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Abstract
 We briefly review the history and key ideas in Goal-Oriented

Requirements Engineering research. We then sketch two
applications of these ideas. The first involves establishing an
Agent-Oriented Software Development method called Tropos
which covers not only requirements but also design phases. The
second addresses the design of high-variability software for
applications such as home care software and business process
design.

 The research reported in this presentation was conducted with
colleagues at the Universities of Toronto (Canada) and Trento
(Italy).
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GORE, Parts I & II
 GORE = Goal-Oriented Requirements Engineering
 Axel van Lamsweerde delivered a keynote talk with this

title at RE'04 in Kyoto.
 His talk reviewed the history and key ideas of GORE and

described some of the on-going research and industrial
experiences of the KAOS project.

 The talk made an elegant case for GORE as an
important edition to SE practice.

 In this presentation, I review some of the research
results and on-going work of the i*/Tropos project.

 I'll also make the case for GORE as a foundation for a
Theory of Software Design.
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This Talk
 Goal-Oriented RE -- History and key ideas
 Moving forward -- Tropos
 Moving forward -- Designing high-variability

software
 Afterthoughts and conclusions
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Goal-Oriented Requirements
Engineering (~1993)

 Goal-oriented analysis focuses on early requirements, when
problems are identified, and alternative solutions are explored
and evaluated.

 During goal-oriented analysis, we start with initial
stakeholder goals such as “Fulfill every book request”, or
“Schedule meeting” and keep refining them until we have
reduced them to alternative collections of functional
requirements each of which can satisfy the initial goals.

 Initial goals may be contradictory, so the analysis must
facilitate the discovery of tradeoffs and the search of the
full space of alternatives, rather than a subset.
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Goal-Oriented Analysis a la KAOS
 (Organizational) goals lead to requirements.
 Goals justify and explain the presence of requirements which

are not necessarily comprehensible by clients.
 Goals provide basic information for detecting and resolving

conflicts that arise from multiple viewpoints [Dardenne93].
 Example goal:

SystemGoalSystemGoal  Achieve[BookRequestSatisfied]
InstanceOfInstanceOf SatisfactionGoal
ConcernsConcerns   Borrower, Book, Borrowing,...
DefinitionDefinition  ( ∀bor: Borrower, b: Book, lib: Library)
(Requesting(bor, b) ∧ b.subject ∈ lib.coverageArea ⇒
        F[(∃bc: BookCopy) (Copy(bc, b) ∧ Borrowing(bor, bc)))]
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Alternatives Lead to Designs/Plans
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Softgoals
 Functional goals, such as “Schedule meeting” are well

defined in the sense that they admit a formal definition.
 Non-functional goals, such “higher profits”, “higher

customer satisfaction” or “easily maintainable system”
specify qualities a socio-technical system should adhere to.

 Such qualities usually admit no generally agreed upon
definition, are inter-related and often contradictory.

 Such qualities are represented as softgoalssoftgoals.
 Softgoals can be thought as “fuzzy goals” with
   no clear-cut criteria for satisfaction; hence softgoals are

satisficedsatisficed, rather than satisfied (NFR framework,
[Mylopoulos92], [Chung93]).
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Softgoals for Representing Non-
Functional Requirements
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Stakeholders and Their Goals
 In KAOS, goals are global objectives for the system-to-

be.
 In i* [Yu93], goals are desired by actors and are

delegated to other actors for fulfillment.
 In this framework then, early requirements involve

identifying stakeholders and their goals, analyzing these
goals, delegating them to other actors etc.

 The result of this process consists of actor dependency
and actor rationale models.
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An Actor Dependency Model
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An Actor Rationale Model
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Goals in Software Design
 KAOS, the NFR proposal, as well as i* advocate the use

of goals in designing software.
 KAOS uses goals to go from organizational objectives to

functional requirements.
 NFR uses them to represent and analyze non-functional

requirements. Non-functional requirements lead to
criteria for evaluate functional alternatives ( … AND
functional requirements).

 i* relates goals to the actors who want them and keeps
track of delegations.
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So What?
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Credits
 Many other researchers worked with goals a decade or

more ago, including:
 Martin Feather and Steve Fickas;
 Colin Potts and Annie Anton;
 Janis Bubenko;
 Colette Rolland;
 Periklis Loucopoulos and Evangelia Kavakli;

…
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Goals, Intentions and Tasks
 Goals are desired states of affairs, e.g., "I want to be

president of the USA" ( … )
 Intention = goal + commitment
 Actions are things agents can perform to change the

state of affairs.
 Task = action + intention
 We use "intention" and "goal" synonymously; likewise for

"task" and "plan".
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Expressiveness of Goal Models
 Different researchers use different notations and

different primitive goal relationships.
 In our work, we adopted a goal model that includes:

 Goal types: (hard)goals, softgoals
 Relationship types: AND (n-ary), OR (n-ary), ++

(makes, binary), -- (breaks, binary), + (helps,
binary), - (hurts, binary)

 This model without +, - is expressively equivalent to
Propositional Calculus (PC).

 The problem of deciding if given root-level goals can be
fulfilled can be reduced to the satisfiability problem in
PC.
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This Talk

 GORE -- History and key ideas
 Moving forward -- Tropos
 Moving forward -- Designing high-variability

software
 Afterthoughts and conclusions
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…An Idea... (~2000)
 Software Engineering methods have traditionally come

about in a “late-to-early” phase (or, “downstream-to-
upstream”) fashion.

 In particular, Structured Programming preceded
Structured Analysis and Design; likewise, Object-
Oriented Programming preceded Object-Oriented Design
and Analysis.

 In both cases, programming concepts were projected
upstream to dictate how designs and requirements are
conceived.

What would happen if we projected requirements concepts
downstream to define software designs and even

implementations?

© 2006  John Mylopoulos RE'06  -- 22

The Tropos Methodology
 Proposes a set of primitive concepts adopted from i* (actor,

goal, actor dependency,…) and a process for building agent-
oriented software.

 Covers four phases of software development:
 Early requirements -- identify stakeholders and their

goals;
 Late requirements -- introduce system-to-be as another

actor who can accommodate some of these goals;
 Architectural design -- more system actors are added

and are assigned responsibilities;
 Detailed design -- complete the specification of system

actors.
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Agent-Oriented Software
Engineering

 Many researchers working on it.
 Research on the topic generally comes in two flavours:

 Extend UML to support agent communication,
negotiation etc. (e.g., AUML [Bauer99, Odell00]);

 Extend current agent programming platforms (e.g.,
JACK) to support not just programming but also design
activities, e.g., GAIA [Jennings00].

 All AOSE methods involve to a greater or lesser extend
intentional concepts, analysis of alternatives, etc.
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Software Development
as Multi-Agent Planning

 Initialization: Identify stakeholder actors and their
goals;

 Step: For each new goal, the actor who owns it:
 adopts it;
 delegates it to another existing actor;
 delegates it to a new actor;
 decomposes it into new subgoals;
 declares the goal “denied”.

 Termination condition: All initial goals have been fulfilled
(…to an acceptable degree), assuming all actors deliver
on their commitments.
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Analyzing Tropos Models
 Models are used primarily for human communication
 But, this is not enough! Large models can be hard to

understand, or take seriously.
 We need analysis techniques which offer evidence that a

model makes sense:
 Simulation through model checking, to explore the

properties of goals, entities, etc. over their lifetime
[RE'01, RE'03, REJ];

 Goal analysis uses a SAT prover to determine whether a
goal can be fulfilled [ER'02, JoDS'03, CAiSE'04];

 Social analysis uses a planner to explore alternative
delegations for a given set of actors and goals.

 The tools we have developed use off-the-shelf inference
engines (respectively nuSMV, MinWeight solver, LPG-td).

© 2006  John Mylopoulos RE'06  -- 26
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Social Analysis
 Given a set of actors, each with associated root goals,

and a goal graph for each root goal, find an actor
dependency network that fulfills all root goals.
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Well-Formed Dependency Networks
 Some dependency graphs don’t make sense...

 What is a “good” dependency network, assuming that we
are interested in:
 minimizing dependence;
 distributing work;
 network stability

 PhD thesis by Volha Bryl (Trento).

A1 A2G

G
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The Tropos Project
 Project was launched in April 2000.
 Participating teams includes:

 UToronto (Canada): Eric Yu, Alexei Lapouchnian, Sotirios
Liaskos, Yijun Yu, Yiqiao Wang, Neil Ernst;

 UTrento/IRST (Italy): Anna Perini, Angelo Susi, Loris
Penserini, Paolo Giorgini, Fabio Massacci, Roberto
Sebastiani, Nicola Zannone, Yudis Asnar, Volha Bryl,
Paolo Traverso,...;

 Elsewhere: Jaelson Castro (Brazil), Matthias Jarke
(Germany), Manuel Kolp (Belgium), Julio Leite (Brazil),
Gerhard Lakemeyer (Germany), Lin Liu (China);

 Publications and other information about the project can be
found at http://www.http://www.troposprojecttroposproject.org..org.
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This Talk

 GORE -- History and key ideas
 Moving forward -- Tropos
 Moving forward -- Designing high-variability

software
 Afterthoughts and conclusions
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Designing for High Variability
 Instead of choosing one solution for the fulfillment of a

top-level goal, we could choose to support them all.
 This leads to software solutions that can be customized

in many different ways, depending on stakeholder
preferences and environmental parameters.
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On-Going Research
 From goals to generic designs: Develop a tool-supported

method for generating different design views from a given
goal model; in our work we have focus on the generation
of a feature model, a statechart model and a software
architecture.

 Characterize variability: Goal models constitute one source
of variability in design, but there are also others. These
may be dependent on what is the design about (e.g.,
software, business process, database) [RE'06a, RE'06b].

 PhD theses by Sotiris Liaskos, Alexei Lapouchnian, Lei
Jiang (Toronto).
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… to a Feature Model
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… to a Statechart
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… to a Software
Architecture
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Why is this Problem Important?
 Enterprise Resource Planning (ERP) software is generic

and can be customized in (very) many different ways.
 But we don't have yet systematic ways of generating

such designs.
 Envisioned applications for high-variability software:

 Business process design (Alexei Lapouchnian);
 Home care software for the elderly (Sotiris Liaskos).
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Autonomic (Application) Software
 (According to IBM) This is software that can self-

configure, self-repair and self-optimize.
 For us,

Autonomicity =
           High-Variability+Monitoring+Diagnosis+Adaptivity
 Our goal-oriented framework may not be appropriate for

autonomic system software (e.g., an OS) or middleware
(e.g., a DBMS); But it certainly is for application software!

 Different mechanisms required for
 Self-repair -- real-time reconfiguration and recovery
 Self-configuring and self-optimization -- off-line

reconfiguration, no recovery
 PhD thesis by Yiqiao Wang (Toronto) is looking at the

problem of designing monitoring and diagnostic mechanisms
for autonomic software.
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Other Threads
 [Security] Extend Tropos to support concepts of

ownership, permission and trust; this leads to models
where you can check whether every actor has the
permissions she needs to carry out her obligations
[RE'05]; PhD thesis by Nicola Zannone (Trento).

 [Risk Management] Extend the DDP risk management
framework [Feather05] to allow hierarchical
goal/requirement and risk decompositions; PhD thesis by
Yudis Asnar (Trento).
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This Talk

 GORE -- History and key ideas
 Moving forward -- Tropos
 Moving forward -- Designing high-variability

software
 Afterthoughts and conclusions
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Research on Modelling
 Much research in RE involves building and analyzing

models.
 Not surprisingly, the quality of such research depends

critically on (a) the modelling language used, (b) the
reasoning facilities provided.

 Two pitfalls to avoid:
 Treating variations of modelling languages as

contributions;
 Proposing new modelling languages, instead of building

on what already exists.
 There is a very rich theory of (formal) models and

reasoning support to be found in Knowledge
Representation research.
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Formal vs Informal
 Many of the modelling language we (in the RE community)

use are formal. There are great (and known) pitfalls in
using informal ones.

 Most of the models we built are semi-formal; this means
that the models capture and formalize some aspects of
the domain, but not all. This is the nature of the SE
enterprise …
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The Big Picture …
 We are working on characterizations of design spaces

for software, business processes, databases, ….
 These spaces are partly defined by variations in goal

fulfillment and actor delegation strategies, but also on
other dimensions.

 We are also working on a theory for evaluating design
alternatives with respect to a set of criteria consisting
of stakeholder needs and preferences.

 These together can form the basis for a theory of
design, along the lines of Herbert Simon's vision for a
Science of Design [Simon69].
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What is Missing?
 The (qualitative) models we built may be formalizable,

BUT they are subjective.
 We need theories of measurement for cognitive/social

phenomena.
 Our models are often under-constrained, include too

many variables [Menzies99].
 To have autonomic/adaptive systems, models and their

implementations will need to evolve at run-time.
 … For sure, other things as well …
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Conclusions
 GORE introduces new concepts in software development

processes.
 We have argued that GORE shows a path towards

defining and analyzing design spaces for software.
 We also sketched two applications of GORE concepts:

 Designing agent-oriented software -- the Tropos
project [JAAMAS04, JInformationSystems03];

 Designing high-variability software [RE'03, RE'06a,
RE'06b].
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