
User Requirement and Behavioral Aspects in Web Service Discovery

Wala Ben Messaoud1, Khaled Ghedira1 and Youssef Ben Halima2
1Institute ENSI University of Manouba/SOIE, 41 Liberty Street Bouchoucha, Bardo, Tunisia
2ENSI University of Manouba/RIADI Labs, Manouba University Campus, Manouba, Tunisia

Keywords: Behavioral Aspect, State Chart Scheduling, Web Service, Web Service Discovery, WordNet.

Abstract: In web service (WS) discovery, behavioral aspect has been defined as the sequence of WS operations. The
motivation to introduce the behavioral aspect is to offer to the consumer the possibility to choose his WS
according to his requirements. The aim is to include the execution manner of WS operations as a new
criterion and to apply a selection method if more than one WS candidate is filtered. In this paper, we
envision to implement WS discovery approach based on behavioral aspects to fulfill the selection of the
precise execution order. This approach ensures an execution order of operations in accordance to consumer
needs. The execution manner criterion is defended by state chart as a scheduling method and WordNnet as a
lexical database. Moreover, semantic equivalences have to be considered in order to solve equivalence
between many WS candidates which satisfy consumer needs.

1 INTRODUCTION

The literature on web service discovery is almost
common in recognizing the existence of a major
problem in the WS consumer's requirements.
Current work on service discovery focuses on
discovery types not on the analysis of consumer
intervention.

WS discovery is the process of satisfaction of a
user request according to his requirements. It refers
to the process of finding WS that implements the
technique of search desired, interviewing service
books, to know what WS is available for binding.
Our approach unlike the other discovery approaches,
allows WS consumer to involve his exigency by
entering some sentences as a WS query. The aim is
to satisfy WS consumer by analyzing his inputs.

The WS consumer requires a new aspect
allowing functional phase (organized operations,
free operations) and non functional phase (cost,
time, availability). As a solution, we define the
behavioral aspect as the execution manner of WS
operations. Indeed, a consumer who requires looking
for a WS with a tidy list of exigencies may not be
satisfied by ordinary WS discovery. Actually, the
motivation to introduce the behavioral aspect is to
offer to the consumer the possibility to choose his
WS according to his needs. The aim is to include
requirement criterion as a new aspect and to apply a
selection method if more than one WS candidate are

filtered. The behavior aspect should guarantee
quality of service (cost, reliability, time ...).

Our approach consists on using Statechart as a
scheduling method to highlight the execution order
of WS operations and WordNet as a lexical database
to prove the semantic part of consumer query. We
used BPEL4WS (Business Process Execution
Language for Web Services) to specify and execute
business process for WS composition and
orchestration. More precisely, to explain how WS
operations are invoked and executed.

The remainder of the paper is organized as
follows: Section 2 presents some concepts used in
our approach. Our solution is reported in section 3.
Section 4 explains more our approach by an
example. In section 5, we feature the related work.
Conclusions are presented in section 6.

2 CONCEPTS

Our approach brings answers to many posed issues.
It is based on some concepts facilitating the
implementation of the different phases of the
approach like WordNet, intending to find synonyms
to all consumer inputs.

In the goal to order these inputs, we use state
charts where the WS operations are the transitions
allowing to move from one state to another. Once
we have prepared the state chart part, we launch the

199

semantic aspect of WS discovery, we extract the
BPEL sequencing of each WS found and then we
select the relevant one.

2.1 WordNet

The goal of WordNet was to develop a system that
would be consistent with the knowledge acquired
over the years about how human beings process
language.

In (Miller, 1995), WordNet is defined as a large
lexical database of English. Nouns, verbs, adjectives
and adverbs are grouped into sets of cognitive
synonyms (synsets), each expressing a distinct
concept. Synsets are interlinked by means of
conceptual-semantic and lexical relations.

WordNet is a large semantic network interlinking
words and groups of words by means of lexical and
conceptual relations represented by labeled arcs.
WordNet’s building blocks are synonym sets
(synsets), unordered sets of cognitively synonymous
words and phrases (Christiane, 2005).

The authors in (Morato, 2004), define WordNet
as one of a series of manually compiled electronic
dictionaries, is restricted to no specific domain and
covers most English nouns, adjectives, verbs and
adverbs. WordNet offers researchers a cost-free use
and well-documented open code. It is an ideal tool
for disambiguation of meaning, semantic tagging
and information retrieval.

In our work, the consumer inputs is a set of
keywords that define his requirements. If we don’t
specify clearly these inputs, we risk falling in
linguistic polysemy case. So, we seek to find
synonyms to all consumer inputs to properly filter
the service concerned. That's why we have chosen to
use WordNet as ontology.

2.2 Statecharts - Automaton

In literature, authors define statechart as visual
formalism for description of complex systems
behaviour. Digital controllers, which act as reactive
systems, can be very conveniently modelled with
statecharts and efficiently synthesized in modern
programmable devices (Łabiak, 2010).

In formal grammar, an alphabet Σ is a finite and
not empty set of symbols. Σ * is the closure of Σ. A
language on an alphabet Σ is a subset of the set Σ *.

A transition diagram allows achieving an
operational vision of the concept of language. It is a
finite collection of states and transitions.

The statechart notation was developed by David
Harel (Harel, 1987). Statechart diagrams are useful

for modelling the lifetime of an object. They are
used to describe the system behavior using a finite
automaton.

The automaton is represented as a directed graph
known as state graph which consists of a finite set of
vertices known as nodes, together with a set of
directed links between pairs of vertices called arcs.
Vertices are represented by circles and arcs by
arrows. We can also represent an automaton with a
state-transition table (Bhattacharjee, 2014).

The transition table can be associated to the
automaton which describes extensively the transition
function δ. A column is a character of the alphabet.
A line is a state of the automaton (the initial state is
preceded by an arrow "→", the final state is
preceded by a star "*").

The value δ (q, a) for q ∈ Q, a ∈ Σ corresponds to
the state at the intersection of the row q and the
column a. Note that from this table it is easy to find
all the statements and the alphabet and thus identify
exactly the automaton.

An automaton reads a finite string of symbols a1,
a2, an, where ai ∈ Σ, which is called an input word.
The set of all words is denoted by Σ*. Accepting
word is the word w ∈ Σ* which is accepted by the
automaton if qn ∈ F. An automaton can recognize
a formal language. The language L ⊆ Σ* recognized
by an automaton is the set of all the words that are
accepted by the automaton. The Deterministic Finite
Automata has a finite internal memory available. At
each input letter the state of the internal memory is
changed depending on the letter scanned.

The previous memory state and the input letter
together determine what the next state of the
memory is. The word is accepted if the internal
memory is in an accepting state after scanning the
entire word (Kari, 2013).

In our approach, we use automaton as a
scheduling method of WS operations (where we
order the WS operations in the aim to respect the
non functional/functional properties). Each operation
represents a transition from a state to another. The
automation generates a language (ordering list of
operations) that specify the words to accept.

2.3 WSDL

A WSDL document is, at its simplest, a collection of
elements contained within a root definition element.
These elements describe a service and how an
endpoint implementing that service is accessed
(ALBRESHNE, 2009)

Each WSDL includes two parts, the abstract and
the concrete. Abstract part describes the messages

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

200

sent and received. The operation associates a
message exchange pattern with one or more
messages.

As for concrete part, it specifies transport and
wire format details for one or more interfaces, a port
(an endpoint) associates a network address with a
binding and a service which groups together
endpoints that implement a common interface.

An operation is similar to a function in a high
level programming language. A message exchange
is also referred to as an operation. Operations are the
focal point of interacting with the service.
In our work, we use WSDL for each WS to extract
the execution order of operations.

2.4 BPEL4WS

BPEL for WS is a programming language for the
execution of business processes. It is based on
WSFL (Web Services Flow Language) and XLANG
(XML LANGuage), is derived from XML.

According to (Milanvoic, 2004) and (OASIS,
2007), BPEL composes web services to get a
specific result. The composition result is a named
process, partners are defined as services and
activities are described by exchanged messages. In
other words, a process contains a set of activities and
it invokes external partner services using a WSDL
interface.

BPEL is used to describe the execution of
business process implicating WS. It consists on
business BPEL allowing communication with WS,
handling XML Data and managing exceptions.

BPEL provides several structure activities:
- <sequence>: define an ordered sequence of WS
activities.
- <flow>: define parallel activities.
- <switch>: Case-switch construct for implementing
branches.
- <while>: define loops.
- <pick>: select one of several alternative paths.

In WS discovery, there are three layers;
operational, organizational and intentional.
Intentional layer enables modeling purposes. It is a
conceptualization of strategic needs of required
modeling by an individual subject, group of
individuals, a work unit or organization that
involved in the system development process.

In some cases, the WS consumer cannot be a
domain expert, he launch his query by entering a list
of sentences. These sentences will be transformed to
keywords by an algorithm to facilitate the
satisfaction process. The consumer inputs can be a
list of WS that need to be orchestrated as operations.

3 SOLUTION: BEHAVIORAL
BASED APPROACH

The WS consumer seeks his WS with a list of well-
defined requirements (functional and non-
functional) but he is not satisfied by the ordinary
types of discovery.

Syntactic discovery aims to compare between the
syntactic query based on keywords and syntactic
descriptions of WS. WS consumer launch his query
by entering a set of keywords, the result of the
comparison between syntactic query based on
keywords and syntactic descriptions of the services
is a set of WS that don't satisfy the consumer
exigencies (the WS name is exactly the keyword
entered by the consumer but the content has not the
same meaning sought).

The semantic discovery is mainly based on
ontology, defined as structured set of terms and
concepts representing the meaning of information
field, developed to facilitate knowledge sharing and
reuse. WS consumer launch his query by entering a
set of keywords, the result is a set of WS that don't
satisfy the consumer exigencies. For this reason, we
intend to define a new WS discovery approach based
on behavioral aspect according to our definition. We
define the behavior as the execution manner of WS
operations. WS discovery approach based on
behavioral aspect ensures an execution order of
operations in accordance to consumer needs.

The purpose of this paper is to design a
discovery technique for choosing the WS with the
most relevant behavior. So, the query language to
develop should be based on system statechart. It is
used to check the compatibility of behavior required
by the customer and those of WS found.

The work requires its valuation by an
implementation that acquires to client to get his WS
with the execution order of the desired operations.
This implementation creates a WS automaton
according to the operations order. WS automaton
accepts only languages that correspond to it. These
languages will be generated from BPEL files
(Business Process Execution Language) of WS
operations searched in WS directories. Some
languages will be selected if they are accepted by the
WS automaton.

Figure 1 shows that the implementation is done
in three phases.

User�Requirement�and�Behavioral�Aspects�in�Web�Service�Discovery

201

3.1 Phase 1 - Transform Consumer
Sentences to Keywords

If the WS consumer is not a domain expert, he may
enter his requirements as sentences. An algorithm is
defined to transform each sentence in a keyword
used in Phase 2.

3.2 Phase 2 - Create WordNet File for
Each Keyword - Create Automaton

WordNet is used to define synonyms file for each
keyword entered by the consumer. The analysis of
consumer inputs is done on a semantic level not on a
syntactic level.

In the same time, these keywords allow to create
the automaton corresponding to the behavior of
searched WS (defining the standard language to
accept).

The automaton is defined by an initial state, a list
of transitions and a list of final states. A number of
states are defined according to the consumer inputs.
To switch from a state to another, we must pass
through a transition. Consumer keywords define
transitions.

3.3 Phase 3 - Extract Sequences from
WSDL/BPEL Files of WS Searched
- Select the Relevant WS

Consists on searching WS semantically (Semantic
Aspect) basing on non functional properties (NFP).
For each WS selected, we extract the list of its
operations from WSDL (if it is a simple WS) or
from BPEL file (if it invoke other WS). The
extracted sequencing is transformed to word that
will be accepted or rejected by the automaton

Figure 1: Implementation Steps of Behavioral approach.

already defined.
Accepted words correspond to WS accepted. The

last step in Phase 3 is to select the most relevant WS
basing on functional properties (FP) that we called
(Behavioral Aspect).

4 EXAMPLE: STAY
RESERVATION

Let's consider the example named «Stay
reservation» in Figure 2, where the consumer wishes
to book a plane ticket, rent a car, buy a concert ticket
and book a hotel stay (or rent a house) with a heated
pool. All these operations should guarantee
minimum transfer cost and reduced transfer time.

Figure 2: Behavioral WS discovery.

The consumer launches his query by entering a list
of sentences such as «Plane ticket», «Heated pool»,
«Rent a car», «Hotel stay», «Minimum execution
cost», «Reduced execution time», «Rent a house»,
«Buy concert ticket», «Minimum transfer cost» and
«Reduced transfer time».

The first step is to specify NFP from FP. NFP are
used in semantic aspect as selection properties. In
this example, «Minimum execution cost» and
«Reduced execution time» are NFP. As a result, we
find WS1 named «Stay», WS2 named «Reservation»
and WS3 named «Journey». All of this WS satisfy
the consumer needs semantically.

For the behavioral aspect, «Minimum transfer
cost» and «Reduced transfer time» are chosen as FP
to select the most relevant WS.

To explain in more detail, we follow the steps
mentioned previously:

 Transform consumer sentences to
keywords:

Phase 1 presented in Figure 3 consists on defining an
algorithm to transform consumer inputs to keywords

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

202

usable in phase 2.

Figure 3: Stay Reservation: Phase 1.

 Create WordNet file for each keyword:
The system launches WordNet. As a result, we get
for each keyword a file with a list of its synonyms.
Each row of WordNet file is a keyword synonym.
Figure 4 presents two examples respectively bonded
to keywords «Plane ticket» and «Car rented».

Figure 4: WordNet result.

 Create automaton:
At the same time, to respect consumer's
requirements, we should consider it to create
automaton.

The automaton in Figure 5 shows all states that
the WS «Stay reservation» can be in during the
course of its life. Furthermore, it shows the possible
transitions between the states and the events that
initiate these transitions.

We follow the automaton to check the
compatibility of behavior required by the customer
and those of WS found. The following abbreviations
are used to develop the automaton.

Firstly, we define the states:
0: Stay not reserved
1: Plane Ticket reserved
2: Car rented
3: Hotel Stay reserved
4: House rented
5: Concert Ticket bought

Secondly, we define the transitions by the
following abbreviations:
 Reserve_ticket : P
 Rent_ car : C
 Reserve_Hotel : S
 Rent_ house : H
 Buy_Concert_ticket : B

The WS automaton (Q, Σ, δ, q0, F) is defined by:
Q = {0, 1, 2, 3, 4, 5}: the states number depends on
operations number. (It is equals to the real
operations number +1). The real operations number
is calculated by neglecting free operations and for
the parallel operations we just count one operation.
In our case, we have in general five operations. If we
neglect the free operation (Buy_Concert_ticket) and
we count just one operation for the two parallel
operations (Reserve_Hotel and Rent_House), we
will have a number of four real operations. So, the
states number equals to five (the real operations
number=4 +1).
Σ = {P, C,S,H,B }
δ(0, P)=1, δ(0, B)=5, δ(1, C)=2, δ(1, B)=5,
δ(2, S)=3, δ(2, H)=4, δ(2, B)=5, δ(3, B)=5,
δ(4, B)=5, δ(5, P)=1, δ(5, C)=2, δ(5, C)=3,
δ(5, H)=4

The transitions table is represented by a matrix
where the rows are the states and the columns are
the operations.
q0 = 0 : the initial state is always the 0.
F = {3, 4, 5}: final state is defined if we look over
all the transitions (for the parallel operations, we
count just one). In this example, to achieve 3, we
pass by PBCS. To achieve 5, we pass by PCSB. To
achieve 4, we pass by PBCH.

Figure 5: Automaton of WS «Stay reservation».

Then we deduce the transition table to facilitate the
extraction of language to accept:

Table 1: Transition table.

 P C S H B

→0 {1} Ø Ø Ø {5}
1 Ø {2} Ø Ø {5}
2 Ø Ø {3} {4} {5}
*3 Ø Ø Ø Ø {5}
*4 Ø Ø Ø Ø {5}

*5 {1} {2} {3} {4} Ø

According to the transitions table, the accepted
expressions are:

User�Requirement�and�Behavioral�Aspects�in�Web�Service�Discovery

203

 {PBCS}: 1- Reserve_ticket 2-
Buy_Concert_ticket 3- Rent_ car 4-
Reserve_Hotel.

 {PBCH}: 1- Reserve_ticket 2-
Buy_Concert_ticket 3- Rent_ car 4- Rent_
house.

 {PCBS}: 1- Reserve_ticket 2- Rent_ car 3-
Buy_Concert_ticket 4- Reserve_Hotel.

 {PCBH}: 1- Reserve_ticket 2- Rent_ car 3-
Buy_Concert_ticket 4-Rent_ house.

 {PCSB}: 1- Reserve_ticket 2- Rent_ car 3-
Reserve_Hotel 4- Buy_Concert_ticket.

 {PCHB}: 1- Reserve_ticket 2- Rent_ car 3-
Rent_ house 4- Buy_Concert_ticket.

 {BPCS}: 1- Buy_Concert_ticket 2-
Reserve_ticket 3- Rent_ car 4-
Reserve_Hotel.

 {BPCH}: 1- Buy_Concert_ticket 2-
Reserve_ticket 3- Rent_ car 4- Rent_
house.

So, all other execution enchainment of WS
operations will be rejected.

 Extract sequences from WSDL or BPEL
files of WS searched:

The first step is to launch WS discovery
semantically basing on NFP «Minimum execution
cost» and «Reduced execution time». As a result, we
find WS1« Stay», WS2«Reservation» and
WS3«Journey». This step is an ordinary WS
discovery based on semantic aspect that we can find
in many works like (Kritikos, 2007).

The second step is to extract the sequencing of
WS operations from the concerning file of each WS
filtered. More precisely, to extract words that will be
accepted or rejected by the automaton defined
previously.

Every WSDL file contains the tag <operation>
that defines the list of WS operations. We extract the
execution order and transform it to words. Hence, all
the WS words are ready to be filtered.

If we have composed WS, every BPEL file
contains the tag <sequence> that defines an ordered
sequence of WS activities. We extract this WS
operations sequencing and transform it to word.
Hence, all the WS words are ready to be filtered.

 Select the relevant WS:
Basing on FP «Minimum transfer cost» and
«Reduced transfer time», we launch the selection
phase of the most relevant WS.

The services candidate namely WS1«Stay», WS2
«Reservation» and WS3 «Journey» satisfy the
consumer semantically but only WS2 is selected as
the most relevant WS. Calculations are made in
order to reduce transfer time and transfer cost.

5 RELATED WORK

The WS behaviour in literature is described by
sequences of messages, data types, data constraints
and properties that specify time limits within\where
messages are exchanged (Elabd, 2011).

Previously, Maamar et al. propose an approach
for modelling and specifying behaviours of WS in
(Maamar, 2009). This approach sheds the light on
two types of behaviours: control (that demonstrate
the business logic that supports the functioning of a
WS) and operational (that regulates the execution
progress of this control behaviour by stating actions
to carry out and the constraints to put on this
progress). The idea is to coordinate both behaviours
at run-time by developing conversational messages
and transmit details between these two behaviours.
Unlike (Maamar, 2009), our approach treats
behaviour as a sequence of ordered operations and
abstracts away from considering behaviours
conversation.

Another alternative is to first propose a service
system by describing the overall behaviour of each
consumer, and then to instantiate such consumers
retrieving services exposing a behavioural contract
which is adequate to the matching given behaviour
(Bravetti, 2009).

The work in (Sriharee, 2003) presents an
approach based on ontology to improve descriptions
of WS that are defined in WSDL with ontology-
based behavioural information, the query for
services are based on behavioural constraints and
have a service ontology linked with each WS. It can
benefit from inferring semantics of the service from
the service ontology. This work neglects the
consumer needs, it doesn't depend on the execution
order of WS operations.

The aim of WS discovery based on behavioural
aspect prove that WS consumer is the most
important part in discovery process, whose role is to
specify the WS description as well as its behaviour.

The authors in (Ramollari, 2008) propose an
approach where the service provider enhances the
WSDL document by means of a formal model of the
WS behaviour, expressed in the stream X-machine
formalism (SXM). This model is used by the service
broker during publication and by the service
consumer during discovery.

All these works treat behavioural aspects as
conversational messages exchanged between WS
and abandon the internal structure of WS execution.
That is why the approach that we propose in this
paper, involves the importance of sequencing of WS
operations to guarantee the quality of service.

CLOSER�2015�-�5th�International�Conference�on�Cloud�Computing�and�Services�Science

204

6 CONCLUSIONS

We hope you find the information in this template
useful in the preparation of your submission.

Service consumers have a choice between
different WS candidates that provide similar
functions. Accordingly, comparing services requires
more sophisticated patterns of discovery.

In this paper, we have proposed a WS discovery
approach based on behavioral aspects. We sought to
satisfy consumer needs by introducing new criteria
based on user requirements. This approach is based
on execution manner of WS operations. To fulfill the
aim of our approach, we arranged consumer
requirements in semantic and behavioral aspect.
Hence, we have organized our work in three phases;
phase1 consists to transform consumer sentences to
keywords if the consumer is a non expert domain.
Phase2 is a semantic WS discovery basing on
WordNet as lexical database and then create the
automaton to put in order WS operations and to
extract the language accepted. Phase3 aims to
extract sequences from WSDL/BPEL files of WS
searched to select the relevant WS.

In future work, we plan implementing our
approach by developing a query language that uses
the underlying automaton to the required WS. A
case study will be set up to explain the objectives of
the approach. Also experimentation should be made
to highlight the advantage of using the approach. A
work is underway to fulfill this objective.

As for Selection phase, we can add other criteria
to select the most appropriate service if many
services satisfy the desired behavior.

REFERENCES

G. A. Miller, 1995. WordNet: A Lexical Database for
English, Communication of the ACM, Vol. 38, No. 11.

F. Christiane, 2005. WordNet and wordnets, In: Brown,
Keith et al. (eds.), Encyclopedia of Language and
Linguistics, Second Edition. Oxford: Elsevier, pages
665-670.

J. Morato et al., 2004. WordNet Applications. GWC 2004
Global Wordnet Conference (poster session).
http://www.fi.muni.cz/gwc2004/. Brno.

G. Łabiak and G. Borowik, 2010. Statechart-based
Controllers Synthesis in FPGA Structures with
Embedded Array Blocks. International Journal of
Electronics and Telecommunications. Volume 56,
Issue 1, Pages 13–24, ISSN (Print) 0867-
6747, DOI: 10.2478/v10177-010-0002-7.

D. Harel, 1987. STATECHARTS: a visual formalism for
complex systems*, Science of Computer

Programming 8, 1987, pages 231-274.
A. Bhattacharjee, B. S. Purkayastha, 2014. A Novel

Approach to Construct Deterministic Finite State
Automata. International Journal Of Engineering And
Computer Science ISSN:2319-7242 Volume 3 Issue 1,
Page No. 3700-3703.

J. Kari, 2013. Automata and formal languages. Fall
semester 2013 University of Turku.

A. ALBRESHNE et al., 2009. Web Services Orchestration
and Composition Case Study of Web services
Composition, WORKING PAPER.

N. Milanvoic, and M. Miroslaw, 2004. Current Solutions
for Web Service composition. s.l.: IEEE Computer
Society.

OASIS, 2007. Web Services Business Process Execution
Language (WSBPEL).

K. Kritikos and D. Plexousakis, 2007. OWL-Q for
Semantic QoS-based Web Service Description and
Discovery, Proceedings of the 6th International
Semantic Web Conference and the 2nd Asian Semantic
Web Conference,.BEXCO, Bussan KOREA. pages
123-137.

Elabd, 2011. Conformité de services Web par rapport à
des spécifications de haut niveau.

Z. Maamar et al., 2009. A New Approach to Model Web
Services Behaviors based on Synchronization.
International Conference on Advanced Information
Networking and Applications Workshops.

M. Bravetti, 2009. Foundational Aspects of Service
Discovery based on Behavioral Contracts, 3rd
International Workshop on Verification and
Evaluation of Computer and Communication Systems.

N. Sriharee and T. Senivongse, 2003. Discovering Web
Services Using Behavioral Constraints and Ontology.
Distributed Applications and Interoperable Systems -
DAIS, pages. 248-259.

E. Ramollari et al., 2008. Towards Reliable Web Service
Discovery through Behavioral Verification and
Validation. Proceedings of the 3rd European Young
Researchers Workshop on Service.

User�Requirement�and�Behavioral�Aspects�in�Web�Service�Discovery

205

