
Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 1

Chapter 1

TinyTO: Two-way Authentication
for Constrained Devices
in the Internet-of-Things

Corinna Schmitt, Martin Noack, Burkhard Stiller

1.1 Abstract

Wireless Sensor Networks (WSN) will play a fundamental role in the future Internet-of-

Things (IoT), with millions of devices actively exchanging confidential information with

each other in a multi-hop manner. Ensuring secure end-to-end communication channels is

crucial to the success of innovative IoT applications, since they are essential to limit

attacks’ impacts and avoid exposure of information. End-to-end security solutions, like

IPsec or DTLS, do not scale well on WSN devices due to limited resources. In this

chapter the optimized two-way authentication solution for tiny devices (TinyTO)

combines end-to-end secured communication with WSN design. TinyTO provides

confidentiality and integrity within a fast and secure handshake, works with public-key

cryptography, and uses Elliptic Curve Cryptography (ECC) for message encryption and

authentication. ECC lowers the resource consumption and suits devices with 10 kByte

RAM and 100 kByte ROM. TinyTO does not need a network-wide shared secret, it is

application-independent, and it supports in-network aggregation. 1

1 This book chapter’s content is based on the Master Thesis [55] performed at the Communication Systems Group of the University of
Zurich, Switzerland.

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 2

Keywords: Wireless Sensor Network (WSN), Internet-of-Things (IoT), constrained

devices, end-to-end-security, two-way authentication, Elliptic Curve Cryptography

(ECC)

1.2 Introduction
Atzori et al. already stated in 2010 that the Internet-of-Things (IoT) consists of manifold

devices ranging from IP networks and servers to small devices like Wireless Sensor

Network devices (e.g., Radio-Frequency IDentification (RFID) tags or sensor nodes) [1].

Throughout the years especially Wireless Sensor Networks (WSN) consisting of

constrained devices with limited resources in memory, energy, and computational

capacity rapidly gain popularity. Thus, the questions raised how to integrate them into the

IoT and what challenges occur looking on their constrained resources [2], [3], and [4].

The number of possible deployments of such networks rises and more applications have a

need for confidential and authenticated communication within the network. This security

issue must be addressed due to the fact that sensitive information (e.g., Identity (ID),

names, or Global Positioning System (GPS) information) is linked almost everywhere to

all kinds of collected data, like temperature, sound, and brightness [5], [6], and [7].

Hence, collected data is no longer anonymous and often desired to be kept confidential.

Figure 1 illustrates this case for a building scenario, where environmental data is

collected in rooms and transmitted over multiple hops to the gateway in order to make the

data available to applications, such as the climate control, security office, and room

calendar (cf. Section 1.6). If room information can be retrieved by eavesdropping due to

missing security in the communication, an attacker would be aware of sensitive

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 3

information and could plan for example a burglary. Therefore, collected data must be

transmitted in a secure manner and/or over a secure channel providing end-to-end

security, giving only authorized entities (e.g., gateway, security system, or company

members) access to this confidential information. But how is this supposed to be done?

Keeping in mind that WSNs are part of the IoT and consist of constrained devices with

limited resources, any security risks are aggravated by WSN design and security

requirements of the IoT. Ultimately, an end-to-end security solution is required to achieve

an adequate level of security. Protecting data only after it leaves the scope of the local

network (e.g., WSN) is not sufficient.

Figure 1: Building Scenario.

Using existing technologies (e.g., Secure Sockets Layer (SSL)/Transport Layer

Security (TLS) [56] or cryptography [57, 58]) is the easiest way to achieve the goal of

secure data transmission. But this becomes increasingly challenging when looking at

WSN devices used today (e.g., RFIDs, heart beat monitor, or environmental sensors),

since their resources are strictly limited in memory, power, and computational capacity

[8] and [9]. Those WSN devices are divided into constrained classes corresponding to

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 4

their computational capacity and memory resources (cf. Table 1) [8]. Security support is

very challenging when assuming class 1 devices (e.g., TelosB [10]), as done for the

proposed solution TinyTO, because they offer only about 10 kByte RAM and 100 kByte

ROM. A standard approach for securing communications in the Internet is SSL/TLS [56]

relying on asymmetric cryptography like RSA requires many resources and com-

putational capacity and, thus, it is only feasible for at least class 2 devices (approximately

with 50 kByte RAM and 250 kByte ROM) [11]. An additional challenge is the device

diversity in today’s WSNs, the network size itself, and multiple requirements (e.g., life-

time or security support) due to the target application [3]. Developing a proper solution is

still a challenge, especially for security issues under consideration of the aforementioned

challenges and constraints. Depending on the application, it might be prohibited to reuse

existing solutions (e.g., military area). In general it is preferred to reuse standards or to

develop a generic solution that can be integrated without major modifications and shall

not require hardware features, like cryptographic coprocessors [11], certain radio

modules, or specific processors. On the software side, it shall not require a specific

protocol stack, but it shall rely on the most basic interfaces and be kept separated from

applications in order to allow simple integration into any used protocol stack with a

limited number of connection points (i.e., interfaces). Furthermore, all additional features

have to avoid affecting excessive performance and memory consumption.

Table 1: Device Classes (1 KiB = 1024 Byte). [8]

Name RAM ROM IP Stack Security

Class 0 << 10 KiB << 100 KiB NO NO

Class 1 ~10 KiB ~100 KiB CoAP [22], BLIP [59, 60] YES

Class 2 ~50 KiB ~250 KiB HTTP, TLS YES

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 5

Based on the aforementioned hardware and application requirements the proposed

security solution TinyTO, an optimized two-way authentication solution for tiny devices,

provides confidential data transfer with an additional integrity protection and data

authentication as well as a two-way authentication between sender and receiver of

messages, delivering end-to-end security even for class 1 devices. This is achieved by

introducing an efficient handshake with a direct authentication and key-exchange

between pairs of nodes in the network, setting up an encrypted data transfer with an

integrated encryption scheme. To minimize overall hardware requirements, the Elliptic

Curve Cryptography (ECC) is used for key generation, key exchange, encryption,

decryption, and signature generation.

Initially, each node is only familiar with the gateway. This relationship is

authenticated with an individual shared key (in TinyTO of 16 Byte length), which is only

known to the gateway and the node, and is deployed to all nodes during the initial

programming routine. Individual keys between nodes are established during the

handshake performance or can be requested by a node from the gateway (e.g., in case of

communication with aggregator).

TinyTO is designed to fit WSN requirements, is application independent, and

allows for an easy integration into existing applications due to its modular nature.

TinyTO explicitly supports in-network aggregation by enabling a full and secure end-to-

end communication without the need for a network-wide shared secret.

In the following, all data that is transmitted in data packets is considered to be

confidential. The remainder of this chapter is structured as follows. Section 1.3

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 6

introduces relevant work in the area of Pre-shared Keys (PSK), ECC usage, and

authentication without any special requirements to infrastructure. Afterwards, Section 1.4

presents the design decisions for TinyTO followed by a detailed description of the

proposed solution TinyTO within Section 1.5. The approach is evaluated in Section 1.6 in

respect to resource consumption, run time performance, and security aspects. Finally,

Section 1.7 summarizes the chapter.

1.3 Security Aspects and Solutions
The necessity to provide an end-to-end security solution in WSNs is not entirely new.

Over the years different approaches have emerged addressing various security issues.

Thus, an often quoted solution is pre-distributing symmetric keys. However,

flexibility of the deployment, connectivity between nodes, and resilience against attackers

is limited significantly [12]. Instead, Du et al. proposed a solution that applies public key

authentication with smaller resource demanding symmetric key operations, where a one-

way hash function is used to authenticate public keys. The basic idea is to allow for

individual nodes to verify that a transmitted public key matches the claimed identity,

without relying on a trusted third party (e.g., Certificate Authority (CA)). For an

exhausting mapping between all keys and identities a large number of keys and

certificates must be stored on every node, which is not feasible. Hence, a hash function

mapping from identity to the hash value of the corresponding public key is pre-shared.

Thus, only hash values and identities must be compared, which requires only a fraction of

the memory and computational power. This can be optimized further by using Merkle

Trees, where non-leaf nodes are labeled with the hash of those labels of its children [13].

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 7

ECC determines a promising option for WSN security solutions, in particular for

message encryption, since ECC can deliver strong security with only a small amount of

resources needed, as denoted in [14], [15], and [16]. A 192 bit ECC key provides the

same level of security as a RSA-key in range of 1024 bit to 2048 bit [17]. ECC is viable

for key generation, key exchange, encryption, decryption, and signatures, especially in

resource constrained applications.

Nie et al. developed the HIP DEX protocol for hop-by-hop secure connections

using a Diffie-Hellman key exchange for public keys and the AES encryption for the

session key exchange [18]. Computational requirements are reduced by limiting

cryptographic primitives to a minimum (e.g., removing expensive signature algorithms

and any form of cryptographic hash functions). Cryptographic challenges are included in

the first messages of the handshake proposed, in order to avoid flooding attacks. Identity

authentication is achieved by password verification within the handshake, where nodes

need to know their respective passwords in advance.

The PAuthKey protocol for application-level end-to-end security overcomes the

problem of two-way authentication (i.e. mutual authentication) between sensor nodes

[19]. It provides pervasive lightweight authentication and keying mechanisms, allowing

nodes to establish secure and authenticated communication channels with each other.

PAuthKey employs ECC-based implicit certificates, using a trusted central CA to handle

authentication security. Thus, it stands in contrast to other authentication approaches,

since certificates are generally considered to be resource challenging for WSNs and they

require additional hosting infrastructure (e.g., CA) or hardware (e.g., Trusted Platform

Module (TPM)) that can be integrated on the gateway or as external network entity.

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 8

The UbiSec&Sens project offered a tool-box of security-aware components. The

proposed Zero Common Knowledge (ZCK) protocol for authentication can establish

well-defined pairwise security associations between entities, even in the absence of a

common security infrastructure and pre-shared secrets [20]. ZCK authentication is based

on re-recognition between entities, allowing entities to authenticate any other entity

known from the past. This approach does not provide full security, as required, for

instance for financial transactions, since the first contact between entities cannot be

authenticated. However, in a scenario without any form of pre-established knowledge or

a trusted third party, ZCK provides the best level of security that can be achieved under

those limitations given. The ZCK protocol itself does not cater for a key exchange, but

can be used in combination with any form of cryptography, like Diffie-Hellman [21].

TinyDTLS – a DTLS-based solution for constrained (tiny) devices – provides

end-to-end security, but targets class 2 devices with additional memory resources [11]. In

this case the platform used includes a TPM, offering additional dedicated memory and

computational power for costly security functions. TinyDTLS performs a TLS

handshake, using X.509 certificates for authentication and Advanced Encryption

Standard (AES) for encryption, but still exceeds most alternatives due to the high amount

of available resources on its target devices. An advantage of this solution is the

compatibility with established standard protocols such as SSL/TLS [56].

The security aspects addressed by TinyTO are a direct result of the aforementioned

existing solutions and the final design decisions taken in the upcoming Section 1.4,

especially to counter Unknown Key-Share Attacks (UKSA) and Man-In-The-Middle

(MITM) attacks. Therefore, TinyTO’s goals are summarized as:

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 9

1. TinyTO brings end-to-end security to class 1 devices by providing two-way

authentication.

2. The TinyTO’s handshake design with two-way authentication adds immensely to

the security level without an involvement of certificates and certificate authority

(CA) in the network’s infrastructure or special hardware components like TPM on

the device.

3. TinyTO is protected against MITM attacks in contrast to other solutions for

class 1 devices like UbiSec&Sens and ZCK.

4. TinyTO allows for adding devices dynamically to the secure network in contrast

to static Merkle Trees.

5. TinyTO uses the Routing Protocol for Low power and Lossy Networks (RPL)

[60, 41], offering various measurements to improve routing, which can be used

for an attack detection and defense.

In order to address these goals TinyTO requires pre-programmed master keys for

authentication between devices and the gateway, RPL routing, and a support of an ECC

functionality for encryption and signing.

1.4 Design Decisions
An ideal solution for the two-way authentication should work generically on WSN nodes

of all classes, especially since the trend goes towards heterogeneous WSNs. However,

since WSN nodes are primarily designed to collect data, they prioritize cheapness and

long lifetime over processing power and memory size. Section 1.2 outlined that class 1

devices are per definition in RFC 7228 [8] very constrained to run security schemes

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 10

beyond very specific implementations mentioned in Section 1.3. Thus, the newly pro-

posed end-to-end security solution in this book chapter targets class 1 devices as a mini-

mum requirement. Even though class 1 devices can connect to the Internet without addi-

tional proxies or gateways, they are limited in communications with peers, if those peers

have a full protocol stack employed [8], which would overwhelm available resources of

class 1 devices. Therefore, class 1 devices require a specifically designed protocol stack

for constrained devices, like the Constrained Application Protocol (CoAP) over User

Datagram Protocol (UDP) [22]. Consequently, traditional security concepts for wireless

networks, such as Wired Equivalent Privacy (WEP) or TLS in their native form, are

unsuitable for WSNs as pointed out in [23].

One approach to adapt the traditional Public Key Cryptography (PKC) to WSNs

(cf. Section 1.3) is the integration of extra hardware into nodes [12] for performing

security operations and operating separated from main application and the node

processor. At a first glance, class 2 devices have more resources and can be used for this

purpose [8]. Among other functionality class 2 devices can deliver Internet-level security

by providing confidentiality and message authentication at high speed [11]. Hu et al. have

shown that a TPM chip outperforms most alternative solutions of similar resource levels

[24]. But on the second glance, as a drawback all nodes in a WSN need to be equipped

with an appropriate amount of resources (e.g., more RAM/ROM or using a TPM) to

apply the security scheme network wide.

A class 1 device cannot build and maintain a RFC-compliant Public Key

Infrastructure (PKI), while executing its main task – data collection and data forwarding

– that is already resource consuming in itself. One commonly used OpenSSL X.509

RSA-1024 certificate alone has a size of about 800 Byte [25] plus the corresponding RSA

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 11

key pair takes additional 800 Byte [26]. Assuming an aggregation support, n+2

certificates and n+2 key pairs for a degree of aggregation (doa) of n must be stored,

quickly filling the available memory. For example, following those calculations, an

aggregator with doa = 5 needs to store additional 11.2 kByte of data, only for certificates

and corresponding key pairs.

This extreme memory consumption can be avoided by utilizing PKC only

between designated node pairs (cf. Section 1.3), so that every node (aggregator or

collector) only has to store its own key pair and the public key of the given recipient (i.e.,

gateway or next hop). Gura et al. showed the general feasibility of PKC on simple 8-bit

processors as typically found within WSN nodes [27]. Therefore, TinyTO’s security

solution is based on PKC. Furthermore, memory and energy consumption savings are

gained by applying ECC instead of RSA (Rivest, Shamir, and Adleman) for key

generation, key exchange, signatures, and encryption. The National Institute of Standards

and Technology (NIST) recommendations SP 800-57 explain that a RSA key in range of

1024 bit to 2048 bit delivers the same security level as a 160 bit ECC key, i.e. the same

amount of resources is required to break them [17]. Even more, Arvinderpal et al. showed

that ECC implementations are faster and require less energy compared to equally secure

RSA algorithms [26].

In general, standardization bodies and researchers agree on a set of security

objectives that are necessary to achieve information security: Confidentiality, integrity,

authenticity, availability, and accountability of all messages as defined in [28], [29], and

[30]. Furthermore, a set of requirements that are particular to WSNs and the development

goals for TinyTO must be considered: (1) End-to-end security to avoid eavesdropping

and spoofing attacks meaning risk for the communication, because the underlying

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 12

network infrastructure is only partially under the user’s control and might be

compromised. Especially in a WSN, where multi-hop communications are common,

authentication and key exchange is an essential design goal. (2) In WSNs connections are

often not lossless. TCP (Transmission Control Protocol) erroneously invokes congestion

control mechanisms to counter the loss of packets, which drastically impacts the

performance and results in the UDP to serve as a better choice for WSNs [31]. (3) Two-

way authentication denotes two entities authenticating each other at the same time [32].

In the scope of WSNs, it is not sufficient to authenticate only the sender to the receiver,

but the sender has to be sure also about the identity and authorization of the potential

receiver of confidential information. (4) ECC is promising to save resources, when

performing PKC in TinyTO. For message encryption an Integrated Encryption Scheme

(IES) is applied, especially to harness the speed-advantage of symmetric encryption for

large amounts of data without the drawback of a repeated key exchange for every

transmission, which otherwise is necessary so that no secret credential is used more than

once.

Diffie et al. argued that an authentication protocol should always be linked to the

key exchange for later encryption; otherwise an attacker might just wait until the

authentication is completed to compromise the established communication channel

thereafter [33]. Canetti et al. summarized the objective of a key exchange protocol in a

very intuitive way: A key exchange protocol is secure, if it is impossible or at least

infeasible for an attacker to distinguish the generated key from a random value [34]. The

same fundamental concept can be applied to the Authenticated Key Exchange (AKE)

protocol. But additionally, entity (or party) authentication has to guarantee the identity of

communicating parties in the current communication session and, therefore, has to

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 13

prevent impersonation [35]. A good authentication protocol combines several properties

as explained by various researchers [36], [37], [38], [39], and [33] and is relevant for

TinyTO’s design: (1) Forward secrecy guarantees such that, if a generated private key of

one or more of the participating entities is compromised, the security of previous

communications is not affected. (2) Asymmetry of messages is required to avoid

reflection attacks, where one entity simply replays the same message back to the sender;

it is desirable to avoid symmetries. In other words, the authentication responses of two

different parties must not be identical. (3) Direct authentication is provided by a protocol,

if the authentication is complete in a successful handshake, i.e. both parties have proved

knowledge of the shared secret. (4) Timestamps are to be avoided, because not every

participating entity can be expected to maintain a reliable local clock, which must be

synchronized periodically, too.

1.5 The TinyTO Protocol
Due to TinyTO’s main goal to support an end-to-end security with two-way authen-

tication on class 1 devices, the authentication protocol has to include always a key

exchange, such that several possible handshake candidates can be considered in practice,

leading to the final design and implementation of TinyTO. First, handshake candidates

for TinyTO and their drawbacks are introduced. Second, the resulting TinyTO handshake

including two-way authentication purposes and aggregation support are described.

Finally, key information on the respective implementation is presented.

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 14

Possible Handshake Protocol Candidates

Handshake protocol candidates considered in this section support a two-way

authentication of two independent entities without prior information exchange, which

make them highly appropriate for TinyTO. From this stage on, the traditional naming

pattern of cryptography is applied for protocol descriptions assuming two communication

parties – Alice and Bob –, which are instantiated as sensor nodes.

At a first glance the Station-to-Station protocol (STS) seems to be an ideal

candidate for TinyTO, because STS is based on a Diffie-Hellman’s key exchange,

followed by an exchange of authentication signatures [35]. Both parties Alice (A) and

Bob (B) compute their private key x and a public key X in the beginning. Next, Alice

sends her public key XA to Bob. Once Bob receives XA, he can compute a shared secret

KAB with XA and xB, according to the Diffie-Hellman’s key exchange algorithm [32]. Bob

can now encrypt any message to Alice using KAB. For decryption purposes Bob sends XB

back to Alice, so that she can compute the same shared secret KAB. Additionally, Bob

sends a token consisting of both public keys, signed with his own private key to

authenticate himself. Alice can use XB to verify that Bob was indeed the same person,

who signed the message and computed the shared secret. Bob is now authenticated to

Alice. As the last step of the two-way authentication Alice constructs an authentication

message and sends it to Bob to authenticate herself to Bob. To avoid unnecessary

communication overhead, the second key exchange message is combined with the first

authentication message. As a result, STS entails the establishment of a shared secret key

between two parties with mutual entity authentication and mutual implicit key

authentication [32]. The forward secrecy can be provided by deriving a new ephemeral

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 15

key from the shared secret for the encryption of every message in that exchange [40]. The

signatures are used to obtain protection against impersonation during the exchange.

However, there are two main shortcomings: (1) While the STS is relatively simple

to execute, it does not include any explicit key confirmation. Neither Bob nor Alice

inherently can be sure that the other party has actually computed a shared secret without

additional messages. (2) Furthermore, STS is vulnerable to UKSAs and the MITM attack

[35]. To prevent UKSAs and to provide explicit key authentication, the signatures used

can be encrypted additionally with the successfully computed KAB [33]. Thus, Bob is

assured that he shares KAB only with one single party, namely Alice. Since he has created

XB specifically for this handshake and Alice has signed XB and XA, her signature is now

tied to this particular handshake. By encrypting the message with the resulting KAB, Alice

assures Bob that she was indeed the entity, who created XA. Similar assumptions can be

made from the position of Alice [33]. This modification requires more computational

capacity, due to parallel execution of signature and symmetric encryption algorithms.

Hence, for WSN devices below class 2, it is desirable to avoid this sort of overhead. The

need for encryption can be resolved by including the identity of both parties in the

exchanged signatures resulting in the adapted STS protocol [40]. When combining the

adapted STS with identities in signatures it becomes almost functionally identical to the

Bellare-Canetti-Krawczyk protocol (BCK) [37], [36], [40]. The only difference in BCK is

the absence of the sending parties’ identities. According to Basin et al., it is generally

desirable to include identities of both parties to avoid the spoofing of identities [42]. But

in a bidirectional exchange, as it is the case for BCK, it is only required to include the

receiver’s identity [42]: At least in one direction, the receiving party is presented with an

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 16

invalid signature that does not contain its own identity and as a result immediately abort

the handshake.

At this point, BCK is computationally relatively cheap, but still vulnerable to

MITM attacks [40]. This weakness boils down to the fact that it is impossible to reliably

map a public key to a specific entity, i.e. to derive their public key from their identity.

Any party can claim any public key as their own. To counteract, it is essential to strongly

couple a public key with the respective identity. The prevalent solution for this is to

introduce a PKI with certificates and trusted CAs as proposed for TLS [43]. A certificate

contains the identity and the corresponding public key. Entities can be assured of the

correct coupling between key and identity, because trusted CAs constructed the

certificate. However, BCK itself does not suit the given requirement of class 1 devices,

but can be used as a baseline as justified in the upcoming section.

BCK with Pre-shared Keys for TinyTO

Badra et al. have outlined that PSK is suitable to provide authentication [44], while

requiring only a small amount of computational power and memory. Thus, it is selected

for TinyTO to verify the identity of an entity. The distribution of PSKs is simple in the

context of WSN devices: Adding a unique PSK to the programming procedure introduces

practically no overhead, since nodes need to be programmed before deployment in any

case and the key generation and management can be moved to the software programming

the nodes. Compared to approaches where every node is equipped with a set of keys for

encryption between peers before deployment, TinyTO assumes that every node has only

one PSK, solely for authentication toward the gateway. The developed handshake for

TinyTO compares to BCK with pre-shared keys that form master keys for an initial

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 17

authentication between the node and the gateway. Figure 2 illustrates the resulting

handshake, where Alice and Bob can represent anyone of the following device types in

the WSN:

• A collector is a device collecting sensor, which forwards them directly to the next

device in communication range.

• An aggregator works with the data received either as aggregating several

messages into one large message or pre-processes data (e.g., average, max, min

calculation of values) before forwarding them to the next device in

communication range.

• The gateway defines the gate to the world connecting the WSN with other

applications in the IoT domain.

Figure 2: Extended BCK protocol with PSK for TinyTO.

Under the assumption that only the two parties under investigation have

knowledge of the PSK, each party can be assured that indeed the other communication

party uses this PSK. It is vital not to transmit the PSK in plaintext during the

authentication in order to keep the PSK a secret between the two parties. Otherwise any

attacker, who picks up that message containing the PSK, can use the PSK. Thus, it must

be avoided to send any form of information that can (a) be used to retrieve the PSK or (b)

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 18

replayed to achieve authentication for any other entity. Traditionally, those two goals are

met by transmitting a cryptographic hash digest of the PSK together with a cryptographic

nonce [45]. Including a different nonce in every message makes it impossible to reuse an

authentication message (e.g., replay-attack). In comparison, TinyTO desires to couple a

unique public key with the PSK (and, thus, the identity), which may be replayed several

times, but never for another public key that makes it very hard to recalculate the PSK by

an attacker. Hence, it is possible to use the public key instead of a random nonce and to

create a hash from the PSK and this public key, i.e. H(K,XA). This ensures Bob that XA is

indeed Alice’s public key [46] and [47]. A cryptographic hash function is infeasible to be

reverted, even with a partially known input (the public key is obviously publicly known).

But the PSK is not recoverable [47]. At the same time, a spoofed hash digest for a

different public key can be produced only with the knowledge of the PSK. To provide

mutual authentication in the TinyTO protocol, those digests must be computed from both

parties, with their respective public keys. For avoiding transmission overhead, these

digests can be included in the first and second handshake messages (HS1 and HS2 in

Figure 2) in order to avoid any transmission overhead by additional messages.

In accordance to the requirements for TinyTO, this approach determines the two-

way authentication protocol, which includes as key agreement delivering a direct and

explicit key authentication [55]. Messages do not include timestamps, they are

completely asymmetrical, and they cannot be used for a replay or reflection attacks.

Appropriate encryption techniques (e.g., RSA or AES) of subsequent messages are

required to guarantee the forward secrecy beyond the handshake.

As explained in Section 1.4, two flexible roles – collector and aggregator – are

possible for a node. The gateway, in contrast, is unique and static. Collectors and

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 19

aggregators use TinyTO to establish a secure communication channel with the gateway.

Aggregators introduce additional performance overhead to TinyTO and the WSN,

because the handshake is more complicated (see Figure 3). Also, the collectors need to

switch the destination of their data stream from the gateway to the aggregator, which in

turn needs to process the information. Therefore, the aggregator sends a presence

announcement via a broadcast to collectors that redirect their streams upon receipt.

Schmitt et al. stated that four conceptual steps are required for an aggregator introduction,

if no authentication is required [9]. The TinyDTLS solution [11] inspired the

development of TinyTO. [11] specifies four steps that must be taken to establish a two-

way authentication and those must be slightly adapted for the proposed TinyTO solution

in the following manner: (1) Collectors complete their TinyTO handshake with the

gateway (cf. Figure 2) and transmit data over a secure channel. (2) In turn, the aggregator

can be activated, contacting the gateway immediately and executing the TinyTO

handshake resulting in a secure channel. (3) The aggregator broadcasts its presence to

collectors in range that are programmed to wait for such a specific message type (e.g.,

simple echo request, counter, or nonce). The aggregator’s public key is included in the

broadcast message to avoid additional message exchanges. (4) Finally, collectors redirect

their streams to the aggregator, encrypted with the aggregator’s public key (E{M}XA). The

aggregator decrypts incoming streams, processes messages, encrypts the results again,

and sends the new message securely to the gateway (E{M}XG) or the next hop.

While the above described approach of aggregator integration provides an

encryption of messages between all parties and, therefore, a protection against

eavesdropping between collectors and the aggregator as well as the aggregator and the

gateway, it entails one important drawback: Collectors have executed the complete

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 20

TinyTO handshake with the gateway, resulting in a two-way authentication of both

parties. However, in step (3) and (4) above collectors sacrifice all assertions about

identities, if they blindly react to aggregator’s broadcasts. Attackers just need to

broadcast an aggregator announcement to reach access to data streams from every

collector in range that are conveniently encrypted with the attacker’s own public key.

Since such a situation breaks the entire security concept, collectors are requested to

establish a new secure channel to aggregators that fulfill TinyTO’s design principles

without blindly trusting aggregator broadcasts. Consequently, the authentication needs to

be extended by an authorization: Collectors need the confirmation that a broadcasting

aggregator is a valid aggregator and not an intruder, who tries to access confidential

information.

Assuming that collectors or aggregators communicate only with the gateway, the

request for secure communication is implicitly covered by the exchange of pre-

programmed PSKs. Intuitively, it is possible to pre-program aggregators and collectors

with pairwise PSKs in the same way, followed by a handshake execution, including the

authentication and the key exchange. But this workaround does not fulfill the flexibility

requirement for TinyTO: In this case, aggregators can only aggregate data streams from

pre-defined collectors and will further need to hold n+1 PSKs for n collectors. A more

flexible and less resource demanding solution is to lever the already fully authenticated

and secured channels between both aggregator and collector, and the gateway

(cf. Figure 3). Upon the receipt of an aggregator announcement, collectors need to check

only with the fully authenticated gateway, if the broadcast sender is an authorized

aggregator. If so, the gateway can reply with the aggregator’s public key signed by his

own trusted private key. This is similar to a PKI, where the gateway takes the role of the

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 21

certificate authority as a trusted third party. For TinyTO it is assumed that all parties have

completed previously and successfully their handshakes with the gateway. The signature

is used in order to verify the mapping between the aggregator’s public key and its

identity, which makes spoofing attacks on the public key impossible. This stands in

contrast to the previously exchanged authentication messages, where the identity of the

receiving party must be included instead of the key owner’s identity, because the channel

between gateway and collector is already authenticated. The aggregator’s identity is not

encrypted between the collector and the gateway allowing for spoofing attacks on the

identity, since expensive computations would be required for this additional encryption.

Hence, it is substituted with the identity in the signature from the next message,

computed by the more powerful gateway. The gateway might reply with the public key

for a spoofed identity, but it is detectable by the collector due to the invalid signature,

resulting in the process’ abortion.

Figure 3: Secure aggregation support.

Handshake Implementation

From now on it is assumed that TinyTO is implemented in TinyOS, where different

components are “wired” to each other and using the offered set of functionality. Thus, the

TinyTO handshake is implemented in the component HandshakeHandler, which is

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 22

exclusively responsible for handshake messages handling, including message

composition and reply handling. HandshakeHandler is wired to components called for

cryptographic functions. The three TinyTO handshake messages HS1 to HS3

(cf. Figure 2) are implemented in a similar manner. Listing 1 shows exemplary the

structure of handshake message HS2 where nx_ uint8_ t stands for the network-

serializable unsigned integer type.

The msgType field is used to distinguish between handshake messages and other

types of control messages that are sent via the same port. hsType identifies different

handshake messages HS1, HS2, and HS3. Furthermore, public ECC keys are

decomposed into x and y-coordinates [33] and [35] for easy handling on the node`s side.

Elliptic Curve Digital Signature Algorithm (ECDSA) signatures are defined as integer

key pairs, written as (r, s), and, therefore, difficult to include in a fixed-length packet,

because the bit length of the hexadecimal representation of large integers may vary.

Actual length detection and signature processing is not complicated, but the TinyECC

library is very selective on input parameters and requires accurate length information

before a signature validation. As a consequence, the signature in HS2 is encoded in the

Abstract Syntax Notation One (ANS.1), inherently including length information for

r and s. [55]

The reply can be sent with two plain fixed-length arrays for the signatures,

because the powerful gateway can handle necessary computations to strip any padding

and to encode the signature correctly. Thus, the computation time on the node is

minimized. Similarly to the three handshake messages, the two necessary authentication

messages of the aggregator to the collectors are implemented (cf. Figure 3). The

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 23

aggregator’s verification message 1 (AV1), send from the collector to the gateway upon

receipt of the aggregator announcement, includes msgType, hsType, and the aggregator

address. Additionally, AV2, send from the gateway to the collector, includes the public

agg x, public agg y, and a signature from the previously authenticated gateway,

confirming the aggregator’s public key with the given address. [55]

Listing 1: Example for handshake message.

1.6 Evaluation
TinyTO is evaluated for memory and energy consumption and its ability to fit those

requirements of class 1 devices. Furthermore, the performance is analyzed and the

security level is compared to related work. In order to show the feasibility of TinyTO for

class 1 devices, TelosB nodes are used exclusively in a test-bed for evaluation purposes.

TinyOS is the operating system chosen for the current implementation. A simplified

setup for the test-bed is shown in Figure 1 and the following situation is assumed: In

rooms A, C, and D the light is turned off and the room temperature is low. Sensors in

room B report lights being switched on and the microphone shows a high noise level. All

data collected is send either directly (see room B – use-case 1) or via multiple hops (see

rooms A, C, and D – use-case 2) to the gateway. Software on the gateway can analyze the

data collected and sends corresponding information to other systems (e.g., climate control

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 24

or room booking system). The analysis result for room B indicates that a conference takes

place and, thus, the climate control is activated and an entry is made in the room’s

calendar that room B is currently occupied. For rooms A, C, and D the internal room lock

system is informed that these rooms are empty and shall be locked automatically. In this

example the addressing of inconspicuous data can lead to the claim that confidential

information collected allows for conclusions about room occupancy. Additionally, this

introduces security risks in the application, since in case of room information being

retrieved by eavesdropping due to missing security in the communication of those

sensors; an attacker can become aware of this situation and could plan for a burglary.

Memory Consumption

TinyTO’s main challenge was to require only a small part of the resources available,

allowing applications (e.g., TinyIPFIX [9]) to run in addition to the security solution. The

memory consumption of applications can be determined for TinyOS directly from the

compiling tool, because resources are already known at the time of compilation.

Deactivation of components (e.g., RPL or TinyECC optimizations) via the compiling tool

or removing components (e.g., TinyTO component or HandshakeHandler) in the code

allows for a recording of the individual memory consumption of TinyTO components

shown in Table 2. The small memory difference between conceptually identical

components (handshake and cryptography) in collector’s and aggregator’s imple-

mentation originates from marginally different use-cases as described before and

illustrated in Figure 1. For example, collectors only need to store one message at a time,

but aggregators need additional memory to buffer data before that aggregation can be

performed [9]. Since the memory is statically reserved, the detailed memory footprint

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 25

depends on the degree of aggregation (doa). Furthermore, collectors only need code for

an encryption, whereas aggregators need code for the decryption and the encryption. In

comparison to aggregators, collectors periodically read their sensor values, which

requires additional memory. Overall, this leads to a ROM consumption of 37,590 Byte

purely for collector and 33,174 Byte for aggregator applications (including data handling

[9] and RPL [60, 41]), as shown in Table 2, and yields a slightly more than 4 kByte of

additional free memory for aggregators, which can be used to enable ECC optimizations.

Table 3 shows that optimizations have a direct impact on memory consumption and if

they are used (indicated by X) on TinyTO.

Table 2: Memory consumption of components [55].

Operation Aggregator Collector

 ROM [Byte] RAM [Byte] ROM [Byte] RAM [Byte]

Handshake 1636 602 1138 612

Cryptography 11406 406 9378 406

TinyTO total 13042 1018 10516 1018

Data Handling [9] 26904 6964 31144 5478

RPL [60, 41] 6270 498 6228 1498

Total 46216 8470 48114 7994

Table 3: Memory consumption of TinyECC optimizations [55].

Operation ROM [Byte] RAM [Byte] Aggregator Collector

Barrett reduction 780 114 - -

Hybrid multiplication 12 0 X -

Hybrid square 114 0 X X

Secpt optimization 414 0 X -

Projective coordinates 850 0 X X

Sliding window 206 2350 - -

Run Time Performance

In terms of performance, the slow microcontroller and limited memory have a high

impact on all results. A message size of 116 Byte was assumed, because it is typically

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 26

used for the application TinyIPFIX supported [9]. Further collectors do not need to

decrypt data. For measurements performed a timer was read before and after an operation

was executed. The resolution was at 65.53 ms, allowing accurate measurements in the

scope of several seconds. Table 4 shows the execution times for various cryptographic

operations in TinyTO’s aggregators and collectors. Aggregators are generally almost

twice as fast as collectors, which is mainly due to more activated ECC optimizations

(cf. Table 3). Liu et al. give a performance evaluation for TelosB showing the speed for

ECC operations, when all optimizations are used [16]: ECDSA signing takes only about

1.6 s (TinyTO aggregator needs about 5.14 s, TinyTO collector about 9.28 s), verification

about 2 s (TinyTO aggregator needs around 10.20 s, TinyTO collector around 18.51 s).

This is much faster than TinyTO and proves the performance limitations due to the

restricted memory of chosen hardware (here: TelosB).

Table 4: Execution times for ECC operations [55].

ECC Operation Aggregator [s] Collector [s]

EC Key Generation 4.77 8.77

SHA-1 ≤ 0.10 ≤ 0.10

ECDSA Sign 5.14 9.28

ECDSA Verify 10.20 18.51

ECIES Encrypt 5.98 9.41

ECIES Decrypt 4.96 -

Table 5 shows the execution times of composite operations, including

transmission times in both directions and response calculations times. The fact that the

gateway performs faster than nodes has no influence on the overall result. The value for a

message aggregation with doa = 2 is calculated based on two decryption and one

encryption operation on the aggregator.

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 27

Table 5: Energy consumption of composite operations [55].

Operation Time [s] Energy [mJ]

Handshake Aggregator 20.14 85.90

Handshake Collector 36.59 154.99

Aggregator verification 18.52 78.58

Message aggregation (doa = 2) 15.90 68.28

Based on those results, it is possible to determine the minimal interval t, where

collectors send their encrypted messages and aggregators can still catch up with incoming

packets: Once the handshake is executed, collectors send data after t = 9.41 s, which is

the minimal time needed for encryption, even if data is immediately available. Assuming,

sufficient memory on an aggregator‘s device is available for caching packets of degree

doa, plus an aggregate computation, an aggregator requires t = doa * 4.96 s + 5.89 s to

decrypt incoming messages of the degree doa and to encrypt the aggregate. For doa = 2

the aggregator needs t = 15.81 s. This equation does hold for a small degree of

aggregation and small networks (e.g., 20 nodes). The formula for t must be adapted with

the required time for ECIES encryption and decryption, if the aggregator (a) is more

powerful, (b) can support a greater degree of aggregation, and (c) can perform faster

operations and if the network becomes larger.

Energy Consumption

WSN devices are usually battery-powered and depend on the deployment, which makes

an exchange not really easily. Hence, TinyTO must be energy-efficient to avoid a fast

battery depletion. TelosB nodes in the test-bed are powered by two off-the-shelf batteries,

each with a capacity of 2,000 mAh and voltage of 1.5 V, in total delivering U = 3.0 V.

Wireless data transmissions and computations in the micro-controller show the biggest

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 28

impact on energy consumption. Auxiliary components, such as LEDs or serial

connectors, are not taken into consideration, as they typically are deactivated during a

final deployment.

TelosB nodes are equipped with a CC2420 RF chip on the IEEE 802.15.4

2.4 GHz band [48], which has a maximum output power of -25 dBm to 0 dBm for data

transmissions [10]. Assuming 0 dBm, the current draw for sending (Tx) is at

ITx = 17.4 mA and at IRx = 19.7 mA for receiving (Rx) [49] and [50]. The theoretical

transmission rate of the CC2420 is at 250 kbps, but some practical measurements are as

low as 180 kbps. For the purposes of the calculation being as close to reality as possible,

it can be assumed that the full transmission rate R is never actually reached and

R = 220 ± 20 kbps. Knowing the transmission rate and implementation details of

messages (cf. Section 1.5), allows for the calculation of the transmission time for each

message and the total energy consumption ER as follows: ER depends on the message

size S for a given voltage, a current draw, and a transmission rate, resulting in

ER(S) = U * I * S. In particular this concerns the data handling with TinyIPFIX [9], the

three handshake messages (HS1 to HS3), and the aggregator verification (AV1 and AV2)

[55]. In comparison to ECC operations TinyIPFIX operations are almost instantaneous

and negligible in the light of the overall energy consumption of TinyTO. Furthermore,

messages as outlines in the handshake design consider only the size of individual data

fields in an unencrypted message (cf. Section 1.5). In reality, the packets transmitted are

much larger than supported by IEEE 802.15.4 on the MAC layer (102 Byte out of the

total frame size of 127 Byte [48]). Hence, packet fragmentation support for TinyTO is

essential. Because 12 Byte are used by TinyOS and the cyclic redundancy check (CRC)

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 29

for error-detection is added, 90 Byte remain for the actual payload in every message on

the MAC layer.

Table 6: Energy consumption of the radio transmission [55].

Message ps [Byte] DS [Byte] Time [ms] Energy [mJ]

HS 1 (Tx) 139 223 8.11 0.42

HS 2 (Tx) 189 300 10.91 0.64

HS 3 (Tx) 114 203 7.38 0.38

AV 1 (Tx) 82 171 6.22 0.32

AV 2 (Tx) 168 242 8.80 0.52

TinyTO handshake messages are not transmitted as plaintext, but in larger Elliptic

Curve Integrated Encryption Scheme (ECIES) cipher texts, requiring 69 Byte (1 Byte to

indicate the point compression type, 24 Byte for each Elliptic Curve (EC) point

component, and 20 Byte for the message authentication more than the pure message

size). For example, a HS1 message has a size of 70 Byte and a size of 139 Byte after

encryption with ECIES. Given the maximum payload size of 90 Byte, HS1 is fragmented

to fit into MAC layer packets. Every fragment requires additional headers and other fields

(e.g., fragment number and header field indicating fragmentation). Thus, the effective

data size DS, which is transmitted to convey a payload of size ps = 139 Byte, is

calculated as DS = ps + ⌈ps / 90 Byte⌉* 37 Byte = 213 Byte. Table 6 shows the results of

these considerations for different message types and the energy consumption for their

transmissions. It can be stated that the energy consumption for HS2 is the highest with

6.34 mJ compared to HS1 and HS3 due to its enormous message size of 189 Byte. If a

message size is approximately 100 Byte the energy consumption levels around 0.3 mJ.

Similarly to energy calculations for radio transmissions, the energy consumption

of the microcontroller (MSP430F1611 16 bit Ultra-Low-Power Micro-Controller Unit

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 30

(MCU) from Texas Instruments [51]) for different cryptographic operations can be

calculated. The current draw in active mode (i.e. only MCU and no radio transmissions)

is given as 1.8 mA [52] and [49]. However, experimental measurements show that the

relevant difference between idle and a fully utilized MCU is only at IAM = 1.4 mA. The

formula used to calculate the energy consumption EMCU of the MCU depending on the

computation time t subsequently is EMCU (t) = U * IAM * t. As shown in Table 7 the energy

consumption differs for the aggregator and the collector due to different activations of

these ECC optimizations. Given the cost of a radio transmission (cf. Table 6) and the

computation of single cryptographic operations (cf. Table 7) the energy consumption for

the entire handshake and similarly more complex sequences of operations can be

calculated. According to the design shown in Figure 2, the handshake requires six

operations: EC Key Generation, sending of HS 1, reception of HS 2, ECDSA signature

verification, ECDSA signature signing, and sending of HS 3. Similarly, the verification

of an aggregator needs three operations (cf. Figure 3): Sending of the aggregator’s

identity in AV1, the reception of the signed message containing the public key in AV2,

and a ECDSA signature verification. Aggregation with doa = 2 requires a combination of

the reception of two data packets including data collected, two times an ECIES

decryption, the ECIES encryption, and a sending of one aggregated data packet. Table 5

shows the corresponding times and energy consumptions.

Table 7: Energy consumption of cryptographic operations [55].

Operation Aggregator Collector

 Time [s] Energy [mJ] Time [s] Energy [mJ]

EC Key Generation 4.77 20.03 8.77 36.83

ECDSA Sign 5.14 21.59 9.28 38.98

ECDSA Verify 10.20 42.84 18.51 77.74

ECIES Encrypt 5.98 25.12 9.41 39.52

ECIES Decrypt 4.96 20.83 - -

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 31

The battery powered TelosB requires a minimal voltage of 1.8 V [10], meaning a

battery cannot be depleted to an energy level below 60% of the original charge; otherwise

the voltage will drop below that threshold. Thus, it can be calculated that 12.96 kJ are

available in one set of batteries. Measurements show that TelosB nodes draw on average

of 70.7 mA, while remaining idle when no sleep modes for MCU and radio are activated.

Thus, the expected runtime without any application is about 12.96 kJ = 61,103 s, or

roughly 16 hours and 58 min for one 3V * 70.7 mA set of batteries. If collectors are

programmed to collect, encrypt, and send data in the format proposed by [9], every

interval t the impact on the runtime of collectors and their aggregators can be calculated

accordingly. Assuming every tenth transmission contains the TinyIPFIX template (only

meta information) instead of a TinyIPFIX record (data values) and an aggregation with

doa = 2 is performed [9], the same batteries will last for 16 hours and 53 min in

aggregators (which compares to a reduction of 0.5% or 5 min) and 16 hours and 55 min

in collectors (reduction of 0.3% or 3 min), given t = 1 min−1.

1.7 Summary
In this book chapter a new handshake for two-way authentication and key-exchange was

introduced, which provides end-to-end security for class 1 devices in the IoT domain.

The newly developed protocol TinyTO is based on the Bellare-Canetti-Krawczyk

protocol with an additional PSK extension for secure authentication. In order to match

major resource constraints, TinyTO applies energy-efficient ECC operations for

cryptographic functions and uses pre-shared master keys (with a length of 16 Byte) for an

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 32

authentication toward the gateway only. Furthermore, TinyTO supports secure data

aggregations with a small overhead, which is the key for today’s IoT applications.

Transferring TinyTO to more resourceful devices will enhance performance, because

additional ECC optimizations can be activated and the responsiveness of the network will

increase. Finally, the maximum degree of aggregations can be increased in these cases,

since more memory for buffering data will be available.

Acknowledgements

This work was supported partially by the FLAMINGO [53] and the SmartenIT [54]

projects, funded by the EU FP7 Program under Contract No. FP7-2012-ICT-318488 and

No. FP7-2012-ICT-317846, respectively.

References
[1] L. Atzori, A. Iera, and G. Morabito: The Internet of Things: A Survey, Computer Networks,

ELSEVIER, Atlanta, GA, U.S.A., Vol. 54, No. 15, pp 2787–2805, October 2010.
[2] C. Alcaraz, P. Najera, J. Lopez, and R. Roman: Wireless Sensor Networks and the Internet of Things:

Do We Need a Complete Integration?, 1st International Workshop on the Security of the Internet of
Things (SecIoT), Tokyo, Japan , pp 1–8, December 2010.

[3] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci: Wireless Sensor Networks: A Survey,
Computer Networks, ELSEVIER, Atlanta, GA, U.S.A., Vol. 38, No. 4, pp. 393–422, March 2002.

[4] A. Perrig, J. Stankovic, and D. Wagner: Security in Wireless Sensor Networks, Communications of the
ACM, New York, NY, U.S.A.,Vol. 47, No. 6, pp. 53–57, June 2004.

[5] S. Hausmann: Internet of Things a Risk-Reward Proposition For Security Professionals,
securityinfowatch. [Online]. Available:
http://www.securityinfowatch.com/article/11714106/navigating-security-threats-posed-by-internet-of-
things-technology, October 7, 2014.

[6] R. H. Weber: Internet of Things - New Security and Privacy Challenges, Computer Law and Security
Review, ELSEVIER, Atlanta, GA, U.S.A., Vol. 26, No. 1, pp 23–30, March 2010.

[7] C. Medaglia and A. Serbanati: An Overview of Privacy and Security Issues in the Internet of Things,
The Internet of Things, D. Giusto, A. Iera, G. Morabito, and L. Atzori (Eds.), Springer, New York,
NY, U.S.A., pp 389–395, January 2010.

[8] C. Bormann, M. Ersue, and A. Keranen: Terminology for Constrained-Node Networks, RFC 7228,
IETF, Internet Engineering Task Force, Fermont, CA, U.S.A., [Online]. Available:
http://www.ietf.org/rfc/rfc7228.txt, May 2014.

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 33

[9] C. Schmitt, T. Kothmayr, B. Ertl, W. Hu, L. Braun, and G. Carle: TinyIPFIX: An Efficient Application
Protocol For Data Exchange Cyber Physical Systems, Journal of Computer Communications,
ELSEVIER, Atlanta, GA, U.S.A., Vol. 56, No. 2, pp 257–268, June 2014.

[10] Advantic Sistemas y Servicios S.L.: TelosB CM5000-SMA, [Online]. Available:
http://www.advanticsys.com/shop/ mtmcm5000sma-p-23.html, November 2015.

[11] T. Kothmayr, C. Schmitt, W. Hu, M. Brünig, and G. Carle: DTLS-based Security and Two-way
Authentication for the Internet of Things, Ad Hoc Networks, ELSEVIER, Atlanta, GA, U.S.A., Vol.
11, No. 8, pp 2710–2723, November 2013.

[12] W. Du, R. Wang, and P. Ning: An Efficient Scheme for Authenticating Public Keys in Sensor
Networks, 6th ACM International Symposium on Mobile Ad Hoc Networking and Computing
(MobiHoc), Urbana-Champaign, IL, U.S.A. pp 58–67, May 2005.

[13] P. Devanbu, M. Gertz, C. Martel, and S. G. Stubblebine: Authentic Third-Party Data Publication, Data
and Application Security, B. Thuraisingham, R. van de Riet, K. Dittrich, and Z. Tari, (Eds.) Springer,
New York, NY, U.S.A., Vol. 73, pp 101–112, 2001.

[14] Q. Chang, Y.-P. Zhang, and L.-L. Qin: A Node Authentication Protocol Based on ECC in WSN,
International Conference on Computer Design and Applications (ICCDA), Qinhuangdao, Hebei,
China, pp 606–609, June 2010.

[15] Y.-S. Jeong and S.-H. Lee: Hybrid Key Establishment Protocol Based on ECC for Wireless Sensor
Network, Ubiquitous Intelligence and Computing (UIC), LNCS, Vol. 4611, Springer, Heidelberg,
Germany, pp 1233–1242, June 2007.

[16] Y. Liu, J. Li, and M. Guizani: PKC Based Broadcast Authentication using Signature Amortization for
WSNs, IEEE Transactions on Wireless Communications, New York, NY, U.S.A., Vol. 11, No. 6, pp
2106–2115, June 2012.

[17] E. B. Barker, W. C. Barker, W. E. Burr, W. T. Polk, and M. E. Smid: SP 800-57. Recommendation for
Key Management, Part 1: General (Revised), National Institute of Standards & Technology (NIST),
Gaithersburg, MD, U.S.A., 2007.

[18] P. Nie, J. Vähä-Herttua, T. Aura, and A. Gurtov: Performance Analysis of HIP Diet Exchange for WSN
Security Establishment, 7th ACM Symposium on QoS and Security for Wireless and Mobile Networks
(Q2SWinet), Miami, FL, U.S.A., pp 51–56, October/November 2011.

[19] P. Porambage, C. Schmitt, P. Kumar, A. Gurtov, and M. Ylianttila, PAuthKey: A Pervasive
Authentication Protocol and Key Establishment Scheme for Wireless Sensor Networks in Distributed
IoT Applications, International Journal of Distributed Sensor Networks, hindawi Publishing
Corporation, New York, NY, U.S.A., Vol. 2014, pp. 1– 14, July 2014.

[20] D. Westhoff, J. Girao, and A. Sarma: Security Solutions for Wireless Sensor Networks, NEC Journal of
Advanced Technology, NEC, Tokyo, Japan, Vol. 59, No. 2, 2006.

[21] A. Weimerskirch and D. Westhoff: Zero Common-Knowledge Authentication for Pervasive Networks,
Selected Areas in Cryptography, LNCS, Vol. 3006, Springer, Heidelberg, Germany, pp 73–87, August,
2004.

[22] Z. Shelby, K. Hartke, and Bormann: The Constraint Application Protocol (CoAP), RFC 7252, IETF,
Internet Engineering Task Force, Fermont, CA, U.S.A., [Online]. Available:
http://www.ietf.org/rfc/rfc7252.txt, June, 2014.

[23] M. Saleh and I. Al Khatib: Throughput Analysis of WEP Security in Ad Hoc Sensor Networks, 2nd
International Conference on Innovations in Information Technology, Dubai, United Arab Emirates, pp
26–28, September 2005.

[24] W. Hu, H. Tan, P. Corke, W. Shih, and S. Jha: Toward Trusted Wireless Sensor Networks,
Transactions on Sensor Networks, ACM, New York, NY, U.S.A., Vol. 7, No. 1, pp 5:1–5:25, August
2010.

[25] J. Linn: Privacy Enhancement for Internet Electronic Mail: Part I: Message Encryption and
Authentication Procedures, RFC 1421, IETF, Internet Engineering Task Force, Fermont, CA, U.S.A.,
[Online]. Available: http://www.ietf.org/rfc/rfc1421.txt, February 1993.

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 34

[26] A. Wander, N. Gura, H. Eberle, V. Gupta, and S. Shantz: Energy Analysis of Public-Key Cryptography
for Wireless Sensor Networks, Third International Conference on Pervasive Computing and
Communications, New York, NY, U.S.A., pp 324–328, March 2005.

[27] N. Gura, A. Patel, A. Wander, H. Eberle, and S. Shantz: Comparing Elliptic Curve Cryptography and
RSA on 8-bit CPUs, Cryptographic Hardware and Embedded Systems, , LNCS, Vol. 3156, Springer,
Heidelberg, Germany, pp 119–132, 2004.

[28] D. Xiaojiang and C. Hsiao-Hwa: Security in Wireless Sensor Networks, IEEE Wireless
Communications, New York, NY, U.S.A., Vol. 15, No. 4, pp 60–66, August 2008.

[29] C. Karlof and D. Wagner: Secure Routing in Wireless Sensor Networks: Attacks and Countermeasures,
Ad Hoc Networks, ELSEVIER, Atlanta, GA, U.S.A., Vol. 1, No. 2, pp 293– 315, 2003.

[30] G. Stoneburner: SP 800-33: Underlying Technical Models for Information Technology Security, Tech.
Rep., National Institute of Standards and Technology (NIST), Washington, DC, U.S.A. [Online].
Available: http://csrc.nist.gov/publications/nistpubs/800-33/sp800-33.pdf, December 2001.

[31] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz: A Comparison Of Mechanisms For
Improving TCP Performance Over Wireless Links, IEEE/ACM Transactions on Networking, New
York, NY, U.S.A., Vol. 5, No. 6, pp 756– 769, December 1997.

[32] A. Menezes, P. Van Oorschot, and S. Vanstone: Handbook of Applied Cryptography, CRC Press, Boca
Raton, FL, U.S.A., October 2010.

[33] W. Diffie, P. Van Oorschot, and M. Wiener: Authentication and Authenticated Key Exchanges,
Designs, Codes and Cryptography, Springer, New York, NY, U.S.A., Vol. 2, No. 2, pp 107–125,
March 1992.

[34] R. Canetti and H. Krawczyk: Analysis of Key-exchange Protocols and Their Use for Building Secure
Channels, Advances in Cryptology – EUROCRYPT, LNCS, Vol. 2139, Springer, Heidelberg,
Germany, pp 453–474, April 2001.

[35] H. Delfs and H. Knebl: Introduction to Cryptography: Principles and Applications, Information
Security and Cryptography, Springer, Heidelberg, Germany, May 2007.

[36] M. Bellare, R. Canetti, and H. Krawczyk: A Modular Approach to the Design and Analysis of
Authentication and Key Exchange Protocols (Extended Abstract), 13th Annual ACM Symposium on
Theory of Computing (STOC), Dallas, TX, U.S.A., pp 419–428, May 1998.

[37] S. Blake-Wilson and A. Menezes: Authenticated Diffie-Hellman Key Agreement Protocols, Selected
Areas in Cryptography (SAC), Springer, London, U.K., pp 339–361, August 1999.

[38] B. LaMacchia, K. Lauter, and A. Mityagin: Stronger Security of Authenticated Key Exchange,
Provable Security, LNCS, Vol. 4784, Springer, Heidelberg, Germany, Vol. 4784, pp 1–16, 2007.

[39] S. Blake-Wilson, D. Johnson, and A. Menezes: Key Agreement Protocols and Their Security Analysis,
Cryptography and Coding. LNCS, Vol. 1355, Springer, Heidelberg, Germany, pp 30–45, December
1997.

[40] C. Boyd and A. Mathuria: Protocols for Authentication and Key Establishment, Information Security
and Cryptography, Springer, Berlin Heidelberg, Germany, December 2010.

[41] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, J.P. Vasseur, and R.
Alexander: RPL: IPv6 Routing Protocol for Low-Power and Lossy Networks, RFC 6550, IETF Internet
Engineering Task Force, Fermont, CA, U.S.A., [Online] https://tools.ietf.org/html/rfc6550, March
2012.

[42] D. Basin, C. Cremers, and S. Meier: Provably Repairing the ISO/IEC 9798 Standard for Entity
Authentication, Principles of Security and Trust, LNCS, Vol. 7215, Springer, Heidelberg, Germany, pp
129–148, 2012.

[43] S. Boeyen, T. Howes, and P. Richard: Internet X.509 Public Key Infrastructure Operational Protocols
- LDAPv2, RFC 2559, IETF, Internet Engineering Task Force, Fermont, CA, U.S.A., [Online].
Available: http://www.ietf.org/rfc/rfc2559.txt, April 1999.

[44] M. Badra and I. Hajjeh: Key-exchange Authentication Using Shared Secrets, IEEE Computer Journal,
New York, NY, U.S.A., Vol. 39, No. 3, pp 58–66, March 2006.

Wiley STM / Editor Buyya, Broberg, Goscinski: TinyTO: Two-way Authentication for Constrained
Devices in the Internet-of-Things, Chapter 1/ Schmitt and Noack and Stiller / filename: Chapter01.doc

page 35

[45] J. Franks, P. Hallam-Baker, J. Hostetler, S. Lawrence, P. Leach, A. Luotonen, and L. Stewart: HTTP
Authentication: Basic and Digest Access Authentication, RFC 2617, IETF, Internet Engineering Task
Force, Fermont, CA, U.S.A., [Online]. Available: http://www.ietf.org/rfc/rfc2617.txt, June 1999.

[46] B. Preneel: Analysis and Design of Cryptographic Hash Functions, Ph.D. Thesis, KU Leuven,
Netherlands, [Online]. Available: http://homes.esat.kuleuven.be/~preneel/phd_preneel_feb1993.pdf,
February 1993.

[47] P. Rogaway and T. Shrimpton: Cryptographic Hash-function Basics: Definitions, Implications, and
Separations for Preimage Resistance, Second Preimage Resistance, and Collision Resistance, Fast
Software Encryption, LNCS, Vol. 3329, Springer, Heidelberg, Germany, pp 371–388, June 2004.

[48] Texas Instruments: 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver, [Online]. Available:
http://www.ti.com/lit/ds/symlink/cc2420.pdf, November 2015.

[49] H. A. Nguyen, A. Forster, D. Puccinelli, and S. Giordano: Sensor Node Lifetime: An Experimental
Study, IEEE International Conference on Pervasive Computing and Communications Workshops
(PERCOM), New York, NY, U.S.A., pp 202–207, March 2011.

[50] C. Sadler and M. Martonosi: Data Compression Algorithms for Energy-constrained Devices in Delay
Tolerant Networks, 4th International Conference on Embedded Networked Sensor Systems (SenSys),
ACM, New York, NY, U.S.A., pp 265–278, October/November 2006.

[51] Texas Instruments: MSP430F161x Mixed Signal Microcontroller Datasheet,
http://www.ti.com/lit/ds/symlink/msp430f1611.pdf, November 2015.

[52] J. Polastre, R. Szewczyk, and D. Culler: Telos: Enabling Ultra-low Power Wireless Research, 4th
International Symposium on Information Processing in Sensor Networks (IPSN), IEEE Press,
Piscataway, NJ, U.S.A., pp 364–369, April 2005.

[53] FLAMINGO Consortium: FLAMINGO: Management of the Future Internet, [Online]. Available:
http://www.fp7-flamingo.eu/, November 2015.

[54] SmartenIT Consortium: SmartenIT: Socially-aware Management of New Overlay Application Traffic
combined with Energy Efficiency in the Internet, [Online]. Available: http://www.smartenit.eu/,
November 2015.

[55] M. Noack: Optimization of Two-way Authentication Protocol in Internet of Things, Master Thesis,
Universität Zürich, Communication Systems Group, Department of Informatics, Zürich, Switzerland,
[Online] https://files.ifi.uzh.ch/CSG/staff/schmitt/Extern/Theses/Martin_Noack_MA.pdf, August 2014.

[56] E. Rescorla: SSL and TLS: Building and Designing Secure Systems, Addison-Wesley Longman,
Amsterdam, Netherlands, October 2000.

[57] K. Schmeh: Kryptografie: Verfahren – Protokolle – Infrastrukturen, dpunkt.verlag GmbH, Heidelberg,
Germany, Vol. 5, February 2013.

[58] J. Katz and Y. Lindell: Introduction to Modern Cryptography, CRC Press, Boca Raton, FL, U.S.A.,
Vol. 2, November 2014.

[59] TinyOS: BLIP Tutorial, [Online] http://tinyos.stanford.edu/tinyos-wiki/index.php/BLIP_Tutorial,
November 2015.

[60] J.G. Ko, S. Dawson-Haggerty, D.E. Culler, J.W. Hui, and P. Levis: Connecting Low-Power and Lossy
Networks to the Internet, IEEE Communications Magazine, New York, NY, U.S.A., Vol. 49, No. 4, pp
96-101, April 2011.

