Lecture 11 Tracking

Prof. Dr. Davide Scaramuzza sdavide@ifi.uzh.ch

Outline

- What is Tracking?
- Point tracking
- Template tracking
- Tracking by detection of local image features

What is tracking?

- Definition: Following of the motion of an image feature across an image sequence

Time t

Time $\mathbf{t + 1}$

„FIND IT AGAIN"

Point Tracking

Point Tracking

- Problem: given two images, estimate the motion of a pixel point from image I_{0} to image I_{1}

Point Tracking

- Problem: given two images, estimate the motion of a pixel point from image I_{0} to image I_{1}

$$
I_{1}(x, y)
$$

Point Tracking

- Problem: given two images, estimate the motion of a pixel point from image I_{0} to image I_{1}

- Two main solution exist, depending on the amount of motion between the frames
- Block-based methods
- Differential methods

Point Tracking

- Consider the motion of the following corner

Point Tracking

- Consider the motion of the following corner

Point Tracking with Block Matching

- Search for the corresponding patch in a neighborhood around the point.
- Use SSD, SAD, or ZNCC to search for corresponding patches in a local neighborhood of the point. The search region is usually a $D \times D$ squared patch.

Search region

Point Tracking with Differential Methods

- Looks at the local brightness changes at the same location. No patch shift is performed!

Point Tracking with Differential Methods

- Looks at the local brightness changes at the same location. No patch shift is performed!

Applying the Spatial Coherency

- Assume that pixels in local neighborhood have the same motion (same u and v) (usually, a square patch of $n \times n$ pixels is used)
- We want to find the motion vector (u, v) that minimizes the Sum of Squared Differences (SSD):

$$
\begin{gathered}
S S D=\sum\left(I_{0}(x, y)-I_{1}(x+u, y+v)\right)^{2} \\
\cong \sum\left(I_{0}(x, y)-I_{1}(x, y)-I_{x} u-I_{y} v\right)^{2} \\
=\sum\left(\Delta I-I_{x} u-I_{y} v\right)^{2}
\end{gathered}
$$

This is a simple quadratic function in two variables (u, v)

Computing the Motion Vector

$$
\mathrm{E}=\mathrm{SSD}=\sum\left(\Delta I-I_{x} u-I_{y} v\right)^{2}
$$

- To minimize the SSD, we differentiate E with respect to (u, v) and equate it to zero

$$
\begin{gathered}
\frac{\partial E}{\partial u}=0, \frac{\partial E}{\partial v}=0 \\
\frac{\partial E}{\partial u}=0 \Rightarrow-2 \sum I_{x}\left(\Delta I-I_{x} u-I_{y} v\right)=0 \\
\frac{\partial E}{\partial v}=0 \Rightarrow-2 \sum I_{y}\left(\Delta I-I_{x} u-I_{y} v\right)=0
\end{gathered}
$$

Computing the Motion Vector

$$
\begin{aligned}
& \frac{\partial E}{\partial u}=0 \Rightarrow-2 \sum I_{x}\left(\Delta I-I_{x} u-I_{y} v\right)=0 \\
& \frac{\partial E}{\partial v}=0 \Rightarrow-2 \sum I_{y}\left(\Delta I-I_{x} u-I_{y} v\right)=0
\end{aligned}
$$

- Linear system of two equations in two unknowns
- We can write them in matrix form:

$$
\left[\begin{array}{ll}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
v
\end{array}\right]=\left[\begin{array}{l}
\sum I_{x} \Delta I \\
\sum I_{y} \Delta I
\end{array}\right] \Rightarrow\left[\begin{array}{l}
u \\
v
\end{array}\right]=\underbrace{\sum I_{x} I_{x}}_{H \text { (Hessian Matrix) }} \begin{array}{ll}
\sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}]{ }^{-1}\left[\begin{array}{l}
\sum I_{x} \Delta I \\
\sum I_{y} \Delta I
\end{array}\right]
$$

Haven't we seen this matrix already?
Recall Harris detector!

For H to be invertible, it should have rank 2

- In practice, H should be as far from being singular as possible, which means that its eigenvalues should be large (i.e., not a flat region, not an edge) -> in practice, it should be a corner or more generally contain texture!
λ_{1} and λ_{2} are small

$$
H=\left[\begin{array}{ll}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{x} I_{y} & \sum I_{y} I_{y}
\end{array}\right]
$$

Point Tracking

Edge - Low texture - High texture

Simple 1D interpretation of Point Tracking

Simple 1D interpretation of Point Tracking Sum of Squared Differences

$$
\begin{gathered}
E=\left(I_{0}(x)-I_{1}(x+h)\right)^{2} \\
\cong\left(I_{0}(x)-I_{1}(x)-h I^{\prime}(x)\right)^{2} \\
\frac{d E}{d h} \cong-2 I^{\prime}(x)\left(I_{0}(x)-I_{1}(x)-h I^{\prime}(x)\right) \\
h \cong \frac{I_{0}(x)-I_{1}(x)}{I^{\prime}(x)}
\end{gathered}
$$

Simple 1D interpretation of Point Tracking

 Interpretation

$$
h \cong \frac{I_{0}(x)-I_{1}(x)}{I^{\prime}(x)}
$$

Aperture Problem

- Consider the motion of the following corner

Aperture Problem

- Consider the motion of the following corner

Aperture Problem

- Looks at the local brightness changes through a small aperture

Aperture Problem

- Looks at the local brightness changes through a small aperture

Aperture Problem

- Looks at the local brightness changes through a small aperture
- We cannot always determine the motion direction -> Infinite motion solutions may exist!
- Solution?

Aperture Problem

- Looks at the local brightness changes through a small aperture
- We cannot always determine the motion direction -> Infinite motion solutions may exist!
- Solution?: Increase aperture size!

Application of Differential Methods: Optical Flow calculation

- Optical flow or optic flow is the pattern of apparent motion of objects in a visual scene caused by the relative motion between the observer (an eye or a camera) and the scene
- Tracks the motion of every pixels (or a grid of pixels) between two consecutive frames
- For each pixel, a motion vector is computed:
- Vector direction represents motion direction
- Vector length represents the amount of movement

Optical Flow

[Tao et al., Eurographics 2012]

Optical Flow

[Tao et al., Eurographics 2012]

Optical Flow

心へ1：1

上ーッ．．．．．．．．．．．．

Optical Flow example

Optical flow issue: choosing the right patch size

Application to Corner Tracking

Block-based vs. Differential methods

- Block-based methods: search for the corresponding patch in a neighborhood of the point to be tracked. The search region is usually a square of $n \times n$ pixels.

Robust to large motions
Can be computationally expensive ($n \times n$ validations need to be made for a single point to track)

- Differential methods:

(2)
Works only for small motions (e.g., high frame rate). For larger motion, multiscale implementations are used but are more expensive
Much more efficient than block-based methods. Thus, can be used to track the motion of every pixel in the image (i.e., optical flow). It avoids searching in the neighborhood of the point by analyzing the local intensity changes (i.e., differences) of an image patch at a specific location (i.e., no search is performed).

Outline

- What is Tracking?
- Point tracking
- Review of 2D image transformations and Jacobians
- Template tracking
- Tracking by detection of local image features

Transformations - 2D

Name	Matrix	\# D.O.F.	Preserves:	Icon
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square
rigid (Euclidean)	$[\boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	3	lengths $+\cdots$	\square
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$	\square
affine	$[\boldsymbol{A}]_{2 \times 3}$	6	parallelism $+\cdots$	\square
projective	$[\tilde{H}]_{3 \times 3}$	8	straight lines	\square

Summary of displacement models (2D transformations)

- Translation

$$
\begin{aligned}
& x^{\prime}=x+a_{1} \\
& y^{\prime}=y+a_{2}
\end{aligned}
$$

- Euclidean

$$
\begin{aligned}
& x^{\prime}=x \cos \left(a_{3}\right)-y \sin \left(a_{3}\right)+a_{1} \\
& y^{\prime}=x \sin \left(a_{3}\right)+y \cos \left(a_{3}\right)+a_{2}
\end{aligned}
$$

- Affine

$$
\begin{aligned}
& x^{\prime}=a_{1} x+a_{3} y+a_{5} \\
& y^{\prime}=a_{2} x+a_{4} y+a_{6}
\end{aligned}
$$

- Projective

$$
\begin{aligned}
x^{\prime} & =\frac{a_{1} x+a_{2} y+a_{3}}{a_{7} x+a_{8} y+1} \\
y^{\prime} & =\frac{a_{4} x+a_{5} y+a_{6}}{a_{7} x+a_{8} y+1}
\end{aligned}
$$

Summary of displacement models (2D transformations)

We call the transformation Warping $\mathrm{W}(\mathbf{x}, \mathbf{p})$ and \mathbf{p} the set of parameters $p=$ $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$

- Translation $W(\mathbf{x}, \mathbf{p})=\left[\begin{array}{l}x+a_{1} \\ y+a_{2}\end{array}\right]=\left[\begin{array}{lll}1 & 0 & a_{1} \\ 0 & 1 & a_{2}\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$
- Euclidean
- Affine

$$
W(\mathbf{x}, \mathbf{p})=\left[\begin{array}{l}
x \cos \left(a_{3}\right)-y \sin \left(a_{3}\right)+a_{1} \\
x \sin \left(a_{3}\right)+y \cos \left(a_{3}\right)+a_{2}
\end{array}\right]=\left[\begin{array}{ccc}
c a_{3} & -s a_{3} & a_{1} \\
s a_{3} & c a_{3} & a_{2}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

- Projective $W(\widetilde{\boldsymbol{x}}, \mathbf{p})=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

$$
W(\mathbf{x}, \mathbf{p})=\left[\begin{array}{l}
a_{1} x+a_{3} y+a_{5} \\
a_{2} x+a_{4} y+a_{6}
\end{array}\right]=\left[\begin{array}{lll}
a_{1} & a_{3} & a_{5} \\
a_{2} & a_{4} & a_{6}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right]
$$

Summary of displacement models (2D transformations)

Name	Matrix	\# D.O.F.	Preserves:	Icon	
translation	$[\boldsymbol{I} \mid \boldsymbol{t}]_{2 \times 3}$	2	orientation $+\cdots$	\square	$W(\mathbf{x}, \mathbf{p})=\left[\begin{array}{lll}1 & 0 & a_{1} \\ 0 & 1 & a_{2}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$
rigid (Euclidean)	$[R \mid t]_{2 \times 3}$	3	lengths $+\cdots$	\checkmark	$W(\mathbf{x}, \mathbf{p})=\left[\begin{array}{ccc}c a_{3} & -s a_{3} & a_{1} \\ s a_{3} & c a_{3} & a_{2}\end{array}\right]\left[\begin{array}{l}x \\ y \\ y\end{array}\right]$
similarity	$[s \boldsymbol{R} \mid \boldsymbol{t}]_{2 \times 3}$	4	angles $+\cdots$		$\left.W(\mathbf{x}, \mathbf{p})=\lambda\left[\begin{array}{ccc} c a_{3} & -s a_{3} & a_{1} \\ s a_{3} & c a_{3} & a_{2} \end{array}\right] \begin{array}{l} x \\ y \\ 1 \end{array}\right]$
affine	$[A]_{2 \times 3}$	6	parallelism $+\cdots$	\square	$W(\mathbf{x}, \mathbf{p})=\left[\begin{array}{llll}a_{1} & a_{3} & a_{5} \\ a_{2} & a_{4} & a_{6}\end{array}\right]\left[\begin{array}{l}x \\ 1 \\ 1\end{array}\right]$
projective	$\tilde{H}]_{3 \times 3}$	8	straight lines	\square	$W\binom{$, }{$\mathbf{x}}=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ a_{4} & a_{5} & a_{6} \\ a_{7} & a_{8} & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$

Derivative and gradient

- Function: $f(x)$
- Derivative: $f^{\prime}(x)=\frac{d f}{d x}$, where x is a scalar
- Function: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Gradient: $\nabla f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$

Jacobian

- $F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left[\begin{array}{c}f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\ \vdots \\ f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\end{array}\right]$

Vector-valued function

Derivative?

$$
J(F)=\nabla F=\left[\begin{array}{c}
\frac{\partial f_{1}}{\partial x_{1}}, \ldots, \frac{\partial f_{1}}{\partial x_{n}} \\
\vdots \\
\frac{\partial f_{m}}{\partial x_{1}}, \ldots, \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

Carl Gustav Jacob (1804-1851)

Displacement-model Jacobians ∇W_{p}

$$
p=\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

$$
\begin{aligned}
& \text { Translation } \\
& \qquad W(\mathbf{x}, \mathbf{p})=\left[\begin{array}{l}
x+a_{1} \\
y+a_{2}
\end{array}\right] \quad \nabla W_{p}=\left[\begin{array}{ll}
\frac{\partial W_{1}}{\partial a_{1}} & \frac{\partial W_{1}}{\partial a_{2}} \\
\frac{\partial W_{2}}{\partial a_{1}} & \frac{\partial W_{2}}{\partial a_{2}}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

- Euclidean

$$
W(\mathbf{x}, \mathbf{p})=\left[\begin{array}{l}
x \cos \left(a_{3}\right)-y \sin \left(a_{3}\right)+a_{1} \\
x \sin \left(a_{3}\right)+y \cos \left(a_{3}\right)+a_{2}
\end{array}\right] \quad \nabla W_{p}=\left[\begin{array}{ccc}
1 & 0 & -x \sin \left(a_{3}\right)-y \cos \left(a_{3}\right) \\
0 & 1 & x \cos \left(a_{3}\right)-y \sin \left(a_{3}\right)
\end{array}\right]
$$

- Affine

$$
W(\mathbf{x}, \mathbf{p})=\left[\begin{array}{l}
a_{1} x+a_{3} y+a_{5} \\
a_{2} x+a_{4} y+a_{6}
\end{array}\right] \quad \nabla W_{p}=\left[\begin{array}{llllll}
x & 0 & y & 0 & 1 & 0 \\
0 & x & 0 & y & 0 & 1
\end{array}\right]
$$

Outline

- What is Tracking?
- Point tracking
- Review of 2D image transformations and Jacobians
- Template tracking: Lucas-Kanade algorithm
- Tracking by detection of local image features

Template tracking

Definition: follow a template image in a video sequence by estimating the warp

The Lucas-Kanade tracker

B. D. Lucas and T. Kanade (1981), An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, pages 121--130

Template warping

- Given the template image $T(\mathbf{x})$
- Take all pixels from the template image $T(\mathbf{x})$ and warp them using the function $W(\mathbf{x}, \mathbf{p})$ parameterized in terms of parameters \mathbf{p}

Template image

Template Tracking: Problem Formulation

- The goal of template-based tracking is to find the set of warp parameters p such that:

$$
I(W(\mathbf{x}, \mathbf{p}))=T(\mathbf{x})
$$

This is solved by determining \mathbf{p} that minimizes the Sum of Squared Differences

$$
E=S S D=\sum_{\mathbf{x} \in \mathbf{T}}[I(W(\mathbf{x}, \mathbf{p}))-T(\mathbf{x})]^{\mathbf{2}}
$$

Assumptions

- No errors in the template image boundaries: only the appearance of the object to be tracked appears in the template image
- No occlusion: the entire template is visible in the input image
- Brightness constancy assumption:
 the intensity of the object appearance is always the same.

The Lucas-Kanade tracker

- Uses the Gauss-Newton method for minimization, that is:
- Applies a first-order approximation of the warp
- Minimizes the functional iteratively

Derivation of the Lucas-Kanade algorithm

$$
E=\sum_{\mathbf{x} \in \mathbf{T}}[I(W(\mathbf{x}, \mathbf{p}))-T(\mathbf{x})]^{2}
$$

- Assume that an initial estimate of \mathbf{p} is known. Then, we want to find the increment $\Delta \mathbf{p}$ that minimizes

$$
\sum_{\mathbf{x} \in \mathbf{T}}[I(W(\mathbf{x}, \mathbf{p}+\Delta \mathbf{p}))-T(\mathbf{x})]^{2}
$$

- First-order Taylor approximation of $I(W(\mathbf{x}, \mathbf{p}+\Delta \mathbf{p}))$ yelds to:

$$
I(W(\mathbf{x}, \mathbf{p}+\Delta \mathbf{p})) \cong I(W(\mathbf{x}, \mathbf{p}))+\nabla I \frac{\partial W}{\partial \mathbf{p}} \Delta \mathbf{p}
$$

$$
\nabla I=\left[I_{x}, I_{y}\right]=\text { Image gradient evaluated at } W(\mathbf{x}, \mathbf{p}) \quad \text { Jacobian of the warp } W(\mathbf{x}, \mathbf{p})
$$

Derivation of the Lucas-Kanade algorithm

$$
E=\sum_{\mathbf{x} \in \mathbf{T}}[I(W(\mathbf{x}, \mathbf{p}+\Delta \mathbf{p}))-T(\mathbf{x})]^{\mathbf{2}}
$$

- By replacing $I(W(\mathbf{x}, \mathbf{p}+\Delta \mathbf{p}))$ with its $1^{\text {st }}$ order approximation, we get

$$
E=\sum_{\mathbf{x} \in \mathbf{T}}\left[I(W(\mathbf{x}, \mathbf{p}))+\nabla I \frac{\partial W}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]^{\mathbf{2}}
$$

- How do we minimize it?
- We differentiate E with respect to $\Delta \mathbf{p}$ and we equate it to zero, i.e.,

$$
\frac{\partial E}{\partial \Delta \mathbf{p}}=0
$$

Derivation of the Lucas-Kanade algorithm

$$
\begin{gathered}
E=\sum_{\mathbf{x} \in \mathbf{T}}\left[I(W(\mathbf{x}, \mathbf{p}))+\nabla I \frac{\partial W}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]^{2} \\
\frac{\partial E}{\partial \Delta \mathbf{p}}=2 \sum_{\mathbf{x} \in \mathbf{T}}\left[\nabla I \frac{\partial W}{\partial \mathbf{p}}\right]^{\mathrm{T}}\left[I(W(\mathbf{x}, \mathbf{p}))+\nabla I \frac{\partial W}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right] \\
\frac{\partial E}{\partial \Delta \mathbf{p}}=0 \\
2 \sum_{\mathbf{x} \in \mathbf{T}}\left[\nabla I \frac{\partial W}{\partial \mathbf{p}}\right]^{\mathrm{T}}\left[I(W(\mathbf{x}, \mathbf{p}))+\nabla I \frac{\partial W}{\partial \mathbf{p}} \Delta \mathbf{p}-T(\mathbf{x})\right]=0 \Rightarrow
\end{gathered}
$$

Derivation of the Lucas-Kanade algorithm

$$
\begin{gathered}
\Rightarrow \Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x} \in \mathbf{T}}\left[\nabla I \frac{\partial W}{\partial \mathbf{p}}\right]^{\mathrm{T}}[T(\mathbf{x})-I(W(\mathbf{x}, \mathbf{p}))]= \\
H=\sum_{\mathbf{x} \in \mathbf{T}}\left[\nabla I \frac{\partial W}{\partial \mathbf{p}}\right]^{\mathrm{T}}\left[\nabla I \frac{\partial W}{\partial \mathbf{p}}\right] \\
\text { Hessian matrix of the warped image }
\end{gathered}
$$

What does H look like when the warp is a pure translation?

Lucas-Kanade algorithm

$$
\Rightarrow \Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x} \in \mathbf{T}}\left[\nabla I \frac{\partial W}{\partial \mathbf{p}}\right]^{\mathrm{T}}[T(\mathbf{x})-I(W(\mathbf{x}, \mathbf{p}))]
$$

1. \quad Warp $I(\mathbf{x})$ with $W(\mathbf{x}, \mathbf{p}) \rightarrow I(W(\mathbf{x}, \mathbf{p}))$
2. Compute the error: subtract $I(W(\mathbf{x}, \mathbf{p}))$ from $T(\mathbf{x})$
3. Compute warped gradients: $\nabla I=\left[I_{x}, I_{y}\right]$, evaluated at $W(\mathbf{x}, \mathbf{p})$
4. Evaluate the Jacobian of the warping: $\frac{\partial W}{\partial \mathbf{p}}$
5. Compute steepest descent: $\nabla I \frac{\partial W}{\partial \mathbf{p}}$
6. Compute Inverse Hessian: $H^{-1}=\left[\sum_{\mathbf{x} \in \mathbf{T}}\left[\nabla I \frac{\partial W}{\partial \mathbf{p}}\right]^{\mathrm{T}}\left[\nabla I \frac{\partial W}{\partial \mathbf{p}}\right]\right]^{-1}$
7. Multiply steepest descend with error: $\sum_{\mathbf{x} \in \mathbf{T}}\left[\nabla I \frac{\partial W}{\partial \mathbf{p}}\right]^{\mathrm{T}}[T(\mathbf{x})-I(W(\mathbf{x}, \mathbf{p}))]$
8. Compute $\Delta \mathbf{p}$
9. Update parameters: $\mathbf{p} \leftarrow \mathbf{p}+\Delta \mathbf{p}$
10. Repeat until $\Delta \mathbf{p}<\boldsymbol{\varepsilon}$

LUCaS-Kanade alógrithn $\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x} \in \mathrm{T}}\left[\nabla I \frac{\partial W}{\partial \mathbf{p}}\right]^{\mathrm{T}}[T(\mathbf{x})-I(W(\mathbf{x}, \mathbf{p}))]$

B. D. Lucas and T. Kanade (1981), An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, pages 121--130

LUCaS-Kanade aloorithm $\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x} \in \mathrm{T}}\left[\nabla I \frac{\partial W}{\partial \mathbf{p}}\right]^{\mathrm{T}}[T(\mathbf{x})-I(W(\mathbf{x}, \mathbf{p}))]$

Lucas-Kanade aloorithm $\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x} \in \mathrm{T}}\left[\nabla I \frac{\partial W}{\partial \mathbf{p}}\right]^{\mathrm{T}}[T(\mathbf{x})-I(W(\mathbf{x}, \mathbf{p}))]$

Why does it look like that?

Jacobian

$n \times 2 n$
B. D. Lucas and T. Kanade (1981), An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, pages 121--130

Lucas-Kanade aloorithm $\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x} \in \mathrm{T}}\left[\nabla I \frac{\partial W}{\partial \mathbf{p}}\right]^{\mathrm{T}}[T(\mathbf{x})-I(W(\mathbf{x}, \mathbf{p}))]$

Why does it look like that?

\leftarrow What's its size?
nx6n
B. D. Lucas and T. Kanade (1981), An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, pages 121--130

Lucas-Kanade aloorithm $\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x} \in \mathrm{T}}\left[\nabla I \frac{\partial W}{\partial \mathbf{p}}\right]^{\mathrm{T}}[T(\mathbf{x})-I(W(\mathbf{x}, \mathbf{p}))]$

B. D. Lucas and T. Kanade (1981), An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, pages 121--130

LUCaS-Kanade aloorithm $\Delta \mathbf{p}=H^{-1} \sum_{\mathbf{x} \in \mathrm{T}}\left[\nabla I \frac{\partial W}{\partial \mathbf{p}}\right]^{\mathrm{T}}[T(\mathbf{x})-I(W(\mathbf{x}, \mathbf{p}))]$

B. D. Lucas and T. Kanade (1981), An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, pages 121--130

Lucas-Kanade algorithm: Discussion

Lucas-Kanade follows a predict-correct cycle

- A prediction $I(W(\mathbf{x}, \mathbf{p}))$ of the warped image is computed from an initial estimate
- The correction parameter $\Delta \mathbf{p}$ is computed as a function of the error $T(\mathbf{x})-I(W(\mathbf{x}, \mathbf{p}))$ between the prediction and the template
- The larger this error, the larger the correction applied

Lucas-Kanade algorithm: Discussion

- How to get the initial estimate p?
- When does the Lucas-Kanade fail?
- If the initial estimate is too far, then the linear approximation does not longer hold -> solution?
- Pyramidal implementations (see next slide)
- Other problems:
- Deviations from the mathematical model: object deformations, illumination changes, etc.
- Occlusions
- Due to these reasons, tracking may drift -> solution?
- Update the template with the last image

Coarse-to-fine estimation

Pyramid of image I
Pyramid of image T

Coarse-to-fine estimation

Generalization of Lucas-Kanade

- The same concept (predict/correct) can be applied to tracking of 3D object (in this case, what is the transformation to etimate? What is the template?)

Generalization of Lucas-Kanade

- The same concept (predict/correct) can be applied to tracking of 3D object (in this case, what is the transformation to etimate? What is the template?)
- In order to deal with wrong prediction, it can be implemented in a Particle-Filter fashion (using multiple hipotheses that need to be validated)

Outline

- What is Tracking?
- Review of 2D image transformations and Jacobians
- Point tracking
- Template tracking
- Tracking by detection of local image features

Tracking by detection of local image features

Step 1: Keypoint detection and matching

- invariant to scale, rotation, or perspective

Template image with the object to detect

Current test image

Tracking by detection of local image features

Step 1: Keypoint detection and matching

- invariant to scale, rotation, or perspective

Tracking by detection of local image features

Step 1: Keypoint detection and matching

- invariant to scale, rotation, or perspective

Step 2: Geometric verification (RANSAC)

Tracking by detection of local image features

Tracking issues

- How to segment the object to track from background?
- How to initialize the warping?

- How to handle occlusions

- How to handle illumination changes and non modeled effects?

References

- Chapter 8.2, Richard Szeliski, "Computer Vision: Algorithms and Application".
- Original paper: B. D. Lucas and T. Kanade (1981), An iterative image registration technique with an application to stereo vision. Proceedings of Imaging Understanding Workshop, pages 121-130
- Baker, Matthews, "Lucas-Kanade 20 Years On: A Unifying Framework", IJCV, 2004.

Implementations

- OpenCV implementation : http://docs.opencv.org/modules/video/doc/motion analysis and object tracking.html?highlight=lucas\%20kanade
- Some Matlab implementation:
- Lucas Kanade with Pyramid http://www.mathworks.com/matlabcentral/fileexchange/30822
- Affine tracking:
http://www.mathworks.com/matlabcentral/fileexchange/24677-lucas-kanade-affine-template-tracking http://vision.eecs.ucf.edu/Code/Optical_Flow/Lucas\ Kanade.zip

