University of S. 6., d. IA
Z u I‘iC hUZH ‘Soﬁware evolution & architecture lab

SANER"17

Klagenfurt, Austria

Reducing Redundancies in Multi-

Revision Code Analysis

Carol V. Alexandru, Sebastiano Panichella, Harald C. Gall

Software Evolution and Architecture Lab
University of Zurich, Switzerland
{alexandru,panichella,gall}@ifi.uzh.ch
22.02.2017

The Problem Domain

 Static analysis (e.g. #Attr., McCabe, coupling...)

Jul 26, 2009 — Dec 2, 2014 Contribitions: Commits =

Contributions to master, excluding merge commits

Code, Comments and Blank Lines

yr o 3yr Syr Al

_ 0k
2010 2011 2012 2013 2014

»:‘G;’:é\ . .
(¢ Umverﬂtyof S eA aAIA

\w Zurich

The Problem Domain

 Static analysis (e.g. #Attr., McCabe, coupling...)

Jul 26, 2009 — Dec 2, 014 Contribitiofs: Commits +
Contributions to masjer, excluding mergeggcommits

Code, Comments and Blank Lings

yyyyyyyy

v0.7.0 v1.0.0 v1.3.0 v2.0.0 v3.0.0 v3.3.0 v3.5.0

FH universityof S, @, Al
e Zurich e

The Problem Domain

 Static analysis (e.g. #Attr., McCabe, coupling...)
« Many revisions, fine-grained historical data

Jul 26, 2009 — Dec 2, 014
Contributions to masjer, excluding mergeggcommits

yyyyyyyy

v0.7.0 v1.0.0 v1.3.0 v2.0.0 v3.0.0 v3.3.0 v3.5.0
."‘ff%’;‘\ University of S.e.d. IA
‘e Zurich™ TS

A Typical Analysis Process

select project

A Typical Analysis Process

— select project

select revision

checkout

(80 University of S.€e. aAIA
o urich™ e
7

A Typical Analysis Process

— select project

select revision

checkout

analysis tool

.apply

tool

(¢ 41 University of s.e.a.l.
i Zurich A T A

Lo
g0y

>
store

analysis
results

A Typical Analysis Process

— select project

more revisions?

select revision

checkout

analysis tool
Lot
. - 23D
apply = store
tool analysis
results

(¢ 41 University of s.e.a.l.
i Zurich A T A

A Typical Analysis Process

— select project \mm

more projects?

more revisions?

select revision

checkout

analysis tool
: : : e
. - 23D
apply = store
tool analysis
results

(¢ 41 University of s.e.a.l.
(& \. 2 Zurich A T A

Redundancies all over...

Redundancies in
historical code analysis

Impact on Code
Study Tools

niverstyof S, @, A L.

Redundancies all over...

Redundancies in
historical code analysis
- Impact on Code
Across Revisions
Study Tools

Few files change

Only small parts of

a file change

TN . .
Al U""Ve':ﬂty of S.e.d. IA
L3 Zurich R AT

Redundancies all over...

Redundancies in
historical code analysis

Impact on Code

Across Revisions Study Tools

Repeated analysis

Few files change of "known" code

Only small parts of
a file change

2NN . .
i U""Ve':ﬂty of S.€.d. IA
“wq Zurich R

Redundancies all over...

Redundancies in
historical code analysis

Impact on Code

Across Revisions Study Tools

Repeated analysis

Few files ch
ew files change of "known" code

Only small parts of
a file change

Changes may not
even affect results

Storing redundant
results

FUE University of
“wq Zurich

s.e.a.l.

Redundancies all over...

Redundancies in
historical code analysis

Impact on Code

Across Revisions Study Tools

Across Languages

Repeated analysis Each language has
of "known" code their own toolchain

Few files change

Only small parts of Yet they share
a file change many metrics

Changes may not
even affect results

Storing redundant
results
s.e.a.l. 4

FUE University of
“wq Zurich

Redundancies all over...

Redundancies in
historical code analysis

Impact on Code
Study Tools

Across Revisions

Repeated analysis

Few files ch
ew files change of "known" code

Only small parts of Re-implementing
a file change identical analyses

Changes may not Generalizability is
even affect results expensive

Storing redundant
results
s.e.a.l.

Across Languages

Each language has
their own toolchain

Yet they share
many metrics

Most tools are specitically made for

analyzing 1 revision in 1 language

Important!

Pick what you like!

#1: Avoid Checkouts

Avoid checkouts

clone

FER A, . .
(e gmyirggtyof s.e.a.l.
b Ilﬁ =) u rlc e Ml & ARNEACILTE)

Avoid checkouts

clone

checkout

read write

‘L) University of s.e.a A|A

Avoid checkouts

clone

checkout

read write

‘L) University of s.e.a A|A

Avoid checkouts

clone

checkout

read write

For every file: 2 read ops + 1 write op
Checkout includes irrelevant files
Need 1 CWD for every revision to be analyzed in parallel

University of S.€e.d. IA
zu richuz" e Sl A AR

Avoid checkouts

clone

analyze

(¢ 41 University of s.e.a.l.
] . B zur'ch e R & AR

Avoid checkouts

Only read relevant files in a single read op
No write ops
No overhead for parallization

clone

analyze

(i univesiyor 5, @, ..
ot Zurich e

clone

Avoid checkouts

s.e.a.l.

analyze

Only read relevant files in a single read op
No write ops
No overhead for parallization

Analysis Tool

File Abstraction Layer

Git

Avoid checkouts

Only read relevant files in a single read op
No write ops
No overhead for parallization

analyze :
Y Analysis Tool

. File Abstraction Layer

[}

i class JavasourceFromCharrArray(name: String, val code: CharBuffer)

[
1
I extends SimpleJavaFileObject(URI.create("string:///" + name), Kind.SOURCE) {:
override def getCharContent(): CharSequence = code :
1
1

The simplest time-saver:

It you can - operate directly on bare Git

#2: Use a multi-revision representation
of your sources

rev. 1

rev. 2

rev. 3

rev. 4

2 2 2

(i univesiyor 5, @, ..

‘e Zurich

Merge ASTs

10

Merge ASTs

A rev. 1
AR

11

Merge ASTs

12

rev. 1

Merge ASTs

ﬂ\ rev. 3

13

rev. 1

Merge ASTs

ﬂ\ rev. 4

14

5
¥
e

Merge ASTs

15

Merge ASTs

rev. 1

\ rev. range [1-4]

N
4

rev. 3 /{%\ / / rev. range [1-2]

AU University of I
(i) University s.e.d.l.
< Zurich R R

16

Merge ASTs

rev. 1

e
_/
v

rev. 4
Aspect]) (~440k LOC):

1 commit: 2.2M nodes
All >7000 commits: 6.5M nodes

.%ﬂ‘ University of S.e.a. I N
‘=st> Zurich™ R T R

17

Merging ASTs brings exponential

space and time savings

18

PS: Analyzing multiple revisions implies building a graph

of all revisions first, and analyzing it afterwards

19

#3: Store AST nodes only if
they're needed for analysis

i public class Demo {
public void run() {
for (int 1 = 1; i< 100; 1i++) {
if (1 $3==01]]1 %5 ==0) {:
System.out.println (i)

AU University of S.e.a. IA
‘=st> Zurich™ S

What's the complexity (1+#forks)
and name for each method and
class?

20

i public class Demo {
public void run() {

for fumt 4 = 1y de 1000 L) What's the complexity (1+#forks)
if (1%3==0111%5==0) (|
System.out.println (i) | and name for each method and

} class?

N
/
/.
/

A \/

/ (\

140 AST nodes
(using ANTLR)

% University of S.e.d. IA
B Zu richum T R R SRR T

public class Demo {
public void run() {
for (int i = 1; i< 100; i++) {

What's the complexity (1+#forks)

if (1 & 3 == '] 1 % 5 == 0) {
} class?

System.out.println (i) and name for each method and

CompilationUnit

TypeDeclaration

Name Modifiers

Demo public

Body Parameters Modifiers ReturnType

Statements s public PrimitiveType

140 AST nodes
(using ANTLR)

s.e.a.l. 20

public class Demo {
public void run() {
for (int 1 = 1; i< 100; 1i++) {
if (14 & 3 ==] 1 % 5 == 0) {
System.out.println (i)

__

\(\

140 AST nodes
(using ANTLR)

University of S.€e.d. IA
zu richUl" e Sl A AR

filtered parse

What's the complexity (1+#forks)
and name for each method and
class?

TypeDeclaration

ForStatement
IfStatement

ConditionalExpression

7 AST nodes
(using ANTLR)

21

Storing only needed AST nodes applies

a manyfold reduction in needed space

22

PS: Which AST nodes to load into the graph

depends on the analysis

23

#4: Use non-duplicative data structures
to store your results

rev. 1

rev. 2

rev. 3

rev. 4

ZER B
i)
CEY

‘=g Zurich™

2 i

University of

s.e.a.l.

N1/

N

AN
e

rev. 1

rev. 2

rev. 3

rev. 4

2 i

£ 8 University of
‘e Zurich™

s.e.a.l.

N1/

N

AN
e

rev. 1

rev. 2

rev. 3

rev. 4

AR . .
(] University of
e Zurich

2 2 2

N1/

s.e.a.l.

[4-4]

label

[1-1] [2-3]
label IR) label
Hattr »n n:: Hattr
mcc 0 [mcc

Hattr

mccC

24

Many entities can share the same data

across 1000s of revisions

25

LISA also does:
#5: Parallel Parsing
#6: Asynchronous graph computation
#7: Generic graph computations

applying to ASTs from compatible
languages

26

To Summarize...

The LISA Analysis Process

27

The LISA Analysis Process

\A A4

parallel parse
» into merged
graph

Generates Parser

determines which AST
nodes are loaded

ANTLRv4 Language Mappings

Grammar (Grammar to Analysis)

, University of S.e.d. IA
! Zurich”™ B e

27

The LISA Analysis Process

Async. compute

>
> >
o > store
Generates Parser R paratie parse analysis

» into merged results
graph
runs
determines which AST on graph determines which
nodes are loaded data is persisted

ANTLRv4 Language Mappings Analysis formulated as

Grammar (Grammar to Analysis) Graph Computation

s.e.a.l. 27

The LISA Analysis Process

Q)
—> select project
< more projects?
O git Cow
Async. compute

\A A4

store i

analysis
results

parallel parse
» into merged
graph

Generates Parser

runs

on graph determines which

data is persisted

determines which AST
nodes are loaded

ANTLRv4

Language Mappings Analysis formulated as
Grammar used by | IEIElE diiel A EINAE] used by Graph Computation

s.e.a.l. 27

How well does it work, then?

Marginal cost for +1 revision

Average Parsing+Computation time per Revision when
analyzing n revisions of Aspect) (10 common metrics)
50 -
45 - 41.670
a0 9
@035 -
030 -
A25 -
20 -
15 -
10 ° 4633

5 [0.525 0.109 0.082 0.071 0.052 0.041 0.032 0.033
O \ ® \ Q \ Q \ Q \ Q \ O | O | %

1 10 100 1000 2000 3000 4000 5000 6000 7000
of revisions

(i universityor 5, @, A L. 28
v Zurich

Overall Performance Stats
_—m

#Projects

#Revisions 646'261 489'764 204'301
#Files (parsed!) 3'235'852 3'234'178 507'612
#Lines (parsed!) 1'370'998'072 961'974'773 194'758'719
Total Runtime (RT)’ 18:43h 52:12h 29:09h
Median RT' 2:15min 4:54min 3:43min
Tot. Avg. RT per Rev.? 84ms 401ms 531ms
Med. Avg. RT per Rev.2 30ms 116ms 166ms

" Including cloning and persisting results
2 Excluding cloning and persisting results

(i universityor 5, @, A L.
e Zurich e

29

What's the catch?

(There are a few...)

The (not so) minor stuff

« Must implement analyses from scratch
 No help from a compiler

« Non-file-local analyses need some effort

30

The (not so) minor stuff

« Must implement analyses from scratch
 No help from a compiler

« Non-file-local analyses need some effort

« Moved files/methods etc. add overhead
« Uniquely identifying files/entities is hard

« (No impact on results, though)

30

Duration (h)

I”‘l‘f-j-}':%}.‘ University of

Language matters

9:00 , — |
8:00 | azure- -sdk-for-net | mono -
7:00 | roslyn i
600 | B |
5:00 +moncndewalcnp |
4;00 i xCodeMirror : " .
3:00 | +corefx .
2:00 immutable-js eclipse.platform swt xtext_
1:00 EX ;+i+ .h.q.doop core eclipse.jdt.core i
0:00 Be o° . . |
1M 50M 100M 150M 200M

LOC (actually parsed)
Javascript C# Java

E.g.: Javascript takes longer because:
* Larger files, less modularization
» Slower parser (automatic semicolon-insertion)

s.e.a.l.

31

’:_:f -T-‘e‘;\ . .
e Um,ve':f,,'ty of S EA aA IA
< Zurich TSR

LISA is EXTREME

complex simple
feature-rich generic
heavyweight lightweight

32

University of S, e

software evolution & architecture lab

s Zurich™ -

Thank you for your attention

Read the paper: http://t.uzh.ch/Fj

Try the tool: http://t.uzh.ch/F

K

Get the slides: http://t.uzh.ch/Fm

Contact me: alexandru@ifi.uzh.ch

SANER ‘17, Klagenfurt, 22.02.2017

http://t.uzh.ch/Fj
http://t.uzh.ch/Fk
http://t.uzh.ch/Fm
mailto:alexandru@ifi.uzh.ch

Parallelize

Single Git tree traversal

src/Main.java {1: 1251324}, {3: fc2452}, {4: 251929}
src/Settings.java | {2: fa255a}

src/Foo.java {1:512fc2}, {4: 791c2a}, {5: bch215}
src/Bar.java {4: 3a23b2}, {5: b2399f}

Obtain sequence of Git blob ids for old versions of each
unique path

L univesityot 5, @, @l
e Zurich e

Parsing

66

Parallelize Parsing

Single Git tree traversal
src/Main.java {1: 125124}, {3: 7c2452}, {4: 251929} > Pparse files with different paths in parallel
src/Settings.java | {2: fa255a) s Some files will have more revisions, taking
: longer to parse in total

src/Foo.java {1: 512fc2}, {4: 791c2a}, {5: bcb215} = S Parsing only takes roughly as long as

src/Bar.java {4: 3223b2}, {5: h2399f} —> required for the file with the most revisions
Obtain sequence of Git blob ids for old versions of each
unique path

Wy universityof 5. @, Al 67

7 Zurich

Parallel Parsing from Git is easy and has

no overhead

"Speed-up factor” for each
technique

 Parallel parsing: Roughly 2
« Merged ASTs: >1000 for many revisions

* Filtered parsing: >10 during
computation, depends on how much is
filtered

« All depends on file sizes / parser speed

Asynchronous Graph Analysis

rev. 1 %\

AR
rev. 2 f \
% 7 AN
A AN
. — "\
/AN TN

s.e.a.l.

Depending on the node type:
- Signal specfic data

70

Asynchronous Graph Analysis

rev. 1 %\

A TN
rev. 2 f \
@i} T /AN | 1IN
AY AN
. — (N A
sANTIN

s.e.a.l.

Depending on the node type:
- Signal specfic data
- Collect specific data

71

Asynchronous Graph Analysis

rev. 1

— A
e 3 @ﬁ / /AN TN

s.e.a.l.

‘ /

N Depending on the node type:
| - Signal specfic data
PN - Collect specific data

- Store specific data

72

Asynchronous Graph Analysis

rev. 1

N f\ Depending on the node type:
rev. 2 T / N0\ - Signal specfic data
/ - Collect specific data
N Store specific data
1 - Create new nodes & edges

'aﬁt Univeruiity of S e N a A_’I A 73

‘e Zurich

Asynchronous Graph Analysis

rev. 1

Example - Method Count (NOM):

Signal: Depending on the node type:
rev. 2 - Signal specfic data

N\ - Collect specific data
Collect: | - Store specific data
. - Create new nodes & edges

rev. 3 S
rev. 4

(H universityof 5, @, Al 74
Yagts/ Zurich VY

Asynchronous Graph Analysis

rev. 1

rev. 2

rev. 3

rev. 4

i F_%a 2 University of
*;2’/ / Zurich™

Example - Method Count (NOM):

Signal: Depending on the node type:
METHOD —nom: 1 - Signal specfic data
- Collect specific data
Collect: | N - Store specific data
\ " Create new nodes & edges

s.e.a.l. 75

Asynchronous Graph Analysis

rev. 1

rev. 2

rev. 3

rev. 4

A=

4 ljia\' University of
e Zurich™

Example - Method Count (NOM):

Signal: Depending on the node type:
METHOD —nom: 1 - Signal specfic data

- Collect specific data
Collect: i N - Store specific data
CLASS-like — nom +=s.nom . - Create new nodes & edges

Store:

s.e.a.l. 76

Asynchronous Graph Analysis

rev. 1

rev. 2

rev. 3

rev. 4

A=

4 ljia\' University of
e Zurich™

Example - Method Count (NOM):

Signal: Depending on the node type:
METHOD —nom: 1 - Signal specfic data

N\ - Collect specific data
Collect: i - Store specific data
CLASS-like —nom +=s.nom . - Create new nodes & edges

Store:
CLASS-like — nom

s.e.a.l. 77

Static source code analysis?

78

Static source code analysis?

79

Static source code analysis?

Simple Code Metrics
(NOC, NOM, WMC, Complexity, ...)

I%‘ University of S e Aa AI s

‘e Zurich

80

Static source code analysis?

Simple Code Metrics
(NOC, NOM, WMC, Complexity, ...)

Structure
(Coupling, Inheritance, ...)

'afat University of S eA aAI N 81

‘e Zurich

Static source code analysis?

AW 5.45

ATFD 2.0

BV 0.0 Simple Code Metrics

BUR 2 (NOC, NOM, WMC, Complexity, ...)
FAMIMN 44.0

FANOUT 23.0 Structure

HiT 0.0 (Coupling, Inheritance, ...)

LOC 664.0

LCOM 14.0

McCabe 218.0

MNAS 33.0
NDC 0.0
MNOA 22.0
MNOAM 0.0
NOM 41.0
MNOPA, 21.0
MProtiM 0.0
PMNAS 1.0
TCC 0.27
WMC 218.0

University of S eA _aA_IA. =

Zurich™

AR
£ Bl
s afa i

=

Static source code analysis?

AW 5.45

ATFD 2.0

BV 0.0 Simple Code Metrics

BUR 2 (NOC, NOM, WMC, Complexity, ...)
FAMIMN 44.0

FANOUT 23.0 Structure

HiT 0.0 (Coupling, Inheritance, ...)

LOC 664.0

LCOM 14.0

McCabe 218.0

MAS 33.0

NDC 0.0 Practice
NOA 220 code smells
NOAM 0.0 refactoring advice
oM e hot-spot detection
NOPA 21.0 . .
e o bug prediction
PMAS 1.0

TCC 0.27

WMIC 218.0

¢ ‘ University of S.e.a. IA 83
‘s Zurich

Static source code analysis?

AMW 5.45
ATFD 2.0
BOWR 0.0
BUR 0.0
FAMIM 44.0
FANOUT 23.0
HIT 0.0
LOC 664.0
LComMm 14.0

McCabe 218.0

MNAS 33.0
NDC 0.0
MNOA 22.0
MNOAM 0.0
NOM 41.0
MNOPA, 21.0
MProtiM 0.0
PMNAS 1.0
TCC 0.27
WMC 218.0

Simple Code Metrics
(NOC, NOM, WMC, Complexity, ...)

Structure
(Coupling, Inheritance, ...)

Practice

code smells
refactoring advice
hot-spot detection
bug prediction

s.e,a.l.

Research

understanding software evolution
identifying patterns &

anti-patterns

code quality assessment techniques

— code studies

84

(Many) existing studies

85

(Many) existing studies

AHA) University of S. _e‘ aAIA 86

s Zurich™

(Many) existing studies

investigate a small number of projects

- —

i _
-
2

. il

. l & 8,6

g6 s &

g 8 95 _ @
..' .

£ niyerﬂtyof S.€.d. IA 29
= [T ur e Ml & ARNEACILTE)

(Many) existing studies

 investigate a small number of projects

Jul 26, 2009 — Dec 2, 2014 Contribitions: Commits =

Contributions to master, excluding merge commits

source: github.com

Code, Comments and Blank Lines

Zoom 1yr 3yr Syr Al

300k

200k

e

source: openhub.net

2010 201 2012 2013 2014
LA™ University of I
" University S.é.d.l.
Zurich e

88

(Many) existing studies

 investigate a small number of projects
- analyze a few snapshots of multi-year projects

v0.7.0 v1.0.0 v1.3.0 v2.0.0 v3.0.0 v3.3.0 v3.5.0

Jul 26, 2009 — Dec 2, 014
Contributions to masjer, excluding mergeggcommits

source: github.com

yyyyyyyy

source: openhub.net

F universityof s, @, Al 89

tu Zurich

(Many) existing studies

 investigate a small number of projects
« analyze a few snapshots of multi-year projects

Aad

90

(Many) existing studies

 investigate a small number of projects
« analyze a few snapshots of multi-year projects
« focus on very few programming languages

CSS

Js -
é{? HTML i
Java]

91

Why?

Only a few projects Only a few snapshots Only few Languages

s.e.a.l. 92

Why?

Only a few projects Only a few snapshots Only few Languages

Time & resource
intensive analysis

s.e.a.l. 93

Why?

Only a few projects Only a few snapshots Only few Languages

Time & resource
intensive analysis

Each commit

analyzed seperately

s.e.a.l. 94

Why?

Only a few projects Only a few snapshots Only few Languages

Time & resource
intensive analysis

Each commit
analyzed seperately

s.e.a.l. 95

Why?

Only a few projects Only a few snapshots Only few Languages

Time & resource
intensive analysis

Each commit Many preconditions
analyzed seperately for analyses

s.e.a.l. 96

Why?

Only a few projects Only a few snapshots Only few Languages

Time & resource
intensive analysis

Each commit Many preconditions
analyzed seperately for analyses

s.e.a.l. 97

Why?

Only a few projects Only a few snapshots Only few Languages

Time & resource
intensive analysis

Each commit Many preconditions
analyzed seperately for analyses

Analysis Tools are purpose-built,
not designed for large-scale studies

¢ ﬁgﬂ ; U"i“’e'ﬂty of S.e.d. IA 98
\ Zurich e T R A

Why?

Possible solution: LISA

A fast, multi-purpose, graph-based analysis approach

(i universityor 5, @, A L.
e Zurich e

Rapid Analysis using LISA

Only a few projects Only a few snapshots

Time & resource
intensive analysis

Only few Languages

Each commit
analyzed seperately

Many preconditions
for analyses

Fast, general purpose code analysis
tool aimed specifically at large scale

s.e.a.l.

101

Rapid Analysis using LISA

Only a few projects Only a few snapshots

Time & resource
intensive analysis

Only few Languages

Analyze all commits
in parallel

Many preconditions
for analyses

Fast, general purpose code analysis
tool aimed specifically at large scale

s.e.a.l.

102

Rapid Analysis using LISA

Only a few projects Only a few snapshots

Time & resource
intensive analysis

Only few Languages

Analyze all commits «Point and
in parallel Shoot»

Many preconditions
for analyses

Fast, general purpose code analysis
tool aimed specifically at large scale

s.e.a.l.

103

Rapid Analysis using LISA

Only a few projects Only a few snapshots

Time & resource
intensive analysis

Only few Languages

Analyze all commits «Point and
in parallel Shoot»

Analysis directly on
source code

Fast, general purpose code analysis
tool aimed specifically at large scale

s.e.a.l.

104

Rapid Analysis using LISA

All code is equal
(given a parser)

Only a few projects Only a few snapshots

Time & resource
intensive analysis

Analyze all commits «Point and Analysis directly on
in parallel Shoot» source code

Fast, general purpose code analysis
tool aimed specifically at large scale

s.e,a.l. 105

Rapid Analysis using LISA

All code is equal

Only a few projects Only a few snapshots (given a parser)

Quick analysis of
1000s of commits

Analyze all commits «Point and Analysis directly on
in parallel Shoot» source code

Fast, general purpose code analysis
tool aimed specifically at large scale

A universityof 5, @, Al 106
“wq Zurich e

Rapid Analysis using LISA

All code is equal

Only a few projects (given a parser)

Quick analysis of
1000s of commits

Analyze all commits «Point and Analysis directly on
in parallel Shoot» source code

Fast, general purpose code analysis
tool aimed specifically at large scale

A universityof 5, @, Al 107
“wq Zurich e

Rapid Analysis using LISA

All code is equal

Only a few projects (given a parser)

Quick analysis of
1000s of commits

Analyze all commits «Point and Analysis directly on
in parallel Shoot» source code

Fast, general purpose code analysis
tool aimed specifically at large scale

A universityof 5, @, Al 108
“wq Zurich e

of Commits: Linear Scaling

90 I
Total —_—

80 -
Parsing E—
70 ~Analysing ——
60
50

40

Duration (minutes)

30

20

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

0 1000 2000 3000 4000 5000 6000 7000 8000

Revisions

£ 8 University of S _eA_ aAIA 109

e Zurich™

Multi-Project Parallelization

LISA

s.e.a.l.

Aspect):

7642 commits, 440k LOC
Requirements:

20 GB memory

45 min on 4 cores

27

Multi-Project Parallelization

I‘"‘;e%‘z.‘ University of

s.e.a.l.

Aspect):

7642 commits, 440k LOC
Requirements:

20 GB memory

45 min on 4 cores

Parallelization scenario:
10x Amazon EC 2 r3.8xlarge
10x 244GB memory
10x 32 cores
Potential to analyze 160
Aspectl-sized projects per hour

(Most projects on git-hub are
much smaller)

27

University of
5 Zurich™

se.a.l.

Benchmarking

10

Benchmarking

Here’s a code smell
- should | fix it?

Is this metric
too high?

Is this good or bad?
What does it even
mean?

f ﬁéﬂ " University of S. _eA aA_IA 10

-@' _“w . _._.
i
- . A

i g et

. @ | -
Ir: ¥

. =
! @ | -
® | : A

Benchmarking

=)
S p o
s.e.a.l.

@ | - §
A @ | - . 1
i 5
E: - oA W;
— 1 ' =_
:m- .._ ﬁ E
—d i : g5
| — =
_) |) c 5
_ E £5
) 12

Benchmarking

'
E
: 2 G

University of S. _eA aA_IA_ 0

3 Zurich”™

Cluster & Compare

i
i

Cluster & Compare

.__ .. » Discover ,phenotypes”
el

G_ _:i.-iz- .
g 5ot
SN
- m—]
walfffe 5=

<) * By metric values

11

Cluster & Compare

.__ .. » Discover ,phenotypes”
. <) + By metric values

. - By metric evolution over

. time

11

Cluster & Compare

... » Discover ,phenotypes”
- <) + By metric values

. « By metric evolution over

. time

» Compare programming

_®" languages / paradigms

11

Cluster & Compare

[~
@

[
[©

7 i . .
(¢ 41 University of
o

» Discover ,phenotypes”

* By metric values

Find interesting projects for further study & n over

identify evolution patterns to find (un-)desirable ones

« Compare programming
o«

languages / paradigms
.®
se.a.l. H

Machine Learning

~ab
v
Q“

Sequence of Changes HMM Bug R.e!oorts
(observable) (training)

£4% University of S e N a A_I a 12

‘.?.-r“: b Zu richuzu

Machine Learning

~ab
v
Q“

Sequence of Changes HMM Bug R.e!oorts
(observable) (training)

|

Bug-Proneness
(hidden)

£4% University of S e s a A_I a 12

‘F.-i b Zu richuzu

Iq_e“""?_}e%;\.‘ University of
s Zurich™

Machine Learning

Bug-Proneness
(hidden)

s.e.a.l.

12

Study Replication

. Conclusions X, Y, Z

13

Study Replication

L)
= !!J“$
. Conclusions X, Y, Z

l.ll.l..
-~ s

ll
l' E .H

EgE"g l',: = Replicable with 1000s of projects?
F 5, . F N
!ll' g g8

BEggl g g
g > ¥
2

13

Study Replication

Conclusions X, Y, Z

. _ g 2 . . .
"cE . Replicable with 1000s of projects?
N ~
R
E N B
.l EE l.
) .. g

TIEN . .
(7 universityot 5. @, A L, 13

