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Abstract— This paper presents a new method to estimate the
relative motion of a vehicle from images of a single camera.
The computational cost of the algorithm is limited only by
the feature extraction and matching process, as the outlier
removal and the motion estimation steps take less than a
fraction of millisecond with a normal laptop computer. The
biggest problem in visual motion estimation is data association;
matched points contain many outliers that must be detected
and removed for the motion to be accurately estimated. In
the last few years, a very established method for removing
outliers has been the “5-point RANSAC” algorithm which
needs a minimum of 5 point correspondences to estimate the
model hypotheses. Because of this, however, it can require
up to several hundreds of iterations to find a set of points
free of outliers. In this paper, we show that by exploiting the
nonholonomic constraints of wheeled vehicles it is possible to
use a restrictive motion model which allows us to parameterize
the motion with only 1 point correspondence. Using a single
feature correspondence for motion estimation is the lowest
model parameterization possible and results in the two most
efficient algorithms for removing outliers: 1-point RANSAC
and histogram voting. To support our method we run many
experiments on both synthetic and real data and compare
the performance with a state-of-the-art approach. Finally, we
show an application of our method to visual odometry by
recovering a 3Km trajectory in a cluttered urban environment
and in real-time.

Please observe that this paper is accompanied by a demonstrative
video available at:
http://www.youtube.com/watch?v=t7uKWZtUjCE

I. INTRODUCTION

Vehicle ego-motion estimation is a key component for

autonomous driving and computer vision based driving assis-

tance. Using cameras instead of other sensors for computing

ego-motion allows a simple integration of egomotion data

into other vision based algorithms, such as obstacle, pedes-

trian, and lane detection, without the need for calibration

between sensors. This reduces maintenance and cost. While

there exist nowadays a wide availability of algorithms for

motion estimation using video input alone (see Section II),

cameras are still little integrated in the motion estimation sys-

tem of a mobile robot and even less in that of an automotive

vehicle. The main reasons for this are the following:

• many algorithms assume static scenes and cannot cope

with dynamic and cluttered environments or huge oc-

clusions by other passing vehicles

• the data-association problem (feature matching and out-

lier removal) is not completely robust and can fail,

• the motion estimation scheme usually requires many

keypoints and can fail when only a few keypoints are

available in almost absence of structure.

In this paper, we show that all these areas can be improved

by using a restrictive motion model which allows us to

parameterize the motion with only 1 point correspondence.

The first consequence is that only one feature correspondence

suffices for computing the epipolar geometry. This allows

motion to be estimated also in those cases where there is

only a few number of features available and hence standard

algorithms would fail. The most valuable consequence is

that very efficient methods for removing outliers can be

implemented. Once the outliers are removed, the motion can

be refined using all the inliers.

The structure of the paper is the following. In Section

II, we review the related work. In Section III, we give

a short description of the RANSAC paradigm. In Section

IV, we explain how the nonholomic constraints of wheeled

vehicles allow us to parameterize the motion with a single

point correspondence. In Section V, we describe two efficient

methods for removing the outliers by taking advantage of the

proposed motion model. Finally, in Sections VI and VII we

present our experimental results and conclusions.

II. RELATED WORK ON VISUAL MOTION ESTIMATION

Most of the works in estimating vehicle motion using

vision (also called visual odometry) has been produced using

stereo cameras [1]–[5]. Nevertheless, visual odometry meth-

ods for outdoor applications have also been produced, which

use a single camera alone. The problem of recovering relative

camera poses and 3D structure from a set of monocular

images has been largely studied for many years and is

known in the computer vision community as “Structure From

Motion” (SFM) [6]. Successful results with only a single

camera and over long distances (from hundreds of meters up

to kilometers) have been obtained in the last decade using

both perspective and omnidirectional cameras (see [4], [7]–

[12]). Here, we review some of these works.

Related works can be divided into three categories:

feature-based methods, appearance based methods, and hy-

brid methods. Feature-based methods are based on salient



and repetitive features that are tracked over the frames;

appearance based methods use the intensity information of

all the pixels in the image or of subregions of it; hybrid

methods use a combination of the previous two.

In the first category are the works of [4], [7], [8], [10]. In

[4], Nister et al. dealt with the case of a stereo camera but

they also provided a monocular solution implementing a fully

structure from motion algorithm that takes advantage of the

5-point algorithm and RANSAC. In [7], Corke et al. provided

two approaches for monocular visual odometry based on

omnidirectional imagery from a catadioptric camera. They

performed experiments in the desert and therefore used

keypoints from the ground plane. In [8], Lhuillier used 5-

point RANSAC and bundle adjustment to recover both the

motion and the 3D map. In [10], Tardif et al. presented

an approach for incremental and accurate SFM from a car

over a very long run (2.5 Km) without bundle adjustment.

To achieve it, they decoupled the rotation and translation

estimation. In particular, they estimated the rotation using

points at infinity and the translation from the recovered 3D

map. Bad correspondences were removed with preemptive

5-point RANSAC [13].

Among the appearance based or hybrid approaches are

the works of [9], [11], [12]. In [9], Goecke et al. used the

Fourier-Mellin Transform for registering perspective images

of the ground plane taken from a car. In [11], Milford et

al. presented a method to extract approximate rotational and

translational velocity information from a single perspective

camera mounted on a car, which was then used in a Rat-

SLAM scheme [14]. However, appearance based approaches

alone are not very robust to occlusions. For this reason, in our

previous works [12], [15], we used appearance to estimate

the rotation of the car and features from the ground plane to

estimate the translation and the absolute scale. The feature-

based approach was also used as a firewall to detect failure

of the appearance based method.

Closely related to structure from motion is what is known

in the robotics community as Simultaneous Localization and

Mapping (SLAM), which aims at estimating the motion

of the robot while simultaneously building and updating a

coherent environment map. In the last years successful results

have been obtained also using single cameras (see [16], [17],

[18], and [19]).

The basic idea behind the current paper was already

presented in our previous work in [20]. Our previous work

was however based on the assumption that the camera is

positioned on the rear-wheel axis. In this paper, we provide

a complete and deep evaluation of the influence of the

camera position on the estimate of the relative motion and we

compare our approach with the standard 5-point RANSAC.

III. MINIMAL MODEL PARAMETERIZATIONS AND

RANSAC

For unconstrained motion (6DoF) of a calibrated camera

the minimum number of point correspondences required

for solving the relative pose problem is five (see 5-point

algorithm of [21], [22]). This can be intuitively understood

by noticing that of the six parameters that we need to

estimate (three for the rotation and three for the translation)

only five are actually required. Indeed, the relative pose

between two cameras is always valid up to a scale.

The first solution to the 5-point relative pose problem

was proven by Kruppa in 1913 [23] to have at most eleven

solutions. This was later improved by [24] showing that there

are at most ten solutions but the method found only in 2006

its efficient implementation in the algorithm of Nister and

Stewenius [21], [22]. Before this efficient version of the 5-

point algorithm, the most common methods used to solve the

relative pose problem were the 8-point, 7-point, and 6-point

algorithms, which are all still widely used. The 8 and 7-

point methods relaxed the requirements of having calibrated

cameras and hence led very efficient and easy-to-implement

algorithms. The 8-point algorithm [25] has a linear solver

for a unique solution while the 7-point method [6] leads to

up to three solutions. The 6-point method [26], [27] works

for calibrated cameras and yields up to six solutions.

An interesting review and comparison of all these methods

can be found in [22]. There, it is shown that the new

implementation of the 5-point method provides superior pose

estimates with respect to all the other algorithms.

A. RANSAC

In every situation where a model has to be estimated

from given data, we have to deal with outliers. The random

sample consensus (RANSAC) [28] has been established as

the standard method for model estimation in the presence

of outliers. Structure from motion is one application of the

RANSAC scheme. The estimated model is the motion (R,T)

and it is estimated from feature correspondences. Outliers are

feature points with wrong data-associations. The idea behind

RANSAC is to compute model hypotheses from randomly-

sampled minimal sets of data points and then verify these

hypotheses on the other data points. The hypothesis that

shows the highest consensus with the other data is selected

as solution. The number of subsets (iterations) N that is

necessary to guarantee that a correct solution is found can

be computed by

N =
log(1− p)

log(1− (1− ε)s)
(1)

where s is the number of minimal data points, ε is the

percentage of outliers in the data points, and p is the

requested probability of success [28]. N is exponential in the

number of data points necessary for estimating the model,

so there is a high interest in finding the minimal parame-

terization of the model. For unconstrained motion (6DoF)

of a calibrated camera this would be 5 correspondences.

Using the 6, 7, or 8-point method would increase the number

of necessary iterations and therefore slow down the motion

estimation algorithm. It is therefore of utmost importance to

find the minimal parameterization of the model to estimate.

In the case of planar motion, the motion-model complexity

is reduced (3DoF) and can be parameterized with 2 points

as described in [29].



TABLE I

Min. set of points: 8 7 6 5 2 1

No. of iterations: 1177 587 292 145 16 7

Fig. 1. General Ackermann steering principle.

For wheeled vehicles we will show in Section IV that an

even more restrictive motion model can be chosen which

allows us to parameterize the motion with only 1 feature

correspondence. Using a single feature correspondence for

motion estimation is the lowest model parameterization pos-

sible and results in the most efficient RANSAC algorithm.

We will also show that an even more efficient algorithm can

be devised, which requires no iteration.

A summary of the number of RANSAC iterations needed

as a function of the number of model parameters s is shown

in Table I. These values were obtained assuming a probability

of success p = 99% and a percentage of outliers ε = 50%.

IV. WHY DO WE NEED ONLY 1 POINT?

For a wheeled vehicle to exhibit rolling motion, a point

must exist around which each wheel of the vehicle follows

a circular course [30]. This point is known as Instantaneous

Center of Rotation (ICR) and can be computed by inter-

secting all the roll axes of the wheels (Fig. 1). This property

holds for any robot. In particular for car-like and differential-

drive. For cars the existence of the ICR is ensured by the

Ackermann steering principle [30]. This principle ensures

a smooth movement of the vehicle by applying different

steering angles to the inner and outer front wheel while

turning (see Fig. 1).

As the reader can perceive, the motion of a camera fixed on

the vehicle can then be locally described with circular motion

(note, rectilinear motion can be represented along a circle

with infinite radius of curvature). This constraint reduces the

degrees of freedom of motion to two, namely the rotation

angle and the radius of curvature. Therefore, only one feature

correspondence suffices for computing the relative pose up

to a scale. As we will see in the next section, this is however

theoretically valid under the assumption that the the camera

is positioned above the rear wheel axis of the vehicle. In

the experimental section (VI) will investigate under which

Fig. 2. Relation between camera axes in circular motion.

conditions this approximation can still be adopted if the

camera has an offset to the rear axis.

Now, we will see how the circular motion constraint

reflects on the rotation and translation of the camera and on

the parameterization of the essential matrix. In the following

we will assume locally planar motion.

A. Parameterizing the Camera Motion

To understand the influence of the vehicle’s nonholonomic

constraints on the camera motion, we need to take into

account two transformations: that between the camera and

the vehicle and that between the two vehicle positions.

Let us assume that the camera is fixed somewhere on

the vehicle1 (with the origin in OC, Fig. 2) with the axis

zC orthogonal to the plane of motion and xC oriented

perpendicularly to the back wheel axis. Observe that once the

camera is installed on the vehicle the axes can be rearranged

in the way above with a simple transformation of coordinates.

The origin OV of the vehicle reference frame can be cho-

sen arbitrarily. For convenience, we set OV at the intersection

of xC with the back wheel axis, and xV aligned with xC (Fig.

2). We observed that by this choice the equations are notably

simplified.

Following these considerations, the transformation AC
V =

(RC
V,TC

V) from the camera to the vehicle reference system

can be written as RC
V = I3×3 and TC

V = [−L,0,0]T , where L

is the distance between the camera and the back wheel axis

(Fig. 2).

If the vehicle undergoes perfect circular motion with rota-

tion angle θ , then the direction of translation φ of the vehicle

must satisfy the “circular motion constraint” φ = θ/2, which

can be easily verified by goniometrics. Accordingly, the

transformation between the first and second vehicle position

AV
V ′ = (RV

V′ ,T
V
V′) can be written as:

RV
V′ =





cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1



 , TV
V′ = ρ ·





cos( θ
2
)

sin( θ
2
)

0





(2)

1Note that the camera does not necessarily have to be on the axis of
symmetry of the vehicle.



where ρ is the vehicle displacement (Fig. 2). Following these

considerations, the overall transformation AC
C′ = (RC

C′ ,T
C
C′)

between the first and second camera positions can be com-

puted as a composition of the following three transforma-

tions, that is:

AC
C′ = AC

V ◦AV
V ′ ◦AV ′

C′ = AC
V ◦AV

V ′ ◦AC
V

−1
(3)

where we used AV ′

C′ = AC
V

−1
. And from this, we obtain:

RC
C′ = RV

V′ ,and TC
C′ =





Lcos(θ)−ρ cos( θ
2
)−L

ρ sin( θ
2
)−Lsin(θ)

0



 . (4)

B. Computing the Essential Matrix

Before going on, we would like to recall some knowledge

about computer vision. Let p = (x,y,z) and p′ = (x′,y′,z′) be

the image coordinates of a scene point seen from the two

camera positions. Note, to make our approach independent

of the camera model we use spherical image coordinates;

therefore p and p′ are the image points back projected onto

a unit sphere (i.e. ‖p‖ = ‖p′‖ = 1). This is always possible

when the camera is calibrated.

As known in computer vision [6], the two unknown

camera positions and the image coordinates must verify the

epipolar constraint

p′T Ep = 0, (5)

where E (called essential matrix) is defined as E = [T]×R,

where [T]× denotes the skew symmetric matrix

[T]× =





0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0



 (6)

and R and T = [Tx,Ty,Tz] describe the relative pose between

the camera positions (for our case R = RC
C′ and T = TC

C′ .

The epipolar constraint (5) is very important because it

allows us to estimate the relative camera pose from a set

of image correspondences. Indeed, given the image points p

and p′ we can compute E from (5) and finally decompose E

into R and T [6].

This said, we can now compute the essential matrix for

our case using E = [TC
C′ ]×RC

C′ , that is:

E =





0 0 ρ sin( θ
2
)−Lsin(θ)

0 0 L+ρ cos( θ
2
)−Lcos(θ)

Lsin(θ)+ρ sin( θ
2
) L−ρ cos( θ

2
)−Lcos(θ) 0



 .

(7)

At this point, note that the essential matrix is notably

simplified if L = 0, that is, when the camera is above the

back wheel axis. Indeed, by substituting L = 0 into (7) we

obtain:

E = ρ ·





0 0 sin( θ
2
)

0 0 cos( θ
2
)

sin( θ
2
) −cos( θ

2
) 0



 . (8)

Finally, by imposing the epipolar constraint (5), we obtain the

following homogeneous equation that needs to be satisfied

by every pair of point correspondences p, p′:

sin

(

θ

2

)

· (x′z + z′x) + cos

(

θ

2

)

· (y′z − z′y) = 0 (9)

Note, this equation depends only on the single parameter θ ,

showing that the relative camera motion can be recovered

using a single feature correspondence.

C. Recovering θ

Given one point correspondence, the rotation angle θ can

then be obtained from (9) as:

θ = −2tan−1

(

y′z − z′y

x′z + z′x

)

(10)

Conversely, given m image points, θ can be computed

indirectly by solving linearly for the vector [sin( θ
2
),cos( θ

2
)]

using Singular Value Decomposition (SVD). To this end, we

first form a m×2 data matrix D, where each row is formed

by the two coefficients of Equation (9), that is:
[

(x′z + z′x) , (y′z − z′y)
]

. (11)

The matrix D is then decomposed using SVD:

Dm×2 = Um×2Λ2×2V2×2 (12)

where the columns of V2×2 contain the eigenvectors ei of

DT D. The eigenvector e∗ = [sin( θ
2
),cos( θ

2
)] corresponding

to the minimum eigenvalue minimizes the sum of squares of

the residuals, subject to ‖e∗‖= 1. Finally, θ can be computed

from e∗.

D. Discussion on our Motion Model

To recap, we have shown that by fixing the camera in the

optimal position L = 0 and under circular motion constraint

the relative camera motion can be parameterized through a

single feature correspondence.

In the next section we will see how this can be used

for efficiently removing the outliers of the feature matching

process. Then, we will investigate until which limit we can

actually push L for our restrictive model to be still usable.

Indeed, as observed in the expression of the essential matrix

(7), when L 6= 0 the minimal model parameterization is 2

(θ and ρ), that is, at least two point correspondences are

required to estimate the camera motion. However, as we

will point out in Section VI, our 1-point parameterization

continues to be still a very good approximation in those cases

where θ is small (θ < 10 deg, ideally θ = 0 deg).

Also, observe that the planar assumption and the cir-

cular motion constraint hold only locally, but because of

the smooth motion of cars we found that this assumption

actually holds still quite well also in the real situations; the

performance will be shown in Section VI.

E. Absolute scale estimation from a single camera

Notice that (7), without the simplification L = 0, depends

on three parameters, namely L, ρ , and θ . Because L can be

measured manually, the essential matrix actually depends on

just ρ and θ . This fact is extremely remarkable. Indeed, note

that because ρ does not appear as a multiplicative factor in

(7), this means that we can actually determine the absolute

scale analytically from just two-point correspondences. This

result was presented in our previous work [31].



To recap, when the camera is positioned above the rear-

wheel axis (i.e., L = 0), we can estimate the relative motion

with a single feature correspondence. When the camera has

an offset to the rear-wheel axis (i.e., L 6= 0), we need in

practice two point correspondences, but in exchange we can

determine the absolute scale. However, we will show in the

next sections that even when L 6= 0 – provided that the ratio

L/ρ is small (< 1) and θ is small – we can still use our

one-point parameterization.

V. OUTLIER REMOVAL: TWO APPROACHES

Outlier removal is the most delicate process in camera

pose estimation. The presence of a few outliers in the

data may affect negatively the accuracy of the final motion

estimate. Here, we describe two approaches for removing

the outliers, which take advantage of our 1-point parameter-

ization. Once the outliers are identified, the unconstrained

motion estimate (6DoF) can be computed from all the

remaining inliers using standard methods [6], [22].

The two approaches explained here are based on RANSAC

and histogram voting.

A. 1-Point RANSAC

The first step of our 1-point RANSAC consists in com-

puting the relative motion out of one randomly chosen

correspondence. To do this, we first use Eq. (10). The

motion hypothesis is then generated using (2) (note, ρ can

be arbitrarily set to 1). The second step is counting the inlier

rate in each iteration, that is, the number of correspondences

which satisfy the hypothesis. This can be done using the

reprojection error. We used an error threshold of 1 pixel.

Note, for an efficient computation of the reprojection error,

some approximation exist, e.g. the Sampson distance [6] or

the directional error by [32].

B. Histogram voting

The possibility of estimating the motion using only one

feature correspondence allows us to implement another algo-

rithm for outlier removal which is much more efficient than

the 1-point RANSAC as it requires no iterations. The algo-

rithm is based on histogram voting: first, θ is computed from

each feature correspondence using (10); then, a histogram H

is built where each bin contains the number of features which

count for the same θ . A sample histogram built from real

data is shown in Fig. 3. When the circular motion model is

well satisfied, the histogram has a very narrow peak centered

on the best motion estimate θ ∗, that is, θ ∗ = argmax{H}.

In a first stage, we thought of selecting the inliers by taking

all the features with θ within a given distance t from θ ∗. We

found that most of these points were indeed inliers, but there

were still many missing points. Furthermore, the choice of t

was not trivial. Therefore, the implemented solution consists

again in using reprojection error, that is, we generate our

motion hypothesis by substituting θ ∗ into (2) and use the

reprojection error to identify all the inliers.

We also implemented a similar approach where, instead

of computing θ ∗ as the argmax of the histogram, we set

Fig. 3. A sample histogram from feature correspondences.

(a) (b)

Fig. 4. Our synthetic scenario: (a) Top view (b) 3D view.

θ ∗ equal to the median of the distribution, that is, θ ∗ =
median{θi}. The inliers are then found by using again the

reprojection error. We found this method giving as good

results as the argmax method and therefore we used this

in our final implementation.

Compared with the 5-point RANSAC, the 1-point

RANSAC and histogram voting method are the most efficient

algorithms for removing the outliers. In all the tests, the

computational time required to detect the inliers using the

histogram voting method was in average 0.2 milliseconds,

with a dataset of about 1600 points. The 1-point RANSAC

found a successful solution in less than 7 iterations, requiring

at most 1 millisecond. These tests were done with an Intel

2GHz Dual Core laptop.

VI. EXPERIMENTS

In this section, we will validate our motion model. The

1-point method and the histogram voting method will be

compared with the 5-point algorithm by [21] and [22],

which is considered the standard in visual odometry [4],

[8], [10]. In particular, we will investigate within which

constraints our motion model is able to find as many (or

more) correspondences as the 5-point method and when it

becomes too restrictive.

As discussed in Section IV-D, in order to use our 1-point

parameterization the camera needs to be installed above the

back wheel axis, satisfying so the requirement L = 0. In this

section, we will evaluate also under which motion conditions

we can arbitrary fix the camera on the vehicle. The position

of the camera is in fact of utmost importance in commercial

automotive applications, where the camera is usually under

the vehicle windscreen.

We will also evaluate the performance when the planarity

constraint is not perfectly satisfied. For the 5-point method,

we will use the implementation of the algorithm available



at the authors’ website. We will first compare the three

algorithms on synthetic data and finally on real data.

A. Generation of Synthetic Data

We investigate the performance of the algorithms in ge-

ometrically realistic conditions. In particular, we simulate a

vehicle moving in urban canyons. Our scenario is depicted

in Fig. 4. We set the first camera at the origin and randomise

scene points uniformly inside several different planes, which

stand for the facades of urban buildings. We used overall

1600 scene points, namely 400 on each plane. The second

camera is positioned according to the motion direction of

the vehicle which moves along circular trajectories about the

instantaneous center of rotation. Therefore, the position of

the second camera depends on the rotation angle θ , on the

vehicle displacement ρ , and on the distance L of the camera

from the center of the back wheels. These parameters are the

same introduced in the previous sections.

To make our analysis more realistic, we assume that the

car can drive at a maximum speed of 50 Km/h and that the

camera frame rate is 15 Hz (actually the one of our real

camera). Accordingly, the maximum vehicle displacement

between two frames is about 1 m. Therefore, as a default

condition we set ρ = 1 m in all tests. The minimal distance

of the scene to the camera was set at 10 m.

We also simulate feature location errors by introducing a

noise parameter into the image data. We include a Gaussian

perturbation in each image point with a standard deviation

of 0.5 pixel in a 640×480 pixel image.

B. Comparison with 5-point RANSAC

In this section, we evaluate the performance of our 1-point

RANSAC and histogram voting with the standard 5-point

RANSAC [21], [22]. The performance is done by comparing

the percentage of inliers found by the three methods, that is,

the ratio between the found matches and the true number of

inliers.

We evaluated the performance with respect to the rotation

angle θ and the normalized camera offset L/ρ .2 Since this

would require to do the test for all the possible combinations

of θ and L/ρ , we chose to show here only two extreme cases,

that is, the optimal case L/ρ = 0 and the case L/ρ = 1. In

fact, these two cases are those we tested also on our platform

and therefore we decided to replicate them in simulation.

The average results, over one thousand trials, are shown

in Fig. 5 for planar and non-perfectly planar motion respec-

tively. For simulating a non-planar motion, we introduced a

0.1 m high step and a tilt angle of 1 deg. Note, we limited

the range of θ in the simulations between 0 and 20 deg

as this is what we experienced with the real data from our

platform (see Fig. 6). Note, each plot in Fig. 5 corresponds

to a different combination of motion (planar/non-planar) and

camera settings (L/ρ = 0 and L/ρ = 1). For each combina-

tion, we generated one thousand trials; each trial consists in

perturbing the image points with 0.5 pixel variance Gaussian

2Notice that in order to make our evaluation independent of the displace-
ment of the vehicle, it is better to use an adimensional parameter.

Fig. 6. Steering angle θ (deg) vs. traveled distance (m) read from our car.
It is the angle the vehicle rotated between two consecutive frames.

noise. Every dot in the plot shows the average over these one

thousand trials for a given theta angle.

As observed in Fig. 5(a), for planar motion and L/ρ = 0,

the performance of the algorithms stays constant with θ as

expected. However, when L/ρ = 1, Fig. 5(b), the fraction of

inliers found by the 1-point and histogram-voting methods

decreases with θ , starting around θ = 10 deg. When θ = 20

deg, the two algorithms find 75% of the true inliers. The

performance of the 5-point method stays conversely constant

with θ regardless of L/ρ . The 5-point method indeed does

not assume motion constraints.

For non-perfectly planar motion, figures 5(c)-(d), the

performance of the 1-point and histogram-voting methods

decreases notably, with only 50% of the inliers detected.

C. Number of RANSAC Iterations

We repeated the experiments presented in the previous

section by varying also the percentage of outliers in the

datapoints from 10% up to 90%. The results were the

same as introduced in Fig. 5 regardless of the number of

outliers in the datapoints. However, the number of RANSAC

iterations needed to find the largest set of inliers increased

exponentially with the percentage of outliers3. For instance,

when the outliers were 70% of the datapoints, the 5-point

RANSAC needed more than 1500 iterations. A comparison

of the number of iterations needed to find the largest set of

inliers as a function of the percentage of outliers is shown

in Fig. 7. These results are the average over different trials.

Note, here we also added a comparison with the 2-point

RANSAC.

As predicted by Eq. (1), the number of iterations of the

1-point and 5-point RANSAC increases exponentially with

the fraction of outliers. But the number of iterations of the 1-

point is greatly smaller than that of the 5-point. For instance,

in the worse case, with 90% of outliers, the 5-point needed

more than 2000 iterations while the 1-point method required

only 90 iterations. The histogram-voting method does not

require iterations but is shown here just for comparison.

3As a stopping criterion, here we used the method proposed in [6],
which adaptively estimates the fraction of outliers in the data and computes
accordingly the number of iterations required using equation (1).



(a) Planar, L/ρ = 0 (b) Planar, L/ρ = 1 (c)Non-planar, L/ρ = 0 (d) Non-planar, L/ρ = 1

Fig. 5. Comparison between 1-point RANSAC, 5-point RANSAC, and histogram voting. Fraction of inliers versus θ .

Fig. 7. Number of RANSAC iterations versus fraction of outliers.

D. Experiments on Real Data

Note, the equations and results derived in this paper are

valid for both perspective and omnidirectional cameras. To

show the generality of the approach we decided to use an

omnidirectional camera.

1) Data Acquisition: The method described in this paper

has been successfully tested on a real vehicle (Fig. 9). Our

omnidirectional camera is composed of a hyperbolic mirror

(KAIDAN 360 One VR) and a digital color camera (SONY

XCD-SX910, image size 640×480 pixels).

For the purpose of this paper, we tested the algorithms

with the camera in two different positions: camera above

the back wheel axis (L = 0) and camera above the front

wind screen as in Fig. 9 (L = 1 m). To do this, we collected

two datasets with the camera at different positions. We used

the maximum frame rate of this camera, which is 15 Hz

but sometimes we noticed that the frame rate decreased

below 10 Hz because of the memory sharing on the on-board

computers. For calibrating the camera we used the toolbox

described in [33] and available from the authors’ website.

The vehicle speed ranged between 0 and 45 Km/h.

The dataset was taken in normal traffic in the city center

of Zurich during a 3Km trajectory (Fig. 13). Therefore,

many pedestrians, moving trams, buses, and cars were also

present. Point correspondences were extracted using the

Harris detector [34].

2) Inlier ratio: To evaluate the performance on real data,

we compare the percentage of inliers found by the three

methods under different conditions which are: L = 0, L = 1

m, flat road, non-perfectly flat road, straight and curving path,

low frame rate. Because we cannot show the results for the

all 4000 images in our dataset, we decided to show them only

for some selected paths. The results of the comparison are

presented in Fig. 8 while the paths they refer to are shown

in Fig. 13. As observed in Fig. 8, the performance of the 1-

point and histogram-voting methods compare very well with

the 5-point method for the first four cases (a-b-c-d). The

performance of the two algorithms is slightly lower in the

fifth path (Fig. 8(e)) where the camera frame rate drops to

2.5 Hz. We can justify this by observing that our restrictive

motion model holds only locally and it is therefore important

that the displacement of the vehicle between two consecutive

frame be small. The performance drastically decreases at

some point in the sixth path where the car is going downhill

on a slightly twisting road.

By inspecting the performance for the all dataset, we found

that the percentage of inliers of the 1-point and histogram-

voting methods differed from that of the 5-point by less

than 10% in 80% of the cases. This is clearly quantified in

Fig. 10, which shows the histogram of the relative difference

(%) between the inlier count of the 1-point and the 5-point

algorithm over all images. When the difference was larger

than 10%, we found that this was due to sudden jumps of

the frame-rate or to non-perfect planarity of the road. To

verify this last statement quantitatively, we measured the

planarity of the motion estimated by the 5-point algorithm.

The planarity of the motion was characterized both in terms

of the estimated tilt angle Ω and in terms of the estimated

camera displacement Z along z. For every pair of consecutive

images, we computed both Ω and Z and measured the

ratio
#inliers1p

#inliers5p

. The relation between the non-planarity of the

estimated motion and the inlier ratio is shown in figures 11

and 12. These plots depict mean and standard deviation of the

inlier ratio computed within predefined intervals of Ω and Z,

respectively. As observed, a reduced number of inliers in the

1-point algorithm occurs when the planar motion assumption

is violated. Furthermore, the less planar the motion, the

smaller the number of inliers. This result is perfectly in line

with what we predicted in simulation in section VI-B.

Despite this, from figure 10 we can see that our restrictive

motion model is a good approximation of the motion of the

car. Furthermore, in the all experiment we found that the 1-

point and the histogram-voting method performed the same.

However, we also observed that in presence of low frame



(a) Path 1 (b) Path 2

(c) Path 3 (d) Path 4

(e) Path 5 (f) Path 6

Fig. 8. Comparison 1-point, 5-point, and histogram voting. Percentage of
good matched versus frame number.
(a) Straight path, flat road, L = 1 m.
(b) Straight path, non-perfectly flat (e.g. crossing the tram rail ways), L = 1
m.
(c) Curving path, flat road, L = 0 m.
(d) Curving path, flat road, L = 1 m.
(e) Curving path, flat road, L = 1 m, camera frame rate 2.5 Hz.
(f) Curving path, non-perfectly flat road (going down hill with slightly
twisting road), L = 1 m.

rate or non-planar motion the performance of the histogram-

voting was slightly lower. Regarding the computational cost,

during all the experiment we found that the 1-point RANSAC

required at most 7 iterations while the 5-point RANSAC

needed from 500 up to 2000 iterations.

3) Visual odometry: To evaluate the quality of point

correspondences output by our proposed methods, we imple-

mented a motion estimation algorithm and we run it on the

entire 3Km dataset. For this experiment, we implemented a

very simple, incremental motion estimation algorithm, which

means, we only computed the motion between consecutive

frames (e.g. two-view structure-from-motion). Note, we did

not use the previous poses and structure to refine the current

estimate. Furthermore, we did not use bundle-adjustment.

For removing the outliers, we used one of our proposed

methods. From the remaining inliers, the relative pose was

then estimated using the motion-estimation algorithm in [22],

which provides unconstrained 6DoF motion estimates. The

absolute scale between consecutive poses was measured by

simply reading the speed of the car from the vehicle CAN-

Fig. 9. Our vehicle equipped with the omnidirectional camera. The field
of view is highlighted.

Fig. 10. Histogram of the relative difference (%) between the inlier count
of the 1-p and the 5-p algorithm over all consecutive image pairs. This

difference is computed as
|#inliers5p

−#inliers1p
|

#inliers5p

. As observed, the percentage

of inliers of the 1-point method differs from that of the 5-point by less
than 10% in 80% of the cases. The histogram voting method gave the same
performance and therefore it is not shown here.

bus and multiplying it by the time interval between the two

frames. The recovered trajectory using the histogram-voting

method for outlier-removal is shown in Fig. 13 overlaid on

a satellite image. Note that this algorithm run at 400 fps.

Figure 14 shows instead the comparison among the visual

odometry paths computed with histogram-voting, 1-point,

and 5-point RANSAC. As the reader can see, the trajectory

estimated by the histogram voting method differs very little

from that estimated with the 1-point RANSAC. Furthermore,

both methods seem to outperform the 5-point RANSAC. This

result should not surprise the reader. Indeed, let us remind

that we did not use bundle adjustment, which obviously

would largely reduce the accumulated drift. However, it is

also important to point out that sometimes the found inliers

are not the largest RANSAC consensus, meaning that more

iterations would have actually been necessary. Additionally,

this result points out that even though for most of the frames

the 5-point RANSAC finds a little more inliers than the 1-

point RANSAC, the 1-point RANSAC and the histogram

voting methods output “better” inliers, in that they favour

the underlying motion model.



Fig. 11. Effect of the estimated tilt angle Ω on the ratio between the
inlier count of the 1-point and the inlier count of the 5-point algorithm:
(#inliers1p

/#inliers5p
). Mean and standard deviation of this ratio are computed

within predefined intervals of Ω.

Fig. 12. Effect of the estimated displacement Z along z on the ratio between
the inlier count of the 1-point and the inlier count of the 5-point algorithm:
(#inliers1p

/#inliers5p
). Mean and standard deviation of this ratio are computed

within predefined intervals of Z.

VII. CONCLUSION

In this paper, we have shown that by exploiting the

nonholonomic constraints of a wheeled vehicle it is possible

to parameterize the motion with a single feature correspon-

dence. This parameterization is the smallest possible and

resulted in the two most efficient algorithms for removing

outliers.

We have seen that for car-like and differential drive robots

this 1-point parameterization is satisfied only by fixing the

camera above the back wheel axis (L = 0). However, in the

experimental section we have demonstrated that also for the

case L > 0 our restrictive model is still suitable under the

constraint that the rotation angle θ between two camera

poses is small. In particular we have shown that in most

cases our 1-point and histogram-voting methods perform

similarly to the standard 5-point method, finding almost the

same number of inliers. Finally, we showed the quality of the

output correspondences by recovering visually the trajectory

of the car.

Both the simulated and real experiments have pointed out

Fig. 13. Comparison between visual odometry (red dashed line) and ground
truth (black solid line). The entire trajectory is 3Km long. The numbers
correspond to the sequences analyzed in Fig. 8. Blue lines mark starting
and ending points of each sequence.

Fig. 14. Comparison between visual odometry trajectories using the three
different methods for outlier removal: histogram-voting (red dashed line),
1-point RANSAC (cyan solid line), and 5-point RANSAC (black solid line).

that our restrictive model is a suitable approximation of the

real motion of the vehicle provided that the road is nearly flat

and the frame-rate is high (e.g. > 10Hz at 50 Km/h). This is

because the circular motion model holds only locally. When

the conditions for the validity of the model are not satisfied

this reflects in a reduced number of inliers found by the

1-point and histogram voting methods. However, when this

happens the problem can be easily overcome by switching

to the standard 5-point RANSAC. Failure modes in the 1-

point methods can be easily detected by looking at the

histogram distribution. In fact, when the local circular planar

motion is well verified, this reflects in a narrow histogram

with a very distinguishable peak. Conversely, when our

motion assumption does not hold, the resulting histogram

appears wider and may contain multiple peaks. In these

cases, looking at the variance of the distribution provides

an easy way to switch between the 1-point and 5-point

approaches.
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