On the Usage of Pythonic Idioms

Carol V. Alexandru
University of Zurich
Switzerland
alexandru@ifi.uzh.ch

José J. Merchante
Universidad Rey Juan Carlos
Spain
jj-merchante@alumnos.urjc.es

Sebastiano Panichella
University of Zurich &
Zurich University of Applied Sciences
Switzerland
panichella@ifi.uzh.ch

Sebastian Proksch Harald C. Gall Gregorio Robles
University of Zurich University of Zurich Universidad Rey Juan Carlos
Switzerland Switzerland Spain
proksch@ifi.uzh.ch gall@ifi.uzh.ch grex@gsyc.urjc.es

Abstract

Developers discuss software architecture and concrete source
code implementations on a regular basis, be it on question-
answering sites, online chats, mailing lists or face to face.
In many cases, there is more than one way of solving a pro-
gramming task. Which way is best may be decided based on
case-specific circumstances and constraints, but also based
on convention. Having strong conventions, and a common
vocabulary to express them, simplifies communication and
strengthens common understanding of software develop-
ment problems and their solutions. While many program-
ming ecosystems have a common vocabulary, Python’s re-
lationship to conventions and common language is a par-
ticularly pronounced. The “Zen of Python”, a famous set
of high-level coding conventions authored by Tim Peters,
states “There should be one, and preferably only one, obvi-
ous way to do it”. This ‘one way to do it’ is often referred
to as the ‘Pythonic’ way: the ideal solution to a particular
problem. Few other programming languages have coined a
unique term to label the quality of craftsmanship gone into a
software artifact. In this paper, we explore how Python devel-
opers understand the term ‘Pythonic’ by means of structured
interviews, build a catalogue of ‘pythonic idioms’ gathered
from literature, and conjecture on the effects of having a
language-specific term for quality code, considering the po-
tential it could hold for other programming languages and
ecosystems. We find that while the term means different
things to novice versus experienced Python developers, it

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

Onward! ’18, November 7-8, 2018, Boston, MA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6031-9/18/11...$15.00
https://doi.org/10.1145/3276954.3276960

encompasses not only concrete implementation, but a way
of thinking - a culture - in general.

CCS Concepts - Software and its engineering — Pat-
terns; Multiparadigm languages; Scripting languages; Design-
ing software;

Keywords Python, Pythonic, Conventions, Programming,
Idioms, Culture, Community

ACM Reference Format:

Carol V. Alexandru, José J. Merchante, Sebastiano Panichella, Se-
bastian Proksch, Harald C. Gall, and Gregorio Robles. 2018. On
the Usage of Pythonic Idioms. In Proceedings of the 2018 ACM SIG-
PLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward! ’18), November
7-8, 2018, Boston, MA, USA. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3276954.3276960

1 Introduction

Bloch [10] describes a programming language as a complex
ecosystem that consists of three parts: syntax, vocabulary
and effective ways to use the language in actual projects.
The former two are provided by the language designer from
the inception of a language, however the third emerges from
the community over time and is partially out of their con-
trol. How a language ecosystem evolves not only depends
on the inherent qualities of the language (e.g., whether it is
easy to learn or suitable for high-performance applications)
but also on how parts of the community interact (e.g., vet-
erans and novices or professionals and amateurs). Key to
this interaction is a common language and an agreement
on programming concepts and software construction princi-
ples. Besides concepts and terms provided by the language
designer (for example ‘Monads’ in Haskell or ‘Closures’ in
languages like JavaScript), the community develops an un-
derstanding of idioms and anti-idioms which may phase in
and out of fashion over time. For example, widely respected
‘design patterns’ for Java were presented by Grand [18] who
were not themselves Java language designers. Though over
time, by means of trial and error, the community further
evolves the language and certain concepts can also fall out of

https://doi.org/10.1145/3276954.3276960
https://doi.org/10.1145/3276954.3276960

Onward! ’18, November 7-8, 2018, Boston, MA, USA

favor. For example, the ‘Singleton’ design pattern has been
described as dangerous [12] and use of the ‘Singleton’ is
now widely discouraged, regardless of whether it is inher-
ently bad, or whether it has simply been misunderstood and
over-used by inexperienced programmers.

In general, developing a common vocabulary, such as the
‘design patterns’ for Java, enables effective discussions on ar-
chitecture and implementation, and many languages employ
such a vocabulary to a certain degree. We postulate, however,
that Python is special: the community has a word, ‘Pythonic’,
to describe almost anything positive relating to implementa-
tion and architecture. For example, someone may state that
“It would be more pythonic to write it this way..” or “The
pythonic way would be to..”. As such, the term ‘Pythonic’
is understood to be an idiomatic way of writing Python. It
describes a common understanding of what ‘good’ Python
code is, even when no formal specification exists. The impor-
tance of this concept to the community can be seen online:
on STACKOVERFLOW, ~806k out of ~896k or 90% of threads
tagged with ‘Python’ mention the word ‘Pythonic’.

Over many years, the Python programming language has
been gaining more and more traction and is now one of the
most popular languages. Following tremendous growth over
the past few years, which is reflected in the increasing num-
ber of discussions on Stack OVERFLOW ', Python ranks num-
bers 4 in the Tiosr index” and GrtHus hosts over 2 million
repositories containing Python code (not counting forks)’.
As an approachable, general purpose programming language,
Python is popular as a first programming language to learn
and it is widely used by professionals in other disciplines,
such as natural sciences, machine learning and data analysis
in general as an alternative to languages such as R or MATLAB.

In this paper, we perform groundwork towards under-
standing the concept of a language-specific ‘quality brand’
which seems to be particularly pronounced in the Python
community. The term ‘Pythonic” has been with the Python
community for over a decade, yet it has never been thor-
oughly researched. Thus, we investigate what it means to
Python developers, how pythonic idioms are learned and
how widespread their usage is in actual source code. We then
consider the implications of this term on the development
and spread of the language. More specifically, we investigate
the following research questions:

RQ; Is Pythonic’ a known concept? Is it desirable? Why?
We investigate if ‘Pythonic’ is a widely known and
accepted term among Python developers. We want to
find out whether developers strive to write pythonic
code and if they agree with the ideas and goals it re-
portedly represents. We also want to understand how
developers learn about the concept of pythonic code,

Lhttps://stackoverflow.blog/2017/09/06/incredible-growth-python/
Zhttps://www.tiobe.com/tiobe-index/
3https://github.com/search?q=language%3APython&type=Repositories

Alexandru, Merchante, Panichella, Proksch, Gall and Robles

and how the understanding of pythonic ideas spreads
in the community.

RQ; What are concrete pythonic idioms? How widespread
are they? Given that ‘Pythonic’ appears to encompass a
certain way of writing source code, we want to catalog
the idioms developers describe as being pythonic. We
also want to observe how frequently these idioms are
used in real-world projects.

To answer these questions, we use a mixed-method approach.
First, we conducted a series of interviews with both novice
and experienced Python developers to learn about their un-
derstanding and opinion on the term ‘Pythonic’. Second, we
analyzed 1,000 projects to observe how common different
pythonic idioms are in existing source code.

Based on our findings, we consider the potential impact on
the community and on professional developers. We hypothe-
size that applying pythonic practices may play an important
role in communicating developers skills and expertise. For
individual developers, striving to write more pythonic source
code may eventually award higher status within the commu-
nity. We also want to understand whether being knowledge-
able about pythonic code represents an advantage at work,
for example when doing job interviews. In broader terms,
we want to know the effect of having a dedicated word to
describe the way within a programming ecosystem.

We find that the term ‘Pythonic’ provides a cultural an-
chor, akin to a brand, for community members to signal both
skills desirable in a developer and concrete properties desir-
able in written source code. We postulate that having this
term simplifies curating a common understanding of “good
coding”, even if the term itself has no clear-cut definition.

To summarize, this paper presents the following main
contributions:

e We are the first to study the term ‘Pythonic’ and its
prevalence in the Python community.

e We find that Python developers are indeed very aware
of the term ‘Pythonic’ in general and that the aware-
ness and interpretation of the term evolves with devel-
oper experience.

e We learn that, while encompassing concrete idioms,
‘Pythonic’ goes further and refers to a shared philoso-
phy and culture.

e We create a catalog of pythonic idioms and confirm
their adoption in open-source projects.

e We interpret the effects of a dedicated quality term
and provide a vision of how other ecosystems could
benefit from having such an ‘idiomatic brand’.

2 Background

In this section we first introduce related work concerning
idiomatic source code and then contrast this general picture
with the specifics of Python highlighting the peculiar and
distinct characteristics of the Python community.

https://stackoverflow.blog/2017/09/06/incredible-growth-python/
https://www.tiobe.com/tiobe-index/
https://github.com/search?q=language%3APython&type=Repositories

On the Usage of Pythonic Idioms

2.1 Related Work

The general idea of writing idiomatic code is not a new
concept. Perlis and Rugaber [28] postulated in 1979 that
advanced programming needs to go beyond syntax and into
convention and style as a means to guide the structure of
a program. Style and idioms can be used to express design
concepts and reusable abstractions.

Later, Gil and Lorenz [17] found that a fundamental dif-
ference exists between design patterns and language design.
They establish a taxonomy and define patterns as universally
reusable concepts, independent of an implementation. While
very foundational patterns are implemented as features of
programming languages (e.g., inheritance), other founda-
tional patterns exist that are not language features (e.g., the
‘visitor’ pattern). Instead, they conclude that these idioms
represent a way of emulating a language feature that is not
natively supported (e.g., multi-methods in this case).

Cwalina and Abrams [14] find that the common design is
a great advantage of the .Net library, because it makes the
platform easier to learn. In addition, following and sticking
to a set of conventions is beneficial, because once a developer
has understood the conventions in one part of the framework,
they can be projected to other areas of the platform as well.
This makes programs easier to understand and also shortens
the initial learning phase for new developers.

Baxter et al. [7] looked at the ‘shape’ of Java Software,
finding that certain metrics follow power laws. They later
extended their findings in [40] using a large-scale corpus
of software, not unlike eariler efforts by Bajracharya et al.
[5], with both these works serving as pioneering work in
studying language design on a larger scale. Bloch [10] inves-
tigated effective ways to write Java programs. They say that
in addition to the syntax of a program and the vocabulary
available, it is crucial to note that the community shapes the
actual usage of the language. Knowing about patterns and
idioms can improve the quality of the resulting programs
and make their creation easier for the developers.

Smit et al. [35] analyzed coding conventions and their ef-
fect on maintainability. From a preliminary survey with pro-
fessional software developers, they identify several coding
conventions that they find to have an effect on maintainabil-
ity in open-source projects.

Allamanis et al. [3] mined patterns from source code trying
to learn project-specific code conventions. They show that,
indeed, some style or naming conventions are so dominant
that they can be automatically extracted from source code.
They call these learned patterns Natural Coding Conventions
that are not defined as strict rules, but through the majority
of developers that apply them. They validate the automati-
cally mined patterns by successfully suggesting patches that
improve the consistency of a project.

In conclusion, existing research on the terms of language
design, patterns and idioms yield different interpretations

Onward! ’18, November 7-8, 2018, Boston, MA, USA

numbers from 1 to 999
xs = range (1, 1000)

Non—pythonic
res = []

for index in range(len(xs)):
if xs[index] % 2 == 0:
res.append(xs[index] » 3)
Pythonic
res = [x » 3 for x in xs if x % 2 == 0]

Figure 1. Comparison of different programming styles given
a simple example: create a list containing the tripled values
of all even numbers between 1 and 999.

and opinions: no rigid understanding exists. We will use the
term ‘idiom’ to encompass any reusable abstraction, even
those which may be considered inherent language features
in different contexts. We believe there is no harm in using a
broad definition at this stage, because it is always possible
to omit and disregard certain idioms in future research.

2.2 Pythonic Code

While existing research into Python programming exists
(e.g., Holkner and Harland [21] looking into dynamic be-
havior), to our knowledge, ‘Pythonic’ idioms have not been
subject to existing research. Although Python comes with
an official style guide (PEP 8 [42]), this style guide only refer-
ences the term ‘Pythonic’ once, and in a very limited scope.
Furthermore, introductory text books and tutorials teaching
Python hardly mention the term ‘Pythonic’, and it appears as
if learning how to write pythonic code is a skill that can be
acquired only with experience. Consequently, how to write
idiomatic Python code can be non-obvious to Python begin-
ners. Listing 1 shows an example comparing a solution that
may be found in other languages to the more appropriate,
pythonic solution. One existing definition of the term can
be found in the official Python glossary*:

An idea or piece of code which closely follows the most com-
mon idioms of the Python language, rather than implement-
ing code using concepts common to other languages. For
example, a common idiom in Python is to loop over all el-
ements of an iterable using a for statement. Many other
languages do not have this type of construct, so people un-
familiar with Python sometimes use a numerical counter
instead, as opposed to the cleaner, pythonic method.

This definition indicates a broad meaning, referring to
both concrete code, but also ‘ideas’ in a general sense. While
we consider an ‘idiom’ to be any reusable abstractions, in this

4https://docs.python.org/3/glossary.html#term-pythonic

https://docs.python.org/3/glossary.html#term-pythonic

Onward! ’18, November 7-8, 2018, Boston, MA, USA

paper we define ‘pythonic’ even more broadly. Community
members readily use the term to describe all sorts of pat-
terns. For example, we refer to using the finally keyword
(for blocks always to be executed after a try/except block)
as being pythonic. Although finally is a concept present
in other languages, novice Python programmers may use
simpler means, like a cleanup function, in place of finally.
Hence we can state that finally is more pythonic than other
solutions to the same problem.

Despite the strong sense among Python developers that
writing pythonic code is desirable, there is no empirical evi-
dence to corroborate this feeling. In order to give actionable
advice with actual positive consequences, be it when educat-
ing or guiding new developers [36, 37], refactoring existing
code under review or when discussing future features [4],
empirical — rather than anecdotal - evidence is required.
Hence, there is a general need to investigate the community
and the concept of pythonic code closer to better understand
the ‘Pythonic’ phenomenon.

3 Research Method

To answer our research questions, we follow a mixed method
approach [13], which is widely used in software engineering
research [16, 33]. We conduct interviews with Python devel-
opers and combine this qualitative research with a quantita-
tive analysis, in which we search for use of specific pythonic
idioms in Python software repositories. We provide a compre-
hensive replication package containing the interview ques-
tions and answers as well as the empirical data and all scripts
used to process and analyze it”.

3.1 Interviews with Python Developers

For the interviews, we identify those topics of interest that
cannot be (easily) answered empirically. For example, the
interviews ask developers about their opinion on pythonic
idioms, what they think are the most important idioms, how
they learn and discuss them with other developers, and how
important these idioms are in their professional life.

To find participants for our interview study, we contacted
alumni of an afiliated university by email and approached
developers at a well-known Python conference. We tried to
compile a group of candidates that offers different perspec-
tives on how Python developers perceive and use pythonic
source code. Eventually, we performed 13 interviews with
developers that have a diverse background (see Table 1) and
experience with Python ranging from 1 year to more than 15
years. Interviewees work in different companies and univer-
sities, and some of them publish their code on open-source
platforms like GitHus, while others are only working on
closed source code.

We conducted most of the interviews remotely in a video
chat, but some developers were also interviewed in person.

Shttp://tiny.uzh.ch/QF

Alexandru, Merchante, Panichella, Proksch, Gall and Robles

Table 1. Characteristics of the interviewed developers. The
second column gives the experience with the Python lan-
guage (in years), while the third column offers an overview
of their current professional activity.

Id Python exp. (years) Current employment

Il 6 DevOps Eng.
12 16 Softw. Consultant, Python Trainer
I3 4 Chief Data Scientist
I4 3 SecDevOps Backend Eng.
I5 11 Researcher
I6 >6 Director of Eng.
17 6 Software Developer
I8 2 Software Developer
19 >10 CTO
110 2-3 Student
I11 3 Chief Data Scientist
112 1 Software Developer
113 9 Infrastructure Automation Eng.

We followed an open-ended interview style [39] and each
interview lasted about 15 minutes on average. At the begin-
ning of each interview, we have always put the interview
in context and introduced its purpose to the interviewees,
by explaining the research we are doing on pythonic ideas,
including possible future research. We had a minimal set of
questions to guide the interviews (the questions are part of
the replication package), but the order in which questions
were asked could differ between interviewees. For example,
if an answer to an upcoming question was already given
before, we did not ask the question again. Our questions
can be grouped into three categories: (1) those related to
the meaning and concept of the term ‘Pythonic’, (2) how
developers became aware of pythonic idioms and how they
approached them, and (3) those on the impact and spread
of ‘Pythonic’ in the Python community, including how it
affects the professional environment (e.g., job opportunities
and practices). All the interviews were recorded, transcribed
into text, and translated into English where required. Then,
we merged all related questions of each candidate to analyze
them together. We also grouped the participants on different
criteria (years of experience, open source-private companies,
kind of companies, ...) in order to see if similarities and
differences can be found in their answers.

3.2 Identification of Pythonic Idioms

For the identification of the idioms, we followed a sys-
tematic procedure, taking into consideration a variety of
sources. First, we collected idioms from presentations given
by renowned Python developers that frequently mention
the word ‘Pythonic’, e.g., Hettinger [20] and Jeff Knupp®.
We augmented our list with idioms from Jeff Knupp’s ebook
“Writing idiomatic Python 3.3" [23]. The number of idioms

6https://www.youtube.com/channel/UCBstBsz948k5c7eh/\/\RGmQ

http://tiny.uzh.ch/QF
https://www.youtube.com/channel/UC8jQsBz_w948kSc7ehMRGmQ

On the Usage of Pythonic Idioms

identified in this way was significant. Second, we investi-
gated two well-known web pages that list and explain Python
idioms: “The Hitchhiker’s Guide to Python” [32] and “The
Little Book of Python Anti-Patterns”[15]. The former of-
fers a set of good practices when writing Python code, with
special emphasis on a pythonic way. The latter is really a
list of anti-idioms that developers should avoid, although
based on these, good practices (i.e., idioms) can be extracted
as well. Third, we selected popular Python books, such as
“Pro Python” [1], “Fluent Python” [30], “Expert Python Pro-
gramming” by Ziade [43] and by Jaworski [22], “Program-
ming Python: Powerful Object-Oriented Programming” [24],
“Head First Python” [6], “Introduction to computing and pro-
gramming in Python” [19], “Dive into Python 3” [29] and
scanned them for terms such as idiom, Pythonic, program-
ming pattern, coding style or clean[er]. We did not find many
new idioms here, but could confirm several idioms that we
already had in our set. We noticed that especially introduc-
tory books tend to provide an introduction to programming
(as a global concept), rather than to the Python language
(and its idioms) itself. Finally, we searched for books with
Python recipes, i.e., books that offer effective solutions to spe-
cific programming situations. We found “Effective Python:
59 Specific Ways to Write Better Python” [34], “Python Cook-
book” [25], and “Python Cookbook: Recipes for Mastering
Python 3” [8]. Identifying idioms in these books was not easy,
as these books are solution-focused and not didactic, i.e., they
explain how to solve a more or less complex problem, but do
not offer further insight into specifics of the language. How-
ever, in addition to confirming many of our idioms from other
sources, we identified additional idioms (@classmethod and
@staticmethod, specifically). Several interviewees stressed
that using the itertools module is important for writing
pythonic code, so we decided to include it as an idiomatically
important element as well.

3.3 Measuring the Prevalence of Idioms in
Open-source Code

To verify that the concrete pythonic idioms we selected for
our catalog are actually used in real-world projects, we per-
formed an empirical st looking for pythonic idioms in 1,000
Python repositories hosted on GitHus. We obtained a list of
projects through the GitHus API by querying for projects
where the majority of code is written in Python, sorted by the
number of ‘stars’. In our query, we filtered projects that were
forks, archived, private, or smaller than 1mb, thus avoiding
very small repositories. Furthermore, we filtered projects
whose description or ‘readme’ contained the word ‘book’,
and whose name contained the terms ‘tutorial’, ‘awesome’ (a
common keyword to designate lists of links), ‘cookbook’ and
‘manual’. We also did a manual ensured that no books were
present in the resulting selection, in this way it is possible

Onward! ’18, November 7-8, 2018, Boston, MA, USA

that we removed some projects which would have been inter-
esting, but we wanted to make certain that we avoid repos-
itories not containing actual coding projects. The GitHus
API returns at most 1,000 projects for a given query, how-
ever they are paginated across 10 pages and multiple calls to
the same page returns different results. As such, retrieving
these 10 pages only once usually provides fewer than 1,000
projects because the same project may appear on different
pages. For this reason, we kept querying across all 10 pages
until we had at least 1,000 projects.

All idioms in our catalogue can be detected by analyzing
ASTs. Some idioms, like list comprehensions, with state-
ments or Lambdas can be detected directly from the pres-
ence of the corresponding AST node types used by the parser,
without any risk of false positives. Others, like ‘enumerate’ or
‘OrderedDict’ are function calls, thus the name of the called
function is matched. Magic methods are naturally detected
by looking for function definition nodes with the appro-
priate name. To make these detections, we utilized ILISA,
a framework for performing large-scale software analysis
on abstract syntax trees[2]. We analyzed the most recent
revision of all 1,000 projects, totalling 178,735 files contain-
ing 38,505,577 lines of Python code. For each project, we
recorded the number of occurrences of each idiom. Then, we
aggregated them to determine the number of projects each
individual idiom occurs in at least once, as well as the total
number of occurrences in all projects.

4 Results

In this section, we discuss the results of our studies and dis-
cuss the first two research questions. The interviews, sum-
marized and interpreted in Section 4.1, provide answers to
RQy, i.e., how developers perceive, learn, and value the term
‘Pythonic’. In section Section 4.2 we provide a catalog of
idioms we identified and subsequently found in open-source
projects to answer RQ,.

4.1 Interviews

We structure the results according to the three different topic
outlined in Section 3.1, namely the meaning of ‘Pythonic’,
how it is learned, and what its impact is on the community
and at work.

4.1.1 On the Meaning and Concept of ‘Pythonic’

All 13 interviewees knew about the term ‘Pythonic’. Respon-
dents understood ‘Pythonic’ to be elegant and readable code
that makes use of constructions that are provided either by
the language or by its standard library. When they talked
about ‘Pythonic’, they pointed out that it boosts readabil-
ity and performance. Many of them argued that coding the
pythonic way was the most accepted way to code by the
Python community:

Onward! ’18, November 7-8, 2018, Boston, MA, USA

[Pythonic code] is code that adheres on the one hand to the principles
of the Python Zen, which can be seen when doing “import this” [I11]

The most frequent pythonic example given were List Com-
prehensions (10 times). The rest mentioned using the in key-
word, rules from the Python Style Guide [42], using fors
and some other built-in functions like enumerate. Depend-
ing on the experience with Python, interviewees explained
‘Pythonic’ in slightly different ways. Those who are more
experienced mentioned built-ins, efficiency, and structure
more frequently, while the less experienced described it as
a way of obtaining better styled code and requiring a lower
number of lines of code for solving a problem.

Regarding other languages, interviewees commented that
idioms can also be found in languages like coLanc. However,
even though idioms exist in other programming languages,
there is not always one typical way to code a task as there is
supposed to be in Python:

In Python maybe there is a greater tendency to value that. In other
languages, it is a quality that is not pursued by the community. But
[in] Python, from its origin, perhaps by chance or by its creation,
I do not know, it is highly valued. It is a language that has many
possibilities and more advanced functionality that makes many
idioms. It is something that comes from the language, and in Python
there is more [of it] than in other languages. [12]

Another response points out that Python is a language
focused on readability, and therefore there are strongly rec-
ommended practices making the code easier to understand,
usually leading to fewer lines of code:

‘Pythonic’ is more like using the right tool at the right place, and
by “right tool”, I mean everything that’s provided by the language
and its standard library. [I5]

Some indicated, however, that idiomatic code need not be
synonymous with ‘Pythonic’; in their opinion, idioms are
merely a means for making code more pythonic:

While there are many idioms in Python, using them does not mean

that you’re writing pythonic code. Sometimes, idioms make the code

less readable, or more complicated. For instance, using reduce can
be seen as idiomatic, but in general [it] results in code that is not
easy to understand, and thus is not pythonic to my eyes. [I5]

There is an emphasis, especially among the more expe-
rienced developers, that in Python there is an easier way
to code a task with idioms and style. In comparison, other
languages may have certain conventions about a consistent
or an appropriate style, but not the way to solve a problem:

In python, the most pythonic way is the clearest, the best or even
the most optimal one in a computational sense, and that makes it a
little better to use. [12]

All interviewees told us that pythonic code was desirable,
and that the most important characteristic about pythonic
code is to make the code easier to understand and maintain.
In their opinion, being pythonic helps to detect errors and
even to make fewer mistakes.

Alexandru, Merchante, Panichella, Proksch, Gall and Robles

4.1.2 On How Programmers Get to Know Pythonic
Idioms

Most of the interviewees answered that they learned about
pythonic code from reading code in repositories of other
projects. They also got to know pythonic code from books,
conferences and from colleagues at work. STACKOVERFLOW
is often referred as the best way to find a pythonic idiom,
although sometimes it is not the best source to learn (and
understand) those idioms:

I have read many books [on Python and ‘Pythonic’]. There are
times when you find yourself stuck, then StackOverflow shows you
multiple points of view of people, and you always learn. [14]

Becoming a pythonic programmer takes time. In this re-
gard, interviewees acknowledged that some idioms are easier
to understand (and use) than others:

I did not understand [the pythonic idioms], but I was interested
in the documentation and a world opened up for me. It took me a
while to take advantage of it. [110]

Most of them think that understanding and reading idioms
is easier than implementing them. As an example of difficult
idioms, they indicated decorators and some functions from
the itertools module (a library for efficient iteration of col-
lections). All experienced programmers interviewed agreed
that their code became more pythonic year after year. When
asked if they can differentiate a beginner programmer from
an advanced programmer by looking at their code, some
stated that the usage of ‘Pythonic’ idioms is a good signal:

FJunior programmers are those who write simple code with some
errors; intermediate programmers use a lot of tools from the Python
library, but their code is hard to understand; mastery is achieved
by those programmers who program simple code, readable and use
a lot of idioms. [110]

Python beginners can sometimes be identified from the
use of camelCase instead of snake_case in variable or function
names as well as the implementation of getters and setters,
indicating that these developers come from another language.
Among Python developers, those who use more pythonic
idioms are seen as having more expertise in the Python
language:

‘Pythonic’ and Python idioms are different things. [However,]

‘Pythonic’ can be used to measure a developer’s skills, idioms can

be used to (at least) measure a developer’s knowledge. [I5]

4.1.3 On the Impact and Propagation of ‘Pythonic’
in the Python Community and at Work

In companies creating open-source software, it is usually
mandatory to develop pythonic code (either directly or be-
cause of peer review). In companies where the code is not
open source, interviewees stated that code is supposed to be
documented, but not necessarily pythonic. When we asked
whether pythonic code is positively viewed in a work in-
terview, most of the interviewees agreed that writing in a

On the Usage of Pythonic Idioms

pythonic way is usually associated with high expertise in
the language:

Yes, because it gives an idea of what you know about Python [112]

An interviewee argued that if you are not a good Python
programmer, it is better to show your general programming
skills, and to focus on the goal of the exercise instead of trying
to write pythonic code, as this could be counterproductive.

The interviewees generally agree that they try to make
source code more pythonic when they see something that is
hard to understand. Peer review is common in open-source
projects and in this process pythonic idioms are frequently
introduced. But once integrated into the repository, code
tends not to be changed without reason. The majority of the
interviewees admit that they usually do not go back to adapt
old code to a newly discovered new idiom:

[When I learn a new idiom], I'm not looking at all the previous lines
[T have written]. I incorporate it into my toolbox and then when I
touch something, I modify it and leave it better, [...] but it’s not an
obsession. [I2]

Dictcomprehensions Readabliity Performance

Itis an easy and elegant way to construct a dictionary. Itis a similar case to ist comprehensions

dict_compr = {k: k**2 for k in range(4)}

Non-Pythonic

d={}

for k in range(10000):
d[k] = k**2

Pythonic way

dict_compr = {k: k**2 for k in range(10000)}

Itis more readable and also improve the performance

Non-Pythonic
.00253295898438 seconds
Pythonic

.00185489654541 seconds

References:
[1] PEP 274 - Dict Comprehensions

Figure 2. Dict comprehension; one of the entries in the
online catalogue of idioms.

4.2 Pythonic Idioms

The list of idioms we obtained from our research is shown in
Table 2. We have classified the idioms following two charac-
teristics: readability and performance. There are idioms that
have been conceived to make Python code more readable, by
abstraction, shortening or added syntactic sugar. Idioms can
also be more efficient than a more basic solution and some
idioms are both more readable and more efficient. To present
the idioms in an accessible manner, we have created an on-
line catalog with all the collected idioms’. For each idiom,
we provide a name, an explanation, an example, whether is
is more readable or more efficient (sometimes including a

"http://pythonic.libresoft.info/idioms

Onward! ’18, November 7-8, 2018, Boston, MA, USA

comparison), and references with further information. Fig-
ure 2 shows the entry for dict comprehensions, an idiom that
has been classified as being both more readable and more
efficient than its non-recommended anti-pattern.

Table 2. Non-exhaustive list of pythonic idioms. The tags, P
and R, indicate whether the idiom improves performance
and/or readability. Given our sample of 1000 popular Python
projects, the last two columns indicate how many of them in-
corporate the idiom, as well as the total count in all projects.

Idiom # projects total

List comprehension P R 866 75,466
A concise way to create new lists from other sequences, e.g.,
applying an operation to each element (like ‘map’ in other
languages), or selecting elements that satisfy a condition (like
‘filter’ in other languages).

Dict comprehension P R 146 796
The counterpart to list comprehensions but for creating dictio-
naries (a.k.a. ‘Maps’ in other languages).

Generator expression P R 709 33,038
Like list comprehensions, but for creating sequences lazily (ele-
ments are allocated when accessed).

Decorator R 765 114,545
Python provides facilities for the ‘Decorator’ design pattern.

Decorators wrap existing classes or functions to alter their
functionality dynamically.

Simple magic methods 759 78,376
Intermediate magic methods 417 13,255
Advanced magic methods 190 2,613

Functions like __str__ (with a name surrounded by dou-
ble underscores) are called ‘magic’. For an example, see the
‘total_ordering’ idiom at the bottom of this table. We group
these methods into three levels of advancedness based on the
interviews and their commonness in source code. We do not
count __init__ (used to define class constructors) because it

is extremely common.

finally R 504 18,900
An optional finally block succeeding a try/catch clause is
always executed.

with R 848 143,453
The with statement starts a code block providing a handle (typ-
ically for a file) which is automatically closed at the end of
the block. For example, with open(’/tmp/file’) as f:
replaces f = open(’/tmp/file’); ; f.close().
enumerate R 681 19,453
Calling enumerate on a sequence returns an interable where

each element is a tuple containing an index and the original
element.

http://pythonic.libresoft.info/idioms

Onward! ’18, November 7-8, 2018, Boston, MA, USA

yield P 672 56,687
The yield keyword is used to implement generators (i.e., lazily
evaluated data structures) in place of using return. It provides
an easier way of writing generators compared to implementing
an iterator (using the __next__ magic method).

lambda P 664 109,600
The lambda keyword constructs anonymous functions.

collections.defaultdict P R 314 2,930
A defaultdict is like a regular Python dictionary, but when ac-
cessing a non-existent key, a default value is added and returned
instead of raising an exception.

collections.namedtuple R 262 2,211
A factory function for creating tuples where individual fields
are addressable not only by index but also by an attribute name.

collections.deque P R 180 1,698
The deque (double-ended-queue) is a generalization of queues
and stacks in Python.

collections.Counter R 133 1,074
Counter is a subclass of Python dictionaries providing additional
functionality for counting elements based on certain attributes.

@classmethod R 518 22,220
In Python, the first argument to any regular function imple-
mented in a class receives the instance as the first argument
(usually called ‘self”). A function decorated with @classmethod
receives the class as the first argument instead.

@staticmethod R 487 11,552
In contrast to regular class functions, which always receive the
instance as the first argument (‘self’), functions decorated with
@staticmethod do not receive any default arguments.

zip P R 554 14,929
zip takes two or more iterables and returns a new iterator where
each i’th element yielded is a tuple containing the i’th elements
of each input iterable until at least one input is exhausted.

itertools P R 128 839
The itertools module contains several functions (e.g.,
zip_longest, starmap, tee and groupby) which provide
common functionality concerning iterables, which a novice
would likely implement by hand.

functools.total_ordering, R 30 82
A class decorated with @total_ordering must implement the
__eq__ (equals) magic method and at least one of the __1t__
(<), __gt__(>), __le__ (<), or __ge__ (=) comparators. The
decorator automatically infers the remaining functions, allow-
ing instances of this class to be ordered accordingly.

4.3 Threats to Validity

The work presented in this paper was carefully planned and
executed, but several threats to validity exist for our results.
In the following, we will discuss them and our mitigation
strategies.

Alexandru, Merchante, Panichella, Proksch, Gall and Robles

Threats to the construct validity concern the way in which
we set up our study. To mitigate potential issues we per-
formed direct interviews with developers instead of a send-
ing a survey to a larger population. On a positive side, this
choice reduces the risk of receiving imprecise or unclear an-
swers, since questions in surveys can be answered partially
or superficially. On the other hand, insights based on the
interviews of 13 developers may not be representative of a
larger population. However, the diversity of the participants
involved and the consistency of the collected answers give us
confidence regarding the validity of our conclusions. The cat-
alog of idioms we created is based on a multitude of sources
but may be incomplete. Since there is no clear definition of
pythonic idioms, some concepts we included may not be
considered such under certain assumptions. Our detection
code may be defective, although we wrote exemplary code
containing all idioms and ensured that our implementation
detects and counts them correctly. When detecting certain id-
ioms which are counted based on the name of a function call,
there is a small risk that some developers may sporadically
go against convention and implement their own function
with the same name.

Threats to the internal validity concern confounding fac-
tors that could influence our results. Participants might be
influenced by the way we structured our interviews and the
type of questions we asked them. Thus, we primarily used
failry general, open questions. This reduces the potential
bias imprinted upon the subjects by the interviewer, since
they have a chance to answer without premeditated hints
on what answers the interviewer may expect [33].

Threats to the external validity concern the generalizability
of our results. The choice of interviewees in our study may
contain bias and thus not represent the global software land-
scape at large. All our participants were male and working
in Spain, and although we do not suspect significant regional
differences, they cannot be ruled out. Furthermore, a sample
size of 13 participants is not very large, though not particu-
larily low compared to other studies in software engineering
(e.g., [26, 44]). Given that we recruited both experienced and
novice developers from several sources (universities and an
international Python conference), we are confident to have
mitigated this issue as far as possible. It remains an open
question how translatable our findings are to other commu-
nities and future work is certainly necessary to solidify our
findings.

5 Discussion

In this paper, we lay the groundwork for exploring and under-
standing what it means to have a dedicated term describing
quality of craftsmanship within a programming ecosystem.
What is meant when people say the word: ‘Pythonic’? Does it
refer to idiomatic code? Design patterns? A common under-
standing of problems and solutions? Beyond this, we wonder

On the Usage of Pythonic Idioms

about the broader implications summarized in RQs;. How
does it affect communication within the community? And
could the idea of a language-specific quality ‘brand’ be trans-
lated to other languages or ecosystems? In this section we
discuss our findings and provide a vision of how anchoring a
common understanding of principles and behavior in a com-
munity can be accomplished by means of such a dedicated
term.

From our interviews, we learned that there is ample aware-
ness of the importance of writing pythonic code among
Python developers, even though the term is understood in
slightly different ways from person to person. Developers,
especially experienced ones, point out that ‘Pythonic’ goes
beyond the use of idioms, which are just a means to a more
important goal: code that is easy to read and maintain. In-
terviewees agree that it takes time to master pythonic code.
Pythonic mastery is highly related with being socially ac-
tive in the Python community: developers learn pythonic
ideas from reading other’s code or during the peer review
process. Informal support, such as the one found on Stack-
Overflow, is highly valued. Finally, developers report that
creating pythonic code offers evidence of Python mastery,
which can be beneficial from a professional point of view.

The term ‘Pythonic’ is used liberally in the Python com-
munity, but a thorough explanation of its meaning is hard to
find and defining it is difficult. It certainly exhibits multiple
facets: for one thing, people use it to refer to specific struc-
tures in code, like those we offer in our catalog of idioms.
We can say that non-pythonic code “looks wrong” to an ex-
perienced Python developer for whom the pythonic version
is more readable. However, we also saw discussions of the
"Pythonic-ness’ of large-scale structures and concepts, such
as the design of libraries or frameworks. This shows that the
scope of the term ‘Pythonic’ appears to go far beyond con-
crete source code and that it also refers to a way of thinking
about problems and potential solutions. Due to its lacking of
a clear definition, it is not possible to make a statement on
whether or not the term’s meaning has changed with time.

Given the loose definition of the term ‘Pythonic’ despite
its widespread use, we surmise that it refers to a common
underlying culture. Paige et al. understand culture as “the
shared patterns of behaviors and interactions, cognitive con-
structs and understanding that are learned by socialization”
and say that “it can be seen as the growth of a group identity
fostered by social patterns unique to the group” [27]. In the
Python community, the awareness of this culture seems to be
particularly strong: the community even has a specific, widely
used term for it! People strive to “think Pythonic” and create
software that fits the culture from the get-go.

The consequences of a shared culture, concretized by a
poignant term like ‘Pythonic’, are significant: culture offers a
signaling effect, i.e., those who have more culture are viewed
by others as more competent and thus have higher chances

Onward! ’18, November 7-8, 2018, Boston, MA, USA

of being involved in decisions and future prospects [31]. As
with natural language, we can identify different “registers”,
but only cultivated people are able to understand and ex-
press themselves in all of them [9], from beginner to pythonic
code. The word ‘Pythonic’, ever-present in almost any dis-
cussion on how to apply the programming language, serves
as a constant reminder that source code should be readable,
maintainable and of high quality in general.

The insights we gained by observing the Python commu-
nity open up several paths for future research, both empir-
ically, on the level of source code and implementation, as
well as in the cultural, social sphere.

On the source-code level, future work can be devoted to
investigating the effect and practical use of idiomatic source
code. By analyzing the evolution of source code in open-
source repositories we can learn how the usage of different
idioms changes over time and how new idioms are introduced
and shared within the community. In addition, empirical ap-
proaches can be explored to identify developers who have
achieved a certain cultural level in software projects, offering
us the possibility of discovering learning paths for beginners
from paths previously taken by more experienced develop-
ers. Another interesting line of research is related to the
investigation of cultural effects of apply pythonic concepts
on other program languages or software communities and
whether ’pythonic code’ is actually easier to comprehend
and maintain. It would be valuable to know the effect of
idiomatic source-code on program comprehension or on the
‘bugginess’ of source code. If a positive effect can be verified,
the creation of tools that help developers to learn and mi-
grate to more idiomatic source-code is a worthwhile research
direction.

On the cultural level, a natural next step is to contrast prac-
tices from the Python community with other communities,
both those that do have a guiding motto, and those which
do not. For example, it can be argued that Google tried to
introduce, with some success, a term like ‘Pythonic’ for its
Android UI design, namely ‘material design’®. The term is
now used in discussions on Android UI development as a
broad principle, not just a set of guidelines (indeed Google
says that ‘Material is the metaphor’). The Archlinux com-
munity uses ‘Keep It Simple, Stupid’ (KISS) as their cultural
mantra [11]. Having a shared motto can also transport val-
ues, which can support decision processes, like Facebook’s
famous motto ‘Move fast and break things’. Relating how
these terms evolved in different ecosystems could teach us
how to effectively introduce and curate such terms more
actively in communities lacking them. Furthermore, it would
be worthwhile to learn whether languages or ecosystems de-
velop more effectively or whether they spread more quickly,
if the community is involved at a cultural level. Finally, it

8https://material.io/design/introduction/

https://material.io/design/introduction/

Onward! ’18, November 7-8, 2018, Boston, MA, USA

would be useful to know the effect the term has on individ-
ual developers: is project on-boarding easier? Do developers
stay in projects or ecosystems longer? Do newcomers en-
counter fewer socio-technical barriers when joining a soft-
ware project? [36, 37].

6 Conclusion

This paper works towards understanding the meaning and
effect of explicitly naming the cultural foundation of a pro-
gramming ecosystem. Specifically, we point to a sociotech-
nical phenomenon of the Python community in which a
culture has been orchestrated around the programming lan-
guage under a series of loosely-defined principles and values,
captured under the umbrella of the term ‘Pythonic’. These
principles are learned and constructed socially and not only
expressed by the use of widely accepted constructs (i.e., id-
ioms) in code, but also used as a guiding principle in any
programming-related decision. We have verified, in addition,
that this phenomenon seems to be fed back as in a network
effect [38, 41], becoming increasingly relevant to the point of
being considered a differentiating factor for the expertise of
a Python developer. Although what we have reported is cur-
rently specific to the Python community, our hypothesis is
that there are many software development communities that
have comparable intrinsic characteristics, especially around
modern programming languages (e.g., Scara, Rusy), and have
similar external conditioning, e.g., tools, such as STAcKOVER-
rLow or GitHus, and methods, such as modern code review
and pull requests. This makes us believe that many of the
issues raised could be observed and investigated in environ-
ments other than the Python ecosystem.

We show that a powerful term like ‘Pythonic’, despite —
or even because — it is lacking a specific definition, posi-
tively influences the way developers write and talk about
code. We think that actively curating such language may
be a contributing factor for the popularity and success of
a programming language and believe that both researchers
and practitioners can profit from deeper insights into this
phenomenon in the future.

Acknowledgments

We thank the reviewers for their valuable feedback. This
research is partially supported by the Swiss National Science
Foundation (Projects Ne149450 — “Whiteboard” and Ne166275
- “SURF-MobileAppsData”) and the Swiss Group for Original
and Outside-the-box Software Engineering (CHOOSE).

The research of S. Panichella is also funded by Innosu-
isse (Swiss Innovation Agency, project MOSAIC/19333.1).
J. J. Merchante’s research is possible thanks to the support
of the Consejeria de Educacién, Juventud y Deporte de la
Comunidad de Madrid and the European Social Fund.

10

Alexandru, Merchante, Panichella, Proksch, Gall and Robles

References

[1] Marty Alchin. 2010. Pro Python. Apress.

[2] Carol V. Alexandru, Sebastiano Panichella, Sebastian Proksch, and

Harald C. Gall. 2018. Redundancy-free analysis of multi-revision

software artifacts. Empirical Software Engineering (05 Jul 2018). https:

//doi.org/10.1007/510664-018-9630-9

Miltiadis Allamanis, Earl T. Barr, Christian Bird, and Charles Sutton.

2014. Learning Natural Coding Conventions. In International Sympo-

sium on Foundations of Software Engineering.

Alberto Bacchelli and Christian Bird. 2013. Expectations, outcomes,

and challenges of modern code review. In 35th International Conference

on Software Engineering, ICSE 2013. 712-721.

Sushil Bajracharya, Trung Ngo, Erik Linstead, Yimeng Dou, Paul Rigor,

Pierre Baldi, and Cristina Lopes. 2006. Sourcerer: A Search Engine for

Open Source Code Supporting Structure-based Search. In Companion

to the 21st ACM SIGPLAN Symposium on Object-oriented Programming

Systems, Languages, and Applications (OOPSLA ’06). ACM, New York,

NY, USA, 681-682. https://doi.org/10.1145/1176617.1176671

Paul Barry. 2016. Head First Python: A Brain-Friendly Guide. " O’Reilly

Media, Inc.".

Gareth Baxter, Marcus Frean, James Noble, Mark Rickerby, Hayden

Smith, Matt Visser, Hayden Melton, and Ewan Tempero. 2006. Under-

standing the Shape of Java Software. In Proceedings of the 21st Annual

ACM SIGPLAN Conference on Object-oriented Programming Systems,

Languages, and Applications (OOPSLA ’06). ACM, New York, NY, USA,

397-412. https://doi.org/10.1145/1167473.1167507

David Beazley and Brian K Jones. 2013. Python Cookbook: Recipes for

Mastering Python 3. " O’Reilly Media, Inc.".

Basil Bernstein. 1960. Language and social class. The British journal of

sociology 11, 3 (1960), 271-276.

Joshua Bloch. 2008. Effective Java (The Java Series). Prentice Hall.

Jose Dieguez Castro. 2016. Arch linux. In Introducing Linux Distros.

Springer, 235-252.

James William Cooper. 2000. Java design patterns: a tutorial. Addison-

Wesley Professional.

John W Creswell and J David Creswell. 2017. Research design: Qualita-

tive, quantitative, and mixed methods approaches. Sage publications.

Krzysztof Cwalina and Brad Abrams. 2008. Framework Design Guide-

lines: Conventions, Idioms, and Patterns for Reusable .Net Libraries. Pear-

son.

Andreas Dewes and Christoph Neumann. 2018. The Little Book of

Python Anti-Patterns. https://goo.gl/xQQNE2. Accessed: 2018-04-21.

Steve Easterbrook, Janice Singer, Margaret-Anne Storey, and Daniela

Damian. 2008. Selecting empirical methods for software engineering

research. In Guide to advanced empirical software engineering. Springer,

285-311.

Joseph Gil and David H Lorenz. 1997. Design Patterns vs. Language

Design. In European Conference on Object-Oriented Programming.

Mark Grand. 2003. Patterns in Java: a catalog of reusable design patterns

illustrated with UML. John Wiley & Sons.

Mark J Guzdial and Barbara Ericson. 2015. Introduction to computing

and programming in Python. Pearson.

Raymond Hettinger. 2013. Transforming Code into Beautiful, Idiomatic

Python. https://goo.gl/wgeAvp. Accessed: 2018-04-21.

Alex Holkner and James Harland. 2009. Evaluating the Dynamic

Behaviour of Python Applications. In Proceedings of the Thirty-Second

Australasian Conference on Computer Science - Volume 91 (ACSC °09).

Australian Computer Society, Inc., Darlinghurst, Australia, Australia,

19-28. http://dl.acm.org/citation.cfm?id=1862659.1862665

[22] Michal Jaworski and Tarek Ziadé. 2016. Expert Python Programming.
Packt Publishing Ltd.

[23] Jeff Knupp. 2013. Writing Idiomatic Python 3.3. CreateSpace.

[24] Mark Lutz. 2010. Programming Python: Powerful Object-Oriented Pro-
gramming. " O’Reilly Media, Inc.".

[3

[tr}

[4

[l

(5

—

(6

—

[7

—

8

—

[9

—

[10]
[11]

[12]
[13]

[14]

[15]
[16]

[17]
[18]
[19]
[20]

[21]

https://doi.org/10.1007/s10664-018-9630-9
https://doi.org/10.1007/s10664-018-9630-9
https://doi.org/10.1145/1176617.1176671
https://doi.org/10.1145/1167473.1167507
https://goo.gl/xQQNE2
https://goo.gl/wgeAvp
http://dl.acm.org/citation.cfm?id=1862659.1862665

On the Usage of Pythonic Idioms

[25]

[26]

[27]

(28]
[29]
(30]
(31]
(32]
(33]

(34

[l

(35]

(36]

Alex Martelli, Anna Ravenscroft, and David Ascher. 2005. Python
cookbook. " O’Reilly Media, Inc.".

S. McKee, N. Nelson, A. Sarma, and D. Dig. 2017. Software Practitioner
Perspectives on Merge Conflicts and Resolutions. In 2017 IEEE Inter-
national Conference on Software Maintenance and Evolution (ICSME).
467-478. https://doi.org/10.1109/ICSME.2017.53

R Michael Paige, Helen L Jorstad, Laura Siaya, Francine Klein, Jeanette
Colby, D Lange, and R Paige. 2003. Culture learning in language
education. Culture as the core: Perspectives on culture in second language
learning (2003), 173-236.

Alan J Perlis and Spencer Rugaber. 1979. Programming With Idioms
In APL. In ACM SIGAPL APL Quote Quad.

Mark Pilgrim and Simon Willison. 2009. Dive Into Python 3. Vol. 2.
Springer.

Luciano Ramalho. 2015. Fluent Python: clear, concise, and effective
programming. " O’Reilly Media, Inc.".

Mari Rege. 2008. Why do people care about social status? Journal of
Economic Behavior & Organization 66, 2 (2008), 233-242.

Kenneth Reitz and Tanya Schlusser. 2016. The Hitchhiker’s Guide to
Python: Best Practices for Development. "O’Reilly Media".

Per Runeson, Martin Host, Austen Rainer, and Bjérn Regnell. 2012.
Case Study Research in Software Engineering. Wiley-Blackwell.

Brett Slatkin. 2015. Effective Python: 59 Specific Ways to Write Better
Python. Pearson Education.

Michael Smit, Barry Gergel, H James Hoover, and Eleni Stroulia. 2011.
Code Convention Adherence in Evolving Software. In International
Conference on Software Maintenance.

Igor Steinmacher, Tayana Uchoéa Conte, Christoph Treude, and
Marco Aurélio Gerosa. 2016. Overcoming open source project en-
try barriers with a portal for newcomers. In Proceedings of the 38th

11

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

Onward! ’18, November 7-8, 2018, Boston, MA, USA

International Conference on Software Engineering, ICSE 2016. 273-284.
Igor Steinmacher, Marco Aurélio Graciotto Silva, Marco Aurélio
Gerosa, and David F. Redmiles. 2015. A systematic literature review
on the barriers faced by newcomers to open source software projects.
Information & Software Technology 59 (2015), 67-85.

Chandrasekar Subramaniam, Ravi Sen, and Matthew L Nelson. 2009.
Determinants of open source software project success: A longitudinal
study. Decision Support Systems 46, 2 (2009), 576-585.

Winston M Tellis. 1997. Application of a case study methodology. The
qualitative report 3, 3 (1997), 1-19.

Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li, Markus
Lumpe, Hayden Melton, and James Noble. 2010. The Qualitas Corpus:
A Curated Collection of Java Code for Empirical Studies. In Proceedings
of the 2010 Asia Pacific Software Engineering Conference (APSEC ’10).
IEEE Computer Society, Washington, DC, USA, 336-345. https://doi.
org/10.1109/APSEC.2010.46

Brian Uzzi. 1996. The sources and consequences of embeddedness
for the economic performance of organizations: The network effect.
American sociological review (1996), 674-698.

Guido van Rossum, Barry Warsaw, and Nick Coghlan. 2001. PEP 8:
style guide for Python code. Python.org. https://goo.gl/crVen9.

Tarek Ziadé. 2008. Expert Python Programming. Packt Publishing Ltd.
Manuela Ziiger, Sebastian C. Miiller, André N. Meyer, and Thomas
Fritz. 2018. Sensing Interruptibility in the Office: A Field Study on the
Use of Biometric and Computer Interaction Sensors. In Proceedings
of the 2018 CHI Conference on Human Factors in Computing Systems
(CHI ’18). ACM, New York, NY, USA, Article 591, 14 pages. https:
//doi.org/10.1145/3173574.3174165

https://doi.org/10.1109/ICSME.2017.53
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1109/APSEC.2010.46
https://doi.org/10.1145/3173574.3174165
https://doi.org/10.1145/3173574.3174165

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Pythonic Code

	3 Research Method
	3.1 Interviews with Python Developers
	3.2 Identification of Pythonic Idioms
	3.3 Measuring the Prevalence of Idioms in Open-source Code

	4 Results
	4.1 Interviews
	4.2 Pythonic Idioms
	4.3 Threats to Validity

	5 Discussion
	6 Conclusion
	Acknowledgments
	References

