
1

© 2006 John Mylopoulos RE'06 -- 1

Goal-Oriented Requirements
Engineering: Part II

JohnJohn MylopoulosMylopoulos
University of University of Toronto/TrentoToronto/Trento

14th IEEE Requirements Engineering Conference
Minneapolis, September 15, 2006

© 2006 John Mylopoulos RE'06 -- 2

Abstract
 We briefly review the history and key ideas in Goal-Oriented

Requirements Engineering research. We then sketch two
applications of these ideas. The first involves establishing an
Agent-Oriented Software Development method called Tropos
which covers not only requirements but also design phases. The
second addresses the design of high-variability software for
applications such as home care software and business process
design.

 The research reported in this presentation was conducted with
colleagues at the Universities of Toronto (Canada) and Trento
(Italy).

2

© 2006 John Mylopoulos RE'06 -- 3

GORE, Parts I & II
 GORE = Goal-Oriented Requirements Engineering
 Axel van Lamsweerde delivered a keynote talk with this

title at RE'04 in Kyoto.
 His talk reviewed the history and key ideas of GORE and

described some of the on-going research and industrial
experiences of the KAOS project.

 The talk made an elegant case for GORE as an
important edition to SE practice.

 In this presentation, I review some of the research
results and on-going work of the i*/Tropos project.

 I'll also make the case for GORE as a foundation for a
Theory of Software Design.

© 2006 John Mylopoulos RE'06 -- 4

This Talk
 Goal-Oriented RE -- History and key ideas
 Moving forward -- Tropos
 Moving forward -- Designing high-variability

software
 Afterthoughts and conclusions

3

© 2006 John Mylopoulos RE'06 -- 5

Goal-Oriented Requirements
Engineering (~1993)

 Goal-oriented analysis focuses on early requirements, when
problems are identified, and alternative solutions are explored
and evaluated.

 During goal-oriented analysis, we start with initial
stakeholder goals such as “Fulfill every book request”, or
“Schedule meeting” and keep refining them until we have
reduced them to alternative collections of functional
requirements each of which can satisfy the initial goals.

 Initial goals may be contradictory, so the analysis must
facilitate the discovery of tradeoffs and the search of the
full space of alternatives, rather than a subset.

© 2006 John Mylopoulos RE'06 -- 6

Goal-Oriented Analysis a la KAOS
 (Organizational) goals lead to requirements.
 Goals justify and explain the presence of requirements which

are not necessarily comprehensible by clients.
 Goals provide basic information for detecting and resolving

conflicts that arise from multiple viewpoints [Dardenne93].
 Example goal:

SystemGoalSystemGoal Achieve[BookRequestSatisfied]
InstanceOfInstanceOf SatisfactionGoal
ConcernsConcerns Borrower, Book, Borrowing,...
DefinitionDefinition (∀bor: Borrower, b: Book, lib: Library)
(Requesting(bor, b) ∧ b.subject ∈ lib.coverageArea ⇒
 F[(∃bc: BookCopy) (Copy(bc, b) ∧ Borrowing(bor, bc)))]

4

© 2006 John Mylopoulos RE'06 -- 7

Goal Analysis Leads to Alternatives
Schedule
meeting

Choose
schedule

By
Person

Collect
timetables

Automatically

ManuallyCollect from
usersCollect from

agents

Receive
request

Send
request

AND AND

AND AND

OR OR

OR OR
By

System

OR OR

(Functional/hard)
Goals

© 2006 John Mylopoulos RE'06 -- 8

Alternatives Lead to Designs/Plans
Schedule
meeting

Choose
schedule

By
Person

Collect
timetables

Automatically

ManuallyCollect from
usersCollect from

agents

Receive
request

Send
request

AND AND

AND AND

OR OR

OR OR
By

System

OR OR

Collect Schedule

Tasks

5

© 2006 John Mylopoulos RE'06 -- 9

Softgoals
 Functional goals, such as “Schedule meeting” are well

defined in the sense that they admit a formal definition.
 Non-functional goals, such “higher profits”, “higher

customer satisfaction” or “easily maintainable system”
specify qualities a socio-technical system should adhere to.

 Such qualities usually admit no generally agreed upon
definition, are inter-related and often contradictory.

 Such qualities are represented as softgoalssoftgoals.
 Softgoals can be thought as “fuzzy goals” with
 no clear-cut criteria for satisfaction; hence softgoals are

satisficedsatisficed, rather than satisfied (NFR framework,
[Mylopoulos92], [Chung93]).

© 2006 John Mylopoulos RE'06 -- 10

Softgoals for Representing Non-
Functional Requirements

Programmability

+

+

++Support
Change of

Colours
Support

Change of
State

Support
Change of
Language

Error
Avoidance

Information
Sharing

Ease of Learning

User
Tailorability

Usability

 Allow User-Defined
Writing Tool

Modularity

Use
Components

User
Flexibility

Allow
Change of
Settings

+

+

+

AND
AND ANDAND

ANDAND

Change
colour Change

state
Change
language

6

© 2006 John Mylopoulos RE'06 -- 11

Schedule

meeting

Collect

timetables

Choose

schedule

By Person By System

Manually Automatically

Minimal
effort

Collection

effort

Matching
effort

Good quality

schedule

Minimal
conflicts

Good
participation

Send

Request

Receive

Response

OR

OR

OR
OR

AND

AND

AND

AND

AND AND

AND

AND

+

-

- +
++

-

-

Collect from
Users

Collect from
Agents

OR
OR

Accurate
Constraints

Minimal

Disturbances

+ -

+-

Evaluating
Alternatives

with Softgoals

© 2006 John Mylopoulos RE'06 -- 12

Stakeholders and Their Goals
 In KAOS, goals are global objectives for the system-to-

be.
 In i* [Yu93], goals are desired by actors and are

delegated to other actors for fulfillment.
 In this framework then, early requirements involve

identifying stakeholders and their goals, analyzing these
goals, delegating them to other actors etc.

 The result of this process consists of actor dependency
and actor rationale models.

7

© 2006 John Mylopoulos RE'06 -- 13

An Actor Dependency Model
InitiatorContributeToMtg

AttendMtg

UsefulMtg

CalendarInfo

SuitableTime

SchedulerParticipant

ScheduleMtg

resourcetask

actor

© 2006 John Mylopoulos RE'06 -- 14

An Actor Rationale Model

Through
personal
 contact

By
email

ScheduleSchedule
MeetingMeeting
goal treegoal tree

Reception

Actor dependencies are intentional: One actor wants
something, another is willing and able to deliver.

By Person

8

© 2006 John Mylopoulos RE'06 -- 15

Goals in Software Design
 KAOS, the NFR proposal, as well as i* advocate the use

of goals in designing software.
 KAOS uses goals to go from organizational objectives to

functional requirements.
 NFR uses them to represent and analyze non-functional

requirements. Non-functional requirements lead to
criteria for evaluate functional alternatives (… AND
functional requirements).

 i* relates goals to the actors who want them and keeps
track of delegations.

© 2006 John Mylopoulos RE'06 -- 16

So What?
Early Requirements Phase

Ear
ly

Ear
ly

req
uire

me
nts

req
uire

me
nts Lat

e
Lat

e

req
uire

me
nts

req
uire

me
nts

Arc
hit

ect
ura

l

Arc
hit

ect
ura

l

des
ign

des

ign

Det
aile

d

Det
aile

d

des
ign

des
ign

Im
ple

me
nta

tion

Im
ple

me
nta

tion

KAOSKAOS

ZZ

UML and co.UML and co.
AUMLAUML

GAIAGAIA

!!!! A GAP !!A GAP !!

i*i*
JACK

SADTSADT

9

© 2006 John Mylopoulos RE'06 -- 17

Credits
 Many other researchers worked with goals a decade or

more ago, including:
 Martin Feather and Steve Fickas;
 Colin Potts and Annie Anton;
 Janis Bubenko;
 Colette Rolland;
 Periklis Loucopoulos and Evangelia Kavakli;

…

© 2006 John Mylopoulos RE'06 -- 18

Goals, Intentions and Tasks
 Goals are desired states of affairs, e.g., "I want to be

president of the USA" (…)
 Intention = goal + commitment
 Actions are things agents can perform to change the

state of affairs.
 Task = action + intention
 We use "intention" and "goal" synonymously; likewise for

"task" and "plan".

10

© 2006 John Mylopoulos RE'06 -- 19

Expressiveness of Goal Models
 Different researchers use different notations and

different primitive goal relationships.
 In our work, we adopted a goal model that includes:

 Goal types: (hard)goals, softgoals
 Relationship types: AND (n-ary), OR (n-ary), ++

(makes, binary), -- (breaks, binary), + (helps,
binary), - (hurts, binary)

 This model without +, - is expressively equivalent to
Propositional Calculus (PC).

 The problem of deciding if given root-level goals can be
fulfilled can be reduced to the satisfiability problem in
PC.

© 2006 John Mylopoulos RE'06 -- 20

This Talk

 GORE -- History and key ideas
 Moving forward -- Tropos
 Moving forward -- Designing high-variability

software
 Afterthoughts and conclusions

11

© 2006 John Mylopoulos RE'06 -- 21

…An Idea... (~2000)
 Software Engineering methods have traditionally come

about in a “late-to-early” phase (or, “downstream-to-
upstream”) fashion.

 In particular, Structured Programming preceded
Structured Analysis and Design; likewise, Object-
Oriented Programming preceded Object-Oriented Design
and Analysis.

 In both cases, programming concepts were projected
upstream to dictate how designs and requirements are
conceived.

What would happen if we projected requirements concepts
downstream to define software designs and even

implementations?

© 2006 John Mylopoulos RE'06 -- 22

The Tropos Methodology
 Proposes a set of primitive concepts adopted from i* (actor,

goal, actor dependency,…) and a process for building agent-
oriented software.

 Covers four phases of software development:
 Early requirements -- identify stakeholders and their

goals;
 Late requirements -- introduce system-to-be as another

actor who can accommodate some of these goals;
 Architectural design -- more system actors are added

and are assigned responsibilities;
 Detailed design -- complete the specification of system

actors.

12

© 2006 John Mylopoulos RE'06 -- 23

Agent-Oriented Software
Engineering

 Many researchers working on it.
 Research on the topic generally comes in two flavours:

 Extend UML to support agent communication,
negotiation etc. (e.g., AUML [Bauer99, Odell00]);

 Extend current agent programming platforms (e.g.,
JACK) to support not just programming but also design
activities, e.g., GAIA [Jennings00].

 All AOSE methods involve to a greater or lesser extend
intentional concepts, analysis of alternatives, etc.

© 2006 John Mylopoulos RE'06 -- 24

Software Development
as Multi-Agent Planning

 Initialization: Identify stakeholder actors and their
goals;

 Step: For each new goal, the actor who owns it:
 adopts it;
 delegates it to another existing actor;
 delegates it to a new actor;
 decomposes it into new subgoals;
 declares the goal “denied”.

 Termination condition: All initial goals have been fulfilled
(…to an acceptable degree), assuming all actors deliver
on their commitments.

13

© 2006 John Mylopoulos RE'06 -- 25

Analyzing Tropos Models
 Models are used primarily for human communication
 But, this is not enough! Large models can be hard to

understand, or take seriously.
 We need analysis techniques which offer evidence that a

model makes sense:
 Simulation through model checking, to explore the

properties of goals, entities, etc. over their lifetime
[RE'01, RE'03, REJ];

 Goal analysis uses a SAT prover to determine whether a
goal can be fulfilled [ER'02, JoDS'03, CAiSE'04];

 Social analysis uses a planner to explore alternative
delegations for a given set of actors and goals.

 The tools we have developed use off-the-shelf inference
engines (respectively nuSMV, MinWeight solver, LPG-td).

© 2006 John Mylopoulos RE'06 -- 26

Phases
Palette Diagram Editor

Model

Properties Window

http://sra.itc.it/tools/taom/

14

© 2006 John Mylopoulos RE'06 -- 27

Social Analysis
 Given a set of actors, each with associated root goals,

and a goal graph for each root goal, find an actor
dependency network that fulfills all root goals.

G

G1 G2

A1 A2 A1

G

A1 A2

G1

G2

G2

AND

AND AND

© 2006 John Mylopoulos RE'06 -- 28

Well-Formed Dependency Networks
 Some dependency graphs don’t make sense...

 What is a “good” dependency network, assuming that we
are interested in:
 minimizing dependence;
 distributing work;
 network stability

 PhD thesis by Volha Bryl (Trento).

A1 A2G

G

15

© 2006 John Mylopoulos RE'06 -- 29

The Tropos Project
 Project was launched in April 2000.
 Participating teams includes:

 UToronto (Canada): Eric Yu, Alexei Lapouchnian, Sotirios
Liaskos, Yijun Yu, Yiqiao Wang, Neil Ernst;

 UTrento/IRST (Italy): Anna Perini, Angelo Susi, Loris
Penserini, Paolo Giorgini, Fabio Massacci, Roberto
Sebastiani, Nicola Zannone, Yudis Asnar, Volha Bryl,
Paolo Traverso,...;

 Elsewhere: Jaelson Castro (Brazil), Matthias Jarke
(Germany), Manuel Kolp (Belgium), Julio Leite (Brazil),
Gerhard Lakemeyer (Germany), Lin Liu (China);

 Publications and other information about the project can be
found at http://www.http://www.troposprojecttroposproject.org..org.

© 2006 John Mylopoulos RE'06 -- 30

This Talk

 GORE -- History and key ideas
 Moving forward -- Tropos
 Moving forward -- Designing high-variability

software
 Afterthoughts and conclusions

16

© 2006 John Mylopoulos RE'06 -- 31

Designing for High Variability
 Instead of choosing one solution for the fulfillment of a

top-level goal, we could choose to support them all.
 This leads to software solutions that can be customized

in many different ways, depending on stakeholder
preferences and environmental parameters.

© 2006 John Mylopoulos RE'06 -- 32

On-Going Research
 From goals to generic designs: Develop a tool-supported

method for generating different design views from a given
goal model; in our work we have focus on the generation
of a feature model, a statechart model and a software
architecture.

 Characterize variability: Goal models constitute one source
of variability in design, but there are also others. These
may be dependent on what is the design about (e.g.,
software, business process, database) [RE'06a, RE'06b].

 PhD theses by Sotiris Liaskos, Alexei Lapouchnian, Lei
Jiang (Toronto).

17

© 2006 John Mylopoulos RE'06 -- 33

Schedule

meeting

Collect

timetables

Choose

schedule

By Person By System

Manually Automatically

Minimal
effort

Collection

effort

Matching
effort

Good quality

schedule

Minimal
conflicts

Good
participation

Send

Request

Receive

Response

OR

OR

OR
OR

AND

AND

AND

AND

AND AND

AND

AND

+

-

- +
++

-

-

Collect from
Users

Collect from
Agents

OR
OR

Accurate
Constraints

Minimal

Disturbances

+ -

+-

VP1

VP3

VP2

From a
Goal Model
to Design

Views

© 2006 John Mylopoulos RE'06 -- 34

… to a Feature Model

Schedule

meeting

Collect

timetables

Choose

schedule

By Person By System

Manually Automatically

Minimal
effort

Collection

effort

Matching
effort

Good quality

schedule

Minimal
conflicts

Good
participation

Send

Request

Receive

Response

OR

OR

OR
OR

AND

AND

AND

AND

AND AND

AND

AND

+

-

- +
++

-

-

Collect from
Users

Collect from
Agents

OR
OR

Accurate
Constraints

Minimal

Disturbances

+ -

+-

Schedule

meeting

Collect

timetables

Choose

schedule

By System Automatically

Collect from

Agents

Request

from Users

+conflicts [minimal disturbances]

+conflicts [accurate constraints]

Send

Request

Receive

Response

VP1 VP2

VP3

18

© 2006 John Mylopoulos RE'06 -- 35

… to a Statechart

Schedule

meeting

Collect

timetables

Choose

schedule

By Person By System

Manually Automatically

Minimal
effort

Collection

effort

Matching
effort

Good quality

schedule

Minimal
conflicts

Good
participation

Send

Request

Receive

Response

OR

OR

OR
OR

AND

AND

AND

AND

AND AND

AND

AND

+

-

- +
++

-

-

Collect from
Users

Collect from
Agents

OR
OR

Accurate
Constraints

Minimal

Disturbances

+ -

+-

Schedule meeting

...

[VP3=2]
Send

Request

receive

response

[VP1=1]/by_person

Choose schedule

[VP2=1]/manually

[VP2]=2/automatically

[VP1=2]

[VP3=1]/collectByAgents

© 2006 John Mylopoulos RE'06 -- 36

… to a Software
Architecture

Meeting Scheduler

Constraint

Collection

Module

Constraint

Request

Server

Communication

Module

Slot Calculator

Scheduling Mgr

ICollectConstr

RequestCnstr

Automatic

Collection

Constraint

Input UI

IGetConstraints

IScheduleMeeting

Prepare UI IPrepare

I
S
e
l
e
c
t
S
l
o
t
A
u
t
o

Find

Address

Request

Instant

Messaging

IFindUserAddr

VP1

Request

Mailer

VP3

VP4

ICommunicateReqs

Priority

Based

Algorithm

TravelCost

Minimization

Algorithm

Conflicts

Minimization

Algorithm

Schedule

meeting

Collect

timetables

Choose

schedule

By Person By System

Manually Automatically

Minimal
effort

Collection

effort

Matching
effort

Good quality

schedule

Minimal
conflicts

Good
participation

Send

Request

Receive

Response

OR

OR

OR
OR

AND

AND

AND

AND

AND AND

AND

AND

+

-

- +
++

-

-

Collect from
Users

Collect from
Agents

OR
OR

Accurate
Constraints

Minimal

Disturbances

+ -

+-

19

© 2006 John Mylopoulos RE'06 -- 37

Why is this Problem Important?
 Enterprise Resource Planning (ERP) software is generic

and can be customized in (very) many different ways.
 But we don't have yet systematic ways of generating

such designs.
 Envisioned applications for high-variability software:

 Business process design (Alexei Lapouchnian);
 Home care software for the elderly (Sotiris Liaskos).

© 2006 John Mylopoulos RE'06 -- 38

WID

WB Modeler

High-Variability
Business Goal Model

BP Specifications for All
the Alternatives

Open OME

BPEL, WSDL,
XSD

Elicit/Analyze Simulate/Analyz
e

Integrate

WPS

Deploy

WB Monitor
Business Measures

Monitor

High-Variability BPEL

WID

Integrate

From Business Requirements
To Adaptive Business

Processes

CBEs/CEI

[Lapouchnian06]

20

© 2006 John Mylopoulos RE'06 -- 39

Autonomic (Application) Software
 (According to IBM) This is software that can self-

configure, self-repair and self-optimize.
 For us,

Autonomicity =
 High-Variability+Monitoring+Diagnosis+Adaptivity
 Our goal-oriented framework may not be appropriate for

autonomic system software (e.g., an OS) or middleware
(e.g., a DBMS); But it certainly is for application software!

 Different mechanisms required for
 Self-repair -- real-time reconfiguration and recovery
 Self-configuring and self-optimization -- off-line

reconfiguration, no recovery
 PhD thesis by Yiqiao Wang (Toronto) is looking at the

problem of designing monitoring and diagnostic mechanisms
for autonomic software.

© 2006 John Mylopoulos RE'06 -- 40

Other Threads
 [Security] Extend Tropos to support concepts of

ownership, permission and trust; this leads to models
where you can check whether every actor has the
permissions she needs to carry out her obligations
[RE'05]; PhD thesis by Nicola Zannone (Trento).

 [Risk Management] Extend the DDP risk management
framework [Feather05] to allow hierarchical
goal/requirement and risk decompositions; PhD thesis by
Yudis Asnar (Trento).

21

© 2006 John Mylopoulos RE'06 -- 41

This Talk

 GORE -- History and key ideas
 Moving forward -- Tropos
 Moving forward -- Designing high-variability

software
 Afterthoughts and conclusions

© 2006 John Mylopoulos RE'06 -- 42

Research on Modelling
 Much research in RE involves building and analyzing

models.
 Not surprisingly, the quality of such research depends

critically on (a) the modelling language used, (b) the
reasoning facilities provided.

 Two pitfalls to avoid:
 Treating variations of modelling languages as

contributions;
 Proposing new modelling languages, instead of building

on what already exists.
 There is a very rich theory of (formal) models and

reasoning support to be found in Knowledge
Representation research.

22

© 2006 John Mylopoulos RE'06 -- 43

Formal vs Informal
 Many of the modelling language we (in the RE community)

use are formal. There are great (and known) pitfalls in
using informal ones.

 Most of the models we built are semi-formal; this means
that the models capture and formalize some aspects of
the domain, but not all. This is the nature of the SE
enterprise …

 For example,
Schedule

meeting

Collect

timetables

Choose

schedule

By Person By System

Manually Automatically

Minimal
effort

Collection

effort

Matching
effort

Good quality

schedule

Minimal
conflicts

Good
participation

Send

Request

Receive

Response

OR

OR

OR
OR

AND

AND

AND

AND

AND AND

AND

AND

+

-

- +
++

-

-

Collect from
Users

Collect from
Agents

OR
OR

Accurate
Constraints

Minimal

Disturbances

+ -

+-

© 2006 John Mylopoulos RE'06 -- 44

The Big Picture …
 We are working on characterizations of design spaces

for software, business processes, databases, ….
 These spaces are partly defined by variations in goal

fulfillment and actor delegation strategies, but also on
other dimensions.

 We are also working on a theory for evaluating design
alternatives with respect to a set of criteria consisting
of stakeholder needs and preferences.

 These together can form the basis for a theory of
design, along the lines of Herbert Simon's vision for a
Science of Design [Simon69].

23

© 2006 John Mylopoulos RE'06 -- 45

What is Missing?
 The (qualitative) models we built may be formalizable,

BUT they are subjective.
 We need theories of measurement for cognitive/social

phenomena.
 Our models are often under-constrained, include too

many variables [Menzies99].
 To have autonomic/adaptive systems, models and their

implementations will need to evolve at run-time.
 … For sure, other things as well …

© 2006 John Mylopoulos RE'06 -- 46

Conclusions
 GORE introduces new concepts in software development

processes.
 We have argued that GORE shows a path towards

defining and analyzing design spaces for software.
 We also sketched two applications of GORE concepts:

 Designing agent-oriented software -- the Tropos
project [JAAMAS04, JInformationSystems03];

 Designing high-variability software [RE'03, RE'06a,
RE'06b].

24

© 2006 John Mylopoulos RE'06 -- 47

References
 [Bauer99] Bauer, B., Extending UML for the Specification of Agent Interaction Protocols.

OMG document ad/99-12-03.
 [Castro02] Castro, J., Kolp, M., Mylopoulos, J., “Towards Requirements-Driven Software

Development Methodology: The Tropos Project,” Information Systems 27(2), Pergamon
Press, June 2002, 365-389.

 [Chung00] Chung, L., Nixon, B., Yu, E., Mylopoulos, J., Non-Functional Requirements in
Software Engineering, Kluwer Publishing, 2000.

 [Dardenne93] Dardenne, A., van Lamsweerde, A. and Fickas, S., “Goal–directed
Requirements Acquisition”, Science of Computer Programming, 20, 1993.

 [Fuxman01a] .Fuxman, A., Pistore, M., Mylopoulos, J. and Traverso, P., “Model Checking
Early Requirements Specifications in Tropos”, Proceedings Fifth International IEEE
Symposium on Requirements Engineering, Toronto, August 2001.

 [Fuxman01b] Fuxman,A., Giorgini, P., Kolp, M., Mylopoulos, J., “Information Systems as
Social Organizations”, Proceedings International Conference on Formal Ontologies for
Information Systems, Ogunquit Maine, October 2001.

 [Iglesias98] Iglesias, C., Garrijo, M. and Gonzalez, J., “A Survey of Agent-Oriented
Methodologies”, Proceedings of the 5th International Workshop on Intelligent Agents:
Agent Theories, Architectures, and Languages (ATAL-98), Paris, France, July 1998.

© 2006 John Mylopoulos RE'06 -- 48

...More References…
 [Jennings00] Jennings, N. “On Agent-Based Software Engineering”, Artificial lntelligence

117, 2000.
 [Menzies99] Menzies, T., Easterbrook, S., Nuseibeh, B., and S.Waugh. “An Empirical

Investigation of Multiple Viewpoint Reasoning in Requirements Engineering”, In RE’99,
1999. Available from http://menzies.us/pdf/99re.pdf.

 [Mylopoulos92] Mylopoulos, J., Chung, L. and Nixon, B., "Representing and Using Non-
Functional Requirements: A Process-Oriented Approach," IEEE Transactions on Software
Engineering 18(6), June 1992, 483-497.

 [Odell00] Odell, J., Van Dyke Parunak, H. and Bernhard, B., “Representing Agent
Interaction Protocols in UML”, Proceedings 1st International Workshop on Agent-Oriented
Software Engineering (AOSE00), Limerick, June 2000.

 [Simon69] Simon, H., The Sciences of the Artificial, The MIT Press, 1969
 [Wooldridge00] Wooldridge, M., Jennings, N., and Kinny, D., “The Gaia Methodology for

Agent-Oriented Analysis and Design,” Journal of Autonomous Agents and Multi-Agent
Systems, 3(3), 2000, 285–312.

 [Yu95] Yu, E., Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis,
Department of Computer Science, University of Toronto, 1995.

 [Zambonelli00] Zambonelli, F., Jennings, N., Omicini, A., and Wooldridge, M., “Agent-
Oriented Software Engineering for Internet Applications,” in Omicini, A., Zambonelli, F.,
Klusch, M., and Tolks-Dorf R., (editors), Coordination of Internet Agents: Models,
Technologies, and Applications, Springer-Verlag LNCS, 2000, 326–346.

