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Abstract

In this paper, we use two approaches to solve the Perspective-Three-Point (P3P)
problem: the algebraic approach and the geometric approach. In the algebraic ap-
proach, we use Wu-Ritt’s zero decomposition algorithm to give a complete triangular
decomposition for the P3P equation system. This decomposition provides the first
complete analytical solution to the P3P problem. We also give a complete solution
classification for the P3P equation system, i.e., we give explicit criteria for the P3P
problem to have one, two, three, and four solutions. Combining the analytical so-
lutions with the criteria, we provide an algorithm, CASSC, which may be used to
find complete and robust numerical solutions to the P3P problem. In the geomet-
ric approach, we give some pure geometric criteria for the number of real physical

solutions.
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1 Introduction

The Perspective-n-Point (PuP) problem is originated from camera calibration [1, 2, 3, 4].
Also known as pose estimation, it is to determine the position and orientation of the
camera with respect to a scene object from n correspondent points. It concerns many
important fields, such as computer animation [5], computer vision [3], automation, image
analysis and automated cartography [2], photogrammetry [6], robotics [1] and model based
machine vision system [7], etc. Fischler and Bolles [2] summarized the problem as follows:

“ Given the relative spatial locations of n control points, and given the angle
to every pair of control points from an additional point called the Center of
Perspective (Cp), find the lengths of the line segments joining Cp to each of

the control points.”
The study of the PnP problem mainly consists of two aspects:

1. Design fast and stable algorithms that can be used to find all or some of the solutions
of the PnP problem.

2. Give a classification for the solutions of the PnP problem, i.e., give the conditions

under which the problem has one, two, three or four solutions.

There are many results for the first problem and the second problem is still open. The
aim of this paper is to give a complete and effective solution to the above two problems
for the P3P problem.

The P3P problem is the smallest subset of control points that yields a finite number of
solutions. In 1981, Fischler and Bolles [2] presented the RANSAC algorithm. They have
noticed that there are at most four possible solutions to the P3P equation system. Hung
et al [8] presented an algorithm for computing the 3D coordinates of the perspective center
relative to the camera frame. In 1991, Haralick et al [9] reviewed the major direct solutions
up to 1991, including six algorithms given by Grunert(1841), Finsterwalder(1903), Mer-
ritt(1949), Fischler and Bolles(1981), Linnainmaa et al(1988) and Grafarrend et al(1989),
respectively. They also give the analytical solution for the P3P problem with resultant



computation. DeMenthon et al [10, 11] showed that by using approximations to the per-
spective, simpler computational solutions can be obtained. Quan and Lan [4] reduced the
problem to a new quartic equation with Sylvester resultant and proposed a linear algebra
algorithm to solve the PnP problem.

One of the important research directions on the P3P problem is its multi-solution
phenomenon. Fischler and Bolles [2] presented some examples of multi-solutions of the
P3P problem. In 1986, Wolfe et al [12] pointed out that the six permutations of the three
control points combined with four-solution possibility can produce 24 possible camera-
triangle configurations consistent with a single perspective view [6, 7]. Yuan [6] gave a
necessary condition for the existence of the solution for first time. In 1991, Wolfe et al
[7] gave a geometric explanation to this multi-solution phenomenon in the image plane

under the assumption of “canonical view.”

In 1997, Su et al [5] applied Wu-Ritt’s zero decomposition method to find the main
solution branch and some non-degenerate branches for the P3P problem. But a complete
decomposition was not given. In [13], they used the Sturm sequence to give some con-
ditions to adjudicate the number of solutions. In 1998, Yang [14] gave partial solution
classifications of the P3P problem under some non-degenerate conditions.

The P3P problem is the most basic case of the PnP problems. All other PnP (n > 3)
problems include the P3P problem as a special case. Therefore, a complete study of this
problem is desirable. This paper is an effort toward this goal. We use two approaches
to solve the P3P problem: the algebraic approach and the geometric approach. In the
algebraic approach, we apply Wu-Ritt’s zero decomposition algorithm [15, 16, 17] to find
a complete zero decomposition for the P3P equation system. This decomposition provides
the first complete analytical solution to the P3P problem. Based on this decomposition,
we give a complete solution classification to the P3P equation system for the first time, i.e.,
we give explicit criteria for the P3P problem to have one, two, three, or four solutions.
The procedure of obtaining this classification consists of the most difficult part of this
paper. With these criteria, we introduce the concept of stable and critical values for the
input parametric values. If a set of values is a stable, then a small variation of these
values will give the same number of solutions. Therefore, for a set of stable values, we
may use the usual floating-point calculations to enhance the computation speed; and for
a set of critical values, we may use high precision computation tools [18] to provide more

robust computation.

Combining the analytical solutions with the criteria, we provide an algorithm, CASSC
(Complete Analytical Solution with the assistance of Solution Classification), which can
be used to find complete and robust numerical solutions to the P3P problem. Our exper-
imental results support this assertion.



In the geometric approach, we consider the three perspective angles separately. Then
the locus of the center of perspective point for each angle is a toroid and the center of
perspective is the intersection of three toroids. In this way, we give some pure geometric
criteria for the number of solutions of the P3P problem. One interesting result is “The
P3P problem can have only one solution if the three perspective angles are obtuse.” This
kind of criteria is much simpler than the algebraic one and gives some insight into the
multi-solution phenomenon. On the other hand, since the field of view of most cameras
is much less than 90 degrees, this result does not have much practical value. In any case,
to find the solutions we must use the algebraic computation approach.

The rest of the paper is organized as follows. In Section 2, we present the zero decom-
position for the P3P equation system. In Section 3, we present the solution classification.
In Section 4, we present the CASSC algorithm and the experimental results. In Section
5, we present the geometric approach. In Section 6, we present the conclusions.

2 Zero Structure for the P3P Equation System

2.1 Simplification of the Equation System

Let P be the Center of Perspective, and A, B, C' the control points. Let |PA| = X, |PB| =
Y,|PC| = Z, « = /BPC, § = (APC, v = /APB, p = 2cosa,q = 2cosf3,r =
2cosv, |AB| = ¢, |BC| = d,|AC| = b'. From triangles PBC, PAC, and PAB, we obtain
the P3P equation system:

Y24 22 Y Zp—a? =0

224+ X2 - XZq—1%=0 (1)

X24+Y?2—-XYr—c?=0.

Figure 1. The P3P problem
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A set of solutions for X, Y, Z is call a set of physical solutions if the following “reality
conditions” are satisfied. These conditions are assumed through out the paper.

X>0Y>0,7Z>0,d>0,0>0,¢ >0,a+V>,dd+>0,0+>d
O<a,fB,y<m0<a+p+v<2m
a+B8>v,a+v>pB,7v+8 >«

| Io=p>+ ¢ +7%—pgr —1# 0 (Points P, A, B, C are not co-planar [5]).

To simplify the equation system, let X = 2Z,Y = yZ |AB| = \/vZ,|BC| = \JavZ,
|AC| = VbuZ. Since Z = |PC| # 0, we obtain the following equivalent equation system:

2 +1—yp—av=0
> +1—2q—bv=0 (3)

2?2 +y? —zyr —ov = 0.

Since |r| < 2, we have v = 22 + y* — xyr > 0. Thus Z can be uniquely determined by
Z = |AB|/+/v. Eliminating v from (3), we have

p=0—-a)y*—ax?> —py+arzy+1=0 (ES)
pp=(1-0)z*>—by> —qr+bray+1=0

which has the same number of physical solutions with (1). Now the P3P problem is
reduced to finding the positive solutions of two quadratic equations. As a consequence,
we obtain the following result: the P3P problem has either an infinite number of solutions

or at most four physical solutions. This result was known before only for the “main part”
of the P3P problem.

2.2 Zero Structure for the P3P Equation System

Wu-Ritt’s zero decomposition method [15, 16, 17] is a general method to solve systems
of algebraic equations. It may be used to represent the zero set of a polynomial equation
system as the union of zero sets of equations in triangular form, that is, equation systems
like

filu,z1) =0, fa(u,x1,3) = 0,..., fp(u,z1,...,2,) =0

where the u could be considered as a set of parameters and the x are the variables to be
determined. As shown in [15], solutions for an equation system in triangular form are
well-determined. For instance, the solution of an equation system in triangular form can
be easily reduced to the solution of univariate equations. For a polynomial set PS and a



polynomial 7, let Zero(PS) be the set of solutions of the equation system PS = 0, and
Zero(PS/I) = Zero(PS) — Zero(I).

Among the “reality conditions” listed in (2), Iy # 0 could be used to simplify the
computation. Therefore, we consider Zero(ES/Iy). Using Wu-Ritt’s zero decomposition
method [15], we decompose Zero(ES/Iy) into ten disjoint components:

Zero(ES/Iy) = U, C.. (DE)

In the above formula, C; = Zero(TS;/T;),i = 1,---,9 and Cyy = Zero(TS19/T1) U
Zero(T'S11/T11), where T'S; are polynomial equations in triangular form and T; are poly-
nomials. T'S; and T; may be found in Appendix A.

Among the ten components, Zero(T'S;/T}) is called the main component of the P3P
equation system, which is of the following form.

f=az* +a12® + ax®> + a3z +a, =0
(T'Sy)

g =boy — by =0.

The coefficients a; and b; may be found in Appendix A. This component has been obtained
in [2, 4, 5, 9]. All other components could be considered as degenerate cases. This is
because, in these cases the parameters a, b, p, ¢, 7 must satisfy certain algebraic relations.
In other words, we are considering special cases of the problem.

Comparing to the main component, the “degenerate” cases are less possible to occur.
But, they are still important due to the following reasons. Solutions satisfying some
degenerate conditions, such as a+b—1 = 0 (in 7'S;) meaning that /ACB is a right angle,
may occur quite often if points A, B,C are from man-made structures like buildings,
where many right angles exist. In the general case, the degenerate cases, such as TS5,
could be complicated and have no clear geometric meaning. Therefore, it is difficult to
tell when it will occur.

The following table gives the maximal number of solutions for each component.

Ci,i = 11213[415(6|7|8]9]10
NO. of solutions | 4 |3 |2 |2 |1 |1]1|2|4| 3

Table 1. The maximal number of solutions for each component

Since C; and C;(i # j) are disjoint, to solve the equation numerically, for a set of
specific values of the parameters p, g, r, a, b, either

Zero(PS/Iy) = Zero(T'Sy/Ty)
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if k& satisfying 1 < k <9 and Ty(p,q,r,a,b) # 0, or
ZeI'O(PS/[O) = ZeI'O(TSl()/Tl()) U Zero(TSH/TH)

if Tvo(p,q,r,a,b) = Ti1(p,q,r,a,b) # 0. Since the polynomials in T'S; are of degree
< 4, the solution of the P3P problem is reduced to the solution of equation systems in
triangular form, and hence to the solution of univariate equations of degree < 4.

From this decomposition, we have the following observations.

1. Since the solutions for each triangular set are well-determined, this decomposition
provides a complete set of analytical solutions for the P3P problem.

2. From Table 1 and the analysis following the table, it is easy to see that there are at
most four distinct solutions under the reality condition (2). Notice that this result

was proved previously only for the main component.

3. From the experimental results in Section 4, we can see that the above decomposition
provides a complete and robust way to find the solutions to the P3P problem.

3 Complete Solution Classification for the P3P Equa-

tion System

For polynomials f(z) and g(z), let V; be the number of real solutions of f(z), and
Vi(g > 0) the number of real solutions of f(z) such that ¢ > 0. If f(x) has n real
solutions, then let C}n’j)(g > 0) denote the conditions that make f(z) having j real
solutions such that g > 0. The following lemmas will be used in this section.

Lemma 1 (Descartes’ Rule of Sign [19, 16]) Let f = Y a2, (a,a, # 0) be a
polynomial with real numbers as coefficients. Then the number of positive roots of f
18 less than or congruent to the number of sign changes in the sequence of coefficients
Any - - ap( mod 2).

Lemma 2 [16] Let f(z), g(z) be two polynomials, and f of degree n. Let
r(T) = resultant(f,g — T,z) = ¢ [[(g9(x;) = T)
i—1

where x;, i = 1,...,n are the roots of f(x) = 0. If all the solutions of f(z) = 0 are real,
then Vi(g > 0) = V(T > 0).



Let fi(z), gi(z,y) be the first two polynomials in T'S;.

In components T'S;,i = 5,6,7,10, f;(x) and g;(x,y) are linear in z and y respectively.
In these cases, each component can have only one positive solution and it is trivial to give
the conditions for them to have such solutions.

In components T'S;,i = 3,4,8,9,11, f;(x) and g;(x,y) are either linear or quadratic in
x and y respectively. We will treat these cases in Section 3.1.

In component T'Sy, fa(x) is a cubic equation and go(z,y) is linear in y. We will treat
this case in Section 3.2.

In component T'Sy, fi(z) is a quartic equation and g¢;(x, y) is linear in y. We will treat

this case in Section 3.3.

3.1 The Quadratic Cases

The quadratic cases may have three forms: (1) f;(z) is quadratic and g;(z,y) is linear
in y; (2) fi(z) is linear and g;(x,y) is quadratic in y; (3) fi(x) and g¢;(z,y) are quadratic
in  and y respectively. All of them can be treated similarly. We will take 7'Sy as an
illustrative example. The equation system is

fo=(-1+a+b2’+ (—qa+qz—14+a—-b=0,
go=(—1+a+by*—1—a+qra+b=0, (4)
p=0,r=0, >0,y >0,a+b—1#0.

The number of solutions for the above system is the same as the following equation system:
fo=(-1+a+b2*>+ (—qa+qz—14+a—-b=0,

g=(-14+a+b(1+a—qra—>) >0, (5)
p:O,T:O,a+b—17£0,-'L'>0

We first assume that resultant(fo, g, x) # 0, resultant(fy,z,x) =a —b—1+# 0 and
resultant(g,z,z) = (a+b—1)(a—b+ 1) # 0. Let

r11(T) = resultant(fy, g — T, x) = r10T? + 1T + g,

r12(T) = resultant(fy,xg — T, x) = r1920T? + 1191 T + 7195

By computation, we obtain the Sylvester-Habicht sequences|21] of (fo, dif f(f9,2)) which
are denoted by Dj;, D1y and Di3 (the discriminant) respectively. So fo has two real



solutions iff D3 > 0 and one real solution iff D3 = 0. Since resultant(fy, g,z) # 0,
resultant(fy, x,x) # 0 and resultant(g,x,x)) # 0, we have

4

Vfg(a; > 0) + Vf9(£L‘ < 0),
Vfg(x<0 Vig(x < 0,9 >0)+ Vg, (z <0,9 <0),
0) =

Vf9(9> Vf9($>0,g>0)+‘/f9(1‘<0,g>0),

) =
Vig(xg > 0) =Vy,(x > 0,9 > 0)+ Vi (x < 0,9 <0).

From the above equations, we obtain the following formula for the number of physical
solutions:

1
Viy(z > 0,9 >0) = §(Vf9(37 > 0) + Vi (g > 0) + Vi (xg > 0) — V) (7)

By Lemmas 1 and 2, we have the following results

Vi, (x > 0) =the number of sign changes in coefficients of fq(x),
Vi, (g > 0) =the number of sign changes in coefficients of r1;(7"),
Vi, (g > 0) =the number of sign changes in coefficients of r5(T").

If resultant(fy, g, ) = 0, (5) becomes:

( fo=—aqla+b— 1)z —q¢’a+q¢**—-20—a’>+1+b*=0,
g=(—1+a+b)(l+a—qgra—0>b) >0,
p=0,r=0,

la+b—-1#0,2>0

which may have one positive solution and the condition for that is easy to obtain. For
resultant(fy,x,x) = a—b—1=0 and resultant(g,z,z) = (a+b—1)(a—b+1) =0, we
can deal with them similarly.

Theorem 3 We have the following necessary and sufficient conditions to adjudicate the
number of physical solutions Vy,(x > 0,9 > 0) of Zero(T'Sy/T5).

1. (4) has two physical solutions iff one of the following statements holds;

1)
12) |

0,a+b—1>0,q>0,D13>0,A1<O,A2<O,A3<O]

p
p 0,a+b—1<0,q>0,D13>0,A1>O,A2<O,A3>O]



2. (4) has one physical solution iff one of the following statements holds;

2.1) [ p=r=0,a=1,¢g+b—2<0]

2.2) [ p=r=0,a—b+1=0,q#0]

2.3) [ p=r=0,a—b—1=0,¢>0,¢% < 4]

2.4) [ p=r=0,a+b—1>0,D13=0,A; <0]

2.5) [ p=r=0,a+b—-1<0,D13=0,A; > 0]

2.6) [ p=r=0,a+b—1>0,A,=0,A; <0]

2.7) [ p=r=0,a+b—-1<0,A,=0,A; >0]

2.8) [ p=r=¢q=0,(a+b—-1)(a—b—-1)<0,(a+b—1)(a—b+1) > 0]
2.9) [ p=r=0,¢>0,a—b—1>0,D13>0,A; <0,A; >0,A3 # 0]
2.10) [ p=r=0,¢>0,a—b—1>0,D13>0,A; >0,A, <0,A3 # 0]
2.11) [ p=r=0,¢>0,a+b—1>0,D13>0,A; <0,A, <0,A3 # 0]
2.12) [ p=r=0,¢>0,a+b—1>0,D13>0,A; >0,A, <0,A3 # 0]
where

Dis = ¢*(a—1)*—4(a+b—1)(a—b—1),

Ay = ¢ala—1)=2(a—b+1)(a+b—1),

Ay = ¢Pa—(a—b+1)%

A; = ¢ala—1)>—(a+b—1)(b—3ab—1— 2a+ 3a®).

Proof. We know that (4) has two physical solutions iff Vi, (z > 0,¢g > 0) = 2. From (7),
this is possible iff

Vig(x >0) =2,V (g >0) =2,V (zg >0) =2,V =2.

The first part of the Theorem 3 follows directly from these conditions. For the second
part, there are four cases. Suppose resultant(fy,g,x) # 0, resultant(fy,z,z) # 0 and
resultant(g, z,x) # 0. In this case, (4) has one physical solutions iff Vi, (z > 0,9 > 0) = 1.
From (7), (4) has one physical solution iff one of the following conditions holds:

Vig(x >0) =2,V (g >0) =2,V (zg >0) =0,V =2,
Vig(x >0) =2,V (g >0) =1,V (zg >0) =1,V =2,
Vig(x >0) =2,V (g >0) =0,V (zg >0) =2,V =2,
Vig(x >0) =1,V (g >0) =2,V (zg >0) =1,V =2,
Vig(x >0) =1,V (g >0) =1,V (zg >0) =2,V =2,
Vig(x >0) =0,V (g >0) =2,V (zg >0) =2,V =2,
Vig(x >0) =1,V (g >0) =1,V (zg >0)=1,Vy = 1.
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Analysing these conditions will lead to some of the conditions in part two of Theo-
rem 3. The other three cases are resultant(fq, g,z) = 0, resultant(fy,z,z) = 0 and
resultant(g,z,z)) = 0 respectively. We can deal with them similarly. Combining the
four cases will lead to the second part of Theorem 3.

3.2 The Cubic Case

For T'S, we need to consider the polynomial system:

fo = a5z + agx? + arx + as,
g2 = byy — b3 =0, (9)
x>0,y >0,a5 #0,bp #0

where the a; and b; could be found in Appendix A. The number of solutions for the above

system is the same as the following equation system:

f2 = 051'3 + a6x2 + arx + ag,
g =babs >0 (10)
x>0,a5 #0

Let Resultant(fs,g,z) # 0, and D; the Sylvester-Habicht sequences of (fo,dif f(f2)),
i=5,...,8[21]. We know that f(z) has three real solutions iff Dg > 0 [20]. Let

r7(T) = resultant(fo, g — T, x) = rooT? + 1o T? + 11T + 7713,

r3(T) = resultant(fy, xg — T, 1) = rggT> + rgyT? + rgoT + 7gs.

If Dg > 0, then by Lemmas 1 and 2, we can give the conditions for the equation system
to have one, two or three positive solutions. If Dg < 0, fo(x) has only one real solution
and two complex solutions. By Descartes rule of sign, Vi, (x > 0) = 1 iff the number of
sign changes in coefficients of fy(z) is 1 or 3. Now, we consider the number of positive
solutions of r7(T) and rg(T). Let x; be real, xy, x3 be complex. If g(xs) is real, then
g(x3) is also real, and the signs of g(z3) and g(z3) are the same. So by the Descartes
rule of sign, V;,(T" > 0) = 1 iff the number of sign changes in coefficients of r;(x) is 1
or 3, j =17,8. If Dg =0, D; # 0, then there exists polynomial Q2(x) = g0z + g2 such
that fo(x) = cQq(z)HZ(x), where H3(z) = h3ox + hs; is the pseudo-remainder of f, with
dif f(fs) for variable x This case is easy to solve. If Dg = 0, D; = 0, Dg # 0, then
f2(x) = cH}(z), where Hy(z) = 3asz + ag.

From the above discussion, we obtain the following result.
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Theorem 4 For T'Sy, we have the following results:

1. (9) has three physical solutions iff one of the following statements holds;
[ D> 0,08 (@ > 0),08%(g > 0), 8 (xg > 0)].

2. (9) has two physical solutions iff one of the following statements holds;

2.1 ) [Dg>0,09Y(x>0),CP7(g>0),087 (zg > 0)]
) [Ds >0, Cf32(3c>0) sz’g(g>0) sz’Z(xg>0)]
) [Ds >0, Cf32(3c>0) sz’z(g>0) sz’Z(xg>0)]
) (

ha1 —h
[D8:07D77£07—<07.g( 31) 1

2.4
h3o

>0,— <0,
hso 420

)>0]

3. (9) PS has one physical solution iff one of the following statements holds;
—q21

3.1) [ D8_0D77é0@<0 g(— 2Ly > 0]

420 420
3.2) [ Ds=0,D7 #0, 7~ fia Og(_h31)>0]

3 h30
3.3) [ D8:0,D7:0,D67é0,—<0,g(;7a12)>0]
3.4) [ Dy < 0,08 (x> 0),C0 (g > 0),C8 " (g > 0)]
3.5) [ Dg>0,C8% (x> 0),C5 (g > 0),08" (g > 0)]
3.6) [ Dg> 0,087 (x> 0),C5% (g > 0), c} Y(zg > 0)]
3.7) [ Dg>0,087 (x> 0),C5 (g > 0),08? (g > 0)]
3.8) [ Dy >0,C8" (x> 0),C5% (g > 0), cf Y(zg > 0)]
3.9) [ Dg>0,08" (x> 0),C8% (g > 0),08? (g > 0)]

3.10) [ Dy >0,08" (x> 0),C8 (g > 0),08% (g > 0)]

The explicit expressions for all C’](cn’j ) may be found in Appendix B.

If Resultant(fs,g,z) = 0, the problem becomes a quadratic case and can be treated
similarly as in the preceding section.

3.3 The Quartic Case

For T'S;, we need to count the number of solutions for the following system.

f1 = a0x4+a1x3+a2x2+a3x+a4 == 0,
g1 = boy — b1 =0, (11)
x>0,y >0,a90#0,by #0
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where a; and b; may be found in Appendix A. Since by > 0 (see Appendix A), it is
equivalent to count the number of positive solutions for the following system

fi = apx* + a12® + asx® + asx + a4
by >0 (12)
x> 0,a9 # 0,by # 0.

We will first assume that Resultant(fi,b1,x) # 0, and Resultant(fi(z),z,z) # 0. Let
f = Diff(fi,2), and Dy, A;, B;, C; the Sylvester-Habicht sequences of (fi, ), (fi,zf),
(fi(x),bif) and (fi(z),2b f') respectively, i = 0,..,4 [21]. First, let us assume Dy # 0.
It is known that V, =4 iff Dy > 0, D3 > 0, D4 > 0 which is denoted by C}(ff) [20]. Let

4
r(T) = resultant(fi,b1 — T,x) = ag [[(bi(2;) = T)
i=1
= 7"10T4 + T11T3 + 7"12T2 + T13T + 714
4
ro(T) = resultant(fi,xby — T,x) = ag [[(xbi(z;) — T)

=1

= 7"20T4 + T21T3 + 7"22T2 + T23T + To4
where f(x;) =0,i=1,2,3,4.

By the Lemmas 1 and 2, we have the following results:

Vi, (x > 0) =the number of sign changes in coefficients of f(x)
Vi, (b1 > 0) =the number of sign changes in coefficients of r,(T)
Vi, (xby > 0) =the number of sign changes in coefficients of r4(7")

By the complete discrimination method [22], V};, = 2 iff one of the following conditions
holds.

4

1 D2>0,D3>0,D4<0

)
; Dy#0,D3<0,Dy <0 13)
)

[SSEN N

DQSO,D3>0,D4>0
D2>07D3:0,D4>0

4

\

We denote one of the conditions by C’](cf). It is clear that there are the following results:

Vi (x> 0) — Vi (x <0)) = 5[sign(Ay) + sign(A; Ay) + sign(AsAz) + sign(AzAy)];
Vi (b1 > 0) = Vi, (by < 0) = 5[sign(By) + sign(B1Bsy) + sign(B2Bs) + sign(BsBy)];
Vi (2by > 0) — Vj, (wby < 0) = 3[sign(C') + sign(C1Cy) + sign(CoCs) + sign(CsCy)).

N = N[

Since Resultant(fi,b1,z) # 0, and Resultant(fi(x),x,x) # 0, we have
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Vi (x> 0) = 5[V}, + sign(Ay) + sign(A; Ag) + sign(AsAs) + sign(AsAy)l;
Vi (by > 0) = 5[V}, + sign(By) + sign(ByBs) + sign(ByBs) + sign(BsBy)l;
Vi (xby > 0) = L[V}, + sign(Ch) + sign(C1Cy) + sign(CaCs) + sign(C3Cly)).

1
2
1
2

For any two equations f(z) and g(z), if Resultant(f(z),g(z),x) # 0, then Vi, =
Vi (9(z) > 0) + Vi (9(z) < 0)

Then, we have
1
Vi(x>0,bp >0) = §(Vf1(x > 0) + Vi, (by > 0) + Vy, (zby > 0) — V).

So, for ag # 0 and D, # 0, we can solve the equation system completely. Note that Dy is
the discriminant for f;. From the above discussion, we proved

Theorem 5 For ag # 0, Dy # 0, we have

1. (11) has four physical solutions iff C’J(ffA) (x> 0), C'J(ffA)(bl > 0), C'J(ffA) (xby > 0) and
Y hold
fi )
2. (11) has three physical solutions iff one of the following statements holds;

2.1) (O (x> 0),CHP (b > 0), 05 (wby > 0), %)
2.2) (O (x> 0), CEY (b > 0), 08 (wby > 0), 8]
2.3) [C8 (x> 0), CH (b > 0), 05 by > 0), %)

3. (11) has two physical solutions iff one of the following statements holds;

3.1) [ CP (@ > 0),08P (b > 0),CE? (ab, > 0),C%]
3.2) [ C8 Y@ > 0),082 (b, > 0), cf“ (wby > 0),C%]
3.3) [ O (@ > 0),08Y (b > 0),CH? (@b, > 0),C]
3.4) [ O (@ > 0),082 (b > 0),CHY (@b, > 0),C]
3.5) [ O (@ > 0),08 (b > 0),CH? (@b, > 0),C]
3.6) [ O3 (@ > 0),08 Y (b > 0),CH (@b, > 0), C]
3.7) [ O3 (@ > 0),082 (b > 0),CHY (@b, > 0),C]

4. (11) has one physical solution iff one of the following statements holds;

4.1) [ O (> 0),08" (b > 0), 8 (@b, > 0),C%]
4.2) [ OV (@ >0),08P (b > 0), 8 (@b, > 0),C%]
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4.3) [ OV (@ >0),08" (b > 0), 8 (@b, > 0),C%]
4.4) [ O (@ > 0),08 (b > 0),C4 (@b > 0),CY]
4.5) [ O (@ > 0),082 (b > 0),C4 (@b > 0), O]
4.6) [ O (@ > 0),08 (b > 0),C4? (@b > 0),CY]
4.7) [ O8> 0),08 Y (b > 0), 4 (@b > 0),CY]
4.8) [ O (@ > 0),08P (b > 0),C4? (@b, > 0),CY]
4.9) [ 8@ > 0),08 (b > 0),C4Y (@b, > 0),CY]
4.10) [ V(@ > 0),08 (b > 0),C8 (@b > 0), O]
4.11) [ V(@ > 0),08 Y (b > 0), C4? (@b > 0),CY]
4.12) [ V(@ > 0),08P (b > 0), 4 (@b > 0),CY]
4.13) [ V(@ > 0),08 (b > 0), 8 (@b > 0),CY]

The explicit expressions for all C’](cn’j ) may be found in Appendix B.

If Dy = 0 and D3 # 0, then we know that there exists a polynomial Q(x) =
Q107 + qur + qi2 such that fi(z) = cQ,(x)H?(z), where Hi(z) = Dsx + Ds. Let
Dq, = resultant(Qq,dif f(Q1),x). If Dg, > 0, then Q(x) has two different real so-
lutions. Let

r3(T) = resultant(Q1, by — T, x) = r3gT? + 131 + 13,
r(T) = resultant(Qy, vby — T,z) = r4oT* +ryy T + 7y

By Lemmas 1 and 2, we have:

Vo, (z > 0) =the number of sign changes in coefficients of @Q;(z)
Vg, (by > 0) =the number of sign changes in coefficients of r3(7")
Vo, (zby > 0) =the number of sign changes in coefficients of r4(T).

Similarly, we have Vg, (z > 0,b; > 0) = 3[Vi, (z > 0) + Vo, (b1 > 0) + Vo, (zby > 0) — Vg, |.
If Do, =0, then Q(z) = qo(x + LL)2.

2q10

For Dy = 0 and D3 =0, Dy # 0, let H,(x) = Dyx? —|—D2x+52. Then fi(x) = cH(z).
If DH1 > 0, then VH1 = 2. Let

rs(T) = resultant(Hy, by — T,z) = rsoT? + r5; T + 752,

re(T) = resultant(Hy, xb; — T, 1) = regT? + re1 T + ro.
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Similar to the above discussion, we can solve Vg, (x > 0,0, > 0). If D, = 0, D3 = 0,
Dy =0, Dy # 0, then fi(x) = cHy, where Hy(z) = dagz + a;.

From the above discussion, we can obtain the following theorem.

Theorem 6 For Dy =0, we have
1. (11) has three physical solutions iff [D3 # 0, —%ﬁ > 0, bl(—%g) > 0,Dg, >0,
5P (@ > 0),C57 (b > 0),C5 7 (@b > 0)] holds;

2. (11) has two physical solutions iff one of the following statements holds;

qi1 qii, D3 D3

2.1 D3 #0,Dg, =0, 2= < 0,by(——=), =2 < 0,b(——

) : 27 o q10 i Lho) Ds 1 D3)}

2.2) [ D3 +#0,Dq, >0,C5 (x> 0),C52 (b1 > 0),c5 (wbr > 0)]

2.3) [ Ds=0,D5#0,Dp, > 0,05 (x> 0),C57 (b1 >0), 51" (ab1 > 0)]
Ds Ds

2.4) [ D3+#0,Dg, >0, D— <0,bi(- 22)>0,¢5% (@ > 0),c5M (b > 0),C5V @by > 0)]

Ds (2,1) 2.1 (2,1)

2.5) [ D3#0,Dg, >0,— < 0,b1(— Dy ) >0,Cq, " (x>0),Cq 7 (b1 >0),Cp " (zb1 > 0)]
D D3 (2,1) (2,1) (2,2)

2.6) [ D3#0,Dg, >0,— Ds <0,b1(— Ds ) >0,Cq (z>0),Cq (b1 >0),Cp ™ (zb1 > 0)]

3. (11) has one physical solution iff one of the following statements holds;

3.1) [D37é()g<0b1(£)>0]
3.2) [ Dy #0,Dg, =0, -1 > 0,5, (—2L) > 0]
q10 q10
3.3) [ D3—0D2—0D17é0 <0 b1(4a0)>0]
3.4) [ D3:0,D27AO,D32:0,§ <0b1(_£2)>0]
3.5) [ D3 #0,Dg, > 0,057 (x> 0),05" (b > 0),C5" (xby > 0]
3.6) [ D3 #0,Dg, > 0,05 (x> 0),C57 (b > 0),C5" (wby > 0)]
3.7) [ D3 #0,Dg, > 0,05 (x> 0),C5 (b > 0),C5? (wby > 0)]
3.8) [ D3 =0,D, #0, DH1>00“( > 0),C 21>(bl>0),c§§;>(xb > 0)]
3.9) [ D3:0,D27AO,DHI>O,OH ( >0),C (bl>0) O (xb1>0)]
3.10) [ D3:0,D27AO,DHI>O,OH ( >0),C (b > 0), O (xb1>0)]

The explicit expressions for all C’](cn’j ) may be found in Appendix B.
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If Resultant(fy,by,x) =0, then the equation system becomes the following form

fi1 = a1r® + anz? + apx + a3 = 0,
b11 = b10£U4 + b11£U3 + b12$2 + b13£U + b14 > 07 (14)
x> 0.

which can be treated with the method in Section 3.2. We may solve the case for
Resultant(fi,x,z) = 0 and Resultant(f;, by, x) = 0 similarly.

3.4 A Special Case of the P3P Problem

Let us assume that a = b =1 and r = ¢. Since the formulas in this case are quite simple,
we may have an intuitive idea about the distribution of the solutions. The P3P equation
system becomes

f=-2"—py+qry+1

(15)
g=—y?—qv+pry+ 1.
Using Wu-Ritt’s method, this equation system has the following two components:
=z —qr+p—1
fi qx +p (16)
fo=y—1
g=(-1+¢)"+(—q—qp)x+1+p a7

g =y—qr—1

It is clear that the number of positive solutions of (16) is determined by fi(z) = 0. Notice
that fi(z) is a quadratic equation in z, we have the following results.

e Equation system (16) has one positive solution iff,

q>0
o2 or p<l1.
=" or 1

e Equation system (16) has two positive solutions iff,
q >0 and #>p>1.
Now we will discuss (17). Let g = qx + 1.

Ry (t) = resultant(gi, g — t,x) = (¢* = DI + (¢* = ¢’p = 2)t + (¢* — 1)

(18)
Ry (t) = resultant(gi,zg — t,x) = Rogt? + Roit + Ry
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Here, Ry = (¢ — 1)*(¢+1)%, Ror = —q(1+p)(¢°p — 2¢° +3), Rz = (¢ — 1)(¢ + 1)(1 +p).
Denote the discriminant of g; by A. We have

A=(1+p)(¢’p -3¢ +4).
By Descartes rules of sign, (17) has two positive solutions iff
qg>1 andp>3—(;iz.

Otherwise E'S; has no positive solution.

We still need to consider the reality conditions (2): 0 < o, < 7, 0 < o+ 20 < 2m,
and 28 > «a, which can be reduced to

2<p<2,-2<q¢<2,2-2<p.

Combining the above conditions, we have the following classification for the P3P problem.

1. Point P has four solutions, iff
2>q>1, 4le—‘12>p>1, andp>3—q4—2.
2. Point P has three solutions, iff

1<qg<V?2 1<qg<?2
or

2
3—H<p<l p= L.

3. Point P has two solutions, iff

0<qg<l1 l1<g<?2 V2<qg<?2
or or

1<p<# #<p<2 1<p§3—;izandp>q2—2.

4. Point P has one solution, iff

—\/§<q<10r\/§§q<\/§ 1<q<\/§
0

r
P?—-2<p<l1 (]2—2<p§3—;i2

O<q§10r\/§§q<\/§ 0<g<1
0

r
— _ 44¢®
p=1 p="=i

or

18



Figure 2 is the solution distribution diagram for this special case. Ly is p = #, Lo
isp=¢*—2,and Ly isp =3 — %. The following table shows where the solutions come

from for each region.

Solution number | 1 2a | 2b | 2c 3 4 ‘
Equation systems | (16) | (17) | (17) | (16) | (16) and (17) | (16) and (17)‘

Table 2. Number of solutions and the component providing the solutions

Figure 2. Solution distribution for case a =b=1,¢ =71

Here are some general observations from this diagram. The P3P most probably will
have one solution. The probabilities to have two, three and four solutions decrease in
order. The P3P problem tends to have more solutions when the three perspective angles
are small. The most complicated case occurs when the three perspective angles are almost
equal to the correspondent inner angles of triangle ABC.

4 Experimental Results on the Algebraic Method

Two sets of formulas are given in Sections 2 and 3 respectively. In this section, we will

show how to combine them to obtain more robust numerical solutions.

In Section 2, we give a set of complete analytical solutions to the P3P problem. Previ-
ous methods only give the main component, which, although covering most of the cases,
may not provide solutions in many cases. With these formulas, numerical solutions to
the P3P problems could be found in all cases. Solution of the P3P problem is reduced to
the computation of Zero(7'S;/T;). The main component Zero(7'S;/T;) has been studied
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in previous work [9, 4], in which we need to solve a quartic equation. To solve cases
Zero(T'S;.T;),i > 1, we need to solve equations with degrees < 3. To solve linear and
quadratic equations is trivial. For the cubic and quartic equations, we may write their
roots as formulas with radicals. Because these formulas involve /—1, it is generally dif-
ficult to distinguish real roots from complex roots. In Section 3, we also give explicit
formulas to determine the number of real positive roots. Combining these formulas with
the solutions in radical form gives us an efficient and stable method to solve these equa-

tions.

Based on the criteria obtained in Section 3, we introduce the concept of stable and
critical values for the parameters. For a condition C in these criteria, let F(C) be the
set of ¢ such that one of the following formulas: ¢ > 0, ¢ < 0, ¢ # 0 occurs in C. For
instance, let C be condition 1.1 in Theorem 3. Then

f(C) = {a’ + b— 17q7D137 A17A27A3}'

A set of values for the parameters a, b, p, ¢, r is said to be stable for condition C if for each
¢ € F(C), |p(a,b,p,q,r)| > §, where § > 0 is a small number, say 1% of the value range of
the parameters. Otherwise, it is critical. Basically speaking, the critical values are those
which will approximately vanish the expressions in F(C). Therefore, the probability for

the occurrence of the critical values is near zero.

If a set of values is stable, then a small variation of these values will give the same
number of solutions. On the contrary, for a set of critical values, a small variation may
lead to changes in the number of solutions. Therefore, for a set of stable values, we
may use usual floating-point calculations to enhance the computation speed; and for a
set, of critical values, we may use high precision computation tools provided by symbolic

computation software or by other special tools, like the exact geometric computation
method[18].

From the above discussion, we propose the following the CASSC algorithm.
CASSC Algorithm.
Input: A set of values for parameters a, b, p, q, r.

Output: The physical solutions.

S1 In this step, we will decide which of the ten components in (DE) will provide the solu-
tion. Let ES; be the set of polynomials in T'S; involving the parameters a, b, p,q,r
only. Then for a set of parameter values a, b, p, ¢, r, the solutions will be provided
by Cy if ESkg(a,b,p,q,r) = 0 and t, = |Tx(a,b,p,q,7)| # 0. In practice, we use
the criteria: |P(a,b,p,q,7)| < 10 *m for each P € ES} and t; > 10 %m, where
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m = max(a,b,p,q,r). We will find the smallest k£ such that the above conditions
are satisfied. If no such k, then there exists no solution. Otherwise, goto S2.

S2 Determine the number of physical solutions with the criteria given in Section 3. Let
N be the number and ¢ the criterion used to determine this number. If N = 0, the
algorithm terminates. Otherwise goto S3.

S3 In this step, we will decide the digits of precisions used in the computation. With
the criterion ¢ obtained in step S2, we may determine whether a, b, p, g, r are stable
values. If they are stable, let M = 16 (usual floating-point number); otherwise, let
M = 40.

S4 Find all the solutions of 7'Sy = 0 using high precision numbers with M digits.

S5 If the number of solutions obtained in S4 is the same as N, then these are the solutions.
Otherwise, we need to select N “right” solutions from them. We first replace a
complex number u + vi in the solutions with u if v is very small, say |v| < 10 %m.
Then, we select the N largest positive solutions. According to Step S2, this is
possible.

The following experiments are done with Maple. The first experiment is to show the
stability of the criteria in Section 3. These formulas use arithmetic operations (+, -, *)
only and are of moderate size. The computation will be robust. Also, from the above
analysis, only for critical values of the parameters, the computation will be un-stable.
We also know that the probability for the occurrence of the critical values is near zero.
This observation gives another assurance that the computation is stable. The following
experimental results support this statement.

The parameters a, b, p, q, and r are randomly generated within some ranges by a
random number generator in Maple 7. We take a, b € (§5 10), and p, ¢, r € (=2 2). One
hundred trials are carried out and 100 sets of parameters are generated for each trial. For
each set of parametric values, two results are computed: one with the original parametric
values; the other with the parametric values perturbed by random noises in certain level.
In trial 7, let n; be the number of the parametric values such that the two results are
the same and let Hmn_—n\l (here n = 100) be the relative sets error. Figure 3 (a) gives the
median, mean, and standard deviation of the relative errors w.r.t. varying noises. We
observe that the algorithm yields very graceful degradation with increasing noises and
are, therefore, very stable.
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quartic critical case

Figure 3. Experimental results

The second experiment concerns the stability of the whole CASSC algorithm. We
choose three sets of parametric values S; = {a = 0.6,b=0.5,p=r=0,¢ =0}, So = {a =
L,b=1,p=12,r =12,q = 1.3}, and S; = {a = 1.35,0 = 1.65,p = 1.2, = 1.0,q =
1.67}. We choose n = 100 random numbers as noises nearing each of the seven numbers:
er = 0.08,e0 = 0.1,e3 = 0.12,¢e4 = 0.14,e5 = 0.16,e5 = 0.18,e7; = 0.2 and compute the
solutions for Sy, S, and S3 with our algorithm. Let n; be the number of parametric values
near ¢; which give different number of solutions with the original parametric values, and
HZ—i” the relative sets error. The experimental results are illustrated in Figure 3 (b). It is
easy to check that Sj is stable and Sy, S5 are critical. The experimental results strongly
support the fact that our definition of stable and critical values are meaningful. From
Figure 3 (b), we see that even for a set of stable values (S3), the computation may be
unstable. This is caused by the high noise level. The computation is stable for noises less

that 10% of the value range of the parameters, which is quite reasonable.

We test our algorithm with a larger set of samples. For a set of solutions obtained with
the algorithm, we substitute them into (£S) and check whether the substituted values
are zero or not. We take 100 sets of parameters randomly. The maximal substituted value
into (ES) is 0.3 * 10719 for the equation systems, which is satisfactory.

We also tested the speed for the CASSC algorithm, which should be fast for the
following reasons. Steps S1, S2, S3 only involve the evaluation of rational expressions
of moderate size. Step S4 is to solve univariate equations of degrees at most four. Step
S5 is computationally trivial. We test our algorithm with one hundred randomly chosen
samples. The average running time for steps S1, S3 and S5 is almost zero; the average
running time for step S2 is 0.011 second; the average running time for step S4 is 0.013
second. The data is collected with Maple V on a PC with a 2G CPU. Step S4, which is
to solve the quartic equations, is the most time consuming step. Note that this step is
needed in most previous approaches to solving the P3P problem. The implementation is
based on the interpreter language of Maple for symbolic computation, which is known to
be much slower than implementations with C languages for the tasks mentioned above.
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As a conclusion, the CASSC algorithm is quite fast. There is no problem to provide
realtime solutions to the P3P problem.

5 The Geometric Approach

Let us consider the three conditions a = /BPC, f = /APC, and v = /AP B separately.
The set of all P satisfying condition /APB = v is part of a toroid (part-toroid) S 5.
Similarly, we can define S’ and Sp,.. Because the three part-toroids are symmetric with
the plane ABC, we need only consider what happens on one side of plane ABC'. Let Syp
denote the half of S, which is on one side of plane ABC. We can similarly define S ¢
and Spc.

We divide the problem into two steps: first, we determine the intersection curve C'4
of surfaces Syp and Syc; then, we determine the intersection of C'4 with Spc. We have
solved the first step completely. For the second step, we have some partial results.

5.1 Determine Cy = Sy N Sac.

Let AB; (AB.) denote the intersection of S,z and plane ABC which is on the same
(opposite) side of AB with point C. Since the axes of symmetry for part-toroids S5
and S’; meet in point A and point A is also on the part-toroids, from the shape of
the part-toroid each branch of C4 must pass through plane ABC. That is, C'y must
meet with plane ABC. Curve C4 intersects with plane ABC' in at most four points:
J = @e N @e,H = @e N @i, K = @Z N Ee, and I = @Z N Z@’, Please note that
in some cases (e.g., in Figure 7) point A may not be on Cy4. In this case, point A is on
the intersection curve of the parts of the toroids that are excluded by us.

From now on, we also use A, B, C to denote the angles of /A, /B, /C. We first give
the existence conditions for points .J, H, K and [.

b S
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Figure 4. Existence conditions for point .J

e Point J exists if §+ v < A (Figure 4). In Figure 4, /BJA = ~, /CJA = 3, and
(BJC = g +~. If B+~ is large enough, AB, and AC, will have no intersection
point. If 5+~v = A, AB, is tangent to AC, at point A. If 5+~ < A, the intersection
of A/Ee and A/ée will exist.

e Point H. There are two cases. If B < [, then point B is outside of S, and H;
exists if B < f and 8+ A < . In Figure 5, /BH,A = v, /CH,A = (3. To ensure
the existence of Hj, v must be greater than 3+ A. If v = 3+ A, AC; is tangent to
AB, at point A. If 8 < B, then point B is inside Sjq¢ and Hs exists if 5 < B and
v < B+ A

H2
H1 \

B C

Figure 5. Two cases for point H

e Point K. There are two cases. K exists if C' < yand v+ A < (. Ky exists if y < C
and 8 < v+ A.

I2
Figure 6. Existence conditions for point

e Point I. There are two cases: I; exists if B < 3,C < v, and f+v+ A < 27 (Figure
6). I exists if f < B and 7 < C' (Figure 6).

We will now give a classification of C'y by counting the intersections of C'y with plane
ABC'. Suppose that S,U,V are points. We use E(S) (E(S) ) to denote the existence
(nonexistence) condition of point S. Notation S \ (U,V') means that if S exists then U

24



and V will not exist. Notation S,U = V means that if S and U exist then V exists.
From the results in the preceding sections, we have the following conclusion.

J\ (Ki, Hy)

H\ (J, Ky, Hy, 1), Hy \ (Hy, Ih)

K\ (J,Hy, Ko, 1), Ky \ (K1, 1) (19)
I\ (12, Ky, Hy), 1) \ (11, Ky, Hy)

Ky, Hy, = 15, J, I, = H,y, K.

\

e (' intersects plane ABC' in four points. From the above analysis, the four points
must come from Hy, Hy, K1, K5, I1, I, and J. Since Hy \(H3), K1 \(K>) and I; \([2),
the fourth point must be .J. From J \ (K7, H;), K3 and H, must exist. Finally from
Ky, Hy = I, we get the fourth point /5. So the four points are J, Hy, K5, I5. Then the
condition of this case should be E(J)NE(Hy)NE(Ky)NE(Io)NE(H,)NE(K,)NE(1),
which is equivalent to E(J) N E(I3) by (19). That is,

B+v<AB<B, and vy < C.

In this case, C4 consists of two spatial curves: one is from point .J to I, and the
other is from H, to K,. Figure 7 shows the case in the ABC' plane and the spatial
case. Note that in this case, point A is not on the curves.

12
Figure 7. C4 consists of two curves

e (), intersects plane ABC in three points. From J \ (K, H;), we know that if .J
exists, at lease one of Hy and K> should exist. Actually only one of H, and K5 can
exist. Otherwise from Ky, Hy = I, we know that there will be four points! Then we
know that either Hy or K exists. From Hy \ (Hy, I) and K5 \ (K1, I1), we know that
I, must exist. Since J, [y = Hj, K, point J must not exist. Since H; \ (Hz), K; \
(Ks) and I; \ (I2), if we assume that H; exists, from H; \(J, K1, Hs, I5) we know that
the other two points are K, and I;. This contradicts to Ky \ (K3, I;). Thus H, must
exist. From Hy \ (Hy, I;) we know the other two points are Ky and I,. The condition
of this case should be E(Hy) N E(K>) N E(I) N E(J)N E(Hy) NE(Ky) N E(L).
Using (19) we can simplify this condition to E(Hz) N E(Ky) N E(J). That is,

B—~] <A< B+ B<p, and y < C.
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In this case, C'4 consists of two spatial curves: one is from A to I, and the other is
from H, to K,. Since the detailed analysis is the same, we will omit it below.

e (4 intersects plane ABC' in two points. There are five sub-cases.

Case 1 The intersections are J, Ky (J, Hy) if

B+y< A B+y< A
B<p g < B
vy<C C<y

In this case, C'4 consists of one spatial curve from J to Ky (J to Hy).

Case 2 The intersections are .J, I if
B+v <A B<f, and C < 7.

In this case, C'4 consists of one spatial curve from .J to I;.

Case 3 The intersections are Hy, Ky (Hy, K3) if

v+A<p L+ A<ry
g < B B<p
C<y vy< C

In this case, C'4 consists of one spatial curve from Hs to K; (or H; to K»).

Case 4 The intersections are K, I, (Hy, ;) if

(v +A<8 ( B+ A<~y
B<p B<p

%C'<7 %C'<7

| B+y+A<2r | B+y+A<2rm

In this case, C'y consists of one spatial curve from K; to I; (H; to I3).

Case 5 The intersections are Ky, I (Hy, I5) if

B+ A<y Y+ A<pB
< B g < B
vy<C vy< C

In this case, C'y consists of one spatial curve from Ky to Iy (Hs to I3).
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e (4 intersects plane ABC' in one point. We need to consider two sub-cases.

Case 1 The intersection is Hy (K>) if

B—7 <A< B+7y B—7 <A< B+7y
< B B<p
C<y vy<C

In this case, C'4 consists of one spatial curve from A to Hy (A to K3).

Case 2 The intersection is I; if
IB—v<A<B+vB<p,C<7y, and f+v+ A < 27.

In this case, C'4 consists of one spatial curve from A to I;.

5.2 Determine C4 N Spc.

Determine the intersection of C'4 and Spc is much more difficult than determine C4. We
will discuss the reason in Section 6. Here, we will report some partial results.

Lemma 7 The P3P problem has one or three solutions if C's consists of one spatial curve

and the two intersection points of plane ABC' and C'4 are not in the same side of Spc.

Proof: Since (4 is a continuous spatial curve and the two intersection points of plane
ABC and Cj4 are not in the same side of Sgo, C4 must intersect Spc for odd times.
In addition, the maximum number of solutions is four, hence the problem has a unique

solution or three solutions.

Lemma 8 If 5, v («, B;7,a ) are obtuse angles and o > A (8 > B; v > C' ), then the
P3P problem can only have one or three solutions.

Proof: See Figure 8. We have /BL1A = v > §, /CLA = 3 > . Point I; is on
the same side of BC' with point A. According to the “reality condition”, we know that
a+ [+ v < 2w, which implies that point [; is inside Spc. Condition o« > A means that

point A is in the outside of Sgpc. Thus the result follows from Lemma, 7.
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Figure 8. A unique solution exists

Theorem 9 Under the reality conditions (2), if B8, «, and v are obtuse, then the P3P
problem can only have one solution. Furthermore if A < a, B < 3,C < v, then the P3P

problem has a unique solution.

Proof: From Lemma 8, we know that the problem will have one or three solutions since
B, a, and v are obtuse and at least one of A, B, C' is acute. Since the three angles are
all obtuse, the three part-toroids and their intersection curves are concave. This implies
that they can only have one intersection point. If A < a, B < 3,C < 7, from Section 5.1,
point I; must exist. Similar to Lemma 8, points A and I; must be in different sides of
Spc. Similar to the proof of Lemma 7, a solution must exist.

6 Conclusion

In this paper, we give a complete and robust algorithm CASSC to find the numerical
solutions for the P3P problem. This algorithm is based on two sets of formulas obtained
by us. The first is a set of complete analytical solutions to the P3P problem. The second
is a set of formulas to determine the number of real positive solutions to the P3P problem.

We also give partial geometric criteria for the number of solutions of the P3P problem.
This kind of results, like Theorem 9, involves linear inequalities only, and hence is simpler
and more intuitive than the algebraic approach. To find a complete geometric classification
for the P3P problem is a still challenging problem. There might be two difficulties in doing
so. The complete results reported in Section 5.1 are based on geometric intuition coming
from a dynamic geometry software: Geometry Ezpert [23]. Using Geometry Ezxpert, we can
see clearly how AB; and AB, change when changing the six free parameters continuously.
But for the 3D case, there is still no adequate software to get an intuitive idea of how C'4
looks like. Also, it is doubtful that the complete classification of the P3P problem can be
expressed with linear inequalities only.
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agx4 + a1x3 + a2x2 + a3z + aq,
boy - bl.

3 2
asr” + agxr”® + arr + ag,

b2y_b37
a2+ (=2+2b—br?)a —2b+b% + 1.

(r?p? = dpgr +r°¢°)z” + (4p°q — p*r’q)z — 4p® + r7p?,

b4y - b5a

(—4p? + 4dpgr + r2p? +r?¢® — r3pq — 4¢%)a + r’p? — dpqr + 442,
(—4p? + dpqr + r2p? + r2¢® — r3pq — 4¢>)b + r2q® + 4p? — dpqr.

(P?b + ¢*b — p?)a? + (—4bq + p*q)z + 4b — p?,
py +qz — 2,

a+b-—1,

T.

qr — 1,

py — 1,

P>+ ¢%)a — ¢,

(P* + ¢*)b - p?,

T.

qr — 1,

py — 1,

(p* - 20°¢* + ¢*)a — p*¢* — ¢*,

(p* - 20%¢* + ¢")b — p*¢* — p*,

(P* + ¢*)r — 4pg.

(p*q — 2pr)z — p* + 17,

py — 1,

(47 + p*¢* + p* — r* — pPqr + priq — 4qpr)b

+2pr3q — 2p27“2 + 2p3q7" — 1r)2q27“2 — p4 —r
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Appendix A The triangular sets in the zero decomposition for the P3P problem



ago

a

az

as

a4

as

ag

ar

ag

(2pr3q — 2p2r? + 4br? + p2¢?b + p*b — rib + 2p3qr — p?¢®>r? — p* —rt—

p3grb + r3pbq — 4gbpr)z? + (—g*r3pb + 2pg®br + 2p°r2q + p23r? + riq + qrib

% +ptq — 2bpr® + 3qr2bp? — 4r2bq + 8rpb — 2rbp® — 2p3¢®r — 4bp?q — 2r3pg®)x (T'Ss)
—p2q?r? 4 2pr3q + 2p3qr — p* —rt — 2p%r? — dgbpr + ¢?br? + 4bp?,

(—gpr +p* +7%)y + pgz — 2rz — 2p + qr.

(-1+a+bz*+(—ga+q)z—1+a—0b,

(-1+a+by?>—1—a+qza+b,

(T'Sy)
p’

7.
(2pr = p*q)z — r? +p?,

py — 1,

(—pgr® +r* +rp3q — 4r2 — p?¢® + 4rpq — p*)a + p?q® — 4rpq + 412, (T'S10)
(—pqr3 +r* +rp3q — 4r? — p?¢® + 4rpq — p*)b+

p4 +ri 4 2r2p2 + 1)27’2q2 — 27’p3q — 2pqr3.

re = p,

(=p?r? +r%qp — r')y? + (pPr® = p*rPq + rip)y

(—pgr® +r* +rp3q — 4r2 — p?¢® + 4rpq — p*)a + p?q® — 4rpq + 412, (T'S11)
(=pgr?® + 14 + rpPq — 4r* — p*q® + 4rpg — p*)b+

p4 +rt 4+ 2r2p2 + 1)27’2q2 — 27’p3q — 2pqr3.

= —2b+b*+a*+1—brla+2ba —2a

= —2bga — 2a%q + br’qa — 2q + 2bq + 4aq + pbr + brpa — b?rp

= ¢+ %% —bp? — gpbr + b2p® — brla + 2 — 2b% — abrpq + 2a® — 4a — 2¢%a + q2a2)
= —b%rp+ brpa — 2a%q + qpb + 2bga + 4aq + pbr — 2bqg — 2q

= 1—2a+2b+b*—bp? + a® — 2ba,

= (apr + 2qa — rpb + 2bq — 2q — ar’q + pr,

= (=2¢° +r* — 4+ 72> — pgr)a + br? — p* — bg® + bp® + 2¢% + 4 — pqr — 4b,

= (6q + pr — 2r’q)a + pr — 6q — rpb + 2bq + qp?,

= 4 —4da—p*+ar?
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bo

b1

by

b3

by
bs

I

Ts

b(p*a — p* + bp® + pgr — qarp + ar® — 2 — br?)?,

(1 —a—-b)2z>+ (ga — @)z + 1 — a +b)((a®r> + 2brPa — br’a — 2ar> + 13 + b%r3 — 2r3b)2> +
(pr? + pa*r? — 2br3qa + 2r3bq — 2r3q — 2par? — 2pr?b + ripb + dardq + bgar® — 2r3a’q
+2r2pba + b*r?p — ripb?)a? + (r3¢? + rOb? + rp?b? — dar® — 2ar3¢® + r3¢%a® +

2a%r® — 20%r3 — 2p%br + dpar’q + 2ap*rb — 2ar?qbp — 2p*ar + rp* — broa + 2pribg +

rpa® — 2pqr? + 2r® — 2ripa’q — r4qbp)$ + dardq + pri¢® + 2pPba — dpar? +

—2r3bq — 2p%qr — 20°r%p + ripb + 2pa’r? — 2r3a%q — 2p3a + pPa® + 2pr? + p? + 20r3qa
+2qp°br + 4qarp?® — 2par?q® — 2p*a®rq + pa’r?q® — 2r3q — 2p3b + p3bp® — 2p2brqa),

b(—4a7“3 + 473 4 ar® — 2p3q + 4rp? — 6pgr® — 4rp®b — 4p%ar + 6par’q +

20°rq? + 2p%ar® 4+ 2p3bg + 2p3qa + ptar + p2arde® — 2p*rq*a — pProg® —

2pPariq — 2partq + 2prbq),

(=14 a+b)z® 4 (—qa + )z — 1 +a — b)((—par® + arlq — 2ar2q — 2r2bq + 2r%q — pr® +
7’3bp):1:2 + (—7’2p2a + 2r3pag + 4ar? — r*¢®a — ar* — 2qarp + 2ar?¢* — 4 + r2bg® + r3pq
+2pqr + 4r?b — 2qpbr — 2r2¢% — 47“2)$ — pPar 4 2ar'q — par®*q® + 2p*ar’q — 2par® + 2pr’a
—2p%aq — 6ar?q + dapr — pr3 + 4pbr + prog® — 2r’bq — 2prq® + 2qp* — 2bgp® — 4pr + 67“2q),
r?p?(rq” + p°r — 4pq) (p? — par + 1% + ¢* — 4),

r2q((rp® +7q* — °pa)x + pr® — 4p)((rp” + rq” — 4pg)z + ¢°p — qp*r + p°),

ag, I = bo, Is = as, It = by, Is = 1, Is = rp — 4pq +r¢°, It = p,Is = (p” + ¢*)b — p*.
Lol I, Ty = Iolal31y, Ts = Iololylslel7, Ty = lol2lsls 1713,

Iolslylsl7,Ts = Iolodylsl7, T7 = Iolod3, Ty = T7, Ty = Ioly,Tio = Ioly,T11 = Ioly.

Appendix B. The explicit formulas for the conditions in the theorems in Section 3 can be

found in http://www.mmrc.iss.ac.cn/” xgao/paper/appendix.ps.
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