
P-TOSCA Portability of SOA Applications

Marjan Gusev, Magdalena Kostoska, Sasko Ristov and Aleksandar Donevski
University Ss. Cyril and Methodius, Faculty of Computer Sciences and Engineering, 1000 Skopje, Macedonia

{marjan.gushev, magdalena.kostoska, sashko.ristov}@finki.ukim.mk, aleksandar.donevski@outlook.com

Keywords: Application Portability, SOA, Cloud Computing.

Abstract: Even more frequently, the customers express their increasing need to change the cloud provider and/or the
operating cloud environment in order to avoid vendor lock-in. We analyze portability as the transferability of
an application from on-premise onto a cloud (migration) andamong different clouds (porting). The contribu-
tion of this paper is twofold: 1) demonstration of the P-TOSCA model for automated migration and porting of
SOA applications onto a cloud and/or switch between cloud providers, and 2) evaluation of a significant time
reduction in migration and porting.

1 INTRODUCTION

The Service Oriented Architecture (SOA) is com-
monly used architecture in the past few years, espe-
cially for enterprise applications. It became popu-
lar due to the benefits and flexibilities of integrating
loosely-coupled and reusable services (Erl, 2004)

Cloud offers a scalable and elastic environment
for hosting SOA applications as computing utilities
(Buyya et al., 2009). It saves not only companies’
OPEX and CAPEX, but also management and ad-
ministration costs (Rana, 2014). As more customers
adopt and use cloud technologies, they encounter tur-
bulence along the increasing number of SOA appli-
cations hosted on clouds. A variety of cloud service
providers (CSPs) with different service level agree-
ments (SLAs) are now available on the market.

Customers appreciate being able to switch among
CSPs and environments, so as to choose the most
suitable one to their needs. The ability of a soft-
ware to run on different cloud platforms in general
defines the cloud portability. It presents a hot topic
research challenge, although CSPs do not think to of-
fer mechanisms to enable migration of applications
onto clouds or to enable a possibility to transfer them
between clouds. Mostly, CSPs are stuck to the phi-
losophy that the best solution on the market will be-
come a standard. However, we analyze a possibility
to define a specification and build an engine that will
enable portability and migration. Our research also
includesmigrationas a process of transferring an ap-
plication onto a cloud. Actually, we aim to present a
sophisticated procedure to realize the transfer process

to make the application run in the new cloud environ-
ment, which is realized manually by cloud experts.

Cloud application portabilityis a general ability
to move applications between CSPs, no matter which
cloud environment they are using as infrastructure.
Cloud application portability is not considered as a
data or service transfer between clouds, but as a trans-
fer of a whole set of functionally organized services
and data. Our goal isautomated cloud application
portability by defining an automated procedure that
will realize migration or porting, without or with min-
imal user intervention.Porting is a complex process
that usually needs a lot of support by cloud vendors,
and especially by CSPs. Our goal is to use stan-
dard interfaces to cloud management, which will re-
alize porting as a process. These cloud management
features used by most of the existing operating sys-
tems (OS) and cloud environments integrate essential
cloud management functions, such as invocation of
virtual machines (VMs), instantiation, customization
and management.

The approach for automated porting of a SOA ap-
plication between different CSPs (or cloud environ-
ments) is based on the P-TOSCA model and practical
implementation (Kostoska et al., 2014b). This model
enables automated porting of Platform-as-a-Service
(PaaS) hosted applications from one cloud environ-
ment to another as an extension of TOSCA 1.0 stan-
dard (OASIS, 2014).

Cloud portability requires the CSPs to enable
cloud interoperability (Toosi et al., 2014). It means
that a CSP must be able to replicate the application
environment and enable application deployment.

71



2 RELATED WORK

As more CSPs and cloud environment vendors be-
come available, users at some point would like to
transfer their data and applications from one CSP to
another, but there is no standard to do it seamlessly. A
nice overview about cloud portability approaches and
opportunities is given by Petcu and Vasilakos (2014).
Gonidis et al. (2013) have classified three types of
cloud portability solutions: 1) adoption of existing
or emerging standards (like TOSCA, CDMI, OCCI,
OCF), 2) usage of intermediary levels (like jClouds or
mOSAIC) and 3) adoption of semantics and model-
based solutions. Several approaches have been ana-
lyzed in (Ortiz Jr, 2011). IEEE P2301 is just one ini-
tiative to design a roadmap for application portability,
management and interoperability interfaces, as well
as for file formats and operating conventions.

Open Virtualization Format (OVF) (DMTF, 2010)
establishes a transport mechanism for moving VMs
from one hosted platform to another. It is an approach
for definition of an open standard for packaging and
distributing virtual appliances or more generally soft-
ware to be run in multiple VMs. Their approach is
based on using different hypervisors.

The OCCI, OVF and similar approaches work on
IaaS level. When analyzed on PaaS level, the most
promising approach is defined by TOSCA (OASIS,
2014) as a portable and manageable specification of
services and applications deployed on any CSP. Our
research with TOSCA specification was initially di-
rected to test the feasibility of a TOSCA model de-
ployment. Recently, analyzing this process we have
identified critical points where original TOSCA spec-
ification requires further refinement and extended the
specification with additional cloud-specific elements
to enable automated porting (Kostoska et al., 2014b).

No commercial solution supports processing of
TOSCA specification at this moment. (Binz et al.,
2013) present the OpenTOSCA environment for im-
perative Cloud Service Archive (CSAR) processing.
Unlike this proposal, P-TOSCA offers declarative
processing and implementation for multiple cloud
environments. Other initiatives include creation of
visual environments for TOSCA specifications like
Winery (Kopp et al., 2013) and Vino4TOSCA (Bre-
itenbücher et al., 2012). Some approaches were con-
cerned with creation of TOSCA specification for ex-
isting projects (Li et al., 2013; Kostoska et al., 2014a).

Petcu and Vasilakos (2014) also give an overview
of tools and services that support a certain degree
of portability, including Aoleus (cloud management
software, written in Ruby), CompatibleOne (cloud
broker, defining a language for management of cloud

services), CloudFoundry (works on top of VMware-
based IaaS), ConPaaS (federation support), Docker
(deployment engine), mOSAIC (API that allows de-
ployment and configuration management), Nimbus
(a virtual site layer for dynamic provisioning of dis-
tributed resources), etc.

Katsratos et al. (2014) present a proof of con-
cept for the portability problem on OpenStack cloud.
They use Opscode Chef as a configuration manage-
ment tool that describes and manages system con-
figuration using a Ruby based domain-specific lan-
guage. It automates the cloud management tasks that
are obtained by translating a TOSCA-based applica-
tion specification into Chef environment. Similar ap-
proaches are used by the existing EU funded research
projects, such as SeaClouds, Remics, Cloud4SOA,
Optimis, Contrail, Artist, PaaSage, MODAClouds, or
even RighScale or CloudFoundry. Instead of build-
ing a TOSCA engine, these approaches translate a
TOSCA-based application specification into a speci-
fication that can use cloud management tools, such as
CAMP, Brooklyn, Chef, Puppet etc. However, our ap-
proach uses a practical implementation of P-TOSCA
engine and direct application porting between clouds.

The concept of SOA services is based on uni-
fied communication and collaboration to produce the
desired result (OASIS, 2014). It offers many ben-
efits due to scalability and adaptability. The main
SOA characteristics are Discoverable and Dynami-
cally Bound, Self-Contained and Modular, Interop-
erability, Loose Coupling, Location Transparency,
Composability, and Self-Healing (Valipour et al.,
2009).

SOA applications consist of independent service
elements orchestrated to communicate and exchange
information in order to achieve the desired functional-
ity. The services can be composed as applications (as-
sembly of services and components bound by applica-
tion logic), service federations (collections of services
bound in large service domain) and service orchestra-
tion (execution of one business process by multiple
successful service invocation) (Valipour et al., 2009).

Building and deploying a distributed SOA de-
pends upon successful orchestration to enable ser-
vices to be orchestrated in unified and defined pro-
cess, successful deployment to enable proper config-
uration of security, reliability, scalability and success-
ful management (Papazoglou and Heuvel, 2007).

3 P-TOSCA CONCEPTS

A P-TOSCA specification of an application contains
XML description of the application topology (types,

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

72



Interface Module

Core Module

Data Module

E
x

te
rn

a
l 

li
b

ra
ri

es

P-TOSCA engine

Users

Other

P-TOSCA

engine

Other

P-TOSCA 

engine

Cloud

controller

Cloud 

controller

VM

instances

VM 

instances

Figure 1: Context diagram of P-TOSCA engine.

templates and artifacts). This specification along with
the required artifacts is packed in a CSAR. Artifacts
represent files needed for application deployment or
configuration like scripts, war files, zip files, libraries
etc. The P-TOSCA approach is used to:Migrate an
application onto a cloud; orPort an application from
one CSP to another.

In our earlier work (Kostoska et al., 2014b), we
have identified several TOSCA weaknesses and ambi-
guities and suggested extensions to enable a fully au-
tomated application life-cycle management. Most of
these identified problems arise because the main goal
of TOSCA is to be cloud, technology and hardware
agnostic, while the real implementation needs proper
definitions of several hardware based specific param-
eters, such as: a) Specifying the external namespace
of ServerProperties; b) Specifying the initial num-
ber of instances child element to the ServerProper-
ties element; c) Extending the ServerProperties el-
ement of Node Template with ServerIPAddress ele-
ment; d) Specifying the external namespace of Scrip-
tArtifact Properties; e) Extending the Properties el-
ement of Node Template with ServerSecurityProper-
ties element; and f) Introducing XML defined plan.

All these extensions still keep the P-TOSCA cloud
and technology agnostic. It just defines all those spe-
cific elements required for real implementation.

Details on the practical P-TOSCA engine im-
plementation are also described in (Kostoska et al.,
2014b). The software is hosted on a separate VM by
the CSP and its architecture is presented in Fig. 1.

The interface module contains two parts, one to
establish communication to the users and the other to
collaborate with other P-TOSCA engine implemen-
tations. The core module is responsible for manag-
ing the CSAR archives. It executes the artifact plans
and communicates with the cloud controller to man-
age, invoke and revoke various instances. All rele-
vant data are stored and managed by the correspond-
ing database module. Software is developed in Java
programming language using Linux specifics.

The first use case, which presents thecloud mi-
gration (to migrate an application onto a cloud), is
performed by a direct user interaction with a web ap-
plication provided by the platform. The second use

User

P-TOSCA 

Engine

4. Plan selection

Cloud 

Controller

2. Creation 

of application 

topology

3. Creation 

of application 

instances

5. Execute plan

App 

instance1
App 

instance1
App 

instance1

1. Authentication &

CSAR delivery

Figure 2: P-TOSCA based migration.

User

Target

P-TOSCA 

Engine

1. Authentication

(local and remote)

Cloud 

Controller

4. Creation 

of application 

topology

5. Creation 

of application 

instances

7. Plan execution

Source

P-TOSCA 

Engine

3. Application 

Definitions

and artifacts

App 

instance1
App 

instance1
App 

instance1

2. Application selection

6. Plan selection

Figure 3: P-TOSCA porting.

case, which presents thecloud application portabil-
ity (porting of an application from one CSP to an-
other), is performed by a direct user interaction with
a web application and communication between plat-
forms using web services.

Both use cases may require only two clicks by the
customer, one to select and upload the CSAR archive
(or to select the appropriate application to be ported
together with the P-TOSCA engine), and another for
plan selection. We assume that the customer had al-
ready prepared the CSAR archive and the execution
plan. As the plan selection may be a part of a script
file, the complete transfer can be done automatically.

Fig. 2 presents a conceptual diagram of a sequence
of activities to realize the cloud migration using the P-
TOSCA platform. This use case includes the follow-
ing actions: 1) A user authenticates at the P-TOSCA
engine platform and uploads the CSAR archive; 2)
The platform processes the archive and requires cre-
ation of instances according to the topology of the
application; 3) The cloud controller creates the in-
stances; 4) The user selects execution plans; 5) The
platform executes the plans on the created instances.

The conceptual diagram describing the sequence
of activities that realize interaction between the user
and the P-TOSCA engine for cloud application porta-
bility is shown in Fig. 3. Porting an application from
one CSP to another using P-TOSCA includes the fol-
lowing actions: 1) A user authenticates to the P-
TOSCA engine, selects the remote P-TOSCA engine
and authenticates to the remote platform; 2) The user

P-TOSCA�Portability�of�SOA�Applications

73



selects an application to be ported from the remote
platform; 3) Application’s definitions and artifacts are
obtained from the remote platform via web services;
4) The platform requires creation of instances accord-
ing to the specified application topology; 5) The cloud
controller creates the instances; 6) The user selects
execution plans; 7) The platform executes the plans
on the created instances.

4 P-TOSCA DEMONSTRATION

A modified version of the eBay SOA Shopper project
(Hansen, 2007) is used as a proof-of-concept of trans-
ferring a SOA application between clouds using the
P-TOSCA model. The developed application uses the
eBay SOAP API to retrieve offers from eBay by given
search terms. It offers different interfaces (web ser-
vice and application for web browser). It is a typical
transaction-based application realized with the SOA
approach that consumes services from one provider
and offers services to other parties. This application is
selected as SOA demo since it represents both a con-
sumer and a service provider in same type (i.e. covers
the two important aspects of SOA).

One Java EE container hosts the application. It
consists of two main modules:Interface modulethat
contains the services, which are offered as web inter-
face, REST and SOAP services;Core and consumer
module, which consumes services from eBay using
the eBay SOAP API and converts the data in the re-
quired format. When an application user accesses an
interface service (whether using SOAP, XML mes-
sage or HTTP parameter), then the appropriate soft-
ware module is invoked. The control then continues
with the SOA Finder API (which represents a wrap-
per) with goal to invoke eBay services. Finally the
result is returned to the user via corresponding inter-
face. The application is hosted on one VM instance.

The application topology describes the application
deployment architecture. The orchestration of appli-
cation required elements is needed for: a) Enabling
a platform independency; b) Easier installation; c)
Cloud deployment. Orchestration, in this context, de-
scribes the way the services are invoked and managed.

TOSCA specifies the application topology nodes
by node types divided in three main categories:Base
type, which defines the basic components required
by the application, such as OS, web server and web
application; Specific typesused to define the spe-
cific components required by the application topol-
ogy, such as Linux OS, GlassFish web server and Java
EE Web Application. The deployment and configura-
tion of the application also requires usage of Maven

Tier

Base node type

eBay Finder

Application

Custom node type

GlassFish

Web Server

Specific node type

Linux OS 

Specific node type

hosted 

on

hosted 

on

hosted 

on

Maven

Specific node type

Ant

Specific node type

depends 

on

hosted 

on

depends 

on

hosted 

on

Basic Type

Specific Type

Custom Type

Figure 4: eBay Finder SOA application’s topology tem-
plate.

<NodeTemplate id="Tier"
name="Instance for eBay Finder App"
type="Tier">

<Properties>
<ServerProperties>
<NumCpus>2</NumCpus>
<Memory>2048</Memory>
<Disk>10</Disk>
<InitialNumInstances>
1

</InitialNumInstances>
<ServerSecurityProperties>
<ServerSecurityProperty>
<protocol>TCP</protocol>
<port>80</port>

</ServerSecurityProperty>
<ServerSecurityProperty>
<protocol>TCP</protocol>
<port>443</port>

</ServerSecurityProperty>
</ServerSecurityProperties>

</ServerProperties>
</Properties>
...

</NodeTemplate>

Listing 1: Tier node template definition.

and Ant tools. For that reason these tools are defined
as specific types;Custom typesthat define the compo-
nents developed specifically for the eBay Finder Ap-
plication.

The application topology template of the eBay
Finder SOA application is presented in Fig. 4. Each
node of the topology is specified by a node template,
and the relationships between the nodes are specified
using relationship template, depicted by blue color ar-
rows. Same as nodes, the relationship types are ini-
tially set in the specification and each relationship
template specifies the type of relationship. All el-
ements are defined by XML. P-TOSCA model uses
external namespaces for different custom defined ele-
ments, but they will be intentionally omitted from the
further listings for clearer representation.

Tier node template definition is presented in List-
ing 1. In this context we use P-TOSCA extended
specification of theServerPropertieselement with
the following: Initial number of instances to be

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

74



CloudGlassFish server

Maven Ant

eBay Finder App

eBay Finder App VM

Deny all other

Allow ports

80 and 443

Figure 5: Communication layout of the eBay Finder.

<NodeTemplate id="GlassFishWebServer"
name="GlassFish Web Server"
type="GlassFishWebServer">

<Properties>
<httpport>80</httpport>
<httpsport>443</httpsport>
<username>admin</username>
<password>adminadmin</password>

</Properties>
</NodeTemplate>

Listing 2: GlassFishWebServernode template definition.

1; Server security properties with TCP protocol
and port 80 (for HTTP); Server security properties
with TCP protocol and port 443 (for HTTPS). The
ServerPropertieselement was extended by definition
of the ServerSecurityPropertyelement with corre-
sponding port identification for HTTP and HTTPS
protocols. It specifies details of the communication
layout presented in Fig. 5.

Listing 2 shows definition of the GlassFish server
node template. According to the P-TOSCA extended
specification we define thePropertieselement with
Port 80 (for HTTP) and Port 443 (for HTTPS). The
user credentials are also defined within theProperties
element.

Listing 3 shows the definition of the artifact tem-
plate for configuration of the GlassFish server. The
ScriptArti f actPropertieselement within theArtifact
Templatewas extended with theInputParametersel-
ement used to define the input ports and user creden-
tials. Note that these parameters correspond to the al-
ready defined properties of the GlassFish Web Server
node template.

Unlike the standard TOSCA specification (that
suggest usage of BPMN and BPEL languages), P-
TOSCA uses XML defined plans. XML definition is
used instead of use of BPMN and BPEL languages
due to the ambiguity of these languages and the lack
of BPMN processing engine at the moment when this
project was developed (Kostoska et al., 2014b). List-
ing 4 shows the definition of the XMLPlan element
for application deployment.

EachPlan element contains the node templates
and their operations for execution of the required ac-

<ArtifactTemplate id="glassfish-configsh" type="ScriptArtifact">
<Properties>
<ScriptArtifactProperties>
<ScriptLanguage>sh</ScriptLanguage>
<PrimaryScript>
scripts/GlassFishWebServer/configure.sh

</PrimaryScript>
<InputParameters>
<InputParameter
nodeTemplateId="GlassFishWebServer"
property="httpport"/>

<InputParameter
nodeTemplateId="GlassFishWebServer"
property="httpsport"/>

<InputParameter
nodeTemplateId="GlassFishWebServer"
property="username"/>

<InputParameter
nodeTemplateId="GlassFishWebServer"
property="password"/>

</InputParameters>
</ScriptArtifactProperties>

</Properties>
<ArtifactReferences>
<ArtifactReference

reference="scripts/GlassFishWebServer">
<Include pattern="configure.sh"/>

</ArtifactReference>
</ArtifactReferences>

</ArtifactTemplate>

Listing 3: GlassFish Artifact template.

<Plan id="InstallApplication"
<NodeTemplateOperations>

<NodeTemplateOperation ref="GlassFishWebServer">
<Operation name="install"/>
<Operation name="configure"/>

</NodeTemplateOperation>
<NodeTemplateOperation ref="Maven">

<Operation name="install"/>
</NodeTemplateOperation>
<NodeTemplateOperation ref="Ant">

<Operation name="install"/>
</NodeTemplateOperation>
<NodeTemplateOperation ref="eBayFinderApp">

<Operation name="install"/>
<Operation name="configure"/>

</NodeTemplateOperation>
</NodeTemplateOperations>

</Plan>

Listing 4: XML Planelement for eBay Finder deployment.

tion. The operations specified in the plan are exe-
cuted sequentially in the order of description, unless
some operation defines precondition (that should be
executed before the operation).

The first activity of the P-TOSCA portability se-
quence is the preparatory step, where the user authen-
ticates and prepares the CSAR archive.

All definitions and the required artifacts are
packed in the CSAR archive as a zip file. The CSAR
archive for the eBay Finder SOA application contains:
1) Java EE 7 installation (which represents a zip file);
2) The application deployment artifact (war file); 3)
Scripting artifacts for GlassFish; 4) Configuration, in-
stallation and deployment scripts. The final archive
has a substantial size (over 90MB) due to the size of
Java EE 7 installation file.

The next step includes copying to the P-TOSCA
engine and starting a procedure defined by the cor-
responding migration or porting scenario. All these

P-TOSCA�Portability�of�SOA�Applications

75



On-premise

B
ef
o
re

A
ft
er

On-premise

SOA

APP

VM

SOA

APP

VM

a)

b)

On-premise

B
ef
o
re

A
ft
er

On-premise

SOA

APP

VM

SOA

APP

VM

B
ef
o
re

A
ft
er

SOA

APP

VM

SOA

APP

VM

SOA

APP

VM

P-TOSCA

c)

SOA

APP

VM

P-TOSCA

SOA

APP

VM

Figure 6: Three scenarios.

steps are performed in a sequence. The user interac-
tion is required only to specify the execution plans.

5 TESTING METHODOLOGY

The test goal was to evaluate the functionality and
deployment performance of the P-TOSCA portabil-
ity model, and to provide a proof-of-concept of au-
tomated cloud application portability. A demonstra-
tion will be successful if the application migration and
porting can be realized by using a P-TOSCA engine
following the definitions of the P-TOSCA model. Per-
formance evaluation will show if transferring the ap-
plication using this approach is realized by a click of
a button and consumes less time. Further on, we dis-
cuss details on the testing environment, test cases, and
test data.

For testing purposes we used two cloud environ-
ments: OpenStack and Eucalyptus, isolated in sepa-
rated VLANs. The OpenStack cloud was installed on
one server with Ubuntu server 12.04 LTS. The server
hosts all the OpenStack elements: node, cluster and
tiers. The Eucalyptus cloud was installed on three
physical servers with CentOS 6.5 in such a way that
each server uses one Eucalyptus element.

Both frameworks were set with a P-TOSCA en-
gine, which can communicate with the user and
the cloud controller. Communication with other P-
TOSCA engines is realized by web services.

Fig. 6 presents three different scenarios, where
Eucalyptus is presented as the target cloud.Manual
migration onto a cloud (MM)is a test scenario to eval-
uate the performance of application migration on the
cloud, where the user manually creates an instance,

deploys the application and sets authentication and se-
curity rules (Fig. 6 a);P-TOSCA based migration onto
a cloud (PTM)is a test scenario to evaluate the perfor-
mance of activities to upload the defined CSAR and to
deploy the application using the web interface of the
P-TOSCA engine (Fig. 6 b);P-TOSCA based porting
the application from one cloud to another (PTP)is a
test scenario to evaluate the performance to transfer a
PaaS hosted application from one cloud environment
to other using web services (Fig. 6 c).

The target cloud to migrate or transfer the applica-
tion is either OpenStack or Eucalyptus cloud. Since
both cloud frameworks are used for the three test sce-
narios, there are a total of 6 use cases.

Functionality testing is realized by testing the ap-
plication after its deployment on the target cloud for
its proper functioning. For this purpose we have
selected several characteristic input parameters and
specified the expected output. The functionality test
actually realizes matching of the expected output and
the real obtained output for the same input. Perfor-
mance testing is defined by evaluation of the total time
needed for deployment of the use case.

In the manual migration use case, the time mea-
surement starts with user authentication and the ac-
tivity of manual preparation, including collection of
necessary files and packing into a zip archive, fol-
lowed by the manual copying of the archive, manual
extracting, and manual starting of the scripts, VM in-
stantiation, execution plans and ends when the final
installation and deployment activity is finished.

In the P-TOSCA based migration and porting, all
activities are performed automatically by the corre-
sponding scripts. The time is measured from the mo-
ment when the user authenticates, followed by start-
ing the initial script and finishes with realization of
the execution plan. In this use case we have defined
user interaction for selection of an appropriate exe-
cution plan, although it can also be automated by a
corresponding script.

6 EVALUATION

In addition to the original TOSCA specification, our
P-TOSCA model gives details on implementation
specifics, such as initial number of instances, used
protocols and ports for communication, and relevant
data about CPUs, memory, disks etc. This infor-
mation is required for implementation and deploying
purposes. XML specified plans and exiting P-TOSCA
engine cannot support the full coverage of architec-
ture configurations and deployments as those by the
BPEL engine, but this is planned for next P-TOSCA

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

76



Table 1: Average time for use case scenarios.

Use case id sec id sec
MM Td(O) 1918 Td(E) 1914
PTM Tm(O) 1247 Tm(E) 1205
PTP Tp(O) 1093 Tp(E) 1022

software release. Currently all sequential deployment
and installation activities can be successfully applied
by P-TOSCA.

Recently we have presented demo cases by using
the P-TOSCA approach: a demo on a small SOA ap-
plication (Ristov et al., 2014) and a demo of porting
theN-tier applications (Gusev et al., 2014). Here we
extend the approach on a more general SOA appli-
cation and give comprehensive details on P-TOSCA
application, along with functional and performance
evaluation.

Proof of concept is demonstrated for all 6 use
cases although OpenStack is not specifically de-
signed neither for interoperability nor portability
(Toosi et al., 2014). The overall application port-
ing from Eucalyptus to OpenStack and vice verse
are correspondingly demonstrated in the publicly
available videos: http://youtu.be/92KaHt0CyxE and
http://youtu.be/NRnqrPqO41k. Some performance
related results are presented next to explore the in-
fluence of the cloud infrastructure.

Table 1 presents the average of 10 success-
ful test case executions, calculated for manual, P-
TOSCA based migration and for P-TOSCA based
porting, where OpenStack and Eucalyptus are the
target clouds, correspondingly. We observe similar
results for both cloud platforms, that is, P-TOSCA
based cloud migration is faster than the manual. P-
TOSCA based porting is even faster, since the transfer
is realized directly between the clouds. Letc∈{O,E}
identifies the cloud environment, whereO stands for
OpenStack andE for Eucalyptus. Denote byTd the
time for default manual migration (MM),Tm(c) for P-
TOSCA based migration (PTM), andTp(c) the time
for P-TOSCA based porting (PTP).

The target cloud infrastructure is important for
the overall deployment process. The obtained re-
sults show that migration and porting using P-TOSCA
model is faster on Eucalyptus for 3.5% in case of mi-
gration and 6.95% in case of porting on Eucalyptus
as target cloud instead of on OpenStack. This is due
to the different cloud infrastructure used for hosting
the cloud environment. The OpenStack cloud envi-
ronment uses one server as infrastructure to host the
node controller, cluster and tier, while the Eucalyptus
uses three different physical servers as infrastructure.
These results actually show that the better the infras-
tructure is, the faster the deployment.

The time needed for initial migration using P-
TOSCA is slightly greater than the time for porting
between the clouds because during the initial migra-
tion we access the platform from outer network. The
reason is in the setting of the cloud environment and
the duration of the copying process, which is due to
the network latencies and throughput.

The experiment environment uses user interaction
with WAN (Wide Area Network) protocol, while both
clouds (OpenStack and Eucalyptus) are connected
with 1Gb LAN (Local Area Network). So, the data
transfer time for archive upload requires more time
when using WAN, while the data transfer between
clouds was faster due to the faster LAN protocol.

Although the size of the archive is greater than
90MB, most of the time differences between the man-
ual and P-TOSCA migration are due to the time re-
quired by the user to access the visual interface of the
cloud and to manually execute the actions.

Another time-consuming activity is introduction
of the new cloud environment. In the conducted ex-
periments we do not analyze the time needed for
learning the environments (i.e. we assume them as
known environment). In real life, the time needed
for manual migration may be significantly longer if
the users meet the new cloud environment for the first
time. It takes time to get acquainted to the interface
and the options offered by the CSP.

During this process the user does not have control
over the instances (as in manual migration), since the
platform uses specific security policies and authenti-
cation, but at the end of the process the user specific
requirements are set.

Other SOA characteristic is modularity. If the
SOA application consists of several loosely-coupled
modules, each module can be defined as a separate
node in the application topology and can be deployed
on a dedicated instance, while at the same time the
relationships between the modules can be described
using the relationship template.

Our approach described on a PaaS level can
be evaluated by the approach (Petcu and Vasilakos,
2014) with a high portability degree, since, no code
has to be rewritten and recompiled, no restructuring
of data and applications are required and no services
are re-configured. All activities are realized straight
forward and automatically, starting from archiving,
transferring of archives, deployment and installation.

7 CONCLUSION

So far, TOSCA can be used with the BPEL engine, or
extended to P-TOSCA and using the P-TOSCA en-

P-TOSCA�Portability�of�SOA�Applications

77



gine. All other published research results concern de-
velopment of various tools that support the process,
while the on-going projects translate the TOSCA def-
initions in specification used by specific cloud man-
agement tools. One of the benefits of the P-TOSCA
platform is that the user does not have to learn and
use the native interfaces of CSPs, making the man-
agement of hosting a SOA application an easy task.

A proof-of-concept of automated cloud applica-
tion portability was demonstrated in this paper using
P-TOSCA portability in case of migration or porting
of a transaction-based SOA application.

The demonstration of migration and porting on
OpenStack and Eucalyptus cloud environments can
be used also for other cloud environments, since P-
TOSCA uses a generalized approach for specifica-
tion and modeling of an application, and provides a
scripting mechanism for automated sequence of ac-
tivities. The main benefit is the possibility to easily
switch CSPs and port the application between clouds.
It seems that this functionality is unattractive to CSPs,
since they prefer vendor lock-in and would prefer not
to give the customer an easy way out of their cloud.
This looks similar to the ongoing fight for mobile
phone devices by mobile providers. However, as the
time goes by, the customers would prefer portability
and easy way in and easy go out options from future
CSPs. It is not a question of should CSPs do it, but
when to do it.

REFERENCES

Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann,
F., Nowak, A., and Wagner, S. (2013). OpenTOSCA –
a runtime for TOSCA-based cloud applications.11th

Int. Conf. on Service-Oriented Computing, LNCSvol.
8274, pages 692–695. Springer.

Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., and
Schumm, D. (2012). Vino4TOSCA: A visual no-
tation for application topologies based on TOSCA.
OTM 2012, Part I, LNCSvol. 7565, pages 416–424.
Springer-Verlag.

Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and
Brandic, I. (2009). Cloud computing and emerging
it platforms: Vision, hype, and reality for delivering
computing as the 5th utility.Future Gener. Comput.
Syst., 25(6):599–616.

Distributed Management Task Force (2010). Open virtual-
ization format specification version 1.1.0.

Erl, T. (2004). Service-oriented architecture: Concepts,
Technology, and Design. Prentice Hall.

Gonidis, F., Simons, A. J., Paraskakis, I., and Kourtesis,

D. (2013). Cloud application portability: an initial
view. 6th Balkan Conf. in Informatics, pages 275–
282. ACM.

Gusev, M., Kostoska, M., and Ristov, S. (2014). Cloud
P-TOSCA porting of N-tier applications.22nd Int.
TELFOR Forum, IEEE Conf. Publications, pages
935–938.

Hansen, M. D. (2007).SOA Using Java Web Services. Pear-
son Education, Inc, Upper Saddle River, NJ.

Katsaros, G., Menzel, M., Lenk, A., Revelant, J. R., Skipp,
R., and Eberhardt, J. (2014). Cloud application porta-
bility with TOSCA, Chef and Openstack.Cloud Engi-
neering (IC2E), 2014 IEEE Int. Conf., pages 295–302.

Kopp, O., Binz, T., Breitenbücher, U., and Leymann,
F. (2013). Winery – modeling tool for TOSCA-
based cloud applications.11th Int. Conf. on Service-
Oriented Computing, LNCS vol. 8274, pages 700–
704. Springer.

Kostoska, M., Chorbev, I., and Gusev, M. (2014a). Cre-
ating portable TOSCA archive for iKnow university
management system.Federated Conf. Computer Sci-
ence and Information Systems (FedCSIS), IEEE Conf.
Publications, pages 767–774.

Kostoska, M., Gusev, M., and Ristov, S. (2014b). P-TOSCA
portability model for PaaS hosted applications. Tech.
Report LiiT:22/2014, University Ss Cyril and Method-
ius, Computer Science and Engineering.

Li, F., Vogler, M., Claessens, M., and Dustdar, S. (2013).
Towards automated IoT application deployment by a
cloud-based approach.Service-Oriented Computing
and Applications (SOCA), 6th IEEE Int. Conf., pages
61–68.

OASIS (2014). Online files.
Ortiz Jr, S. (2011). The problem with cloud-computing

standardization.IEEE Computer, 44(7):13–16.
Papazoglou, M. and Van Den Heuvel, W.-J. (2007). Service

oriented architectures: approaches, technologies and
research issues.The VLDB Journal, 16(3):389–415.

Petcu, D. and Vasilakos, A. V. (2014). Portability in clouds:
approaches and research opportunities.Scalable Com-
puting: Practice and Experience, 15(3):251 – 270.

Rana, O. (2014). The costs of cloud migration.Cloud Com-
puting, IEEE, 1(1):62–65.

Ristov, S., Kostoska, M., and Gusev, M. (2014). P-TOSCA
portability demo case.2014 IEEE 3rd Int. Conf. on
Cloud Networking (CLOUDNET), pages 269–271.

Toosi, A. N., Calheiros, R. N., and Buyya, R. (2014). In-
terconnected cloud computing environments: Chal-
lenges, taxonomy, and survey.ACM Comput. Surv.,
47(1):7:1–7:47.

Valipour, M., Amirzafari, B., Maleki, K., and Daneshpour,
N. (2009). A brief survey of software architecture
concepts and service oriented architecture.Computer
Science and Information Technology, 2009. ICCSIT
2009. 2nd IEEE Int. Conf., pages 34–38.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

78


