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Abstract: Cloud accountability audits can be used to strengthen trust of cloud service customers in cloud computing by
providing reassurance regarding the correct processing of personal or confidential data in the cloud. However,
such audits require various information to be collected. The types of information range from authentication and
data access logging to location information, information on security controls and incident detection. Correct
data processing has to be proven, which immediately shows the need for secure evidence record storage that
also scales with the huge number of data sources as well as cloud customers. In this paper, we introduce
Insynd as a suitable cryptographic mechanism for storing evidence for accountability audits in our previously
proposed cloud accountability audits architecture. We present our reasoning for choosing Insynd by showing
a comparison of Insynd properties with requirements imposed by accountability evidence collection as well
as an analysis how security threats are being mitigated by Insynd. Additionally, we describe an agent-based
evidence collection process with a special focus on security and privacy protection.

1 INTRODUCTION

Cloud Computing is known for its on demand com-
puting resource provisioning and has now become
mainstream. Many businesses as well as private in-
dividuals are using cloud services on a daily basis.
The nature of these services varies heavily in terms
of what kind of information is being out-sourced to
the cloud provider. More often than not that data
is sensitive, for instance when Personal Identifiable
Information (PII) is being shared by an individual.
Also, businesses that move (parts of) their processes
to the cloud, for instance by using a Customer Rela-
tionship Management Software as a Service provider,
are actively participating in a major paradigm shift
from having all data on-premise to moving data to the
cloud.

New challenges come along with this trend. Two
of the most important issues are customer trust
and compliance (Jansen and Grance, 2011; Pearson,
2011). These issues are closely tied to the loss of con-
trol over data. When moving to the cloud, direct con-
trol over i) where data is stored, ii) who has access to
it and iii) how it is shared and processed is given up.

Because of this loss of control, cloud customers
have to trust cloud providers that they treat their
data in an appropriate and responsible way. This in-

cludes providing information about data locality, iso-
lation, privacy controls and data processing in gen-
eral. One way to enable that trust is by strengthening
transparency and accountability (Haeberlen, 2009;
Weitzner et al., 2008) of the cloud provider and ser-
vices.

To regain information on the kind of data process-
ing, cloud audits can be used to check how it has been
done. An important part of cloud audits is evidence
collection. Depending on the data processing policies
in place, various sources of evidence need to be con-
sidered. Logs are a very important source of evidence,
when it comes to auditing the cloud operation (e.g.,
access logs and error logs). However, other sources of
information are also important, such as files or events
registered in the cloud management system. To cap-
ture evidence from this variety of sources, centralized
logging mechanisms are not enough. We therefore
propose a system for accountability evidence collec-
tion and audit. With this system, cloud providers are
enabled to demonstrate their compliance with data
handling policies to their customer’s and third-party
auditors in an automated way.

In our previous work, we introduced a sys-
tem (Ruebsamen and Reich, 2013) for cloud account-
ability audits, that enables automated collection of ev-
idential data in the cloud ecosystem with the goal of
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performing accountability audits. A key mechanism
of this system is the secure and privacy-friendly col-
lection and storage of evidence. In our previous work
we also explored the use of a somewhat homomorphic
encryption scheme to secure evidence collected in the
evidence store (Lopez et al., 2014). In this paper, we
present a more practical alternative that imposes less
restrictions on evidence collection. The contributions
of this paper are:

� An architecture for automated evidence collection
for the purpose of cloud accountability audits

� A process for secure and privacy-protecting evi-
dence collection and storage

The remainder of this follow-up paper is struc-
tured as follows: in Section 2 we present related work
in the area of secure evidence collection and cloud au-
diting. The core principles of Insynd are introduced
in Section 3. Following that, we present in Section 4 a
mapping of typical characteristics of digital evidence
and secure evidence collection in the cloud to how
these are addressed by integrating Insynd in our audit
agent system. In Section 5 we describe the architec-
tural details of the Insynd integration. We present a
scenario-based informal evaluation of our system in
Section 6 and conclude this paper in Section 7.

2 RELATED WORK

Redfield and Date propose a system called
Gringotts (Redfield and Date, 2014) that en-
ables secure evidence collection, where evidence
data is signed at the system that produces it, before
it is sent to a central server for archival using the
Evidence Record Syntax. It is similar to our system
with respect to the automatic collection of evidential
data from multiple sources. However, their focus
is on the archival of evidence, whereas we propose
a system that also enables automated evidence
processing for audits. Additionally, our system also
addresses privacy concerns of evidence collection
in a multi-tenant environment such as the cloud by
introducing evidence encryption, whereas Redfield
and Date focus on archival and preservation of
evidence integrity.

Zhang et al. (Zhang et al., 2013) identify potential
problems when storing massive amounts of evidential
data. They specifically address possible information
leaks. To solve these issues, they propose an efficient
encrypted database model that is supposed to mini-
mize potential data leaks as well as data redundancy.
However, they focus solely on the storage backend

and do not provide a workflow that addresses secure
evidence collection as a whole.

Gupta (Gupta, 2013) identifies privacy issues in
the digital forensics process, when it comes to data
storage devices that typically do not only contain in-
vestigation related data, but may also hold sensitive
information that may breach privacy. He also identi-
fies a lack of automation in the digital investigation
process. To address these issues, Gupta proposes the
Privacy Preserving Efficient Digital Forensic Investi-
gation (PPEDFI) framework. PPEDFI automates the
investigation process by including knowledge about
previous investigation cases, and which kinds of files
were relevant then. With that additional informa-
tion, evidence search on data storage devices is faster.
However, while Gupta acknowledges privacy issues,
the PPEDFI framework is focused on classic digital
forensics and may not be applicable to a cloud ecosys-
tem, where there is typically no way of mapping spe-
cific data objects to storage devices, in full.

The Security Audit as a Service (SAaaS) system
proposed by Doelitzscher et al. (Doelitzscher et al.,
2012; Doelitzscher et al., 2013) is used to monitor
cloud environments and to detect security incidents.
SAaaS is specifically designed to detect incidents in
the cloud and thereby consider the dynamic nature
of such ecosystems, where resources are rapidly pro-
visioned and removed. However, the main focus of
SAaaS is not to provide auditors with a comprehen-
sive way of auditing the cloud provider’s compli-
ance with accountability policies, which requires ad-
ditional security and privacy measures to be consid-
ered in the data collection process.

3 INSYND

Insynd is a cryptographic scheme where a forward-
secure author sends messages intended for clients
through an untrusted server (Pulls and Peeters, 2015b;
Pulls and Peeters, 2015a; Pulls et al., 2013). The
author is forward-secure in the sense that the author
is initially trusted but assumed to turn into an active
adversary at some point in time (Bellare and Yee,
2003). Insynd protects messages sent prior to au-
thor compromise. The server is completely untrusted,
which is possible thanks to the use of Balloon, a
forward-secure append-only persistent authenticated
data structure (Pulls and Peeters, 2015a). This means
that the server storing all messages can safely be out-
sourced, e.g., to traditional cloud services. Clients
are assumed trusted to read messages sent to them by
authors. Insynd contains support for clients to also
be in the forward-security model, by discarding key-
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material as messages are read.
Insynd provides the following properties:

Forward Integrity and Deletion Detection. No-
body can modify or delete messages sent prior
to author compromise, as defined by Pulls et
al. (Pulls et al., 2013). This property holds
independently for Balloon (the data structure)
and the Insynd scheme. For Balloon, anyone can
verify the consistency of the data structure, i.e., it
is publicly verifiable (Pulls and Peeters, 2015a).

Secrecy. Insynd provides public-key authenticated
encryption (An, 2001) thanks to the use of
NaCl (Bernstein et al., 2012).

Forward Unlinkability of Events. For each run by
the author of the protocol to send new messages,
all the events sent in that run are unlinkable. This
implies that, e.g., an attacker (or the server) can-
not tell which events belong to which client (Pulls
and Peeters, 2015b). When clients receive their
events by querying the server, if they take ap-
propriate actions including but not limited to ac-
cessing the server over an anonymity network like
Tor (Dingledine et al., 2004), their events remain
unlinkable.

Publicly Verifiable Proofs. Both the author and
client receiving a message can create publicly
verifiable proofs of the message sender (the au-
thor), the receiving client (by registered identity),
and the time the message was sent relative to
e.g. a time-stamping authority (Pulls and Peeters,
2015b). The proof-of-concept implementation
of Insynd uses Bitcoin transactions (Nakamoto,
2008) as a distributed time-stamping server.

Distributed Settings. Insynd supports distributed
authors, where one author can enable other au-
thors to send messages to clients it knows of with-
out requiring any interaction with clients. Client
identifiers (public keys) are blinded in the pro-
tocol, ensuring forward-unlinkable client identi-
fiers between different authors (Pulls and Peeters,
2015b).

Pulls and Peters show that Insynd provides for-
ward integrity and deletion detection, secrecy, pub-
licly verifiable proofs, and forward-unlinkability of
client identifiers in the standard model under the as-
sumptions of the decisional Diffie-Hellman (DDH)
assumption on Curve25519, an unforgeable signa-
ture algorithm, an unforgeable MAC, a collision
and pre-image resistant hash function, and the secu-
rity of the time-stamping mechanism (in our case,
the Bitcoin block-chain) (Pulls and Peeters, 2015b).
Forward unlinkability of events is provided in the
random oracle model under the DDH assumption

on Curve25519 (Pulls and Peeters, 2015b). The
prototype implementation of Insynd shows perfor-
mance comparable to state-of-the-art secure logging
schemes, like PillarBox (Bowers et al., 2014), secur-
ing syslog-sized messages (max 1KiB) in the order of
hundreds of microseconds on average on a commod-
ity laptop. We stress that Insynd is subject to its own
review and evaluation; in this paper, we use Insynd as
a building block to facilitate secure evidence collec-
tion and storage for cloud accountability audits.

4 AUDIT EVIDENCE STORAGE
REQUIREMENTS

In this Section, we present a comparison of general
evidence attributes, how they apply in the context
of evidence collection for cloud accountability audits
and how the integration of Insynd solves key issues in
evidence storage.

4.1 Requirements of Digital Evidence

In (Mohay et al., 2003) the core principles of any ev-
idence are described as:

Admissibility. Evidence must conform to certain le-
gal rules, before it can be put before a jury.

Authenticity. Evidence must be tieable to the inci-
dent and may not be manipulated.

Completeness. Evidence must be viewpoint agnostic
and tell the whole story.

Reliability. There cannot be any doubts about the ev-
idence collection process and its correctness.

Believability. Evidence must be understandable by a
jury.

These principles apply to common evidence as
well as digital evidence. Therefore, the evidence col-
lection process for audits has to consider special re-
quirements, which help in addressing these attributes
and ensure best possible validity in audits and appli-
cability in court.

In Table 1 we present a mapping of the previously
described evidence attributes and how they are sup-
ported by the integration of Insynd as a means of stor-
ing evidence records. We thereby focus on the key
properties of Insynd as described in Section 3.

Admissibility of digital evidence is influenced by
the transparency of the collection process and data
protection regulation. Digital evidence can be any
kind of data (e.g., e-mail messages, social network
messages, files, logs etc.). Insynd does not have any
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direct influence on the admissibility of the evidence
stored in it.

Authenticity of digital evidence before court is
closely related to the integrity requirement put on ev-
idence records. Evidence may not be manipulated in
any way and must be protected against any kind of
tampering (willingly and accidentally). Insynd en-
sures that data cannot be tampered with once it is
stored.

Completeness is not directly ensured by Insynd,
but rather needs to be ensured by the evidence collec-
tion process as a whole. Especially important are the
definition of which evidence sources provide relevant
evidence that need to be considered during the col-
lection phase. Insynd can complement the evidence
collection process by providing assurance of that all
data stored in the evidence store are made available
as evidence, and not cherry-picked.

Reliability is indirectly supported by integrating
necessary mechanisms into the evidence collection
process, such as Insynd.

Believability of the collected evidence is not influ-
enced by implemented mechanisms, but rather by the
interpretation and presentation by an expert in court.
This is due to judges and juries usually being non-
technical, which requires an abstracted presentation
of evidence. Insynd does not influence the believabil-
ity in that sense.

Table 1: Mapping the Impact of Insynd Properties to Evi-
dence Attributes.

Insynd
Forward
Integrity
and
Deletion
Detection

Publicly
Verifiable
Proofs

ES

Admissibility
Authenticity
Completeness
Reliability
Believability

4.2 Privacy Requirements

Not all requirements that a secure evidence storage
has to fulfill can be captured by analyzing the at-
tributes of digital evidence. Other aspects have to be
taken into account to address privacy concerns. Pro-
tecting privacy in the process of evidence collection is
utmost importance, since the collected data is likely to
contain personal data. For cloud computing, one lim-
iting factor may be whether or not the cloud provider

is willing to provide deep insight into its infrastruc-
ture. Table 2 presents a mapping of privacy principles
and properties of our evidence process.

Below we summarise some key privacy principles:

Confidentiality. of data evolves around mechanisms
for the protection from unwanted and unautho-
rized access. Typically, cryptographic concepts,
such as encryption, are use to ensure confidential-
ity of data.

Data Minimization. states that the collection of per-
sonal data should be minimized and limited to
only what is strictly necessary.

Purpose Binding. of personal data entails that per-
sonal data should only be used for the purposes it
was collected for.

Retention Time. is concerned with how long per-
sonal data may be stored and used, before it needs
to be deleted. These periods are usually defined
by legal and business requirements.

Insynd and our evidence process provides various
mechanisms that support these privacy principles.

Confidentiality A central property of Insynd is that
it is always encrypting data using public-key cryp-
tography. By encrypting the evidence store, compro-
mising the privacy of cloud customer data that has
been collected in the evidence collection processes
becomes almost impossible by attacking the evidence
store directly. This goes as far as being able to safely
outsource the evidence store to an untrusted third-
party, a key property of Insynd (Pulls and Peeters,
2015b).

Data Minimisation Furthermore, Insynd provides
forward unlinkability of events and client identifiers,
as described in Section 3, which helps prevent several
types of information leaks related to storing and ac-
cessing data. Collection agents are always configured
for a specific audit task, which is very limited in scope
of what needs to be collected. Agents are never con-
figured to arbitrarily collect data, but are alway lim-
ited to a specific source (e.g., a server log) and data
objects (e.g., a type of log events).

Purpose Binding Neither Insynd nor our evidence
process can directly influence the purpose for which
collected data is used. Indirectly, the use of an ev-
idence process like ours, incorporating secure evi-
dence collection and storage, may serve to differen-
tiate data collected for auditing purposes with other
data collected e.g., for marketing purposes.

Retention time poses a real challenge. In cloud
computing, the precise location of a data object is
usually not directly available, i.e., the actual storage
medium used to store a particular block is unknown,
making data deletion hard. However, if data has been
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encrypted before storage, a reasonably safe way to
ensure “deletion” is to discarding the key material
required for decryption. Insynd supports forward-
secure clients, where key material to decrypt mes-
sages are discarded as messages are read.

Table 2: Mapping of Insynd properties to Evidence Collec-
tion Requirements.

Insynd
Secrecy Forward

Unlink-
ability
of
Events

Forward
Unlink-
ability
of Re-
cipients

ES

Con-
fiden-
tiality
Data
Minimi-
sation
Purpose
Binding
Data
Reten-
tion

In Section 6, we also describe the threat model for
the system described in this paper and present an eval-
uation of how Insynd is used to mitigate these threats.

5 SECURE EVIDENCE STORAGE
ARCHITECTURE

In this Section, we provide an architectural overview
of the integration of Insynd into a secure evidence col-
lection and storage process. We describe the overall
architecture and its components, how the components
of Insynd are mapped into the audit agent system and
which setup process is required to use Insynd for se-
curing evidence collection and storage.

5.1 Architecture

In this Section we discuss the architectural integra-
tion of Insynd as an evidence store in our audit sys-
tem. There are basically three different components
required to perform secure evidence collection. Fig-
ure 1 shows an overview of these components - Evi-
dence Source, Evidence Store and Evidence Process-
ing - as well as the flow of data between them. From
the various sources of evidence in the cloud, evidence
records are collected that will be stored in the evi-
dence store on a per-tenant basis. The evidence store

is thereby located on a separate server. As previously
mentioned, the server may be an untrusted third-party
cloud storage provider. This is important to ensure so
that this approach scales well with a growing number
of tenants, evidence sources and evidence records.

Our architecture is built around using software
agents for evidence collection, evidence evaluation
and controlling the overall system. Agent technology
helps with extensibility by allowing us to easily intro-
duce new evidence sources and processors by build-
ing new agents. On top of that, it allows the audit sys-
tem to address rapid infrastructure changes, which are
very common in cloud infrastructures by easily de-
ploying and destroying agents when needed. We base
our system on the Java Agent DEvelopment Frame-
work (JADE, 2015). This effectively means that any-
where, where a Java runtime environment is available,
a collection agent can be deployed.

5.1.1 Evidence Collection

There are various evidence sources to be considered,
such as logs, cryptographical proofs, documentation
and many more. For each, there needs to be a suit-
able collection mechanism. For instance, a log parser
for logs, a tool for cryptographical proofs or a file re-
triever for documentation. This is done by a software
agent called Evidence Collection Agent that is specifi-
cally developed for the data collection from the corre-
sponding evidence source. The collection agent acts
as an Insynd Author meaning it uses the Sender API to
store evidence into the Evidence Store. The encryp-
tion happens in the Sender API. Typically, this agent
incorporates or interfaces with a tool to collect evi-
dential data, for instance forensic tools, such as file
carvers, log parsers or simple search tools. Another
type of collection agent have client APIs implemented
to interface with more complex tools, such as Cloud
Management Systems (CMS). Generally, these agents
receive or collect information as input and translate
that information into an evidence record, before stor-
ing it in the Evidence Store.

5.1.2 Evidence Storage

From the Evidence Collection Agent, evidence
records are sent to the Evidence Store. The Evidence
Store is implemented by the Insynd Server. Since In-
synd functions as a key-value store for storing ev-
idence records (encrypted messages identified by a
key) NoSQL or RDBMS-based backend for persist-
ing evidence records can be used. All data contained
in the Evidence Store is encrypted. Each record is ad-
dressed to a specific receiver (e.g., an Evidence Pro-
cessing Agent). The receiver’s public key is used in
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Figure 1: Evidence Collection, Storage and Processing Workflow.

the Sender API to encrypt the record on the Evidence
Store. This means that only the receiver is able to ac-
cess the evidence data from the Evidence Store. Iso-
lation between tenants in a single Evidence Store is
achieved by providing one container for each tenant
where his evidence records are stored. However, even
stronger isolation is also possible by providing a sep-
arate Evidence Store hosted on a separate VM. Addi-
tionally, Evidence records require a unique identifier
in the Evidence Store to enable selective retrieval of
records. In our implementation, we use a combination
of a policy identifier and a rule identifier (where a rule
is part of a policy) to enable the receiver to reduce the
amount of records to receive to a manageable size.

5.1.3 Evidence Processing

Evidence Processing components are located at the
receiving end of this workflow. The Receiver API is
used by the processing agent (Insynd Client) to re-
trieve evidence records from the Evidence Store. The
receiver can request multiple records from a period
of time at once. The Client is also in possession
of the corresponding private key to decrypt evidence
records, which means records can only be decrypted
at the Client.

5.2 Identity Management and Key
Distribution

Since asymmetric encryption is such an important
part of our system, we describe the encryption key
distribution sequence next. In this software agent-
based system, the automated setup of key material
and registration with Insynd is particularly important.
Figure 2 depicts the initialization sequence of collec-
tion and processing agents with a focus on key distri-
bution.

In Figure 2 we introduce an additional component
beyond those already described in the general archi-
tecture: the Controller. The Controller serves as an
entry point that controls the agent setup and distribu-
tion process in the audit system. It is an important part
of the lifecycle management of the system’s agents
(e.g., creating and destroying of agents or migration
between platforms).

In Figure 2 we describe the initialization sequence
for a simple scenario, where a particular tenant wishes
to audit compliance with a policy and one rule in-
cluded in that policy in particular. The following steps
have to be performed to setup the evidence collection
and storage process for that particular rule:

1. In the first step, a Processing Agent is created and
configured according to the input policy and rule
respectively for the tenant.
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Figure 2: Evidence Collection Setup Sequence.

2. During the setup phase, the Processing Agent
sets up a keypair at the Receiver API. The Re-
ceiver API is a RESTful service that holds pri-
vate key material and is therefore located at the
same servers hosting the Processing Agents (i.e.,
a trusted environment).

3. After the key material has been generated, the
Processing Agent registers itself as a recipient at
the Sender API. For this, it uses a unique identifier
generated from the policy ID and the rule ID (i.e.,
policyID.ruleID).

4. In the last step, the Controller sets up the re-
quired Collection Agents and connects them with
the corresponding Processing Agents by using the
unique recipient identifier.

Now, it is possible for the Collection Agents to
send evidence records to their corresponding Process-
ing Agents. The messages will be encrypted at the
Sender API service before storage, using the provided
recipient’s public key. The Processing Agent then
pulls the evidence records from the Evidence Store
using the Receiver API the records are decrypted us-
ing the receiver’s private key.

6 EVALUATION

In this Section we present an informal security eval-
uation of the system we have implemented for secure
evidence collection. We describe the evidence collec-
tion work flow using a fictitious scenario. By applying
the evidence collection and storage process to the set-
ting described in this scenario, we demonstrate how
the requirements stated in Section 4 are addressed.
Additionally, we provide a model that states threats
and adversaries to the process as well as the mitiga-
tion functions introduced by Insynd.

In this scenario, the CCOMP company is a cus-
tomer of the Infrastructure as a Service provider

CloudIA. In particular, we analyze the security prop-
erties of the evidence collection process by looking at
the data at rest as well as the data in transit protection
at any time during the flow from the evidence source
to its processor. We thereby assume that CloudIA is
using OpenStack (OpenStack, 2015) as a its Cloud
Management System (CMS), since this a widely pop-
ular open source CMS, which we use for developing
our audit agent system. However, any other CMS
could be used as well as long as it provides the needed
monitoring interfaces.

6.1 Scenario

CloudIA is specialized in providing its customers
with virtualized resources in the form of virtual ma-
chines, networks and storage. CCOMP has out-
sourced most of its IT services to CloudIA. Among
them is a service that processes data of CCOMP’s cus-
tomers. For that data, CCOMP has to guarantee data
retention. CCOMP has identified snapshots to be one
major problem with respect to the data retention pol-
icy, since the virtual machine’s storage is duplicated
in the process. This means for CCOMP that in order
to be compliant with the data retention policy, a snap-
shot of that virtual machine may have a maximum
lifetime of one day, which limits its usefulness to e.g.,
backing up before patching. Now, we assume a trust-
worthy but sloppy administrator at CCOMP who cre-
ates a snapshot before patching software on the virtual
machine, but then omits deleting the snapshot after
he is done. However, an automated daily audit of its
cloud resources was put in place by CCOMP to detect
such compliance violations.

6.2 Implementation

The collection agent required for the above scenario
communicates with our OpenStack CMS to gather
evidence of the CMS behavior regarding virtual ma-

Secure�Evidence�Collection�and�Storage�for�Cloud�Accountability�Audits

327



chine snapshots. The processing agent contains the
logic for detecting snapshot violations (i.e., base vir-
tual machine and a maximum age of the snapshot de-
rived from the retention policy). The collection agent
is deployed at the CMS controller node and has access
to OpenStack’s RESTful API. The processing agent
is located on the same trusted host as the controller
agent (see Figure 1 for reference). The evidence store
is located on a separate, untrusted virtual machine.
Now, the following steps are performed:

1. The collection agent opens a connection to the
OpenStack RESTful API on the same host and re-
quests a history of snapshot events for CCOMP’s
virtual machine. Despite there being no commu-
nication over the network, HTTPS is used to se-
cure the communication between the collection
agent and the CMS. Since the policy only requires
information about snapshots to be collected, the
CMS agent limits evidence record generation to
exactly that information, nothing more.

2. The collection agent sets up the receiver of the ev-
idence according to the process depicted in Fig-
ure 2 and sends the collected records to the evi-
dence store (Insynd). The communication chan-
nel is encrypted using HTTPS and the payload
(evidence records) is encrypted with the receiving
agent’s public key.

3. The processing agent pulls records from the ev-
idence store in regular intervals (e.g., every 24
hours), analyses them and triggers a notification
of a detected violation. The communication be-
tween the processing agent and the evidence store
is secured using HTTPS.

4. In the last step, evidence records are deleted be-
cause their retention limit has been reached. This
is done by discarding the keys required for de-
cryption.

6.3 Threat Model

To demonstrate which security threats exist for the ev-
idence collection process and Insynd is used to miti-
gate them, we describe the threat model for this sys-
tem categorized according to the STRIDE(Microsoft
Developer Network, 2015) threat categorization:

� Spoofing Identity

� Tampering with Data

� Repudiation

� Information disclosure

� Denial of Service

� Elevation of Privilege

We have identified the following major threats to
the evidence collection and storage process:

� Unauthorized access to evidence (S,I): the protec-
tion of evidence from being accessed by unautho-
rized persons. Possible adversaries are a mali-
cious third-party evidence storage provider (cloud
service provider), another tenant (isolation fail-
ure) or an external attacker. Using Insynd for ev-
idence collection and storage addresses this threat
since recipients of messages are authenticated us-
ing appropriate mechanisms such as user creden-
tials for API authentication and public keys for en-
cryption.

� Data leakage (S,I): the protection from uninten-
tional data leakage. This could be caused by mis-
configuration (e.g., unencrypted evidence being
publicly available). Using Insynd for evidence
collection and storage addresses this threat by en-
crypting data by default.

� Eavesdropping, (T,I): the protection of evidence
during the collection phase, especially in transit.
Possibly adversaries are another tenant (isolation
failure) or external attackers in case evidence is
transported to an external storage provider or au-
ditor. Using Insynd for evidence collection and
storage addresses this threat by using transport
layer as well as message encryption.

� Denial of Service (D): the protection of the ev-
idence collection and storage process from be-
ing attacked directly with the goal of disabling or
shutting it down completely (e.g., to cover-up si-
multaneous attacks on another service). Possible
adversaries are external attackers. This is a very
generic threat that cannot be addressed by a single
tool or control but rather requires a set a measures
(on the network and application layer) to enhance
denial of service resilience.

� Evidence manipulation (T,R,I): the protection
of evidence from intentional manipulation (e.g.,
deletion of records, changing of contents, manip-
ulation of timestamps). Possible adversaries are
malicious insiders and external attackers. Using
Insynd for evidence collection and storage ad-
dresses this threat, since Insynd provides tamper-
ing and deletion detection.

Some of these threats can be mitigated by imple-
menting appropriate security controls (i.e., using In-
synd for evidence transport and storage). It provides
effective protection by employing security techniques
described in Section 3.
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6.4 Requirements Evaluation

In this section, we evaluate the integration of Insynd
against the requirements described in Section 4. In
step 1 of the fictitious scenario, the data minimiza-
tion principle is being followed because the special-
ized agent only collects evidence on the existence of
snapshots.

This workflow is secure as soon as the collection
agent inserts data into the evidence store in step 2.
More precisely, evidence records are tamper-evident
and encrypted. This is true, even though the evi-
dence is actually stored on an untrusted virtual ma-
chine. The only way to compromise evidence now,
is to attack the availability of the server hosting the
Insynd server.

When the processing agent in step 3 retrieves
records for evaluation, it can be assured of the au-
thenticity of the data and that it has been provably col-
lected by a collection agent. Since evidence records
may be subject to maximum data retention regulation,
records that are not needed anymore are deleted.

As previously mentioned in Section 5 we use
JADE as an agent runtime. To secure our system
against non-authorized agents, we use the TrustedA-
gents add-on for the JADE platform. This ensures that
only validated agents are able to join our runtime en-
vironment. This effectively prevents agent injection
attacks, where malicious agents could be inserted at
either the collection or processing side to compromise
our system.

As can be seen, the evidence records are protected
all the way from the evidence source to the processing
agent using only encrypted communication channels
and having an additional layer of security (message
encryption) provided by Insynd. Additionally, while
the evidence is being stored, it remains encrypted.

6.5 Scalability

Obviously, since there is a vast amount of evidence
sources and therefore a potentially equal number of
collection agents, ensuring the scalability of the pro-
cess and the implementation is very important. This
has been considered very early in the design process
by choosing an software agent-based approach for the
system architecture. Software agents are inherently
distributable and allow for complex message flow
modeling in an infrastructure. Therefore, the core
components evidence collection, storage and process-
ing become distributable as well. In our future work,
we’ll focus on the scalability aspects. We will fol-
low a methodology where we focus on the following
technical key scalability indicators:

� Data transfer volume: amount of evidence data
being transferred over the network

� Message volume: amount of evidence message
transmissions over the network

� Storage volume: amount of storage required for
evidence

� Encryption overhead: performance impact intro-
duced by encryption and decryption

Based on the identified performance impact of
each of these indicators, in the second step, we model
different message flow optimization strategies to alle-
viate their impact and ensure scalability.

7 CONCLUSIONS

In this paper, we presented our system design and im-
plementation for secure evidence collection in cloud
computing. The evidence provides the general basis
for performing cloud accountability audits. Account-
ability audits take a large variety of evidence sources
and data processing requirements into account.

We showed what the requirements for a secure
evidence collection process are and demonstrated
how these issues are addressed by incorporating In-
synd into our system. We described how the core prin-
ciples of digital evidence are addressed by our system.
Additionally, we considered data protection princi-
ples for the evidence collection process, how they in-
fluence our approach and how they are addressed in
our system by integrating Insynd. For this, we pre-
sented the relevant architectural parts of our proto-
type.

In our future work, we will focus on the scalabil-
ity of our audit system in general and the scalability
of the components involved in evidence collection in
particular. For that reason, we will focus on the dis-
tribution of the audit system and evidence collection
not only in the same domain (i.e., in the same infras-
tructure), but also taking into account outsourcing and
multi-provider collection scenarios.

ACKNOWLEDGEMENTS

This work has been partly funded from the Euro-
pean Commissions Seventh Framework Programme
(FP7/2007-2013), grant agreement 317550, Cloud
Accountability Project - http://www.a4cloud.eu/ -
(A4CLOUD).

Secure�Evidence�Collection�and�Storage�for�Cloud�Accountability�Audits

329



REFERENCES

An, J. H. (2001). Authenticated encryption in the public-key
setting: Security notions and analyses. IACR Cryptol-
ogy ePrint Archive, 2001:79.

Bellare, M. and Yee, B. (2003). Forward-security in private-
key cryptography. In Topics in Cryptology—CT-RSA
2003, pages 1–18. Springer.

Bernstein, D. J., Lange, T., and Schwabe, P. (2012). The
security impact of a new cryptographic library. In
Hevia, A. and Neven, G., editors, Progress in Cryptol-
ogy - LATINCRYPT 2012 - 2nd International Confer-
ence on Cryptology and Information Security in Latin
America, Santiago, Chile, October 7-10, 2012. Pro-
ceedings, volume 7533 of Lecture Notes in Computer
Science, pages 159–176. Springer.

Bowers, K. D., Hart, C., Juels, A., and Triandopoulos, N.
(2014). PillarBox: Combating Next-Generation Mal-
ware with Fast Forward-Secure Logging. In Research
in Attacks, Intrusions and Defenses Symposium, vol-
ume 8688, pages 46–67. Springer.

Dingledine, R., Mathewson, N., and Syverson, P. F. (2004).
Tor: The second-generation onion router. In Blaze,
M., editor, Proceedings of the 13th USENIX Security
Symposium, August 9-13, 2004, San Diego, CA, USA,
pages 303–320. USENIX.

Doelitzscher, F., Reich, C., Knahl, M., Passfall, A., and
Clarke, N. (2012). An Agent Based Business Aware
Incident Detection System for Cloud Environments.
Journal of Cloud Computing: Advances, Systems and
Applications, 1(1):9.

Doelitzscher, F., Ruebsamen, T., Karbe, T., Reich, C., and
Clarke, N. (2013). Sun behind clouds - on automatic
cloud security audits and a cloud audit policy lan-
guage. International Journal On Advances in Net-
works and Services, 6(1 & 2).

Gupta, A. (2013). Privacy preserving efficient digital foren-
sic investigation framework. In Contemporary Com-
puting (IC3), 2013 Sixth International Conference on,
pages 387–392.

Haeberlen, A. (2009). A case for the accountable cloud.
In Proceedings of the 3rd ACM SIGOPS International
Workshop on Large-Scale Distributed Systems and
Middleware (LADIS’09).

JADE (2015). Java Agent DEvelopement framework.
http://jade.tilab.com.

Jansen, W. and Grance, T. (2011). Sp 800-144. guidelines
on security and privacy in public cloud computing.
Technical report, Gaithersburg, MD, United States.

Lopez, J., Ruebsamen, T., and Westhoff, D. (2014).
Privacy-friendly cloud audits with somewhat homo-
morphic and searchable encryption. In Innovations for
Community Services (I4CS), 2014 14th International
Conference on, pages 95–103.

Microsoft Developer Network (2015). The Stride
Threat Model. https://msdn.microsoft.com/en-
US/library/ee823878(v=cs.20).aspx.

Mohay, G. M., Anderson, A. M., Collie, B., de Vel, O., and
McKemmish, R. D. (2003). Computer and Intrusion
Forensics. Artech House, Boston, MA, USA. For

more information about this book please refer to the
publisher’s website (see link) or contact the authors.

Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic
cash system. Consulted, 1(2012):28.

OpenStack (2015). Openstack. http://www.openstack.org/.
Pearson, S. (2011). Toward accountability in the cloud. In-

ternet Computing, IEEE, 15(4):64–69.
Pulls, T. and Peeters, R. (2015a). Balloon: A

forward-secure append-only persistent authenticated
data structure. Cryptology ePrint Archive, Report
2015/007.

Pulls, T. and Peeters, R. (2015b). Insynd: Secure one-
way messaging through Balloons. Cryptology ePrint
Archive, Report 2015/150.

Pulls, T., Peeters, R., and Wouters, K. (2013). Distributed
privacy-preserving transparency logging. In Sadeghi,
A.-R. and Foresti, S., editors, WPES, pages 83–94.
ACM.

Redfield, C. M. and Date, H. (2014). Gringotts: Secur-
ing data for digital evidence. In Security and Privacy
Workshops (SPW), 2014 IEEE, pages 10–17.

Ruebsamen, T. and Reich, C. (2013). Supporting cloud ac-
countability by collecting evidence using audit agents.
In Cloud Computing Technology and Science (Cloud-
Com), 2013 IEEE 5th International Conference on,
volume 1, pages 185–190.

Weitzner, D. J., Abelson, H., Berners-Lee, T., Feigenbaum,
J., Hendler, J., and Sussman, G. J. (2008). Information
accountability. Commun. ACM, 51(6):82–87.

Zhang, R., Li, Z., Yang, Y., and Li, Z. (2013). An efficient
massive evidence storage and retrieval scheme in en-
crypted database. In Information and Network Secu-
rity (ICINS 2013), 2013 International Conference on,
pages 1–6.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

330


