3. December 2002

seminar cost estimation W 2002/2003

Constructive cost model

Department of Information Technology University of Zurich

Nancy Merlo-Schett

"To help people reason about the cost and schedule implications of their software decisions."

B. Boehm 2000

OVERVIEW

overview COCOMO I reengineering COCOMO II equations tools conclusion

The tree levels of the COCOMOI

	The basic model	 is single-valued and static
overview COCOMO I reengineering COCOMO II equations	The intermediate model	 computes software development effort as a function of program size and a set of fifteen "cost drivers" that include subjective assessments of product, hardware, personnel, and project attributes.
tools conclusion	The advanced or detailed model	 incorporates all characteristics of the intermediate version with an assessment of the cost driver's impact on each step (analysis, design, etc.) of the software engineering process.

Three development modes COCOMO I

overview COCOMO I reengineering COCOMO II equations tools conclusion

Development Mode		Pro	ject Characteristic	S
	Size	Innovation	Deadline/ constraints	Dev. Environment
Organic	Small	Little	Not tight	Stable
Semi-detached	Medium	Medium	Medium	Medium
Embedded	Large	Greater	Tight	Complex hardware/customer interfaces

	COCONTO	
Two main equations	COCOMOI	

	development effort (MM)	MM = a * KDSI ^b
overview		
сосомо і		based on MM (152 hours per MM) = one month of effort by one person.
reengineering		
COCOMO II		
equations	effort and development time	TDEV = 2.5 * MM ^c
tools	(TDEV)	The coefficents a, b and c depend on the
conclusion		mode of the development

Intermediate COCOMO I

Intermediate COCOMO

overview COCOMO I reengineering COCOMO II equations tools conclusion

MM = a * KDSI ^b	TDEV=2.5	* MM ^c	
Intermediate COCOMO	а	b	С
Organic	3.2	1.05	0.38
Semi-detached	3.0	1.12	0.35
Embedded	2.8	1.20	0.32

Example COCOMO I

	Intermediate COCOMO	MM = a * KDSI ^b	TDEV=2.5 * MM ^c	
overview COCOMO I	Required: database system fo Project = organic (a=3.2, b = 4 modules to implement:		ect.	
reengineering COCOMO II equations	data entry0.6 KDSIdata update0.6 KDSIquery0.8 KDSIreport generator1.0 KDSISystem SIZE3.0 KDSI	$MM_{Korr} = 1.61* 3.$ $MM_{Korr} = 16.33$ $TDEV = 2.5*16.33$	g 0.38	1.05
tools conclusion	Efforts are rated as follows (all others nominal, 1.0): complexity high (1.15) storage high (1.06) experience low (1.13) prog capabilities low (1.17)	How many people MM _{Korr} / TDEV = to		

Advantages / Drawbacks COCOMO I

Advantages

transparent

COCOMO I reengineering COCOMO II equations tools conclusion

overview

Drawbacks

Information for estimating KDSI not always available mis-classification of the development mode historical data not always available

Reengineering COCOMO

ReEngineering COCOMO I needs

- New software processes
- New phenomenas: size, reuse
- Need for decision making based on incomplete information

Focused issues are

- Non-sequential and rapid-development process models
- Reuse-driven approaches involving commercial-off-the-shelf (COTS)
- Reengineering (reuse, translated code)
- Applications composition
- Application generation capabilities
- Software process maturity effects
- Process-driven quality estimation

Differences between COCOMO I & COCOMO II COCOMO

	COCOMO I	
overview COCOMO I reengineering COCOMO II equations	KDSI waterfall model Point estimate Three development modes Fifteen cost drivers	KSLOC three phases range estimate five scale factors seven / seventeen cost drivers
tools conclusion	63 data points reengineering	161 data points software reuse and requirement volatility

Nominal Schedule Estimation Equations COCOMO II

overview COCOMO I reengineering COCOMO II equations tools conclusion

$$PM_{NS} = AxSize^{E} x \prod_{i=1}^{n} EM_{i}$$

$$E = B + 0.01x \sum_{j=1}^{5} SF_{j}$$

$$TDEV_{NS} = Cx(PM_{NS})^{F}$$

$$F = D + 0.2x0.01x \sum_{j=1}^{5} SF_{j}$$

where A = 2.94, B = 0.91, C = 3.67, D = 0.28

Nancy Merlo-Schett, Department of Information Technology 3. december 2002

02

Nominal Schedule Estimation Equations COCOMO II

overview COCOMO I reengineering COCOMO II equations tools conclusion

$$Size = \left(1 + \frac{\text{REVL}}{100}\right) \times \left(\text{New KSLOC} + \text{Equivalent KSLOC}\right)$$

$$Equivalent \text{KSLOC} = \text{Adapted KSLOC} \times \left(1 - \frac{\text{AT}}{100}\right) \times \text{AAM}$$
where $AAM = \begin{cases} \frac{\text{AA} + \text{AAF} \times (1 + [0.02 \times \text{SU} \times \text{UNFM}])}{100}, \text{ for } \text{AAF} \le 50\\ \frac{\text{AA} + \text{AAF} + (\text{SU} \times \text{UNFM})}{100}, \text{ for } \text{AAF} \le 50\\ \text{AAF} = (0.4 \times \text{DM}) + (0.3 \times \text{CM}) + (0.3 \times \text{IM}) \end{cases}$

Scale factors COCOMO II

Scale Fa	actors (W _i)	annotation
PREC	If a product is similar to several previously developed project, then the precedentedness is high	replaces Development Mode, largely intrinsic to a project and uncontrollable
FLEX	Conformance needs with requirements / external interface specifications,	
RESL	Combines Design Thoroughness and Risk Elimination (two scale factors in Ada).	Identify management
TEAM	accounts for the sources of project turbulence and entropy because of difficulties in synchronizing the project's stakeholders.	controllables by which projects can reduce diseconomies of scale by reducing sources of project turbulence, entropy and
PMAT	ratingways: 1. by the results of an organized evaluation based on the SEI CMM, 2. 18 Key Process Areas in the SEI CMM.	rework.
Nancy I	Merlo-Schett, Department of Information Technology	3. december 2002 14

Cost Drivers COCOMO II

cost drivers	
RCPX	RELY, DATA, CPLX, DOCU
RUSE	RUSE
PDIF	TIME, STOR, PVOL
PERS	ACAP, PCAP, PCON
PREX	AEXP, PEXP, LTEX
FCIL	TOOL, SITE
SCED	SCED
	PDIF PERS PREX FCIL

Code Category COCOMO II

overview COCOMO I reengineering COCOMO II equations tools conclusion

New code:	new code, from scratch
Reused code:	pre-existing code, <i>black-box</i> , applied <u>as it is</u>
Adapted code:	pre-existing code, <i>white-box</i> , <u>modified</u>
COTS component:	leased, licensed, source code is not available
Automatically translated of	code: pre-existing code, translated by automated
tools (keyword: reengineer	ing/conversion)

Comparison COCOMO II

	Early Design model	Post-Architecture model
deployme nt	used to make rough estimates of a project's cost and duration before its entire architecture is determined.	used after project's overall architecture is developed.
Infor- mation available	not enough	fine-grain cost estimation can be supported
cost drivers	set of seven cost drivers (Product Reuse, Platform, Personnel, Facilities, Schedule)	set of seventeen multiplicative cost drivers grouped into <u>four categories</u> (Product factors, Platform factors, Personnel factors, Project factors).
involves	exploration of alternative software/system architecture and concepts of operation	actual development and maintenance of a software product
Nancy Merlo-	Schett, Department of Information Techno	blogy 3. december 2002 17

Extensions COCOMO II

- estimating the cost of software COTS integration (COCOTS)
- Application Composition Model
- phase distributions of schedule and effort (COPSEMO)
- rapid application development effort and schedule adjustments (CORADMO)
- quality in terms of delivered defect density (COQUALMO)
- effects of applying software productivity strategies / improvement (COPROMO)
- System Engineering (COSYSMO)

Extensions; status quo COCOMO II

overview COCOMO I reengineering COCOMO II equations tools conclusion

Extension	Status quo	still experimental
Application Composition Model		yes
COCOTS	not fully formulated and validated	yes
COPSEMO	about to complete Delphi round 1	yes
CORADMO	Delphi round 2 completed	yes
COQUALMO	Bayesian Analysis	

Reengineering COCOMO

ReEngineering COCOMO I needs

- New software processes
- New phenomenas: size, reuse
- Need for decision making based on incomplete information

Focused issues are

- Non-sequential and rapid-development process models
- Reuse-driven approaches involving commercial-off-the-shelf (COTS)
- Reengineering (reuse, translated code)
- Applications composition
- Application generation capabilities
- Software process maturity effects
- Process-driven quality estimation

Advantages COCOMO II

Advantages

overview COCOMO I reengineering COCOMO II equations tools conclusion

COCOMO II is an industry standard very profound information is easy available clear and effective calibration process by combining delphi with algorithmic cost estimation techniques (Bayesian method) various extension for almost every purpose are available Tool support (also for the various extensions)

Drawbacks COCOMO II

Drawbacks

overview COCOMO I reengineering COCOMO II equations tools conclusion

waterfall predilection extensions are still experimental duration calculation for small projects is unreasonable

TOOLS COCOMO II

overview COCOMO I reengineering COCOMO II equations tools conclusion

Nancy Merlo-Schett, Department of Information Technology 3. december 2002

23

OUTLOOK / CONCLUSION COCOMO II

overview COCOMO I reengineering COCOMO II equations tools conclusion

release a new calibration annually

calibrate the different extensions

To keep track with the future software engineering trends