
Container-based Virtualization for HPC

Holger Gantikow1, Sebastian Klingberg1 and Christoph Reich2

1Science & Computing AG, Tübingen, Germany
2Cloud Research Lab, Furtwangen University, Furtwangen, Germany

gantikow@gmail.com, fsebastian.klingberg, christoph.reichg@hs-furtwangen.de

Keywords: Container Virtualization, Docker, High Performance Computing, HPC.

Abstract: Experts argue that the resource demands of High Performance Computing (HPC) clusters request bare-metal
installations. The performance loss of container virtualization is minimal and close to bare-metal, but in
comparison has many advantages, like ease of provisioning.
This paper presents the use of the newly adopted container technology and its multiple conceptional advantages
for HPC, compared to traditional bare-metal installations or the use of VMs. The setup based on Docker
(Docker, 2015) shows a possible use in private HPC sites or public clouds as well. The paper ends with a
performance comparison of a FEA job run both bare-metal and using Docker and a detailed risk analysis of
Docker installations in a multi-tenant environment, as HPC sites usually are.

1 INTRODUCTION

Applications in the domain of High Performance
Computing (HPC) have massive requirements when it
comes to resources like CPU, memory, I/O through-
put and interconnects. This is the reason why they
are traditionally run in a bare-metal setup, directly
on physical systems, which are interconnected to so-
called clusters.

Such a cluster infrastructure offers the best per-
formance, but of disadvantage is the time for setting
up: a) The operating system, usually some Linux fla-
vor, must be installed using automatic mechanisms
like PXE and Kickstart to install a basic installation
ready to log in and get customized. b) All the ap-
plications required for computation and general HPC
related libraries, like MPI (MPI, 2015), have to be
installed and fine tuned in the customization phase.
This is usually done by configuration management
tools like Chef (Chef, 2015) or Puppet (Puppet, 2015).
c) Before the first computational jobs can be started,
the installed systems have to be finally integrated in
some job scheduler like GridEngine (Oracle, 2015),
LSF (IBM, 2015), or TORQUE (Adaptive Comput-
ing, 2015) which ensures proper resource manage-
ment and avoids over-usage of resources.

Even though these steps can be automated to the
great extent, the whole process until being finally able
to start a job is quite time consuming and leaves the
system in a rather static setup difficult to adapt to dif-

ferent customer needs. Often different applications,
or even different versions of the same one, have con-
flicting environmental requirements, like a specific
Linux version or specific library version (e.g. libc).
This leads to the risk of putting the consistency of
the whole cluster at stake, when adding a new ap-
plication, or a newer version. Libraries might have
to be updated, which might imply an upgrade of the
whole Linux operating system (OS). Which in return
can lead to old versions which are usually required
for the ability to re-analyze previous calculations not
being functional.

Now given a scenario where applications need
computing environment changes frequently, the setup
might take several hours. Even when using disk im-
ages, this approach does not pay off for jobs only run-
ning a rather limited time. One would like to have
high configuration flexibility, with low application in-
terference on the same cluster and optimal resource
utilization. Isolation is the key solution for this. The
use of different virtual machines (VMs), as they of-
fer a feasible solution for tailoring a suitable environ-
ment for each type of workload and even providing
a portable entity for moving HPC jobs to the cloud,
is a trend that is gaining more and more momentum.
With such a setup compute servers are no longer used
for bare-metal computing, but turned into host sys-
tems for virtualization instead, reducing the installa-
tion time and making the systems much more flexible
for different workloads, as they only have to offer the

543



minimum environment to host a VM, whereas all the
application specific environment is encapsulated in-
side the VM.

Even though the use of hypervisor-based virtual-
ization using VMs is highly common, it comes with
quite a few trade-offs performance-wise, which make
them less suitable for demanding HPC workloads.

Our work makes the following contributions:

� We present container-based virtualization with
Docker as a superior alternative to VMs in the
field of HPC.

� We provide a comparison of the concepts of VMs
and containers and their use for HPC.

� We evaluate its performance using a finite element
analysis (FEA) job with ABAQUS (Abaqus FEA,
2015), a widely used application in the field of
computer aided engineering (CAE).

� We discuss possible risks of container-based vir-
tualization.

The rest of the paper is organized as follows: Sec-
tion 2 explores possible options for container-based
virtualization. Section 3 discusses their advantages
over VMs for HPC and describes the most viable
Linux solution (Docker) for containers. Section 4
evaluates the performance overhead over native ex-
ecution with a real life industrial computational job.
Section 5 takes a look at possible security implica-
tions by using Docker. Section 6 concludes the paper.

2 RELATED WORK

The use of container-based virtualization for all sorts
of workloads is not new, as the underlying concepts
such as namespaces (Biederman, 2006) are mature.
The core concept of isolating applications is seen
in any Unix-like OS, with BSD Jails (Miller et al.,
2010), Solaris Zones (Price and Tucker, 2004) and
AIX Workload Partitions (Quintero et al., 2011) be-
ing available for years. Linux, the operating system
that powers most HPC clusters and clouds, as opposed
to Solaris and AIX, offers a similar solution called
LinuX Containers (LXC), with its initial release back
in 2008. Even though LXC offers good performance
it never really caught on in the HPC community. An-
other option for Linux based containers is systemd-
nspawn, which hasn’t seen any widespread use so far.
The most interesting option we are considering as a
VM alternative for HPC in this paper is Docker, which
recently became the industry standard for Linux con-
tainers, due to its ease of use, its features, like layered
file system images and the ecosystem supporting it.

There have been several studies comparing VM
to bare-metal performance (Matthews et al., 2007),
(Padala et al., 2007) which have lead to much im-
provements in hardware support for virtualization and
VM technology as such (McDougall and Anderson,
2010). Especially the two open-source Type-1 hyper-
visor solutions Xen (Barham et al., 2003) and the Ker-
nel Virtual Machine (KVM) (Kivity et al., 2007), that
turns the whole Linux kernel into a hypervisor, have
seen lots of performance improvements, for example
by combining hardware acceleration with paravirtual-
ized I/O devices using virtio (Russell, 2008). This
papers discusses the advantages of container-based
virtualization for HPC, the amount of performance-
overhead added by Docker when running a FEA com-
pute job inside a container instead bare-metal and
takes a closer look at the security-related implications
when using Docker in a multi-tenant environment.

3 CONTAINERS FOR HPC

Whereas VMs still offer the most mature and reliable
technology for isolating workloads, both in terms of
security and stability for encapsulating applications
and their dependencies in a portable entity, their per-
formance loss still remains, as overhead is added by a
hypervisor, also known as Virtual Machine Manager
(VMM), running on top of the hardware to control the
VMs.

While hypervisor-based virtualization can still
mean up to 25% reduction in turnaround time in cer-
tain scenarios (Stanfield and Dandapanthula, 2014),
large compute clusters continue to still run bare-metal
setups, even though this means a huge trade-off in
flexibility. The same applies for many of the com-
mercial HPC-on-demand offerings, for example ad-
dressing the CAE sector. Because they’re based on
bare-metal setups they frequently can’t offer the elas-
ticity customers are accustomed to from mainstream
cloud offerings like Amazon EC2, as there are certain
minimum quantities that have to be booked for mak-
ing the re-installation pay off.

By using a container-based virtualization ap-
proach this might change to a certain extend.

3.1 Container Virtualization vs.
Hypervisor

The technical concept of container-based virtualiza-
tion differs quite a bit from hypervisor-based virtual-
ization. The containers run in user space on top of
an operating system’s kernel, while the hypervisor is

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

544



Figure 1: Hypervisor- (left) vs. Container-Based Virtualization (right).

scheduling system calls of the virtualized operating
system as seen in Figure 1.

As the operating system kernel is the exact same
for all containers running on one host and can not
be changed, containers are limited to the same host
operating system. VMs can run other operating sys-
tems e.g. Windows on top of Linux. This is a valid
point for many scenarios, but the majority of HPC
clusters and IaaS clouds tend to homogeneously run
Unix (e.g. Linux). Container virtualization still offers
the required flexibility to run e.g. an Ubuntu Linux
container on top of a Red Hat Enterprise Linux host.
Which also means a containerized process appears to
be running on top of a regular Linux system.

Container-based virtualization relies on two Linux
kernel features of the host system to provide the re-
quired isolation:

� kernel namespaces (Biederman, 2006): enabling
individual views of the system for different pro-
cesses, which includes namespaces for processes,
file systems, user ids, etc. and enables the creation
of isolated containers and limiting access of con-
tainerized processes to resources inside the con-
tainer.

� kernel control groups (cgroups): this subsystem
puts boundaries on resource consumption of a sin-
gle process or a process group and limits CPU,
memory, disk and network I/O used by a con-
tainer.

As mentioned before there are several options
for using containers with Linux, with Docker having
gained most attention recently due to its features and
ease of use. Docker is released by the team at Docker,
Inc. under the Apache 2.0 license.

3.2 Docker and HPC

Docker offers a good solution containerizing an ap-
plication and its dependencies. As seen in Figure 2

Figure 2: Applications and library dependencies.

applications usually share several libraries.
With container virtualization it is possible to iso-

late libraries as seen in Figure 3 to allow coexistence
of special or incompatible library versions or even an
outdated Linux distribution in a shippable entity eas-
ily. This solves the problem of running legacy code
(might be needed for verifying old results of a compu-
tation) on a modern system, without the risk of break-
ing the system. As long as the code is not dependent
on a special version of the kernel, as the kernel can
not be changed inside a container.

Figure 3: Applications and library dependencies encapsu-
lated in containers.

Containers equipped with all tools and libraries
for a certain tasks can be easily deployed on own clus-
ters, systems of a related party for evaluation without

Container-based�Virtualization�for�HPC

545



having to rebuild the whole computational work-flow
or at a complete third party if additional resources are
needed. All that is required is a suitable runtime for
starting the container.

This also cuts down the complete re-purposing
of compute resources to a simple start a new con-
tainer image, as compute nodes only have to offer the
Docker runtime and have access to the container files.

Compared to virtual machines this significantly
reduces the amount of resources required. Both in
memory footprint, as containers share a lot of re-
sources with the host system as opposed to VMs start-
ing a complete OS and in terms of storage required.
Startup time is reduced from the time booting a full
OS to the few seconds it takes till the container is
ready to use.

For reducing storage requirements Docker makes
use of layered file system images, usually UnionFS
(Unionfs, 2015) as a space conserving mechanism,
which is lacking in several other container solutions.
This allows file systems stacked as layers on top of
each other (see Figure 4), which enables sharing and
reusing of base layers. For example the base in-
stallation of a certain distribution, with individually
modified overlays stacked on top, can provide the re-
quired application and configuration for several dif-
ferent tasks.

Figure 4: The layers of the Docker file system.

If a weakening of complete isolation is acceptable,
it is also possible to pass directories, for example con-
taining job input data into a container, so not all the
required files for a compute job have to be included in
the container image. One has to consider that strong
isolation is desired, if providing a multi-tenant envi-
ronment.

One popular VM feature it currently lacking.
Compared to hypervisor-based setups Docker can not
live-migrate running workloads to another host (Clark
et al., 2005), which might be desirable for planned

system downtime. Even though this might not be
required for most HPC environments, as killing and
recreating a container might be faster, the Check-
point/Restore In Userspace (CRIU) project is cur-
rently working on at least providing checkpoint and
restore functionality (CRIU-Project, 2015). This fea-
ture would be much more required for high availabil-
ity (HA) clusters than for HPC clusters.

4 EXPERIMENTAL EVALUATION

Performance-wise, without all the overhead added by
hypervisor and VMs, containers as a light-weight vir-
tualization mechanism can achieve almost the same
performance as native execution on a bare-metal sys-
tem does, as other benchmarks (Felter et al., 2014),
(Xavier et al., 2013) underline.

As we were interested in the amount of overhead
generated by containerizing a HPC workload, we de-
cided to benchmark a real-world ABAQUS exam-
ple in two different storage scenarios, comparing the
containerized execution time to the native execution.
ABAQUS (Abaqus FEA, 2015) is frequently used for
finite element analysis (FEA) and computer aided en-
gineering (CAE) for example in the aerospace and
automotive industries, as it provides wide material
modeling capability and multi-physics capabilities.
ABAQUS jobs tend to be CPU and memory intense,
requiring lots of scratch space too.

The application was installed to local disks on a
CentOS 7 SunFire X2200 server with the following
hardware configuration:

� CPU: 4x Dual-Core AMD Opteron (tm) 2220

� RAM: 16GB

� HDD: local conventional disks without RAID

� Infiniband: Mellanox MT25204

The job used for evaluation is the freely avail-
able s4b from the samples.zip package included in the
ABAQUS 6.12-3 installation. It was installed onto lo-
cal disks and the software licensing was done using a
local license file.

As the server provided access to a Lustre parallel
distributed file system, which is frequently used for
large-scale cluster computing, we decided to execute
the job one time with the folder for temporary data
located on local disks and the other time on the Lus-
tre file system. Both storage configurations were used
with bare-metal execution and inside a Docker con-
tainer. Docker was installed using packages shipped
with CentOS 7.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

546



There were no limits imposed on Docker using
cgroups to ensure maximum performance. The re-
sources available to the container were only limited
by the actual resources on the host. When using
one host for multiple containers simultaneously us-
age should be limited as expected. We used only one
container per host for not distorting the outcome.

To rule out side effects, the job was run twenty
times in each configuration and the Total CPU Time
(in seconds), which is the sum across all involved
CPUs of the time spent executing ABAQUS (user
time) and the time spent by the OS doing work on
behalf of ABAQUS (system time), from the job out-
put file was taken to ascertain the total runtime of the
simulation (see Figure 5).

The results, diagrammed in Figure 5, show the fol-
lowing:

� Docker offers near native execution speed

� there is constant but minimal overhead added

� average runtime (native vs Docker)

local disk 114s vs 116,5s - overhead: 2,21%
Lustre 117,3s vs 118,5s - overhead: 1,04%

To be clear: this means only two up to five seconds
longer total execution time to complete the s4b exam-
ple job, which is a fraction of the time a VM would
even need to boot.

A point worth commenting on is the reason for
the lesser overhead when accessing Lustre. The lower
difference in overhead when using Lustre can be ex-
plained by the fact, that the container uses the RDMA
stack for IBoIP as directly as the host does, while
accessing a local disk obviously needs to be passed
through a UnionFS technology which affects the I/O
flow here, at a small but mentionable minimum.

5 CONTAINER
VIRTUALIZATION RISKS

As mentioned before the cornerstones of the perfor-
mance and security isolation offered by Docker are
cgroups and namespaces, both very mature technolo-
gies, which do a good job of avoiding Denial of Ser-
vice (DoS) attacks against the host and limiting the
view of what a container can see and has access to.
Recent analysis on Docker (Bui, 2015) shows that the
internal concepts of containers, even when using de-
fault configuration, are reasonable secure.

When deploying Docker in a multi-tenant environ-
ment, certain security aspects have to be considered:
Container vs VM. When it comes to security as-
pects, isolation of filesystem, devices, IPCs, network

and management as described in Reshetova’s paper
(Reshetova et al., 2014) important. Generally it can
be said, that containers have been seen as less secure
than the full isolation offered by hypervisor virtual-
ization, which is still true.
Vulnerabilities. Recent research by Ian Jackson and
his colleague George Dunlap (Jackson, 2015) com-
pared the number of Common Vulnerabilities and Ex-
posures (CVE) in 2014 for paravirtualized Xen, KVM
+ QEMU, and Linux containers, that could lead to
either privilege escalation (guest to host), denial of
service attacks (by guest of host) or information leak
(from host to guest) and showed that the risk for any
of the three is higher when using containers.

One reason is that every additional interface avail-
able is a possibility for additional vulnerabilities. A
hypervisor provides an interface similar to hardware
and so-called hyper-calls (Xen offering 40). These are
only very few calls a VM can interact with, compared
to the much wider Linux system call interface used
by containers. Making use of hardware virtualization
for hypervisor-based setups may even add additional
risks, as a detailed study (Pék et al., 2013) shows.
Docker Daemon. Since running Docker containers
requires the Docker Daemon to run as root on the host,
special attention should be given to its control, what
leads to certain good practices for using Docker from
a security point of view.
Misuse. Because it is possible to pass through
file systems available on the host, only trusted
users should be allowed access to start images or
pass arguments to the Docker commandline-tool
docker. Great harm can be done, if for exam-
ple the hosts’ complete file system is granted ac-
cess to from inside the container. Membership
of the docker-group is usually enough to invoke
a command like docker run -v /:/tmp myimage
rm -rf /tmp/* which would start a container, pass
the hosts’ filesystem to /tmp inside the container and
directly delete it.
NFS. This risk intensifies in a NFS-environment,
where someone with unrestricted access to Docker
can bind to an existing share, for example containing
user homes, and circumvent access control based on
numeric user IDs (UID) by creating a container for
spoofing his UID. This can be mitigated by offering
only NFSv4 shares to Docker hosts, where Kerberos
as an additional authorization layer is available.
Application Container vs System Container. When
using Docker for HPC applications the best thing to
do is utilizing the container as an application con-
tainer that directly starts the computing job after the
container starts running. This eliminates the possi-
bility for a user to pass parameter to the docker-

Container-based�Virtualization�for�HPC

547



Figure 5: Total CPU Time (seconds).

command-line and to utilize the container as a more
VM-style system container. As this disables the pos-
sibility to interactively use and explore the system,
offering only pre-defined, parameter-controlled con-
tainers greatly reduces the risk of wanted or acciden-
tal misuse.
Docker Security. According to (Jérôme Petazzoni,
2013) development focusing on security is on the way,
which will limit the Docker daemons’ root privileges
to certain sub-processes like virtual network setup.
Further improvements aim at a possibility to map the
root user of a container to a non-root user on the host
system, reducing the impact of a possible privilege es-
calation. These new user namespaces will also opti-
mize sharing file systems, as users within a container
can be mapped to users outside the container. LXC
already uses this feature (?), so it should be only a
matter of time until Docker implements user names-
paces.
Image Security. Attention should be paid to the
source the container images are being pulled from.
Docker Inc. offers a convenient way (called Docker
Hub) to access thousands of preconfigured images
which are ready to deploy. These images are for users
who quickly want to set up an Apache web server or
development environment for testing and do not offer
any HPC related applications. But these images might
be used as base for creating own HPC images. As se-
curity researchers state (Rudenberg, 2014) Docker in-
cludes a mechanism to verify images, which does im-
ply that the checksum of the downloaded image has
been validate. But this is actually not the case and
offers possibilities for attacks. Docker solely checks

for a signed manifest and never actually verifies the
image checksum from the manifest. Another poten-
tial attack arises from a vulnerability when dealing
with malformed packages (Jay, 2014), as malformed
packages can compromise a system. The advice in
this case is to only download and run images from
trusted sources, at best an internal image registry,
which might be best-practice after all, not just for
HPC clusters behind a corporate firewall.

6 CONCLUSION

Container-based virtualization using Docker solves
many problems of bare-metal HPC, when flexibility
to rapidly change the installed software, deploy new
versions or use applications with conflicting depen-
dencies on the same cluster is key.

Environmental details for a job, like a certain
Linux distribution with a special compiler version
could be included in a field in the job description, like
required CPU and memory are nowadays. The work-
load manager then would pick a host fulfilling the
hardware requirements, pulls the workload-specific
image and starts the container that runs the job.

As our evaluation with an ABAQUS test job has
shown, Docker offers near native execution speed,
generating a mean loss in performance of 2,21% in
our scenario with local disk I/O and 1,04% when ac-
cessing a Lustre clustered file system.

The point that Docker performs almost on the
same level as the bare-metal execution shows that the
Docker engine has almost trivial overhead and thus

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

548



offers performance traditional hypervisor-based VMs
can not offer at the moment.

Since our research only focused on conceptual
advantages and single host performance and many
HPC applications rely on MPI for distributed com-
puting future testing should be done in this area, tak-
ing a look at the performance of the Docker engine in
distributed multi-host, multi-container scenarios and
with other applications from the HPC field.

From a security standpoint VMs offer a more se-
cure solution at the moment, but whether containers
offer enough security depends on the overall HPC
work-flow and the security requirements. A cloud
provider offering a multi-tenant self-service solution
with several customers on one cluster or even one host
might want to implement an additional layer of se-
curity. In a regular HPC environment this might not
be needed, as long as the necessary precautions are
taken and users are not allowed to directly interact
with Docker to provision potentially malicious con-
tainers but through a middle-ware like a job scheduler
or parameter-controlled sudo scripts, that do careful
parameter checking.

When it comes to patch management Docker
could even provide an advantage over VMs, as the
kernel is out of the focus of a container and shared
among all hosts, meaning that if a kernel vulnerabil-
ity is found only the Docker host has to be patched,
which might be even done on the fly using tools like
Ksplice.

Security of container-based solutions will further
increase over time, with lot’s of development being
already underway. Linux containers have gotten a lot
of attention over recent time and more people utiliz-
ing it will lead to closer examination and continuous
improvements.

REFERENCES

Abaqus FEA, S. (2015). ABAQUS. http://
www.simulia.com.

Adaptive Computing (2015). TORQUE. http://
www.adaptivecomputing.com/products/open-source/
torque/.

Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T.,
Ho, A., Neugebauer, R., Pratt, I., and Warfield, A.
(2003). Xen and the art of virtualization. In Proceed-
ings of the Nineteenth ACM Symposium on Operating
Systems Principles, SOSP ’03, pages 164–177, New
York, NY, USA. ACM.

Biederman, E. W. (2006). Multiple instances of the global
linux namespaces. In Proceedings of the 2006 Ottawa
Linux Symposium, Ottawa Linux Symposium, pages
101–112.

Bui, T. (2015). Analysis of docker security. CoRR,
abs/1501.02967.

Chef (2015). Chef: Automation for Web-Scale IT. https://
www.chef.io/.

Clark, C., Fraser, K., Hand, S., Hansen, J. G., Jul, E.,
Limpach, C., Pratt, I., and Warfield, A. (2005). Live
migration of virtual machines. In Proceedings of the
2Nd Conference on Symposium on Networked Systems
Design & Implementation - Volume 2, NSDI’05, pages
273–286, Berkeley, CA, USA. USENIX Association.

CRIU-Project (2015). Checkpoint/Restore In Userspace
(CRIU). http://www.criu.org/.

Docker (2015). Docker. https://www.docker.com/.
Felter, W., Ferreira, A., Rajamony, R., and Rubio, J. (2014).

An updated performance comparison of virtual ma-
chines and linux containers. technology, page 28:32.

IBM (2015). LSF. http://www-03.ibm.com/systems/
platformcomputing/products/lsf/.

Jackson, I. (2015). Surviving the zombie apocalypse – se-
curity in the cloud containers, kvm and xen. http://
xenbits.xen.org/people/iwj/2015/fosdem-security/.

Jay, T. (2014). Before you initiate a docker pull. https://
securityblog.redhat.com/2014/12/18/before-you-
initiate-a-docker-pull/.

Jérôme Petazzoni (2013). Containers & Docker: How Se-
cure Are They? https://blog.docker.com/2013/08/
containers-docker-how-secure-are-they/.

Kivity, A., Kamay, Y., Laor, D., Lublin, U., and Liguori,
A. (2007). kvm: the linux virtual machine monitor. In
Proceedings of the Linux Symposium, volume 1, pages
225–230, Ottawa, Ontario, Canada.

Matthews, J. N., Hu, W., Hapuarachchi, M., Deshane, T.,
Dimatos, D., Hamilton, G., McCabe, M., and Owens,
J. (2007). Quantifying the performance isolation prop-
erties of virtualization systems. In Proceedings of the
2007 Workshop on Experimental Computer Science,
ExpCS ’07, New York, NY, USA. ACM.

McDougall, R. and Anderson, J. (2010). Virtualiza-
tion performance: Perspectives and challenges ahead.
SIGOPS Oper. Syst. Rev., 44(4):40–56.

Miller, F., Vandome, A., and John, M. (2010). FreeBSD
Jail. VDM Publishing.

MPI (2015). Message Passing Interface (MPI) standard.
http://www.mcs.anl.gov/research/projects/mpi/.

Oracle (2015). Grid Engine. http://www.oracle.com/us/
products/tools/oracle-grid-engine-075549.html.

Padala, P., Zhu, X., Wang, Z., Singhal, S., Shin, K. G.,
Padala, P., Zhu, X., Wang, Z., Singhal, S., and Shin,
K. G. (2007). Performance evaluation of virtualiza-
tion technologies for server consolidation. Technical
report.

Pék, G., Buttyán, L., and Bencsáth, B. (2013). A survey of
security issues in hardware virtualization. ACM Com-
put. Surv., 45(3):40:1–40:34.

Price, D. and Tucker, A. (2004). Solaris zones: Operating
system support for consolidating commercial work-
loads. In Proceedings of the 18th Conference on
Systems Administration (LISA 2004), Atlanta, USA,
November 14-19, 2004, pages 241–254.

Container-based�Virtualization�for�HPC

549



Puppet (2015). puppet: Automate IT. http://
puppetlabs.com/.

Quintero, D., Brandon, S., Buehler, B., Fauck, T., Felix,
G., Gibson, C., Maher, B., Mithaiwala, M., Moha, K.,
Mueller, M., et al. (2011). Exploiting IBM AIX Work-
load Partitions. IBM redbooks. IBM Redbooks.

Reshetova, E., Karhunen, J., Nyman, T., and Asokan, N.
(2014). Security of os-level virtualization technolo-
gies: Technical report. CoRR, abs/1407.4245.

Rudenberg, J. (2014). Docker image insecurity. https://
titanous.com/posts/docker-insecurity.

Russell, R. (2008). Virtio: Towards a de-facto standard
for virtual i/o devices. SIGOPS Oper. Syst. Rev.,
42(5):95–103.

Stanfield, J. and Dandapanthula, N. (2014). HPC in an
OpenStack Environment.

Unionfs (2015). Unionfs: A Stackable Unification File Sys-
tem. http://unionfs.filesystems.org.

Xavier, M., Neves, M., Rossi, F., Ferreto, T., Lange, T.,
and De Rose, C. (2013). Performance evaluation of
container-based virtualization for high performance
computing environments. In Parallel, Distributed and
Network-Based Processing (PDP), 2013 21st Euromi-
cro International Conference on, pages 233–240.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

550


