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Abstract: MapReduce is a model to manage quantities massive of data. It is based on the distributed and parallel 
execution of tasks over the cluster of machines. Hadoop is an implementation of MapReduce model, it is 
used to offer BigData services on the cloud. In this paper, we expose the scheduling problem on Hadoop 
systems. We focus on the offline-scheduling, expose the problem in a mathematic model and use the time-
indexed formulation. We aim consider the maximum of constraints of the MapReduce environment. 
Solutions for the presented model would be a reference for the on-line Schedules in the case of low and 
medium instances. Our work is useful in term of the problem definition: constraints are based on 
observations and take into account resources consumption, data locality, heterogeneous machines and 
workflow management; this paper defines boundaries references to evaluate the online model. 

1 INTRODUCTION 

Manage and access efficiently massive data is 
becoming more and more important for companies.  
Google (Dean, 2004) introduced the model 
MapReduce as a distributed and parallel Model for 
data intensive computing. Every job is composed of 
a set of “map” and “reduce” tasks, which is executed 
in a distributed fashion over a cluster of machines. 
Map tasks have to be executed before reduce tasks. 
Tasks have to be executed as near as possible to the 
needed data input. Data output of tasks map are 
transferred to the reduce tasks using the network. 
MapReduce model is characterized by its simplicity: 
users wanting to access to data, create “map” and 
“reduce” tasks, which are next scheduled by 
specified middleware. The general idea is to 
schedule those tasks over nodes, which contain data 
because moving computation near data is less 
expensive than moving data where computation 
units are running. For example, in figure 1, average 
of input set of integers is calculated. 
Hadoop (Hadoop, 2005) is one of the most well-
known implementation of MapReduce model. It is 
based on two main components: Hadoop 
mapReduce and Hadoop distributed file system. The 
computation level (mapReduce) is composed of 
three elements. It assures synchronization over 
different elements and distributes resources between 
jobs. The Node Manager (NM) is the responsible for 

resources exploitation per slave machine. The 
Application Master (AM) is responsible for 
managing the lifecycle of a job; it negotiates with 
the RM to obtain needed resources (containers) and 
manages the execution of job’s tasks. 
Hadoop distributed file system (HDFS) is composed 
of NameNode (NN) as a server and DataNode (DN) 
as a slave. Files in HDFS are from megabytes up to 
terabytes size. The number of map tasks depends on 
the number of chunks of data (Zhou, 2012), one map 
per data block slice. When the scheduler cannot 
assign tasks to machines where data are stored, 
bandwidth on the network is allocated to migrate 
blocks towards. This paper presents an offline model 
of scheduling problem on Hadoop with 
mathematical programming based on the time-
indexed formulations which received much attention 
due to its important impact on approximation 
algorithms and the quality of its linear programming 
relaxation. 

 

Figure 1: Example of mapreduce job's execution. 
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It is often used in optimization and approximation 
for machine scheduling problems. Besides, its linear 
relaxation yields concise lower bounds than bounds 
obtained by other integer programming formulations 
(Queyranne, 1997). Work like (Sousa, 1992) and 
(Lionel, 2013) argue that scheduling algorithms 
using LP-relaxation of time-indexed formulations 
have a constant ratio on their worst-case 
performance in parallel machine scheduling 
problems. Researches on the online version of 
problem suffer from a lack of evaluation: how the 
efficiency of online algorithms can be evaluated? 
One way to answer this question is to consider the 
offline version of the problem, its' optimal solution 
can be considered as “ideal” reference schedules for 
online algorithms. In this work, the main motivation 
is to compute optimal solutions for medium 
instances of the offline problem.  
The remainder is introduced as follows. Section ΙΙ 
presents the offline problem of scheduling “map” 
and “reduce” tasks. In Section ΙII its' mathematical 
model is introduced. Data generation and model 
evaluation is presented in Section IV. Section V 
summarizes the related work. Lastly, Section VI 
concludes the paper and provides directions of future 
work. 

2 RELATED WORK 

The scheduling problem in Hadoop is widely treated 
in the literature: (Lim, 2014) present a constraint 
programming formulation of the problem. The 
objective of the model is to minimize the number of 
late jobs, which is characterized by its service level 
agreements (SLA). Authors consider the scheduling 
of mapReduce jobs comprising an earliest start time, 
execution time and end-to-end deadline. In this 
work, authors take into consideration only compute 
resources (slots), neither RAM nor hard disk are 
considered. They neglect the relation between data 
and tasks locations that present a foundation for the 
map reduce programming model. The work in 
(Verma, 2012) implements a deadline-based 
scheduler; it is based on a general model for 
computing performances bounds on makespan of a 
given set of n tasks that are processed by k servers 
(slots). The assignment of tasks to slots is done using 
an online greedy algorithm; it assigns each task to the 
slot, which has finished its running task the earliest. 
(Evripidis, 2014) and (Lin, 2013) propose models, 
which aim to minimize the total weighted completion 
time. The first considers that each job has at least one 

map and one reduce task and each job has at most 
one task pre-assigned to each processor. 

Table 1: Used Notations in the Hadoop scheduling 
problem. 

General data: M The number of machines N The number of tasks N୫ Number of map tasks N୰ Number of reduce tasks L୫ Set of map tasks L୰ Set of reduce tasks Aୠ Set of blocks on the cluster 
T The scheduling horizon 

For machines m୨ୱ The number of slots on machine j (ൌ m୨ୗ୰ ൅ m୨ୗ୫)m୨ୗ୰ The number of reduce slots on machine jm୨ୗ୫ The number of map slots on machine jm୨୰ The quantity of RAM of machine j m୨୦ The hard drive capacity of machine jvୱ,୨ The CPU frequency associated to the slot s of machine j v୨ The CPU frequency of machine j ቀv୨ ൌ ∑ v୩,୨୫ౠ౩୩ୀଵ ቁα୨୰ The cost of the use of one unit of ram (1 Mb) per machine j α୨୦ The cost of the use of one unit of hard drive capacity (1 Mb) per machine j αୱ,୨ୡ The cost of the use of CPU on slot s of machine j
For tasks (map, reduce, Application node) n୧୰ The quantity of RAM required by task i n୧୦ The quantity of hard drive required by task i n୧ୠ The number of data block’s manipulated by task i B୧ List of block numbers manipulated by task i b୧,୧ᇲ Maximum bandwidth between tasks i and iᇱ n୧୮ Number of tasks preceding task i E୧ Set of task numbers that must be completed before 

task i start. p୧,ୱ୨  Estimated processing time of task i if processed on 
slot s of machine j 
For HDFS 

S The size of a data block in the cluster. rୠ Number of replication block b. Dୠ Set of machines on which block b is located. 
bwd Bandwidth allocated for migrating a block through 

the network 
For the Network 

Gൌ(V, E) The graph modeling the network b୫ୟ୶ The maximum bandwidth associated to any edge e୳ ∈ E 
P A set of paths between machines, a path being a set 

of edges e୳ P୳ The set of couples of machines (j, jᇱ) which use the 
edge e୳ 
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The second considers task pre-assignment to 
machines and each machine can execute one task at a 
time.  It models the data transfer from map to reduce 
tasks and it considers map and reduce dependency. 
(Kodialam, 2012) express the scheduling problem as 
an optimization problem using linear programming, 
they aim to minimize the total weight completion 
time of jobs, they base their work on a set of 
assumption: machines can process at most one task at 
time, when a set of tasks is assigned to a processor at 
the same moment; tasks can be preempt. Fotakis et 
al. (Fotakis, 2014) consider the case of unrelated 
processors with multiple Map and Reduce tasks per 
job. They consider that tasks can be preempted.  
They present the first polynomial time approximation 
algorithm, it minimizes the total weighted completion 
time. However they neglect the data management 
aspect and they don’t consider multiple tasks 
execution per machine. In this work we associate 
resources constraints, network bandwidth 
management to the data flow management. 

3 THE OFFLINE SCHEDULING 
PROBLEM 

We summarize in Table 1 the data used in the 
scheduling model. It is based on four principal parts: 
the first describes the information about machines 
and the cost of every resource’s use. The second part 
describes tasks consumption. The third part gives 
information about data blocks and the fourth 
describes networks architecture. We consider non-
pre-emptible tasks because, in practice, tasks will 
not be interrupted in Hadoop and when a task fails, it 
will rerun as it is newly submitted. 
Notice: we assume that bandwidth is booked on the 
network from the end of map tasks until the end of 
the reduce tasks. The bandwidth reservation avoids 
delaying job execution when reduce tasks need to 
communicate with maps machines to ensure some 
needs (system files, recovers broken data chunks) 
(White, 2012).  

4 A MATHEMATICAL 
FORMULATION 

This section presents a time-indexed formulation of 
offline scheduling problem in Hadoop. Let us review 
the formal definition of the model. We adapt the 
interval-relaxation method proposed in (Dyer, 1990) 
in single machine case, and in (Schulz, 2002) in 

multiple machines, with the context of MapReduce 
model. The time horizon T is divided into a set of 
irregular intervals. These intervals are defined by the 
potential dates of starting and finishing execution of 
tasks. For example, in Figure 2, for ߜ ∈ ۤ0, ݊ െ  ,ۥ1
the intervals (tஔ, tஔାଵሿ  are used to execute tasks, 
where ݐఋ ∈ ሾ0, ܶሿ.  

 

Figure 2: Presentation of the index over time. 

We use the following variables: 

x୧,ୱ,୲ಌ୨ ൞q, the amount of time period, the task i isprocessed on slot s of the machine jin (tஔ, tஔାଵሿ0, otherwise
Thus x୧,ୱ,୲ಌ୨ p୧,ୱ୨ൗ  specify that the task is being 

processed on machine j during the time 
interval (tஔ, tஔାଵሿ. 

yୠ,୲ಌ୨,୨ᇲ ൝1, if block b is on machine j  at ሾtஔ, tஔାଵሾafter a migration from jᇱ  0, otherwise  
uୠ,୲ಌ୨,୨ᇲ ൝1, if block b is being migrated frommachine j to jᇱ at ሾݐఋ, ,ఋାଵሾ 0ݐ otherwise  

z୪,୪ᇲ,୲ಌ୨,୨ᇲ
۔ۖەۖ
ۓ 1, if a map task  lᇱ is processed onmachine jᇱ and is finished at time t anda reduce task l is processed on machine jand finished after ݐఋ.0, otherwise  

We refer to TST as the total time spent for 
processing all tasks on the cluster and TRC as the 
total resource cost induced by the execution. The 
scheduling problem in Hadoop can be modeled with 
the objective functions (1) and (2). The TST (1) 
considers the total execution time of tasks (the first 
term on the left-hand side of the equation) and the 
time of data transfer between map and reduce tasks 
(the second term on the right-hand side of the 
equation). The TRC (2) considers the resources 
machines’ cost when processing tasks (the first term 
on the left-hand side of the equation) and the use of 
resources due to data transfer (the second term on 
the right-hand side of the equation). The constraints 
of the model are classified in three categories: 
resource constraints, processing constraints and the 
network constraints. 
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Minimize TST
ൌ ෍ ൦෍ ෍ ෍ ൭x୧,ୱ,୲ಌ୨ p୧,ୱ୨൙ ൱୫ౠ౩

ୱୀଵ
୑

୨ୀଵ
୒

୧ୀଵ
୘

୲ಌୀଵ
൅ ෍ ෍ ෍ yୠ,୲ಌ୨,୨ᇲ ൬S b୪,୧ൗ ൰ୠ∈୅ౘ

୑
୨,୨ᇲୀଵ୧∈୐౨,୪∈୉౟ ൪ 

(1) 

Minimize TRC
ൌ ෍ ෍ ෍ ෍ x୧,ୱ,୲ಌ୨୫ౠ౩

ୱୀଵ
୑

୨ୀଵ
୒

୧ୀଵ
୘

୲ಌୀଵ ൣα୨୰n୧୰ ൅ α୨୦n୧୦൅ αୱ,୨ୡ ൧൅ ෍ ෍ ෍ ෍ ෍ (yୠ,୲ಌ୨,୨ᇲ ൅ uୠ,୲ಌ୨,୨ᇲ )(α୨୰n୧୰ୠ∈୆౟
୒

୧ୀଵ
୑

୨ᇲୀଵ
୑

୨ୀଵ
୘

୲ಌୀଵ൅ α୨୦n୧୦) 
(2) 

In the subsection 4.1, constraint (3) guarantees that 
no more memory than available is used. Constraints 
(4) and (5) guarantee that the number of reduce 
(resp. map) tasks running on machine j at time t is 
less than the number of reduce slots (resp. map 
slots). Constraint (6) ensures that the overall local 
disk space used (by the assigned tasks and migrated 
data) cannot exceed the availability of each machine. 
In the subsection 4.2, the inequality (7) guarantees 
the precedence relation between map and reduce 
tasks associated to the same job are satisfied. If we 
have many map tasks, reduce tasks are scheduled 
after the schedule and the end of all map tasks. In 
figure 1, we compute average of input data, we will 
have wrong result if reduce tasks start before the end 
of map tasks. Constraints (7) and (8) ensure that all 
map tasks (resp. reduce tasks) must be processed.  
In the subsection 4.1, the constraints define the 
policy of data blocks management in Hadoop. The 
inequality (10) specifies if block b is stored in HDFS 
on machine j. The constraints (11) and (13) impose 
the relation between y’s and u’s variables, constraint 
(13) triggers data migration to ensure that block 
must be available on the machine before a map task 
starts and constraint (11) ensures if it is available on 
a machine after it has been migrated. The 
Inequalities (12) disable the start of map tasks 
(imposed by the constraint 8) if the manipulated 
blocks are not present on the machine on which they 
have been assigned. The inequalities (15) enable to 

fix the values of the z୪,୪ᇲ,୲ಌ୨,୨ᇲ
 variables. When the tasks 

map and reduce are on the same machine, we don’t 
have network communication and the right part of 
inequality (15) will be 0.   

4.1 Resources Constraints 

෍ ෍ n୧୰ ൭x୧,ୱ,୲ಌ୨ p୧,ୱ୨൙ ൱୒
୧ୀଵ

୫ౠ౩
ୱୀଵ ൑ m୨୰ ∀j ൌ 1 … M, ∀tஔ ൌ 1 … T (3) 

෍ ൭x୧,ୱ,୲ಌ୨ p୧,ୱ୨൙ ൱୧∈ ୐౨ ൑ 1 
∀j ൌ 1 … M, ∀tஔ ൌ 1 … T, ∀s ൌ 1 … m୨ୗ୰ (4) 

 ෍ ቌx୧, ୫ౠ౏౨ାୱ,୲ಌ୨ p୧, ୫ౠ౏౨ାୱ୨൙ ቍ୧∈୐ౣ ൑  1 (5) 

∀j ൌ 1 … M, ∀tஔ ൌ 1 … T, ∀s ൌ 1 … m୨ୗ୰
෍ ෍ ൭n୧୦x୧,ୱ,୲ಌ୨ p୧,ୱ୨൙ ൱୒

୧ୀଵ
୫ౠ౩
ୱୀଵ൅ ෍ ෍ ෍ S(b)(yୠ,୲ಌ୨,୨ᇲ ൅ uୠ,୲ಌ୨,୨ᇲ )ୠ∈୆౟

୒
୧ୀଵ

୑
୨ᇲୀଵ,୨ᇲஷ୨ ൑ m୨୦ (6) 

∀ j ൌ 1 … M; ∀tஔ ൌ 1 … T 
4.2 Tasks Constraints 

n୩୮ ∗ x୧,ୱ,୲ಌ୨ p୧,ୱ୨൙
൑ ෍ ෍ ෍ ෍ ቆx୪,୫౫౏౨ାୱᇲ,୲ᇲ୳ p୪,୫౫౏౨ାୱᇲ୳൘ ቇ୪∈ ୉ౡ

୲ಌ
୲ᇲୀ଴

୫౫౏ౣ
ୱᇲୀଵ

୑
୳ୀଵ  (7) 

∀k ∈ L୰, ∀tஔ ൌ 0 … T െ 1, ∀ j ൌ 1 … M, ∀ s ൌ1 … m୨ୗ୰ 
෍ ෍ ෍ ቌx୧,୫ౠ౏౨ାୱ,୲ಌ୨ p୧,୫ౠ౏౨ାୱ୨൙ ቍ ൌ 1୘ିଵ

୲ಌୀ଴
୫ౠ౏ౣ
ୱୀଵ

୑
୨ୀଵ  

∀ l ∈ L୫ (8) 

෍ ෍ ෍ ൭x୧,ୱ,୲ಌ୨ p୧,ୱ୨൙ ൱ ൌ 1୘ିଵ
୲ಌୀ଴

୫ౠ౏౨
ୱୀଵ

୑
୨ୀଵ  (9) 

∀ l ∈  L୰ 
 

Offline�Scheduling�of�Map�and�Reduce�Tasks�on�Hadoop�Systems

181



4.3 Constraints Associated to the 
Migration of Data Blocks 

yୠ,୲ಌ୨,୨ ൌ ൜ 1 , ∀ j ∈  Dୠ 0 , ∀ j ∉ Dୠ  ∀tஔ ൌ 0 … T, ∀b ∈ Aୠ (10) 

uୠ,୲ಌషభ୨,୨ᇲ ൑ yୠ,୲ಌ୨,୨ᇲ  (11) ∀ b ∈ Aୠ; ∀tஔ ൌ 1 … T െ 1; ∀ j, jᇱ ൌ 1 … M; j ് j′ uୠ,୲ಌ୨,୨ᇲ
൑ ෍ ෍ ෍ ቌuୠ,୲୨,୨ᇲx୪,୫ౠ౏౨ାୱ,୲ᇲ୨ p୪,୫ౠ౏౨ାୱ୨൙ ቍ୫ౠ౏ౣ

ୱୀଵ
୘ିଵ

୲ᇲୀ୲ಌ୪∈୐ౣ
(12) 

∀ b ∈ Aୠ; ∀tஔ ൌ 0, … , T െ 1; ∀ j, jᇱ ൌ 1 … M, j ് j′
෍ ቌx୪,୫ౠ౏౨ାୱ,୲ಌ୨ p୪,୫ౠ౏౨ାୱ୨൙ ቍ୫ౠ౏ౣ
ୱୀଵ ൑ ෍ yୠ,୲ಌ୨,୨ᇲ ൅ uୠ,୲ಌ୨,୨ᇲ୑

୨ᇲୀଵ  (13) 

∀l ∈ L୫; ∀ b ∈ B୪; ∀tஔ ൌ 0, … , T െ 1; ∀ j ൌ 1 … M
4.4 Network Constraint 

These constraints define the use of the network in 
terms of bandwidth. Constraint (14) imposes that all 
consumed bandwidth (for migration and transfer of 
data) is less than the maximum bandwidthb୫ୟ୶. 

෍ ൦bwd ෍ uୠ,୲ಌ୨,୨ᇲ ൅ୠ ෍ ෍ ෍ z୧,୪,୲ಌ୨,୨ᇲ୫ౠ౩
ୱୀଵ୪∈୉౟୧∈୐౨(୨,୨ᇲ)∈୔౛

∗  b୧,୪൪ ൑ b୫ୟ୶ (14) 

∀e ∈ E; ∀tஔ ൌ 1, … , T െ 1  

෍ ൭x୪,ୱ,୲"୨ p୪,ୱ୨൙ ൱୫ౠ౏౨
ୱୀଵ

൅ ෍ ቌx୪ᇲ,୫ౠ౏౨ାୱ,୲ᇲ୨ᇲ p୪ᇲ,୫ౠ౏౨ାୱ୨൙ ቍ୫ౠᇲ౏ౣ
ୱୀଵ െ 1 ൑ ୪,୪ᇲ,୲ಌ୨,୨ᇲݖ 

 

(15) 

∀l ∈ L୰, ∀lᇱ ∈ E୪; ∀tஔ ൌ 0, … , T െ 2; ∀tᇱൌ 0, … , tஔିଵ; ∀t"ൌ tஔ, … , T െ 1; ∀ j, jᇱ ൌ 1 … M, j് jᇱ
5 EXPERIMENTATION 

This article implements a model and tries to find 
solutions using CPLEX mathematic solver. Face to 
the multi-criteria property of the problem, the model 
is concentrated on the time execution aspect and 
neglects cost execution of the job. It uses an 
experiment setting for the evaluation of the model 
using the methodology in (Lionel, 2013). Data input 
of the model presents an important deal and imitates 
real world tasks executions. Machine configuration is 
extracted from AWS (Aws, 2014) and portioned in 
three categories of machines. Tasks information 
depends on the size of data input computed by every 
task. In order to evaluate the persistence of the 
model, we generate randomly four input data 
concerning tasks following uniform law: memory, 
disk consumption, the time execution per task and 
location of data blocks (Gupta, 2013). We generate 
also network and cluster configuration details. Table 
2 synthetizes values of the expected data input of 
machines. The first column indicates the category of 
the machine. 
The second column indicates the number of core 
CPU on the machine. The third one contains the 
amount of memory per machine. The column number 
four indicates the quantity of hard disk in Gb. The 
fifth column contains the frequency of one core CPU 
on the machine. The sixth column indicates the 
bandwidth allocated for network communication. 

Table 2: Types of generated physical machines. 

Category CPU 
node 

RAM 
(Gb) 

SSD (Go) CPU freq per core (GHZ) Bdw 
(GB) 

α୨୰ α୨୦ αୱ,୨ୡ  Slots 
map 

Slots 
reduce 

c3.2xlarge: co pute 
optimized 

8 15 160 2.8 Intel Xeon E5-2680v2 1 1 1 2 5 2 

i2.2xlarge: 
storage optimized 

8 61 1600 2.5 Intel Xeon E5-2670v2 1 3 5 2 4 3 

r3.xlarge: 
memory optimized 

4 30.5 160 2.5 Intel Xeon E5-2670v2 2 2 1 1 2 1 
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Table 3: Characteristics of used jobs. 

Job Tasks reduce Tasks map Type of Job
1 2 3 -- 
2 2 6 -- 
3 3 9 -- 

Columns number seven, eight and nine indicate 
respectively the unit cost of the memory use (unit = 
16Mb), hard disk (unit = 1Gb), and a core of CPU. 
Despite the evolution in Hadoop, we adopt the 
principle of separation between slots; the last two 
columns contain the number of reduce and map cores 
(slots) per machine. The costs of resources 
consumption are expressed in columns seven, eight 
and nine and they depend on the type of machine. 
We generate the completion time needed to treat 
tasks; these values depend on the size of the block. 
We define: P୪,ୱ୨ൌ  TimeStartUpVM ൅ S ∗ nt(l)∗ ቂvs( l, j, s) 10 ∗ SpeedProcessorRate൘ ቃ (16)

We take into account the needed time to start up 
virtual machines TimeStartUpVM, the size of block 
and the amount of data computed per GHz per unit 
of time SpeedProcessorRate. We benefit from the 
last variable to inject the random aspect depending 
on the categories of machines: for the category 
“compute optimized”, SpeedProcessorRate ∈ሾ160,320ሿ  for the other types SpeedProcessorRate ∈ ሾ80,160ሿ.The estimation of 
memory (n୧୰) and hard disk consumption (n୧୦) 
depends on the type of the job. Table 4 summarizes 
used formulas in the generation of data related to the 
three types of jobs: the number of tasks per job is 
relatively limited; CPLEX limitation imposes this 
choice of number of task per job face of the use of 
one big job. We inject random values at many levels 
of the data input generation. Face to the large 
quantity of data generated by the model in time 
indexed formulation, we consider S=64Mb and its 
replication is equal to one. We consider the same 
size (S) and replication properties of data blocks 
however we generate randomly the location of the 
blocks on machines. The network bandwidth for 
block migration is fixed by the formula  bwd ൌminሾS ∗ 0.2, 128ሿ. Network is generated as a binary 
tree. We repeat the following process: at the main 
node, we generate a switch; its left child node will 
be one physical machine selected randomly, the 
right child will be another switch and so on until all 
physical machines will be placed on the binary tree. 

Table 5 describes scenarios used for the model’s 
test. For each scenario, we randomly generate 20 
instances. The time horizon depends on scenarios 
and it is divided in intervals. To find the correct 
value of time horizon, we define an upper bound for 
every solution using this formula (17). If there is no 
solution for a particular value of the time horizon, 
we increment time horizon by a unit of time. We 
consider that an interval (ሾtஔ, tஔାଵሾ from figure 2) is 
sufficient to transfer data block between machines.  
In conclusion, we limit bandwidth threshold to 
migrate blocks and we limit the transfer duration of 
a block to one interval. To compute the real 
duration’s value of a schedule per scenario, we 
define “RealTime” (formula 18) as the real time 
needed to execute tasks in a solution.  T ൌ integer ൬ N୫TotalSlotMap൅ N୰TotalSlotReduce൰ ൅ 2  

(17) 

RealTime ൌ ∑ max୨ ୀ ଵ..୑ୱ ୀ ଵ..୫ୱ(୨)୪ ∈ ୐
x୪,ୱ,୲୨୘୲ୀ଴  

 

(18) 

RealValueOfTimeHorizonUnitൌ RealTime/T (19) 

“RealTime” is a posterior computation, after the 
compute of the scheduling solution.  

Table 4: Basic formulas to generate memory and hard disk 
consumptions per task. 

Type of  
Job 

n୧୰ ൌ n୧ୠ ∗ S ∗ XY n୧୦ ൌ (n୧ୠ ∗ S ∗ WZ)/1024
(1) CPU 
intensive 

XY ∈ ሾ0.3,0.6ሿ WZ ∈ ሾ13,26ሿ 
(2) RAM 
intensive 

XY ∈ ሾ0.4,0.8ሿ WZ ∈ ሾ30,46ሿ 
(3) I/O 

intensive 
XY ∈ ሾ0.6,1ሿ WZ ∈ ሾ46,76ሿ 

Table 5: Different scenarios for the generation of tasks, 
machines and blocks input data. 

Scenarios N1 N2 N3 M1 M2 M3 Blocks N M T
1 1 1 0 1 1 1 10 13 3 3
2 3 0 0 0 2 0 10 15 2 3
3 1 1 1 1 1 1 10 25 3 9
4 3 3 0 0 0 2 10 39 2 155 6 0 0 1 1 1 10 30 3 76 2 3 1 1 1 0 10 46 2 15
7 3 1 1 0 2 0 10 35 2 6
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Table 6: Computational results (20 instances per scenario). 

 #InFeas #Solved MemLimit TimLimit N୫୧୬ Nୟ୴୥ N୫ୟ୶ T୫୧୬ Tୟ୴୥ Tmax Real value of 
unit of T 

Sc1 0 20 0 0 0 7.95 132 0 0.45 1 85.66 
Sc2 0 20 0 0 27 42.5 164 0 19.04 174 95.66 
Sc3 1 18 0 1 4 5357.6 62168 6 97.75 1044 122.4 
Sc4 3 16 1 0 0 6675.15 28365 16 292.36 1313 54,8 
Sc5 2 18 0 0 40 132.8 1791 10 66.9 757 94.62 
Sc6 4 15 0 1 115 142 389 28 185 1641 126.23 
Sc7 0 20 0 0 3 61.25 193 5 10.1 22 70.53 

It is used to compute the real duration to execute 
jobs in a scenario. We define established value as the 
time Horizon T per scenario; we compute a value of 
a unit of T as regular time horizon with the formula 
(19). We enumerate the minimum, maximum and 
average of the RealTime over iterations and we 
choose the maximum value to compute the value of 
a unit of T per scenario. This value is used in the 
evaluation of the results of solutions. 
To test the model, we use a PC with an Intel(R) Core 
(TM) i5-3360M CPU with 4 cores at 2.8 GHz and 4 
Gb of RAM. The linear program formulation has 
been solved by CPLEX 12.2 with parallel solve (4 
threads) and limit time 1800 seconds and memory 
limit of 2 Gb of RAM. When the time limit or the 
memory limit is reached, the given solution of the 
instance will be declared unsolved. Otherwise, 
CPLEX will return the best solution. For each 
scenario, table 6 presents: the number of infeasible 
instances (column #InFeas), the number of instances 
solved to optimality (column #Solved). The number 
of instances on which CPLEX stops due to the 
memory limit (column Mem) and the number of 
instances on which CPLEX stops due to the time 
limit (column Time). The columns from number six 
to number eight provide the minimum, maximum 
and average number of nodes explored by CPLEX in 
its branch and cut algorithm while solving the 
problem. There is no relation between the number of 
machines and the number of explored nodes. 
Scenarios 4 and 6 have two machines each, however 
the number of explored nodes in scenario 4 is largely 
higher than the number of nodes explored in 
scenario 6. In the same topic, the number of 
explored nodes is independent from the number of 
scenario 7 for example has a number of tasks to 
schedule higher than scenario 5. However, the 
number of node explored in scenario 5 is higher than 
in scenario 7. The columns from number nine to 
number eleven provide minimum, average and 
maximum CPU time (in seconds) taken by CPLEX 
to solve instances. In this topic, we consider only 
instances, which have infeasible or feasible results. 

The result shows that there are large disparities 
concerning CPU times used to find solution. The last 
column presents the real value of the time horizon 
unit; it is used as a comparison reference. It is 
extracted from the approximate value of the average 
completion time per scenario.  Results of founded 
schedule time of a scenario argue that it depends on 
the number of tasks and machines; Scenarios 4 and 6 
have largest value of the time horizon. These 
scenarios have the largest number of tasks to 
schedule. Scenarios 1 and 2 have the smallest 
number of tasks and the smallest number of 
machines in an instance. Results are function of the 
number of tasks and the number of machines in an 
instance and some instances take more time to find 
solution than others. Scenario 6 for example 
schedules 46 tasks on two machines; it has the 
largest value of completion time. 

6 CONCLUSIONS 

In this paper, we propose an offline mathematical 
model for the scheduling problem in Hadoop. Two 
kinds of tasks are considered: “map” and “reduce” 
tasks with dependencies between them. This paper 
also presents an in-depth study of the major aspects 
of MapReduce model, such as tasks dependency, 
network consumption, data flow management and the 
non-interruptive tasks executions.  
It aims at scheduling tasks with the minimum cost of 
used resources and the minimum total processing 
duration. We merely focus on a pure scheduling 
problem; we propose an offline model assuming that 
all data are known. We present a realistic model, 
which considers dependence between tasks. We 
consider data locality and we model data migration 
and transfer between heterogonous machines. All 
considered constraints emulate the real world 
environment in Hadoop. Heterogeneous machines 
cluster and possibility to execute many tasks per 
machine are also considered. The proposed model is 
based on a time-indexed formulation, which despite 
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its pseudo polynomial number of variables. It has 
already been shown as an efficient formulation 
compared to other integer programming 
formulations. We use the commercial solver CPLEX 
to find the optimal solution for small and medium 
size of instances. We give community a boundary to 
reference with and to evaluate their scheduling 
algorithms for this size of instances. It turns out that 
the offline problem is interesting in it self and can be 
used to design good online strategies. Solution for 
this model would be a reference for the on-line 
schedules in smaller dimension to validate first 
result. Future work will deal with the online aspect 
concerning the scheduling problem; we plan to 
propose a heuristic solution and use this work in the 
evaluation.  
Online solution considers at first Total completion 
time, in a second time we take into account the 
resources consumption (energy) in a multi-criteria 
scheduling aspect. 
The final solution will be implemented over Hadoop 
simulation system and evaluated in a large 
scalability face to default scheduler in Hadoop. 
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