
Of Cyborg Developers and Big Brother Programming AI

Carol V. Alexandru
Software Evolution and Architecture Lab

University of Zurich, Switzerland
alexandru@ifi.uzh.ch

Harald C. Gall
Software Evolution and Architecture Lab

University of Zurich, Switzerland
gall@ifi.uzh.ch

1. Wednesday, 13. November 2047
– A day in the life of a software analyst

Meet Ana, AI data integrator for INGSOFT. The
time: 07:32 am. Ana’s personal assistant, Lucio,
has been monitoring her heart rate and breathing
throughout the night using just his microphone and
notices that now is the ideal time to wake up: outside
of REM sleep and after roughly 8 hours of sleep – a
duration which has been determined from the experience
of countless previous nights and consisting of pre-sleep
activity, detected mood in the morning, performance
throughout the following day and over a dozen other
biometric and behavioral indicators. The assistant
sounds a gentle alarm at the appropriate volume. After a
brief shower, Ana reads her edition of PG (the Personal
Gazette). Given the work cycles of her teammates, Lucio
suggests to work from home this morning. INGSOFT’s
main product is ‘Metadapt’, an AI that dynamically
adapts running AI agents for new situations. For
the past few weeks, she’s been immersed in deploying
Metadapt on the cities traffic system. The 2048 Summer
Olympics are coming up, and the AI routing self-driving
cars and their vintage counterparts is projected to react
poorly to the unexpected change in traffic volume and
travel patterns. Ana sits down at her workstation
and is assigned the first task for today. ‘Gone are
the days of issue trackers and SCRUM meetings’ she
thinks, briefly reminiscing her days as an intern at
one of the derelict ‘coding zoos’ as they’ve come
to call the old-fashioned, cubicle-compartmentalized
office buildings of the past. The biocam, installed in
her workstation and unobtrusively monitoring Ana’s
heart rate, skin temperature, eye movements and pupil
dilation, notices her mind wandering and turns on
the coffee machine in her kitchen. Ana’s been tasked
with talking to the people at Publitrans, who run the
cities personal public transport system. They have
some vital information regarding anticipated changes
in cab traffic during the Olympics. Ana frequently gets
these assignments, as she has excellent communication

skills and also knows how to speak to people such
that Metadapt can follow the discussion. As the smell
of her favourite brew permeates the apartment and
Ana moves to the Kitchen, Lucio takes the opportunity
to tell her that the meeting will take place at 9am.
INGSOFT has recently subscribed to WaveVR, that new
business communication tool consisting of a few tiny
laser projectors and a set of comfy gloves. 3D images
of her two contacts at Publitrans, captured using their
biocams, is projected into Ana’s eyes as she moves
around her office. The gloves help to facilitate personal
contact by inducing haptic feedback where necessary
and help the biocam to accurately track movements such
that participants can easily manipulate other objects
projected into the virtual 3D scene. VR has been around
for over 30 years, and the experience can still be flaky
at times, but it beats wasting hours on daily commutes,
plus it saves a lot of energy – with the biosphere going
to hell and whatnot. Ana’s job as a data integrator
consists of figuring out which pieces of additional
information can help Metadapt make the right choices
in governing AI, and also implementing the interfaces
between different data sources. Sure, there are ongoing
efforts to facilitate the automatic, need-driven data
exchange between the countless AI systems governing
every aspect of the computerized world – like they’ve
implemented between Canada, the US and Mexico, but a
global solution is still impeded by slow-moving political
and social structures. Plus a fairly unique event such the
Olympics still requires significant human intervention.
The meeting starts, and as one participant struggles
with the automatic volume adjustment of his mic (‘how
have they still not solved this problem!’, Ana thinks), the
other two start discussing the topic at hand. Metadapt is
listening in on the conversation to capture those details,
which it recognizes as containing new information. This
allows Ana to later formalize the conversation and guide
Metadapt in synthesizing the necessary interfaces. As
the meeting ends, Lucio preemptively checks if any
of Ana’s friends happen to be in the area for lunch
today. He prepares a few suggestions for the time and

location for lunch, based on the daily offers publicized
by nearby eateries, how busy they are, as well as Ana’s
current dietary needs and preferences. Ana finalizes
the formal interface specification connecting Metadapt
to Publitrans’ data endpoints by applying necessary
corrective measures and as she gets ready to leave,
Metadapt is already scanning Publitrans’ historical
data relevant to improving traffic flow in the coming
year.

2. Introduction

For millennia, humans spent the majority of their
lives performing manual labor to provide for themselves
and their community. The advent of the industrial
revolution initiated a brief, but radical shift to a service
economy where fewer and fewer people are employed
to provide for our basic needs. Many jobs were lost,
but innovation also created countless new professions.
Now, with the advent of the information age, humanity
is experiencing another great shift, where menial service
jobs are replaced by software, en masse. Like during
the industrial revolution, critical voices fear that the
loss of jobs may outpace job creation [4]. They argue
that new innovations in information technology often
have an immediate, global impact and can generate
tremendous value, while only involving a few people in
their inception. For example, the automotive industry
has been a strong driver of innovation throughout the
industrial revolution, and by 1979, General Motors
employed over 800 000 workers and generated 12
billion USD of revenue (adjusted for inflation) [7]. In
2016, Alphabet (a.k.a. Google) earned 19 billion
USD, while employing just 72 000 workers [8]. Many
service industry jobs are already being replaced by
AI: Middle management, accounting, risk assessment,
human resources – in all these professions, humans
are competing with artificial intelligence. Software
developers have so far been spared, but this is likely
subject to change [4].

Traditionally, computers were known for excelling at
those kinds of tasks, which humans find difficult, such
as complex mathematical computations or operating on
large datasets. The current wave of machine learning,
however, specifically aims to imitate human skills.
Problems such as recognizing objects in images or
distinguishing spoken words from background noise
come naturally to us humans, while previous attempts
to manually replicate these skills in software have been
met with limited success. Today however, as we are
no longer writing explicit solutions for these problems
and instead let computers learn by themselves, they are
rapidly catching up with us.

In most cases, the models imitating human skills
are trained on what essentially constitutes ‘previous
experience’. That is, the models are provided with
data and some human decisions, such that they learn to
make the right decisions autonomously, given specific
circumstances. Ergo, we argue, all that is needed for
these approaches to start imitating human programmers
is the quality of observational data available to the
systems. Consequently, we make the following
assumption and pursue its consequences throughout this
paper:

A modern AI that can observe every interaction of
human programmers for long enough will eventually
be able to imitate their work.

Based on this assumption, we discuss the impact
of the continuing progress being made in machine
learning, and how it will affect the software engineering
profession. We particularly reason for three specific
consequences that will profoundly change the field of
software engineering:

1. Software developers become tightly integrated
with artificial intelligence. They become, to a
certain degree, Cyborg developers.

2. To facilitate this process, invasive but unobtrusive
monitoring methods will become more
widespread.

3. Teaching software engineering re-orients itself to
focus on innovation and the requirements of not
the current, but the future generation.

3. Learning by watching a million
teachers

The vast majority of effective AI systems today
use some form of supervised machine learning. Large
datasets of high quality are necessary to train these
systems, but their resulting capabilities are exceptional.

A common example is the ‘Captcha’ mechanism on
websites where human visitors are asked to perform a
small task that is hard to automate using hand-written
software: for example, reading a blurry line of printed
text, or selecting all images that contain a certain object,
like a car or a road sign. These tasks are used to
prevent simple crawlers from accessing and wasting
online resources. However, a beneficial and certainly not
unintended side effect of these ‘Captcha’ mechanisms
is that the human inputs can be used to actively train
an artificial intelligence on the given task. By this

mechanism, properly scoped tasks are now being solved
using machine learning, one problem at a time.

But not only low-level tasks such as these are learned
by machines. Higher-level service industry jobs are also,
today, being imitated and replaced by AI: a US company
has built a project management software which, given
a formal description of a task, autonomously hires
freelancer with the necessary skills and coordinates their
effort. In a pilot study, their product oversaw the
creation of a 124-page research report for a Fortune 50
company, involving 23 freelancers, including writers,
topic experts and proofreaders [6]. Apart from the actual
end result, tools such as this may, in the future, be able
to not just take over coordinative management work, but
at the same time determine the skill level and quality of
work of individual contractors, such that it can prefer
better workers over weaker ones. Not only that: as it
splits a problem into clearly defined tasks, it can start
to correlate tasks and their human-supplied solutions,
slowly learning to provide certain solutions on its own,
without the need for a contractor.

What these systems have in common is that they
allow, or even actively elicit, human problem solving
skills for narrowly scoped tasks. And depending on the
problem domain, it may take fewer or more examples to
train a model that can imitate human behavior, but for
many of the menial management jobs and day-to-day
maintenance tasks, it appears to be just a matter of time.

4. The ‘Big Brother’ programming AI

Given the trend of artificial intelligence ‘watching’
humans perform certain tasks, it is not far-fetched to
assume that a similar trend will occur in software
engineering.

Imagine a software comprising an issue tracker and a
version control system. Issues are specified as formally
as possible, i.e., not just consisting of plain text and
severity, but capturing accurate information on affected
artifacts, actual and expected outcomes and other rich
metadata. Likewise, any change submitted to the version
control system is atomic (not mixing up several changes
in one commit), and described with additional metadata,
as well as the issue it relates to. The software classifies
issues based on their metadata and distributes them
to individual developers. Over time, given enough
examples, and correlating the consequences of each
change to future issues, it can not only learn the
strengths and weaknesses of individual developers but
also learn to correlate issues and their codified solutions.
After a while, simple issues (such as “prepare repository
for next major release”) can be performed automatically,
while issues requiring human intervention can be routed

to those employees most likely coming up with the best
solution.

But why stop there? Given that there are millions
of developers using the same programming language
and similar frameworks (say, Java and the Android
Development Kit), it is likely that any one problem
has been solved dozens of times by different people,
somewhere in the world. Assuming a hypothetical ‘Big
Brother’ software is able to track every keystroke, every
application used and every website visited, it should
be able to discern signal from noise by comparing
interactions of different users and consequently imitate
relevant behavior. Tie in user-reported errors (e.g.,
mobile app ratings), and the system becomes able to
exhibit self-correcting behavior. Once such a ‘Big
Brother’ programming AI has been developed and
widely distributed, for example as part of a major IDE,
it is only a matter of time until some proportion of
issues will not require human intervention to be solved
anymore.

Naturally, there are several problems inhibiting the
development of such tools. There exist ethical and
legal issues with monitoring employee activity [5], thus
the blanket-surveillance of developer interaction with
the machine may be unfeasible in the near future.
With developers switching between work items and
brief social media- or communication breaks, discerning
signal from noise may also be difficult.

5. Augmenting human developers

That said, early adopters are already willing to
let artificial intelligence peek over their shoulder.
For example, FlowTracker [12] captures all developer
activity (keystrokes, mouse movements and scrolling),
analyzing it on a personalized basis to determine how
busy a developer is. Several hundred test subjects used
FlowTracker in an industrial, long-term study, and 80%
of questioned users suggested that they will continue
using the software beyond the duration of the study.
Biometric sensors, which monitor the physical state of
a developer are being implemented in early lab studies.
For example, heart rate variability and electrodermal
activity have been directly linked to perceived task
difficulty [10], and may help the computer to provide
adaptive help.

Indeed, while workforce monitoring is overcoming
privacy- and other related issues, customers of products
such as Facebook or GMail willingly open their
private and public lives to data-driven analysis already.
Products such as ‘Google Assistant’ only ever get better
with increased usage.

If we can solve privacy-related matters, a ubiquity

Table 1. An example of plain-text input, lexing instructions, resulting tokens, and corresponding annotations
Input List<Throwable> errors = TestHelper.trackPluginErrors();
Lexing 000110000000011 000001 1 0000000001100000000000000001111
Tokens [List] [<] [Throwable] [>] [errors] [=] [TestHelper] [.] [trackPluginErrors] [(] [)] [;]

Annotation
[ClassOrInterfaceType|14] [TypeArguments|15] [ClassOrInterfaceType|18] [TypeArguments|15] [VariableDeclaratorId|15] [VariableDeclarator|14]

[Primary|19] [Expression|17] [Expression|17] [Expression|16] [Expression|16] [LocalVariableDeclarationStatement|11]

of self-improving AI agents could be highly beneficial
to software developers. It could 1. prevent mistakes
2. distribute work-loads on a personalized basis,
exploiting the strengths and considering the preferences
of any specific developer, and 3. over time, given a
‘Big Brother‘ type AI, even provide partial or complete
implementations.

6. Can computers learn to program?

Of particular interest (and considerable difficulty) is
the last of the points above. Can we teach computers
how to program? What does it mean to program in this
context? In dealing with these questions, we performed
two experiments which we briefly summarize here.

6.1. Imitating how humans read code

In one experiment [3], we first considered
how humans learn to program. Any respectable
programming tutorial will start with a “Hello, World!”
and explain the different parts of the respective source
code. For example, in Python, the instructor may write
print (”Hello , World!”) and explain that print is a
function call, the opening and closing brackets hold
parameters to be passed and that ”Hello , World!” is a
string, as indicated by the double quotes. Thus, the first
thing a student learns is to recognize different pieces of
code and how they relate to each other.

We were wondering if an AI could learn to imitate
this ‘first lesson’ of learning how to program. To answer
this question, we trained a recurrent neural network
to 1. recognize individual tokens in source code, and
2. annotate each token with its type and probable depth
in the original AST. To obtain the necessary training
data, we wrote a data-extraction tool to download and
parse 1000 Java projects from GitHub. While parsing
the source code, the tool generates the following data on
a line-by-line basis:

1. the original plain-text source code,

2. lexing instructions indicating the token
boundaries in the plain-text sequence,

3. the source code tokens (as delimited by applying
the lexing instructions), and

4. the type of each token as well as its depth in the
parsed AST.

The tool provided us with over 50 million samples which
we fed into two separate recurrent neural networks; one
to recognize the token boundaries in the original plain
text (with a per-word perplexity of 1.11) and one to
annotate the tokens (perplexity: 1.28). The two models
work in unison to tokenize and annotate plain text source
code, as shown in ?? – much like a novice programmer
would do.

This result begs the question, what else we could
teach these models. Could we teach how variable
assignment works? How types are resolved? How
imports are sourced? One small-scoped problem at a
time, we may teach an orchestra of models to not only
process source code like a traditional compiler (which
is essentially just a ‘dumb automaton’), but to gain
some sort of inherent understanding of software, like
a human programmer has. Based on such a learning
process, we may obtain combined models which are able
to autonomously make higher-level decisions which are
yet reserved for human developers.

6.2. Character-level source code generation

Complementing our experiment on reading source
code, we performed another study with the goal
of writing source code [2]. Previous work on
natural language text has shown that recurrent neural
networks are able to internalize not only syntactic
and grammatical structures, but, to some degree,
semantic relationships in natural language texts. For
example, Sutskever et al. [11] trained a deep RNN
on a text corpus from Wikipedia, obtaining a model
that is able to synthesize a stream of text which
convincingly resembles human-written text, containing
few grammatical errors and comprising semantically
coherent sentences and paragraphs.

We applied a similar model to a corpus of plain-text
Java source code, resulting in a model which synthesizes
a continuous stream of Java code given a few seed
characters. The model has no explicit knowledge of
syntax and grammar, yet it is able to correctly chain
single characters into long sequences of what looks like
human-written source code at first glance, including
comments. While the generated source code is not
compilable (and frequently contains complete, perfect
recitals of the Apache license, which appears in many
source files), it indicates that neural networks have the
capacity to build an internal representation of what

constitutes the Java programming language.

6.3. Conclusion: we need data

Both these experiments illustrate two important,
although unsurprising, realizations about how machine
learning applies to programming tasks:

1. The artificial intelligence is able to match humans
in qualitative terms. This means that, for correctly
scoped problems, the machine can perfectly
imitate, but hardly outperform a human in terms
of the provided solution. Naturally, it can produce
solutions at a much higher speed, but it is doubtful
how this helps with programming issues.

2. Large amounts of high-quality training data are
required. Bad examples result in a badly trained
model.

However, compared to other industries, software
engineering actually has a good chance at capturing
all relevant data, as our profession is largely digital in
the first place. However, today’s issue trackers and
version control tools rely mostly on simple plain-text
descriptions. Likewise, specifications are usually
informal or at best semi-structured. If we want to enable
the next generation of recommender systems, we need to
start thinking about how we can enable machine learning
to increasingly learn from the day-to-day behavior of
software developers in the wild.

7. Symbiosis of programmer and AI

Assuming a trend towards ‘Big Brother’ type AI
systems, which continuously monitor developer activity,
we expect that one consequence would be a gradual
shift in the responsibilities and day-to-day activities
of regular software developers. Today, software
developers have to make a lot of decisions. They
are heavily involved in bug triaging and make all the
choices regarding utilized technologies, work-flows,
deployment, etc, all the while relying on small-scale,
narrowly scoped recommender systems (e.g., code
completion, test selection, service discovery). As AI is
able to take over more and more of these responsibilities,
the role of the developer will not disappear, although it
will move, and possibly shrink. In a way, a role inversion
will slowly occur, as the AI is still unable to consider
overarching functional requirements and other complex
interdependencies within a software project. While
today, the developer guides these intelligent systems to
the required solution, in the future an AI may guide the
human to perform the last, necessary tasks and supply
missing pieces of information which it is unable to

gather on its own. Last but not least, there is evidence
suggesting that humans readily accept instructions from
a computer, sometimes more willingly than from other
humans [9]. Apart from a core team of data scientists,
who curate, maintain and extend the AI, regular software
developers (who are not working directly on the AI
systems) will increasingly find themselves acting in two
roles:

1. as the glue holding together different autonomous
recommender systems, synthesizers and other
adaptive systems and their data sources, and

2. as the primary interface to other human actors.

8. Limits of AI

Why then, have software engineers not yet been
replaced with programming AIs? Apart from
the obvious problems with privacy and concrete
implementation, software development, to a certain
degree, is already a largely non-repetitive, and
often thoroughly creative profession. As mentioned
previously, machine learning can generally match
humans qualitatively (and outpace them quantitatively),
but it can rarely outperform them, because it learns from
human examples. Reinforcement learning may improve
upon this in certain situations, but even assuming a ‘Big
Brother’ type of AI, it is hard to imagine it coming up
with a new app to solve a new and unique every-day
problem, or design a new game, or come up with a new
story-line that is not quickly recognized by humans as
being recycled from previous examples. Undoubtedly,
attempts to do so will be made, and for certain niches
(say, children’s entertainment or education), success is
not unlikely. However, attempts to train deep learning
models to generate music or visual art are severely
limited and much less impressive than their properly
scoped problem solving counterparts being introduced
in industry today.

9. Information age software engineering
education

While it is natural to interpret some of the
predictions made in this paper as bleak and detrimental
to the software engineering profession, AI may actually
free us from many of the difficulties that make
software development tedious. However, the software
engineering profession must adapt to the inevitable
change heading for it.

If any problem that has been solved a sufficient
number of times will become solvable by an AI, does
it really make sense to teach existing programming

languages and best practices to our students? Does
it make sense to teach Java and design patterns?
An AI that learns from real-world developer behavior
will certainly weight interactions of experienced
programmers (causing fewer regressions and needing
less time to implement solutions) more strongly, while
novice programmers may tend to introduce additional
noise and faults, which the AI will weigh less. A
junior software engineer may need several years to
attain expert status, while learning from a handful of
peers and from their own experience. However, an AI
being trained using examples provided by thousands or
millions of developers will certainly outpace the junior
software engineer sooner rather than later.

Today, the world still lacks millions of software
developers and information system experts: a 2015
report estimates a shortfall of 1.5 million experts in
the information security domain alone [1]. However,
observing the long-term trend, many of the people we
educate today may become jobless half-way through
their careers. Today’s need for software developers is
as much a symptom of slow-moving higher education in
the past as their anticipated obsolescence in the future.
We certainly need developers to keep an AI running, but
today already, these are often mathematicians and other
domain experts, which have little in common with the
average software engineer. But assuming that AI can
take over more and more repetitive tasks, the need for
“code monkeys” will decrease rapidly. Instead, we need
to educate innovators and, naturally, experts in machine
learning and related fields.

10. Conclusion

Early experimental research suggests that many
every-day software engineering tasks, such as bug
triaging, reverting changes that introduce regressions,
or even writing code, can likely be imitated by a
sufficiently informed AI. Implementation and privacy
issues are likely to be a temporary hold-up, as the sort of
paradigm shift we currently experience cannot typically
be stopped by legislation and as examples like Facebook
show that many people will drop privacy concerns at
their convenience.

We did not delve into the overarching question
regarding the eventual economic outcome of the
ongoing revolution. Some say that with productivity
further outpacing available labour, we may eventually
find ourselves in an economy with few jobs and an
increasingly poor population that cannot afford the
goods it produces. Some say we need some form of
basic income.

The jury is still out, but one thing is certain:

The progress of AI is unstoppable and it will heavily
influence the way we develop software in the decades to
come.

References

[1] 2015 (isc)² global information security workforce study.
https://iamcybersafe.org/wp-content/
uploads/2017/01/FrostSullivan-ISC%
C2%B2-Global-Information-Security-
Workforce-Study-2015.pdf, 2015.

[2] C. V. Alexandru. Guided code synthesis using deep
neural networks. In ACM SIGSOFT International
Symposium on the Foundations of Software Engineering
(FSE), Seattle, 2016.

[3] C. V. Alexandru, S. Panichella, and H. Gall. Replicating
parser behavior using neural machine translation.
In 25th IEEE International Conference on Program
Comprehension (ICPC), Buenos Aires, Argentina, 2017.

[4] E. Brynjolfsson and A. McAfee. The Second Machine
Age: Work Progress, and Prosperity in a Time of
Brilliant Technologies. W. W. Norton & Company, New
York, NY, USA, 2014.

[5] V. J. Ella. Employee monitoring and workplace privacy
law. National Symposium on Technology in Labor &
Employment Law, 2016.

[6] D. Fidler. Here’s how managers can be replaced
by software. https://hbr.org/2015/04/
heres-how-managers-can-be-replaced-
by-software, 2015.

[7] Fortune. Fortune 500: General motors.
http://archive.fortune.com/magazines/
fortune/fortune500 archive/snapshots/
1979/563.html 3.5B USD revenue, adjusted to 2016
USD: 12B, 2007.

[8] Fortune. Fortune 500: Alphabet. http://
fortune.com/fortune500/alphabet/, 2017.

[9] M. C. Gombolay and J. A. Shah. Increasing the adoption
of autonomous robotic teammates in collaborative
manufacturing. In International Conference on
Human-Robot Interaction (HRI) Pioneers Workshop,
2014.

[10] S. C. Müller and T. Fritz. Using (bio)metrics to
predict code quality online. In Proceedings of the
38th International Conference on Software Engineering,
ICSE ’16, pages 452–463, New York, NY, USA, 2016.
ACM.

[11] I. Sutskever, J. Martens, and G. Hinton. Generating
text with recurrent neural networks. In Proceedings of
the 28th International Conference on Machine Learning
(ICML-11), ICML ’11, pages 1017–1024, New York,
NY, USA, June 2011. ACM.

[12] M. Züger, C. Corley, A. N. Meyer, B. Li, T. Fritz,
D. Shepherd, V. Augustine, P. Francis, N. Kraft,
and W. Snipes. Reducing interruptions at work: A
large-scale field study of flowlight. In Proceedings of the
2017 CHI Conference on Human Factors in Computing
Systems, CHI ’17, pages 61–72, New York, NY, USA,
2017. ACM.

https://iamcybersafe.org/wp-content/uploads/2017/01/FrostSullivan-ISC%C2%B2-Global-Information-Security-Workforce-Study-2015.pdf
https://iamcybersafe.org/wp-content/uploads/2017/01/FrostSullivan-ISC%C2%B2-Global-Information-Security-Workforce-Study-2015.pdf
https://iamcybersafe.org/wp-content/uploads/2017/01/FrostSullivan-ISC%C2%B2-Global-Information-Security-Workforce-Study-2015.pdf
https://iamcybersafe.org/wp-content/uploads/2017/01/FrostSullivan-ISC%C2%B2-Global-Information-Security-Workforce-Study-2015.pdf
https://hbr.org/2015/04/heres-how-managers-can-be-replaced-by-software
https://hbr.org/2015/04/heres-how-managers-can-be-replaced-by-software
https://hbr.org/2015/04/heres-how-managers-can-be-replaced-by-software
http://archive.fortune.com/magazines/fortune/fortune500_archive/snapshots/1979/563.html
http://archive.fortune.com/magazines/fortune/fortune500_archive/snapshots/1979/563.html
http://archive.fortune.com/magazines/fortune/fortune500_archive/snapshots/1979/563.html
http://fortune.com/fortune500/alphabet/
http://fortune.com/fortune500/alphabet/

