
Disaggregated Architecture for at Scale Computing 

Chung-Sheng Li1, Hubertus Franke1, Colin Parris2 and Victor Chang3 
1IBM Thomas J. Watson Research Center, Yorktown Heights, NY 10598, U.S.A. 

2GE Global Research Center, One Research Circle, Niskayuna, NY 12309, U.S.A. 
3School of Computing, Creative Technologies and Engineering, Leeds Beckett University, Leeds LS6 3QS, U.K. 

{csli, frankh}@us.ibm.com, colin.parris@ge.com, v.i.chang@leedsbeckett.ac.uk 

Keywords: Disaggregated Datacenter Architecture, Software Defined Environments, Software Defined Networking. 

Abstract: The rapid growth of cloud computing both in terms of the spectrum and volume of cloud workloads brought 
many challenges to the traditional data center design - fast changing system configuration requirements due 
to workload constraints, varying innovation cycles of system components, and maximal sharing of systems 
and subsystems. In this paper, we developed a qualitative assessment of the opportunites and challenges for 
leveraging disaggregated datacenter architecture to address these challenges. In particular, we compare and 
contrast the programming models that can be used to access the disaggregated resources, and developed the 
implications for the network and resource provisioning and management. 

1 INTRODUCTION 

Cloud computing is quickly becoming the fastest 
growing platform for deploying enterprise, social, 
mobile, and analytic workloads. As many of these 
workloads grew to internet scale, they have ushered 
a new era of datacenter scale computing on top of 
the previous centralized and distributed computing 
era (Barroso 2013). During the centralized 
computing era, the computing resources are fully 
shared (share everything) and centralized managed. 
The subsequent distributed computing era allows 
decentralized management of distributed resources 
interconnected by networks. The “at scale” 
computing era, in contrast, involves de facto 
centralized management of massive amount of 
distributed and often virtualized resources that are 
locally concentrated within mega-datacenters and 
often spread across multiple datacenters. Recently, 
the need for increased agility and flexibility has 
accelerated the introduction of software defined 
environments (which include software defined 
networking, storage, and compute) where the control 
and management planes of these resources are 
decoupled from the data planes so that they are no 
longer vertically integrated as in traditional compute, 
storage or switch systems and can be deployed 
anywhere within a datacenter  (Li et al., 2014).  

The emerging at scale cloud data centers are 
facing the following challenges: fast changing 
system  configuration  requirements   due   to  highly 

 

Server 

Data Center Network 

  Server 

Storage 
Storage  

 

Figure 1: Traditional datacenter with servers and storage 
interconnected by datacenter networks. 

dynamic workload constraints, varying innovation 
cycles of system components, and the need for 
maximal sharing of systems and subsystems 
resources in order to minimize the Capital 
Expenditure (CAPEX) and Operational Expenditure 
(OPEX) for efficient at scale operation. These 
challenges are further elaborated below. Enabling  
software and platform as a service with optimal 
stack level cost performance has become a major 
differentiator in the marketplace, especially for those 
services involving massive scale out environment 
such as Hadoop and Spark. 

Systems in a cloud computing environment often 
have to be configured differently in response to 
different workload requirements.    A traditional 
datacenter, as shown in Fig. 1, includes servers and 
storage interconnected by datacenter networks. A 

45



typical server system configured with only CPU and 
memory while keeping the storage subsystem 
(which also includes the storage controller and 
storage cache) remote is likely to be applicable to 
workloads which do not require large I/O bandwidth 
and will only need to use the storage occasionally.   
This configuration is usually inexpensive and 
versatile - but unlikely to perform well when large 
I/O bandwidth or small latency become pertinent.   
Alternatively, the server can be configured with 
large amount of local memory, SSD, and storage.   
This configuration, however, is likely to become 
expensive. Some of the system resources such as the 
SSDs configured within the server could be 
potentially underutilized at various times as 
workloads may not always be able to fully utilize 
them. 

Traditional systems also impose identical  
lifecycle for every component inside the system.  As 
a result, all of the components within a system 
(whether it is a server, storage, or switches) are 
replaced or upgraded at the same time. The 
"synchronous" nature of replacing the whole system 
at the same time prevents earlier adoption of newer 
technology at the component level, whether it is 
memory, SSD, GPU, or FPGA.   The average refresh 
cycle of CPUs is approximately 3-4 years, HDDs 
and fans are around 5 years, battery backup (i.e. 
UPS), RAM, and power supply are around 6 years. 
Other components in a data center typically have a 
lifetime of 10 years. Consequently, an integrated 
system with CPU, memory, GPU, power supply, 
fan, RAM, HDD, SSD likely has the same lifecycle 
for everything within the system as replacing these 
components individually will be uneconomical. 

Traditional system resources (memory, storage, 
and accelerators) configured for high throughput or 
low latency usually could not share these resources 
across the data center as they are only accessible 
within the "system" they are in.   As a result, the 
utilization of the resources could be low.  Those 
resources configured as remote (or network 
attached) allow maximal shareability but the 
performance in terms of throughput and latency are 
usually poor.  As an example, challenges in terms of 
operational efficiency and security in the cloud 
based financial service domain were reported in  
Chang (2014), where a pipelined cloud service 
architecture is implemented on top of a traditional 
datacenter architecture.  

In this paper, we developed a qualitative 
assessment of the approaches and challenges for 
leveraging the disaggregated architecture for at scale 
cloud datacenters. We compare and contrast the 

programming models that can be used to access the 
disaggregated resources. We also developed the 
implications for the network and resource 
provisioning and management. Based on this 
qualitative assessment and early experimental results, 
we concluded that disaggregated architecture with 
appropriate programming models and resource 
provisioning is likely to achieve improved 
datacenter operating efficiency.  This architecture is 
particularly suitable for heterogeneous workload 
environments as these environments often have 
dynamic resource requirements and can benefit  
from the improved elasticity of the physical resource 
pooling offered by the disaggregated datacentre 
architecture.  

 
    

Datacenter Network 

   
…

 Storage 

Devices Shared GPUs Shared Memory  

Figure 2: Partially disaggregated datacentre with both 
fully integrated server /storage as well as disaggregated 
GPU, SSD, and memory pools. 

2 COMPOSABLE SYSTEMS 
ARCHITECTURE    

The emerging disaggregated datacenter architecture 
or datacenter as a computer (Lim et al, 2009), as 
shown in Fig. 2, leverages the fast progress of the 
networking capabilities, software defined 
environments, and the increasing demand on high 
utilization of computing resources in order to 
achieve maximal efficiency. 

On the networking front, the emerging trend is to 
utilize a high throughput low latency network as the 
“backplane” of the system. Such a system can vary 
from rack, cluster of racks, PoDs, domains, 
availability zones, regions, and multiple datacenters.   
During the past 3 decades, the gap between the 
backplane technologies (as represented by PCIe) and 
network technologies (as represented by Ethernet) is 
quickly shrinking.   During the next 5 years, the 
bandwidth gap between PCIe gen 4 (~250 Gb/s) and 
100/400 GbE is becoming much less significant.   

ESaaSA�2015�-�Workshop�on�Emerging�Software�as�a�Service�and�Analytics

46



When the backplane speed is no longer much faster 
than the network speed, many interesting 
opportunities arise for refactoring systems and 
subsystems as these system components are no 
longer required to be in the same "box" in order to 
maintain high system throughput. As the network 
speeds become comparable to the backplane speeds, 
SSD and storage which are locally connected 
through a PCIe bus can now be connected through a 
high speed network. This configuration allows 
maximal amount of sharing and maximal amount of 
flexibility to address the complete spectrum of 
potential workloads. The broad deployment of 
Software Defined Environments (SDE) within cloud 
datacenters is facilitating the disaggregation among 
the management planes, control planes, and data 
planes within servers, switches and storage (Li et al, 
2014).     

Systems and subsystems within a composable 
disaggregated data center are refactored so that these 
subsystems can use the network "backplane" to 
communicate with each other as a single system. 
Composable system concept has already been 
successfully applied to the network, storage and 
server areas. In the networking area, physical 
switches, routing tables, controllers, operating 
systems, system management, and applications in 
traditional switching systems are vertically 
integrated within the same "box".    Increasingly, the 
newer generation switches logically and physically 
separate the data planes (hardware switches and 
routing tables) from the control planes (controller 
and OS and applications) and management planes 
(system and network management) and allow the 
disaggregation of switching systems into these three 
subsystems where the control and management 
planes can reside anywhere within a data center, 
while the data planes serve as the traditional role for 
switching data.  Similar to the networking area, 
storage systems are taking a similar path.   Those  
monolithically integrated storage systems that 
include HDDs, controllers, caches (including SSDs), 
special function accelerators for compression and 
encryption are transitioning into logically and 
physically distinct data planes - JBOD (just a bunch 
of drives), control planes (controllers, caches, SSDs) 
and management planes.    

A partially disaggregated memory architecture 
was proposed by Lim et al (2009, 2012) in which 
each disaggregated compute node retains a smaller 
size of memory while the rest of the memory is 
aggregated and shared remotely. When a compute 
node requires more memory to perform a task, the 
hypervisor integrates the local memory and the 

remote shared memory to form a flat memory 
address space for the task. During the run time, 
accesses to remote addresses result in a hypervisor 
trap and initiate the transfer of the entire page 
through RDMA (Remote Direct Memory Access) 
mechanism to the local memory. Their experimental 
results show an average of ten times performance 
benefit in a memory-constrained environment. A 
detailed study of the impacts of network bandwidth 
and latency of a disaggregated datacenter for 
executing in memory workloads such as GraphLab, 
MemcacheD and Pig was reported in Rumble et al. 
(2011). When the remote memory is configured to 
contain 75% of the working set, it was found that the 
application level degradation was minimal (less than 
10%) when network bandwidth is 40 Gb/s and the 
latency is less than s10  (Han et al, 2013). Server 

products based on a disaggregated architecture have 
already appeared in the marketplace. These include 
the Cisco UCS M-Series Modular Server, AMD 
SeaMicro disaggregated architecture, and Intel Rack 
Scale Architecture as part of the Open Compute 
Project. 

3 SOFTWARE STACK 

   

Datacenter 

Server 1 Server N 

…

Storage 

Devices Shared 

GPUs 
Shared  

Memory 

Cloud 

OS 

Hypervisor 

Bare Metal 

Application & 

 

 

Figure 3: Software stack for accessing disaggregated 
resources. 

Disaggregated datacenter resources can be 
accessed by application programming models 
through different means and methods. We consider 
three fundamental approaches here: (i) hardware 
based, (ii) hypervisor/operating system based, and 
(iii) middleware/application based. 

The hardware based approach for accessing 
disaggregated resources is transparent to 
applications and the OS/hypervisor.  Disaggregated 
memory is mapped to the physical address space of a 
compute node and is byte addressable across the 
network. In this case, disaggregated memory is 

Disaggregated�Architecture�for�at�Scale�Computing

47



entirely transparent to the applications.  While such 
transparency is desirable, it forces a tight integration 
at the memory subsystem either at the physical level 
or the hypervisor level. At the physical level the 
memory controller needs to be able to handle remote 
memory accesses. To avoid the impact of long 
memory access latencies, we expect that a large 
cache system is required. Disaggregated GPU and 
FPGA can be accessed as an I/O device based on 
direct integration through PCIe over Ethernet.  
Similar to disaggregated memory, the programming 
models remain unchanged once the mapping of the 
disaggregated resource to the I/O address space of 
the local compute node. 

In the second approach, the access of 
disaggregated resources can be exposed at the 
hypervisor/container/operating system levels.  New 
hypervisor level primitives - such as getMemory, 
getGPU, getFPGA, etc. - need to be defined to allow 
applications to explicitly request the provisioning 
and management of these resources in a manner 
similar to malloc. It is also possible to modify the 
paging mechanism within the hypervisor/operatoring 
systems so that the paging to HDD is now going 
through a new memory hierarchy including 
disaggregated memory, SSD, and HDD.    In this 
case, the application does not need to be modified at 
all.   Accessing remote Nvdia GPU through rCUDA 
(Duato 2010) has been demonstrated, and has been 
shown to actually outperform locally connected 
GPU when there is appropriate network 
connectivity.    

Disaggregation details and resource remoteness 
can also be directly exposed to applications.  
Disaggregated resources can be exposed via high-
level APIs (e.g. put/get for memory).  As an 
example, it is possible to define GetMemory in the 
form of Memory as a Service  as one of the 
Openstack service. The Openstack service sets up a 
channel between the host and the memory pool 
service through RDMA. Through GetMemory 
service, the application can now explicitly control 
which part of its address space is deemed remote and 
therefore controls or is at least cognizant which 
memory and application objects will be placed 
remotely. In the case of GPU as a service, a new 
service primitive GetGPU can be defined to locate 
an available GPU from a GPU resource pool and 
host from the host resource pool.  The system 
establishes the channel between the host and the 
GPU through RDMA/PCIe and exposes the GPU 
access to applications via a library or a virtual 
device.   

4 NETWORK CONSIDERATIONS  

One of the primary challenges for a disaggregated 
datacenter architecture is the latency incurred by the 
network when accessing memory, SSD, GPU, and 
FPGA from remote resource pools.   The latency 
sensitivity depends on how the disaggregated 
resources are exposed to the programming models in 
terms of direct hardware, hypervisor, or resource as 
a service. 

The most stringent requirement on the network 
arises when disaggregated memory is mapped to the 
address space of the compute node and is accessed 
through the byte addressable approach. The total 
access latency across the network cannot be 
significantly larger than the typical access time of 
DRAM – which is on the order of 75 ns.   As a 
result, silicon photonics and optical circuit switches 
(OCS) are likely to be the only options to enable 
memory disaggregation beyond a rack. Large caches 
can reduce the impact of remote access. When the 
block sizes are aligned with the page sizes of the 
system, the remote memory can be managed as 
extension of the virtual memory system of the local 
hosts through the hypervisor and OS management. 
In this configuration, local DRAM is used as a cache 
for the remote memory, which is managed in page-
size blocks and can be moved via RDMA 
operations.  

Disaggregating GPU and FPGA are much less 
demanding as each GPU and FPGA are likely to 
have its local memory, and will often engage in 
computations that last many microseconds or 
milliseconds.  So the predominant communication 
mode between a compute node and disaggregated 
GPU and FPGA resources is likely through bulk 
data transfer.  It has been shown by Reano et al. 
(2013) that adequate bandwidth such as those 
offered by RDMA at FDR data rate (56 Gb/s) 
already demonstrated superior performance than a 
locally connected GPU.     

Current SSD technologies has a spectrum of  
100K IOPS (or more) and ~100 us access latency.  
Consequently, the access latency for non-buffered 
SSD should be on the order of 10 us.  This latency 
may be achievable using conventional Top-of-the-
Rack (TOR) switch technologies if the 
communication is limited to within a rack.  A flat 
network across a PoD or a datacenter with a two-tier 
spine-leaf model or a single tier spline model is 
required in order achieve less than 10 us latency if 
the communication between the local hosts and the 
disaggregated SSD resource pools are across a PoD 
or a datacenter.   

ESaaSA�2015�-�Workshop�on�Emerging�Software�as�a�Service�and�Analytics

48



5 DISTRIBUTED RESOURCE 
PROVISIONING 

In a disaggregated datacenter with physical resource 
pooling, it is essential that the physical resources are 
requested and provisioned with minimum latency so 
that the use of remote resources will not create a  
serious performance bottleneck.  In this section, we 
will describe an approach based on distributed 
scheduling with global shared state in conjunction 
with predictive resource provisioning. 

Resource provisioning and scheduling can be 
carried out through a centralized, hierarchical, or 
fully distributed approach.  The centralized approach 
is likely to achieve the optimal resource utilization, 
but may result in a single point of failure and a 
severe performance bottleneck.  The hierarchical 
approach, such as the one used in Mesos (Hindman, 
2011), allows flexible addition of heterogeneous 
schedulers for different classes of workloads to a 
centralized scheduler. The centralized scheduler 
allocates chunks of resources to the workload 
specific scheduler, which in turn allocates resources 
to individual tasks.  However, this approach often 
results in sub-optimal utilization. A fully distributed 
approach with global shared state, such as the 
Google Omega (Schwarzkopf, 2013) project, utilizes 
an optimistic approach for resource scheduling.     
This approach is likely to perform better as 
compared to other approaches. 

The mechanism for scheduling and provisioning 
resources from disaggregated physical resource 
pools starts with the requesting node establishing the 
type and amount of resource required.  As discussed 
in the previous section, the amount of resource 
required can be established explicitly by the 
workload or implicitly as the current requesting node 
runs out of resource locally.  Once the request is 
received, the resource provisioning engine will 
identify one or more of the resource pools with 
available resources, potentially based on the global 
shared state, for provisioning resources.  It will then 
communicate with the resource manager of the 
corresponding resource pool to reserve the actual 
resource.  The resource manager for each resource 
pool commits the resource to the incoming request 
and resolves the potential conflicts if multiple 
requests for the same resource occur simultaneously.  
Once the resource is reserved, the communication 
between the requesting node and the resource can 
then commence.   

Due to the low latency requirement for 
provisioning physical resources in a disaggregated 
datacenter, it is likely that the resources will need to 

be provisioned and reserved before the actual needs 
from the workload arise rather than on demand.  
This may require the resource scheduler to monitor 
the history of the resource usage so that an accurate 
workload dependent projection of the resource usage 
can always be maintained.    

6 EXPERIMENTAL RESULTS 

 

Figure 4: Experimental setup for performance 
measurement in a disaggregated environment for 
MemcacheD. 

In this section, we describe experiments that 
demonstrate the workload behavior when a cloud 
centric application such as MemcacheD is deployed 
in a disaggregated system environment.  In this case, 
part of client app data is in local DRAM, while the 
rest is located in the memory of a remote node 
accessed through an RDMA capable fabric via 
Verbs API. 

The disaggregated infrastructure, as shown in 
Fig. 4, is entirely transparent to the MemcacheD 
client.  The server side is modified so that the data 
accessed via key-value interface will be 
automatically retrieved from either local or remote 
memory. 

The modification is as follows: A small program 
on another machine allocates a specified amount of 
memory and registers the allocation with the 
Infiniband HCA.  MemcacheD handshakes with the 
remote server and obtains the pertinent information 
such as remote buffer address and access_key.   
After an initial handshake, it can now perform 
RDMA reads and writes directly to the remote 
buffer.  The remote buffer is treated as a “victim 
cache” and is maintained as an append-only log. 
When MemcacheD runs out of local memory, 
instead of evicting a key/value pair in the local 
memory, it now does an RDMA write to the remote 
memory.  When looking up a particular key, it first 
checks with the local memory (via a hash table).  If 
the key does not exist locally, MemcacheD checks 

Disaggregated�Architecture�for�at�Scale�Computing

49



the remote memory via a locally maintained hash 
table.  If key/value is in the remote memory, it reads 
in this value through RDMA to a temporary local 
buffer and sends it to the client.    A particular 
key/value is always either in local memory or 
remote memory and can never resides in both 
locations. 

The experiments consist of 100,000 operations 
(95% reads, 5% updates) with uniform random 
accesses (i.e. no notion of working set as this 
represents the most challenging situation) running in 
a single thread.  

 

Figure 5: Average read latency penalty vs. data size with 
respect to 100% local access when the local portion of 
data varies from 75% to 25% 

As shown in Fig. 5, higher percentage of local 
data always introduces fewer penalties.  However, 
the difference begins to diminish among different 
ratio of local vs. remote data when the data block 
size is larger than 64 KB, as larger block size 
reduces the overhead in the data transfer.  

The second set of experiments consist of 100,000 
read and update operations (95% reads, 5% updates) 
with uniform random accesses (i.e. no notion of 
working set as this represents the most challenging 
situation) evenly split among 10 threads.   

 

Figure 6: Average read/update throughput penalty vs. data 
size with respect to 100% local access when the local 
portion of data varies from 75% to 25%. 

As shown in Fig. 6, the throughput penalty is nearly 
nonexistent when 75% of the access is local and the 
data size is 4KB.   The penalty increases to 2% when 
only 25% of the access is local.  As the data sizes 

increases, the transfer time of the entire page 
between the local and the remote node increases, 
resulting in higher penalty at 4% and 6%, 
respectively, for 75% and 25% local access.  

We can conclude from these experiments that 
negligible latency and throughput penalty are 
incurred for the read/update operations if these 
operations are 75% local and the data size is 64 KB.  
Smaller data size results in larger latency penalty 
while larger data size results in larger throughput 
penalty when the ratio of nonlocal operations is 
increased to 50% and 75%.   

In a second experiment we examine the popular 
graph analytics platform Giraph, that enables 
implementation of distributed graph algorithms. In 
this particular case we populated a 50 node virtual 
compute cluster with a randomly generated graph of 
100 million vertices. The graph is partitioned into 
50^2 partitions which are distributed across the 
compute nodes. We then compute the 
TopKPagerank properties of the graph. As the 
computation progresses, messages need to be 
exchanged to traverse the graph as it crosses node 
boundaries. Dependent on the connectivity of the 
graph, the variance in the message creation can 
result in substantial different memory consumptions 
per node. Under memory pressure, Giraph will swap 
entire partitions and messages per vertex to disk 
using LRU. We examine the memory utilization 
across the nodes as computations progresses. While 
cpu utilization is very uniform across all nodes and 
across the execution of the program, memory 
utilization varies considerable, which is shown as a 
heatmap in Fig. 7. 

 

Figure 7: Memory Consumption of Distributed Giraph 
TopKPagerank application over time. 

Analysis of this data reveals that the peak per node 
memory usage versus the average per node memory 
has a 2.78:1 ratio, where the aggregate memory 
usage has a 1.68:1 ratio.  We then reduce the per 

ESaaSA�2015�-�Workshop�on�Emerging�Software�as�a�Service�and�Analytics

50



node memory by a factor of 3 to explore the impact 
of memory pressure, while the average per node 
memory is maintained. This increases the overall 
runtime of the experiment by a factor of 13.8x 
highlighting that planning resource consumption for 
best performance requires a memory 
overprovisioning of a factor of three or alternatively 
to pay a substantial performance penalty. When the 
swap disk is on each node is configured to a 
RamDisk, the overhead reduces to a factor of 6.14x - 
which is still too high. Having observed the low 
overheads of RDMA in the MemCacheD example, 
we stipulate that sharing unused memory across the 
entire compute cluster instead of through a swap 
device to a remote memory location can further 
reduce the overhead. However the rapid allocation 
and deallocation of remote memory is imperative to 
be effective.  

 

Figure 8: Throughput improvement of disaggregated 
storage for Cassandra workload. 

 

Figure 9: Latency improvement of disaggregated storage 
for Cassandra workload. 

In our final experiment we examine the impact of 
disaggregated storage. We utilized Cassandra, a 
popular persistent, i.e disk backed, key value store. 
In the traditional setup a single server is populated 
with eight SATA disks that together form the block 
storage for a ZFS filesystem on which the key value 
pair storage resides. Ultimately the number of disks 
in the server is limited to the order of 10s and the 
SATA v3 bandwidth is limited to 6Gbps. In the 
disaggregated setup we utilize 4 storage nodes with 
eight disks each and access to Cassandra was over a 

10Gbps Ethernet network. The ZFS cache was 
limited and data was flushed out of the page cache to 
ensure that almost all accesses go to disk. A client 
consisting of 20 threads issued 10K operations (95% 
read) uniformly accessing the data domain. The 
bandwidth and latency improvement are shown in 
Figures 8 and 9. Accessing blocks size of 256KB 
and 512KB, we observed throughput improvements 
of up to 195% and 79 % respectively for the 
disaggregated system case. And latency 
improvement was 67% and 51%. This experiment 
substantiates our thesis that accessing data from 
across multiple disks connected via Ethernet poses 
less of a bandwidth restriction than SATA and thus 
improves throughput and latency of data access and 
obviates the need for data locality. Overall 
disaggregated storage systems are cheaper to build, 
manage and incrementally scale and offer higher 
performance than traditional setups.  

As more operations are moved to the shared 
physical resource pools, it is conceivable that the 
utilization of shared physical resources  will 
improve, resulting in reduced Capex and/or Opex.    

7 CONCLUSIONS 

The rapid growth of cloud computing workloads 
both in terms of the spectrum and volume brought 
many challenges to the traditional data center 
design: (1) Fast changing system configuration 
requirements due to workload constraints; (2) 
Varying innovation cycles of system components; 
(3) Maximal sharing of systems and subsystems in 
order achieve optimal efficiency. The disaggregated 
architecture provides a promising approach to 
address these simultaneous challenges. Datacenters 
based on this architecture allows the refactoring of 
the datacenter for improved operating efficiency and 
decoupled innovation cycles among components 
while the datacenter network becomes the 
"backplane"of the datacenter. 

In this paper, we developed a qualitative 
assessment of the approaches and challenges for 
leveraging disaggregated architecture for at scale 
cloud datacenters. In particular, we compare and 
contrast the programming models that can be used to 
access the disaggregated resources, the implications 
for the network and resource provisioning and 
management..  Based on this qualitative assessment 
and early experimental results, we concluded that 
disaggregated architecture with appropriate 
programming models and resource provisioning is 
likely to achieve improved datacentre operating 

Disaggregated�Architecture�for�at�Scale�Computing

51



efficiency for heterogeneous workload environments 
that can benefit from the improved elasticity of 
physical resources.   

ACKNOWLEDGEMENTS 

The authors are grateful for the Dr. Mukil Kesavan 
for performing the experiments described in Section 
6. 

REFERENCES 

Barroso, Luiz André, Jimmy Clidaras and Urs Hölzle. 
(2013) The Datacenter as a Computer: An Introduction 
to the Design of Warehouse-Scale Machines, Second 
edition. 

Chang, V. (2014). The business intelligence as a service in 
the cloud. Future Generation Computer Systems, 37, 
512-534. 

Duato, J., Pena, A. J., Silla, F., Mayo, R., & Quintana-
Ortí, E. S. (2010, June). rCUDA: Reducing the 
number of GPU-based accelerators in high 
performance clusters. In High Performance 
Computing and Simulation (HPCS), 2010 
International Conference on (pp. 224-231). IEEE. 

Han, S., N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. 
Shenker, (2013) Network support for resource 
disaggregation in next-generation datacenters. In Proc. 
HotNets. 

Herodotou, H., F. Dong and S. Babu. No one (cluster) size 
fits all: automatic cluster sizing for data-intensive 
analytics. In Proc. of the 2nd ACM Symposium on 
Cloud Computing, 2011.  

Hindman B., A. Konwinski, M. Zaharia, A. Ghodsi, A. D 
Joseph, R. H Katz, S. Shenker, I. StoicaMesos (2011): 
Mesos: A Platform for Fine-Grained Resource Sharing 
in the Data Center. Proc. ACM USENIX Symposium 
on Networked Systems Design & Implementation 
(NSDI), 2011. 

Krug, Perry, How Many Nodes? Part 1: An introduction to 
sizing a Couchbase Server 2.0 cluster. http:// 
blog.couchbase.com/how-many-nodes-part-1-
introduction-sizing-couchbase-server-20-cluster. 

Li, C.-S, B. L. Brech, S. Crowder, D. M. Dias, H. Franke, 
M. Hogstrom, D. Lindquist, G. Pacifici, S. Pappe, B. 
Rajaraman, J. Rao, R. P. Ratnaparkhi, R. A. Smith and 
M. D. Williams. (2014) Software defined 
environments: An introduction. In IBM Journal of 
Research and Development Vol. 58 No. 2/3 pp. 1-11, 
March/May. 

Lim, K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. 
Reinhardt and T. F. Wenisch. (2009) Disaggregated 
Memory for Expansion and Sharing in Blade Servers. 
In Proc. ISCA. 

Lim, K., Y. Turner, J. R. Santos, A. AuYoung, J. Chang, 
P. Ranganathan and T. F. Wenisch. (2012) System-

level implications of disaggregated memory. In Proc. 
HPCA. 

Reano, C., R. May, E. S. Quintana-Orti, F. Silla, J. Duato, 
A. J. Pena (2013), Influence of InfiniBand FDR on the 
Performance of Remote GPU Virtualization, IEEE 
International Conference on Cluster Computing 
(CLUSTER), pp. 1-8. 

Rumble, S. Rumble, D. Ongaro, R. Stutsman, M. 
Rosenblum, and J. Ousterhout. (2011) It’s time for low 
latency. In Proc. HotOS.  

Schwarzkopf, M., Konwinski, A., Abd-El-Malek, M., & 
Wilkes, J. (2013, April). Omega: flexible, scalable 
schedulers for large compute clusters. In Proceedings 
of the 8th ACM European Conference on Computer 
Systems (pp. 351-364). ACM. 

GraphLab. http://graphlab.com/ 
Memcached - a distributed memory object caching system. 

http://memcached.org/ 
PigMix benchmark tool.http://cwiki.apache.org/ 

confluence/display/PIG/PigMix.  
Cisco UCS M-Series Modular Servers. 

http://www.cisco.com/c/en/us/products/servers-
unified-computing/ucs-m-series-modular-
servers/index.html. 

AMD Disaggregates the Server, Defines New Hyperscale 
Building Block. http://www.seamicro.com/sites/ 
default/files/MoorInsights.pdf.  

SeaMicro Technology Overview. http://seamicro.com/ 
sites/default/files/SM_TO01_64_v2.5.pdf. 

Intel, Facebook Collaborate on Future Datacenter Rack 
Technologies, http://newsroom.intel.com/community/ 
intel_newsroom/blog/2013/01/16/intel-facebook-
collaborate-on-future-data-center-rack-technologies, 
Jan. 2013. 

Open Compute Project. http://www.opencompute.org. 

ESaaSA�2015�-�Workshop�on�Emerging�Software�as�a�Service�and�Analytics

52


