
1

Quality Management

Please provide us with your feedback
regarding the Informatik 1 lecture!

https://qmsl.uzh.ch/de/XELN4 (DE)

https://qmsl.uzh.ch/en/XELN4 (EN)

The links are also provided in the OLAT
forum in the post “Course Evaluation”.

2

https://qmsl.uzh.ch/de/XELN4
https://qmsl.uzh.ch/en/XELN4

Informatik I HS 18
“Live Coding”

Fallout 3 Word Puzzle

Carol Alexandru

Institut für Informatik

http://www.ifi.uzh.ch/seal/teaching/courses/info1.html

3

4

5

6

Demo
http://mitchellthompson.net/demos/terminal /

http://mitchellthompson.net/demos/terminal/

7

What’s the puzzle? - Understanding functionality

Fallout 3 Word Puzzle: Basic Features

1. Display n possible passwords

8

Fallout 3 Word Puzzle: Basic Features

1. Display n possible passwords

2. Allow the user to enter a password

9

Fallout 3 Word Puzzle: Basic Features

1. Display n possible passwords

2. Allow the user to enter a password

3. Process the user-provided
password and give feedback:
• Access granted or denied

10

Fallout 3 Word Puzzle: Basic Features

1. Display n possible passwords

2. Allow the user to enter a password

3. Process the user-provided
password and give feedback:
• Access granted or denied

• How many letters of the password
match the correct password? (e.g. 2/5)

11

Fallout 3 Word Puzzle: Basic Features

1. Display n possible passwords

2. Allow the user to enter a password

3. Process the user-provided
password and give feedback:
• Access granted or denied

• How many letters of the password
match the correct password? (e.g. 2/5)

4. End the program if
• No more tries left

• Correct password found ✓

12

Fallout 3 Word Puzzle: Basic Features

1. Display n possible passwords

2. Allow the user to enter a password

3. Process the user-provided
password and give feedback:
• Access granted or denied

• How many letters of the password
match the correct password? (e.g. 2/5)

4. End the program if
• No more tries left

• Correct password found

13

Fallout 3 Word Puzzle: Ingredients

14

...
berry
mazda
verse
beyond
detail
switch
...

Word list
from

Internet

Fallout 3 Word Puzzle: Ingredients

15

...
berry
mazda
verse
beyond
detail
switch
...

Word list
from

Internet

TOOL COLD ROWS SOME SHOT MEGA ARMS
> COLD
> 1/4 correct.
> Access denied!
> 3 attempts remaining...
> TOOL
> 4/4 correct.
> Access granted!

Game logic
Processing input and giving feedback

Exiting the program eventually

Fallout 3 Word Puzzle: Ingredients

16

...
berry
mazda
verse
beyond
detail
switch
...

Word list
from

Internet

TOOL COLD ROWS SOME SHOT MEGA ARMS
> COLD
> 1/4 correct.
> Access denied!
> 3 attempts remaining...
> TOOL
> 4/4 correct.
> Access granted!

Game logic
Processing input and giving feedback

Exiting the program eventually

T O O L

C O L D

Comparing
characters of
the solution

Fallout 3 Word Puzzle: Ingredients

17

...
berry
mazda
verse
beyond
detail
switch
...

Word list
from

Internet

TOOL COLD ROWS SOME SHOT MEGA ARMS
> COLD
> 1/4 correct.
> Access denied!
> 3 attempts remaining...
> TOOL
> 4/4 correct.
> Access granted!

Game logic
Processing input and giving feedback

Exiting the program eventually

T O O L

C O L D

Comparing
characters of
the solution

Functionality

Fallout 3 Word Puzzle: Ingredients

18

...
berry
mazda
verse
beyond
detail
switch
...

Word list
from

Internet

TOOL COLD ROWS SOME SHOT MEGA ARMS
> COLD
> 1/4 correct.
> Access denied!
> 3 attempts remaining...
> TOOL
> 4/4 correct.
> Access granted!

Game logic
Processing input and giving feedback

Exiting the program eventually

T O O L

C O L D

Comparing
characters of
the solution

Functionality

Decorative components
Random characters
History formatting

Fallout 3 Word Puzzle: Ingredients

19

...
berry
mazda
verse
beyond
detail
switch
...

Word list
from

Internet

TOOL COLD ROWS SOME SHOT MEGA ARMS
> COLD
> 1/4 correct.
> Access denied!
> 3 attempts remaining...
> TOOL
> 4/4 correct.
> Access granted!

Game logic
Processing input and giving feedback

Exiting the program eventually

T O O L

C O L D

Comparing
characters of
the solution

Functionality

Decorative components
Random characters
History formatting

User Interface

Functionality, Part 1: Getting the words

20

...
berry
mazda
verse
beyond
detail
switch
...

1. Read word list

Functionality, Part 1: Getting the words

21

...
berry
mazda
verse
beyond
detail
switch
...

1. Read word list
2. Filter for words

with correct length

Functionality, Part 1: Getting the words

22

...
berry
mazda
verse
beyond
detail
switch
...

1. Read word list
2. Filter for words

with correct length

...
berry
mazda
verse
clear
james
linux
...

Functionality, Part 1: Getting the words

23

...
berry
mazda
verse
beyond
detail
switch
...

1. Read word list
2. Filter for words

with correct length

...
berry
mazda
verse
clear
james
linux
...

3. Pick n words to show berry
mazda
verse
clear

Functionality, Part 1: Getting the words

24

...
berry
mazda
verse
beyond
detail
switch
...

1. Read word list
2. Filter for words

with correct length

...
berry
mazda
verse
clear
james
linux
...

3. Pick n words to show
4. Pick one of these to

be the password

berry
mazda
verse
clear

Functionality, Part 1: Getting the words

25

...
berry
mazda
verse
beyond
detail
switch
...

1. Read word list
2. Filter for words

with correct length

...
berry
mazda
verse
clear
james
linux
...

3. Pick n words to show
4. Pick one of these to

be the password

berry
mazda
verse
clear

Functionality, Part 2: Basic interaction

26

TOOL COLD ROWS SOME SHOT MEGA ARMS
> COLD
> Access denied!
> 3 attempts remaining...
> TOOL
> Access granted!

• Show choices
• While attempts is not 0:

1. Reading user input
2. Check if password is correct
3. Exit program if password correct

Functionality, Part 2: Basic interaction

27

• Show choices
• While attempts is not 0:

1. Reading user input
2. Check if password is correct
3. Exit program if password correct

TOOL COLD ROWS SOME SHOT MEGA ARMS
> COLD
> Access denied!
> 3 attempts remaining...
> TOOL
> Access granted!

Functionality, Part 2: More feedback!

28

TOOL COLD ROWS SOME SHOT MEGA ARMS
> COLD
> 1/4 correct.
> Access denied!
> 3 attempts remaining...
> TOOL
> 4/4 correct.
> Access granted!

• Show choices
• While attempts is not 0:

1. Reading user input
2. Check if password is correct
3. Show how many characters are correct
4. Exit program if password correct

Functionality, Part 2: Comparing characters?

29

• In English:
• For every character index from 0 to how long the password is, compare the

characters in guess and password, and increment a counter if they match
T O O L

C O L D

Password

Guess

Functionality, Part 2: Comparing characters?

30

• In English:
• For every character index from 0 to how long the password is, compare the

characters in guess and password, and increment a counter if they match

• In python:
matching = 0
for i in range(length):

if guess[i] == password[i]: matching += 1

T O O L

C O L D

Password

Guess

Functionality, Part 2: Comparing characters?

31

• In English:
• For every character index from 0 to how long the password is, compare the

characters in guess and password, and increment a counter if they match

• In python:
matching = 0
for i in range(length):

if guess[i] == password[i]: matching += 1

T O O L

C O L D

Password

Guess

Functionality: done!

32

...
berry
mazda
verse
beyond
detail
switch
...

Word list
from

Internet

TOOL COLD ROWS SOME SHOT MEGA ARMS
> COLD
> 1/4 correct.
> Access denied!
> 3 attempts remaining...
> TOOL
> 4/4 correct.
> Access granted!

Game logic
Processing input and giving feedback

Exiting the program eventually

T O O L

C O L D

Comparing
characters of
the solution

33

Now the hard part: the user interface!

Fallout 3 Word Puzzle: UI

1. Header text

34

Fallout 3 Word Puzzle: UI

1. Header text

2. Attempts counter

35

Fallout 3 Word Puzzle: UI

1. Header text

2. Attempts counter

3. Random ‘hex codes’

36

Fallout 3 Word Puzzle: UI

1. Header text

2. Attempts counter

3. Random ‘hex codes’

4. Passwords embedded in random
‘garbage’ text

37

Fallout 3 Word Puzzle: UI

1. Header text

2. Attempts counter

3. Random ‘hex codes’

4. Passwords embedded in random
‘garbage’ text

5. History

38

Fallout 3 Word Puzzle: UI

1. Header text

2. Attempts counter

3. Random ‘hex codes’

4. Passwords embedded in random
‘garbage’ text

5. History, including:
1. Previously entered guesses

39

Fallout 3 Word Puzzle: UI

1. Header text

2. Attempts counter

3. Random ‘hex codes’

4. Passwords embedded in random
‘garbage’ text

5. History, including:
1. Previously entered guesses

2. Access denied/granted

40

Fallout 3 Word Puzzle: UI

1. Header text

2. Attempts counter

3. Random ‘hex codes’

4. Passwords embedded in random
‘garbage’ text

5. History, including:
1. Previously entered guesses

2. Access denied/granted

3. Feedback (x/y correct)

41

UI, Part 0: Separation of concerns

42

What if we want to use the same UI for a different but similar game?
What if we want to play the same game but with a different UI?

UI, Part 0: Separation of concerns

43

Game Logic User interaction

What if we want to use the same UI for a different but similar game?
What if we want to play the same game but with a different UI?

UI, Part 0: Separation of concerns

44

Game Logic User interaction

Which words should be selected and displayed?

Which is the correct password?

How many attempts are left?

How many characters were correctly guessed?

What if we want to use the same UI for a different but similar game?
What if we want to play the same game but with a different UI?

UI, Part 0: Separation of concerns

45

Game Logic User interaction

Which words should be selected and displayed? Printing the words and feedback on screen

Which is the correct password? Accepting user input

How many attempts are left? Styling and Layout

How many characters were correctly guessed?

What if we want to use the same UI for a different but similar game?
What if we want to play the same game but with a different UI?

UI, Part 0: Separation of concerns

46

Game Logic User interaction

Which words should be selected and displayed? Printing the words and feedback on screen

Which is the correct password? Accepting user input

How many attempts are left? Styling and Layout

How many characters were correctly guessed?

What if we want to use the same UI for a different but similar game?
What if we want to play the same game but with a different UI?

→ Let’s refactor the existing code to go into 2 separate classes!

UI, Part 1: Header section and ‘print_screen()’

47

• UI drawing options:
• Redraw entire screen

• Easy to program, inefficient

UI, Part 1: Header section and ‘print_screen()’

48

• UI drawing options:
• Redraw entire screen

• Easy to program, inefficient

• Redraw only parts that change
• Hard to program, more efficient

• Typically a mix of both is applied

UI, Part 1: Header section and ‘print_screen()’

49

• UI drawing options:
• Redraw entire screen

• Easy to program, inefficient

• Redraw only parts that change
• Hard to program, more efficient

• Typically a mix of both is applied

• This is true for all UIs, e.g.
• Web browser

• 3D games

• Mobile phone interface

UI, Part 1: Header section and ‘print_screen()’

51

The program main loop will:
• Call print_screen() to:

1. Print the header

2. Print the attempts counter

3. Print the hex codes and code lines

4. Print the history

5. Print a prompt

UI, Part 1: Header section and ‘print_screen()’

52

The program main loop will:
• Call print_screen() to:

1. Print the header

2. Print the attempts counter

3. Print the hex codes and code lines

4. Print the history

5. Print a prompt

• Wait for user input (ENTER/RETURN)

UI, Part 1: Header section and ‘print_screen()’

53

The program main loop will:
• Call print_screen() to:

1. Print the header

2. Print the attempts counter

3. Print the hex codes and code lines

4. Print the history

5. Print a prompt

• Wait for user input (ENTER/RETURN)

• Add the user input to history

UI, Part 1: Header section and ‘print_screen()’

54

The program main loop will:
• Call print_screen() to:

1. Print the header

2. Print the attempts counter

3. Print the hex codes and code lines

4. Print the history

5. Print a prompt

• Wait for user input (ENTER/RETURN)

• Add the user input to history

• Call the game logic to check the guess

UI, Part 1: Header section and ‘print_screen()’

55

The program main loop will:
• Call print_screen() to:

1. Print the header

2. Print the attempts counter

3. Print the hex codes and code lines

4. Print the history

5. Print a prompt

• Wait for user input (ENTER/RETURN)

• Add the user input to history

• Call the game logic to check the guess

• Add the logic feedback to history

• Exit if guess correct, else repeat…

UI, Part 1: Header section and ‘print_screen()’

56

The program main loop will:
• Call print_screen() to:

1. Print the header

2. Print the attempts counter

3. Print the hex codes and code lines

4. Print the history

5. Print a prompt

• Wait for user input (ENTER/RETURN)

• Add the user input to history

• Call the game logic to check the guess

• Add the logic feedback to history

• Exit if guess correct, else repeat…

UI, Part 2: Generating hex codes

57

• What do we need?
• “0x” every time

• 4 digits after that

• 17 rows, 2 columns = 34 in total

UI, Part 2: Generating hex codes

58

• What do we need?
• “0x” every time

• 4 digits after that

• 17 rows, 2 columns = 34 in total

• For simplicity, we will generate
“0x0000” columns*rows times

UI, Part 2: Generating hex codes

59

• What do we need?
• “0x” every time

• 4 digits after that

• 17 rows, 2 columns = 34 in total

• For simplicity, we will generate
“0x0000” columns*rows times

• Generating random hex codes
left as an exercise for you :)

UI, Part 3: Generating “code”

60

• What do we need?
• The words separated (padded) by

random characters

• Split into pieces

UI, Part 3: Generating “code”

61

• What do we need?
• The words separated (padded) by

random characters

• Split into pieces

• Total size:
• line width * columns * rows

UI, Part 3: Generating “code”

62

• What do we need?
• The words separated (padded) by

random characters

• Split into pieces

• Total size:
• line width * columns * rows

• Total padding size:
• total - length of words

UI, Part 3: Generating “code”

63

• What do we need?
• The words separated (padded) by

random characters

• Split into pieces

• Total size:
• line width * columns * rows

• Total padding size:
• total - length of words

• Individual padding size:
• Total padding / #words + 1

UI, Part 3: Generating “code”

64

• What do we need?
• The words separated (padded) by

random characters

• Split into pieces

• Total size:
• line width * columns * rows

• Total padding size:
• total - length of words

• Individual padding size:
• Total padding / #words + 1

UI, Part 4: Formatting

65

• What do we need?
• Print hex codes

• Print lines

• Print history

UI, Part 4: Formatting

66

• What do we need?
• Print hex codes

• Print lines

• Print history

• But: The terminal prints line by
line!

UI, Part 4: Formatting

67

• What do we need?
• Print hex codes

• Print lines

• (Print history)

• But: The terminal prints line by
line!

• For every row, print correct parts
of the complete output
• Hex + code + Hex + code (+ history)

UI, Part 4: Formatting

68

• What do we need?
• Print hex codes

• Print lines

• (Print history)

• But: The terminal prints line by
line!

• For every row, print correct parts
of the complete output
• Hex + code + Hex + code (+ history)

UI, Part 4: Formatting (cont.)

69

• Printing the history
• Only print as many history lines as

there are rows of hex/code

• If there is not enough history, print
nothing there

• Latest history at the bottom

• Last line should not have a newline

UI, Part 4: Formatting (cont.)

70

• Printing the history
• Only print as many history lines as

there are rows of hex/code

• If there is not enough history, print
nothing there

• Latest history at the bottom

• Last line should not have a newline

71

Future work

More things to do!

• Exercise 11
• Random hex codes

• More fun choice of words (more shared characters)

• Alternative game rules

72

More things to do!

• Exercise 11
• Random hex codes

• More fun choice of words (more shared characters)

• Alternative game rules

• And furthermore…
• Removal of duds / replenishing allowance

73

More things to do!

• Exercise 11
• Random hex codes

• More fun choice of words (more shared characters)

• Alternative game rules

• And furthermore…
• Removal of duds / replenishing allowance

• Moving the cursor instead of redrawing the entire screen
• Using terminal commands or ncurses

• Different UI (for example using Kivy)

74

Some advice for the exam and the future

• Learning by doing
• Write your own programs from scratch!

• No copying from friends

• No «reading and understanding» without any writing

• Keep practicing, solve small problems
• Write a text-based adventure game

• Write a simple, interactive calculator (+ - / * etc.)

• Solve the exercises by yourself! (And don’t memorize them)

• It’s hard for everyone in the beginning, just keep practicing!

75

76

Informatik I Live Coding
Thanks for your attention and good luck!

Quality Management

Please provide us with your feedback
regarding the Informatik 1 lecture!

https://qmsl.uzh.ch/de/XELN4 (DE)

https://qmsl.uzh.ch/en/XELN4 (EN)

The links are also provided in the OLAT
forum in the post “Course Evaluation”.

77

https://qmsl.uzh.ch/de/XELN4
https://qmsl.uzh.ch/en/XELN4

