
Dynamic Testing and Deployment of a Contract Monitoring Service

Ellis Solaiman1, Ioannis Sfyrakis1 and Carlos Molina-Jimenez2

1School of Computing Science, Newcastle University, Newcastle, U.K.
2Computer Laboratory, University of Cambridge, Cambridge, U.K.
fellis.solaiman, i.sfyrakisg@ncl.ac.uk, carlos.molina@cl.cam.ac.uk

Keywords: Service Agreement, Electronic Contract, Service Monitoring, Model Checking, Automated Testing, Service
Oriented Computing, Cloud Computing.

Abstract: Internet and cloud based services involve electronic interactions that are normally regulated using service
agreements (SA). Once an agreement between business partners is in place, a service can be monitored and/or
enforced using an SA equivalent electronic contract. Because of the dynamic nature of such Internet and
cloud based relationships, the rapidity at which electronic contracts are constructed, verified for correctness,
tested, and deployed is an extremely important factor. This paper describes a model checker based framework
for supporting the automated testing and deployment of electronic contracts. The central components of
the framework are a contract monitoring service called the Contract Compliance Checker (CCC), the SPIN
model checker, and EPROMELA, a language developed specifically for modeling electronic contracts. We
describe how SPIN can be used to automatically generate execution sequences from an EPROMELA model of
a contract, and how such sequences can then be used to test the correctness of the model equivalent electronic
contract deployed to the CCC.

1 INTRODUCTION

Internet and cloud computing advances have made it
possible for businesses to provide infrastructure and
software services to their business partners and to
their customers at affordable costs. Before such busi-
ness relationships can commence, legal service agree-
ments (SA) need to be negotiated and agreed. Legal
agreements, explicitly define the permissible actions
of the interacting parties, thus providing a legal basis
for the resolution of any disputes. A Legal agreement
can also be used as a guide for developing an elec-
tronic contract (Molina-Jimenez et al., 2003).

The main purpose of an electronic contract is to
regulate (monitor and/or enforce) electronic service
exchanges between the contracted parties, making
sure that business participants adhere to the SA in
place, and that performed actions comply with vari-
ous message timing and sequencing constraints. Elec-
tronic contracts are not confined to the business do-
main, and can also be used for example to monitor/en-
force SAs between the components of distributed sys-
tems in the cloud and/or the ”Internet of Things”.

Constructing an electronic contract that is correct
(free from conflicts, and which correctly represents
the requirements of the original legal document), is a

challenging and time consuming task. Cloud based
business relationships can be both complex and of a
highly dynamic nature (Molina-Jimenez et al., 2011)
therefore it is important that the process of convert-
ing a legal document into an electronic contract that
is correct, is automated as much as possible. Previ-
ous work towards this goal has been extensive, and
has covered problems such as electronic contract rep-
resentation and modeling (Strano et al., 2008), and
contract model verification (Solaiman et al., 2003)
(Abdelsadiq et al., 2011). Naturally, ensuring that a
model of an electronic contract is correct, does not
guarantee that the electronic contract itself is also cor-
rect. In this paper, we focus on the challenge of en-
suring that an electronic contract acts correctly at run
time, and that modifications and/or corrections that
need to be made to the rule base of the electronic con-
tract can be applied quickly. To this end, we develop a
model checker based framework to support automatic
electronic contract deployment and testing.

The central component of our framework is the
contract compliance checker (CCC) (Fig. 1) (Strano
et al., 2009) (Molina-Jimenez et al., 2012), which es-
sentially is the System Under Test (SUT). The CCC is
an independent contract monitoring service that when
provided with an executable specification of a con-

463

buyer seller

CCC

communication channel

monitoring channel

biz events
(S,TF,BF)

trusted third party

response:
CC | NCC

electronic
contract

Figure 1: The CCC deployed as a contract monitor.

tract, can be deployed by the contracted parties or by
a third party. The CCC is able to observe and log
relevant interaction events, which it processes to de-
termine whether the actions of the business partners
are consistent with respect to the rights, obligations,
and prohibitions declared in the original legal con-
tract. Namely, the CCC declares interaction events as
either contract compliant (CC) or non contract com-
pliant (NCC).

As can be seen in Fig 1, business partners use a
communication channel for exchanging their business
messages. In addition they use a monitoring channel
for notifying events of interest to the CCC. Notably,
the figure shows that the CCC can cope with excep-
tions and failures, observing events that have been de-
clared by the interacting parties as either S (success-
ful), TF (technical failure), or BF (business failure).

The ability of the CCC to correctly declare in-
teraction events as (CC) or (NCC) relies on an exe-
cutable contract that has been specified correctly. Our
goal is to provide a framework that enables; rapid test-
ing of a deployed executable contract, and rapid up-
date of the contract rules when testing detects errors.
To do so, one must be able to exhaustively supply the
CCC with execution sequences that it would be ex-
pected to observe during runtime. Our approach is to
resort to model checker based testing.

Previous research into the area of model checker
based testing of electronic contracts, (Abdelsadiq
et al., 2010), describes the basic idea: construct a
behavioural model of the SUT and validate the be-
haviour using a model checker. Such a validated
model can then be used for generating executable test
cases for the SUT.

The model checking tool we use is SPIN (Holz-
mann, 2003), a tool originally designed for the ver-
ification of communication protocols. SPIN’s input
language, Promela, provides constructs for modeling
communication concepts such as messages, channels,
and basic data types that include bit, bye, arrays. etc.
Using these basic constructs alone for modeling elec-

tronic contracts, at a sufficiently high level of abstrac-
tion, is extremely challenging. This in turn makes the
process of generating accurate execution sequences
required for testing the CCC difficult.

To address these challenges, a fundamental com-
ponent of our testing framework is EPROMELA, a
high level language developed specifically for mod-
eling electronic contracts (Abdelsadiq et al., 2011).
EPROMELA extends Promela with constructs for ex-
pressing core electronic contract concepts contained
in the CCC, thus enabling the construction of a con-
tract model at a level of abstraction that is equivalent
to the actual electronic contract.

This paper makes two contributions: 1) we de-
scribe the architecture of the CCC service, highlight-
ing architectural improvements we have made that al-
low for dynamic update of rules coded in an electronic
contract specification. 2) we describe how SPIN, and
EPROMELA, can be instrumented with the aid of ap-
propriate automation and message parsing tools, to
produce business events that can accurately test the
executable contract deployed within the CCC service.

The remainder of the paper is structured as fol-
lows: In Section 2 we describe key electronic con-
tracting concepts with the aid of a simple example. In
Section 3 we present the enhanced architecture of the
CCC. Section 4 is dedicated to presenting our model
checker based testing framework. In Section 5 we dis-
cuss related work. Conclusions and future work sug-
gestions are presented in Section 6.

2 BACKGROUND

In order to elaborate key electronic contracting con-
cepts, we present a simple scenario. Let us assume
that Fig. 1 describes a relationship where two organi-
sations, a Buyer and a Seller (a store), agree to a busi-
ness contract. Below are some of its clauses:

1. The buyer can place a buy request with the store
to buy an item.

2. The store is obliged to respond with either buy
confirmation or buy rejection within 3 days of re-
ceiving the buy request.

(a) No response from the store within 3 days will
be treated as a buy rejection.

3. The buyer can either pay or cancel the buy request
within 7 days of receiving a confirmation.

(a) No response from the buyer within 7 days will
be treated as a cancellation.

The clauses of such a legal agreement should take into
consideration all relevant business operations (shown

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

464

Store

Buyer

Store
 rej

BuyRej

Buyer

Buyer
 req

Store

BuyReq

Buyer

Store

Buyer
 pay

BuyPay

Buyer

Store

Buyer
 canc

Store

Buyer

Store
 conf

startEv
G1 endEvG2

G3
BuyCanc

BuyConf

Figure 2: Correct choreography of contract example.

in bold in the contract text). A contract distinguishes
operations as Rights, Obligations, Prohibitions (the
ROP set). A Right is an operation that a party is al-
lowed to perform under certain conditions, an Obli-
gation is an operation that a party is expected to do
under certain conditions, and a Prohibition is an op-
eration that a party is not allowed to do under certain
conditions.

To support our discussion, we will use a graph-
ical representation of the contract written in BPMN
(Business Process Management Notation) choreogra-
phy language (OMG, 2011) (see Fig. 2).

The figure involves five activities, each result-
ing in a message (BuyReq, BuyRej, BuyConf, Buy-
Pay, BuyCanc) being sent from a sender (shown as
a white label in each activity), to a receiver (shown
as a shaded label). These messages correspond to the
five business operations (buy request, buy reject, buy
confirmation, buy payment, buy cancellation) shown
in bold in the English text of the contract. The dia-
monds in the figure are gateways. The figure includes
two exclusive fork gateways (G1 and G2) and a single
exclusive merge gateway (G3).

The choreography specification describes, from a
global perspective, all permissible message sequences
that can be exchanged between the partners, and is
used by the interacting parties for two purposes: i)
designing and implementing their individual parts of
the business process; and ii) it is also very useful as a
guide for developing the electronic contract.

The electronic contract designer is able to use the
legal contract and choreography, to accurately iden-
tify and extract the ROPs attributed to the business
partners, and to specify the rules which operate on
the ROP set (Molina-Jimenez and Shrivastava, 2013).
Rule implementation requires an appropriate specifi-
cation language; contract rules written for the CCC

monitoring service are currently realised using the
Drools Rule Language (DRL) (RedHat, 2013).

An example of a rule that deals with receipt of a
buy request event by the CCC, written using Drools
can be seen below. Line 5 checks that the buyRequest
operation is a right that the buyer is currently allowed
to perform. If so then buyRequest is declared by the
CCC as contract compliant (line 13). This operation
is also removed from the buyer’s ROP set (line 8),
meaning that the buyer no longer has a right to per-
form this operation. At lines 10 and 11, the seller is
given an obligation to perform one of 2 operations:
buyConfirm, or buyReject.

1 rule "Buy Request Received"
2 //Verify type of event, originator, and

responder
3 when
4 $e: Event(type=="BUYREQ",

originator=="buyer", responder=="store",
status=="success")

5 eval(ropBuyer.matchesRights(buyRequest))
6 then
7 //Remove buyer’s right to place other Buy

Requests
8 ropBuyer.removeRight(buyRequest, seller);
9 //Add seller’s obligation to either accept

or reject order
10 BusinessOperation[] bos = {buyConfirm,

buyReject};
11 ropSeller.addObligation("React To Buy

Request", bos, buyer, 60,2);
12 System.out.println("* Buy Request Received

rule triggered");
13 responder.setContractCompliant(true)
14 end

Each of the activities declared in the choreography of
Fig. 2 has a rule such as the one shown above. Typ-
ically, for each activity in a choreography, each busi-
ness partner can have several rights, obligations, and
prohibitions in force.

Once an electronic contract specification has been
completed, it can be loaded into the CCC for deploy-
ment and testing. As operations are executed, and
events are received by the CCC, rights, obligations
and prohibitions are granted to and revoked.

The CCC processes each event to determine if it is
contract compliant (CC) or none contract compliant
(NCC). The execution of a business operation (ob-
served from the outcome event) is said to be CC if
it satisfies the following three conditions and is said
to be NCC if it does not: 1) it matches an opera-
tion within the set of business operations expected by
the CCC, 2) it matches the ROP set of its role player
(meaning, the role player that performed the opera-
tion has a right/obligation/prohibition to perform that
particular operation), and 3) it satisfies the constraints
stipulated in the contractual clauses. An example of a

Dynamic�Testing�and�Deployment�of�a�Contract�Monitoring�Service

465

constraint is the seven day deadline in clause 3 of the
contract discussed earlier.

We also consider that the execution of a given se-
quence of operations is NCC if it includes one or more
operations that are flagged by the CCC as NCC. A se-
quence of operations is also known as an execution
sequence or execution trace, and drives the choreog-
raphy from its initial state to a final state.

To ease the introduction of basic concepts, our le-
gal contract example and corresponding choreogra-
phy of Fig. 2, deal with successful outcome events
only. However, a contract monitoring service such
as the CCC should also be able to observe out-
come events that include exceptional circumstances
(Molina-Jimenez et al., 2009). Therefore, follow-
ing the ebXML standard (OASIS, 2006), we assume
that at the end of a business conversation, each party
independently declares an execution outcome event
from the set fSuccess(S), BizFail(BF), TecFail(TF)g
as shown in Fig. 1. Success events model success-
ful execution outcomes. TecFail models protocol re-
lated failures detected at the middleware level, such
as a late, or a syntactically incorrect message. BizFail
models semantic errors in a message detected at the
business level, e.g., the credit card details extracted
from the received payment document are incorrect.

Adding exceptional outcome events to the CCC’s
set of observable events, naturally means that the
CCC has to monitor a much larger number of exe-
cution sequences. The task of generating these in or-
der to test the CCC effectively is extremely challeng-
ing, and strengthens the case for needing to automate
the testing process. Before moving on to our testing
framework, let us first take a look at the new architec-
ture of the CCC.

3 ARCHITECTURE OF THE
CONTRACT COMPLIANCE
CHECKER (CCC)

The overall architecture of the CCC is shown in
Fig. 3. It consists of two layers: The CCC Engine
(The Logical Layer), and the new addition is the CCC
Service (The Presentation Layer). The CCC Engine
is responsible for processing business events and for
determining whether they are contract compliant or
not. The CCC Service is an interface to the CCC En-
gine, it is used for delivering business events to the
CCC, and for collecting the corresponding responses.
In addition, the CCC Service can be used by the rule
administrator for loading and editing the rules that
represent the contract. The functionality of the ar-

BEvent
queue

outcome
queue

BizObj2XML /
XML2BizObj

filter
mism.bo

BEvent
queue

ROP set

contract
rules

BEvent
logger

timer

rule editor
(Browser)

relevance
engine

monitoring
channel

 outcome events
 (S, TF, BF)

tim
eo

ut
 e

ve
nt

s

set / reset

timeouts

update(add/del)

 response
 CC | NCC

Presentation Layer

Logical Layer

upload rule
service

Figure 3: Architecture of the contract compliance checker.

chitecture is as follows: A business event is received
through the monitoring channel as an XML document
that includes the names of the participants, the busi-
ness operation, and its outcome from the set: (Suc-
cess, BizFail, TecFail):
<event>
<originator>buyer</originator>
<responder>seller</responder>
<type>BuyReq</type>
<status>success</status>

</event>

The event shown here is produced as a result of
the implementation of a conversation synchronization
protocol between the interacting parties. The protocol
guarantees mutually agreed conversation outcomes. It
is the responsibility of the interacting partners to ap-
ply the protocol. A detailed discussed can be found
in (Molina-Jimenez et al., 2007). The XML docu-
ment representing the business event is passed to the
BEvent queue. Business events are retrieved, and con-
verted using the xml2BizObj/BizObj2xml Convertor
from their XML format into business event objects.
Events are then passed to the CCC Engine. The filter
mism.bo, discards mismatched business events that
are not among the permitted events defined within the
ROP set. Business events that pass this filter are in-
serted into the BEvent queue. All deadlines are set
and reset by the relevance engine, and enforced by the
timer. Timeout events are added to the filter mism.bo
as required by the contract, and are examined by the

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

466

filter to decide if bevents are mismatched. For exam-
ple, receiving a buy confirmation event from the store
after the 3 day deadline has elapsed, will be treated as
mismatched. The relevance engine removes a busi-
ness event from the head of the bevent queue and
compares it to the rules stored in the contract rules.
Rules that match the bevent under examination are
triggered to determine if their conditions are satisfied.
The actions of the rules whose conditions are satisfied
are executed, and this may alter (add/del) the current
state of the ROP sets. For our example in Fig. 2, a
rule triggered by a BuyConf business event and finds
its conditions satisfied will delete (disable) the store’s
right to execute another BuyConf business operation,
and delete the store’s right to execute a BuyRej opera-
tion. The rule also will add (impose) an obligation on
the buyer to either initiate the execution of a BuyPay,
or initiate the execution of BuyCanc. The bevent is
then stored in the BEvent logger as a record for any
future dispute resolution. The relevance engine even-
tually declares the business event either CC or NCC
and produces a response as a business object, which
is sent out to the Presentation Layer. The business ob-
ject passes through the xml2BizObj/BizObj2xml Con-
verter, where it is serialized into an XML message of
the following format:

<result>
<contractcompliant> true|false
</contractcompliant>

</result>

The xml2BizObj/BizObj2xml Converter inserts the
response into the outcome queue, which can be
accessed by the contracted parties. The Presentation
Layer allows a ”rule manager” to update the contract
rules at run time. For this purpose, rules can be edited
using the rule editor (in a browser) and sent to the
rule upload service as a conventional RESTful POST
operation. The rule upload service is responsible
for producing a drl (Drools) file (for example new–
rules.drl) from the payload of the POST operation,
and for uploading it to the CCC Logical Layer to
replace the Contract Rules.

The CCC Logical Layer is implemented using
JBoss’s Drools rules Engine (version 6.1 as of the year
2014) (RedHat, 2013). The Drools rules engine pow-
ers the decision making capabilities of the relevance
engine. The relevance engine, acts as a wrapper for
the Drools rule engine and its responsibilities include
the initialisation of the contract, as well as the addi-
tion and processing of events received from the Pre-
sentation Layer.

The Presentation layer, a new addition to the
CCC, exposes the CCC as a RESTful web service.

Its aim is to enable the exchange of XML event mes-
sages between the CCC and the contracted clients,
and to ease the editing and update of the contract
rules (these were previously hard coded). The Pre-
sentation Layer is implemented using the JBoss En-
terprise Application Platform (EAP), (RedHat, 2014).
The BEvent queue and the outcome queue, are imple-
mented using JBoss’s HornetQ (a message oriented
middleware layer), and using the Java Message Ser-
vice (JMS) API. A Message Driven Bean (MDB) re-
ceives business events from HornetQ and passes them
to the XML2BizObj/BizObj2XML converter, which is
implemented using Java. The upload rule service is
part of the Drools Workbench– a web authoring and
rules management application.

4 MODEL CHECKER BASED
TESTING

To claim categorically that the CCC functions cor-
rectly, we need to test that it can correctly identify
contract compliant and non-contract compliant execu-
tions of sequences and their constituent business op-
erations. To this end, one needs to be able produce
sequences of operations that are known to be con-
tract compliant, and also produce sequences that in-
clude both contract compliant and non contract com-
pliant operations.The challenge here is the production
of such sequences.

4.1 Testing Framework

Fig. 4 shows the main elements of our testing frame-
work. Squares with smooth corners represent hu-
mans involved in the design process. Tools are rep-
resented by solid squares with sharp corners, and
dashed squares represent data.

As stated earlier, a central component of our test-
ing framework is the SPIN model checker. SPIN
models are constructed using Promela, and specifi-
cally using EPROMELA, a modeling language de-
veloped precisely for modelling electronic contracts
(Abdelsadiq et al., 2011). EPROMELA is essen-
tially a high level tool that extends Promela with con-
structs for expressing core electronic contract con-
cepts contained in the CCC. Correctness properties
that an EPROMELA model is expected to satisfy,
can be expressed by the model designer using Lin-
ear Temporal Logic (LTL). When provided with a
model of the contract and appropriate LTL properties,
SPIN is able to verify the correctness of the model
with respect to those properties. With the aid of tools
for message parsing and automation, SPIN also can

Dynamic�Testing�and�Deployment�of�a�Contract�Monitoring�Service

467

natural
contract text

contract
designer

negated (trap)
properties in

LTL

model of
contractual
operations

contract
designer

SPIN model
checker

message
sequences

message
parsing tool

CCC

electronic
contract in

Drools

Figure 4: Model Checker based testing framework.

be instrumented to generate message sequences that
can be used to test the ability of the CCC to de-
tect contract compliant and non contract compliant
message sequences, a process that we will describe
next. Model checker based sequence generation fol-
lows these steps:

1. The designer constructs an abstract model of the
System Under Test (SUT), and verifies that the
model is correct in that it satisfies the correctness
properties of interest.

2. The verified abstract model is used for generat-
ing execution sequences. This is done by pre-
senting the verification tool with the verified ab-
stract model, together with a negated correctness
requirement in LTL (a trap property), and then
challenging the verification tool to find and pro-
duce counter examples that violate the LTL.

3. Each counter example contains an execution se-
quence that can be extracted with the aid of a mes-
sage parsing tool.

4.2 Example

We begin by building an EPROMELA model of our
example contract presented in the Background sec-
tion. To ease the task of parsing the counter exam-
ples of interest, we include within the EPROMELA
model print statements that produce the required
XML events. The end of each execution sequence is
marked using a reset message).

4.2.1 Model Construction and Verification

Below is a section of our EPROMELA contract
model, which includes the rule that deals with the
BUYRREQ operation of Fig. 2. Each of the opera-
tions for the choreography in Fig. 2 has a rule which
updates the status of the ROP set belonging the par-
ticipants as they transition from state to state.

1 RULE(BUYREQ)
2 {
3 WHEN::EVENT(BUYREQ,

IS_R(BUYREQ,BUYER),SC(BUYREQ))->{
4 SET_X(BUYREQ,BUYER);
5 atomic{
6 printf("<originator>buyer</originator>");
7 printf("<responder>store</responder>");
8 printf("<type>BUYREQ</type>");
9 printf("<status>success</status>");
10 }
11 SET_R(BUYREQ,0);
12 SET_O(BUYREJ,1);
13 SET_O(BUYCONF,1);
14 RD(BUYREQ,BUYER,CCR,CO);
15 }
16 END(BUYREQ);

Line 3 of the model deals with receiving a
successful buy request event SC(BUYREQ).
IS_R(BUYREQ,BUYER) is a guard that checks if
the BUYER has a right to perform the BUYREQ op-
eration. If so, then SET_X(BUYREQ,BUYER) declares
that this operation has been executed, and the buyer’s
right to execute BUYREQ is removed at line 11. The
rule then sets an obligation to the Store to execute
either BUYREJ or BUYCONF (lines 12 - 13). At
line 6 we introduce the print statements required
for parsing the generated execution sequences. The
print statements produce XML events in the format
expected by the CCC.

Each of the operations BUYREQ, BUYREJ, BUY-
CONF, BUYPAR, BUYCANC, has a rule such as
the one above. Events are generated using an
EPROMELA Event Generator module, which mod-
els the interaction between the business partners.
Events exercise rules such as the one above through
another EPROMELA module known simply as the
Rule Manager. For a full description, see (Abdelsadiq
et al., 2011). When the entire EPROMELA model
has been constructed, SPIN can be used to verify that
the model is free from any inconsistencies. Common
correctness properties such as absence of deadlocks
and reachability of states, can easily be checked using
SPIN’s configuration options. Checking for contract
specific correctness properties however, requires the
application of Linear Temporal Logic (LTL) formu-
lae. Typical correctness properties of the electronic
contracting domain are those that express mutual ex-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

468

clusion of rights, obligations, and prohibitions; for ex-
ample the requirement that the execution of a given
operation (such as making a purchase order) is never
simultaneously obliged and prohibited. Thanks to the
contract constructs offered by EPROMELA, this cor-
rectness requirement can be elegantly and intuitively
expressed in LTL as follows:
[]!(IS_O(BUYREQ, BUYER) && IS_P(BUYREQ, BUYER))

Where [] is the LTL always operator. ! is the
universal not, IS_O(BUYREQ, BUYER) returns true
if the BUYREQ operation is currently obliged and
IS_P(BUYREQ, BUYER) returns true if the BUYREQ
operation is currently prohibited. Instructing SPIN to
run through the EPROMELA model using this LTL,
will drive SPIN to find any examples that violate this
property. If such an example is found then it is pre-
sented as a counter example to the designer, who must
then correct the model.

4.2.2 Generating the Test Sequences

Once the contract model has been verified for required
correctness properties, it can be used as an oracle
for producing sequences that can test the electronic
contract. Test sequence generation is very similar to
verification in that we make use of LTL properties.
We can (as described in the previous section) instruct
SPIN to find undesirable examples of sequences that
violate a desirable property. But we also need to to be
able to instruct SPIN to find desirable sequences that
violate a non-desirable property. The latter is done by
negating a desirable LTL property converting it into a
trap property.

As a very simple example, let us instruct SPIN to
generate all sequences of messages that end with a
BUYREJECT operation. The LTL formulae required
for this task is as follows:
!<>IS_X(BUYREJ,STORE)

Where < > is the LTL eventually operator. The
formulae states that the model will not eventually
reach a state where BUYREJ is executed. SPIN can
now be instrumented to show all sequences that do
end with BUYREJ. From the command line we apply
the following steps (CorrectChore is the name if the
file that contains the EPROMELA model):

1. % spin -a CorrectChore is used for generat-
ing the verifier source code in C.

2. % cc -o pan pan.c is used for compiling the
verifier.

3. % ./pan -a -e -c100 instructs SPIN to pro-
duce all the counter examples (trail files) that it
can find, which violate the trap property. By de-
fault SPIN produces the first one it finds and stops.

The -c100 parameter instructs SPIN to generate
the first 100 counter examples it finds. The num-
ber of counter examples requested needs to be
above the actual number of counter examples that
SPIN could possibly find. This number can be de-
termine by the designer using trial and error.

4. spin -tN -s -r -B CorrectChore converts
the Nth trail file into a text file that includes
the XML messages involved in the execution
sequence.

Given the potentially large number of trail files that
can be produced by SPIN, it is advisable to mecha-
nise the process. We use a simple shell script for this
purpose. The following text represents the contents
of one of the trail files produced by the Linux shell
script. To ease readability, we have removed some
irrelevant lines.
2: proc 0 (Buyer) line 35 "CorrectChore" Sent

BuyReq,1
3: proc 1 (Store) line 71 "CorrectChore" Recv

BuyReq,1

<originator>buyer</originator>
<responder>store</responder>
<type>BUYREQ</type>
<status>success</status>

5: proc 1 (Store) line 114 "CorrectChore"
Sent BuyRej,1

6: proc 0 (Buyer) line 049 "CorrectChore"
Recv BuyRej,1

<originator>store</originator>
<responder>buyer</responder>
<type>BUYREJ</type>
<status>success</status>

<originator>reset</originator>
<responder>reset</responder>
<type>reset</type>
<status>reset</status>

The execution sequence shown above includes a
BUYREQ message sent from the buyer to the store,
followed by BUYREJ sent by the store to the buyer.
The status element indicates the outcome of the ex-
ecution of the operation. The status in this example
accounts only for successful execution outcomes (No
exceptional circumstances such as technical failures
are assumed), consequently, the content of this ele-
ment is always success. The last message is the reset
message, which we artificially include to mark the end
of the sequence.

As can be appreciated from this example, the files
produced by SPIN and the shell script need parsing in
order to extract the XML tagged messages.

Dynamic�Testing�and�Deployment�of�a�Contract�Monitoring�Service

469

4.2.3 Sequence Parsing

Our parser is built using Python. It extracts all the
XML tagged messages from a given sequence and
stores each message as an individual XML file. The
parser achieves this by creating a recursive grammar
that describes the precise structure of the business
events inside a sequence. As seen in the code seg-
ment below in lines 2 - 5, we first define the XML
tags we want to find.
1 #define grammar for sequence file
2 tagOriginator = pyp.Literal("<originator>")

+ pyp.Word(pyp.alphas) +
pyp.Literal("</originator>")

3 tagResponder = pyp.Literal("<responder>") +
pyp.Word(pyp.alphas) +
pyp.Literal("</responder>")

4 tagType = pyp.Literal("<type>") +
pyp.Word(pyp.alphas) +
pyp.Literal("</type>")

5 tagStatus = pyp.Literal("<status>") +
pyp.Word(pyp.alphas) +
pyp.Literal("</status>")

6 lineString = tagOriginator | tagResponder |
tagType | tagStatus

The parser reads a file containing a message sequence,
and searches for matches against each line according
to the following rule in line 6: If there is a line that
includes a tag definition of either the originator, re-
sponder, type, or status, then the match is successful.
If the parser finds a match, then it performs the fol-
lowing actions: i) the parser creates a new folder with
the name of the sequence, ii) it extracts the XML part
that is matched according to the above rule, iii) a new
XML file is created that includes the extracted busi-
ness event. Thus, the folder ExeSeq1–xml for the se-
quence shown above will contain three XML files be-
cause the sequences contains three messages, namely
BUY REQ ! BUY REJ ! reset.

4.2.4 Testing the Electronic Contract

After loading and initialising the CCC with the rules
that encode the electronic contract, we can proceed
with sending each of the execution sequences to the
BEvent queue. Responses are collected from the out-
come queue (see Fig. 3). The following lines show the
results of testing the execution sequence BUY REQ !
BUY REJ ! reset:
1 filename: event1.xml
2 -Begin Request to CCC service-
3 BusinessEvent [originator=buyer,

responder=store, type=BUYREQ,
status=success]

4 -End Request to CCC service-
5
6 -Begin Response from CCC service-

7 <result>
8 <contractCompliant>true</contractCompliant>
9 </result>
10-End Response from CCC service-
11
12 filename: event2.xml
13 -Begin Request to CCC service-
14 BusinessEvent [originator=store,

responder=buyer, type=BUYREJ,
status=success]

15 -End Request to CCC service-
16
17 -Begin Response from CCC service-
18 <result>
19 <contractCompliant>true

</contractCompliant>
20 </result>
21 -End Response from CCC service-
22
23 filename: event3.xml
24 -Begin Request to CCC service-
25 BusinessEvent [originator=reset,

responder=reset, type=reset,
status=reset]

26 -End Request to CCC service-
27 -Begin Response from CCC service-
28 <result>
29 <contractCompliant>true

</contractCompliant>
30 </result>
31 -End Response from CCC service-

The operations (BUYREQ and BUYREJ) included in
the sequence, are declared contract compliant by the
CCC indicating that the contract rules have been
coded correctly with respect to the LTL property in
Section 4.2.2. The first operation is sent to the CCC in
line 3, and its response <contractCompliant>true
is shown at line 8. Similarly, BUYREJ operation
is sent to the CCC at line 14, and its response
<contractCompliant>true can be seen at line 19.

4.2.5 Testing None Compliant Events

A model that has been verified, will by default gen-
erate test sequences with events corresponding to the
execution of contract compliant operations only. An
EPROMELA model can be tuned to generate se-
quences which include unknown and noncompliant
business events using the EPROMELA Event Gener-
ator module mentioned under Section 4.2.1. Thus we
can alter the EPROMELA model to follow any varia-
tion of the choreography shown in Fig. 2. For exam-
ple the modified choreography of figure Fig. 5 does
not correctly reflect the original text contract.

The particularity of this diagram is that it produces
contract compliant sequences such as BuyReq !
BuyRe j. In addition, it produces non–contract com-
pliant sequences, for instance it allows for cancella-
tion after payment which is not stipulated in the orig-

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

470

Buyer

Buyer
 req

Store

BuyReq

Store

Buyer

Store
 rej

BuyRej

Buyer

Store

Buyer
 pay

BuyPay

endEv

Buyer

StoreStore

Buyer

Store
 conf

startEv G3G2
G1

BuyCanc

BuyConf

Buyer
 canc

Figure 5: Incorrect choreography of contract example.

inal contract. Consequently, the execution of Buy-
Canc within the sequence BuyReq ! BuyCon f !
BuyPay ! BuyCanc should be declared non contract
compliant by the CCC. The following text shows the
results of the execution of the non–contract compli-
ant sequence discussed above. The first 2 events
BUYREQ, BUYCONF, were declared contract com-
pliant by the CCC as expected. To save space we only
show the outcome of the 2 events of relevance in this
example (BUYPAY followed by BUYCANC):

1 filename: event3.xml
2 -Begin Request to CCC service-
3 BusinessEvent [originator=buyer,

responder=store, type=BUYPAY,
status=success]

4 -End Request to CCC service-
5
6 -Begin Response from CCC service-
7 <result>
8 <contractCompliant> true

</contractCompliant>
9 </result>
10 -End Response from CCC service-
11
12 filename: event4.xml
13 -Begin Request to CCC service-
14 BusinessEvent [originator=buyer,

responder=store, type=BUYCANC,
status=success]

15 -End Request to CCC service-
16
17 -Begin Response from CCC service-
18 <result>
19 <contractCompliant> false

</contractCompliant>
20 </result>
21 -End Response from CCC service-

The process BUYPAY is contract compliant (lines 3
and 8). The execution of BUYCANC at line 14 and the
corresponding response received at line 19 indicates
that the CCC has declared BUYCANC non–contract
compliant. This is the desired behaviour from the
CCC, as it has detected that this sequence of events
is not consistent with the contract.

Store

Buyer

Store
 conf

BuyConf

Buyer

Store

Buyer
 pay

BuyPay

G1

Success

G2

Technical Failure

Business Failure

Success

Technical Failure

Business Failure

Figure 6: Execution model with success and failures.

4.3 Accounting for Exceptional
Outcome Events

The contract example we have used so far assumes
that the execution of operations always succeeds; it
does not account for potential failures. More realis-
tic examples would include the execution of activities
as shown in Fig. 6, which account for successful and
failed outcomes.

As discussed in Section 2, and following the
ebXML standard (OASIS, 2006), we would like to be
able to detect two types of failures; business failures,
and technical failures. To this end, the EPROMELA
modeling language has been designed with the ability
to deal with these 2 types of failures. As an example
of an electronic contract that can handle exceptional
outcomes, we add the following clause to our origi-
nal contract to account for potential semantic errors
(business failures) in the execution of any operation:

4. Failure handling: if after 2 attempts, an operation
is not performed correctly, then the contractual
interaction shall be declared terminated.

Fig. 7 shows a partial choreography representation of
the contract for three out of its five tasks only (for
readability). The contract allows for a finite number
of retries if business failures are encountered. The ac-
tual number of retries will normally be a configuration
parameter. In the figure, S and BF stands for Success
and Business Failure, respectively. Similarly, rqBF,
rjBF, and coBF, represent counters that keep track
of the number of failed executions of the operations;
BUYREQ, BUYREJ, and BUYCONF, respectively. N
represents an arbitrary integer that in our example al-
lows for two failure execution (N = 2). The execution
of each activity leads to a gateway with three outgoing
arrows. As an example, at BUYREQ, a successful (S)
execution leads to the normal execution of the con-
tract, namely to G2. Alternatively, if the execution
completes in BF and the number of failed executions
rqBF of the BUYREQ operation is less than N, the
execution is tried again. However, if the outcome is
BF and it has already failed N times, the contractual

Dynamic�Testing�and�Deployment�of�a�Contract�Monitoring�Service

471

Store

Buyer

Store
 rej

BuyRej

Buyer

Store

Buyer
 canc

BuyCanc

Buyer

Store

Buyer
 pays

BuyPay

Store

Buyer

Store
 conf

BuyConf

Buyer

Buyer
 req

Store

BuyReq

startEv

S

S

S

G2

endEv

BF & coBF<N BF & caBF<N

S

S

endEv

endEv

BF & rqBF<N

BF & rjBF<N BF & paBF<N

B
F

 &
 r

q
B

F
=

N

B
F

 &
 c

o
B

F
=

N
B

F
 &

 r
jB

F
=

N

B
F

 &
 p

aB
F

=
N

B
F

 &
 c

aB
F

=
N

G3

G4G1 G5

G6

G7

Figure 7: Contract example that accounts for failures.

interaction is terminated. Failure handling with the
remaining activities is similar, except that gateways
G2 and G5 introduce additional alternative execution
paths. For instance, after failing to complete success-
fully BUYREJ at the first attempt, the initiator is al-
lowed to choose BUYREJ again or alternatively can
execute BUYCONF. Below we show how an excep-
tion such as the business failure of the BUYREQ oper-
ation described above can be intuitively and naturally
modeled using EPROMELA. The rule for BUYREQ
described in Section 4.2.1 can be easily enhanced as
follows:
1 /*handle failure outcome event*/
2::EVENT(BUYREQ,IS_R(BUYREQ,BUYER),

BF(BUYREQ))->{
3 atomic{
4 printf("<originator>buyer</originator>");
5 printf("<responder>store</responder>");
6 printf("<type>BUYREQ</type>");
7 printf("<status>bizfail</status>");
8 }
9 if /*1st notification of BF*/
10 ::(ReqFailBefore==NO)->

ReqFailBefore=YES;
11 printf("First BUYREQ-BF");
12 RD(BUYREQ,BUYER,CCR,CO);
13 /*2nd notification of BF*/
14 ::(ReqFailBefore==YES)->

abncoend=TRUE;
15 printf("Last BUYREQ-BF");
16 SET_R(BUYREQ,0);
17 atomic{
19 printf("<originator>reset</originator>");
20 printf("<responder>reset</responder>");
21 printf("<type>reset</type>");
22 printf("<status>reset</status>");
23 RD(BUYREQ,BUYER,NCCR,CND); /*abnormal

contract end*/

The model can now also handle BUYREQ events that

result in BF outcomes (line 2). If a failed event is
received, then the rule checks if a failure of this kind
has happened before. If not (line 10), then this first
failure is registered, and contract execution is allowed
to continue (line 12). On the other hand, if this is the
second time BUYREQ has been received with a BF
outcome then the rule terminates contract interaction
at line 23.

The EPROMELA model includes rules like the
one described above for dealing with each of the 5
business events shown in bold in our contract exam-
ple. After the model has been verified using SPIN, the
electronic contract deployed to the CCC can be tested,
in combination with the testing framework described
previously, using much more realistic execution se-
quences that include exceptions. A detailed descrip-
tion of how exceptions are handled in the CCC can be
found in (Molina-Jimenez et al., 2009).

5 RELATED WORK

Research work on the monitoring of cross-
organizational interactions between parties was
pioneered by Minsky (Ungureanu and Minsky, 2000)
with work on Law Governed Interaction (LGI). The
notion of rights, obligations and prohibitions was
introduced in (Ludwig and Stolze, 2003). A useful
summary about various issues involved in contract
management is provided in (Hvitved, 2010).

Linear Temporal Logic (LTL) is a powerful tool
for specifying correctness properties in a model
whether it is for verifying the correctness of the
model, or for the generation of test sequences. How-
ever not all correctness properties can be expressed
using LTL; for example it is not possible to specify
that a particular property will hold for every 3rd or
4th state of the system. Such limitations are discussed
in (Galton, 1987), where extensions to LTL are sug-
gested. In addition, despite the advantages of model
checker based testing, it does have its disadvantages;
building a model of the SUT and describing the re-
quired LTL properties relies heavily on the skills of
the technical person who must also be intimately fa-
miliar with the SUT. The advantages and disadvan-
tages of model checker based testing are discussed in
(El-Far, 2001) where the author provides a practical
guide. Naturally it is difficult to ensure complete cov-
erage of all possible system behaviors during testing
with manually specified LTL properties. Therefore,
it is extremely desirable to be able to systematically
create complete test suites according to some test ob-
jective (Fraser et al., 2009). (Van der Aalst and Pesic,
2006) propose to automate the task of specifying LTL

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

472

properties by means of a graphical language (DecSer-
Flow) that is then mapped into LTL formulas. Using
this language, the designer can specify a set of com-
mon or frequent correctness requirements.

It is worth noting at this point that we are in the
process of developing an LTL Manager component
for our testing framework. The LTL Manager in-
cludes a repository that can be populated with tem-
plates of LTL formulae for common contract related
properties that must be satisfied by all contracts. For
example that a business operation is not simultane-
ously prohibited and obliged at the same time.

Although model checker based testing techniques
have been studied widely in the software engineering
community (Utting and Legeard, 2006) (Pezze and
Young, 2008) (Torsel, 2013), their use in the testing
of a contract monitoring service has received little at-
tention. The principles of model checker based test-
ing of electronic contracts are investigated previously
by us in (Abdelsadiq et al., 2010), however contract
models in this work are built using Promela, the basic
input language of SPIN. Attempting to predict how
a designer would use basic Promela to model a con-
tract is an impossible task, which makes developing
tools for automating the testing process extremely dif-
ficult. An important contribution of this paper is that
we highlight the benefits of developing a tool based
framework that has been tailored specifically to lever-
age the capabilities of a domain specific modelling
tool such as EPROMELA (Abdelsadiq et al., 2011),
which was developed specifically for modeling elec-
tronic contracts.

6 CONCLUSION AND FUTURE
WORK

Ensuring the correct functionality of an electronic
monitoring service such as the contract compliance
checker (CCC), becomes more difficult as the number
of execution sequences that the CCC is expected to
observe increase. We have seen that cloud and Inter-
net based interactions between business partners can
indeed be extremely complex, and this is especially
true when exceptional outcome events from these in-
teractions are taken into consideration. Reproducing
such complex exchanges in order to test the correct
functionality of the CCC is difficult and cannot be
achieved manually. In addition, it is extremely impor-
tant to be able to correct and update the rule base of
the monitoring service rapidly so that interruptions to
the deployed service are reduced as much as possible.

In order to address these issues, we have presented
a model checker based framework that includes tools

to automate the testing process. By using the SPIN
model checker in combination with EPROMELA, a
high level modeling language designed specifically
for modeling electronic contracts, we can build ver-
ified models that accurately resemble the System Un-
der Test (SUT) with relative ease. By using appropri-
ate LTL formulae within an EPROMELA model, we
can instrument SPIN to automatically produce con-
tract compliant, and none contract compliant execu-
tion sequences that are capable of exhaustively testing
the correct operation of the CCC. In addition, we have
presented a new and enhanced architecture and im-
plementation of the CCC, with an additional Presen-
tation Layer that exposes the CCC as a web service.
An important feature is that the Presentation Layer
includes a Drools editing and upload service that en-
ables dynamic update of the electronic contract rules
at runtime.

There are a number of future research directions
which we are currently exploring. Drools, the lan-
guage we use for specifying electronic contracts is
verbose, and not as declarative and readable as would
be ideal. We have developed a contract specifica-
tion language called EROP (for Events, Rights, Obli-
gations, and Prohibitions) (Strano et al., 2009), and
are in the process of completing a tool for translat-
ing EROP to Drools. Also we would like to enhance
the CCC, which currently acts as a passive monitor,
with the capability to act as a contract enforcer. The
aim of a contract enforcement service would be to en-
sure that an operation is executed only if it is contract
compliant.

An important item for future work is to conduct
experiments in order to determine how the presented
testing framework performs as the number of possi-
ble events increases. The verification and testing of
the CCC can be further automated in several ways;
in addition to the development of the LTL Man-
ager component discussed in Section 5, we would
like to create a translation tool that can produce an
EPROMELA model from an electronic contract spec-
ification written in EROP automatically. This would
reduce the risk of introducing unwanted errors into
the contract model during construction. We believe
that this goal is achievable because of the semantic
similarities between EPROMELA and the electronic
contracting concepts within the CCC.

REFERENCES

Abdelsadiq, A., Molina-Jimenez, C., and Shrivastava, S.
(2010). On model checker based testing of electronic
contracting systems. In IEEE International Confer-

Dynamic�Testing�and�Deployment�of�a�Contract�Monitoring�Service

473

ence on Commerce and Enterprise Computing (CEC
2010). IEEE.

Abdelsadiq, A., Molina-Jimenez, C., and Shrivastava, S.
(2011). A high level model checking tool for verify-
ing service agreements. In The 6th IEEE International
Symposium on Service-Oriented System Engineering
(SOSE 2011). IEEE.

El-Far, I. K. (2001). Enjoying the perks of model-based
testing. In Proc. of the Software Testing, Analysis, and
Review Conference (STARWEST 2001).

Fraser, G., Wotawa, F., and Ammann, P. (2009). Testing
with model checkers: A survey. Software Testing, Ver-
ification and Reliability, pages 215–261.

Galton, A. (1987). Temporal logics and computer science:
An overview. Academic Press, pages ch. 1, pp. 2748.

Holzmann, G. J. (2003). The Spin model checker: primer
and reference manual. AddisonWesley Professional.

Hvitved, T. (2010). A survey of formal languages for
contracts. In n Fourth Workshop on Formal Lan-
guages and Analysis of ContractOriented Software
(FLACOS10).

Ludwig, H. and Stolze, M. (2003). Simple obligation and
right model (sorm)-for the runtime management of
electronic service contracts. In 2nd Intl Workshop
on Web Services, eBusiness, and the Semantic Web
(WES03) LNCS, volume 3095, pages 62–76.

Molina-Jimenez, C. and Shrivastava, S. (2013). Establish-
ing conformance between contracts and choreogra-
phies. In 15th IEEE Conference on Business Infor-
matics (CBI). 2013, Vienna, Austria: IEEE Computer
Society. IEEE.

Molina-Jimenez, C., Shrivastava, S., and Cook, N. (2007).
Implementing business conversations with consis-
tency guarantees using message-oriented middleware.
In IEEE 11th Intl Enterprise Computing Conf. (EDOC
07), pages 51–62.

Molina-Jimenez, C., Shrivastava, S., Solaiman, E., and
Warne, J. (2003). Contract representation for run-
time monitoring and enforcement. In 2003 IEEE In-
ternational Conference on E-Commerce (CEC 2003).
IEEE.

Molina-Jimenez, C., Shrivastava, S., and Strano, M. (2009).
Exception handling in electronic contracting. In IEEE
Conference on Commerce and Enterprise Computing
(CEC). 2009, Vienna, Austria. IEEE.

Molina-Jimenez, C., Shrivastava, S., and Strano, M. (2012).
A model for checking contractual compliance of busi-
ness interactions. IEEE TRANSACTIONS ON SER-
VICES COMPUTING, 5(2):276–289.

Molina-Jimenez, C., Shrivastava, S., and Wheater, S.
(2011). An architecture for negotiation and enforce-
ment of resource usage policies. In IEEE Interna-
tional Conference on Service Oriented Computing &
Applications (SOCA). IEEE.

OASIS (2006). ebXML Business Process Specifi-
cation Schema Technical Specification v2.0.4.
Available: http://docs.oasis-open.org/ebxml-
bp/2.0.4/OS/spec/ebxmlbp-v2.0.4-Spec-os-en.pdf.

OMG (2011). Documents associated with business

process model and notation (bpmn) version 2.0.
http://www.omg.org/spec/BPMN/2.0/.

Pezze, M. and Young, M. (2008). Software Testing and
Analysis: Process, Principles and Techniques. Wiley.

RedHat (2013). ”Drools”. http://www.drools.org/.
RedHat (2014). JBoss Enterprise Application Platform

v 6.3. http://www.redhat.com/en/technologies/jboss-
middleware/application-platform.

Solaiman, E., Molina-Jimenez, C., and Shrivastava, S.
(2003). Model checking correctness properties of
electronic contracts. In International Conference on
Service Oriented Computing (ICSOC03). Springer.

Strano, M., Molina-Jimenez, C., and Shrivastava, S. (2008).
A rule-based notation to specify executable electronic
contracts. In Rule Representation, Interchange and
Reasoning on the Web: International Symposium
(RuleML). Springer-Verlag.

Strano, M., Molina-Jimenez, C., and Shrivastava, S.
(2009). Implementing a rule-based contract compli-
ance checker. In Software Services for e-Business and
e-Society: 9th IFIP WG 6.1 Conference on e-Business,
e-Services and e-Society (I3E). Springer.

Torsel, A.-M. (2013). A testing tool for web applications
using a domain-specific modelling language and the
nusmv model checker. In IEEE Sixth International
Conference on Software Testing, Verification and Val-
idation.

Ungureanu, V. and Minsky, N. H. (2000). Establishing busi-
ness rules for interenterprise electronic commerce. In
14th International Symposium on Distributed Com-
puting (DISC00), pages 179–193.

Utting, M. and Legeard, B. (2006). Practical Model-Based
Testing: A Tools Approach. MorganKaufmann.

Van der Aalst, W. and Pesic, M. (2006). Decserflow: To-
wards a truly declarative service flow language. In
Bravetti M, Nunez M, Zavattaro G (eds) International
Conference on Web Services and Formal Methods
(WS-FM 2006), volume 4184, pages 1–23. Lecture
Notes in Computer Science Springer-Verlag.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

474

