verlag, Berlin, Heidelberg.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

388

Towards Cross-layer Monitoring of Cloud Workflows

Eric Kübler and Mirjam Minor
Institute of Informatics, Goethe University, Robert-Mayer-Str.10, Frankfurt am Main, Germany

fekuebler, minorg@informatik.uni-frankfurt.de

Keywords: Cloud Applications Performance and Monitoring, Workflow, OpenShift.

Abstract: Prospective cloud management requires sophisticated monitoring capabilities. In this paper, we introduce a
novel monitoring framework for cloud-based workflow systems called cWorkload. cWorkload integrates mon-
itoring information from different layers of the cloud architecture. The paper puts its focus on the two-layer
monitoring regarding the workflow layer and the PaaS layer. We present the layered monitoring architec-
ture, an implementation of the two-layer cross-monitoring part, and an experimental evaluation with sample
workflow data. Further, we discuss related work on cloud monitoring divided into one-layer, multi-layer, and
cross-layer approaches. Our plans for future work on extending the implementation by further layers towards
a cross-layer, prospective monitoring for prospective cloud management are described.

1 INTRODUCTION

Cloud management (CM) aims at an optimal resource
and capacity planning. Cloud monitoring becomes es-
sential to predict and keep track of the evolution of all
the parameters involved in the process of assuring the
Quality of Service (QoS) (Aceto et al., 2013). Mon-
itoring capabilities facilitate cloud service providers
to fulfill service level agreements (SLAs). Service
consumers may use monitoring capabilities to audit
whether SLAs have been violated. Today, monitor-
ing services such as Amazon CloudWatch (Amazon,
2014b) provide data on the current state of particu-
lar cloud resources. However, they facilitate a rather
reactive management of resources. The increasingly
complex structure of cloud systems made of several
layers requires more complex monitoring systems in
future (Aceto et al., 2013).

We identified a research gap for prospective cloud
monitoring capabilities. Such approaches that go be-
yond monitoring capabilities provided by cloud ven-
dors might improve CM significantly. In this pa-
per, we introduce the novel cross-layer monitoring
framework cWorkload that integrates process moni-
toring and cloud monitoring capabilities. cWorkload
is part of our process-oriented cloud management
model whose fundamental ideas have been published
in our previous work (Schulte-Zurhausen and Minor,
2014; Minor and Schulte-Zurhausen, 2014). The
cloud management model has been inspired by the
multi-tier model for cloud management introduced by
Maurer et al. (Maurer et al., 2013), which we have

extended by the business process perspective. An in-
tegrated monitoring solution that is aware of the on-
going business processes contributes to a better es-
timation of approaching workloads. Cloud monitor-
ing information from existing tools is integrated with
process monitoring. As a consequence, interventions
can be planned in advance and executed in a timely
manner. This improvement of the cloud management
yields benefits for both, a cloud service provider and
a cloud user perspective. The novel monitoring ap-
proach might reduce the amount of overprovisioned
resources extremely, which is required to maintain
compliance with SLAs.

The Workflow Management Coalition (Workflow
Management Coalition, 1999) defines a workflow as
“the automation of a business process, in whole or
part, during which documents, information or tasks
are passed from one participant to another for action,
according to a set of procedural rules”. A task also
called activity is defined as “a description of a piece
of work that forms one logical step within a process.
An activity may be a manual activity, which does not
support computer automation, or a workflow (auto-
mated) activity. A workflow activity requires human
and/or machine resources(s) to support process execu-
tion” (Workflow Management Coalition, 1999). Sev-
eral instances of the same workflow can be executed
at the same time. A cloud workflow is a workflow
that is executed within a cloud environment (or within
several cloud environments). For instance, a video
surveillance process comprising of several analysis
steps for recorded video sequences, such as identi-

389

fying image changes that may correspond to humans
moving within the observed area, provides a sample
scenario for a cloud workflow. In this paper, we make
use of the workflow notion to define workload as fol-
lows: A workload is a task (of a workflow instance)
with its input data, its number of users, and a task type
(CPU intensive, network intensive, memory intensive,
storage intensive). While the workload of an ongo-
ing task is well-specified the future workloads might
be known only approximately, i.e. the workloads are
still underspecified. Underspecified workloads are re-
fined as soon as all properties of their according tasks
are specified, such as input data and number of users.
The overall workload of a cloud system at a particular
execution time is then characterized by the set of cur-
rent workloads (from different tasks being executed).
The remainder of this paper is organized as follows.
In Section 2, we present related work. Section 3 sum-
marizes our cloud management and cross-layer mon-
itoring approach. Section 4 contains our hypothe-
ses, the experimental setup, and results of our exper-
iments. We draw a conclusion in Section 5 and point
out future work.

2 RELATED WORK

In order to compare cWorkload and other cloud
monitoring platforms, we classify the related work
into three types: single-layer monitoring, multi-layer
monitoring, and cross-layer monitoring. A single-
layer monitoring tool monitors only a single layer
of the cloud architecture. This could be, for exam-
ple, the application layer or the IaaS layer. A multi-
layer monitoring platform is able to obtain and man-
age monitoring information from different layers at
the same time. However, the collected information
from each layer is not related to other layers. Thus,
multi-layer platforms are per se not capable to ob-
serve workloads across layers in an integrated man-
ner. A cross-layer monitoring platform receives mon-
itoring information from several layers and is able to
track the impact of a workload from layer to layer,
for instance, to determine the resource utilization by
a cloud workflow at lower layers. In the following,
we present a selection of cloud monitoring platforms.
The selection and grouping of work is an extension of
the list of monitoring platforms discussed by Aceto et
al. (Aceto et al., 2013).

Obviously, the related work on cross-layer mon-
itoring forms the closest affinities to our approach.
AzureWatch (Paraleap Technologies, 2014) in combi-
nation with other third-party monitoring services is
capable of monitoring the application, PaaS and IaaS

layer and of aggregating the information. Monitor-
ing values from leading indicators for scaling, such as
queue depths or rate of change in demand, are com-
bined with values from trailing indicators, such as
CPU utilization, requests per second, or bandwidth.
Thus, AzureWatch is a cross-layer platform. How-
ever, AzureWatch is restricted to technical solutions
based on Windows Azure. The workflow paradigm
is not addressed. vRealize Hyperic (vmware, 2014)
is a cross-layer monitoring platform from VMWare.
It monitors several cloud layers and is able to point
out resource utilization peaks across the layers. This
is called metric drill down. In contrast to our work,
vRealize Hyperic does not consider a workflow layer.

Multi-layer monitoring approaches are also of in-
terest for our work since they collect monitoring in-
formation from different layers. Some of them visual-
ize the acquired monitoring values in common dash-
boards. CloudWatch (Amazon, 2014b) uses metrics
from the Amazon Web Services (AWS), which are
distributed on the PaaS and IaaS layer. CloudWatch is
also capable of obtaining and evaluating monitoring
information from other applications. Thus, Cloud-
Watch is a multi-layer monitoring platform. However,
due to the lack of aggregation of the pieces of infor-
mation, CloudWatch is not a cross-layer monitoring
platform. Monitis (monitis, 2014) is an application
based on an agent paradigm. It is mainly for AWS
and, similar to CloudWatch, is a multi-layer platform
with a common dashboard for monitoring informa-
tion from different layers. Further multi-layer ap-
proaches for PaaS and IaaS are, for instance, Lattice
(Palmieri et al., 2012), Gmone (Montes et al., 2013)
or the monitoring component of Aneka (Manjrasoft,
2014). Nimsoft Monitoring Solution (ca technologies,
2014) is a multi-layer monitoring platform primarily
for the hardware and IaaS layer but it is also able to
obtain pieces of information from other monitoring
platforms. However, it does not track events across
the layers. A similar approach for multi-layer IaaS
and hardware monitoring is GroundWork (Ground-
Work, 2014) which uses the tool Nagios (Nagios,
2014) for the hardware layer. The CLAMS frame-
work (Alhamazani et al., 2014) is a multi-layer ap-
proach with a special focus on integrating monitor-
ing information from cloud environments of different
vendors. Please note that the authors use an alterna-
tive notion of cross-layer monitoring regarding multi-
clouds. Maurer et al. (Maurer et al., 2013) present
an approach to manage a cloud configuration at dif-
ferent layers. They divide the resource allocation into
three levels for scaling called escalation levels. Low-
level metrics from the cloud infrastructure, such as
free disk and packets sent, are mapped to high-level

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

390

monitoring parameters with the aim to fulfill the Ser-
vice Level Agreements (SLAs) by automated scaling.
We consider this a multi-layer approach since the in-
formation from a lower layer is propagated towards
higher layers. A cross-layer monitoring would require
receiving monitoring information from different lay-
ers.

Single-layer monitoring approaches are slightly
related to our work. Monitoring one layer is a pre-
requisite for multi-layer and cross-layer monitoring.
OpenShift, for instance, can be monitored in a single-
layer manner by a monitoring component for each
particular PaaS container called monitoring cartridges
(Pousty and Miller, 2014). For sample work on mon-
itoring at a single IaaS layer, we refer to the literature
(OpenNebula, 2014; rackspace, 2014; LogicMonitor,
2014; Kung et al., 2011; Alcaraz Calero and Gutier-
rez Aguado, 2014).

3 MONITORING
ARCHITECTURE

The cloud management problem could be mapped
into the MAPE cycle (Monitoring - Analysis - Plan-
ning - Execution) (I.B.M. Corporation, 2006). The
first step is to monitor the resources. The analysis
step is to detect an event. This could be the threat-
ening violation of an SLA, for instance. Another ex-
ample for an event is the occurrence of a high work-
load that provides an indicator for scaling resources
in order to decrease the required execution time. Step
three is the search for a solution in the planning step.
A solution is a reconfiguration of the cloud configu-
ration. This might include changes in the distribution
of workloads for a better fit of the resources to the
requirements. This could be achieved by using con-
figuration activities across the layers while activities
at higher levels are preferable. In addition, different
problem solving strategies could be considered, such
as meta-heuristics (Beloglazov et al., 2012), genetic
algorithms (Hu et al., 2010), or case based reasoning
(Richter and Weber, 2013).

In the following, we will briefly summarize our
cloud management approach that has been published
in our previous work (Minor and Schulte-Zurhausen,
2014). Based on this, we will introduce the novel
monitoring architecture. A multi-tier model sepa-
rates physical from virtual resources in different lay-
ers. It allows cascading configuration activities from
layer to layer. The model of our monitoring archi-
tecture is inspired by the cloud management model
from Maurer at al. (Maurer et al., 2013) which con-
sists of three layers for hierarchical configuration ac-

tivities. In our previous work (Minor and Schulte-
Zurhausen, 2014), we have introduced a workflow tier
on top of the three tiers from Maurer et al.’s model in
order to achieve a process-oriented perspective (see
left hand side of Figure 1). The physical machine tier
at the bottom is manipulated by configuration activ-
ities like add and remove compute nodes. The vir-
tual machine tier allows activities like to increase or
decrease incoming and outgoing bandwidth of a vir-
tual machine (VM), its memory, its CPU share, or
to add or remove allocated storage by x%. Further,
VMs can be migrated to a different physical machine
or moved to and from other clouds in case of out-
sourcing/insourcing capabilities. The application tier
is dedicated to management activities for individual
applications. The same set of activities as for VMs
can be applied but with an application-specific scope.
This tier can also be a PaaS platform while the VM
tier can be an IaaS platform. Obviously, the migra-
tion and insourcing/outsourcing activities refer to the
placement of applications on VMs at the application
tier. The workflow tier addresses the placement of
workflow tasks on VMs. Tasks can be migrated to an-
other VM or tailored, i.e. split into replicated tasks
with a portion of the input data each.

Figure 1: Process-oriented model for cloud management
extending (Maurer et al., 2013).

cWorkload is a novel part of the cloud man-
agement architecture for cross-layer monitoring (see
right hand side of Figure 1). In case of the workflow
layer, it monitors the workflow state of instances and
tasks. States reported frequently in the literature are
for example “running”, “active” or “suspended”. We
aim at using this information for a prediction of work-
loads as a core feature of cWorkloads. The monitoring
results can be used to improve the management ca-
pabilities from a reactive towards a prospective man-
agement. To obtain the workload of an instance, we
monitor the input and output data of the tasks. With

Towards�Cross-layer�Monitoring�of�Cloud�Workflows

391

the information on the workloads we will be able to
estimate the effort. This estimation will serve in our
model as a means to forecast the need for scaling. We
are planning to run simulations to collect information
about the efforts of domain specific workloads and
build an empiric knowledge repository about typical
efforts.
At the PaaS layer, we aim to monitor the resources
that are offered by the run-time environment. Gener-
ally, there are different tools and ways to accomplish
this task depending on the used PaaS platform. In
our implementation, we use OpenShift (Pousty and
Miller, 2014) as a cloud environment. The cloud
workflow is executed by a workflow engine running
within OpenShift. Each workflow task is performed
by one web service (Singh and Huhns, 2005). The
workflow engine and the web services are operated on
different containers. Monitoring information from all
containers that are involved is gathered by the linux
tool top (Unix Top, 2014).
Similar to the PaaS layer, the IaaS layer offers dif-
ferent tools to monitor the health of the VMs. In fu-
ture work, we will use Eucalyptus (Eucalyptus Sys-
tems, 2014) or the Amazon web services (Amazon,
2014a), probably with CloudWatch (Amazon, 2014b)
as a monitoring tool.
At the hardware layer, there are monitoring metrics
available such as for the cpu utilization, the energy
consumption and the temperature.

The long-term goal of cWorkload is to reduce the
overprovisioning of resources. To achieve this goal,
we will integrate the monitoring information by a
smart handling of resources depending on workload
forecasts. We will combine the information from dif-
ferent monitoring layers to obtain a better understand-
ing of the state of our cloud.
In the remainder of this paper, we will present on the
integration of the workflow and the PaaS layer. One
essential part of this concept is the task placement.
We define a task placement as the assignment of auto-
mated tasks to VMs and furthermore the assignment
of VMs to physical machines (PMs). Figure 2 illus-
trates an example for a task placement. The place-
ment includes two PMs and three VMs. The figure
illustrates which VM is executed on which PM, for
example “VM3” is running on “PM2”. This schema
is repeated for the runtime environments of the PaaS
layer and for the web services at the workflow layer.
For instance, “s3” is executed on the “runtime3”,
which is executed on “VM2”. On the right hand side,
an example workflow is depicted that uses “s1” and
“s5”.

The integration of the PaaS and the workflow layer
is performed by cross-linking the metrics at the PaaS

Figure 2: Sample task placement for a workflow.

layer with the monitored task states at the workflow
layer. Each task in the state “running” is assigned to a
measuring point for the cloud resource that has been
assigned for execution. The measured values from
both layers are aggregated into a multi-dimensional
representation form based on time stamps from both,
the workflow execution log and from the time of
measuring recorded at the PaaS level. The aggre-
gated information can be interpreted by an automated
cloud management mechanism or visualized for a hu-
man being in a multi-dimensional presentation. For
instance, in our preliminary implementation within
OpenShift, each PaaS container comprises of exactly
one web service that is assigned to a PaaS container
via its URL. However, the same web service can be
used by multiple workflow instances containing the
same task that is performed by the web service. As a
consequence, the measured metrics at the PaaS layer
have to be partitioned in order to determine the por-
tion of the measured values for each task. For exam-
ple, if “s1” that is deployed on “runtime1” is used by
three workflow instances at the same time and if the
CPU utilization of “runtime1” is 100% we should not
simply conclude that each instance uses 33% of the
CPU because the CPU utilization for each instance
depends on the input data. At the moment, we con-
sider the measured values at the PaaS layer as an
amalgam if multiple workflow task instances are run-
ning on the same PaaS container. A partition function
is required to approximate the share of effort for each
instance. We will address this in our future work in or-
der to aggregate the values from the PaaS layer with
the workflow layer more precisely than in our simpli-
fied experiments (see below).

4 EVALUATION

The cWorkload framework is implemented in a pilot
system with a focus on the two-layer monitoring
of the workflow and the PaaS layer. Integrating
the monitoring capabilities of the workflow and the
PaaS layer is an important step towards a cross-layer
monitoring. A prerequisite for this is to check
whether monitoring values from both layers can
be aggregated in principle. The feasibility of the

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

392

two-layer approach has been investigated by running
some experiments with sample workflows on the pilot
system. Preliminary evaluation results have been
achieved guided by the following three hypotheses:

H1: The Utilization of Cloud Resources Can
Be Aligned with a Workflow Instance.
The core of the hypothesis is that it is possible to
identify the PaaS resources used by a particular
workflow task that has been executed. This includes
recognizing the PaaS container that has been used,
the utilization of the resources of the container and
the duration of using the container. The hypothesis
addresses a simple but critical point. Only with
the capability to monitor the resources required by
a task, a deep integration of workflow and cloud
management can by achieved. Obviously, the PaaS
resources can be monitored but for a workflow
instance it is not straightforward to identify the
resources (and shares of resources) that have been
used by a particular workflow task during execution
in a cloud environment.

H2: The More Workflow Instances Are Run-
ning on a PaaS the Higher Is the Demand for
Resource Scaling.
Each workflow instance within a PaaS should be
independent from each other. In order to avoid inter-
ferences between instances the resources might be
scaled. The need for scaling might increase with the
number of ongoing workflow instances. We assume
that the sharing of resources actually occurs and that
scaling is performed by a heuristically method, for
instance by rules observing the number of open I/O
connections to a PaaS container. The confirmation
of the hypothesis is not obvious because if tasks are
running on different physical machines they might
not have any impact on each other.

H3: The Higher the Workloads from Ongo-
ing Workflow Tasks on a PaaS the Higher Is the
Demand for Scaling.
In addition to the number of running workflow
instances, the type of workload that is processed
within an instance has an impact on the demand
for scaling. Again, we assume that resources are
shared heuristically on the PaaS. If the workload
is distributed advantageously it is possible to run
several workflow instances without any interference
between them. On the other hand, disadvantageous
distributions of workload might lead to obstructions.
To observe such effects, knowledge about the type of
workloads is required.

We have designed two different, artificial work-

flows for the experiments. A sample modelled in
BPMN (Grosskopf et al., 2009) is depicted in Fig-
ure 3. The trigger for starting a workflow instance
is a message from the user as indicated by the en-
velope symbol. Two sample web services are in-
cluded. The fibo web service (“WS: Fibo”) calcu-
lates the Fibonacci number for a given number. The
prim web service (“WS: Prim”) calculates all prime
numbers from 2 to n for a given n. The web ser-
vices are executed in parallel as indicated by the plus
symbol. The workflows have been modelled using the
workflow designer Intalio—BPM (Intalio, 2014). Our
work considers the task types of the workloads such
as CPU intensive, storage intensive, memory inten-
sive or network intensive tasks. The prim and fibo
web services are clearly of the type CPU intensive
since they mainly require CPU as a resource, do not
require any storage, and use only a tiny quantity of
memory and network capacities. The web services are
deployed on the OpenShift online platform (Pousty
and Miller, 2014) that provides a public cloud solution
of a PaaS. Each web service is running on an Open-
Shift small gear, i.e. a small-size container of the run-
time environment providing 512MB RAM, 1GB hard
disc and a single CPU with 2.5GHz. The prim web
service is deployed on gear no. 1 and the fibo web
service on gear no. 2. We use a WildFly 8 application
server (redhat, 2014b) as a cartridge, i.e. as a pre-
configured application on top of a gear. The system
Intalio—BPM 6.5 serves as a workflow engine run-
ning on a 4-core CPU with 3.4GHz and 16GB RAM.
The instances are started by hand. The CPU utiliza-
tion for each gear is logged via the Linux tool top
(Unix Top, 2014). Our cWorkload framework records
the terminal output at regular intervals. In addition,
Intalio—BPM logs the progress of the workflows. We
run the simulation with several workloads and com-
pare the results of the different runs. In case of the
prim web service, the input data is a given number,
for example 10. The result for this example is the set
of prime numbers f2;3;5;7g. The input data for the
fibo web service is also a number. For example, the
result is 55 for the number 10. The higher the input
number the higher is the workload. Consequently, this
requires a higher computational effort.

Within an initial test phase, we couldn’t observe
any interference between the web services. Most
probably, this was due to the fact that two gears on
different Amazon EC2 instances had been selected
automatically by the load balancer used by OpenShift
online. Thus, we will discuss the results for the par-
ticular web services separately. In order to investi-
gate hypothesis H1, cWorkload monitors the CPU uti-
lization of the gears for new workflow instances that

Towards�Cross-layer�Monitoring�of�Cloud�Workflows

393

Figure 3: Workflow with a parallel call of web services.

have been started at irregular frequencies. Figure 4
and Figure 5 depict two sample sequences of values
measured for the CPU utilization of gear 1 and gear
2. The sample input data was 45 for the fibo web
service and 100,000 for the prim web service. There
are some recognizable peaks within the time series.
We have highlighted the areas where a web service is
supposed to run according to the logs of the workflow
engine. It can be observed that the log information
matches the recognizable peaks. We conclude from
the investigated samples that the utilization of cloud
resources measured by the Top tool can be aligned
with the CPU utilization of the gears consumed by the
particular web service tasks. However, there are fur-
ther single peaks in the time series. We assume that
they are artifacts originating either from the Top tool,
from the WildFly cartridges or from competing gears
running on the EC2 instance. Hypothesis H1 has been
confirmed by the measured samples.

For hypothesis H2, we have started a variable
number of workflow instances simultaneously. The
logs of the workflow engine have been analyzed to de-
termine the throughput time of the web services, i.e.
the duration of executing the workflow task. We have
repeated this test for 5 samples with input 100,000 for
the prim web service and 43 for the fibo web service.
The average values are depicted in Figure 6 and Fig-
ure 7. The results show that with an increasing num-
ber of instances calling the same web service in paral-
lel the throughput time increases significantly. At this
point, our preliminary results are not yet a proof but
a promising indicator that our hypothesis 2 is valid.
In order to investigate hypothesis H3, we have logged
the number of successfully executed requests for the
fibo web services. A request is considered successful
if the service has returned the result before receiving
a time out. For instance, the Intalio workflow engine

Figure 4: CPU utilization of prim.

throws such time outs after 60 seconds. We created
different workloads from the same web service task
by varying the input data. We have chosen an input
value between 30 and 50. Each sample was repeated
between 3 and 20 times. For input values of 43 and
below, all executions have been successful. For input
values of 48 and above, the execution was not suc-
cessful. For values between, the success of the exe-
cution depends on the number of instances and on the
system state. According to our experience, the dura-
tion of execution increases with the input value. Hav-
ing executed 5 instances with input value 43 success-
fully makes it promising to run 5 instances with value
42 successfully as well. A systematic experimental
proof of this experience as well as the development
of a quantification function for workloads will be part
of our future work. The preliminary results provide
a first hint that the demand for scaling resources can
be predicted approximately by means of the input val-
ues that should be calculated and, thus, by the work-
loads to be expected. Hypothesis H3 is not yet finally
confirmed. Rather, the experiments play the role of
a plausibility check. Based on the promising results,
a partition function can be elaborated and hypothe-
sis H1 can be investigated for multiple workflow in-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

394

Figure 5: CPU utilization of fibo.

Figure 6: Average execution times for instances of fibo.

stances running in parallel in future.

5 CONCLUSION AND FUTURE
WORK

In this paper, we have introduced cWorkload a novel
monitoring framework for cross-layer monitoring of
cloud workflows. The layer architecture of the
cWorkload framework is designed in accordance with
the layers of the cloud-based workflow system to be
monitored. A workflow execution layer on top of the
PaaS cloud system is monitored by means of the mon-
itoring capabilities of the underlying PaaS layer. To
achieve this two-layer integration, the resource uti-
lization of the workflow tasks is determined by mea-
suring values from the cloud resources and assigning
the measured values according to the particular work-
loads of the workflow tasks. A preliminary evaluation
of cWorkload is based on experiments with artificial
workflow samples. The execution of CPU intensive

Figure 7: Average execution times for instances of prim.

workflow samples has provided that the CPU utiliza-
tion of the cloud resources can be aligned with the
workflow instances comprising of computationally
intensive tasks. Further, we observed that the more
workflow instances are running the higher are the uti-
lization values of the according cloud resources. We
conclude from the samples that the demand for scal-
ing resources is increased by this. In addition, the
higher the workloads from ongoing workflow tasks
are the higher is the demand for scaling resources.
The benefit of a cross-layer monitoring solution is that
it provides deeper insights on the state of the system
than single-layer monitoring approaches. In case of
our two-layer approach that integrates the workflow
layer with the PaaS layer, this results in a better un-
derstanding of the placement of workloads on PaaS
containers such as OpenShift gears. Consequently,
the assignment of workloads to containers can be im-
proved, for instance by grouping tasks of different
types on one gear or by selecting containers with an
optimal size for a workload. Thus, the overprovi-
sioning of resources might be reduced. The contribu-
tion of this paper and especially the preliminary ex-
periments on the two-layer monitoring integrating the
workflow and the PaaS layer provide quite promising
results. The work is an important step towards the
cross-layer monitoring of cloud workflows. However,
it raises several novel research questions as follows.

In our future work, we will address mainly two
issues. First, the experimental platform will be im-
proved by a different technical environment. The
workflow engine Intalio will be replaced by a work-
flow engine such as JBPM (redhat, 2014a) that facil-
itates the automated triggering of workflows and pro-
vides machine-readable logging information. Both
will support us to conduct further experiments with a
broader scope and with a deeper, automated analytics.
The public cloud PaaS solution OpenShift Online will
be substituted by a private installation of OpenShift in
order to achieve better control of further layers below
the PaaS layer. The two-layer integration will be ex-

Towards�Cross-layer�Monitoring�of�Cloud�Workflows

395

tended to a cross-layer monitoring with multiple lay-
ers. Second, we will investigate how to predict fu-
ture demands for scaling from expected workloads.
The workflow notion will provide this information ei-
ther based on the set of tasks to be triggered next or
by a clocked simulation of further workflow execu-
tion. As a first step, a partition function for measured
values on PaaS containers hosting multiple workflow
task instances has to be implemented. A comparison
study of the prospective solution with non-predictive
cloud management approaches will highlight the im-
portance of our approach.

REFERENCES

Aceto, G., Botta, A., de Donato, W., and Pescap, A. (2013).
Cloud monitoring: A survey. Computer Networks,
57(9):2093–2115.

Alcaraz Calero, J. and Gutierrez Aguado, J. (2014). Mon-
PaaS: An adaptive monitoring platform as a ser-
vice for cloud computing infrastructures and services.
IEEE Trans. on Services Computing, 8(1):65–78.

Alhamazani, K., Ranjan, R., Mitra, K., Jayaraman, P.,
Huang, Z., Wang, L., and Rabhi, F. (2014). CLAMS:
Cross-layer Multi-cloud Application Monitoring-as-
a-Service Framework. In 2014 IEEE Int. Conference
on Services Computing (SCC), pages 283–290.

Amazon (2014a). Amazon web services.
http://aws.amazon.com/, 12-19-14.

Amazon (2014b). Cloudwatch. http://aws.amazon.com/
cloudwatch/, 12-18-14.

Beloglazov, A., Abawajy, J., and Buyya, R. (2012). Energy-
aware resource allocation heuristics for efficient man-
agement of data centers for cloud computing. Future
Generation Computer Systems, 28(5).

ca technologies (2014). Nimsoft. http://www.ca.com/us/
opscenter/ca-unified-infrastructure-
management.aspx, 12-11-14.

Eucalyptus Systems (2014). https://www.eucalyptus.com/,
12-19-14.

Grosskopf, A., Decker, G., and Weske, M. (2009). The
Process: Business Process Modeling Using BPMN.
Meghan Kiffer Pr.

GroundWork (2014). http://www.gwos.com/features/, 12-
19-14.

Hu, J., Gu, J., Sun, G., and Zhao, T. (2010). A schedul-
ing strategy on load balancing of virtual machine re-
sources in cloud computing environment. In 2010
Third Int. Symposium on Parallel Architectures, Algo-
rithms and Programming (PAAP), pages 89–96.

I.B.M. Corporation (2006). An architectural blueprint
for autonomic computing. http://www-
03.ibm.com/autonomic/pdfs/AC Blueprint White
Paper V7.pdf, 11-01-14.

Intalio (2014). http://www.intalio.com/, 12-18-14.

Kung, H. T., Lin, C.-K., and Vlah, D. (2011). CloudSense:
continuous fine-grain cloud monitoring with compres-
sive sensing. USENIX Hot-Cloud.

LogicMonitor (2014). http://www.logicmonitor.com/, 12-
19-14.

Manjrasoft (2014). Aneka. http://www.manjrasoft.com/,
12-18-14.

Maurer, M., Brandic, I., and Sakellariou, R. (2013). Adap-
tive resource configuration for cloud infrastructure
management. Future Generation Computer Systems,
29(2):472–487.

Minor, M. and Schulte-Zurhausen, E. (2014). Towards
process-oriented cloud management with case-based
reasoning. In Proc. ICCBR 2014, LNCS 8766, pages
303 – 312. Springer.

monitis (2014). http://www.monitis.com/, 12-19-14.
Montes, J., Sánchez, A., Memishi, B., Pérez, M. S., and

Antoniu, G. (2013). Gmone: A complete approach to
cloud monitoring. Future Generation Computer Sys-
tems, 29(8):2026 – 2040.

Nagios (2014). http://www.nagios.org/, 12-19-14.
OpenNebula (2014). http://docs.opennebula.org/, 12-19-14.
Palmieri, R., di Sanzo, P., Quaglia, F., Romano, P., Peluso,

S., and Didona, D. (2012). Integrated monitoring
of infrastructures and applications in cloud environ-
ments. In Euro-Par 2011, pages 45–53. Springer.

Paraleap Technologies (2014). Azurewatch.
http://www.paraleap.com/azurewatch, 12-19-14.

Pousty, S. and Miller, K. (2014). Getting Started with Open-
Shift. ”O’Reilly Media, Inc.”.

rackspace (2014). Cloudkick. http://www.rackspace.com/
cloud/monitoring/, 12-15-14.

redhat (2014a). jbpm. http://www.jbpm.org/, 11-26-14.
redhat (2014b). WildFly. http://www.wildfly.org/, 12-18-

14.
Richter, M. M. and Weber, R. (2013). Case-Based Reason-

ing: A Textbook. Springer.
Schulte-Zurhausen, E. and Minor, M. (2014). Task place-

ment in a cloud with case based reasoning. In
CLOSER 2014, pages 323 – 328, Barcelona, Spain.
SciTePress.

Singh, M. P. and Huhns, M. N. (2005). Service-oriented
computing - semantics, processes, agents. Wiley.

Unix Top (2014). http://www.unixtop.org/, 12-18-14.
vmware (2014). http://www.vmware.com/products/

vrealize-hyperic/, 12-19-14.
Workflow Management Coalition (1999). Glossary & ter-

minology. 5-23-14.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

396

Automating Resources Discovery for Multiple Data Stores Cloud
Applications

Rami Sellami, Michel Vedrine, Sami Bhiri and Bruno Defude
Computer Science Departement, Institut Mines-Telecom,
Telecom SudParis, CNRS UMR Samovar, Evry, France

firstname.lastname@telecom-sudparis.eu

Keywords: NoSQL Data Stores, Relational Data Stores, Polyglot Persistence, Manifest based Discovery, ODBAPI.

Abstract: The production of huge amount of data and the emergence of cloud computing have introduced new require-
ments for data management. Many applications need to interact with several heterogeneous data stores de-
pending on the type of data they have to manage: traditional data types, documents, graph data from social
networks, simple key-value data, etc. Interacting with heterogeneous data models via different APIs, multi-
data store applications imposes challenging tasks to their developers. Indeed, programmers have to be familiar
with different APIs. In addition, developers need to master and deal with the complex processes of cloud
discovery, and application deployment and execution. Moreover, the execution of join queries over hetero-
geneous data models cannot, currently, be achieved in a declarative way as it is used to be with mono-data
store application, and therefore requires extra implementation effort. In this paper we propose a declarative
approach enabling to lighten the burden of the tedious and non-standard tasks of discovering relevant cloud
environment and deploying applications on them while letting developers to simply focus on specifying their
storage and computing requirements. A prototype of the proposed solution has been developed and is currently
used to implement use cases from the OpenPaaS project.

1 INTRODUCTION

Cloud computing has recently emerged as a new com-
puting paradigm enabling on-demand and scalable
provision of resources, platforms and software as ser-
vices. Cloud computing is often presented at three
levels (Baun and et al., 2011): the Infrastructure as
a Service (IaaS) giving access to abstracted view on
the hardware, the Platform-as-a-Service (PaaS) pro-
vides to the developers programming and execution
environments, and the Software as a Service (SaaS)
enables end users to run cloud software applications.

Due to its elasticity property cloud computing pro-
vides interesting execution environments for several
emerging applications such as big data management.
According to the National Institute of Standards and
Technology1 (NIST), big data is data which exceed
the capacity or capability of current or conventional
methods and systems. It is based on the 3-Vs model
where the three Vs refer to volume, velocity and vari-
ety properties (McAfee and Brynjolfsson, 2012). Vol-
ume means the process of large amounts of informa-
tion. Velocity signifies the increasing rate at which

1http://www.nist.gov/

data flows. Finally, variety refers to the diversity of
data sources. Against this background, the challenges
of big data management result from the expansion of
the 3Vs properties. In our work we focus mainly on
the variety property and more precisely on multi-data
store applications in the cloud.

In order to satisfy different storage requirements,
cloud applications usually need to access and inter-
act with different relational and NoSQL data stores
having heterogeneous APIs. The heterogeneity of the
data stores induces several problems when develop-
ing, deploying and migrating multi-data store appli-
cations. Below, we list the main 4 problems which
we are tackling in this paper.

Pb1. Heavy workload on the application developer:
Nowadays data stores have different and het-
erogeneous APIs. Developers of multi-data
store applications need to be familiar with all
these APIs when coding their applications.

Pb2. No declarative way for executing join queries:
Due to the heterogeneity of the data models,
there is currently no declarative way to define
and execute complex queries over several data
stores. That means developers have to cope

397

themselves with the implementation of such
complex queries.

Pb3. Code adaptation: When migrating applications
from one cloud environment to another, ap-
plication developers have to re-adapt the ap-
plication source code in order to interact with
new data stores. Developers have potentially to
learn and master new APIs.

Pb4. Tedious and non-standard processes of discov-
ery and deployment: Once an application is
developed or migrated, developers have to de-
ploy it into a cloud provider. Discovering the
most suitable cloud environment providing the
required data stores and deploying the applica-
tion on it is a tedious and meticulous provider-
specific process.

In our work, we are are coping with these prob-
lems in order to support the developer during a mul-
tiple data stores based application life cycle. In a
previous work, we proposed ODBAPI (OPEN-PaaS-
DataBase API) a streamlined and a unified REST-
based API (Sellami et al., 2014) for executing CRUD
operations on relational and NoSQL data stores. The
highlights of ODBAPI are twofold: (i) decoupling
cloud applications from data stores in order to facil-
itate the migration process, and (ii) easing the de-
velopers task by lightening the burden of managing
different APIs. In contrast, we present in this pa-
per a declarative approach for discovering appropri-
ate cloud environments and deploying applications
on them while letting developers to simply focus on
specifying their storage and computing requirements.
A prototype of the proposed solution has been de-
veloped and is currently used to implement use cases
from the OpenPaaS project.

The remainder of the paper is organized as fol-
lows. In section 2, we introduce the context and
present a motivating example. In section 3, we give an
overview of our approach and we detail in sections 4
the discovery step. In section 5, we present the imple-
mentation and validation of our solution. In Section
6, we discuss the related work. Section 7 concludes
our paper and outlines directions of future work.

2 MOTIVATION

Our work is done in the context of the OpenPaaS
project 2 aiming at developing a PaaS technology
dedicated to enterprise collaborative applications de-

2This work has been partly funded by the French FSN
OpenPaaS grant (https://research.linagora.com/display/
openpaas/Open+PAAS+Overview)

ployed on hybrid clouds (private/public). It is a plat-
form that allows to design and deploy applications
based on proven technologies provided by partners
such as collaborative messaging system, integration
and workflow technologies that will be extended in
order to address Cloud Computing requirements. Tar-
get applications of OpenPaaS are applications that use
multiple data stores that corresponds to what is pop-
ularly referred to as the polyglot persistence. For in-
stance, an application can interact with three hetero-
geneous data stores at the same time: a relational data
store, a document data store that is CouchDB, and a
key value data store which is Riak. But, this exam-
ple exposes some limits. Linking an application with
multiple data stores is very complex due to the differ-
ent APIs, data models, query languages and consis-
tency models. If the application needs to query data
coming from different data sources (e.g joining data,
aggregating data, etc.), it can not do it declaratively
unless some kinds of mediation have been done be-
fore. Finally, the different data stores may use differ-
ent transaction and consistency models (for example
classical ACID and eventual consistency). It is not
easy for developers to understand these models and to
maintain its properties while coding their application.
Moreover, it is more complicated when it comes to
execute complex queries and especially join queries.
But first, the developer has to discover all data stores
capabilities of the available cloud providers in order
to elect the most suitable cloud provider to his ap-
plication requirements to deploy it. However this in
itself is a tedious and meticulous work. In this paper,
we will tackle these problems and we will propose an
end-to-end solution and we will focus on the step of
the cloud data stores discovery.

3 OVERVIEW OF OUR
APPROACH

The lion’s share of the contribution of our work is
dedicated to application developers. Indeed, we at-
tempt to simplify the developer task during the life
cycle of an application (i.e. development, discovery
and deployment, and execution) using multiple and
heterogeneous data stores in its source code. The de-
veloper has (i) to write the source code of his applica-
tion using various APIs, (ii) to discover data stores of
each cloud provider in order (iii) to deploy his appli-
cation, and (iv) to execute queries.

Hence, for the purpose of simplifying the devel-
opers task and getting them rid of all their onerous
responsibilities, we propose our solution that is based
on three points: (i) using a unique API enabling the

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

398

coding and the execution of multiple data store based
application, (ii) enabling join queries execution over
heterogeneous data stores, and (iii) ensuring a neutral
application deployment in a cloud provider that is al-
ready automatically discovered.

In Fig 1, we showcase an overview of our solution
including the different steps of the application life cy-
cle. Indeed, we depict the following four steps:

� Development Step: The first step is the appli-
cation development. For this purpose, we pro-
pose to use a unique API enabling the interac-
tion with relational and NoSQL data stores. In
a previous work (Sellami et al., 2014), we defined
a generic resources model defining the different
concept used in each type of data store. These
resources are managed by ODBAPI a stream-
lined and a unified REST API enabling to execute
CRUD operations on different NoSQL and rela-
tional databases. ODBAPI decouples cloud appli-
cations from data stores alleviating therefore their
migration. Moreover it relieves developers task by
removing the burden of managing different APIs.

� Discovery Step: The second step consists in dis-
covering data stores capabilities of each cloud
provider. So, we can decide which cloud provider
can support our application requirements. Doing
so, the developer describe his requirements in the
Abstract application manifest and sends it to the
discovery module. The discovery module inter-
acts with the cloud providers in order to discover
the capabilities of each cloud provider in term of
data store services. Then, it obtains as a result
the offer manifest. Based on these two manifests,
the Matching module elects the most appropriate
cloud provider to the application in order to de-
ploy it and edit its deployment manifest.

� Deployment Step: The third step represents the
application deployment. An important part in
this phase consists in generating the application
executable and adding the execution manifest to
it. This manifest contains the endpoint of the
ODBAPI server or/and the data stores endpoints
that the application requires. We propose to de-
ploy an application by any deployment API (e.g.
COAPS API(Sellami and et al., 2013), roboconf
API3, etc.). In our work, we are building on the
COAPS API that is proposed in our team and al-
lows human and/or software agents to provision
and manage PaaS applications. This API provides
a unique layer to interact with any cloud provider
based on manifests. We model the deployment

3Roboconf home page: http://roboconf.net/fr/ in-
dex.html

manifest based on the manifest of COAPS API
and we enrich it with information about data
stores to support ODBAPI-based application.

� Execution Step: The fourth step is the application
execution. In this step, an application can exe-
cute two types of queries. On the one hand, it can
execute CRUD queries; hence it interacts directly
with the target data store based on its execution
manifest. In this case, it uses a unique API like
ODBAPI. On the other hand, it can execute join
queries by interacting with virtual data stores. A
virtual data store is created automatically for exe-
cuting join queries. When a virtual data store re-
ceives a join query, it parses this query, rewrites
it into sub-queries written in the ODBAPI syn-
tax, and sends these sub-queries to the target data
stores. Once a virtual data store receives the result
of each sub-query, it forms the final result and re-
turns it to the application. It is worth noting that
when the user edits the Abstract application mani-
fest, he has to precise that his application will ma-
nipulate complex queries. Hence, a virtual data
store will be created and its endpoint will be added
to the execution manifest also.

In the following section, we will focus only on the
discovery of the data stores capabilities and the de-
ployment of an ODBAPI-based application.

4 DISCOVERY OF DATA STORES
OF CLOUD PROVIDERS

In this section, we present our logic to discover the
capabilities of data stores of cloud providers meeting
the application requirements (see Figure2). The de-
veloper coded an ODBAPI application and describes
its requirements in the abstract application manifest
in term of data stores and deployment. Then, he gives
it as an input to the matching algorithm. This algo-
rithms interacts with the data stores directory in or-
der to obtain the data stores capabilities of each cloud
provider stored in the offer manifest. This manifest
represents the second input of this algorithm in order
to obtain the deployment manifest. The data stores
directory is automatically updated by interacting with
the cloud providers using their APIs.

In the rest of this section, we introduce UML
diagram classes illustrating the Abstract application
manifest and offer manifest description. In addition,
we introduce our matching algorithm.

Automating�Resources�Discovery�for�Multiple�Data�Stores�Cloud�Applications

399

Figure 1: Overview of our solution.

Figure 2: Zoom-in on the discovery module.

4.1 Abstract Application Manifest

This manifest contains two categories of require-
ments. First, we have requirements in term of data
stores. The developer provides five information about
the required data stores: its type, its name, its version,
it size and the query type to execute. It is worth not-
ing that when the developer fills this manifest, he has
the freedom to specify one or multiple information.
For each information, he gives a constraint expressed
by a constant value, a joker (denoting any values) or
some conditions (expressed as inequalities). Hence,
we will ensure more flexibility in our model. For in-
stance, one developer precises that he wants a data
store having name MongoDB and type document and
another developer precises that he wants a data store
of type document without specifying its name (in this
case any data store of type document fulfill the speci-
fication). Whereas the second category of the require-
ments is dedicated to the application deployment. In-
deed, the developer precises the number of the virtual
machines that he needs to run his application. In ad-
dition, he describes the executable of his application
by giving its name, its type and its location.

We depict in Figure 3 an UML class diagram il-
lustrating the Abstract application manifest model.
The root class of our model is the Abstract applica-
tion manifest class and it is identified by the attribute
name. This class contains these following classes:

� The User Information Class: This class represents
the required authentication information required
to access the discovery module and consult the
data stores repository. This class contains the user
login class and the user password class that repre-
sents the developer identifiers.

� The environment class: This class represents the
environment where an application will be de-
ployed and it is instantiated from an environment
template element that is characterized by a name
attribute and a memory value. Each environment
template contains at least one node class that rep-
resents resources in a cloud provider. A node class
is identified by an id and a content type attributes.
This latter can be a container or a database to de-
note respectively engine resources to host and run
services and storage resources. This class con-
tains a name class and a version class. When
the content type attribute is equal to database, the
node class contains also a type class, query type
class, and a size class to denote the type of data
storage services, the query type (CRUD queries
or join queries) and its size.

� The application class: This class represents the
constraints that the user requires to deploy his ap-
plication. It is characterized by a unique name at-
tribute and the environment attribute where the ap-
plication will be deployed. It has at least one ver-
sion class that is identified by a name and a label.
Each version class contains two types of classes:
deployable class and instance class. The deploy-
able class represents the application executable
file. It is identified by a unique id attribute, a
content type attribute defining the executable file
type, a name attribute denoting its name, a loca-
tion attribute containing their URL, and a multi-
tenancy level attribute indicating the application
tenancy degree. Whereas the instance class rep-
resents the running application instances required
by the user. This class is identified by a unique
id attribute, a name attribute, initial state attribute

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

400

Figure 3: Abstract application manifest model.

defining the state of the application (e.g. running,
stopped, etc) and default instance attribute repre-
senting the running instances by default.

4.2 Offer Manifest

The offer manifest contains information about the
capabilities of data stores of each discovered cloud
provider. In Figure 4, we present a offer manifest
modeling based on a class diagram. Indeed, the
root class is offer manifest and it is identified by the
name attribute. It contains one or multiple cloud
provider class. This class represents a discovered
cloud provider and it is identified by a unique id at-
tribute. It contains the name class defining the cloud
provider name and the environment response class
representing the capabilities that a cloud provider ex-
poses according to an abstract application manifest.
The environment response class is composed by one
or multiple offer class that contains one or multiple
node class. This class is similar to the node element
in the abstract application manifest modeling.

Figure 4: Offer manifest model.

4.3 Deployment Manifest

The deployment manifest’s structure is closest to the
abstract application manifest and it is defined based
on the COAPS API’s manifest (Sellami and et al.,
2013) (see Figure 5). Hence, in order to avoid the
repetition, we do not describe this manifest structure
in details. However, we will present we extend the
COAPS API manifest structure. In fact, we add new
attributes about data stores services in the paas node
class. These attributes are the size attribute, the type
attribute and the version attribute.

Figure 5: Deployment manifest model.

4.4 Matching Algorithm

In algorithm 1, we introduce the matching algorithm
that elects the cloud provider that supports the best
the application requirements in terms of data stores.
We need a flexible matching allowing to elect a cloud
provider which does not fulfill all the application’s re-
quirements but it is closed to them (that is the role of
the computed distance). Furthermore, we impose that
the result is a single cloud provider. First, the algo-
rithm constructs the offer manifest using the operation
queryDataStoresRepository by interacting with the
data stores repository (line 4). We introduce this op-
eration in Algorithm2. Second, it calculates for each
cloud provider the number of differences between its
capabilities and the user requirements described in the
abstract application manifest (lines 6-18). Numbers
of differences are stored in the data structure distance.
These values are calculated as follows: for each prop-
erty in the two manifest, if they are not corresponding
then we update the distance by adding the appropri-
ate penalty to the property. The two properties corre-
spond if the actual value of the offer manifest property
fulfill the requirement expressed by the abstract appli-
cation manifest property (which is either a constant, a
joker or a condition). These penalties are customized
according to the property importance. By default, all
penalties are fixed at 1; however the user can config-
ure these penalties according to the importance that he
gives to the properties. Once this step is achieved, we
can now elect a cloud provider and construct the de-
ployment manifest (lines 19-20). This is done through
the operation electCP that takes as inputs the the data
structure distance and the threshold and returns the
identifier of the elected cloud provider if any. This
identifier is the smallest value bounded between 0 and
the threshold.

In algorithm 2, we present in more details the
operation queryDataStoresRepository that returns a
super-set of the result from the data stores repository.
In fact, for each cloud provider it extracts all data
stores corresponding to the data types of the abstract
application manifest. If there are no corresponding
data stores, the cloud provider is rejected (lines 10-

Automating�Resources�Discovery�for�Multiple�Data�Stores�Cloud�Applications

401

Algorithm 1: Matching algorithm.
1: input AAM: the abstract application manifest
2: input threshold: the threshold to limit the number of differences
3: output DM: the deployment manifest
4: OM queryDataStoresRepository(AAM) # see Algorithm 2#
5: i 0
6: while (exist(Cloud Provider CP in OM)) do
7: while (exist(Offer O in OM)) do
8: distance[i] 0
9: for each node N in AAM do

10: for each property prop in N do
11: if (!valid(prop, OM:CP:O:node:prop)) then
12: distance[i] distance[i]+ updateDistance(prop,

OM:CP:O:node:prop)
13: end if
14: end for
15: end for
16: i i+1
17: end while
18: end while
19: electedCP electCP(distance, threshold)
20: return createDM(AAM, OM, electedCP)

Algorithm 2: The queryDataStoresRepository algorithm.
1: input AAM: the abstract application manifest
2: output OM: the offer manifest
3: length 0
4: for each node N in AAM do
5: if (content-type == ”database”) then
6: T [length] getType(N)
7: length length+1
8: end if
9: end for

10: for each Cloud Provider CP in the data stores directory do
11: for i=0 to length do
12: if (CP contains T[i]) then
13: Add all names of this type to the tree of the current CP
14: else
15: Reject the current CP
16: end if
17: end for
18: end for
19: return the resulted trees as the OM

18). For ease of presentation of this algorithm, we
build ourselves on the Figure 6. Indeed, in the left side
of the figure, we construct from the abstract applica-
tion manifest a simple graph in which nodes represent
the type elements in the node elements. This graph
is a kind of a sample that will be used to construct
the offer manifest. In the right side of Figure, we il-
lustrate a data stores repository of a cloud provider
having four types of data stores. Based on this repos-
itory and the graph based sample, we extract the list
of the cloud provider’s offers that we represent in the
form of a graph. Once we check all cloud providers,
we collect all the offers in the offer manifest (line 19).

Figure 6: Generating the offer manifest.

5 IMPLEMENTATION AND
VALIDATION

In this section, we present the tool implementing
the matching module. Hence, in order to show the
feasibility of this module, we propose to discover
data stores of cloud foundry and open shift as cloud
providers to deploy an ODBAPI-based application.
This application is intended to handle the admin-
istration of relational and NoSQL data stores in a
cloud provider. To do so, we propose to implement
the manifests modeling with XML. We give in this
section the example of the abstract application mani-
fest (see Listing 1). Indeed, the developer provides
user1 as a login and pswd as a password. Then, he
describes the environment that he requires in order
to deploy his ODBAPI based application. Indeed, he
chooses as name for the environment ODBAPIEnv
and for the environment template ODBAPIEnvTemp.
In this template, the user wants tomcat as an ap-
plication container, a document data store without
precising any name by filling the element name
with the character � and MySQL as a relational data
stores. Regarding the application configuration, the
user names his application ODBAPIApplication. He
precises that the application is a runnable file and he
requires to have two application instances: one is
running by default and the other is stopped. In this
section we present only the XML based represen-
tation of the abstract application manifest for lack
of space. We wish to emphasize that we provide
our tools and videos demonstration at http://www-
inf.int-evry.fr/�sellam r/Tools/ODBAPI/index.html
for more details.

1 <a b s t r a c t a p p l i c a t i o n m a n i f e s t name=”AAM”>
2 <u s e r i n f o r m a t i o n>
3 <u s e r l o g i n>u s e r 1</ u s e r l o g i n>
4 <u s e r p a s s w o r d>pswd</ u s e r p a s s w o r d>
5 <q u e r y t y p e>complex</ q u e r y t y p e>
6 </ u s e r i n f o r m a t i o n>
7 <e n v i r o n m e n t name =”ODBAPIEnv”>
8 <t e m p l a t e name=”ODBAPIEnvTemp” memory=” 128 ”>

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

402

9 <node i d =” 1 ” c o n t e n t t y p e =” c o n t a i n e r ”>
10 <name> t o mc a t </ name>
11 <v e r s i o n></ v e r s i o n>
12 </ node>
13 <node i d =” 2 ” c o n t e n t t y p e = ” d a t a b a s e ”>
14 <name>�</ name>
15 <v e r s i o n> 1 . 0 </ v e r s i o n>
16 <t y p e> document </ t y p e>
17 <s i z e> l a r g e </ s i z e>
18 </ node>
19 <node i d =” 3 ” c o n t e n t t y p e = ” d a t a b a s e ”>
20 <name> mysql </ name>
21 <v e r s i o n> � </ v e r s i o n>
22 <t y p e> r e l a t i o n a l </ t y p e>
23 <s i z e> s m a l l </ s i z e>
24 </ node>
25 </ t e m p l a t e>
26 </ e n v i r o n m e n t>
27 <a p p l i c a t i o n name=” ODBAPIApplicat ion ” e n v i r o n e m e n t =
28 ”ODBAPIEnv”>
29 <v e r s i o n name=” v e r s i o n 1 . 0 ” l a b e l =” 1 . 0 ”>
30 <d e p l o y a b l e i d =” 1 ” c o n t e n t t y p e =” a r t i f a c t ”
31 name=” ODBAPIApplicat ion . war ” l o c a t i o n =” 1444 d7 ”
32 m u l t i t e n a n c y l e v e l =” S h a r e d I n s t a n c e ” />
33 <i n s t a n c e i d =” 1 ” name=” I n s t a n c e 1 ”
34 i n i t i a l s t a t e =” 1 ” d e f a u l t i n s t a n c e =” t r u e ” />
35 <i n s t a n c e i d =” 2 ” name=” I n s t a n c e 2 ”
36 i n i t i a l s t a t e =” 1 ” d e f a u l t i n s t a n c e =” f a l s e ” />
37 </ v e r s i o n>
38 </ a p p l i c a t i o n>
39 </ a b s t r a c t a p p l i c a t i o n m a n i f e s t>

Listing 1: XML based representation of the abstract ap-
plication manifest.

We programmed also a tool ensuring the discov-
ery of cloud providers and the automatic deployment
of an ODBAPI-based application. Indeed, the ap-
plication programmer describes his requirements in
the abstract application manifest and he uploads it
through the interface that we illustrate in Fig. 7. Once
this manifest is uploaded, this tool executes the mani-
fest based matching algorithm to elect the appropriate
cloud provider that supports the ODBAPI client re-
quirements and returns the user the deployment man-
ifest. Based on the deployment manifest, we deploy
the ODBAPI client by the mean of COAPS API.

Figure 7: Screenshot of the interface allowing to select the
user manifest in order to get the deployment manifest.

In our work, we deploy an ODBAPI-based client
intended to handle the administration of relational and
NoSQL data stores in a cloud provider. In Fig. 8,
we show an overview of the databases created in
each data store in the Cloud Foundry. Indeed, there
is a MySQL database called world and it contains

Figure 8: Screenshot of all databases overview.

three entity sets: city, country, and countrylanguage.
Added to that, we have the MongoDB database that is
named person and it is composed by two entity sets:
Student and Teacher. We show also an overview of
the entities of the city entity set.

6 RELATED WORK

In our previous work (Sellami and Defude, 2013),
we focused on existing solutions of the state-of-the-
art supporting multiple data stores based applications
in the cloud environment. More precisely, (i) we de-
scribed different scenarios related to the way applica-
tions use data stores, (ii) we defined the data require-
ments of applications in cloud environment, and (iii)
we analyzed and classified existing works on cloud
data management, focusing on multiple data stores
requirements. As a result, we pointed out six require-
ments of using multiple data stores in a cloud environ-
ment. One of these requirements consists in choos-
ing a data store based on a data requirements. We
present three sub-requirements: defining application
needs and requirements towards data, defining data
store capabilities, and defining application needs and
data stores capabilities matching.

Against this background, we find several worksq
(Truong and et al., 2012),(Truong and et al.,
2011),(Vu and et al., 2012), (Ghosh and Ghosh,
2012), (Ruiz-Alvarez and Humphrey, 2011), (Ruiz-
Alvarez and Humphrey, 2012) enabling an appli-
cation to negotiate its Data Management Contract
(DMC), often referred to as data agreement or data li-
cense, with various clouds and to bind to the specific
DBMSs according to its DMC. Truong et al. (Truong
and et al., 2012), (Truong and et al., 2011), (Vu and
et al., 2012) propose to model and specify data con-
cerns in data contracts to support concern-aware data
selection and utilization. For this purpose, they de-
fine an abstract model to specify a data contract and
the main data contract terms. Moreover, they propose
some algorithms and techniques in order to enforce
the data contract usage. In fact, they present a data

Automating�Resources�Discovery�for�Multiple�Data�Stores�Cloud�Applications

403

contracts compatibility evaluation algorithm and they
define how to construct, compose and exchange a data
contract. In (Truong and et al., 2011), they intro-
duce their model for exchanging data agreements in
the Data-as-a-Service (DaaS) based on a new type of
services which is called Data Agreement Exchange as
a Service (DAES). This model is called DEscription
MOdel for DaaS (DEMODS) (Vu and et al., 2012).
However, Truong et al. propose this data contract for
data and not to store data or to help the developer to
choose the appropriate data stores for his application.
In (Ghosh and Ghosh, 2012), Ghosh et al. identify
non-trivial parameters of the Service Level Agree-
ment (SLA) for Storage-as-a-Service cloud which are
not offered by the present day cloud vendors. More-
over, they propose a novel SLA monitoring frame-
work to facilitate compliance checking of Service
Level Objectives by a trusted third part. Although
Ghosh et al. try to enrich the SLA parameters to
support the Storage-as-a-Service, this is still inade-
quate for our purpose in this paper. In (Ruiz-Alvarez
and Humphrey, 2011), (Ruiz-Alvarez and Humphrey,
2012), Ruiz-Alvarez et al. propose an automated ap-
proach to selecting the PaaS storage service according
an application requirements. For this purpose, they
define a XML schema based on a machine readable
description of the capabilities of each storage system.
The goal of this XML schema is twofold: (i) express-
ing the storage needs of consumers using high-level
concepts, and (ii) enabling the matching between con-
sumers requirements and data storage systems offer-
ings. Nevertheless, they consider in their work that an
application may interact with only one data store and
they did not invoke the polyglot persistence aspect.

7 CONCLUSIONS AND FUTURE
WORK

In this paper, we proposed a manifest-based solution
for data stores discovery and automatic application
deployment. Indeed, once the developer has com-
pleted the development of his application, we pro-
vided him the possibility to express his application
requirements in terms of data stores in the abstract
application manifest. Then, he sends it to the dis-
covery module. This module interacts with the data
stores directory to discover the capabilities of data
stores of each cloud provider and constructs the of-
fer manifest. Based on that, this module implements
the matching algorithm in order to elect the adequate
cloud provider to the application requirements. This
algorithm takes as input the abstract application man-
ifest and offer manifest, and returns the deployment

manifest of the application. Once it is done, we de-
ploy the application using the COAPS API that takes
as input the deployment manifest.

Currently, we are working on applying our solu-
tion to other qualitatively and quantitatively various
scenarios in the OpenPaaS project. This allows us
to identify possible discrepancies and make our work
more reliable for real use. Our second perspective is
to implement virtual data stores in order to execute
join queries across NoSQL and relational data stores
and to introduce more elaborate query processing op-
timization techniques.

REFERENCES

Baun, C. and et al. (2011). Cloud Computing - Web-Based
Dynamic IT Services. Springer.

Ghosh, N. and Ghosh, S. K. (2012). An approach to
identify and monitor sla parameters for storage-as-
a-service cloud delivery model. In Workshops Pro-
ceedings of the Global Communications Conference,
GLOBECOM 2012, 3-7 December, Anaheim, Califor-
nia, USA, pages 724–729.

McAfee, A. and Brynjolfsson, E. (2012). Big data: The
management revolution. (cover story). Harvard Busi-
ness Review, 90(10):60–68.

Ruiz-Alvarez, A. and Humphrey, M. (2011). An automated
approach to cloud storage service selection. In Pro-
ceedings of the 2Nd International Workshop on Scien-
tific Cloud Computing, ScienceCloud ’11, pages 39–
48.

Ruiz-Alvarez, A. and Humphrey, M. (2012). A model and
decision procedure for data storage in cloud comput-
ing. In 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, CCGrid 2012,
Ottawa, Canada, May 13-16, pages 572–579.

Sellami, M. and et al. (2013). Paas-independent provision-
ing and management of applications in the cloud. In
2013 IEEE Sixth International Conference on Cloud
Computing, Santa Clara, CA, USA, June 28 - July 3,
2013, pages 693–700.

Sellami, R., Bhiri, S., and Defude, B. (2014). ODBAPI:
a unified REST API for relational and NoSQL data
stores. In The IEEE 3rd International Congress on Big
Data (BigData’14), Anchorage, Alaska, USA, June 27
- July 2, 2014.

Sellami, R. and Defude, B. (2013). Using multiple data
stores in the cloud: Challenges and solutions. In Data
Management in Cloud, Grid and P2P Systems - 6th
International Conference, Globe 2013, Prague, Czech
Republic, August 28-29, 2013. Proceedings, pages
87–98.

Truong, H. L. and et al. (2011). Exchanging data agree-
ments in the daas model. In 2011 IEEE Asia-Pacific
Services Computing Conference, APSCC 2011, Jeju,
Korea (South), December 12-15, pages 153–160.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

404

Truong, H. L. and et al. (2012). Data contracts for cloud-
based data marketplaces. IJCSE, 7(4):280–295.

Vu, Q. H. and et al. (2012). Demods: A description model
for data-as-a-service. In IEEE 26th International Con-
ference on Advanced Information Networking and Ap-
plications, AINA, 2012 , Fukuoka, Japan, March 26-
29, pages 605–612.

Automating�Resources�Discovery�for�Multiple�Data�Stores�Cloud�Applications

405

MusicBeetle
Intelligent Music Royalties Collection and Distribution System

Carlos Serrão, Hélder Carvalho and Nelson Carvalho
ISCTE-IUL/ISTAR-IUL, Ed. ISCTE, Av. das Forças Armadas, 1649-026 Lisboa, Portugal

carlos.serrao@iscte.pt, hel.carvalho@gmail.com, nelson.icebox@gmail.com

Keywords: Music, Related-Rights, Royalties, Distribution, Cloud, Recommendation.

Abstract: Music industry has been completely disrupted by a range of new online digital services and social network-
ing systems that has forever changed the way users and businesses experience and use music. This had a
tremendous impact on the established music business models that had guided a dozen year-old industry. On
what concerns business music users, i.e. businesses that make use of music as part of their own business
model, and on the business relation they establish with author societies or their representatives, they are re-
quired to pay royalties for the use of music. These royalties need to be distributed and authors will have the
opportunity to see their work rewarded properly. The proper distribution of royalties is a non-transparent
and complex process. In this paper, the authors present a system, called MusicBeetle that enables the identi-
fication, collection and distribution of music royalties through the usage of decentralised system and low
cost hardware devices.

1 INTRODUCTION

The Internet and the digital technology has created
serious challenges in terms of Intellectual Property
protection and management of digital content assets,
for both end-users, content authors, content distribu-
tors and rights collecting and distributing societies
(Torres, Serrão, Dias and Delgado, 2008).

The Related Rights (RR) or Neighbouring Rights
(NR) are terms in copyright law that represent the
rights which are similar to the author rights but
which are not connected with the actual author of the
work (Frith and Marshall, 2004). Both the author
rights and the related rights are copyrights. The
RR/NR are independent of any authors’ rights,
which may also exist in the work (WIPO, 1961). The
rights of performers, phonogram producers and
broadcasting organisations are certainly covered,
and are internationally protected by the RR/NR
legislation (Correa, 2007). In the specific case of the
music industry, and as an example, four different
copyright-types rights will concurrently protect a
CD recording of a song:

• The authors’ rights of the composer of the music;
• The authors’ rights of the lyricist;

• The performers’ rights of a singer and the musi-
cians;

• The producers’ rights of the person or corpora-
tion, which made the recording.
Therefore one the most important activities of

these Music Related/Neighbouring Rights Manage-
ment Societies (MRNRMS) is the collection of
neighbouring rights on behalf of producers and per-
formers related to public performance of recorded
music (Correa, 2007). Consequently the mission of a
MRNRMS can be resumed in the following four
major objectives:

• Raise public awareness to the reality of relat-
ed/neighbouring rights and the need for its pro-
tection (a fact still relatively new and little
known);

• Boosting the delivery of remuneration for distri-
bution to the holders, be they producers or art-
ists;

• Realize the collection of related/neighbouring
rights to all places of public performance using
recorded music for commercial purposes, as well
as all the inspectors to use of recorded music, by
any means;

• The community awareness in relation to associ-
ated rights will, in large part, be accomplished
with the collaboration of public authorities with
powers of supervision on Copyright and Relat-
ed/Neighbouring Rights, as well as the users of

406

recorded music in various areas and industries
that in compliance with the law, should ask for
their license.
These MRNRMS are responsible for issuing li-

censes to businesses that use represented recording
music as a mean to conduct their own business mod-
els. Moreover, they are also responsible for the ef-
fective collection and distribution of the associated
fees to the music producers, performers and authors
(Bustinza, Vendrell-Herrero, Parry, and Myrthianos,
2013). Most of these MRNRMS exist in nearly eve-
ry civilised country in the World and they often
operate their business based on manual and non-
automatic processes, causing them to be less effec-
tive on their core business functions.

2 BUSINESS MUSIC USERS
(BMU) AND ROYALTIES
DISTRIBUTION

Businesses use in-store media entertainment content
as a way to increase the perceived value of their core
business while engaging more customers and creat-
ing the opportunities for them to stay longer and
consume more (Teece, 2010). Music is an important
part of their business model. They recognise its
importance and therefore are willing to comply with
the legal requirements that impose the payment of
royalties to authors. Not only business music users
(BMU) are required to use legal content (legally
acquired music) but they also need a public execu-
tion license (Vaccaro and Cohn, 2004). Public exe-
cution licenses are a requirement for businesses that
depend on the usage of music for public execution
on their businesses - this includes, for instance, dis-
cos, bars, restaurants, stores, gyms, parking zones,
hotels and many more.

The MRNRMS are responsible for collecting the
rights royalties from the different BMU and distrib-
ute those royalties to the different beneficiaries of
such royalties (artists, performers, and others). Usu-
ally this distribution method is performed through
the sampling of the percentage of the number of
times a given music is played on a given medium
(Figure 1). Currently, some specific companies are
hired to audit the music usage, using specific human
auditors to listen to the different medium (radio
stations, TV channels, and some other mass media
mediums) for a given period of time and produce
statistical data estimations that are used to extrapo-
late the real music usage ratings that are after used to
perform royalties distribution. Also, some additional

criteria are used to charge BMU, like the business
space, the number of days the business operates
during the year, and other similar.

Figure 1: Related-rights distribution scenario.

The way, this all process is conducted, is com-
pletely error prone and not transparent. The process
is not accurate, and leaves out from the royalties
distribution chain some of the less well-known art-
ists (Castro, Alves, Serrão and Caraway, 2010).
Moreover, this system can only be used for larger
music distribution channels, and are not adequate for
the different BMU that use music as part of their
business model - they represent a large amount of
entities that are charged for a license that enable
them to use music on their business and execute
their business model.

These facts have created the need for a new type
of system that allowed the MRNRMS to charge
BMU in a fairer way and distribute owed royalties to
artists in a more transparent manner.

The following sections of this paper present a
system, called MusicBeetle, that is responsible for
automatically auditing the music usage by BMU and
by ensuring the appropriate royalties collection by
the MRNRMS and distribution to the authors. The
following section presents the MusicBeetle system
that is divided into two different components - Mu-
sicBeetle.box and the MusicBeetle.cloud. The two
components are further described and details about
how they both operate to fulfil the automatic music
auditing process and royalties distribution.

3 THE MUSICBEETLE SYSTEM

In order to improve the related-rights royalties col-
lection and distribution process that is implemented
manually by the MRNRMS, it was designed and
implemented a system that automates the entire
process.

MusicBeetle�-�Intelligent�Music�Royalties�Collection�and�Distribution�System

407

The system, called MusicBeetle, was composed
by two different components: (a) a critical client-
side component that was capable of automatically
identifying the music being used and create a report
of all the music used on a given period of time by a
specific BMU (MusicBeetle.box), and (b) a set of
cloud-based services integrated with the MRNRMS
information systems that registers all the different
music business licensees, their music usage profile,
and information about music identification and art-
ists database (MusicBeetle.cloud).

In order for the entire system to work, the differ-
ent BMU have to install specific hardware devices
that are connected to the Internet (the MusicBee-
tle.box, that will be presented in the following sec-
tion) and connected to the music sound system used
by the BMU. On the other side, the MRNRMS has
access to an large database of the entire music reper-
toire that they represent on a given country or has
the means to access further information online.

The following sections provide an overview of
these two different components of the system, how
they interoperate and which are their major func-
tionalities.

3.1 MusicBeetle.box

The MusicBeetle.box is one of the critical compo-
nents on the system. This client-side hardware com-
ponent allows the system to actively listen to the
music being used at the BMU side, record the music
candidate identification, and report back the music
consumption to the MRNRMS.

Here are some of the most important require-
ments for the development of such critical compo-
nent:

• The system should be able to connect to an ex-
ternal sound system;

• It should be able to listen to the music that is be-
ing played at the sound system;

• It should be connected to the Internet (or at least
it should temporarily connected to the Internet -
not requiring a permanent connection);

• The system should be able to create unique iden-
tifiers for the music that is listening (from time to
time) based on audio fingerprinting technology
(Cano, Batlle, Kalker, and Haitsma, 2005);

• The system should be able to record at least a
month time of audio identifiers;

• And finally, another important requirement is
that the system should be inexpensive.
All of the above requirements were considered in

the design and development of a solution.

3.1.1 MusicBeetle.box Hardware
Architecture

Having into consideration all of the previous tech-
nical and financial requirements, the obvious choice
was to select an inexpensive hardware solution,
based on the “all-in-one” boards that existed on the
market. After analysing some of the existing ones
(Raspberry Pi, CubieBoard, PandaBoard, Beagle-
Board, and CuBox), it was decided to select the
Raspberry Pi (RPi). The RPi represents a cost effec-
tive solution that also presents the processing capa-
bilities required by the solution to implement.

Figure 2: MusicBeetle.box (based on the Raspberry Pi
hardware) and the integration with the client Sound Sys-
tem and the Internet.

Therefore, RPi was selected as the principal
hardware component to implement the MusicBee-
tle.box prototype (Richardson and Wallace, 2012).
Raspberry Pi is a credit card-sized single-board
computer that was developed in the UK by the
Raspberry Pi Foundation with the intention of pro-
moting the teaching of basic computer science in
schools. Raspberry Pi is based on the Broadcom
system on a chip (SoC), including an ARM proces-
sor, a GPU, and some amount of memory (originally
256 MB and later 512 MB). The system has Secure
Digital (SD) or MicroSD sockets for boot media and
persistent storage (Upton and Halfacree, 2012).
Moreover, Raspberry Pi has also an HDMI port,
several USB ports, an Ethernet port and an audio
connector (Figure 2).

The Raspberry Pi board has become the natural
and adequate solution to sustain the MusicBee-
tle.box system and to implement crucial require-
ments, like the capability to listen to music and con-
nect to the Internet to report the audited music. Ad-
ditionally, each of the RPi boards costs around 35
euros, making it inexpensive enough for mass distri-
bution.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

408

3.1.2 MusicBeetle.box Logical and Software
Architecture

Apart from the hardware that was selected, the Mu-
sicBeetle.box is also composed by a set of software
that was specifically developed to implement some
of the requirements of the system. All the developed
software runs on the Raspbian Linux-based (on the
Debian Wheezy distribution) operating system. On
top of the operating system, a set of specifically
developed software is running to implement a set of
operations that enable the correct operation of the
MusicBeetle.Box.

The following schema (Figure 3) depicts how the
MusicBeetle operates to conduct the music audits at
the BMU side.

Figure 3: Schema that demonstrates how the MusicBee-
tle.box operates to audit music usage.

The implemented music auditing process is
composed by the following operations:

1. The MusicBeetle.box has an active process that
continuously listens for the existence of new
music on the sound board;

2. Every time music/audio is detected, the process
captures and records 15 seconds of audio data;

3. A candidate audio fingerprint is calculated for
the audio sample from this 15 seconds of cap-
tured audio;

4. A timestamp of the date and time of the audio
data capture and the candidate audio fingerprint
are stored on a temporary MusicBeetle.box da-
tabase;

5. After a waiting process of 30 seconds, the pro-
cess verifies if there is more audio data availa-
ble to capture. If there is, it repeats the entire
workflow (returning to step 2).

In order to conduct this auditing process and be-
ing able to operate at the BMU side, the MusicBee-
tle.box implements the following software architec-
ture (Figure 4). This software architecture lies on top
of the specific Raspberry Pi Linux distribution
(Raspbian), with some specific software developed
for accomplishing the required tasks of the Mu-
sicBeetle.box.

Figure 4: Schema that demonstrates how the MusicBee-
tle.box operates to audit music usage.

The MusicBeetle.box is composed by two differ-
ent software processes that are running on the box.
These two software processes are “music_audit” and
“music_report”. Both of these processes are auto-
matically activated immediately after the Raspberry
Pi is turned on and the Raspbian operating system
finishes booting up.

The “music_audit” is the process that is respon-
sible for auditing and identifying the music that is
used at the BMU side. This process conducts the
following functions:

• Actively listens to the sound board for the exist-
ence of audio data. If that data exists, “mu-

MusicBeetle�-�Intelligent�Music�Royalties�Collection�and�Distribution�System

409

sic_audit” records 15 seconds of the audio data,
using “arecord” (an utility that is part of the AL-
SA utils package) and saves it to a temporary
file;

• After this, “music_audit” uses two different audio
fingerprint open-source tools (AccoustID and
Echoprint) to create two candidate audio finger-
prints from the audio samples that were previ-
ously captured and recorded, using “chromaprint”
and “echoprint”. These audio fingerprints are
used to create a tentatively positive identification
of the music being played, while performing a
posterior comparison with a fingerprinting data-
base in a matching process. The matching pro-
cess takes place at the MusicBeetle.cloud;

• The following example describes how to how to
use “echoprint” to create a audio fingerprint from
an audio sample captured by the box:
“./echoprint-codegen audio_sample_[01].mp3 0
15”.

• After creating the two candidate audio finger-
prints, “music_audit” saves them, together with a
timestamp of the date and time of the audio sam-
ple capture. This data is saved on an temporary
SQLite database (“sqlite”);

• “music_audit” continues to actively monitor the
existence of more audio data on the audio board
of the Raspberry Pi, repeating the recording, au-
dio fingerprinting and saving processes.
The “music_report” is the process that is respon-

sible for the communication of the candidate music
identifications detected by the MusicBeetle.box to
the MusicBeetle.cloud system. This process is re-
sponsible for the following functions:

• “music_report” is a process that is run by the
“crond” Linux daemon. “crond” runs “mu-
sic_report” on a daily basis (every 24 hours), at a
given time (the frequency and time can be con-
figured on the MusicBeetle.box);

• “music_report” connects to the SQLite database
and extracts all the available records that corre-
spond to the last period of audited music that has
not yet been send to the MusicBeetle.cloud;

• The process builds a JSON data structure (Figure
5) that contains the necessary data to be sent to
the MusicBeetle.cloud. This structure contains
information about the unique identifier of the
MusicBeetle.box on the system (UUID), a
timestamp of the data and time of the transfer
(TIMESTAMP), the two values of the samples
fingerprints (FP1 and FP2, each one created with

a different audio fingerprinting algorithm) and
the identifier of the audio sample (SID);

• After this, “music_report” establishes a secure
connection, using SSL/TLS protocol, with the
MusicBeetle.cloud service endpoint and posts the
JSON data structure over the network. If no con-
nection is available, MusicBeetle.box will retain
the previous audit data and continues to store
more data, until a connection becomes available
and the transfer process concludes with success
(after receiving a message from the MusicBee-
tle.cloud service confirming that the data recep-
tion was successful).

{
 “musicbeetlebox_uuid”: “[UUID]”,
 “transfer_timestamp”:
“[TIMESTAMP]”,
 “audits”: [
 {
 “sample_id”: “[SID]”,
 “sample_timestamp”:
“[TIMESTAMP]”,
 “sample_fp”: [
 “fp1”: “[FP1]”,
 “fp2”: “[FP2]”
],
 },
 {
 “sample_id”: “[SID]”,
 “sample_timestamp”:
“[TIMESTAMP]”,
 “sample_fp”: [
 “fp1”: “[FP1]”,
 “fp2”: “[FP2]”
],
 }
]
}

Figure 5: Sample JSON data structure containing the data
to be sent from the MusicBeetle.box to the MusicBee-
tle.cloud. [UUID], [TIMESTAMP], [SID], [FP1] and
[FP2] are simply placeholders that are replaced by the
actual values.

Both the “music_audit” and “music_report” are
two important processes in the way the MusicBee-
tle.box operates and conducts its major functionality:
audit the BMU music real usage and reporting that
information back to the MRNRMS. All the match-
ing, accounting and management is performed on

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

410

the MusicBeetle.cloud, that will be detailed in the
following section.

3.2 MusicBeetle.cloud and Services

MusicBeetle.cloud is a key element in the Mu-
sicBeetle ecosystem. It represents the services that
are run on a cloud service by the MRNRMS that will
enable the management of the music portfolio (and
artists) whose rights are represented and managed by
the MRNRMS. These services have to assure the
following:

• The MRNRMS should have a system with data
that represents the music and artist portfolio
whose rights they represent. This system should
contain not only information about the music, but
also about the artists;

• MusicBeetle.cloud should also have information
about the BMU that are registered at the MRN-
RMS, and information about the MusicBee-
tle.boxes that are installed on their side;

• Also another important service that is required is
the capability of being able to match the audio
audits, sent from multiple MusicBeetle.boxes,
and then perform the identification of the music
tracks, and account for the number of times a

Figure 6: The schema represents the different services that
are running on the MusicBeetle.cloud and how they inter-
act with other systems (both internal to the MusicBeetle
ecosystem or outside).

given music track has been played by the BMU
during a given period of time;

• The MusicBeetle.cloud service should also be
capable of accounting the necessary amount to
be distributed to a given artist, according to the
music usage by the BMU ecosystem (that are le-
gally licensed by the MRNRMS and possess a
MusicBeetle.box) as well as to charge the specif-
ic rightful amount to the BMU according to the
effective music usage.
The different services present at the MusicBee-

tle.cloud (Figure 6) cooperate with each other and
with external services to ensure that MusicBeetle
can meet the requirements that were previously
identified. One of the most crucial operations of
these services is the capability to receive reports
from the different installed MusicBeetle.boxes, and
process such reports in terms of music identification,
royalties accounting and fees to be charged to the
BMU. This process is detailed on the next section.

3.2.1 Music Identification, Reporting and
Royalties Management Process

One of the most vital operations that is executed at
the MusicBeetle.cloud is the capability to receive the
multiple reports from the MusicBeetle.boxes, and
process them in terms of music identification, royal-
ties distribution and fees charging.

In order for these services to operate properly,
the following assumptions need to be fulfilled:

1. It is necessary to build a repository that con-
tains the music meta-information (related to the
music track) and audio fingerprints that are
unique to each of the music tracks. Each music
track must also be associated with an artist (or
multiple artists and/or recording label, if it is
the case);

2. A repository with the information about the art-
ists that are represented (registered) by the
MRNRMS is necessary, and a relation with
their music tracks;

3. It is also necessary to have all the information
about the BMU that are licensed by the MRN-
RMS and the list of MusicBeetle.boxes that are
assigned to them.

After all of these pre-requisites are met, the pro-
cess that is responsible for music identification,
royalties distribution and fees charging is aligned
with the following steps:

1. The process is initiated by the MusicBee-
tle.boxes while sending report data to the “Mu-
sic Identification and Matching Service”;

1.1. The “Music Identification and Matching

MusicBeetle�-�Intelligent�Music�Royalties�Collection�and�Distribution�System

411

Service” receives the JSON data from the
MusicBeetle.box;
1.2. The service verifies the field that con-
tains “musicbeetlebox_uuid” and contacts
the “Music business users and MusicBee-
tle.boxes service registry” to check if that
specific MusicBeetle.box is registered and
is valid within the MRNRMS context;
1.3. After validating the MusicBeetle.box,
the service contacts the “Music Business
users accounting service” to retrieve identi-
fication of the BMU that will be charged for
the music usage.

2. After these initial steps, the “Music Identifica-

tion and Matching Service” will try to identify
the music tracks send on the JSON report.

2.1. The service looks into the “audits” field
of the report and starts looking for existing
music samples (“sample_id”) identification;
2.2. For each of the samples, the “sam-
ple_id”, “sample_timestamp” and “sam-
ple_fp” are retrieved;
2.3. Inside the “sample_fp” the values of
both “fp1” and “fp2” are extracted;
2.4. “fp1” and “fp2” are used by the match-
ing service to identify the music to which
the samples refer to. The “Music and Artists
Portfolio Management service” is used to
perform this matching operation. If a match
is found, the corresponding music meta-
information can be retrieved and infor-
mation about the music track and the corre-
sponding artist can be used to establish the
royalties distribution process;
2.5. If the sample fingerprints cannot be
matched to any of the musics at the reposi-
tory, it will be possible to pass that data to
external matching and identification ser-
vices to try a successful identification;
2.6. If it is not possible to identify a music
sample, it is classified is a particular way,
so that the MRNRMS can find a different
way to distribute the royalties;

3. Finally, after the music track is identified, it is
possible to direct the usage royalties to the ap-
propriated artists and to charge the correct and
fair fees to the BMU:

3.1. After the matching process concludes
with success the service contacts the “Rep-
resented artists accounting service” to credit
the artist for the corresponding value of its
music usage;
3.2. The service also contacts the “Music

business users accounting service” to debit
the BMU on the usage of that specific mu-
sic track.

This process is repeated for each of the Mu-
sicBeetle.boxes that report music auditing infor-
mation to the services on the MusicBeetle.cloud.

4 CONCLUSIONS

The music industry has changed across time. The
well-established music business models that lasted
for decades were completely shacked by a new
emerging reality boosted by technology. Information
and Communication Technologies (ICT) (Rosen-
blatt, Mooney and Trippe, 2001) has altered the
relation between recording companies, artists, music
and end-users (both individuals and businesses)
(Vaccaro and Cohn, 2004). At the same time ICT
has also created new music business models and
raised opportunities for key actors in the music val-
ue-chain to become more efficient in its mission
fulfillment (Handke and Towse, 2007).

One of these actors is the Music Relat-
ed/Neighbouring Rights Management Societies
(MRNRMS), entities that are responsible for the
collection and distribution of royalties on the behalf
of the artist (or other entities that represent them)
(Kretschmer, Klimis and Wallis, 1999). These
MRNRMS license BMU, charging them a fee for
using commercial music as part of their core busi-
ness model and distribute these fees to the represent-
ed artists (Towse, 1999). The problem is that collec-
tion and distribution process is not fair, accurate or
transparent. Therefore there was the necessity for a
system that could charge BMU according to their
actual music usage, and distribute royalties to artists
whose music’s have been played. The MusicBeetle
system was developed to provide the necessary an-
swer to these requirements.

The developed prototype was tested in the par-
ticular context of a Portuguese MRNRMS, where
some of the properly licensed BMU were invited to
participate in the system trials.

From the tests conducted it was possible to im-
prove the way the license was charged to the MRN-
RMS customers, this more direct relation with the
real music consumption, improved the way the roy-
alties collection occurred (resulting from the direct
music usage by the BMU) and also ensure more
transparency on the way the royalties are distributed.
Artists represented by the MRNRMS or by any of its
associates received the royalties’ value according to
its real music usage.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

412

MusicBeetle contributed to the rethinking of an
old paradigm in Related Rights (RR) or Neighbour-
ing Rights (NR) royalties’ collection and distribu-
tion, enabling a fairer rights charging and collection
and a transparent distribution of royalties. Besides
this, the system also provided the necessary mecha-
nisms to audit the charging and distribution of such
royalties.

REFERENCES

Bustinza, O. F., Vendrell-Herrero, F., Parry, G., and Myr-
thianos, V. (2013). Music business models and piracy.
Industrial Management and Data Systems, 113(1), 4–
22.

Cano, P., Batlle, E., Kalker, T., and Haitsma, J. (2005). A
review of audio fingerprinting. Journal of VLSI Signal
Processing Systems for Signal, Image and Video
Technology, 41(3), 271–284.

Castro, H., Alves, A. P., Serrão, C., and Caraway, B.
(2010). A new paradigm for content producers. Mul-
tiMedia, IEEE, 17(2), 90-93.

Correa, C. (2007). Trade related aspects of intellectual
property rights: a commentary on the TRIPS agree-
ment. OUP Catalogue.

Frith, S., and Marshall, L. (2004). Music and copyright.
Edinburgh University Press.

Handke, C., and Towse, R. (2007). Economics of copy-
right collecting societies. International Review of In-
tellectual Property and Competition Law, 38(8), 937-
957.

Kretschmer, M., Klimis, G. M., and Wallis, R. (1999). The
changing location of intellectual property rights in mu-
sic: A study of music publishers, collecting societies
and media conglomerates. Prometheus, 17(2), 163-
186.

Richardson, M., and Wallace, S. (2012). Getting Started
with Raspberry Pi. “ O’Reilly Media, Inc.”

Rosenblatt, W., Mooney, S., and Trippe, W. (2001). Digi-
tal rights management: business and technology. John
Wiley and Sons, Inc.

Teece, D. J. (2010). Business models, business strategy
and innovation. Long range planning, 43(2), 172-194.

Torres, V., Serrão, C., Dias, M. S., and Delgado, J. (2008).
Open DRM and the Future of Media. MultiMedia,
IEEE, 15(2), 28-36.

Towse, R. (1999). Copyright and economic incentives: an
application to performers’ rights in the music industry.
Kyklos, 52(3), 369-390.

Upton, E., and Halfacree, G. (2012). Meet the Raspberry
Pi. John Wiley and Sons.

Vaccaro, V. L., and Cohn, D. Y. (2004). The evolution of
business models and marketing strategies in the music
industry. International Journal on Media Management,
6(1-2), 46-58.

WIPO. (1961). WIPO-Administered Treaties: Rome Con-
vention for the Protection of Performers, Producers of

Phonograms and Broadcasting Organizations. Re-
trieved February 06, 2015, from
http://www.wipo.int/treaties/en/text.jsp?file_id=28975
7.

MusicBeetle�-�Intelligent�Music�Royalties�Collection�and�Distribution�System

413

Context-aware MapReduce for Geo-distributed Big Data

Marco Cavallo, Giuseppe Di Modica, Carmelo Polito and Orazio Tomarchio
Department of Electrical, Electronic and Computer Engineering, University of Catania, Catania, Italy

ffirstname.surnameg@dieei.unict.it

Keywords: Big Data, MapReduce, Hierarchical Hadoop, Context Awareness, Partition Number.

Abstract: MapReduce is an effective distributed programming model used in cloud computing for large-scale data anal-
ysis applications. Hadoop, the most known and used open-source implementation of the MapReduce model,
assumes that every node in a cluster has the same computing capacity and that data are local to tasks. How-
ever, in many real big data applications where data may be located in many datacenters distributed over the
planet these assumptions do not hold any longer, thus affecting Hadoop performance. This paper addresses
this point, by proposing a hierarchical MapReduce programming model where a toplevel scheduling system
is aware of the underlying computing contexts heterogeneity. The main idea of the approach is to improve
the job processing time by partitioning and redistributing the workload among geo-distributed workers: this is
done by adequately monitoring the bottom-level computing and networking context.

1 INTRODUCTION

In the last few years, the pervasivity and the
widespread diffusion of information technology ser-
vices such as social computing applications and smart
city services produced a significant increase of the
amount of digital data, which in a single day may even
reach a few petabytes (Facebook, 2012).

The new term “Big Data” has been created to indi-
cate this phenomenon: it refers to collections of very
large datasets, that require unconventional tools (e.g
non-relational DBMS) to be managed and processed
within a reasonable time (Zikopoulos, P. and Eaton,
C., 2011). Big data analysis requires adequate in-
frastructure capable of processing so large amount of
data: parallel and distributed computing techniques
are commonly used to efficiently manipulate such
data. MapReduce is probably the most known parallel
programming paradigm that is nowadays used in the
context of Big Data (Dean and Ghemawat, 2004). It
is based on two functions, Map and Reduce: the first
one generates data partitions based on a given user de-
fined function, and the second one performs a sort of
summary operation on Map outputs. Apache Hadoop
is an open source implementation of the MapReduce
approach (The Apache Software Foundation, 2011);
in the last few years it has evolved by including many
features and reaching a high level of adoption both in
industry than in academic community. Hadoop has
been designed mainly to work on clusters of homoge-

neous computing nodes belonging to the same local
area network; data locality is one of the crucial factors
affecting its performance. However, in many recent
Big Data scenarios, it is not uncommon the need to
deal with data which are geographically distributed.
In fact, the design of geo-distributed cloud services
is a widespread trend in cloud computing, through
the distribution of large amounts of data among data
centers located in different geographical locations. In
these scenarios, the data required to perform a task
is often non-local, which, as mentioned before, may
severely affect the performance of Hadoop.

In this paper, we propose a novel job scheduling
strategy that is aware of data location. The proposed
approach takes into account the actual heterogeneity
of nodes, network links and of data distribution. Our
solution follows a hierarchical approach, where a top-
level entity will take care of serving a submitted job:
this job is split into a number of bottom-level, inde-
pendent MapReduce sub-jobs that are scheduled to
run on the sites where data reside. The remainder
of the paper is organized as follows. Section 2 pro-
vides some motivation for the work and also discusses
some related work. In Section 3 we introduce the sys-
tem design and provide the details of the proposed
strategy. Section 4 provides the details of the strategy
adopted to partition data and distribute the workload.
Finally, Section 5 concludes the work.

414

2 BACKGROUND AND
RATIONALE

Well know implementations of MapReduce have been
conceived to work on a single or on a few clusters
of homogeneous computing nodes belonging to a lo-
cal area network. Hadoop (The Apache Software
Foundation, 2011), the most famous open source im-
plementation of the MapReduce paradigm, performs
very poorly if executed on data residing in geographi-
cally distributed datacenters which are interconnected
to each other by means of links showing heteroge-
neous capacity (Heintz et al., 2014).

The main problem is that Hadoop is unaware of
both nodes’ and links’ capacity, nor it is aware of the
type of application that is going to crunch the data.
This may yield a very bad performance in terms of job
execution time, especially in the case a huge amount
of data are distributed over many heterogeneous data-
centers that are interconnected to each other’s through
disomogeneous network links. In the literature two
main approaches are followed by researchers to ef-
ficiently process geo-distributed data: a) enhanced
versions of the plain Hadoop implementation which
account for the nodes and the network heterogeneity
(Geo-hadoop approach) ; b) hierarchical frameworks
which gather and merge results from many Hadoop
instances locally run on distributed clusters (Hierar-
chical approach).

Geo-hadoop approaches (Kim et al., 2011; Mat-
tess et al., 2013; Heintz et al., 2014; Zhang et al.,
2014) reconsider the phases of the job’s execution
flow (Push, Map, Shuffle, Reduce) in a perspective
where data are distributed at a geographic scale, and
the available resources (compute nodes and network
bandwidth) are disomogeneous. In the aim of reduc-
ing the job’s average makespan1, phases and the rela-
tive timing must be adequately coordinated.

Hierarchical approaches (Luo et al., 2011; Jay-
alath et al., 2014; Yang et al., 2007) envision two (or
sometimes more) computing levels: a bottom level,
where several plain MapReduce computations occur
on local data only, and a top level, where a central en-
tity coordinates the gathering of local computations
and the packaging of the final result. A clear advan-
tage of this approach is that there is no need to mod-
ify the Hadoop algorithm, as its original version can
be used to elaborate data on a local cluster. Still a
strategy needs to be conceived to establish how to re-
distribute data among the available clusters in order to
optimize the job’s overall makespan.

1The execution time of a job. It is measured from the
time the job is submitted to the time results are gathered

The solution we propose belongs to the hierarchi-
cal category. We address the typical scenario of a
big company which has many branches distributed all
over the world producing huge amounts of business-
sensitive data that need to be globally processed on
demand. Examples of application domains that fall
in this scenario are electronic commerce, content de-
livery networks, social networks, cloud service provi-
sioning and many more. The Hadoop seems to offer
the computing model that best suits this situation, be-
cause of its capability of providing parallel computa-
tion on multiple pieces of data. Unfortunately, com-
pany sites may be disomogeneous in terms of com-
puting capabilities and the amount of stored raw data.
Also, the inter-site network links have very limited
and unbalanced bandwidth that is usually employed
to support many types of inter-site communication.
This makes the plain Hadoop unfit for the depicted
scenario.

We believe a hierarchical computing model may
help since it decouples the job/task scheduling from
the actual computation. The approach we propose in-
troduces a novel job scheduling algorithm which ac-
counts for the discussed disomogeneity to optimize
the job makespan. Basically, when a job is submitted,
a top-level entity (“Orchestrator” in the remainder of
the paper) will take care of serving the job. In par-
ticular, the job is split into a number of bottom-level,
independent MapReduce sub-jobs that are scheduled
to run on the sites where data reside. According to
the original data localization, the computing capac-
ity of involved sites and the available inter-site band-
width, the Orchestrator may decide to migrate data
(or pieces of them) from site to site before bottom-
level MapReduce jobs are eventually started. Finally,
the results of MapReduce sub-jobs are forwarded to
a top-level Reducer that will package and deliver the
final result. Unlike previous works, our job schedul-
ing algorithm aims to exploit fresh information con-
tinuously sensed from the distributed computing con-
text (available site’s computing capacity and inter-site
bandwidth) to guess each job’s optimum execution
flow.

3 DESIGN OVERVIEW

According to the MapReduce paradigm, a generic
computation is called job (Dean and Ghemawat,
2004). A generic job is submitted to a scheduling sys-
tem which is responsible for splitting the job in several
tasks and mapping tasks to a set of available machines
within a cluster. The performance of a job is measured
by its completion time (some refers to it with the term

Context-aware�MapReduce�for�Geo-distributed�Big�Data

415

Top-Level Job

Output Data

Result

Local Hadoop Job

Orchestrator

Top Level

1

3

9

5

4

Data Transfer

MasterGlobal Reducer

Execute Top-Level

MapTask

6

6

7

7

Reduce

8

2

Bottom Level

10

PushResult

TJEP

getTJEP

MoveData

Site1

Site3 Site2

Push Top-Level

Map Result

Site4

MapReduce

MapReduce

8

11

Figure 1: Overall architecture.

makespan), i.e., the time for a job to complete. That
time heavily depends on the job’s execution flow de-
termined by the scheduling system and the computing
power of the cluster machines where the tasks are ac-
tually executed.

In a scenario where computing machines belong
to many geographically distributed clusters there is an
additional parameter that may affect the job perfor-
mance. Communication links among clusters (inter-
cluster links) are often disomogeneous and have a
much lower capacity than the communication links
among machines within a cluster (intra-cluster links).
Basically, if a scheduling system does not account for
the unbalanced capacity of both machines and com-
munication links, the overall job’s performance may
degrade dramatically.

The key point of our proposal for a hierarchical
MapReduce programming model is the need of a top-
level scheduling system which is aware of the un-
derlying computing context’s heterogeneity. We ar-
gue such awareness has to be created and augmented
by periodically “sensing” the bottom-level computing
context. Information retrieved from the computing
context is then used to drive the generation of the par-
ticular job’s execution flow which maximizes the job
performance.

In Figure 1 the basic reference scenario addressed
by our proposal is depicted. Sites (datacenters) pop-
ulate the bottom level of the hierarchy. Each site
stores a certain amount of data and is capable of run-
ning plain Hadoop jobs. Upon receiving a job, a site
transparently performs the whole MapReduce process
chain on the local cluster(s) and returns the result of

the elaboration. All the system business logic de-
voted to the management of the geo-distributed paral-
lel computing resides in the top-level of the hierarchy.
Upon the submission of a Hadoop job, the business
logic schedules the set of sub-jobs to be disseminated
in the distributed context, gathers the sub-job results
and packages the overall computation result.

In particular, the system business logic is com-
posed of the following entities:

� Orchestrator. It is responsible for the generation
of a Top-level Job Execution Plan (TJEP). A TJEP
contains the following information:

– the Data Logistic Plan (DLP), which states how
data targeted by the job have to be re-organized
(i.e., shifted) among sites;

– the Sub-job Scheduling Plan (SSP), which de-
fines the set of Hadoop sub-jobs to be submitted
to the sites holding the data.

� Master. It is the entity to which Hadoop Jobs are
submitted. It calls on the Orchestrator for the gen-
eration of the TJEP, and is in charge of enforcing
the TJEP according to the information contained
in the DLP and the SSP.

� Global Reducer. It performs the top-level reduc-
tion of the results obtained from the execution of
Hadoop sub-jobs.

At design time two important assumptions were
made. First, at the moment only one Global Reducer
is responsible for collecting and reducing the data
elaborated by bottom-level sites. One may argue this
choice impacts on the overall performance, neverthe-
less it does not invalidate the approach. Anyway, this
assumption is going to be relaxed in future work. Sec-
ond, being this approach a pure hierarchical approach,
the top-level MapReduce job must be coded in such a
way that the applied operations are “associative”, i.e.,
may be performed recursively at each level of the hi-
erarchy and the execution order of the operations does
not affect the final result (Jayalath et al., 2014).

In the scenario of Figure 1 four geo-distributed
sites are depicted that hold company’s business data
sets. The numbered arrows describe a typical execu-
tion flow triggered by the submission of a top-level
job. This specific case envisioned a shift of data from
one site to another one, and the run of local MapRe-
duce sub-jobs on two sites. Here follows a step-by-
step description of the actions taken by the system to
serve the job:

1. A Job is submitted to the Master, along with the
indication of the data set targeted by the Job.

2. The Master forwards the Job request to the Or-
chestrator, to get the TJEP;

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

416

3. The Orchestrator elaborates and delivers a TJEP.
For the elaboration of the plan the Orchestrator
makes use of information like the distribution of
the data set among sites, the current computing
capabilities of sites, the topology of the network
and the current capacity of its links. A TJEP is
broken down in two section: 1) the DLP contain-
ing data-shift directives and 2) the SSP containing
data-elaboration directives;

4. The Master enforce the DLP. In particular, Site1
is ordered to shift data to Site4;

5. The actual data shift from Site1 to Site4 takes
place.

6. The Master enforces the SSP. In particular, top-
level Map tasks are triggered to run on Site2 and
Site4 respectively. We remind that a top-level Map
task corresponds to a Hadoop sub-job;

7. Site2 and Site4 executes local Hadoop jobs on
their respective data sets;

8. Results obtained from local execution are sent to
the Global Reducer;

9. The Global Reducer performs the reduction of
partial data;

10. Final result is pushed to the Master;

11. Final result is returned to the Job submitter.

One of the Orchestrator’s tasks is to monitor the
distributed context’s resources, i.e., the sites’ avail-
able computing capacity and the inter-site bandwidth
capacity. In Figure 2 the context monitoring infras-
tructure is depicted.

Top Level

Bottom Level

Site1

Site3 Site2

SDN-Enabled

Switch

Site4

Orchestrator

Nominal Capacity

Slot Capacity

Computing Availability Table

Slot Nom Avg ….

Site1

Site2

Site3

Site4

HeartBeat

Nominal

Free

Bandwidth Availability Table

Free Nom Avg ….

Link1

Link2

Link3

…

Figure 2: Context monitoring infrastructure.

As for the monitoring of the computing capac-
ity, each site periodically advertises its capacity to
the Orchestrator. Such capacity is expressed in ter-
aFlops, and represents the overall computing capac-
ity of the site for MapReduce purposes (overall nomi-
nal capacity). Further, we assume that sites enforce
a computing capacity’s allocation policy which re-
serves a given, fixed amount of capacity to any sub-
mitted MapReduce job. Since the amount of com-
puting capacity potentially allocable to a single job
(slot capacity) may differ from site to site, sites are
also required to communicate that amount along with
the overall nominal capacity. By using this informa-
tion, the Orchestrator is able to build and maintain a
Computing Availability Table that keeps track of ev-
ery site’s instant and future capacity, average capac-
ity in time, and other useful historical statistics about
the computing capacity. The available inter-site link
capacity is instead “sensed” through a network in-
frastructure made of SDN-enabled (Open Networking
Foundation, 2012) switches. Switches are capable of
measuring the instant bandwidth occupied by incom-
ing and outgoing data flows. The Orchestrator period-
ically enquires the switches to retrieve the bandwidth
occupation that is then fed to a Bandwidth Availabil-
ity Table, where statistics on the inter-site bandwidth
occupation are reported.

Information contained in these two tables are ex-
tremely useful to the Orchestrator when it comes to
elaborate an execution plan for a submitted job. The
awareness of the underlying distributed computing
context will guide the Orchestrator in defining a path
which minimizes the overall job’s makespan. The
search for the path is committed to a scheduling sys-
tem that is embedded in the Orchestrator. In the fol-
lowing section, details on the strategy implemented
by the scheduling system are disclosed.

3.1 Job Scheduling System

Basically, the goal of the job scheduling system is to
generate a number of possible execution paths, and
to give each path a score. The path with the best
score will eventually be chosen as the execution path
to enforce. The calculation of the score for a given
path consists in the estimation of the path’s comple-
tion time; in the end, the path exhibiting the lowest
completion time (best score) will be selected.

If it may appear clear that the sites’ computing ca-
pacity and the inter-site bandwidth affect the overall
path’s completion time, some words have to be spent
on the impact that the type of MapReduce application
may have on that time. In (Heintz et al., 2014) authors
introduce the expansion/compression factor a, that

Context-aware�MapReduce�for�Geo-distributed�Big�Data

417

represents the ratio of the output size of the Map phase
to its input size. In our architecture focus is on the en-
tire MapReduce process (not just the Map phase) that
takes place in a site. Therefore we are interested in
profiling applications as a whole. We then introduce a
data Compression factor bapp, which represents the
ratio of the output data size of an application to its
input data size:

bapp =
Out putDataapp

InputDataapp
(1)

The bapp parameter may be used to calculate the
amount of data that is produced by a MapReduce job
at a site, traverses the network and reaches the Global
Reducer. Based on that amount, the data transfer
phase may seriously impact on the overall top-level
job performance. The exact value for bapp may not
be a priori known (MapReduce is not aware of the ap-
plication implementation). Section 3.2 will present an
approximate function that provides a good estimate.

We adopt a graph model to represent the job’s ex-
ecution path. Basically, a graph node may represent
either a data computing element (site) or a data trans-
port element (network link). Arcs between nodes are
used to represent the sequence of nodes in an exe-
cution path. A node is the place where a data flow
arrives (input data) and another data flow is gener-
ated (output data). A node representing a computing
element elaborates data, therefore it will produce an
output data flow whose size is different than that of
input; a node representing a data transport element
just transports data, so input and output data coin-
cide. Nodes are assigned an attribute that describes
the Throughput, i.e., the rate at which node is capa-
ble of “processing” the input data. In the case of a
computing node the throughput represents the speed
at which the application’s input data are actually pro-
cessed, whereas in the case of a transport node the
throughput coincides with the link capacity. Actu-
ally, the throughput of a computing node is the rate
at which the node is capable of “processing” data
when running that specific application. This param-
eter is strictly application bound, as it depends on
how heavy is the type of computation requested by
the application. Like for the bapp value, the exact
Throughput value is not a priori known; Section 3.2
discusses a sample based procedure employed to de-
rive the throughput of a computing node for a certain
application.

Nodes are also characterized by the bnode at-
tribute, which in the case of a computing node is an
application-dependent parameter measuring the ratio
between input data and output data (bapp), while in
the case of a transport node it will assume the fixed

value 1 (in fact, a network link applies no data com-
pression).

Arcs between nodes are labeled with a number
representing the size of data leaving a node and reach-
ing the next one. The label value of the arc connecting
the j-th node with the (j+1)-th node is given by:

DataSize j; j+1 = DataSize j�1; j�b j (2)

In Figure 3 an example of a branch made of two
nodes and a connecting arc is depicted:

DataSize

DataSize

DataSize

[]Node

Node

j, j+i

j+1

j-1, j

j+1, j+2

j
β

Throughput
j

j

β

Throughput
j+1

j+1[]

Figure 3: Nodes’ data structure.

Next, for the generic node j we define the execu-
tion time as:

Tj =
DataSize j�1; j

T hroughput j
(3)

When a top-level job is submitted to the Master,
the scheduling system is requested to search for the
best execution path. The hard part of the scheduling
system’s work is the generation of all the potential
execution paths, each of which is going to be modeled
as a graph. The algorithm used to generate execution
paths is discussed in Section 4. We now put the focus
on how to calculate the execution time of a specific
execution path.

Figure 4 depicts a scenario of seven distributed
sites (S1 through S7) and a geographic network which
interconnects the sites. One top-level job is requesting
to run a MapReduce application on the data sets (5 GB
sized each) located in the site S5 and S6 respectively.
Let us assume that one of the execution-paths gen-
erated by the scheduling system involves the move-
ment of data from S6 site to S3, which will perform
the bottom-level MapReduce sub-job. Data placed
in site S5, instead, will be processed by the site it-
self; this case does not require any data transfer. The
Global reduce of the partial results produced by local
MapReduce sub-jobs will be executed in the node S1
(so partial results will have to move to that site before
the reducing occurs).

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

418

S4

S6
S7

S5

S1

S2

S3Sx

Sx

I

L63

S5

S6

S5

Sx

Reduce
Execution Flow

S3

5GB

β=0.8

L51

4GB

S1

L31

4GB

4GB

Rb

Ra

Rn

5GB

4GB

5GB

β=0.8

Map
Execution Flow

Link

Global Reducer
Node

Input Data Node

Mapper Node

Switch/Router

Preview https://drive.draw.io/#G0B_W8Th_ziojNTTl5RVY1anBSZWs

1 of 1 24/03/2015 9.16

Figure 4: Example of graph modeling an execution path.

In the right part of the picture the graph that mod-
els the execution-path for the just discussed configu-
ration is represented. Basically, a graph has as many
branches as the number of bottom-level MapReduce.
Branches are independent from each other’s and exe-
cute in parallel. Every branch starts at the node I (ini-
tial node) and ends at the Global reducer’s node. Next
to node I is the node where the data set interested by
the MapReduce computation initially resides. In the
example, the graph is composed of two branches. The
left branch models the elaboration of data initially re-
siding in the node S5, that are map-reduced by node
S5 itself, and results are finally pushed to node S1 (the
Global reducer) through link L51. Similarly, on the
right branch data residing in node S6 are moved to
node S3 through link L63, are map-reduced by node
S3 and results are pushed to node S1 through link L31.

We define the execution time of a branch to be the
sum of the execution times of the nodes belonging to
the branch; note that the Global reducer node’s execu-
tion time is left out of this sum. In particular, for the
left and the right branches of Figure 4 the execution
times will be respectively:

Tle f t =
5

T hroughputS5

+
4

T hroughputL51

Tright =
5

T hroughputL63

+
4

T hroughputS3

+
4

T hroughputL31

So in general, the execution time of a branch is
expressed as:

Tbranch =
N�1

å
j=1

DataSize j; j+1

T hroughput j+1
(4)

being N the number of nodes in the branch.
Next we calculate the execution time for the

Global reducer node. The data pushed to that node
is the sum of the data coming from the two branches.
In the example, the execution time is given by:

TGR =
4+4

T hroughputS1

So generalizing, the execution time of the Global
reducer is given by the summation of the sizes of the
data sets coming from all the branches over the node’s
estimated throughput. Let DataSize(K)N�1;N be the
data size of the k-th branch reaching the Global re-
ducer node. The execution time for the Global reducer
will be:

TGR =
å

P
K=1 DataSize(K)N�1;N

T hroughputGR
(5)

being P the total number of branches in the graph.
Finally, the overall execution time estimated for the
specific execution path represented by the graph is
defined as the sum of the Global reducer’s execution
time and the maximum among the branches’ execu-
tion times:

Tpath = max
1�K�P

(T (K)branch)+T hroughputGR (6)

In this formula we are assuming that the global
reduce phase will start as soon as the slowest (i.e.,
the one with the highest execution time) branch has
finished its execution.

Context-aware�MapReduce�for�Geo-distributed�Big�Data

419

The scheduling system can generate many job’s
execution paths. For each, the execution time is cal-
culated. In the end, the best to schedule will be, of
course, the one showing the lowest execution time.

3.2 Application Profiling

As mentioned earlier, both the computing node’s
Throughput, and the Compression factor bapp are two
parameters strictly dependent on the type of applica-
tion requested by the top-level job. The estimate of
these parameters is determined by an application pro-
filing procedure executed prior to the run of the job
on the requested data. The adopted approach, that re-
calls the one proposed in (Jayalath et al., 2014), is to
request sites that hold the data sets to run the job’s ap-
plication on a sample of data. The results will provide
an estimate of the parameters that will be used by the
scheduling system to calculate the best execution path
for the job.

The estimate is performed on a reference machine
having a computing power of 1 Gflops. Regarding the
Throughput, the objective is to evaluate the nominal
capability of a 1 Gflops machine to process the data
sample. So, the nominal Throughput is obtained by
dividing the sample data size by the data processing
time; the nominal bapp, as well, is given by the ratio
between the output result size and the input sample
data size.

The nominal values obtained from the sites are
adequately averaged, and will constitute the official
estimate parameters for that specific application. In
particular, when it comes to calculate the Through-
put of a certain computing node of the graph (repre-
senting a site), that value is calculated by multiplying
the nominal Throughput times the number of Gflops
advertised by the node. This estimate makes the as-
sumption that the Throughput is a linear function of
the computing power.

4 EXECUTION PATHS
GENERATION

The scheduling system is in charge of generating a
number of potential execution paths for each top-level
job that is submitted. The variables that impact on
the generation of paths are the number of sites de-
voted to the running of MapReduce and the amount
of data each of those sites will be assigned. The num-
ber of potential paths may be very huge (and thus very
hard to compute in an acceptable time) if you consider
that data sets targeted by an application might be frag-
mented at any level of granularity, and each fragment

might potentially be moved to any of the available
sites for bottom-level computation.

We now formulate the problem of data fragmen-
tation and discuss the combinatorial approach we
adopted to generate the execution paths. Let us as-
sume that n, m and D be the number of nodes, the
number of mappers and the Application data size re-
spectively. In order to limit the number of potential
paths, the basic assumption we make is that all data
fragments must have the same size, and that the num-
ber of data fragments must be equal to the number of
sites available for computation (N f rag = n). The re-
sulting fragment size will then be:

Fragsize =
D
n

(7)

A node may be assigned zero, one ore more frag-
ments to work on. Our algorithm will schedule
which nodes have to be appointed top-level mappers
and how many data fragments to assign each Map-
per. In order to generate all possible combinations
of mappers and the related assigned data fragments,
we leverage on the combinatorial and on the partition
number theory (Andrews, 1976).

By the notation P(n;m) we refer to the number
of partitions of the integer number n in the order m,
where m is the number of addends in which n is to be
partitioned. For instance, P(5;2) is the number of par-
titions of the number 5 in 2 addends. It is easy to un-
derstand that P(5;2) = 2 (being the two combinations
1+4 and 2+3). If we had to partition the number 5 in
3 addends we would obtain P(5;3) = 2 (combinations
1+2+2 and 1+3+1). We are going to use this tech-
nique to guess the number of possible ways the data
of an application may be partitioned into a bunch of
fragments. So, in the case that we have 5 data frag-
ments to distribute over 2 sites, two configurations are
possible: 1) 1 fragment on one site, 4 fragments on the
other one: 2) 2 fragments on one site, 3 on the other
one. Generalizing, the overall number of partitions of
a number n in all the orders m=1,2,..,n is:

P(n) =
n

å
m=1

P(n;m) (8)

Of course, the fragment configuration tell us just
the ways to “group” fragments for distribution, but the
distribution phase complicates the problem, as there
are many possible ways to distribute group of frag-
ments among sites. In the example concerning the
P(5;2), 1 fragment may go to mapper1 (in site1) and
4 fragments may go to mapper2 (in site2), or vicev-
ersa. So for the distribution of fragments we have to
call on the partial permutation theory. The number of
possible ways of placing m mappers in n nodes is:

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

420

Dn;m =
n!

(n�m)!
(9)

In the end, the calculus of the number of all the
execution paths for a certain application has to con-
sider both the fragment distribution configuration (eq.
8) and the partial permutation of mappers (eq. 9):

Nexepath =
n

å
m=1

P(n;m)� n!
(n�m)!

(10)

For example, in the case of n=7 the number of gen-
erated paths will be around 18.000. For n=8 more
than 150.000 configurations were obtained. Treating
the problem of the generation of execution paths as an
integer partitioning problem allowed us to apply well
known algorithms working in constant amortized time
that guarantee acceptable time also on off-the-shelf
PCs (Zoghbi and Stojmenovic, 1994). For each con-
figuration generated by the algorithm, a correspond-
ing graph is built. On each graph’s node, parame-
ters (computing capacity, link capacity, b) are then
assigned. Finally the graph’s execution time is com-
puted.

5 CONCLUSION

The increasing rate at which data grow have stimu-
lated through the years the search for new strategies
to overcome the limits showed by legacy tools that
have been used so far to analyze data. MapReduce,
and in particular its open implementation Hadoop, has
attracted the interest of both private and academic re-
search as the programming model that best fit the need
for coping with big data. In this paper we address
the peculiar need to handle big data which by their
nature are distributed over many sites geographically
distant from each other. Plain Hadoop was proved to
be inefficient in that context. We propose a strategy
which inspires to hierarchical approaches prior pre-
sented in other literature’s works. The strategy lever-
ages on the partition number and the combinatorial
theory to partition big data into fragments and effi-
ciently distributes the workload among datacenters.
With respect to previous works, this exploits fresh
context information like the available computing and
the inter-site link capacity.

REFERENCES

Andrews, G. E. (1976). The Theory of Partitions, volume 2
of Encyclopedia of Mathematics and its Applications.

Dean, J. and Ghemawat, S. (2004). MapReduce: simplified
data processing on large clusters. In OSDI04: Pro-
ceeding of the 6th Conference on Symposium on op-
erating systems design and implementation. USENIX
Association.

Facebook (2012). Under the Hood: Scheduling
MapReduce jobs more efficiently with Corona.
https://www.facebook.com/notes/facebook-
engineering/under-the-hood-scheduling-mapreduce-
jobs-more-efficiently-with-corona.

Heintz, B., Chandra, A., Sitaraman, R., and Weissman, J.
(2014). End-to-end Optimization for Geo-Distributed
MapReduce. IEEE Transactions on Cloud Comput-
ing, PP(99):1–1.

Jayalath, C., Stephen, J., and Eugster, P. (2014). From
the Cloud to the Atmosphere: Running MapReduce
across Data Centers. IEEE Transactions on Comput-
ers, 63(1):74–87.

Kim, S., Won, J., Han, H., Eom, H., and Yeom, H. Y.
(2011). Improving Hadoop Performance in Intercloud
Environments. SIGMETRICS Perform. Eval. Rev.,
39(3):107–109.

Luo, Y., Guo, Z., Sun, Y., Plale, B., Qiu, J., and Li, W. W.
(2011). A Hierarchical Framework for Cross-domain
MapReduce Execution. In Proceedings of the Second
International Workshop on Emerging Computational
Methods for the Life Sciences, ECMLS ’11, pages 15–
22.

Mattess, M., Calheiros, R. N., and Buyya, R. (2013). Scal-
ing MapReduce Applications Across Hybrid Clouds
to Meet Soft Deadlines. In Proceedings of the 2013
IEEE 27th International Conference on Advanced In-
formation Networking and Applications, AINA ’13,
pages 629–636.

Open Networking Foundation (2012). Software-Defined
Networking: The New Norm for Networks. White
paper, Open Networking Foundation.

The Apache Software Foundation (2011). The Apache
Hadoop project. http://hadoop.apache.org/.

Yang, H., Dasdan, A., Hsiao, R., and Parker, D. S. (2007).
Map-reduce-merge: Simplified relational data pro-
cessing on large clusters. In Proceedings of the 2007
ACM SIGMOD International Conference on Manage-
ment of Data, SIGMOD ’07, pages 1029–1040.

Zhang, Q., Liu, L., Lee, K., Zhou, Y., Singh, A.,
Mandagere, N., Gopisetty, S., and Alatorre, G. (2014).
Improving Hadoop Service Provisioning in a Geo-
graphically Distributed Cloud. In Cloud Computing
(CLOUD), 2014 IEEE 7th International Conference
on, pages 432–439.

Zikopoulos, P. and Eaton, C. (2011). Understanding Big
Data: Analytics for Enterprise Class Hadoop and
Streaming Data. McGraw Hill.

Zoghbi, A. and Stojmenovic, I. (1994). Fast algorithms for
generating integer partitions. International Journal of
Computer Mathematics, 80:319–332.

Context-aware�MapReduce�for�Geo-distributed�Big�Data

421

CLOUD COMPUTING ENABLING
TECHNOLOGY

FULL PAPERS

Secure Keyword Search over Data Archives in the Cloud
Performance and Security Aspects of Searchable Encryption

Christian Neuhaus1, Frank Feinbube1, Daniel Janusz2 and Andreas Polze1

1Operating Systems and Middleware Group, Hasso Plattner Institut, Potsdam, Germany
2DBIS Group, Humboldt-Universität zu Berlin, Berlin, Germany

firstname.lastname@hpi.de, janusz@informatik.hu-berlin.de

Keywords: Keyword Search, Searchable Encryption, Cloud Computing, Performance, Security, Data Confidentiality.

Abstract: Encryption can protect the confidentiality of data stored in the cloud, but also prevents search. To solve this
problem, searchable encryption schemes have been proposed that allow keyword search over document collec-
tions. To investigate the practical value of such schemes and the tradeoff between security, functionality and
performance, we integrate a prototypical implementation of a searchable encryption scheme into a document-
oriented database. We give an overview of the performance benchmarking results of the approach and analyze
the threats to data confidentiality and corresponding countermeasures.

1 INTRODUCTION

Data sharing is essential to companies and govern-
ment services alike. A striking example is healthcare,
where doctor’s offices, hospitals, and administrative
institutions rely on exchange of information to offer
the best level of care and optimizing cost efficiency
at the same time. For scenarios like these, moving
to the cloud solves many problems: The scalability of
the cloud makes resources simple to provision and ex-
tend and centralization of data improves the availabil-
ity and helps to avoid information silos. Most impor-
tantly, cloud computing helps to reduce IT expenses
– an effect most welcome in healthcare. However,
concerns about data confidentiality still prevent the
use of cloud in many domains. Traditional encryp-
tion is of little help: It effectively protects the pri-
vacy of data but also prevents important operations
such as search. While efficient encryption schemes
that enable generic operations on encrypted data are
still elusive, searching over encrypted data is possi-
ble: searchable encryption schemes enable keyword
search without disclosing these keywords to the cloud
operator. The query performance of such schemes
cannot match unencrypted operation, but may well
be suitable for areas of application such as electronic
health records, where data has to be retrieved from a
cloud-hosted archive.

In this paper, we investigate the trade-off between
performance and security when using searchable en-
cryption schemes for data archives in the cloud. We

make the following contributions:
1) We report on an architecture for integrating Gohs
Z-IDX searchable encryption scheme (Goh et al.,
2003) into a database and present a practical imple-
mentation by the example of MongoDB.
2) We discuss the overhead introduced by encrypted
search and provide benchmark results on the perfor-
mance of using Gohs scheme for encrypted search
with MongoDB. These benchmarks give a meaning-
ful account of the practical performance and usability
of searchable encryption in databases.
3) We give a qualitative assessment of the security im-
plications of using searchable encryption schemes for
cloud data archives using attack-defense-tree models.
This assessment is generic to searchable encryption
and not limited to Goh’s scheme. We also discuss
mitigation strategies to manage threats by statistical
inference attacks.

2 RELATED WORK

In this section, we review related work in the field of
private database outsourcing and searchable encryp-
tion.

Private Database Outsourcing. Outsourcing pri-
vate data to a remote database inherently bears the
risk of exposure of confidential information – through
eavesdropping, data theft or malfunctions. The key

427

challenge is to protect private data from being ac-
cessed by potentially untrusted cloud providers. In
this paper, we focus on technologies that protect data
within a database. While encryption is the basic
mechanism to ensure data confidentiality, providing
an efficient database-as-a-service that can run on en-
crypted data is a challenging task. Several recent ap-
proaches try to offer solutions for outsourcing private
databases.

TrustedDB (Bajaj and Sion, 2011) and Cipherbase
(Arasu et al., 2013) offer SQL database functionali-
ties that support the full generality of a database sys-
tem while providing high data confidentiality. Both
systems use a secure co-processor for performing op-
erations on the cloud server side. The drawbacks of
such approaches are at least twofold: On one hand all
clients have to trust the secure co-processor with their
private data. On the other hand it is not clear how
the co-processor scales up in the number of clients
connected and the amount of data processed. In
CryptDB (Popa et al., 2011), the authors apply an lay-
ered approach that makes use of several cryptographic
schemes, where values are only decrypted to a level
that is required to complete the query.

Another class of approaches aims at processing
encrypted data directly without any decryption. To
this day, there are no efficient encryption schemes
that enable fully encrypted operation of a DBMS
(database management system) without loss of func-
tionality. An early approach for keyword search on
encrypted data was published by (Song et al., 2000).
An approach for securely processing exact match
queries on database cells was proposed by (Yang
et al., 2006). However, most DBMS rely on other
common operations such as range and aggregation
queries as well as updates, inserts and deletes. Ex-
isting approaches cannot efficiently process this type
of queries on encrypted data. A common solution
is to reduce data confidentiality to gain query effi-
ciency, e.g., order preserving encryption (Agrawal
et al., 2004) may reveal the underlying data order.
Most methods can be attacked by statistical analy-
sis of the encrypted data or the access patterns. An-
other solution is to lose some query efficiency in or-
der to guarantee confidentiality. While (fully) homo-
morphic encryption schemes as proposed by Rivest et
al. (Rivest et al., 1978) in fact allow the encrypted
computation of any circuit (and therefore computer
program), current constructions (see (Gentry, 2009;
Van Dijk et al., 2010)) are yet too inefficient for prac-
tical application.

Traditional databases use indices for efficient
record search. The existing methods have been
adapted to work on encrypted data (Shmueli et al.,

2005). Private indexing (Hore et al., 2004) enable an
untrusted server to evaluate obfuscated range queries
with limited information leakage. Wang et al (Wang
et al., 2011) propose a secure B+-Tree to efficiently
process any type of database query. Encrypted index-
based approaches do not rely on any trusted third par-
ties or trusted hardware. This seems to be a practical
and secure method to search in encrypted databases.
The next section discusses searchable encryption.

Searchable Encryption. Searchable encryption
schemes provide one or many cryptographic data
structures called search indices that allow encrypted
keyword search for exact keyword matches. A good
overview of searchable encryption schemes is given
in (Kamara and Lauter, 2010). In general, search-
able encryption schemes do not replace symmetric
encryption schemes but provide the search capability
through additional data structures – the index (see
figure 1). To provide keyword search on data, a list

Plaintext Keywords

Plaintext Data

Encrypted Index

Encrypted Data

Secret Key

Search Keyword

Create Index

Create Token Token

other means of encryp on

match

Figure 1: Searchable Encryption: Conceptual View.

of keywords is extracted from the plaintext. This
keyword list is used to create a secure index using
a dedicated secret key for the searchable encryption
scheme. The data is encrypted separately (usually
symmetric block ciphers such as AES) and uploaded
stored alongside the encrypted index in a remote
location. To search over the uploaded data in the
remote location, a search token in generated for a
search keyword using the secret key. This token is is
sent to the remote server. The remote sever can now
determine whether the token matches a search index
without being able to learn the keyword.

Searchable encryption schemes can be distin-
guished between Symmetric Searchable Encryption
(SSE) and Asymmetric Searchable Encryption (ASE)
schemes. SSE schemes use the same secret key both
for insertion and searching of data. In general, they
are more efficient than ASE schemes and provide
stronger security guarantees. They were first intro-
duced by (Song et al., 2000), where the authors pro-
vide a linear search capability over ciphertext – one
of the few schemes that does not make use of indices.
To speed up search, the scheme of Goh (Goh et al.,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

428

2003) uses indices that are created separately for ev-
ery searchable data item, which enables efficient up-
date. Improved search time can achieved by using an
inverted index (see e.g. (Curtmola et al., 2006)). A
scheme that enables both efficient updates and opti-
mal search time (linear in the number of documents
that contain the keyword) is offered in a recent con-
struction by Kamara et al. (Kamara et al., 2012).

In contrast, ASE schemes use different keys
for insertion and searching of data, which provides
greater flexibility. However, the constructions of ASE
schemes are generally less efficient than those of SSE
schemes and provide weaker security guarantees. The
first construction was given by Boneh et al. (Boneh
et al., 2004) and is based on elliptic curve cryptogra-
phy. Improved constructions were introduced in (Ab-
dalla et al., 2005). Unfortunately, ASE are generally
susceptible to dictionary attacks against search tokens
(see (Byun et al., 2006)). This limits the application
of ASE schemes to use case where keywords are ei-
ther hard to guess or the keyword attack is tolerable.

3 THE Z-IDX SCHEME

For our implementation, we chose the Z-IDX search-
able encryption scheme by (Goh et al., 2003). As a
symmetric scheme, it is not susceptible to dictionary
attacks on search tokens like ASE schemes (see sec-
tion 2). This scheme offers several desirable proper-
ties:

� Maturity. While the field of research in search-
able encryption schemes is rather young, Goh’s
scheme was one of the earliest proposed. In con-
trast to more recent constructions, the scheme
passed several years without the discovery of se-
curity flaws.

� Per-document Indexing. The Z-IDX scheme
creates per-document indices. This property fa-
cilitates integration into existing DBMS.

� Standard Cryptographic Primitives. The cryp-
tographic mechanisms used by Z-IDX are widely
available in software libraries for most platforms.

In this section, we give an overview of Bloom Fil-
ters and how they are used to construct Gohs Z-IDX
scheme.

3.1 Bloom Filters

The encrypted indices in Z-IDX make use of space-
efficient probabilistic data structures called bloom fil-
ters (Bloom, 1970). For a set of elements E =

fe1; :::;eng, the set membership information is en-
coded in a bit array of length l. A number of r hash
functions h1; :::;hr is selected that map every element
of E to a number 2 [1; l]. To store the set membership
of an element ex in the filter, its hash value from every
hash function h1; ::hr is calculated. These hash values
h1(ex); :::;hr(ex) are used as index positions in the fil-
ter bit array. At every referenced index position, the
bit in the array is set to 1. To test the set membership
for an element ey, the procedure is similar: All hash
values h1(ey); :::;hr(ey) are calculated and used as in-
dex positions in the filter bit array. If all positions in
the array pointed to by the hash function values are
set to 1, the element is assumed to be in the set.

. . .

..
.

1 1 10 0 0 0 0 0 0 0 0 0 0
10 2 3 4 5 6 7 8 9 10 11 30 31

H
a

sh
 F

u
n

c
o

n
s

B
lo

o
m

 F
il

te
r

B
it

 A
rr

a
y

Figure 2: Example of a Bloom Filter with a 32-bit array.

This design of bloom filters can produce false pos-
itives: If all corresponding array positions of an ele-
ment ez were set to 1 by insertion of other elements,
the bloom filter produces a false positive for ez. On
the other hand, false negatives do not occur. The false
positive rate of a bloom filter can be influenced by ad-
justing the size of the bit array and the number of hash
functions used.

3.2 Gohs Secure Indexes

Based on bloom filters, Goh constructs a secure index
scheme called Z-IDX (Goh et al., 2003) that allows
encrypted keyword search. Like similar schemes, it
does not replace other means of encryption but pro-
vides additional data structures for its functionality
(see figure 1). The scheme builds upon the abstrac-
tion of documents, which are the units of granularity
for keyword search. Every document di 2 D can con-
tain a number of keywords w 2W and is identified by
a unique ID i2 I. Authorized clients hold a secret key
Kpriv. The scheme is then defined by the following
operations:

� Keygen(s) outputs a secret key Kpriv, where s is a
variable security parameter.

� Trapdoor(Kpriv;w) outputs a trapdoor Tw for key-
word w using the secret key Kpriv.

� BuildIndex(d;Kpriv) outputs an encrypted index
for document d using the secret key Kpriv.

Secure�Keyword�Search�over�Data�Archives�in�the�Cloud�-�Performance�and�Security�Aspects�of�Searchable�Encryption

429

� SearchIndex(Tw;d) takes a trapdoor for keyword
w and tests for a match in the index of document
d. If d contains w it outputs 1 and 0 otherwise.

Additionally, a pseudorandom function f :
f0;1g� � f0;1gs ! f0;1gm is required. For a pre-
cise formal definition, e.g. with respect to bit string
lengths, please see the original publication (Goh et al.,
2003). We also omit the step of adding blinding bits
to the filter. To set up the scheme, security parameter
s, a number of hash functions r and a index size m are
chosen (for choice of m and r, see section 5.1). Then,
a secret key is generated by the Keygen operation, so
that Kpriv = (k1; ::::;kr) f0;1gsr.

To create a search index for a document d with a
set of keywords Wd = fw1; :::;wxg �W , BuildIndex
operation first creates an empty bloom filter with a bit
array of length m. First, a trapdoor Tw is calculated for
every keyword w using the Trapdoor operation, so
that Tw = (tw1 ; :::; twr) = (f (w;k1); :::; f (w;kr)). This
results in a set of trapdoors : Using the set of trap-
doors Tw1 ; :::;Twx and the id of the document d, the
set of codewords Cw1 ; :::;Cwx is calculated. For ev-
ery trapdoor Tw the codeword Cw is calculated so that
Cw = (cw1 ; :::;cwr) = (f (id; tw1); :::; f (id; twr)). Then,
the filter of the document is populated by setting ev-
ery bit position ti 1 that is referenced by the trapdoors:
For every trapdoor Cw, the bits at positions cw1 ; :::;cwr
are set to 1 (see figure 2).

To query a collection of documents for a keyword
w, the trapdoor Tw is calculated using the Trapdoor
operation and sent to the server. To test whether a doc-
ument contains the keyword, the server calculates the
codeword Cw using the trapdoor Tw and the document
id. Using the trapdoor Cw the server tests whether
all bit at positions cw1 ; :::;cwr are set to 1. If so, the
document is sent back to the client as a match. This
process is applied to all documents in the collection.
In the Z-IDX scheme, a separate index data structure
is created per document. This accounts for a search
time that is linear over the number of documents, but
facilitates the administration of secure indices, as they
can be created stored alongside the documents. This
makes the addition or removal of documents a simple
operation.

From a more technical perspective, the above
steps can be described and implemented using a keyed
hash function such as HMAC-SHA1 (Krawczyk et al.,
1997), which is also used in our implementation (see
section 4). In a first step, a keyword w is hashed with
all elements of the secret key k1; :::;kr to obtain the
trapdoor vector. The elements of the trapdoor vec-
tor are each hashed again together with the document
identifier id to obtain the codeword vector. Each of

the codeword vector elements is used as an index po-
sition to set a bit in the bloom filter bit array to 1.

4 SEARCHABLE ENCRYPTION
IN MongoDB

To evaluate the practical usability of searchable en-
cryption, we integrated the Z-IDX scheme into the
document oriented database MongoDB. In this sec-
tion, we explain why we chose MongoDB, present
the architecture of our prototype, introduce new com-
mands for secure keyword search and present imple-
mentation details.

4.1 Selection of a Database System

While the searchable encryption scheme Z-IDX can
be used standalone, its practical usability and perfor-
mance under realistic workloads can only be evalu-
ated if the scheme is used in conjunction with other
means of encryption and data handling. To do this, we
integrated Z-IDX into an existing DBMS. The choice
of a DBMS has to correspond to the basic properties
of the Z-IDX scheme – exact keyword matching as a
search mechanism and the notion of documents as the
basic units of granularity for searching.

To select a DBMS, we considered different
database paradigms: The most widespread type of
databases are relational databases – most of them
supporting the Structured Query Language (SQL).
This type of database has a long development history
and offers features such as transactional security, clus-
tering techniques and master-slave-configurations to
ensure availability. The SQL language allows detailed
queries, where specific data fields in the database
can be selected and returned base on complex crite-
ria based on structure or data field values and logi-
cal combinations thereof. The expressive power of
the SQL language goes far beyond simple keyword
search. It is therefore difficult to isolate queries that
can make use of searchable encryption. Additionally,
the fine-grained selection of data fields does not cor-
respond well to the document-oriented approach of
searchable encryption.

Besides relational databases, other database types
have been developed under the umbrella term of
NoSQL databases. A very minimalistic approach are
key-value stores (e.g. Redis, Dynamo): They omit
many of the features known from SQL databases in
favor of simplicity and performance. However, the
complexity of data structures is severely limited. This
makes storing documents and associated indices dif-
ficult or impossible.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

430

Document-oriented databases, however, are well-
suited to implement searchable encryption. As
the name suggests, data is organized in containers
called documents as opposed to tables in relational
databases. These documents are the units of granu-
larity for search operations and can contain complex
data structures without adhering to a schema defini-
tion. As this approach corresponds well to the prop-
erties of searchable encryption schemes, we chose to
add searchable encryption features to the open-source
document-oriented database MongoDB.

Floratou et al. (Floratou et al., 2012) compare
MongoDB to Microsoft SQL Server. They show that
relational databases may have better query perfor-
mance. However, MongoDB is optimized for stor-
ing data records across multiple machines and offers
efficient load balancing, which makes it more suit-
able for cloud-based applications. Furthermore, the
increasing use of NoSQL databases in real world ap-
plications lead to an increasing demand for enhanc-
ing these databases with privacy technologies such as
searchable encryption.

4.2 Extended MongoDB Commands

As MongoDB is a document-oriented database, a doc-
ument is the primary unit of abstraction for organiza-
tion of data. A document does not adhere to a fixed
schema and can store data in a JSON-like fashion
of field-value pairs. Like in JSON, documents sup-
port a number of primitive data types (e.g. integer,
String) and a data structures like arrays. All of these
data structures can be nested. In addition to standard
JSON, MongoDB can also store binary data in fields.

Documents in MongoDB are stored in collec-
tions, these, in turn, are stored in a database. The
prime commands for data handling in collections are
insert() and find(). They accept a document as a
parameter. To make searchable encryption explicitly
available, we introduced two additional commands:

� The insertSecure() can be used to insert doc-
uments into a collection using searchable encryp-
tion. Using this command, every array of strings
in the document is removed and its content used as
keywords. The contained strings are inserted into
a Z-IDX filter or encrypted search. Every other
datatype remains untouched.

� The findSecure() command triggers encrypted
search over all documents of a collection. As a
parameter, it takes a keyword embedded in a doc-
ument, e.g.: findSecure({keyword: ’foo’})

4.3 Architecture and Implementation

To integrate searchable encryption into MongoDB,
we chose to add the extended functionality to the
server and the command line client. An overview
of the architecture of MongoDB server and client is
given in figure 3. In theory, it is possible to add
searchable encryption to MongoDB modifying only
the client but not the server. However, this leads to
a disproportionately high increase in communication
overhead as per-document operations would have to
be carried out on the client, each requiring the trans-
mission of the documents Z-IDX data structures.

MongoDB Shell Client

MongoDB

Server

Z-IDX

Module
C++ Driver

Z-IDX

Module

JavaScript Shell

User

Secret Key File

Figure 3: Architecture of MongoDB Server and Client.

The MongoDB command line client is comprised
of a JavaScript shell that uses a core driver written
in C++. The client connects to the server, which
is also written in C++. To provide searchable en-
cryption functionality, we implemented the Z-IDX
scheme (see section 3) and additional helper functions
in a separate module that is compiled both into the
server and the C++ driver of the client (Z-IDX Mod-
ule, see figure 3). As suggested by Goh, we apply data
compression (zlib) to the index data structures before
transmission over the network. As these data struc-
tures are very sparse, the compression works very ef-
fectively and the additional compute overhead is eas-
ily outweighed by reduced transmission times in most
settings.

To integrate the functionality, we made the follow-
ing modifications: The JavaScript shell is modified
to read the secret key information from a file, which
has to be passed as a parameter at startup. If a se-
cure search or insert request is identified, the request
is modified to include the secret key information. This
information is stored in a dedicated _zidx field in the
query. After this, the request is passed to the clients’
C++ driver. The C++ driver is modified to recognize
queries that contain Z-IDX key information injected
by the JavaScript shell. For inserts, a Z-IDX filter is
built and populated with the contained strings of ev-
ery string array in the document. Subsequently, the
string arrays and the key information are removed and
the command is passed on to the server. For a search
query, the C++ driver uses the key to compute trap-
doors for every search keyword. The trapdoors are
inserted, the key is removed and the query is passed

Secure�Keyword�Search�over�Data�Archives�in�the�Cloud�-�Performance�and�Security�Aspects�of�Searchable�Encryption

431

on to the server. The MongoDB server is modified
to process the search queries. For the trapdoors of a
search query, the server generates the corresponding
codewords using the document id. These codewords
are then checked against the bloom filters of a doc-
ument to test for a match. This architecture and im-
plementation makes searchable encryption available
without affecting non-encrypted use of the database,
as regular MongoDB commands are processed as ex-
pected.

5 PERFORMANCE EVALUATION

The use of encrypted search functionality introduces
an overhead in computation, storage and data trans-
mission. Since speed and throughout are critical fac-
tors for databases, we present performance measure-
ments of our approach in this section. The figures
allow to evaluate the practicability of searchable en-
cryption in databases for real-life scenarios.

To assess the performance impact of our approach,
we ran insert and search queries in encrypted and un-
encrypted settings under various parameters settings
(dictionary size, false positive rate) and analyzed the
memory footprint of the additional data structures of
Z-IDX. To avoid synthetic test data, we chose the pub-
licly available Enron corpus – a collection of emails
which we use as documents. All benchmarks were
run on a Intel Core i5-3470 machine with 8GB main
memory, running Ubuntu 12.04 LTS.

5.1 Memory Footprint of Z-IDX Filters

As the encrypted filters are added to every docu-
ment, they add overhead to communication and stor-
age footprint. They are therefore a crucial factor that
influences the performance of a database using this
scheme.

The size of these data structures is determined
by the desired false positive rate fp and the num-
ber of unique keywords to be represented by the fil-
ters n. From the false positive rate fp, the num-
ber of hash functions r is determined by calculating
r = �log2(fp). From r, the number of bits m in the
filter can be determined by calculating m = nr=ln2
. In practice, these data structures can become quite
large. This is especially unfavourable in settings with
large numbers n of distinct keywords and small doc-
ument sizes, as the filter sizes can easily exceed the
size of the original documents.

To improve the efficiency of the scheme, data
compression can be used on the filters (as suggested
by Goh). While filter compression decreases storage

and communication overhead, it also introduces ad-
ditional steps of computation on the client and server
side: Upon document insertion, filters have to be com-
pressed and decompressed for every search operation.
This represents a tradeoff between data size and com-
putational overhead.

To investigate this issue, we first tested the ef-
fectiveness of compression on indexes. In practice,
these filters are bit array that contain mostly 0’s and
sparsely distributed 1’s (depending on the number of
contained keywords). To determine the achievable
compression ratio, we used a set of 1000 documents
from the Enron corpus containing 127.5 keywords on
average. Assuming a set of 100000 distinct keywords
and a false positive rate of 0.0001% leads to an un-
compressed filter size of 252472 bytes. We imple-
mented the compression of filters using the free zlib1

compression library. Using the zlib standard compres-
sion strategy, the average compression ratio achieved
is 0.02 with the given parameters. Using a run-length
encoding strategy that exploits the sparse property of
the filters, compression becomes even more effective
with an average compression ratio of 0.0154. This
means that using compression, filter sizes can be con-
siderably reduced in size (here: to 1.54% of their
original size, average size of compressed filters 3889
bytes).

Our benchmarking results show that using filter
compression dramatically speeds up database opera-
tions even over fast network connections (100 Mbit/s
speed). This means that the overhead for data com-
pression is by far outweighed by the advantage in net-
work transmission speed due to smaller filters. There-
fore, we use RLE-based filter compression as a de-
fault in all subsequent measurements.

200 400 600 800

5
0

0
0

1
0

0
0

0
1

5
0

0
0

2
0

0
0

0

Number of Keywords

C
o

m
p

re
s
s
e

d
 f
ilt

e
r

s
iz

e
 (

b
y
te

s
)

Figure 4: Relationship between number of document key-
words and compressed filter size.

It can be observed that the size of compressed fil-
ters is closely correlated with the number of repre-
sented keywords (see figure 4): Documents with few

1http://zlib.net/

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

432

keywords have small compressed filters while more
keywords produce larger sizes. This means that a
trade-off of the Z-IDX scheme is mitigated: To ac-
commodate large sets of distinct keywords without
false-positives, large filter sizes are required. These
large filters take up of large amounts of memory
– even for small documents with few or no key-
words at all. However, using compression, filter
sizes can be generously chosen as compressed filters
remain compact, depending on the number of key-
words in the document. In fact, using the settings
above, compressed filter sizes are 3389 bytes on aver-
age. When increasing the number of unique keywords
from 100000 to a million (tenfold) , the average size is
only 6648 bytes on average (only a twofold increase).

5.2 Query Performance

To assess the performance of the scheme, we evalu-
ated insert and search performance of our Z-IDX im-
plementation embedded in MongoDB. To obtain re-
alistic results, we tested our setup under two differ-
ent network profiles: The LAN profile corresponds to
the typical properties of a wired local network (2ms
ping, 100 Mbit/s), the WAN profile corresponds to the
properties of a domestic internet connection in Ger-
many (20ms ping, 10 Mbit/s). For reference, the same
benchmarks were also conducted with a Localhost
profile, where the network delays are essentially non-
existent. The LAN and WAN profiles were generated
by using network link conditioning on the machines’
loopback network device, using Linux’ tc command.
All benchmarks were conducted using a false posi-
tive rate of 0.001 and a maximum dictionary size of
10000.

Insert Query Performance. To assess the perfor-
mance of insert queries, we inserted a collection of
10000 documents from the Enron corpus in batches of
100. We ran every insert query 100 times and took the
mean as our measurement value. The results for these
queries in the Localhost, LAN and WAN profiles for
encrypted and unencrypted operation are shown in
figure 5. The longer duration of encrypted operation
is explained by the additional steps required on the
client: Before submission of a document, a Z-IDX fil-
ter has to be created using the document’s keywords
and the document content has to be encrypted. The Z-
IDX filter introduces data which slightly increases the
time of data transmission. On the server, no additional
steps have to be executed on insert. Our experiments
show that the performance penalty for encryption in
insert queries is indeed moderate: In the Localhost-
and LAN-settings, the insert time is about doubled

0	

5000	

10000	

15000	

20000	

25000	

30000	

35000	

Localhost	 LAN	 WAN	

In
se
rt
	 (
m
e	
(m

ill
is
ec
on

ds
)	

Unencrypted	

Encrypted	

Figure 5: Benchmark: Insert of 10000 documents.

compared to the unencrypted setting. In the WAN
setting, where network performance has a larger ef-
fect, the duration of encrypted and unencrypted insert
queries are nearly the same.

Search Query Performance To determine the per-
formance of search queries, we issued a search query
with a randomly chosen keyword on the same doc-
ument collection as used in the insert queries. We
ran every search query 100 times and took the mean
as our measurement value. The results for these
queries in the Localhost, LAN and WAN profiles for
encrypted and unencrypted operation are shown in
figure 6. The duration of encrypted search queries

0	

100	

200	

300	

400	

500	

600	

700	

800	

Localhost	 LAN	 WAN	

Q
ue

ry
	 '
m
e	
(m

ill
is
ec
on

ds
)	

Unencrypted	

Encrypted	

Figure 6: Benchmark: Query over 10000 documents.

is increased significantly compared to unencrypted
operation, due to a fundamental difference between
search implementation: Searching in an unencrypted
database is usually carried out using an inverted
index, where the matching documents for a given
keyword can be looked up with linear complexity
(O(1)). In encrypted operation using the Z-IDX-
scheme, search complexity is linear in the number of
documents in the collection (O(n), n=number of doc-
uments). As a result, the unencrypted search time is
very small (0,13 ms in the Localhost setting, 2,32 ms
LAN, 20,37 ms WAN) when compared to encrypted
operation and mainly determined by the network la-
tency. In contrast, encrypted searches took around

Secure�Keyword�Search�over�Data�Archives�in�the�Cloud�-�Performance�and�Security�Aspects�of�Searchable�Encryption

433

half a second (� 530 ms), with little variation depend-
ing on network performance, as only little data had to
be transmitted.

5.3 Implications for Practical Use

Our measurements have shown that the performance
penalty for using the Z-IDX searchable encryption
scheme in a database is very unevenly distributed:
While the performance penalty for insert queries is
almost negligible in under realistic conditions (WAN
profile), the penalty for search queries is tremendous
by comparison. At the same time, the query per-
formance varies greatly depending on collection size
(linear effort) and filter parameters: A search query
on a 10000-documents-collection in our experiments
took between 219 ms (fp = 0:01, n = 1000) and 4612
ms (fp = 0:0001, n = 100000).

6 SECURITY

The motivation for using searchable encryption
schemes such as Z-IDX is to protect the confiden-
tiality of information that is stored on untrusted in-
frastructures (e.g. cloud providers). In this section,
we give a qualitative evaluation of the security im-
plications when searchable encryption schemes are
used to search over encrypted data stored on a remote
server. This security evaluation is generally applica-
ble to searchable encryption schemes that correspond
to the abstract model given in section 6 and there-
fore not specific to Goh’s Z-IDX scheme (Goh et al.,
2003), unless explicitly noted otherwise.

The security of computer systems constituted by
the attributes of confidentiality, integrity and avail-
ability (as defined in the ITSEC criteria (ITSEC,
1991), see also (Avizienis et al., 2004)). As the
purpose of searchable encryption is to protect the
searched keywords from being disclosed to unautho-
rized parties, we focus our evaluation on the property
of data confidentiality of search keywords.

Abstract System Model. For the security evalua-
tion, we assume a setup as shown in figure 7 (see also
(Islam et al., 2012)). A server holds a set of n docu-
ments Doc1; : : : ;Docn. It also holds an encrypted data
structure which contains a mapping for every key-
word w 2W to all documents containing w. To query
the encrypted index, the client generates a trapdoor Tw
and sends it to the server over the network. Using this
trapdoor, the server can determine all documents that
contain keyword w and sends them back to the client
over the network. The mapping between keywords

and trapdoors w 7! Tw is deterministic, i.e. under the
same encryption key there exists exactly one trapdoor
Tw for every keyword w. These properties apply to
most symmetric searchable encryption schemes.

client network link server

encrypted

index

Trapdoor

Matching Documents
client

trusted honest-but-curious

Figure 7: Encrypted Search on a remote system: Abstract
Model.

Attacker Model. Attacks to learn the plaintext of
keywords and their association with encrypted docu-
ments can generally be undertaken in any part of the
architecture. Attacks on the client are the the most
dangerous, as clients hold the cryptographic key and
handle unencrypted information. We assume autho-
rized users on these clients to be trustworthy. For
the operator of the network link and the server we
assume a honest-but-curious attacker model (see e.g.
(Lindell et al., 2008)) : These operators will generally
execute programs and transmit information correctly
and faithfully, but can record arbitrary information
and perform additional calculations on it. Under this
adversarial model, data confidentiality is challenged
while integrity and availability are not affected.

6.1 Threats to Keyword Confidentiality

To illustrate the threats to the confidentiality of key-
words in the system we use the ADTree model
(Attack-Defense-Trees, see (Kordy et al., 2012; Bag-
nato et al., 2012)), which build upon the concept of
attack trees (Schneier, 1999). Attack trees are used
to model the threats to a specific security property
of a system and their logical interdependencies. In-
dividual threats are represented as leaves of the tree
and are connected by AND and OR operators to the
root of the tree, which represents a specific security
property. The attack of the system that corresponds
to a specific threat is indicated in the model by as-
signing a boolean TRUE value of the node in the tree.
If a combination of attacks results in a propagation
of a TRUE value to the root node the security prop-
erty is considered to be breached. By evaluating the
attack tree, sets of possible attacks can be derived.
The ADTree model extends attack trees by introduc-
ing and explicitly modeling countermeasures, which
can be employed to mitigate or prevent attacks. In
figure 8, an ADTree shows threats for keywords con-
fidentiality in searchable encryption schemes and ac-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

434

Countermeasure

Attack

Disclose

Keywords

Attacks on

Client

Data Theft by

Authorized

Users

Attacks by

Unauthorized

Users

Client

Security

Physical

Security

OS Security

Mechanisms

Encryption of

local Storage

Network

Data Sniffing

End-to-end

Encryption

Attacks on

Server

Break

Encryption

Scheme

Statistical

Inference

Introduce

Noise

Figure 8: Attack-Defense-Tree: Threats for Confidentiality
of Keywords.

cording countermeasures. Attacks to learn keywords
can be undertaken on the client, on the network and
the server which holds the encrypted index. In the
following sections, we discuss the relevance and im-
plications of the shown threats and their countermea-
sures.

6.2 Attacks on the Client

Attacks on the client are potentially severe as the
client handles plaintext data and holds the crypto-
graphic key for the searchable encryption scheme. By
obtaining the key, an attacker can uncover document-
keyword associations by generating valid queries and
launching a dictionary attack against either the server
or against intercepted trapdoors. Theft of data or
keys cannot by authorized users cannot be prevented.
However, in our attacker model, we assume the au-
thorized users to be trustworthy. To protect the assets
of the client systems against unauthorized users, dif-
ferent methods can be employed: Physical security
measures can prevent unauthorized users from get-
ting physical access to client machines. The security
mechanisms of the clients operating system can en-
sure that only authorized users can log onto the ma-
chines directly or via network. Finally, data on the
clients mass storage can be protected by hard disk en-
cryption.

6.3 Network Data Sniffing

Interception of data exchanged by searchable encryp-
tion protocols could threaten the confidentiality of
keywords as statistical properties of the trapdoor-
keywords-associations can be exploited (for more de-
tail, see section 6.4). If general security flaws of the
underlying scheme become known, these could also
be exploited. Data sniffing on the network can how-
ever easily be prevented by encryption of network
traffic between client and server (e.g. by using Trans-
port Layer Security).

6.4 Attacks on the Server

In general, threats that originate from network data
sniffing also exist on the server, as the entire commu-
nication of the scheme is observable. However, as the
searchable encryption scheme has to be processed on
the server (i.e. matching of trapdoors to documents),
an additional layer of encryption is not an option. In
addition, the server also has direct access to the en-
crypted index, which could make attacks targeting
this data structure very efficient. As the server can
also monitor the program execution, side-channel at-
tacks are theoretically possible (e.g. timing attacks).
In the following, we discuss the implications of these
threats.

Attacks to the Encryption Scheme. The confiden-
tiality of the keywords depends on the trust in the cho-
sen underlying searchable encryption scheme. In the
first place, it is desirable to use algorithms that are
openly published and examined by cryptographic ex-
perts. In general, searchable encryption schemes are
an active field of research, with many constructions
from the recent past (see section 2) that need more
evaluation before they can be considered mature.

The Z-IDX scheme by Goh is among the oldest
searchable schemes with no general attacks to the
scheme published. The construction of the scheme is
based on keyed hash functions, which are well exam-
ined and proved cryptographic tools (HMAC SHA-1
(Krawczyk et al., 1997)). The scheme fulfills three
security properties suggested by (Song et al., 2000):
It supports hidden queries as the generated trapdoors
do not reveal the keyword. Valid trapdoors cannot be
generated without possession of the secret key (con-
trolled searching). Both properties are ensured by us-
ing a keyed hash function. Finally, the scheme ful-
fills the property of query isolation which means that
the server learns nothing more than the set of match-
ing documents about a query. This security prop-
erty is formalized as the IND-CKA (Semantic Secu-
rity Against Adaptive Chosen Keyword Attack) prop-
erty: An adversary is given two documents D0 and D1
and an index which encodes the keywords of one of
these documents. If the adversary cannot determine
which documents keywords are encoded in the index
with a probability significantly better than 1

2 the in-
dex is considered IND-CKA-secure. To the best of our
knowledge, no attacks that break IND-CKA-security
of the Z-IDX scheme have been published to date.

Statistical Inference. Attacks using statistical in-
ference are a possible against all searchable encryp-
tion schemes that follow the basic model outlined in

Secure�Keyword�Search�over�Data�Archives�in�the�Cloud�-�Performance�and�Security�Aspects�of�Searchable�Encryption

435

section 6. The threat of these attack is not based
on weaknesses in the cryptographic constructions of
searchable encryption schemes but is a direct conse-
quence of the basic characteristics of such schemes.
Under the same secret key Kpriv, a keyword w is al-
ways mapped to the same trapdoor Tw. This allows the
server to observe tuples (w;fDw

1 ; :::;D
w
mg), i.e. combi-

nations of encrypted queries and the set of matching
documents, which leak statistical information: The
sever can learn the frequency of certain queries as
they occur over time and learn about the occurrence
and frequency of distinct keywords in the document
collection. While statistical information does not di-
rectly reveal keywords, it can be exploited to infer the
semantics or plaintext of keyword using background
knowledge about the data exchanged in the system.
When handling medical data for example, very ac-
curate assumptions about the prevalence of a specific
medical condition among a population can be made
using public sources of information. If this prevalence
is expressed using a keyword and no other keyword
in the document set possesses the same frequency, it
is easy to infer the meaning of this keyword. While
the given example might be trivial, statistical attack
can pose a serious threat to the confidentiality of key-
words. We review two practical attacks that have been
published:

Search Pattern Leakage in Searchable Encryp-
tion: Attacks and New Constructions. (Liu et al.,
2013) propose an attack based on the frequency of
search patterns. The salient feature of the approach
is that the frequency fq at which a keyword q occurs
is sampled over time, resulting in a frequency vec-
tor Vq = fV 1

q ; :::;V
p

q g for a specific keyword. Back-
ground knowledge for a dictionary of keywords D =
fw1; :::;wmg is drawn from external sources (the au-
thors propose Google Trends) and represented as fre-
quency vectors V = fVw1 ; :::;Vwmg. To infer the plain-
text of a keyword, a distance measuring function
Dist(V;Vwi) is used to determine the vector 2 V with
the smallest distance to Vq – the corresponding key-
word is then assumed to be q. The attack is amended
by an active approach, where the background knowl-
edge is adapted to a specific scenario (e.g. health-
care) to improve accuracy. To test the accuracy of
their attack, they use frequency vectors obtained from
Google Trends for the 52 weeks of the year 2011 and
add varying levels of gaussian noise to simulate user
queries. They show that under certain circumstances
(e.g. keyword dictionary size of 1000, limited level
of noise) it is easy to guess the keyword with a very
high accuracy. They also present mitigation strate-
gies, which are based on inserting random keywords

along with every query, but do not consider the actual
document matching on the server.

Access Pattern Disclosure on Searchable Encryp-
tion: Ramification, Attack and Mitigation. (Is-
lam et al., 2012) propose a statistical attack which
is based on the frequency at which keywords appear
in the document set. As background knowledge, in-
formation about the probability of two keywords oc-
curring in the same document is assumed. This in-
formation can be obtained by scanning public doc-
ument sources for a dictionary keywords k1; :::;km.
It is represented by a m�m matrix M, where Mi; j
contains the probability of keywords ki and k j occur-
ring in the same document. The attacker then tries
to find an order of encrypted queries q1; :::;qm whose
results set produce another matrix which is similar to
M. This sequence that produces the matrix most sim-
ilar to M is considered the result of the attack and re-
veals keywords by aligning the vectors of queries and
keywords so that qx corresponds to mx. The prob-
lem can be formalized by expressing the closeness
between matrices as an arithmetic distance. The au-
thors use simulated annealing to determine a keyword
sequence that minimizes this distance. The quality
of the attack is the percentage of keywords that are
guessed correctly. This percentage is improved if the
background knowledge also includes a set of known
query-trapdoor associations – this is however not re-
quired. With 15% known queries of 150 observed
queries, their attack was able to infer close to 100% of
a set of 500 keywords correctly. To counteract the pre-
sented attack, they also suggest the insertion of noise
to hide statistical properties of the query-document
associations. Encrypted index structures are consid-
ered (a;0)-secure if for every keyword there are a�1
keywords that appear in the same set of documents -
limiting an attackers probability of correctly inferring
a keyword to 1

a
at best.

6.5 Implications for Practical Use

The threat model in section 6.1 shows that attacks on
the confidentiality are possible in every part of the
system. However, as shown in the previous sections,
attacks by unauthorized users on the client and the
network can effectively mitigated by access control
and encryption. The most relevant threat is the pos-
sibility of inferring keywords by exploiting statistical
properties that can be observed by monitoring queries.
The threat posed by statistical inference attacks de-
pends strongly on the set of keywords and their dis-
tribution in the document set. Statistical inference at-
tacks are only a minor concern if the individual key-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

436

words exhibit very similar statistical properties, e.g.
serial numbers that are evenly distributed across doc-
uments. However, attributes with statistical properties
that could be available as background knowledge (e.g.
medical diagnoses) to an attacker need to be treated
with great caution and might require noise insertion.

7 CONCLUSION

In this paper, we evaluated the practical usability of
searchable encryption for data archives in the cloud,
illustrated by embedding an implementation of Goh’s
searchable encryption scheme into MongoDB. We
found that the use of compression on the additional
data structures keeps the data size at tolerable lev-
els and relative to the number of embedded search
keywords. Performance benchmarks revealed that for
insert operations under typical network parameters,
the additional overhead for insert operations is neg-
ligible compared to unencrypted operation. Search
queries however exhibit a considerable impact for en-
crypted operation, as search operations are linear to
the number of documents in Goh’s scheme. However,
the measured durations of encrypted queries could
be acceptable for interactive use where the added se-
curity is required. To evaluate the security proper-
ties of searchable encryption, we presented threats
to keyword confidentiality as an attack-defense-tree
model, which applies to most searchable encryption
schemes. The most relevant threat comes from in-
ference attacks, which are possible if the keywords
exhibit strong statistical properties which can be ex-
tracted using background knowledge. In such cases,
noise insertion techniques can be used to mitigate
such attacks.
Further research could investigate the performance
more recent constructions of searchable encryption
schemes with constant search complexity (e.g. (Ka-
mara et al., 2012)) and schemes that provide extended
search capabilities, such as range queries (see e.g.
(Boneh and Waters, 2007; Wang et al., 2011)).

ACKNOWLEDGEMENTS

The authors would like to thank Martin Kreichgauer
for providing the prototypical implementation of the
Z-IDX scheme and the MongoDB integration.

REFERENCES

Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno,
T., Lange, T., Malone-Lee, J., Neven, G., Paillier, P.,
and Shi, H. (2005). Searchable encryption revisited:
Consistency properties, relation to anonymous IBE,
and extensions. In Advances in Cryptology–CRYPTO
2005, pages 205–222. Springer.

Agrawal, R., Kiernan, J., Srikant, R., and Xu, Y. (2004).
Order preserving encryption for numeric data. In Pro-
ceedings of SIGMOD ’04 International Conference on
Management of Data, pages 563–574. ACM.

Arasu, A., Blanas, S., Eguro, K., Joglekar, M., Kaushik, R.,
Kossmann, D., Ramamurthy, R., Upadhyaya, P., and
Venkatesan, R. (2013). Secure database-as-a-service
with cipherbase. In Proceedings of SIGMOD ’13
International Conference on Management of Data,
pages 1033–1036. ACM.

Avizienis, A., Laprie, J.-C., Randell, B., and Landwehr, C.
(2004). Basic concepts and taxonomy of dependable
and secure computing. Dependable and Secure Com-
puting, IEEE Transactions on, 1(1):11–33.

Bagnato, A., Kordy, B., Meland, P. H., and Schweitzer, P.
(2012). Attribute decoration of attack–defense trees.
International Journal of Secure Software Engineering
(IJSSE), 3(2):1–35.

Bajaj, S. and Sion, R. (2011). Trusteddb: A trusted hard-
ware based database with privacy and data confiden-
tiality. In Proceedings of SIGMOD ’11 International
Conference on Management of Data, pages 205–216.
ACM.

Bloom, B. H. (1970). Space/time trade-offs in hash coding
with allowable errors. Communications of the ACM,
13(7):422–426.

Boneh, D., Di Crescenzo, G., Ostrovsky, R., and Per-
siano, G. (2004). Public key encryption with keyword
search. In Advances in Cryptology-Eurocrypt 2004,
pages 506–522. Springer.

Boneh, D. and Waters, B. (2007). Conjunctive, subset, and
range queries on encrypted data. In Theory of cryp-
tography, pages 535–554. Springer.

Byun, J. W., Rhee, H. S., Park, H.-A., and Lee, D. H.
(2006). Off-line keyword guessing attacks on recent
keyword search schemes over encrypted data. In Se-
cure Data Management, pages 75–83. Springer.

Curtmola, R., Garay, J., Kamara, S., and Ostrovsky, R.
(2006). Searchable symmetric encryption: improved
definitions and efficient constructions. In Proceedings
of the 13th ACM conference on Computer and com-
munications security, pages 79–88. ACM.

Floratou, A., Teletia, N., DeWitt, D. J., Patel, J. M., and
Zhang, D. (2012). Can the elephants handle the nosql
onslaught? Proc. VLDB Endow., pages 1712–1723.

Gentry, C. (2009). Fully homomorphic encryption using
ideal lattices. In Proceedings of the 41st annual ACM
symposium on Theory of Computing, pages 169–178.
ACM.

Goh, E.-J. et al. (2003). Secure indexes. IACR Cryptology
ePrint Archive, 2003:216.

Secure�Keyword�Search�over�Data�Archives�in�the�Cloud�-�Performance�and�Security�Aspects�of�Searchable�Encryption

437

Hore, B., Mehrotra, S., and Tsudik, G. (2004). A privacy-
preserving index for range queries. In Proceedings of
the 13th International Conference on Very Large Data
Bases, VLDB ’04, pages 720–731.

Islam, M., Kuzu, M., and Kantarcioglu, M. (2012). Access
pattern disclosure on searchable encryption: Ramifi-
cation, attack and mitigation. In Network and Dis-
tributed System Security Symposium (NDSS’12).

ITSEC (1991). Information technology security evaluation
criteria (itsec): Preliminary harmonised criteria. Tech-
nical report, Commission of the European Communi-
ties.

Kamara, S. and Lauter, K. (2010). Cryptographic cloud
storage. Financial Cryptography and Data Security,
pages 136–149.

Kamara, S., Papamanthou, C., and Roeder, T. (2012). Dy-
namic searchable symmetric encryption. In Proceed-
ings of the 2012 ACM conference on Computer and
communications security, pages 965–976. ACM.

Kordy, B., Mauw, S., Radomirović, S., and Schweitzer, P.
(2012). Attack-defense trees. Journal of Logic and
Computation.

Krawczyk, H., Bellare, M., and Canetti, R. (1997). HMAC:
Keyed-Hashing for Message Authentication. RFC
2104 (Informational). Updated by RFC 6151.

Lindell, Y., Pinkas, B., and Smart, N. P. (2008). Imple-
menting two-party computation efficiently with secu-
rity against malicious adversaries. In Security and
Cryptography for Networks, pages 2–20. Springer.

Liu, C., Zhu, L., Wang, M., and an Tan, Y. (2013). Search
pattern leakage in searchable encryption: Attacks and
new constructions. Cryptology ePrint Archive, Report
2013/163.

Popa, R. A., Redfield, C. M. S., Zeldovich, N., and Balakr-
ishnan, H. (2011). Cryptdb: Protecting confidentiality
with encrypted query processing. In Proceedings of
the Twenty-Third ACM Symposium on Operating Sys-
tems Principles, SOSP ’11, pages 85–100. ACM.

Rivest, R. L., Adleman, L., and Dertouzos, M. L. (1978).
On data banks and privacy homomorphisms. Founda-
tions of secure computation, 32(4):169–178.

Schneier, B. (1999). Attack trees. Dr. Dobb’s journal,
24(12):21–29.

Shmueli, E., Waisenberg, R., Elovici, Y., and Gudes,
E. (2005). Designing secure indexes for encrypted
databases. In Proceedings of the 19th Annual IFIP
WG 11.3 Working Conference on Data and Applica-
tions Security, DBSec’05, pages 54–68.

Song, D. X., Wagner, D., and Perrig, A. (2000). Practical
techniques for searches on encrypted data. In Secu-
rity and Privacy, 2000. S&P 2000. Proceedings. 2000
IEEE Symposium on, pages 44–55. IEEE.

Van Dijk, M., Gentry, C., Halevi, S., and Vaikuntanathan,
V. (2010). Fully homomorphic encryption over the in-
tegers. Advances in Cryptology–EUROCRYPT 2010,
pages 24–43.

Wang, S., Agrawal, D., and El Abbadi, A. (2011). A com-
prehensive framework for secure query processing on
relational data in the cloud. In Proceedings of the
8th VLDB Workshop on Secure Data Management,

SDM’11, pages 52–69, Berlin, Heidelberg. Springer-
Verlag.

Yang, Z., Zhong, S., and Wright, R. N. (2006). Privacy-
preserving queries on encrypted data. In Proceedings
of the 11th European Conference on Research in Com-
puter Security, ESORICS’06, pages 479–495.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

438

A Many-objective Optimization Framework for Virtualized Datacenters

Fabio López Pires1;2 and Benjamı́n Barán2;3

1Itaipu Technological Park (PTI), Hernandarias, Paraguay
2National University of Asunción (UNA), San Lorenzo, Paraguay

3National University of the East (UNE), Ciudad del Este, Paraguay
fabio.lopez@pti.org.py, bbaran@pol.una.py

Keywords: Virtual Machine Placement, Many-objective Optimization, Datacenter, Virtualization, Cloud Computing.

Abstract: The process of selecting which virtual machines should be located (i.e. executed) at each physical machine of
a datacenter is commonly known as Virtual Machine Placement (VMP). This work presents a general many-
objective optimization framework that is able to consider as many objective functions as needed when solving
the VMP problem in a pure multi-objective context. As an example of utilization of the proposed framework,
for the first time a formulation of the many-objective VMP problem (MaVMP) is proposed, considering the
simultaneous optimization of the following five objective functions: (1) power consumption, (2) network traf-
fic, (3) economical revenue, (4) quality of service and (5) network load balancing. To solve the formulated
many-objective VMP problem, an interactive memetic algorithm is proposed. Simulations prove the correct-
ness of the proposed algorithm and its effectiveness converging to a treatable number of solutions in different
experimental scenarios.

1 INTRODUCTION

One of the key challenges in modern datacenters is
to efficiently manage power consumption, conside-
ring electricity costs and the carbon dioxide foot-
prints (Beloglazov et al., 2011). Most of the time,
servers operate in a very low energy-efficiency re-
gion (i.e. between 10 and 50% of resource utiliza-
tion), even considering that workload peaks rarely
occur in practice (Barroso and Hölzle, 2007). Conse-
quently, applying techniques for higher resource uti-
lization can result in more energy-efficient server ope-
ration. Virtualization of computational resources is a
technology that dynamically improves the utilization
of available resources in a datacenter according to the
existing demand, improving efficiency. Correctly lo-
cating virtual machines (VMs) into physical machines
(PMs) reduces the amount of hardware in use, let-
ting unused PMs to be in standby mode or even to
shut down. This way, average resource utilization as
well as energy efficiency may be improved, resulting
in better economical revenue and greener datacenters.

Virtualization in modern datacenters introduces
management decisions related to the placement of
VMs. In this context, Virtual Machine Placement
(VMP) is the process of selecting which VMs should
be executed in a given set of PMs of a datacenter.

1.1 Background and Motivation

In datacenters with a considerable amount of PMs
and VMs, there is a large number of possible criteria
that can be considered when selecting a placement,
depending on the priorities and optimization objec-
tives. These criteria can even change from one period
of time to another, which implies a variety of possi-
ble formulations of the VMP problem and objective
functions to be optimized for virtualized datacenters.

According to (López Pires and Barán, 2015), the
optimization of the energy consumption is the most
studied objective function in VMP literature (Sun
et al., 2013; Beloglazov et al., 2012). On the other
hand, network traffic (Anand et al., 2013), economi-
cal revenue (Shi et al., 2013; Sato et al., 2013), per-
formance (Bin et al., 2011) and resource utilization
(Mishra and Sahoo, 2011) optimization are also very
studied. For each objective function, several possible
formulations can be proposed.

In the VMP context, objective functions can be
studied according to the following identified opti-
mization approaches: (1) mono-objective (MOP), (2)
multi-objective solved as mono-objective (MAM) and
(3) multi-objective (PMO) (López Pires and Barán,
2015). The mono-objective approach considers the
optimization of only one objective or the individual

439

optimization of more than one objective, one at a
time. On the other hand, multi-objective solved as
mono-objective approach considers the optimization
of multiple objectives combined into one objective
(usually as a weighted sum of different normalized
objectives), while a pure multi-objective approach
considers the simultaneous optimization of different
(possible contradictory) objectives. To the best of
the authors’ knowledge, there is no many-objective
optimization formulation proposed for the VMP pro-
blem in the specialized literature (López Pires and
Barán, 2015), i.e a multi-objective optimization pro-
blem with at least four conflicting objective functions
(von Lücken et al., 2014).

Considering the large number of existing objective
functions for the VMP problem, this work presents a
many-objective optimization framework to be able to
consider as many objective functions as needed when
solving the VMP problem. As an example of uti-
lization of the proposed framework, for the first time
a formulation of the many-objective VMP problem
(MaVMP) is proposed, considering the following five
objective functions: (1) power consumption minimi-
zation, (2) network traffic minimization, (3) economi-
cal revenue maximization, (4) QoS maximization and
(5) network load balancing optimization. In the pre-
sented formulation, a multi-level priority is associa-
ted to each VM, representing a Service Level Agree-
ment (SLA) considered in the placement process. To
solve the formulated MaVMP problem, an interactive
memetic algorithm is proposed considering the is-
sues that give place the formulated problem of many-
objective optimization for Pareto-based algorithms.

This paper is structured in the following way: Sec-
tion 2 presents a multi-objective optimization pro-
blem formulation, considering the issues that give
place the problem of many-objective optimization.
Section 3 details the proposed general many-objective
optimization framework, while Section 4 summarizes
a many-objective formulation of the VMP problem
considering the simultaneous optimization of five ob-
jective functions and a multi-level priority of SLA.
Section 5 presents a novel interactive memetic al-
gorithm proposed for solving the formulated many-
objective problem, while Section 6 presents first expe-
rimental results. Finally, conclusions and future work
are left to Section 7.

2 MULTI-OBJECTIVE
OPTIMIZATION

A general pure multi-objective optimization problem
(PMO) includes a set of p decision variables, q objec-

tive functions, and r constraints. Objective functions
and constraints are functions of decision variables. In
a PMO formulation, x represents the decision vector,
while y represents the objective vector. The decision
space is denoted by X and the objective space as Y .
These can be expressed as (Coello et al., 2007):

Optimize:

y = f (x) = [f1(x); f2(x); :::; fq(x)] (1)

subject to:

e(x) = [e1(x);e2(x); :::;er(x)]� 0 (2)

where:
x = [x1;x2; :::;xp] 2 X (3)

y = [y1;y2; :::;yq] 2 Y (4)

It is important to remark that optimizing, in a parti-
cular problem context, can mean maximizing or mi-
nimizing. The set of constrains e(x) � 0 defines the
set of feasible solutions X f � X and its corresponding
set of feasible objective vectors Yf � Y . The feasible
decision space X f is the set of all decision vectors x in
the decision space X that satisfies the constraints e(x),
and it is defined as:

X f = fx j x 2 X ^ e(x)� 0g (5)

The feasible objective space Yf is the set of the ob-
jective vectors y that represents the image of X f onto
Y and it is denoted by:

Yf = fy j y = f (x) 8x 2 X f g (6)

To compare two solutions in a multi-objective
context, the concept of Pareto dominance is used.
Given two feasible solutions u, v 2 X , u dominates v,
denoted as u � v, if f (u) is better or equal to f (v) in
every objective function and strictly better in at least
one objective function. If neither u dominates v, nor
v dominates u, u and v are said to be non-comparable
(denoted as u� v).

A decision vector x is non-dominated with respect
to a set U , if there is no member of U that dominates x.
The set of non-dominated solutions of the whole set of
feasible solutions X f , is known as optimal Pareto set
P�. The corresponding set of objective vectors consti-
tutes the optimal Pareto front PF�.

PMOs with more than three objective functions
are known as Many-Objective Optimization Problems
(MaOPs), as defined in (Cheng et al., 2014). MaOPs
differ significantly from PMOs because several issues
should be considered when solving problems with
more than three objective functions (Farina and Am-
ato, 2002). In case of Pareto-based algorithms, these

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

440

issues are intrinsically related to the fact that as the
number of objective increases, the proportion of non-
dominated elements in the population grows, being
increasingly difficult to discriminate among solutions
using only the Pareto dominance relation (Deb et al.,
2006). Additionally, determining which solution to
keep and which to discard in order to converge toward
the Pareto set is still a relevant issue to be addressed
(Farina and Amato, 2002). Pareto-based algorithms
are still not able to provide the required selection pres-
sure towards better solutions in order to conduct an
efficient evolutionary search and, even elitism may be
difficult. As the number of objectives grows, the pro-
portion of non-comparable solutions to the total num-
ber of solutions tends to one (von Lücken et al., 2014),
making more difficult to solve a MaOP. Clearly, diffi-
culties in solving MaOPs explain why it has not yet
been studied in the VMP literature.

3 MANY-OBJECTIVE
OPTIMIZATION FRAMEWORK

The general many-objective optimization framework
for the VMP problem proposed in this work consi-
ders that as the number of conflicting objectives of
a MaVMP problem formulation increases, the total
number of non-dominated solutions increases (even
exponentially in some cases), being increasingly dif-
ficult to discriminate among solutions using only the
dominance relation (Farina and Amato, 2002). For
this reason, this work proposes the utilization of lower
and upper bounds associated to each objective func-
tion z 2 f1; : : : ;qg (Lz � fz(x) � Uz) to be able to
reduce iteratively the number of possible compro-
mise solutions of the Pareto set approximation, when
needed by the decision maker.

A VMP formulation, based on many objective
functions and constraints to be detailed in Section 4,
may be written as:

Optimize:

y = f (x) = [f1(x); f2(x); :::; fq(x)] (7)

where:
f1(x) = power consumption minimization
f2(x) = network traffic minimization
f3(x) = economical revenue maximization
f4(x) = QoS maximization
f5(x) = network load balancing optimization

...
fq(x) = any other considered function

(8)

subject to:

e1(x) : unique placement of VMs;
e2(x) : assure provisioning of highest SLA;
e3(x) : processing resource capacity of PMs;
e4(x) : memory resource capacity of PMs;
e5(x) : storage resource capacity of PMs;
e6(x) : f1(x) 2 [L1;U1];
e7(x) : f2(x) 2 [L2;U2];
e8(x) : f3(x) 2 [L3;U3];
e9(x) : f4(x) 2 [L4;U4];

e10(x) : f5(x) 2 [L5;U5];
...

er(x) : any other considered constraint.

(9)

4 MANY-OBJECTIVE VIRTUAL
MACHINE PLACEMENT

A few articles proposed formulations of a pure
multi-objective VMP problem (MVMP) (Gao et al.,
2013; López Pires and Barán, 2013), considering the
simultaneous optimization of at most three objective
functions. To the best of the authors’ knowledge,
this work proposes for the first time the formulation
of a MaVMP problem considering the following five
objective functions to be simultaneously optimized:
(1) power consumption, (2) network traffic, (3)
economical revenue, (4) quality of service and (5)
network load balancing. In this many-objective for-
mulation, a multi-level priority is associated to each
VM, representing a SLA. Formally, the proposed
offline many-objective optimization VMP problem
can be enunciated as:

Given a set of PMs, H = fH1;H2; :::;Hng, a
network topology G (as illustrated in Figure 1) and a
set of VMs, V = fV1;V2; :::;Vmg, it is sought a correct
placement of the set of VMs V in the set of PMs
H satisfying the r constraints of the problem and
simultaneously optimizing all q objective functions
defined in this formulation (as energy consumption,
network traffic, economical revenue, QoS and load
balancing in the network), in a pure many-objective
context.

4.1 Input Data

The proposed formulation of the VMP problem mo-
dels a virtualized datacenter infrastructure, composed
by PMs and a network topology. The set of PMs

A�Many-objective�Optimization�Framework�for�Virtualized�Datacenters

441

is represented as a matrix H of dimension (n x 4).
Each Hi is represented by processing resources CPU
(as ECU)1, RAM memory [GB], storage [GB] and a
maximum power consumption [W] as:

Hi = [Hcpui;Hrami;Hhddi; pmaxi]

8i 2 f1; :::;ng
(10)

where:

Hcpui: Processing resources of Hi;
Hrami: Memory resources of Hi;
Hhddi: Storage resources of Hi;
pmaxi: Maximum power consumption of Hi;
n: Number of PMs.

As shown in Figure 1, the network topology of
the virtualized datacenter is represented as:

G: Network topology;
L: Set of links la in G. For simplicity, we

assume that all links are semi-duplex;
M: Set of paths for all-to-all PM interconnec-

tions;
K: Capacity set of the communication cha-

nnel, typically in [Mbps].

The set of VMs requested by customers is repre-
sented as a matrix V of dimension (m x 5). Each Vj

requires processing resources CPU (as ECU)1, RAM
memory [GB] and storage [GB], providing for them
an economical revenue R j [$] for the provider. A SLA
is also assigned to each VM to indicate its level of
priority. Consequently, a Vj is represented as:

Vj = [V cpu j;V ram j;V hdd j;R j;SLA j]

8 j 2 f1; :::;mg
(11)

where:

V cpu j: Processing requirements of Vj;
V ram j: Memory requirements of Vj;
V hdd j: Storage requirements of Vj;
R j: Economical revenue for locating Vj;
SLA j: Service Level Agreement SLA j of a Vj. If

the highest priority level is s, then SLA j 2
f1; : : : ;sg;

m: Number of VMs.

The traffic between VMs is represented as a ma-
trix T of dimension (m x m). Each Vj requires net-
work communication resources [Mbps] to communi-
cate with other VMs. These communication resources

1http://aws.amazon.com/ec2/faqs

are represented as:

Tj = [Tj1;Tj2; :::;Tjm]

8 j 2 f1; :::;mg
(12)

where:

Tjk: Average network traffic between Vj and
Vk [Mbps]. Note that we can consider
Tj j = 0.

Figure 1 presents a basic example of a virtualized
datacenter infrastructure, composed by 4 PMs H =
fH1;H2;H3;H4g and a network topology considering
6 physical network links L = fl1; l2; l3; l4; l5; l6g. In
this example, the set of capacity for each communica-
tion channel is K = f100;100;100;100;1000;1000g
[Mbps] respectively. Using shortest path, a path m12
between H1 and H2 uses links fl1; l2g, i.e. m12 =
fl1; l2g. Analogously, m13 = fl1; l5; l6; l3g and m14 =
fl1; l5; l6; l4g, as shown in Figure 1.

4.2 Output Data

A calculated solution should indicate the exact place-
ment of each VM Vj on the necessary PMs Hi,
considering the many-objective optimization criteria
applied. A placement (or possible solution to the
formulated problem) is represented in what follows
as a matrix P = fPjig of dimension (m x n), where
Pji 2 f0;1g indicates if Vj is located (Pji = 1) or not
(Pji = 0) for execution on a PM Hi (i.e., Pji :Vj!Hi).

4.3 Constraints

4.3.1 Constraint 1: Unique Placement of VMs

A VM Vj should be located to run on a single PM Hi
or alternatively, it could be not located in any PM if
the associated SLA j is not the highest level of priority
s. Consequently, this constraint is expressed as:

n

å
i=1

Pji � 1 8 j 2 f1; :::;mg (13)

where:

Pji: Binary variable equals 1 if Vj is located to
run on Hi; otherwise, it is 0.

4.3.2 Constraint 2: Assure SLA Provisioning

A VM Vj with the highest level of SLA (i.e. SLA j = s)
must necessarily be located to run on a PM Hi. Con-
sequently, this constraint is expressed as:

n

å
i=1

Pji = 1 8 j such that SLA j = s (14)

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

442

4.3.3 Constraints 3-5: Physical Resource
Capacity of PMs

A PM Hi must have sufficient available resources
to meet the requirements of all VMs Vj that are lo-
cated to run on Hi. In this work, it is not considered
the overbooking of resources (Tomás and Tordsson,
2013). Consequently, this set of constraints can be
mathematically formulated as:

m

å
j=1

V cpu j�Pji � Hcpui (15)

m

å
j=1

V ram j�Pji � Hrami (16)

m

å
j=1

V hdd j�Pji � Hhddi (17)

8i 2 f1; :::;ng; i.e. for all physical machine Hi.

4.3.4 Adjustable Constraints

This work proposes the utilization of lower and upper
bounds associated to each objective function to re-
duce the number of possible solutions of the Pareto set
approximation Pknown, when needed by the decision
maker. Consequently, this set of adjustable bounds
can be mathematically formulated as the following
constraints:

fz(x) 2 [Lz;Uz] 8z 2 f1; : : : ;qg (18)

4.4 Objective Functions

A VMP problem can be defined as a many-objective
optimization problem, considering the simultaneous
optimization of more than three objective functions.

l5 l6

H1 H2 H3 H4

l1 l2 l3 l4

Active paths of M
m13 = {l1, l5, l6, l3}
m14 = {l1, l5, l6, l4}
m34 = {l3, l4}

V3 V1 V2

100 Mbps 100 Mbps 100 Mbps 100 Mbps

1000 Mbps 1000 Mbps

V4

Total traffic per path
m13 = 4 Mbps
m14 = 2 Mbps
m34 = 4 Mbps

Figure 1: Example of placement in a virtualized datacenter
infrastructure, composed by PMs and a network topology.

As a concrete example, this work proposes for the first
time the optimization of the following five objective
functions:

4.4.1 Power Consumption Minimization

Based on (Beloglazov et al., 2012) formulation, this
work also proposes the minimization of power con-
sumption, represented by the sum of the power con-
sumption of each PM Hi:

f1(x) =
n

å
i=1

((pmaxi� pmini)�Ucpui + pmini)�Yi

(19)
where:

f1(x): Total power consumption of the PMs;
pmini: Minimum power consumption of Hi. In

what follows, pmini = pmaxi �0:6 (Belo-
glazov et al., 2012);

Ucpui: Utilization ratio of processing resources
used by Hi;

Yi: Binary variable equals 1 if Hi is turned
on; otherwise, it is 0.

4.4.2 Network Traffic Minimization

(Shrivastava et al., 2011) proposed the minimization
of network traffic among VMs by maximizing local-
ity. Based on this approach, this work proposes equa-
tion (20) to estimate network traffic represented by the
sum of average network traffic generated by each VM
Vj, that is located to run on any PM, with other VMs
Vk that are located to run on different PMs.

f2(x) =
m

å
j=1

m

å
k=1

(Tjk�D jk) (20)

where:

f2(x): Total network traffic among VMs;
D jk: Binary variable that equals 1 if Vj and Vk

are located in different PMs; otherwise, it
is 0.

The traffic between two VMs Vj and Vk which are
located on the same PM Hi do not contribute to in-
crease the total network traffic given by equation (20);
therefore, D jk = 0 if Pji = Pki = 1.

4.4.3 Economical Revenue Minimization

Based on (López Pires and Barán, 2013), this work
presents equation (21) to estimate the total economi-
cal revenue that a datacenter receives for meeting the
requirements of its customers, represented by the sum

A�Many-objective�Optimization�Framework�for�Virtualized�Datacenters

443

of the economical revenue obtainable by each VM Vj
placement that is effectively located for execution on
any PM.

f3(x) =
m

å
j=1

(R j�X j) (21)

where:

f3(x): Total economical revenue for placing
VMs;

X j: Binary variable that equals 1 if Vj is lo-
cated for execution on any PM; other-
wise, it is 0.

4.4.4 QoS Maximization

In this work, the QoS maximization proposes to lo-
cate the maximum number of VMs with the highest
level of priority associated to the SLA. This objective
function is proposed in equation (22).

f4(x) =
m

å
j=1

(ĈSLA j �SLA j�X j) (22)

where:

f4(x): Total QoS figure for a given placement;
Ĉ: Constant, large enough to prioritize ser-

vices with larger SLA over the ones with
lower SLA (see example in Section 4.4.6).

4.4.5 Network Load Balancing Optimization

This work calculates the total amount of traffic going
through a semi-duplex link la as:

Tla =
n

å
i=1

n

å
i0=1

Faii0 �

m

å
j=1

m

å
j0=1

Pji�Pj0i0 �D j j0 �Tj j0

!
(23)

where:

T la: Total amount of traffic going through link
la [Mbps];

Faii0 : Binary variable that equals 1 if la 2 mii0 ;
otherwise, it is 0.

Inspired in (Donoso et al., 2005) formulation,
this work calculates the Maximum Link Utilization
(MLU) as:

MLU = max
8la2L

�
T la
Cla

�
(24)

where:

MLU : Maximum Link Utilization;
Cla: Channel capacity of link la [Mbps].

In this paper, the load balancing optimization of
the network is formulated as the minimization of the
MLU, i.e.,

f5(x) = MLU (25)

4.4.6 Example

The following example details how the values of f4(x)
and f5(x) are calculated, considering the datacenter
infrastructure presented in Figure 1. For the other
three objective functions, see (López Pires and Barán,
2013).

Consider the following placement matrix P where,
VMs V1 and V2 are executed in H3, while V3 is exe-
cuted in H1 and V4 in H4:

P =

2640 0 1 0
0 0 1 0
1 0 0 0
0 0 0 1

375 (26)

Additionally, consider Ĉ = 100 and the values of SLA j
and X j presented in Table 1, f4(x) is calculated as:

f4(x) = ĈSLA1 �SLA1�X1 + � � �+ĈSLA4 �SLA4�X4

= 1002�2�1+ � � �+1003�3�1

= 3:06X106

(27)
It is important to remark that if Ĉ is not sufficiently

large, f4(x) could prefer a large number of VMs with
lower priority. As an example, if Ĉ = 1, 2 VMs with
SLA j = 2 result in a better figure of f4(x) than 1 VM
with SLA j = 3, what is not correct according to what
was presented in Section 4.4.4.

On the other hand, considering that each VM Vj
communicates at 1 [Mbps] with any other Vk(k 6= j),
the placement P results in the values of T la and Cla
presented in Table 2. So f5(x) is calculated as:

f5(x) = max
�

T l1
Cl1

;
T l2
Cl2

;
T l3
Cl3

;
T l4
Cl4

;
T l5
Cl5

;
T l6
Cl6

�
= max

�
6

100
;

0
100

;
8

100
;

6
100

;
6

1000
;

6
1000

�
=

8
100

(28)

5 INTERACTIVE MEMETIC
ALGORITHM

A Memetic Algorithm (MA) could be understood as
an Evolutionary Algorithm (EA) that in addition to

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

444

Table 1: Data for requested VMs used in basic example (see
Section 4.4.6).

Vj SLA j X j
V1 2 1
V2 2 1
V3 2 1
V4 3 1

Table 2: Data of network links used in basic example (see
Section 4.4.6).

la T la [Mbps] Cla [Mbps] T la=Cla
l1 6 100 6=100
l2 0 100 0=100
l3 8 100 8=100
l4 6 100 6=100
l5 6 1000 6=1000
l6 6 1000 6=1000

MLU 8/100

the standard selection, crossover and mutation opera-
tors of most Genetic Algorithms (GA) includes a local
optimization operator to obtain good solutions even at
early generations of an EA (Báez et al., 2007).

This work proposes an interactive memetic al-
gorithm for solving the VMP problem in a many-
objective context, considering the proposed formu-
lation presented in Section 4 to simultaneously opti-
mize the five objective functions presented in the pre-
vious section. The proposed algorithm is extensible to
consider as many objective functions as needed while
only minor modifications may be needed if the num-
ber of objective functions changes.

It was shown in (von Lücken et al., 2014) that
many-objective optimization using Multi-Objective
Evolutionary Algorithms (MOEAs) is an active re-
search area, having multiple challenges that need to
be addressed regarding scalability analysis, visualiza-
tion of the results, algorithm design and experimen-
tal algorithm evaluation. The interactive memetic al-
gorithm presented in this section as a viable way to
solve a many-objective VMP problem, proposes the
inclusion of desirable ranges of values for the objec-
tive functions costs in order to interactively control
the possible huge number of feasible non-dominated
solution, as described in Section 2. The proposed in-
teractive memetic algorithm is based on the one pro-
posed in (López Pires and Barán, 2013) and works as
follows:

In step 1, it is verified if the problem has at least
one solution (considering only VMs with SLA j = s)
to continue with next steps. If there is no possible so-
lution to the problem, the algorithm returns an appro-
priate error message. If the problem has at least one
solution, the algorithm proceeds to step 2, which ge-

nerates a set of random candidates P0, whose solu-
tions are repaired at step 3 to ensure that P0 con-
tains only feasible solutions. Then, the algorithm tries
to improve candidates at step 4 using local search.
With the obtained non-dominated solutions, the first
set Pknown (Pareto set approximation) is generated at
step 5. After initialization in step 6, evolution begins
(iterations between steps 7 and 18).

The evolutionary process basically follows the
same behavior: solutions are selected from the union
of Pknown with the evoluationary set of solutions (or
population) also known as Pt (step 8), crossover and
mutation operators are applied as usual (step 9), and
eventually solutions are repaired, as there may be in-
feasible solutions (step 10). Improvements of solu-
tions of the evolutionary population Pt may be gen-
erated at step 11 using local search (local optimiza-
tion operators). At step 12, the Pareto set approxi-
mation Pknown is updated (if applicable); while at step
13 the generation (or iteration) counter is updated. At
step 15 the decision maker adjust the lower and upper
bounds if it is necessary, while at step 17 a new evo-
lutionary population Pt is selected. The evolutionary
process is repeated until the algorithm meets a stop-
ping criterion (such as a maximum number of gen-
erations), finally returning the set of non-dominated
solutions Pknown in step 19.

Algorithm 1: Interactive Memetic Algorithm.
Data: datacenter infrastructure (see Section 4.1)
Result: Pareto set approximation Pknown

1 check if the problem has a solution
2 initialize set of solutions P0
3 P00 = repair infeasible solutions of P0
4 P000 = apply local search to solutions of P00
5 update set of solutions Pknown from P000
6 t = 0;Pt = P000
7 while is not stopping criterion do
8 Qt = selection of solutions from Pt [Pknown
9 Q0t = crossover and mutation of solutions of Qt

10 Q00t = repair infeasible solutions of Q0t
11 Q000t = apply local search to solutions of Q00t
12 update set of solutions Pknown from Q000t
13 increment t
14 if interaction is needed then
15 ask for decision maker action (Lz and Uz)
16 end
17 Pt = non-dominated sorting from Pt [Q000t
18 end
19 return Pareto set approximation Pknown

5.1 Population Initialization

Initially, a set of solutions (or population P0) is ran-
donmly generated. Each solution (or individual) is
represented as C = [C1;C2; : : : ;Cm]. The possible val-

A�Many-objective�Optimization�Framework�for�Virtualized�Datacenters

445

ues that can take each Ck for VMs with the highest
value of SLA j (SLA j = s) are in the range [1, n]. For
VMs Vj with SLA j < s, the possible values are in the
range [0, n]. Within these ranges defined by the SLA j
of each Vj, the algorithm ensures at the initialization
stage that all VMs Vj with the highest level of prio-
rity will be located for execution on a PM Hi, while
for VMs Vj with lower levels of priority SLA j, there
is always a probability larger than 0 that they may not
be located for execution in any PM.

5.2 Infeasible Solution Reparation

With a random generation at the initialization phase
(step 2 of Algorithm 1) and/or solutions generated by
standard genetic operators (step 9 of Algorithm 1), in-
feasible solutions may appear, i.e. the resources re-
quired by the VMs located for execution on certain
PMs could exceed the available resources (see Section
4.3.3), or one or more objectives functions may not
meet the adjustable constraints (see Section 4.3.4).

Repairing these infeasible solutions (steps 3 and
10 of Algorithm 1) may be done in two stages: first,
in the feasibility verification process, the population is
classified in two classes: feasible and infeasible (Al-
gorithm 2). Later, in the process of repairing infea-
sible solutions (Algorithm 3), the solutions which do
not meet the feasibility criteria are repaired in three
ways: (1) migrating some VMs to an available hard-
ware, (2) turning on some PMs and then migrating
VMs to them, or (3) turning off some VMs. Note that
at step 3 of Algorithm 3, Vj migration to H 0i can be
done to other PMs, even if they are shut down.

Algorithm 2: Feasibility Verification
Data: set of solutions Pt
Result: set of feasible solutions P0t

1 while there are solutions not verified do
2 feasible = true ; i = 1
3 while i� n and feasible = true do
4 if solution does not satisfy constraints (3-5)

then
5 feasible = false ; break
6 else
7 increment i
8 end
9 end

10 if feasible = false then
11 call Algorithm 3 (repair solution)
12 end
13 end
14 return set of feasible solutions P0t

Algorithm 3: Infeasible Solutions Reparation.
Data: infeasible solution
Result: feasible solution

1 feasible = false ; j = 1
2 while j � m and feasible = false do
3 if it is possible then
4 migrate V j to H 0i (i0 6= i)
5 else
6 if SLA j 6= s then
7 turn off V j on Hi
8 else
9 replace solution with another solution

from Pknown
10 end
11 end
12 end
13 return feasible solution

5.3 Local Search

Once a population contains only feasible solutions, a
local search is performed (steps 4 and 11 of Algorithm
1) for improving the solutions found so far in the evo-
lutionary population Pt . The local search pseudo-code
is presented in Algorithm 4.

Algorithm 4: Local Search.

Data: set of feasible solutions P0t
Result: set of feasible optimized solutions P00t

1 probability = random number between 0 and 1
2 while there are solutions not verified do
3 if probability < 0:5 then
4 Try to turn off all the possible Hi by

migrating all the V j assigned to H 0i with
available resources (i0 6= i) and then try to
turn on all the possible V j (using SLA j
priority order) assigning them to a Hi with
available resources

5 else
6 Try to turn on all the possible V j (using

SLA j priority order) assigning them to a Hi
with available resources and then try to turn
off all the possible Hi by migrating all the V j
assigned to H 0i with available resources
(i0 6= i)

7 end
8 end
9 return set of feasible optimized solutions P00t

For each individual in the population Pt , the pro-
posed algorithm attempts to optimize a solution with a
local search (step 2 of Algorithm 4). For this purpose,
with probability 1

2 , the algorithm tries to maximize
the number of located VMs with higher level of prio-
rity, locating all possible VMs that were not located
so far, directly increasing f4(x) (total QoS) and f3(x)
(total economical revenue) (steps 3 to 5 of Algorithm

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

446

4). On the other hand, also with probability 1
2 , the al-

gorithm tries to minimize the number of PMs turned
on, directly reducing f1(x) (total power consumption)
(steps 6 to 8 of Algorithm 4). With the proposed prob-
abilistic local search method, a balanced exploitation
of objective functions (QoS, economical revenue and
power consumption) is achieved, as experimentally
verified with results presented in next section.

5.4 Fitness Function

The fitness function used in the proposed algorithm
is the one presented in (Deb et al., 2002). This fit-
ness value defines a non-domination rank in which
a value equal to its Pareto dominance level (1 is the
highest level of dominance, 2 is the next, and so on)
is assigned to each individual of the population. Bet-
ween two individuals with different non-domination
rank, the individual with lower value (higher level of
dominance) is considered better. To compare indivi-
duals with the same non-domination rank, a crowding
distance is used. The basic idea is to find the Eu-
clidean distance (properly normalized when the ob-
jectives have different measure units) between each
pair of individuals, based on the q objectives, in a
hyper-dimensional space (Deb et al., 2002). The in-
dividual with larger crowding distance is considered
better.

5.5 Variation Operators

The proposed interactive memetic algorithm uses a
Binary Tournament approach for selecting individuals
for crossover and mutation (Coello et al., 2007). The
crossover operator used in the presented work is the
single point cross-cut (Coello et al., 2007). The se-
lected individuals in the ascending population are re-
placed by descendants individuals.

This work uses a mutation method in which each
gene is mutated with a probability 1

m , where m rep-
resents the number of VMs. This method offers the
possibility of full uniform gene mutation, with a very
low probability (but larger than zero), which is bene-
ficial to the exploration of the search space, reducing
the probability of stagnation in a local optimum.

The population evolution in the proposed inter-
active memetic algorithm is based on the population
evolution proposed in (Deb et al., 2002). A population
Pt+1 is formed from the union of the best known pop-
ulation Pt and offspring population Qt , applying non-
domination rank and crowding distance operators.

5.6 Many-objective Considerations

Given that the number of non-dominated solutions
may rapidly increase, an interactive approach is re-
commended. That way, a decision maker can intro-
duce new constraints or adjust existing ones, while
the execution continues learning about the shape of
the Pareto front in the process. For simplicity, the
present work considers lower and upper bounds asso-
ciated to each objective function in order to help the
decision maker to reduce interactively the huge num-
ber of potencial solutions in the Pareto set approxi-
mation Pknown, while observing the evolution of its
corresponding Pareto front PFknown.

6 EXPERIMENTAL RESULTS

To validate the proper operation of the proposed in-
teractive memetic algorithm for solving the MaVMP
on a purely many-objective context, different exper-
iments were proposed for problem instances consi-
dering both homogeneous as well as heterogeneous
hardware configurations of PMs, considering VMs
instance types offered by Amazon Elastic Compute
Cloud (EC2)2. Experiment 1 considered 2 problem
instances with homogeneous hardware configurations
of PMs (Hcpu= 4 [ECU], Hram= 16 [GB], Hhdd =
150 [GB], pmax = 1740 [W]), while Experiment 2
considered heterogeneous hardware configurations of
PMs according to Table 6.

A detailed description of the hardware of the VMs
instance types considered for the experiments is pre-
sented in Table 3. A general description of the con-
sidered problem instances is presented in Table 4,
while the complete set of datacenter infrastructure in-
put files used for the experiments with the correspon-
ding experimental results are available online3.

6.1 Experiment 1: Quality of Solutions

To compare the results obtained by the proposed in-
teractive memetic algorithm and to validate its proper
operation, an exhaustive search algorithm was also
implemented for finding all (n + 1)m possible solu-
tions of a given instance of the VMP problem, when
this alternative is computationally possible for the au-
thors. These results were compared to the results ob-
tained by the proposed interactive memetic algorithm
after evolving populations with 100 individuals for
100 generations. Both algorithms were implemented

2http://aws.amazon.com/ec2/instance-types
3https://sites.google.com/site/flopezpires/

A�Many-objective�Optimization�Framework�for�Virtualized�Datacenters

447

Table 3: Instance types of VMs considered in experiments.
For notation see equation (11).

Instance Type Vcpu Vram Vhdd R
t2.micro 1 1 0 9
t2.small 1 2 0 18

t2.medium 2 4 0 37
m3.medium 1 4 4 50

m3.large 2 8 32 100
m3.xlarge 4 15 80 201

m3.2xlarge 8 30 160 403
c3.large 2 4 32 75

c3.xlarge 4 8 80 151
c3.2xlarge 8 15 160 302
c3.4xlarge 16 30 320 604
c3.8xlarge 32 60 640 1209

r3.large 2 15 32 126
r3.xlarge 4 30 80 252
r3.2xlarge 8 61 160 504
r3.4xlarge 16 122 0 320
r3.8xlarge 32 244 0 320

Table 4: Problem instances considered in experiments, all
with 50% of VMs with the highest SLA s = 2.

Input File # PMs # VMs (n+1)m

3x5.vmp 3 5 1024
4x8.vmp 4 8 390625

12x50.vmp 12 50 � 5X1055

using ANSI C programming language (gcc)4 and the
source code is also available online3.

Considering that this particular experiment aims
to validate the good level of exploration in the set of
feasible solutions X f , the local search of the algorithm
was disabled, strengthening its capability of explo-
ration rather than the rapid convergence to good so-
lutions even in early generations of the population.

For each problem instance considered in this ex-
periment (3x5.vmp and 4x12.vmp), one run of the ex-
haustive search algorithm was completed, obtaining
the optimal Pareto front PF� and its corresponding
Pareto set P�. Furthermore, ten runs of the proposed
algorithm were completed, after evolving populations
of 100 individuals for 100 generations at each run.
The results obtained by the proposed algorithm for
each run were combined to obtain the Pareto front
PFknown and its corresponding Pareto set Pknown. For
the 3x5.vmp and 4x8.vmp problem instances, the pro-
posed algorithm obtained every solution of the opti-
mal Pareto set and its corresponding Pareto front. A
summary of the number of elements in the correspon-
ding Pareto sets obtained are presented in Table 5.

4http://gcc.gnu.org

Table 5: Summary of results obtained in Experiment 1 using
the proposed memetic algorithm (see Section 5).

Input File Name # P� # Pknown % Found
3x5.vmp 51 51 100%
4x8.vmp 30 30 100%

Table 6: Types of PMs considered in Experiment 2. For
notation see equation (10).

PM Type Hcpu Hram Hhdd pmax
h1.medium 180 512 10000 1000

h1.large 350 1024 10000 1300

6.2 Experiment 2: Interactive Bounds

As mentioned in Section 3, this work proposes the
utilization of lower and upper bounds for each ob-
jective function f (z) (Lz � fz(x) �Uz) to be able to
reduce iteratively the number of possible solutions of
the Pareto set approximation Pknown, when needed.

For the problem instance considered in this experi-
ment (12x50.vmp), one run of the proposed algorithm
was completed, after evolving populations of 100 in-
dividuals for 300 generations. The number of gener-
ations was incremented for this experiment from 100
to 300 considering the large number of possible solu-
tions for the particular problem considered (see Table
4). An interactive adjustment of the lower or upper
bounds associated to each objective function was per-
formed after every 100 generations in order to con-
verge to a treatable number of solutions.

It is important to remark that the interactive ad-
justment used in this experiment is only one of seve-
ral possible ones. As an example, we may consider:
(1) automatically adjusting 10% of the lower bounds
associated to maximization objective functions when
the Pareto front has more than 200 elements or (2)
manually adjusting upper bounds associated to mi-
nimization objective functions until the Pareto front
does not have more than 20 elements, just to cite a
pair of alternatives.

The Pareto front approximation PFknown repre-
sents the complete set of Pareto solutions considering
unrestricted bounds (Lz = �¥ and Uz = ¥). On the
other hand, Pareto front approximation PFreduced rep-
resents the reduced set of Pareto solutions obtained by
interactively adjusting bounds Lz and Uz.

In the first 100 generations, the proposed al-
gorithm obtained 251 solutions with unrestricted
bounds. A decision maker evaluated the bounds asso-
ciated to power consumption and adjusted the upper
bound U1 to U 01 = 9000 [W], selecting only 35 of the
251 solutions (not considering 216 otherwise feasible
solutions) for the PFreduced as shown in Figure 2.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

448

100 200 300

102

103

251

484
965

35 36

68 63

17

Number of generations

N
um

be
ro

fs
ol

ut
io

ns

unrestricted bounds
adjustable bounds

Figure 2: Summary of results obtained in Experiment 2.

After 200 generations, the algorithm obtained a
total of 484 solutions with unrestricted bounds. Con-
sidering instead U 01 = 9000 [W], the algorithm only
found 68 solutions. The decision maker evaluated the
bounds associated to network traffic and adjusted the
upper bound U2 to U 02 = 115 [Mbps], selecting only
36 of the 68 solutions (not considering 32 otherwise
feasible solutions) for the PFreduced .

Finally, after 300 generations, the algorithm ob-
tained a total of 965 solutions with unrestricted
bounds. Considering U 01 = 9000 [W] and U 02 = 115
[Mbps], the algorithm found 63 solutions. The de-
cision maker evaluated the bounds associated to eco-
nomical revenue and adjusted the lower bound L3 to
L03 = 13500 [$], selecting only 17 of the 63 solutions
(not considering 46 feasible solutions) for the final
PFreduced as shown in Figure 2. Clearly, at the end
of the iterative process, the decision maker found 17
solutions according to his preferences instead of the
untreatable number of 965 candidate solutions.

7 CONCLUSIONS AND FUTURE
WORK

This work proposed a general many-objective opti-
mization framework that is able to consider as many
objective functions as needed when solving the VMP
problem. As an example of utilization of the pro-
posed framework, for the first time a formulation of
the many-objective VMP problem (MaVMP) is pro-
posed, considering the simultaneous optimization of
the following five objective functions: (1) power con-
sumption, (2) network traffic, (3) economical revenue,
(4) quality of service and (5) network load balanc-
ing. In addition, a generalized multi-level of priori-

ties for the SLA associated to each VM is presented.
At the same time, constraints on upper and lower lim-
its of each objective function are also recommended
as a way to interactively control a potential explo-
sion in the number of non-dominated solutions, a well
known problem of many-objective optimization pro-
blems (von Lücken et al., 2014).

A short review of the most studied objective func-
tions was also presented to demonstrate that the num-
ber of objective functions may rapidly increase once
a complete understanding of the VMP problem is ac-
complished for practical problems were many diffe-
rent parameters should be ideally considered. Based
on the number of possible objective functions for
the VMP, this problem can clearly be addressed as a
many-objective optimization problem (MaOP).

Multiple challenges need to be considered for sol-
ving a many-objective optimization problem; there-
fore, an interactive memetic algorithm was proposed
to solve the proposed many-objective formulation,
validating the presented formulation and proving that
it is solvable. By no means, the authors claim that
the proposed interactive memetic algorithm is the best
way to solve this problem. This proposal only illus-
trates that it is possible to solve the problem although
the VMP problem becomes harder when increasing
the number of conflicting objective functions.

To validate the proposed algorithm, it was run
with different problem instances and experimental re-
sults were compared to the exact solution obtained
using an exhaustive search algorithm when possible.
In fact, the proposed algorithm found the complete
Pareto front and Pareto set (100%) for the 2 instan-
ces of Experiment 1. To validate the effectiveness
of the proposed algorithm reducing the increasing
number of non-dominated solutions obtained by the
Pareto dominance comparison, several problem ins-
tances were executed. In fact, considering the pro-
posed technique of interactively adjusting lower and
upper bounds associated to the values of each ob-
jective functions, the Pareto front could be reduced
from 965 original candidates to a treatable 17 non-
dominated solutions that satisfy the decision maker
preferences, as illustrated in Experiment 2.

At the time of this writing, the authors are working
on VMP formulations considering more complex net-
work topologies with full-duplex links. Considering
that this is the first formulation of the VMP problem
in a many-objective context, several future works can
be proposed considering all the already presented ob-
jective functions, studied so far in mono-objective as
well as multi-objective contexts.

Considering that this work proposed an offline
(static) formulation of the VMP problem in a many-

A�Many-objective�Optimization�Framework�for�Virtualized�Datacenters

449

objective optimization context, several challenges
need to be addressed for online (dynamic) formula-
tions of the problem, considering multi-objective and
many-objective approaches. At the same time, diffe-
rent meta-heuristics, methods and algorithms should
be still tested before a real good tool is ready for mas-
sive use in commercial cloud computing datacenters.

REFERENCES

Anand, A., Lakshmi, J., and Nandy, S. (2013). Virtual ma-
chine placement optimization supporting performance
slas. In Cloud Computing Technology and Science
(CloudCom), 2013 IEEE 5th International Confer-
ence on, volume 1, pages 298–305. IEEE.

Báez, M., Zárate, D., and Barán, B. (2007). Algorit-
mos meméticos adaptativos para optimización multi-
objetivo. In XXXIII Conferencia Latinoamericana de
Informática–CLEI, volume 2007.

Barroso, L. A. and Hölzle, U. (2007). The case for energy-
proportional computing. IEEE computer, 40(12):33–
37.

Beloglazov, A., Abawajy, J., and Buyya, R. (2012). Energy-
aware resource allocation heuristics for efficient man-
agement of data centers for cloud computing. Future
Generation Computer Systems, 28(5):755–768.

Beloglazov, A., Buyya, R., Lee, Y. C., Zomaya, A., et al.
(2011). A taxonomy and survey of energy-efficient
data centers and cloud computing systems. Advances
in Computers, 82(2):47–111.

Bin, E., Biran, O., Boni, O., Hadad, E., Kolodner, E. K.,
Moatti, Y., and Lorenz, D. H. (2011). Guarantee-
ing high availability goals for virtual machine place-
ment. In Distributed Computing Systems (ICDCS),
2011 31st International Conference on, pages 700–
709. IEEE.

Cheng, J., Yen, G. G., and Zhang, G. (2014). A many-
objective evolutionary algorithm based on directional
diversity and favorable convergence. In Systems,
Man and Cybernetics (SMC), 2014 IEEE Interna-
tional Conference on, pages 2415–2420.

Coello, C. C., Lamont, G. B., and Van Veldhuizen, D. A.
(2007). Evolutionary algorithms for solving multi-
objective problems. Springer.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
Nsga-ii. Evolutionary Computation, IEEE Transac-
tions on, 6(2):182–197.

Deb, K., Sinha, A., and Kukkonen, S. (2006). Multi-
objective test problems, linkages, and evolutionary
methodologies. In Proceedings of the 8th annual
conference on Genetic and evolutionary computation,
pages 1141–1148. ACM.

Donoso, Y., Fabregat, R., Solano, F., Marzo, J.-L., and
Barán, B. (2005). Generalized multiobjective multi-
tree model for dynamic multicast groups. In Commu-
nications, 2005. ICC 2005. 2005 IEEE International
Conference on, volume 1, pages 148–152. IEEE.

Farina, M. and Amato, P. (2002). On the optimal solution
definition for many-criteria optimization problems. In
Proceedings of the NAFIPS-FLINT international con-
ference, pages 233–238.

Gao, Y., Guan, H., Qi, Z., Hou, Y., and Liu, L. (2013). A
multi-objective ant colony system algorithm for vir-
tual machine placement in cloud computing. Journal
of Computer and System Sciences, 79(8):1230–1242.

López Pires, F. and Barán, B. (2013). Multi-objective vir-
tual machine placement with service level agreement.
In Proceedings of the 2013 IEEE/ACM 6th Interna-
tional Conference on Utility and Cloud Computing,
pages 203–210. IEEE Computer Society.

López Pires, F. and Barán, B. (2015). A virtual machine
placement taxonomy. In Proceedings of the 2015
IEEE/ACM 15th International Symposium on Cluster,
Cloud and Grid Computing. IEEE Computer Society.

Mishra, M. and Sahoo, A. (2011). On theory of vm
placement: Anomalies in existing methodologies and
their mitigation using a novel vector based approach.
In Cloud Computing (CLOUD), 2011 IEEE Interna-
tional Conference on, pages 275–282. IEEE.

Sato, K., Samejima, M., and Komoda, N. (2013). Dy-
namic optimization of virtual machine placement by
resource usage prediction. In Industrial Informatics
(INDIN), 2013 11th IEEE International Conference
on, pages 86–91. IEEE.

Shi, L., Butler, B., Botvich, D., and Jennings, B. (2013).
Provisioning of requests for virtual machine sets with
placement constraints in iaas clouds. In Integrated
Network Management (IM 2013), 2013 IFIP/IEEE In-
ternational Symposium on, pages 499–505. IEEE.

Shrivastava, V., Zerfos, P., Lee, K.-W., Jamjoom, H., Liu,
Y.-H., and Banerjee, S. (2011). Application-aware vir-
tual machine migration in data centers. In INFOCOM,
2011 Proceedings IEEE, pages 66–70. IEEE.

Sun, M., Gu, W., Zhang, X., Shi, H., and Zhang, W. (2013).
A matrix transformation algorithm for virtual machine
placement in cloud. In Trust, Security and Privacy
in Computing and Communications (TrustCom), 2013
12th IEEE International Conference on, pages 1778–
1783. IEEE.

Tomás, L. and Tordsson, J. (2013). Improving cloud infras-
tructure utilization through overbooking. In Proceed-
ings of the 2013 ACM Cloud and Autonomic Comput-
ing Conference, CAC ’13, pages 5:1–5:10, New York,
NY, USA. ACM.

von Lücken, C., Barán, B., and Brizuela, C. (2014). A
survey on multi-objective evolutionary algorithms for
many-objective problems. Computational Optimiza-
tion and Applications, pages 1–50.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

450

CloudMPL: A Domain Specific Language for Describing Management
Policies for an Autonomic Cloud Infrastructure

Marwah M. Alansari1, Andre Almeida2, Nelly Bencomo3 and Behzad Bordbar1

1School of Computer Science, University of Birmingham, Birmingham, U.K.
2Federal Institute of Science of Education, Science and Technology, Parnamirim, Brazil

3School of Computer Science, Aston University, Birmingham, U.K.
mma809@cs.bham.ac.uk, andre.almeida@ifrn.edu.br, nelly@acm.org, b.bordbar@cs.bham.ac.uk

Keywords: Management Policies, Rule Language, Domain Specific Language, Autonomic Architecture, Cloud Infras-
tucture.

Abstract: To benefit from the advantages that Cloud Computing brings to the IT industry, management policies must be
implemented as a part of the operation of the Cloud. Among others, for example, the specification of policies
can be used for the management of energy to reduce the cost of running the IT system or also for security
policies while handling privacy issues of users. As cloud platforms are large, manual enforcement of policies
is not scalable. Hence, autonomic approaches for management policies have recently received a considerable
attention. These approaches allow specification of rules that are executed via rule-engines. The process of
rules creation starts by the interpretation of the policies drafted by high-rank managers. Then, technical IT
staff translate such policies to operational activities to implement them. Such process can start from a textual
declarative description and after numerous steps terminates in a set of rules to be executed on a rule engine. To
simplify the steps and to bridge the considerable gap between the declarative policies and executable rules, we
propose a domain-specific language called CloudMPL. We also design a method of automated transformation
of the rules captured in CloudMPL to the popular rule-engine Drools. As the policies are changed over time,
code generation will reduce the time required for the implementation of the policies. In addition, using a
declarative language for writing the specifications is expected to make the authoring of rules easier. We
demonstrate the use of the CloudMPL language into a running example extracted from a management energy
consumption case study.

1 INTRODUCTION

Management of Cloud infrastructure supported by au-
tonomic techniques has recently received a consider-
able attention (Beloglazov and Buyya, 2010; Mi et al.,
2010; Maurer et al., 2013; Borgetto et al., 2012). Sev-
eral existing autonomic techniques make a use of rule-
based systems (Mi et al., 2010; Maurer et al., 2013;
Borgetto et al., 2012; Alansari and Bordbar, 2013).
The rule-based systems operate by using a set of state-
ments in a form of ”if < condition > then < action >
” which are known as rules executed by a rule-engine.
Rule-based frameworks have been used to automati-
cally trigger the live-migration of virtual machine by
using different types of constraints rules. The con-
straints rules are formulated as management policies
(Borgetto et al., 2012)(Alansari and Bordbar, 2013).

In (Alansari and Bordbar, 2013), the authors pro-
pose an architectural framework for automatically ex-

ecuting management policies on Cloud infrastructure.
The rule engine is integrated to work with Cloud
management system to control the migration of run-
ning virtual machines among hosting nodes. Pol-
icy Rule Engine and Cloud Manager are communi-
cated through sensors and actuators. The sensor is
directly interlinked with Cloud APIs for management
of virtual machines that are responsible for request-
ing monitoring parameters such as Estimated Energy
Consumption and Current Resource Usage. Whilst
the actuator uses action APIs that directly launch the
management actions, such as virtual machine migra-
tion action (Alansari and Bordbar, 2013).

There are three steps defined for designing suit-
able policies which can be executed into the auto-
nomic framework proposed in (Alansari and Bord-
bar, 2013) or similar frameworks as in (Maurer et al.,
2013). These steps are Policy Authoring, Policy Im-
plementation and Policy Deployment and Execution

451

Figure 1: The steps for designing and publishing management policies.

(see Figure 1). Cloud-domain experts and rule de-
velopers are the roles which are involved during the
design process of the management policies. Cloud-
domain experts write the policies in simple plain En-
glish sentences “if/then ”. Rule developers encode the
described policies using a rule language and generat-
ing executable management policies as well as Cloud-
infrastructure domain model (Alansari and Bordbar,
2014).

Management policies are updated regularly be-
cause of alteration in the technical environment,
changes in the regulations, modifications of SLAs and
changes in business requirements. While going thor-
ough this process, there is a semantic gap between
Policy Authoring and Implementation levels. This
gap can be bridged by using a combination of Do-
main Specific Language (DSL) for authoring of the
rules and automated code generation for producing
rules which are executed in the rule-engine. The Do-
main Specific Language (DSL) supplies expressive
representations, textual notions and high-level spec-
ification to describe policies written using plain En-
glish. Such a language helps the domain experts, who
may have little knowledge about formulating rules, to
avoid the complexity of writing management policies.
On the other hand, Code generation is used to convert
the policies captured in the DSL to be an input for
executable Rule Languages such as Drools.

This paper makes two contributions. Firstly,
we propose Cloud Management Policy Language
(CloudMPL), a domain specific language to support
Cloud-domain experts to specify policies. CloudMPL
is a textual language with a specification partially in-
spired by the RELAX Language(Whittle et al., 2010).
Secondly, we design a set of mapping rules used
for automatic transformation from CloudMPL to rule

languages based on Object Patterns such as Drools
(JBossCommunity, 2011) and JRules (IBM-ILOG,
2007). The objective is to built a foundation for the
automatic generation of a management policy from
Policy Authoring to Implementation levels and hence
bridge the gap described above.

The paper is organised as follows. Section 2
has an overview about rule-based systems and do-
main specific languages used in Cloud environment.
CloudMPL language and its specification are dis-
cussed in Section 3. The specification of management
policies in an executable rule language is explained in
Section 4. Section 5 includes the designed mapping
rules from CloudMPL to Drools. Section 6 contains
a demonstration of CloudMPL in XText for authoring
migration policies in energy management case study.
Finally, the conclusion is presented in Section 7.

2 BACKGROUND AND RELATED
WORK

This section introduces concepts about rule engines
and domain-specific languages.

2.1 Rule Engine and Rules

Policies can be executed via a rule-based engine such
as Drools(JBossCommunity, 2011) and ILOG JRules
(IBM-ILOG, 2007). Both Drools and JRules en-
gines are based on the enhanced version of the RETE-
Algorithm for supporting Object Oriented Pattern.
RETE-Algorithm was introduced by Charles Forgy; it
is one of the efficient implementation rules inference
engines. The algorithm represents rules as an acyclic

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

452

graph to form a RETE-network and provides a pattern
matching process (Forgy, 1982).

The architecture of the rule engine is shown
in Figure 2. Both Drools and JRules rule engines
include Rule-Base and Working Memory. Rule Base
is a long-term memory in which rules are stored.
Working Memory is a type of short-term memory,
which contains Facts that need to be evaluated by
the inference engine. Facts are object models that
contain attributes that illustrate domain data for an
application. Agenda is the place where a rule that
has become active is stored for later in order to fire
satisfied rules. The agenda uses resolving conflicting
methodology for ordering the execution of active
rules (Forgy, 1982). In order to execute policies in
a rule-based engine, policies have to be written in a
form of rule-sets. A rule-set consists of a number of
conditions followed with a set of sequential actions
in which the rule-set is expressed in the following
format:

when (condition statements) then (action state-
ments)

Figure 3 illustrates a sample of a constraint-based
policy encoded in Drools Language. The function of
this rule-set is to allow migration from Host1 to either
Host2 or Host3. The action will be invoked which re-
quests to migrate a virtual machine from Host1 when
the conditions are satisfied.

2.2 Domain Specific Languages DSLs

Domain-specific languages (DSLs) are languages
which are designed to be used in a specific application
domain. DSLs languages provide a special feature
in terms of the expressiveness and simplicity com-
pared with general-purpose programming languages
(Mernik et al., 2005). Using DSLs have several ad-
vantages. They can speed up the development time
since the language is designed to be used for specific
environment. In addition, the language can assist to
reduce the number of domain and programming ex-
pertise which are required (Mernik et al., 2005). Fur-
thermore, the domain-language is an extendible and

Figure 2: The architecture of OO-RETE engine.

Figure 3: A sample of a constraint management policy ex-
pressed in Drools Language.

a machine readable which allows to build auto-code
generation tools in order to reduce the development
time (Mernik et al., 2005). To accomplish these fea-
tures provided by DSLs, designing such languages re-
quires the experience in both domain-knowledge and
language development. In our research, we focus
on domain-specific languages designed for Cloud-
platform.

2.2.1 DSLs used in Cloud Computing

There are extensive research for proposing many
DSLs for automating the deployment of applications
into Cloud-environment. One of these languages is
Crawl which is apart of Cloud Crawler environment
proposed for automating the execution of applications
performance test in IaaS used by Cloud application
developers (Cunha et al., 2013). Crawl is a declarative
and an extensible domain-specific language (DSL)
to provide a high-level specification that captures all
the technical important information for executing ap-
plication performance tests(Cunha et al., 2013). In-
stances of these information are the configuration pa-
rameters and the quantity of the resources allocated to
application components(Cunha et al., 2013). The lan-
guage’s textual notion is described via YAML. Fur-
thermore, the language allows using XML and JSON
to define new specification of test scenarios(Cunha
et al., 2013).

Neptune is also another domain specific language
(DSL) designed to automate the configuration and de-
ployment HPC applications executed in Cloud(Bunch
et al., 2011). The objective of Nuptune is to pro-
vide portability and flexibility to the developers of
HPC(Bunch et al., 2011). Neptune is a meta-
programming extension of the Ruby programming
language with a flexibility to run large number of
ruby’s libraries which are designed to communicate
with Cloud- infrastructure(Bunch et al., 2011). Nep-
tune programmes allow users to write Ruby scripting
code and also Nuptune programs can also be used
in Ruby programs using neptune keyword. The pro-
grammes of Nuptune is composed of one or more
invocations for jobs to be processed in Cloud ser-

CloudMPL:�A�Domain�Specific�Language�for�Describing�Management�Policies�for�an�Autonomic�Cloud�Infrastructure

453

vices(Bunch et al., 2011). The language is inte-
grated to run into AppScale which is an open-source
Cloud environment that uses Google App Engine
APIs(Bunch et al., 2011).

Pim4Cloud DSL is a Platform Independent Model
for Cloud-based application which is designed using
a component-based approach(Brandtzæg et al., 2012).
A Cloud application- designer models the application
by using Pim4Cloud DSL. Meanwhile, at the other
side the available resources for the modelled appli-
cation are specified by Cloud provider (Brandtzæg
et al., 2012). The Pim4Cloud has an interpreter
which is used to match the assigned resources to
application requirement. Pim4Cloud DSL is imple-
mented in to Scala which includes different set of
codes for modelling different topology for Cloud ap-
plications (Brandtzæg et al., 2012). The syntax of
the Pim4Cloud DSL starts by defining the application
as an abstract class which can factorise the shared
entities. Each application topology can extend the
abstract class. Pim4Cloud DSL platform supports
a static analysis for the modelled application and
also allow the deployment of Cloud-component to be
reused (Brandtzæg et al., 2012).

3 CloudMPL LANGUAGE

CloudMPL can be applied instead of using Plain
English sentences for writing the management pol-
icy at early stage. CloudMPL is a textual language
that specifically is designed to be used by Cloud
domain-experts to describe management policies be-
fore interpreting them to an executable rule language.
CloudMPL is enriched with domain vocabularies and
expressive operators for expressing conditions and ac-
tions parts which are partially inspired by the RE-
LAX Language(Whittle et al., 2010). CloudMPL is
targeting to author management policies which will
be executed in Infrastucture-as-a-Service(IaaS) Cloud
model.

When Cloud-domain experts specify policies, ba-
sically they are concerned about if some specific con-
ditions are met, based on resources that compose
a Cloud infrastructure, and actions that might be
taken upon these conditions. Therefore, CloudMPL
is designed to focus on the specification of Cloud-
related resources and policies. The specification of
CloudMPL includes a domain-vocabulary, a meta-
model, a set of operators, which are extracted from
RELAX language to describe various types of condi-
tions might be found in a management policy, and a
grammar for using the language.

3.1 CloudMPL Meta-model

Figure 4 presents the meta-model for CloudMPL lan-
guage. In the meta-model described in Figure 4, a
Resource is an element that can be managed and/or
monitored which could be a host, a virtual machine,
a cluster or any kind of resource that can described
in term of Properties. Those Properties should rep-
resent any kind of information that can be monitored
or used to describe a Resource. Every property has a
Type that can be either a built-in type, such as Num-
ber or String, or could be a Resource created by the
user. Each Policy is composed of several conditions,
detailed in terms of constraints. Constraints are three
different types which are:

1. Time, when an expert is interested in time related
events.

2. Location, which is an optional element, is to
check if a given resource is in a specific location.

3. Ordinal where raw values or a status of a given
property related to a resource are checked.

In this level of abstraction, an Action invocation is
an equivalent to a method call of any high-level pro-
gramming language. The actions definition is similar
to a method signature description, embedded into a
ActionManager, which will be equivalent to an inter-
face of a high-level programming language. To fully
implement the important actions, it would require for
the experts a deep knowledge on programming skills
as well as specific-language information.

Table 1 gives the set of CloudMPL elements,
organised into Statement, Time, Location and Con-
straint. The statements define the blocks of the lan-
guage in terms of the main elements for expressing
the policies. The Time and Location operators define
conditions for time and location. The Constraint con-
ditions can be applied to ordinals or status informa-
tion for basic comparison.

3.2 CloudMPL Syntax

The syntax of CloudMPL expressions are defined
by the grammar in Figure 5. Manageable resources
are described by the Create Resource statement, de-
fined by an ID and their respective properties. The
ActionManager requires an ID and at least one ac-
tion(method) to be defined. Policies are identified
by an ID and composed of CloudMPL operators. As
showed in Table 1 CloudMPL has Location, Time and
Constraint operators, that can be combined using log-
ical operator such as AND,OR,NOT and parenthesis.
If the specified conditions are satisfied an action that
belong to an ActionManager should be invoked.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

454

Figure 4: CloudMPL meta-model.

<CLOUDMPL> ::= <RESOURCE> f<RESOURCE>g
<ACTIONMANAGER>
f<ACTIONMANAGER>g
<CREATE RESOURCE>
f<CREATE RESOURCE>g
<POLICY> f<POLICY>g

<RESOURCE> ::= DEFINE RESOURCE <ID> AS
<PROPERTY> f<PROPERTY>g

<PROPERTY> ::= <ID> AS <TYPE>

<ACTIONMANAGER> ::= DEFINE ACTIONMANAGER <ID>
AS
<ACTION> f<ACTION>g

<ACTION> ::= ACTION <ID><PARAMETERLIST>

<POLICY> ::= POLICY <ID>
IF <CONDITIONS>
THEN <ACTION INVOCATION>
f<ACTION INVOCATION>)g

Figure 5: A simplified EBNF grammar for CloudMPL.

The following steps are required for applying
CloudMPL:

� Step 01: Modelling the resources that are going
to be managed and used to describe the policies.

� Step 02: Definition of the possible actions used
in case a policy condition is true. The Actions are
created by defining an ActionManager element.

� Step 03: Writing the policies using the operators
and the syntax for the CloudMPL language. Each
policy should be identified by a valid ID.

In order to illustrate the usage of CloudMPL,
consider the following policy:

� Policy1: if the violation percentage rate is less
than 20% in Host1 and the energy consumption
is above than 2000 kwph in Host1 then it is neces-
sary to migrate the contents of Host1 to Host3 or
Host2

1 DEFINE RESOURCE Host AS
2 BEGIN
3 Violation_Percentage AS Number
4 Energy_Consumption AS Number
5 END
6 DEFINE ACTIONMANAGER Manager AS
7 BEGIN
8 ACTION Migrate_Alternative_Host Host origin ,
9 Host alternativeA , Host alternativeB

10 END
11 CREATE host1 ,host2 ,host3 AS Host
12 POLICY policy1
13 IF ((host1.Violation_Percentage FEW_AS 20)

AND (host1.Energy_Consumption MANY_AS
2000)) THEN

14 Manager.Migrate_Alternative_Host host1 ,
host2 , host3

Figure 6: CloudMPL representation for the given policy.

Using CloudMPL grammar defined in Figure 5,
Figure 6 presents Policy written in CloudMPL.

First it is necessary to create a resource called
Host (lines 1 to 5) which describes a computer host
in a private Cloud infrastructure. Considering the
given policy the manager is interested in monitoring
the energy consumption and the rate of violation(error
rate). As stated in the policy definition the action
that needs to be done if the conditions are met is to
migrate contents of Host1 to Host2 or Host3. This
action in CloudMPL is embedded in an ActionMan-
ager, called Manager, which has a single method
Migrate Alternative Host (lines 6 to 10). Consider-
ing that the policy requires the usage of three host,
it is necessary to create them (line 11). Finally the
policy itself (lines 12 to 14) is defined in terms of
the resources and properties, using Constraint oper-
ators. The CloudMPL language was implemented us-
ing XText(Xtext, 2014) and the current implementa-
tion is available for download at http://www.dimap.
ufrn.br/splmonitoring/adaptmcloud/index.php

CloudMPL:�A�Domain�Specific�Language�for�Describing�Management�Policies�for�an�Autonomic�Cloud�Infrastructure

455

Table 1: CloudMPL Operators and Elements for Describing
Management Policies.

CloudMPL Operators & State-
ments

Description

Statements:
DEFINE RESOURCE id AS
BEGIN
property AS type
END

Declares a Resource, by spec-
ifying its ID and properties

DEFINE ACTIONMANAGER id
AS
BEGIN
ACTION id,parameters
END

Declares an ActionManager if
a set of actions. Each action is
declared with a ID and a set of
parameters

CREATE id as resource Creates a Resource with the
given ID

POLICY id
IF conditions THEN actions

Declares a policy with the
given ID and starts the policy
conditions definition, followed
by a action(s) call(s).

Time Operators:
resource:time AFTER threshold Checks if the property of Time

type is after the given thresh-
old

resource:time BEFORE threshold Checks if the property of Time
type is before the given thresh-
old

resource:time BETWEEN
thresholda TO
thresholdb

Checks if the property of Time
type is in the specified interval.

Location Operator:
resource:location IN location Checks if a given Resource is

in the specified location.
Constraint Operators:
resource:property FEW AS value Checks if the ordinal repre-

sentation for a property is less
than a given value

resource:property MANY AS
value

Checks if the ordinal represen-
tation for a property is greater
than a given value

resource:property IS status Checks if the a given property
is within one of the following
status: HIGH, NORMAL or
LOW

4 THE SPECIFICATION OF
MANAGEMENT POLICIES IN
RULE LANGUAGE

Management policies expressed in CloudMPL can be
directly mapped to executable management policies
by designing mapping rules between two languages.
To produce such policies, any CloudMPL policy is
encoded as a special form of production rules (more
information about the productions rules can be found
in (REWERSE, 2012)). These production rules fol-

Table 2: The syntax for conditional expressions for a man-
agement policy.

Expression <property:> <operator:> <value expr:>

Constraints-1: monitorable prams Comparison DataTerm

Constraints-2: monitorable pram

status

Level Specifi-

cation

DataTerm

SelectTargetHost: id or name TargetHost Se-

lection

DataTerm

TargetHost

Location:

location Location DataTerm

TargetHostTime: current time status Time ObjectTerm

low a defined specification for formulating both con-
dition and action parts in Rule Language which can be
applied to either Drools(JBossCommunity, 2011) or
JRules (IBM-ILOG, 2007). In this work, we briefly
discuss the specification for formulating conditions
and action parts for a policy in an executable rule
language. The specification includes the meta-model
for conditions, the classification for operators used in
conditions and the types of actions used by a man-
agement policy. Both CloudMPL and rule language
specification will be used for designing a translator
from CloudMPL to Drools or JRules in future.

4.1 Conditions Meta-model for a Policy

Conditions for a management policy can be expressed
through the meta-model presented in Figure 7 which
is inspired from URML meta-model (REWERSE,
2012). This meta-model is resulted from our classi-
fication for general rules used for management pur-
poses in Cloud.

In Figure 7, a single condition in a management
policy is a boolean expression which can be com-
posed with other conditions by using composition
operators. From URML rule meta-model (REW-
ERSE, 2012), we extracted some elements for mod-
elling various conditions. These elements are Term,
DataTerm, ObjectTerm, uml property, and Object
Variable (REWERSE, 2012).

In Figure 7, the conditional expression are clas-
sified into five types. Each expression in the condi-
tion meta-model uses a property. The property are
extracted from Target Host that is running in a Cloud-
platform. In addition, each expression also has a
value expr which might be of the following types:
Data Term, Object Term, or uml property. Further-
more, suitable operators are grouped to match each
conditional expression type. The operators are pre-
sented in Figure 8. Thus, by using both Figure 7 and
Figure 8, each conditional expression and its syntax
are explained as follows:

1. ConstraintsExpr: a comparative condition used
to compare monitorable parameters against a

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

456

Figure 7: The meta-model for conditions of a management policy in Rule Language (Drools and JRules).

specified threshold value or to specify sta-
tus of monitorable parameters. Examples for
monitorable parameters are CPU Usage, Viola-
tion Percentage and Energy Consumption. Con-
straintsExpr has two different syntaxes, which are
presented in Table 2.

2. SelectTargetHostExpr: an identification expres-
sion, which is used to select a targeted host. This
expression is necessary to be included in a man-
agement policy. The expression syntax is shown
in Table 2.

3. AssignVariableExpr: a selection expression,
which is to get values from some properties
and to assign them to an object variable. This
expression can be used in a management policy
for extracting variables which are required by
management APIs. The expression is optional
to be included in the policy. The syntax for the
expression is different from the syntax for other
expressions which is as follows:
< operator : Assignment$ >< property :
Ob jectVariable >< operator : Assignment :><
property : Ob jectTerm >

4. TargetHostLocationExpr: a location based ex-
pression, which is used to specify a geographi-
cal location of a target host. Since a physical
Cloud host can be located at any location around
the world, the policy meta-model should allow an
option for such a restriction. This expression is
an optional in the policy based on the require-
ment. The syntax for the expression is shown
in Table 2 where its Data Term can be either of
String type or GeoLocation which is Enumera-
tion type. An example for TargetHostLocation is

location == GeoLocation:Asia.
5. TargetHostTimeExpr: a time based expression

that specifies the time status at a target host. Any
target host in Cloud-platform has some operations
to deal with time expression.
These operations are IsTimeBetween(<
Time Begin >;< Time End >), IsTime-
Less(< Time Literal >), and IsTime-
Above(< Time Literal >). The syntax for
the time based expression is presented in Table 2.
The following expression is a simple expression
for checking time status:
current time status== IsTimeBetween(16.00,23.00)

4.2 Policy Action Description

The action of a management policy in a rule language
is expressed as action expressions. These action
expressions can be either expressions for assigning
values or expression for invocation actions. To
simplify the transformation process for future, we
only use invocation actions expression from the
rule language which is denoted as InvocationAc-
tionExprin (REWERSE, 2012). In any management

Figure 8: The possible common rule language operators
families for expressing a management policy.

CloudMPL:�A�Domain�Specific�Language�for�Describing�Management�Policies�for�an�Autonomic�Cloud�Infrastructure

457

Table 3: Operations used by Cloud Manager instance in a
management policy described in Drools.

< OperationName > < Parameters : Type >
Migrate Original: TargetHost
MigrateAlternativeHosts Original: TargetHost , Destina-

tion1:TargetHost, Destination2: TargetHost
MigrateToLocation Original: TargetHost , LocationName: String
ReportingNoMigration Original: TargetHost
Calculate Original:TargetHost

policy, the invocation action expressions include
calls for management APIs/Operations specified in
Cloud manager. The syntax used for expressing
InvocationActionExpr is:
CloudManager.Operation Name(parameters);

In this syntax, CloudManager represents the in-
stance of a Cloud manager which has a number of
management operations. Each defined operations for
CloudManager instance has a number of parame-
ters which are necessary for migration of virtual ma-
chines, reporting information and calculating service
at the target host side in Cloud-platform. Table3
shows each defined operation and its related param-
eters.

5 THE TRANSFORMATION
FROM CloudMPL TO DROOLS

After presenting CloudMPL language for express-
ing management policies at the description level and
the specification for formulating such policies at
the implementation level, the transformation between
CloudMPL and Drools is proposed. The objective is
to build the foundation for automatically generating
an executable management policy from the descrip-
tion level.

The transformation process requires to have a con-
ceptual mapping from CloudMPL to Drools Lan-
guage. Therefore, designing a set of mapping rules
from CloudMPL to Drools for both conditions and
actions parts is necessary. To design these mapping
rules, we used CloudMPL meta-model as well as its
syntax and Drools specification mentioned in Section
4. Firstly, the mapping step starts by presenting the

Table 4: Mapping generic syntax and keywords for a policy
in CloudMPL to Drools.

CloudMPL Generic Syntax Drools Generic Syntax
POLICY < ID > ! rule < ID >

IF ! when
<CONDIT IONS > < Host(Conditions)>
THEN
< ACT ION INVOCAT ION >

! then < Actions >

f< ACT ION INVOCAT ION >g end

Table 5: Mapping CloudMPL conditions to Drools condi-
tions using Table 1 in Section 3 and Table 2 in Section 4.

CloudMPL Expression Drools Expression
<attribute:TIME> TargetHostTimeExpr
AFTER <value:threshold>
<attribute:TIME> TargetHostTimeExpr
BEFORE <value:threshold>
<attribute:TIME> BETWEEN TargetHostTimeExpr
< value: threshold a > TO
<value:threshold b>
IN <value:ID> SelectTargetHostExpr +
<value:location> TargetHostLocationExpr
<attribute:monitorable> FEW AS ConstraintsExpr-1
jMANY AS <value:threshold>
<attribute:monitorable>IS <value:status> ConstraintsExpr-2

mapping for the general syntax for a management pol-
icy and keywords in both CloudMPL and Drools.

Table4 shows the mapping of generic syntax and
special keywords from CloudMPL to Drools. It is no-
ticeable from the generic syntax in Table4 that any
statement between IF and THEN is mapped as Con-
ditions in Drools which it should be enclosed with
Target operator mentioned in Figure 8. Furthermore,
any statement after THEN is mapped as Actions in
Drools. The mapping of both conditions and actions
requires more explanation which will be appeared in
the following subsections.

5.1 Mapping Conditions

In CloudMPL, a condition block consists of one
or more condition. Therefore, any condition in
CloudMPL can be structured as an attribute, an op-
erator and a value. The attribute in CloudMPL is usu-
ally written before CloudMPL operator. Usually, the
value is after CloudMPL operator. Thus, the mapping
for conditions is shown in Table 5 which applies the
following mapping rules:

1. The dot operator < : > in CloudMPL is mapped
as ’==’ operator and <value:ID or Name> is
mapped as <value expr: DataTerm>.

2. After operator is mapped as ’==’ combined with
<ObjectTerm:IsTimeAbove> in Drools.

3. Before is mapped as ’==’ combined with
<ObjectTerm:IsTimeLess> in Drools.

4. BETWEEN,TO operator is mapped as ’==’ com-
bined with <ObjectTerm: IsTimeBetween>.

5. < value: threshold > is mapped as
<Time Literal> parameter for both IsTime-
Above and IsTimeLess in Drools.

6. < value: threshold a > and <value:threshold b>
are mapped as <Time Literal Begin> and

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

458

<Time Literal End> parameters for IsTimeBe-
tween in Drools.

7. <attribute:Time> is mapped as <property: cur-
rent time status>.

8. IN is mapped as ’==’ operator and
<value:location> is mapped as <value expr:
DataTerm> which can be either String or
Enumeration.

9. FEW AS or MANY AS are mapped as Comparison
operators.

10. <attribute:monitorable> is mapped as
<property: monitoriable parms> and <value:
threshold> is mapped as DataTerm.

11. IS operator is mapped as ’==’ operator and
<value:status> is mapped as <DataTerm:
Status>.

12. <attribute:monitorable> in IS expression is
mapped as <property: monitoriable Parms
status>.

13. AND and OR is mapped as && and jj operators in
Drools receptively.

To elaborate the mapping of policy condition, we
provide a sample of conditions which are written in
both CloudMPL and Drools in Figure 9. These con-
ditions are for expressing a management policy ex-
tracted from Energy Management Running Exam-
ple presented in Section 6. In Figure 9, the first
statement is CloudMPL expression for three condi-
tions, which are Violation Percentage FEW AS 20,
Energy Consumption MORE AS 2000, host1. These
conditions are composed in CloudMPL by AND op-
erator. The same figure also includes conditions ex-
pressed in Drools which map CloudMPL conditions.
In Figure 9, the arrows represent the types of the map-
ping rules that can be applied.

5.2 Mapping Actions

In CloudMPL, any action statement is mapped as a
call method for management operations in a policy
expressed in Drools. The mapping rules for actions
are:

Figure 9: Using mapping rules for mapping CloudMPL
condition block to Drools condition part for a policy.

Figure 10: Using mapping rules for mapping CloudMPL
action block to Drools action part for a policy.

1. Action < ID > in CloudMPL is mapped as the
Name of the operation in CloudManager (See Fig-
ure 10).

2. The parameters List, which includes a set of Pa-
rameter Expression, is mapped as the operation
parameters in CloudManager.

3. In CloudMPL, Parameter Expression consists of
< TypeID >. Type is mapped as either <
Ob jectTerm > or < getOb jectRe f > in Opera-
tion. Whilst ID is the mapped as the name of the
parameter.

4. In CloudMPL , if Type is Host and it is the first
parameter in the statement, then it is mapped as
the Original and its type is TargetHost in Drools.

5. In CloudMPL, if Type is Host and is not the first
parameter, then it is mapped as either to Destina-
tion1 or Destination2 based on ordering parame-
ters in Drools.
Figure 10 illustrates applying the mapping rules

for action from CloudMPL to Drools. The figure in-
cludes an operation defined in Table3. The operation
has three parameters which are Host1, Host2, Host3.
In Drools mapping, Action ID is mapped as Mi-
grate Alternative Host. Whilst the first parameter is
mapped as $host1. Both Host2 and Host3 are mapped
as $host1:getHost2() and $host1:getHost3(), respec-
tively.

The previously mentioned mapping rules for both
conditions and actions parts will be used to design
an interpreter to automatically or semi-automatically
generate Drools codes for policies that would be ex-
ecuted into the architecture shown in Figure 1. The
Drools code generation will be a future step.

Figure 11: An UML class diagram for Cloud infrastructure
used in the case study.

CloudMPL:�A�Domain�Specific�Language�for�Describing�Management�Policies�for�an�Autonomic�Cloud�Infrastructure

459

(a) CloudMPL Declarations (b) CloudMPL Expressions 1

(c) CloudMPL Expressions 2
Figure 12: A sample of CloudMPL (XText) for management policies used in the case study.

6 CloudMPL IN PRACTICE

CloudMPL is used as a language for expressing a
number of management policies extracted from Man-
agement Energy Consumption Case Study presented
in (Alansari and Bordbar, 2013). The Manage-
ment Energy Consumption Case Study implemented
in OpenNebula(Toraldo, 2012) which is a Cloud-
platform management system. In the case study, there
are a set of management policies which are enforced
in Drools rule-engine which periodically responses to
changes in three monitored parameters. The param-
eters are average CPU usage for running VMs, Vio-
lation Rate and Average Energy Consumption for pri-
vate hosts per hour. The engine automatically controls
the migration action for running virtual machines de-
ployed on three private physical hosts. The hosts runs
Ubuntu OS and KVM as virtualization environment.
The policies should trigger a migration action for run-
ning virtual machines and may switch off idle hosts.
The policies which are provided in the case study are

written in Drools Rule Language (Alansari and Bor-
dbar, 2013)). Figure 11 presents the UML model for
the Cloud-infrastructure for the used example.

In Figure 11, the Cloud infrastructure consists
of three main components, which are Host, VM
images and SLA classes. The Host class runs
a number of virtual machines and has a number
of monitorable attributes such as CPU Usage, En-
ergy Consumption,etc.). Furthermore, Host class has
a time and also a location attribute, which represents
the geographical location for the host. Each running
virtual machine in the model belongs to only one
Cloud consumer. Thus, each running VM instance
is associated with only one SLA and also has a life
cycle (For more details about Figure 11 see (Alansari
and Bordbar, 2014)).

We took some management policies encoded
into Drools and we used CloudMPL to write them.
Both CloudMPL Declarations and CloudMPL Poli-
cies for the case study, which are implemented using
XText(Xtext, 2014), are shown in Figure 12.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

460

Looking at Figure 12, there are six policies ex-
pressed in CloudMPL which demonstrate the usage
of all operators suggested by the language. Policy 1 is
constraints and it requires to use monitorable param-
eters and uses the CloudMPL operators FEW AS and
MANY AS. Whilst policy 2, policy 3 and policy 4 are
composed of both time and constraints expressions.
Both policy 2 and policy 4 use the operator After
whereas policy 3 includes the ClodMPL time operator
Between / To. The constraints operator used in these
policies is IS. Policy 5 has only a single time expres-
sion which uses the CloudMPL time operator Before.
The final policy, which is policy 6, contains a loca-
tion expression besides the time and constraints con-
ditions. The location condition uses the CloudMPL
operator IN.

6.1 The Interpretation of CloudMPL
Policies to Drools

We applied the mapping process introduced in Sec-
tion 5 to the policies of the case study. Using the
designed mapping rules explained in Section 5 and
the meta-model presented in Figure 11, Drools codes
are generated manually. The purpose is to test the
mapping rules. A sample of Drools code for policy
1, policy 3, policy 5 and policy 6 are shown in Figure
13 which are depicted into two groups. The impor-
tant Drools operators used in the conditions are high-
lighted in Blue.

Taking policy 3 as an example, this policy is
mapped as a combination of Time and Constraints 2
Expressions which are shown in management policies
conditions meta-model mentioned in Section 4. The
mapping for the condition part applies the rules num-
ber 1, 4, 6, 7,11, 12 and 13 explained in Mapping
Conditions at Section 5. On the other hand, all the
rules proposed for mapping the action part expressed
in Section 5 are applied. As a result, policy 3 will have
a rule code similar to what is illustrated in Figure 13.
This method is applied to all remaining CloudMPL
policies captured in Figure 12.

7 CONCLUSION

This paper aims at reducing the existing gap be-
tween the specification of management policies for
Cloud and the implementation of policies via rule-
engines. We presented CloudMPL that is a domain-
specific language for specifying management poli-
cies for Cloud-environments. Furthermore, we de-
scribed a method of automating the creation of var-
ious CloudMPL expressions to an executable Rule

(a) Drools Rules ”Group 1”

(b) Drools Rules ”Group 2”
Figure 13: The generated Drools rules from CloudMPL
policies.

Language such as Drools. CloudMPL establishes a
set of operators that deal with several kinds of con-
straints, from ordinal, ranging trough time and lo-
cations constraints, that can be applied to a spe-
cific or a set of Cloud resources. In addition,
CloudMPL supports user-defined actions to deal with
the consequences of conditions specified by the man-
agers of Cloud computing infrastructure. The us-
age of both CloudMPL and the automated approach,
which is based on designing mapping rules between
CloudMPL and Drools, is illustrated with the help of
an example related to management energy consump-
tion by migrating virtual machines.

It is also important to highlight that, even with-
out the transformation process fully implemented, the
suggesting method for automating policy creation as-
sists to cope with frequent changes in policies spec-
ified at the description level. Using both CloudMPL
and the automated process for creation management
policies can decrease the amount of time that requires
to spend in implementing such policies. Due to the
closeness of CloudMPL to natural languages and its
declarative nature, it is easier for non-technical people
to make a use of the language for specifying policies.
As a future step, it is imperative to fully implement
the transformation process and also to build an inte-
grated environment that supporting the specification,
translation and deployment of the policies.

CloudMPL:�A�Domain�Specific�Language�for�Describing�Management�Policies�for�an�Autonomic�Cloud�Infrastructure

461

REFERENCES

Alansari, M. and Bordbar, B. (2014). Modelling and analy-
sis of migration policies for autonomic management
of energy consumption in cloud via petri-nets. In
Proceedings of the The International Conference on
Cloud and Autonomic Computing. IEEE.

Alansari, M. M. and Bordbar, B. (2013). An architectural
framework for enforcing energy management policies
in cloud. 2013 IEEE Sixth International Conference
on Cloud Computing, 0:717–724.

Beloglazov, A. and Buyya, R. (2010). Adaptive threshold-
based approach for energy-efficient consolidation of
virtual machines in cloud data centers. In Proceedings
of the 8th International Workshop on Middleware for
Grids, Clouds and e-Science. ACM.

Borgetto, D., Maurer, M., Da-Costa, G., Pierson, J.-M.,
and Brandic, I. (2012). Energy-efficient and sla-aware
management of iaas clouds. In Proceedings of the
3rd International Conference on Future Energy Sys-
tems: Where Energy, Computing and Communication
Meet, e-Energy ’12, pages 25:1–25:10, New York,
NY, USA. ACM.

Brandtzæg, E., Mohagheghi, P., and Mosser, S. (2012). To-
wards a domain-specific language to deploy applica-
tions in the clouds. In Cloud Computing 2012, The
Third International Conference on Cloud Computing,
GRIDs, and Virtualization, pages 213–218.

Bunch, C., Chohan, N., Krintz, C., and Shams, K. (2011).
Neptune: A domain specific language for deploy-
ing hpc software on cloud platforms. In Proceed-
ings of the 2Nd International Workshop on Scientific
Cloud Computing, ScienceCloud ’11, pages 59–68,
New York, NY, USA. ACM.

Cunha, M., Mendonca, N., and Sampaio, A. (2013). A
declarative environment for automatic performance
evaluation in iaas clouds. In Cloud Computing
(CLOUD), 2013 IEEE Sixth International Conference
on, pages 285–292.

Forgy, C. L. (1982). Rete : A fast algorithm for the many
patternimany object pattern match problem. Artificial
Intelligence, 19:17–37.

IBM-ILOG (2007). Ilog jrules techincal.
http://logic.stanford.edu/poem/externalpapers/iRules/
WP-JRules50Strengths.pdf.

JBossCommunity (2011). Drools tools reference guide.
Maurer, M., Brandic, I., and Sakellariou, R. (2013). Adap-

tive resource configuration for cloud infrastructure
management. Future Generation Computer Systems,
29(2):472 – 487.

Mernik, M., Heering, J., and Sloane, A. M. (2005). When
and how to develop domain-specific languages. ACM
Comput. Surv., 37(4):316–344.

Mi, H., Wang, H., Yin, G., Zhou, Y., Shi, D., and Yuan, L.
(2010). Online self-reconfiguration with performance
guarantee for energy-efficient large-scale cloud com-
puting data centers. In IEEE International Conference
on Services Computing, pages 514–521. Ieee.

REWERSE (2012). Uml-based rule modeling language.

http://oxygen.informatik.tu-cottbus.de/rewerse-
i1/?q=URML.

Toraldo, G. (2012). OpenNebula 3 Cloud Computing.
PACKT Publishing, Birmingham B3.

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H., and
Bruel, J.-M. (2010). Relax: a language to address
uncertainty in self-adaptive systems requirement. Re-
quirements Engineering, 15(2):177–196.

Xtext (2014). Xtext textual domain-specific language (dsl).
http://www.eclipse.org/Xtext/.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

462

Dynamic Testing and Deployment of a Contract Monitoring Service

Ellis Solaiman1, Ioannis Sfyrakis1 and Carlos Molina-Jimenez2

1School of Computing Science, Newcastle University, Newcastle, U.K.
2Computer Laboratory, University of Cambridge, Cambridge, U.K.
fellis.solaiman, i.sfyrakisg@ncl.ac.uk, carlos.molina@cl.cam.ac.uk

Keywords: Service Agreement, Electronic Contract, Service Monitoring, Model Checking, Automated Testing, Service
Oriented Computing, Cloud Computing.

Abstract: Internet and cloud based services involve electronic interactions that are normally regulated using service
agreements (SA). Once an agreement between business partners is in place, a service can be monitored and/or
enforced using an SA equivalent electronic contract. Because of the dynamic nature of such Internet and
cloud based relationships, the rapidity at which electronic contracts are constructed, verified for correctness,
tested, and deployed is an extremely important factor. This paper describes a model checker based framework
for supporting the automated testing and deployment of electronic contracts. The central components of
the framework are a contract monitoring service called the Contract Compliance Checker (CCC), the SPIN
model checker, and EPROMELA, a language developed specifically for modeling electronic contracts. We
describe how SPIN can be used to automatically generate execution sequences from an EPROMELA model of
a contract, and how such sequences can then be used to test the correctness of the model equivalent electronic
contract deployed to the CCC.

1 INTRODUCTION

Internet and cloud computing advances have made it
possible for businesses to provide infrastructure and
software services to their business partners and to
their customers at affordable costs. Before such busi-
ness relationships can commence, legal service agree-
ments (SA) need to be negotiated and agreed. Legal
agreements, explicitly define the permissible actions
of the interacting parties, thus providing a legal basis
for the resolution of any disputes. A Legal agreement
can also be used as a guide for developing an elec-
tronic contract (Molina-Jimenez et al., 2003).

The main purpose of an electronic contract is to
regulate (monitor and/or enforce) electronic service
exchanges between the contracted parties, making
sure that business participants adhere to the SA in
place, and that performed actions comply with vari-
ous message timing and sequencing constraints. Elec-
tronic contracts are not confined to the business do-
main, and can also be used for example to monitor/en-
force SAs between the components of distributed sys-
tems in the cloud and/or the ”Internet of Things”.

Constructing an electronic contract that is correct
(free from conflicts, and which correctly represents
the requirements of the original legal document), is a

challenging and time consuming task. Cloud based
business relationships can be both complex and of a
highly dynamic nature (Molina-Jimenez et al., 2011)
therefore it is important that the process of convert-
ing a legal document into an electronic contract that
is correct, is automated as much as possible. Previ-
ous work towards this goal has been extensive, and
has covered problems such as electronic contract rep-
resentation and modeling (Strano et al., 2008), and
contract model verification (Solaiman et al., 2003)
(Abdelsadiq et al., 2011). Naturally, ensuring that a
model of an electronic contract is correct, does not
guarantee that the electronic contract itself is also cor-
rect. In this paper, we focus on the challenge of en-
suring that an electronic contract acts correctly at run
time, and that modifications and/or corrections that
need to be made to the rule base of the electronic con-
tract can be applied quickly. To this end, we develop a
model checker based framework to support automatic
electronic contract deployment and testing.

The central component of our framework is the
contract compliance checker (CCC) (Fig. 1) (Strano
et al., 2009) (Molina-Jimenez et al., 2012), which es-
sentially is the System Under Test (SUT). The CCC is
an independent contract monitoring service that when
provided with an executable specification of a con-

463

buyer seller

CCC

communication channel

monitoring channel

biz events
(S,TF,BF)

trusted third party

response:
CC | NCC

electronic
contract

Figure 1: The CCC deployed as a contract monitor.

tract, can be deployed by the contracted parties or by
a third party. The CCC is able to observe and log
relevant interaction events, which it processes to de-
termine whether the actions of the business partners
are consistent with respect to the rights, obligations,
and prohibitions declared in the original legal con-
tract. Namely, the CCC declares interaction events as
either contract compliant (CC) or non contract com-
pliant (NCC).

As can be seen in Fig 1, business partners use a
communication channel for exchanging their business
messages. In addition they use a monitoring channel
for notifying events of interest to the CCC. Notably,
the figure shows that the CCC can cope with excep-
tions and failures, observing events that have been de-
clared by the interacting parties as either S (success-
ful), TF (technical failure), or BF (business failure).

The ability of the CCC to correctly declare in-
teraction events as (CC) or (NCC) relies on an exe-
cutable contract that has been specified correctly. Our
goal is to provide a framework that enables; rapid test-
ing of a deployed executable contract, and rapid up-
date of the contract rules when testing detects errors.
To do so, one must be able to exhaustively supply the
CCC with execution sequences that it would be ex-
pected to observe during runtime. Our approach is to
resort to model checker based testing.

Previous research into the area of model checker
based testing of electronic contracts, (Abdelsadiq
et al., 2010), describes the basic idea: construct a
behavioural model of the SUT and validate the be-
haviour using a model checker. Such a validated
model can then be used for generating executable test
cases for the SUT.

The model checking tool we use is SPIN (Holz-
mann, 2003), a tool originally designed for the ver-
ification of communication protocols. SPIN’s input
language, Promela, provides constructs for modeling
communication concepts such as messages, channels,
and basic data types that include bit, bye, arrays. etc.
Using these basic constructs alone for modeling elec-

tronic contracts, at a sufficiently high level of abstrac-
tion, is extremely challenging. This in turn makes the
process of generating accurate execution sequences
required for testing the CCC difficult.

To address these challenges, a fundamental com-
ponent of our testing framework is EPROMELA, a
high level language developed specifically for mod-
eling electronic contracts (Abdelsadiq et al., 2011).
EPROMELA extends Promela with constructs for ex-
pressing core electronic contract concepts contained
in the CCC, thus enabling the construction of a con-
tract model at a level of abstraction that is equivalent
to the actual electronic contract.

This paper makes two contributions: 1) we de-
scribe the architecture of the CCC service, highlight-
ing architectural improvements we have made that al-
low for dynamic update of rules coded in an electronic
contract specification. 2) we describe how SPIN, and
EPROMELA, can be instrumented with the aid of ap-
propriate automation and message parsing tools, to
produce business events that can accurately test the
executable contract deployed within the CCC service.

The remainder of the paper is structured as fol-
lows: In Section 2 we describe key electronic con-
tracting concepts with the aid of a simple example. In
Section 3 we present the enhanced architecture of the
CCC. Section 4 is dedicated to presenting our model
checker based testing framework. In Section 5 we dis-
cuss related work. Conclusions and future work sug-
gestions are presented in Section 6.

2 BACKGROUND

In order to elaborate key electronic contracting con-
cepts, we present a simple scenario. Let us assume
that Fig. 1 describes a relationship where two organi-
sations, a Buyer and a Seller (a store), agree to a busi-
ness contract. Below are some of its clauses:

1. The buyer can place a buy request with the store
to buy an item.

2. The store is obliged to respond with either buy
confirmation or buy rejection within 3 days of re-
ceiving the buy request.

(a) No response from the store within 3 days will
be treated as a buy rejection.

3. The buyer can either pay or cancel the buy request
within 7 days of receiving a confirmation.

(a) No response from the buyer within 7 days will
be treated as a cancellation.

The clauses of such a legal agreement should take into
consideration all relevant business operations (shown

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

464

Store

Buyer

Store
 rej

BuyRej

Buyer

Buyer
 req

Store

BuyReq

Buyer

Store

Buyer
 pay

BuyPay

Buyer

Store

Buyer
 canc

Store

Buyer

Store
 conf

startEv
G1 endEvG2

G3
BuyCanc

BuyConf

Figure 2: Correct choreography of contract example.

in bold in the contract text). A contract distinguishes
operations as Rights, Obligations, Prohibitions (the
ROP set). A Right is an operation that a party is al-
lowed to perform under certain conditions, an Obli-
gation is an operation that a party is expected to do
under certain conditions, and a Prohibition is an op-
eration that a party is not allowed to do under certain
conditions.

To support our discussion, we will use a graph-
ical representation of the contract written in BPMN
(Business Process Management Notation) choreogra-
phy language (OMG, 2011) (see Fig. 2).

The figure involves five activities, each result-
ing in a message (BuyReq, BuyRej, BuyConf, Buy-
Pay, BuyCanc) being sent from a sender (shown as
a white label in each activity), to a receiver (shown
as a shaded label). These messages correspond to the
five business operations (buy request, buy reject, buy
confirmation, buy payment, buy cancellation) shown
in bold in the English text of the contract. The dia-
monds in the figure are gateways. The figure includes
two exclusive fork gateways (G1 and G2) and a single
exclusive merge gateway (G3).

The choreography specification describes, from a
global perspective, all permissible message sequences
that can be exchanged between the partners, and is
used by the interacting parties for two purposes: i)
designing and implementing their individual parts of
the business process; and ii) it is also very useful as a
guide for developing the electronic contract.

The electronic contract designer is able to use the
legal contract and choreography, to accurately iden-
tify and extract the ROPs attributed to the business
partners, and to specify the rules which operate on
the ROP set (Molina-Jimenez and Shrivastava, 2013).
Rule implementation requires an appropriate specifi-
cation language; contract rules written for the CCC

monitoring service are currently realised using the
Drools Rule Language (DRL) (RedHat, 2013).

An example of a rule that deals with receipt of a
buy request event by the CCC, written using Drools
can be seen below. Line 5 checks that the buyRequest
operation is a right that the buyer is currently allowed
to perform. If so then buyRequest is declared by the
CCC as contract compliant (line 13). This operation
is also removed from the buyer’s ROP set (line 8),
meaning that the buyer no longer has a right to per-
form this operation. At lines 10 and 11, the seller is
given an obligation to perform one of 2 operations:
buyConfirm, or buyReject.

1 rule "Buy Request Received"
2 //Verify type of event, originator, and

responder
3 when
4 $e: Event(type=="BUYREQ",

originator=="buyer", responder=="store",
status=="success")

5 eval(ropBuyer.matchesRights(buyRequest))
6 then
7 //Remove buyer’s right to place other Buy

Requests
8 ropBuyer.removeRight(buyRequest, seller);
9 //Add seller’s obligation to either accept

or reject order
10 BusinessOperation[] bos = {buyConfirm,

buyReject};
11 ropSeller.addObligation("React To Buy

Request", bos, buyer, 60,2);
12 System.out.println("* Buy Request Received

rule triggered");
13 responder.setContractCompliant(true)
14 end

Each of the activities declared in the choreography of
Fig. 2 has a rule such as the one shown above. Typ-
ically, for each activity in a choreography, each busi-
ness partner can have several rights, obligations, and
prohibitions in force.

Once an electronic contract specification has been
completed, it can be loaded into the CCC for deploy-
ment and testing. As operations are executed, and
events are received by the CCC, rights, obligations
and prohibitions are granted to and revoked.

The CCC processes each event to determine if it is
contract compliant (CC) or none contract compliant
(NCC). The execution of a business operation (ob-
served from the outcome event) is said to be CC if
it satisfies the following three conditions and is said
to be NCC if it does not: 1) it matches an opera-
tion within the set of business operations expected by
the CCC, 2) it matches the ROP set of its role player
(meaning, the role player that performed the opera-
tion has a right/obligation/prohibition to perform that
particular operation), and 3) it satisfies the constraints
stipulated in the contractual clauses. An example of a

Dynamic�Testing�and�Deployment�of�a�Contract�Monitoring�Service

465

constraint is the seven day deadline in clause 3 of the
contract discussed earlier.

We also consider that the execution of a given se-
quence of operations is NCC if it includes one or more
operations that are flagged by the CCC as NCC. A se-
quence of operations is also known as an execution
sequence or execution trace, and drives the choreog-
raphy from its initial state to a final state.

To ease the introduction of basic concepts, our le-
gal contract example and corresponding choreogra-
phy of Fig. 2, deal with successful outcome events
only. However, a contract monitoring service such
as the CCC should also be able to observe out-
come events that include exceptional circumstances
(Molina-Jimenez et al., 2009). Therefore, follow-
ing the ebXML standard (OASIS, 2006), we assume
that at the end of a business conversation, each party
independently declares an execution outcome event
from the set fSuccess(S), BizFail(BF), TecFail(TF)g
as shown in Fig. 1. Success events model success-
ful execution outcomes. TecFail models protocol re-
lated failures detected at the middleware level, such
as a late, or a syntactically incorrect message. BizFail
models semantic errors in a message detected at the
business level, e.g., the credit card details extracted
from the received payment document are incorrect.

Adding exceptional outcome events to the CCC’s
set of observable events, naturally means that the
CCC has to monitor a much larger number of exe-
cution sequences. The task of generating these in or-
der to test the CCC effectively is extremely challeng-
ing, and strengthens the case for needing to automate
the testing process. Before moving on to our testing
framework, let us first take a look at the new architec-
ture of the CCC.

3 ARCHITECTURE OF THE
CONTRACT COMPLIANCE
CHECKER (CCC)

The overall architecture of the CCC is shown in
Fig. 3. It consists of two layers: The CCC Engine
(The Logical Layer), and the new addition is the CCC
Service (The Presentation Layer). The CCC Engine
is responsible for processing business events and for
determining whether they are contract compliant or
not. The CCC Service is an interface to the CCC En-
gine, it is used for delivering business events to the
CCC, and for collecting the corresponding responses.
In addition, the CCC Service can be used by the rule
administrator for loading and editing the rules that
represent the contract. The functionality of the ar-

BEvent
queue

outcome
queue

BizObj2XML /
XML2BizObj

filter
mism.bo

BEvent
queue

ROP set

contract
rules

BEvent
logger

timer

rule editor
(Browser)

relevance
engine

monitoring
channel

 outcome events
 (S, TF, BF)

tim
eo

ut
 e

ve
nt

s

set / reset

timeouts

update(add/del)

 response
 CC | NCC

Presentation Layer

Logical Layer

upload rule
service

Figure 3: Architecture of the contract compliance checker.

chitecture is as follows: A business event is received
through the monitoring channel as an XML document
that includes the names of the participants, the busi-
ness operation, and its outcome from the set: (Suc-
cess, BizFail, TecFail):
<event>
<originator>buyer</originator>
<responder>seller</responder>
<type>BuyReq</type>
<status>success</status>

</event>

The event shown here is produced as a result of
the implementation of a conversation synchronization
protocol between the interacting parties. The protocol
guarantees mutually agreed conversation outcomes. It
is the responsibility of the interacting partners to ap-
ply the protocol. A detailed discussed can be found
in (Molina-Jimenez et al., 2007). The XML docu-
ment representing the business event is passed to the
BEvent queue. Business events are retrieved, and con-
verted using the xml2BizObj/BizObj2xml Convertor
from their XML format into business event objects.
Events are then passed to the CCC Engine. The filter
mism.bo, discards mismatched business events that
are not among the permitted events defined within the
ROP set. Business events that pass this filter are in-
serted into the BEvent queue. All deadlines are set
and reset by the relevance engine, and enforced by the
timer. Timeout events are added to the filter mism.bo
as required by the contract, and are examined by the

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

466

filter to decide if bevents are mismatched. For exam-
ple, receiving a buy confirmation event from the store
after the 3 day deadline has elapsed, will be treated as
mismatched. The relevance engine removes a busi-
ness event from the head of the bevent queue and
compares it to the rules stored in the contract rules.
Rules that match the bevent under examination are
triggered to determine if their conditions are satisfied.
The actions of the rules whose conditions are satisfied
are executed, and this may alter (add/del) the current
state of the ROP sets. For our example in Fig. 2, a
rule triggered by a BuyConf business event and finds
its conditions satisfied will delete (disable) the store’s
right to execute another BuyConf business operation,
and delete the store’s right to execute a BuyRej opera-
tion. The rule also will add (impose) an obligation on
the buyer to either initiate the execution of a BuyPay,
or initiate the execution of BuyCanc. The bevent is
then stored in the BEvent logger as a record for any
future dispute resolution. The relevance engine even-
tually declares the business event either CC or NCC
and produces a response as a business object, which
is sent out to the Presentation Layer. The business ob-
ject passes through the xml2BizObj/BizObj2xml Con-
verter, where it is serialized into an XML message of
the following format:

<result>
<contractcompliant> true|false
</contractcompliant>

</result>

The xml2BizObj/BizObj2xml Converter inserts the
response into the outcome queue, which can be
accessed by the contracted parties. The Presentation
Layer allows a ”rule manager” to update the contract
rules at run time. For this purpose, rules can be edited
using the rule editor (in a browser) and sent to the
rule upload service as a conventional RESTful POST
operation. The rule upload service is responsible
for producing a drl (Drools) file (for example new–
rules.drl) from the payload of the POST operation,
and for uploading it to the CCC Logical Layer to
replace the Contract Rules.

The CCC Logical Layer is implemented using
JBoss’s Drools rules Engine (version 6.1 as of the year
2014) (RedHat, 2013). The Drools rules engine pow-
ers the decision making capabilities of the relevance
engine. The relevance engine, acts as a wrapper for
the Drools rule engine and its responsibilities include
the initialisation of the contract, as well as the addi-
tion and processing of events received from the Pre-
sentation Layer.

The Presentation layer, a new addition to the
CCC, exposes the CCC as a RESTful web service.

Its aim is to enable the exchange of XML event mes-
sages between the CCC and the contracted clients,
and to ease the editing and update of the contract
rules (these were previously hard coded). The Pre-
sentation Layer is implemented using the JBoss En-
terprise Application Platform (EAP), (RedHat, 2014).
The BEvent queue and the outcome queue, are imple-
mented using JBoss’s HornetQ (a message oriented
middleware layer), and using the Java Message Ser-
vice (JMS) API. A Message Driven Bean (MDB) re-
ceives business events from HornetQ and passes them
to the XML2BizObj/BizObj2XML converter, which is
implemented using Java. The upload rule service is
part of the Drools Workbench– a web authoring and
rules management application.

4 MODEL CHECKER BASED
TESTING

To claim categorically that the CCC functions cor-
rectly, we need to test that it can correctly identify
contract compliant and non-contract compliant execu-
tions of sequences and their constituent business op-
erations. To this end, one needs to be able produce
sequences of operations that are known to be con-
tract compliant, and also produce sequences that in-
clude both contract compliant and non contract com-
pliant operations.The challenge here is the production
of such sequences.

4.1 Testing Framework

Fig. 4 shows the main elements of our testing frame-
work. Squares with smooth corners represent hu-
mans involved in the design process. Tools are rep-
resented by solid squares with sharp corners, and
dashed squares represent data.

As stated earlier, a central component of our test-
ing framework is the SPIN model checker. SPIN
models are constructed using Promela, and specifi-
cally using EPROMELA, a modeling language de-
veloped precisely for modelling electronic contracts
(Abdelsadiq et al., 2011). EPROMELA is essen-
tially a high level tool that extends Promela with con-
structs for expressing core electronic contract con-
cepts contained in the CCC. Correctness properties
that an EPROMELA model is expected to satisfy,
can be expressed by the model designer using Lin-
ear Temporal Logic (LTL). When provided with a
model of the contract and appropriate LTL properties,
SPIN is able to verify the correctness of the model
with respect to those properties. With the aid of tools
for message parsing and automation, SPIN also can

Dynamic�Testing�and�Deployment�of�a�Contract�Monitoring�Service

467

natural
contract text

contract
designer

negated (trap)
properties in

LTL

model of
contractual
operations

contract
designer

SPIN model
checker

message
sequences

message
parsing tool

CCC

electronic
contract in

Drools

Figure 4: Model Checker based testing framework.

be instrumented to generate message sequences that
can be used to test the ability of the CCC to de-
tect contract compliant and non contract compliant
message sequences, a process that we will describe
next. Model checker based sequence generation fol-
lows these steps:

1. The designer constructs an abstract model of the
System Under Test (SUT), and verifies that the
model is correct in that it satisfies the correctness
properties of interest.

2. The verified abstract model is used for generat-
ing execution sequences. This is done by pre-
senting the verification tool with the verified ab-
stract model, together with a negated correctness
requirement in LTL (a trap property), and then
challenging the verification tool to find and pro-
duce counter examples that violate the LTL.

3. Each counter example contains an execution se-
quence that can be extracted with the aid of a mes-
sage parsing tool.

4.2 Example

We begin by building an EPROMELA model of our
example contract presented in the Background sec-
tion. To ease the task of parsing the counter exam-
ples of interest, we include within the EPROMELA
model print statements that produce the required
XML events. The end of each execution sequence is
marked using a reset message).

4.2.1 Model Construction and Verification

Below is a section of our EPROMELA contract
model, which includes the rule that deals with the
BUYRREQ operation of Fig. 2. Each of the opera-
tions for the choreography in Fig. 2 has a rule which
updates the status of the ROP set belonging the par-
ticipants as they transition from state to state.

1 RULE(BUYREQ)
2 {
3 WHEN::EVENT(BUYREQ,

IS_R(BUYREQ,BUYER),SC(BUYREQ))->{
4 SET_X(BUYREQ,BUYER);
5 atomic{
6 printf("<originator>buyer</originator>");
7 printf("<responder>store</responder>");
8 printf("<type>BUYREQ</type>");
9 printf("<status>success</status>");
10 }
11 SET_R(BUYREQ,0);
12 SET_O(BUYREJ,1);
13 SET_O(BUYCONF,1);
14 RD(BUYREQ,BUYER,CCR,CO);
15 }
16 END(BUYREQ);

Line 3 of the model deals with receiving a
successful buy request event SC(BUYREQ).
IS_R(BUYREQ,BUYER) is a guard that checks if
the BUYER has a right to perform the BUYREQ op-
eration. If so, then SET_X(BUYREQ,BUYER) declares
that this operation has been executed, and the buyer’s
right to execute BUYREQ is removed at line 11. The
rule then sets an obligation to the Store to execute
either BUYREJ or BUYCONF (lines 12 - 13). At
line 6 we introduce the print statements required
for parsing the generated execution sequences. The
print statements produce XML events in the format
expected by the CCC.

Each of the operations BUYREQ, BUYREJ, BUY-
CONF, BUYPAR, BUYCANC, has a rule such as
the one above. Events are generated using an
EPROMELA Event Generator module, which mod-
els the interaction between the business partners.
Events exercise rules such as the one above through
another EPROMELA module known simply as the
Rule Manager. For a full description, see (Abdelsadiq
et al., 2011). When the entire EPROMELA model
has been constructed, SPIN can be used to verify that
the model is free from any inconsistencies. Common
correctness properties such as absence of deadlocks
and reachability of states, can easily be checked using
SPIN’s configuration options. Checking for contract
specific correctness properties however, requires the
application of Linear Temporal Logic (LTL) formu-
lae. Typical correctness properties of the electronic
contracting domain are those that express mutual ex-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

468

clusion of rights, obligations, and prohibitions; for ex-
ample the requirement that the execution of a given
operation (such as making a purchase order) is never
simultaneously obliged and prohibited. Thanks to the
contract constructs offered by EPROMELA, this cor-
rectness requirement can be elegantly and intuitively
expressed in LTL as follows:
[]!(IS_O(BUYREQ, BUYER) && IS_P(BUYREQ, BUYER))

Where [] is the LTL always operator. ! is the
universal not, IS_O(BUYREQ, BUYER) returns true
if the BUYREQ operation is currently obliged and
IS_P(BUYREQ, BUYER) returns true if the BUYREQ
operation is currently prohibited. Instructing SPIN to
run through the EPROMELA model using this LTL,
will drive SPIN to find any examples that violate this
property. If such an example is found then it is pre-
sented as a counter example to the designer, who must
then correct the model.

4.2.2 Generating the Test Sequences

Once the contract model has been verified for required
correctness properties, it can be used as an oracle
for producing sequences that can test the electronic
contract. Test sequence generation is very similar to
verification in that we make use of LTL properties.
We can (as described in the previous section) instruct
SPIN to find undesirable examples of sequences that
violate a desirable property. But we also need to to be
able to instruct SPIN to find desirable sequences that
violate a non-desirable property. The latter is done by
negating a desirable LTL property converting it into a
trap property.

As a very simple example, let us instruct SPIN to
generate all sequences of messages that end with a
BUYREJECT operation. The LTL formulae required
for this task is as follows:
!<>IS_X(BUYREJ,STORE)

Where < > is the LTL eventually operator. The
formulae states that the model will not eventually
reach a state where BUYREJ is executed. SPIN can
now be instrumented to show all sequences that do
end with BUYREJ. From the command line we apply
the following steps (CorrectChore is the name if the
file that contains the EPROMELA model):

1. % spin -a CorrectChore is used for generat-
ing the verifier source code in C.

2. % cc -o pan pan.c is used for compiling the
verifier.

3. % ./pan -a -e -c100 instructs SPIN to pro-
duce all the counter examples (trail files) that it
can find, which violate the trap property. By de-
fault SPIN produces the first one it finds and stops.

The -c100 parameter instructs SPIN to generate
the first 100 counter examples it finds. The num-
ber of counter examples requested needs to be
above the actual number of counter examples that
SPIN could possibly find. This number can be de-
termine by the designer using trial and error.

4. spin -tN -s -r -B CorrectChore converts
the Nth trail file into a text file that includes
the XML messages involved in the execution
sequence.

Given the potentially large number of trail files that
can be produced by SPIN, it is advisable to mecha-
nise the process. We use a simple shell script for this
purpose. The following text represents the contents
of one of the trail files produced by the Linux shell
script. To ease readability, we have removed some
irrelevant lines.
2: proc 0 (Buyer) line 35 "CorrectChore" Sent

BuyReq,1
3: proc 1 (Store) line 71 "CorrectChore" Recv

BuyReq,1

<originator>buyer</originator>
<responder>store</responder>
<type>BUYREQ</type>
<status>success</status>

5: proc 1 (Store) line 114 "CorrectChore"
Sent BuyRej,1

6: proc 0 (Buyer) line 049 "CorrectChore"
Recv BuyRej,1

<originator>store</originator>
<responder>buyer</responder>
<type>BUYREJ</type>
<status>success</status>

<originator>reset</originator>
<responder>reset</responder>
<type>reset</type>
<status>reset</status>

The execution sequence shown above includes a
BUYREQ message sent from the buyer to the store,
followed by BUYREJ sent by the store to the buyer.
The status element indicates the outcome of the ex-
ecution of the operation. The status in this example
accounts only for successful execution outcomes (No
exceptional circumstances such as technical failures
are assumed), consequently, the content of this ele-
ment is always success. The last message is the reset
message, which we artificially include to mark the end
of the sequence.

As can be appreciated from this example, the files
produced by SPIN and the shell script need parsing in
order to extract the XML tagged messages.

Dynamic�Testing�and�Deployment�of�a�Contract�Monitoring�Service

469

4.2.3 Sequence Parsing

Our parser is built using Python. It extracts all the
XML tagged messages from a given sequence and
stores each message as an individual XML file. The
parser achieves this by creating a recursive grammar
that describes the precise structure of the business
events inside a sequence. As seen in the code seg-
ment below in lines 2 - 5, we first define the XML
tags we want to find.
1 #define grammar for sequence file
2 tagOriginator = pyp.Literal("<originator>")

+ pyp.Word(pyp.alphas) +
pyp.Literal("</originator>")

3 tagResponder = pyp.Literal("<responder>") +
pyp.Word(pyp.alphas) +
pyp.Literal("</responder>")

4 tagType = pyp.Literal("<type>") +
pyp.Word(pyp.alphas) +
pyp.Literal("</type>")

5 tagStatus = pyp.Literal("<status>") +
pyp.Word(pyp.alphas) +
pyp.Literal("</status>")

6 lineString = tagOriginator | tagResponder |
tagType | tagStatus

The parser reads a file containing a message sequence,
and searches for matches against each line according
to the following rule in line 6: If there is a line that
includes a tag definition of either the originator, re-
sponder, type, or status, then the match is successful.
If the parser finds a match, then it performs the fol-
lowing actions: i) the parser creates a new folder with
the name of the sequence, ii) it extracts the XML part
that is matched according to the above rule, iii) a new
XML file is created that includes the extracted busi-
ness event. Thus, the folder ExeSeq1–xml for the se-
quence shown above will contain three XML files be-
cause the sequences contains three messages, namely
BUY REQ ! BUY REJ ! reset.

4.2.4 Testing the Electronic Contract

After loading and initialising the CCC with the rules
that encode the electronic contract, we can proceed
with sending each of the execution sequences to the
BEvent queue. Responses are collected from the out-
come queue (see Fig. 3). The following lines show the
results of testing the execution sequence BUY REQ !
BUY REJ ! reset:
1 filename: event1.xml
2 -Begin Request to CCC service-
3 BusinessEvent [originator=buyer,

responder=store, type=BUYREQ,
status=success]

4 -End Request to CCC service-
5
6 -Begin Response from CCC service-

7 <result>
8 <contractCompliant>true</contractCompliant>
9 </result>
10-End Response from CCC service-
11
12 filename: event2.xml
13 -Begin Request to CCC service-
14 BusinessEvent [originator=store,

responder=buyer, type=BUYREJ,
status=success]

15 -End Request to CCC service-
16
17 -Begin Response from CCC service-
18 <result>
19 <contractCompliant>true

</contractCompliant>
20 </result>
21 -End Response from CCC service-
22
23 filename: event3.xml
24 -Begin Request to CCC service-
25 BusinessEvent [originator=reset,

responder=reset, type=reset,
status=reset]

26 -End Request to CCC service-
27 -Begin Response from CCC service-
28 <result>
29 <contractCompliant>true

</contractCompliant>
30 </result>
31 -End Response from CCC service-

The operations (BUYREQ and BUYREJ) included in
the sequence, are declared contract compliant by the
CCC indicating that the contract rules have been
coded correctly with respect to the LTL property in
Section 4.2.2. The first operation is sent to the CCC in
line 3, and its response <contractCompliant>true
is shown at line 8. Similarly, BUYREJ operation
is sent to the CCC at line 14, and its response
<contractCompliant>true can be seen at line 19.

4.2.5 Testing None Compliant Events

A model that has been verified, will by default gen-
erate test sequences with events corresponding to the
execution of contract compliant operations only. An
EPROMELA model can be tuned to generate se-
quences which include unknown and noncompliant
business events using the EPROMELA Event Gener-
ator module mentioned under Section 4.2.1. Thus we
can alter the EPROMELA model to follow any varia-
tion of the choreography shown in Fig. 2. For exam-
ple the modified choreography of figure Fig. 5 does
not correctly reflect the original text contract.

The particularity of this diagram is that it produces
contract compliant sequences such as BuyReq !
BuyRe j. In addition, it produces non–contract com-
pliant sequences, for instance it allows for cancella-
tion after payment which is not stipulated in the orig-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

470

Buyer

Buyer
 req

Store

BuyReq

Store

Buyer

Store
 rej

BuyRej

Buyer

Store

Buyer
 pay

BuyPay

endEv

Buyer

StoreStore

Buyer

Store
 conf

startEv G3G2
G1

BuyCanc

BuyConf

Buyer
 canc

Figure 5: Incorrect choreography of contract example.

inal contract. Consequently, the execution of Buy-
Canc within the sequence BuyReq ! BuyCon f !
BuyPay ! BuyCanc should be declared non contract
compliant by the CCC. The following text shows the
results of the execution of the non–contract compli-
ant sequence discussed above. The first 2 events
BUYREQ, BUYCONF, were declared contract com-
pliant by the CCC as expected. To save space we only
show the outcome of the 2 events of relevance in this
example (BUYPAY followed by BUYCANC):

1 filename: event3.xml
2 -Begin Request to CCC service-
3 BusinessEvent [originator=buyer,

responder=store, type=BUYPAY,
status=success]

4 -End Request to CCC service-
5
6 -Begin Response from CCC service-
7 <result>
8 <contractCompliant> true

</contractCompliant>
9 </result>
10 -End Response from CCC service-
11
12 filename: event4.xml
13 -Begin Request to CCC service-
14 BusinessEvent [originator=buyer,

responder=store, type=BUYCANC,
status=success]

15 -End Request to CCC service-
16
17 -Begin Response from CCC service-
18 <result>
19 <contractCompliant> false

</contractCompliant>
20 </result>
21 -End Response from CCC service-

The process BUYPAY is contract compliant (lines 3
and 8). The execution of BUYCANC at line 14 and the
corresponding response received at line 19 indicates
that the CCC has declared BUYCANC non–contract
compliant. This is the desired behaviour from the
CCC, as it has detected that this sequence of events
is not consistent with the contract.

Store

Buyer

Store
 conf

BuyConf

Buyer

Store

Buyer
 pay

BuyPay

G1

Success

G2

Technical Failure

Business Failure

Success

Technical Failure

Business Failure

Figure 6: Execution model with success and failures.

4.3 Accounting for Exceptional
Outcome Events

The contract example we have used so far assumes
that the execution of operations always succeeds; it
does not account for potential failures. More realis-
tic examples would include the execution of activities
as shown in Fig. 6, which account for successful and
failed outcomes.

As discussed in Section 2, and following the
ebXML standard (OASIS, 2006), we would like to be
able to detect two types of failures; business failures,
and technical failures. To this end, the EPROMELA
modeling language has been designed with the ability
to deal with these 2 types of failures. As an example
of an electronic contract that can handle exceptional
outcomes, we add the following clause to our origi-
nal contract to account for potential semantic errors
(business failures) in the execution of any operation:

4. Failure handling: if after 2 attempts, an operation
is not performed correctly, then the contractual
interaction shall be declared terminated.

Fig. 7 shows a partial choreography representation of
the contract for three out of its five tasks only (for
readability). The contract allows for a finite number
of retries if business failures are encountered. The ac-
tual number of retries will normally be a configuration
parameter. In the figure, S and BF stands for Success
and Business Failure, respectively. Similarly, rqBF,
rjBF, and coBF, represent counters that keep track
of the number of failed executions of the operations;
BUYREQ, BUYREJ, and BUYCONF, respectively. N
represents an arbitrary integer that in our example al-
lows for two failure execution (N = 2). The execution
of each activity leads to a gateway with three outgoing
arrows. As an example, at BUYREQ, a successful (S)
execution leads to the normal execution of the con-
tract, namely to G2. Alternatively, if the execution
completes in BF and the number of failed executions
rqBF of the BUYREQ operation is less than N, the
execution is tried again. However, if the outcome is
BF and it has already failed N times, the contractual

Dynamic�Testing�and�Deployment�of�a�Contract�Monitoring�Service

471

Store

Buyer

Store
 rej

BuyRej

Buyer

Store

Buyer
 canc

BuyCanc

Buyer

Store

Buyer
 pays

BuyPay

Store

Buyer

Store
 conf

BuyConf

Buyer

Buyer
 req

Store

BuyReq

startEv

S

S

S

G2

endEv

BF & coBF<N BF & caBF<N

S

S

endEv

endEv

BF & rqBF<N

BF & rjBF<N BF & paBF<N

B
F

 &
 r

q
B

F
=

N

B
F

 &
 c

o
B

F
=

N
B

F
 &

 r
jB

F
=

N

B
F

 &
 p

aB
F

=
N

B
F

 &
 c

aB
F

=
N

G3

G4G1 G5

G6

G7

Figure 7: Contract example that accounts for failures.

interaction is terminated. Failure handling with the
remaining activities is similar, except that gateways
G2 and G5 introduce additional alternative execution
paths. For instance, after failing to complete success-
fully BUYREJ at the first attempt, the initiator is al-
lowed to choose BUYREJ again or alternatively can
execute BUYCONF. Below we show how an excep-
tion such as the business failure of the BUYREQ oper-
ation described above can be intuitively and naturally
modeled using EPROMELA. The rule for BUYREQ
described in Section 4.2.1 can be easily enhanced as
follows:
1 /*handle failure outcome event*/
2::EVENT(BUYREQ,IS_R(BUYREQ,BUYER),

BF(BUYREQ))->{
3 atomic{
4 printf("<originator>buyer</originator>");
5 printf("<responder>store</responder>");
6 printf("<type>BUYREQ</type>");
7 printf("<status>bizfail</status>");
8 }
9 if /*1st notification of BF*/
10 ::(ReqFailBefore==NO)->

ReqFailBefore=YES;
11 printf("First BUYREQ-BF");
12 RD(BUYREQ,BUYER,CCR,CO);
13 /*2nd notification of BF*/
14 ::(ReqFailBefore==YES)->

abncoend=TRUE;
15 printf("Last BUYREQ-BF");
16 SET_R(BUYREQ,0);
17 atomic{
19 printf("<originator>reset</originator>");
20 printf("<responder>reset</responder>");
21 printf("<type>reset</type>");
22 printf("<status>reset</status>");
23 RD(BUYREQ,BUYER,NCCR,CND); /*abnormal

contract end*/

The model can now also handle BUYREQ events that

result in BF outcomes (line 2). If a failed event is
received, then the rule checks if a failure of this kind
has happened before. If not (line 10), then this first
failure is registered, and contract execution is allowed
to continue (line 12). On the other hand, if this is the
second time BUYREQ has been received with a BF
outcome then the rule terminates contract interaction
at line 23.

The EPROMELA model includes rules like the
one described above for dealing with each of the 5
business events shown in bold in our contract exam-
ple. After the model has been verified using SPIN, the
electronic contract deployed to the CCC can be tested,
in combination with the testing framework described
previously, using much more realistic execution se-
quences that include exceptions. A detailed descrip-
tion of how exceptions are handled in the CCC can be
found in (Molina-Jimenez et al., 2009).

5 RELATED WORK

Research work on the monitoring of cross-
organizational interactions between parties was
pioneered by Minsky (Ungureanu and Minsky, 2000)
with work on Law Governed Interaction (LGI). The
notion of rights, obligations and prohibitions was
introduced in (Ludwig and Stolze, 2003). A useful
summary about various issues involved in contract
management is provided in (Hvitved, 2010).

Linear Temporal Logic (LTL) is a powerful tool
for specifying correctness properties in a model
whether it is for verifying the correctness of the
model, or for the generation of test sequences. How-
ever not all correctness properties can be expressed
using LTL; for example it is not possible to specify
that a particular property will hold for every 3rd or
4th state of the system. Such limitations are discussed
in (Galton, 1987), where extensions to LTL are sug-
gested. In addition, despite the advantages of model
checker based testing, it does have its disadvantages;
building a model of the SUT and describing the re-
quired LTL properties relies heavily on the skills of
the technical person who must also be intimately fa-
miliar with the SUT. The advantages and disadvan-
tages of model checker based testing are discussed in
(El-Far, 2001) where the author provides a practical
guide. Naturally it is difficult to ensure complete cov-
erage of all possible system behaviors during testing
with manually specified LTL properties. Therefore,
it is extremely desirable to be able to systematically
create complete test suites according to some test ob-
jective (Fraser et al., 2009). (Van der Aalst and Pesic,
2006) propose to automate the task of specifying LTL

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

472

properties by means of a graphical language (DecSer-
Flow) that is then mapped into LTL formulas. Using
this language, the designer can specify a set of com-
mon or frequent correctness requirements.

It is worth noting at this point that we are in the
process of developing an LTL Manager component
for our testing framework. The LTL Manager in-
cludes a repository that can be populated with tem-
plates of LTL formulae for common contract related
properties that must be satisfied by all contracts. For
example that a business operation is not simultane-
ously prohibited and obliged at the same time.

Although model checker based testing techniques
have been studied widely in the software engineering
community (Utting and Legeard, 2006) (Pezze and
Young, 2008) (Torsel, 2013), their use in the testing
of a contract monitoring service has received little at-
tention. The principles of model checker based test-
ing of electronic contracts are investigated previously
by us in (Abdelsadiq et al., 2010), however contract
models in this work are built using Promela, the basic
input language of SPIN. Attempting to predict how
a designer would use basic Promela to model a con-
tract is an impossible task, which makes developing
tools for automating the testing process extremely dif-
ficult. An important contribution of this paper is that
we highlight the benefits of developing a tool based
framework that has been tailored specifically to lever-
age the capabilities of a domain specific modelling
tool such as EPROMELA (Abdelsadiq et al., 2011),
which was developed specifically for modeling elec-
tronic contracts.

6 CONCLUSION AND FUTURE
WORK

Ensuring the correct functionality of an electronic
monitoring service such as the contract compliance
checker (CCC), becomes more difficult as the number
of execution sequences that the CCC is expected to
observe increase. We have seen that cloud and Inter-
net based interactions between business partners can
indeed be extremely complex, and this is especially
true when exceptional outcome events from these in-
teractions are taken into consideration. Reproducing
such complex exchanges in order to test the correct
functionality of the CCC is difficult and cannot be
achieved manually. In addition, it is extremely impor-
tant to be able to correct and update the rule base of
the monitoring service rapidly so that interruptions to
the deployed service are reduced as much as possible.

In order to address these issues, we have presented
a model checker based framework that includes tools

to automate the testing process. By using the SPIN
model checker in combination with EPROMELA, a
high level modeling language designed specifically
for modeling electronic contracts, we can build ver-
ified models that accurately resemble the System Un-
der Test (SUT) with relative ease. By using appropri-
ate LTL formulae within an EPROMELA model, we
can instrument SPIN to automatically produce con-
tract compliant, and none contract compliant execu-
tion sequences that are capable of exhaustively testing
the correct operation of the CCC. In addition, we have
presented a new and enhanced architecture and im-
plementation of the CCC, with an additional Presen-
tation Layer that exposes the CCC as a web service.
An important feature is that the Presentation Layer
includes a Drools editing and upload service that en-
ables dynamic update of the electronic contract rules
at runtime.

There are a number of future research directions
which we are currently exploring. Drools, the lan-
guage we use for specifying electronic contracts is
verbose, and not as declarative and readable as would
be ideal. We have developed a contract specifica-
tion language called EROP (for Events, Rights, Obli-
gations, and Prohibitions) (Strano et al., 2009), and
are in the process of completing a tool for translat-
ing EROP to Drools. Also we would like to enhance
the CCC, which currently acts as a passive monitor,
with the capability to act as a contract enforcer. The
aim of a contract enforcement service would be to en-
sure that an operation is executed only if it is contract
compliant.

An important item for future work is to conduct
experiments in order to determine how the presented
testing framework performs as the number of possi-
ble events increases. The verification and testing of
the CCC can be further automated in several ways;
in addition to the development of the LTL Man-
ager component discussed in Section 5, we would
like to create a translation tool that can produce an
EPROMELA model from an electronic contract spec-
ification written in EROP automatically. This would
reduce the risk of introducing unwanted errors into
the contract model during construction. We believe
that this goal is achievable because of the semantic
similarities between EPROMELA and the electronic
contracting concepts within the CCC.

REFERENCES

Abdelsadiq, A., Molina-Jimenez, C., and Shrivastava, S.
(2010). On model checker based testing of electronic
contracting systems. In IEEE International Confer-

Dynamic�Testing�and�Deployment�of�a�Contract�Monitoring�Service

473

ence on Commerce and Enterprise Computing (CEC
2010). IEEE.

Abdelsadiq, A., Molina-Jimenez, C., and Shrivastava, S.
(2011). A high level model checking tool for verify-
ing service agreements. In The 6th IEEE International
Symposium on Service-Oriented System Engineering
(SOSE 2011). IEEE.

El-Far, I. K. (2001). Enjoying the perks of model-based
testing. In Proc. of the Software Testing, Analysis, and
Review Conference (STARWEST 2001).

Fraser, G., Wotawa, F., and Ammann, P. (2009). Testing
with model checkers: A survey. Software Testing, Ver-
ification and Reliability, pages 215–261.

Galton, A. (1987). Temporal logics and computer science:
An overview. Academic Press, pages ch. 1, pp. 2748.

Holzmann, G. J. (2003). The Spin model checker: primer
and reference manual. AddisonWesley Professional.

Hvitved, T. (2010). A survey of formal languages for
contracts. In n Fourth Workshop on Formal Lan-
guages and Analysis of ContractOriented Software
(FLACOS10).

Ludwig, H. and Stolze, M. (2003). Simple obligation and
right model (sorm)-for the runtime management of
electronic service contracts. In 2nd Intl Workshop
on Web Services, eBusiness, and the Semantic Web
(WES03) LNCS, volume 3095, pages 62–76.

Molina-Jimenez, C. and Shrivastava, S. (2013). Establish-
ing conformance between contracts and choreogra-
phies. In 15th IEEE Conference on Business Infor-
matics (CBI). 2013, Vienna, Austria: IEEE Computer
Society. IEEE.

Molina-Jimenez, C., Shrivastava, S., and Cook, N. (2007).
Implementing business conversations with consis-
tency guarantees using message-oriented middleware.
In IEEE 11th Intl Enterprise Computing Conf. (EDOC
07), pages 51–62.

Molina-Jimenez, C., Shrivastava, S., Solaiman, E., and
Warne, J. (2003). Contract representation for run-
time monitoring and enforcement. In 2003 IEEE In-
ternational Conference on E-Commerce (CEC 2003).
IEEE.

Molina-Jimenez, C., Shrivastava, S., and Strano, M. (2009).
Exception handling in electronic contracting. In IEEE
Conference on Commerce and Enterprise Computing
(CEC). 2009, Vienna, Austria. IEEE.

Molina-Jimenez, C., Shrivastava, S., and Strano, M. (2012).
A model for checking contractual compliance of busi-
ness interactions. IEEE TRANSACTIONS ON SER-
VICES COMPUTING, 5(2):276–289.

Molina-Jimenez, C., Shrivastava, S., and Wheater, S.
(2011). An architecture for negotiation and enforce-
ment of resource usage policies. In IEEE Interna-
tional Conference on Service Oriented Computing &
Applications (SOCA). IEEE.

OASIS (2006). ebXML Business Process Specifi-
cation Schema Technical Specification v2.0.4.
Available: http://docs.oasis-open.org/ebxml-
bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf.

OMG (2011). Documents associated with business

process model and notation (bpmn) version 2.0.
http://www.omg.org/spec/BPMN/2.0/.

Pezze, M. and Young, M. (2008). Software Testing and
Analysis: Process, Principles and Techniques. Wiley.

RedHat (2013). ”Drools”. http://www.drools.org/.
RedHat (2014). JBoss Enterprise Application Platform

v 6.3. http://www.redhat.com/en/technologies/jboss-
middleware/application-platform.

Solaiman, E., Molina-Jimenez, C., and Shrivastava, S.
(2003). Model checking correctness properties of
electronic contracts. In International Conference on
Service Oriented Computing (ICSOC03). Springer.

Strano, M., Molina-Jimenez, C., and Shrivastava, S. (2008).
A rule-based notation to specify executable electronic
contracts. In Rule Representation, Interchange and
Reasoning on the Web: International Symposium
(RuleML). Springer-Verlag.

Strano, M., Molina-Jimenez, C., and Shrivastava, S.
(2009). Implementing a rule-based contract compli-
ance checker. In Software Services for e-Business and
e-Society: 9th IFIP WG 6.1 Conference on e-Business,
e-Services and e-Society (I3E). Springer.

Torsel, A.-M. (2013). A testing tool for web applications
using a domain-specific modelling language and the
nusmv model checker. In IEEE Sixth International
Conference on Software Testing, Verification and Val-
idation.

Ungureanu, V. and Minsky, N. H. (2000). Establishing busi-
ness rules for interenterprise electronic commerce. In
14th International Symposium on Distributed Com-
puting (DISC00), pages 179–193.

Utting, M. and Legeard, B. (2006). Practical Model-Based
Testing: A Tools Approach. MorganKaufmann.

Van der Aalst, W. and Pesic, M. (2006). Decserflow: To-
wards a truly declarative service flow language. In
Bravetti M, Nunez M, Zavattaro G (eds) International
Conference on Web Services and Formal Methods
(WS-FM 2006), volume 4184, pages 1–23. Lecture
Notes in Computer Science Springer-Verlag.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

474

ANY2API – Automated APIfication
Generating APIs for Executables to Ease their Integration and Orchestration

for Cloud Application Deployment Automation

Johannes Wettinger, Uwe Breitenbücher and Frank Leymann
Institute of Architecture of Application Systems, University of Stuttgart, Universitätsstraße 38, Stuttgart, Germany

fwettinger, breitenbuecher, leymanng@iaas.uni-stuttgart.de

Keywords: Cloud Computing, DevOps, API, APIfication, Service, Web, REST.

Abstract: APIs are a popular means to expose functionality provided by Cloud-based systems, which are utilized to
integrate and orchestrate application as well as management functionality in a programmatic manner. In the
domain of application management, they are used to fully automate management processes, for example, to
deploy Cloud-based Web applications or back-ends for mobile apps. However, as not all required functionality
is exposed through an API natively, such processes additionally involve a multitude of other heterogeneous
technologies such as scripting languages and deployment automation tooling. Consequently, combining
different technologies in an efficient manner is a complex integration challenge. In this paper, we present a
generic approach for automatically generating API implementations for arbitrary executables such as scripts
and compiled programs, which are not natively exposed as APIs. This APIfication tackles the aforementioned
integration challenges by unifying the invocation of heterogeneous technologies while avoiding the costly and
manual wrapping of existing executables because it does not scale. We further present the modular and extensible
open-source framework ANY2API that implements our APIfication approach. Furthermore, we evaluate the
approach and the framework by measuring the overhead of generating and using API implementations. In
addition, we conduct a detailed case study to confirm the technical feasibility of the approach.

1 INTRODUCTION

A remarkable amount of today’s applications, espe-
cially Web applications as well as back-end systems
and platforms for mobile apps, provide application
programming interfaces (APIs) (Richardson et al.,
2013). The main purpose of an API is to provide
a well-defined and documented interface, which is ex-
posed to access and utilize application functionality
in a programmatic manner. APIs hide and abstract
from implementation-specific details such as invoca-
tion mechanisms and data models inherited from the
technology stack on which a particular application is
built upon. This is the foundation for integrating and
orchestrating different applications and application
components, enabling systematic development and re-
liable operations of distributed applications, mash-up
applications, and mobile apps. Furthermore, APIs
are used to integrate applications with business part-
ners, suppliers, and customers (Rudrakshi et al., 2014).
Even devices can be connected and interconnected to
enable the Web of things (Guinard et al., 2010). Tech-
nically, APIs can be exposed and utilized in different

forms. Both (i) libraries that are bound to a particu-
lar programming language and (ii) language-agnostic
Web services, e.g., Web-based RESTful APIs (Richard-
son et al., 2013; Masse, 2011) or WSDL/SOAP-based
services (W3C, 2007) are widespread forms of pro-
viding and using APIs. Popular providers such as
Twitter, GitHub, Facebook, and Google offer such li-
braries1 and Web services2. However, libraries and
Web services are not mutually exclusive, meaning li-
braries often use Web services in the background, but
adding an additional layer of abstraction to seamlessly
integrate with the programming model of the corre-
sponding language. Consequently, Web APIs are a
platform-independent and language-agnostic means
for integration and orchestration purposes, optionally
enhanced by additional language-specific libraries. Re-
garding the terminology used in this paper, we consider
a Web API as one particular kind of API. The use cases,
examples, and implementations discussed in this paper
mostly focus on Web APIs. However, the concepts

1Google APIs client libraries: http://goo.gl/uVvFf
2Google Compute Engine API: http://goo.gl/cj0BGl

475

and methods are suitably generic to be applied to other
kinds of APIs, too.

The number of publicly available Web APIs is con-
stantly growing3. As of today, the API directory Pro-
grammableWeb4 lists more than 12000 APIs. Popular
providers such as Google, Facebook, and Twitter are
serving billions of API calls per day5. These statistics
underpin the importance and relevance of APIs. Exist-
ing literature (Masse, 2011; Richardson et al., 2013)
and frameworks such as Hapi6 (Node.js) and Jersey7

(Java) provide holistic support, best practices, and tem-
plates for building Web APIs. While this is state of
the art for creating Web applications and back-ends for
mobile apps, Web APIs as a platform-independent and
language-agnostic means for integration and orches-
tration purposes are heavily utilized for automating
the deployment and management of Cloud applica-
tions (Mell and Grance, 2011; Wettinger et al., 2014a),
which leads to significant cost reductions and enables
applications to scale: Cloud providers offer manage-
ment APIs that can be programmatically used in a
self-service manner, e.g., to provision virtual servers,
deploy applications using platform services, or to con-
figure scaling and network properties.

However, because such management APIs typi-
cally provide basic functionality only, they have to
be combined with further configuration management
systems to realize non-trivial deployment scenarios: a
huge number of reusable artifacts such as scripts (e.g.,
Chef cookbooks (Nelson-Smith, 2013), Juju charms8,
Unix shell scripts) and templates like Docker container
images (Turnbull, 2014) are shared by open-source
communities to be reused in conjunction with provider-
supplied services. While APIs can be orchestrated
easily due to well-known and common protocols (e.g.,
HTTP), the technical integration with these different
artifacts and heterogeneous management systems is a
very error-prone, time-consuming, and complex chal-
lenge (Wettinger et al., 2014a). Thus, to build, deploy,
and manage non-trivial Web applications, it is of vi-
tal importance to handle the invocation of different
artifacts, technologies, and service providers in a tech-
nically uniform manner to focus on the orchestration
level, neglecting lower-level technical differences.

Unfortunately, many of these individual artifacts
are executables that cannot be utilized through an
API without a central middleware component (Wet-
tinger et al., 2014a) such as a service bus that (a) maps

3ProgrammableWeb statistics: http://goo.gl/2eQ01o
4ProgrammableWeb: http://www.programmableweb.com
5ProgrammableWeb calls per day: http://goo.gl/yhgyyW
6Hapi: http://hapijs.com
7Jersey: http://jersey.java.net
8Juju charms: https://manage.jujucharms.com/charms

generic API calls into executable-specific invocations,
(b) translates inputs and results of the invocation, and
(c) makes them available through an API endpoint.
However, this central middleware approach comes
with three major drawbacks: (i) the individual artifacts
are not packaged with their API to be utilized at run-
time and, thus, they are not self-contained; (ii) in order
to utilize the executables through an API, a central mid-
dleware component is inevitably required in addition
to the individual artifacts to be invoked which results
in additional costs and maintenance effort; (iii) in case
a new kind of executable comes in, the central mid-
dleware has to be adapted, extended, and redeployed
accordingly with potential risks such as downtime,
functional failures, and unintended side effects. Today,
this is nothing exceptional because open-source com-
munities constantly share new kinds of artifacts such
as Chef cookbooks, Juju charms, and Docker container
images to name a few examples from the domain of
application deployment automation.

The main goal of our work is overcome these draw-
backs by introducing an automated approach to gener-
ate API implementations (APIfication) that are packa-
ged including the corresponding artifacts such as the
executable and all its dependencies in a portable man-
ner. This makes them truly self-contained without de-
pending on a central middleware. The generated API
implementations simplify the orchestration of different
kinds of artifacts and their integration with existing
provider-hosted APIs. Therefore, the major contribu-
tions of this paper are as follows: (i) We present an
automated APIfication method, respecting the require-
ments we derived from a use case and motivating sce-
nario in the field of Cloud computing and deployment
automation. (ii) We introduce an APIfication frame-
work to implement the method we presented before
and provide a prototype implementation to demon-
strate the feasibility. (iii) We validate the proposed
APIfication approach using a prototype implementa-
tion and perform an evaluation to analyze the effi-
ciency of our approach. (iv) We conduct a case study
in the field of deployment automation and discuss fur-
ther use cases of the APIfication approach in other
fields such as e-science.

The remainder of this paper is structured as follows:
Section 2 describes the problem statement, including a
use case and motivating scenario in the field of deploy-
ment automation. Based on the generic APIfication
method presented in Section 3, we propose and discuss
an APIfication framework in Section 4. Our prototype
implementation ANY2API as well as its validation and
evaluation are discussed in Section 5. Moreover, we
present a case study in that section. Section 6 outlines
further use cases to apply our APIfication approach.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

476

Finally, Section 7 and Section 8 discuss related work,
future work, and conclude the paper.

2 PROBLEM STATEMENT & USE
CASE

As discussed in Section 1, APIs serve as a platform-
independent and language-agnostic means for inte-
gration and orchestration purposes. There are sev-
eral frameworks based on different programming lan-
guages and technology stacks established to develop
APIs, especially Web APIs. However, an individual
API still needs to be implemented manually using
these development frameworks. While this is state
of the art for creating new applications such as Web
applications or back-ends for mobile apps, for some
use cases the individual development of an API is not
feasible or even impossible. This is due to scaling
issues (e.g., creating APIs for a huge amount of indi-
vidual executables) or missing expertise, meaning the
person, who needs to utilize certain functionality is
not able to develop a corresponding API. In the fol-
lowing we discuss an important use case that requires
API implementations to be generated in an automated
manner.

2.1 Use Case: Deployment Automation

A major use case originates in the DevOps community
(Hüttermann, 2012), proposing the implementation
of fully automated deployment processes to enable
continuous delivery of software (Humble and Farley,
2010; Wettinger et al., 2014b). This is the founda-
tion for rapidly putting changes, new features, and
bug fixes into production. Especially users and cus-
tomers of Cloud-based Web applications and mobile
apps expect fast responses to their changing and grow-
ing requirements. Thus, it is a competitive advantage
to implement automated processes to enable fast and
frequent releases (Hüttermann, 2012). As an exam-
ple, Flickr performs more than 10 deployments per
day9; HubSpot with 200-300 deployments per day
goes even further10. This is impossible to achieve
without highly automated deployment processes. The
constantly growing DevOps community supports the
implementation of automated processes by providing a
huge variety of individual approaches such as tools and
artifacts to implement holistic deployment automation.
Reusable executables such as scripts, configuration
definitions, and templates are publicly available to

9Flickr deployments per day: http://goo.gl/VEmVqE
10HubSpot deployments per day: http://goo.gl/4AQy1h

Deployment	
Automa.on	 Approach	

Image	 /	
Snapshot	

Executable	 Toolkit	 API	

Provider-‐
hosted	

Self-‐
hosted	

Script	 /	
Conf.	 Def.	 Workflow	

AMI	 Juju	
Charm	

Docker	
Image	

Chef	
Cookbook	

……	
…	

…	 …	

…	
Compiled	 Interpreted	

…	
…	

Cloud-‐
Stack	 API	 Google	

Cloud	 API	

Open-‐
Stack	 API	 Amazon	

EC2	 API	

Figure 1: Deployment automation classification.

be used for deployment automation. Juju charms and
Chef cookbooks are examples for these (Nelson-Smith,
2013; Sabharwal and Wadhwa, 2014). Such executa-
bles usually depend on certain tools. For instance,
Chef cookbooks require a Chef runtime, whereas Juju
charms need a Juju environment. This makes it chal-
lenging to reuse different kinds of heterogeneous ar-
tifacts in combination with others. Especially when
systems have to be deployed that consist of various
types of components, typically multiple tools have to
be combined because they focus on different kinds of
middleware and application components. Thus, there
is a variety of solutions and orchestrating the best of
them requires to integrate the corresponding tools, e.g.,
by writing scripts that handle the underlying lower-
level invocations, parameter passing, etc. However,
this is a difficult, costly, and error-prone task as many
of the executables cannot be utilized through an API
without relying on a central middleware component.
Consequently, all artifact- and tooling-specific details
(invocation mechanism, rendering input and output,
etc.) have to be known and considered when integrat-
ing and orchestrating different kinds of executables.
We tackle these issues with our work presented in this
paper by generating APIs for individual executables.
The generated APIs hide and abstract from artifact-
and tooling-specific details, thereby significantly sim-
plifying the integration and orchestration of very dif-
ferent kinds of artifacts.

Figure 1 shows an initial classification of deploy-
ment automation approaches. Executables are catego-
rized in compiled and interpreted artifacts. Examples
for compiled executables are pre-built virtual machine
snapshots and container images such as Amazon ma-
chine images (AMI)11 or Docker container images12.

11AMIs: http://goo.gl/S1Zx8Q
12Docker Hub Registry: https://registry.hub.docker.com

ANY2API�-�Automated�APIfication�-�Generating�APIs�for�Executables�to�Ease�their�Integration�and�Orchestration�for
Cloud�Application�Deployment�Automation

477

In contrast to those, scripts and configuration defini-
tions such as Chef cookbooks and Juju charms are in-
terpreted at runtime. Beside executables, existing APIs
can be utilized in two flavors: (i) provider-hosted APIs
are offered by Cloud providers to provision virtual
servers, storage, and other resources; (ii) self-hosted
APIs are offered, e.g., by open-source Cloud man-
agement platforms such as OpenStack (Pepple, 2011).
Our work focuses on transforming existing individ-
ual executables into self-hosted APIs by generating
corresponding API implementations. As a result, full
deployment automation can be achieved by integrating
and orchestrating provider-hosted and self-hosted APIs
without considering the tooling- and artifact-specific
details of different kinds of executables. Moreover,
this approach broadens the potential variety of tools
and artifacts because their implementation-specific dif-
ferences are completely hidden by using the generated
API implementations.

Technically, the integration and orchestration of
generated and existing APIs can be implemented us-
ing arbitrary scripting languages such as JavaScript,
Ruby, or Python; alternatively, service composition
languages such as BPMN (OMG, 2011) or BPEL (OA-
SIS, 2007) may be used. For scripting languages,
provider-independent and provider-specific toolkits are
available to implement deployment plans that orches-
trate and integrate different APIs. Examples are fog13

and Google’s API libraries14. Furthermore, general-
purpose libraries to interact with different kinds of Web
APIs are available for all major scripting languages:
restler (JavaScript)15, node-soap (JavaScript)16, rest-
client (Ruby)17, Savon (Ruby)18, etc.

2.2 Motivating Scenario: Facebook App

Considering the deployment automation use case dis-
cussed before, this section presents a comprehensive
example as motivating scenario: the automated de-
ployment of a Cloud-based Facebook application. The
structure and parts of the application are shown in Fig-
ure 2. A canvas frame19 is used to create and embed a
corresponding application on the Facebook platform.
The canvas URL points to an externally hosted Web
application that is run based on a PHP runtime en-
vironment. It provides both the user interface and
the underlying application logic. The PHP runtime

13fog: http://fog.io
14Google APIs Client Libraries: http://goo.gl/uVvFf
15restler: https://github.com/danwrong/restler
16node-soap: https://github.com/vpulim/node-soap
17rest-client: https://github.com/rest-client/rest-client
18Savon: http://savonrb.com
19Facebook canvas frame: http://goo.gl/5guKas

Ubuntu	 14.04	 VM	
(Infrastructure)	

Apache	 HTTP	 Server	
(Middleware)	

PHP-‐based	
Web	 ApplicaDon	

	
PHP	

Amazon	 EC2	
(Cloud	 Provider)	

VM	

Amazon	

hosted	 on	

hosted	 on	

hosted	 on	

Facebook	 App	
(Facebook	 Canvas)	 f	

InstallaDon	 &	
ConfiguraDon	
using	 Chef	
Cookbook	
(SSH/Chef)	

Provisioning	
using	 Amazon	

EC2	 API	
(HTTP/RPC)	

InstallaDon	 &	
ConfiguraDon	
using	 Unix	
Shell	 Scripts	
(SSH/Shell)	

Management	
using	 Facebook	
App	 Dashboard	
for	 Developers	

f	

Figure 2: Facebook application stack.

itself is provided by an Apache HTTP server in con-
junction with a PHP module. Both are deployed on
a virtual machine, running Ubuntu 14.04 as operat-
ing system, which itself runs in the Cloud, hosted on
Amazon’s public infrastructure (EC220). The scenario
covers a typical setting used to deploy and run Web-
based social applications as it employs and combines
modern social media platforms such as Facebook as
well as Cloud infrastructures such as Amazon EC2.
It could be further refined, e.g., by connecting the
Web application to a database that is provided by a
database-as-a-service offering hosted on a different
Cloud infrastructure.

To provision the complete application stack in an
automated manner, different types of interfaces and
invocation mechanisms have to be integrated. The
virtual machine with its operating system is acquired
by using the HTTP/RPC API provided by Amazon
EC2. A Chef cookbook is executed on the virtual ma-
chine through an SSH connection to install the middle-
ware of the application stack (Apache HTTP server).
Furthermore, SSH is used to run custom Unix shell
scripts to install and configure the actual Web appli-
cation. However, remotely running executables such
as Chef cookbooks and Unix shell scripts is not as
straightforward as calling a well-defined API endpoint:
(i) an executable needs to be placed on the virtual ma-
chine, e.g., using file transport protocols such as FTP
and SCP. Moreover, (ii) the executable may require
a particular runtime environment to be installed on
the virtual machine such as a Chef runtime for Chef
cookbooks. An SSH connection can be used to drive

20Amazon EC2: http://aws.amazon.com/ec2

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

478

the installation. Afterward, (iii) the execution of the
scripts needs to be parameterized, which may be done
by setting environment variables or storing configu-
ration files. The final challenge is (iv) retrieving the
results of the invocation, e.g., by reading, parsing, and
potentially transforming the console output or files
that were written to disk. In comparison to a simple
API call, these steps are more complex and error-prone
because lower-level implementation details such as dif-
ferent transport protocols and invocation mechanisms
have to be considered and combined with each other.
The overarching provisioning logic orchestrating all
API calls as well as the preparation and invocation
of the executables could be implemented by a script
using a general-purpose scripting language such as
Ruby or Python. However, such a script would be
polluted with lower-level implementation details such
as establishing SSH connections and placing files on
the virtual machine. Furthermore, service composi-
tion languages such as BPEL or BPMN cannot be
used without manually creating wrapping logic for the
different executables involved. This is due to their
focus on Web service orchestration. Consequently,
the implementation details of the underlying APIs and
executables directly influence which orchestration ap-
proaches can be used. This clearly contradicts with
the idea of loose coupling, i.e., selecting an orches-
tration approach and implementing the orchestration
logic without considering the implementation details
of the underlying, lower-level technologies.

To tackle these challenges we propose an auto-
mated approach to generate APIs for arbitrary executa-
bles. The approach is based on the APIfication method
we present in Section 3. In the context of our motivat-
ing scenario discussed in this section, the approach can
be used to completely wrap the script invocation by
generating an API that hides the (i) placement, (ii) in-
stallation of required runtime environments, (iii) pa-
rameterization and execution of the executable, as well
as (iv) transforming and returning the results. Conse-
quently, the orchestration logic deals with API calls
only, without getting polluted, error-prone, or unnec-
essarily complex because of implementation details of
the underlying executables.

3 APIfication METHOD

The APIfication approach presented in this section is
based on the assumption that each executable has some
metadata associated with it. These metadata are either
natively attached and/or they are explicitly specified
and additionally attached to the executable. Metadata
indicate which input parameters are expected, where

results are put, which dependencies have to be resolved
before the invocation, etc. The main purpose of a gen-
erated API implementation is to enable the invocation
of the corresponding executable through a well-defined
interface, independent from the underlying technology
stack. Furthermore, a generated API implementation
enables the invocation of the corresponding executable
not only locally in the same environment (e.g., same
server), but enables the execution using remote access
mechanisms such as SSH and PowerShell in remote
environments. This is to decouple the environment of
an API implementation instance from the environment
of the actual executable that is exposed by the API. Dis-
tributed environments as they are, for instance, used
in the field of Cloud computing are thereby supported.
An API call could be made from a workstation (run-
ning a script that orchestrates multiple APIs) to an API
implementation instance that is hosted on premises
(e.g., a local server); the actual executable (e.g., a Chef
cookbook to install a middleware component) runs on
a Cloud infrastructure. However, one could also run all
parts on a single machine, e.g., a developer’s laptop.

Figure 3 shows an overview of the APIfication
method, outlining the individual steps and their order-
ing to generate API implementations in an automated
manner. In the first step, the executable targeted for
the APIfication is selected. Then, the interface type
(e.g., RESTful API) and the API implementation type
(e.g., Node.js or Java) is selected (step 2 & 3). The
type of interface including the communication proto-
col (HTTP, WebSocket, etc.) and the communication
paradigm (RPC, REST, etc.) can be chosen when
generating an API implementation. This choice may
be driven by existing expertise, alignment with ex-
isting APIs, or personal preferences. Similarly moti-
vated, the type of the underlying implementation (Java,
Node.js, etc.) for the generated API can be chosen
when generating an API implementation. A generated
API should be language-agnostic to allow the usage of
arbitrary languages (scripting languages, programming
languages, service composition languages, etc.) to or-
chestrate and integrate different APIs. Thus, Web APIs
are the preferred and universal type of APIs because
they can be utilized in nearly any kind of language.

After the selection part, the executable including
its metadata is scanned to discover input and output
parameters (step 4). If the scan did not discover all
parameters, the following (optional) step can be used
to refine the input and output parameters for the gener-
ated API (step 5). However, this is not required if the
metadata associated with the executable are sufficient
as this is, e.g., the case for many open-source deploy-
ment automation artifacts such as Chef cookbooks and
Juju charms. Consequently, the method can be applied

ANY2API�-�Automated�APIfication�-�Generating�APIs�for�Executables�to�Ease�their�Integration�and�Orchestration�for
Cloud�Application�Deployment�Automation

479

Select	 type	 of	
interface	 Select	 executable	 Select	 type	 of	 API	

implementa6on	 Scan	 executable	

Specify	 &	
refine	 in-‐/output	

parameters	

Generate	 API	
implementa6on	

Package	 API	
implementa6on	
with	 executable	

Test	 &	 use	
packaged	 API	

implementa6on	

Op#onal,	 manual	

1	 2	 3	 4	

5	 6	 7	 8	

Figure 3: APIfication method.

to a huge amount and variety of such artifacts in an
automated manner. Then, the API implementation is
generated (step 6). To enable an API implementation
to be hosted in different environments, it must be pa-
ckaged in a portable manner (step 7). Thus, the imple-
mentation must be self-contained without depending
on central middleware components, which dynami-
cally provide data format transformations, parameter
mappings, etc. at runtime. All these and related func-
tionality are incorporated in the API implementation
when it is generated at build time. The portability
aspect is key for automated deployment processes be-
cause they need to run in very different environments
(development, test, production, etc.). These environ-
ments may be hosted on different infrastructures (de-
veloper laptop, test cloud, etc.), so portability of the
generated API implementations is key in this context.
Technically, containerization technology (Scheepers,
2014; Turnbull, 2014) may be utilized for this purpose:
each API implementation gets packaged as a portable
container image that can be instantiated in different
environments.

Later, the generated implementation may be re-
fined or updated by going back to the selection steps
for the interface type and the API implementation type.
The APIfication method presented in this section ad-
dresses the challenges we identified in Section 2, in-
cluding the deployment automation use case and the
motivating scenario. However, the method itself is still
abstract and can be implemented in various ways. The
following section presents a modular and extensible
framework to implement the APIfication method.

4 APIfication FRAMEWORK

In order to implement the APIfication method intro-
duced in Section 3, we present a modular, plugin-
based, and extensible framework in this chapter to
support the individual steps of the method. Figure 4
shows several artifacts organized in multiple registries
that are linked to the steps of the method, associated
with certain actions (check, use, create). When se-

lecting an executable for its APIfication, the available
invokers are checked (action A) if there is at least
one invoker available that is capable of running the
given type of executable (e.g., a Chef cookbook). Fig-
ure 5 outlines the registry, in which the invokers are
stored: each invoker supports at least one executable
type. For instance, the Cookbook Invoker can be used
to run Chef cookbooks. The generator registry (Fig-
ure 6) is checked (action B) when selecting the inter-
face type and the API implementation type. As an
example, a Chef cookbook may be selected in conjunc-
tion with HTTP+REST as interface type and Node.js
as implementation type. In this case all checks would
succeed because the Cookbook Invoker is available
and the REST API Generator can be used to gener-
ate an HTTP+REST interface; this is possible because
the chosen generator can deal with Node.js as imple-
mentation type. Consequently, the generator uses the
invoker to provide an API implementation that can run
the given Chef cookbook.

Next, the given executable with its metadata is an-
alyzed by a corresponding scanner (action C) from
the scanner registry (structured similarly as invoker
registry) to create an API I/O specification (action D).
A scanner is a specialized module in the framework
that is able to scan executables of a certain type such
as a Chef cookbook scanner to scan cookbooks. Fig-
ure 7 shows an example for a specification (produced
by a scanner) for a MySQL cookbook: it contains the
input and output parameter names, their data types,
and the mapping information to properly map between
API parameters to the executable parameters at run-
time. The mode of a parameter indicates whether this
parameter is used as input or it is used to return some
output of an invocation. Optionally, a default value
can be associated with a parameter, which is used
in case no value is defined at runtime for the corre-
sponding parameter. In case the data type is object,
a schema definition, e.g., XML schema (World Wide
Web Consortium (W3C), 2012) or JSON schema (In-
ternet Engineering Task Force, 2013) can be attached
to the parameter. This is to specify the expected data
structure for values (objects) of a particular parame-
ter in more detail. The mapping of parameters spec-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

480

Select	 type	 of	
interface	 Select	 executable	 Select	 type	 of	 API	

implementa6on	 Scan	 executable	

Generate	 API	
implementa6on	

Package	 API	
implementa6on	
with	 executable	

Test	 &	 use	
packaged	 API	

implementa6on	

Invokers	

API	 Impl.	
Generators	

Scanners	

API	 I/O	 Spec	
(D)	 create	

(B)	 check	
(A)	 check	

(C)	 use	

(F)	 use	
Chef	 Cookbook	

Invoker	
Chef	 Cookbook	

Scanner	

REST	 API	 Java	
Impl.	 Generator	

Specify	 &	
refine	 in-‐/output	

parameters	

Op#onal	

(E)	 use	

(G)	 create	

(H)	 use	

Packaged	
API	 Impl.	

Figure 4: APIfication framework with technical examples.

Invoker Executable Type

Cookbook Invoker Chef Cookbook

Charm Invoker Juju Charm

Docker Invoker Docker Image

Dockerfile

…

Figure 5: Invoker registry.

ifies the target for input parameters and the source
for output parameters at runtime. To refer to Fig-
ure 7: the API parameter version is mapped to the
Chef attribute mysql/version, whereas the console
output of the executable (STDOUT) is mapped to the
API parameter logs. Optionally, the specification can
be refined manually in the following step, which is
not required if the executable’s metadata is sufficient.
The invoker config parameter (mapped to the envi-
ronment variable INVOKER CONFIG) is a special one,
provided by the framework; it cannot be modified
or deleted during the (optional) manual refinement
step. The parameter is used to configure the under-
lying invoker itself when using the generated API
to run the executable. This is, for instance, needed
to support remote access mechanisms, enabling the
execution in remote environments. As an example
the invoker config parameter can hold the follow-
ing JSON object to use SSH to run the executable
remotely:

{
"remote_access": "ssh",
"remote_host": "173.194.44.88",
"ssh_user": "ubuntu",
"ssh_key": "-----BEGIN RSA PRIVATE KEY ..."

}

This sample configuration (given at runtime and
transparently forwarded to the invoker) triggers the in-
vocation of the underlying executable on the machine

Generator Interface Type Implementation Type

REST API Generator HTTP+REST Java

HTTP+REST Node.js

HTTP+REST Ruby

SOAP/WSDL API Gen. HTTP+WSDL+SOAP Java

HTTP+WSDL+SOAP Node.js

JSON-RPC API Gen. HTTP+JSONRPC Java

Node.js JSON-RPC API Gen. HTTP+JSONRPC Node.js

…

Figure 6: Generator registry.

Param. Name Mode Data Type Default Param. Mapping

version in string “5.1” CHEF_ATTR:mysql/version

port in number 3306 CHEF_ATTR:mysql/port

logs out string – STDOUT

…

invoker_config in object – ENV:INVOKER_CONFIG

Figure 7: API I/O spec for MySQL cookbook.

associated with the given IP address (remote host)
through SSH. Beside the special invoker config pa-
rameter, the API I/O specification tells the correspond-
ing generator how to create a proper API implemen-
tation (action E). A generator is a specialized mod-
ule that performs the actual work to generate an API
implementation. One part of the generation process
is to put the corresponding invoker into the gener-
ated API implementation. The invoker is provided
by the invoker registry to run the given executable
(action F). Finally, the API implementation is packa-
ged with the executable in a self-contained manner
(action G). With this, the APIfication procedure for
the given executable is finished, so the generated and
packaged API implementation can be tested and used
(action H). Figure 8 outlines the structure of a gener-
ated and packaged API implementation: the invoker
(e.g., the cookbook invoker) is retrieved from the in-

ANY2API�-�Automated�APIfication�-�Generating�APIs�for�Executables�to�Ease�their�Integration�and�Orchestration�for
Cloud�Application�Deployment�Automation

481

API Impl. Package
(e.g., Docker Container Image)

API Endpoint
(e.g., HTTP+REST)

Invoker
(e.g., Cookbook Invoker)

Executable
(e.g., MySQL Cookbook)

Generated by
API Impl.
Generator

Specified by
API I/O Spec

Generated by
Scanner

Included from
Invoker Registry

Selected
Executable

Figure 8: Generated API implementation package.

voker registry to invoke the selected executable such
as the MySQL cookbook at runtime. The API end-
point is specified by the API I/O specification, which
itself is generated by a scanner module provided by the
framework. A generator module uses the specification
to generate the implementation of the API endpoint.
Finally, all parts are packaged in a self-contained man-
ner, e.g., in a Docker container image. The following
Section 5 presents the validation and evaluation of
the APIfication method and framework we discussed
in Section 3 and this section, based on a prototype
implementation we provide.

5 VALIDATION & EVALUATION

In order to evaluate our APIfication method and frame-
work, we developed ANY2API21 as a prototype imple-
mentation. The following Section 5.1 presents and
discusses the implementation. We performed experi-
ments to measure the overhead both at build time and
runtime (Section 5.2). Finally, Section 5.3 presents a
comprehensive case study in the field of deployment
automation.

5.1 ANY2API Implementation

ANY2API is a modular and extensible implementation
of the APIfication framework presented in Section 4.
Technically, it is based on Node.js, so most parts of it
are implemented in JavaScript. Therefore, we use the
Node Package Manager (NPM)22 and the associated
NPM registry to manage and publish Node.js modules.
However, this does not imply that all parts of the frame-
work have to be implemented in JavaScript. As an
example, invoker modules expose several scripts that
can (but do not have to) be implemented in JavaScript.
Technically, these are specified as NPM scripts23 in

21ANY2API: http://any2api.org
22NPM: https://www.npmjs.org
23NPM scripts: http://goo.gl/0ss4NL

the package.json file of a module:
"scripts": {
"prepare-executable": "node ./prep-exec.js",
"prepare-runtime": "sh ./prep-runtime.sh",
"start": "java -jar ./invoke.jar"

}

Such a script can then be called using the npm run
command, e.g., to trigger an invocation of an exe-
cutable that is packaged with a generated API imple-
mentation: npm run start. This command is exe-
cuted by the generated API implementation, which
itself can be of an arbitrary implementation type such
as a JAR file (Java) or a Node.js module (JavaScript).
Moreover, the API implementation needs to set prede-
fined environment variables before running the script
such as PARAMETERS to parameterize the invocation ac-
cordingly. These environment variables contain JSON
objects that are parsed and processed by the invoker.
As an example, the input parameters for invoking a
MySQL cookbook may be rendered as follows:
{ "version": "5.1", "port": 3306 }

At build time (i.e., when generating an API imple-
mentation) the prepare-executable script is trig-
gered to prepare the packaged executable. Such
preparations may include resolving all dependencies
of a particular executable to package the executable
in a truly self-contained manner. At runtime (i.e.,
when an invocation of the executable is triggered) the
prepare-executable script is executed before the
start script to install prerequisites required for the
invoker to run such as a Java runtime environment.

Generators and scanners are implemented as
Node.js modules, too. Each generator module ex-
poses a generate function to produce an API im-
plementation based on the given API I/O specifica-
tion. Each scanner module exposes a scan function,
which analyzes the given executable to generate an API
I/O specification. This specification (after optional,
manual refinement) can then be used in conjunction
with a generator to produce an API implementation.
To actually use and interact with the framework, the
any2api-cli24 module provides a command-line in-
terface (CLI) to scan executables as well as to generate
packaged API implementations:
any2api -o ./mysql_spec scan ./mysql_cookbook
any2api -o ./api_impl gen ./mysql_spec

The first command scans an existing Chef cook-
book, generating an API I/O specification. Based on
this specification, the second command generates a
corresponding API implementation. By default, a
Node.js-based API implementation exposing a REST-
ful interface is generated. A Dockerfile25 (build plan

24any2api-cli: https://github.com/any2api/any2api-cli
25Dockerfile reference: http://goo.gl/p5Tfdz

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

482

to create a self-contained and portable container im-
age) is included in each generated API implementation.
Consequently, Docker can be used to create API im-
plementation packages. Moreover, public and private
Docker registries26 can be utilized to store, manage,
and retrieve potentially different versions of pre-built
API implementations. Following this approach, a huge
variety of existing tools that are part of the Docker
ecosystem can be used to manage instances of gener-
ated API implementations. As an example, CoreOS27

may be utilized to host API implementations in a man-
aged cluster of Docker containers.

Currently, two scanner modules are implemented
for analyzing Chef cookbooks and Juju charms. The
Chef invoker module enables the invocation of Chef
cookbooks, both in local and remote environments
using SSH transparently. Using the REST generator
module, Node.js-based RESTful API implementations
can be generated. Further modules are currently being
developed such as a Juju invoker, a Docker invoker,
a Docker scanner, as well as alternative generators
to support different type of interfaces (SOAP/WSDL,
JSON-RPC, XML-RPC, etc.) and alternative imple-
mentation types (Java, Ruby, etc.).

5.2 Measurements

In order to evaluate the efficiency of our approach
compared to the plain usage of the corresponding exe-
cutable, we measured the overhead of the APIfication.
Therefore, we generated API implementations for a se-
lection of the most downloaded Chef cookbooks28,
covering the automated installation and configura-
tion of very common and widely used middleware
components, including mysql, apache2, php, nginx,
postgresql, and others. As an example, apache2
and php are required for the automated deployment
of the Facebook application we outlined in the mo-
tivating scenario (Section 2.2). First, we measured
the overall duration it takes to scan the executable
(Chef cookbook) and to generate a corresponding API
implementation (Node.js-based RESTful API). Sec-
ond, we check the additional size of the generated
API implementation without the corresponding exe-
cutable. This is to estimate the disk space that is ad-
ditionally required at runtime when using an instance
of an API implementation. Third, we measured the
execution duration and memory usage for running the
corresponding executable both with and without using
the generated API implementation. The evaluation
was run on a clean virtual machine (4 virtual CPUs

26Docker registry: http://goo.gl/2lgohL
27CoreOS: https://coreos.com
28Most downloaded cookbooks: http://goo.gl/8xZUCT

clocked at 2.8 GHz, 64-bit, 4 GB of memory) on top
of the VirtualBox hypervisor, running a minimalist
Linux system including Docker. The processing and
invocation of a particular Chef cookbook was done in
a clean Docker-based Ubuntu 14.04 container, with
exactly one container running on the virtual machine
at a time. We did all measurements at container level
to completely focus on the workload that is linked to
the executable and the API implementation.

Table 1 shows the results of our evaluation. The
measured average duration to scan and generate an API
implementation is in the range from 7 to 90 seconds.
This duration is the overhead at build time, including
the retrieval of the executable and all its dependencies.
The additional size of the generated API implementa-
tion leads to slightly more disk space usage at runtime.
Moreover, there is a minor overhead in terms of exe-
cution duration and memory consumption at runtime.
In most of today’s environments this overhead should
be acceptable, considering the significant simplifica-
tion of using the generated APIs compared to the plain
executables. In addition, when using the plain executa-
bles directly, much of the complexity hidden by the
generated API implementation has to be covered at
the orchestration level. So, the overall consumption of
resources may be the same or even worse, depending
on the selected means for orchestration. Furthermore,
instances of API implementations can be reused to
run an executable multiple times and potentially in
different remote environments. Through this reuse, the
overhead can be quickly compensated in large-scale
environments.

5.3 Deployment Automation Case Study

We used the presented APIfication approach to ease im-
plementing and generating workflows for the deploy-
ment of Cloud applications based on the OpenTOSCA
ecosystem (Binz et al., 2013; Kopp et al., 2013). This
ecosystem is based on the TOSCA standard (Binz
et al., 2014), which enables describing Cloud applica-
tions and their management in a portable fashion. To
define management tasks imperatively, e.g., to migrate
application components, the ecosystem employs man-
agement plans based on the workflow language BPEL
(OASIS, 2007). Therefore, the orchestration of man-
agement scripts, APIs, and other executables is a major
challenge. The presented APIfication approach eases
developing management workflows significantly as it
reduces the required effort and complexity of integrat-
ing different technologies. Using our approach, model-
ing management workflows requires the orchestration
of APIs only, which is much more straightforward
compared to the former integration of various hetero-

ANY2API�-�Automated�APIfication�-�Generating�APIs�for�Executables�to�Ease�their�Integration�and�Orchestration�for
Cloud�Application�Deployment�Automation

483

Table 1: Measurements regarding generated API implementations for Chef cookbooks.

mysql apache2 java nginx zabbix glassfish postgresql php ...

Avg. duration to scan 13s 14s 7s 25s 90s 17s 16s 29s

and generate API impl.

Add. size of generated 25M 25M 25M 25M 25M 25M 25M 25M

API implementation

Avg. execution duration 54s 48s 84s 45s 47s 153s 60s 123s

with API impl.

Avg. execution duration 54s 39s 82s 39s 42s 140s 59s 110s

without API impl.

Max. memory usage 556M 471M 507M 461M 429M 674M 510M 614M

with API impl.

Max. memory usage 343M 258M 402M 270M 212M 456M 310M 426M

without API impl.

geneous technologies. Combined with the generated
APIs for Chef cookbooks as discussed in Section 5.2,
the integration of both the ecosystem and our APIfica-
tion approach provides a powerful means to enable a
fast development of management workflows for Cloud
applications.

6 FURTHER USE CASES

Beside the deployment automation use case (Section 2)
we were focusing so far, we identified further use cases
to apply our APIfication approach presented in this
paper. In the cyberinfrastructure & e-science com-
munity (Yang et al., 2011) scientific applications are
utilized, orchestrated, and run in Grid and Cloud en-
vironments to perform complex and CPU-intensive
calculations such as scientific simulations and other
experiments. These applications are implemented in
arbitrary programming or scripting languages; they
are usually run as executables directly. Consequently,
they cannot be directly utilized through APIs. Ex-
isting works focus on the usage of scientific appli-
cations through Web APIs (Afanasiev et al., 2013;
Sukhoroslov and Afanasiev, 2014) to ease their inte-
gration and orchestration for more sophisticated ex-
periments, where multiple scientific applications are
involved. As an example, Opal (Krishnan et al., 2009)
is a framework for wrapping scientific applications,
so they can be used through a Web API, abstracting
from the application-specific details and differences
such as invocation mechanisms and parameter pass-
ing. We tackle these challenges with our work by
generating API implementations and packaging them
together with the actual scientific application, i.e., the
executable. This eases the integration and orchestra-

tion of different scientific application through Web
APIs, without having to create API wrappers manu-
ally from scratch. As a result, running complex ex-
periments that involve several scientific applications
becomes easier.

In the previously described use cases of deploy-
ment automation and e-science, we implicitly assumed
an executable to be an individual file or a collection
of files (scripts, compiled executables, scientific ap-
plications, etc.). However, existing API endpoints as
they are, e.g., exposed by provider-hosted Cloud APIs
and social media APIs (Facebook29, Twitter30, etc.)
can be considered as executables, too. This is moti-
vated by the need for wrapping existing API endpoints
to make them available through different communi-
cation protocols (e.g., wrap WebSocket by HTTP) or
communication paradigms (e.g., wrap RPC by REST).
As an example, Twitter provides the users/show end-
point31 to retrieve a variety of information about a
particular Twitter user. If this API endpoint needs to
be utilized in a deployment workflow implemented
in BPEL, a wrapper has to be implemented to make
the endpoint accessible through a WSDL/SOAP-based
interface (Wettinger et al., 2014a). By treating API
endpoints as executables, API implementations could
potentially be generated for existing endpoints to make
them accessible through different protocols and com-
munication paradigms, without relying on central mid-
dleware components such as a service bus.

29Facebook Graph API: http://goo.gl/HKGpZG
30Twitter REST API: https://dev.twitter.com/rest
31Twitter users/show API endpoint: http://goo.gl/dmsJ22

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

484

7 RELATED WORK

As discussed in Section 1 and Section 2, using and
creating APIs is of utmost importance today (Rudrak-
shi et al., 2014). Consequently, a huge variety of
approaches is available to simplify the creation and
development of APIs. Beside API development frame-
works to create API implementations manually (e.g.,
Hapi32 and LoopBack33), there are solutions to semi-
automatically create Web APIs. As an example, API
specifications defined using the RESTful API Model-
ing Language (RAML)34 can be utilized to generate an
API implementation skeleton based on Jersey35, a Java
framework to develop RESTful APIs (Masse, 2011;
Richardson et al., 2013). These generated skeletons
have to be refined by adding application-specific logic.
Consequently, such approaches can be immediately
used to develop generator modules for our APIfication
framework: the generator produces a skeleton, which
is then automatically refined by adding the logic to
call a corresponding invoker to run the selected exe-
cutable. Moreover, solutions such as Kimono36 and
Import.io37 can be used to generate Web APIs for ex-
isting Web sites. These approaches provide interactive
ways to extract content from HTML pages (e.g., us-
ing CSS selectors) to make them available in more
machine-readable formats such as JSON. Thus, such
Web page-centric approaches focus on extracting and
re-formatting content, whereas our approach tackles
the issue of managing the invocation of arbitrary ex-
ecutables. In contrast to service providers such as
Kimono, our approach aims to generate self-contained,
portable, and packaged API implementations that can
be hosted anywhere, so they do not depend on specific
provider offerings.

RPC frameworks such as Apache Thrift38 and
Google’s Protocol Buffers39 aim to ease the integra-
tion of application logic and executables that are imple-
mented based on different technology stacks. For effi-
ciency reasons, they typically do not rely on Web APIs
but use lower-level TCP connection-based protocols.
Such RPC frameworks can be perfectly combined with
our APIfication approach by implementing generator
modules. In this case, a module generates an API im-
plementation, e.g., exposing a Thrift interface instead
of an HTTP-based RESTful interface. Some of these

32Hapi: http://hapijs.com
33LoopBack: http://loopback.io
34RAML: http://raml.org
35RAML to JAX-RS (Jersey): http://goo.gl/E39jun
36Kimono: https://www.kimonolabs.com
37Import.io: https://import.io
38Apache Thrift: http://thrift.apache.org
39Protocol Buffers: http://goo.gl/uq69p

frameworks offer support to generate code skeletons
based on interface descriptions. This functionality can
be reused to ease the implementation of a correspond-
ing generator module. However, by sticking to such
non-standard communication protocols there are lim-
itations on the orchestration level, meaning the same
framework has to be used instead of interacting with a
standards-based interface such as HTTP/REST. This is
a trade-off between efficiency and interoperability that
needs to be made individually based on concrete use
cases. Since our framework supports both approaches,
different API implementations (e.g., Thrift-based and
HTTP/REST-based) can be generated and exchanged
for a particular executable as needed. In the field of
Web APIs, approaches such as websockify40 and web-
socketd41 can be used to expose the functionality of
executables through the standards-based WebSocket
protocol (IETF, 2011). Corresponding generator mod-
ules can be implemented to reuse these approaches in
the context of our APIfication framework.

8 CONCLUSION

In this paper we introduced an automated APIfication
approach to ease the integration and orchestration of
arbitrary executables. To fulfill the requirements de-
rived from the deployment automation use case and
the motivating scenario, we presented a generic API-
fication method and a corresponding framework to
automatically generate API implementations. In order
to confirm the practical feasibility of the presented
method and framework, we published ANY2API as
a modular and extensible implementation. To ana-
lyze the efficiency of our approach, we conducted an
evaluation with comprehensive measurements. The
measured results show a small overhead when follow-
ing the APIfication approach, which is acceptable for
most use cases, considering the significant simplifica-
tion and convenience that our approach provides. In
addition, we did a case study in the field of deployment
automation to confirm the actual applicability of our
approach in practice. Finally, we outlined additional
use cases in different fields to apply the proposed API-
fication approach.

In terms of future work, we are going to extend
the APIfication framework to support an additional but
optional step to refine the parameter mapping (e.g., ag-
gregating, splitting, or transforming parameter values).
For this reason we intend to enable the definition of
JavaScript functions that are executed in a sandboxed

40websockify: https://github.com/kanaka/websockify
41websocketd: https://github.com/joewalnes/websocketd

ANY2API�-�Automated�APIfication�-�Generating�APIs�for�Executables�to�Ease�their�Integration�and�Orchestration�for
Cloud�Application�Deployment�Automation

485

environment at runtime. Moreover, we plan to extend
and refine the ANY2API implementation. Existing
scanners, generators, and invokers will be refined, and
additional ones will be implemented. As an example,
refinement may include authentication and authoriza-
tion mechanisms for generated API implementations.
The currently implemented generators can be used to
create API implementations that expose Web APIs
such as HTTP/REST. In future, we plan to implement
generators in conjunction with alternative packaging
formats to generate API libraries that can be directly
used in certain programming and scripting languages
such as Java and Python.

ACKNOWLEDGEMENTS

This work was partially funded by the BMWi project
CloudCycle (01MD11023) and the DFG project
SitOPT (610872).

REFERENCES

Afanasiev, A., Sukhoroslov, O., and Voloshinov, V. (2013).
MathCloud: Publication and Reuse of Scientific Appli-
cations as RESTful Web Services. In Parallel Comput-
ing Technologies. Springer.

Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann,
F., Nowak, A., and Wagner, S. (2013). OpenTOSCA –
A Runtime for TOSCA-based Cloud Applications. In
Proceedings of the 11th International Conference on
Service-Oriented Computing, LNCS. Springer.

Binz, T., Breitenbücher, U., Kopp, O., and Leymann, F.
(2014). TOSCA: Portable Automated Deployment and
Management of Cloud Applications, pages 527–549.
Advanced Web Services. Springer.

Guinard, D., Trifa, V., and Wilde, E. (2010). A Resource Ori-
ented Architecture for the Web of Things. In Internet
of Things (IOT), 2010. IEEE.

Humble, J. and Farley, D. (2010). Continuous Delivery: Re-
liable Software Releases through Build, Test, and De-
ployment Automation. Addison-Wesley Professional.

Hüttermann, M. (2012). DevOps for Developers. Apress.
IETF (2011). The WebSocket Protocol.
Internet Engineering Task Force (2013). JSON Schema.
Kopp, O., Binz, T., Breitenbücher, U., and Leymann, F.

(2013). Winery - A Modeling Tool for TOSCA-based
Cloud Applications. In Proceedings of the 11th Inter-
national Conference on Service-Oriented Computing,
volume 8274 of LNCS. Springer Berlin Heidelberg.

Krishnan, S., Clementi, L., Ren, J., Papadopoulos, P., and
Li, W. (2009). Design and Evaluation of Opal2: A
Toolkit for Scientific Software as a Service. In World
Conference on Services I. IEEE.

Masse, M. (2011). REST API Design Rulebook. O’Reilly
Media, Inc.

Mell, P. and Grance, T. (2011). The NIST Definition of
Cloud Computing. National Institute of Standards and
Technology.

Nelson-Smith, S. (2013). Test-Driven Infrastructure with
Chef. O’Reilly Media, Inc.

OASIS (2007). Web Services Business Process Execution
Language (BPEL) Version 2.0.

OMG (2011). Business Process Model and Notation
(BPMN) Version 2.0.

Pepple, K. (2011). Deploying OpenStack. O’Reilly Media.
Richardson, L., Amundsen, M., and Ruby, S. (2013). REST-

ful Web APIs. O’Reilly Media, Inc.
Rudrakshi, C., Varshney, A., Yadla, B., Kanneganti, R., and

Somalwar, K. (2014). API-fication - Core Building
Block of the Digital Enterprise. Technical report, HCL
Technologies.

Sabharwal, N. and Wadhwa, M. (2014). Automation through
Chef Opscode: A Hands-on Approach to Chef. Apress.

Scheepers, M. J. (2014). Virtualization and Containerization
of Application Infrastructure: A Comparison.

Sukhoroslov, O. and Afanasiev, A. (2014). Everest: A Cloud
Platform for Computational Web Services. In Pro-
ceedings of the 4th International Conference on Cloud
Computing and Services Science. SciTePress.

Turnbull, J. (2014). The Docker Book. James Turnbull.
W3C (2007). SOAP Specification, Version 1.2.
Wettinger, J., Binz, T., Breitenbücher, U., Kopp, O., Ley-

mann, F., and Zimmermann, M. (2014a). Unified Invo-
cation of Scripts and Services for Provisioning, Deploy-
ment, and Management of Cloud Applications Based
on TOSCA. In Proceedings of the 4th International
Conference on Cloud Computing and Services Science.
SciTePress.

Wettinger, J., Breitenbücher, U., and Leymann, F. (2014b).
Standards-based DevOps Automation and Integration
Using TOSCA. In Proceedings of the 7th International
Conference on Utility and Cloud Computing (UCC).

World Wide Web Consortium (W3C) (2012). XML Schema.
Yang, X., Wang, L., and Jie, W. (2011). Guide to e-Science.

Springer.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

486

A Modelling Concept to Integrate Declarative and Imperative
Cloud Application Provisioning Technologies

Uwe Breitenbücher1, Tobias Binz1, Oliver Kopp1;2, Frank Leymann1 and Johannes Wettinger1

1IAAS, University of Stuttgart, Stuttgart, Germany
2IPVS, University of Stuttgart, Stuttgart, Germany
fbreitenbuecher, lastnameg@iaas.uni-stuttgart.de

Keywords: Cloud Application Provisioning, Automation, Declarative Modelling, Imperative Modelling.

Abstract: Efficient application provisioning is one of the most important issues in Cloud Computing today. For that
purpose, various provisioning automation technologies have been developed that can be generally categorized
into two different flavors: (i) declarative approaches are based on describing the desired goals whereas (ii) im-
perative approaches are used to describe explicit sequences of low-level tasks. Since modern Cloud-based
business applications become more and more complex, employ a plethora of heterogeneous components and
services that must be wired, and require complex configurations, the two kinds of technologies have to be in-
tegrated to model the provisioning of such applications. In this paper, we present a process modelling concept
that enables the seamless integration of imperative and declarative provisioning models and their technologies
while preserving the strengths of both flavors. We validate the technical feasibility of the approach by applying
the concept to the workflow language BPEL and evaluate its features by several criteria.

1 INTRODUCTION

With the growing adoption of Cloud Computing in
enterprises, the rapid and reliable provisioning of
Cloud applications becomes a more and more impor-
tant task. Especially the increasing number of avail-
able Cloud services offered by providers, e. g., Ama-
zon and Google, provide powerful Cloud properties
such as automatic elasticity, self-service, or pay-per-
use features that are provided completely by the au-
tonomous management capabilities of Cloud environ-
ments (Leymann, 2009). Due to this trend, more
and more business applications are outsourced to the
Cloud (Binz et al., 2014). As a result, Cloud-based
business applications become (i) increasingly com-
plex and (ii) employ a plethora of heterogeneous soft-
ware, middleware, and XaaS components offered by
different providers including non-trivial dependencies
among each other. Consequently, the provisioning
of such applications becomes a serious management
challenge: (i) different kinds of Cloud offerings (IaaS,
PaaS, SaaS, etc.) must be provisioned and (ii) com-
plex configurations are required to setup and wire in-
volved components. This typically requires the com-
bination of multiple management technologies, espe-
cially if the application components are distributed

across multiple Clouds (Breitenbücher et al., 2013).
However, combining (i) proprietary APIs,

(ii) non-standardized configuration management
tools, and (iii) different virtualization technologies
in a single automated provisioning process is a
complex modelling and integration challenge using
traditional approaches such as workflows. The main
reason for this complexity results from the nature of
technologies that have to be combined: There are
declarative technologies, such as Chef (Opscode,
Inc., 2015; Nelson-Smith, 2013) or Puppet (Puppet
Labs, Inc., 2015), which only describe the desired
goal state of application components without specify-
ing the actual tasks that have to be executed to reach
this state. Imperative technologies, e. g., scripts or
workflows, explicitly specify each technical step to
be executed in detail. Although there are technologies
for orchestrating imperative approaches with each
other homogeneously (Kopp et al., 2012), combining
declarative and imperative approaches results in
implementing huge amounts of wrapper code as the
two flavors are hardly interoperable with each other
as there is no means to orchestrate them seamlessly.

In this paper, we tackle these issues. The first
contribution is a detailed state of the art analysis of
declarative and imperative provisioning approaches

487

including a critical evaluation. To tackle the ana-
lyzed issues, we present a modelling approach that
enables integrating declarative and imperative provi-
sioning models and the corresponding technologies
seamlessly. We introduce the concept of Declarative
Provisioning Activities that allows describing declar-
ative goals directly in the control and data flow of an
imperative workflow model. Based on our approach,
developers are able to model provisioning workflows
that specify not only imperative statements but declar-
ative statements as well—without polluting the model
with technical integration details. The approach en-
ables to benefit from the strengths of both flavors:
Declarative models can be used to specify high-level
management goals, whereas imperative logic enables
modelling complex cross-cutting configuration and
wiring tasks on a very low level of technical abstrac-
tion. We validate the technical feasibility of the ap-
proach by presenting a prototypical implementation,
which is integrated in the standards-based Cloud man-
agement ecosystem OpenTOSCA (Binz et al., 2013;
Breitenbücher et al., 2014; Kopp et al., 2013) and the
imperative workflow language BPEL (OASIS, 2007).
We evaluate the approach by several criteria based on
the conducted analysis and discuss its limitations.

The remainder of this paper is structured as fol-
lows: In Section 2, we conduct a detailed analy-
sis regarding declarative and imperative provisioning
technologies as well as combination concepts. Sec-
tion 3 presents our approach of Declarative Provision-
ing Activities, which is validated in terms of a proto-
typical implementation in Section 5 and evaluated in
Section 6. Section 7 concludes the paper and gives an
outlook on future work.

2 STATE OF THE ART ANALYSIS

In this section, we conduct a detailed state of the art
analysis of declarative and imperative provisioning
approaches and existing technologies including a crit-
ical evaluation. Afterwards, we discuss related work
that attempts to combine the two flavors.

2.1 The Declarative Flavor

Declarative approaches can be used to describe the
provisioning of an application by modelling its de-
sired goal state, which is enforced by a declarative
provisioning system. They typically employ domain-
specific languages (DSLs) (Günther et al., 2010) to
describe goals in a declarative way, i. e., only the
what is described without providing any details about
the technical how. For example, a declarative spec-

ification may describe that a Webserver has to be
installed on a virtual machine, but without specify-
ing the technical tasks that have to be performed to
reach this goal. The main strength of declarative ap-
proaches is that the technical provisioning logic, i. e.,
the technical tasks to be performed, is inferred au-
tomatically by the provisioning system, which eases
modelling provisionings as the technical execution
details are hidden (Herry et al., 2011). One of the
most prominent examples of declarative provisioning
description languages is Amazon CloudFormation1.
This JSON-based language enables to describe the de-
sired application deployment using Amazon’s Cloud
services including their configuration in a declara-
tive model, which is consumed to fully automatically
setup the application. In comparison to such provider-
specific languages, which quickly lead to a vendor
lock-in, provider-independent technologies were de-
veloped such as Puppet (Puppet Labs, Inc., 2015).

Due to the automatic inference of provisioning
logic, declarative systems have to understand the
declared statements. This restricts declarative pro-
visioning capabilities to standard component types
and predefined semantics that are known by the run-
time (Breitenbücher et al., 2014). Thus, individual
customizations for the provisioning of complex ap-
plication structures cannot be realized arbitrarily and
have to comply with the general, overall provision-
ing logic. As a consequence, the declarative approach
is rather suited for applications that consist of com-
mon components and configurations, but is limited
in terms of deploying big, complex business appli-
cations that require specific configurations with non-
trivial component dependencies. Even mechanisms to
integrate script executions, API calls, or service invo-
cations at certain points in their deployment lifecycle,
as supported by many declarative approaches, do of-
ten not provide the required flexibility as the overall
logic cannot be changed arbitrarily. As the integration
of other technologies is often not supported natively,
models get polluted by glue and wrapper code, which
results in complex models including low-level techni-
cal integration details (Wettinger et al., 2014). Nev-
ertheless, the declarative flavor is very important due
to (i) native support by Cloud providers and (ii) huge
communities providing reusable artifacts.

2.2 The Imperative Flavor

In contrast to the declarative flavor, the imperative
provisioning approach enables developers to specify
each technical detail about the provisioning execution

1http://aws.amazon.com/cloudformation/

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

488

by creating an explicit process model that can be ex-
ecuted fully automatically by a runtime. Imperative
models define (i) the control flow of activities, (ii) the
data flow between them, as well as (iii) all techni-
cal details required to execute these activities. Thus,
compared to declarative approaches, they describe not
only what has to be done, but also how the provision-
ing tasks have to be executed. Imperative processes
are typically implemented using (i) programming lan-
guages such as Java, (ii) scripting languages, e. g.,
Bash or Python, and (iii) workflow languages such
as BPEL (OASIS, 2007) or BPMN (OMG, 2011).
However, programming and scripting languages are
not suited for the provisioning of serious business
applications as they are not able to provide the ro-
bust and reliable execution features that are supported
by the workflow technology (Leymann and Roller,
2000; Herry et al., 2011). Since general-purpose
workflow languages do not natively support modeling
features for application provisioning, we developed
BPMN4TOSCA (Kopp et al., 2012), which is a BPMN
extension that supports API calls, script-executions,
and service invocations based on the TOSCA stan-
dard (OASIS, 2013) (a standard to describe Cloud ap-
plications). This language can be used to seamlessly
integrate such tasks as it provides a separate activity-
type for each of them. However, BPMN4TOSCA lacks
support for the direct integration of declarative provi-
sioning technologies, which need to be wrapped for
their invocation. Thus, similar to general-purpose
technologies, seamlessly integrating domain-specific
technologies into one process is not possible. To wrap
management technologies, we presented a manage-
ment bus that provides a unified API for the invoca-
tion of arbitrary technologies (Wettinger et al., 2014).
However, invoking the bus obfuscates the actual tech-
nical statements, which impedes maintaining and un-
derstanding process models.

Imperative approaches are suited to model com-
plex provisionings that employ a plethora of hetero-
geneous components, especially for multi-cloud ap-
plications (Petcu, 2014). As they provide full control
over the tasks to be executed, imperative models are
able to automate exactly the manual steps that would
be executed by a human administrator who provisions
the application manually. Thus, while declarative ap-
proaches are rather suited for standard provisionings,
imperative approaches enable developers to define ar-
bitrary provisioning logic. The main drawback of the
imperative approaches results from the huge amount
of statements that must be modelled since the runtime
infers no logic by itself. Consequently, manual pro-
cess authoring is a labor-intensive, time-consuming,
and error-prone task that requires a lot of low-level,

technical expertise in different fields (Breitenbücher
et al., 2014; Breitenbücher et al., 2013): Heteroge-
neous services need to be orchestrated (e. g., SOAP-
based and RESTful provider APIs), low-level tech-
nologies must be integrated, and, especially, declara-
tive technologies must be wrapped. As currently no
technology supports the seamless integration of both
flavors, their orchestration results in large, polluted,
technically complex processes that require multiple
different wrappers to support the various invocation
mechanisms and protocols (Wettinger et al., 2014).
These wrappers decrease the transparency as only
simplified interfaces are exposed to the orchestrating
process while the technical details, which are in many
cases of vital importance to avoid errors when mod-
elling multiple steps that depend on each other, are
abstracted completely. In addition, wrappers signif-
icantly impede maintaining processes as not simply
the orchestration process has to be adapted, but wrap-
per code needs to be modified and built again, too.

2.3 Integration Approaches

In this section, we present related work that attempts
to combine both flavors. There are several gen-
eral purpose concepts that attempt to bridge the gap
between imperative provisioning logic and declara-
tive models which generate provisioning workflows
by analyzing the declarative specifications (Breit-
enbücher et al., 2014; Breitenbücher et al., 2013;
Eilam et al., 2011; Keller et al., 2004; El Maghraoui
et al., 2006; Herry et al., 2011; Levanti and Ran-
ganathan, 2009; Mietzner, 2010). These approaches
are able to interpret declarative specifications mod-
elled using a domain-specific modelling language for
generating provisioning plans, which can be exe-
cuted fully automatically. The advantage of these
approaches is the full control over the executed pro-
visioning steps as the resulting workflows can be
adapted and configured arbitrarily. However, the
complexity, lack of transparency, and the polluted
control and data flows of the resulting workflows are
still problems that impede extending the plans if cus-
tomization is required. Thus, the approach we present
in this paper may be applied to these technologies for
improving the quality of the generated processes. As
a result of the discussion in this section, to ensure cor-
rect operation and to ease the creation of complex pro-
visioning processes for non-trivial business applica-
tions, it is of vital importance to employ an extensible
orchestration approach that supports the seamless or-
chestration of imperative and declarative provisioning
technologies. Therefore, the main goals of this paper
are (i) a seamless integration of declarative and im-

A�Modelling�Concept�to�Integrate�Declarative�and�Imperative�Cloud�Application�Provisioning�Technologies

489

{s1, s2, …, sn}

 Imperative Statements

IPE

{g1, g2, …, gn}

 Declarative Statements

…
DPE

Data

Figure 1: Concept of the direct integration approach.

perative provisioning modelling approaches as well as
(ii) the orchestration of the corresponding provision-
ing technologies through workflow models.

3 INTEGRATED MODELLING

In this section, we present an approach that enables
integrating declarative and imperative provisioning
models seamlessly into the control and data flow of
an imperative workflow. In Section 3.1, we introduce
the abstract concept of the approach in a technology-
independent manner and define data handling con-
cepts in Section 3.2. In Section 4, we apply the ap-
proach to the workflow language BPEL in order to
show how the concept can be realized using a con-
crete standardized workflow language.

3.1 Declarative Provisioning Activities

The general modelling approach is shown in Fig-
ure 1 and based on extending standardized, imperative
workflow languages such as BPMN or BPEL by the
concept of Declarative Provisioning Activities. These
activities enable to specify declarative provisioning
goals directly in the control flow of a workflow model
that describes the tasks to provision a certain applica-
tion. To present the conceptual contribution indepen-
dently from a concrete workflow language, we first
introduce the general concept in an abstract way and
show its applicability to the standardized workflow
language BPEL afterwards. Therefore, in this section,
we distinguish only between (i) Imperative Provision-
ing Activities and (ii) Declarative Provisioning Activ-
ities that abstract from concrete realizations of pro-
visioning tasks in different workflow languages. Of
course, other control and data flow constructs, such
as events and gateways, are also required to model
executable processes. However, these are language-
specific and do not influence the presented concept.

An Imperative Provisioning Activity (IPA) de-
scribes a technically detailed execution of a provi-
sioning task as a sequence of one or more impera-
tive statements. This can be, for example, a script
implemented in Python or a simple HTTP-POST re-
quest that specifies a URL and data to be sent. Thus,
the term is an abstraction of several existing impera-
tive approaches such as scripts and programs that im-
plement a workflow activity or the invocation of an
API etc. The modeling and execution of such Impera-
tive Provisioning Activities is supported natively by
many workflow languages through general-purpose
concepts or by domain-specific extensions, respec-
tively. For example, BPMN natively supports the exe-
cution of script-tasks (OMG, 2011), the BPEL exten-
sion BPEL4REST (Haupt et al., 2014) enables send-
ing arbitrary HTTP requests, and BPMN4TOSCA na-
tively supports orchestrating provisioning operations
based on the TOSCA-standard—especially the exe-
cution of configuration scripts on a target VM (Binz
et al., 2013; Wettinger et al., 2014). This enables or-
chestrating arbitrary provisioning tasks using work-
flows that describe the technical details required for
the automated provisioning of complex applications.

In contrast to this, we introduce the new con-
cept of Declarative Provisioning Activities (DPA) in
this paper that enables specifying desired provision-
ing goals in a declarative manner. A DPA consists
of a set of declarative statements that describe what
has to be achieved, e. g., a desired configuration of
a certain application component, but without speci-
fying any technical details about how to achieve the
declared goals. Similar to other activity-constructs
of workflow languages, Declarative Provisioning Ac-
tivities are modelled directly in the control and data
flow of the process model the same way as IPAs. This
enables combining Imperative and Declarative Provi-
sioning Activities intuitively while preserving a clear
understanding about the overall flow. The operational
semantics of Declarative Provisioning Activities are
defined as follows: If the control flow reaches the ac-
tivity, the declarative statements, i. e., the modelled
goals, are enforced by the runtime that executes the
workflow. The activity is executed until all goals are
achieved and all affected application components are
in the desired state specified by the DPA. Then, the
activity completes and the control flow continues fol-
lowing the links to the next activities. Process models
that contain both provisioning activity types are called
Integrated Provisioning Models in this paper.

Figure 2 shows an example of an Integrated Pro-
visioning Model that contains two Imperative Pro-
visioning Activities and one Declarative Provision-
ing Activity, which (i) instantiate a virtual machine,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

490

… …
apt-get update

apt-get -y install mysql-server

mysql -u root -h localhost pDB < db_data.sql

TargetVM: var [IP-Address]
Credentials: var [Credentials]

Install MySQL-Database (IPA)

package 'apache_httpd' do
 http_port 8080
 https_port 8081
 ensure 'installed'
end
package 'php5_mod' do
 ensure 'installed'
end

TargetVM: var [IP-Address]
Credentials: var [Credentials]

Install Apache Webserver (DPA)

HTTP
POST

Create VM (IPA)

Figure 2: Simplified example of an Integrated Provisioning Model that (i) instantiates a virtual machine, (ii) installs a database,
and (iii) installs a Webserver on the virtual machine (We omitted some tasks for reasons of space).

(ii) install a MySQL-database, and (iii) install an
Apache Webserver on the virtual machine. The first
IPA is an HTTP request to an API of a Cloud provider
or an infrastructure virtualization technology that trig-
gers the instantiation of the virtual machine. The
activity specifies the request including all required
configuration parameters and invokes the API corre-
spondingly. After waiting for the successful instanti-
ation, the IP-address and SSH credentials of the VM,
which can be polled at the API, are stored in two vari-
ables of the workflow model: “IP-Address” and “Cre-
dentials”. As these are standard tasks, we omit details
in the figure for reasons of space.

The second IPA installs a MySQL database on
the VM: The shown activity uses a low-level Bash
script that imperatively specifies statements to be ex-
ecuted to install the database and to import a refer-
enced SQL-file, which is uploaded to the VM by an
IPA (omitted in the figure). To copy and execute this
script on the VM, the process variables that store the
IP-Address and SSH credentials of the target VM are
used by the IPA to access the virtual machine via SSH
and to execute the imperatively specified statements.

To model the installation and configuration of the
Apache Webserver on the virtual machine, the DSL of
the configuration management technology Chef (Op-
scode, Inc., 2015) is used to declaratively define the
desired installation. Consequently, a Declarative Pro-
visioning Activity is modelled that specifies the de-
sired goals by declaratively describing the state and
configuration of the Webserver that has to be enforced
when executing the activity. Similarly to the second
script-based IPA, the activity employs the same pro-
cess variables to access the virtual machine.

This example shows that the direct integration of
declarative and imperative languages and technolo-
gies in one orchestration process provides a powerful
modeling approach as the corresponding imperative
programming or scripting-languages, respectively, as
well as the domain-specific languages of declarative
approaches can be used seamlessly in one process

model. Therefore, there is no need to write complex
wrapper code or to invoke services wrapping these
technologies that pollute the process model. Thus,
the approach enables using the right technology for
the right task while ensuring full-control over their
orchestration without polluting the workflow model.

3.2 Data Handling

Both types of activities exchange data within the
workflow. Therefore, we define three concepts in-
cluding their operational semantics that enable de-
scribing the data flow between provisioning activi-
ties: (i) Input parameters, (ii) output parameters, and
(iii) content injection. We continue abstracting from
individual data storage concepts of workflow lan-
guages by simply referring to “process variables” and
show in the next section how these concepts can be
realized in the concrete workflow language BPEL.

As shown in Figure 2, the script-activity and the
declarative Chef-activity reference process variables
(“IP-Address” and “Credentials”) that are assigned to
a “TargetVM” and a “Credentials” attribute of the ac-
tivities. These attributes represent predefined activity-
specific input parameters of the activity implementa-
tion. When the activity gets executed by the work-
flow, the runtime copies the content of the referenced
process variables “by value” and takes them as input
parameters for invoking the implementation.

To exchange produced data between DPAs and
IPAs, both may specify output parameters that con-
tain the results of their execution. Each output pa-
rameter is represented as a pair of (i) activity-internal
data reference and (ii) workflow process variable. An
activity-internal data reference is a reference to a data
container in the language of the activity. For exam-
ple, an environment variable of a script. When the
execution of the statements is finished, the referenced
data is copied by the activity implementation to the
specified process variables “by value”.

Content injection enables using process variables

A�Modelling�Concept�to�Integrate�Declarative�and�Imperative�Cloud�Application�Provisioning�Technologies

491

1 <extensionActivity>
2 <REST:POST ResponseVar="VMCreationResponse"
3 URL="https://ec2.amazonaws.com/?Action=RunInstances
4 &ImageId=ami-31814f58
5 &InstanceType=m1.small&..." />
6 </extensionActivity>
7 ...
8 <extensionActivity>
9 <DPA:Chef TargetVM="$bpelvar[IP-Address]" Credentials="$bpelvar[Credentials]">

10 package 'apache_httpd' do
11 http_port $bpelvar[HTTPPort]
12 https_port 8081
13 ensure 'installed'
14 end ...
15 </DPA:Chef>
16 </extensionActivity>

Listing 1: Snippet of a BPEL model that employs an HTTP-Request as IPA and a DPA that declares Chef statements.

directly in the declarative or imperative language of a
provisioning activity. These serve as placeholders that
are replaced by the current content of the referenced
variable when the execution of the activity starts. For
example, a script may use the variable “IP-Address”
to write the IP of the VM into firewall rules to enable
accessing the Webserver from the outside.

4 REALIZATION USING BPEL

In this section, we prove that the presented approach
is practically feasible by applying the integrated mod-
elling concept to the workflow standard BPEL. There-
fore, we (i) show how Imperative Provisioning Ac-
tivities can be realized using existing constructs and
extensions of BPEL and how (ii) Declarative Provi-
sioning Activities can be modelled and executed using
the so called “BPEL extension activities” (OASIS,
2007). The result is a Standards-based Integrated
Provisioning Modelling Language that supports the
direct orchestration of imperative languages as well
as declarative languages.

In general, we realize DPAs by applying the BPEL
concept of extension activities that allow to imple-
ment custom activity types in BPEL using program-
ming languages such as Java (Kopp et al., 2011).
BPEL-workflow runtimes support registering multi-
ple different types of extension activities including
their implementations. If the control flow of a work-
flow reaches an extension activity-element, its imple-
mentation is executed by the workflow engine and the
whole XML-content of the extension activity-element
in the BPEL model is passed to the implementation of
the extension activity as input. Thus, the concept en-

ables modelling arbitrary XML-definitions which are
parsed and interpreted by the extension activity im-
plementation. To select the right implementation, the
element name of the extension activity-element’s first
child serves as lookup key for the workflow engine.
Hence, we can realize arbitrary types of DPAs by im-
plementing small programs that are executed when
the control flow reaches one of these activities.

We show how IPAs und DPAs can be realized us-
ing extension activities by conducting an example.
A modeller, e. g., developers or operations person-
nel (Hüttermann, 2012), manually models an Inte-
grated Provisioning Model that consists of Declar-
ative as well as Imperative Provisioning Activities
where suitable. The XML shown in Listing 1 is an ex-
cerpt of a BPEL model that instantiates a virtual ma-
chine on the Cloud-offering Amazon EC2 and installs
an Apache Webserver on it. The instantiation of the
VM is modelled as activity that sends an HTTP-POST
request to the management API of Amazon2 (lines 1-
6). We employ here the BPEL4REST extension ac-
tivity approach (Haupt et al., 2014), which supports
defining output parameters: The Amazon API syn-
chronously returns the instance ID of the virtual ma-
chine in the HTTP response. As the provisioning of a
virtual machine takes some time, the ID can be used to
poll the status of the VM instantiation. Therefore, we
store the response in a process variable called “VM-
CreationResponse” (line 2). The implementation of
the extension activity reads this mapping and writes
the content of the HTTP response as value to the VM-
CreationResponse variable. This variable can be used
by other activities to monitor the current VM status

2http://docs.aws.amazon.com/AWSEC2/latest/
APIReference/API RunInstances.html

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

492

OpenTOSCA Runtime Environment

Workflow
Engine

Artifact
Manager

Cloud Provider B API

 Cloud Provider A

 API

VM …

…

HTTP

HTTP

Plan

Chef-DPA EA

HTTP-EA

SSH

CSAR
Importer

CSAR

Control Data Management …

Figure 3: Prototypical implementation of the integrated concept based on the OpenTOSCA runtime environment.

and to retrieve the IP-address of the running virtual
machine when the instantiation finished using similar
API calls (omitted in Listing 1).

After the VM is provisioned, a Chef-DPA installs
the Webserver on it (lines 8-16). This DPA defines
the attributes used in our previous example with iden-
tical semantics. Similar to the HTTP extension activ-
ity, the extension activity implementation of the Chef-
DPA reads its XML fragment, extracts the relevant in-
formation, and enforces the declared goals by access-
ing the VM using SSH, installing a Chef agent, and
sending the declarative statements to this agent that
enforces them. In this example, the input parameter
concept is used to specify the target VM on which the
Webserver has to be installed and the credentials to
access the VM (line 9). The referenced BPEL vari-
ables of the workflow model are replaced by the ex-
tension activity implementation for execution. In ad-
dition, also the content injection concept is realized:
In line 11, a BPEL variable is specified as configura-
tion for the HTTP-port of the Webserver. Thus, when
executing the DPA, its implementation retrieves the
value of the “HTTPPort” workflow variable and re-
places the placeholder before enforcing the declared
configuration—similarly as for input parameters.

5 PROTOTYPE

To prove the technical feasibility of the presented ap-
proach, we implemented a prototype based on the
OpenTOSCA ecosystem, which consists of the open-
source modelling tool Winery (Kopp et al., 2013), the
imperative runtime environment OpenTOSCA (Binz
et al., 2013), and the self-service portal Vinothek (Bre-
itenbücher et al., 2014). The system is based on the
TOSCA standard (OASIS, 2013), which enables de-
veloping application packages that are portable across
different platforms. TOSCA specifies a metamodel
for (i) describing the application’s structure as topol-
ogy model and (ii) enables using management work-

flows to provision and manage the modelled appli-
cations. In addition, TOSCA standardizes a package
format called CSAR that contains the topology model,
all management workflows, and all artifacts that are
required to provision and manage the described ap-
plication, e. g., application files or installation scripts.
CSARs can be created using the modelling tool Win-
ery. A CSAR is consumed by the OpenTOSCA run-
time which deploys the workflows contained therein.
Therefore, the runtime employs a workflow engine
(WSO2 BPS)3 to execute BPEL workflows. Using
the Vinothek, their execution can be triggered.

Figure 3 shows a simplified architecture of the
OpenTOSCA runtime environment including our pro-
totypical realization of the integrated modelling con-
cept. The CSAR Importer is responsible for consum-
ing CSARs and processing the contained data, e. g.,
by storing the models in local databases. The Con-
trol then triggers the local deployment of all man-
agement workflows so that they can be executed by
the Vinothek to provision a new application instance
or to manage a running instance. The concept pre-
sented in this paper is realized by implementing ex-
tension activity-plugins for the workflow engine. The
HTTP-extension activity, for example, can be used
in BPEL workflows to invoke management APIs of
providers to instantiate or manage virtual machines.
As described in the previous section, DPAs can then
use process variables to access these virtual machines
in order to install or configure software etc. To im-
plement these extension activities, e. g., the Chef-
DPA, we delegate executing the declaratively de-
scribed goals to a component called Artifact Manager.
This plugin-based manager is able to execute various
configuration management technologies such as Chef
or also imperative scripts, e. g., Bash scripts (Wet-
tinger et al., 2014). Thus, implementing IPAs and
DPAs is eased by invoking this manager. Of course,
arbitrary technologies can be integrated without us-
ing the manager, too. For modelling Integrated Provi-

3http://wso2.com/products/

A�Modelling�Concept�to�Integrate�Declarative�and�Imperative�Cloud�Application�Provisioning�Technologies

493

Table 1: Criteria Evaluation.

Feature Declarative Imperative Integrated Approach
Full control x x
Complex deployments (x) (x) x
Hybrid and multi-Cloud applications (x) x x
Seamless integration x
Component wiring (x) x x
XaaS integration (x) x x
Full automation x x x
Straightforwardness x x
Extensibility (x) x x
Flexibility (x) (x)

sioning Models, we employ the modelling tool BPEL
Designer4. Since the prototype is based on TOSCA
and BPEL, it provides an end-to-end, standards-based
Cloud application management platform that enables
integrating various technologies seamlessly.

6 EVALUATION

In this section, we evaluate the presented approach
by comparing it with the plain declarative and imper-
ative management flavors. For the comparison, we
reuse the management feature criteria for comparing
service-centric and script-centric management tech-
nologies (Breitenbücher et al., 2013) and additionally
add criteria that are derived from the features of each
flavor discussed in Section 2. As a result, the criteria
represent requirements that must be fulfilled to fully
automatically provision the kind of complex compos-
ite Cloud applications described in the introduction
(cf. Section 1). An “x” in Table 1 denotes that the
corresponding approach fully supports the criterion.
An “x” in parentheses denotes partial support.

Full control means that provisioning may be cus-
tomized arbitrarily by the process modeller in each
technical detail. As declarative approaches infer the
details about the execution by themselves, the general
provisioning logic cannot be changed easily. In con-
trast to this, imperative approaches explicitly model
each step to be performed and can be, therefore, cus-
tomized arbitrarily. Because the integrated approach
supports both, it fulfills this criterion completely.

Complex deployments denotes that real, non-
trivial business applications that employ various het-
erogeneous components and services can be deployed
using a technology of the flavor. Declarative ap-
proaches reach their limits at a certain point of re-
quired customizability: as the provisioning logic is in-
ferred by a general-purpose provisioning system, only

4https://eclipse.org/bpel/

known declarative statements can be understood and
processed (cf. Section 2). Thus, if a very specific,
arbitrarily customized application structure or config-
uration has to be deployed, declarative approaches are
often not able to fulfill these rare and very special re-
quirements completely. The integration of low-level
execution code such as scripts partially solves this
problem. In contrast to this, based on the full control
criterion, in general arbitrary complex provisionings
can be described using imperative approaches such as
scripts or workflows. However, the technical com-
plexity of the resulting processes is often hardly man-
ageable and maintainable as the integration of tech-
nologies, as explained in Section 2, leads to a lot of
glue and wrapper code, which results in many lines of
process implementation code. Thus, plain imperative
approaches are not ideal for handling such cases com-
pletely and are, therefore, only partially suited. The
integration approach presented in this paper solves
these issues as the optimal technology can be chosen
without polluting the process with wrapper code.

The hybrid and multi-Cloud applications crite-
ria evaluate the support for applications that are ei-
ther hosted on (i) a combination of private and public
Cloud services or (ii) Cloud services offered by dif-
ferent providers. Since many declarative approaches
such as Amazon CloudFormation employ proprietary,
non-standardized domain-specific languages, many of
these technologies are not able to provision a dis-
tributed application as described above. General pur-
pose technologies such as TOSCA (OASIS, 2013) al-
low to provision hybrid as well as multi-Cloud appli-
cations, for example, by using the TOSCA plan gen-
erator (Breitenbücher et al., 2014). However, if multi-
ple providers are involved, typically their proprietary
languages have to be used as the declarative general-
purpose technologies are not able to support all indi-
vidual technical features. Based on the criteria full
control and complex deployments, the imperative as
well as the proposed approach fulfill this criterion.

Seamless integration evaluates the capability to

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

494

employ arbitrary management technologies without
(i) polluting the model or (ii) leading to abstracted
wrapper calls (cf. Section 2). As extensively dis-
cussed in the previous sections, neither declarative
nor imperative approaches natively support all re-
quired integration concepts. In contrast, the presented
approach fulfills this criterion due to the introduced
concept of Declarative Provisioning Activities.

The component wiring criterion means that multi-
ple application components can be wired. Declarative
approaches support this partially as unknown compo-
nents or complex wiring tasks cannot be described in
an arbitrary manner. The imperative as well as the in-
tegrated approach solve this issue as any task to wire
such components can be orchestrated arbitrarily.

XaaS integration means the ability to orchestrate
various kinds of Cloud services that represent appli-
cation components. Generic declarative approaches
support this only partially as complex configuration
tasks are hard to model. Proprietary approaches such
as Amazon CloudFormation are bound to a certain
provider and, therefore, require glue code to integrate
other services. The imperative and the presented ap-
proach fully support this requirement following the
argumentation of component wiring.

The full automation criterion is fulfilled by all
kinds of approaches, as all of them enable a fully au-
tomated provisioning of the described applications.

Straightforwardness evaluates, if describing the
provisioning of an application can be done in an effi-
cient manner requiring appropriate effort. The declar-
ative approaches are typically easy to learn, as techni-
cal complexity is shifted to the provisioning systems
and only the desired goals have to be specified. Imper-
ative approaches such as scripts or workflows quickly
become huge and complex due to the directly visi-
ble low-level details about the (i) control flow and the
(ii) data flow. In addition, in many cases, trivial steps
have to be modelled explicitly. The presented integra-
tion approach fulfills this criterion completely as the
optimal technology can be selected for a certain pro-
visioning task. Even a single DPA may be modelled
that declares all provisioning goals.

The extensibility criterion means the ability to in-
volve other management technologies. Declarative
approaches allow this by using glue code at certain
points in the inferred logic. Due to the full control
criterion, imperative approaches are able to include
arbitrary implementations at any point in the process.
Thus, the integrated approach supports this feature.

The declarative approaches do not support flexi-
bility due to the full control criterion. However, also
using imperative approaches are limited in terms of
flexibility: If a complex application leads to a huge

provisioning process, adapting this process is a chal-
lenging task. Therefore, imperative as well as the pre-
sented approach fulfill this criterion only partially. To
tackle these issues, we conduct research on modelling
situation-aware processes to increase the flexibility.

To summarize the evaluation, the presented ap-
proach profits from all benefits of the two provision-
ing flavors while solving drawbacks by the strengths
of each other. Whereas complex application provi-
sionings can be modelled in a flexible manner pre-
serving the full control over the provisioning, stan-
dard tasks can be modelled easily using declarative
specifications in a straightforward manner. Even dis-
tributed application structures, for example, hybrid
and multi-Cloud applications can be provisioned us-
ing the integrated approach described in this paper.
One of the most important criterion, the seamless inte-
gration of provisioning technologies, is solved by the
concept of Declarative Provisioning Activities while
imperative technologies are typically integrated al-
ready in existing languages. Thus, while the result-
ing process models are implemented in a standards-
compliant manner, intuitive provisioning modelling
helps developing and maintaining models.

6.1 Limitations

In this section, we discuss the limitations of the pre-
sented approach. A drawback is the tight coupling
of Integrated Provisioning Models to the structure of
the application to be provisioned. Imperative orches-
trations to provision the components of a certain ap-
plication structure are sensitive to structural changes:
Different combinations of components lead to differ-
ent models that must be created and maintained sepa-
rately (Breitenbücher et al., 2013; Eilam et al., 2011;
El Maghraoui et al., 2006). Thus, as the concept of
Integrated Provisioning Models is based on impera-
tively orchestrating the two kinds of provisioning ac-
tivities, this applies also for the approach presented
in this paper. As a result, Integrated Provisioning
Models for new applications often have to be created
from scratch while maintaining existing processes re-
sults in complex, time-consuming adaptations (Breit-
enbücher et al., 2014). To tackle this tight coupling
of imperative orchestrations and concrete structures,
we did research on generic process fragments for ap-
plication management, which can be reused for indi-
vidual applications (Breitenbücher et al., 2013; Breit-
enbücher et al., 2013). We plan to combine this ap-
proach with the presented concept. In addition, cur-
rently only the provisioning of applications is sup-
ported by our concept. Therefore, we plan to extend
the concept to support also management.

A�Modelling�Concept�to�Integrate�Declarative�and�Imperative�Cloud�Application�Provisioning�Technologies

495

7 CONCLUSION

In this paper, we presented a process modelling ap-
proach that enables the seamless integration of im-
perative and declarative provisioning models by in-
troducing the concepts of (i) Declarative Provision-
ing Activities and (ii) Integrated Provisioning Mod-
els. The approach enables intuitive provisioning mod-
elling without handling technical integration issues of
regarding different technologies and domain-specific
languages that pollute the control as well as the data
flow of the resulting workflow models. To prove the
technical feasibility of the approach, we applied the
presented concept to the workflow language BPEL
and extended the standards-based application man-
agement system OpenTOSCA. In addition, we eval-
uated its features by several criteria. The evaluation
shows that the presented approach enables to benefit
from strengths of both flavors. In future work, we plan
to apply the concept also for application management.

ACKNOWLEDGEMENTS

This work was partially funded by the projects
SitOPT (Research Grant 610872, DFG) and NEMAR
(Research Grant 03ET40188, BMWi).

REFERENCES

Binz, T., Breitenbücher, U., Kopp, O., and Leymann, F.
(2014). Migration of enterprise applications to the
cloud. it - Information Technology, Special Issue: Ar-
chitecture of Web Application, 56(3):106–111.

Binz, T. et al. (2013). OpenTOSCA – A Runtime for
TOSCA-based Cloud Applications. In ICSOC 2013,
pages 692–695. Springer.

Breitenbücher, U., Binz, T., Kopp, O., and Leymann, F.
(2013). Pattern-based runtime management of com-
posite cloud applications. In CLOSER 2013, pages
475–482. SciTePress.

Breitenbücher, U., Binz, T., Kopp, O., and Leymann, F.
(2014). Vinothek - A Self-Service Portal for TOSCA.
In ZEUS 2014, volume 1140 of CEUR Workshop Pro-
ceedings, pages 69–72. CEUR-WS.org.

Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., and
Wettinger, J. (2013). Integrated cloud application pro-
visioning: Interconnecting service-centric and script-
centric management technologies. In CoopIS 2013,
pages 130–148. Springer.

Breitenbücher, U. et al. (2014). Combining Declarative and
Imperative Cloud Application Provisioning based on
TOSCA. In IC2E 2014, pages 87–96. IEEE.

Eilam, T., Elder, M., Konstantinou, A., and Snible, E.
(2011). Pattern-based composite application deploy-
ment. In IM 2011, pages 217–224. IEEE.

El Maghraoui, K., Meghranjani, A., Eilam, T., Kalantar, M.,
and Konstantinou, A. V. (2006). Model driven provi-
sioning: bridging the gap between declarative object
models and procedural provisioning tools. In Middle-
ware 2006, pages 404–423. Springer.

Günther, S., Haupt, M., and Splieth, M. (2010). Utilizing
Internal Domain-Specific Languages for Deployment
and Maintenance of IT Infrastructures. Technical re-
port, Very Large Business Applications Lab Magde-
burg, Otto von Guericke University Magdeburg.

Haupt, F., Fischer, M., Karastoyanova, D., Leymann, F., and
Vukojevic-Haupt, K. (2014). Service Composition for
REST. In EDOC 2014. IEEE.

Herry, H., Anderson, P., and Wickler, G. (2011). Auto-
mated planning for configuration changes. In LISA
2011. USENIX.

Hüttermann, M. (2012). DevOps for Developers. Apress.
Keller, A., Hellerstein, J. L., Wolf, J. L., Wu, K. L., and Kr-

ishnan, V. (2004). The champs system: change man-
agement with planning and scheduling. Network Op-
erations and Management Symposium, 2004, pages
395–408.

Kopp, O., Binz, T., Breitenbücher, U., and Leymann, F.
(2012). BPMN4TOSCA: A Domain-Specific Lan-
guage to Model Management Plans for Composite
Applications. In Business Process Model and Nota-
tion, pages 38–52. Springer.

Kopp, O., Binz, T., Breitenbücher, U., and Leymann, F.
(2013). Winery – A Modeling Tool for TOSCA-based
Cloud Applications. In ICSOC 2013, pages 700–704.
Springer.

Kopp, O. et al. (2011). A Classification of BPEL Exten-
sions. Journal of Systems Integration, 2(4):2–28.

Levanti, K. and Ranganathan, A. (2009). Planning-based
configuration and management of distributed systems.
In IM 2009, pages 65–72.

Leymann, F. (2009). Cloud Computing: The Next Revo-
lution in IT. In Proc. 52th Photogrammetric Week,
pages 3–12.

Leymann, F. and Roller, D. (2000). Production workflow:
concepts and techniques. Prentice Hall PTR.

Mietzner, R. (2010). A method and implementation to define
and provision variable composite applications, and its
usage in cloud computing. Dissertation, University of
Stuttgart, Germany.

Nelson-Smith, S. (2013). Test-Driven Infrastructure with
Chef. O’Reilly Media, Inc.

OASIS (2007). Web Services Business Process Execution
Language (WS-BPEL) Version 2.0. OASIS.

OASIS (2013). Topology and Orchestration Specification
for Cloud Applications Version 1.0.

OMG (2011). Business Process Model and Notation
(BPMN), Version 2.0.

Opscode, Inc. (2015). Chef official site: http://
www.opscode.com/chef.

Petcu, D. (2014). Consuming resources and services
from multiple clouds. Journal of Grid Computing,
12(2):321–345.

Puppet Labs, Inc. (2015). Puppet official site: http://
puppetlabs.com/puppet/what-is-puppet.

Wettinger, J. et al. (2014). Unified Invocation of Scripts
and Services for Provisioning, Deployment, and Man-
agement of Cloud Applications Based on TOSCA. In
CLOSER 2014, pages 559–568. SciTePress.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

496

SHORT PAPERS

A Hedonic Price Index for Cloud Computing Services

Persefoni Mitropoulou, Evangelia Filiopoulou, Stavroula Tsaroucha,
Christos Michalakelis and Mara Nikolaidou

Department of Informatics and Telematics, Harokopio University of Athens, 9 Omirou str, Tavros, Athens, Greece
{persam, evangelf, michalak, mara}@hua.gr, stsaroucha@sch.gr

Keywords: Cloud Computing, Infrastructure-as-a-Service, Pricing Models, Hedonic Price Indices.

Abstract: Cloud computing is an innovative business model, being developed at a fast pace during the last years, offering
many operational and economic benefits to both the demand and the supply side of the ICT market.
Infrastructure as a Service (IaaS), which includes control of fundamental computing resources, is expected to
be the fastest growing model of public cloud computing. Due to the existence of several IaaS cloud providers,
there is increased competition among cloud companies, which develop different pricing models in order to
meet the market demand. As a consequence, prices for cloud services are a result of a multidimensional
function, shaped by the service’s characteristics. The development of a suitable pricing method, based on an
appropriate price index able to capture the market dynamics, is an obvious necessity. The aim of this paper is
the construction of such a price index, for the IaaS model, using data from a wide range of cloud providers
and a large number of price bundles. The hedonic pricing method is used to decompose cloud computing
services into their constituent characteristics, obtaining estimates of the contributory value of each
resource. According to the results, RAM size, CPU power and subscription turned out to be the most
influential factors that shape IaaS pricing.

1 INTRODUCTION

During the recent years, cloud computing has gained
enormous popularity across the business world as
there is an increased demand for a new business
model that can help companies respond faster and
cheaper to their constituents’ needs, not only in
Europe but also worldwide. Its systems and services
are being improved and developed at a fast pace,
offering operational benefits to both the providers and
the consumers of the technology, contributing
substantially at the same time to the creation of a
competitive environment in the global market (Etro
2009).

Therefore, cloud computing is considered to be a
really powerful technological tool and an innovative
business model, composed of three service models:
Infrastructure as a Service (IaaS), which includes
control of fundamental computing resources, such as
memory, computing power and storage capacity;
Platform as a Service (PaaS) that provides control
over the deployed applications and possibly
configuration settings for developer platforms and
Software as a Service (SaaS), which includes the use
of software services accessed through a web browser

or a program interface (Mell and Grance 2011). In
addition to these, cloud computing has also four
deployment models: Private cloud, provisioned for
exclusive use by a single organization; Community
cloud, used exclusively by a specific community of
consumers from organizations that have shared
concerns; Public cloud, open for use by the general
public and Hybrid cloud, which is a composition of
two or more distinct cloud infrastructures (Mell and
Grance 2011).

Concerning the above models, public cloud
computing receives more attention and the IaaS
model gains increased adoption across the business
world (Anderson et al. 2013). More specifically, IaaS,
which is a foundational cloud delivery service and the
most straightforward of the cloud models, provides
flexibility and can be a very good solution for
companies needing computing resources in the form
of virtualized operating systems, workload
management software, hardware, networking, and
storage services (Hurwitz et al. 2012). Computational
power and operating systems are delivered to the
customers in an “on-demand” approach. An
enterprise that migrates its IT system to IaaS may hire
the required resources as needed, instead of buying

499

them (Mell and Grance 2011). According to Gartner’s
latest report about the public cloud (Anderson et al.
2013), it is expected that IaaS will be the fastest
growing area of public cloud computing achieving a
compound annual growth rate (CAGR) of 41.3%
through 2016, as Figure 1 illustrates.

Figure 1: Public Cloud Services - five year (2011-2016)
CAGRs (%), by model. Source: Gartner (February 2013).

Currently, there are several public cloud providers in
the cloud computing market that provide similar
services to customers. A client's choice of which
cloud company would host his infrastructure-related
services in the long-term depends jointly on the price
it has, the Quality-of-Service (QoS) guarantees it
offers to its customers and the satisfaction of the
advertised guarantees (Vinu Prasad et al. , Siham et
al. 2012). Cloud computing works, in general, on a
“pay-as-you-go” basis, giving the option to the user
to pay for what they use; meaning that the customer
is charged for each computing resource (e.g. RAM,
CPU, storage) separately, usually per unit-hour
(Martens et al. 2012). On the other hand, it is true that
the battle for a dominant market share grows the
competition among cloud companies and leads to the
development of new pricing schemes in order to meet
the market demand. As a result, several packages of
different resources are offered in attractive tariffs and
they are continually fitted to the changing preferences
and increasing needs of customers. Furthermore,
there is an option somewhere in the middle, as there
are some cloud providers who offer predefined sets of
some resources, usually memory and CPU are
bundled, whereas users can select simultaneously on
their own some other computing characteristics, such
as storage size (Martens et al. 2012, Andra 2013).

Finding the right combination of the available
resources is critical for a business to achieve the best
value when creating its own cloud bundle of services.
As any bundle consists of various characteristics,
valued differently by each consumer, there are a

number of questions that arise in the cloud computing
context, such as:

 How customers’ choices and preferences for
IaaS affect the pricing of the corresponding
resources.

 Which characteristics are truly independent
from one another, while at the same time
being the most important for shaping the
pricing of IaaS.

Towards this direction, multiple cloud providers
have already developed cost estimator tools, which
are used to help customers evaluate IaaS services,
deciding the most suitable for their needs. In addition,
another similar approach is considered to be a broker
model that acts as an intermediary between
consumers and providers. Both of these methods are
mainly based on asking users some questions about
the amount of computational power, memory, storage
requirements, data transfer and they subsequently
offer a monthly estimate for price, for the selected
bundle (Hurwitz et al. 2012) or the most cost-efficient
tariff option among many different providers in the
case of a broker (Jörg et al. 2014). However, none of
these tools is capable of identifying the cheapest
cloud hosting provider due to the fact that this is a
choice that depends exclusively on the clients’
computing needs and, furthermore, price is
considered to be a multidimensional function, where
many factors should be taken into account (Siham et
al. 2012).

Into that context, this paper tries to describe the
current mechanism of pricing and reveal the
dynamics which drive the pricing of cloud computing
services. For this, it provides an empirical analysis of
IaaS pricing, by constructing a price index based on a
hedonic pricing method.

The remainder of the paper is structured as
follows: Section 2 presents a brief literature review of
the previous work regarding the pricing methods of
cloud computing, while in Section 3 there is a
theoretical approach of hedonic functions analysis
and price indices. The empirical study and the
evaluation of hedonic regression model together with
discussion are described in Section 4, and finally,
Section 5 concludes, providing directions for future
research.

2 PRICING MODELS OF CLOUD
COMPUTING

In a cloud computing environment, an Infrastructure-
as-a-service demand is considered as an access to the

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

500

system resources, such as CPU, memory and disk.
Resource allocation is a really challenging task
because of the different pricing models the providers
use. In general, cloud hosting providers must offer a
good pricing model that does not bring any loss to
neither the provider nor the consumer and maximizes
the social surplus of the corresponding market. It is
not usually easy to reach a point where both sides
agree with the price set. A user is always willing to
pay a lower price for the resources requested, whereas
a provider should not want to go beyond the lowest
price that gives him no profit (Andra 2013).

Currently, there are many cloud vendors that
follow a fixed pricing strategy, meaning that
customers pay for what they use but not for what the
cloud services value (Vinu Prasad et al.). One of the
most common pricing schemes of this category is the
“pay-as-you-go” model, which charges the users for
just the services they need, paying only for the
required computing instances and just for the time
they use them. In the case they need more resources,
they simply request them from the provider
(Grossman 2009). Another fixed pricing model is
based on subscription, setting a standard price for the
required resources according to a longer period of
subscription (Al-Roomi et al. 2013). However, these
static approaches of pricing have some limitations,
due to the fact that they reserve computational
resources in advance and it is often hard to satisfy
both the cloud vendors’ and cloud users’
requirements.

Hence, dynamic pricing is usually the key solution
to the above problems. It is a method in which the
price for each bundle of resources is based on a
number of factors, such as availability, time, the
service features and according to the forces of the
demand and supply of a real-time market (Andra
2013, Al-Roomi et al. 2013). Mihailescu and Teo
(2010) proposed such an auction-based pricing
strategy for federated clouds, in which resources are
shared among many cloud service providers.
Rohitratana and Altmann (2012) used an agent-based
simulation of four different pricing models that
indicated that the Demand-Driven (DD) pricing
scheme was the best approach in ideal cases. Li et al
(2011) introduced a real-time pricing algorithm for
cloud computing resources. It analyzed some history
utilization data and it found the final price that was
mostly beneficial for the provider because it reduced
its costs, allowing at the same time resources to be
used more effectively. Moreover, there are some
pricing methods that are mostly driven by
competitors’ prices (Rohitratana and Altmann 2010)
and some others based on the amount of money users

are ready to pay (Ruiz-Agundez et al. 2011). All of
the above pricing methods are fair enough for the
customers’ side.

Both of the above categories of pricing models,
especially the dynamic one, take into consideration
some of the service’s most important characteristics.
The construction of price indices is generally used for
this purpose, seeking to estimate the extent to which
each characteristic affects the total price of a service
bundle. Among the most common and widely used
approaches is the hedonic pricing method (Triplett
2004). It was primarily developed seeking to capture
the effect of environmental and housing attributes in
the context of the housing market (Goodman 1978)
and to adjust for quality change for automobiles
(Griliches 1961). In (Chanel et al. 1996) a price index
for paintings, based on regressions using the full set
of sales, was constructed and the idea that goods are
valued for their utility-bearing characteristics can be
found in (Rosen 1974). As far as information and
communication technologies are concerned, hedonic
price indices have been widely used for personal
computers (Pakes 2002, Berndt et al. 1995) taking
quality changes into account and for microcomputers
and printers using evidence from France (Moreau
1996). A hedonic pricing approach has been also
proposed in (Jörg et al. 2014) to estimate price
evolution of telecommunication services based on
data across Europe and in (Siham et al. 2012) the
hedonic pricing method was applied to make cloud
pricing plans more transparent.

3 HEDONIC PRICE INDICES

Hedonic methods refer to regression models in which
a product’s (or a service’s) prices are related to
product characteristics and the observed price of a
product (service) is considered as a function of these
characteristics. The main assumption hedonic
methods are based on, is that a service is a bundle of
characteristics and that consumers just buy bundles of
product characteristics instead of the product itself. A
hedonic method decomposes the item being
researched into its constituent characteristics, and
obtains estimates of the contributory value of each
characteristic, provided that the composite good can
be reduced to its constituent parts and that the market
values those constituent parts.

According to the definition of (Triplett 2004): “A
hedonic price index is any price index that makes use
of a hedonic function. A hedonic function is a relation
between the prices of different varieties of a product,

A�Hedonic�Price�Index�for�Cloud�Computing�Services

501

such as the various models of personal computers,
and the quantities of characteristics in them”.

These methods can be used to construct a quality-
adjusted price index of a service. An informative
overview of the hedonic methods and how they are
constructed can be found in (Berndt 1991, Triplett
2004). Moreover, as shown in (Rosen 1974)
consumer chooses from a large number of product
varieties without having the ability to influence
prices. As a consequence, consumers maximize
utility and producers maximize profits. In hedonic
studies it is possible to adjust the price of a service for
its quality not quantity. All of them are based on some
estimated coefficients that are inflicted on the
characteristics of the products in two periods; m and
m + 1. It is possible to estimate the coefficients
separately, for each evaluate period of time, or
consider the observations of two or all periods
together and estimate a common set of coefficients,
seeking to reveal the general trend.

The advantage of this method is that the necessary
calculations are easy to implement. Hedonic methods
are also very fast to apply but the disadvantage is that
index price can change even if no new products exist,
or if all prices remain the same. Among the strengths
of a hedonic pricing method are that it can be used to
estimate values based on actual choices and its
versatility, since it can be adapted to consider several
possible interactions between market goods and
environmental quality.

The hedonic price indices are commonly used as
approximations to find how much money a consumer
would need in period m+1 relatively to the amount of
money required in period m, keeping the same level
of utility. The solution to this problem is to determine
the consumer’s profile and his reaction to a varied and
fast-changing supply of products. The main problem
towards this direction is that each consumer has
potentially different needs and requirements No
matter what profile is decided, it will be a hypothesis
and an assumption that will correspond to a specific
model. In addition to this, a consumer’s desire is not
stable, something quite reasonable since there is a
great offer as technology becomes cheaper and more
attractive.

A hedonic function f X , which relates a

number of the product’s characteristics with the
corresponding price as:

 i iP f X (1)

where Pi is the price of a variety (or a model) i of the
considered product and Xi is a vector of
characteristics associated with the specific variety.

The hedonic function is then used, for a number of
different characteristics among the varieties of the
product and the price index is calculated. As soon as
the characteristics to be considered are determined
then, for N varieties of the product (or service) the
following equations must be evaluated:

0 1 1 2 2· · ,

1, . . . ,
i i i iP b b X b X e

i N

 (2)

where bi are the regression coefficients that have to
be estimated and ei is the regression residual of the
assumed functional form. The regression coefficients
value the characteristics and they are often called
implicit prices, because they indicate the prices
charged and paid for an increment of one unit of the
corresponding characteristic. Implicit prices are much
like other prices, they are influenced by demand and
by supply. In some cases the natural logarithm (ln) of
the price is considered, instead of the actual value.
Furthermore, the functional form of the index can be
nonlinear.

In the case that the prices span between two (or
more) periods of time m and m + 1, the equations to
be evaluated are

0 1 1 2 2

1 0 1 1 2 2 1

· · ,

1, . . . ,

· · ,

1, . . . ,

im i i im

im i i im

P b b X b X e

i N

P b b X b X e

i N

 (3)

In the context of this work, the vector of
characteristics Xi, corresponds to the configuration of
the IaaS cloud services that affects the price,
including characteristics such as RAM size, number
of CPUs, memory size, bandwidth etc. The
description of these parameters is given in the next
section.

The importance of a price index is that it can be
used to determine suggested prices for combinations
of the characteristics that were not included, or they
were not available, when the index was constructed.

4 PRICE INDEX
CONSTRUCTION

This section describes the empirical study design,
contains the evaluation of the hedonic price index
methodology for cloud computing services, the
construction of a corresponding index and discussion
of the results.

The price index is constructed for the IaaS cloud

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

502

computing, the most straightforward cloud service.
Data collection was based on Cloudorado
(http://www.cloudorado.com), a price comparison
service of cloud computing providers. Cloudorado is
also a price calculator for multiple cloud hosting
providers, since the comparison is performed by
calculating price for individually set server needs. It
currently focuses on providing pricing bundles for
IaaS providers. The number of the collected price
bundles is 2354, by 25 providers, shown in Table 1.

Table 1: Cloud IaaS providers.

Amazon
atlantic.net
Bitrefinery
CloudSigma
Dimensiondata
eApps
ecloud24
Elastichosts
Exoscale
GIGENET
GOGRID
HYVE
JoyentCloud
Lunacloud
M5
Ninefold
OPENHOSTING
Rackspace
SERVERMULE
Storm
StratoGen
Terremark
VPSNET
Windows Azure
Zettagrid

Google is not included among the providers since it
does not offer price bundles but it rather charges for
each CPU and each GB of storage and memory
capacity. The price bundles are specified by the
resources presented in Table 2, together with the
considered values. These characteristics participate as
variables in the hedonic pricing model.

Data correspond to the IaaS services offered by
cloud providers who use different pricing models.
The study started by selecting specific computing
requirements (e.g. 2xCPU, 1GB RAM, 50GB
Storage, 5GB Tranfer-Out, Linux) but due to the fact

Table 2: IaaS characteristics.

Characteristic Description Values

CPU CPU power 2x, 4x, 6x / 3x,
5x, 7x

RAM RAM size in
Gigabytes (GB)

1, 4, 16, 32

Storage Measured in GB 100, 1000
Transfer_Out Number of bytes sent

by server to Internet
per month. (GB)

5, 10000

OS Operating System of
the server

Linux,
Windows

Subscription Indicates if there
should be a
subscription

No, Yes
(corresponds
to 1 year
subscription)

that many of the providers (e.g. Amazon, Rackspace,
GoGrid) use price bundling, the best package of
resources, which was most close to each customer’s
needs, was chosen every time. Prices range between
$31 and $3,318 per month and there are observable
differentiations depending on the existence of a
subscription, while the duration of the subscription
does not affect the price substantially. The operating
system parameter (OS) and the subscription
characteristics participate as dummy variables. The
values for the OS are 0 for Windows and 1 for Linux
and, regarding the subscription, corresponding values
are 0 for no subscription and 1 for a subscription.

Not surprisingly, the most popular geographical
continent for providers is North America, with 19 out
of the 24 to have datacenters located there, followed
by Europe, with 13 providers. Australia and Asia
follow with 8 and 6 providers, respectively, and
Africa comes last with just 1 provider.

Among the limitations of the collected dataset is
that there are a few more characteristics participating
in the construction of the price bundling, which were
not considered into this study. These characteristics
are the Transfer In (the number of bytes received by
server from the internet per month), the Time On
(proportion of the day the server is available) and the
option that the CPUs, the RAM and the storage can
be distributed among more than one physical server.
The value of the Transfer In characteristic does not
contribute at a substantial level to the shaping of the
pricing bundles, because many cloud providers such
as Amazon and ecloud24 charge customers only for
the outgoing traffic and the others include it as a small
amount in the total price of services. Therefore, with
no loss of generality, the Transfer In attribute was
considered to be at 1GB per month. As far as Time
On is concerned it was set at a level of 100%

A�Hedonic�Price�Index�for�Cloud�Computing�Services

503

availability per day. The default offered value of non-
distributed resources was also considered.

Moreover, some non-functional factors, such as
availability and reliability of resources or the lack of
fulfilling the agreements between consumers and
providers, were not considered in the price model, as
variables. Inclusion of these characteristics is an
interesting extension of the model, since it may reveal
their potential to affect the price of a cloud offering.
This needs to be empirically proven through the
execution of many different scenarios.

The results of the hedonic pricing method are
summarized in Table 3.

Table 3: Results of hedonic method.

Coefficients Value

Constant
130,499***

(35,42)

CPU
14,532**

(6.41)

Storage
0,249***

(0.02)

RAM
20,434***

(0.86)

OS
-16,91
(2.29)

Transfer_OUT
0,076***
(0.002)

Subscription
-85,82
(20.28)

*** p<.01, **p<.05, *p<.1, n.s. not significant

The calculated R2 value is 57.91%, indicating that
although a great portion of the uncertainty is
described by the model, the linear form of the model
may not be the most appropriate to describe the
pricing index and alternative formulations could also
be considered.

As observed, all parameters are significant and
they contribute to the shaping of the price.
Subscription is the parameter contributing more to the
price index, followed by the RAM size and the CPU.
The high value of the constant, which represents a
fixed monthly fee, supports the finding that the
subscription is a crucial parameter. Storage does not
seem to affect the price very much. The choice of the
operating system affects pricing at a high level, since
Linux reduces the price of the bundles by a factor of
16.91.

5 CONCLUSIONS

The hedonic pricing method was used in this work, in
order to develop a price index for the Infrastructure as

a Service cloud computing services. The evaluation
of the method was based on the linear hedonic model
and the data were collected for a number of 22
providers, corresponding to more than 2300 price
bundles.

The results indicate that, apart from the constant
parameter which indicates the importance of the
subscription, a finding that is also supported by the
high value of the subscription parameter, the RAM
size and the CPU are also of substantial importance
and significance. On the contrary, the storage and the
transfer out parameters seem to affect the pricing
procedure less.

As in most cases, there are some certain
limitations in this work, which in turn constitute its
further extension and indicate directions for future
research. Among them is the use of nonlinear
functional forms in the hedonic formulation, seeking
to improve the accuracy of the pricing index. The
value of R2 achieved indicate that it would be worth
testing. Apart from the general price index
considering price bundles across all providers, the
construction of an index for each provider would be
of particular interest, mainly for comparison reasons.

The construction of price indices for the other
cloud computing models, namely the software as a
service (SaaS) and the Platform as a Service (PaaS),
where literature has little to present, would be another
important, as well as interesting research direction.

In any case, the existence of a price index for the
cloud services can provide very useful information,
not only regarding the pricing schemes but also
regarding the market of cloud itself and could suggest
optimal pricing approaches of the cloud services.

REFERENCES

Al-Roomi, M., Al-Ebrahim, S., Buqrais, S. and Ahmad, I.
(2013) 'Cloud Computing Pricing Models: A Survey',
International Journal of Grid & Distributed
Computing, 6(5).

Anderson, E., Eschinger, C., Wurster, L., de Silva, F.,
Contu, R., Liu, V., Biscotti, F., Petri, G., Zhang, J. and
Yeates, M. (2013) 'Forecast overview: Public cloud
services, worldwide, 2011-2016, 4Q12 Update',
Gartner Inc., February.

Andra, R. S. (2013) 'Investigating Pricing and Negotiation
Models for Cloud Computing'.

Berndt, E. R. (1991) The practice of econometrics: classic
and contemporary, Addison-Wesley Publishing.

Berndt, E. R., Griliches, Z. and Rappaport, N. J. (1995)
'Econometric estimates of price indexes for personal
computers in the 1990's', Journal of Econometrics,
68(1), 243-268.

Chanel, O., Gérard-Varet, L.-A. and Ginsburgh, V. (1996)

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

504

'The relevance of hedonic price indices', Journal of
Cultural Economics, 20(1), 1-24.

Etro, F. (2009) 'The economic impact of cloud computing
on business creation, employment and output in
Europe', Review of Business and Economics, 54(2),
179-208.

Goodman, A. C. (1978) 'Hedonic prices, price indices and
housing markets', Journal of Urban Economics, 5(4),
471-484.

Griliches, Z. (1961) 'Hedonic price indexes for
automobiles: An econometric of quality change' in The
Price Statistics of the Federal Goverment, NBER, 173-
196.

Grossman, R. L. (2009) 'The case for cloud computing', IT
professional, 11(2), 23-27.

Hurwitz, J., Kaufman, M. and Halper, D. F. (2012) 'Cloud
Services for Dummies', IBM Limited Edition, John
Willy and Sons.

Jörg, G., Hiemer, J. and Hinz, O. (2014) 'A Cloud
Computing Broker Model for IaaS resources', in
Proceedings of the European Conference on
Information Systems (ECIS) 2014, Tel Aviv, Israel,
June 9-11,

Li, H., Liu, J. and Tang, G. (2011) A pricing algorithm for
cloud computing resources, translated by IEEE, 69-73.

Martens, B., Walterbusch, M. and Teuteberg, F. (2012)
Costing of cloud computing services: A total cost of
ownership approach, translated by IEEE, 1563-1572.

Mell, P. and Grance, T. (2011) 'The NIST definition of
cloud computing'.

Mihailescu, M. and Teo, Y. M. (2010) Dynamic resource
pricing on federated clouds, translated by IEEE, 513-
517.

Moreau, A. (1996) 'Methodology of the price index for
microcomputers and printers in France', Industry
Productivity: International Comparison and
Measurement Issues, 99-118.

Pakes, A. (2002) A Reconsideration of Hedonic Price
Indices with an Application to PC's, National Bureau of
Economic Research.

Rohitratana, J. and Altmann, J. (2010) 'Agent-Based
Simulations of the Software Market under Different
Pricing Schemes for Software-as-a-Service and
Perpetual Software', Economics of Grids, Clouds,
Systems, and Services, ser. Lecture Notes in Computer
Science, Altmann et al., Eds. Springer
Berlin/Heidelberg.

Rohitratana, J. and Altmann, J. (2012) 'Impact of pricing
schemes on a market for Software-as-a-Service and
perpetual software', Future Generation Computer
Systems, 28(8), 1328-1339.

Rosen, S. (1974) 'Hedonic Prices and Implicit Markets:
Product Differentiation in Pure Competition', Journal
of Political Economy, 92, 34-55.

Ruiz-Agundez, I., Penya, Y. K. and Bringas, P. G. (2011) A
flexible accounting model for cloud computing,
translated by IEEE, 277-284.

Siham, E. K., Schlereth, C. and Skiera, B. (2012) 'Price
comparison for infrastructure-as-a-service'.

Triplett, J. E. (2004) Handbook on hedonic indexes and

quality adjustments in price indexes, science,
technology and industry working papers, OECD
publishing.

Vinu Prasad, G., Rao, S. and Prasad, A. S. 'A Combinatorial
Auction Mechanism for Multiple Resource
Procurement in Cloud Computing'.

A�Hedonic�Price�Index�for�Cloud�Computing�Services

505

New Approach to Partitioning Confidential Resources in Hybrid Clouds

Kaouther Samet1, Samir Moalla1 and Mahdi Khemakhem2

1Department of Computer Science, Faculty of Sciences, University Tunis El Manar, Tunis, Tunisia
2Department of Telecommunications, National School of Electronics and Telecommunications,

University of Sfax, Sfax, Tunisia
samet.kaouther@gmail.com, samir.moalla@fst.rnu.tn, mahdi.khemakhem@isecs.rnu.tn

Keywords: Partitioning Resources, Hybrid Clouds, Confidentiality.

Abstract: Today, companies use more cloud environments such as hybrid clouds. Indeed, hybrid clouds give the op-
portunity to better manage resources mostly when companies have no space to store more resources in their
private clouds. The best solution here is to allocate the required space in public cloud at a low cost. But
how can resources be partitioned in hybrid clouds while assuring confidentiality of resources moved to public
cloud. Many works have been done in this context. They suppose that confidentiality is assured by using
encryption methods. But with this solution the cloud provider can access the resources stored on the cloud,
which weakens the confidentiality of these. This work proposes an approach to the Confidential Resources
Partitioning Problem in Hybrid Clouds (CRPHC) which aims at ensuring the confidentiality of resources by
grouping as much as possible the most confidential resources in private cloud and resources with low degrees
of confidentiality in public cloud while minimizing the size of resources to host in public cloud and conse-
quently reducing the storage cost. This solution allows the possibility of using non-performing encryption
methods which have a reduced treatement cost compared to efficient methods. Experimentally, our solution
will be evaluated and compared to optimal solution given by CPLEX.

1 INTRODUCTION

Cloud computing has become a major concept re-
ferring to the use of memory, computing capabili-
ties computers and servers around the world, all of
them linked by a network such as the Internet. Today,
companies use more cloud environments for deploy-
ment and execution of their applications. Usually, the
most used type of clouds in the cloud environment
is the hybrid cloud. The infrastructure of this type of
cloud is composed of two or several public and private
clouds. It is obvious for a company that applications
must be deployed in the private cloud as resources can
be provided by their cloud.

However, when the physical limit of the private
cloud is reached, the company may need to use other
resources (data, services or applications) from a pub-
lic cloud. This occurs when applications and plat-
forms of companies need to be enlarged and request
additional resources that the private cloud is not able
to provide. In this case, obtaining new resources from
public cloud can solve this problem. Consequently,
resources will be partitioned between private and pub-
lic clouds. Among the obstacles, mentioned by au-
thors of (Stoica and Zaharia, 2009), in cloud environ-

ment is confidentiality and the study of secure data
in this environment is fairly new and has become in-
creasingly important (Nepal and Calvo, 2014). In-
deed, they consider that it is the most important obsta-
cle in this environment. So, how can confidentiality of
resources be ensured in the hybrid cloud? To ensure
confidentiality in the clouds, encryption methods have
been used. But to have better results, it is necessary
to use performing encryption methods which are very
expensive in terms of execution time and complexity
(Chokhani, 2013). However these works fail to raise
the problem that the public cloud providers theoreti-
cally have access to the received resources.

In this context, we propose an approach to solve
the Confidential Resources Partitioning Problem in
Hybrid Cloud (CRPHC) which aims at ensuring the
confidentiality of resources by grouping as much as
possible the most confidential resources in private
cloud and resources with low degrees of confiden-
tiality in public cloud while minimizing the size of
resources to host in public cloud and cosequently re-
ducing the cost of storage.This solution allows to use
a non-performing encryption methods which have a
reduced treatment cost compared to efficient meth-
ods. Experimentally, our solution will be evaluated

506

and compared to optimal solution given by the com-
mercial software IBM-ILOG-CPLEX 12.5 applied to
an integer linear programming formulation of the CR-
PHC.

The rest of the paper is organized as follows: in
section 2, we present an overview of works study-
ing the partitioning problem. In section 3, we list
in details the integer linear programming formulation
of the CRPHC, while in section 4 we clarify our ap-
proach to partitioning confidential resources in hybrid
clouds. In section 5, we evaluate and compare our so-
lution to optimal solution given by CPLEX. Finally,
we end up giving our conclusion and future works in
section 6.

2 STATE OF ARTS

The problem of partitioning resources in cloud en-
vironments has been seen from different viewpoints,
while considering different types of criteria such as
confidentiality, access frequency of query execution,
communication, etc.

In the following, we present some studies for con-
fidentiality management in clouds.

2.1 Confidentiality Management
Assured by the Public Cloud
Provider

We present below approaches Schism and Birch
(Zhang; and Madden, 2010) and (Ramakrishnan and
Livny, 1996) treating the problem of partitioning data
in databases. They try to produce the best quality
clustering with the available memory and time con-
straints.

Authors of (Tata and Moalla, 2012) propose a new
algorithm that approximates the optimal placement of
services based on communication and hosting costs
induced by the shifting of components towards the
public cloud. This research is interested in deciding
which services will be deployed to the public clouds
based on communications between services within
the public cloud, and communications between ser-
vices of the private cloud and services of the public
cloud.

In (Wang and C.Jiang, 2012) and (Wang and
Guo, 2013), authors propose a model for the multi-
objective data placement and use a particle swarm op-
timization algorithm to optimize the time and cost in
cloud computing.

In works already mentioned, the authors are not
interested in the confidentiality of resources moved to

the public clouds. In fact, they suppose that confi-
dentiality is guaranteed by the public cloud provider
using encryption methods applied on all the resources
moved to the public cloud regardless of their degree of
confidentiality (Mehrotra and Thuraisingham, 2012)
and (Kantarcioglu and Thuraisingham, 2011). But, in
this case, the cloud provider can consult and access to
confidential resources in public cloud.

2.2 Confidentiality Management in
Hybrid Clouds

In (Pilli and Joshi, 2013), authors present a solution
approach to the data partitioning problem. They cre-
ate different partitions and estimate the execution cost
of the query workload for each of these partitions and
check whether any monetary and confidentiality risk
constraints were violated. Authors assume that all
predicates have the same level of confidentiality.

Authors of (Mehrotra and Thuraisingham, 2012),
(Kantarcioglu and Thuraisingham, 2011), (Marwaha
and Bedi, 2013) and (Lamba and Kumar, 2014) pro-
pose approaches to ensure confidentiality in clouds
based on encryption. Indeed, they suppose that re-
sources confidentiality is assured by encryption meth-
ods. But in (Nepal and Calvo, 2014) authors con-
sider that this solution is computationally inefficient
and locates a large workload on the data owner when
considering factors such as updating encryption keys.
Likewise, according to (Chokhani, 2013) encryption
methods have additional complexity in cloud environ-
ments which makes this operation very expensive and
complex.

To solve this problem, we propose an approach
to the Confidential Resources Partitioning Problem
in Hybrid Clouds (CRPHC) which aims at ensuring
the confidentiality of resources by keeping the most
confidential resources in private cloud and moving
resources with lower degrees of confidentiality into
public cloud; while minimizing the size of resources
to host in the public cloud.

3 INTEGER LINEAR
PROGRAMMING
FORMULATION FOR THE
CRPHC

In this section we present an integer linear program-
ming formulation for the Confidential Resources Par-
titioning Problem in Hybrid Cloud (CRPHC). Our
aim is to:

New�Approach�to�Partitioning�Confidential�Resources�in�Hybrid�Clouds

507

� Ensure confidentiality by storing resources with
low confidentiality in public cloud,

� Minimize resources storage cost in the public
cloud while respecting a minimal size of resources
to host in public cloud.

3.1 Problem Statement

Generally, the CRPHC can be defined on an undi-
rected graph G(X ;A) where X = f1;2; : : : ;ng is the
set of vertices and A = f[i; j]; i; j 2 X ; i 6= jg is the set
of edges representing the existence of communication
between two vertices i and j.

A vertex presents data, service or application.
Each vertex is characterized by a confidentiality de-
gree di and size si. Each edge is characterized by a
communication frequency fi j if the two vertices i and
j are accessed by the same query and need some com-
munication.

Initially, we consider that all vertices are hosted
in the private cloud and the public one is empty as
illustrated in figure 1. Because the incapacity of the
private cloud to host all vertices, the decision maker
must specify which vertices to move to the public
cloud. After the partitioning vertices (resources) pro-
cess, we will obtain a private cloud which contains the
resources with high confidentiality and a public cloud
which contains resources with low confidentiality as
illustrated in figure 2.

Figure 1: Hybrid cloud before partitioning process.

Figure 2: Hybrid cloud after partitioning process.

Usually, except confidentiality minimization, the
partitioning process must also take into account the
minimization of the total size of vertices affected to
the public cloud and the minimization of the total
communication frequency outside the private cloud
(i.e. the public-public and private-public communi-
cation). In this work, we not interested to the mini-
mization of the communication cost and thereafter we
assume that fi j = 0;8i; j 2 X .

3.2 Mathematical Model

To formulate the mathematical model for CRPHC, we
consider the following data and variables:

� n: number of vertices in the graph,
� X : set of vertices formed the graph,
� di: degree of confidentiality of each vertex i 2 X .

The affectation of values of degree of confiden-
tiality is performed using the opinion of an expert
based on transaction historic.

� si: size of each vertex i 2 X ,
� MS: the Minimal Size of ressources to host in

public cloud. Indeed, the use of the public cloud is
motivated by the insufficiency of the private cloud
to host all vertices.

� xi 2 f0;1g: a binary decision variables. 8i 2 X ,
xi = 1 if the vertex i is affected to the public cloud
and xi = 0 if it’s affected to the private one.

Initially, the CRPHC can be formulated by a 0-1
linear program:

Min Z = max
i2X
fdixig+ å

i2X
sixi (1)

subject to

å
i2X

sixi �MS (2)

xi 2 f0;1g;8i 2 X (3)

Equation (1) represents the objective function of
the CRPHC. It consists to minimize: (i) the maximum
confidentiality degree between the vertices affected to
the public cloud and (ii) the total size of resources
to host in the public cloud. Inequality (2) represents
the size constraint of the public cloud. Equation (3)
represents the constraints of the decision variables.

We note that the objective function is composed
by two inhomogeneous terms in term of their metrics.
Indeed, the sizes and the confidentiality degrees are
not belonging in the same values intervals. Hence-
forth, to eliminate this inconvenience, we use the nor-
malized data si and di instead of si and di, 8i 2 X
where:

si =
si

maxk2X sk
: si 2 [0;1]8i 2 X

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

508

di =
di

maxk2X dk
: di 2 [0;1]8i 2 X

We also note that the proposed objective function
is not linear. So, to linearize the model, in order to
simplify its resolution by any mathematical models
solver, we consider a new integer decision variable
l 2 N to be the maximal confidentiality degree be-
tween verticies affected to the public cloud.

l = max
i2X

�
d̄ixi
	

: l 2 [0;1]

In the improvement model, l must be minimized
and each confidentiality degree of the vertices af-
fected to the public cloud can not exceed l. The mod-
ified model can be formulated as follows:

Min Z = l+ å
i2X

sixi : Z 2 [0;2] (4)

subject to

å
i2X

sixi �MS (5)

dixi � l;8i 2 X (6)
xi 2 f0;1g;8i 2 X (7)
l 2 N (8)

4 THEORETICAL BASIS OF
CRPHC’S APPROACH

In this section, we describe our proposed approach to
solve the CRPHC. To classify the resources, we are
looking for grouping resources which have the clos-
est degrees of confidentiality and to minimize size of
resources which will be hosted in the public cloud.
Resources classification must take into account to the
already mentioned criteria such as:
� Minimizing degrees of confidentiality of re-

sources (vertices) moved to the public cloud Cpu.
� The size of resources affected to Cpu must exceed

slightly a fixed values MS. This constraint allows
minimizing the storage cost of resources moved to
the public cloud Cpu.

4.1 Principle

Our approach aims at partitionning n vertices to two
clusters (Private Cloud Cpr and Public Cloud Cpu)
with respecting certain number of criteria (already
mentionned in the previous paragraph).

Step 1: The initial set of vertices will be pati-
tioned into two clusters: The first cluster Cpr will con-
tain confidential resources and the second cluster Cpu
will contain non-confidential resources.

Step 2: The constraint of the MS of resources to
host in public cloud MS must be verified. So two
cases are possibles:

Case 1: the Total Size of resources affected to Cpu
(T Spu) is greater than MS, Cpu will be partitioned into
two clusters CLpr (Private CLoud) and CLpu (Public
CLoud). Then we have: Cpu = CLpu and Cpr = Cpr [
CLpr

Case 2: the Total Size of resources affected to Cpu
(T Spu) is smaller than MS, Cpr will be partitioned into
two clusters CLpr and CLpu. Then we have: Cpr =
CLpr and Cpu = Cpu [CLpu.

Step 3: Repeat Step 2 until MS is reached or ex-
ceeded.

Figure 3 illustrate the already described steps of
the proposed approach.

Figure 3: Illustration of approach process.

4.2 The CRPHC Algorithm

In this part, we present our solution to classifying re-
sources into two clusters: private and public clusters.

New�Approach�to�Partitioning�Confidential�Resources�in�Hybrid�Clouds

509

So we implement CRPHC Algorithm to classify re-
sources into two clusters.

First, we suppose that all vertices (resources) are
hosted in the private cloud, then each vertex is af-
fected in the right cloud taking into account the pre-
vious criteria already mentioned. However to apply
CRPHC Algorithm, a metric must be defined to clas-
sify a set of vertices.

In our case, the distance must take into account the
degree of confidentiality di and the size si of each ver-
tex i 2 X . As a result, the private cloud Cpr will con-
tain vertices which have the highest degree of confi-
dentiality while minimizing the costs of storage in the
public cloud. So, the public cloud Cpu will contain
resources having lower confidentiality degree which
will minimize the costs of storage in the public cloud.

4.2.1 Definition 1: (Distance)

We consider that each vertex is characterized by coor-
dinates (si,di). So, the distance di j between two ver-
tices i and j will be defined as following:

di j =
q
(si� s j)2 +(di�d j)2

4.2.2 Definition 2: (Centroid)

A centroid is characterized by coordinates (swk ;dwk).
These coordinates are calculated as following:

swk =
åi2Ck

si

jCkj
; 8k 2 f1;2g

dwk =
åi2Ck

di

jCkj
; 8k 2 f1;2g

4.2.3 Algorithm

Our solution is based on a main algorithm (CRPHC
Algorithm) which uses each time Affect Algorithm to
classify different vertices of the graph into two clus-
ters. The input of the CRPHC Algorithm is the graph
to be partitioned. As is already mentioned, each ver-
tex of the graph is characterized by a degree of con-
fidentiality di and a size si. Then, the output is two
clusters: private cloud Cpr and public cloud Cpu. For
Affect Algorithm, the output is also a private cloud
CLpr and a public cloud CLpu. Algorithm 1 describes
the proposed approach to solve the CRPHC.

Initially, we assume that all vertices are hosted in
the private cloud and the public cloud is empty. The
Affect Algorithm will be applied to all the graph to
give firstly two clusters: private cloud CLpr and public
cloud CLpu. If the Total Size T Spu of resources hosted
in public cloud is greater than MS (see line 6), Affect
Algorithm will be applied to public cloud CLpu. This

Algorithm 1: CRPHC Algorithm.

input : G(X ;A)=jX j= n.
output: Cpr and Cpu where Cpr [Cpu = X and

Cpr \Cpu = /0.
1 Cpr X ;
2 Cpu /0;
3 Affect(X) /* Apply Affect (see
Algorithm 2) */;

4 Cpr fCLprg;
5 Cpu fCLpug;
6 if T Spu �MS /* (TS: Total Size of
resources affected to public cloud)
*/ then

7 repeat
8 X CLpu;
9 Affect(X);

10 Cpr Cpr [CLpr;
11 Cpu CLpu;
12 until T Spu > MS;
13 else
14 repeat
15 X CLpr;
16 Affect(X);
17 Cpu Cpu[CLpu;
18 Cpr CLpr;
19 until T Spu < MS;
20 end

allows to decrease the Total Size of resources hosted
in Cpu, indeed, vertices of CLpu will be moved from
the public cloud Cpu to the private cloud Cpr (see lines
7-12). So the Affect Algorithm will be applied to pub-
lic cloud CLpu until the MS is reached.

Likewise, if T Spu is lower than MS (see lines 13-
19), the Affect Algorithm will be applied to CLpr. In-
deed, the vertices of CLpr will be moved from private
cloud Cpr to public cloud Cpu until the MS is reached
or exceeded.

Affect Algorithm consists in a first step to choose
two vertices wpr and wpu from the graph (see lines 1-
2). The choice of these vertices is performed using
two functions max() and min().The function max()
choose the vertex with the maximal degree of confi-
dentiality in the graph and the function min() choose
the vertex with the minimal degree of confidentiality
in the graph. In this case, Affect Algorithm regroup
vertices with higher confidentiality in one cluster (pri-
vate cloud) and vertices with lower confidentiality in
another cluster (public cloud).

To affect vertices to the right cluster (see lines 7-
11), the idea is to compute the distance d(i;wk), with
k = fpr; pug, between each vertex in the graph and
each centroid. If the vertex is closest to wpr, it will be
hosted to the private cloud CLpr and if the vertex

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

510

Algorithm 2: Affect Algorithm.

input : A set of vertices X to be partitioned.
output: Tow clusters CLpr and CLpu for the

vertices hosted (respectively) in private
and public clouds.

1 w1 max(X);
2 w2 min(X);
3 repeat
4 CLpr X ;
5 CLpu /0;
6 for each i 2 X do
7 if diwpr � diwpu then
8 CLpr CLpr [fig;
9 else

10 CLpu CLpu[fig;
11 end
12 end
13 old wpr wpr;
14 old wpu wpu;
15 new wpr centroid(CLpr);
16 new wpu centroid(CLpu);
17 until old wpr == new wpr AND

old wpu == new wpu;

is closest to wkpu , it will be hosted to the public cloud
CLpu. Then, we compute centroids of the new clusters
(see lines 15-16) and we repeat this process (see lines
4-16) until we have the stability of the two clusters
i.e. we reach the same centroids in two successive
iterations (see line 17).

5 EXPERIMENTAL EVALUATION

To apply and assess our approach, we need instances
for CRPHC algorithm. Then we need to vary the fol-
lowing parameters:

� n: number of vertices of the graph,

� d: degrees of confidentiality of vertices of the
graph,

� T S: Total Size of vertices of the graph,

� MS: Minimal Size of resources to host in public
cloud.

But, it is not possible to find real cases or bench-
marks based on previous parameters and able to vary-
ing them. This is why we need to create several
graphs according to our need. For this reason we have
developed a generator of graphs. Each graph is com-
posed by six elements: number of vertices, vector of
size of each vertex, a vector of confidentiality degree

of each vertex, MS, matrix of execution frequency be-
tween two vertices and minimal degree of confiden-
tiality in public cloud. In our work we just interest
to the four first elements. The generated graphs are
available on http://goo.gl/uvO8B8.

In this section, we will evaluate our solution with
an optimal solution CPLEX. CPLEX is a computing
tool of optimization (Aitha, 2014) which gives opti-
mal solutions applied to a integer programming for-
mulation.

So, to assess our solution we applied CPLEX to
the same graphs that we used to test CRPHC Algo-
rithm. Then we compare the results obtained with our
solution and those obtained by CPLEX.

To better analyze and interpret results, we calcu-
late the Gap between results given by CRPHC and
those given by CPLEX. This Gap is given by:

Gap = (CRPHC OF�CPLEX OF)=cplex OF

Then, we recognize that a solution is called:
� Optimal: if the Gap associated is 0%,
� Excellent: if the Gap associated it does not exceed

15%,
� Incorrect: if the Gap associated exceeds 50%.

5.1 Varying Number of Vertices

These tests consist in varying the number of vertices
of graphs (500, 1000, 1500, 2000, 2500 and 3000)
and fixing the MS= 20%, Total Size of the graph T S =
10000 and degree of confidentiality di 2 [0% - 100%].

Figure 4: Gap for varying number of vertices.

Figure 4 shows that the Gap values are betwwen
3,4% et 5% so they are so close.

We remark that the Gap between our solution and
optimal solution does not exceed 5%. So, in this case,
our solution can be considered excellent.

5.2 Varying Degree of Confidentiality

For these tests, we fixed the number of vertices n =
2000;MS = 20% and Total Size of the graph T S =

New�Approach�to�Partitioning�Confidential�Resources�in�Hybrid�Clouds

511

10000. Then we varied the range of degree of confi-
dentiality. To do this, we have chosen three ranges:
� [0%�20%] this range represents resources with

low confidentiality,
� [80%�100%] this range represents resources

with high confidentiality,
� [0%�100%] this range represents resources with

low and high confidentiality.

Figure 5: Gap for varying degree of confidentiality.

Figure 5 shows that the Gap for [0%�20%] is
1,6%. This value is low compared to values of
other range of confidentiality. So, for resources
with low confidentiality, the CRPHC OF value is
close to CPLEX OF. Then the graph is almost sta-
ble in the order of 4,7% between [0%�100%] and
[80%�100%].

The Gap between our solution and optimal solu-
tion does not exceed 4;7%. So, we can consider that
our solution is excellent in this case.

5.3 Varying Total Size

For these tests, we fixed number of vertices n =
2000;MS = 20% and the degree of confidentiality di
2 [0% - 100%]. Then we varied the Total Size of the
graph (10000, 20000 and 30000).

Figure 6: Gap for varying size.

Figure 6 shows that the best Gap value is given for
T S = 20000.

Then we have the Gap between our solution and
optimal solution does not exceed 6%. So, we can con-
sider that our solution is excellent in this case.

5.4 Varying MS

For these tests, we fixed number of vertices n = 2000,
degree of confidentiality di 2 [0% - 100%] and Total
Size of the graph T S = 10000. Then we varied MS
(20%;30% and 60%) in the public cloud.

Figure 7: Gap for varying MS.

Figure 7 shows that the Gap for MS = 20% is
4,3%. This value is the best result given by our so-
lution compared to MS = 30% and MS = 60%.

Then we remark that the graph is almost stable in
the order of 14% between MS = 30% and MS = 60%.

The Gap between our solution and optimal solu-
tion does not exceed 14%. So, in this case, our solu-
tion can be considered excellent.

6 CONCLUSION AND FUTURE
WORK

In this paper, we tackled a new approach for partition-
ing confidential resources between private and public
components in hybrid cloud. Our objective is to en-
sure confidentiality by moving confidential resources
to private cloud and resources with low confidential-
ity to public cloud. And also, minimizing the size of
resources to host in public cloud. Then we have com-
pared the results given by our proposed solution with
optimum results given by CPLEX, and we have found
that our results are acceptable.

In this work, we have supposed that hybrid cloud
is composed by one private cloud and one public
cloud. So to enlarge our work, we hope to propose an
approach to partitioning confidential resources in hy-
brid clouds based on multitude of criteria which man-
aging the allocation decision of each resource to one
of the classes: private clouds and public clouds. Thus
we place ourselves in a melting problem of sources of
information (confidentiality, capacity, degree of de-
pendence between resource, etc.). Then we focus on
the notion of dynamicity such as confidentiality and
sizes of resources that will be partitioned in hybrid
clouds.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

512

REFERENCES

Aitha, P. (2014). Cplex tutorial handout.
http://fr.scribd.com/doc/63956075/CPLEX-Tutorial-
Handout.

Chokhani, R. C. M. I. S. (2013). Cryptographic key man-
agement issues and challenges in cloud services. Na-
tional Institute of standards and Technology.

Kantarcioglu, V. K. M. and Thuraisingham, B. (2011). Se-
cure data processing in a hybrid cloud. Pacific Asia
conference on Intelligence and Security Informatics.

Lamba, S. and Kumar, A. (2014). An approach for ensuring
security in cloud environment. International Journal
of Computer Applications.

Marwaha, M. and Bedi, R. (2013). Applying encryption al-
gorithm for data security and privacy in cloud comput-
ing. IJCSI International Journal of Computer Science
Issues.

Mehrotra, V. K. K. O. B. H. M. K. S. and Thuraisingham, B.
(2012). Risk- aware data processing in hybrid clouds.
IEEE 5th International Conference on cloud Comput-
ing.

Nepal, D. T. S. C. S. and Calvo, R. (2014). Secure data
sharing in the cloud. Security; Privacy and Trust in
cloud Systems.

Pilli, P. R. P. M. R. S. E. and Joshi, R. (2013). Improved
technique for data confidentiality in cloud environ-
ment. Networks and Communications.

Ramakrishnan, T. Z. R. and Livny, M. (1996). Birch : An ef-
ficient data clustering method for very large database.
SIGMOD.

Stoica, M. A. A. F. R. G. A. J. R. A. K. G. L. A. P. A.
R. I. and Zaharia, M. (2009). Above the clouds : A
berkeley view of cloud computing. In a.

Tata, F. B. N. T. S. and Moalla, S. (2012). Approxi-
mate placement of service based applications in hy-
brid clouds. 21st International conference IEEE WET-
ICE.

Wang, L. G. Z. H. S. Z. N. Z. J. and C.Jiang (2012). Multi-
objective optimization for data placement strategy in
cloud computing. Springer.

Wang, X. and Guo, W. (2013). A data placement strategy
based on genetic algorithm in cloud computing plat-
form. 10th Web Information System and Application
Conference (WISA).

Zhang;, C. C. E. J. Y. and Madden, S. (2010). Schism : a
workload-driven approach to database replication and
partitioning. VLDB; 36th International Conference on
Very Large Data Bases.

New�Approach�to�Partitioning�Confidential�Resources�in�Hybrid�Clouds

513

Cloud Spreadsheets Supporting Data Processing
in the Encrypted Domain

D. A. Rodríguez-Silva1, L. Adkinson-Orellana1, B. Pedrero-López1 and F. J. González-Castaño2
1Gradiant, Edif. CITEXVI, Campus de Vigo, 36310, Pontevedra, Spain

2AtlantTIC, Escuela de Ingeniería de Telecomunicación, Universidade de Vigo, 36310, Pontevedra, Spain
{darguez, ladkinson}@gradiant.org, javier@det.uvigo.es

Keywords: Cloud Computing, Security, Privacy, Homomorphic Encryption, Spreadsheet.

Abstract: Security has become one of the main barriers for the adoption of cloud services. A range of legal initiatives
that require support mechanisms such as access control and data encryption have been proposed to ensure
privacy for data moved to the cloud. Although these mechanisms are currently feasible in situations in
which the cloud acts as a mere data storage system, they are insufficient in more complex scenarios
requiring processing in external cloud servers. Several new schemes have been proposed to overcome these
shortcomings. Data Processing in the Encrypted Domain (DPED) permits arithmetic operations over
ciphered data and the generation of encrypted results, without exposure of clear data. In such a set-up, the
servers have no access to the information at any point of the process. In this paper we describe, as a case
study of secure cloud data processing, a cloud spreadsheet that relies on DPED libraries to perform
operations in the encrypted domain. Tests performed on local servers and in the Google cloud through the
Google App Engine platform show that representative real applications can benefit from this technology.
Because the proposed solution is PaaS-oriented, developers can apply the libraries to other applications.

1 INTRODUCTION

Security and privacy are both major concerns for
Cloud Computing users. As reported in the
European CIOs and Cloud Services research study
(2010), around 71% of European companies are
worried about security and privacy, especially when
it comes to storing or processing sensitive data in the
cloud. Security has thus become a significant barrier
to full adoption of cloud services.

Concerns regarding security and privacy have
been addressed in part by different legal initiatives
within the European Union, such as Directive
95/46/EC of the European Parliament and the
Council of October 24 1995 (Data Protection
Directive, 1995), which proposes a set of
recommendations for protecting personal data during
transfer and processing. In Spain there are several
specific laws to protect and regulate the management
of personal and corporate data used by cloud
applications, including the Data Protection
Regulation, of Law 15/1999 on Personal Data
Protection (LOPD, 1999) and the Royal Decree
1720/2007, which approves the development of the
LOPD (RDLOPD, 2007). As an example of the

recommended proposals, the 85th article of the
RDLOPD states that security measures applied to
personal data in communication networks, public or
not, should guarantee at least the same security level
as that offered by local access systems.

Due to their very nature, data processed in the
cloud will presumably be affected by international
data transfers, primarily because many web
applications are hosted on foreign servers.
International data movement is regulated by the data
protection regulation, which forbids international
data transfers between countries that do not offer
sufficient security guarantees according to the
LOPD, although there are some exceptions explicitly
indicated in the reference regulation. In addition, this
regulation sets out several legal requirements, such
as transfer notification to the Spanish Data
Protection Agency.

Because legal procedures are slow, new
technological mechanisms are required until the
situation is completely regulated. Authentication on
the client side and use of security mechanisms such
as data encryption during data transmission are good
solutions for interception attacks and servers that do
not offer sufficient guarantees of reliability. To
increase security, the client can cipher data using a

514

private key, thereby hiding the information from the
server. Although this option is valid when the cloud
acts as a mere storage service, there are cases in
which it would be insufficient, for example when
performing certain calculations on the server or
when processing a query to a database with ciphered
data.

To overcome the above shortcomings, new
server-side schemes have been proposed, such as the
use of cryptographic hardware or Data Processing in
the Encrypted Domain (DPED). Cryptographic
hardware can be used to perform cryptographic
operations and to store keys securely, but it is
expensive (specific trusted anti-tampering devices
are required) and it needs to be physically integrated
into the provider’s infrastructure. DPED overcomes
these problems, but at the expense of increased
processing time. It enables operations over ciphered
data that generate encrypted results, thereby
allowing server-side operations without revealing
the original information. This adds an additional
security level to the cloud paradigm by means of
complex homomorphic algorithms. The
computational requirements may not be a problem
thanks to the scalability and flexibility of the cloud
paradigm.

In this paper we describe a cloud spreadsheet
application that uses the DPED concept to perform
operations in the encrypted domain. We have tested
it on our local servers and in the Google cloud
through the Google App Engine (GAE) platform.
Section 2 discusses related work and section 3
explains the implementation details of our
application. Section 4 presents the tests performed,
and finally, section 5 concludes the paper.

2 RELATED WORK

Many office cloud applications allow users to work
with spreadsheets. Some well-known examples are
Microsoft Office 365, Google Drive Spreadsheets,
Thinkfree Calc and Zoho Sheet. Nevertheless, none
of these applications currently offers full protection
mechanisms for user data, meaning that privacy,
when available, is supported by external means.
Indeed, most current solutions are designed for
Google Drive, not for spreadsheets. Furthermore,
although there are solutions that are completely
integrated with the Google Drive interface that
encrypt documents transparently to users (Adkinson-
Orellana et al., 2010), most simply use the cloud to
store the encrypted documents (CryptRoll, 2013;
ZecurePC, 2011; and CloudLock, 2015).

DPED allows certain operations to be performed
over ciphered data without the need to access the
clear version. In particular, arithmetic operations can
be performed efficiently in the encrypted domain
thanks to the concept of additive and multiplicative
privacy homomorphisms (Brickell and Yacobi,
1987). In 2009, Gentry presented the first fully
homomorphic encryption scheme. He described
public key encryption using ideal lattices (Gentry,
2009). In the same year, M. Van Dijk described a
“somewhat homomorphic” encryption scheme based
on elementary modular arithmetic, and used
Gentry’s techniques to convert it to a full
homomorphic scheme (M. Van Dijk et al., 2009)
that implemented addition and multiplication over
integers rather than ideal lattices over a polynomial
ring.

There have been other contributions in this
direction. A. F. Chan formulated a privacy
homomorphism for operating over ciphered data
with two different encryption schemes, where data
could be processed directly in an encrypted form
(Chan, 2009). H. Hacigümüş, in turn, described
different techniques for executing SQL queries over
encrypted data (Hacigümüş et al., 2002). The
strategy involves processing as much of the query as
possible at the service provider site, without
decrypting data. Decryption and the remainder of the
query processing takes place at the client side. They
also explored an algebraic framework to split the
query to minimize computation at the client side.

The innovative idea in this paper is to enable
DPED processing in cloud applications. We are not
aware of any previous DPED-enabled complex
cloud applications, although, in a previous work, we
presented a toy example that demonstrated that
DPED could strengthen the privacy of simple
mathematical operations in the cloud (Rodriguez-
Silva et al., 2011).

3 SECURE CLOUD
SPREADSHEET

3.1 Arithmetic Calculations in the
Encrypted Domain

The spreadsheet application is composed of two
modules: a client module and a server module. The
client module presents the spreadsheet interface,
which is used to enter data, cipher its content, send it
to the server, and decipher and present the results in
the corresponding spreadsheet cell. The server

Cloud�Spreadsheets�Supporting�Data�Processing�in�the�Encrypted�Domain

515

module, in turn, executes arithmetic operations on
the encrypted data received from the client by means
of adequate privacy homomorphisms. The supported
encrypted operations are listed in Table 1.

Due to the low efficiency of complete
homomorphisms in the current state-of-the-art, our
implementation uses a variation of the additive
homomorphic encryption described by Paillier
(Paillier, 1999) as the basis of our cryptographic
system. One or more additional rounds of
communication between the client and the server
will also be needed depending on the complexity of
the operation requested.

Table 1: Encrypted operations supported by the
spreadsheet.

Operation Description Example
AVERAGE Average value AVERAGE (A1:A5)

DEGREES Degree conversion DEGREES (A1:A5)

FFT Fast Fourier Transform FFT (A1:A5)

PROD Product PROD (A1:A5)

RADIANS Radian conversion RADIANS (A1:A5)

SPROD Scalar product SPROD(A1:A5;B1:B5)

STDEV Standard deviation STDEV (A1:A5)

SUM Addition SUM (A1:A5)

VADD Vector addition VADD (A1:A5;B1:B5)

VAR Variance VAR (A1:A5)

VPROD Vector product VPROD(A1:A5;B1:B5)

VSUB Vector substraction VSUB (A1:A5;B1:B5)

The encryption methods used are based on
asymmetric key algorithms. The libraries present
different options, such as threads and JNI (Java
Native Interface), thereby increasing efficiency

thanks to the use of C libraries. The encryption
libraries also allow operations with scalars and
vectors, unlike the version in our previous work,
which only offered basic operations for unary
values.

3.2 Ciphered Cloud Spreadsheet
Implementation

The spreadsheet allows operations over a range of
cells, with no limitations in terms of the number of
operators involved. The implementation relies on
Java technology, as this is the most common PaaS
language. It uses the Java Runtime Environment
(JRE) classes available to create applets and tables
(JTable, TableModel, etc.), meaning that results can
be easily embedded on a web page. The
development environment used to create the
spreadsheet and the associated technologies are the
same as those used for the encrypted calculator
(Rodriguez-Silva et al., 2011): Java Servlets and
IDE Eclipse 3.5 (Galileo) for the server and Java
applets and Oracle IDE Netbeans 6.8 for the client,
with the corresponding plugin to create graphical
user interfaces. Again, GAE was selected as the
cloud platform to deploy the application. Due to the
restrictions of this PaaS, the encryption libraries had
to be adapted, since the platform has a limited
support for multithreading (a characteristic that the
libraries use to improve efficiency).

By default, some of the applet functionalities
(e.g. reading or writing files on disk) are restricted
through a security policy implemented by the
security controller of the browser Java Virtual

Figure 1: Ciphered cloud spreadsheet interface.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

516

Machine (JVM) plugin. However, the spreadsheet
applet needs these functionalities to store its content
in a local file and to obtain and save the user keys to
cipher data. For this reason, the user must accept the
applet signature, granting certain restricted
functionalities. All the libraries except
au.com.bytecode.opencsv (required to save the
content of the spreadsheet in .CSV format) and the
DPED libraries are available on the JRE used by the
browsers. Other libraries are downloaded when the
applet starts.

The client is composed of two modules: one for
the graphic interface and the other for parsing and
communicating with the server. The graphic module
is in charge of the visual interface, intercepting user
events and presenting results. Its design was based
on typical spreadsheet software, such as Google
Spreadsheet, OpenOffice.org and Microsoft Excel
(Figure 1). The client parser analyses formulae
expressions to obtain the data required to perform
the operations. Finally, the communication module
exchanges data with the server using HTTP
tunnelling.

Figure 2: Client module flowchart according to user
interaction.

To perform a spreadsheet operation, the first step
is to start the application (applet) and load the
libraries. The user then introduces his/her login and
password, using his/her Google user account if the
application is deployed in GAE. If access is granted,
the user keys —required to cipher and decipher the
data and perform encrypted operations— are loaded

from binary files. When the process is complete, the
spreadsheet graphic interface is shown. At this point,
the application is ready to process events generated
by user interaction (see Figure 2):
 Finish cell edition. The application checks the

type of data entered in the cell, such as
formulae, a number or other data types. The
formulae are analysed, the type of operation
and the references to the cells are extracted,
and in the case of numbers, these are ciphered.
With this information a new communication
object is created to be sent to the server. In the
case of other data types, the cell content is
directly inserted in the communication object.
Once this object has been created, a new
communication thread is thrown to send the
object to the server. In other words, the
interface thread is released to receive new user
events. The communication thread remains
open until confirmation is received that the
number or object has been correctly received
at the server side or until the operation defined
by the formula has finished. This is indicated
by the communication round. The result is
then decrypted and displayed to the client.

 Save on server. The client creates an object
with the order to save the spreadsheet at the
server side. A new thread is created
specifically to send the petition containing this
object. This thread will receive a response
indicating the success or failure of the request.

 Select a menu option. The selected option is
performed at the client or the server side,
depending on the actions involved, e.g.,
create/load user keys, add/remove rows or
columns, copy/paste cells, etc.

Dependencies between the values of the cells
must be taken into account. When the value of a cell
changes, it can affect other related cells, resulting in
the execution of multiple parallel operations. To
manage this situation, a new thread is thrown for
each dependent operation, creating a new client.
This ensures that the different operations executed
do not interfere with each other, but it requires more
processing load for the application during the
initialization of a new module.

We considered two possible server deployment
scenarios: a private cloud (local) and a public cloud
(GAE). The private cloud does not have all the
resources and services offered by GAE, such as user
accounts and persistent storage. In this case users are
authenticated through a local mechanism and
persistent storage is simulated by saving the
spreadsheet in a local file, identified by the user

Cloud�Spreadsheets�Supporting�Data�Processing�in�the�Encrypted�Domain

517

login. In this way, when a user enters the
application, the saved spreadsheet will be retrieved
and deciphered if and only if he/she has the
appropriate private key.

The server is a servlet composed of two
modules: the communication module and the data
processing module. The communication module
performs the same actions as on the client side,
while the data processing module is in charge of
storing or processing the data received in the
encrypted domain and recovering the stored
spreadsheet.

On the server side, the first step is to initialize
the servlet, which will keep listening to incoming
petitions from the clients. When a request is
received, the thread recovers the object and retrieves
the data it contains. The selected action is then
executed, i.e. the data received is saved, the cell
value is deleted, the module is initialized, the
encrypted operation is performed, etc.

The client and server modules must store the
status of each operation requested, indicating the
current execution round. If several operations are
requested at once, several modules for the client and
the server will be instantiated, and those associated
with the same operation will be identified by a
unique identifier. Thus, each time an operation is
requested, it will be possible to execute it in the
corresponding module, avoiding result
inconsistencies when several rounds are being
carried out.

Communication between the client and the
server takes place through a Java object, which is
used to retrieve and store information. This object is
sent through HTTP tunnelling, facilitating data
transmission through different elements (firewalls,
proxies, etc.) that typically limit connection to web
resources. In addition, the object is used to send and
receive different types of data, such as encrypted
data to be stored by the server, information related to
the operation performed and the cells involved,
encrypted results received from the server, etc.

The application also supports the generation of
the keys required to cipher and decipher data. These
keys offer two levels of security: short-term and
medium-term. While short-term security speeds up
encryption and decryption, medium-term security is
stronger, as it would take approximately ten times
longer to break up its keys (e.g., ten years vs 1 year).

4 PERFORMANCE TEST

The test layout comprised a client computer (Intel

Core i3-2120 @ 3.3 GHz, 3870 MB RAM, Ubuntu
10.4) and a local server (with the same
characteristics) to perform the encrypted operations
under Jetty 7.5.4. The cloud application applet was
executed through the Google Chrome 17 browser.
We also used GAE servers equipped with Jetty to
deploy the applications.

The operation selected to evaluate the
performance of the spreadsheet was a Fast Fourier
Transform (FFT), as this is a complex operation that
permits representative performance results. The FFT
was applied to vectors with lengths of 64, 128 and
512 points.

The current version of the spreadsheet encrypts
and sends each data item to the server individually.
When an operation (the FFT in this case) is selected
at the client side, the server simply receives the
operation and the cells involved, since it has already
the ciphered values. Therefore, the total time needed
to perform an operation comprises two times: a data
entry time, including the management of the data in
the cells in the spreadsheet and the time needed to
encrypt and send each operand to the server, and a
running time, which is the time needed to perform
an encrypted operation on the server and present the
result on the client side.

We used four test scenarios:
 Local, with threads and JNI. The encrypted

FFT was executed on the local server. There
were five parallel threads in the server and the
client. JNI was used to improve efficiency.

 Local, without threads or JNI. As in the
previous case, the operation was executed on
the local server. Neither threads for parallel
executions nor C functions were used in this
scenario.

 Local, clear FFT. We executed the FFT using
clear data on the local server. The FFT
algorithm was implemented by a Java
function.

 Remote, deployed on a GAE server. GAE does
not allow the use of threads or JNI, so the
server was subject to these restrictions. At the
client side five threads were used, in addition
to C functions through JNI.

The client was executed on the same machine
and used the same browser in all four scenarios.

In each scenario, 10 FFT operations were
performed for randomly generated vectors for the
three lengths. We used both the short- and medium-
term security levels to perform these tests. Tables 2
and 3 show the corresponding results based on the
following times:
 Entry time (ET). Time from the moment an

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

518

operand is entered in the spreadsheet to the
moment the client receives the response from
the server (indicating that the encrypted data
have been correctly stored).

 Server execution time (SE). Time taken by the
server to perform the encrypted FFT
operation.

 Running time (RT). The sum of
communication time required to exchange
data between the client and the server, the
time needed by the server to perform an
ciphered FFT (SE) and the time needed to
decrypt the result for the client.

Each pair of values represents the average
execution time () and its standard deviation (σ),
both in milliseconds.

The tests were unfeasible for the 512-point FFT
in the remote scenario because the time needed to
generate and return a response in GAE is limited to
30-60 seconds and the 512-point FFT needs longer.
These results are therefore not shown in the tables.

The use of longer keys improves security
considerably, but increases effective operating time.
On comparing Table 2 and Table 3, we can see that
the time required to perform the same operation is
considerably higher for the medium-term security
level. This mainly affects ciphered operation time
(i.e., server execution time). The different level of
security does not have an impact on data entry time,
as this includes the ciphering of data but not the
execution of the encrypted operations.

The use of threads and JNI considerably reduced
the execution time in both cases, primarily due to the
improved efficiency of the execution of the
algorithm on the server and the improved efficiency
of the decoding process. Although this test scenario
cannot be translated to GAE, its results can give us
an idea of how the performance could be improved
with JNI and threads in GAE or other compatible
PaaS.

The running time with GAE was much higher
than in the equivalent local case without threads or
JNI. Besides of the Internet delay, GAE servers took
approximately 10 times longer to execute the same
algorithm, probably because GAE is optimized for
applications with short response times, typically of
hundreds of milliseconds.

The total execution time for the best DPED
scenario (local, threads and JNI) was much longer
than with unencrypted data (local, clear FFT). This
is obviously due to the time spent on encrypting data
and decrypting the result, and the efficiency of the
DPED FFT algorithm, which is over 200 times

slower than the algorithm used to calculate the FFT
with unencrypted data.

Table 2: Data entry time, server execution time and
running time using the short-term security level (ms).

Test scenario 64 128 512

Local, no
threads or
JNI

ET
=524.2

σ=23.5
=897.9

σ =43.3
=6888.4

σ =114.4

SE
=581.4

σ=152.7
=1177.9

σ =137.8
=6013.7

σ =120.1

RT
=1206.6

σ=140.4
=2256.7

σ =135.1
=9918.4

σ =131.5

Local,
threads and
JNI

ET
=565.1

σ =21.9
=936.1

σ =21.3
=8642.9

σ =127.6

SE
=76.9

σ=9.4
=140.9

σ =31.7
=545.8

σ =62.5

RT
=239.1

σ =18.3
=356.3

σ =41.4
=1108.8

σ =103.6

Remote
(GAE)

ET
=16539.3

σ =538.9
=34056.3

σ =1355.2

SE
=5595.2

σ=294.3
=13793.8

σ =858.8

RT
=6339.3

σ =365.7
=14688.0

σ =881.2

Local, clear
FFT

ET
=475.6

σ =23.9
=790.3

σ =41.3
=6250.7

σ =118.3

SE
=0.159

σ=0.086
=0.516

σ =0.307
=1.318

σ =0.422

RT
=6,5

σ =1.5
=6.9

σ =2.5
=10.4

σ =2.0

Table 3: Data entry time, server execution time and
running time using medium-term security level (ms).

Test scenario 64 128 512

Local, no
threads or
JNI

ET
=1132.3

σ=35.1
=1916.8

σ=36.9
=8308.8

σ=192.5

SE
=2382.4

σ=500.8
=4538.1

σ=623.2
=20909.2

σ=742.1

RT
=6127.7

σ=550.3
=11129.8

σ=567.9
=46873.3

σ=1314.3

Local,
threads
and JNI

ET
=589.9

σ=53.6
=995.1

σ=38.3
=6983.7

σ=137.4

SE
=173.6

σ=23.2
=337.0

σ=35.7
=1558.2

σ=287.5

RT
=597.4

σ=46.6
=1031.6

σ=35.1
=4062.7

σ=491.0

Remote
(GAE)

ET
=16733.6

σ=1113.3
=34709.2

σ=2410.8

SE
=22045.1

σ=915.4
=52640.6

σ=1033.4

RT
=23007.0

σ=926.6
=54172.3

σ=1111.0

Local, clear
FFT

ET
=475.6

σ =23.9
=790.3

σ =41.3
=6250.7

σ =118.3

SE
=0.159

σ=0.086
=0.516

σ =0.307
=1.318

σ =0.422

RT
=6,5

σ =1.5
=6.9

σ =2.5
=10.4

σ =2.0

Cloud�Spreadsheets�Supporting�Data�Processing�in�the�Encrypted�Domain

519

5 CONCLUSIONS

Cloud computing provides an adequate environment
for deploying applications following a Software-as-
a-Service (SaaS) model. However, security and
privacy are key concerns when sensitive data
managed by applications is moved to cloud
infrastructures for processing or storage.

In this paper we have proposed, as a case study
of a real-life secure cloud application, a spreadsheet
capable of performing DPED operations on cloud
servers. The application was tested on a private
cloud and on GAE, with analysis of the time
required to perform a ciphered FFT operation.
Although the test results demonstrate that
homomorphic encryption is a feasible solution for
secure data processing on cloud infrastructures, the
efficiency of current encrypted domain libraries
needs to be improved to achieve commercial status.
Nevertheless, although the times for encrypted
operations are quite long, they are satisfactory for
applications with a light processing load, such as the
proposed spreadsheet. To apply this model in a
PaaS, cloud providers should support DPED
libraries on their servers.

This solution could be applied to other real-life
applications, such as enterprise resource planning
(ERP) or e-Health SaaS, where confidentiality is
crucial.

ACKNOWLEDGEMENTS

This research was supported by the SAFECLOUD
grant (09TIC014CT), funded by Xunta de Galicia
(Spain), and partially supported by the HIGEA grant
(IPT-2012-1218-300000), funded by the Spanish
Ministry of Economy and Competitiveness, the
PRISMED grant (IPT-2011-1076-900000), funded
by the Spanish Ministry of Science and Innovation.
This research was conducted with the collaboration
of GPSC research group of the University of Vigo,
which provided the DPED libraries, and Fundación
Barrié.

REFERENCES

Adkinson-Orellana, L., Rodríguez-Silva, D. A., Gil-
Castiñeira, F., and Burguillo-Rial, J., 2010. Privacy for
Google Docs: Implementing aTransparent Encryption
Layer. In Proc. of 2nd Cloud Computing International
Conference–CloudViews 2010 (pp. 20-21).

Brickell, E. F., Yacobi, Y., 1987. On Privacy
Homomorphisms. In Advances in Cryptology–
EUROCRYPT 87 (pp. 117-125). Springer Berlin
Heidelberg.

Chan, A. F., 2009. Symmetric-key homomorphic
encryption for encrypted data processing. In
Communications, 2009. ICC'09. IEEE International
Conference on (pp. 1-5). IEEE.

CloudLock. [Online]. [Accessed 6 January 2015].
Available from: http://www.cloudlock.com/

CryptRoll.2013. [Online]. [Accessed 6 January 2015].
Available from: http://cryptroll.android.informer.com/

Data Protection Directive. [Online]. [Accessed 6 January
2015]. Available from: http://ec.europa.eu/justice/data.
protection/index_en.html.

European CIOs and Cloud Services, 2010. [Online].
[Accessed 6 January 2015]. Available from:
http://www.colt.net/cio-research.

Gentry, C., 2009.Fully Homomorphic Encryption Using
Ideal Lattices. In41st ACM Symposium on Theory of
Computing–STOC (Vol. 9, pp. 169-178).

Hacigümüş, H., Iyer, B., Li, C., and Mehrotra, S., 2002.
Executing SQL over encrypted data in the database-
service-provider model. In Proceedings of the 2002
ACM SIGMOD international conference on
Management of data (pp. 216-227). ACM.

LOPD, Ley orgánica 15/1999 de Protección de Datos de
Carácter Personal, Boletín Oficial del Estado (in
Spanish), 1999.[Online].[Accessed 6 January 2015].
Available from: https://www.boe.es/

Paillier, P. (1999). Public-key cryptosystems based on
composite degree residuosity classes. In Advances in
cryptology–EUROCRYPT’99 (pp. 223-238).Springer
Berlin Heidelberg.

RDLOPD, Real Decreto 1720/2007, Reglamento de
Desarrollo de la LOPD, BoletínOficialdel Estado (in
Spanish), 2007.[Online]. [Accessed 6 January 2015].
Availablefrom: https://www.boe.es/

Rodriguez-Silva, D. A., González-Castaño, F. J.,
Adkinson-Orellana, L., Fernández-Cordeiro, A.,
Troncoso-Pastoriza, J. R., and González-Martínez, D.,
2011. Encrypted Domain Processing for Cloud
Privacy. Concept and Practical Experience. In
Proceedings of 1st International Conference on Cloud
Computing and Services Science–CLOSER 2011.

Van Dijk, M., Gentry, C., Halevi, S., and Vaikuntanathan,
V., 2010. Fully homomorphic encryption over the
integers. In Advances in Cryptology–EUROCRYPT
2010 (pp. 24-43). Springer Berlin Heidelberg.

ZecurePC. 2011. [Online]. [Accessed 6 January 2015].
Available from: http://www.zecurex.com/.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

520

SLAFM
A Service Level Agreement Formal Model for Cloud Computing

Lucia De Marco1,2, Filomena Ferrucci2 and M-Tahar Kechadi1

1School of Computer Science and Informatics, University College Dublin, Belfield, Dublin 4, Ireland
2Department of Management and Information Technology DISTRA-MIT, University of Salerno,

Via Giovanni Paolo II, 132 - 84084 - Fisciano (SA), Italy
lucia.de-marco@ucdconnect.ie, fferrucci@unisa.it, tahar.kechadi@ucd.ie

Keywords: Service Level Agreement, SLA Management, Cloud Services Logs, SLA Formal Model.

Abstract: Cloud Computing services are regulated by a contract calledService Level Agreement (SLA). It is co-signed
between the customers and the providers after a negotiationphase, and during their validity time several
constraints have to be respected by the involved parties. Due to their popularity, cloud services are enormously
used and unfortunately also abused, specially by cyber-criminals. Sometimes the crimes have the consequence
of violating some contractual constraints without the parties are aware of. A manner for guaranteeing more
control of the SLA respect is to consider a dedicated system interacting with the cloud services and detecting
the SLA violations by analysing the log files. We introduce a formal model aimed to represent the contents of
such SLAs necessary in the context of an automatic mechanismfor detecting SLA violations.

1 INTRODUCTION

Cloud services are regulated by Service Level Agree-
ment contracts (SLA) (Mell et. al, 2011), where all
the constraints among a cloud service provider and its
customer(s) are detailed; the contracts are co-signed
by the parties and they have legal validity in case of a
court litigation (Baset, 2012;?). Because of their im-
portance and contents(CSA, 2013), SLAs have been
being considered to be monitored to detect their vio-
lations. Many attempts to automate such monitoring
there exist in literature, but to the best of our knowl-
edge most of them do not consider cloud services
logs; nevertheless the literature focuses on the mon-
itoring of performances constraints.

In this paper a set of rules is presented in the shape
of a formal model named SLAFM; we aim to formal-
ize the necessary information needed by the SLA vi-
olation detection capability, including input, output,
and intermediary computations. In addition, some di-
agrams will be presented in order to visualize the in-
teractions among the components dedicated to imple-
ment our SLA violation detection capability based on
our formal model.

The remainder of the paper is structured as fol-
lows: in Section 2 we synthesize the background lit-
erature about both formal modelling and automatic
monitoring of SLAs; Section 3 provides an overview

about contents and structure of cloud SLAs. In Sec-
tion 4 we discuss the principal objectives of our pro-
posal, while an example of the proposal is illustrated
in Section 5. The details of the formal model are ex-
plained in Section 6, and a case study based on the
previous example is provided in Section 7. Some pro
and con are presented in Section 8, and conclusion
and future work ideas close the paper in Section 9.

2 BACKGROUND

Automating the management of a textual document
is a big challenge. Our focus is to target such topic
to the SLAs stipulated for cloud services. The final
aim is to detect contractual violations. The informa-
tion involved in this process are the ones concerning
cloud services logs. Our approach provides a formal
model that represents both SLAs and cloud logs. The
analysed literature covers different arguments, such
as formal representation of SLAs and automatic SLA
monitoring research projects using SLA formal repre-
sentations, which provide the background of our pro-
posal. Most work provide a customized manner to
structure the SLAs contents, which are then formal-
ized via mathematical tuple, e.g. in (Czajkowski et.
al, 2002; Unger et. al, 2008; Ghosh et. al, 2012;
Ishakian et. al, 2011; De Marco et. al, 2014); in other

521

works the authors use concepts from set theory, e.g.
in (Skene et. al, 2007) and (De Marco et. al, 2014);
the other used formalism include derivation rules, re-
action rules, integrity rules and deontic rules (Paschke
et. al, 2008), or mathematical logic concepts (Unger
et. al, 2008).

Other work are dedicated to manage the SLAs in
terms of monitoring the respect of some constraints
and to prevent their violation; for instance, a frame-
work called DESVI(Emeakaroha et. al, 2010) is dedi-
cated to monitor low level Cloud resources in order
to detect if their measured value respects the con-
straints extracted from SLAs with the goal of detect-
ing QoS violations. This work has been recovered
in(Emeakaroha et. al 2012b) to demonstrate its effi-
ciency in monitoring a single Cloud data centre, and
also in (Brandic et. al, 2010), where some specific
metrics are applied on the resources, whose values are
required to match with a specified threshold to prevent
possible contractual violations. In(Morshedlou et. al,
2014) a proactive resources allocation prototype is
proposed for reducing the negative impact of SLAs’
violations and for improving the level of users’ satis-
faction. In (Maurer et. al, 2012) a prototype for an
autonomic SLA enhancement is discussed; it behaves
as resource parameters reconfiguration tool at virtual
machines level of cloud infrastructures, with the main
advantage of reducing SLA violations and of optimiz-
ing resources utilization. Instead, in (Emeakaroha et.
al, 2012a) the proposed SLA monitoring and viola-
tion detection architecture plays at the Cloud appli-
cation provisioning level, where some metrics are ex-
ploited to monitor at runtime the resource consump-
tion behaviour and performance of the application it-
self. In (Cedillo et. al, 2014) an approach to moni-
tor some Cloud services non-functional SLA require-
ments is presented; a middle-ware interacting with
services and applications at runtime is designed; it
analyses the information and provides some reports
as soon as an SLA violation is identified. Last but
not least, SALMonADA (Muller et. al, 2014) is a
platform that utilizes a structured language to repre-
sent the SLA, which is then automatically monitored
to detect whether any violation occurs or not; such
detection is performed by implementing a technique
based on a constraint satisfaction problem.

3 SLA CONTENTS AND
STRUCTURE

In a free trade context people have the freedom to
choose for a specific need which services they prefer
from a big offer pool. Once such choice is accom-

SLA Dismission

Potential

Client

Request

SLA Template SLA NegotiationPotential

Client

Changes

SLA Co-Signed
Changes

Approved

By Both

Parties

SLA Execution

Service

Activation

Revision

Change

Request

Change

Request

Approved

Change

Request

Discarded

Time Expired

Change Requests

Figure 1: SLA Life Cycle.

plished, a user contacts a specific service provider.
This latter is responsible of delivering the service to
the user after the instantiation of a particular Service
Level Agreement (SLA) contract. An SLA concern-
ing the provisioning of IT services is defied as afor-
mal, negotiated, document in qualitative and quan-
titative terms detailing the services offered to a cus-
tomer(ITIL). To the best of our understanding among
cloud services, an SLA follows the life cycle depicted
in the UML (Rumbaugh et. al, 2004) state chart di-
gram in Figure 1.

After a potential customer request, a contractual
template is customized by the cloud service provider
depending on some change requests to the stan-
dard offer; subsequently a negotiation phase happens,
where solutions to the change requests are included,
together with information about expenses, penalties,
and reports. The SLA co-signed state determines that
both entities agree on the actual contractual contents,
then the service provisioning can begin. The SLA has
a validity time, that can be either explicitly expressed
with start and end dates, or an initial date together
with a time interval can be included in the document.
Such validity time begins after the contract is hardly
or digitally co-signed by both parties in the SLA Ex-
ecution state. During its life cycle, an SLA can be
subject to a revision to resolve some change requests
instantiated by either party. The revision phase can
provide solutions to such requests in order to continue
the service provisioning and the contract validity. In
case a solution is not met by the parties the service
provisioning and the SLA validity are dismissed.

In an SLA regulating cloud services the duties
and responsibilities of both parties are described, to-
gether with the possible presence and operations of
a third party. The main contents of an SLA con-
cern definitions and descriptions of the service, some
rules and regulations about its delivering, some per-
formance measures together with possible tolerance
intervals about the levels of the services to guarantee,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

522

CLOUD SERVICE PROVIDER

SLA EXTRACTION

INFORMATION

SLAs

RULES

SaaS PaaS IaaS

SaaS Logs PaaS Logs IaaS Logs

CLOUD LOGS CONVERTER

COMPARISON

PERFORMER

FORMATTED

LOGS
SLAs

VIOLATION

DETECTION?
YACTIONS

N

Figure 2: SLA Violation Detection Capability.

and the pricing and penalties measures in case such
tolerances are not respected. For sake of monitoring
and user satisfaction purposes, it is good practice to
provide service levels that can be audited, managed,
and measured (Larson, 1998).

4 SLA VIOLATION DETECTION

An SLA violation detection capability is aimed to
automatically guarantee in a real time manner the
respect of the contract in relation to the Cloud be-
haviour. This capability has two different input. They
are the SLA constraints and some Cloud logs. The
capability intends to perform the comparison between
them. The main challenge for implementing such ca-
pability is to convert the natural language expressions
of the contract in rules that a machine can manipu-
late. About the management of the cloud logs, in-
stead, the effort is less, because once the structure of
the logs is known they can be manipulated. In most
cloud service providers such structure is documented.
In Figure 2 the interactions among the components
dedicated to implement our SLA violation detection
capability is designed. The beginning of such capa-
bility corresponds with the SLA to guarantee starting
time. The necessary contractual sections are extracted
and structured in a specific format. The information
gathered from the cloud services logs are translated,
aggregated and indexed according to another specific
format, compatible with the one the SLA sections are
converted to. The capability is responsible to perform
the comparison between the SLAs constraints and the
cloud service behaviour structured in logs. The com-
parison results are stored and utilized for subsequent
comparison; they also feed a decision making mod-
ule, responsible to manage the consequences of the
detected SLA violations.

5 EXAMPLE: AMAZON S3

In this section we want to provide a real-world com-
mercial well defined SLA contract documents as ex-
ample for the implementation of the SLA violation
detection capability depicted in Figure 2.

In order to obtain the necessary logs, we need to
access to as many information as possible, among
the quantity granted by a cloud service provider. It
is well documented that the amount of information
accessible by cloud services customers is bigger in
IaaS level, medium in PaaS, and small in SaaS (Liu
et. al, 2011). Thus, we chose a IaaS type of cloud
service. Moreover, we considered Amazon as cloud
provider because it is considered by both business and
academia as a pioneer of a complete pool of cloud
services delivering. From all these considerations,
our choice fell on Amazon Simple Storage Service
(S3) (Amazon), which is an Infrastructure as a Ser-
vice (IaaS) provided by Amazon.com.

We accessed to both the S3 public SLA and the
logs, available at a customer level. Among all the
legal constraints, we consider the service level ex-
pressed as Monthly Uptime Percentage. The reader
has to consider this parameter as a quality attribute of
the Amazon S3 cloud service.Amazon Web Services
will use commercially reasonable efforts to make
Amazon S3 available with a Monthly Uptime Percent-
age [...] of at least 99.9% during any monthly billing
cycle.

Scanning the SLA, we can find the definition of
such attribute as:Monthly Uptime Percentage is cal-
culated by subtracting from 100% the average of
the Error Rates from each five minute period in the
monthly billing cycle.Again, Amazon carefully de-
fined the aforementioned Error Rates asthe total num-
ber of internal server errors returned by Amazon S3
as error status InternalError or ServiceUnavailable
divided by the total number of requests during that
five minute period(Amazon).

In order to guarantee the respect of the monthly
uptime percentage service level, an SLA violation
detection capability has to consider the information
about server responses to the HTTP requests made to
S3 every five minutes. Such data is available in the
Server Access Log files available in S3, which col-
lects some information every request made to the ser-
vice. An example of them is provided in Figure 3.
The information in red circles are the ones necessary
to calculate the Error Rates, i.e., the time and the Er-
ror Code.

In a specific five minute period time our capabil-
ity has to collect the log files for all the requests made,
i.e., from Time0 to Time+5min. Then the Error Rate is

SLAFM�-�A�Service�Level�Agreement�Formal�Model�for�Cloud�Computing

523

calculated counting the number of Error Code equals
to InternalError or ServiceUnavaiable, divided by the
total number of requests during that five minute pe-
riod.

Considering that every entry in the log has a re-
lated Error Code field, we can affirm that the total
number of requests during that five minute period is
obtained by the following formula:

5minRequests=
+5min

∑
0

ErrorCode

The Error Rate of a five minute time period is ob-
tained by the following formula:

5minErrorRate=(
+5min

∑
0

ErrorCode= InternalError

ORServiceUnavaiable)/5minRequests

In order to have a monthly value the capability has
to compute this value along a billing month time pe-
riod. Every solar day has 60/5∗ 24= 288 five min-
utes time periods; this value has to be multiplied for
the number of days of a billing month. Assuming that
a billing month is composed of thirty days, we will
have 288∗ 30= 8640 five minutes time periods. Fi-
nally, the monthly uptime percentage will be obtained
by the following formula:

AverageErrorRate= (
8640

∑
0

5minErrorRate)/8640

MUP= 100%−AverageErrorRate

6 FORMAL MODEL

The SLA Formal Model (SLAFM) is aimed to pro-
vide a theoretical approach for a contractual violation
detection capability for cloud computing services. A
previous draft of the same formalism was discussed
in (De Marco et. al, 2014), where only a specific sce-
nario has been taken into account. We extend that
formal model by adding the modelling of cloud ser-
vices logs; according to that, some changes to the
modelling of the SLA structure have been added. The
model utilizes mathematical formalisms as tuple, set
theory, functions (Ben-Ari, 1993).

6.1 Service Level Agreement

SLAs are contractual documents written in natural
language composed of a set of information structured
as service levels. An slal is an element of the set of
slasL. An sla is described by a mathematical tuple

composed of a set of service levelsSL, the validity
starting timetstart and the validity ending timetend.

L = {l1, l2, l3, . . . , l j}, j ∈ N

l = 〈SL, tstart, tend〉; tend> tstart

A service levelsl is an element of the set of service
levelsSL. Eachsl has a validity time interval, deter-
mined by a starting and an ending time; during this
time, some indicators related to a service level at-
tribute for a specific service resource need to be ver-
ified, hence ansl is described by the following tuple,
composed of the set of indicatorsI, the attributea of
the resourcer, and the starting and finishing times,ts
andt f respectively.

SL= {sl1,sl2,sl3, . . . ,sl j}, j ∈ N

sl = 〈I ,ar , ts, t f 〉; t f > ts

An indicatori is an element of the set of the indi-
catorsI. An indicator is described by a mathematical
tuple composed of a conditioned valuec k uof the at-
tributeasl for the resourcersl. A conditionc belongs
to the set of conditionsC; in case any condition is not
expressed in the contractual text, the value ofc will
be set as=. A valuek is related to the attributeasl of
the resourcersl; u is the optional unit measure used to
express the valuek, belonging to the set of unit mea-
suresU. The conditioned valuec k uhas to be verified
through the application of the metricm belonging to
the set of metricsM. The metrics can be either atomic
or composed, namely the value is obtained by com-
bining more atomic metrics.

I = {i1, i2, . . . , i j}, j ∈ N

i = 〈cku,m〉

c∈C;C= {≤;≥;<;>;<>;=}

u∈U ;U = {u1,u2, . . . ,u j}, j ∈N

m∈ M;M = {m1,m2, . . . ,mj}, j ∈ N

6.2 Cloud Service Log

A cloud computing architecture is composed of a set
of resourcesR, either physical or virtual.

P= {Rp|Rp ⊆ R}

V = {Rv|Rv ⊆ R}

R= {r1, r2, r3, . . . , r j}, j ∈ N

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

524

Figure 3: Amazon S3 Sever Access Log.

A resourcer is described by a set of attributesA,
e.g., filename, date of creation, size. Leta be an at-
tribute, it belongs to the set of attributesA.

A= {a1,a2,a3, . . . ,a j}, j ∈ N

r = {Ar |Ar ⊆ A}

|Ar | 6= 0∀r ∈ R

Theorem 1. The set of attributesA cannot be empty.

Proof. Every resourcer ∈ R is described by a set of
attributesAr which is subset ofA.

A=
⋃

Ar
∀r∈R ⇒ |A|=

⋃
|Ar |

byde f.
⇒ |Ar | 6= 0∀r ∈ R

⇒ |A| 6= 0

During the execution of a Cloud service, the value
of an attribute of a resource is subject to changes via
an operationo. An operationo is an element of the
set of operationsO. Each operation is described by a
mathematical tuple composed of a senders that is the
executor of such operation, a resultvalue(ar) that de-
scribes the value assigned to attributea of resourcer,
an operation resourcer, an attributea, and an oper-
ation timeto. The operation value is a mathematical
function that assigns a value to an attribute of a re-
source. The assigned value can be of numeric type;
moreover it can be associated to an optional unit mea-
sureu. A senders is an entity (process) performing
operations in the Cloud, e.g., an IP address or a Drop-
box process. Letsbe a sender, it belongs to the set of
sendersS.

S= {s1,s2,s3, . . . ,sj}, j ∈ N

O= {o1,o2,o3, . . . ,o j} j ∈ N

o= 〈s,ar ,value(ar),u, to〉

u∈U

value: ar → value(ar) = k∈ Z

The information about the sequence of operations are
stored in a cloud logcl, which is an element of the set
of cloud logsCL. Every log is composed of a set of
operationsOcl concerning an attributea of a resource
r; the setOcl is included in the set of all the operations
O.

CL= {cl1,cl2,cl3, . . . ,cl j}, j ∈ N

cl = Ocl ;Ocl ⊆ O

6.3 Violation Detection Capability

An SLA violation detection capability is responsible
to perform a comparison between an indicator of an
attribute for a resource expressed in a service level
isl ∈ I and a set of operations of a specific cloud logs
Ocl where the sequence of values of such attribute is
contained. Such comparison is evaluated according
to the metricmiused to calculate the value. Formally,
the aforementioned entities are correlated in the fol-
lowing tuple. A comparisonn belongs to the set of
comparisonsN. A comparison tuple is composed of a
cloud logcl, an indicator that has to be verifiedisl ∈ I ,
and the comparison timetn.

SLAFM�-�A�Service�Level�Agreement�Formal�Model�for�Cloud�Computing

525

N = {n1,n2,n3, . . . ,n j}, j ∈ N

n= 〈cl, isl, tn〉

te ≥ tocl

∀o∈ Ocl ,∀i ∈ Isl(ar)Ocl
= (ar)Isl

Definition 1. SLA Violation
Given a comparisonn ∈ N and a service levelsl ∈
SL, the comparison is considered an SLA violation
if the values of the set of operationsOcl composing
the cloud logcl on the attributea of the resourcer at
the timet are different from the conditioned valuecku
of the related indicatorisl about the service levelsl,
on the same attributea of the same resourcer. The
validity has to be determined during the correct time
interval, namely the times of the operations have to
be included in the time intervalt f (i)− ts(i); the value
value(ar)t is obtained by the application of the metric
mi .

mi(ar) = value(ar) 6= (cku)i (1)

ts(i)≤ tvalue(ar) ≤ t f (i) (2)

7 CASE STUDY: AMAZON S3

The aim of this section is to map the formal model of
the previous section onto the Amazon S3 information
illustrated in Section 5.

7.1 Service Level Agreement

The Amazon S3 SLA has a validity time that begins
when a customer subscribes begins to have access to
the S3 service until it decides to terminate. We con-
sider the solar year 2015 as the S3 SLA validity time.

L = {S3}

S3= 〈S3SL,01/01/2015,31/12/2015〉

Among all the legal constraints, we consider the
service level expressed as Monthly Uptime Percent-
age, MUP for short.Amazon Web Services will use
commercially reasonable efforts to make Amazon S3
available with a Monthly Uptime Percentage [...] of
at least 99.9% during any monthly billing cycle. We
consider February 2015 as the billing month range.

a= MonthlyU ptimePercentage

r = S3server

S3SL= {MUP}

MUP= 〈I ,MonthlyU ptimePercentageS3server,

01/02/2015,28/02/2015〉

I = {i1}

c= atleast=≥

i = 〈≥ 99, ,MUPm〉

The unit measure is not expressed, so we can discard
it due it is defined optional.

Recalling the definition of such attribute:Monthly
Uptime Percentage is calculated by subtracting from
100% the average of the Error Rates from each five
minute period in the monthly billing cycle.Error Rate
is the total number of internal server errors returned
by Amazon S3 as error status InternalError or Ser-
viceUnavailable divided by the total number of re-
quests during that five minute period(Amazon).

The metric for calculating MUP is a composed
metric, because it needs the computation of theAv-
erageErrorRatethat depends on5minErrorRate, de-
pending again on5minRequests.

M = {MUPm,AverageErrorRatem,5minErrorRatem,

5minRequestsm}

MUPm = 100%−AverageErrorRatem

AverageErrorRatem= (
8640

∑
0

5minErrorRatem)/8640

5minRequestsm=
+5min

∑
0

ErrorCode

5minErrorRatem=(
+5min

∑
0

ErrorCode= InternalError

ORServiceUnavaiable)/5minRequests

7.2 S3 Server Access Log

The SLA violation detection capability collects every
five minute period time the S3 Server Access Log files
available in S3 where every HTTP request made to the
service and its response is stored (see Figure 3). The
information from those logs are mapped in our formal
model in the following way.

R= {S3server}

A= {MonthlyU ptimePercentage}

S3server= {{MonthlyU ptimePercentage}S3server}

During the execution of a Cloud service, the value
of an attribute of a resource is subject to change via
an operationo. An operationo is an element of the
set of operationsO. Each operation is described by a
mathematical tuple composed of a senders that is the
executor of such operation, a resultvalue(ar) that de-
scribes the value assigned to attributea of resourcer,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

526

an operation resourcer, an attributea, and an oper-
ation timeto. The operation value is a mathematical
function that assigns a value to an attribute of a re-
source. The assigned value can be either a numeric or
textual; moreover it can be associated to an optional
unit measure. A senders is an entity (process) per-
forming operations in the Cloud. Lets be a sender, it
belongs to the set of sendersS.

S= {137.43.248.70}

The sender is the Remote IP address field of the log
in Figure 3.

O= {REST.GET.OBJECT}

The operation is the Operation field of the same S3
Server Access Log file. The components of the oper-
ation are described in the following tuple.

REST.GET.OBJECT= 〈137.43.248.70,

MonthlyU ptimePercentageS3server, , ,

18/Feb/2015 : 10 : 37 : 23+0000〉

The value component of the tuple is empty, as well as
the unit measure. More precisely, the value compo-
nent is not either InternalError or ServiceUnavailable.

7.3 Violation Detection Capability

In order to build a logcl ∈CL the SLA violation de-
tection capability translates many S3 Server Access
Log file, covering an amount of time to be decom-
posed in five minutes periods From this mapping, the
S3 Server Access Log file operations mapped to cloud
log Ocl feed the metricMUPi

m in order to determine
the elements of the set of comparisonsN.

8 DISCUSSION

SLAFM is devoted to formalize a capability to man-
age SLAs violation detections for cloud services. The
proposed approach concerns the representation of in-
formation from both the SLAs and the cloud logs in a
specific format. One of the strengths of such approach
is its extensibility; because the formal model is a high
level abstraction, it can be enriched with additional
information.

The entity sender is included in this formal model
because considered necessary to easy the eventual
forensic investigation triggered once a violation hap-
pens. The senders are important to reconstruct an
events time-line more efficiently and to relate the flow
of the operations stored by cloud logs per authors.

An extension of the model can be the necessity of
managing some legal principles, thus a specific set of
formal rules can be added to the formal model. The
comparison among a service level and the operations
of the cloud logs have to be memorized because they
can be necessary for computing comparisons of other
service levels. This depends on how the SLAs relate
the service levels and the indicators.

A dedicated system module reacting to the de-
tected SLA violations is out of the SLAFM formal
model duties, but it can be considered as a possible
extension or integration of both the formal model and
the system implementing our capability designed in
Figure 2.

9 CONCLUSION AND FUTURE
WORK

The management of Service Level Agreement con-
tracts for cloud services provisioning is an extremely
challenging and active research trend. Several pro-
posals have been made in literature to approach the
QoS levels guaranteeing issues described in the con-
tracts with the purpose of monitoring a platform be-
haviour.

The main objective of such research works is
to detect whether the agreed resources performances
are respected, without considering the cloud services
logs. In some papers, the issue is formally modelled
for being subsequently implemented; in other ones,
a specific framework is proposed demonstrating the
manner how such monitoring is performed.

In the future we intend to prototype a system de-
signed in Figure 2 based on the SLAFM formal model
proposed in Section 6. The prototype will simulate
cyber attacks to a cloud service regulated by an SLA,
and it will perform comparisons among the logs and
the SLA constraints. Moreover, we want to test the
number of SLA formal rules violations that can be
detected in a specific amount of time.

We strongly believe that such capability can en-
hance the security strategies of a Cloud platform, so
that it can be considered as a must requirement for it,
and very likely becoming a standard in the next years.

REFERENCES

Amazon Simple Storage Service (S3), [online]
http://aws.amazon.com/s3/sla/, accessed on
22/02/2015.

Baset, S.A., 2012. Cloud SLAs: present and future.ACM

SLAFM�-�A�Service�Level�Agreement�Formal�Model�for�Cloud�Computing

527

SIGOPS Operating Systems Review,vol. 46, no. 2, pp.
57-66.

Ben-Ari, M., 1993.Mathematical Logic for Computer Sci-
ence, SPRINGER, first edition.

Brandic, I., Emeakaroha, V.C., Maurer, M., Dustdar, S.,
Acs, S., Kertesz, A., Kecskemeti, G., 2010. LAYSI: A
Layered Approach for SLA-Violation Propagation in
Self-Manageable Cloud Infrastructures,COMPSACW
Workshop,2010, pp.365 - 370, IEEE.

Cedillo, P., Gonzalez-Huerta, J., Abrahao, S., Insfran,
E., 2014. Towards Monitoring Cloud Services Using
Models@run.time,International Workshop on Mod-
els at run.time,to appear.

CSA, 2013. Mapping the Forensic Standard ISO IEC
27037 to Cloud Computing,Cloud Security Alliance,
[online] https://cloudsecurityalliance.org/download/
mapping-the-forensic-standard-isoiec-27037 -to-
cloud-computing/

Czajkowski, K., Foster, I., Kesselman, C., Sander, V.,
Tuecke, S., 2002. SNAP: A Protocol for Negotiating
Service Level Agreements and Coordinating Resource
Management in Distributed Systems,Job schedul-
ing strategies for parallel processing,Springer Berlin
Heidelberg, pp. 153-183.

De Marco, L., Abdalla, S., Ferrucci, F., Kechadi, M-
T., 2014. Formalization of SLAs for Cloud Forensic
Readiness,Proc. ICCSM Conference, Academic Con-
ferences and Publishing International Limited, Read-
ing, UK, Dr. Barbara Endicott-Popovsky University of
Washington, Seattle, USA Edition, pp. 42 - 50.

Emeakaroha, V.C., Calheiros, R.N., Netto, M.A., Brandic,
I., De Rose, C.A., 2010. DeSVi: An Architecture for
Detecting SLA Violations in Cloud Computing Infras-
tructures,ICST Cloud Comp Conference.

Emeakaroha, V.C., Ferreto, T.C., Netto, M.A.S., Brandic, I.,
De Rose, C.A.F., 2012. CASViD: Application Level
Monitoring for SLA Violation Detection in Clouds,
IEEE COMPSAC Conference,pp. 499 - 508.

Emeakaroha, V.C., Netto, M.A., Calheiros, R.N., Brandic,
I., Buyya, R., De Rose, C.A., 2012. Towards Auto-
nomic Detection of SLA Violations in Cloud Infras-
tructures,Future Generation Computer Systems,vol.
28, issue 7, pp. 1017-1029.

Ghosh, N., Ghosh, S.K., 2012. An Approach to Identify
and Monitor SLA Parameters for Storage-as-a-Service
Cloud Delivery Model,GC Wkshps,pp. 724-729.

Information Technology Infrastructure Library (ITIL),
http://www.itil-officialsite.com

Ishakian, V., Lapets, A., Bestavros, A., Kfoury, A., 2011.
Formal Verification of SLA Transformations,IEEE
World Congress on Services,pp. 540-547.

Larson, K. D., The role of service level agreements in IT
service delivery,Information Management & Com-
puter Security,vol. 6, issue 3, pp. 128-132, 1998.

Liu, F., Tong, J., Mao, J., Bohn, R., Messina, J., Badger,
L., Leaf, D., 2011.NIST cloud computing reference
architecture,NIST special publication, 500, 292.

Maurer, M., Brandic, I., Sakellariou, R., 2012. Self-
Adaptive and Resource-Efficient SLA Enactment

for Cloud Computing Infrastructures,IEEE CLOUD
Conference,pp. 368 - 375.

Mell, P., Grance, T., 2011. Final Version of
NIST Cloud Computing Definition, [online],
http://csrc.nist.gov/publications/nistpubs/800-
145/SP800-145.pdf

Morshedlou, H., Meybodi, M.R., 2014. Decreasing Impact
of SLA Violations: A Proactive Resource Allocation
Approach for Cloud Computing Environments,IEEE
Transactions on Cloud Computing,vol.2, no.2, pp.
156-167.

Muller, C., Oriol, M., Franch, X., Marco, J., Resinas, M.,
Ruiz-Corts, A., Rodriguez, M., 2014. Comprehen-
sive explanation of SLA violations at runtime.IEEE
Transactions on Services Computing,vol. 7, issue 2,
pp. 168-183.

Paschke, A., Bichler, M., 2008. Knowledge Representation
Concepts for Automated SLA Management,Decision
Support Systems,vol. 46, issue 1, pp. 187-205.

Patel, P., Ranabahu, A.H., Sheth, A.P., 2009. Service
Level Agreement in Cloud Computing, [online],
http://corescholar.libraries.wright.edu/knoesis/78

Rumbaugh, J., Jacobson, I., Booch, G. 2004.Unified
Modeling Language Reference Manual, The. Pearson
Higher Education.

Skene, J., Skene, A., Crampton, J., Emmerich, W., 2007.
The Monitorability of Service-Level Agreements for
Application-Service Provision,Proc. International
Workshop on Software and Performance,pp. 3-14.

Unger, T., Leymann, F., Mauchart, S., Scheibler, T., 2008.
Aggregation of Service Level Agreements in the Con-
text of Business Processes,Proc. ICEDOC Confer-
ence, pp. 43-52.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

528

Towards High Performance Big Data Processing
by Making Use of Non-volatile Memory

Shuichi Oikawa
University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan

shui@cs.tsukuba.ac.jp

Keywords: Non-volatile Memory, Operating Systems, Storage, Big Data Processing.

Abstract: Cloud computing environments for big data processing require high performance storage. There are emerg-
ing high performance memory storage technologies, such as next generation non-volatile (NV) memory and
battery backed NV-DIMM. While their performance is much higher than the current block storage devices,
such as SSDs and HDDs, they provides only limited capacity. Such limited capacity makes it difficult for
memory storage to be adapted as mass storage, and their uses in cloud computing environments have been
severely limited. This paper proposes a method that combines memory storage with block storage. It makes
use of memory storage as cache of block storage in order to remove the capacity limitation of memory storage.
The proposed method inherits the high performance of memory storage and also the large capacity of block
storage. Therefore, memory storage can be transparently used as a part of mass storage while its low over-
head access can accelerate storage performance. The proposed method was implemented as a device driver of
the Linux kernel. Its performance evaluation shows that it outperforms a bare SSD drive and achieves better
performance on the Hadoop and database environments.

1 INTRODUCTION

The importance of big data processing increases more
than ever before, and it is convincing that its impor-
tance will continue increasing in the future as well.
Cloud computing environments are currently the only
solution that can provide the scalability required by
big data processing since they can scale out their
storage capacity along with necessary computing re-
sources. There is no doubt that cloud computing en-
vironments for big data processing require high per-
formance storage; thus, SSDs were quickly adapted in
such environments, and they are sometimes combined
with HDDs to transparently enhance the performance
and capacity of storage.

Now, high performance memory storage technolo-
gies, such as next generation non-volatile (NV) mem-
ory and battery backed NV-DIMM, are emerging.
These new kinds of storage provide both high per-
formance and persistency, and they are byte address-
able. Since their byte addressability enables them to
be accessed as memory, we call them memory stor-
age. While they provide much higher performance
than the current block storage devices, such as SSDs
and HDDs, their capacities are limited. Such capac-
ity limitation makes it difficult for memory storage to

be adapted as mass storage, and their uses in cloud
computing environments have been severely limited.

This paper proposes a method that combines
memory storage with block storage. It makes use of
memory storage as cache of block storage in order
to remove the capacity limitation of memory storage.
Combining block storage with another faster block
storage, which is typically an SSD, for higher ac-
cess performance is a well known technique (Kgil and
Mudge, 2006; Koller et al., 2013; Saxena et al., 2012).
The technique utilizes faster block storage as cache
and stores frequently accessed data in it in order to im-
prove the average time to access data. Its open source
implementation is widely available (Facebook, 2014).
The existing technique employs a software layer that
combines two block storage devices. Since it is possi-
ble for memory storage to emulate block storage and
to use the software layer for combining block storage
devices, the emulation sacrifices its performance ad-
vantage for the compatibility with the block storage
interface.

The proposed method directly manages memory
storage in order to make use of its high performance
and byte addressability. The byte addressability of
memory storage enables its direct management with-
out a device driver; thus, the memory storage man-

529

agement can be integrated in a device driver that com-
bines memory storage with block storage without an
additional software layer as required by the existing
method. It can effectively utilize the high perfor-
mance of memory storage and also provides the large
capacity of block storage. Therefore, memory storage
can be transparently used as a part of mass storage
while its low overhead access can accelerate storage
performance.

The proposed method was implemented as a de-
vice driver of the Linux kernel, and its performance
evaluation was performed by measuring the file ac-
cess performance on the Hadoop distributed process-
ing environment and also a typical benchmark perfor-
mance on the MySQL database environment. Hadoop
and MySQL were employed for the measurements in
order to evaluate the effectiveness of the proposed
method in realistic environments. The measurements
were performed on a virtualized environment. The
evaluation results show that the proposed method con-
siderably outperforms a bare SSD drive and achieves
better performance on the Hadoop and database envi-
ronments.

The rest of this paper is organized as follows. Sec-
tion 2 describes the background of the work. Section
3 describes the detailed design and implementation of
the proposed method. Section 4 shows the result of
the experiments. Section 5 describes the related work.
Section 6 summarizes the paper.

2 BACKGROUND

This section describes the background of this work,
which includes the overview of the block device
driver layer of the operating system (OS) kernel and
the existing method to combine block storage devices.

2.1 Block Device Driver Layer

The current storage devices, such as SSDs and HDDs,
are block devices, and they are not byte addressable;
thus, CPUs cannot directly access the data on these
devices. A certain size of data, which is typically mul-
tiples of 512 byte, needs to be transferred between
memory and a block device for CPUs to access the
data on the device. Such a unit to transfer data is
called a block.

The OS kernel employs a file system to store data
in a block device. A file system is constructed on a
block device, and files are stored in it. In order to read
the data in a file, the data first needs to be read from
a block device to memory. If the data on memory
was modified, it is written back to a block device. A

processing*syscall� switching*process�
interrupt*handling*
&*switching*process�CPU�

Block*Device�

Issuing*
Command�

No>fying*command*
comple>on*by*interrupt*�

Proc*1�
Proc*2�

Proc*1�

command*processing�

Tproc2�

Figure 1: The asynchronous access command processing
and process context switches.

memory region used to store the data of a block device
is called a page cache. Therefore, CPUs access a page
cache on behalf of a block device.

Since HDDs are orders of magnitude slower than
memory to access data on them, various techniques
were devised to amortize the slow access time. The
asynchronous access command processing is one of
commonly used techniques. Its basic idea is that a
CPU executes another process while a device pro-
cesses a command. Figure 1 depicts how it works.
Process 1 issues a system call to access data on a
block device. The kernel processes the system call
and issues an access command to the corresponding
device. The kernel then looks for the next process to
execute and perform context switching to Process 2.
Meanwhile, the device processes the command, and
sends an interrupt to notify its completion. The ker-
nel handles the interrupt, processes command com-
pletion, and performs context switching back to Pro-
cess 1. Tproc2 is a time left for Process 2 to run. Be-
cause HDDs are slow and thus their command pro-
cessing time is long, Tproc2 is long enough for Process
2 to proceed its execution.

The I/O request queueing mechanism that imple-
ments the asynchronous access command processing
has been a right choice for the block devices. It poses
high processing cost, but the cost pays off by cre-
ating additional processing times made available for
other processes. Such justification for the I/O re-
quest queueing mechanism and he asynchronous ac-
cess command processing is, however, no longer true
when storage becomes much faster.

2.2 Problems to Combine Memory
Storage with Block Storage

The existing method combines block storage with an-
other faster block storage, which is typically an SSD,
for higher access performance (Kgil and Mudge,
2006; Koller et al., 2013; Saxena et al., 2012). It
utilizes faster block storage as cache and stores fre-
quently accessed data in it in order to improve the
average time to access data. Its open source imple-
mentation is widely available (Facebook, 2014), and
the current Linux kernel includes several implemen-
tations, such as dm-cache and bcache.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

530

The implementations of the existing method in
the Linux kernel employ the device mapper mecha-
nism to constitutes a single storage device. The de-
vice mapper is implemented as a software layer in the
kernel, and provides the mechanism to transfer ac-
cess requests for the constituted device to appropri-
ate underlying devices. The policy part defines how
it transfers requests. There can be multiple policy
implementations, and some of them combines block
storage with faster storage as cache. When an SSD is
used as cache storage by combining it with a HDD,
it is straightforward that the combined storage pro-
vides the block storage interface and is accessed asyn-
chronously since both of them are block storage. As
its extension, it is possible for memory storage to em-
ulate block storage and to have the device mapper to
combine block storage with memory storage.

The use of the device mapper requires memory
storage to emulate block storage interface since the
device mapper expects it as an interface. While such
emulation enables the use of the device mapper, it
causes significant software overhead. The device
mapper is basically a block device driver; thus, it re-
ceives access requests from the upper generic block
device driver framework. It then transfers the received
requests to another block storage device. The trans-
ferred requests are processed again by the generic
block device driver framework, and finally the tar-
get block storage device receives them (Ueda et al.,
2007). Therefore, processing in the generic block
device driver framework occurs multiple times, and
such processing causes a software overhead that can
be hidden in the long access latency of block storage
devices but becomes apparent for memory storage.

3 DESIGN AND
IMPLEMENTATION OF THE
PROPOSED METHOD

This section first describes the design of the proposed
method. It next describes the implementation in the
Linux kernel.

3.1 Design Overview

The most considerable advantage of memory storage
is its performance. In order to make use of it as much
as possible and not to sacrifice it, the software over-
head to access it must be minimum. The existing
method to combine block storage devices is, however,
inappropriate in this sense because of its inefficiency
that is inherent in its use of the block storage interface

Device&Driver&for&the&Proposed&Method�

Block&Storage�

Block&Storage&
Device&Driver�

Memory&
Storage�

(a)�

(b)�

(c)�

Figure 2: The design overview of the proposed architecture.

and its asynchronous access. As described in Section
2.1, the overhead of the block storage interface and
its asynchronous access is significant, and it must be
avoided.

The proposed method keeps its access overhead to
memory storage minimum by making use of the direct
and synchronous access to memory storage. Memory
storage provides the memory interface, which means
that there is no need to use a device driver to ac-
cess it; thus, the device driver of the proposed method
can directly access memory storage. Such direct ac-
cess allows the least access overhead to memory stor-
age. Moreover, because memory storage allows syn-
chronous access, of which software overhead is much
less than asynchronous access, the proposed method
aggressively makes use of synchronous access.

Figure 2 depicts the design overview of the archi-
tecture of the proposed method. First, we consider
reading data. There are three access paths, which are
shown as (a), (b), and (c) in the figure. When data is
available on memory storage, which is shown as (a),
the device driver of the proposed method provides di-
rect and synchronous access to memory storage. Such
access enables the least overhead; thus it should be
utilized as much as possible. In order to make it possi-
ble, data needs to be read ahead from block storage to
memory storage, which is shown as (b). When read-
ing ahead is successful, data can be continuously read
from memory storage.

When data is not available on memory storage, a
straightforward way is to read in the requested data
from block storage to memory storage. This way,
however, unnecessarily pollutes memory storage be-
cause the data that was read in to memory storage be-
comes useless. Therefore, the proposed method reads
the data from block storage bypassing memory stor-
age, which is shown as (c).

Second, we consider writing data. There are also
three data paths, (a), (b), and (c), which are shown
in the figure. Unlike reading, there is no need to
read ahead into memory storage for writing since

Towards�High�Performance�Big�Data�Processing�by�Making�Use�of�Non-volatile�Memory

531

valid data is written onto memory storage. Therefore,
data can be written onto memory storage whenever
free spaces are available on memory storage, which
is shown as (a). The free spaces can contain valid
data for reading. Unavailable spaces of memory stor-
age are those where dirty data resides. The unavail-
able spaces that contain dirty data become free spaces
when the dirty data is written back to block storage,
which is shown as (b). When there is no free space
available, data can be written to block storage, which
is shown as (c). The path (c) is, however, considered
to be rarely used since writing to memory storage and
writing back to block storage can be processed in par-
allel.

The device driver of the proposed method man-
ages memory storage and also interacts with a block
storage device driver. A block storage device driver is
not a part of the driver of the proposed method. By
separating the management of memory storage and
block storage, there is no restriction of a choice of
block storage, and arbitrary block storage can be com-
bined with memory storage.

3.2 Implementation in the Linux Kernel

The Linux kernel provides the device mapper mech-
anism, which can be used to combine multiple block
storage devices. The existing method uses this mech-
anism as described in Section 2.2. The proposed
method, however, does not use the device mapper
mechanism in order to avoid the overhead of itself and
also the overhead incurred by having memory storage
emulate block storage.

The proposed method implements its own func-
tion that can provide the synchronous access interface
depending upon the location of requested data.

void memory_make_request(
struct request_queue *q,
struct bio *bio)

This interface is typically used by the device driver
of ramdisk, which provides synchronous access. The
proposed method makes use of this interface and pro-
vides synchronous access when data is available on
memory storage for reading or when a free space is
available on memory storage for writing. In this case,
memory storage is considered to be working just as
ramdisk. When data is unavailable on memory stor-
age for reading or when no free space is available
on memory storage for writing, however, the access
request is transferred to the device driver of block
storage. Then, the block storage device driver asyn-
chronously processes the request.

The device driver of the proposed method also im-
plements the functions for reading ahead and writing

back data between memory storage and block stor-
age. Because they need to be invoked in parallel with
reading and writing data from/to memory storage, the
dedicated kernel threads process them. They are in-
voked at appropriate timings in order to improve the
efficiency of the proposed method.

4 EXPERIMENT RESULTS

First, file I/O throughput was measured by using the
Hadoop TestDFSIO benchmark program to see per-
formance impact on big data processing. The mea-
sured costs are compared with a sole SSD drive. Sec-
ond, the performance of the database processing was
measured by the TPCC-MySQL benchmark program
to see performance impact on database processing.

4.1 Experiment Environment

Since there is no publicly available system that equips
memory storage, we used DRAM to emulate it. Since
MRAM, which is considered to be the best match
for the proposed method, performs comparably to
DRAM, the differences of results must be negligible.
All measurements described below were performed
on the Linux kernel 3.14.12 that includes the imple-
mentation of the proposed method. Execution times
were measured using the TSC (Time Stamp Counter)
register.

The system used for this experiment is a PC sys-
tem equipped with the Intel Core i7-4930K 3.4GHz
and 64GB of DRAM. The KVM virtualization soft-
ware of Linux is employed to construct experiment
environments that consist of virtual machines. Each
virtual machine is configured with two CPUs, the
main memory, and a dedicated block storage device.
The sizes of the main memory differ to match their
functionality, they are described below. The CFD
S6TNHG6Q 128GB SATA SSD is used for a dedi-
cated block storage device, and a whole SSD is as-
signed to a single virtual machine. When the pro-
posed method is used for an experiment, memory
storage consists of 1GB of memory.

4.2 Results of Hadoop TestDFSIO

This section shows the measurement results of the
Hadoop TestDFSIO benchmark program. For this ex-
periment, four virtual machines were configured to be
a Hadoop cluster. One virtual machine becomes the
master node, and the others are slave nodes. The main
memory size of the master node is 8GB, and that of

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

532

0""

50""

100""

150""

200""

250""

300""

350""

400""

450""

500""

100"" 200"" 300"" 400"" 500"" 600"" 700"" 800"" 900"" 1000""

Th
ro
ug
hp

ut
"[M

B/
se
c]
!

Data"size"[MB]�

Proposed"
Method"

SATA"SSD"

Figure 3: Comparison of read performance by Hadoop
TestDFSIO.

slave nodes is 1GB. Hadoop employs Hadoop Dis-
tributed File System (HDFS) for the file service of
its applications (Shvachko et al., 2010). The HDFS
servers consist of the name node and data nodes,
which are executed as user processes. The master
node runs the name node, which locates on which data
node requested data files reside upon access requests
from clients. The data nodes of slave nodes manage
data files.

We measured the file I/O throughput of read-
ing files of various data sizes by using the Hadoop
TestDFSIO benchmark program. Larger numbers are
better as I/O throughput. The size of each file created
for measurements was fixed to 100MB, and the num-
ber of files was changed from one to ten in order to
change the total data sizes from 100MB to 1GB. We
first executed the writing program of TestDFSIO to
create files for reading. After flushing the page cache
of the data nodes, we executed the reading program of
TestDFSIO, and measured the costs. HDFS provides
two methods for reading. One receives data from a
data node through remote procedure calls (RPCs), and
the other directly interacts with a local file system.
The latter one is called short circuit read (SCR). Both
methods were used for measurements. Figure 3 and
4 show the results without and with SCR enabled, re-
spectively.

The measurement results show a significant per-
formance advantage of the proposed method for the
Hadoop TestDFSIO. For reading from 100MB to 1GB
data sizes without SCR, it performs approximately
39.21% to 114.36% better than SSD. For reading with
SCR enabled, it performs approximately 135.32% to
624.10% better than SSD. On average, the proposed
method performs 78.45% better without SCR and
266.08% better with SCR than SSD.

A realistic evaluation with Hadoop shows that the
proposed method provides a significant boost with the

0""

100""

200""

300""

400""

500""

600""

700""

800""

900""

1,000""

100"" 200"" 300"" 400"" 500"" 600"" 700"" 800"" 900"" 1000""

Th
ro
ug
hp

ut
"[M

B/
se
c]
!

Data"size"[MB]�

Proposed"
Method"

SATA"SSD"

Figure 4: Comparison of read performance by Hadoop
TestDFSIO with SCR enabled.

0""

2,000""

4,000""

6,000""

8,000""

10,000""

12,000""

14,000""

16,000""

none" directsync" none" directsync"

Tp
m
C"

fsync"flush"method""""""""""""""""O_DRECT"flush"method�

Proposed"Method"

SATA"SSD"

Figure 5: Comparison of TPCC-MySQL performance.

file access throughput of Hadoop. Therefore, it is cer-
tain that a wide range of applications, which involves
a large amount of file access, can benefit from it.

4.3 Results of TPCC-MySQL

This section shows the measurement results of the
TPCC-MySQL benchmark program. For this experi-
ment, a single virtual machines with 8GB main mem-
ory was configured. The number of warehouses is 40,
which constitute approximately 4GB of a database.
The buffer pool size of the InnoDB storage engine
is 4GB. The measurements were performed with the
two flush methods of InnoDB and the two storage
cache modes of KVM; thus, there are the four combi-
nations of them. The Innodb flush methods used for
the measurement are fsync and O DIRECT, and the
KVM storage cache modes are none and directsync.
The none cache mode provides the write buffer while
the directsync cache mode does not. Figure 5 shows
the results.

The performance improvement enabled by the

Towards�High�Performance�Big�Data�Processing�by�Making�Use�of�Non-volatile�Memory

533

proposed method is significant. The proposed method
executes the benchmark from 2.39x to 4.60x faster
than SSD. The difference between the proposed
method and SSD is the largest when the combination
of the O DIRECT Innodb flush method and the KVM
directsync cache mode is used. Since this combina-
tion provides no buffering of data transfer in the OS
kernel and the KVM virtualization software, the cost
to write data in storage becomes the maximum among
the combinations used for the experiments. The other
combinations provide buffering somewhere in the OS
kernel and the KVM virtualization software; thus, the
differences are closer but still large, which are from
2.39x to 2.62x.

5 RELATED WORK

A technique to combine block storage with another
block storage for higher access performance existed
before SSDs become widely available and popular.
DCD (Hu and Yang, 1996) first stores data in cache
storage, so that it can make use of sequential access,
of which performance is typically much better than
random access, so that the write performance can be
improved. The emergence of SSDs stimulated the
research and development of various caching tech-
niques (Kgil and Mudge, 2006; Koller et al., 2013;
Saxena et al., 2012; Facebook, 2014) in order to
make use of their high performance. Because SSDs
are block storage, all of them combine block stor-
age with another block storage, and provide the block
storage interface. The proposed method is different
from them since it combines memory storage with
block storage. Because memory storage allows syn-
chronous access, the proposed method aggressively
makes use of it in order to reduce the access cost in
total.

The Linux kernel provides the device mapper as
the software layer to combine multiple storage de-
vices and to constitutes a single storage device. When
the device mapper is used to combine memory stor-
age with block storage, it requires memory storage
to emulate block storage since the device mapper can
interact only with the block storage interface. It also
causes significant software overhead since the access
requests can be processed by the generic block device
driver framework multiple times(Ueda et al., 2007).
The proposed method does not use the device mapper
mechanism in order to avoid such overheads, and im-
plements its own function that can provide the direct
and synchronous access interface to memory storage.

6 SUMMARY

Memory storage technologies are emerging, and they
should be effectively utilized in cloud computing en-
vironments in order accelerate storage performance
for big data processing. This paper proposed a
method that combines block storage with memory
storage and makes use of memory storage as cache of
block storage in order to remove such limitation. The
proposed method effectively utilizes the high perfor-
mance of memory storage and also provides the large
capacity of block storage. Therefore, memory storage
can be transparently used as a part of mass storage
while its low overhead access can accelerate storage
performance. The proposed method was implemented
as a device driver of the Linux kernel. Its performance
evaluation shows that it outperforms a bare SSD drive
and provides better performance on the Hadoop and
database environments.

REFERENCES

Facebook (2014). Flashcache. https://github.com/facebook/
flashcache.

Hu, Y. and Yang, Q. (1996). Dcd – disk caching disk: A
new approach for boosting i/o performance. In Pro-
ceedings of the 23rd Annual International Symposium
on Computer Architecture, pages 169–178.

Kgil, T. and Mudge, T. (2006). Flashcache: A nand flash
memory file cache for low power web servers. In
Proceedings of the 2006 International Conference on
Compilers, Architecture and Synthesis for Embedded
Systems, CASES ’06, pages 103–112, New York, NY,
USA. ACM.

Koller, R., Marmol, L., Rangaswami, R., Sundararaman,
S., Talagala, N., and Zhao, M. (2013). Write poli-
cies for host-side flash caches. In Proceedings of the
11th USENIX Conference on File and Storage Tech-
nologies, FAST’13, pages 45–58, Berkeley, CA, USA.
USENIX Association.

Saxena, M., Swift, M. M., and Zhang, Y. (2012). Flashtier:
A lightweight, consistent and durable storage cache.
In Proceedings of the 7th ACM European Conference
on Computer Systems, EuroSys ’12, pages 267–280,
New York, NY, USA. ACM.

Shvachko, K., Kuang, H., Radia, S., and Chansler, R.
(2010). The hadoop distributed file system. In Pro-
ceedings of the 2010 IEEE 26th Symposium on Mass
Storage Systems and Technologies (MSST), MSST
’10, pages 1–10, Washington, DC, USA. IEEE Com-
puter Society.

Ueda, K., Nomura, J., and Christie, M. (2007). Request-
based device-mapper multipath and dynamic load bal-
ancing. In Proceedings of the Linux Symposium, vol-
ume 2, pages 235–243.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

534

The Docker Ecosystem Needs Consolidation

René Peinl and Florian Holzschuher
Institute of Information Systems, Hof University, Alfons-Goppel-Platz 1, Hof, Germany

{rene.peinl, florian.holzschuher2}@iisys.de

Keywords: Cloud Computing, Management Tools, Micro-services, System Integration, Docker, Container.

Abstract: Docker provides a good basis to run composite applications in the cloud, especially if those are not cloud-
aware, or cloud-native. However, Docker concentrates on managing containers on one host, but SaaS provi-
ders need a container management solution for multiple hosts. Therefore, a number of tools emerged that
claim to solve the problem. This paper classifies the solutions, maps them to requirements from a case study
and identifies gaps and integration requirements. We conclude that the Docker ecosystem could help moving
from IaaS and PaaS solutions towards a runtime environment for SaaS applications, but needs consolidation.

1 INTRODUCTION

Although lightweight operating system (OS)
virtualization techniques like Solaris Zones and
OpenVZ are long established, it was the release of
Docker in March 2013 (Rosen, 2014) that led to mass
adoption and even a hype around containerization
(Kratzke, 2014). Docker aims at making container
technologies easy to use and among other things
encourages a service-oriented architecture and
especially the micro-service architecture style
(Turnbull, 2014). Containers impose less overhead
than machine virtualization but still provide less
isolation (Scheepers, 2014). In a Software as a
Service scenario (SaaS), you therefore cannot
guarantee that activities of one customer won’t
negatively affect other customers, if you are using
containers only.

The need for a kind of “application package
format” as a basis for composite SaaS offerings
following the SOA principles (service-oriented
architecture (Papazoglou, 2003)) was already
discussed in (Mietzner et al., 2008). Originating from
a Platform as a Service (PaaS) use case, Docker
should be a good basis to handle the components of a
composite application offered in the cloud. It
provides an easy and convenient way to create,
deploy and configure containers (Rosen, 2014), incl.
links to dependent containers on the same host.
Micro-services can be briefly summarized as a
“loosely coupled service oriented architecture with
bounded contexts” (Cockcroft, 2014), where loosely
coupled denotes that each service should be

independently deployable and bounded contexts
means that the service does not have to know
anything about its surroundings, but can discover
them on its own (cf. Evans, 2003). Enterprise
applications are typically complex composite
applications, which consist of multiple individual
components (Binz et al., 2014) and therefore match
micro-services. However, the Docker tools soon
reach their limits when it comes to managing
containers in a cluster or creating links across
multiple hosts (Kratzke, 2014). To overcome those, a
myriad of tools is currently in development. We
found over 60 tools in “The Docker Book” (Turnbull,
2014), a special issue of the German “developer
magazine” dedicated to Docker (Roßbach, 2014) and
the “Docker ecosystem” mindmap (“Docker
Ecosystem Mindmap”, n.d.) with relevance for
building an automated Docker cluster solution similar
to OpenStack on the IaaS level (Peinl, 2015 for a full
list). Docker Inc even counts 50,000 third-party
projects on GitHub that are using Docker (Docker,
Inc., 2014). Our hypothesis is, that despite the
benefits of competition, the time has come to work
together on a common cluster project similar to
OpenStack to form a comprehensive integrated
solution and stable interfaces for the required
components in order to make them interchangeable,
instead of building yet another tool that solves parts
of the challenges, but not all of them and is not
integrated with others.

Our methodology was guided by (Chauhan and
Babar, 2011), so the rest of the paper is structured as
follows. We briefly describe our SaaS project that

535

serves as a case study to derive requirements. We
continue listing and explaining the requirements and
then compare them to the functionality of existing
tools. We categorize those tools and elaborate on
consistent definitions for those categories. We
conclude with remaining challenges and an outlook.

2 CASE DESCRIPTION

The goal of the SCHub project (Social Collaboration
Hub, funded by the BMBF as part of the FHprofUnt
funding, https://www.sc-hub.de) is to develop a
distribution-like collaboration solution based on open
source software (OSS) that provides end-users with a
consistent experience across all systems while using
a modular micro-service approach (Cockcroft, 2014).
It therefore represents a composite application
(Coffey et al., 2010). The solution will be available as
Software as a Service (SaaS) in the cloud as well as
on premise installation. In order to do that, a number
of well-known OSS systems have to be migrated to
the cloud and Docker is an obvious choice for
supporting that. Since not all systems are capable of
handling multiple tenants and customization
possibilities are better that way, SCHub uses
individual instances of all frontend systems (portal,
groupware, …) per tenant and only shares backend
systems across tenants (database, mail server, …).
Each instance is packaged into a Docker container. To
guarantee isolation between instances of different
tenants, virtual machines (VM) are used additionally.
The VM becomes the Docker host in this case.
OpenStack serves as the basis (Sefraoui et al., 2012).
Initially, there is only one VM per tenant. When
resource limits of this VM are reached, additional
VMs are allocated and some containers are migrated
to a new host. Storage is provided by Ceph, a software
defined storage solution (Koukis, 2013) as either
block-level or object storage, depending on the
requirements of the service.

Since off-the-shelf systems are used that are
integrated with our add-ons, we wanted to change
those systems as little as possible in order to stay
upwards compatible and benefit from future releases.
Therefore, the usage of a PaaS platform was not
feasible as it would require adapting the systems to
that platform. However, many components of a PaaS
solution are still needed, e.g. a load balancer, a central
authentication system, database as a service and so
on. It turned out, that a new category of cloud offering
would be ideal for this case, a kind of runtime
environment for SaaS applications (RaaS). Where
PaaS targets developers, RaaS targets application

administrators. The following chapter lists the
requirements for such a solution.

3 REQUIREMENTS

From a provider’s perspective, automating the
management of the offered services is of vital
importance, because management and operation of IT
is one of the biggest cost factors today (Binz et al.,
2014). Many of the required features are simply a
transfer of IaaS management features to Docker.
There should be a central list of containers (r1) with
an overview of resource usage, IP address, open ports,
dependencies and so on. You need a detail view of a
container (r2) including a way to change the
configuration using the Web UI concerning
networking, storage and dependencies. Since the
application is built from multiple services and
therefore containers, it would be helpful to be able to
centrally define a kind of blueprint (r3) that includes
all the dependencies and to instantiate the whole
solution instead of single containers (r4).

For doing so, the management solution should
monitor resource usage of hosts (r5) and
automatically choose one with free resources, based
on an editable placement strategy (r6). Monitoring
should include CPU, RAM, storage and networking,
as well as application health. You should be able to
configure thresholds so that high CPU utilization over
a specified timeframe or low available memory
trigger an alert (r7) which in turn can trigger an action
like migrating a container to another host. Migration
(r8) could be performed by stopping the container,
unmounting the storage, starting an identical
container on a new host, updating service references
(r8b) and mounting the storage (r9) there. Besides
storage, there should also be an easy way to pass
configuration data to the application inside the
container (r10). This data has to be stored in a
distributed key/value store (r8a).

For communication between containers across
hosts (r11), you ideally need an overlay network or a
software defined network (SDN) (Jain and Paul,
2013). Its configuration should be accessible directly
from the Docker management UI, e.g., for defining IP
address ranges (r12). The Web UI of the SDN could
be simply integrated. You need routing of external
requests with URLs to tenant-specific container IPs
(r13). This routing should include load balancing if
multiple container instances are available (r14). There
should be a way to review the list of available images
(r15) including versions and ideally an association to
the containers running that image. If an image is

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

536

updated, the admin should be able to trigger a
mechanism that propagates the updates to the running
instances (r16), e.g. analogous to the migration
described above. There should be a way to access the
container’s console or open an SSH shell respectively
(r17) and review the log files (r18), both using the
Web UI.

It would also be desirable to have an integration
of the underlying IaaS solution, so that you can create
new hosts (VMs) from within the Docker Web UI
(r19). Finally, there should be an integration with a
tenant / customer management solution (r20) where
both administrators and customers can review
information like the list of Docker containers per
tenant, the resulting resource usage, the number of
total and monthly active users as well as respective
billing information. It could be further argued, that an
authentication solution is needed, but we are skipping
this requirement, since Docker itself currently has no
working mechanism for that anyway.

4 EXISTING SOLUTIONS

We’ve concentrated our analysis on open source
components, although there are a few impressive
commercial tools available like StackEngine. The
descriptions of the tools capabilities are based on the
projects’ websites. We have installed and tested only
the most promising systems.

4.1 Host Operating System

In principle, Docker can run on any modern Linux
system. However, a few specialized Linux
distributions have emerged that propose to bring
exactly what is needed to smoothly run Docker
containers and nothing more. CoreOS is the most
prominent one and was launched briefly after Docker.
Redhat has reacted quickly and initiated project
Atomic, which is developed in close cooperation with
Redhat’s own PaaS solution OpenShift. Canonical
has only recently announced an own solution in this
field called snappy Ubuntu core. It abandons
traditional package managers and uses snappy, a new
tool tailored for containerized apps. Boot2Docker is
based on Tiny Core Linux and seems to address
developers more than cloud hosters as it provides
Windows and Mac OS X integration. OpenStack
ships with CirrOS as a minimal image for virtual
machines. However, CirrOS brings no Docker
integration by default.

4.2 Image Registry

Docker uses layered images as a package format.
Similar to a disk image of a virtual machine, the
Docker image contains all the files necessary to run
the container and do something meaningful. The
image registry stores them and can be used to retrieve
an image, if it is not already present on the host (r15).
Docker Inc. provides a public image registry called
Docker Hub (https://hub.docker.com) and an open
source implementation for running a private registry.
It is not a service registry (see service discovery).
Dogestry is an alternative implementation using
Amazon S3 compatible storage as a backend. The
OpenStack counterpart of this category is Glance.

4.3 Container Management

Docker itself only provides a command-line interface
(CLI) and a RESTful API for managing containers.
This is fine for scripting and automating things, but
there is still a need for a Web UI (r1, r2), e.g. for self-
service administration by a customer. As the name
implies, DockerUI provides exactly that missing
WebUI for Docker, while the other candidates in this
category provide additional functionality like
management of composite applications (Panamax, r3)
or broader management of containers and VMs
(mist.io and Cockpit, r19). Direct terminal access to
the containers via Web UI (r17) is currently under
development by mist.io and already implemented by
Rancher (see section 4.10). The OpenStack
counterpart is Horizon.

4.4 Cluster Management

While Docker itself can only list and manage
containers of a single host, a cluster management
solution should allow the management of a cluster of
Docker hosts and all containers on them, including
the resource-aware placement of new containers (r6),
automatic failover and migration of containers due to
resource bottlenecks (Mills et al., 2011). We found
four solutions providing parts of this functionality
incl. a CLI (Apache Brooklyn, Citadel, CoreOS fleet
and Docker Swarm). Decking is similar, but has
additional orchestration capabilities (r3). Apache
Mesos was originally dedicated to hosting solutions
like Hadoop and Spark. Since version 0.20 it also
supports running Docker containers. Other solutions
like Shipyard build on them and provide a Web UI
(r1, r2). Clocker additionally provides some
orchestration (r3, r4) and networking functionality
(r11), so that it is getting close to the management

The�Docker�Ecosystem�Needs�Consolidation

537

Table 1: Overview of Docker software tools with fulfilled requirements (parentheses means partly fulfilled).

Software Requirements Software Requirements
Image Registry Service Discovery

Docker Hub 15 DoozerD 14
Dogestry 15 etcd 8a

Container Mgmt Registrator 8b
Cockpit 1, 2, 19 SkyDNS 8a
DockerUI 1, 2 SkyDock 8b
mist.io 1, 2, 7, 19, (17, 18) WeaveDNS 8a
Panamax 1, 2, 3 Zookeeper 14

Cluster Management Software Defined Network
Brooklyn (6) Flannel 11, 12
Citadel (6) Open vSwitch 11
Clocker 3, 4, 11 Pipework 11, 12
Decking 3 Socketplane 11, 12
Fleet (6) Weave 11, 12
Flocker 3, 4, 6, 9, (11) Load Balancer
Mesos (6) HAProxy 13, 14
Shipyard 1, 2 nginx 13, 14
Swarm (6) Vulcan 13, 14

Orchestration Monitoring
Compose (3, 4) cAdvisor (18)
Crane Grafana (18)
Fig Heapster (18)
Helios 3 Kibana 18
Maestro logstash 18
Maestro NG 3 Management Suites
Shipper 3 CF BOSH 3, 4, 6, (9, 18)
Wire 3, 11 Flocker 3, 4, 6, 8, 9

Service Discovery Kubernetes 3, 4, 6, 8
confd 10 Rancher 1, 2, (3, 4, 6, 9), 17, 18
Consul / Consul UI 8a OpenStack Docker Driver 1, 2, 3, 4, 6, 19,

(9, 11) dnsmasq 8a

suites (see section 4.10). Flocker doesn’t provide a
Web UI but also has additional functionality like
basic orchestration and networking. It stands out due
to its unique solution of linking storage to containers
in a portable way (r9). Nova is kind of fulfilling this
cluster management job in OpenStack, especially the
Nova scheduler.

4.5 Orchestration

Service orchestration is an important feature for
composite applications in an SaaS offering. When
different components are deployed on different hosts
to meet the scalability requirements, those separate
deployments should appear as a single coherent
subsystem to other components (Chauhan and Babar,
2011). BPEL and WSCI are examples of
orchestration languages in SoA (Bucchiarone and
Gnesi, 2006). Docker orchestration solutions mainly
use YAML instead. Orchestration tools should be

able to add links between Docker containers that are
distributed across multiple hosts (r3). Some tools
found in literature like Crane, Fig and Maestro
(formerly Dockermix) are not able to do that and
concentrate on single hosts. The developers of Helios,
Maestro NG and Shipper all decided not to build upon
cluster management solutions and instead connect to
the different hosts on their own. All three come
without a Web UI. Shipper seems to be the least
mature of the three. Wire is an interesting tool, as it
builds on Fig as well as Open vSwitch and dnsmasq
to configure interdependent containers across hosts.
The OpenStack counterpart of this category is Heat.

4.6 Service Discovery

Service discovery has always been an issue in SOA
and has never been solved satisfactory in practice
(Bachlechner et al., 2006). Recently, a new proposal
was made for service discovery in a cloud context

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

538

based on OpenTosca, an Enterprise Service Bus and
Chef (Vukojevic-Haupt et al., 2014). Within the
Docker ecosystem, the proposed tools often represent
more of a service registry and leave it up to the
application developer to use the provided lookup
mechanism (r10).

Etcd and Consul are two well-known
representatives of this category. They provide a
distributed key-value store in order to store ports, IP
addresses or other characteristics of services running
inside Docker containers. Zookeeper and DoozerD
work in similar ways, but are less dedicated to
Docker. Other tools like SkyDNS, dnsmasq and
WeaveDNS try to solve the problem by reusing DNS
for which there are discovery implementations in
every OS. Tools like SkyDock or registrator automate
the registration process (r8b) by monitoring Docker
events and publishing information in the service
registries. Confd stands out from the rest of the
candidates, as it facilitates applications’ usage of the
configuration data from those service registries (r10).
It reads data from service registries or environment
variables and updates configuration files accordingly.
In OpenStack, there is no dedicated service discovery
tool, since it is focused on IaaS.

4.7 Software Defined Network

Within Docker, every container gets a private IP only
visible on the same host. Ideally, an SDN is used to
connect containers between multiple hosts (Costache
et al., 2014, r11). Furthermore, isolation is beneficial,
so that every customer (tenant) of the SaaS solution
gets an own virtual network (Drutskoy et al., 2013).
In an SDN, a logically centralized controller manages
the collection of switches through a standard
interface, letting the software control virtual and
physical switches from different vendors (ibid.).
Open vSwitch is a popular SDN solution that is also
used by default in OpenStack’s Neutron. It is also a
central part of the larger OpenDaylight initiative.
Socketplane and Pipework are overlay networks that
make use of Open vSwitch and are tailored for
Docker. They manage IP assignment (r12) and
routing of messages between networks of multiple
hosts. Flannel and Weave promise to do the same, but
without support for Open vSwitch and therefore with
less flexibility.

4.8 Load Balancer

The cloud can limit the scalability of a software load
balancer due to security requirements. Amazon EC2
for example disabled many layer 2 capabilities, such

as promiscuous mode and IP spoofing so that
traditional techniques to scale software load balancers
will not work (Liu and Wee, 2009). HAProxy and
Nginx are forwarding traffic on layer 7 which limits
scalability due to SSL termination (ibid.). However
they are commonly used and fulfill our requirements
(r13-14).

4.9 Monitoring

Monitoring is an essential part of cloud computing
(Aceto et al., 2013). For monitoring Docker
containers, you can use common solutions like
Nagios that provide extensions for cloud scenarios, or
some specialized tools like Sensu that are built for
scalability from the ground up (Aceto et al., 2013).
Within the Docker ecosystem, the most specialized
solution is Google’s cAdvisor, as it is tailored for
monitoring containers. It brings its own Web UI.
Logstash on the other hand is a general purpose tool
for log file management (r18) and is often used in
conjunction with elasticsearch as a NoSQL database
and Kibana as a Web UI (Ward and Barker, 2014).
Grafana is similar to Kibana and uses InfluxDB or
other time series databases as data stores. It can be
used in conjunction with cAdvisor since the latter can
export data to InfluxDB. This seems advisable, since
the Web UI of cAdvisor is limited to the latest data
and does not show historical data. The combination
can be further enhanced with Google Heapster which
directly supports Kubernetes clusters. The container
management solution mist.io does also include
monitoring and seems to be the only one to support
alerts based on thresholds (r7). Nagios is the default
monitoring tool in OpenStack.

4.10 Management Suites

Suites are the most comprehensive tools in our review
and at least include cluster management and
orchestration capabilities (r3, r4, r6). They either
build on multiple other solutions in order to cover the
required functionality (e.g. Kubernetes, which relies
on the CoreOS tools etcd, fleet and flannel) or are
large monolithic solutions from the micro-service
perspective (e.g. BOSH). Kubernetes is popular and
further supports container migration (r8). The
OpenStack Docker driver allows managing Docker
containers just like KVM VMs in OpenStack and
therefore reusing a large part of the OpenStack
modules. In principle, this is the right way to go (r19).
However, it does not match our use case very well
(Docker inside KVM-based VMs), since you have to
decide per host which hypervisor to run (KVM, Xen

The�Docker�Ecosystem�Needs�Consolidation

539

Figure 1: Docker ecosystem with dependencies (own illustration).

or Docker). Furthermore, not all modules are already
updated to be used with Docker. A promising but still
premature (alpha) candidate is Rancher.io. It aims at
solving the multi-host problems of Docker by
providing a Web-based UI, storage and networking
capabilities. Version 0.3 from January 2015 allows
starting and stopping containers on multiple hosts,
linking containers across hosts and assigning storage
(r9). They are also dedicated to support Docker
Swarm and have a terminal agent that offers Web-
based terminal sessions with containers (r17). BOSH
is part of Pivotal’s PaaS solution Cloud Foundry. It is
able to start and stop containers on multiple hosts, but
seems to be missing an overlay network component.

Figure 1 gives an overview of tools in the Docker
ecosystem. The ellipses represent tools. The thick
lines demarcate areas of functionality that are labeled
in the rectangles. A position closer to the center of the
figure within one category indicates that the tool has
more functionality than others in the outer areas.
Solid arrows represent dependencies between tools.
Dashed arrows indicate that the tool is directly
supported. It becomes obvious, that there already are
some dependencies and interactions between tools.
However, it is far from ideal and the most promising
candidates of different categories are often developed
side-by-side instead of hand-in-hand. Table 1
summarizes our findings more formally.

5 DISCUSSION

Despite the fact that the Docker ecosystem is huge,
there still are requirements not fulfilled by any of the
tools (r16, r20) and some are only fulfilled by a single
tool (r7, r8b, r9). Many tools emerged quite recently
and therefore must be considered premature.

Managing tenant data is maybe the most
important missing part. (Lindner et al., 2010) argue,
that there should be a complete supply chain for the
cloud starting with deployment and monitoring and
ending with accounting and billing. The economic
part of this supply chain is currently not present in the
Docker ecosystem. Updating a container can be
emulated with a couple of Docker commands
replacing it, since containers should be immutable.
Still there should be a way to automate this.
Registering a service in the registry is also a neglected
requirement. Some tools do it, but our impression is
that it is a better idea to use IP addresses and an SDN
for routing instead of relying on one of the service
discovery solutions when containers are migrated to
another host. Storage is handled quite well by
Flocker, but in our setup with Docker inside VMs
there is still a problem. Volumes have to be mounted
by the VM and mapped into the container. If the
container moves, the volume has to be unmounted
from the VM and mounted on the new host of the
container. That means, that every container needs its
own volume. If the space on the volume runs low,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

540

growing it won’t be easy. The Linux Device Mapper
with its thin provisioning strategy can attenuate that
problem but is not an ideal solution.

6 CONCLUSIONS

A Docker-based open source cloud environment to
easily run composite applications as SaaS offerings
would be a good basis for initiatives like the Open
Cloud Alliance (Crisp Research, 2014) that aim at
simplifying the process of bringing your applications
to the cloud while preserving the freedom of choice
and openness of the offering. In our paper, we have
shown that many components are needed to fulfill the
requirements for such a solution, which we dubbed
runtime environment for SaaS applications (RaaS). It
is similar to an IaaS environment, as we have shown
with OpenStack, and includes some components from
PaaS like load balancing and logging, but also has
unique features like service orchestration and
discovery. Not all requirements are currently fulfilled
and despite first integration approaches, there is a
need for closer cooperation within the Docker
ecosystem. We plead for an embracing ecosystem
project that serves as a coordination center for the
tools that contribute to mastering the Docker
management challenge. From our tests, Kubernetes
with etcd, fleet and flannel seems the most usable
combination right now. Mesos also seems a solid
basis and integrations from other tools are currently
in development (e.g. Compose/Swarm).

REFERENCES

Aceto, G., Botta, A., De Donato, W. and Pescapè, A.
(2013), “Cloud monitoring: A survey”, Computer
Networks, Vol. 57 No. 9, pp. 2093–2115.

Bachlechner, D., Siorpaes, K., Fensel, D. and Toma, I.
(2006), “Web service discovery-a reality check”, 3rd
European Semantic Web Conference, Vol. 308.

Binz, T., Breitenbücher, U., Kopp, O. and Leymann, F.
(2014), “TOSCA: Portable Automated Deployment and
Management of Cloud Applications”, Advanced Web
Services, Springer, pp. 527–549.

Bucchiarone, A. and Gnesi, S. (2006), “A survey on
services composition languages and models”,
International Workshop on Web Services–Modeling
and Testing (WS-MaTe 2006), p. 51.

Chauhan, M.A. and Babar, M.A. (2011), “Migrating
service-oriented system to cloud computing: An
experience report”, Cloud Computing (CLOUD) 2011,
IEEE Int. Conf. on, IEEE, pp. 404–411.

Cockcroft, A. (2014), “State of the Art in Microservices”,

DockerCon Europe 14, Amsterdam, The Netherlands.
Coffey, J., White, L., Wilde, N. and Simmons, S. (2010),

“Locating software features in a SOA composite
application”, Web Services (ECOWS), 2010 IEEE 8th
European Conference on, IEEE, pp. 99–106.

Costache, C., Machidon, O., Mladin, A., Sandu, F. and
Bocu, R. (2014), “Software-defined networking of
Linux containers”, 13th RoEduNet Conf., IEEE.

Crisp Research. (2014), Open Cloud Alliance - Openness
as an Imperative (Strategy paper), Crisp Research,
available at: http://bit.ly/1ArYcyc.

“Docker Ecosystem Mindmap”. (n.d.). MindMeister,
available at: http://bit.ly/1BjDgtW.

Docker, Inc. (2014), “About”, Docker Homepage, available
at: http://bit.ly/1OjEBLl.

Drutskoy, D., Keller, E. and Rexford, J. (2013), “Scalable
 network virtualization in software-defined networks”,

Internet Computing, IEEE, Vol. 17 No. 2, pp. 20–27.
Evans, E. (2003), Domain driven design: Tackling

Complexity in the Heart of Software, Addison-Wesley,
Boston.

Jain, R. and Paul, S. (2013), “Network virtualization and
software defined networking for cloud computing: a
survey”, Communications Magazine, IEEE, Vol. 51
No. 11, pp. 24–31.

Koukis, V. (2013), “Flexible storage for HPC clouds with
Archipelago and Ceph”, 8th Workshop on Virtuali-
zation in High-Performance Cloud Computing, ACM.

Kratzke, N. (2014), “Lightweight Virtualization Cluster
How to Overcome Cloud Vendor Lock-In”, J. of Com-
puter and Communications, Vol. 2 No. 12, pp. 1–7.

Lindner, M., Galán, F., Chapman, C., Clayman, S.,
Henriksson, D. and Elmroth, E. (2010), “The cloud
supply chain: A framework for information,
monitoring, accounting and billing”, 2nd Int. Conf. on
Cloud Computing.

Liu, H. and Wee, S. (2009), “Web server farm in the cloud:
Performance evaluation and dynamic architecture”,
Cloud Computing, Springer, pp. 369–380.

Mietzner, R., Leymann, F. and Papazoglou, M.P. (2008),
“Defining composite configurable SaaS application
packages using SCA, variability descriptors and multi-
tenancy patterns”, ICIW 2008, IEEE.

Mills, K., Filliben, J. and Dabrowski, C. (2011),
“Comparing VM-placement algorithms for on-demand
clouds”, Cloud Computing Technology and Science
(CloudCom), IEEE 3rd Int. Conf. on, IEEE, pp. 91–98.

Papazoglou, M.P. (2003), “Service-oriented computing:
Concepts, characteristics and directions”, Web
Information Systems Engineering (WISE 2003). 4th Int.
Conf. on, IEEE, pp. 3–12.

Peinl, R. (2015), “Docker ecosystem on Google Docs”,
available at: http://bit.ly/1DJ0eS4.

Rosen, R. (2014), “Linux containers and the future cloud”,
Linux Journal, Vol. 2014 No. 240, p. 3.

Roßbach, P. (2014), “Docker Poster”, Entwickler Magazin
Docker spezial, Vol. 2014 No. Docker spezial.

Scheepers, M.J. (2014), “Virtualization and
Containerization of Application Infrastructure: A
Comparison”, 21st Twente Student Conference on IT,

The�Docker�Ecosystem�Needs�Consolidation

541

University of Twente, Twente, The Netherlands.
Sefraoui, O., Aissaoui, M. and Eleuldj, M. (2012),

“OpenStack: toward an open-source solution for cloud
computing”, International Journal of Computer
Applications, Vol. 55 No. 3, pp. 38–42.

Turnbull, J. (2014), The Docker Book: Containerization is
the new virtualization, James Turnbull.

Vukojevic-Haupt, K., Haupt, F., Karastoyanova, D. and
Leymann, F. (2014), “Service Selection for On-demand
Provisioned Services”, Enterprise Distributed Object
Computing Conference (EDOC), 2014 IEEE 18th
International, IEEE, pp. 120–127.

Ward, J.S. and Barker, A. (2014), “Observing the clouds: a
survey and taxonomy of cloud monitoring”, Journal of
Cloud Computing: Advances, Systems and
Applications, Vol. 3 No. 1, p. 40.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

542

Container-based Virtualization for HPC

Holger Gantikow1, Sebastian Klingberg1 and Christoph Reich2

1Science & Computing AG, Tübingen, Germany
2Cloud Research Lab, Furtwangen University, Furtwangen, Germany

gantikow@gmail.com, fsebastian.klingberg, christoph.reichg@hs-furtwangen.de

Keywords: Container Virtualization, Docker, High Performance Computing, HPC.

Abstract: Experts argue that the resource demands of High Performance Computing (HPC) clusters request bare-metal
installations. The performance loss of container virtualization is minimal and close to bare-metal, but in
comparison has many advantages, like ease of provisioning.
This paper presents the use of the newly adopted container technology and its multiple conceptional advantages
for HPC, compared to traditional bare-metal installations or the use of VMs. The setup based on Docker
(Docker, 2015) shows a possible use in private HPC sites or public clouds as well. The paper ends with a
performance comparison of a FEA job run both bare-metal and using Docker and a detailed risk analysis of
Docker installations in a multi-tenant environment, as HPC sites usually are.

1 INTRODUCTION

Applications in the domain of High Performance
Computing (HPC) have massive requirements when it
comes to resources like CPU, memory, I/O through-
put and interconnects. This is the reason why they
are traditionally run in a bare-metal setup, directly
on physical systems, which are interconnected to so-
called clusters.

Such a cluster infrastructure offers the best per-
formance, but of disadvantage is the time for setting
up: a) The operating system, usually some Linux fla-
vor, must be installed using automatic mechanisms
like PXE and Kickstart to install a basic installation
ready to log in and get customized. b) All the ap-
plications required for computation and general HPC
related libraries, like MPI (MPI, 2015), have to be
installed and fine tuned in the customization phase.
This is usually done by configuration management
tools like Chef (Chef, 2015) or Puppet (Puppet, 2015).
c) Before the first computational jobs can be started,
the installed systems have to be finally integrated in
some job scheduler like GridEngine (Oracle, 2015),
LSF (IBM, 2015), or TORQUE (Adaptive Comput-
ing, 2015) which ensures proper resource manage-
ment and avoids over-usage of resources.

Even though these steps can be automated to the
great extent, the whole process until being finally able
to start a job is quite time consuming and leaves the
system in a rather static setup difficult to adapt to dif-

ferent customer needs. Often different applications,
or even different versions of the same one, have con-
flicting environmental requirements, like a specific
Linux version or specific library version (e.g. libc).
This leads to the risk of putting the consistency of
the whole cluster at stake, when adding a new ap-
plication, or a newer version. Libraries might have
to be updated, which might imply an upgrade of the
whole Linux operating system (OS). Which in return
can lead to old versions which are usually required
for the ability to re-analyze previous calculations not
being functional.

Now given a scenario where applications need
computing environment changes frequently, the setup
might take several hours. Even when using disk im-
ages, this approach does not pay off for jobs only run-
ning a rather limited time. One would like to have
high configuration flexibility, with low application in-
terference on the same cluster and optimal resource
utilization. Isolation is the key solution for this. The
use of different virtual machines (VMs), as they of-
fer a feasible solution for tailoring a suitable environ-
ment for each type of workload and even providing
a portable entity for moving HPC jobs to the cloud,
is a trend that is gaining more and more momentum.
With such a setup compute servers are no longer used
for bare-metal computing, but turned into host sys-
tems for virtualization instead, reducing the installa-
tion time and making the systems much more flexible
for different workloads, as they only have to offer the

543

minimum environment to host a VM, whereas all the
application specific environment is encapsulated in-
side the VM.

Even though the use of hypervisor-based virtual-
ization using VMs is highly common, it comes with
quite a few trade-offs performance-wise, which make
them less suitable for demanding HPC workloads.

Our work makes the following contributions:

� We present container-based virtualization with
Docker as a superior alternative to VMs in the
field of HPC.

� We provide a comparison of the concepts of VMs
and containers and their use for HPC.

� We evaluate its performance using a finite element
analysis (FEA) job with ABAQUS (Abaqus FEA,
2015), a widely used application in the field of
computer aided engineering (CAE).

� We discuss possible risks of container-based vir-
tualization.

The rest of the paper is organized as follows: Sec-
tion 2 explores possible options for container-based
virtualization. Section 3 discusses their advantages
over VMs for HPC and describes the most viable
Linux solution (Docker) for containers. Section 4
evaluates the performance overhead over native ex-
ecution with a real life industrial computational job.
Section 5 takes a look at possible security implica-
tions by using Docker. Section 6 concludes the paper.

2 RELATED WORK

The use of container-based virtualization for all sorts
of workloads is not new, as the underlying concepts
such as namespaces (Biederman, 2006) are mature.
The core concept of isolating applications is seen
in any Unix-like OS, with BSD Jails (Miller et al.,
2010), Solaris Zones (Price and Tucker, 2004) and
AIX Workload Partitions (Quintero et al., 2011) be-
ing available for years. Linux, the operating system
that powers most HPC clusters and clouds, as opposed
to Solaris and AIX, offers a similar solution called
LinuX Containers (LXC), with its initial release back
in 2008. Even though LXC offers good performance
it never really caught on in the HPC community. An-
other option for Linux based containers is systemd-
nspawn, which hasn’t seen any widespread use so far.
The most interesting option we are considering as a
VM alternative for HPC in this paper is Docker, which
recently became the industry standard for Linux con-
tainers, due to its ease of use, its features, like layered
file system images and the ecosystem supporting it.

There have been several studies comparing VM
to bare-metal performance (Matthews et al., 2007),
(Padala et al., 2007) which have lead to much im-
provements in hardware support for virtualization and
VM technology as such (McDougall and Anderson,
2010). Especially the two open-source Type-1 hyper-
visor solutions Xen (Barham et al., 2003) and the Ker-
nel Virtual Machine (KVM) (Kivity et al., 2007), that
turns the whole Linux kernel into a hypervisor, have
seen lots of performance improvements, for example
by combining hardware acceleration with paravirtual-
ized I/O devices using virtio (Russell, 2008). This
papers discusses the advantages of container-based
virtualization for HPC, the amount of performance-
overhead added by Docker when running a FEA com-
pute job inside a container instead bare-metal and
takes a closer look at the security-related implications
when using Docker in a multi-tenant environment.

3 CONTAINERS FOR HPC

Whereas VMs still offer the most mature and reliable
technology for isolating workloads, both in terms of
security and stability for encapsulating applications
and their dependencies in a portable entity, their per-
formance loss still remains, as overhead is added by a
hypervisor, also known as Virtual Machine Manager
(VMM), running on top of the hardware to control the
VMs.

While hypervisor-based virtualization can still
mean up to 25% reduction in turnaround time in cer-
tain scenarios (Stanfield and Dandapanthula, 2014),
large compute clusters continue to still run bare-metal
setups, even though this means a huge trade-off in
flexibility. The same applies for many of the com-
mercial HPC-on-demand offerings, for example ad-
dressing the CAE sector. Because they’re based on
bare-metal setups they frequently can’t offer the elas-
ticity customers are accustomed to from mainstream
cloud offerings like Amazon EC2, as there are certain
minimum quantities that have to be booked for mak-
ing the re-installation pay off.

By using a container-based virtualization ap-
proach this might change to a certain extend.

3.1 Container Virtualization vs.
Hypervisor

The technical concept of container-based virtualiza-
tion differs quite a bit from hypervisor-based virtual-
ization. The containers run in user space on top of
an operating system’s kernel, while the hypervisor is

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

544

Figure 1: Hypervisor- (left) vs. Container-Based Virtualization (right).

scheduling system calls of the virtualized operating
system as seen in Figure 1.

As the operating system kernel is the exact same
for all containers running on one host and can not
be changed, containers are limited to the same host
operating system. VMs can run other operating sys-
tems e.g. Windows on top of Linux. This is a valid
point for many scenarios, but the majority of HPC
clusters and IaaS clouds tend to homogeneously run
Unix (e.g. Linux). Container virtualization still offers
the required flexibility to run e.g. an Ubuntu Linux
container on top of a Red Hat Enterprise Linux host.
Which also means a containerized process appears to
be running on top of a regular Linux system.

Container-based virtualization relies on two Linux
kernel features of the host system to provide the re-
quired isolation:

� kernel namespaces (Biederman, 2006): enabling
individual views of the system for different pro-
cesses, which includes namespaces for processes,
file systems, user ids, etc. and enables the creation
of isolated containers and limiting access of con-
tainerized processes to resources inside the con-
tainer.

� kernel control groups (cgroups): this subsystem
puts boundaries on resource consumption of a sin-
gle process or a process group and limits CPU,
memory, disk and network I/O used by a con-
tainer.

As mentioned before there are several options
for using containers with Linux, with Docker having
gained most attention recently due to its features and
ease of use. Docker is released by the team at Docker,
Inc. under the Apache 2.0 license.

3.2 Docker and HPC

Docker offers a good solution containerizing an ap-
plication and its dependencies. As seen in Figure 2

Figure 2: Applications and library dependencies.

applications usually share several libraries.
With container virtualization it is possible to iso-

late libraries as seen in Figure 3 to allow coexistence
of special or incompatible library versions or even an
outdated Linux distribution in a shippable entity eas-
ily. This solves the problem of running legacy code
(might be needed for verifying old results of a compu-
tation) on a modern system, without the risk of break-
ing the system. As long as the code is not dependent
on a special version of the kernel, as the kernel can
not be changed inside a container.

Figure 3: Applications and library dependencies encapsu-
lated in containers.

Containers equipped with all tools and libraries
for a certain tasks can be easily deployed on own clus-
ters, systems of a related party for evaluation without

Container-based�Virtualization�for�HPC

545

having to rebuild the whole computational work-flow
or at a complete third party if additional resources are
needed. All that is required is a suitable runtime for
starting the container.

This also cuts down the complete re-purposing
of compute resources to a simple start a new con-
tainer image, as compute nodes only have to offer the
Docker runtime and have access to the container files.

Compared to virtual machines this significantly
reduces the amount of resources required. Both in
memory footprint, as containers share a lot of re-
sources with the host system as opposed to VMs start-
ing a complete OS and in terms of storage required.
Startup time is reduced from the time booting a full
OS to the few seconds it takes till the container is
ready to use.

For reducing storage requirements Docker makes
use of layered file system images, usually UnionFS
(Unionfs, 2015) as a space conserving mechanism,
which is lacking in several other container solutions.
This allows file systems stacked as layers on top of
each other (see Figure 4), which enables sharing and
reusing of base layers. For example the base in-
stallation of a certain distribution, with individually
modified overlays stacked on top, can provide the re-
quired application and configuration for several dif-
ferent tasks.

Figure 4: The layers of the Docker file system.

If a weakening of complete isolation is acceptable,
it is also possible to pass directories, for example con-
taining job input data into a container, so not all the
required files for a compute job have to be included in
the container image. One has to consider that strong
isolation is desired, if providing a multi-tenant envi-
ronment.

One popular VM feature it currently lacking.
Compared to hypervisor-based setups Docker can not
live-migrate running workloads to another host (Clark
et al., 2005), which might be desirable for planned

system downtime. Even though this might not be
required for most HPC environments, as killing and
recreating a container might be faster, the Check-
point/Restore In Userspace (CRIU) project is cur-
rently working on at least providing checkpoint and
restore functionality (CRIU-Project, 2015). This fea-
ture would be much more required for high availabil-
ity (HA) clusters than for HPC clusters.

4 EXPERIMENTAL EVALUATION

Performance-wise, without all the overhead added by
hypervisor and VMs, containers as a light-weight vir-
tualization mechanism can achieve almost the same
performance as native execution on a bare-metal sys-
tem does, as other benchmarks (Felter et al., 2014),
(Xavier et al., 2013) underline.

As we were interested in the amount of overhead
generated by containerizing a HPC workload, we de-
cided to benchmark a real-world ABAQUS exam-
ple in two different storage scenarios, comparing the
containerized execution time to the native execution.
ABAQUS (Abaqus FEA, 2015) is frequently used for
finite element analysis (FEA) and computer aided en-
gineering (CAE) for example in the aerospace and
automotive industries, as it provides wide material
modeling capability and multi-physics capabilities.
ABAQUS jobs tend to be CPU and memory intense,
requiring lots of scratch space too.

The application was installed to local disks on a
CentOS 7 SunFire X2200 server with the following
hardware configuration:

� CPU: 4x Dual-Core AMD Opteron (tm) 2220

� RAM: 16GB

� HDD: local conventional disks without RAID

� Infiniband: Mellanox MT25204

The job used for evaluation is the freely avail-
able s4b from the samples.zip package included in the
ABAQUS 6.12-3 installation. It was installed onto lo-
cal disks and the software licensing was done using a
local license file.

As the server provided access to a Lustre parallel
distributed file system, which is frequently used for
large-scale cluster computing, we decided to execute
the job one time with the folder for temporary data
located on local disks and the other time on the Lus-
tre file system. Both storage configurations were used
with bare-metal execution and inside a Docker con-
tainer. Docker was installed using packages shipped
with CentOS 7.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

546

There were no limits imposed on Docker using
cgroups to ensure maximum performance. The re-
sources available to the container were only limited
by the actual resources on the host. When using
one host for multiple containers simultaneously us-
age should be limited as expected. We used only one
container per host for not distorting the outcome.

To rule out side effects, the job was run twenty
times in each configuration and the Total CPU Time
(in seconds), which is the sum across all involved
CPUs of the time spent executing ABAQUS (user
time) and the time spent by the OS doing work on
behalf of ABAQUS (system time), from the job out-
put file was taken to ascertain the total runtime of the
simulation (see Figure 5).

The results, diagrammed in Figure 5, show the fol-
lowing:

� Docker offers near native execution speed

� there is constant but minimal overhead added

� average runtime (native vs Docker)

local disk 114s vs 116,5s - overhead: 2,21%
Lustre 117,3s vs 118,5s - overhead: 1,04%

To be clear: this means only two up to five seconds
longer total execution time to complete the s4b exam-
ple job, which is a fraction of the time a VM would
even need to boot.

A point worth commenting on is the reason for
the lesser overhead when accessing Lustre. The lower
difference in overhead when using Lustre can be ex-
plained by the fact, that the container uses the RDMA
stack for IBoIP as directly as the host does, while
accessing a local disk obviously needs to be passed
through a UnionFS technology which affects the I/O
flow here, at a small but mentionable minimum.

5 CONTAINER
VIRTUALIZATION RISKS

As mentioned before the cornerstones of the perfor-
mance and security isolation offered by Docker are
cgroups and namespaces, both very mature technolo-
gies, which do a good job of avoiding Denial of Ser-
vice (DoS) attacks against the host and limiting the
view of what a container can see and has access to.
Recent analysis on Docker (Bui, 2015) shows that the
internal concepts of containers, even when using de-
fault configuration, are reasonable secure.

When deploying Docker in a multi-tenant environ-
ment, certain security aspects have to be considered:
Container vs VM. When it comes to security as-
pects, isolation of filesystem, devices, IPCs, network

and management as described in Reshetova’s paper
(Reshetova et al., 2014) important. Generally it can
be said, that containers have been seen as less secure
than the full isolation offered by hypervisor virtual-
ization, which is still true.
Vulnerabilities. Recent research by Ian Jackson and
his colleague George Dunlap (Jackson, 2015) com-
pared the number of Common Vulnerabilities and Ex-
posures (CVE) in 2014 for paravirtualized Xen, KVM
+ QEMU, and Linux containers, that could lead to
either privilege escalation (guest to host), denial of
service attacks (by guest of host) or information leak
(from host to guest) and showed that the risk for any
of the three is higher when using containers.

One reason is that every additional interface avail-
able is a possibility for additional vulnerabilities. A
hypervisor provides an interface similar to hardware
and so-called hyper-calls (Xen offering 40). These are
only very few calls a VM can interact with, compared
to the much wider Linux system call interface used
by containers. Making use of hardware virtualization
for hypervisor-based setups may even add additional
risks, as a detailed study (Pék et al., 2013) shows.
Docker Daemon. Since running Docker containers
requires the Docker Daemon to run as root on the host,
special attention should be given to its control, what
leads to certain good practices for using Docker from
a security point of view.
Misuse. Because it is possible to pass through
file systems available on the host, only trusted
users should be allowed access to start images or
pass arguments to the Docker commandline-tool
docker. Great harm can be done, if for exam-
ple the hosts’ complete file system is granted ac-
cess to from inside the container. Membership
of the docker-group is usually enough to invoke
a command like docker run -v /:/tmp myimage
rm -rf /tmp/* which would start a container, pass
the hosts’ filesystem to /tmp inside the container and
directly delete it.
NFS. This risk intensifies in a NFS-environment,
where someone with unrestricted access to Docker
can bind to an existing share, for example containing
user homes, and circumvent access control based on
numeric user IDs (UID) by creating a container for
spoofing his UID. This can be mitigated by offering
only NFSv4 shares to Docker hosts, where Kerberos
as an additional authorization layer is available.
Application Container vs System Container. When
using Docker for HPC applications the best thing to
do is utilizing the container as an application con-
tainer that directly starts the computing job after the
container starts running. This eliminates the possi-
bility for a user to pass parameter to the docker-

Container-based�Virtualization�for�HPC

547

Figure 5: Total CPU Time (seconds).

command-line and to utilize the container as a more
VM-style system container. As this disables the pos-
sibility to interactively use and explore the system,
offering only pre-defined, parameter-controlled con-
tainers greatly reduces the risk of wanted or acciden-
tal misuse.
Docker Security. According to (Jérôme Petazzoni,
2013) development focusing on security is on the way,
which will limit the Docker daemons’ root privileges
to certain sub-processes like virtual network setup.
Further improvements aim at a possibility to map the
root user of a container to a non-root user on the host
system, reducing the impact of a possible privilege es-
calation. These new user namespaces will also opti-
mize sharing file systems, as users within a container
can be mapped to users outside the container. LXC
already uses this feature (?), so it should be only a
matter of time until Docker implements user names-
paces.
Image Security. Attention should be paid to the
source the container images are being pulled from.
Docker Inc. offers a convenient way (called Docker
Hub) to access thousands of preconfigured images
which are ready to deploy. These images are for users
who quickly want to set up an Apache web server or
development environment for testing and do not offer
any HPC related applications. But these images might
be used as base for creating own HPC images. As se-
curity researchers state (Rudenberg, 2014) Docker in-
cludes a mechanism to verify images, which does im-
ply that the checksum of the downloaded image has
been validate. But this is actually not the case and
offers possibilities for attacks. Docker solely checks

for a signed manifest and never actually verifies the
image checksum from the manifest. Another poten-
tial attack arises from a vulnerability when dealing
with malformed packages (Jay, 2014), as malformed
packages can compromise a system. The advice in
this case is to only download and run images from
trusted sources, at best an internal image registry,
which might be best-practice after all, not just for
HPC clusters behind a corporate firewall.

6 CONCLUSION

Container-based virtualization using Docker solves
many problems of bare-metal HPC, when flexibility
to rapidly change the installed software, deploy new
versions or use applications with conflicting depen-
dencies on the same cluster is key.

Environmental details for a job, like a certain
Linux distribution with a special compiler version
could be included in a field in the job description, like
required CPU and memory are nowadays. The work-
load manager then would pick a host fulfilling the
hardware requirements, pulls the workload-specific
image and starts the container that runs the job.

As our evaluation with an ABAQUS test job has
shown, Docker offers near native execution speed,
generating a mean loss in performance of 2,21% in
our scenario with local disk I/O and 1,04% when ac-
cessing a Lustre clustered file system.

The point that Docker performs almost on the
same level as the bare-metal execution shows that the
Docker engine has almost trivial overhead and thus

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

548

offers performance traditional hypervisor-based VMs
can not offer at the moment.

Since our research only focused on conceptual
advantages and single host performance and many
HPC applications rely on MPI for distributed com-
puting future testing should be done in this area, tak-
ing a look at the performance of the Docker engine in
distributed multi-host, multi-container scenarios and
with other applications from the HPC field.

From a security standpoint VMs offer a more se-
cure solution at the moment, but whether containers
offer enough security depends on the overall HPC
work-flow and the security requirements. A cloud
provider offering a multi-tenant self-service solution
with several customers on one cluster or even one host
might want to implement an additional layer of se-
curity. In a regular HPC environment this might not
be needed, as long as the necessary precautions are
taken and users are not allowed to directly interact
with Docker to provision potentially malicious con-
tainers but through a middle-ware like a job scheduler
or parameter-controlled sudo scripts, that do careful
parameter checking.

When it comes to patch management Docker
could even provide an advantage over VMs, as the
kernel is out of the focus of a container and shared
among all hosts, meaning that if a kernel vulnerabil-
ity is found only the Docker host has to be patched,
which might be even done on the fly using tools like
Ksplice.

Security of container-based solutions will further
increase over time, with lot’s of development being
already underway. Linux containers have gotten a lot
of attention over recent time and more people utiliz-
ing it will lead to closer examination and continuous
improvements.

REFERENCES

Abaqus FEA, S. (2015). ABAQUS. http://
www.simulia.com.

Adaptive Computing (2015). TORQUE. http://
www.adaptivecomputing.com/products/open-source/
torque/.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., Neugebauer, R., Pratt, I., and Warfield, A.
(2003). Xen and the art of virtualization. In Proceed-
ings of the Nineteenth ACM Symposium on Operating
Systems Principles, SOSP ’03, pages 164–177, New
York, NY, USA. ACM.

Biederman, E. W. (2006). Multiple instances of the global
linux namespaces. In Proceedings of the 2006 Ottawa
Linux Symposium, Ottawa Linux Symposium, pages
101–112.

Bui, T. (2015). Analysis of docker security. CoRR,
abs/1501.02967.

Chef (2015). Chef: Automation for Web-Scale IT. https://
www.chef.io/.

Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E.,
Limpach, C., Pratt, I., and Warfield, A. (2005). Live
migration of virtual machines. In Proceedings of the
2Nd Conference on Symposium on Networked Systems
Design & Implementation - Volume 2, NSDI’05, pages
273–286, Berkeley, CA, USA. USENIX Association.

CRIU-Project (2015). Checkpoint/Restore In Userspace
(CRIU). http://www.criu.org/.

Docker (2015). Docker. https://www.docker.com/.
Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2014).

An updated performance comparison of virtual ma-
chines and linux containers. technology, page 28:32.

IBM (2015). LSF. http://www-03.ibm.com/systems/
platformcomputing/products/lsf/.

Jackson, I. (2015). Surviving the zombie apocalypse – se-
curity in the cloud containers, kvm and xen. http://
xenbits.xen.org/people/iwj/2015/fosdem-security/.

Jay, T. (2014). Before you initiate a docker pull. https://
securityblog.redhat.com/2014/12/18/before-you-
initiate-a-docker-pull/.

Jérôme Petazzoni (2013). Containers & Docker: How Se-
cure Are They? https://blog.docker.com/2013/08/
containers-docker-how-secure-are-they/.

Kivity, A., Kamay, Y., Laor, D., Lublin, U., and Liguori,
A. (2007). kvm: the linux virtual machine monitor. In
Proceedings of the Linux Symposium, volume 1, pages
225–230, Ottawa, Ontario, Canada.

Matthews, J. N., Hu, W., Hapuarachchi, M., Deshane, T.,
Dimatos, D., Hamilton, G., McCabe, M., and Owens,
J. (2007). Quantifying the performance isolation prop-
erties of virtualization systems. In Proceedings of the
2007 Workshop on Experimental Computer Science,
ExpCS ’07, New York, NY, USA. ACM.

McDougall, R. and Anderson, J. (2010). Virtualiza-
tion performance: Perspectives and challenges ahead.
SIGOPS Oper. Syst. Rev., 44(4):40–56.

Miller, F., Vandome, A., and John, M. (2010). FreeBSD
Jail. VDM Publishing.

MPI (2015). Message Passing Interface (MPI) standard.
http://www.mcs.anl.gov/research/projects/mpi/.

Oracle (2015). Grid Engine. http://www.oracle.com/us/
products/tools/oracle-grid-engine-075549.html.

Padala, P., Zhu, X., Wang, Z., Singhal, S., Shin, K. G.,
Padala, P., Zhu, X., Wang, Z., Singhal, S., and Shin,
K. G. (2007). Performance evaluation of virtualiza-
tion technologies for server consolidation. Technical
report.

Pék, G., Buttyán, L., and Bencsáth, B. (2013). A survey of
security issues in hardware virtualization. ACM Com-
put. Surv., 45(3):40:1–40:34.

Price, D. and Tucker, A. (2004). Solaris zones: Operating
system support for consolidating commercial work-
loads. In Proceedings of the 18th Conference on
Systems Administration (LISA 2004), Atlanta, USA,
November 14-19, 2004, pages 241–254.

Container-based�Virtualization�for�HPC

549

Puppet (2015). puppet: Automate IT. http://
puppetlabs.com/.

Quintero, D., Brandon, S., Buehler, B., Fauck, T., Felix,
G., Gibson, C., Maher, B., Mithaiwala, M., Moha, K.,
Mueller, M., et al. (2011). Exploiting IBM AIX Work-
load Partitions. IBM redbooks. IBM Redbooks.

Reshetova, E., Karhunen, J., Nyman, T., and Asokan, N.
(2014). Security of os-level virtualization technolo-
gies: Technical report. CoRR, abs/1407.4245.

Rudenberg, J. (2014). Docker image insecurity. https://
titanous.com/posts/docker-insecurity.

Russell, R. (2008). Virtio: Towards a de-facto standard
for virtual i/o devices. SIGOPS Oper. Syst. Rev.,
42(5):95–103.

Stanfield, J. and Dandapanthula, N. (2014). HPC in an
OpenStack Environment.

Unionfs (2015). Unionfs: A Stackable Unification File Sys-
tem. http://unionfs.filesystems.org.

Xavier, M., Neves, M., Rossi, F., Ferreto, T., Lange, T.,
and De Rose, C. (2013). Performance evaluation of
container-based virtualization for high performance
computing environments. In Parallel, Distributed and
Network-Based Processing (PDP), 2013 21st Euromi-
cro International Conference on, pages 233–240.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

550

Towards Self-Protective Multi-Cloud Applications
MUSA – a Holistic Framework to Support the Security-Intelligent Lifecycle

Management of Multi-Cloud Applications

Erkuden Rios1, Eider Iturbe1, Leire Orue-Echevarria1, Massimiliano Rak2 and Valentina Casola3
1TECNALIA, ICT-European Software Institute, Parque Tecnológico de Bizkaia, C/ Geldo Edificio 700, E-48160, Derio,

Spain
2Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Università di Napoli, via Roma 29, Aversa (CE),

Italy
3Dipartimento di Ingegneria Elettrica e delle Tecnologie dell’Informazione, da Università di Napoli, via claudio, Napoli,

Italy
{erkuden.rios, eider.iturbe, leire.orue-echevarria }@tecnalia.com, massimiliano.rak@unina2.it, casolav@unina.it

Keywords: Multi-cloud, Security-by-design, Cloud SLAs, QoSec, Distributed Deployment, DevOps.

Abstract: The most challenging applications in heterogeneous cloud ecosystems are those that are able to maximise
the benefits of the combination of the cloud resources in use: multi-cloud applications. They have to deal
with the security of the individual components as well as with the overall application security including the
communications and the data flow between the components. In this paper we present a novel approach
currently in progress, the MUSA framework. The MUSA framework aims to support the security-intelligent
lifecycle management of distributed applications over heterogeneous cloud resources. The framework
includes security-by-design mechanisms to allow application self-protection at runtime, as well as methods
and tools for the integrated security assurance in both the engineering and operation of multi-cloud
applications. The MUSA framework leverages security-by-design, agile and DevOps approaches to enable
the security-aware development and operation of multi-cloud applications.

1 INTRODUCTION

Cloud computing is an emerging promising
paradigm for enabling new business models and
economies of scale based on on-demand
provisioning of IT resources (both hardware and
software) over a network as metered services, where
consumers are billed only for what they consume. A
recent IDC Cloud forecast shows that the investment
on public cloud services is expected to be more than
€77,287 million in 2017 (IDC Cloud research,
2013).

Nevertheless, enterprises consider security as the
#1 inhibitor to cloud adoptions (Waidner, 2009)
(Expert Group Report. European Commission,
2010). Companies are reluctant to adopt cloud
computing because of the difficulty in evaluating the
trade-off between cloud benefits and the additional
security risks and privacy issues it may bring. Most
concerns are related to data protection, regulations
compliance (Symantec, 2013) (Bitcurrent cloud
computing survey, 2011) and other issues due to
lack of insight (of controls and governance

processes) in the outsourcing of data and
applications: data confidentiality, trust on
aggregators, control over data and/or code location,
and resource assignment in multi-tenancy (Expert
Group Report. European Commission, 2010).
Businesses that want to exploit cloud computing
need to be vigilant in understanding the potential
privacy and security breaches in this new
environment (Hubbard & Sutton, 2010).

Secure cloud environments are even more
challenging today, since they are becoming more
and more complex in reference to the number of
cloud resource types that are available “as a
service”. Besides the traditional three service models
defined by the NIST (Mell & Grance, 2010) (IaaS,
PaaS and SaaS), new models are showing up such as
Network as a Service specified by the ITU-T or Data
as a Service defined in ISO/IEC 17826:2012
(ISO/IEC 17826:2012, 2012).

As the number of cloud models, cloud resources
and cloud service providers grow in the market, it
becomes theoretically easy (but not necessarily
technically) for the cloud consumer to deploy and

551

use multiple cloud solutions at the same time in an
integrated way (Miller, 2013). This means that
despite the diverse characteristics of the cloud
resources such as own management APIs and own
service level offerings (both functional and security),
all need to be monitored and managed as an
integrated working entity.

The most challenging applications in
heterogeneous cloud ecosystems are those that are
able to maximise the benefits of the combination of
the cloud resources in use: multi-cloud applications.
For the context of this paper, a multi-cloud
application is understood as a distributed
application over heterogeneous cloud resources
whose components are deployed in different cloud
service providers and still they all work in an
integrated way and transparently for the end-user.

Multi-cloud application solutions have to deal
with the security of the individual components as
well as with the overall application security
including the communications and the data flow
between the components. Even if each of the cloud
service providers offered its own security controls,
the multi-cloud application has to ensure an
integrated security across the whole composition.
Therefore, the overall security depends on the
security properties of the application components,
which in turn depend on the security properties
offered by the cloud resources they exploit. For
instance, the database component in charge of
storing sensitive data cannot ensure a high
confidentiality if the cloud storage resource in which
it is deployed does not use strong encryption
algorithms. Consequently, the whole multi-cloud
application may be not sufficiently safe.

The paper is structured as follows. Section 2
describes the intended advances over the state of the
art. Section 3 explains the MUSA approach and
introduces the MUSA framework. Section 4 explains
the future validation of the framework in industrial
case studies. Finally, section 5 discusses the future
work.

2 STATE OF THE ART

As outlined in introduction, the main purpose of the
MUSA framework is to offer a solution to build
security-aware multi-cloud applications. This
research activity involves many different open
research aspects, among them we focus on the
following questions: How do we identify the security
requirements of a multi-cloud application? How can
we ensure security of a multi-cloud application even

when control over some of its components is not
granted?? How do we deploy a multi-cloud
application maintaining the promised security
features?

The following three subsections try to offer a
brief summary of the state of the art of the existing
replies to such questions.

2.1 Security-by-design in Multi-Cloud
Applications

Security by design (SbD) was first positioned by
Gartner (Kreizman & Robertson) and pointed out the
importance of incorporating security into the
enterprise architecture process since the beginning,
i.e. by including security requirements in the design
process. In addition, Gartner recently defined the
Runtime Application Self-Protection (RASP)
(Gartner) security concept which is a security
technology capable of controlling the application
execution and detecting and preventing real-time
attacks. The concept behind this idea would be that
the application itself is able to control and manage
security mechanisms embedded in the application or
which can be invoked as a service by the
application.

Security Control frameworks are widely adopted
tools used to identify the security controls required
to ensure the protection of an ICT system. A security
control is a safeguard or a countermeasure
prescribed to protect a system and meet a set of
defined security requirement. Control Frameworks
are a structured list of security controls that help a
security expert to select the checks to perform in
order to guarantee the respect of security
requirements of a given system. Example of such
Control Frameworks are the NIST Control
Framework (NIST 800-53r4, 2013) and the ISO/IEC
27001 (ISO/IEC 27001).

In Cloud environments such frameworks are of
limited use since they mostly miss specific cloud
related security controls. Nevertheless, several
attempts to address these issues have been made in
(NIST SP500, 2010), (Cloud Data Protection Cert,
2013), (Cloud Security Alliance, 2014).

2.2 Security Aware SLAs in
Multi-Cloud Applications

As stated above, in this paper, multi-cloud
applications are distributed applications that run
consuming cloud resources. Such an approach
implies that the multi-cloud application developer
and owner (i.e. the one that runs it and offers its

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

552

services) have no control over the real execution
environment of the application. This inhibits the
correct evaluation of the security controls.

The approach almost universally followed to
define guarantees for users of a service is the
introduction of Service Level Agreements (SLAs).
An SLA is a formal agreement between a service
provider and its end user that describes functional
and non-functional aspects of the provided target
service, together with clearly defined responsibilities
of the involved parties.

The most well-known machine-readable SLA
models are the Open Grid Forum’s Web Services
Agreement (WS-Agreement) (Hubbard & Sutton,
2010) and IBM’s Web Service Level Agreement
(WSLA) (VukoliĆ, 2010). The WS-Agreement
specification proposes a domain-independent and
standard way to create SLAs while its predecessor
WSLA seems to be deprecated.

SLAs appear as a successful method to guarantee
common Quality of Service parameters, like
availability and performance indicators. As stated in
many recent works, such as (Kandukuri, Paturi, &
Rakshit, 2009), in order to deal with security
requirements in the Cloud ecosystem, SLAs should
be actually used to define target service security
parameters.

Security Service Level Agreements (often named
SecLA), are recognized as a promising way to model
security issues between Cloud Service Providers and
their users. ENISA, in (Dekker & Hogben, 2011),
has also identified the importance of SecLAs in the
Cloud computing field, pointing out that, in many
circumstances, customers are not aware of many
acquired services security aspects.

As introduced in (Almorsy, Grundy, & Ibrahim,
2011) and in (Luna et al, 2013), the current dearth of
reasoning techniques on Security SLAs is preventing
the diffusion of these approaches in production
environments. Nevertheless, currently, many efforts
are being made to fill this gap. For example, in
(Luna et al, 2013), authors aim to outline techniques
to quantitatively reason about Cloud Security SLAs,
defining security metrics and a proof of concept
semi -automated framework in order to assess cloud
security of different providers.

Several European projects have worked or are
working in this subject focusing mainly on SecSLA
negotiation (SPECS Project, 2014), the creation of a
security-aware SLA based language and related
cloud security dependency model (CUMULUS
project) and on the accountability for cloud-based
services (A4Cloud Project, 2014).

2.3 Security Driven Dynamic
Deployment of Multi-Cloud
Applications

Multi-cloud applications have complex composition,
provisioning and deployment requirements, and the
application design becomes even more complex at
the time an additional aspect such as security enters
in the equation. Therefore, several initiatives are
running in order to support this type of activities.

CloudML (CloudML project, 2013) (Ferry et al,
2013) developed a domain-specific language to
support the specification of provisioning,
deployment and adaptation concerns related to
multi-cloud systems at design-time and their
enactment at runtime. CloudML’s background is
PIM4Cloud language, defined in REMICS project
(REMICS Consortium, 2012) (Ferry, Chauve,
Rossini, Morin, & Solberg, 2013).

Based on CloudML, different approaches
(ARTIST Consortium, 2013) (ModaClouds
consortium, 2013) (PaaSage Consortium, 2014) and
versions of CloudML have been recently released to
provide means to the design of cloud based
applications deployment. In this context where there
are multiple CloudML versions, a joint task force
has been started by MODAClouds, PaaSage and
ARTIST projects which goal is to define a unique
common CloudML specification (ARTIST
Consortium, 2013).

Another approach that can be followed includes
TOSCA (OASIS, 2013). The TOSCA specification
aims to enhance the portability of cloud applications
and services by using a language for defining both
the service components of distributed applications
and the service management interfaces (Antonescu,
Robinson, & Braun, 2012). This approach is
currently being followed by SeaClouds (Seaclouds
consortium, 2013).

3 MUSA APROACH:
THE MUSA FRAMEWORK

Multi-cloud solutions represent a new challenging
field in order to add value to overall cloud client
experience (VukoliĆ, 2010). In order to exploit
multi-clouds potentialities, different architectural
approaches can be adopted (Bohli et al, 2013):
(i) replication of applications, i.e. the same system

is deployed in more than one provider and
malicious attacks can be easily discovered
comparing operation results;

Towards�Self-Protective�Multi-Cloud�Applications�-�MUSA�-�a�Holistic�Framework�to�Support�the�Security-Intelligent
Lifecycle�Management�of�Multi-Cloud�Applications

553

(ii) partition of application system into tiers, that
allows to separate logic from data;

(iii) partition of application logic into fragments,
that obfuscates the overall application logic to
providers;

(iv) partition of application data into fragments,
that makes impossible to a single provider to
reconstruct data, safeguarding confidentiality.

MUSA aims at ensuring the security in all multi-
cloud environments including those that combine
multiple scenarios as described above. To this aim,
MUSA approach combines i) a preventive security
approach, promoting Security by Design practices in
the development and embedding security
mechanisms in the application, and ii) a reactive
security approach, monitoring application runtime to
mitigate security incidents, so multi-cloud
application providers can be informed and react to
them without losing end-user trust in the multi-cloud
application.

In order to ensure the preventive oriented
security to be embedded and aligned with reactive
security measures, MUSA supports an integrated
coordination of all phases in the application lifecycle
management.

3.1 The MUSA Framework

The MUSA framework presented in this paper is
intended to provide support the integration of the
security within the multi-cloud application lifecycle,
as illustrated in Figure 1. MUSA supports the first
phase of the multi-cloud application lifecycle, the
development phase, through the MUSA IDE, which
helps in both specifying the end user security
requirements and integrate such requirements in the
application development.

The MUSA Decision support tool and MUSA
Distributed deployment tool support the multi-cloud
application deployment phase, helping in the choice
of the cloud service provider and deployment of the
multi-cloud application deployment.

The MUSA security assurance platform (SaaS)
supports the last phase of the multi-cloud application
lifecycle (execution phase), monitoring the
application execution and, when needed, applying
correction actions to grant the security features.

The MUSA framework aims to define a set of
best practices and guidelines for the integrated
management of Security by Design mechanisms in
the lifecycle of multi-cloud secure applications,
based on DevOps and agile (AgileManifesto, 2001)
methodologies’ principles. The practices are
supported by the different automation tools provided

in the MUSA framework, which enable the
coordination between programming and deployment
infrastructure worlds, ensuring the continuous
alignment of multi-cloud application security
requirements specification (both at composition and
SLA levels), implementation, monitoring and
enforcement.

Figure 1: MUSA approach.

Following section describes the proposed tools
in more detail.

3.1.1 Multi-cloud Secure Applications
Design

For an effective design of multi-cloud secure
applications an integrated development environment
(IDE) is needed. To solve this requirement, MUSA
framework intends to deliver an IDE that allows the
design of application components taking into
account security requirements. This IDE will be
based on existing open-source solutions and will
include three main modules.

The first module is a security requirements
specification tool for multi-cloud applications,
taking into consideration multi-cloud SLA definition
and composition. The tool will allow expressing in
the multi-cloud application SLA the security
requirements (QoSec) together with functional and
business requirements (QoS). To this aim, the
needed components’ and cloud resources’ SLA
composition shall be computed.

The second module supports the design of the
breakdown of multi-cloud application into
components based on the combination of functional,
business and security properties that the multi-cloud
application should offer. The tool will be based on
existing standards such as CloudML (CloudML
project, 2013) and TOSCA (OASIS, 2013), and will
help application developers to design the

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

554

architecture and the components composition taking
into account the SLAs of the cloud resources in
which the components will be deployed;

The last tool has the goal of design the
provisioning and the deployment configuration of
the needed heterogeneous cloud resources at
multiple clouds layers (IaaS, PaaS).

Moreover, the MUSA IDE will include a set of
security libraries that, embedded in the multi-cloud
application, will enable the activation of security
mechanisms and security controls without modifying
the programming model. The security libraries aim
at proposing a non-intrusive approach to introduce
security in multi-cloud applications. These libraries
will be inserted into the multi-cloud application
components at design time and will be the
responsible for ensuring the overall security at
runtime. This software will include detection of non-
compliant behaviour and enforcement mechanisms
to be executed at runtime.

3.1.2 Multi-cloud Secure Applications
Deployment

Once the application has been successfully designed,
it has to be deployed. Deploying multi-cloud
applications on distributed and heterogeneous
resources encompasses several challenges that are
not addressed currently in the existing tools. To
solve this challenge, MUSA aims to provide a secure
multi-cloud deployment tool that offers a distributed
deployment service based on the dynamic selection
of the cloud service providers (CSPs) that match
with the application risk analysis, the subsequent
security requirements as well as functional and
business needs. In order to achieve it, the MUSA
framework bases its offering mainly over three
components. The first one is the cloud resource
categorization of CSPs based on the measures of the
security and functional properties at real time. The
second component, a decision support tool, allows
the selection of the cloud resources which
combination is compliant with the security and
functional requirements specified in the multi-cloud
application composite SLA, after a previous
simplified process of risk analysis. Finally, the third
component allows an automated deployment of the
multi-cloud secure application, distributing each of
the application components’ packages towards the
matched cloud resource.

3.1.3 Multi-cloud Secure Applications
Runtime

Monitoring multi-cloud applications at runtime

involves collecting metrics of QoS and QoSec
parameters of both the components of the
application and the cloud resources provisioned.
MUSA aims to provide a monitoring service capable
of collecting such measurements by using standard
APIs (if they are used by the cloud service providers
(CSP)), cloud interoperability frameworks such as
jclouds (Apache, 2012), or measures provided by
MUSA security embedded libraries.

Whenever an incident occurs, MUSA sends
alerts to notify the application provider about
detected security relevant incidents. Moreover,
MUSA send alerts when an application is in risk of
not fulfilling its SLA, and some preventive action
needs to be taken in order to keep security
parameters well counterweighted with performance
or within the margins specified in the SLA, e.g. a
redeployment of application components across a
different combination of cloud resources.

Finally, the enforcement service offered by
MUSA ensures that the multi-cloud application
respects the security requirements in its SLA.

All three services (monitoring, notification and
enforcement) are delivered in the form of a security
assurance platform, packaged as a SaaS product. The
MUSA SaaS security assurance platform
collaborates closely with the embedded libraries to
enforce the security protection of the multi-cloud
application user’s data, through mechanisms such as
authentication, authorisation, data encryption, data
location assurance, etc. when the cloud resources
used do not offer such mechanisms.

The MUSA SaaS will store monitored security
parameters over the cloud resources and
components, and manage the necessary notifications
and alerts, so as the multi-cloud application provider
can early react to possible security breaches.
Contract verification processes will require a
mapping between low-level resource metrics and
high-level security parameters of the cloud services.
This process will be done at runtime by MUSA
SaaS, which will provide real-time assessment
supported by complex processing of composed
measures of low-level metrics.

4 MUSA FRAMEWORK
VALIDATION

The economic viability, user acceptance and
practical usability of the MUSA framework is
expected to be validated through piloting the
solution in realistic industry environments
representing highly relevant services for the

Towards�Self-Protective�Multi-Cloud�Applications�-�MUSA�-�a�Holistic�Framework�to�Support�the�Security-Intelligent
Lifecycle�Management�of�Multi-Cloud�Applications

555

European economy: airline flight scheduling systems
and urban smart mobility services.

In the following, we summarize the research
challenges faced in both case studies.

4.1 Case Study A:
Airline Flight Scheduling
Multi-Cloud Application

For our first case study we have selected
NetLine/Sched product by Lufthansa Systems to
demonstrate how MUSA framework benefits the
integrated security management of this application
that exploits a number of heterogeneous cloud
resources.

The product NetLine/Sched supports all aspects
of flight schedule development and management.

In this case study, we are particularly interested
in researching on how to:
(i) allow NetLine/Sched developer declare the

options regarding data localisation (e.g.
location country of the files), data retention and
deletion, data integrity, confidentiality, access
control and availability, etc. and make possible
that such policies are embedded in the
application specification.

(ii) enable security properties are embedded into
the deployed application artefacts (security-by-
design) for their continuous control at
operation.

(iii) allow deployment into secure multi-cloud and
multi-provider environments.

(iv) provide automated security assurance,
supported by continuous monitoring,
enforcement and notification mechanisms.

(v) keep the NetLine/Sched operator informed
about the discrepancies and/or adapts to such
requirements even in those cases that a change
in the architecture or composition of the clouds
underneath is needed.

4.2 Case Study B:
Smart Mobility Multi-Cloud
Application

Our second case study is an urban smart mobility
multi-cloud application in Tampere city in Finland.
Tampere Region has almost half a million
inhabitants with a modal share of: 16% public
transport, 27% pedestrians and cyclists, 57% private
cars.

Tampere City Council has a number of services
exposed to allow companies and individual

developers to develop, test and productize own
traffic applications using public data. The services
can be publicly accessed via Intelligent Transport
Systems and Services (ITS) platform (Wikipedia
ITS, 2014), which includes the public transport
services APIs, other traffic related APIs, traffic data,
etc.

In this case study Tampere University (TUT)
will take the role of many entrepreneur citizens and
companies (generally SMEs) that create innovative
applications by combining freely available open
services and datasets in the Web to create business.
The multi-cloud application by TUT aims at
supporting the energy efficient and sustainable
multi-modal transit of Tampere citizens when
commuting from home to work and vice versa.

The major challenges for MUSA in this case
study are the following:
(i) Enhance security capabilities of innovative

services in transportation and public
infrastructure in Tampere.

(ii) Enable entrepreneurs and citizens willing to
develop innovative services based on IST
Factory to be able to easily integrate security-
intelligence into their applications through the
use of MUSA IDE.

(iii) Empower operators of the multi-cloud
applications that integrate IST Factory cloud-
based services to ensure security of data
storage and exchange at runtime through the
use of MUSA assurance tools.

(iv) Allow evaluating new service multi-cloud
deployment implications by checking service
dependencies on other network and cloud
resources.

5 FUTURE WORK

Application growth, rise in complexity and need for
interoperability create market opportunity for cloud
integrators and multi-cloud providers by offering
new capabilities in the existing complex cloud
landscape (North Bridge in partnership with
GigaOM Research, 2013).

Taking profit of this opportunity window,
MUSA aims at contributing to building up the
innovation capacity and technology excellence of
the European software and service industry by
proposing a solution to master the security-
intelligent lifecycle of multi-cloud applications
based on novel DevOps and security-by-design
approaches.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

556

In this paper we have presented the MUSA
framework whose main goal is to support the
security-intelligent lifecycle management of multi-
cloud applications. There are a number of major
challenges in the path:
(i) Enable the security aware design of distributed

applications over heterogeneous cloud
resources.

(ii) Automatic discovery and decision support
system of combinations of cloud services that
best match the required balance between
security and functional properties.

(iii) Security assurance though continuous
monitoring and integrated methods in both
engineering and operation of multi-cloud
applications.

The MUSA project which will lead to the
development and validation of MUSA framework
was launched on January 2015 and will last 36
months. Future publications on the progress of the
framework are expected both online (www.musa-
project.eu) and in future papers.

ACKNOWLEDGEMENTS

The project leading to this paper has received
funding from the European Union’s Horizon 2020
research and innovation programme under grant
agreement No 644429.

REFERENCES

A4Cloud Project. (2014). Accountability For Cloud and
Other Future Internet Services. Retrieved from
Accountability For Cloud and Other Future Internet
Services.: www.a4cloud.eu/

AgileManifesto. (2001, February 17). Manifiesto for Agile
Development. Retrieved December 8, 2013, from
Manifiesto for Agile Development:
http://agilemanifesto.org/

Almorsy, M., Grundy, J., & Ibrahim, A. S. (2011).
Collaboration-based cloud computing security
management framework. IEEE International
Conference on Cloud Computing (CLOUD) (pp. 364-
371). IEEE.

Antonescu, A.-F., Robinson, P., & Braun, T. (2012).
Dynamic Topology Orchestration for Distributed
Cloud-Based Applications. NCCA, (pp. 116 - 223).

Apache. (2012). Apache jclouds. Retrieved April 2014,
from Apache jclouds: http://jclouds.apache.org/

ARTIST Consortium. (2012). ARTIST Projec . Retrieved
April 15th, 2014, from ARTIST Project:
http://www.artist-pro-ject.eu/

ARTIST Consortium. (2013, September). Deliverable
7.2.1. Cloud services modelling and performance
analysis framework. Retrieved April 2014, from
Deliverable 7.2.1. Cloud services modelling and
performance analysis framework: http://www.artist-
project.eu/sites/default/files/D7.2.1%20Cloud%20serv
ices%20modeling%20and%20performance%20analysi
s%20framework_M12_30092013.pdf.

ARTIST Consortium. (2013, September). Deliverable
D4.3.1 Dissemination report. Retrieved April 2014,
from Deliverable D4.3.1 Dissemination report:
http://www.artist-
project.eu/sites/default/files/D4.3.1%20Dissemination
%20report_M12_01102013.pdf.

Bitcurrent cloud computing survey. (2011). Bitcurrent
cloud computing survey 2011. Bitcurrent cloud
computing survey 2011.

Bohli, J. et al. (2013). Security and Privacy Enhancing
Multi-Cloud Architectures.

Cloud Security Alliance. (2014). Cloud Controls Matrix.
Retrieved April 2014, from Cloud Controls Matrix:
https://cloudsecurityalliance.org/research/ccm.

Cloud Data Protection Cert. (2013). Cloud Data Protection
Cert. Retrieved April 2014, from Cloud Data
Protection Cert: http://clouddataprotection.org/cert.

CloudML project. (2013). Model-based provisioning and
deployment of cloud based systems. CloudML project.
Retrieved April 2014, from Model-based provisioning
and deployment of cloud based systems. CloudML
project: http://cloudml.org.

CUMULUS project. (n.d.). Certification infrastrUcture for
MUlti-Layer cloUd Services. Retrieved from
Certification infrastrUcture for MUlti-Layer cloUd
Services: http://cumulus-project.eu/

Dekker, M., & Hogben, G. (2011). Survey and analysis of
security parameters in cloud SLAs across the
European public sector. Retrieved April 2014, from
Survey and analysis of security parameters in cloud
SLAs across the European public sector:
http://www.enisa.europa.eu/activities/Resilience-and-
CIIP/cloud-computing/survey-and-analysis-of-
security-parameters-in-cloud-slas-across-the-
european-public-sector.

Expert Group Report. European Commission, I. S. (2010).
The Future of Cloud Computing: Opportunities for
European Cloud Computing Beyond 2010.

Ferry, N. et al. (2013). Towards model-driven
provisioning, deployment, monitoring, and adaptation
of multi-cloud systems. CLOUD 2013: IEEE 6th
International Conference on Cloud Computing, (pp.
887-894).

Ferry, N., Chauve, F., Rossini, A., Morin, B., & Solberg,
A. (2013). Managing multi-cloud systems with the
CloudML framework. NordiCloud’13: 2nd Nordic
Symposium on Cloud Computing & Internet
Technologies. Oslo, Normay.

Gartner. (n.d.). Gartner IT Glossary - Runtime Application
Self-Protection (RASP). Retrieved April 2014, from
http://www.gartner.com/it-glossary/runtime-

Towards�Self-Protective�Multi-Cloud�Applications�-�MUSA�-�a�Holistic�Framework�to�Support�the�Security-Intelligent
Lifecycle�Management�of�Multi-Cloud�Applications

557

application-self-protection-rasp (Retrieved April
2014).

Hubbard, D., & Sutton, M. (2010). Top Threats to Cloud
Computing V1. 0. Cloud Secuirty Alliance.

IDC Cloud research. (2013, September). IDC Cloud
research. Retrieved March 2014, from IDC Cloud
research:
http://www.idc.com/getdoc.jsp?containerId=prUS2429
8013.

ISO/IEC 17826:2012. (2012). ISO/IEC 17826:2012
Information technology -- Cloud Data Management
Interface (CDMI).

ISO/IEC 27001. (n.d.). ISO/IEC 27001 Information
Technology – Security Techniques – Information
Security management Systems – requirements.

Kandukuri, B., Paturi, V. R., & Rakshit, A. (2009). Cloud
security issues. SCC'09. IEEE International
Conference on Services Computing, 2009., (pp. 517-
520).

Kreizman, G., & Robertson, B. (n.d.). Incorporating
Security into the Enterprise Architecture Process.
Retrieved April 2014, from Incorporating Security into
the Enterprise Architecture Process:
http://www.gartner.com/DisplayDocument?ref=g_sear
ch&id=488575.

Luna, J., et al. (2013). Negotiating and Brokering Cloud
Resources based on Security Level Agreements.
CLOSER 2013, (pp. 533-541).

Mell, P., & Grance, T. (2010). The NIST definition of
cloud computing. In ACM (Ed.), Communications of
the ACM, 53, no. 6, p. 50.

Miller, P. (2013, September). Sector RoadMap:
Multicloud management in 2013.

ModaClouds consortium. (2013, September). Deliverable
4.2.1 MODACloudML development – Initial version.
Retrieved April 2014, from Deliverable 4.2.1
MODACloudML development – Initial version:
http://www.modaclouds.eu/wp-
content/uploads/2012/09/MODAClouds_D4.2.1_MO
DACloudMLDevelopmentInitialVersion.pdf.

NIST 800-53r4. (2013). 291 NIST Security and Privacy
Controls for Federal Information Systems and
Organizations. Retrieved April 2014, from 291 NIST
Security and Privacy Controls for Federal Information
Systems and Organizations:
nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.S
P.800-53r4.pdf.

NIST SP500. (2010). 291 NIST Cloud Computing
Standards Roadmap. Retrieved April 2014, from 291
NIST Cloud Computing Standards Roadmap:
http://www.nist.gov/itl/cloud/upload/NIST_SP-500-
291_Version-2_2013_June18_FINAL.pdf.

North Bridge in partnership with GigaOM Research.
(2013). The future of cloud computing, 3rd annual
survey 2013. Retrieved March 2014, from The future
of cloud computing, 3rd annual survey 2013:
http://www.northbridge.com/2013-cloud-computing-
survey.

OASIS. (2013). Topology and Orchestration Specification
for Cloud Applications Standard. Retrieved April

2014, from TOSCA standard by OASIS: www.oasis-
open.org/committees/tc_home.php?wg_abbrev=tosca.

PaaSage Consortium. (2014, April 30). Deliverable
D2.1.2: CloudML Implementation Documentation
(First version). Retrieved from Deliverable D2.1.2:
CloudML Implementation Documentation (First
version):
http://www.paasage.eu/images/documents/paasage_d2
.1.2_final.pdf.

REMICS Consortium. (2012). Deliverable 4.1
PIM4Cloud. Retrieved March 2014, from Deliverable
4.1 PIM4Cloud:
http://www.remics.eu/system/files/REMICS_D4.1_V2
.0_LowResolution.pdf.

Seaclouds consortium. (2013). Seaclouds project.
Seamless adaptive multi-cloud management of
service-based applications. Retrieved from Seaclouds
project. Seamless adaptive multi-cloud management of
service-based applications: http://www.seaclouds-
project.eu/project.html.

SPECS Project. (2014). Secure Provisioning of Cloud
Services based on SLA management. Retrieved from
Secure Provisioning of Cloud Services based on SLA
management: http://specs-project.eu/

Symantec. (2013). Choosing a Cloud Hosting Provider
with Confidence. Retrieved April 2014, from
Choosing a Cloud Hosting Provider with Confidence:
http://www.itwhitepapers.com/content20287.

VukoliĆ, M. (2010). The Byzantine empire in the
intercloud. 41(3), 105-111.

Waidner, M. (2009, November). Cloud computing and
security. Lecture Univ. Stuttgart (November 2009).
Retrieved from Cloud computing and security. Lecture
Univ. Stuttgart (November 2009).

Wikipedia ITS. (2014). Intelligent Transport Systems and
Services (ITS) Factory Wiki. Retrieved April 2014,
from Intelligent Transport Systems and Services (ITS)
Factory Wiki:
http://wiki.itsfactory.fi/index.php/ITS_Factory_Develo
per_Wiki.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

558

High Performance Virtual Machine Recovery in the Cloud

Valentina Salapura1 and Richard Harper2
1IBM T. J. Watson Research Center, 1101 Kitchawan Rd, NY, Yorktown Heights, U.S.A.

2IBM T. J. Watson Research Center, Research Triangle Park, NC, U.S.A.
{salapura, reharper}@us.ibm.com

Keywords: Cloud Computing, High Availability, Virtualization, Automation, Enterprise Class.

Abstract: In this paper, we outline and illustrate concepts that are essential to achieve fast, highly scalable virtual
machine planning and failover at the Virtual Machine (VM) level in a data center containing a large number
of servers, VMs, and disks. To illustrate the concepts a solution is implemented and analyzed for IBM’s
Cloud Managed Services enterprise cloud. The solution enables at-failover-time planning, and keeps the
recovery time within tight service level agreement (SLA) allowed time budgets via parallelization of
recovery activities. The initial serial failover time was reduced for an order of magnitude due to parallel VM
restart, and to parallel VM restart combined with parallel storage device remapping.

1 INTRODUCTION

Cloud computing is being rapidly adopted across the
IT industry as a platform for increasingly more
demanding workloads, both traditional and a new
generation of mobile, social and analytics
applications. In the cloud, customers are being led
to expect levels of availability that until recently
were available only to the largest of enterprises.

Cloud computing is changing the way high
availability (HA) of a data center can be
implemented. It is widely recognized that the
standardization, virtualization, modularity and cross
system management capabilities of cloud computing
offer a unique opportunity to provide highly resilient
and highly available systems. Resilience techniques
can build on a well-defined and uniform framework
for providing recovery measures for replicating
unresponsive services, and recovering failed services
to respond to disaster scenarios. Since virtualization
allows packaging of workloads — operating system,
applications, and data — into a portable virtual
machine image container, it facilitates transfer of
workloads from one server to another. High
availability features can migrate a VM image from
one physical server to another within the same data
center if the original server suffers any failure,
performance loss, or to perform scheduled
maintenance.

However, clouds and the workloads that run on
them are big. Many high availability systems were

originally designed for smaller managed
environments, and do not scale well as the system
size and complexity increases. Detecting failures,
determining appropriate failover targets, re-mapping
storage to those failover targets, and restarting the
virtual workload have to be carefully designed and
parallelized in order to meet the service level
agreement (SLA) for large systems.

This paper describes a highly scalable parallel
virtual machine planning and recovery method that
enables high availability at the Virtual Machine
(VM) level for large data centers comprising many
high-capacity servers, many VMs, and a large
number of disks in a storage area network (SAN).
The system enables on-the-fly failover planning and
execution for a compute environment with a large
number of servers and storage devices.

The functionality described in this paper has
been released as part of IBM’s enterprise cloud
offering known as CMS (Cloud Managed Services),
where it was used to provide scalable HA for the
AIX Logical Partitions (LPARs) running on the
CMS Power Systems (Sinharoy et al., 2015) servers.
To stay within this context, the paper will continue
to use the Power LPAR terminology. However, the
concepts described here apply equally well to any
platform that is similarly structured. While in this
paper we focus only on the infrastructure level
resiliency, CMS cloud implements all application
level high availability approaches. However, they
are not in scope of this paper, and will not be
discussed here.

559

2 BACKGROUND AND
POSITION STATEMENTS

2.1 Virtual Machine-Level and
Application-Level High Availability
Are Complimentary

There are multiple approaches to provide a high
availability solution in a virtual environment. One
approach is to provide HA at the application level,
using what are commonly known as HA Clustering
techniques. Another approach is to provide
availability at the infrastructure level, using VM-
level HA.

Application-level high availability techniques are
built around application clustering technology.
These solutions are used to improve the availability
of applications by continuously monitoring the
application’s resources and their physical server
environment, and invoking recovery procedures
when failures occur. These solutions typically use
multiple virtual machines which are working
together in order to ensure that an application is
always available. These VMs are arranged in active-
passive or active-active configuration. When one
VM fails, its functionality is taken over by the
backup VM in the cluster. Examples of these
solutions are IBM PowerHA (IBM, 2008), Microsoft
Clustering Services (Microsoft, 2003), Veritas
Storage Foundation, and LinuxHA.

HA solutions at the infrastructure level are
designed to ensure that the virtual resources meet
their availability targets. This is accomplished by
continuously monitoring the infrastructure
environment, detecting a failure, and invoking
recovery procedures when a failure occurs.
Typically, such recovery procedures involve
restarting the failed VM, either on the same or a
different physical server.

Although this paper will not discuss application-
level HA in detail, we have found that application-
level HA and infrastructure-level HA can operate
beneficially together with no mutually destructive
effects. A tidy separation of concerns exists -
infrastructure-level HA restarts VMs when
appropriate (sometimes on alternate servers), while
application-level HA sees these restarts as simple
system crashes and recoveries, which it is designed
to tolerate anyhow. In addition, recovery of the VMs
in a cluster on another server after the originating
server fails restores the redundancy that the
application-level HA cluster relies upon, minimizing

the time during which that cluster is operating with
degraded resiliency.

2.2 Dynamic Storage Mapping Is
Preferable to Static Mapping

Virtualized infrastructures can be designed such that
either all physical servers in a server pool are
statically mapped to all the storage devices that may
be used by the virtual machines, or all physical
machines are dynamically mapped to only the
storage devices that are needed to support the virtual
workload running on the respective physical
machines. The first design choice has the merits of
being simpler to operate, since no remapping of
storage is required as virtual machines migrate or
failover within the pool. However, it is unsuitable
for high-scale cloud environments where the pool
may consist of hundreds or more servers, supporting
thousands of virtual machines, which in turn use
even more storage devices. In this environment, the
architectural and design limits of the hypervisor
running on each physical server cannot support the
huge number of simultaneous connections required
to support all possible VM-storage device mapping.
Instead, it is desirable to have a physical server only
possess storage mappings for those VMs that are
actually running on that physical server, and this is
the design point utilized in this paper. The
disadvantage of this approach are that, if it is
necessary to migrate or failover a VM from one
server to another, it is necessary to map that VM’s
storage to the destination physical server, and unmap
that storage from the source physical server.

2.3 Parallelization of Recovery Is
Critical to Maintaining SLAs

Complex recovery activities consist of a number of
sequential steps that must often be executed using
tools, processes, and infrastructure elements that
have limited recovery performance and concurrency.
Given the large scale of a recovery operation
(recovery of potentially thousands of virtual
machines across dozens of physical servers), it is
absolutely necessary to judiciously parallelize these
recovery actions and eliminate bottlenecks to meet
tight SLAs. The limited space herein does not permit
a full exposition of these position statements, but we
will partially illustrate them using an implemented
case study based on the IBM Cloud Managed
Services (CMS) architecture.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

560

3 CMS POD ARCHITECTURE

CMS is a cloud computing offering for enterprise
customers. It is designed to bring the advantages of
cloud computing to the strategic outsourcing
customers of IBM. It provides standardized,
resilient, and secure IBM infrastructure, tools, and
services with full ITIL management capabilities
(Cannon, 2011). CMS offers functions such as
consumption-based metrics and automated service-
management integration.

The design of the CMS is based upon a unit
called the point of delivery (PoD). A PoD contains
many physical managed resources (server, storage,
and network) that are virtualized, and provided to
customers as an infrastructure offering. A CMS PoD
contains Intel-based servers to support virtual and
bare metal Windows and Linux workloads, and IBM
Power servers to support virtual AIX workloads. The
Power virtual machines are called Logical Partitions,
or LPARs. This paper focuses on the recovery of the
AIX workloads, contained in LPARs, in the event
that a Power server fails.

A PoD is designed to be highly available, with
the physical infrastructure architected to eliminate
single points of failure. The customer is offered
selectable availability SLAs, which are contractual
obligations and may include penalties for
noncompliance. These availability agreements are
only for unplanned outages and refer to Virtual
Machine availability. CMS supports multiple levels
of availability ranging from 98.5% to 99.9%. A
more detailed description of the CMS can be found
in (Salapura, 2013).

PoDs also contain a number of managing servers
which host management tools for storage
management, backup, and performance monitoring.

3.1 Fault Model: Permanent Failure of
a Power Server

The remainder of this paper will describe the
architecture we have created for recovering LPARs
on other physical servers when one or more Power
Systems physical servers hosting those LPARs has
failed.

In this failure mode, a Power Server suffers a
hardware failure from which it cannot recover in a
short time (for example, 10 minutes) and for which
maintenance/repair is required. In this case, the
failover process will restart all affected LPARs on
another Server. The function implementing this
recovery process is called Remote Restart. The

recovered LPARs need to use the same network
storage disks – referred to as LUNs (logical unit
number) that the original Server was using. Restarts
are prioritized by SLA. Recovery from other types
of outages and transient failures are covered by
means not described in this paper.

4 REMOTE RESTART
ARCHITECTURE

The architecture of the Remote Restart solution used
in CMS PoDs is illustrated in Figure 1. There are
one or several managing servers, indicated in the
upper part of the figure, and a number of managed
servers with storage are illustrated in the lower part
of the figure. The managing servers host tools for
controlling, provisioning, managing and monitoring
of the workload on managed servers. Relevant
managing tools are Provisioning engine, which uses
a DB to maintain all the PoD management
information, a Storage management engine, and a
Hardware Maintenance Console (HMC) for server
management. The Remote Restart software and
collected configuration data resides on a
management server for Virtualization management.

The managed servers host LPARs running
customers’ AIX workload. Each managed Power
server also contains dedicated LPARs called Virtual
I/O Servers (VIOS) that virtualize external storage
and present it to the customer’s LPARs.

4.1 Overview of Recovery Procedure

The tasks that the Remote Restart solution performs
are as follows:
Periodic data gathering and persistence:

configuration and status of LPARs in a PoD is
collected periodically. The time interval for data
gathering is configurable, and is given later in
this paper. There are two sources of collecting
needed information:
o information about physical servers in the

PoD, all LPARs and their hosts, and their
storage and network configuration; this
information is collected via HMC;

o SLA availability information for all
LPARs; this information is obtained by
querying the Provisioning engine database.

Server failure detection: the health of all servers in
a PoD is monitored in order to detect their
failure. A failure of a server is detected via
HMC when it returns an ERROR state.

High�Performance�Virtual�Machine�Recovery�in�the�Cloud

561

Remote restart on a
management server

Remote
Restart

HMC

Managed Servers

ssh

Restart
info

Provisioning
engine

Capturing system
information

periodically and
stores locally

Reads out SLA information
for restart priority

Virtualization Mgr.

Dynamically connects
storage to servers

Commands to managed
servers issued via HMCManaging Servers

Restart priority
determined by
LPAR SLAs

System status
monitoring Storage

management

VIOS VIOS LPARVIOS VIOSVIOS VIOS LPARVIOS VIOS LPARVIOS VIOSLPAR LPAR VIOS VIOS

Remote
Restart

Virtualization Mgr.

Remote
Restart

Virtualization Mgr.

Figure 1: Remote Restart architecture.

Server fencing: once a server is determined faulty, it
is powered off via HMC commands.

Failover planning: provides an evacuation plan. Our
Remote Restart implementation uses a
“Dynaplan” (Harper, 2011) algorithm to
determine the optimal failover targets.

VIOS configuration for failover: in this step, virtual
SCSI devices are created via HMC on the
failover server for LPARs to be restarted.

SAN configuration for failover: LUNs are not
connected to all servers in a PoD, and the
connecting of LUNs to the failover servers
according to the evacuation plan is performed in
this step.

LPAR restart: once virtual SCSI devices are created
and LUNs and connected to the failover server,
an LPAR is restarted on the failover server via
HMC commands.

The Remote Restart scripts performs these steps
by issuing ssh commands to the HMC, via database
queries to the Provisioning engine, and by issuing
commands for storage configuration.

4.2 Failover Planner

Failover planning is based on a parallelized
algorithm evolved from the prior dynamic resource
planner described in (Harper, 2011). The planner
formulates a schedule to restart a large collection of

interdependent VMs on a large collection of
resources. There are a number of constraints the
planner has to meet, for example that recovery time
objective is met, that the maximum number of the
most important dependency groups is started, that
VMs within a dependency group are started in the
proper order, and that the capabilities of the
environment (e.g., restart bandwidth and capacities)
are not exceeded.

Restart priority is a partial ordering of all VMs
into priority classes. Within a given priority class, all
VMs can be restarted in parallel, subject to restart
parallelism constraints of the physical environment
and application start order dependencies. A “restart
rules” language allows customization of the restart
priority based on restart rules. A restart rule template
can be automatically populated by discovery tools
and/or manually edited.

The restart priority is automatically and
dynamically determined based on a number of VM
properties, such as SLAs, application priority,
application topology, and other rules as determined
by the dynamic restart priority calculator and a given
set of rules. Priority aggregation rules convert the
various restart rules into the VM restart partial
priority order while taking into account application
dependencies.

The cost of running the planner is low, so it is run
at failure-handling time. In addition, the failover

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

562

planner is run once per day for each server in a PoD
to determine any resource constraint, for example to
determine if there are capacity problems so that not
all LPARs can be hosted on the remaining hosts. If
this condition is detected, a warning notification is
sent to the cloud administrators for the purposes of
planning.

5 IMPLEMENTATIONS AND
RESULTS

5.1 Initial Implementation: Serial
Restart

The restart priority of LPARs is based on their SLA.
Thus, in case of failover, the highest SLA workloads
would be restarted first followed by the next highest
SLA. Within the same SLA level, restart priority is
random. In an early CMS release, restart capability
was needed only for workloads with the two highest
level SLAs. This initial Remote Restart
implementation was implemented as a single process
which, after the failure of a server is detected, and
the need for a failover process was determined,
would initiate the failover process.

For each LPAR on the affected server, the
failover planner determines a destination server, and
the restart process starts. The failover process is
performed for the highest priority LPARs first,
configuring the storage and network for these
LPARs to their destination servers, and restarting
them at the destination server. After all LPARs with
the highest restart priority are restarted at their target
servers, the next lower priority level LPARs are
processed.

There are two significant time components to
executing the restart. The first is the process of
unmapping the LUNs from the (failed) original
server and mapping them to the designated failover
server. This time is proportional to the number of
LUNs connected to the LPAR. The second time
component is the process of restarting the LPAR on
the designated failover server.

In this early CMS release, each LPAR was
allowed to have up to two LUNs. For the case where
only the top two SLAs were to be restarted, with up
to two LUNs per LPAR, the SLA time budget was
readily met.

However, in the subsequent releases of CMS, the
number of disks per LPAR was continuously
increased. In addition, it was necessary to extend
restart capabilities to all SLA levels. With these

increases, it was clear that we needed a solution for
Remote Restart which would handle restarts for a
larger number of LPARs containing more LUNs,
within the SLA time limits.

5.2 Parallel Restart

The requirement for an increased number of LUNs
per LPAR, and the increased number of LPARs
which need to be restarted motivated us to improve
the Remote Restart solution using parallel processes.
We chose to use server-level parallelism in which the
level of parallelism depends on the number of
operational servers in the PoD.

In our parallelization scheme, one restart process
is launched for each destination server. For example,
in a PoD with 6 servers, and one failed server, there
would be up to 5 destination failover servers. One
restart process is initiated for each destination server.
LPARs assigned for restart on that particular server
are restarted sequentially, starting with the highest
priority LPARs in that group. For each LPAR,
storage is mapped, storage and network drivers are
reconfigured for the target server, and the LPAR is
restarted at the destination server. Once all highest
priority LPARs assigned to that destination server
are restarted, the next SLA priority level LPARs are
processed. A similar process is performed in parallel
for all destination servers.

These parallelization steps ensured that the
failover time was well within the allowed SLA for
the subsequent releases of CMS.

5.3 Parallel Disk Mapping

However, the disk capacity in CMS continues to
increase. For the current release, each LPAR can
have up to 24 LUNs and up to 96 TB of storage. For
a large number of LPARs on a single server, this can
lead to the case where a very large number of storage
LUNs has to be mapped to different servers in short
time.

Analysis indicated that the procedure that was
taking the most amount of time was the process of
mapping disks to the destination server, so our next
improvement focused on parallel disk mapping. In
this implementation, in addition to the number of
parallel failover processes that is started, we also
initiate the mapping of multiple disks attached to a
single LPAR in parallel. We limit the number of
simultaneous mappings of disks for a single failover
stream to four to avoid potential bottleneck at the
storage management interface. By measuring the
time needed for restarting individual LPARs with a

High�Performance�Virtual�Machine�Recovery�in�the�Cloud

563

different number of LUNs and time measured for
parallel failover streams, we analyzed failover time
needed for parallel disk restart.

The analysis shows that adding this additional
level of parallel processing brings the failover time
requirements well within the available time budget
for the worst-case configuration known to date.

6 CONCLUSIONS AND FUTURE
WORK

In this paper, we presented a highly scalable parallel
virtual machine planning and failover method that
enables high availability at a VM level in a data
center. This solution is efficient for large data centers
comprising many high-capacity servers, many VMs,
and a large number of disks. The solution is
implemented and used in IBM’s CMS enterprise
private cloud.

The system enables at-failover-time failover
planning and execution for a compute environment
with a large number of servers and storage. The
described system keeps the recovery time within
limits to a service level agreement (SLA) allowed
time budget. With this design, we reduce the initial
failover time requirements by more than an order of
magnitude by using parallel failover and parallel
storage mapping implementation.

As our future work, we plan to explore the
applicability of this solution for disaster recovery
(DR), where a whole PoD needs to be restarted at a
failover data center within the allowed recovery time
objective (RTO).

REFERENCES

Cannon, D. 2011. ITIL Service Strategy 2011 Edition, The
Stationery Office, 2nd edition, 2011.

Harper, R., Ryu, K., Frank, D., Spainhower, L., Shankar,
R., Weaver, T., 2011. DynaPlan: Resource placement
for application-level clustering, 2011 IEEE/IFIP 41st
International Conference on Dependable Systems and
Networks Workshops, pp. 271 – 277, 2011.

IBM, 2008. Implementing PowerHA for IBM i, IBM
Corporation, Armonk, NY, USA, 2008. [Online].
http://www.redbooks.ibm.com/abstracts/sg247405.html.

Microsoft, 2003. Introducing Microsoft Cluster Service
(MSCS) in the Windows Server 2003 Family,
Microsoft Developer Network. [Online]. https://
msdn.microsoft.com/en-us/library/ms952401.aspx.

Salapura, V., Harper, R., Viswanathan, M., 2013. Resilient
cloud computing, IBM Journal of Research and
Development, vol. 57, no. 5, pp. 10:1-10:12, 2013.

Sinharoy, B. et al., 2015. IBM POWER8 processor core
microarchitecture. IBM Journal of Research and
Development, vol. 59, no. 1, pp. 2:1-2:21, 2015.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

564

Adopting an Agent and Event Driven Approach for Enabling Mutual
Auditability and Security Transparency in Cloud based Services

Moussa Ouedraogo¹, Eric Dubois¹, Djamel Khadraoui¹, Sebastien Poggi² and Benoit Chenal²
¹Luxembourg Institute of Science and Technology, 5 Avenue des hauts Fourneaux, L4362 Esch/Alzette, Luxembourg,

 Luxembourg
²Victor Buck Services S.A, L-8308 Capellen, Luxembourg, Luxembourg

{moussa.ouedraogo, eric.dubois, djamel.khadraoui}@list.lu, sebastien.poggi@victorbuckservices.com benoit.chenal@learch.lu

Keywords: Cloud, Security Transparency, Mutual Auditability, Monitoring, Event Specification and Detection.

Abstract: We propose an event-driven approach for the automated audit of cloud based services security. The pro-
posed approach is a solution to two of the intrinsic security issues of cloud based services, notably the need
of security transparency and mutual auditability amongst the stakeholders. We leverage a logic based event
specification language to represent patterns of events which occurrence can be evidence of security anomaly
or breach or simply a sign of a nefarious use of the cloud infrastructure by some of its users. The use of ded-
icated algorithms for the detection of composite events coalesced with the definition of primitive events
structure based on XCCDF format ensures the reuse and interoperability with security audit tools based on
the Security Content and Automation Protocol-SCAP. The implementation and application of the approach
on a cloud service dealing with electronic archiving have demonstrated its feasibility and viability.

1 INTRODUCTION

For most businesses and individuals, Cloud based
services are the alternative to achieving cost-
efficiency in the provisioning and consumption of
services. However companies dealing with security
and/or privacy critical data, have often shown some
reluctance to fully embrace the trend, even if there is
evidence that the trend is starting to sift at least for
the banking and financial sector (http://
www.businesscloudnews.com/2014/06/02/cloud-in-
financial-services-what-is-it-not-good-for/). Several
factors could explain such an attitude towards the
cloud: In the cloud, the data and the mechanisms
necessary for its processing may reside in the pro-
vider’s premises. This leads to some devolution of
security matters about such data and processes to the
cloud provider whose capability and/or due dili-
gence to deal with the security issues may be mis-
trusted or simply feeble. The uncertainty on the ac-
tual location of the data is also exacerbated by the
complexity of the chain of provider-consumer. In
fact, although a CSP may be registered in a given
country, the chain of provider-consumer may be
such that the actual data centre used by the CSP is
located elsewhere. Given the stored information may
be subject to the legislation of the country where it is
stored physically, this may also pose serious privacy

management challenges. In fact there may be ambi-
guity in understanding which regulation applies for a
data about a third country citizen (which should
normally be subjected to national regulation) but
stored in another country, where regulation towards
privacy may be well different. The multi-tenancy
aspect that is most often used to characterize cloud
computing also introduces a new risk unique to
cloud services, the possibility of attacks from other
consumers, who may be competitors or simply
hackers, co-located on the same infrastructure, e.g.,
servers, hard disks, virtual machines. This is well
exemplified by “Amazon Zeus botnet” incident in-
volving Amazon EC2’s infrastructure (McAfee and
Guardian Analitics, 2012), whereby cybercriminals,
by initially hacking into a service hosted by Amazon
cloud infrastructure, were able to install command-
and-controls infrastructure with the aim to infect
client computers and steal their banking credentials.
This incident is a reminder that the security of the
cloud service is only as good as at its weakest link
given that a vulnerability at a tenant application may
result in the jeopardy of the whole service. This
status quo calls for techniques that help to foster
more security assurance in the cloud realm. Security
assurance being the ground for confidence that secu-
rity deployed and/or managed by a third party is
correctly implemented and also effective against the

565

risks (Ouedraogo et al., 2012). In third party services
such as the cloud, security assurance can be practi-
cally met by probing the security of the CSP through
audits and by gaining more visibility on its security
policy and operation through security transparency
mechanism (Winkler, 2011). Consequently, achiev-
ing a wider adoption of cloud based services would
depend on how effective issues related to mutual
auditability and security transparency can be ad-
dressed (Chen, 2010; Ouedraogo et al., 2013; Nuñez
et al., 2013; Sunyaev and Schneider, 2013). Tech-
nics and approaches tailored in that vein of idea
should enable the Cloud Service Consumer (CSC),
provided the existence of contractual clauses with
the Cloud Service Provider (CSP), to gather evi-
dence that corroborate or challenge compliance,
performance and security claim made by the CSP,
while at the same time enabling the latter to monitor
the activity and traffic of the users to ensure no
abuse and nefarious use of the cloud is made.

This paper’s contribution can be summarized as
an effort to leverage Event-driven computing (Luck-
ham, 2005; Etzion and Niblett, 2010) and Multi
agent systems-MAS- (Ganzha and Paprzycki, 2014)
to foster more security transparency and enable mu-
tual-auditability in a cloud setting. To achieve this,
we resort to a tree based specification of security
events of interest by the CSC and CSP while within
the infrastructure, software agents are generated for
capturing such events in case they materialize. We
amalgamate real time security related event detec-
tion and logic-based rules for empowering both the
CSC and CSP, with effective means of depicting and
promptly detecting anomalies and security or QoS
breaches. An event is here considered as a happen-
ing of interest (related to security or quality of ser-
vice procurement) to the CSP or CSC.

The paper is organized as follows: Section 2
analyses the related work. Section 3 provides a de-
scription of the adopted architecture. In Section 4
we specify monitor-able event using a logic based
language. Section 5 shows how audits and transpar-
ency are enforced, while Section 6 presents an appli-
cation case. Section 7 provides some concluding
remarks.

2 RELATED WORKS

Initiatives purporting to address the issue of mutual
trust and transparency in the cloud have mainly re-
volved around the topic of audit, Virtual machine
introspection and Service level agreement. Audits
standards including SSAE16 (www.ssae16.com),

and its international version ISAE3402 (http://
isae3402.com/) rely in a large part on the words and
assessment of the CSP, information that cannot be
guaranteed to be immune from bias. Recent efforts
in cloud audits have leaned towards automation. For
instance, the CSA cloud-audit (http://cloudaudit.org/
CloudAudit/Home.html) pur-ports the automation of
standard audit and related assurance and compliance
effort by providing a controlled set of interfaces to
allow CSCs or their representatives to assess their
services. Dolitszcher et al. (2013) propose a cloud
audit methodology based on the usage of MAS for
conducting the audit of virtual machines dynamical-
ly allocated to clients to account for changes within
the cloud infrastructure.

Rak et al. (2011) adopts APIs derived from the
mOSAIC project (http://www.mosaic-project.eu/) to
build up an SLA-oriented cloud application that
enables the management of security features related
to user authentication and authorization. An exten-
sion of the work of Rak et al. can be found through
the EU FP7 project Specs aiming to deliver a plat-
form for providing a security services based on SLA
management. The SLA monitoring in SLA@SOI
relies on EVEREST+ (Lorenzoli and Spanoudakis,
2010), which is a general-purpose engine for moni-
toring the behavioural and quality properties of dis-
tributed systems based on events captured from them
during the operation of these systems at runtime.
The major problem with the adoption of SLA man-
agement as a means to enhance security transparen-
cy is primarily on its practicality. Indeed the aca-
demic notion of SLA appears to be far more exten-
sive than it is in reality. In the context of this work,
the authors have approached a number of CSPs in
Luxembourg with the aim to get a glimpse on the set
of items that were part of their SLA. Most often,
such documents were restricted to the sole aspects of
allocated bandwidth, storage capacity, etc..; while
the only security aspect included was related to ser-
vice availability. Clearly, the items included in those
specifications were those the companies were confi-
dent they could deliver on. Their argument on the
most pressing and challenging issues such as securi-
ty was that stringent mechanisms were in place for
its guarantee as evidenced by their certifications.

Unlike the existing initiatives, our approach lev-
erages events processing to enable mutual audit
between the CSC and CSP. While existing commer-
cial and open source solutions for event analytics
such as Splunk (Carasso, 2012), Arcsight (http://
www.arcsight.net/) and Graylog2 (https://
www.graylog.org/graylog2-v0-92/) are based on log
analysis, our initiative is based on near-real time

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

566

Figure 1: Architecture of the event specification monitoring for transparency and mutual auditability.

detection of primitive events followed by a reason-
ing on whether the specified composite event has
materialized. Thus, allowing the concerned
CSC/CSP to promptly take mitigating actions. Also,
provided the existence of a contractual agreement,
both the CSP and CSC can specify and launch a
monitoring of the security of the other.
Additionally our approach is that the event driven
specifications provides a good expressivity for cap-
turing events of interest emanating from an SLA, an
internal policy or external regulations while allow-
ing the reuse of existing security management tools.

3 HIGH LEVEL ARCHITECTURE
OF THE APPROACH

Our event driven approach and tool is made of three
main components as depicted in Figure 1.

The first component is a case tool or Event de-
signer that offers a graphical design interface to the
cloud stakeholders, for specifying patterns of events
that are of interest. Upon the design of the events
composites that could result from combining differ-
ent patterns to monitor, the stakeholder provides
technical details for each event using an event speci-
fication format of choice. In the context of our work,
the Extensible Configuration Checklist Description
(XCCDF) format (Waltermire et al., 2011) is adopt-
ed as further elaborated in Section 4.1. The case tool
also serves as a dashboard for the visualization of
the events status once the monitoring is triggered.

The second component relates to the elaboration
of a multi-agent system embedded within the cloud
infrastructure (CI) with the purpose of detecting
each primitive events specified within the Event
Designer console. The definition and management of
the detection agents are performed using JADE plat-
form (Bellifemine et al., 2008). The peculiarity of
the agent structure and organization is adopted from
the work of Ouedraogo et al. (2014).

The third component is the event processing lay-
er. Individual atomic events captured from the cloud
infrastructure are sent by specialized agents to the
reasoning layer where dedicated algorithms detailed
in Section 5 will be resorted for informing the stake-
holder when a specified pattern has materialized.

In the following we further elaborate on how
those three components play a role in practically
delivering mutual audit and help foster better trans-
parency.

4 SPECIFICATION OF
MONITORABLE EVENTS

The decision to adopt an event driven approach to
audit and monitor the security in the cloud is under-
score by the argument that events provide a power-
ful construct to capture current state of a system and
deviations from expectation and to predict future
security or QoS related issues (Luckham, 2005;
Etzion and Niblett, 2010). Additionally a well-
defined architecture can support event based moni-

 Reasoning Layer

 Cloud Infrastructure &
 with Detection agents

CSP

Event Designer
and Visualization

CSC

Adopting�an�Agent�and�Event�Driven�Approach�for�Enabling�Mutual�Auditability�and�Security�Transparency�in�Cloud
based�Services

567

toring in ensuring the prompt dissemination of its
occurrence to the interested parties who would make
judgment on the course of action to adopt. Amongst
others, it may be a way to hold cloud providers ac-
countable for a security breach that may has
stemmed from a lax in their security; a breach of
SLA or other escrows between the two parties. The
set of patterns and the detection algorithms associat-
ed could also constitute a powerful tool for a cloud
provider concerned with activities of its clients.

A prerequisite for effective event patterns detec-
tion is the definition of a clear event structure cou-
pled with the adoption of a pattern specification
language that is expressive enough to capture the
realm of events of interest and their propensity. Only
after that one can begin to implement the required
strategy for the ensuing detection. This section pro-
vides an insight into our event based approach.

4.1 A Primitive Event Structure to
Ensure Re-Use of Existing Security
Tools

Commonly an event is defined as an occurrence of
interest within a system or domain (Etzion and Nib-
lett, 2010). Subsequently, dealing with events could
purport the monitoring of a system or process with
the intent to flag exceptional or anomalous behav-
iors. Alternatively, event analysis could be the base-
line for (i) predicting a major event before they actu-
al takes place as in fraud detection application, fi-
nancial market trends and natural disaster; (ii) diag-
nosing a problem based on deductive reasoning after
the observation of symptomatic events. While most
event structure includes header information that
provides meta-information about the event (identifi-
cation number, occurrence time, description, catego-
ry, etc...), attributes related to the event payload is
intrinsically linked to the intent sought for their pro-
cessing. For instance, for the description of an event
structure pertinent to a credit card fraud, the geo-
graphical locations where individual purchase takes
place and the amount of money involved are very
salient information to capture. Owing to the fact that
this audit emphasis on anomalies related to security,
the idea was then to adopt an event structure that
could allow the re-use of existing security audits
tools given the area of network and system audits is
already beaming with a plethora of tools. The adop-
tion of an Extensible Configuration Checklist De-
scription Format (XCCDF) like format as a baseline
for the primitive events structure was thus to ensure
reuse and interoperability with Security Content and
Automation Protocol (SCAP) tools. XCCDF is an

XML based format used to specify security check-
lists and benchmarks amongst others. The overarch-
ing purpose of the format is to provide a uniform
expression of security checklists, benchmarks, and
other configuration guidance, and thereby foster
more widespread application of good security prac-
tices. With analogy to the XCCDF format, we speci-
fy an event with the following attributes:

 <Name>..<\Name>
 <Identification>..<\Identification>
 <Description>..<\Description>
 <Category>.. <\Category>
 <Time stamp>.. <\Time stamp>
 <Value>..<\Value>
 <Frequency>..<\Frequency>
 <Rule>..<\Rule>
 <Probe>..<\Probe>

In the context of this work, the most relevant attrib-
utes associated to a primitive event include the rule
attribute which is the underlining policy based on
which the associated probe (either a SCAP tool or an
in-house program) could interpret and carry out the
specificities of the rule, leading to the detection of
the primitive event. Furthermore, the rule attribute
encompasses and provides reasoning about the ex-
pected and exceptional behaviours and states. The
field associated to a rule take as input a path leading
to a file, thus allowing one to define a comprehen-
sive set of policy that should drive the detection of
primitive events of interest. A rule could be speci-
fied in a logical language such as Etalis (Anicic et
al., 2012) and Drools fusion (http://
www.drools.org/) or programing language including
Python as in the case of our implementation. The
category attribute is a field we added, for allowing
the user to systematically classify events based on
their typology and/or interest for the stakeholders.
Secondary event attributes such as name, identifica-
tion, description, timestamp, frequency, denote re-
spectively, the given name unique identifier of the
event, a succinct description of it, the time at which
the event was created, the frequency at which the
tool should be probing the event.

4.2 Event Patterns Specification

We hereafter use the term event pattern to refer to
any composite event whereby primitive events
(leaves of the tree) are associated through a logical
operator or connector. An event tree can thus be a
simple event patterns or a combination of patterns of
different semantic leading to a much complex event
specification. Adopting a tree based representation
also allows leveraging relevant graph theories for the
efficient processing of the event nodes. Our event-
based cloud audit and monitoring is based on event

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

568

patterns specification using the Yet Another Lan-
guage for Event Specification or YALES logic
(Zhang and Unger, 1996). The choice of YALES
lies on its expressiveness but also to the fact that it
allows to capture synchronous and asynchronous
events and also provides event counter and calendar
constructs. YALES distinguishes three types of
events: temporal events denoting the explicit time
instants in real life and can be deemed relative tem-
poral event when the offset is equal to span. Calen-
dar events express the periodical activities that occur
regularly or irregularly many times in terms of real
life time measurements and primitive events. A
primitive event is considered as an explicit event
taking place at a discrete or during a time span.
More precisely, our framework and tool allows both
the cloud client and provider to declare and detect
the following event patterns or event composite
(note that this list of pattern is not exhaustive and
new one can be added for detection purpose):
 Disjunction of Events, E1 E2 ... En or any
Pattern: This pattern of events, occurs when one or
more of primitive events E1,..,En occurs. The detec-
tion algorithm for the ANY pattern is later provided.
 Conjunction of Events, A (m, {E1, E2 ... En})|
Part of: This pattern of event occurs if all the con-
stituent events occur. With a slight extension and
with the notation of A (m, {E1, E2... En}) where m
< n, we can express the idea that if at least m out of
n events occur, the event pattern has happened.
 Sequences of Events, E1; E2; ..; En | All in Or-
der: A sequence of events pattern expresses the
requirement that occurrence of composite events be
strictly in order in time, i.e. no adjacent events that
occur at the same time are counted.
 Event Counter, C (E, n^ | n | n+ | n-): | Over-
time, Equals, More, Less: A way to tell how many
times an event has occurred is useful. The event
counter as an event pattern is designed to provide
this kind of mechanism. Event counter, C (E, n^),
will occur upon every nth occurrence of E. In this
case C (E, n^) may be triggered more than once; C
(E, n) is validated at when at the nth occurrence of
E. Thus C (E, n) is only triggered once. C (E, n+) is
validated when E has occurred not less than n times;
while C (E, n-) will be flagged when E has occurred
less than n times but at least once.
 Moving Window, W (n, E, span): A moving
window uses a moving interval with a fixed span to
provide aggregate event information. Here, W (n, E,
span) is used to mean that if there are more than n of
E occurrences during a time period, then the compo-
site event should be raised.

 Put the Occurrence of an Event in Context of a
Sequence of Other Events E: C | [E1, E2] and E
IN C | [E1, E2]: Events in periods or intervening
events are those that occur in a period marked by
two reference events E1and E2. Two alternative
cases can be considered: The first supposes a left-
closed and right-open interval that we refer to as
BETWEEN event pattern; and the second one con-
sidering a left-closed and right-closed interval re-
ferred to as IN event pattern. While both detection
patterns BETWEEN and IN would require the event
of interest to occur after the initiating event (E1), the
IN pattern is detected only after the right-end event
has occurred as opposed to the BETWEEN event.

5 FROM EVENTS
SPECIFICATION TO AUDIT

The previous section provided the foundation for
specifying the patterns of events relevant to the se-
curity audit. In this section, we depict how in prac-
tice patterns are used and analyzed to support mutual
auditability and increase cloud transparency. The
mutual audit process and the ensuing increase in
transparency between the CSC and the CSP is sup-
ported by two main steps once the composite events
have been specified: the generation and triggering of
software agents for conducting detecting the primi-
tive events and the reasoning on whether an overall
event pattern of interest has taken place. This will
ultimately lead to the generation of reports and alerts
on the dashboard of the cloud stakeholder of interest.

5.1 Generation and Triggering of
Agents

To conduct the audits, an organization of software
agents is used. The first type of agent or probe
agents, purport to conduct the detection of the primi-
tive events within the pattern specified by the cloud
stakeholder. The second type of agent is a single
agent in some cases, referred to as Event receiver
which role is to filter and aggregate the set of inputs
that arrive from the probe agents before they are
passed to the reasoning engine. In order to ensure
the intrinsic link between a primitive event and a
probe agent, we adopt the following reference for-
mat for agent during their generation:
Agent<EventName>@<Domain>, where domain
refers to the name given to the audit platform; and
eventName- a unique name given to the event in the
event structure provided in Section 3.1. In practice,

Adopting�an�Agent�and�Event�Driven�Approach�for�Enabling�Mutual�Auditability�and�Security�Transparency�in�Cloud
based�Services

569

the probes agents actually carrying out the instruc-
tion within the Rule field of the primitive event, thus
triggering an existing security tool or launching a
pseudo code before collecting the results of the
check. The creation and management of the agents
can be done through a MAS platform such as JADE.

5.2 Reasoning and Detecting a Pattern

Primitive events alone may not always be significant
to portray the emergency of a situation. In contrast,
considering a pool of events from the same or differ-
ent sources within the infrastructure of the CSC/CSP
may reveal a pattern that relate to an anomaly or
impending risk for the service stakeholder. As men-
tioned in the previous section, since we have adopt-
ed a tree based representation and validation of
event patterns, efficiently detecting a pattern of
events depends on how the tree is processed, and
individual events are handled upon their detection.
With this in mind, we have tailored for each of the
event pattern specified in Section 3.2, a dedicated
algorithm that is resorted by the reasoning engine to
determine whether the composite event has material-
ized. Owing to page limitation, we only provide a
description of some amongst them:
Any: this operator has a list of events and is validat-
ed if one of those events occurs. If the operator
above this operator is a count operator, then
this operator will reset only the event that validated
it. This ensures that any other subsequent event in
the list that was partially validated, will still be ac-
counted for.

Algorithm:
boolean valid = false
for each event in list {
 if event is validated {
 add event to happenedList
 valid = true
 }
}
return valid

Part Of: This operator has a list of events and a
trigger number. It is validated when the number of
events validated in the list is equal or above to the
trigger number. If the operator above this operator is
a count operator, this operator will reset only the
events of the list that are validated. Therefore if
another event in the list was partially validated, it
will not lose its current state.

Algorithm :
clearhappenedList
for each event in list {
 if event is valdiated {
 add event to happenedList
 }
}
if happenedList size >= trigger {

 return true
}
return false

5.3 Audit Reporting

Upon the processing of the events by the reasoning
engine, it sends the result to the Report Generator
which subsequently displays it at the HMI or Dash-
board. Given the adoption of a tree based specifica-
tion of the composite events to monitor for, the
Event designer could also serve the purpose of visu-
al dashboard whereby events detected by the agents
get automatically highlighted in a different colour.
For further details information on the detected
events, another dashboard could be added, giving
details on the event’s name, primary identifier , date
of creation, the probe agent tasked with detecting it,
and its status (for instance Occur or not happened).
Such information could then allow the CSP and CSC
to respectively, to detect any nefarious and mali-
cious use of its service by a CSC, detect any security
anomaly within their virtual machines and/or held
the CSP accountable for a breach of contractual
agreement related to security and quality of service.

6 APPLICATION TO A REAL
SCENARIO

The scenario described thereafter is a real use case
we have worked on though the names of the compa-
nies involved have been altered.

L-BANK which is actually affiliated to an inter-
national Bank, has decided to use the service of
D.CLOUD owing to the fact that the local branch
was closing down. As information related to the
bank customers could not be moved beyond the
boundary of the country, it was therefore imperative
to found a reliable service that could carry out the
archiving in accordance with the legal framework.
D.CLOUD was chosen primarily for the fact that
archiving was the core of its business and also be-
cause of the security reliability (supported by certifi-
cations). This means a considerable amount of ar-
chives (bank customers’ information) were ready to
be transferred to D.CLOUD through SFTP connec-
tion mode for fast integration. L-BANK was then
given an access to D.CLOUD’s standard web portal.
D-CLOUD could create new archives, search, re-
store, and consult individual archives. This portal is
accessible directly over Internet (HTTPS) or through
a VPN. At the end of the retention period, the

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

570

Figure 2: Launch of a JADE based agents and visualization of archive’s related events.

documents are available for deletion or archiving.
From L-BANK’s view point the following events
were identified as being relevant for monitoring:
-Confidentiality of the ANY (C1, C2) where
C1: An attacker or the cloud provider staff may ac-
cess. the archive stored on the cloud provider server
without authorisation.
C2: An error in storage or a bad virtual separation
may cause a breach of confidentiality.
- Integrity of the Archives ANY (I1, I2, I3)
I1: Unauthorised modification by hackers may occur
when the archive is stored on the CSP’s server.
I2: A loss of integrity of the archive due to a corrup-
tion of data may occur when the cloud client con-
sults the archive through the archive portal.
I3: In the documents management configuration,
when the client consults the archive, an error may
cause a loss of integrity or a deletion of the archive.
-Availability of the Archives ANY (A1, A2) where
A1:The platform may be unavailable due to a traffic
overloading or a denial of service attack.
A2: Transmission and communication errors may
occur when the archive is send to the cloud client.

The D-CLOUD in turn was concerned with un-
warranted modification and activities from L-BANK
with consequences on its services:

ANY (M1, M2) where:
M1:The cloud client may intentionally or not upload
a malicious file as a archive.
M2: an error in the system or archive maintenance
may result in unwanted changes.

Noteworthy, the specifcation of composite events
combining events from the three groups is possible
as it was the case during the application to the use
case (Figure 1-2). Similarly most of the events above
listed can be further specified as composite events of
their own, but due to page restriction such an exr-
cicse will not be conducted in this paper.

7 CONCLUDING REMARKS

This paper has reported on an initiative for address-
ing security transparency and allowing mutual au-
ditability within a cloud realm. Given that the use of
raw logic based language may prove a challenge for
some stakeholders wishing to engage in the system-
atic audit and monitoring of security and QoS relat-
ed parameters, the choice of a tree based representa-
tion was made. Another key aspect of the approach
is the adoption of the XCCDF format, which enables
the reuse of existing security management tools.

Adopting�an�Agent�and�Event�Driven�Approach�for�Enabling�Mutual�Auditability�and�Security�Transparency�in�Cloud
based�Services

571

The initial prototype based on the concepts and algo-
rithms presented has been validate on an electronic
archiving platform with the event specification and
detection console allocated to a dedicated virtual
machine, while the multi agent system platform
JADE has been adopted for the specification and
management of agent entrusted with the role of de-
tecting primitive events as can be seen in Figure 2.
NAGIOS plugins (Pervilä, 2007) along with other
tailored programs where developed for the detection
of primitive events within the Infrastructure.

The initial results were very encouraging as most
of the security events of concerns provided by the
SaaS provider and consumer and specified using the
Event designer were detecting, by simulating altera-
tions and attacks targeting the archived files. Fur-
thermore, the capacity of the VM required for host-
ing the whole application (Event Designer and mul-
ti-agent detection platform) was confine to a 2 Go of
RAM and in single CPU. Nonetheless, further appli-
cations are envisaged for better appraising the effect
of deploying simultaneously a multitude of agents
for detecting and reporting events of interest.

AKNOWLEDGEMENTS

This work has been conducted in the context of the
SAINTS project, financed by the national fund of
research of the Grand Duchy of Luxembourg (FNR)
under grant number C12/IS/3988336. The authors
also thanks Maimouna Seck and Charles Hubert
Duthilleux for their work on implementing the tool.

REFERENCES

Anicic D., Rudolph S., Fodor P., Stojanovic N.: Stream
reasoning and complex event processing in ETALIS.
Semantic Web 3(4): 397-407 (2012).

Bellifemine F., Caire G, Poggi A., Rimassa G. 2008
JADE: A software framework for developing multi-
agent applications. Lessons learned. Information &
Software Technology 50(1-2): 10-21.

Carasso D. (2012) Exploring Splunk, CITO Research,
New York.

Chen Y, Paxson V, Katz RH (2010) What’s New About
Cloud Computing Security? Report EECS Depart-
ment, University of California, Berkeley,

http://www.eecs.berkeley.edu/Pubs/TechRpts
/2010/EECS-2010-5.html.

Dölitzscher F., Knahl M., Reich C., Clarke N.L. 2013
Anomaly Detection in IaaS Clouds. In proceedings of
CloudCom (1) 387-394.

Etzion O., Niblett P. 2010. Event Processing in Action.
Manning Publications Company 2010, ISBN 978-1-
935182-21-4, pp. I-XXIV, 1-360.

Lorenzoli D., Spanoudakis G. 2010 EVEREST+: Runtime
SLA Violations Prediction: In: Proceedings of the 5th
Middleware for Service-oriented Computing Work-
shop, ACM.

Luckham D. C. (2005) The power of events - an introduc-
tion to complex event processing in distributed enter-
prise systems. ACM 2005, ISBN 978-0-201-72789-0,
pp. I-XIX, 1-376.

Ganzha M, Paprzycki M. (2014): Agent-oriented compu-
ting for distributed systems and networks. J. Network
and Computer Applications 37: 45-46 (2014). McAfee
and Guardian Analytics. 2012. Dissecting. Operation
High Roller. Accessed 10 December 2014. From:
http://www.mcafee.com/us/resources/reports/rp.operat
ion-high-roller.pdf.

Nuñez D., Fernandez – Gago C., Pearson S., Felici M.
2013 A Metamodel for Measuring Accountability At-
tributes in the Cloud. In: Proceedings of the 2013
IEEE International Conference on Cloud Computing
Technology and Science (CloudCom 2013), IEEE.

Ouedraogo M., Khadraoui D., Mouratidis, H. and Dubois
E. (2012): Appraisal and reporting of security assur-
ance at operational systems level. Journal of Systems
and Software 85(1): 193-208 (2012).

Ouedraogo M, Mouratidis M (2013) Selecting a cloud
service provider in the age of cybercrime, Computers
& Security, vol.38, pp.3-13 Special issue on Cyber-
crime in the Digital Economy, Elsevier.

Ouedraogo M., Kuo C.T, Tjoa S., Preston D, Dubois E.,
Simões P., Cruz T.: Keeping an Eye on Your Security
Through Assurance Indicators. In proceedings of
SECRYPT 2014: 476-483.

Pervilä, M.A., 2007. Using Nagios to monitor faults in a
self-healing environment. In:Seminar on Self-Healing
Systems. University of Helsinki.

Rak M, Liccardo L, Aversa R 2011. A SLA-based inter-
face for security management in cloud and GRID inte-
grations. In: Proceedings of the 7th International. Con-
ference on Information Assurance and Security (IAS),
pp.378-383, IEEE.

Robert J. Zhang, Elizabeth A. Unger (1996) Event Speci-
fication and Detection Technical report TR CS-96-8,
1996, Kansas State University.

Sunyaev A., Schneider S. 2013. Cloud services. certifica-
tion Communication of the ACM 56(2): 33-36, ACM
digital Library.

Waltermire D., Schmidt, C., Scarfone K.
Winkler V. (2011) Securing the cloud- cloud computer.

security techniques and tactics. Syngress.
Ziring N. 2012. Specification for the Extensible Configu-

ration Checklist Description Format (XCCDF) Ver-
sion 1.2, NIST Interagency Report 7275Revision 4,
National Institute of Standards and Technology
Gaithersburg, MD 20899-89.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

572

MOBILE CLOUD COMPUTING AND
SERVICES

FULL PAPERS

The Case for Visualization as a Service
Mobile Cloud Gaming as an Example

Abdelmounaam Rezgui1 and Zaki Malik2
1Department of Computer Science & Engineering, New Mexico Tech, Socorro, NM, U.S.A.

2Department of Computer Science, Wayne State University, Detroit, MI, U.S.A.
rezgui@cs.nmt.edu, zaki@wayne.edu

Keywords: Mobile Cloud Gaming, Visualization as a Service, GPUs, Offloading.

Abstract: In recent years, significant progress has been made to improve the power efficiency of mobile devices. In
particular, new GPU architectures have made it possible to run compute-intensive applications directly on
battery-powered mobile devices. In parallel, research is also being conducted in the area of application of-
floading, the process of running compute-intensive tasks oncloud servers and delivering the results of these
computations to mobile devices through their wireless interfaces. It is important to understand the power con-
sumption implications of each of these two options. In this paper, we usemobile cloud gamingas an example
to evaluate and compare these two alternatives (running games on the cloud or on mobile devices.) Based on
this comparison, we introduce the concept ofVisualization as a Service(VaaS) as a new model to design and
implement graphics-intensive applications for mobile devices. In this model, advanced visualization capabili-
ties (e. g., interactive visualization of high resolution videos/images) would be provided to mobile users as a
service via the Internet. We show through actual hardware specifications that, despite the recent introduction
of ultra low power GPUs for mobile devices, it remains far more power efficient to offload graphics-intensive
tasks to the cloud. The associated latency can still be tolerated in most applications.

1 INTRODUCTION

The growth in the use of mobile devices (mobile
phones, tablets, and ultra mobile PCs) is driving a
phenomenal market shift. A 2013 Gartner report (Ta-
ble 1) predicted that, by 2017, device shipments will
reach more than 2.9 billion units, out of which 90%
will be mobile devices (Milanesi et al., 2013). This
growth is accompanied by an equally phenomenal
boom in mobile applications. According to the re-
search firm MarketsandMarkets, the total global mo-
bile applications market is expected to be worth $25
billion by 2015 (up from about $6.8 billion in 2010)
(MarketsandMarkets, 2010). A 2012 study by the Ap-
plication Developers Alliance found that 62% of the
U. S. online population owned app-capable devices
and that 74% of those device owners use mobile ap-
plications. As the rendering capabilities of mobile de-
vices improves, mobile applications are becoming in-
creasingly graphics-intensive. This requires intensive
computations that quickly drain the device’s battery.

Several solutions are being developed to reduce
power consumption in graphics-intensive mobile ap-
plications. Some solutions are to be used at develop-

ment time while others are to be used when the appli-
cation is running. The former focus on tools that help
developers estimate power consumption at develop-
ment time. For example, in (Thompson et al., 2011),
the authors present SPOT (System Power Optimiza-
tion Tool), which is a model-driven tool that auto-
mates power consumption emulation code generation.
In (Hao et al., 2013), the authors use program analy-
sis during development time to estimate mobile appli-
cation energy consumption. The latter type of solu-
tions focus on reducing power consumption of hard-
ware components such as the GPU or NIC at run-time.
Examples include theracing to sleeptechnique (that
sends data at the highest possible rate), wide channels,
and multiple RF chains (Halperin et al., 2010).

A third alternative is application offloading, the
process of running compute-intensive tasks on servers
(often in the cloud) and delivering the results of these
computations to mobile devices through their wireless
interfaces. However, these wireless interfaces also
may consume substantial amounts of power when re-
ceiving large amounts of data as is typical in many
modern, interactive, graphics-intensive mobile appli-
cations. It is therefore important to understand the

577

Table 1: Worldwide Devices Shipments by Segment (Thousandsof Units) (Milanesi et al., 2013).

Device Type 2012 2013 2014 2017

PC (Desk-Based and Notebook) 341,263 315,229 302,315 271,612
Ultramobile 9,822 23,592 38,687 96,350

Tablet 116,113 197,202 265,731 467,951
Mobile Phone 1,746,176 1,875,774 1,949,722 2,128,871

Total 2,213,373 2,411,796 2,556,455 2,964,783

power consumption implications of the two alterna-
tives: running the graphics-intensive application on
the cloud or on the mobile device itself. In this paper,
we usemobile cloud gamingas an example to ana-
lyze and compare these two alternatives in terms of
power consumption. We show through actual hard-
ware specifications that, despite the recent introduc-
tion of ultra low power GPUs for mobile devices, it
remains far more power efficient to offload graphics-
intensive tasks to cloud servers. To make our discus-
sion concrete, we focus on two cases of mobile de-
vices: (i) notebooks and (ii) smartphones. In both
cases, we only consider gaming using the device’s
WiFi interface not its cellular interface. The reason
for this is that the high latency and high cost make
mobile cloud gaming using cellular networks (UMTS,
LTE, etc.) an impractical alternative for most con-
sumers. We will elaborate on this in Section 3.

This paper is organized as follows. We first give
an overview of mobile cloud gaming. In Section 3, we
contrast cellular-based and WiFi-based mobile cloud
gaming from the perspectives of power consumption,
throughput, latency, and cost. In Sections 4 and 5,
we present power consumption trends in modern mo-
bile GPUs and 802.11 network cards. In Section 6,
we quantitatively evaluate and compare power con-
sumption of a gaming session in the two previously
mentioned scenarios in the context of notebooks. We
repeat the same analysis for smartphones in Section 7.
In Section 8, we give the conclusions from our study
and suggest directions for future research.

2 WHAT IS MOBILE CLOUD
GAMING?

Mobile cloud computing (MCC) is the process of of-
floading compute-intensive tasks from mobile devices
to cloud servers (Soliman et al., 2013; Shiraz et al.,
2013). The purpose is often to save power on the mo-
bile device and/or access servers with much higher
computing power. A prime example of MCC ismo-
bile cloud gamingwhich is the process of provid-
ing video games on-demand to consumers through
the use of cloud technologies. One benefit is that

the cloud, instead of the user’s device, carries out
most of the computations necessary to play the game,
e. g., complex graphical calculations. This is obvi-
ously a tremendous advantage in case the player uses
a battery-powered, mobile device. Even when power
is not a critical issue for the user’s device, cloud gam-
ing still provides other cloud services, e. g., stor-
age. Cloud gaming enables power savings also on the
cloud itself as it makes it possible that several play-
ers simultaneously share cloud GPUs. For example,
Nvidia’s VGX Hypervisor manages GPU resources to
allow multiple users to share GPU hardware while im-
proving user density and the utilization of GPU cycles
(Nvidia, 2015a). To illustrate, a single cloud gaming-
capable Nvidia VGX K2 unit requires 38 Watts per
cloud user (Nvidia, 2015c), whereas a comparable
single-user Nvidia GTX 690 consumer unit requires
300 Watts to operate (Nvidia, 2015b). In this case,
cloud gaming can reduce the overall graphics-related
power consumption by 87%.

3 CELLULAR-BASED VS.
WiFi-BASED MOBILE CLOUD
GAMING

Mobile cloud gaming may be achieved using cellular
connections or WiFi connections. While both options
are technically possible and relatively comparable in
terms of power consumption, the WiFi option seems
much more attractive when we consider throughput,
latency and cost. In this section, we present results
from recent studies analyzing power consumption,
throughput, latency, and cost in both scenarios:

3.1 Power Consumption and
Throughput

In (Carroll and Heiser, 2010), the authors analyze
power consumption of smartphones. In particular,
they studied power consumption of the two main net-
working components of the device: WiFi and GPRS
(provided by the GSM subsystem). The test con-
sisted of downloading a simple file via HTTP using
wget. The files contained random data, and were 15

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

578

Figure 1: Power Consumption of WiFi and GSM Modems,
CPU, and RAM (Carroll and Heiser, 2010).

MiB for WiFi, and 50 KiB for GPRS. While the test
was not a gaming session, it still gave valuable in-
sights. The experiments showed that WiFi achieved
a throughput of 660.1± 36.8 KiB/s, and GPRS 3.8
± 1.0 KiB/s. However, they both showcomparable
power consumption far exceeding the contribution of
the RAM and CPU (Figure 1). The experiments also
showed that, with the increase in throughput possible
using WiFi, CPU and RAM power consumption also
increases reflecting the increase in the cost of process-
ing data with a higher throughput.

3.2 Latency

In the context of mobile cloud gaming, latency refers
to the timespan between a user’s action and the cor-
responding reaction (Lampe et al., 2013), e. g., time
between the action of pressing a button and seeing
a character in the game move as a result of that ac-
tion. High latency is a real challenge in mobile cloud
gaming. Wireless connections (WiFi and cellular)
and even wired residential end host round trip times
(RTTs) can exceed 100 ms (Lee et al., 2014). To many
gamers, this is the point when a game’s responsive-
ness becomes unacceptable. A recent effort to reduce
latency in mobile cloud gaming is Outatime, a specu-
lative execution system for mobile cloud gaming that
is able to mask up to 250 ms of network latency (Lee
et al., 2014). It produces speculative rendered frames
of future possible outcomes, delivering them to the
client one entire RTT ahead of time.

While latency is an issue in both cellular-based
and WiFi-based mobile gaming, WiFi connections
typically have much less latency than cellular connec-
tions (Lampe et al., 2013).

3.3 Cost

Cost is also a major factor in favor of WiFi-based mo-
bile cloud gaming. For example, in (Lampe et al.,
2013), the authors give an analytical assessment that
shows that the cost (from cellular data transfer) of a

gaming session of one hour would be about 2.36 Eu-
ros without including the likely additional usage fee
to be paid to the cloud gaming provider.

As we may conclude from the previous discus-
sion, WiFi-based mobile cloud gaming is currently
more practical than cellular-based mobile cloud gam-
ing. We, therefore, limit our discussion to this option
in the remainder of this paper.

4 POWER CONSUMPTION
TRENDS IN MODERN MOBILE
GPUs

It is currently generally true that GPUs offering a
good rendering capability consume much power for
operation and cooling. To illustrate the current power
consumption trends of mobile GPUs, we list in Ta-
ble 2 some modern notebook GPUs and their respec-
tive power consumptions. The table suggests that
playing a game on a notebook equipped with one
of the listed GPUs may not be a viable option. For
example, the Dell Precision M6700 mobile worksta-
tion (which Dell touted as the “world’s most power-
ful 17.3” mobile workstation”) is equipped with the
Nvidia Quadro K5000M GPU. The configuration can
pull 98 Watts of power when running on battery un-
der a heavy CPU or GPU load. This means that
it would be possible to drain the system battery in
about an hour (Notebook Review, 2015). Even with
this limited ability to support long running, compute-
intensive applications, this configuration costs more
than $2K. Better battery life may be possible but with
much more expensive configurations. Efforts are un-
derway to develop mobile devices with power effi-
cient computing components (e. g., multicore CPUs
and ultra low power GPUs) and batteries that can
run compute-intensive applications (e. g., games and
other graphics-intensive applications) for many hours.
For example, Nvidia is introducing Tegra 4, a mobile
GeForce GPU with up to 72 custom cores, a quad-
core ARM Cortex-A15 processor with a fifth Com-
panion Core that further improves performance and
battery life. According to Nvidia, a battery of a ca-
pacity of 38 watt-hours would be sufficient to operate
a Tegra 4 mobile device running a gaming application
between 5 and 10 hours. This corresponds to a power
consumption (for the entire device) of 4 to 8 Watts
(Hruska, 2013). However, mobile devices with these
high-end configurations will remain beyond the reach
of average users for the foreseeable future.

The�Case�for�Visualization�as�a�Service�-�Mobile�Cloud�Gaming�as�an�Example

579

Table 2: Energy Consumption of Some Modern Notebook GPUs.

GPU Card Power Consumption (W)

NVIDIA GeForce GTX 680M SLI 2 x 100
AMD Radeon HD 7970M Crossfire 2 x 100

NVIDIA GeForce GTX 680MX 122
NVIDIA GeForce GTX 675M SLI 2 x 100

GeForce GTX 680M 100
Quadro K5000M 100

AMD Radeon HD 7970M 100

5 POWER CONSUMPTION
TRENDS IN MODERN
NOTEBOOK NICs

The original 1997 release of the IEEE 802.11 stan-
dard operated in the 2.4 GHz frequency band and pro-
vided a data bit rate of 1 to 2 Mb/s. The standard re-
lease approved in February 2014 (known as 802.11ad)
operates in the 2.4/5/60 GHz frequency bands and
provides a data bit rate of up to 6.75 Gbit/s. While
higher bit rates often translate into higher power con-
sumption, this is less true in recent ultra-low power
802.11 standards. For example, today’s fastest 3 an-
tenna 802.11n device can achieve 450 Mbps. A single
antenna 802.11ac device can achieve a similar bit rate
with similar power consumption. This means that a
typical tablet with single antenna 802.11n 150Mbps
WiFi can now support 450 Mbps with 802.11ac with-
out any increase in power consumption or decrease in
battery life (Netgear, 2012).

6 GRAPHICS-INTENSIVE
APPLICATIONS: GPUs VS. NICs

To assess the benefits of using a mobile GPU ver-
sus offloading to the cloud, we consider gaming as
it is a typical example of graphics-intensive mobile
applications. Specifically, we consider four modern
games that rely heavily on GPUs. We compare two
scenarios in terms of power consumption. In the first
scenario, the game is run entirely on the mobile de-
vice and uses only its GPU. In the second scenario,
we consider an execution where the game is run on
a cloud server and the mobile device only receives
and renders sequences of frames produced by the
server. We analytically evaluate power consumption
in these two scenarios and show that, with modern
wireless technology, offloading is a far better alter-
native to running graphics-intensive applications us-
ing the device’s GPU. To make the comparison even

more in favor of the GPU-based alternative, we ig-
nore the power consumption of the device’s disk. We
assume that, when a graphics-intensive application is
run on a mobile device, most of the power is con-
sumed by the device’s GPU. This is becoming in-
creasingly true with the wide availability of mobile
devices with solid-state disk drives.

To compare power consumption in the two scenar-
ios, we first present a simple model that captures the
interactions between the player and the gaming appli-
cation. We will assume that, during a given gaming
session of durationt, the player takes an action after
every r seconds in average. We callr the reactivity
of the player. To respond to the player’s action, the
application generates a video stream of lengthv sec-
onds.1 So, during the entire session, the application
generatest/r video sequences whose length isv sec-
onds each. In total, the application generatestv/r sec-
onds of video during the given gaming session.

6.1 Scenario 1: Gaming using the
Mobile Device’s GPU

To assess the power consumed by a notebook’s GPU
in a gaming session, we used the benchmark pre-
sented in (NoteBookCheck, 2014). The benchmark
has a large number of notebook GPUs and a num-
ber of popular games. For each combination of
game and GPU card, the benchmark gives the aver-
age number of frames per second (fps) that the GPU
card achieves with four different resolution levels:
Low (L), Medium (M), High (H), and Ultra (U). The
benchmark considers that a frame rate of 25 fps is
sufficient for fluent gaming. For the purpose of this
study, we considered four GPU cards and four 2014
games, namely GRID Autosport, Watch Dogs, Titan-
fall, and Thief. Table 3 gives the frame rates ob-

1This is to simplify our discussion. In practice, the ap-
plication likely generates two video sequences of different
lengths in response to two different actions.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

580

tained in the given combinations2. The resolutions
in the table are as follows: Low (1024x768), Medium
(1366x768), High (1920x1080 for the first two games
and 1366x768 for the last two games), and Ultra
(1920x1080). Table 3 also gives power consumption
for the four GPU cards.

As an example, consider a mobile device equipped
with a GPU of type Nvidia GeForce GTX 850M. As
shown in Table 3, this GPU card will consume be-
tween 40 and 45 Watts in one hour. We will show that
offloading to the cloud (Scenario 2) brings an order of
magnitude reduction in terms of the power consumed
by the mobile device.

6.2 Scenario 2: Mobile Cloud Gaming

We now evaluate the required data bit rate that the
NIC card of a notebook would have to support to
achieve the same game fluency (i. e., 25 fps) for one
of the four GPU cards of Table 3. As an example, con-
sider again the Nvidia GeForce GTX 850M (which
is the best of the four GPUs in terms of power con-
sumption.) For the game GRID Autosport and for low
resolution, the Nvidia GeForce GTX 850M is able to
support 166.65 fps which is: 166.65 x 1024 x 768 x 8
= 1048471142.4 bits/second (assuming a color depth
of 8 bits/pixel). Thus the NIC card would have to
operate at a bit rate of about 1.05 Gb/s. A similar
computation for the Ultra high resolution level gives
us a bit rate of: 34.7 x 1920 x 1080 x 8 = 575631360
bits/second. Thus, to support the same gaming flu-
ency at the Ultra-high resolution level, the NIC would
have to operate at 575 Mb/s. Note that the required bit
rate at the Ultra-high resolution level is almost half of
that of the required bit rate at the low resolution level
because the GPU supports a lower frame rate at the
Ultra-high resolution level. To support these bit rates,
the mobile device’s NIC would have to be 802.11ad
compliant. The 802.11ad standard is able to support
bit rates up to 6.77 Gbit/s.

To evaluate the power consumed by the device’s
wireless networking card during the considered gam-
ing session, we will assume a model of a wireless
networking card that consumesρtx watts when in
transmit mode andρrx watts when in receive mode.
With single-antenna 802.11 devices, the devices can-
not send and receive simultaneously. This normally
implies that one has also to take into account the
cost of frequently switching the device’s radio be-
tween the transmit and the receive mode. This, how-
ever, is changing as mobile devices are now increas-

2The missing value in the last row corresponds to a test
that could not be run because the GPU card could not sup-
port a sufficiently acceptable frame rate.

ingly being equipped with MIMO (multiple-input and
multiple-output) technology enabling the use of mul-
tiple antennas at both the transmitter and receiver. In
fact, Mobile Experts predicts that the use of MIMO
technology will reach 500 million PCs, tablets, and
smartphones by 2016 (Madden, 2011). As a result, we
will only take into account power consumption due to
transmission, reception, and idling. We will note the
power consumption of the radio during idling byρid .

Let µt and µr be the transmission and reception
rates respectively. Letl be the length of the packet
sent to the application when the player takes an ac-
tion. The time needed to transmit this packet is then:
l/µt . Let t be the length of the entire gaming session
(in seconds). During the timet, the device transmits
t/r times wherer is the player’s reactivity (defined
earlier). The total time during which the device trans-
mits is therefore:

tl
rµt

secs. (1)

The corresponding power consumption during the
period of timet is:

Ptx =
ρtxtl
rµt

(2)

To evaluate the power consumed by the device’s
receiver, recall that our model assumes that, to re-
spond to each player’s action, the application gener-
ates a video stream of lengthv seconds. The devices
spendsv/µr seconds to receive each of these video
streams. Since we havet/r of these video streams
during the considered time period of lengtht, the de-
vice’s NIC receives video streams during:

tv
rµr

secs. (3)

Let Prx be the power that the device’s NIC con-
sumes to receive thet/r video sequences.Prx can be
given by:

Prx =
ρrxtv
rµr

(4)

The device’s NIC is in the idle mode when it is not
transmitting and not receiving. This occurs during:

t −
tl
rµt

−
tv
rµr

secs. (5)

The power consumed by the device’s NIC while
idling is therefore:

Pid = ρidt(1−
l

rµt
−

v
rµr

) (6)

The�Case�for�Visualization�as�a�Service�-�Mobile�Cloud�Gaming�as�an�Example

581

Table 3: Average Frame Rate of Some Combinations of GPU cards, Games, and Resolutions.

GPU Card GRID Autosport Watch Dogs Titanfall Thief

L M H U L M H U L M H U L M H U

GeForce GTX 770M (75 Watts) 199.6 130.3 92.6 46.5 80.7 66.1 27.7 19.8 60 60 59.3 48.3 57.1 51.3 46.8 26.6

GeForce GTX 860M (60 Watts) 192.15 109.65 88 47.2 71.2 60.7 27.7 18.9 60 60 59.5 42.4 60.5 52.7 44 23.95

GeForce GTX 850M (40-45 Watts) 166.65 99.33 68.3 34.7 61.8 52.3 20.75 14.7 60 59.7 53.25 34.3 46.45 39.6 36.65 18.2

GeForce GTX 765M (50-75 Watts) 191.9 130.7 74.1 34.8 81.3 56.9 21.1 60 59.7 54.3 35.6 58.2 43.1 37 19.1

Table 4: Power Consumption for the Intel Dual Band Wireless-AC 7260 802.11ac, 2x2 Wi-Fi Adapter (Hewlett Packard,
2013).

Mode Power (mW)
Transmit 2000
Receive 1600

Idle (WLAN associated) 250
Idle (WLAN unassociated) 100

Radio Off 75

Let PNIC(t) be the power consumed by the wire-
less NIC during thet-second gaming session.PNIC(t)
is then:

PNIC(t) = Ptx+Prx +Pid

=
ρtxtl
rµt

+
ρrxtv
rµr

+ρidt(1−
l

rµt
−

v
rµr

)

In practice, one must consider values forρrx that
accommodate high reception rates (for high defini-
tion gaming) and values forρtx that correspond to
low transmission rates since the user’s actions usually
translate into short packets.

To illustrate, we consider the case of an HP Elite-
Book Folio 1040 G1 Notebook PC. This notebook is
equipped with the Intel Dual Band Wireless-AC 7260
802.11ac Wi-Fi Adapter whose power consumption
is given in Table 4) (Hewlett Packard, 2013). As-
sume that the NIC card is 80% of the time in recep-
tion mode, 10% of the time in transmit mode, and is
idle (but associated) 10% of the time. If we apply our
power model to this WiFi adapter, power consump-
tion in one hour would be (approximately):

PNIC(t) = Ptx+Prx +Pidle

= 0.1×2000+0.8×1600+0.1x250

= 1505milliwatts

assuming the highest Rx and Tx power levels.

Considering the examnple of a notebook equipped
equipped with a GPU of type Nvidia GeForce GTX
850M (Section 6.1), we can estimate that, in one hour,
the GPU card will consume about betwee 0.8x40 W
and 0.8 x 45 W, i.e., between 32W and 36W, assuming
a GPU ustilzation of 80% similar to our assumption of
the NIC card being in the Rx mode 80 % of the time.

From the results obtained in the two scenarios,
it is clear that using the wireless networking inter-
face in a gaming session consumes much less power
than using a modern GPU card installed on the same
device. Specifically, the power consumed using the
wireless card would be around (1505 / 34000) x 100,
i.e., around 4.42% of the power consumed by the on-
device GPU.

7 MOBILE CLOUD GAMING
USING SMARTPHONES

We now compare power consumption between GPU-
based gaming and cloud-based gaming on smart-
phones.

7.1 Power Consumption of GPU-based
Gaming on Smartphones

In (Kim et al., 2015), the authors measured power
consumption of a Qualcomm Adreno 320 GPU in a
Google Nexus 4 smartphone. They used two games
in their tests: Angry Birds (2D game) and Droid In-
vaders (3D game). The authors report results for a
gaming session that lasted 560 seconds for Angry
Birds and 505 seconds for Droid Invaders. Through-
out the two gaming sessions, power consumption re-
mained approximately at around 1750 mW for Angry
Birds and at around 2000 mW for Droid Invaders. We
will use the average of these two numbers (1875 mW)
as an estimate of the average power consumption of
both 2D and 3D games.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

582

Table 5: Frame Rates for the Adreno 320 GPU on a Google Nexus 4 and on a Samusung Galaxy S4 using the Manhattan
Benchmark (GFXBench, 2015)

Smartphone Model GPU Resolution Frame Rate

Google Nexus 4 (LG E960) Adreno 320 1196 x 768 9.2
Google Nexus 5 Adreno 330 1794 x 1080 10.1

Samsung GT-I9507 Galaxy S4 Adreno 320 1920 x 1080 5.4
Samsung GT-I9515 Galaxy S4 Value Edition Adreno 320 1920 x 1080 5.1

Samsung Galaxy S4 Active (GT-I9295, SGH-I537) Adreno 320 1920 x 1080 5.1
Samsung Galaxy S4 (GT-I9505, GT-I9508, SC-04E, SCH-I545,

SCH-R970, SGH-I337, SGH-M919, SPH-L720) Adreno 320 1920 x 1080 5.1

Figure 2: 802.11ac Throughput and Power Comparison for Galaxy S4 and Galaxy S5 with a Channel Width of 20/40/80 MHz
and FA on. (Saha et al., 2015).

7.2 Power Consumption of Cloud-based
Gaming on Smartphones

To compare power consumption of cloud-based gam-
ing with GPU-based gaming, we first need to evaluate
the NIC bit rate that would be necessary to provide
a gaming experience comparable to the one achieved
through GPU-based gaming. For this, we used results
from the GFXBench 3.0 benchmark, a cross-platform
OpenGL ES 3 benchmark designed for measuring
graphics performance, render quality and power con-
sumption on several types of devices including smart-
phones. In particular, the benchmark has battery
and stability tests that measure the devices battery
life and performance stability by logging frames-per-
second (fps) performance and expected battery run-
ning time while running sustained game-like anima-
tions (GFXBench, 2015). We focused on results for
the Adreno 320 GPU on a Google Nexus 4, which is
the same configuration used in the GPU-based sce-
nario of the previous section.

Table 5 shows the frame rate for several tests using

the Manhattan benchmark (GFXBench, 2015). Row
1 of the table shows that the Adreno 320 GPU on a
Google Nexus 4 achieved a frame rate of 9.2 fps. Con-
sidering this frame rate and the given resolution (1196
x 768), the NIC bit rate that would be necessary to
achieve a similar gaming experience can be derived
as: 9.2 x 1196 x 768 x 24 (bits/pixel) = 202810982.4
bps≈ 203 Mbps.

We now turn to evaluating the power needed on
the NIC to sustain this bit rate. For this, we use the re-
sults from (Saha et al., 2015) where the authors exper-
iment with a variety of smartphones supporting differ-
ent subsets of 802.11n/ac features. In particular, the
authors measured throughput and power consumption
in a Galaxy S4 using different configurations. Based
on their findings for the Galaxy S4 used in the ex-
periment, only 802.11ac offers Rx throughput levels
sufficient for the considered gaming bit rate (of 203
Mbps). Figure 2 (reproduced from (Saha et al., 2015))
shows that the best Rx throughput with 802.11ac was
about 250 Mbps. Power consumption in this case was
about 1100 mW.

The�Case�for�Visualization�as�a�Service�-�Mobile�Cloud�Gaming�as�an�Example

583

Table 6: Power Consumption (in mW) in Non-
Communicating Modes. (Saha et al., 2015).

Configuration PSM Idle

802.11n, 20 MHz, SS 24± 16 398± 7
802.11n, 40 MHz, SS 25± 5 413± 2
802.11ac, 20 MHz, SS 22± 9 374± 7
802.11ac, 40 MHz, SS 20± 9 425± 3
802.11ac, 80 MHz, SS 19± 10 529± 11

The authors did not provide measurements for the
throughput and power consumption in transmit mode
with 802.11ac. They, however, measured through-
put and power consumption in transmit mode with
802.11n. Figure 3 shows their results. In particular,
the results show that that it is possible to achieve a
Tx throughpout of more than 40 Mbps with as little
power as 800 mW. Note that, in a cloud-based gaming
session, a Tx throughout of 40 Mbps is typically suffi-
cient. The authors also measured power consumption
of the Galaxy S4 when it is in non-communication
modes, i.e., power saving mode (PSM) or idle. Their
results (Table 6) show that the highest 802.11ac power
consumption in PSM was 31 mW and that the high-
est 802.11ac power consumption when idle was 540
mW. The relatively high idle mode power consump-
tion of larger channel widths (80 Mhz) has also been
observed by other studies (e. g., (Zeng et al., 2014)).

Figure 3: Comparison of Different CPU Gover-
nors/Frequencies for Galaxy S4 (802.11n) (Saha et al.,
2015).

Based on all the previous results from (Saha et al.,
2015) and assuming that, in a cloud-based gaming
session, the device’s 802.11 adapter spends 80% of
the time receiving, 10% of the time transmitting, and
10% of the time idle, the total power consumed in one
hour by the 802.11 adapter would be:

PNIC(t) = Ptx+Prx +Pidle

= 0.1×800+0.8×1100+0.1×540

= 1014milliwatts

Comparing power consumption in the two scenar-
ios: using GPU-based gaming (which is 1875 mW
as derived in Section 7.1 and cloud-based gaming
(which is 1014 mW as derived in this section), we
conclude that, in the considered smartphone configu-
ration, cloud-based gaming can potentially result into
a power saving of about 46%.

8 CONCLUSION

We presented a comparative analysis between two
scenarios of mobile gaming, one that relies entirely
on the GPU of the mobile device and one where the
gaming application runs on the cloud. We analyti-
cally evaluated and compared power consumption in
these two scenarios. Based on our analysis, we ar-
gue that the idea of Visualization-as-a-Service (VaaS)
is a viable computing model that enables the users of
mobile devices with limited power capabilities to still
use long running graphics-intensive applications. In
this model, advanced visualization capabilities would
be provided to users as a service via the Internet.

Two research directions are worth studying: (i) the
impact of protocol (TCP/UDP/IP) overhead and (ii)
the impact of the CPU overhead for processing the
large number of packets typical in cloud gaming. We
believe that considering these two types of overhead
will provide a more accurate assessment of the bene-
fits of cloud-based gaming over GPU-based gaming.

ACKNOWLEDGEMENTS

The first author gratefully acknowledges travel sup-
port from the Institute for Complex Additive Systems
Analysis (ICASA) at New Mexico Tech for presenta-
tion of this paper at the CLOSER’2015 Conference.

REFERENCES

Carroll, A. and Heiser, G. (2010). An analysis of power con-
sumption in a smartphone. InProceedings of the 2010
USENIX Conference on USENIX Annual Technical
Conference, USENIXATC’10, pages 21–21, Berke-
ley, CA, USA. USENIX Association.

GFXBench (2015). Gfxbench 3.0 directx.
http://www.gfxbench.com.

Halperin, D., Greenstein, B., Sheth, A., and Wetherall,
D. (2010). Demystifying 802.11n Power Consump-
tion. In Proceedings of the International Conference
on Power-Aware Computing and Systems, HotPower,
Vancouver, BC, Canada.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

584

Hao, S., Li, D., Halfond, W. G. J., and Govindan, R.
(2013). Estimating Mobile Application Energy Con-
sumption using Program Analysis. InProceedings of
the the International Conference on Software Engi-
neering (ICSE), San Francisco, California.

Hewlett Packard (2013). HP EliteBook Folio 1040 G1
Notebook PC. Technical report.

Hruska, J. (2013). Nvidia’s Tegra 4 Demystified: 28nm, 72-
core GPU, Integrated LTE, and Questionable Power
Consumption. http://www.extremetech.com.

Kim, Y. G., Kim, M., et al. (2015). A Novel GPU Power
Model for Accurate Smartphone Power Breakdown.
ETRI Journal, 37(1).

Lampe, U., Hans, R., and Steinmetz, R. (2013). Will mo-
bile cloud gaming work? findings on latency, energy,
and cost. InProceedings of the 2013 IEEE Second In-
ternational Conference on Mobile Services, MS ’13,
pages 103–104, Washington, DC, USA. IEEE Com-
puter Society.

Lee, K., Chu, D., Cuervo, E., Kopf, J., Grizan, S., Wol-
man, A., and Flinn, J. (2014). DeLorean: Using Spec-
ulation to Enable Low-Latency Continuous Interac-
tion for Mobile Cloud Gaming. Technical report, Mi-
crosoft Research.

Madden, J. (2011). MIMO Adoption in Mobile Com-
munications Forecast: Devices by Operating System
and User Type, Worldwide, 2010-2017, 1Q13 Update.
Technical report, Mobile Experts.

MarketsandMarkets (2010). World Mobile Applications
Market - Advanced Technologies, Global Forecast
(2010 - 2015). Technical report, MarketsandMarkets.

Milanesi, C., Tay, L., Cozza, R., Atwal, R., Nguyen, T. H.,
Tsai, T., Zimmermann, A., and Lu, C. K. (2013).
Forecast: Devices by Operating System and User
Type, Worldwide, 2010-2017, 1Q13 Update. Tech-
nical report, Gartner.

Netgear (2012). Next Generation Gigabit WiFi - 802.11ac.
Technical report.

Notebook Review (2015). Dell precision m6700
owner’s review. http://forum.notebookreview.com/
dell-latitude-vostro-precision/679326-dell-precision-
m6700-owners-review.html.

NoteBookCheck (2014). Computer games on laptop
graphic cards. http://www.notebookcheck.net/
Computer-Games-on-Laptop-Graphic-
Cards.13849.0.html.

Nvidia (2015a). Building Cloud Gaming Servers. http://
www.nvidia.com/ object/cloud-gaming-benefits.html.

Nvidia (2015b). GeForce GTX 690 Specifications.
http://www.geforce.com/hardware/desktop-gpus/
geforce-gtx-690/specifications.

Nvidia (2015c). Grid GPUs. http://www.nvidia.com/
object/grid-boards.html.

Saha, S. K., Deshpande, P., Inamdar, P. P., Sheshadri, R. K.,
and Koutsonikolas, D. (2015). Power-Throughput
Tradeoffs of 802.11n/ac in Smartphones. InProc. of
the 34nd IEEE International Conference on Computer
Communications (INFOCOM), Hong Long, Spain.

Shiraz, M., Gani, A., Khokhar, R., and Buyya, R. (2013). A
Review on Distributed Application Processing Frame-

works in Smart Mobile Devices for Mobile Cloud
Computing. IEEE Communications Surveys Tutori-
als, 15.

Soliman, O., Rezgui, A., Soliman, H., and Manea, N.
(2013). Mobile cloud gaming: Issues and challenges.
In Daniel, F., Papadopoulos, G. A., and Thiran, P.,
editors,Mobile Web and Information Systems - 10th
International Conference, MobiWIS 2013, Paphos,
Cyprus, August 26-29, 2013. Proceedings, volume
8093 of Lecture Notes in Computer Science, pages
121–128. Springer.

Thompson, C., Schmidt, D. C., Turner, H. A., and White,
J. (2011). Analyzing Mobile Application Software
Power Consumption via Model-driven Engineering.
In Benavente-Peces, C. and Filipe, J., editors,PECCS,
pages 101–113. SciTePress.

Zeng, Y., Pathak, P. H., and Mohapatra, P. (2014). A
First Look at 802.11ac in Action: Energy Efficiency
and Interference Characterization. InPros. of the
13th IFIP International Conferences on Networking,
Trondheim, Norway.

The�Case�for�Visualization�as�a�Service�-�Mobile�Cloud�Gaming�as�an�Example

585

Cloud-side Execution of Database Queries for Mobile Applications

Robert Pettersen, Steffen Viken Valvåg,Åge Kvalnes and Dag Johansen
Department of Computer Science, University of Tromsø, The Arctic University of Norway, Tromsø, Norway

{robert, steffenv, aage, dag}@cs.uit.no

Keywords: Mobile, Cloud, Performance.

Abstract: We demonstrate a practical way to reduce latency for mobile .NET applications that interact with cloud
database services. We provide a programming abstraction for location-independent code, which has the po-
tential to execute either locally or at a satellite execution environment in the cloud, in close proximity to the
database service. This preserves a programmatic style of database access, and maintains a simple deployment
model, but allows applications to offload latency-sensitive code to the cloud. Our evaluation shows that this
approach can significantly improve the response time for applications that execute dependent queries, and that
the required cloud-side resources are modest.

1 INTRODUCTION

Use of cloud-provided services is integral to the op-
eration of modern distributed and mobile applica-
tions. In particular, cloud databases simplify appli-
cation logic by serving as highly available reposito-
ries for critical state. For improved scalability and
availability these databases are commonly NoSQL,
with limited support for tabular relations and trans-
actions and with a more relaxed consistency model
than a conventional relational database. Queries are
issued through a programmatic interface, rather than
a domain-specific, high-level query language.

This promotes a usage pattern where multiple,
consecutively-issued queries implement a single logi-
cal transaction. For example, an atomic update can be
implemented as a read of the old value, followed by
a conditional write of the new value, with the predi-
cate that the old value remains unchanged. Or a col-
lection of related records can be retrieved in multiple
steps, by manually following foreign key references,
rather than using higher-level features like joins and
subqueries.

When the database is hosted in the cloud, issu-
ing a sequence of dependent queries entails multiple
round-trips of communication, and network latency
becomes an important concern. For example, we have
measured a latency of 50−350ms for accessing the
Amazon DynamoDB (DeCandia et al., 2007) cloud
database from a mobile device (Pettersen et al., 2014),
whereas a study covering 260 global vantage points
reports an average round-trip time (RTT) of 74ms for

accessing AmazonEC2 instances (Li et al., 2010). Is-
suing a sequence of queries to the cloud can result in
unwanted delays that are perceptible by users.

This paper demonstrates a practical way to signif-
icantly reduce completion-latency when mobile ap-
plications execute dependent queries against a cloud
database. Our approach is to provide a program-
ming abstraction—satellite execution—for location-
independent code, which has the potential to exe-
cute either locally on a device, or be offloaded to the
cloud. If an application experiences high latency, or
needs to issue a long sequence of database queries, the
latency-sensitive code can be offloaded to the cloud
and executed in close proximity to the database ser-
vice. This ensures low-latency database access on
demand, while preserving the programmatic style of
database access.

Our system, called Dapper, significantly extends
and integrates the functionality of two previous sys-
tems: Rusta (Valvåg et al., 2013) and Jovaku (Pet-
tersen et al., 2014). Rusta is a platform for developing
cloud applications that can utilize client-side storage
and processing capacity, while the Jovaku system pro-
vides a distributed infrastructure for caching of cloud
database data through the ubiquitousDNS service.

A goal with Rusta was to express computations
in a location-independent way, allowing for oppor-
tune execution in the cloud or at client-side devices.
This was accomplished by expressing computations
in the Scala programming language and using built-
in closure features to create transferable execution
contexts. Dapper uses .NET reflection to achieve the

586

same, thereby approaching the problem of transfer-
ability in a more general manner; any part of the exe-
cution context of a program written in any .NET sup-
ported language can be made transferable.

Jovaku’s application-transparent interfacing with
Amazon’s DynamoDB throughDNS was in part made
possible by a cloud-side relay-node. Software on this
node bridgedDNS with DynamoDB by turningDNS

requests into database queries. Dapper not only sup-
ports use ofDNS for caching of data on behalf of a
mobile application, but also transforms and extends
the Jovaku cloud-side node into a platform for host-
ing and executing offloaded .NET code.

To illustrate the benefits of our approach, we
quantify latency savings when cloud database queries
are executed from the cloud rather than at the client-
side device. We examine communication traces of
popular phone applications to determine the practi-
cality of our approach, and we measure the perfor-
mance of the Dapper cloud-side platform to assess
added costs.

The rest of the paper is structured as follows. Sec-
tion 2 elaborates on the background and context of
our work, motivating our general approach. Sec-
tion 3 describes Dapper, and the programming ab-
stractions that enable cloud-side execution of queries.
Section 4 contains our performance evaluation, with
measurements of typical reductions in latency, and
the maximum query processing throughput that can
be achieved in various configurations. Section 5 dis-
cusses related work, and Section 6 concludes.

2 BACKGROUND

The desire to reduce latency for mobile applications
tends to encourage a split application architecture,
where parts of the application logic executes on the
device, and other parts execute in the cloud. Higher-
level operations such as submitting a comment or gen-
erating a news feed are delegated as a whole to the
cloud, to avoid multiple round-trips of communica-
tion.

The split between frontend and backend also has
a tangential benefit: it allows a variety of frontends,
often tailored for different devices, to access the same
backend service. For example, an on-line chess ser-
vice will typically offer both a web-based frontend,
as well as clients for various mobile devices and plat-
forms. Users should be able to switch seamlessly be-
tween client devices, e.g. moving from their laptop
to their phone, so the state of on-going games must
be maintained by the backend. This requires frequent
communication with the cloud to retrieve and update

application state.
Many frameworks and platforms aim to ease the

development of mobile applications that are fac-
tored into separate backend and frontend components.
One example is Parse (Parse, 2015), which provides
a backend-as-a-service solution that offers backend
cloud storage, as well as the ability to deploy appli-
cation modules that execute in the cloud, close to the
data. One common downside of these approaches is
that the device-specific and cloud-specific parts of the
application are deployed independently, through dif-
ferent channels. This increases the risk of breakage,
when old versions deployed on devices interact with
the newest version deployed in the cloud.

We approach the problem differently; rather than
explicitly deploying parts of applications in the cloud,
we empower applications to offload latency-sensitive
code on demand, in a dynamic manner. Offloaded
code will execute in close proximity to the backend
storage service, where latency is low. Thus, we ad-
dress the main motivating concern—improving ap-
plication responsiveness as experienced by users—
without dictating a static deployment model for ap-
plications.

A key idea underlying this work is to move com-
putations closer to the data that they touch, which is a
well-known technique that finds diverse applications.
When processing streams of data, the demand for net-
work bandwidth can be reduced by filtering streams
closer to the source, pushing computations upstream.
When processing stored data, similar gains can be
made by scheduling computations to execute locally
on the storage nodes, using functional programming
models like MapReduce (Dean and Ghemawat, 2004)
for location independence.

Our experience from mobile agents (Johansen
et al., 2001; Johansen et al., 1999) and MapReduce-
style distributed data processing have inspired some
key aspects of this work. As in Cogset (Valvåg et al.,
2013), we promote a functional programming model
using the visitor pattern, where latency-sensitive code
has the ability tovisit the backend storage service as
desired. In this case, a visitor also resembles a mo-
bile agent; although restricted to moves back and forth
between a client device and the cloud, it retains the
defining ability to carry state.

3 DAPPER

Instead of statically partitioning applications into
client- and cloud-side components, Dapper enables
individual objects to move dynamically between the
client and the cloud. This is accomplished by ex-

Cloud-side�Execution�of�Database�Queries�for�Mobile�Applications

587

DBClient

Relay

Node

DB

Client

Relay

Node

(a) Baseline, client communicating directly with DB

(b) With satellite execution

Single roundtrip

Multiple Get/Puts

Figure 1: Howsatellite executionis applied to eliminate
extraneous round-trips of communication between a client
and the cloud, reducing latency.

tending the mobile platform with asatellite execu-
tion environment hosted on a cloud-side relay-node.
Dapper implements the relay-node and provides pro-
gramming abstractions for an application to temporar-
ily execute an object at the satellite.

The decision to deploy an object for satellite ex-
ecution is taken at run-time. Deployment involves
moving an object’s code (i.e., its class) and its cur-
rent state. Incurred state changes while executing re-
motely are included when the object is moved back
to the client. Objects can move repeatedly between
the client and the cloud, for example in response to
changes in application environment or state.

In this work, we demonstrate how satellite execu-
tion can reduce completion-latency for cloud database
queries. Queries are expressed as objects that interact
programmatically with the database. Through satel-
lite execution the objects are deployed in close prox-
imity to the targeted cloud database. This approach
preserves the advantages of a programmatic database
interface; for example, objects can perform computa-
tions, transformations, cryptographic operations, and
any other manipulations of parameters and interme-
diate results that may be required when performing a
sequence of queries. Figure 1 illustrates our approach,

p u b l i c i n t e r f a c e IC on te x t

{

Task<objec t> Get (s t r i n g key) ;

Task<L i s t<objec t>> GetMany (s t r i n g key) ;

Task<bool> Put (s t r i n g key , o b j e c t va lue) ;

}

Figure 2: Dapper interface to key/value databases or stores.

showing how multiple round-trips between a client
and the cloud can be replaced with a single round-trip
to the relay-node and multiple low-latency intra-cloud
interactions with the database.

Our implementation targets Amazon DynamoDB,
a popular NoSQL cloud database service, but it can
easily be adapted to work with any similar services.
The relay-node is an Amazon EC2 instance in the
same availability zone as the DynamoDB service,
running an unmodified Windows Server 2012 image.
The relay-node software is written in C# and uses an
asynchronous programming model to efficiently han-
dle a large number of clients and database connec-
tions.

Amazon’s official C#API is used to perform Dy-
namoDB operations. But Dapper exposes thisAPI to
the programmer indirectly, through a database con-
text object providing general database operations, im-
plementing the IContext interface shown in Figure 2.
This indirection separates application logic from the
particular database, promoting customization flexibil-
ity. For example, an application can be run fully
client-side by providing a context object that binds to
a client-side database.

To be eligible for satellite execution, a class must
implement the ISatellite interface. Figure 3 shows
an example implementing a bag-of-queries capable of
satellite execution, given a database context. Queries
are added to the bag by invoking AddQuery(); the
queries are aggregated in thequeryList field. Exe-
cute() issues the queries via the database context ob-
ject and stores results in theresponseList field. The
client can retrieve query results by invoking GetRe-
sponses().

An object is moved for execution at a relay-node
when the application invokes the Dapper run-time’s
ExecuteAt() function, shown in Figure 4, specifying
the object and the particular satellite execution envi-
ronment. ExecuteAt() transfers the object, in a seri-
alized state, to the relay-node, where the object is de-
serialized and its Execute() function is invoked. After
the Execute() function completes, the object is moved
back to the client. Dapper exposes .NET task-based
asynchronous programming primitives, as shown in

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

588

[S e r i a l i z a b l e]

p u b l i c c l a s s QueryBag : I S e r i a l i z a b l e , I S a t e l l i t e

{

p r i v a t e L i s t<s t r i n g> r e s p o n s e L i s t ;

p r i v a t e L i s t<s t r i n g> q u e r y L i s t ;

p u b l i c async Task Execute (IC on te x t c t x)

{

foreach (var query in q u e r y L i s t)

{

var queryResponse =

await c t x . GetMany (query) ;

i f (r e s p o n s e L i s t ==n u l l)

r e s p o n s e L i s t =new L i s t<s t r i n g > () ;

r e s p o n s e L i s t . AddRange (queryResponse) ;

}

}

p u b l i c vo id AddQuery (s t r i n g query)

{

i f (q u e r y L i s t == n u l l)

q u e r y L i s t = new L i s t<s t r i n g > () ;

q u e r y L i s t . Add (query) ;

}

p u b l i c L i s t<s t r i n g> GetResponses ()

{

re turn r e s p o n s e L i s t ;

}

}

Figure 3: Implementation of a bag-of-queries that can exe-
cute remotely in the cloud via satellite execution.

async Task<objec t> ExecuteAt (o b j e c t obj ,

Node l o c a t i o n = n u l l)

Figure 4: Interface for requesting remote execution.

figures 3 and 4, for the application to determine com-
pletion of remote execution and for the remote envi-
ronment to efficiently handle actual execution.

Dapper employs several techniques to reduce the
amount of data communicated between the client and
the relay-node. One technique is to cache previously
received assemblies at the relay-node. Thus, if in-
stances of the same class are moved repeatedly, the
corresponding byte codes need only be communi-
cated once. Assembly-versioning determines the va-
lidity of a cached assembly. Another optional opti-
mization is to communicate only changed state back
from the remote environment—when remote execu-
tion completes, Dapper determines the difference in
object state before and after execution and communi-
cates that difference back to the client for object re-
construction. This is implemented using a custom se-
rialization protocol; default serialization offers more
convenience and is employed unless otherwise speci-

fied.
A user typically assigns different levels of trust to

applications hosted on the same mobile device. For
example, the user could entrust one application with
access to data such as a contact list, but deny that ac-
cess to another application. It is important for satel-
lite execution not to weaken enforcement of this dif-
ferentiated trust. For example, if the relay-node pro-
vides no isolation between execution environments,
code executed on behalf of one application could po-
tentially access code and data belonging to another
application, thereby compromising trust assigned by
the user at the mobile device.

Dapper relies on .NET application domains (Ap-
plication Domains, 2015) to create separate and iso-
lated execution domains for received assemblies at
the relay-node. Each of these domains is config-
ured with a whitelist of library-assemblies that are
available to the hosted assembly. Also, some library-
assemblies are made partially available subject to call-
interception and approval.

4 EVALUATION

Our relay-node was hosted on two types of Ama-
zon EC2 instances in our experiments. The first type
was t1.micro, equipped with 613 MB memory and
a single-core 64-bit vCPU operating at 1.85 GHz.
The second type was t2.medium, equipped with 4
GB memory and a two-core vCPU operating at 2.50
GHz. Both types of instances were running Microsoft
Windows Server 2012 R2. We used Amazon’s Dy-
namoDB as the cloud-side database, instantiated in
the same availability zone as our relay-node.

Dapper runs on a variety of Microsoft Windows
platforms, including phone, store, and desktop. We
used two different client-side platforms for the exper-
iments: (1) a phone with 2 GB memory and a four-
core QualCom Snapdragon 800 2.2 GHzCPU and (2)
a desktop machine with 64 GB memory and a four-
core Intel Xeon E5-1620 3.7 GHzCPU. The phone
ran Windows Phone 8.1 and communicated over 4G,
whereas the desktop machine ran Windows 10 and
was connected to aLAN .

We first report on a black-box examination of
the cloud communication patterns of some popular
mobile device applications. Here we sought to dis-
cover patterns consistent with sequences of dependent
queries, with the motivation that satellite execution
could be used in place of such interactions. We con-
figured our phone platform to communicate through
an access point instrumented to capture all ingress and
egress packets. We then inspected packet traces look-

Cloud-side�Execution�of�Database�Queries�for�Mobile�Applications

589

0

1

2

3

4

5

Nu
m
be

r o
f p

ac
ke

ts

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Time (sec)

req1 req2

resp1 resp2

Figure 5: Example communication pattern between mobile
device and cloud assumed to be of a request/reply type.

Table 1: Summary of cloud interactions during phone ap-
plication startup.

Application # request/reply # connections

Social networking
1 1
2 1

Instant messaging
1 4
2 3
7 1

Short messaging

1 7
2 3
4 1
6 1

Picture exchange
1 1
2 2

ing for what appeared as consecutive request/reply
cloud interactions without intervening user actions.
The particular pattern we looked for is exemplified
in Figure 5, which shows two interactions assumed to
be of a request/reply type.

Our findings for cloud interactions during startup
of four popular applications are summarized in Ta-
ble 1. We observed that the applications communicate
over a number of separate network connections, rang-
ing from 2 for the social networking application to
12 for the short messaging application. Most of these
connections are to different services within the same
cloud, but some are external, typically in support of
content distribution such as Akamai (Nygren et al.,
2010). The number of assumed request/reply interac-
tions varied across applications and connections, with
the instant- and short messaging applications respec-
tively having as many as 7 and 6 consecutive interac-
tions. These findings suggest satellite execution could
be effective if applied in these popular applications.

We continue with an experiment that quantifies la-
tency when a client issues cloud database queries di-

1 2 3 4 5
Number of queries

0

200

400

600

800

1000

1200

La
te
nc
y
(m

s)

desktop
desktop via relay
phone via relay
phone
phone (normalized)

Figure 6: Increasing number of queries executed with and
without satellite execution.

rectly and when utilizing the cloud-side relay-node.
For this we used the bag-of-queries implementation
outlined in Figure 3 to issue queries to the cloud
database. Latency when the bag contained between
1 and 5 queries is shown in Figure 6. The figure
presents results, averaged over 1000 runs, for both
phone and desktop with the relay node hosted on a
t1.micro instance. As shown, there are significant la-
tency savings when the bag contains more than one
query. This is because latency between the relay-node
and the database is low, and the round-trip latency be-
tween the client and the cloud—approximately 64 ms
for desktop and 105 ms for phone—overshadows the
low cost of serializing and transferring the query bag.

The DynamoDB library uses theHTTP 100-
continue feature when interacting with the cloud
database. Use of this feature adds a communication
round-trip to database interaction, needlessly inflat-
ing latency, as described in (Pettersen et al., 2014).
We therefore used platform interfaces to disable this
HTTP feature on desktop. Similar interfaces do not
exist on Windows Phone, however. The results in
Figure 6 consequently include one additional round-
trip latency for phone, compared to desktop. To bet-
ter convey the latency difference between phone and
desktop, the figure also includes results where one
round-trip latency has been subtracted from phone.
Even after this normalization, phone has significantly
higher latency than desktop, demonstrating the rela-
tive importance of our satellite execution technique
for the mobile platform.

The data on popular applications in Table 1 only
indicates that latency savings are possible; determin-
ing the degree to which the interaction could exploit
satellite execution would require access to application
source code. To approximate the savings that could be
experienced in a deployed application we reconstruct

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

590

250 255 260 265 270 275 280 285 290
Latency (ms)

0

5

10

15

20

25

30

35
%
 o
f r
eq

ue
st
s

(a) Desktop: adding a friend

70 80 90 100 110 120
Latency (ms)

0

10

20

30

40

%
 o
f r
eq

ue
st
s

(b) Desktop: adding a friend, with satellite execution

400 420 440 460 480 500
Latency (ms)

0

5

10

15

20

%
 o
f r
eq

ue
st
s

(c) Mobile: adding a friend

90 100 110 120 130 140 150 160
Latency (ms)

0
2
4
6
8

10
12
14
16
18

%
 o
f r
eq

ue
st
s

(d) Mobile: adding a friend, with satellite execution

Figure 7: Latencies when adding a friend to a social network,with and without Dapper’s satellite execution.

a scenario where a friend connection is established in
the MSRBook, a social networking application based
on Deuteronomy (Levandoski et al., 2011). The ad-
dition of a friend in this network involves friend and
news feed updates for both concerned parties, for a
total of 4 queries. Equivalent queries were placed in
our bag-of-queries and we ran the friend-add action
1000 times on both the desktop and the mobile plat-
form, with and without satellite execution. Figure 7
illustrates latency savings. Savings due to satellite
execution are pronounced; on desktop latency drops
from around 265 ms to approximately 100 ms, while
it drops on mobile from around 450 ms to approxi-
mately 125 ms.

On a mobile device such as a smartphone, a
person uses around 24 different applications every
month (Nielsen, 2014). Even the modest resource al-
locations available to the Amazon t1.micro instance
used in our experiments are likely to be ample for a
relay-node dedicated to a single mobile device. But
if the relay-node functionality was a service offered
by the cloud database provider, in a fashion similar
to the Parse application module service (Parse, 2015),

the relay-node would likely be shared among many
mobile devices and its capacity would be an issue. We
therefore last consider an experiment where the relay-
node serves an increasing number of mobile devices.

In the experiment we configured each client (i.e.
mobile device) with a 4-query bag at the relay-node.
Queries in these bags were repeatedly executed, en-
suring high contention for relay-node resources. We
then increased the number of clients, in an attempt to
reveal relay-node capacity. Results for the t1.micro
instance are shown in Figures 8(a)–(c). From the
figures we observe that the t1 instance is capable of
completing around 50 bags per second before per-
formance tapers off. This maximum performance is
likely due toCPU becoming a bottleneck, as indicated
by the data in Figure 8(c). This is corroborated by
t2.medium instance performance, which is shown in
Figures 8(d)–(f). The t2.medium instance has approx-
imately twice theCPU capacity of the t1.micro in-
stance, and also completes bags at twice the rate of
the t1.micro instance.

Cloud-side�Execution�of�Database�Queries�for�Mobile�Applications

591

0 20 40 60 80 100
Number of clients

50

100

150

200

250

300

350

400

450

Av
er
ag

e
la
te
nc

y
pr
 b
ag

(a) Bag completion-time on t1.micro

0 20 40 60 80 100
Number of clients

50

100

150

200

250

300

Ba
gs
 p
r s

ec
on

d

(b) Bags per second on t1.micro

0 20 40 60 80 100
Number of clients

20

30

40

50

60

70

80

90

100

CP
U
co
ns
um

pt
io
n

(c) CPU consumption on t1.micro

0 20 40 60 80 100
Number of clients

80

90

100

110

120

130

140

150

Av
er
ag

e
la
te
nc

y
pr
 b
ag

(d) Bag completion-time on t2.medium

0 20 40 60 80 100
Number of clients

0

100

200

300

400

500

600

700

Ba
gs
 p
r s

ec
on

d

(e) Bags per second on t2.medium

0 20 40 60 80 100
Number of clients

0
10
20
30
40
50
60
70
80
90

100

CP
U
co
ns
um

pt
io
n

(f) CPU consumption on t2.medium

Figure 8: t1.micro and t2.medium relay-node performance

5 RELATED WORK

The complexity of developing and deploying appli-
cations that span a variety of mobile devices, per-
sonal computers, and cloud services, has been rec-
ognized as a new challenge. Users expect applica-

tions and their state to follow them across devices,
and to realize this functionality, one or more cloud
service must usually be involved in the background.
Sapphire (Zhang et al., 2014) is a recent and compre-
hensive system that approaches this problem by mak-
ing deployment more configurable and customizable,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

592

separating the deployment logic from the application
logic. The aim is to allow deployment decisions to
be changed, without major associated code changes.
Applications are factored into collections of location-
independent objects, communicating through remote
procedure calls. Like Sapphire, Dapper provides a
location-independent programming abstraction, but
preserves a monolithic application structure, which
allows the application to be installed in its entirety on
a single device through a regular distribution channel
like an app store. Code is then transferred on demand
from the device to the cloud, as objects move to the
cloud to enjoy low-latency execution. The decision to
visit the cloud or stay on the local device can be made
dynamically, at run time.

With Dapper, we introduce relay-nodes in the
cloud as an architectural tier between the cloud and
mobile devices. Similar middle tiers have been pro-
posed for example with Cloudlets (Satyanarayanan,
2013), and are implemented in code-offloading
systems like COMET (Gordon et al., 2012),
MAUI (Cuervo et al., 2010), and CloneCloud (Chun
et al., 2011). However, the goal of these systems
is often to augment mobile devices with additional
computing power, or to conserve energy (Tilevich and
Kwon, 2014), so the added tier may be located close
to the devices, on local server machines, or wherever
cheap computing power is available. In contrast, our
motivation is not to offload work, but to reduce the
latency of accessing cloud services, and thus the new
tier sits as close to the cloud services as possible.

Concretely, Dapper reduces latency by elim-
inating extraneous round-trips of communication
to the cloud. An alternative way to achieve that
is by having cloud databases support more expres-
sive query languages, so that more sophisticated
transactions can be submitted as a single operation.
Indeed, relational databases with full SQL support
are part of the offerings of major cloud providers
like Amazon. However, the ability to access the
database via a general-purpose programming lan-
guage remains appealing for its generality and
flexibility. This is a lesson learned from program-
ming models like MapReduce (Dean and Ghemawat,
2004), Oivos (Valvåg and Johansen, 2008), and
Cogset (Valvåg et al., 2013), where data is accessed
programmatically through user-defined visitor func-
tions that can integrate easily with legacy code
and libraries. The programming model in Dapper
follows a similar philosophy, with the difference that
user-defined functions are visiting a database in the
cloud rather than a partition of data in a cluster.

6 CONCLUSION

This work focuses on the general issue of latency
as a concern for applications that interact with the
cloud, and looks specifically at scenarios where multi-
ple consecutive queries are issued to a database in the
cloud. Intuitively, latency can be reduced by shorten-
ing communication distances, so our idea is to move
the location where queries are issued closer to the
database. Since cloud databases commonly have pro-
grammatic interfaces, we implement a general mech-
anism for code-offloading to support this pattern.

Having a relay-node in the cloud, located in close
proximity to the database service, has already proven
to be a useful technique for caching, and beneficial
for read-mostly workloads (Pettersen et al., 2014).
Here, we extend the relay-node with functionality for
satellite execution, allowing code that has moved tem-
porarily from a mobile device to execute in an envi-
ronment with low-latency database access. This gives
benefits for additional workloads, which may include
updates.

The key characteristic that a workload must ex-
hibit to benefit from our approach is dependencies be-
tween queries. For example, if the results from one
query are used to shape the next query, there is a de-
pendency between the two. So long as there is no
need for user interaction, a whole sequence of depen-
dent queries can be offloaded to the cloud. By elimi-
nating extraneous round-trips of communication, this
improves response times.

To estimate the potential for improvement in real
applications, our evaluation examines the communi-
cation patterns of some popular applications through
a black-box technique. This has yielded some indica-
tions that dependent queries occur in practice, since
sequences of up to 7 requests were observed back-to-
back over the same connection on startup. Looking
at a concrete implementation of a social networking
application from (Levandoski et al., 2011), we found
specific examples. For example, a friend request re-
sults in 4 dependent queries; when offloaded to the
cloud from a phone, the completion time of a friend
request dropped from 450 ms to approximately 125
ms.

Our implementation handles the practicalities of
transferring assemblies of .NET code, serializing
and deserializing objects, and sandboxing code that
executes on the relay-node. Our evaluation gives
some data points on performance: a single Amazon
t1.micro instance can serve hundreds of queries per
second. One such instance can thus easily handle load
imposed by a large number of applications. So, we
can dramatically reduce latency without disrupting

Cloud-side�Execution�of�Database�Queries�for�Mobile�Applications

593

application architectures and with minimal require-
ments for resources in the cloud.

REFERENCES

Application Domains (2015). http://msdn.microsoft.com/
en-us/library/cxk374d9%28v=vs.90%29.aspx.

Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and Patti, A.
(2011). Clonecloud: elastic execution between mobile
device and cloud. InProceedings of the sixth confer-
ence on Computer systems, EuroSys ’11, pages 301–
314, New York, NY, USA. ACM.

Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A.,
Saroiu, S., Chandra, R., and Bahl, P. (2010). Maui:
making smartphones last longer with code offload. In
Proceedings of the 8th international conference on
Mobile systems, applications, and services, MobiSys
’10, pages 49–62, New York, NY, USA. ACM.

Dean, J. and Ghemawat, S. (2004). MapReduce: Simplified
data processing on large clusters. InProceedings of
the 6th symposium on Operating Systems Design and
Implementation, OSDI ’04, pages 137–150. USENIX
Association.

DeCandia, G., Hastorun, D., Jampani, M., Kakulapati,
G., Lakshman, A., Pilchin, A., Sivasubramanian, S.,
Vosshall, P., and Vogels, W. (2007). Dynamo: Ama-
zon’s highly available key-value store.SIGOPS Oper.
Syst. Rev., 41:205–220.

Gordon, M. S., Jamshidi, D. A., Mahlke, S., Mao, Z. M.,
and Chen, X. (2012). Comet: code offload by mi-
grating execution transparently. InProceedings of the
10th USENIX conference on Operating Systems De-
sign and Implementation, OSDI’12, pages 93–106,
Berkeley, CA, USA. USENIX Association.

Johansen, D., Lauvset, K. J., van Renesse, R., Schneider,
F. B., Sudmann, N. P., and Jacobsen, K. (2001). A
TACOMA retrospective.Software - Practice and Ex-
perience, 32:605–619.

Johansen, D., Marzullo, K., and Lauvset, K. J. (1999). An
approach towards an agent computing environment. In
ICDCS’99 Workshop on Middleware.

Levandoski, J. J., Lomet, D. B., Mokbel, M. F., and Zhao,
K. (2011). Deuteronomy: Transaction support for
cloud data. InCIDR, pages 123–133. www.cidrdb.org.

Li, A., Yang, X., Kandula, S., and Zhang, M. (2010). Cloud-
Cmp: comparing public cloud providers. InACM
SIGCOMM, pages 1–14.

Nielsen (2014). http://www.nielsen.com/us/en/insights/
news/2014/smartphones-so-many-apps–so-much-
time.html.

Nygren, E., Sitaraman, R. K., and Sun, J. (2010). The aka-
mai network: A platform for high-performance inter-
net applications.SIGOPS Oper. Syst. Rev., 44(3):2–
19.

Parse (2015). http://www.parse.com.
Pettersen, R., Valvåg, S. V., Kvalnes, A., and Johansen,

D. (2014). Jovaku: Globally distributed caching for

cloud database services using DNS. InIEEE Interna-
tional Conference on Mobile Cloud Computing, Ser-
vices, and Engineering, pages 127–135.

Satyanarayanan, M. (2013). Cloudlets: at the leading edge
of cloud-mobile convergence. InProceedings of the
9th international ACM Sigsoft conference on Quality
of software architectures, pages 1–2. ACM.

Tilevich, E. and Kwon, Y.-W. (2014). Cloud-based execu-
tion to improve mobile application energy efficiency.
Computer, 47(1):75–77.

Valvåg, S. V., Johansen, D., and Kvalnes, A. (2013).
Cogset: A high performance MapReduce engine.
Concurrency and Computation: Practice and Expe-
rience, 25(1):2–23.

Valvåg, S. V. and Johansen, D. (2008). Oivos: Simple
and efficient distributed data processing. InProceed-
ings of the 10th IEEE International Conference on
High Performance Computing and Communications,
HPCC ’08, pages 113–122. IEEE Computer Society.

Valvåg, S. V., Johansen, D., and Kvalnes, A. (2013). Po-
sition paper: Elastic processing and storage at the
edge of the cloud. InProceedings of the 2013 Inter-
national Workshop on Hot Topics in Cloud Services,
HotTopiCS ’13, pages 43–50, New York, NY, USA.
ACM.

Zhang, I., Szekeres, A., Aken, D. V., Ackerman, I., Gribble,
S. D., Krishnamurthy, A., and Levy, H. M. (2014).
Customizable and extensible deployment for mobile/-
cloud applications. In11th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
14), pages 97–112, Broomfield, CO. USENIX Asso-
ciation.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

594

SHORT PAPER

Telco Clouds
Modelling and Simulation

Jakub Krzywda1, William Tärneberg2, Per-Olov Östberg1, Maria Kihl2 and Erik Elmroth1

1Dept. of Computing Science, Umeå University, SE-901 87 Umeå, Sweden
2Dept. of Electrical and Information Technology, Lund University, SE-223 63 Lund, Sweden

fjakub, p-o, elmrothg@cs.umu.se, fwilliam.tarneberg, maria.kihlg@eit.lth.se

Keywords: Mobile Cloud Computing, Telecommunication Infrastructure, Cloud Infrastructure, Modelling, Simulation.

Abstract: In this paper, we propose a telco cloud meta-model that can be used to simulate different infrastructure config-
urations and explore their consequences for system performance and costs. To achieve this, we analyse current
telecommunication and data centre infrastructure paradigms, describe the architecture of the telco cloud, and
detail the benefits of merging both infrastructures in a unified system. Next, we detail the dynamics of the
telco cloud and identify the components that are the most relevant from the perspective of modelling perfor-
mance and cost. As a number of well established simulation technologies exist for most of the telco cloud
components, we survey existing models in an attempt to construct a suitable composite meta-model. Finally,
we present a showcase scenario to demonstrate the scope of our telco cloud simulator.

1 INTRODUCTION

Recent technological developments have enabled a
union of telecommunication and cloud computing.
Joint management of telecommunication infrastruc-
ture, such as Radio Base Stations (RBS), and Data
Centres (DC) may help to achieve better performance
of hosted applications and reduce the operation costs.
In this paper we refer to this paradigm as telco cloud
computing (Bosch et al., 2011).

Despite the interest in this paradigm, there are no
simulation models capable of simultaneously mod-
elling the dynamics of Mobile Devices (MD), place-
ment and capacity of DCs, and network infrastructure.
Understanding of these relations is important for telco
cloud stakeholders, e.g., Infrastructure Providers (IP)
that can use that knowledge to reduce infrastructure
costs while still delivering competitive performance.

We propose a meta-model of the telco cloud that
facilitates experimentation and evaluation of possi-
ble configurations, such as placement and capacity
of DCs in a joint telecommunication-cloud infrastruc-
ture. The meta-model uses existing, well established
simulation models, e.g., for Radio Access Networks
(RANs) or DCs, for modelling of individual parts of
the infrastructure behaviour.

The contributions of this paper are: describing the
dynamics of the telco cloud, including Quality of Ser-
vice (QoS) and the associated costs of this paradigm

(Section 4); surveying existing models of telco cloud
building blocks (Section 5); and establishing a meta-
model that captures the described dynamics using ex-
isting and composite models (Section 6).

This paper is structured as follows. Section 2
outlines the architecture of the proposed telco cloud.
Next, the simulation motivations, challenges, and re-
quirements that the meta-model has to fulfill are pre-
sented in Section 3. Section 4 describes the telco
cloud dynamics, followed by a survey of existing
models in Section 5. Section 6 introduces the telco
cloud meta-model. Section 7 presents a showcase
simulation scenario, using a prototype implementa-
tion of the introduced meta-model. In Section 8 we
list a few relevant research topics that can be explored
using the proposed model and conclude the paper.

2 THE TELCO CLOUD
ARCHITECTURE

In this section we present issues with current telecom-
munication and cloud infrastructures, an overview of
the proposed telco cloud topology, and how the telco
cloud paradigm can help to remedy these issues.

597

2.1 Current Infrastructure

Currently, telecommunication and cloud computing
infrastructures are separated and managed indepen-
dently. The telecommunication infrastructure is
placed in close proximity to end users and is built us-
ing specialised hardware. The cloud computing in-
frastructure consists of remote DCs that are signifi-
cantly geographically separated from end users, con-
sists of commodity hardware, and is connected with
the telecommunication infrastructure via the Internet.

We identify several issues of the current infras-
tructure. Performance (especially latency) of cloud
services is not predictable, which makes computation
offloading difficult. All data processed in the cloud
are sent over the Internet to DCs, which adds com-
munication latency. For the Internet of Things, with
millions of sensors generating huge amounts of data,
the volume of traffic can cause network congestion.
Moreover, specialised telecommunication hardware is
expensive and hard to upgrade.

As a consequence of the performance bottlenecks,
particularly latency sensitive applications such as in-
dustrial process control and augmented reality con-
text recognition applications have mostly not yet been
cloudified. The low latency, jitter free, and high
throughput connections required by such applications
cannot be provided by the existing telecommunica-
tion and cloud infrastructures (Barker and Shenoy,
2010). Moreover, compute and battery resources in
MDs are limited and coupled. An approach to aug-
menting MD’s capabilities is to offload the execution
of applications to a cloud infrastructure. Such perfor-
mance augmentation can only be seamless if the com-
munication latency is low enough, and both network
bandwidth and service availability are high.

Devices are at an increasing rate gaining access
to the Internet (Atzori et al., 2010). Anything from
small sensors to petrol pumps, flowerpots, helmets,
tumblers, windows, and spark plugs is being con-
nected to the Internet to communicate and monitor
its quantified performance metrics. Most of the con-
nected devices are generating correlated contextual
information, incurring large amounts of Wide Area
Network’s (WAN) traffic. The traffic typically con-
verges to a handful of DCs for analysis and processing
which introduces congestion in the capacity-sparse
and increasingly congested RANs, core networks, and
WANs. Additionally, a portion of the transported in-
formation is only locally relevant and will add no or
very little entropy to a service in a Remote DC.

Wireless access network virtualisation and cloud-
ification of telecom equipment and services proposed
by (Wang et al., 2013), requires careful placement of

Mobile Device

Radio Base Station

Radio Base Station

Controller Radio Catchment Border

Network

Proximal Data Centers

Remote Data Centre

Figure 1: Overview of telco cloud.

compute capacity as not to introduce significant prop-
agation delay. The placement of the compute nodes
has to reflect the demand for telecom- and cloud-
services in the geographic area which the RAN cov-
ers. Current telecom signalling standards and remote
DCs do not interoperate well and are often not able to
meet telecom latency requirements.

2.2 Introducing the Telco Cloud

A telco cloud is an infrastructure consisting of MDs
(known also as user equipment), stationary devices
(sensors), access networks, intermediate WANs (con-
necting the access networks to the backbone net-
works), backbone (Internet) networks, and DCs. We
here include two main types of DCs: Remote Data
Centres (large DCs located far from the access net-
works) and Proximal Data Centres (smaller DCs lo-
cated close to the access networks).

The telco cloud topology paradigm proposes
a closer integration between access networks and
a cloud infrastructure than the current topological
model where the telecom and cloud infrastructures
are unaware of each other. When coexisting with
cloud infrastructure, telecommunication functionality
can be virtualised and augmented to the adjacent DCs.
When virtualising RAN functions large portions of an
RBS and the RAN control functions can be executed
in a DC (Baroncelli et al., 2010).

Cloud capacity will reside in geographically dis-
tributed DCs. The telco cloud topology is composed
of multiple DCs that are dispersed in a mesh structure,
ranging from complete adjacency with the telecom in-
frastructure, Proximal DCs, to more traditional, Re-
mote DCs, as depicted in Figure 1.

A group of telco cloud DCs can be provisioned
and load balanced as one resource or act as indepen-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

598

dent DCs. In the former case, a control plane will
need to coordinate services and the shared resources
by for example optimising locality and proximity to
all entities by geographically placing services accord-
ingly. Proximal DCs will thus have to be managed in
a distributed and coordinated manner.

The cloud services hosted in Proximal DCs are ac-
cessed through the RAN. The MDs are assumed to
possess varying degrees of mobility, with an equiv-
alent likelihood of passing between a particular set
of macro/micro-RBS1 over time. In an effort to be
able to enforce DC management constraints and to
globally avoid unnecessary migration, an MD is not
strictly associated with the closest DC or the DC that
its current RBS cell is associated with.

The telco cloud infrastructure topology will need
to reflect the capacity and latency objectives of the
virtualised RBSs, and to give access to the telco
cloud-hosted services given the networks local capa-
bility and diversity at a sufficient service level. The
prevailing 4G/LTE topology is centred around hierar-
chical macro- and micro-cells that very much resem-
bles that of its predecessors. The telco cloud topol-
ogy will evolve with mobile access technology gen-
erations, shifting and/or dispersing compute capacity
at various levels of mobile, Metropolitan Area Net-
work (MAN), and WAN networks to best suit the pre-
vailing services and throughput channels.

2.3 Benefits of the Telco Cloud

We identify four main benefits of the telco cloud.
First, it provides cloud applications with better and
more predictable performance. Second, it supports
computation off-loading for resource-bounded MDs.
Third, the telco cloud reduces network utilization by
processing part of data closer to its producer or con-
sumer. Fourth, it enhances cost-efficiency and flexi-
bility of telecommunication infrastructure.

Thanks to a geographically distributed cloud in-
frastructure, application developers and telecommu-
nication operators can take advantage of the signif-
icantly lower round-trip times. Moreover, we ex-
pect that the average network throughput will increase
when communicating with Proximal DCs in compar-
ison to Remote DCs. Additionally, users offloading
MD applications will benefit from a low latency com-
munication with a DC, where the code is executed.

The large amount of information generated by
sensors can be filtered through the intermediate hier-
archical cascade of DCs to prevent congestion in the
intermediate WAN. Data that is only locally relevant

1What is considered a traditional rural/urban cell, con-
stituted by a high power RBS, mounted on a tower.

can be kept and consumed locally, while redundant
and highly covariant information can be more easily
identified in a local context and discarded.

Through the telco cloud traditional proprietary
hardware-bound telecom services can be virtualised,
migrated, and executed in Proximal or Remote DCs.
Multiple RBSs can be consolidated to increase the
aggregate utilisation of the infrastructure. Executing
RBSs on cloud infrastructure will allow for greater
use of cost-effective commodity hardware and generic
software. With the availability of the telco cloud, we
expect that an RBS in future mobile infrastructure
generations will only consist of a radio interface. The
management of the RAN, individual radio channels,
signalling, services, and signal processing, will be all
virtualised and executed in a Proximal DC.

3 SIMULATION CHALLENGES

Simulation of a telco cloud is motivated by several
factors, e.g., lack of existing infrastructure and appro-
priate control plane standards. The desired simulator
has to fulfil many requirements, such as, to be able to
simulate hundreds of thousands of various entities at
fine grained time granularity (milliseconds) for long
periods of time (hours). We here motivate and de-
scribe identified requirements and challenges in sim-
ulation of the telco cloud. Addressing the challenges
and fulfilling the requirements is crucial while design-
ing a meta-model and implementing a simulator.

Telco cloud stakeholders will benefit from being
able to investigate the consequences of possible in-
frastructure configurations. For example, IPs respon-
sible for building and maintaining the infrastructure
may use the simulator for planning placement and ca-
pacity for new DCs, as well as modifying capacity
and connectivity of existing DCs. Service providers
that use infrastructures to host services are interested
in comparing different strategies for placement of ap-
plication components. Moreover, developers that im-
plement mobile applications utilising a telco cloud,
need to determine what application components could
benefit from offloading. To answer these and simi-
lar questions, tests with various infrastructure config-
urations need to be performed and results compared.
There are two options for performing these tests: by
simulation or by running them in real test beds.

Currently, there is no existing infrastructure that
can be used for testing the telco cloud. Creating
a physical test bed for large-scale testing of a telco
cloud in different configurations is economically in-
feasible and small-scale test beds will not be able to
capture phenomena occurring in reality, e.g., user mo-

Telco�Clouds�-�Modelling�and�Simulation

599

Workload
- Application
- Mobility

Objectives
- QoS
- Cost

Setup
- Topology
- Capacity
- Service
placement

Figure 2: Dependencies between elements of a telco cloud.

bility patterns or latency issues.
For these reasons, we believe that simulation is

the most feasible option to evaluate the telco cloud.
However, we have identified several requirements that
make simulation of telco clouds challenging. First of
all, the scale of simulation is large in terms of number
and types of entities. The simulation of a telco cloud
has to concurrently cover hundreds of thousands of
MDs moving around a simulated area, each gener-
ating requests; hundreds of RBSs providing an ac-
cess to the core network; and tens of DCs, running
services that process requests. Another challenge is
the ratio between time precision and length of simu-
lation. We are interested in a very fine-grained latency
simulation, that requires precision of at least millisec-
onds. However, to capture the daily patterns of MD
movement (e.g., moving between home, work, and
shops) caused by migrations of users carrying them,
the whole system needs to simulate several run-time
hours. Moreover, simulation of application stateful-
ness, and of transferring those states when MDs are
moving, have not yet been described in the literature
and requires new models to be developed.

4 TELCO CLOUD DYNAMICS

Before constructing a meta-model of the telco cloud
we first need to understand fundamental telco cloud
dynamics, in terms of the relations between system
input, configuration and output. Later, we will use the
knowledge of these dynamics to build the intended
simulation meta-model.

Figure 2 visualizes the dynamics inside the telco
cloud. The workload is an input to the system that IPs
have no influence over. It includes: applications, with
a request generation model (rate and size), a resource
requirements model (the amount of resources needed
to process a request), and application statefulness (the
overhead of transferring user’s state between DC); as
well as, the mobility of users carrying MDs.

Next, objectives describe required output charac-
teristics of the system. We have identified two funda-
mental objectives. Firstly, QoS, which imposes per-
formance requirements, e.g., latency or throughput
through Service Level Objectives (SLO). Secondly,

the monetary cost associated with energy consumed
for computation and maintenance of an infrastructure.
The objectives can be used when constructing an op-
timisation problem with QoS as conditions and cost
as the function that should be minimised.

Finally, setup is that part of the system that can
be adjusted by designers or operators to achieve de-
sired objectives when processing existing workloads.
Setup includes topology, location, capacity of DCs
and the network that interconnects MDs and RBSs
with DCs, as well as resource management policies
that control placement and migration of services.

The above mentioned elements are all dependent
on each other. The setup of a telco cloud is related
to the existing workload. The capacity of a DC is de-
fined by the resource demands of the services, e.g.
how memory-, CPU-, network-, and disk-intensive
the services are. The locations and topology of DCs
are defined by the geographic and demographic scope
of the services, the number of MDs that reside in that
domain, and the capacity of the associated telecom-
munication infrastructure.

In addition, workload influences objectives. For
example, user mobility is inducing delays during ser-
vice migrations and potentially causes QoS penalties.
Moreover, application statefulness introduces addi-
tional costs of storing data in a DC and transmitting
data between Proximal DCs. It may also increase la-
tency due to an additional time necessary to send the
state data before processing of the request can begin.

Finally, objectives depend on the setup: QoS is
proportional to the proximity and capacity of DC –
a smaller DC catchment (the geographic area the DC
serves) translates to greater locality and reduced prop-
agation latency, while higher capacity allows hosting
of more services. Moreover, the capacity and catch-
ment of DCs determine telco cloud costs. Costs are
proportional to the dispersion of computing capac-
ity. There is an overhead of each DC, irregardless of
its capacity, e.g., building, cooling infrastructure, and
connection to energy or network. In addition, disper-
sion increases costs of maintenance, e.g., technicians
have to travel between locations. Therefore, costs are
proportionally higher in smaller, dispersed DCs be-
cause of high initial costs and proportionally lower in
larger, centralized DCs due to the economy of scale
(Armbrust et al., 2010).

5 EXISTING MODELS

To support creation of a meta-model that incorporates
workload, setup, and objectives of the telco cloud de-
scribed in the previous section, we here survey exist-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

600

ing models in the following categories: application re-
quest generation and resource requirements, MD mo-
bility, networks, DCs, and infrastructure costs.

Most of the models and simulators are assigned
to only one of the above mentioned categories, how-
ever capabilities of four surveyed simulators extend to
many categories, so we summarise them in Table 1.

Table 1: Overview of surveyed simulators.

Framework RG RR M N DC
NS-3 X X X
OMNeT++ X X X
CloudSim X X
GreenCloud X X

RG – Request Generation, RR – Resource Require-
ments, M – Mobility, N – Network, DC – Data Centre.

5.1 Workload Models

Applications running in the telco cloud consist of a
mobile client and a server processing offloaded com-
putations. Therefore, they should be modelled from
two perspectives: request generation that describes
how requests are created and sent to the DCs; and re-
source requirements that describes how much compu-
tational resources are needed to process the requests.

Request Generation

Request generation models capture the user’s be-
haviour by primarily representing interaction times or
the timing clicks through a stochastic process, often
Poissonian in nature. A user behaviour model can
be further refined by introducing a stochastic model
for how long time a user consumes a certain type of
content. Additionally, the transition between types of
content is often modelled as a Markov process.

Furthermore, the request generation characteris-
tics are commonly modelled with multiple stochas-
tic processes, encompassing the number of packets
in a session, and the size of each packet. Request
generation models are either closed or open looped.
In an open loop model, the generation of each new
session is typically a Poisson process independent of
the resulting DC action. Conversely, in a closed loop
model, the generation of new sessions is dependent
on timing of the response from the DC and thus the
properties of the previously generated session.

In the packet-level event driven network simula-
tors, NS-3 (Riley and Henderson, 2010) and OM-
NeT++ (Varga et al., 2001), a node can act as either
a client or server, by the mechanism of either send-
ing packets provided by a stochastic model, at a given

rate, within a certain time period, or at a certain in-
terval; or processing received packets from a buffer,
at a given rate. Both server and client models can be
augmented with a more complex system of queues to
such an extent that they can represent an abstract DC
that hosts multiple applications.

Resource Requirements

CloudSim (Calheiros et al., 2011), a simulator of
cloud infrastructure, provides an application model
that describes computational requirements – the
amount of resources that needs to be available (e.g.
number of cores, memory and storage); and com-
municational requirements – the amount of data that
needs to be transferred. GreenCloud (Kliazovich
et al., 2012), a packet level simulator based on NS-
2, apart from computational and communicational
requirements, describes also QoS requirements, ex-
pressed by an execution deadline. The application
model may also include the size of the code that has
to be offloaded and dependencies on other services,
e.g., in terms of amount of data that has to be sent or
received (Kovachev, 2012).

Mobility

The NS-3 and OMNeT++ nodes described above can
be set into motion given a certain stochastic mobility
model. They can for example traverse the space as
pedestrians, or in auto mobiles, with corresponding
velocity and rate of change. The spatial relationship
between nodes and RBS affects the channel properties
and RBS-to-node associations. Node mobility will
also result in handover between RBSs, which in turn
will alter the paths of the node-generated workload in
the network.

5.2 Setup Models

Below, we describe existing models and simulators of
networks and DCs, which can be used to configure the
setup of the telco cloud meta-model.

Network

There are several well-established event-driven
frameworks that are capable of modelling computer
networks, mobile networks, applications, packet-level
network traffic, infrastructure, and independent users.
The two primary examples are, as mentioned in the
previous section, NS-3 and OMNeT++. These two
are commonly deployed in academic network re-
search and provide detailed results on network utili-
sation, throughput, congestion, and latency.

Telco�Clouds�-�Modelling�and�Simulation

601

Both NS-3 and OMNeT++ are comprehensive
packet-level network simulation frameworks that in-
clude wired and wireless standards, and are able to
simulate communication channel conditions. Fur-
thermore, both frameworks have detailed models for
channel definition, such as propagation delay, inter-
ference, data rate, and medium access schemes. In
addition, both NS-3 and OMNeT++, support control
plane signalling for a number of wireless standards
and complex network topologies.

Both frameworks have support for modelling dif-
ferent types of network nodes, ranging from com-
puters to routers and switches. Each edge and node
pair has a defined communication and medium access
standard, such as TCP/IP and Ethernet. Each packet
that is sent over the network is treated in accordance
with the prevailing network’s transport protocols and
routing standard. In both, the events of arrival and
departure of packets drive the simulation clock.

Furthermore, they require detailed configuration
of all communication modes and node behaviour,
making it very time-consuming to implement and ver-
ify systems with different levels of abstractions, and
are thus cumbersome to model abstract systems.

As the telco cloud topology is yet to be de-
fined with unspecified control planes, it would be
counter-intuitive and time consuming to implement
telco cloud topologies in either NS-3 or OMNeT++.
In some instances, some modules would have to be
completely redesigned, and others would have to be
specified to a much greater detail than the telco cloud
can offer at this stage.

Data Centre

The purpose of this section is to survey the DC mod-
els that are the most suitable for inclusion in the
telco cloud meta-model. An extensive list of mathe-
matical models, simulation approaches, and test beds
can be found in (Sakellari and Loukas, 2013), while
(Ahmed and Sabyasachi, 2014) provides a survey of
twelve cloud simulators. After careful examination,
we chose the ones that best suit our goals.

We compare DC models and simulators based on
descriptions provided by the authors of the simulators.
For each model we describe: Resource Provisioning
– what resources are included and how they are mod-
elled; QoS – what performance indicators are mea-
sured; Costs of computation in the DC; Performance
of simulator – an estimation of the time needed to per-
form a simulation.

CloudSim is an event-based simulator imple-
mented in Java, for simulation of cloud computing
system and application provisioning environments.

Resource Provisioning. The CloudSim simulation
layer offers dedicated management interfaces for
CPU, memory, storage and bandwidth allocation, as
well as, defining policies in allocating hosts to Vir-
tual Machines (VM) – VM provisioning. Hosts are
described by processing capabilities (in MIPS) and
a core provisioning policy, together with an amount
of available memory and storage. A model sup-
ports time-sharing and space-sharing core provision-
ing policies on both host and VM levels.
Latency (QoS). The latency model is based on con-
ceptual networking abstraction, where the communi-
cation delays between each pair of entity type (e.g.
host, storage, end-user) are described in a latency ma-
trix as a constant value expressed in simulation time
units (e.g. milliseconds).
Costs. CloudSim provides a two-layered cost model,
where the first layer relates to Infrastructure as a Ser-
vice (IaaS), with costs per unit of resources, while the
second one relates to Software as a Service (SaaS),
with costs per task units (application requests). This
model allows calculation of the costs of using the
cloud from the end-user perspective or the revenue
from the IP perspective.
Performance. CloudSim is able to perform large-scale
simulations, e.g., it can instantiate an experiment with
1 million hosts in 12 seconds. Moreover, memory
usage grows linearly with the host number and even
with 1 million hosts it does not exceed 320 MB.

CloudAnalyst (Wickremasinghe et al., 2010) is
a simulator of geographically distributed large-scale
cloud applications, that is developed in Java and
utilises CloudSim and SimJava.
Resource Provisioning. Cloud Analyst uses the re-
source provisioning model of CloudSim.
Latency (QoS). A latency model allows configuration
of network delays, available bandwidth between re-
gions, and current traffic levels. CloudAnalyst fa-
cilitates experiments with latency by producing the
following statistical metrics: average, minimum, and
maximum response time of all user requests; and re-
sponse time grouped by time of the day, location, and
DC.
Costs. CloudAnalyst supports calculation of costs for
using cloud resources, such as cost per VM per hour
and cost per Gigabit of data transfer.
Performance. To improve performance of simulation
entities are grouped at three levels: clusters of users,
cluster of requests generated by users, and clusters of
requests processed by VM.

GreenCloud is a packet level simulator based on
NS-2, for simulation of energy-aware clouds.
Resource Provisioning. Servers are modelled as sin-
gle core nodes with defined processing power limit (in

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

602

MIPS or FLOPS), size of memory and storage, and
implementing different task scheduling mechanisms.
Latency (QoS). Full support for the TCP/IP protocol
reference model is provided and the simulator calcu-
lates communication latency with high accuracy.
Costs. GreenCloud allows detailed modelling of en-
ergy consumption by implementing energy models
for every DC element.
Performance. Given that GreenCloud has to simulate
the full stack of Internet protocols, each simulation
may take even tens of minutes for a DC with a few
thousands of nodes.

5.3 Costs Models

The above mentioned DC models focus mostly on the
costs of running applications in DCs from the end-
user perspective. Since we want to model costs of
DCs from the IP point of view, additional models are
needed for capital expenditures (CAPEX) and operat-
ing expenditures (OPEX).
CAPEX includes costs of infrastructure that needs to
be built and servers that have to be bought.
Infrastructure Costs. Costs of building, power distri-
bution, (and cooling can be estimated using a follow-
ing equation: $200M � (1+ cm)=ai, where cm is the
cost of money2, and ai is the time of infrastructure
amortisation [in years] (Greenberg et al., 2008).
Server Costs. Costs of servers can be modelled as
ns � ps �(1+ cm)=as, where ns is the number of servers,
ps is the price of one server [in $], cm is the cost of
money, and as is the time of server amortisation [in
years] (Greenberg et al., 2008).
OPEX consists of power and personnel costs.
Power Costs. To estimate costs of power, the follow-
ing equation can be used, ns � pcs=1000 �PUE � pkWh �
24 � 365, where ns is the number of servers, pcs is
the power consumption of one server [in W], PUE
is Power Usage Efficiency, and pkWh is the price of
electricity [in $ per kWh] (Greenberg et al., 2008).
Personnel Costs. Costs of personnel can be calcu-
lated using M1 �C1 +M2 �C2 +M3 �C3, where M1 is
the number of IT personnel per rack, M2 is the num-
ber of facility personnel per rack, M3 is the number
of administrative personnel per rack, and C1, C2, C3
are the average costs per person for each of the above
mentioned categories (Patel and Shah, 2005).

From another perspective, Muñoz et al., provide
an evaluation of telecom, storage and computing costs
for cloud infrastructure (Muñoz et al., 2011)

2Cost of money is the rate of interest or dividend pay-
ment on borrowed capital.

Radio Base Station

Data Centre

User StateApplication Queue

Request

Figure 3: Visualisation of telco cloud meta-model.

6 TELCO CLOUD META-MODEL

We here detail how we have composed the above sur-
veyed models into a telco cloud meta-model. Figure 3
depicts the visualisation of the meta-model. MDs,
such as cell phones or laptops, are carried by end-
users, who are in motion. The MDs generate requests
which are sent over the network to a DC. It is also
possible that requests are generated by sensors that
may be static (e.g. traffic cameras) or mobile (e.g.
trains). The requests are processed in the DC and the
response is sent back to the MD or sensor. Processing
requests, in case of stateful applications, generates a
user state that has to be migrated with the end-user if
he moves to the catchment of another DC.

The primary objective of the meta-model is to cap-
ture the interactions between application workload,
MD mobility, network topology, and DC character-
istics, and their influence on QoS and costs of telco
cloud. The parameters that define the meta-model are
presented in Table 2 and described in detail below.

6.1 Workload Model

The first group of parameters in Table 2 describes the
mobility of end-users carrying MD and the character-
istics of requests generated by these MDs.

Request Generation

Many services may run in the telco cloud at the same
time and their number is defined by Nser. We model
a service application as a stateful web service. Each
session is separated in time with a Poisson process
lses (Reyes-Lecuona et al., 1999). Each session pro-
duces Nreq requests, sampled from an inverse Gaus-

Telco�Clouds�-�Modelling�and�Simulation

603

Table 2: Fundamental meta-model parameters.

Type Parameters Unit Description
WORKLOAD

Request
Generation

Nser Total number of services
li

ses, where i = 1;2; : : : ;Nser s Session arrival rate to DC
Ni

req, where i = 1;2; : : : ;Nser Number of requests per session
Si

req, where i = 1;2; : : : ;Nser KB Size of requests
Di

req, where i = 1;2; : : : ;Nser s Inter-request time

Resource
Requirements

CPU i
idle, CPU i

req, where i = 1;2; : : : ;Nser MI CPU cycles used by service
memi

idle, memi
req, where i = 1;2; : : : ;Nser MB Size of memory used by service

diski
idle, diski

req, where i = 1;2; : : : ;Nser MB Size of storage used by service
statei, where i = 1;2; : : : ;Nser MB Size of user’s state per request

Mobility NMD Number of Mobile Devices
si

t , ai
t , qi

t , wi
t , where i = 1;2; : : : ;NMD Movements of Mobile Devices

SETUP

Network
NRBS Number of Radio Base Stations
dRBS m Dimensions of an RBS cell
Dnet s Cumulative network delay

Data Centre

NDC Number of Data Centres
Ni

S, where i = 1;2; : : : ;NDC Number of servers in Data Centre
N j

CPU , where j = 1;2; : : : ;Ni
S Number of CPUs per server

s j
CPU , where j = 1;2; : : : ;Ni

S MIPS CPU’s speed
memory j, where j = 1;2; : : : ;Ni

S MB Amount of memory per server
storage j, where j = 1;2; : : : ;Ni

S GB Amount of storage per server
networki

bw, where i = 1;2; : : : ;NDC Mb/s Network bandwidth
tinit , tidle, tterm s Times of VM transitions

Service Placement placement =fevery, n-closests, : : :g Service placement policy
OBJECTIVES

Quality
of Service

RT i, where i = 1;2; : : : ;Nser s Application response time
T Pi, where i = 1;2; : : : ;Nser req/s Application throughput

Costs Cost $ Total costs of infrastructure

sian distribution, where each request is separated in
time by Log-Normal distributed delay Dreq in sec-
onds. The size of each request is given by Sreq KB
and is drawn from a Pareto distribution.

Resource Requirements

To model application resource requirements we pro-
pose a linear model specifying the needed amount
of resources, both for an idle service and per pro-
cessing each request. An idle service uses CPUidle
CPU operations, memidle amount of memory, and
diskidle amount of storage. Additionally for each pro-
cessed request, the service uses CPUreq CPU opera-
tions, memreq amount of memory, and diskreq amount
of storage. The amount of user’s state data created
by each request is defined by state and expressed in
absolute value or percentage of request size Sreq.

Mobility

The network is populated by NMD MDs, each sub-
scribing to a subset of the Nser available services. The
2-dimensional, multi modal, mobility model detailed
in (Bettstetter, 2001) provides us with an on-average
uniform distribution of users, with movement propor-
tional to the duration of a session and the scale of the
mobile network. The aforementioned model defines
the properties of an MD’s movement. A MD’s mo-
mentary movement is defined by its velocity consti-
tuted by the current speed s and current direction q.
Changes in mobility are defined by multiple stochas-
tic processes that describe the duration of its state. An
entity’s speed s is independent of direction q and is
maintained for Ts seconds, after which acceleration a
between amin and amax is applied for time Ta, until it
reaches smin or smax. Furthermore, direction q is main-
tained for time Tq until the next change-event where

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

604

the direction q is altered for Tw seconds with at the
rate of w radians per second. Ts, Ta, Tq, and Tw, de-
scribing the timing of each change-event, are set for
each mobility mode, and are each defined by a proba-
bility distribution bounded by a maxima and minima.

6.2 Setup Model

The second group of parameters in Table 2 charac-
terises the network and DCs.

Network

In our model, the core network introduces a cumu-
lative propagation, switching, and routing delay and
it is modelled with a Weibull delay Dnet in multiples
of the number of network nodes between the source
and the destination (Papagiannaki et al., 2003). The
network distance between RBSs is equal to the cell di-
mension dRBS. The associated RBSs are equidistant to
their common DC, and are for the sake of simplicity
assumed to be separated by one network edge.

Furthermore, forthcoming cell planing practices
aim to increase area energy efficiency by favouring
smaller cells in urban areas (Shahab et al., 2013;
Fehske et al., 2009). Our model employs a small
homogeneous mobile network composed of NRBS
equidistantly distributed RBSs.

In the absence of a specific mobile generation
standard, an MD is handed over between RBSs at the
geographic point where they cross the cell boundary
distinguishing two independent RBSs defined by the
width of the rectangular cells dRBS.

Data Centre

The DC model captures the influence that its capac-
ity has on performance and costs of computation, as
described in Section 4.

To capture the influence on performance, quan-
tity and quality of each DC resource is described.
DC consists of NS servers, that can differ in spec-
ification. Server contains NCPU CPUs capable of
executing sCPU operations in every second. Values
of memory and storage specify the total amount of
available memory and storage, respectively. The net-
work bandwidth is specified with networkbw. The DC
model includes also a provisioning model, that de-
scribes how available resources are shared among sev-
eral applications, e.g., time-sharing or space-sharing.

A DC hosts services in VMs. A service can be
distributed over multiple VMs. Incoming workload
is load-balanced by either a method of round-robin,
random selection, or placed in the VM with the low-
est load. However, a user’s requests are always for-

Table 3: States of Virtual Machine.

Name Description
INACTIVE VM is turned off.

INITIATING VM is booting up.
PROCESSING VM is serving requests.

IDLE VM is waiting for requests.
MIGRATING VM is transmitting data.

TERMINATING VM is shutting down.

Inactive Initiating Idle

Processing

Migrating

Terminating

Figure 4: Transitions between Virtual Machine states.

warded to the VM that served his first request. A ser-
vice can specify a minimum and maximum number of
VMs it requires. The DC scales the application within
these bounds based on the load-balancing outcome.

To emulate the life-cycle of a VM we have defined
six VM states as described in Table 3. The transitions
between the states are presented in Figure 4. At the
beginning all VMs are in INACTIVE state. A VM
is initiated when the first request arrives to a DC. It
takes tinit seconds before VM is ready to start process-
ing requests or receiving migrated requests and user
state from other DC. We assume that a VM is not able
to process requests and handle migrations at the same
time, so it changes state between PROCESSING and
MIGRATION over the time. Moreover, we give mi-
grations a higher priority than processing, so process-
ing is paused if there are any migrations to perform.
When there are no requests to process and no migra-
tions to handle a VM goes into IDLE state. A VM
is terminated if IDLE state lasts for longer than tidle
seconds, and the VM termination takes tterm seconds.

Service Placement

Service placement policies define in what DC(s) a ser-
vice should be hosted, what number of replicas should
be running, and when a service should be migrated
between DCs. These decisions depend on the mo-
bility of users, the size of users’ state that has to be
migrated, and QoS requirements. For example, a ser-
vice can be hosted in n Proximal DCs closest to the
majority of its users (n-closests), or in the case of la-

Telco�Clouds�-�Modelling�and�Simulation

605

tency sensitive services in every Proximal DC that is
needed to provide acceptable QoS (every).

6.3 Objectives Model

The third group of parameters in Table 2 describes
QoS and costs of the telco cloud.

Quality of Service

Combining the resource requirements model, which
describes the amount of resources an application
needs, with a DC model, allows to simulate how co-
location of different services in a DC influences their
response times RT i and throughputs T Pi.

Costs

In our opinion the cost models available in the liter-
ature and described in Section 5.3 are very ”country
dependent”, because of the inclusion of variable pa-
rameters such as salaries, costs of energy or costs of
property. They are also not taking into account pa-
rameters important from the perspective of the telco
cloud, such as the size of DC. Therefore, we model
the costs of the telco cloud using a basic heuristic
based on observation that dispersion of infrastructure
causes additional costs, e.g.: increase of administrator
travel time between locations, and higher unit costs
of computation in proximal DCs because of smaller
scale and high initial costs.

Cost µ
NDC

å
DC NS

(1)

As shown in Equation 1, the total cost of a telco
cloud is directly proportional to the number of DCs
and inversely proportional to the total number of
servers in all DCs. It means that distributing the same
number of servers among many DCs is more expen-
sive than placing them in a single DC.

6.4 Limitations

The proposed meta-model has several limitations.
The application model assumes that all requests gen-
erated by one application are homogeneous and that
each of them consumes the same amount of resources.
The mobile access network model does not take into
account the physical layer, channel provisioning, and
cell load balancing. Additionally, the radio access
network functions as a mechanism to associate MDs
with DCs propagation, and system processing delays
are thus not modelled.

7 SIMULATION SHOWCASE

We have implemented a coarse grained simulator us-
ing SimJava (Howell and McNab, 1998) as the under-
lying event-driven simulation framework. All mod-
ules are implemented from scratch but are based on
the meta-model presented in Section 6. The simula-
tor fully implements the proposed request generation
and network models, but has implemented more ab-
stract mobility, resource requirements, DC, and ser-
vice placement models.

To demonstrate the scope of the telco cloud meta-
model and the simulator we introduce an elementary
showcase scenario below. The scenario is designed
to reveal the basic relationship between workload –
MD mobility, setup – Proximal DC catchment, and
objectives – the aggregate utilisation of a telco cloud.

7.1 Experiments

For the sake of clarity we present a simplified sce-
nario. Only one service is considered and the size of
the simulation is reduced when compared to the de-
sired scale. The VM scalability and placement mod-
els are included as proof-of-concepts. The goal is
to obtain conclusions about the relation between MD
mobility and DC catchment, and avoid the interfer-
ence of other elements. The scenario is described in
detail below.

The telecommunication infrastructure is com-
posed of 16 RBSs, in a 4x4 layout. The cells are
tangent but not overlapping and are dimensioned as a
typical LTE micro-cell at 750 m, as detailed in (Sha-
hab et al., 2013). The number of DCs varies be-
tween the experiments and thus so, also the DC catch-
ment defined as the ratio between DCs and RBSs,
changes between (1:1) and (1:16). In abstract terms,
the (1:1) catchment represents a setup with one Prox-
imal DCs per RBS. In contrast, the (1:16) catchment
approaches a more traditional case of a Remote DC
serving all users in the domain.

To reveal the effects of DC catchment, all DCs are
of the same capacity. The number of VMs in each
DC is scaled proportionally to the number of users
they serve. The DC in the (1:16) catchment scenario
has 16 VMs, while the DC in the (1:1) scenario has
just one VM. The workload is balanced among avail-
able VMs, and new sessions are forwarded to the least
loaded VM. To reveal the full extent of the effect of
user mobility, user states and requests are strictly mi-
grated to the geographically nearest DC.

We use a request generation model with a ses-
sion arrival rate of lses described by a Log-Normal
distribution with the parameters µ = 3 and s = 1:1.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

606

The number of requests per session Nreq is taken from
an inverse Gaussian distribution with the parameters
l = 5 and µ = 3. Inter-request time is Dreq seconds
and is modelled with with an exponential distribution
with l = 0:1. The simulation domain is populated by
480 MDs, all subscribing to the same service. Due
to the size and simplicity of the network topology in
the scenario, we are deploying a Markov-based mo-
bility model. The mobility model is based on a car
and is as specified in Section 6.1, with parameters
from (Bettstetter, 2001). To allow the mobility and
workload models to jointly reach a steady state, the
simulation is run for 8 simulated hours. This results
in an average processing load of 30%, which gives
enough time for migrations to complete successfully.

The user state is proportional to the aggregate size
of that user’s sessions with the application it sub-
scribes to and is defined by a 5th order AR-process
with linearly decaying parameters. In our simulation,
initialisation of a VM takes tinit = 81s, similarly as for
m1.small VM type in Amazon EC2 (Ostermann et al.,
2010). A VM is terminated if it remains in the IDLE
state longer than tidle which is equal to the mean inter-
session time. It takes tterm = 21s to terminate a VM.

To investigate the influence of Proximal DC catch-
ment on the performance of the telco cloud we ob-
serve the life cycle of the VMs by recording the
amount of time they spend in each state. We run
two sets of experiments. In the first set, end users
are static. The second set introduces mobility.

7.2 Results

Figure 5(a) shows the breakdown of the mean time
spent in each VM state in the system per DC catch-
ment. With a (1:1) DC catchment the utilisation suf-
fers from the proportion of time spent in IDLE state
due to the relatively low request arrival rate gener-
ated by one sixteenth of all users. The inefficiency
is caused by the time the system spends in the IDLE,
INITIATING, and TERMINATING states. The com-
position of time spent in these states changes with
DC catchment, and is a reflection of the number of
VMs in a DC and load-balancing effort. Reducing
the time spent on starting and terminating VMs would
free up more resources and perhaps also make the sys-
tem more reactive to sudden workload changes. The
management of VM scalability and placement in telco
clouds is clearly something that requires optimisation.

Figure 5(b) reveals the overhead of user mobility
and the migration effort it incurs. Depending on the
DC catchment, different migration dynamics come
into play. As migrations are more frequent in the (1:1)
case than in the (1:8) case, user states do not have the

(a) Static users

(b) Mobile users
Figure 5: DC catchment vs. time spent in each VM state.

time to grow as much between migrations in the for-
mer case. The migration effort is therefore not a fac-
tor eight lower in the (1:8) case versus the (1:1) case,
but rather, they spend 26% and 47% of their time in
the MIGRATING state, respectively. The system dy-
namics revealed by Figure 5(b), where at worst, 47%
of the execution time is spent migrating users, points
to the need to find scaling mechanisms for the telco
cloud that take into account mobility and inactivity,
so that resources can be freed dynamically for other
active applications. A policy of strictly migrating user
states and requests to the geographically closest DC,
irregardless of DC catchment, in order to obtain min-
imal propagation and communication latency, is sub-
optimal.

8 CONCLUSIONS

In this paper we present a way to combine existing
models of user mobility, mobile and core networks,
and DCs into a meta-model capable of capturing dy-
namics of the telco cloud. We also implement a pro-
totype simulator based on a simplified meta-model.

The meta-model can be used by telecommuni-
cation operators as well as equipment developers
to model existing infrastructures and to plan future
changes. Researchers can test algorithms for resource
management, e.g., migration of services between geo-
distributed DCs. Also developers can benefit from us-

Telco�Clouds�-�Modelling�and�Simulation

607

ing the simulator to observe how their mobile appli-
cations behave in telco cloud environments.

Future work will be focused on enhancing the
functionality of the simulator to incorporate other pa-
rameters from the presented meta-model. Then, using
the simulator we would like to explore the following
telco cloud challenges: minimising the trade-offs be-
tween costs and performance of telco cloud depend-
ing on the DC placement and capacity, and optimal
placement and migration of services between DCs.

ACKNOWLEDGEMENTS

This work is funded by the Swedish Research Council
(VR) project Cloud Control and the European Union’s
Seventh Framework Programme under grant agree-
ment 610711 (CACTOS). Maria Kihl and William
Tärneberg are members of the Lund Center for Con-
trol of Complex Engineering Systems (LCCC) funded
by the Swedish Research Council. Also, they are
members of the Excellence Center Linköping – Lund
in Information Technology (ELLIIT).

The authors thank Johan Eker (Ericsson Research)
who contributed with feedback during several dis-
cussions and Tania Lorido-Botran (University of the
Basque Country) for her critical comments on early
drafts of the paper.

REFERENCES

Ahmed, A. and Sabyasachi, A. S. (2014). Cloud computing
simulators: A detailed survey and future direction. In
2014 IEEE International Advance Computing Confer-
ence (IACC), pages 866–872. IEEE.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., et al. (2010). A view of cloud computing.
Communications of the ACM, 53(4):50–58.

Atzori, L., Iera, A., and Morabito, G. (2010). The internet
of things: A survey. Comp. net., 54(15):2787–2805.

Barker, S. K. and Shenoy, P. (2010). Empirical evaluation
of latency-sensitive application performance in the
cloud. In Proc. of the 1st annual ACM SIGMM con-
ference on Multimedia systems, pages 35–46. ACM.

Baroncelli, F., Martini, B., and Castoldi, P. (2010). Net-
work virtualization for cloud computing. Annals of
telecommunications, 65(11-12):713–721.

Bettstetter, C. (2001). Smooth is better than sharp: A ran-
dom mobility model for simulation of wireless net-
works. In Proc. of the 4th ACM Int. Workshop on Mod-
eling, Analysis and Simulation of Wireless and Mobile
Systems, MSWIM ’01, pages 19–27. ACM.

Bosch, P., Duminuco, A., Pianese, F., and Wood, T. L.
(2011). Telco clouds and virtual telco: Consolidation,

convergence, and beyond. In 2011 IFIP/IEEE Inter-
national Symposium on Integrated Network Manage-
ment (IM), pages 982–988. IEEE.

Calheiros, R., Ranjan, R., Beloglazov, A., De Rose, C., and
Buyya, R. (2011). CloudSim: a toolkit for modeling
and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Soft-
ware: Practice and Experience, 41(1):23–50.

Fehske, A., Richter, F., and Fettweis, G. (2009). Energy ef-
ficiency improvements through micro sites in cellular
mobile radio networks. In GLOBECOM Workshops,
2009 IEEE, pages 1–5.

Greenberg, A., Hamilton, J., Maltz, D. A., and Patel, P.
(2008). The cost of a cloud: Research problems in
data center networks. SIGCOMM Comput. Commun.
Rev., 39(1):68–73.

Howell, F. and McNab, R. (1998). Simjava: A discrete
event simulation library for java. Simulation Series,
30:51–56.

Kliazovich, D., Bouvry, P., and Khan, S. (2012). Green-
cloud: a packet-level simulator of energy-aware cloud
computing data centers. The Journal of Supercomput-
ing, 62(3):1263–1283.

Kovachev, D. (2012). Framework for computation offload-
ing in mobile cloud computing. Int. J. of Interactive
Multimedia and Artificial Intelligence, 1(7):6–15.

Muñoz, V. M., Kaci, M., Gadea, A., and Salt, J. (2011).
On the Economics of Huge Requirements of the Mass
Storage-A Case Study of the AGATA Project. In
CLOSER, pages 507–511.

Ostermann, S., Iosup, A., Yigitbasi, N., Prodan, R.,
Fahringer, T., and Epema, D. (2010). A performance
analysis of EC2 cloud computing services for scien-
tific computing. pages 115–131. Springer.

Papagiannaki, K., Moon, S., Fraleigh, C., Thiran, P., and
Diot, C. (2003). Measurement and analysis of single-
hop delay on an IP backbone network. IEEE J. on
Selected Areas in Communications, 21(6):908–921.

Patel, C. D. and Shah, A. J. (2005). Cost model for plan-
ning, development and operation of a data center.

Reyes-Lecuona, A., González-Parada, E., Casilari, E.,
Casasola, J., and Diaz-Estrella, A. (1999). A page-
oriented www traffic model for wireless system simu-
lations. In Proc. ITC, volume 16, pages 1271–1280.

Riley, G. F. and Henderson, T. R. (2010). The ns-3 net-
work simulator. In Modeling and Tools for Network
Simulation, pages 15–34. Springer.

Sakellari, G. and Loukas, G. (2013). A survey of mathemat-
ical models, simulation approaches and testbeds used
for research in cloud computing. Simulation Mod-
elling Practice and Theory, 39(0):92 – 103.

Shahab, S., Kiong, T., and Abdulkafi, A. (2013). A Frame-
work for Energy Efficiency Evaluation of LTE Net-
work in Urban, Suburban and Rural Areas. Australian
J. of Basic and Applied Sciences, 7(7):404–413.

Varga, A. et al. (2001). The OMNeT++ discrete event simu-
lation system. In Proceedings of the European simula-
tion multiconference (ESM’2001), volume 9, page 65.

Wang, A., Iyer, M., Dutta, R., Rouskas, G. N., and Baldine,
I. (2013). Network virtualization: Technologies, per-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

608

spectives, and frontiers. Journal of Lightwave Tech-
nology, 31(4):523–537.

Wickremasinghe, B., Calheiros, R., and Buyya, R. (2010).
Cloudanalyst: A cloudsim-based visual modeller for
analysing cloud computing environments and applica-
tions. In 2010 24th IEEE International Conference on
Advanced Information Networking and Applications
(AINA), pages 446–452.

Telco�Clouds�-�Modelling�and�Simulation

609

AUTHOR INDEX

Adkinson-Orellana, L. 514
Åhlund, C. 145
Ahmed, N. 163
Akaichi, J. 310
Akhbar, F. 113
Alansari, M. 451
Almeida, A. .451
Andrikopoulos, V. 352
Angelis, F. 119, 155
Anseeuw, J. 304
Ayadi, M. .310
Barán, B. 439
Barbhuiya, S. 343
Barker, A. 373
Barros, B. 214
Bauer, H. 297
Bencomo, N. .451
Benhammadi, F. 105
Bey, K. 105
Bhargava, B. 163
Bhiri, S. 397
Biennier, F. 276
Binz, T. 487
Blažič, B. 365
Blödorn, L. 297
Blomer, R. 268
Bordbar, B. 451
Breitenbücher, U. 475, 487
Buckley, K. 172
Bulander, R. 127
Capretz, M. 186
Carvalho, H. 406
Carvalho, N. 406
Carvalho, T. .214
Casola, V. 551
Cavallo, M. 414
Chaki, N. 233
Chenal, B. 565
Cigoj, P. 365
Corcoran, D. 95
Corradini, F. .119, 155
Cruzes, D. 30
Deb, D. .233
Defude, B. 397
Donevski, A. 71

Dubois, E. 565
Elmroth, E. 597
Feinbube, F. .427
Felhi, F. 310
Ferme, V. 241
Ferrucci, F. 521
FIliopoulou, E. 499
Fortes, R. 331
Gantikow, H. .543
Garg, R. 87
Ghandorh, H. 251
Ghédira, K. 199
Ghodous, P. 276
Ghose, A. .233
Gillam, L. 60
González-Castaño, F. 514
Gouvas, P. 206
Greiner, T. 127
Grolinger, K. .186
Gupta, S. 194
Gusev, M. .71
Hadji, M. 17
Hahn, M. 352
Halima, Y. 199
Hans, R. 221
Haque, R. .260
Harper, R. 559
Hasham, K. 49
Healy, P. 95
Herbert, J. 79
Holzschuher, F. .535
Hübsch, G. 206
Hunt, G. 95
Ippoliti, F. 155
Iturbe, E. 551
Iwaya, L. 214
Jaatun, M. 30
Janusz, D. 427
Jiménez, L. 145
Jlassi, A. 178
Johansen, D. 586
Karastoyanova, D. 352
Kaviani, N. 381
Kechadi, M. 521
Kemmler, B. 135

611

AUTHOR INDEX (CONT.)

Khadraoui, D. 565
Khemakhem, M. 506
Kihl, M. 597
Kilpatrick, P. 343
Klingberg, S. .543
Klobučar, T. 365
Knoblauch, J. 127
Kopp, O. 284, 487
Kostoska, M. 71
Kranzlmüller, D. 135
Kristiansson, J. 145
Krzywda, J. 597
Kübler, E. 389
Kvalnes, Å. 586
Lampe, U. 221
Lawkobkit, M. 268
Leymann, F. 241, 284, 352, 475, 487
Liang, Y. 40
Lucrédio, D. 331
Lutfiyya, H. .251
Lynn, T. 95
Malik, Z. 577
Marcantoni, F. 155
Marco, L. 521
Martineau, P. .178
Mataoui, M. 105
Maximilien, M. 381
McClatchey, R. 49
Méhes, A. 214
Meskini, A. 260
messaoud, W. 199
Michalakelis, C. 499
Michalas, A. 206
Minor, M. 389
Misra, S. 194
Mitropoulou, P. 499
Moalla, S. 506
Modica, G. 414
Mohamed, M. 186
Molina-Jimenez, C. 463
Moreira, A. 331
Morrison, J. 95
Munir, K. 49
Näslund, M. 214
Neuhaus, C. .427

Nikolaidou, M. 499
Nikolopoulos, D. 343
Oikawa, S. 529
O’Loughlin, J. .60
Orue-Echevarria, L. .551
Östberg, P. 597
Ouedraogo, M. 565
Ouedraogo, W. 276
Ovatman, T. .113
Pakdel, R. 79
Papazachos, Z. 343
Paraskakis, I. .206
Park, W. 5
Pautasso, C. .241
Pedrero-López, B. 514
Peinl, R. 535
Pettersen, R. 586
Pires, F. 439
Poggi, S. 565
Polini, A. 119
Polito, C. 414
Polze, A. 427
Pulls, T. 321
Rak, M. 551
Reich, C. .321, 543
Rezgui, A. 577
Richerzhagen, B. 221
Rios, E. 551
Ristov, S. 71
Rodríguez-Silva, D. .514
Roller, D. 241
Rouvellou, I. 381
Ruebsamen, T. 321
Sabbatini, S. 119
Sáez, S. 352
Salapura, V. 559
Samet, K. 506
Schelén, O. 145
Schiefer, G. 206
Schwarz, C. 297
Sebbak, F. 105
Seghbroeck, G. .304
Sellami, R. .397
Serrão, C. .406
Sfyrakis, I. 463

612

AUTHOR INDEX (CONT.)

Silva, C. 276
Silva, E. 331
Silva-Lepe, I. 381
Simplício Jr., M. 214
Simón, M. 145
Skouradaki, M. 241, 352
Slimani, Y. .260
Solaiman, E. 463
Steffen, D. 221
Steinmetz, R. 221
Stiller, B. 87
Synnes, K. 145
Taher, Y. .260
Tärneberg, W. 597
Thai, L. 373
Tkindt, V. .178
Tomarchio, O. .414
Tsaroucha, S. 499
Turck, F. .304
Valvåg, S. 586
Varghese, B. 373
Vedrine, M. 397
Verginadis, Y. 206
Volckaert, B. 304
Vukojevic-Haupt, K. 352
Wagner, S. 284
Wettinger, J. 475, 487
Wood, K. 172
Yamany, H. 186
Yang, C. 5
Zinser, E. 297

613

	CLOSER 2015
	Front Cover
	Introduction
	Copyright
	Brief Contents
	Invited Speakers
	Organizing and Steering Committees
	Program Committee
	Auxiliary Reviewers
	Selected Papers Book
	Foreword

	Contents
	Invited Speakers
	Keynote Speakers
	Cloud Computing and Big Data Can Improve the Quality of Our Life
	Change Alone is Unchanging - Continuous Context-aware Adaptation of Service-based Systems for Smart Cities and Communities
	In-transit Analytics on Distributed Clouds - Applications and Architecture
	At Scale Enterprise Computing
	Software- and Systems Architecture for Smart Vehicles

	Cloud Computing Fundamentals
	Full Papers
	Effects of Active Cooling on Workload Management in High Performance Processors
	A Mathematical Programming Approach to Multi-cloud Storage
	Cloud Provider Transparency - A View from Cloud Customers
	OCCI and TTCN-3 - Towards a Standardized Cloud Quality Assessment Framework
	Using Cloud-Aware Provenance to Reproduce Scientific Workflow Execution on Cloud
	Addressing Issues of Cloud Resilience, Security and Performance through Simple Detection of Co-locating Sibling Virtual Machine Instances

	Short Papers
	P-TOSCA Portability of SOA Applications
	A Cloud-based Data Analysis Framework for Object Recognition
	Factors Affecting Cloud Adoption and Their Interrelations
	A Comparative Study of Current Open-source Infrastructure as a Service Frameworks
	CSP Formulation for Scheduling Independent Jobs in Cloud Computing
	Quality of Service Trade-offs between Central Data Centers and Nano Data Centers
	Cloud Readiness Assessment of Legacy Application
	Development of an Anything Relationship Management Prototype for the Smart Factory
	Redefining the Cloud based on Beneficial Service Characteristics - A New Cloud Taxonomy Leads to Economically Reasonable Semi-cloudification
	CoMA: Resource Monitoring of Docker Containers
	A Survey of Trust Management Models for Cloud Computing
	Towards Dynamic QoS Monitoring in Service Oriented Architectures
	Reality Vs Hype - Does Cloud Computing Meet the Expectations of SMEs?
	Offline Scheduling of Map and Reduce Tasks on Hadoop Systems
	A Generalized Service Replication Process in Distributed Environments
	Implementation of Cloud ERP - Moderating Effect of Compliance on the Organizational Factors
	User Requirement and Behavioral Aspects in Web Service Discovery
	PaaSword: A Holistic Data Privacy and Security by Design Framework for Cloud Services
	Classifying Security Threats in Cloud Networking
	Setting Priorities - A Heuristic Approach for Cloud Data Center Selection

	Services Science Foundation for Cloud Computing
	Short Papers
	Business Process Generation by Leveraging Complete Search over a Space of Activities and Process Goals
	"BPELanon" - Protect Business Processes on the Cloud
	Automated Mapping of Business Process Execution Language to Diagnostics Models
	Cross-layer Service Adaptation - State-of-the-Art, Shortcoming Analysis, and Future Research Directions
	The Influence of the Provider's Service Fairness on the Customer's Service Recovery Satisfaction and on Positive Behavioral Intentions in Cloud Computing
	Context-aware Security@run.time Deployment
	Choreography-based Consolidation of Interacting Processes Having Activity-based Loops
	Key Requirements for Predictive Analytical IT Service Management - Architectural Key Characteristics for a Cloud based Realization
	BPMN Extensions for Decentralized Execution and Monitoring of Business Processes
	A Smart Decisional Cognitive System based on Self-adaptability of Web Services to the Context

	Cloud Computing Platforms and Applications
	Full Papers
	Secure Evidence Collection and Storage for Cloud Accountability Audits
	Supporting Multiple Persistence Models for PaaS Applications using MDE - Issues on Cloud Portability
	A Lightweight Tool for Anomaly Detection in Cloud Data Centres
	Performance and Cost Evaluation for the Migration of a Scientific Workflow Infrastructure to the Cloud

	Short Papers
	An Approach in the Design of Common Authentication Solution for a Multi-Platform Cloud Environment
	Executing Bag of Distributed Tasks on Virtually Unlimited Cloud Resources
	Automatic Abstraction of Flow of Control in a System of Distributed Software Components
	Towards Cross-layer Monitoring of Cloud Workflows
	Automating Resources Discovery for Multiple Data Stores Cloud Applications
	MusicBeetle - Intelligent Music Royalties Collection and Distribution System
	Context-aware MapReduce for Geo-distributed Big Data

	Cloud Computing Enabling Technology
	Full Papers
	Secure Keyword Search over Data Archives in the Cloud - Performance and Security Aspects of Searchable Encryption
	A Many-objective Optimization Framework for Virtualized Datacenters
	CloudMPL: A Domain Specific Language for Describing Management Policies for an Autonomic Cloud Infrastructure
	Dynamic Testing and Deployment of a Contract Monitoring Service
	ANY2API - Automated APIfication - Generating APIs for Executables to Ease their Integration and Orchestration for Cloud Application Deployment Automation
	A Modelling Concept to Integrate Declarative and Imperative Cloud Application Provisioning Technologies

	Short Papers
	A Hedonic Price Index for Cloud Computing Services
	New Approach to Partitioning Confidential Resources in Hybrid Clouds
	Cloud Spreadsheets Supporting Data Processing in the Encrypted Domain
	SLAFM - A Service Level Agreement Formal Model for Cloud Computing
	Towards High Performance Big Data Processing by Making Use of Non-volatile Memory
	The Docker Ecosystem Needs Consolidation
	Container-based Virtualization for HPC
	Towards Self-Protective Multi-Cloud Applications - MUSA - a Holistic Framework to Support the Security-Intelligent Lifecycle Management of Multi-Cloud Applications
	High Performance Virtual Machine Recovery in the Cloud
	Adopting an Agent and Event Driven Approach for Enabling Mutual Auditability and Security Transparency in Cloud based Services

	Mobile Cloud Computing and Services
	Full Papers
	The Case for Visualization as a Service - Mobile Cloud Gaming as an Example
	Cloud-side Execution of Database Queries for Mobile Applications

	Short Paper
	Telco Clouds - Modelling and Simulation

	Author Index

	Back Cover

