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Quality Management

Please provide us with your feedback 
regarding the Informatik 1 lecture!

https://qmsl.uzh.ch/de/XELN4 (DE)

https://qmsl.uzh.ch/en/XELN4 (EN)

The links are also provided in the OLAT 
forum in the post “Course Evaluation”.
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Informatik I HS 18
“Live Coding”

Fallout 3 Word Puzzle

Carol Alexandru

Institut für Informatik

http://www.ifi.uzh.ch/seal/teaching/courses/info1.html
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Demo
http://mitchellthompson.net/demos/terminal /

http://mitchellthompson.net/demos/terminal/
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What’s the puzzle? - Understanding functionality



Fallout 3 Word Puzzle: Basic Features

1. Display n possible passwords
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• Show choices
• While attempts is not 0:

1. Reading user input
2. Check if password is correct
3. Exit program if password correct

TOOL COLD ROWS SOME SHOT MEGA ARMS
> COLD
> Access denied!
> 3 attempts remaining...
> TOOL
> Access granted!



Functionality, Part 2: More feedback!
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TOOL COLD ROWS SOME SHOT MEGA ARMS
> COLD
> 1/4 correct.
> Access denied!
> 3 attempts remaining...
> TOOL
> 4/4 correct.
> Access granted!

• Show choices
• While attempts is not 0:

1. Reading user input
2. Check if password is correct
3. Show how many characters are correct
4. Exit program if password correct
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• In English:
• For every character index from 0 to how long the password is, compare the 

characters in guess and password, and increment a counter if they match
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Now the hard part: the user interface!



Fallout 3 Word Puzzle: UI

1. Header text
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Fallout 3 Word Puzzle: UI

1. Header text

2. Attempts counter

3. Random ‘hex codes’

4. Passwords embedded in random 
‘garbage’ text

5. History, including:
1. Previously entered guesses

2. Access denied/granted

3. Feedback (x/y correct)
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UI, Part 0: Separation of concerns
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What if we want to use the same UI for a different but similar game?
What if we want to play the same game but with a different UI?
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Game Logic User interaction

Which words should be selected and displayed?

Which is the correct password?

How many attempts are left?

How many characters were correctly guessed?

What if we want to use the same UI for a different but similar game?
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Game Logic User interaction

Which words should be selected and displayed? Printing the words and feedback on screen

Which is the correct password? Accepting user input

How many attempts are left? Styling and Layout

How many characters were correctly guessed?

What if we want to use the same UI for a different but similar game?
What if we want to play the same game but with a different UI?



UI, Part 0: Separation of concerns
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Game Logic User interaction

Which words should be selected and displayed? Printing the words and feedback on screen

Which is the correct password? Accepting user input

How many attempts are left? Styling and Layout

How many characters were correctly guessed?

What if we want to use the same UI for a different but similar game?
What if we want to play the same game but with a different UI?

→ Let’s refactor the existing code to go into 2 separate classes!
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• UI drawing options:
• Redraw entire screen

• Easy to program, inefficient

• Redraw only parts that change
• Hard to program, more efficient

• Typically a mix of both is applied

• This is true for all UIs, e.g.
• Web browser

• 3D games

• Mobile phone interface
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• What do we need?
• “0x” every time

• 4 digits after that

• 17 rows, 2 columns = 34 in total

• For simplicity, we will generate 
“0x0000” columns*rows times

• Generating random hex codes 
left as an exercise for you :)
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• Printing the history
• Only print as many history lines as 

there are rows of hex/code

• If there is not enough history, print 
nothing there

• Latest history at the bottom

• Last line should not have a newline
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Future work
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• Alternative game rules
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More things to do!

• Exercise 11
• Random hex codes

• More fun choice of words (more shared characters)

• Alternative game rules

• And furthermore…
• Removal of duds / replenishing allowance

• Moving the cursor instead of redrawing the entire screen
• Using terminal commands or ncurses

• Different UI (for example using Kivy)
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Some advice for the exam and the future

• Learning by doing
• Write your own programs from scratch!

• No copying from friends

• No «reading and understanding» without any writing

• Keep practicing, solve small problems
• Write a text-based adventure game

• Write a simple, interactive calculator ( + - / * etc.)

• Solve the exercises by yourself! (And don’t memorize them)

• It’s hard for everyone in the beginning, just keep practicing!
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Informatik I Live Coding
Thanks for your attention and good luck!
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