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Chapter 1 

TinyTO: Two-way Authentication  
for Constrained Devices  
in the Internet-of-Things 

Corinna Schmitt, Martin Noack, Burkhard Stiller 

1.1 Abstract 

Wireless Sensor Networks (WSN) will play a fundamental role in the future Internet-of-

Things (IoT), with millions of devices actively exchanging confidential information with 

each other in a multi-hop manner. Ensuring secure end-to-end communication channels is 

crucial to the success of innovative IoT applications, since they are essential to limit 

attacks’ impacts and avoid exposure of information. End-to-end security solutions, like 

IPsec or DTLS, do not scale well on WSN devices due to limited resources. In this 

chapter the optimized two-way authentication solution for tiny devices (TinyTO) 

combines end-to-end secured communication with WSN design. TinyTO provides 

confidentiality and integrity within a fast and secure handshake, works with public-key 

cryptography, and uses Elliptic Curve Cryptography (ECC) for message encryption and 

authentication. ECC lowers the resource consumption and suits devices with 10 kByte 

RAM and 100 kByte ROM. TinyTO does not need a network-wide shared secret, it is 

application-independent, and it supports in-network aggregation. 1 

                                                
1 This book chapter’s content is based on the Master Thesis [55] performed at the Communication Systems Group of the University of 
Zurich, Switzerland. 
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1.2 Introduction 
Atzori et al. already stated in 2010 that the Internet-of-Things (IoT) consists of manifold 

devices ranging from IP networks and servers to small devices like Wireless Sensor 

Network devices (e.g., Radio-Frequency IDentification (RFID) tags or sensor nodes) [1]. 

Throughout the years especially Wireless Sensor Networks (WSN) consisting of 

constrained devices with limited resources in memory, energy, and computational 

capacity rapidly gain popularity. Thus, the questions raised how to integrate them into the 

IoT and what challenges occur looking on their constrained resources [2], [3], and [4]. 

The number of possible deployments of such networks rises and more applications have a 

need for confidential and authenticated communication within the network. This security 

issue must be addressed due to the fact that sensitive information (e.g., Identity (ID), 

names, or Global Positioning System (GPS) information) is linked almost everywhere to 

all kinds of collected data, like temperature, sound, and brightness [5], [6], and [7]. 

Hence, collected data is no longer anonymous and often desired to be kept confidential. 

Figure 1 illustrates this case for a building scenario, where environmental data is 

collected in rooms and transmitted over multiple hops to the gateway in order to make the 

data available to applications, such as the climate control, security office, and room 

calendar (cf. Section 1.6). If room information can be retrieved by eavesdropping due to 

missing security in the communication, an attacker would be aware of sensitive 
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information and could plan for example a burglary. Therefore, collected data must be 

transmitted in a secure manner and/or over a secure channel providing end-to-end 

security, giving only authorized entities (e.g., gateway, security system, or company 

members) access to this confidential information. But how is this supposed to be done? 

Keeping in mind that WSNs are part of the IoT and consist of constrained devices with 

limited resources, any security risks are aggravated by WSN design and security 

requirements of the IoT. Ultimately, an end-to-end security solution is required to achieve 

an adequate level of security. Protecting data only after it leaves the scope of the local 

network (e.g., WSN) is not sufficient. 

 

Figure 1: Building Scenario. 

Using existing technologies (e.g., Secure Sockets Layer (SSL)/Transport Layer 

Security (TLS) [56] or cryptography [57, 58]) is the easiest way to achieve the goal of 

secure data transmission. But this becomes increasingly challenging when looking at 

WSN devices used today (e.g., RFIDs, heart beat monitor, or environmental sensors), 

since their resources are strictly limited in memory, power, and computational capacity 

[8] and [9]. Those WSN devices are divided into constrained classes corresponding to 
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their computational capacity and memory resources (cf. Table 1) [8]. Security support is 

very challenging when assuming class 1 devices (e.g., TelosB [10]), as done for the 

proposed solution TinyTO, because they offer only about 10 kByte RAM and 100 kByte 

ROM. A standard approach for securing communications in the Internet is SSL/TLS [56] 

relying on asymmetric cryptography like RSA requires many resources and com-

putational capacity and, thus, it is only feasible for at least class 2 devices (approximately 

with 50 kByte RAM and 250 kByte ROM) [11]. An additional challenge is the device 

diversity in today’s WSNs, the network size itself, and multiple requirements (e.g., life-

time or security support) due to the target application [3]. Developing a proper solution is 

still a challenge, especially for security issues under consideration of the aforementioned 

challenges and constraints. Depending on the application, it might be prohibited to reuse 

existing solutions (e.g., military area). In general it is preferred to reuse standards or to 

develop a generic solution that can be integrated without major modifications and shall 

not require hardware features, like cryptographic coprocessors [11], certain radio 

modules, or specific processors. On the software side, it shall not require a specific 

protocol stack, but it shall rely on the most basic interfaces and be kept separated from 

applications in order to allow simple integration into any used protocol stack with a 

limited number of connection points (i.e., interfaces). Furthermore, all additional features 

have to avoid affecting excessive performance and memory consumption. 

Table 1: Device Classes (1 KiB = 1024 Byte). [8] 

Name RAM ROM IP Stack Security 

Class 0 << 10 KiB << 100 KiB NO NO 

Class 1 ~10 KiB ~100 KiB CoAP [22], BLIP [59, 60] YES 

Class 2 ~50 KiB ~250 KiB HTTP, TLS YES 
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Based on the aforementioned hardware and application requirements the proposed 

security solution TinyTO, an optimized two-way authentication solution for tiny devices, 

provides confidential data transfer with an additional integrity protection and data 

authentication as well as a two-way authentication between sender and receiver of 

messages, delivering end-to-end security even for class 1 devices. This is achieved by 

introducing an efficient handshake with a direct authentication and key-exchange 

between pairs of nodes in the network, setting up an encrypted data transfer with an 

integrated encryption scheme. To minimize overall hardware requirements, the Elliptic 

Curve Cryptography (ECC) is used for key generation, key exchange, encryption, 

decryption, and signature generation.  

Initially, each node is only familiar with the gateway. This relationship is 

authenticated with an individual shared key (in TinyTO of 16 Byte length), which is only 

known to the gateway and the node, and is deployed to all nodes during the initial 

programming routine. Individual keys between nodes are established during the 

handshake performance or can be requested by a node from the gateway (e.g., in case of 

communication with aggregator).  

TinyTO is designed to fit WSN requirements, is application independent, and 

allows for an easy integration into existing applications due to its modular nature. 

TinyTO explicitly supports in-network aggregation by enabling a full and secure end-to-

end communication without the need for a network-wide shared secret. 

In the following, all data that is transmitted in data packets is considered to be 

confidential. The remainder of this chapter is structured as follows. Section 1.3 
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introduces relevant work in the area of Pre-shared Keys (PSK), ECC usage, and 

authentication without any special requirements to infrastructure. Afterwards, Section 1.4 

presents the design decisions for TinyTO followed by a detailed description of the 

proposed solution TinyTO within Section 1.5. The approach is evaluated in Section 1.6 in 

respect to resource consumption, run time performance, and security aspects. Finally, 

Section 1.7 summarizes the chapter.  

1.3 Security Aspects and Solutions 
The necessity to provide an end-to-end security solution in WSNs is not entirely new. 

Over the years different approaches have emerged addressing various security issues. 

Thus, an often quoted solution is pre-distributing symmetric keys. However, 

flexibility of the deployment, connectivity between nodes, and resilience against attackers 

is limited significantly [12]. Instead, Du et al. proposed a solution that applies public key 

authentication with smaller resource demanding symmetric key operations, where a one-

way hash function is used to authenticate public keys. The basic idea is to allow for 

individual nodes to verify that a transmitted public key matches the claimed identity, 

without relying on a trusted third party (e.g., Certificate Authority (CA)). For an 

exhausting mapping between all keys and identities a large number of keys and 

certificates must be stored on every node, which is not feasible. Hence, a hash function 

mapping from identity to the hash value of the corresponding public key is pre-shared. 

Thus, only hash values and identities must be compared, which requires only a fraction of 

the memory and computational power. This can be optimized further by using Merkle 

Trees, where non-leaf nodes are labeled with the hash of those labels of its children [13]. 
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ECC determines a promising option for WSN security solutions, in particular for 

message encryption, since ECC can deliver strong security with only a small amount of 

resources needed, as denoted in [14], [15], and [16]. A 192 bit ECC key provides the 

same level of security as a RSA-key in range of 1024 bit to 2048 bit [17]. ECC is viable 

for key generation, key exchange, encryption, decryption, and signatures, especially in 

resource constrained applications. 

Nie et al. developed the HIP DEX protocol for hop-by-hop secure connections 

using a Diffie-Hellman key exchange for public keys and the AES encryption for the 

session key exchange [18]. Computational requirements are reduced by limiting 

cryptographic primitives to a minimum (e.g., removing expensive signature algorithms 

and any form of cryptographic hash functions). Cryptographic challenges are included in 

the first messages of the handshake proposed, in order to avoid flooding attacks. Identity 

authentication is achieved by password verification within the handshake, where nodes 

need to know their respective passwords in advance. 

The PAuthKey protocol for application-level end-to-end security overcomes the 

problem of two-way authentication (i.e. mutual authentication) between sensor nodes 

[19]. It provides pervasive lightweight authentication and keying mechanisms, allowing 

nodes to establish secure and authenticated communication channels with each other. 

PAuthKey employs ECC-based implicit certificates, using a trusted central CA to handle 

authentication security. Thus, it stands in contrast to other authentication approaches, 

since certificates are generally considered to be resource challenging for WSNs and they 

require additional hosting infrastructure (e.g., CA) or hardware (e.g., Trusted Platform 

Module (TPM)) that can be integrated on the gateway or as external network entity. 
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The UbiSec&Sens project offered a tool-box of security-aware components. The 

proposed Zero Common Knowledge (ZCK) protocol for authentication can establish 

well-defined pairwise security associations between entities, even in the absence of a 

common security infrastructure and pre-shared secrets [20]. ZCK authentication is based 

on re-recognition between entities, allowing entities to authenticate any other entity 

known from the past. This approach does not provide full security, as required, for 

instance for financial transactions, since the first contact between entities cannot be 

authenticated. However, in a scenario without any form of pre-established knowledge or 

a trusted third party, ZCK provides the best level of security that can be achieved under 

those limitations given. The ZCK protocol itself does not cater for a key exchange, but 

can be used in combination with any form of cryptography, like Diffie-Hellman [21]. 

TinyDTLS – a DTLS-based solution for constrained (tiny) devices – provides 

end-to-end security, but targets class 2 devices with additional memory resources [11]. In 

this case the platform used includes a TPM, offering additional dedicated memory and 

computational power for costly security functions. TinyDTLS performs a TLS 

handshake, using X.509 certificates for authentication and Advanced Encryption 

Standard (AES) for encryption, but still exceeds most alternatives due to the high amount 

of available resources on its target devices. An advantage of this solution is the 

compatibility with established standard protocols such as SSL/TLS [56].  

The security aspects addressed by TinyTO are a direct result of the aforementioned 

existing solutions and the final design decisions taken in the upcoming Section 1.4, 

especially to counter Unknown Key-Share Attacks (UKSA) and Man-In-The-Middle 

(MITM) attacks. Therefore, TinyTO’s goals are summarized as:  
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1. TinyTO brings end-to-end security to class 1 devices by providing two-way 

authentication.  

2. The TinyTO’s handshake design with two-way authentication adds immensely to 

the security level without an involvement of certificates and certificate authority 

(CA) in the network’s infrastructure or special hardware components like TPM on 

the device.  

3. TinyTO is protected against MITM attacks in contrast to other solutions for        

class 1 devices like UbiSec&Sens and ZCK.  

4. TinyTO allows for adding devices dynamically to the secure network in contrast 

to static Merkle Trees.  

5. TinyTO uses the Routing Protocol for Low power and Lossy Networks (RPL) 

[60, 41], offering various measurements to improve routing, which can be used 

for an attack detection and defense.  

In order to address these goals TinyTO requires pre-programmed master keys for 

authentication between devices and the gateway, RPL routing, and a support of an ECC 

functionality for encryption and signing.  

1.4 Design Decisions 
An ideal solution for the two-way authentication should work generically on WSN nodes 

of all classes, especially since the trend goes towards heterogeneous WSNs. However, 

since WSN nodes are primarily designed to collect data, they prioritize cheapness and 

long lifetime over processing power and memory size. Section 1.2 outlined that class 1 

devices are per definition in RFC 7228 [8] very constrained to run security schemes 
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beyond very specific implementations mentioned in Section 1.3. Thus, the newly pro-

posed end-to-end security solution in this book chapter targets class 1 devices as a mini-

mum requirement. Even though class 1 devices can connect to the Internet without addi-

tional proxies or gateways, they are limited in communications with peers, if those peers 

have a full protocol stack employed [8], which would overwhelm available resources of 

class 1 devices. Therefore, class 1 devices require a specifically designed protocol stack 

for constrained devices, like the Constrained Application Protocol (CoAP) over User 

Datagram Protocol (UDP) [22]. Consequently, traditional security concepts for wireless 

networks, such as Wired Equivalent Privacy (WEP) or TLS in their native form, are 

unsuitable for WSNs as pointed out in [23]. 

One approach to adapt the traditional Public Key Cryptography (PKC) to WSNs 

(cf. Section 1.3) is the integration of extra hardware into nodes [12] for performing 

security operations and operating separated from main application and the node 

processor. At a first glance, class 2 devices have more resources and can be used for this 

purpose [8]. Among other functionality class 2 devices can deliver Internet-level security 

by providing confidentiality and message authentication at high speed [11]. Hu et al. have 

shown that a TPM chip outperforms most alternative solutions of similar resource levels 

[24]. But on the second glance, as a drawback all nodes in a WSN need to be equipped 

with an appropriate amount of resources (e.g., more RAM/ROM or using a TPM) to 

apply the security scheme network wide. 

A class 1 device cannot build and maintain a RFC-compliant Public Key 

Infrastructure (PKI), while executing its main task – data collection and data forwarding 

– that is already resource consuming in itself. One commonly used OpenSSL X.509 

RSA-1024 certificate alone has a size of about 800 Byte [25] plus the corresponding RSA 
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key pair takes additional 800 Byte [26]. Assuming an aggregation support, n+2 

certificates and n+2 key pairs for a degree of aggregation (doa) of n must be stored, 

quickly filling the available memory. For example, following those calculations, an 

aggregator with doa = 5 needs to store additional 11.2 kByte of data, only for certificates 

and corresponding key pairs. 

This extreme memory consumption can be avoided by utilizing PKC only 

between designated node pairs (cf. Section 1.3), so that every node (aggregator or 

collector) only has to store its own key pair and the public key of the given recipient (i.e., 

gateway or next hop). Gura et al. showed the general feasibility of PKC on simple 8-bit 

processors as typically found within WSN nodes [27]. Therefore, TinyTO’s security 

solution is based on PKC. Furthermore, memory and energy consumption savings are 

gained by applying ECC instead of RSA (Rivest, Shamir, and Adleman) for key 

generation, key exchange, signatures, and encryption. The National Institute of Standards 

and Technology (NIST) recommendations SP 800-57 explain that a RSA key in range of 

1024 bit to 2048 bit delivers the same security level as a 160 bit ECC key, i.e. the same 

amount of resources is required to break them [17]. Even more, Arvinderpal et al. showed 

that ECC implementations are faster and require less energy compared to equally secure 

RSA algorithms [26]. 

In general, standardization bodies and researchers agree on a set of security 

objectives that are necessary to achieve information security: Confidentiality, integrity, 

authenticity, availability, and accountability of all messages as defined in [28], [29], and 

[30]. Furthermore, a set of requirements that are particular to WSNs and the development 

goals for TinyTO must be considered: (1) End-to-end security to avoid eavesdropping 

and spoofing attacks meaning risk for the communication, because the underlying 
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network infrastructure is only partially under the user’s control and might be 

compromised. Especially in a WSN, where multi-hop communications are common, 

authentication and key exchange is an essential design goal. (2) In WSNs connections are 

often not lossless. TCP (Transmission Control Protocol) erroneously invokes congestion 

control mechanisms to counter the loss of packets, which drastically impacts the 

performance and results in the UDP to serve as a better choice for WSNs [31]. (3) Two-

way authentication denotes two entities authenticating each other at the same time [32]. 

In the scope of WSNs, it is not sufficient to authenticate only the sender to the receiver, 

but the sender has to be sure also about the identity and authorization of the potential 

receiver of confidential information. (4) ECC is promising to save resources, when 

performing PKC in TinyTO. For message encryption an Integrated Encryption Scheme 

(IES) is applied, especially to harness the speed-advantage of symmetric encryption for 

large amounts of data without the drawback of a repeated key exchange for every 

transmission, which otherwise is necessary so that no secret credential is used more than 

once. 

Diffie et al. argued that an authentication protocol should always be linked to the 

key exchange for later encryption; otherwise an attacker might just wait until the 

authentication is completed to compromise the established communication channel 

thereafter [33]. Canetti et al. summarized the objective of a key exchange protocol in a 

very intuitive way: A key exchange protocol is secure, if it is impossible or at least 

infeasible for an attacker to distinguish the generated key from a random value [34]. The 

same fundamental concept can be applied to the Authenticated Key Exchange (AKE) 

protocol. But additionally, entity (or party) authentication has to guarantee the identity of 

communicating parties in the current communication session and, therefore, has to 
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prevent impersonation [35]. A good authentication protocol combines several properties 

as explained by various researchers [36], [37], [38], [39], and [33] and is relevant for 

TinyTO’s design: (1) Forward secrecy guarantees such that, if a generated private key of 

one or more of the participating entities is compromised, the security of previous 

communications is not affected. (2) Asymmetry of messages is required to avoid 

reflection attacks, where one entity simply replays the same message back to the sender; 

it is desirable to avoid symmetries. In other words, the authentication responses of two 

different parties must not be identical. (3) Direct authentication is provided by a protocol, 

if the authentication is complete in a successful handshake, i.e. both parties have proved 

knowledge of the shared secret. (4) Timestamps are to be avoided, because not every 

participating entity can be expected to maintain a reliable local clock, which must be 

synchronized periodically, too. 

1.5 The TinyTO Protocol  
Due to TinyTO’s main goal to support an end-to-end security with two-way authen-

tication on class 1 devices, the authentication protocol has to include always a key 

exchange, such that several possible handshake candidates can be considered in practice, 

leading to the final design and implementation of TinyTO. First, handshake candidates 

for TinyTO and their drawbacks are introduced. Second, the resulting TinyTO handshake 

including two-way authentication purposes and aggregation support are described. 

Finally, key information on the respective implementation is presented. 
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Possible Handshake Protocol Candidates 

Handshake protocol candidates considered in this section support a two-way 

authentication of two independent entities without prior information exchange, which 

make them highly appropriate for TinyTO. From this stage on, the traditional naming 

pattern of cryptography is applied for protocol descriptions assuming two communication 

parties – Alice and Bob –, which are instantiated as sensor nodes. 

At a first glance the Station-to-Station protocol (STS) seems to be an ideal 

candidate for TinyTO, because STS is based on a Diffie-Hellman’s key exchange, 

followed by an exchange of authentication signatures [35]. Both parties Alice (A) and 

Bob (B) compute their private key x and a public key X in the beginning. Next, Alice 

sends her public key XA to Bob. Once Bob receives XA, he can compute a shared secret 

KAB with XA and xB, according to the Diffie-Hellman’s key exchange algorithm [32]. Bob 

can now encrypt any message to Alice using KAB. For decryption purposes Bob sends XB 

back to Alice, so that she can compute the same shared secret KAB. Additionally, Bob 

sends a token consisting of both public keys, signed with his own private key to 

authenticate himself. Alice can use XB to verify that Bob was indeed the same person, 

who signed the message and computed the shared secret. Bob is now authenticated to 

Alice. As the last step of the two-way authentication Alice constructs an authentication 

message and sends it to Bob to authenticate herself to Bob. To avoid unnecessary 

communication overhead, the second key exchange message is combined with the first 

authentication message. As a result, STS entails the establishment of a shared secret key 

between two parties with mutual entity authentication and mutual implicit key 

authentication [32]. The forward secrecy can be provided by deriving a new ephemeral 
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key from the shared secret for the encryption of every message in that exchange [40]. The 

signatures are used to obtain protection against impersonation during the exchange. 

However, there are two main shortcomings: (1) While the STS is relatively simple 

to execute, it does not include any explicit key confirmation. Neither Bob nor Alice 

inherently can be sure that the other party has actually computed a shared secret without 

additional messages. (2) Furthermore, STS is vulnerable to UKSAs and the MITM attack 

[35]. To prevent UKSAs and to provide explicit key authentication, the signatures used 

can be encrypted additionally with the successfully computed KAB [33]. Thus, Bob is 

assured that he shares KAB only with one single party, namely Alice. Since he has created 

XB specifically for this handshake and Alice has signed XB and XA, her signature is now 

tied to this particular handshake. By encrypting the message with the resulting KAB, Alice 

assures Bob that she was indeed the entity, who created XA. Similar assumptions can be 

made from the position of Alice [33]. This modification requires more computational 

capacity, due to parallel execution of signature and symmetric encryption algorithms. 

Hence, for WSN devices below class 2, it is desirable to avoid this sort of overhead. The 

need for encryption can be resolved by including the identity of both parties in the 

exchanged signatures resulting in the adapted STS protocol [40]. When combining the 

adapted STS with identities in signatures it becomes almost functionally identical to the 

Bellare-Canetti-Krawczyk protocol (BCK) [37], [36], [40]. The only difference in BCK is 

the absence of the sending parties’ identities. According to Basin et al., it is generally 

desirable to include identities of both parties to avoid the spoofing of identities [42]. But 

in a bidirectional exchange, as it is the case for BCK, it is only required to include the 

receiver’s identity [42]: At least in one direction, the receiving party is presented with an 
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invalid signature that does not contain its own identity and as a result immediately abort 

the handshake. 

At this point, BCK is computationally relatively cheap, but still vulnerable to 

MITM attacks [40]. This weakness boils down to the fact that it is impossible to reliably 

map a public key to a specific entity, i.e. to derive their public key from their identity. 

Any party can claim any public key as their own. To counteract, it is essential to strongly 

couple a public key with the respective identity. The prevalent solution for this is to 

introduce a PKI with certificates and trusted CAs as proposed for TLS [43]. A certificate 

contains the identity and the corresponding public key. Entities can be assured of the 

correct coupling between key and identity, because trusted CAs constructed the 

certificate. However, BCK itself does not suit the given requirement of class 1 devices, 

but can be used as a baseline as justified in the upcoming section. 

BCK with Pre-shared Keys for TinyTO 

Badra et al. have outlined that PSK is suitable to provide authentication [44], while 

requiring only a small amount of computational power and memory. Thus, it is selected 

for TinyTO to verify the identity of an entity. The distribution of PSKs is simple in the 

context of WSN devices: Adding a unique PSK to the programming procedure introduces 

practically no overhead, since nodes need to be programmed before deployment in any 

case and the key generation and management can be moved to the software programming 

the nodes. Compared to approaches where every node is equipped with a set of keys for 

encryption between peers before deployment, TinyTO assumes that every node has only 

one PSK, solely for authentication toward the gateway. The developed handshake for 

TinyTO compares to BCK with pre-shared keys that form master keys for an initial 
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authentication between the node and the gateway. Figure 2 illustrates the resulting 

handshake, where Alice and Bob can represent anyone of the following device types in 

the WSN:  

• A collector is a device collecting sensor, which forwards them directly to the next 

device in communication range.  

• An aggregator works with the data received either as aggregating several 

messages into one large message or pre-processes data (e.g., average, max, min 

calculation of values) before forwarding them to the next device in 

communication range.  

• The gateway defines the gate to the world connecting the WSN with other 

applications in the IoT domain.  

 

Figure 2: Extended BCK protocol with PSK for TinyTO. 

 

Under the assumption that only the two parties under investigation have 

knowledge of the PSK, each party can be assured that indeed the other communication 

party uses this PSK. It is vital not to transmit the PSK in plaintext during the 

authentication in order to keep the PSK a secret between the two parties. Otherwise any 

attacker, who picks up that message containing the PSK, can use the PSK. Thus, it must 

be avoided to send any form of information that can (a) be used to retrieve the PSK or (b) 
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replayed to achieve authentication for any other entity. Traditionally, those two goals are 

met by transmitting a cryptographic hash digest of the PSK together with a cryptographic 

nonce [45]. Including a different nonce in every message makes it impossible to reuse an 

authentication message (e.g., replay-attack). In comparison, TinyTO desires to couple a 

unique public key with the PSK (and, thus, the identity), which may be replayed several 

times, but never for another public key that makes it very hard to recalculate the PSK by 

an attacker. Hence, it is possible to use the public key instead of a random nonce and to 

create a hash from the PSK and this public key, i.e. H(K,XA). This ensures Bob that XA is 

indeed Alice’s public key [46] and [47]. A cryptographic hash function is infeasible to be 

reverted, even with a partially known input (the public key is obviously publicly known). 

But the PSK is not recoverable [47]. At the same time, a spoofed hash digest for a 

different public key can be produced only with the knowledge of the PSK. To provide 

mutual authentication in the TinyTO protocol, those digests must be computed from both 

parties, with their respective public keys. For avoiding transmission overhead, these 

digests can be included in the first and second handshake messages (HS1 and HS2 in 

Figure 2) in order to avoid any transmission overhead by additional messages. 

In accordance to the requirements for TinyTO, this approach determines the two-

way authentication protocol, which includes as key agreement delivering a direct and 

explicit key authentication [55]. Messages do not include timestamps, they are 

completely asymmetrical, and they cannot be used for a replay or reflection attacks. 

Appropriate encryption techniques (e.g., RSA or AES) of subsequent messages are 

required to guarantee the forward secrecy beyond the handshake. 

As explained in Section 1.4, two flexible roles – collector and aggregator – are 

possible for a node. The gateway, in contrast, is unique and static. Collectors and 
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aggregators use TinyTO to establish a secure communication channel with the gateway. 

Aggregators introduce additional performance overhead to TinyTO and the WSN, 

because the handshake is more complicated (see Figure 3). Also, the collectors need to 

switch the destination of their data stream from the gateway to the aggregator, which in 

turn needs to process the information. Therefore, the aggregator sends a presence 

announcement via a broadcast to collectors that redirect their streams upon receipt. 

Schmitt et al. stated that four conceptual steps are required for an aggregator introduction, 

if no authentication is required [9]. The TinyDTLS solution [11] inspired the 

development of TinyTO. [11] specifies four steps that must be taken to establish a two-

way authentication and those must be slightly adapted for the proposed TinyTO solution 

in the following manner: (1) Collectors complete their TinyTO handshake with the 

gateway (cf. Figure 2) and transmit data over a secure channel. (2) In turn, the aggregator 

can be activated, contacting the gateway immediately and executing the TinyTO 

handshake resulting in a secure channel. (3) The aggregator broadcasts its presence to 

collectors in range that are programmed to wait for such a specific message type (e.g., 

simple echo request, counter, or nonce). The aggregator’s public key is included in the 

broadcast message to avoid additional message exchanges. (4) Finally, collectors redirect 

their streams to the aggregator, encrypted with the aggregator’s public key (E{M}XA). The 

aggregator decrypts incoming streams, processes messages, encrypts the results again, 

and sends the new message securely to the gateway (E{M}XG ) or the next hop. 

While the above described approach of aggregator integration provides an 

encryption of messages between all parties and, therefore, a protection against 

eavesdropping between collectors and the aggregator as well as the aggregator and the 

gateway, it entails one important drawback: Collectors have executed the complete 
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TinyTO handshake with the gateway, resulting in a two-way authentication of both 

parties. However, in step (3) and (4) above collectors sacrifice all assertions about 

identities, if they blindly react to aggregator’s broadcasts. Attackers just need to 

broadcast an aggregator announcement to reach access to data streams from every 

collector in range that are conveniently encrypted with the attacker’s own public key. 

Since such a situation breaks the entire security concept, collectors are requested to 

establish a new secure channel to aggregators that fulfill TinyTO’s design principles 

without blindly trusting aggregator broadcasts. Consequently, the authentication needs to 

be extended by an authorization: Collectors need the confirmation that a broadcasting 

aggregator is a valid aggregator and not an intruder, who tries to access confidential 

information. 

Assuming that collectors or aggregators communicate only with the gateway, the 

request for secure communication is implicitly covered by the exchange of pre-

programmed PSKs. Intuitively, it is possible to pre-program aggregators and collectors 

with pairwise PSKs in the same way, followed by a handshake execution, including the 

authentication and the key exchange. But this workaround does not fulfill the flexibility 

requirement for TinyTO: In this case, aggregators can only aggregate data streams from 

pre-defined collectors and will further need to hold n+1 PSKs for n collectors. A more 

flexible and less resource demanding solution is to lever the already fully authenticated 

and secured channels between both aggregator and collector, and the gateway                   

(cf. Figure 3). Upon the receipt of an aggregator announcement, collectors need to check 

only with the fully authenticated gateway, if the broadcast sender is an authorized 

aggregator. If so, the gateway can reply with the aggregator’s public key signed by his 

own trusted private key. This is similar to a PKI, where the gateway takes the role of the 
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certificate authority as a trusted third party. For TinyTO it is assumed that all parties have 

completed previously and successfully their handshakes with the gateway. The signature 

is used in order to verify the mapping between the aggregator’s public key and its 

identity, which makes spoofing attacks on the public key impossible. This stands in 

contrast to the previously exchanged authentication messages, where the identity of the 

receiving party must be included instead of the key owner’s identity, because the channel 

between gateway and collector is already authenticated. The aggregator’s identity is not 

encrypted between the collector and the gateway allowing for spoofing attacks on the 

identity, since expensive computations would be required for this additional encryption. 

Hence, it is substituted with the identity in the signature from the next message, 

computed by the more powerful gateway. The gateway might reply with the public key 

for a spoofed identity, but it is detectable by the collector due to the invalid signature, 

resulting in the process’ abortion. 

 

Figure 3: Secure aggregation support. 

Handshake Implementation 

From now on it is assumed that TinyTO is implemented in TinyOS, where different 

components are “wired” to each other and using the offered set of functionality. Thus, the 

TinyTO handshake is implemented in the component HandshakeHandler, which is 
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exclusively responsible for handshake messages handling, including message 

composition and reply handling. HandshakeHandler is wired to components called for 

cryptographic functions. The three TinyTO handshake messages HS1 to HS3                    

(cf. Figure 2) are implemented in a similar manner. Listing 1 shows exemplary the 

structure of handshake message HS2 where nx_ uint8_ t stands for the network-

serializable unsigned integer type. 

The msgType field is used to distinguish between handshake messages and other 

types of control messages that are sent via the same port. hsType identifies different 

handshake messages HS1, HS2, and HS3. Furthermore, public ECC keys are 

decomposed into x and y-coordinates [33] and [35] for easy handling on the node`s side. 

Elliptic Curve Digital Signature Algorithm (ECDSA) signatures are defined as integer 

key pairs, written as (r, s), and, therefore, difficult to include in a fixed-length packet, 

because the bit length of the hexadecimal representation of large integers may vary. 

Actual length detection and signature processing is not complicated, but the TinyECC 

library is very selective on input parameters and requires accurate length information 

before a signature validation. As a consequence, the signature in HS2 is encoded in the 

Abstract Syntax Notation One (ANS.1), inherently including length information for              

r and s. [55] 

The reply can be sent with two plain fixed-length arrays for the signatures, 

because the powerful gateway can handle necessary computations to strip any padding 

and to encode the signature correctly. Thus, the computation time on the node is 

minimized. Similarly to the three handshake messages, the two necessary authentication 

messages of the aggregator to the collectors are implemented (cf. Figure 3). The 
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aggregator’s verification message 1 (AV1), send from the collector to the gateway upon 

receipt of the aggregator announcement, includes msgType, hsType, and the aggregator 

address. Additionally, AV2, send from the gateway to the collector, includes the public 

agg x, public agg y, and a signature from the previously authenticated gateway, 

confirming the aggregator’s public key with the given address. [55] 

 

Listing 1: Example for handshake message. 

1.6 Evaluation 
TinyTO is evaluated for memory and energy consumption and its ability to fit those 

requirements of class 1 devices. Furthermore, the performance is analyzed and the 

security level is compared to related work. In order to show the feasibility of TinyTO for 

class 1 devices, TelosB nodes are used exclusively in a test-bed for evaluation purposes. 

TinyOS is the operating system chosen for the current implementation. A simplified 

setup for the test-bed is shown in Figure 1 and the following situation is assumed: In 

rooms A, C, and D the light is turned off and the room temperature is low. Sensors in 

room B report lights being switched on and the microphone shows a high noise level. All 

data collected is send either directly (see room B – use-case 1) or via multiple hops (see 

rooms A, C, and D – use-case 2) to the gateway. Software on the gateway can analyze the 

data collected and sends corresponding information to other systems (e.g., climate control 
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or room booking system). The analysis result for room B indicates that a conference takes 

place and, thus, the climate control is activated and an entry is made in the room’s 

calendar that room B is currently occupied. For rooms A, C, and D the internal room lock 

system is informed that these rooms are empty and shall be locked automatically. In this 

example the addressing of inconspicuous data can lead to the claim that confidential 

information collected allows for conclusions about room occupancy. Additionally, this 

introduces security risks in the application, since in case of room information being 

retrieved by eavesdropping due to missing security in the communication of those 

sensors; an attacker can become aware of this situation and could plan for a burglary.  

Memory Consumption 

TinyTO’s main challenge was to require only a small part of the resources available, 

allowing applications (e.g., TinyIPFIX [9]) to run in addition to the security solution. The 

memory consumption of applications can be determined for TinyOS directly from the 

compiling tool, because resources are already known at the time of compilation. 

Deactivation of components (e.g., RPL or TinyECC optimizations) via the compiling tool 

or removing components (e.g., TinyTO component or HandshakeHandler) in the code 

allows for a recording of the individual memory consumption of TinyTO components 

shown in Table 2. The small memory difference between conceptually identical 

components (handshake and cryptography) in collector’s and aggregator’s imple-

mentation originates from marginally different use-cases as described before and 

illustrated in Figure 1. For example, collectors only need to store one message at a time, 

but aggregators need additional memory to buffer data before that aggregation can be 

performed [9]. Since the memory is statically reserved, the detailed memory footprint 
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depends on the degree of aggregation (doa). Furthermore, collectors only need code for 

an encryption, whereas aggregators need code for the decryption and the encryption. In 

comparison to aggregators, collectors periodically read their sensor values, which 

requires additional memory. Overall, this leads to a ROM consumption of 37,590 Byte 

purely for collector and 33,174 Byte for aggregator applications (including data handling 

[9] and RPL [60, 41]), as shown in Table 2, and yields a slightly more than 4 kByte of 

additional free memory for aggregators, which can be used to enable ECC optimizations. 

Table 3 shows that optimizations have a direct impact on memory consumption and if 

they are used (indicated by X) on TinyTO. 

Table 2: Memory consumption of components [55]. 

Operation Aggregator Collector 

 ROM [Byte] RAM [Byte] ROM [Byte] RAM [Byte] 

Handshake  1636 602 1138 612 

Cryptography 11406 406 9378 406 

TinyTO total 13042 1018 10516 1018 

Data Handling [9] 26904 6964 31144 5478 

RPL [60, 41] 6270 498 6228 1498 

Total 46216 8470 48114 7994 

 

Table 3: Memory consumption of TinyECC optimizations [55]. 

Operation ROM [Byte] RAM [Byte] Aggregator Collector 

Barrett reduction 780 114 - - 

Hybrid multiplication 12 0 X - 

Hybrid square 114 0 X X 

Secpt optimization 414 0 X - 

Projective coordinates 850 0 X X 

Sliding window 206 2350 - - 

Run Time Performance 

In terms of performance, the slow microcontroller and limited memory have a high 

impact on all results. A message size of 116 Byte was assumed, because it is typically 
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used for the application TinyIPFIX supported [9]. Further collectors do not need to 

decrypt data. For measurements performed a timer was read before and after an operation 

was executed. The resolution was at 65.53 ms, allowing accurate measurements in the 

scope of several seconds. Table 4 shows the execution times for various cryptographic 

operations in TinyTO’s aggregators and collectors. Aggregators are generally almost 

twice as fast as collectors, which is mainly due to more activated ECC optimizations        

(cf. Table 3). Liu et al. give a performance evaluation for TelosB showing the speed for 

ECC operations, when all optimizations are used [16]: ECDSA signing takes only about 

1.6 s (TinyTO aggregator needs about 5.14 s, TinyTO collector about 9.28 s), verification 

about 2 s (TinyTO aggregator needs around 10.20 s, TinyTO collector around 18.51 s). 

This is much faster than TinyTO and proves the performance limitations due to the 

restricted memory of chosen hardware (here: TelosB). 

Table 4: Execution times for ECC operations [55]. 

ECC Operation Aggregator [s] Collector [s] 

EC Key Generation 4.77 8.77 

SHA-1 ≤ 0.10 ≤ 0.10 

ECDSA Sign 5.14 9.28 

ECDSA Verify 10.20 18.51 

ECIES Encrypt 5.98 9.41 

ECIES Decrypt 4.96 - 

 

Table 5 shows the execution times of composite operations, including 

transmission times in both directions and response calculations times. The fact that the 

gateway performs faster than nodes has no influence on the overall result. The value for a 

message aggregation with doa = 2 is calculated based on two decryption and one 

encryption operation on the aggregator. 
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Table 5: Energy consumption of composite operations [55]. 

Operation Time [s] Energy [mJ] 

Handshake Aggregator 20.14 85.90 

Handshake Collector 36.59 154.99 

Aggregator verification 18.52 78.58 

Message aggregation (doa = 2) 15.90 68.28 

 

Based on those results, it is possible to determine the minimal interval t, where 

collectors send their encrypted messages and aggregators can still catch up with incoming 

packets: Once the handshake is executed, collectors send data after t = 9.41 s, which is 

the minimal time needed for encryption, even if data is immediately available. Assuming, 

sufficient memory on an aggregator‘s device is available for caching packets of degree 

doa, plus an aggregate computation, an aggregator requires t = doa * 4.96 s + 5.89 s to 

decrypt incoming messages of the degree doa and to encrypt the aggregate. For doa = 2 

the aggregator needs t = 15.81 s. This equation does hold for a small degree of 

aggregation and small networks (e.g., 20 nodes). The formula for t must be adapted with 

the required time for ECIES encryption and decryption, if the aggregator (a) is more 

powerful, (b) can support a greater degree of aggregation, and (c) can perform faster 

operations and if the network becomes larger. 

Energy Consumption 

WSN devices are usually battery-powered and depend on the deployment, which makes 

an exchange not really easily. Hence, TinyTO must be energy-efficient to avoid a fast 

battery depletion. TelosB nodes in the test-bed are powered by two off-the-shelf batteries, 

each with a capacity of 2,000 mAh and voltage of 1.5 V, in total delivering U = 3.0 V. 

Wireless data transmissions and computations in the micro-controller show the biggest 
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impact on energy consumption. Auxiliary components, such as LEDs or serial 

connectors, are not taken into consideration, as they typically are deactivated during a 

final deployment. 

TelosB nodes are equipped with a CC2420 RF chip on the IEEE 802.15.4              

2.4 GHz band [48], which has a maximum output power of -25 dBm to 0 dBm for data 

transmissions [10]. Assuming 0 dBm, the current draw for sending (Tx) is at                              

ITx = 17.4 mA and at IRx = 19.7 mA for receiving (Rx) [49] and [50]. The theoretical 

transmission rate of the CC2420 is at 250 kbps, but some practical measurements are as 

low as 180 kbps. For the purposes of the calculation being as close to reality as possible, 

it can be assumed that the full transmission rate R is never actually reached and                     

R = 220 ± 20 kbps. Knowing the transmission rate and implementation details of 

messages (cf. Section 1.5), allows for the calculation of the transmission time for each 

message and the total energy consumption ER as follows: ER depends on the message 

size S for a given voltage, a current draw, and a transmission rate, resulting in                 

ER(S) = U * I * S. In particular this concerns the data handling with TinyIPFIX [9], the 

three handshake messages (HS1 to HS3), and the aggregator verification (AV1 and AV2) 

[55]. In comparison to ECC operations TinyIPFIX operations are almost instantaneous 

and negligible in the light of the overall energy consumption of TinyTO. Furthermore, 

messages as outlines in the handshake design consider only the size of individual data 

fields in an unencrypted message (cf. Section 1.5). In reality, the packets transmitted are 

much larger than supported by IEEE 802.15.4 on the MAC layer (102 Byte out of the 

total frame size of 127 Byte [48]). Hence, packet fragmentation support for TinyTO is 

essential. Because 12 Byte are used by TinyOS and the cyclic redundancy check (CRC) 
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for error-detection is added, 90 Byte remain for the actual payload in every message on 

the MAC layer.  

Table 6: Energy consumption of the radio transmission [55]. 

Message ps [Byte] DS [Byte] Time [ms] Energy [mJ] 

HS 1 (Tx) 139 223 8.11 0.42 

HS 2 (Tx) 189 300 10.91 0.64 

HS 3 (Tx) 114 203 7.38 0.38 

AV 1 (Tx) 82 171 6.22 0.32 

AV 2 (Tx) 168 242 8.80 0.52 

 

TinyTO handshake messages are not transmitted as plaintext, but in larger Elliptic 

Curve Integrated Encryption Scheme (ECIES) cipher texts, requiring 69 Byte (1 Byte to 

indicate the point compression type, 24 Byte for each Elliptic Curve (EC) point 

component, and 20 Byte for the message authentication more than the pure message 

size). For example, a HS1 message has a size of 70 Byte and a size of 139 Byte after 

encryption with ECIES. Given the maximum payload size of 90 Byte, HS1 is fragmented 

to fit into MAC layer packets. Every fragment requires additional headers and other fields 

(e.g., fragment number and header field indicating fragmentation). Thus, the effective 

data size DS, which is transmitted to convey a payload of size ps = 139 Byte, is 

calculated as DS = ps + ⌈ps / 90 Byte⌉* 37 Byte = 213 Byte. Table 6 shows the results of 

these considerations for different message types and the energy consumption for their 

transmissions. It can be stated that the energy consumption for HS2 is the highest with 

6.34 mJ compared to HS1 and HS3 due to its enormous message size of 189 Byte. If a 

message size is approximately 100 Byte the energy consumption levels around 0.3 mJ. 

Similarly to energy calculations for radio transmissions, the energy consumption 

of the microcontroller (MSP430F1611 16 bit Ultra-Low-Power Micro-Controller Unit 
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(MCU) from Texas Instruments [51]) for different cryptographic operations can be 

calculated. The current draw in active mode (i.e. only MCU and no radio transmissions) 

is given as 1.8 mA [52] and [49]. However, experimental measurements show that the 

relevant difference between idle and a fully utilized MCU is only at IAM = 1.4 mA. The 

formula used to calculate the energy consumption EMCU of the MCU depending on the 

computation time t subsequently is EMCU (t) = U * IAM * t. As shown in Table 7 the energy 

consumption differs for the aggregator and the collector due to different activations of 

these ECC optimizations. Given the cost of a radio transmission (cf. Table 6) and the 

computation of single cryptographic operations (cf. Table 7) the energy consumption for 

the entire handshake and similarly more complex sequences of operations can be 

calculated. According to the design shown in Figure 2, the handshake requires six 

operations: EC Key Generation, sending of HS 1, reception of HS 2, ECDSA signature 

verification, ECDSA signature signing, and sending of HS 3. Similarly, the verification 

of an aggregator needs three operations (cf. Figure 3): Sending of the aggregator’s 

identity in AV1, the reception of the signed message containing the public key in AV2, 

and a ECDSA signature verification. Aggregation with doa = 2 requires a combination of  

the reception of two data packets including data collected, two times an ECIES 

decryption, the ECIES encryption, and a sending of one aggregated data packet. Table 5 

shows the corresponding times and energy consumptions. 

Table 7: Energy consumption of cryptographic operations [55]. 

Operation Aggregator Collector 

 Time [s] Energy [mJ] Time [s] Energy [mJ] 

EC Key Generation 4.77 20.03 8.77 36.83 

ECDSA Sign 5.14 21.59 9.28 38.98 

ECDSA Verify 10.20 42.84 18.51 77.74 

ECIES Encrypt 5.98 25.12 9.41 39.52 

ECIES Decrypt 4.96 20.83 - - 
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The battery powered TelosB requires a minimal voltage of 1.8 V [10], meaning a 

battery cannot be depleted to an energy level below 60% of the original charge; otherwise 

the voltage will drop below that threshold. Thus, it can be calculated that 12.96 kJ are 

available in one set of batteries. Measurements show that TelosB nodes draw on average 

of 70.7 mA, while remaining idle when no sleep modes for MCU and radio are activated. 

Thus, the expected runtime without any application is about 12.96 kJ = 61,103 s, or 

roughly 16 hours and 58 min for one 3V * 70.7 mA set of batteries. If collectors are 

programmed to collect, encrypt, and send data in the format proposed by [9], every 

interval t the impact on the runtime of collectors and their aggregators can be calculated 

accordingly. Assuming every tenth transmission contains the TinyIPFIX template (only 

meta information) instead of a TinyIPFIX record (data values) and an aggregation with 

doa = 2 is performed [9], the same batteries will last for 16 hours and 53 min in 

aggregators (which compares to a reduction of 0.5% or 5 min) and 16 hours and 55 min 

in collectors (reduction of 0.3% or 3 min), given t = 1 min−1. 

1.7 Summary  
In this book chapter a new handshake for two-way authentication and key-exchange was 

introduced, which provides end-to-end security for class 1 devices in the IoT domain. 

The newly developed protocol TinyTO is based on the Bellare-Canetti-Krawczyk 

protocol with an additional PSK extension for secure authentication. In order to match 

major resource constraints, TinyTO applies energy-efficient ECC operations for 

cryptographic functions and uses pre-shared master keys (with a length of 16 Byte) for an 
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authentication toward the gateway only. Furthermore, TinyTO supports secure data 

aggregations with a small overhead, which is the key for today’s IoT applications. 

Transferring TinyTO to more resourceful devices will enhance performance, because 

additional ECC optimizations can be activated and the responsiveness of the network will 

increase. Finally, the maximum degree of aggregations can be increased in these cases, 

since more memory for buffering data will be available. 
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