Function Points

Contents

- 1. Introduction
- 2. Concept
- 3. Procedure
- 4. Summary

What is a Function Point

- A unit to measure functionality of Software
- A measure based on elementary processes* based on the users view
- * Elementary Process: the smallest unit of activity meaningful to the user

History

- 1975 IBM internal
- 1979 Albrecht
- 1982 DeMarco
- 1983 British Mark II
- 1984 IBM (revised)
- 1985 SPR
- 1987 IFPUG 1
- 1988 IFPUG 2
- 1990 IFPUG 3
- **1995 IFPUG 4**
- 1989 Texas Instruments
- 1997 ISO (working group)

Prerequisites

user requirements

e.g. ER-Diagram, Process Model, workflow diagrams

3. Procedure

Determine Type of Count

Identify:

- Scope

- Application Boundary

Count:

- Data Functions

- Transactional Functions

Determine:

- unadjusted FP Count

- Value Adjustment Factor

Calculate Adjusted FP Count

3.1 Counting Types

Development

Enhancement

Application

Application Boundary

- Rule(s): based on User's view
 independent of technical recourse
- independent of technical ressources
- helps identifying EIFs
- Includes all that is done or held inside the application

Application Boundary: ER-Diagram

Function Types

Data Functions:

 Internal Logical File (ILF)

 External Interface File (EIF)

Transactional Functions:

- External Input (EI)
- External Outputs (EO)
- External Inquiry (EQ)

Internal Logical File

A ILF is a group of user identifiable, logically related information which is:

Data or Control Information
 maintained within the boundary of the application

Primary intent: hold data

External Interface File

A EIF is a group of user identifiable, logically related information which is:

- Data or Control Information
- referenced by the application
- maintained by another application

Primary Intent: Hold Data outside Application

Complexity and Contribution

Data Element Type

- A DET is a field of an EIF/ILF which is:
- user recognizable
- nonrecursive
- Maintained in or retrieved from the File through an elementary process

Complexity and Contribution

Record Element Type

A RET is a subgroup of data elements of an ILF/EIF which is:

User recognizableEither optional or mandatory

Complexity

	1 – 19 DET	20 – 50 DET	51 + DET
1 RET	Low	Low	Average
2 – 5 RET	Low	Average	High
6 + RET	Average	High	High

Contribution ILF / EIF

Internal Logical File			External Interface File		
Complexity Rating	Unadj. FPs		Complexity Rating	Unadj. FPs	
Low	7		Low	5	
Average	10		Average	7	
High	15		High	10	

Function Type Totals

Function Type	Fu	nctional Compl	Function Type Totals		
	#	Complexity	X		
ILF	0 Low		7	0	
	0	0 Average		0	
	1	High		15	15
EIF	0 Low		5	0	
	2	Average	7	14	
	1 High		10	10	24

Transactional Functions

External Input Rules

- Receives data or control information from outside the boundary through an elementary process
- Information is either:
 - _ Altering the System State
 - _ Maintaining one or more ILF
- The different EIs are disjunctive in functionality and Datafiles

External Inquiry / External Output shared Rules

- Sends data or control information outside the boundary through an elementary process
- contains a unique processing logic
- OR
- contains unique data elements
- OR
- references ILFs or EIFs different from other EOs or EQs

External Output additional Rules

- Additional rules:
- Processing logic contains at least one mathematical formula

OR

- Processing logic creates derived data OR
- Processing logic maintains one or more ILFs
 OR
- Processing logic alters system state

External Inquiry additional Rules

- Processing Logic (PL) retrieves data or control information from an ILF or EIF
- PL does not contain mathematical formulas
- PL does not create derived data
- PL does not maintain an ILF
- PL does not alter system state

Complexity and Contribution: FTRs

- File type referenced: A ILF read or maintained by the transactional function OR
- A EIF read by the transactional function

Complexity and Contribution: DETs

Data element type:

- Crossing the boundary
- necessary for the Process
- for sending a system response message out of the boundary
- for the ability to specify an action to be taken

Complexity: EIs

External Inputs			External External Outputs / Inquiries				
	1 – 4 DET	5 – 15 DET	16 + DET		1 – 5 DET	6 – 19 DET	19 + DET
0 – 1 FTR	Low	Low	Avg.	0 – 1 FTR	Low	Low	Avg.
2 FTR	Low	Avg.	High	2 – 3 FTR	Low	Avg.	High
3 + FTR	Avg.	High	High	4 + FTR	Avg.	High	High

Value Adjustment Factor

- Used for rating the general functionality of the application
- Depends on characteristics and context
- 14 system characteristics (IFPUG), each between 0 and 5
- May adjust unadjusted FP value up to +/- 35%

System Characteristics

- 1. Data Communications
- 2. Distributed Data Processing
- 3. Performance
- 4. Heavily Used Configuration
- 5. Transaction Rate
- 6. Online Data Entry
- 7. End-User Efficiency
- 8. Online Update
- 9. Complex Processing
- 10. Reusability
- 11. Installation Ease
- 12. Operational Ease
- 13. Multiple Sites
- 14. Facilitate Change

Value adjustment Factor

 Sum up all 14 degrees of influence for the system characteristics → Total degree of influence (TDI)

VAF = (TDI * 0.01) +0.65 VAF = [0.65..1.35]

Adjusted FP Value

```
FP = (UFP + CFP) * VAF
```

- UFP: Unadjusted FP value
- CFP: Conversion functionality FP value (unadjusted)
- VAF: Value adjustment Factor

Advantages and Disadvantages of the FP Method

Advantages	Disadvantages
FPs are independent of: Hardware Language Platform	No standard exists, but more than 35 different methods
FPs are understandable /comparable for non technical users	Only trained people can use the method accurately
Method can be applied early in the specification process, only basic requirements are needed	Relatively high effort and high cost
Very reliable for projects of medium and large size	Not useable for small projects
extendable	

Summary

The Function Point Method is an excellent tool for estimating effort for Software Projects. It has been proven to be very reliable for medium and large Projects. The result is independent of Hard- and Software and based on the user's view.

Alas there are way too many different methods for counting FPs and the results differ up to 50% or more. Solution: Standards (IFPUG or ISO)