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Abstract: Service Oriented Architecture (SOA) is an architectural style that provides agility to align technical 
solutions to modular business Web Services (WS) that are well decoupled from their consumers. This 
agility is established by interconnecting WS family of standards specification protocols (commonly referred 
to as WS-* (WS-star)) to enable security, ease of service interoperability and orchestration complexities 
when extending services across organizational boundaries. While orchestrating services or chaining services 
in varying ways to satisfy different business needs, on highly scalable cloud platforms is undeniably useful, 
it is increasingly challenging to effectively monitor Quality of Service (QoS), especially, service response 
time. This is due to a) lack of proper formulation of the WS-star interconnections mechanisms, and b) the 
transient performance behaviour intrinsic to the heterogeneity of the hardware and shared virtualized 
network and IO resources built on the cloud platforms. We present an analysis of WS-star standards, 
classifying and discussing their inter-dependencies to provide a basis for QoS monitoring context on 
protocol formulation. We then illustrate a practical implementation of a dynamic QoS monitoring 
mechanism using runtime service instrumentation with Aspect Oriented Programming (AOP). Preliminary 
evaluations show the efficiency of computing QoS on a transient performance cloud platform. 

1 INTRODUCTION 

Service Oriented Architecture (SOA) is the 
architectural style that provides agility to align 
technical solutions to modular business Web 
Services (WS) that are well decoupled from their 
consumers in the cloud environment. Built on a 
Virtualization of heterogeneous hardware and 
software stack on a SOA-based architecture as its 
technical foundation, cloud computing is a 
computing model that enables socio-economic 
benefits due to its on demand computing resource 
availability. 

In this computing model, service providers and 
consumers are typically decoupled by means of 
common universal registries known as Universal 
Description Discovery and Integration (UDDI) and 
mediation mechanisms. Service capabilities, 
interface options, Quality of Service (QoS), and 
security constraints are described in the Service 
Level Agreement (SLA) (Overton, 2002) that is 
typically published in the UDDI. 

The SLA document represents a contractual 

agreement for obligating the service provider to 
comply both   functional and non-functional 
parameters of the registered service. The non-
functional parameters are QoS attributes, such as 
service response time and service up time (i.e. 95%-
99.999%) that are not known by the consumers 
before runtime (Erl, 2005) nor by the provider when 
orchestrating variable services to satisfy different 
business needs.  

To ease the interoperability complexity and 
security concerns, especially for web services, SOA 
encourages the use of WS-* standardized 
specification, referred to WS-star. The forefronts of 
these protocol specifications are the ones used for 
data transport (i.e. SOAP/HTTP(s),  WS_Security, 
and WS_SecureConversation) message level 
security. Typically, services are developed and 
deployed by multiple software designers and system 
integrators without prior knowledge of their 
effective protocol interconnections when service are 
orchestrated, the process of chaining services in 
various ways to satisfy different business needs.  

Due to the magnitude of the available standards, 
chained services have higher chance of overlapping 
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some functionality, especially security 
functionalities, that hinder the overall QoS 
advertised in the published SLA. Coupled with the 
transient performance behaviour inherent in cloud 
platforms, further complicates this mixture of 
standard-based design and contractual compliance 
requirements to guarantee QoS.   

Consider a realistic scenario where two or more 
orchestrated services deployed in the cloud that 
implement WS_Security to enforce encryption and 
digital signatures for both inbound and outbound 
traffic. The overall response time across the chain 
will be highly impacted due to the potential security 
functionalities overlap across the services. The main 
reason is that each service performs encryption and 
digital signature, which is typically a performance 
hog. One alternative solution in this case is the use 
of WS_SecureConversation. However, detecting 
such overlap is increasingly challenging due to the 
nature of these services’ development and 
deployment by multiple teams in different times. 
Typically, a Business Process Execution Language 
(BPEL) is used during orchestration to either 
determine response time by waiting till response is 
received or configure it with a proper timeout. Note 
that these response time evaluations are statically 
performed in nature. 

In addition, there is transient variable 
performance behaviour of the clouds’ VM network 
and IO interfaces due to multi tenant resource 
sharing (Mei, et. Al. 2013). For example, over 300 
million test cases conducted on nine cloud providers 
over seven days (Alistair, 2011) have shown 
performance time-of-the-day variability in 
virtualized environments. Later studies (Zhonghong, 
2012) showed such transient performance behaviour 
is due to the hardware heterogeneity that the cloud is 
built of. Therefore, it is prudent to dynamically 
uncover QoS friendly alternatives at runtime to 
improve service response time, thus, the main 
objective of our work. 

There is a large array of research that addresses 
WS performance issues; to name a few, some QoS 
monitoring research have been designed around 
service selection (Fung, 2005), (Tian, 2004) 
composition (Mietzner, 2010), (Fung 2005), and 
dynamic soft QoS guaranteeing (Abdelzaher, 1999).  
An area that has been substantially overlooked and 
poorly studied is the understanding of the underlying 
WS-* standard specification behaviour under the 
cloud, especially, regarding service response time 
for web services.  

In this work, we propose a dynamic QoS 
monitoring scheme on SOA-based services on 

virtualized shared cloud platforms. The goal is to 
capture the improper protocol formulation and the 
underlying platform performance variations to 
effectively compute service response time without 
any modification to the service code to improve hard 
QoS guaranteeing on virtualized environments. 

In this paper, we present analysis of WS-* (WS-
star) by classifying and discussing their 
interdependencies to show QoS impacts on improper 
protocol formulation. We then illustrate dynamic 
QoS monitoring mechanisms in a widely adopted 
service container (JBoss). Thus, our contribution is 
two fold: 

 We developed an effective scheme for 
dynamically monitoring orchestrated 
services and computing service response 
time in cloud environments without service 
code modification or recompilation. 

 While the proposed instrumentation scheme 
is designed for QoS monitoring, it can also 
be used to detect malicious service in the 
chain, simply, by instrumenting the method 
calls that reach beyond its intended service 
end point. 

The rest of the paper is organized as follows. 
Section 2 gives a brief overview of SOA ecosystem 
with especial emphasis on web services. We then 
discuss WS-security protocols and their 
interdependencies in section 3. We show our 
proposed approach in section 4 followed by the 
implementation and experimentation to illustrate the 
effectiveness of our approach in section 5 and the 
related work in section 6. Finally, section 7 provides 
the conclusion and future work. 

2 SOA ECO SYSTEM 

SOA is an architectural style that promotes a high 
degree of service decoupling and rapid system 
development and deployment that span across 
traditional organization boundaries. The traditional 
SOA triangle paradigm consists of a service registry 
(i.e. UDDI), a service provider and a consumer as 
depicted in Figure 1.  

 

Figure 1: SOA Triangle System Model. 

At a high level, web service (WS) is an approach of 
building web accessible services where the service 
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providers publish/register their service in the UDDI 
registry and the service consumers discover and 
invoke it. The two wide spread paradigms for 
building services compliant with WS protocols are a 
Representational State Transfer (REST) (Erl, 2012), 
referred to RESTful services, and the Simple Object 
Access Protocol (SOAP)-based services (discussed 
next). 

WS are built on standard specifications to 
facilitate their integration and secure execution. The 
core of the WS architecture (WS Architecture, 2002) 
outlines a set of service characterization that enables 
these complex functionalities to co-exist. However, 
the actual specifications of the standards have been 
collaborated and authored by many organizations 
such as; W3C, OASIS, OMG, IBM, Microsoft, 
Oracle, and xmlsoap.org, which makes difficult to 
fully realize the goals of their interactions. 

There has been a considerable research effort 
that addresses the magnitude of the available 
standards, their cross-referencing design and 
development difficulties. For example, in (Gamble, 
2011), authors proposed a Security Meta-Language 
for guiding the formulation of secure messages in 
WS architecture that model the security relevant 
portions of the standard for their consistent, 
comprehensive, and correct applications.  

Others have addressed this through the use of 
enterprise-level integration (i.e. Apache Camel), 
meditation (i.e. Enterprise Service Bus), and 
Orchestration (i.e. BPEL) tools. However, 
dynamically monitoring these critical protocol 
functionalities over transient performance platforms 
has not been sufficiently addressed in these tools and 
in a generic fashion.  

2.1 RESTful Services  

The RESTful Services paradigm is a lightweight 
service implementation scheme that avoids 
preserving service state and the use of the 
underlying message level security. In other words, 
the traditional encryption and digital signatures are 
not employed in this service model due to its 
computational and bandwidth requirements. 
RESTful services are stateless services where 
responding in a timely manner to every service 
request is critical, thereby widely used in non-
critical applications such as; gmail access, facebook 
updates, amazon consumer interactions, etc.  

A transport security layer (TSL) or SSL over 
HTTP (https) is typically used to secure RESTful 
services. Such security solutions are sufficient for 
point-to-point connection oriented where a service 

call is authenticated and securely responds to the 
request. However, this point-to-point security 
solutions are ill suited in orchestrated/chained 
service interactions where a service request from a 
consumer has to reach out to other services in which 
these services further reach other services in the 
chain that are possibly in different domains in order 
to respond to such request. 

To remedy these limitations, the use of message-
level security is introduced in the standard protocols 
such as: WS_Security, WS_SecureConversation, and 
WS_Policy.  The key idea of message level security 
is to structure and wrap the message (both the 
request and response) by sealing it in an envelope 
(SOAP) and associating it with security attributes 
(saml token) to safeguard its access and on transit.  

2.2 SOAP-based Services  

SOAP-based services provide granular message 
level security using WS-* family of protocols in 
which WS-Security is at the forefront. 
Cryptographic and digital signature techniques are 
the core of protecting SOAP messages from attacks. 
As a consequent, this introduces a performance 
overhead to the services (Liu, 2005). As the services 
are orchestrated, these performance overheads 
increase in the order of magnitude due to the 
overlaps of the security functionalities. Detecting 
these overlaps of such critical security 
functionalities to improve QoS is the focus of our 
work.  

In order to effectively illustrate the 
interconnection of the performance-degrading 
protocol formulation and avoid hiding the concept in 
a myriad of protocol standards, we limit our protocol 
interdependency analysis (discussed next) to only 
those protocols that impact QoS, specificaly policy 
enforcement and message level security protocols, 
confidentiality and integrity. 

3 WEB SERVICE PROTOCOL 
INTERDEPENDENCIES  

WS decoupling is typically achieved by means of 
common registries known as Universal Description 
and Discovery Integration (UDDI). Services 
deployed in UDDI are discoverable through either 
WS Application Language (WADL) or WS 
Description Language (WSDL) standard 
specifications as depicted in Figure 2 (top left box), 
and access control protocols (bottom left box). 
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WADL and WSDL are the two defacto standards 
for defining web service capabilities. These include: 
service URI, services, security capabilities, and QoS 
attributes using WS_PolicyAttachment for 
encryption, signatures, policies, and WS-Addressing 
for end point service response delivery. Discovery 
and access control protocols have no impact on QoS, 
therefore, in this work; we only give special 
emphasis on confidentiality and integrity protocols.  

 

Figure 2: Anatomy of End-to-End Web Service Security 
Protocols - Service Discovery (top left box), Access 
Control (lower left box), and Confidentiality and Integrity 
for message level security (right box). 

WS-Security is the core of WS-star protocol for 
confidentiality and integrity of the service. The WS-
Security standard describes the security attributes of 
service and task delegation between services to 
facilitate secure authentication, authorization and 
invocations. Each new security concept or interface 
specification defined in WS-Security brings 
additional WS-* family of standards which play a 
significant role in expressing a web service’s 
security posture.  

For example, bridging communication between 
secure environments require protocols to specify 
cross-domain access controls.  The Security 
Assertion Markup Language (SAML) provides the 
authentication and authorization among and across 
services, even in different security domains (Oasis-
open, 2007), and eXtensible Access Control 
Language (XACML) provides the security policy 
enforcements for the authorizations that cross the 
organizational boundaries (Oasis-open, 2012). 

Further, WS-Trust is required to broker 
authentication information, however, WS-Trust does 
not describe the security functionality of services 
and its capacity to fulfill the security needs. Instead, 
it delegates to WS-SecurityPolicy to describe the 
security policy which in turn uses WS-Policy. WS-
Policy exchanges policy decisions and enforcement 
capabilities for every request, introducing more 

latency for QoS constraint services, especially if 
such capabilities deployed in a remote service 
domains. 

In addition, WS-Security defines XML-Signature 
and XML-Encryption standards for digital signatures 
and encryption of XML documents to ensure the 
integrity of the exchanged SOAP 
messages/envelope. The more security capabilities 
added the more standard protocols needed. Thus, the 
SOAP message size increases, which consequently 
require more bandwidth and computationally 
intensive operations in encryption, signature, and 
verifications in which contribute to other QoS 
issues, especially when services are deployed across 
cloud domains or consumers with resource 
constrained devices (mobile).  

QoS violations are imminent when improper 
protocol formulation is coupled with the transient 
performance behaviour of the underlying platform.  
A recent study (Zhonghong, 2012) shows that the 
virtualized heterogeneous hardware built on the 
cloud has performance variations that can reach up 
60% between instances. Thus, dynamically 
intercepting and monitoring orchestrated services on 
such platforms are crucial in order to improve QoS 
guarantees and consequently prevent SLA 
violations. 

4 SYSTEM MODEL 

A motivating example of cross-domain service 
orchestration scenario is depicted in Figure 3 below.  

 

Figure 3: High-level architecture for orchestrated services 
across private and public clouds. 

The high-level architecture above depicts a typical 
orchestrated service deployment across security 
domains, public and private. The top arrows marked 
(1-Publish Service) and (2-Discovered Service) 
show the service registration flow to the UDDI by 
the service provider where then the consumer client 
(depicted as the laptop) discovers that service. The 
client invokes that service as shown by the arrow-
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marked (3a-Request/Response (RR)) and gets back a 
response. The arrow marked (3b-RR) between the 
clouds show the cross-domain service invocation 
that jointly satisfy the consumers’ request. Note that 
all arrows represent a bio-directional data flow. 

Chaining services in such environments is 
typically configured using BPEL. However, once 
services are deployed in the service container or 
application servers (eg. Jboss, Oracle, IBM 
Glassfish, etc.), these configurations are static, and 
thereby, fail to adapt to the changes of the 
underlying cloud platforms. Computing service 
response time in such setting typically requires 
reconfiguring or even re-designing the services.  

We approached this problem by deploying 
interceptors in the service containers to seamlessly 
collect service information at runtime and compute 
response times while considering the transient 
behaviour of the deployed cloud platform. Service 
information can then be analyzed by machine 
learning to predict future QoS attributes, 
dynamically update SLA in the registry, or even 
migrate services instances to cloud platforms that are 
experiencing less performance issues in different 
regions. In this work, we focus on the detection 
scheme only.  

4.1 QoS Criteria 

There are several non-functional QoS metrics 
categories and service performance attributes in 
SOA-based WS. In this work, we only consider WS 
performance, specifically service response time for 
orchestrated services on cloud platforms.  

4.2 Approach Overview 

Most QoS attributes in SOA are not a one-size-fit-all 
for all consumer requests. A priori knowledge of any 
given QoS attribute for the prospective consumer is 
difficult to predict (Erl, 2005). Several QoS 
monitoring approaches offered solutions that 
improve QoS over the years. However, none have 
addressed the impact of the overlapping security 
protocols due to their criticality of the service 
protection coupled with the performance variability 
of the underlying cloud platforms.  

The basic idea of our approach is to non-
intrusively instrument services without introducing 
overhead. Our design is based on two steps, 
detection and aggregation. We use Aspect Oriented 
Programming (AOP), a dynamic application 
instrumentation framework first introduced in 
(Kiczales, 1997). AOP allows service code 

instrumentation without modifications or 
recompilation of the code. The instrumented data 
collected/detected at runtime from each service is 
then forwarded to the QoS auditor web service 
(referred as QAudit) to aggregate and then compute 
response time. 

4.3 Service Instrumentation with AOP 

Typically, collecting accurate QoS information at 
runtime is achieved by inserting general purpose 
logging statements in pre-compile time and during 
service composition. QoS metrics can then be based 
on the aggregate of these logs. Such techniques are 
inefficient and ill suited in cloud computing 
platforms due to the performance variability 
behaviour that are not under the control of the 
service provider. Since accurate QoS attributes 
cannot be predicted during service registration, 
dynamic service instrumentation is critical.  

We achieve such dynamicity with AOP. A basic 
AOP model defines two instrumentation primitives 
known as pointcut designators (PCD) and advice. 
The PCD's are typically points in the program where 
inserting instrumentation is not too hard, for 
example, method calls are very often used as one of 
the fundamental PCD. These PCD's are simple 
instrumentation primitives that can gather critical 
information without any modifications to the code.  

On the other hand, the advice is the point where 
an aspect to be instrumented can be weaved in. The 
result of PCD and advice generated will then 
forwarded to externally configured component, in 
our case, QAudit. QAudit web service evaluates the 
best QoS metrics under that given cloud platforms 
performance behaviour or overlapping security 
functionalities on the services, in which the service 
provider can take any action necessary such as; 
either update the SLA for the prospective users, 
reconfigure security protocols or project future QoS 
metrics of the given time of the day.  

 

Figure 4: Service Anatomy and AOP Instrumentation 
Module inside the Jboss service container or app server. 

AOP enables user level service interception 
capabilities within application servers. As depicted 
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in Figure 4, we used an AOP plugin as a module in 
the Jboss Application server where our services are 
deployed, known as JbossAOP (JbossAOP, 2003). 
JbossAOP instruments services deployed in the 
service container by intercepting the execution of all 
aspects of the program, such as specific object on 
the program, a function parameter values, or method 
calls within or across program calls.   

The performance overhead of the AOP depends 
on the knowledge of the application (Alexanderson, 
2010). For QoS monitoring, the overhead is 
proportion to the number of the interception points 
within the services. To limit such overhead, we only 
intercept WS-Security related function calls, 
specifically, prior and post encryption, and signature 
operations in which are negligible when tested in 
public cloud environment as shown in our previous 
work (Azarmi, et. al. 2012).  Note that one can also 
instrument communication methods if needed to 
uncover rogue/compromised service reaching 
outside its intended endpoints.  

4.4 QoS Auditor Web-service 

As depicted in service anatomy diagram in Figure 4 
above, the service container enables hooks to 
instrument the services’ business logic where the 
instrumented data can then be sent to the listening 
service, QoS Auditor (QAudit) web service. The 
QAudit receives the pre and post WS_Security 
function call timing information collected from the 
diverse orchestrated services under the current 
performance of the services’ environment (VM’s). 
For example, some services are deployed in cloud 
platforms that are built on different hardware, 
hypervisor, and possibly running VM migration and 
load balancing algorithms by the cloud provider to 
accommodate between the tenants.  

4.5 QoS Monitoring in Orchestrated 
Services 

The WS Business Process Execution Language 
(WSBPEL) defines the orchestration of WS standard 
language for service chaining and execution. 
Identifying performance bottlenecks in orchestrated 
services from multiple providers within BPEL 
engines is a challenging task given the dynamicity of 
the cloud platforms that’s not known a priori. 

As described in the previous section, AOP 
instruments services deployed in the service 
container by intercepting the execution of all aspects 
of the program (i.e. method calls) across program 
calls. Since orchestrated services are also program 

calls across domains, AOP can effectively intercept 
orchestrated WS. We will describe our 
implementation approach in the next section. 

5 IMPLEMENTATION AND 
EXPERIMENTATION 

We are interested in computing service response 
time for secure web services orchestrated across 
cloud platforms (public/private) as illustrated in the 
high-level architecture in Figure 3. In this section, 
we discuss our prototype and show the preliminary 
evaluations on private cloud deployments, and the 
proposed QoS computations scheme.  

5.1 Experimental Setup 

Our experimental cloud platform uses a private 
cloud built on OpenStack, a cloud management 
software stack, on a cluster of 4 machines (Dell 
Z400) with Intel Xeon 3.2 GHz Quad-Core with 
8GB of memory. At a high-level, OpenStack 
consists of a controller and computing management 
applications. We divided our four machines into one 
controller node and 3 compute nodes. As the name 
implies, the controller node is to simplify cloud 
platform management by enabling on demand 
elasticity, i.e., provision/de-provisioning VM 
instances, adding/removing hardware and instantly 
making it available in the computing resource pool.  

The three compute nodes allow us provisioning 
20 virtual CPU’s (vCPU) in which we assigned 10 
small VM instances, 2 vCPU per instance for service 
deployments. We used a total of 10 VMs with 
Ubuntu Linux for service consumer (clients) and 
secure services in all of our experiments.  

5.2 Implementation 

We developed a CXF-based secure web services 
(WS_Security and WS_SecureConversation enabled) 
and deployed in Jboss application server.  The 
integration of AOP with Jboss container was done 
using JbossAOP (JbossAOP, 2003) library, a 
pluggable user specified instrumentation module for 
Jboss application servers. We leveraged AspectJ 
(AspectJ, 2001), a stand-alone Java implementation 
of AOP, as the service instrumentation algorithms 
for intercepting the WS-Security method calls. 
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5.3 Preliminary Results 

It has been previously reported that performance 
difference between WS-Security and 
WS_SecureConversation in web services are in the 
order of magnitude higher in WS-Security (Liu, et.al. 
2005). To illustrate in the context of service 
orchestration under the transient performance 
behaviour of the cloud, we configured three secure 
services that implement WS_Security with 3 others 
that implement WS_SecureConversation with the 
same logic, a secure weather report, deployed in a 
Linux virtual machines described above.  

We orchestrated the 3 services with different 
configurations while assuring the security of the 
service. Service configuration is application and 
domain specific, thus, to illustrate the basic concept; 
we chained and invoked services in the following 
format: 

Req1   Sws   Sws   Sws   Sws … 
Req2   Sws   Ssc   Sws   Ssc … 

Reqn  ... 

The requests Reqn interacts with service Sws 

implemented with WS_Security and then Ssc 

implemented with WS_SecureConversation and so on. 
To mimic the performance variability of the 

cloud platforms, services requests and responses 
were performed while the system is running cpu and 
memory intensive applications. We observed the 
system performance using the built in Ubuntu 
system monitor (krell) showing a load over 50%-
70% usage of the memory and cpu. The service 
response times received by QAudit service, when 
aggregated, ranged between microseconds to 
seconds; thus, clearly show QoS impacts on security 
function overlaps.   

These observations show the non-intrusive way 
of computing QoS in cloud platforms. However, the 
actual results may vary depending on the service 
logic and other factors when expended into the 
public cloud deployments, thereby, considering it in 
our future work. 

6 RELATED WORK 

To the best of our knowledge, there is no in-depth 
analysis of WS-star protocol formulation in SOA in 
the context of QoS monitoring that reflect the 
transient performance behaviour of the underlying 
cloud platforms. Thus, we divide our related work 
section into two parts; we first discuss works in WS-
* performance improvements and next we provide 

QoS Management tools and techniques that are 
relevant to our work.  

6.1 WS*- Performance Improvements 

There are large volumes of research that employ 
different methods to address performance 
improvements on web-services. To name a few: 
SOAP header envelope reduction techniques, 
efficient XML parsing and compression methods, 
and binary and canonicalization techniques.  

With the rise of business heterogeneity, 
orchestrated services pose further callings for 
selecting and complying with an accurate advertised 
QoS attributes, especially service response time. As 
these schemes have set the foundation of WS 
performance improvement, our approach was 
inspired by such mechanisms and further extended 
to dynamically monitor orchestrated services in a 
virtualized environment. 

6.2 QoS Management 

QoS management can be classified into three 
categories: resource allocation, service composition, 
monitoring and fine-tuning QoS parameters within 
the services. In this work, we focused on the latter 
two. It’s intuitive to see that an effective resource 
sharing can aid QoS guarantees; moreover, service 
composition or selection also plays a critical role in 
such guarantees.  

To highlight some studies in this category, early 
works, such as (Abdelzaher and Shin, 1999), 
proposed a virtual service that enables the selection 
of multiple deployed concrete services depending on 
the users’ QoS interest. A set of cooperative 
autonomous agents that enable optimal web service 
composition is proposed in (Brahmi, 2013). Within 
the context of service selection, similar to QAudit 
approach, Q-Peer (Li, et.al. 2007), a distributed QoS 
registry is proposed to monitor and collect 
information on running services to assist consumers 
for the reliability of the service where as we focus 
on service response time improvements.  

It has been noted that the inaccuracy and 
violations of QoS in various papers and spurred a 
wide range of research approaches, to name a few; 
QoS verifications during service registration 
(Abdelzaher and Shin, 1999), extending UDDI 
functionalities (ShaikhAli et. al, 2003), introducing 
new protocol languages to define SLA (Lamanna, 
2003), SLA template adjustments (Spillner and 
Schill, 2009) and new frameworks for dynamic 
service monitoring and selections in a realistic 
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environment (Tian, et. al, 2004). Along the lines of 
the WS protocol research, a modification of WS-
Agreement protocol to enable dynamic run-time 
renegotiation and SLA adjustments to guarantee 
QoS when SLA violation is expected to occur is 
proposed in (Modica, et. al, 2007).  

All of the above approaches face adaptability 
challenges due to the proposed changes required in 
the protocol standards. Our work can accurately and 
non-intrusively detects the transient behaviour of the 
cloud platforms to prevent SLA violations without 
modifying the service code or the standard 
protocols. Furthermore, our work will complement 
the works of fine-tuning QoS parameters for 
efficient service composition, selection and 
monitoring schemes to maximize QoS and prevent 
SLA violations. 

7 CONCLUSIONS 

Guaranteeing hard QoS on orchestrated web-
services in SOA and virtualized cloud platforms are 
increasingly challenging due to security critical 
functionality overlaps and the transient performance 
behaviour of such platforms. In this paper, we 
developed an effective mechanism to dynamically 
monitor orchestrated services and compute service 
response tme while considering the underlying 
performance behaviour of the cloud platforms.  

We implemented our proposed approach with 
Aspect Oriented programming (AOP) and illustrated 
with a practical scenario to validate our design using 
three secure services deployed in a private cloud. In 
our future work, we consider experimental traces 
over periods of time in our private with public (i.e. 
Amazon) cloud instances deployed in different 
geographic locations. 
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