
Programming Languages

and Paradigms

Carol V. Alexandru-Funakoshi, Dr. sc.

Software Evolution and Architecture Lab

University of Zurich

Seminar – Spring 2022



2

Here’s a tiny selection of languages
(by some accounts, there are ~8900 more: https://hopl.info/)

*mistakes included!



Before we start...



4

Registration

● If you haven’t been assigned to this course via IFI 
seminar allocation, you cannot participate!

– If you’ve booked the module anyway, cancel it in time!

● Otherwise:

– Book BINFS157 (Bachelor’s) or MINFS557 (Master’s): 
https://www.students.uzh.ch/en/booking.html 

– In OLAT, we only use the MINFS557 course node. All 
Bachelor’s students have already been added. Master’s 
students are added automatically. 
https://lms.uzh.ch/url/RepositoryEntry/16974184579/CourseNode/85421310449426 

– If you want to drop out, please let me know today!

https://lms.uzh.ch/auth/RepositoryEntry/17190518785/CourseNode/85421310414617



5

Who am I?

● Carol Alexandru, Dr. sc.

– Dissertation in Efficient Software Evolution Analysis and 
Software Visualization (2019) under Prof. Dr. Harald Gall

– Senior research associate @ Software Evolution and 
Architecture Lab (s.e.a.l.)

● Teaching

– Informatics I

– Advanced Software Engineering

– PLP

● Primary Programming Languages:

– Bash, Scala, Python, Java, JavaScript

● Dabbled in:

– Haskell, Lisp, Kotlin, Ruby, C, C++, TypeScript, R

● Want to learn:

– C and Haskell properly, Rust



6

Who are you?

• “Hi, I’m <name>, a 
<semester/level> student.

• I know <languages> and some 
day I’d like to know how to 
work with <languages>.

• From this seminar, I hope to 
learn <xyz>.

• ( Also <…> )”

Dörig Mauro

Zurbriggen Max

Volontè Sandro

Eiben Samuel Christian

Aylward Matthew Tyler

Puser Dylan

Ratarov Daniil

Moser David

Sidler Dominik

Villanthanam Arjun

Rohe Hannah

Salzer Melanie

Bugmann Diego

Stebler Deborah

Crazzolara Anton

Salzmann Yannick



7

Lecuture schedule

● Today:

– A brief history of programming

– A selection of programming paradigms and concepts

– Seminar structure and deliverables

● Next week:

– Lambda calculus, currying, higher-level functions, Hindley–Milner type 
system, purity, referential transparency, immutable data structures and 
persistence

– Reflection & Macros

– LLVM, Common Language Interface (CLI), JVM, etc.

– How not to design a language: PHP

– Esoteric programming languages



8

Course Schedule

Online Session Deadline (end of day)

Wed, 23.02.2022 Lecture

Wed, 02.03.2022 Lecture Pick your language

Wed, 09.03.2022

Wed, 16.03.2022 Programming tasks #1

Wed, 23.03.2022 a

Wed, 30.03.2022 Q&A / Lecture (optional, save the date)

Wed, 13.04.2022 “Touch base” Programming tasks #2

Wed, 20.04.2022

Wed, 27.04.2022 Programming tasks #3

Wed, 04.05.2022 Discussion and Wrap-up Seminar paper

Wed, 11.05.2022 Paper reviews

Wed, 18.05.2022 Student presentations

Wed, 25.05.2022 Student presentations

Wed, 01.06.2022 Student presentations & Wrap-up Paper revision



History &

Language Generations



10

1943 Colossus: Plugs & Switches!



11

How Do Computers Compute?

● Addressable registers, devices and memory

● Instructions to move or execute operations on 
data

https://taeyoonchoi.com/poetic-computation/handmade-computers/handmade-computer/  

● So the questions is: 
how to tell the 
computer what to 
do?



12

● Direct machine code, numbers (0/1, dec, hex...)

– Punch cards

– Paper tape

– Magnetic tape

– Switches and Plugs

● Very machine-specific

● Hard to read/debug, not human-oriented at all

1GL - 1st Generation Languages

CC BY 2.0 https://www.flickr.com/photos/binaryape/5151286161/



13

2GL – Giving Names to Numbers

● Addressable registers, devices and memory 

https://wiki.osdev.org/CPU_Registers_x86 

– E.g. in x86, the “accumulator” (32bit) is called EAX:

                                               Register Name

| 0000 0001 0010 0011 0100 0101 0110 0111 | EAX       

|                     0100 0101 0110 0111 | AX        

|                               0110 0111 | AL        

|                     0100 0101           | AH        

● Instructions to move or execute operations on data 
https://en.wikipedia.org/wiki/X86_instruction_listings#Original_8086/8088_instructions

– E.g. in x86: ADD, SUB, DEC, JMP, MOV…

● Pretty good introduction to how a CPU works: 
https://www.howtogeek.com/367931/htg-explains-how-does-a-cpu-actually-work/ 



14

2GL - Assembly

● More human-readable machine code

– Words are “assembled” to machine code

● x86 example:

– “store the decimal number 97 in to register AL”:

– Machine code:                                          or 

–  Assembly:

Machine Code Semantics Assembly

10110 “move” MOV

000 Register AL AL

01100001 97 in decimal 61h

10110000 01100001

MOV AL, 61h ; Load AL with 97 decimal (61 hex)

B0 61



15

3GL – High-level Programming Languages

● Favors the programmer, not the computer

● Features a (usually complex) translation step 
from writte source code to machine execution

Source Code compile Machine Code

Source Code Bytecode

Source Code
Lower level language

source code

e.g. C, C++

e.g. Java > Java Bytecode > JIT, C# > Common Language Interface > JIT

e.g. Haskell (Core > STG > C-- > C/ASM/LLVM)

Source Code Bytecode

e.g. Python > Python Bytecode > Python runtime (e.g. cpython)

Machine Code

Machine Code

Machine Code

compile

interpretinterpret

transpile compile

compile



16

4GL - “Program-generating”

● Idea from the 1970-1990s

● High-level, usually domain-specific, e.g.:

– SQL (select * from … where … order by … limit …)

– LabVIEW (visual)

– R, MATLAB, …

● Fuzzy definition

CC-by-sa 2.0/de Michaeluray



17

5GL: “Because… computers!!! …?”

● “The user just states the problem, the computer 
solves it”.

● Constraint-based and Logic Programming

● Examples:

– OPS5, Mercury, ICAD

● Mostly a pipe dream, reserved for specific 
applications where the problem can be formally 
stated.



18

● PL Milestones: Plankalkül (1948)

●  Considered the 1st  high-level (3GL) language

– Assignment: →, comparison: < > ≤ ≥ = ≠ etc.

– Arrays, tuples, conditions, for/while loops

– Not actually implemented!

P1 max3 (V0[:8.0],V1[:8.0],V2[:8.0]) → R0[:8.0]

max(V0[:8.0],V1[:8.0]) → Z1[:8.0]

max(Z1[:8.0],V2[:8.0]) → R0[:8.0]

END

P2 max (V0[:8.0],V1[:8.0]) → R0[:8.0]

V0[:8.0] → Z1[:8.0]

(Z1[:8.0] < V1[:8.0]) → V1[:8.0] → Z1[:8.0]

Z1[:8.0] → R0[:8.0]

END



19

● PL Milestones: Short Code (1949)

● 1st 3GL that actually ran on a computer:

– Ran on BINAC and UNIVAC I 

– Branching, calls to library functions

– Interpreted (50 times slower than machine code)

a = (b + c) / b * c

X3 =  (  X1 +  Y1 )  /  X1 * Y1   

X3 03 09 X1 07 Y1 02 04 X1   Y1   

                                       

07Y10204X1Y1                      

0000X30309X1



20

● PL Milestones: FORTRAN (1957-2018)

● IBM Mathematical Formula Translating System

– 1st optimizing compiler

– Hardware makers provided FORTRAN compilers

– Remains the most popular language for scientific 
computing even today!

– Has evolved a lot over the decades:

CC BY 2.0 https://www.flickr.com/photos/binaryape/5151286161/

12 PIFRA=(A(JB,37)-A(JB,99))/A(JB,47)       PUX 0430

program helloworld

     print *, "Hello, World!"

end program helloworld



21

PL Milestones: Lisp (1957-2021)

● “Everything is a list” (incl. the source code!)

– Pioneered tree data structures, automatic storage, 
dynamic typing, conditionals, higher-order functions, 
recursion, read–eval–print loop, NIL, macros, ...

CC BY-NC 2.5 https://xkcd.com/297/

(+ (* (/ 9 5) 60) 32)) ; 140

(defun AreaOfCircle (prefix)

  (print "Enter Radius: ")

  (setq radius (read))

  (setq area (* 3.1416 radius radius))

  (format t "~a: ~F" prefix area))

(AreaOfCircle "The area is")



22

3GL Milestones: Simula (1962)

● 1st object-oriented programming language

– objects, classes, inheritance, garbage collection...

Class Rectangle (Width, Height); Real Width, Height; Begin

    Real Area, Perimeter;

    

    Procedure Update; Begin

      Area := Width * Height;

      Perimeter := 2*(Width + Height)

    End of Update;

    Boolean Procedure IsSquare;

      IsSquare := Width = Height;

    Update;

    OutText("Rectangle created: "); OutFix(Width,2,6);
    OutFix(Height,2,6); OutImage

End of Rectangle;



23

PL Milestones: COBOL(1959-2014)

● Banking and Business 

– English-like syntax

– Extremely verbose

– “Self-documenting” 
and “Easily readable”

– 220 billion LOC in use 
by banks today

– Slowly declining use, 
but still very popular

* FIZZBUZZ.COB

* cobc -x -g FIZZBUZZ.COB

*

IDENTIFICATION        DIVISION.

PROGRAM-ID.           fizzbuzz.

DATA                  DIVISION.

WORKING-STORAGE       SECTION.

01 CNT      PIC 9(03) VALUE 1.

01 REM      PIC 9(03) VALUE 0.

01 QUOTIENT PIC 9(03) VALUE 0.

PROCEDURE             DIVISION.

*

PERFORM UNTIL CNT > 100

 DIVIDE 15 INTO CNT GIVING QUOTIENT REMAINDER REM

 IF REM = 0

   THEN

 DISPLAY "FizzBuzz " WITH NO ADVANCING

   ELSE

 DIVIDE 3 INTO CNT GIVING QUOTIENT REMAINDER REM

 IF REM = 0

   THEN

 DISPLAY "Fizz " WITH NO ADVANCING

   ELSE

 DIVIDE 5 INTO CNT GIVING QUOTIENT REMAINDER REM

 IF REM = 0

   THEN

 DISPLAY "Buzz " WITH NO ADVANCING

   ELSE

 DISPLAY CNT " " WITH NO ADVANCING

 END-IF

 END-IF

 END-IF

 ADD 1 TO CNT

END-PERFORM

DISPLAY ""

STOP RUN.



24

PL Milestones: Smalltalk (1972-1980)

● “Everything is an object” + message passing

● Objects can only:

– Hold state

– Receive a message from other objects or itself

– While processing a message, send messages

● Reflection + live programming

● Integrated development environment

● Lives on in Pharo (2020), Squeak (2020), ... 



25

PL Milestones: Prolog (1972-2000)

● 4th-generation 
language (4GL)

● Logic Programming

– Declarative (i.e. not 
imperative/procedural)

– Used for theorem 
proving, expert 
systems, automated 
planning, natural 
language processing.

:- use_module(library(clpfd)).

 

sudoku(Rows) :-

    length(Rows, 9), maplist(length_(9), Rows),

    append(Rows, Vs), Vs ins 1..9,

    maplist(all_distinct, Rows),
    transpose(Rows, Columns),

    maplist(all_distinct, Columns),

    Rows = [A,B,C,D,E,F,G,H,I],

    blocks(A, B, C),

    blocks(D, E, F),

    blocks(G, H, I).

 

length_(L, Ls) :- length(Ls, L).

 

blocks([], [], []).

blocks([A,B,C|Bs1], [D,E,F|Bs2], [G,H,I|Bs3]) :-

        all_distinct([A,B,C,D,E,F,G,H,I]),

        blocks(Bs1, Bs2, Bs3).

 

problem(1, [[_,_,_,_,_,_,_,_,_],

            [_,_,_,_,_,3,_,8,5],

            [_,_,1,_,2,_,_,_,_],

            [_,_,_,5,_,7,_,_,_],

            [_,_,4,_,_,_,1,_,_],

            [_,9,_,_,_,_,_,_,_],

            [5,_,_,_,_,_,_,7,3],
            [_,_,2,_,1,_,_,_,_],

            [_,_,_,_,4,_,_,_,9]]).



26

PL Milestones: ML (1973)

● Polymorphic Hindley–Milner type system

– Static type system with type inference

– Verified using formal semantics

● Today, this type system can be found in OCaml 
and Haskell (among others)
let fizzbuzz i =

  match i mod 3, i mod 5 with

    0, 0 -> "FizzBuzz"

  | 0, _ -> "Fizz"

  | _, 0 -> "Buzz"

  | _    -> string_of_int i

let _ =

  for i = 1 to 100 do print_endline (fizzbuzz i) done



27

PL Milestones: C (1972-2018)

● Low-level, direct memory access, minimal 
runtime support

● But at the same time: maximum portability

● Many other programming languages are 
implemented in and/or transpile to C

int main(void) {

  char *s = "Hello world";

  *s = "Byebye world";

  printf(s);

}

> gcc -w hello.c && ./a.out

zsh: segmentation fault (core dumped)  ./a.out



28

PL Milestones: The Internet Age

● Python (1990)

– Duck typing, modularity, productivity, “strong philosophy”

● Visual Basic (1991)

– “Rapid Application Development”, UI, DB, ActiveX

● PHP (1995)

– “Personal Homepage”, no formal spec until 2014

● Ruby (1995)

– “Object-oriented scripting language”

● Java (1995)

– “Write once, run anywhere”, highly portable

● Delphi / Object Pascal (1995)

– “Rapid Application Development”, Language + IDE + Libraries



29

PL Milestones: Current Trends

● Functional being built into mainstream PLs:

– C++11, Perl, PHP, Python, Go, Java, C#

● Performance + Safety

– Go, Rust, Kotlin, Java, C#

● Extending object-oriented programming:

– Mixins, traits, typeclasses, aspects

● Massively parallel computing / pipelines

– GPUs (machine learning), CUDA, OpenCL



Programming Paradigms &

Programming Concepts

CC BY-SA 3.0 https://commons.wikimedia.org/wiki/User:Zairon



Paradigms 

According to

Wikipedia



32

Declarative vs. Imperative

Declarative Imperative

Core principle
Describe what the program should 
accomplish (not listing explicit steps)

Describe how the program 
accomplishes something

Advantages
(with a grain of salt)

Minimize side-effects (>referential 
transparency), simplifies parallel 
programs, higher-level abstractions

Direct hardware control means 
faster/smaller.

Disadvantages 
(with a grain of salt)

Less efficient (slower, larger), state-
change and IO can be “weird”

Unintended side-effects, too 
many degrees of freedom

Sub-paradigms / 
Concepts

Functional, Logic, Constraint, 
Dataflow

Procedural, Object-Oriented

Example languages
SQL, HTML, Haskell, Scheme, ML, 
Prolog

FORTRAN, COBOL, BASIC, C, 
Java, Python, JavaScript, etc.



33

Declarative vs. Imperative

Declarative Imperative

Core principle
Describe what the program should 
accomplish (not listing explicit steps)

Describe how the program 
accomplishes something

Advantages
(with a grain of salt)

Minimize side-effects (>referential 
transparency), simplifies parallel 
programs, higher-level abstractions

Direct hardware control means 
faster/smaller.

Disadvantages 
(with a grain of salt)

Less efficient (slower, larger), state-
change and IO can be “weird”

Unintended side-effects, too 
many degrees of freedom

Sub-paradigms / 
Concepts

Functional, Logic, Constraint, 
Dataflow

Procedural, Object-Oriented

Example languages
SQL, HTML, Haskell, Scheme, ML, 
Prolog

FORTRAN, COBOL, BASIC, C, 
Java, Python, JavaScript, etc.



34

Declarative vs. Imperative

Declarative Imperative

Core principle
Describe what the program should 
accomplish (not listing explicit steps)

Describe how the program 
accomplishes something

Advantages
(with a grain of salt)

Minimize side-effects (>referential 
transparency), simplifies parallel 
programs, higher-level abstractions

Direct hardware control means 
faster/smaller.

Disadvantages 
(with a grain of salt)

Less efficient (slower, larger), state-
change and IO can be “weird”

Unintended side-effects, too 
many degrees of freedom

Sub-paradigms / 
Concepts

Functional, Logic, Constraint, 
Dataflow

Procedural, Object-Oriented

Example languages
SQL, HTML, Haskell, Scheme, ML, 
Prolog

FORTRAN, COBOL, BASIC, C, 
Java, Python, JavaScript, etc.



35

Declarative vs. Imperative

Declarative Imperative

Core principle
Describe what the program should 
accomplish (not listing explicit steps)

Describe how the program 
accomplishes something

Advantages
(with a grain of salt)

Minimize side-effects (>referential 
transparency), simplifies parallel 
programs, higher-level abstractions

Direct hardware control means 
faster/smaller.

Disadvantages 
(with a grain of salt)

Less efficient (slower, larger), state-
change and IO can be “weird”

Unintended side-effects, too 
many degrees of freedom

Sub-paradigms / 
Concepts

Functional, Logic, Constraint, 
Dataflow

Procedural, Object-Oriented

Example languages
SQL, HTML, Haskell, Scheme, ML, 
Prolog

FORTRAN, COBOL, BASIC, C, 
Java, Python, JavaScript, etc.



36

Declarative vs. Imperative

Declarative Imperative

Core principle
Describe what the program should 
accomplish (not listing explicit steps)

Describe how the program 
accomplishes something

Advantages
(with a grain of salt)

Minimize side-effects (>referential 
transparency), simplifies parallel 
programs, higher-level abstractions

Direct hardware control means 
faster/smaller.

Disadvantages 
(with a grain of salt)

Less efficient (slower, larger), state-
change and IO can be “weird”

Unintended side-effects, too 
many degrees of freedom

Sub-paradigms / 
Concepts

Functional, Logic, Constraint, 
Dataflow

Procedural, Object-Oriented

Example languages
SQL, HTML, Haskell, Scheme, ML, 
Prolog

FORTRAN, COBOL, BASIC, C, 
Java, Python, JavaScript, etc.



37

Functional vs. Object-Oriented

Functional Object-oriented

Core principle
Applying & composing 
functions/expressions to map values 
to other values

Instances of classes (blueprints) 
hold state & behavior and 
interact with each other

Advantages Largely a matter of opinion revolving around state, mutability and 
preferred higher-level abstractions / composability

State and state change is easily modelledDisadvantages

Sub-paradigms / 
Concepts

1st-class and higher-order functions, 
purity, recursion, referential 
transparency

Inheritance, delegation, mixins, 
encapsulation, design patterns

Example languages 
(mostly)

Lisp, Scheme, Wolfram Language, 
Racket, Ocaml, Haskell, ML

Java, C++, C#, Groovy, 
Smalltalk, Simula, COBOL

Hybrid Languages
C++11, Kotlin, Python, Rust, Raku, Scala, JavaScript, TypeScript, 

MATLAB, and many more...



38

Functional vs. Object-Oriented

Functional Object-oriented

Core principle
Applying & composing 
functions/expressions to map values 
to other values

Instances of classes (blueprints) 
hold state & behavior and 
interact with each other

Advantages Largely a matter of opinion revolving around state, mutability and 
preferred higher-level abstractions / composability

Disadvantages

Sub-paradigms / 
Concepts

1st-class and higher-order functions, 
purity, recursion, referential 
transparency

Inheritance, delegation, mixins, 
encapsulation, design patterns

Example languages 
(mostly)

Lisp, Scheme, Wolfram Language, 
Racket, Ocaml, Haskell, ML

Java, C++, C#, Groovy, 
Smalltalk, Simula, COBOL

Hybrid Languages
C++11, Kotlin, Python, Rust, Raku, Scala, JavaScript, TypeScript, 

MATLAB, and many more...



39

Functional vs. Object-Oriented

Functional Object-oriented

Core principle
Applying & composing 
functions/expressions to map values 
to other values

Instances of classes (blueprints) 
hold state & behavior and 
interact with each other

Advantages Largely a matter of opinion revolving around state, mutability and 
preferred higher-level abstractions / composability

Disadvantages

Sub-paradigms / 
Concepts

1st-class and higher-order functions, 
purity, recursion, referential 
transparency

Inheritance, delegation, mixins, 
encapsulation, design patterns

Example languages 
(mostly)

Lisp, Scheme, Wolfram Language, 
Racket, Ocaml, Haskell, ML

Java, C++, C#, Groovy, 
Smalltalk, Simula, COBOL

Hybrid Languages
C++11, Kotlin, Python, Rust, Raku, Scala, JavaScript, TypeScript, 

MATLAB, and many more...



40

Functional vs. Object-Oriented

Functional Object-oriented

Core principle
Applying & composing 
functions/expressions to map values 
to other values

Instances of classes (blueprints) 
hold state & behavior and 
interact with each other

Advantages Largely a matter of opinion revolving around state, mutability and 
preferred higher-level abstractions / composability

Disadvantages

Sub-paradigms / 
Concepts

1st-class and higher-order functions, 
purity, recursion, referential 
transparency

Inheritance, delegation, mixins, 
encapsulation, design patterns

Example languages 
(mostly)

Lisp, Scheme, Wolfram Language, 
Racket, Ocaml, Haskell, ML

Java, C++, C#, Groovy, 
Smalltalk, Simula, COBOL

Hybrid Languages
C++11, Kotlin, Python, Rust, Raku, Scala, JavaScript, TypeScript, 

MATLAB, and many more...



41

Functional vs. Object-Oriented

Functional Object-oriented

Core principle
Applying & composing 
functions/expressions to map values 
to other values

Instances of classes (blueprints) 
hold state & behavior and 
interact with each other

Advantages Largely a matter of opinion revolving around state, mutability and 
preferred higher-level abstractions / composability

Disadvantages

Sub-paradigms / 
Concepts

1st-class and higher-order functions, 
purity, recursion, referential 
transparency

Inheritance, delegation, mixins, 
encapsulation, design patterns

Example languages 
(mostly)

Lisp, Scheme, Wolfram Language, 
Racket, Ocaml, Haskell, ML

Java, C++, C#, Groovy, 
Smalltalk, Simula, COBOL

Hybrid Languages
C++11, Kotlin, Python, Rust, Raku, Scala, JavaScript, TypeScript, 

MATLAB, and many more...



42

Sequential vs. Concurrent

● Sequential / single-threaded:

– No race conditions, easier to debug



43

Sequential vs. Concurrent

● Sequential / single-threaded:

– No race conditions, easier to debug

● Concurrent / parallel / multi-threaded:

– Increased throughput, high responsiveness / low latency

– Race conditions if not thread-safe, can be harder to
debug

– Related concepts

● shared memory, message passing, actors, software 
transactional memory (STM), process calculus



44

Shared Memory

● Usually uses a locking mechanism

– Mutex: data can only be unlocked by locking process

– Binary semaphore: any process can unlock

● Can be very fast

● Disadvantages:

– Hard to implement correctly, overlapping operations must 
be considered by the programmer

– Deadlocks / Livelocks must be avoided

– Priority inversion (low-priority task may have to wait for 
high-priority task)



45

Software Transactional Memory

● More optimistic: no locking mechanism

● Shared access via logged “Transactions”

– Begin transaction

– Modify data “as a copy”

– Commit: verify that same data has not been altered by other 
processes and finally write

● Transactions logically happen at a single moment in 
time (atomic), much easier to write parallel programs

● Has a small performance overhead



46

Message Passing / Actors

● Methods not called directly by name, instead: sender 
sends a message, object decides what to do with it

● Objects typically can only alter their own state

● Can make life easier when

– Writing concurrent/multi-threaded/distributed programs

– Managing/debugging state

● Popular implementations:

– Built-in: Erlang, Scala

– As a library: Java, Rust, Swift, JavaScript, C/C++, ...



47

Event-Driven & Reactive

● Event-driven:

– Main loop listens for events (hardware, network, UI...)

– Usually asynchronous programs

– Used heavily for GUI and web (i.e. JavaScript)

● Reactive:

– Pipelines of data updated continously

– E.g.: a := b+c, a will be updated if b or c are updated

– Reactive programming is more rare, but a common 
example is MVC (model-view-controller)



48

Paradigms: a Conclusion

● Most languages cannot be assigned to one 
specific paradigm

● Most paradigms have a fuzzy definition

● Last century: ideology

● Today: mixing the best of all worlds

● The goal?

– Easier programming, fewer bugs, better 
maintainability



Seminar Structure & 

Organization



50

Course Structure

● 2 introductory lectures + optional sessions

● 1 mid-semester “touch base” session

● Everyone…

– picks a different language to learn and explore

– implements the same  programming tasks

– gives a 15min presentation

– writes a 3-page seminar paper

– reviews 3 papers of other students

● 3 presentation sessions + 1 wrap-up session



51

Deliverable: Programming Tasks

● Three sets of tasks

– 1st: Getting started

– 2nd: Typical, small-scale programming challenges

– 3rd: Larger, more complete application

● Tasks will be similar for all students/languages

● Deadlines throughout the semester

● “Touch base”session:

– 5min demo of 2nd programming task running on your own 
machine (screen sharing), comment on how it’s going



52

Deliverable: Presentation

● 15+5min Presentation

● Content:

– Brief story/background/purpose of the language

– Main distinguishing features & paradigms

– Pros / cons + your experience using the language

– Show the latest programming task running on your machine

● The style is up to you, doesn’t need to be formal:

– Tutorials/Demos welcome

– Just try to make it interesting for everyone

● You must share your slides as a PDF in OLAT



53

Deliverable: Seminar paper

● 3 Pages (incl. references), IEEE Template:
– https://www.ieee.org/conferences/publishing/templates.html

● Content:

– History, motivation for existing, related work

– Describe paradigms used, distinguishing features

– Include examples & compare to other languages

– Discuss implications, opportunities, chances

● Sources must be cited properly

● Should be formal and proper



54

Deliverable: Seminar paper

● Typical paper structure:

– Introduction (brief overview, motivation)

– Related work (relevant literature, history)

– Approach/Method/The X programming language

● Describe in detail how things work

– Discussion

● Put the language into context, muse about problems, future 
opportunities, outlook, etc and reflect on the language.

– Conclusion (brief summary)

– References (use a bibliography file/tool!)



55

Deliverable: Peer Reviews

● You will read 3 papers writte by your peers

● For each, you will write a ½ page review 
consisting of:

– Brief summary of the paper (4-6 sentences)

– Your own opinion/evaluation of the paper. More on 
how to do this properly later!

● You will be able to read the reviews and revise 
your paper if you’d like to.



57

Course Schedule

Online Session Deadline (end of day)

Wed, 23.02.2022 Lecture

Wed, 02.03.2022 Lecture Pick your language

Wed, 09.03.2022

Wed, 16.03.2022 Programming tasks #1

Wed, 23.03.2022 a

Wed, 30.03.2022 Q&A / Lecture (optional, save the date)

Wed, 13.04.2022 “Touch base” Programming tasks #2

Wed, 20.04.2022

Wed, 27.04.2022 Programming tasks #3

Wed, 04.05.2022 Discussion and Wrap-up Seminar paper

Wed, 11.05.2022 Paper reviews

Wed, 18.05.2022 Student presentations

Wed, 25.05.2022 Student presentations

Wed, 01.06.2022 Student presentations & Wrap-up Paper revision



57

Study goals

● Recognize and be able to roughly explain the 
paradigms and concepts taught in the lectures

● Learn to program in 1 new language

● Learn about 11 other programming languages

● Practice writing seminar papers

● Learn how to write a differentiated review

● Broaden your coding horizon!



58

Before we wrap up…

● Any requests?

● Write in the forum if you have a question or 
desire a session on a specific topic

– Q&A session: informal, you just want to discuss some 
problem (general attendance not required)

– Optional lecture: several people wish for some 
content (general attendance required)

● Write me an email if you have non-public 
requests: alexandru@ifi.uzh.ch



59


