Estimating Software Maintenance

Arun Mukhija

Contents

> What is Software Maintenance?
 > Facts and Figures
 > Maintenance Activities and Costs
 > Maintenance Estimation Models
 > Conclusion and Discussion

What is Software Maintenance?

Changes that have to be made to computer programs after they have been delivered to the customer or user." *

Software maintenance includes:

- Corrective maintenance
- Adaptive maintenance
- Perfective maintenance
- Enhancements (Although technically they are not a part of software maintenance but, being a post-release activity, are often considered a part of it)

* Martin J. and McClure G. "Software Maintenance: The Problem and its Solutions", Prentice Hall (1983).

Facts and Figures

Software maintenance costs around 50% of total software life-cycle cost.

But relatively little is known about the software maintenance process and the factors that influence its cost.

Software Development and Maintenance Costs in Large Organizations [Boehm81]

Software Development and Maintenance Costs in 487 Organizations [Boehm81]

Software Maintenance Production Function [Boehm81]

Distribution of Software Maintenance Effort [Boehm81]

Distribution of User Enhancement Effort [Boehm81]

Maintenance Activities and Costs

Defect repairs

- keep software in operational condition
- costs absorbed by software supplier
- low pre-release defect removal efficiency (~85%)
- productivity = 8 defect repairs per month

 (can be higher with experienced personnel and defect-tracking tools etc.)

Factors influencing defect repairs:

- Abeyant defects (10%) based on unique combination of events
- Invalid defects (15%) misdiagnosed errors
- Bad fix injection (7%) derivative errors
- Duplicate defects multiple complaints about the same error

> Error-prone module removal

- concentration of errors in particular modules
- common among large poorly-structured systems
- expensive to maintain, due to high bad fix injection rate
- 500% more expensive than normal modules

Customer support

- interface between clients and defect repair teams
- effort depends on number of users
 - with phone contact, 1 customer support person for 150 users
 - with electronic contact, 1 customer support person for 1000 users

> Code restructuring

- done by automated tools to lower complexity levels
- lowering complexity eases maintenance
- precursor to other maintenance activities

 Migration across platforms
 from one OS or hardware to another
 with well-documented specifications, migration speed = 50 FP per month
 with missing or obsolete specifications, migration speed = 5 FP per month

Conversion to new architectures

- changes to interface or file structure of apps.
- quality of specifications affects productivity
- reverse engineering may need to be performed to extract missing design info.

Mandatory changes

- in response to changes in law or policy
- involve high costs and tight schedules
- difficult to predict in advance

> Performance optimization

- to minimize delays in transactions
- improving performance at trouble spots

Enhancements

- adding new features as per user request
- funded by user
- annual rate = 7% increase in FP total of an app.
- high integration and testing costs for poorly structured apps.

Maintenance Estimation Models

> COCOMO Maintenance Model for software maintenance effort estimation

 $(MM)_{AM} = (ACT)(MM)_{DEV}$

(MM)_{AM} : annual maintenance effort in man-month
 (MM)_{DEV} : development effort in man-month
 ACT : annual change traffic (fraction of software that undergoes change during a year)

For intermediate and detailed COCOMO, $(MM)_{AM} = (EAF)_M (ACT)(MM)_{NOM}$ $(EAF)_M$: maintenance effort adjustment factor

Maintenance/Development Cost Ratio (MM)_M = (M/D)(MM)_{DEV}

(MM)_M : overall life-cycle maintenance effort in man-month
 (MM)_{DEV} : development effort in man-month
 M/D : maintenance/development cost ratio
 Value of M/D ranges from 0.67 to 4.5, depending on application type.

Cards-per-person ratio

origin: number of cards each software person can maintain (KDSI/FSP)_M : KDSI maintained per full-time software person

(FSP)_M : number of software maintenance personnel required (KDSI)_{DEV} : size of software in KDSI
 Value of (KDSI/FSP)_M ranges from 3 to 132, depending on application type.

The annual maintenance effort $(MM)_{AM}$ is then simply $(MM)_{AM} = 12 (FSP)_{M}$

> Maintenance Productivity Ratio $(DSI)_{MOD/YR} = (ACT)(DSI)_{DEV}$ $(MM)_{AM} = (DSI)_{MOD/YR}$ $(DSI/MM)_{MOD}$

(DSI_{)MOD/YR} : number of source instructions modified per year
 (DSI)_{DEV} : size of software in source instructions
 (MM)_{AM} : annual maintenance effort in man-month
 ACT : annual change traffic
 (DSI/MM)_{MOD} : maintenance productivity ratio (number of source instructions modified per man-month of maintenance effort)
 Average value of ACT is 0.092 and of (DSI/MM)_{MOD} is 241, based on a survey.

Conclusion and Discussion

Software processes must produce software that can be gracefully evolved at reasonable costs. The choice of software architecture significantly influences modifiability and hence maintainability." *

Estimating maintenance is complex because of the relationship between base application and changes being made. Moreover predicting adaptive maintenance and enhancements in advance is very difficult.

* Richard D. Stutzke. "Software Estimating Technology: A Survey", CrossTalk (1996).

References

[Jones98] Jones T.C. "Estimating Software Costs", McGraw Hill (1998).

[Boehm81] Boehm B. "Software Engineering Economics", Prentice Hall (1981).

