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Abstract: Security has become one of the main barriers for the adoption of cloud services. A range of legal initiatives 
that require support mechanisms such as access control and data encryption have been proposed to ensure 
privacy for data moved to the cloud. Although these mechanisms are currently feasible in situations in 
which the cloud acts as a mere data storage system, they are insufficient in more complex scenarios 
requiring processing in external cloud servers. Several new schemes have been proposed to overcome these 
shortcomings. Data Processing in the Encrypted Domain (DPED) permits arithmetic operations over 
ciphered data and the generation of encrypted results, without exposure of clear data. In such a set-up, the 
servers have no access to the information at any point of the process. In this paper we describe, as a case 
study of secure cloud data processing, a cloud spreadsheet that relies on DPED libraries to perform 
operations in the encrypted domain. Tests performed on local servers and in the Google cloud through the 
Google App Engine platform show that representative real applications can benefit from this technology. 
Because the proposed solution is PaaS-oriented, developers can apply the libraries to other applications. 

1 INTRODUCTION 

Security and privacy are both major concerns for 
Cloud Computing users. As reported in the 
European CIOs and Cloud Services research study 
(2010), around 71% of European companies are 
worried about security and privacy, especially when 
it comes to storing or processing sensitive data in the 
cloud. Security has thus become a significant barrier 
to full adoption of cloud services. 

Concerns regarding security and privacy have 
been addressed in part by different legal initiatives 
within the European Union, such as Directive 
95/46/EC of the European Parliament and the 
Council of October 24 1995 (Data Protection 
Directive, 1995), which proposes a set of 
recommendations for protecting personal data during 
transfer and processing. In Spain there are several 
specific laws to protect and regulate the management 
of personal and corporate data used by cloud 
applications, including the Data Protection 
Regulation, of Law 15/1999 on Personal Data 
Protection (LOPD, 1999) and the Royal Decree 
1720/2007, which approves the development of the 
LOPD (RDLOPD, 2007). As an example of the 

recommended proposals, the 85th article of the 
RDLOPD states that security measures applied to 
personal data in communication networks, public or 
not, should guarantee at least the same security level 
as that offered by local access systems. 

Due to their very nature, data processed in the 
cloud will presumably be affected by international 
data transfers, primarily because many web 
applications are hosted on foreign servers. 
International data movement is regulated by the data 
protection regulation, which forbids international 
data transfers between countries that do not offer 
sufficient security guarantees according to the 
LOPD, although there are some exceptions explicitly 
indicated in the reference regulation. In addition, this 
regulation sets out several legal requirements, such 
as transfer notification to the Spanish Data 
Protection Agency. 

Because legal procedures are slow, new 
technological mechanisms are required until the 
situation is completely regulated. Authentication on 
the client side and use of security mechanisms such 
as data encryption during data transmission are good 
solutions for interception attacks and servers that do 
not offer sufficient guarantees of reliability. To 
increase security, the client can cipher data using a 
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private key, thereby hiding the information from the 
server. Although this option is valid when the cloud 
acts as a mere storage service, there are cases in 
which it would be insufficient, for example when 
performing certain calculations on the server or 
when processing a query to a database with ciphered 
data.  

To overcome the above shortcomings, new 
server-side schemes have been proposed, such as the 
use of cryptographic hardware or Data Processing in 
the Encrypted Domain (DPED). Cryptographic 
hardware can be used to perform cryptographic 
operations and to store keys securely, but it is 
expensive (specific trusted anti-tampering devices 
are required) and it needs to be physically integrated 
into the provider’s infrastructure. DPED overcomes 
these problems, but at the expense of increased 
processing time. It enables operations over ciphered 
data that generate encrypted results, thereby 
allowing server-side operations without revealing 
the original information. This adds an additional 
security level to the cloud paradigm by means of 
complex homomorphic algorithms. The 
computational requirements may not be a problem 
thanks to the scalability and flexibility of the cloud 
paradigm. 

In this paper we describe a cloud spreadsheet 
application that uses the DPED concept to perform 
operations in the encrypted domain. We have tested 
it on our local servers and in the Google cloud 
through the Google App Engine (GAE) platform. 
Section 2 discusses related work and section 3 
explains the implementation details of our 
application. Section 4 presents the tests performed, 
and finally, section 5 concludes the paper. 

2 RELATED WORK 

Many office cloud applications allow users to work 
with spreadsheets. Some well-known examples are 
Microsoft Office 365, Google Drive Spreadsheets, 
Thinkfree Calc and Zoho Sheet. Nevertheless, none 
of these applications currently offers full protection 
mechanisms for user data, meaning that privacy, 
when available, is supported by external means. 
Indeed, most current solutions are designed for 
Google Drive, not for spreadsheets. Furthermore, 
although there are solutions that are completely 
integrated with the Google Drive interface that 
encrypt documents transparently to users (Adkinson-
Orellana et al., 2010), most simply use the cloud to 
store the encrypted documents (CryptRoll, 2013; 
ZecurePC, 2011; and CloudLock, 2015). 

DPED allows certain operations to be performed 
over ciphered data without the need to access the 
clear version. In particular, arithmetic operations can 
be performed efficiently in the encrypted domain 
thanks to the concept of additive and multiplicative 
privacy homomorphisms (Brickell and Yacobi, 
1987). In 2009, Gentry presented the first fully 
homomorphic encryption scheme. He described 
public key encryption using ideal lattices (Gentry, 
2009). In the same year, M. Van Dijk described a 
“somewhat homomorphic” encryption scheme based 
on elementary modular arithmetic, and used 
Gentry’s techniques to convert it to a full 
homomorphic scheme (M. Van Dijk et al., 2009) 
that implemented addition and multiplication over 
integers rather than ideal lattices over a polynomial 
ring. 

There have been other contributions in this 
direction. A. F. Chan formulated a privacy 
homomorphism for operating over ciphered data 
with two different encryption schemes, where data 
could be processed directly in an encrypted form 
(Chan, 2009). H. Hacigümüş, in turn, described 
different techniques for executing SQL queries over 
encrypted data (Hacigümüş et al., 2002). The 
strategy involves processing as much of the query as 
possible at the service provider site, without 
decrypting data. Decryption and the remainder of the 
query processing takes place at the client side. They 
also explored an algebraic framework to split the 
query to minimize computation at the client side. 

The innovative idea in this paper is to enable 
DPED processing in cloud applications. We are not 
aware of any previous DPED-enabled complex 
cloud applications, although, in a previous work, we 
presented a toy example that demonstrated that 
DPED could strengthen the privacy of simple 
mathematical operations in the cloud (Rodriguez-
Silva et al., 2011). 

3 SECURE CLOUD 
SPREADSHEET 

3.1 Arithmetic Calculations in the 
Encrypted Domain 

The spreadsheet application is composed of two 
modules: a client module and a server module. The 
client module presents the spreadsheet interface, 
which is used to enter data, cipher its content, send it 
to the server, and decipher and present the results in 
the corresponding spreadsheet cell. The server 
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module, in turn, executes arithmetic operations on 
the encrypted data received from the client by means 
of adequate privacy homomorphisms. The supported 
encrypted operations are listed in Table 1. 

Due to the low efficiency of complete 
homomorphisms in the current state-of-the-art, our 
implementation uses a variation of the additive 
homomorphic encryption described by Paillier 
(Paillier, 1999) as the basis of our cryptographic 
system. One or more additional rounds of 
communication between the client and the server 
will also be needed depending on the complexity of 
the operation requested. 

Table 1: Encrypted operations supported by the 
spreadsheet. 

Operation Description Example 
AVERAGE Average value AVERAGE (A1:A5) 

DEGREES Degree conversion DEGREES (A1:A5) 

FFT Fast Fourier Transform FFT (A1:A5) 

PROD Product PROD (A1:A5) 

RADIANS Radian conversion RADIANS (A1:A5) 

SPROD Scalar product SPROD(A1:A5;B1:B5) 

STDEV Standard deviation STDEV (A1:A5) 

SUM Addition SUM (A1:A5) 

VADD Vector addition VADD (A1:A5;B1:B5) 

VAR Variance VAR (A1:A5) 

VPROD Vector product VPROD(A1:A5;B1:B5)

VSUB Vector substraction VSUB (A1:A5;B1:B5) 

The encryption methods used are based on 
asymmetric key algorithms. The libraries present 
different options, such as threads and JNI (Java 
Native Interface), thereby increasing efficiency 

thanks to the use of C libraries. The encryption 
libraries also allow operations with scalars and 
vectors, unlike the version in our previous work, 
which only offered basic operations for unary 
values.  

3.2 Ciphered Cloud Spreadsheet 
Implementation 

The spreadsheet allows operations over a range of 
cells, with no limitations in terms of the number of 
operators involved. The implementation relies on 
Java technology, as this is the most common PaaS 
language. It uses the Java Runtime Environment 
(JRE) classes available to create applets and tables 
(JTable, TableModel, etc.), meaning that results can 
be easily embedded on a web page. The 
development environment used to create the 
spreadsheet and the associated technologies are the 
same as those used for the encrypted calculator 
(Rodriguez-Silva et al., 2011): Java Servlets and 
IDE Eclipse 3.5 (Galileo) for the server and Java 
applets and Oracle IDE Netbeans 6.8 for the client, 
with the corresponding plugin to create graphical 
user interfaces. Again, GAE was selected as the 
cloud platform to deploy the application. Due to the 
restrictions of this PaaS, the encryption libraries had 
to be adapted, since the platform has a limited 
support for multithreading (a characteristic that the 
libraries use to improve efficiency). 

By default, some of the applet functionalities 
(e.g. reading or writing files on disk) are restricted 
through a security policy implemented by the 
security controller of the browser Java Virtual 

 

Figure 1: Ciphered cloud spreadsheet interface. 
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Machine (JVM) plugin. However, the spreadsheet 
applet needs these functionalities to store its content 
in a local file and to obtain and save the user keys to 
cipher data. For this reason, the user must accept the 
applet signature, granting certain restricted 
functionalities. All the libraries except 
au.com.bytecode.opencsv (required to save the 
content of the spreadsheet in .CSV format) and the 
DPED libraries are available on the JRE used by the 
browsers. Other libraries are downloaded when the 
applet starts. 

The client is composed of two modules: one for 
the graphic interface and the other for parsing and 
communicating with the server. The graphic module 
is in charge of the visual interface, intercepting user 
events and presenting results. Its design was based 
on typical spreadsheet software, such as Google 
Spreadsheet, OpenOffice.org and Microsoft Excel 
(Figure 1). The client parser analyses formulae 
expressions to obtain the data required to perform 
the operations. Finally, the communication module 
exchanges data with the server using HTTP 
tunnelling. 

 
Figure 2: Client module flowchart according to user 
interaction. 

To perform a spreadsheet operation, the first step 
is to start the application (applet) and load the 
libraries. The user then introduces his/her login and 
password, using his/her Google user account if the 
application is deployed in GAE. If access is granted, 
the user keys —required to cipher and decipher the 
data and perform encrypted operations— are loaded 

from binary files. When the process is complete, the 
spreadsheet graphic interface is shown. At this point, 
the application is ready to process events generated 
by user interaction (see Figure 2): 
 Finish cell edition. The application checks the 

type of data entered in the cell, such as 
formulae, a number or other data types. The 
formulae are analysed, the type of operation 
and the references to the cells are extracted, 
and in the case of numbers, these are ciphered. 
With this information a new communication 
object is created to be sent to the server. In the 
case of other data types, the cell content is 
directly inserted in the communication object. 
Once this object has been created, a new 
communication thread is thrown to send the 
object to the server. In other words, the 
interface thread is released to receive new user 
events. The communication thread remains 
open until confirmation is received that the 
number or object has been correctly received 
at the server side or until the operation defined 
by the formula has finished. This is indicated 
by the communication round. The result is 
then decrypted and displayed to the client. 

 Save on server. The client creates an object 
with the order to save the spreadsheet at the 
server side. A new thread is created 
specifically to send the petition containing this 
object. This thread will receive a response 
indicating the success or failure of the request. 

 Select a menu option. The selected option is 
performed at the client or the server side, 
depending on the actions involved, e.g., 
create/load user keys, add/remove rows or 
columns, copy/paste cells, etc. 

Dependencies between the values of the cells 
must be taken into account. When the value of a cell 
changes, it can affect other related cells, resulting in 
the execution of multiple parallel operations. To 
manage this situation, a new thread is thrown for 
each dependent operation, creating a new client. 
This ensures that the different operations executed 
do not interfere with each other, but it requires more 
processing load for the application during the 
initialization of a new module. 

We considered two possible server deployment 
scenarios: a private cloud (local) and a public cloud 
(GAE). The private cloud does not have all the 
resources and services offered by GAE, such as user 
accounts and persistent storage. In this case users are 
authenticated through a local mechanism and 
persistent storage is simulated by saving the 
spreadsheet in a local file, identified by the user 
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login. In this way, when a user enters the 
application, the saved spreadsheet will be retrieved 
and deciphered if and only if he/she has the 
appropriate private key. 

The server is a servlet composed of two 
modules: the communication module and the data 
processing module. The communication module 
performs the same actions as on the client side, 
while the data processing module is in charge of 
storing or processing the data received in the 
encrypted domain and recovering the stored 
spreadsheet. 

On the server side, the first step is to initialize 
the servlet, which will keep listening to incoming 
petitions from the clients. When a request is 
received, the thread recovers the object and retrieves 
the data it contains. The selected action is then 
executed, i.e. the data received is saved, the cell 
value is deleted, the module is initialized, the 
encrypted operation is performed, etc. 

The client and server modules must store the 
status of each operation requested, indicating the 
current execution round. If several operations are 
requested at once, several modules for the client and 
the server will be instantiated, and those associated 
with the same operation will be identified by a 
unique identifier. Thus, each time an operation is 
requested, it will be possible to execute it in the 
corresponding module, avoiding result 
inconsistencies when several rounds are being 
carried out. 

Communication between the client and the 
server takes place through a Java object, which is 
used to retrieve and store information. This object is 
sent through HTTP tunnelling, facilitating data 
transmission through different elements (firewalls, 
proxies, etc.) that typically limit connection to web 
resources. In addition, the object is used to send and 
receive different types of data, such as encrypted 
data to be stored by the server, information related to 
the operation performed and the cells involved, 
encrypted results received from the server, etc. 

The application also supports the generation of 
the keys required to cipher and decipher data. These 
keys offer two levels of security: short-term and 
medium-term. While short-term security speeds up 
encryption and decryption, medium-term security is 
stronger, as it would take approximately ten times 
longer to break up its keys (e.g., ten years vs 1 year).  

4 PERFORMANCE TEST 

The test layout comprised a client computer (Intel 
 

Core i3-2120 @ 3.3 GHz, 3870 MB RAM, Ubuntu 
10.4) and a local server (with the same 
characteristics) to perform the encrypted operations 
under Jetty 7.5.4. The cloud application applet was 
executed through the Google Chrome 17 browser. 
We also used GAE servers equipped with Jetty to 
deploy the applications. 

The operation selected to evaluate the 
performance of the spreadsheet was a Fast Fourier 
Transform (FFT), as this is a complex operation that 
permits representative performance results. The FFT 
was applied to vectors with lengths of 64, 128 and 
512 points.  

The current version of the spreadsheet encrypts 
and sends each data item to the server individually. 
When an operation (the FFT in this case) is selected 
at the client side, the server simply receives the 
operation and the cells involved, since it has already 
the ciphered values. Therefore, the total time needed 
to perform an operation comprises two times: a data 
entry time, including the management of the data in 
the cells in the spreadsheet and the time needed to 
encrypt and send each operand to the server, and a 
running time, which is the time needed to perform 
an encrypted operation on the server and present the 
result on the client side. 

We used four test scenarios: 
 Local, with threads and JNI. The encrypted 

FFT was executed on the local server. There 
were five parallel threads in the server and the 
client. JNI was used to improve efficiency.  

 Local, without threads or JNI. As in the 
previous case, the operation was executed on 
the local server. Neither threads for parallel 
executions nor C functions were used in this 
scenario. 

 Local, clear FFT. We executed the FFT using 
clear data on the local server. The FFT 
algorithm was implemented by a Java 
function. 

 Remote, deployed on a GAE server. GAE does 
not allow the use of threads or JNI, so the 
server was subject to these restrictions. At the 
client side five threads were used, in addition 
to C functions through JNI. 

The client was executed on the same machine 
and used the same browser in all four scenarios. 

In each scenario, 10 FFT operations were 
performed for randomly generated vectors for the 
three lengths. We used both the short- and medium-
term security levels to perform these tests. Tables 2 
and 3 show the corresponding results based on the 
following times: 
 Entry time (ET).  Time  from  the  moment  an 
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operand is entered in the spreadsheet to the 
moment the client receives the response from 
the server (indicating that the encrypted data 
have been correctly stored). 

 Server execution time (SE). Time taken by the 
server to perform the encrypted FFT 
operation. 

 Running time (RT). The sum of 
communication time required to exchange 
data between the client and the server, the 
time needed by the server to perform an 
ciphered FFT (SE) and the time needed to 
decrypt the result for the client. 

Each pair of values represents the average 
execution time ( ) and its standard deviation (σ), 
both in milliseconds.  

The tests were unfeasible for the 512-point FFT 
in the remote scenario because the time needed to 
generate and return a response in GAE is limited to 
30-60 seconds and the 512-point FFT needs longer. 
These results are therefore not shown in the tables.  

The use of longer keys improves security 
considerably, but increases effective operating time. 
On comparing Table 2 and Table 3, we can see that 
the time required to perform the same operation is 
considerably higher for the medium-term security 
level. This mainly affects ciphered operation time 
(i.e., server execution time). The different level of 
security does not have an impact on data entry time, 
as this includes the ciphering of data but not the 
execution of the encrypted operations. 

The use of threads and JNI considerably reduced 
the execution time in both cases, primarily due to the 
improved efficiency of the execution of the 
algorithm on the server and the improved efficiency 
of the decoding process. Although this test scenario 
cannot be translated to GAE, its results can give us 
an idea of how the performance could be improved 
with JNI and threads in GAE or other compatible 
PaaS. 

The running time with GAE was much higher 
than in the equivalent local case without threads or 
JNI. Besides of the Internet delay, GAE servers took 
approximately 10 times longer to execute the same 
algorithm, probably because GAE is optimized for 
applications with short response times, typically of 
hundreds of milliseconds. 

The total execution time for the best DPED 
scenario (local, threads and JNI) was much longer 
than with unencrypted data (local, clear FFT). This 
is obviously due to the time spent on encrypting data 
and decrypting the result, and the efficiency of the 
DPED FFT algorithm, which is over 200 times 

slower than the algorithm used to calculate the FFT 
with unencrypted data. 

Table 2: Data entry time, server execution time and 
running time using the short-term security level (ms). 

Test scenario 64 128 512 

Local, no 
threads or 
JNI 

ET 
=524.2 

σ=23.5 
=897.9 

σ =43.3 
=6888.4 

σ =114.4 

SE 
=581.4 

σ=152.7 
=1177.9 

σ =137.8 
=6013.7 

σ =120.1 

RT 
=1206.6 

σ=140.4 
=2256.7 

σ =135.1 
=9918.4 

σ =131.5 

Local, 
threads and 
JNI 

ET 
=565.1 

σ =21.9 
=936.1 

σ =21.3 
=8642.9 

σ =127.6 

SE 
=76.9 

σ=9.4 
=140.9 

σ =31.7 
=545.8 

σ =62.5 

RT 
=239.1 

σ =18.3 
=356.3 

σ =41.4 
=1108.8 

σ =103.6 

Remote 
(GAE) 

ET 
=16539.3 

σ =538.9 
=34056.3 

σ =1355.2 
--- 

SE 
=5595.2 

σ=294.3 
=13793.8 

σ =858.8 
--- 

RT 
=6339.3 

σ =365.7 
=14688.0 

σ =881.2 
--- 

Local, clear 
FFT 

ET 
=475.6 

σ =23.9 
=790.3 

σ =41.3 
=6250.7 

σ =118.3 

SE 
=0.159 

σ=0.086 
=0.516 

σ =0.307 
=1.318 

σ =0.422 

RT 
=6,5 

σ =1.5 
=6.9 

σ =2.5 
=10.4 

σ =2.0 

Table 3: Data entry time, server execution time and 
running time using medium-term security level (ms). 

Test scenario 64 128 512 

Local, no 
threads or 
JNI 

ET 
=1132.3 

σ=35.1 
=1916.8 

σ=36.9 
=8308.8 

σ=192.5 

SE 
=2382.4 

σ=500.8 
=4538.1 

σ=623.2 
=20909.2 

σ=742.1 

RT 
=6127.7 

σ=550.3 
=11129.8 

σ=567.9 
=46873.3 

σ=1314.3 

Local, 
threads  
and JNI 

ET 
=589.9 

σ=53.6 
=995.1 

σ=38.3 
=6983.7 

σ=137.4 

SE 
=173.6 

σ=23.2 
=337.0 

σ=35.7 
=1558.2 

σ=287.5 

RT 
=597.4 

σ=46.6 
=1031.6 

σ=35.1 
=4062.7 

σ=491.0 

Remote 
(GAE) 

ET 
=16733.6 

σ=1113.3 
=34709.2 

σ=2410.8 
--- 

SE 
=22045.1 

σ=915.4 
=52640.6 

σ=1033.4 
--- 

RT 
=23007.0 

σ=926.6 
=54172.3 

σ=1111.0 
--- 

Local, clear 
FFT 

ET 
=475.6 

σ =23.9 
=790.3 

σ =41.3 
=6250.7 

σ =118.3 

SE 
=0.159 

σ=0.086 
=0.516 

σ =0.307 
=1.318 

σ =0.422 

RT 
=6,5 

σ =1.5 
=6.9 

σ =2.5 
=10.4 

σ =2.0 
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5 CONCLUSIONS 

Cloud computing provides an adequate environment 
for deploying applications following a Software-as-
a-Service (SaaS) model. However, security and 
privacy are key concerns when sensitive data 
managed by applications is moved to cloud 
infrastructures for processing or storage. 

In this paper we have proposed, as a case study 
of a real-life secure cloud application, a spreadsheet 
capable of performing DPED operations on cloud 
servers. The application was tested on a private 
cloud and on GAE, with analysis of the time 
required to perform a ciphered FFT operation. 
Although the test results demonstrate that 
homomorphic encryption is a feasible solution for 
secure data processing on cloud infrastructures, the 
efficiency of current encrypted domain libraries 
needs to be improved to achieve commercial status. 
Nevertheless, although the times for encrypted 
operations are quite long, they are satisfactory for 
applications with a light processing load, such as the 
proposed spreadsheet. To apply this model in a 
PaaS, cloud providers should support DPED 
libraries on their servers. 

This solution could be applied to other real-life 
applications, such as enterprise resource planning 
(ERP) or e-Health SaaS, where confidentiality is 
crucial. 
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