Two-view geometry

The goal of this laboratory session is to practice with several techniques used in two-view geometry
such as: the epipolar constraint, estimation of the fundamental matrix via the 8-point algorithm,
triangulation of 3-D points from their projections, extraction of relative camera motion from the
essential matrix, robust fitting via RANSAC, etc.

1 Pinhole camera model and linear triangulation
Consider a camera with the following specifications:

e Horizontal Field of View (FOV): 60°

e Vertical FOV: 45°

e Image size: 640 x 480 pixels (horizontal x vertical)

e Zero skew and principal point in the center of the image.
Given this information, write a MATLAB script that:

e Calculates the focal length (in pixels) along the horizontal axis (X). (Recall that trigonometric
functions such as sin, cos, tan work in radians).

Ay =

e Calculates the focal length (in pixels) along the vertical axis (Y)

ay =
e Constructs the camera intrinsic matrix K
K= 0
0 0 1

Two cameras with the above intrinsic parameters and in a side-by-side parallel configuration with a
baseline of 0.2 meters along the horizontal axis, that is, with extrinsic parameters (I,0) and (,T)
where T' = (—0.2,0,0) T, are viewing a 3-D point Q project at locations (360,302) and (330, 302) in
pixel coordinates, respectively. Note that the first camera acts as the world reference frame.

e You are asked to estimate the position of point @) in 3-D coordinates.
For this, you are required to complete function LinearTriangulation() and call it with the
correct arguments. This function is based on the linear approach explained at the end of
the slides in the lecture corresponding to file “06 _multiple view geometry 1.pdf”, from the
course website.

Q=(; ,)T

Robotics and Perception Group,
University of Zurich. 2 EIGHT-POINT ALGORITHM

2 Eight-point algorithm

In this exercise, we use several point correspondences in two images to compute the fundamental
matrix F', which encapsulates the geometry of both views in an uncalibrated framework. Recall that
the fundamental matrix relates entities only in the image planes, not in 3-D space.

Complete the function FundamentalEightPoint (), which receives a set of point correspondences
{p! < py} (in homogeneous coordinates) and returns the 3 x 3 fundamental matrix that minimizes
the epipolar constraints p’ F'p} = 0 in a least-squares sense. The function uses the Singular Value
Decomposition (SVD) to solve the linear homogeneous system of equations that is built from the
point correspondences using the Kronecker product (p4" @ pil)vec(FT) = pi' FTpi = pi' F'pi,
as explained in the slides in the lecture notes, file “07 _multiple view geometry 2.pdf”. Observe
that the estimated matrix F' is corrected so that it is singular: det(F') = 0, as enforced by function
F2SingularF (). This is required for all the epipolar lines in an image to intersect at a single point,
the epipole.

Use the MATLAB script provided run_test_8point.m to test the functions you have completed.
You will also need to fill in the script to call to the functions you complete. The script generates a
number of exact (i.e., noise-free) point correspondences that are used to validate your code. With
such a data set you should get exact results (up to machine precision).

The quality of your estimated fundamental matrix F' can be measured using different cost func-
tions. For example, we provide code to compute the algebraic error given by the sum of squared

epipolar constraints \/% vazl (péTFpi)Q. Note that, ideally, F' and the points {p¢ <> ps} should
be normalized in scale/norm, otherwise the above error function is not invariant to scaling of F' or
the coordinates of the points.

A better quality criterion is given by the function DistPoint2EpipolarLine() provided, since
it measures a geometric quantity in the image plane: the Euclidean distance from points to their
epipolar lines given by the estimated fundamental matrix F. Specifically, this function computes the
Root-Mean-Square error

1
2

1 2 (pt,4) i
(Z (. (P}, £1) +dL(P27£)))

=1

where Kﬁ = FTp} and E; = Fp! are the epipolar lines in images 1 and 2, respectively, and d, (p, £)
measures the point-to-line distance in the image planes.

The script also provides code to test in case of additive noise in the coordinates of the point
correspondences.

2.1 Normalized eight-point algorithm

As seen in class, if there is a significant difference between the orders of magnitude of the individual
coordinates of the points pi, ps, or if there are significant offests, the numerical conditioning of the
system of equations in the eight-point algorithm is poor. This can be fixed using a normalized eight-
point algorithm, which estimates the fundamental matrix on a set of normalized correspondences
(with better numerical properties) and then unnormalizes the result to obtain the fundamental
matrix for the given (unnormalized) correspondences. The algorithm has the following steps:

1. Normalize point correspondences: {p} > p3} — {p% < ps}, where f)é = ijé for j =1,2.
2. Estimate fundamental matrix using eight-point algorithm: {p} < pi} — F
3. Unnormalize on the fundamental matrix: F' — F = T; FT.

Next, you are asked to use the function normalise2dpts() provided to fill in the gaps in function
FundamentalEightPoint_Normalized() that implements the previous three steps. Use the script
provided run_test_8point.m to validate the functions you have completed.

Robotics and Perception Group,
University of Zurich. 3 LINE FITTING USING RANSAC

3 Line fitting using RANSAC

The script run_RANSAC_line.m implements a line fitting algorithm based on RANdom SAmple
Consensus (RANSAC). The algorithm is robust since it can tolerate the presence of outliers in the
data, as shown in Fig. [l} Given a set of M points with coordinates S = {(z;,v;)}*,, the algorithm
returns the homogeneous coordinates of a line £ = (a,b,c) " that fits the points (it tries to satisfy
the equations az; + by; + ¢ = 0).

Figure 1: Robust line fitting using RANSAC.

Objective
Robust fit of a model to a data set .S which contains outliers.

Algorithm

(i) Randomly select a sample of s data points from S’ and instantiate the model from this

subset.

(ii) Determine the set of data points S; which are within a distance threshold ¢ of the model.
The set S; is the consensus set of the sample and defines the inliers of S.

(iii) If the size of S; (the number of inliers) is greater than some threshold 7',
re-estimate the model using all the points in S; and terminate.

(iv) If the size of S; is less than T, select a new subset and repeat the above.

(v) After N trials the largest consensus set 5; is selected, and the model is
re-estimated using all the points in the subset S;.

Algorithm 4.4. The RANSAC robust estimation algorithm, adapted from [Fischler-81]. A minimum of s
data points are required to instantiate the free parameters of the model. The three algorithm thresholds
t, T, and N are discussed in the text.

Figure 2: RANSAC algorithm.

The RANSAC algorithm is summarized in Fig.[2] for a generic problem. We will use the RANSAC
implementation provided by Dr. P. Kovesﬂ in the file ransac.m. Review the code in this file and try
to understand it by identifying those statements that implement the steps in Fig. 2] The function
ransac requires the input of several parameters and three functions, which we provide for the case
of line estimation. In this case, we have that s = 2 points suffice to instantiate a model, that is, a
line £.

e line_isdegenerate.m : to validate a set of data points as not being in a degenerate config-
uration (Step ¢ in Fig. . A degenerate configuration gives an undetermined model; this can
only happen if the s = 2 points randomly picked points coincide.

Uhttp://www.csse.uwa.edu.au/~pk/Research/MatlabFns/

http://www.csse.uwa.edu.au/~pk/Research/MatlabFns/

Robotics and Perception Group,

University of Zurich. 5 STRUCTURE FROM MOTION

e line_fitting.m : to estimate/instantiate a model from a (minimal) set of data points (Step
1 in Fig. : £ = p1 X po, where p1, ps are the homogeneous coordinates of the two selected
points.

e line_dist.m : to classify data points as inliers or outliers to the model (Step ii in Fig. ,
according to some distance, for example the Euclidean distance (perpendicular distance from
each point to the line).

The classification threshold (¢ in Fig. [2) is chosen according to the expected noise of the non-outlier
data points.

4 Fundamental matrix estimation using RANSAC

In this section RANSAC is applied to the fundamental matrix problem. For that, we use the func-
tion in ransac.m, but with different parameters. In this problem, the data consists of a set of point
correspondences S = {p} < p5}M,, and the model is given by a 3 x 3 (fundamental) matrix F. The
RANSAC algorithm returns a model instance F that fits the point correspondences by trying to sat-
isfy the epipolar constraints: p4’ Fp} = 0. Although a minimal sample to estimate F' just requires 7
points, we use the 8-point algorithm already coded in section[2] so s = 8 points is the size of the sam-
ple used to instantiate a model F. The classification threshold ¢ is chosen according to the expected
noise of the data points. In practice, ¢ is given values between 1-3 pixels, depending on the image size.

Look at the code provided in file run_RANSAC_8point.m (which is very similar to that seen
before in run_test_8point.m) and complete it along with the three functions required by the func-
tion ransac. We have partially given them in files fund_isdegenerate.m, fund_fitting.m and
fund_dist.m. You are also required to fill in function SqrdErrVec_fundmat_Sampson.m, which is
called from fund_dist.m and specifies the distance used in step i of Fig. [2| for inlier/outlier classi-
fication.

5 Structure from Motion

To integrate the concepts seen in this lab session and in the previous ones, we implement a Structure
from Motion pipeline, as seen in the lecture slides in file “07__multiple view geometry 2.pdf” and
summarized in Fig.|3] To this end, we provide script run_SFM.m, which you are required to complete
by integrating the MATLAB code written in previous sections.

Feature Feature Outlier Essential Motion
Extraction Matching Removal Matrix Estimation
SIFT-SURF Descriptors Estimate E Decompose E

Harris or RANSAC from inliers into R,T with
FAST Correlation (standard methods) (standard methods)

Figure 3: Structure from motion work flow.

Feature detection, extraction and matching. First, a pair of images are loaded in Inemoryﬂ
Then, BRISK features are extracted in both images (previously converted to grayscale) and matched
across them. We use MATLAB’s Computer Vision toolbox (CVT) implementation of BRISK. At a
high level, these steps of feature detection, description and matching have been seen in the previous
exercise session (Harris corners). If you are interested in more details, look at the help of functions
detectBRISKFeatures, extractFeatures and matchFeatures. For example,

2We provide a dataset for which we know the calibration of the camera (i.e., the intrinsic parameters), so that we
can compute the essential matrix E from the fundamental matrix F'.

Robotics and Perception Group,
University of Zurich. 5 STRUCTURE FROM MOTION

Figure 5: Candidate feature matching. (Before fundamental matrix estimation via RANSAC).

>> doc detectBRISKFeatures

One of the main parameters controlling the amount of features detected is the minimum intensity
difference between a corner and its surrounding region. We decrease this value from its default one
to get a large number of corners since the images provided do not have a good contrast. If you do not
have the CVT, the matches produced by these steps can be loaded from the file raw_matches.mat.
The output you should get would be similar to that shown in Figs. [f] and [5

Estimation of Fundamental Matrix and outlier rejection. In the third block of Fig. [3] the
RANSAC algorithm coded in section[d]is applied to the putative matches to estimate the fundamental
matrix and the inliers consistent with the model. Then, the fundamental matrix is re-estimated using
the 8-point algorithm on all the inliers. We introduce a similarity transformation in the image plane
to improve the numerical conditioning of the estimation problem in this and subsequent steps, in the
same spirit of the normalized 8-point algorithm. Fill in the missing lines of code to call RANSAC
and to display the inliers. The results you obtain should be similar to those in Fig. [6]

Figure 6: Inliers (matched features) using the fundamental matrix RANSAC algorithm.

Robotics and Perception Group,
University of Zurich. 5 STRUCTURE FROM MOTION

Essential matrix and camera motion estimation. In the next step, the essential matrix is
computed from the fundamental matrix and the intrinsic parameters of both cameras, according
to formula F = K F K;. Then, F is decomposed into the relative camera motion (R,t) between
both cameras, taking the first of them as the origin of the world coordinates. There are four possible
solutions (R;, t;) that are consistent with the essential matrix £, however, only one of those solutions
is physically feasible in the sense that the triangulated 3-D points using the camera motion are in front
of both cameras. Complete the code to call the triangulation function and therefore disambiguate
the relative camera motion. A function to compute the depth of triangulated 3-D points with respect
to a camera is given.

Finally, complete the code to visualize the reconstructed 3-D points and camera poses. Recall
that the world origin is in the camera corresponding to the first image. Your results should be similar
to those in Figs. [and

Figure 7: 3-D scene (sparse points and camera poses) and matched image features.

O Dog s o
5 —4 : H : : : :
: L o : : Ie) : :
@ D&,

a5 : TR o : Q%’o
: : : S® 0 o, : :
: & : :

3.5 o g

Figure 8: Top view of the reconstructed scene.

	Pinhole camera model and linear triangulation
	Eight-point algorithm
	Normalized eight-point algorithm

	Line fitting using RANSAC
	Fundamental matrix estimation using RANSAC
	Structure from Motion

