
Measuring LOC and other basic
measurement

Emanuel Weiss



2

Bibliography

n Conte, S.D.; Dunsmore, H.E.; Shen V.Y.:
Software Engineering Metrics and Models,
Menlo Park, Ca.: Benjamin/Cummings, 1986

n Jones, T.C.: Estimating Software Costs, New
York: McGraw-Hill, 1998

n Stevenson, C.: Software Engineering
Productivity, London, etc.: Chapman&Hall,
1995



3

Introduction

n The Goal: Measuring effort
n How do we do this in daily life?
n The Method: Measuring size
n Advantages:

n Easy to do
n Size as basic measurement for a number of

estimation methods
n We generally measure productivity by size



4

Lines of Code (LOC)

n Line of Code = Effort
n Not every LOC needs the same effort to write
n Notations:

n Ss: 100‘000 LOC
n S: 100 KLOC

n Is this sufficient as a definition?



5

Aspects of a definition

n What do we count as LOC?
n Documentation
n Non-executable code
n Non-delivered code
n Number of statements per LOC

n Influence of coding style or program
language on the number of LOC‘s



6

Definition of LOC

n A line of code is any line of program text that
is not a comment or blank line, regardless of
the number of statements or fragments of
statements on the line. This specifically
includes all lines containing program headers,
declarations, and executable and non-
executable statements.



7

Disadvantages / Problems (1)

n Productivity and ...
n Documentation
n Experience
n Efficient code
n Languages

n ...whereas productivity is defined as:
n Output quantity / period of time



8

Productivity and Language

250023002000Total project, LOC/staff months
of coding

13%15%28%Coding, % total project

333350555Total project, LOC/staff months

7.51018Total project, months

2‘5003‘50010‘000Source code required, LOC

C++Ada 83Macro assembly



9

Disadvantages / Problems (2)

n Modularisation
n By functions: + 25% LOC
n By data type: + 53% LOC
n Super-Modularisation: + 73% LOC

n Strongly typed languages
n Reused Code



10

Reused code

n Se = f ( Sn , Su )
n Two models, how f could be defined:

n Se = Sn + a/100 Su

with: a = 0.4(DM) + 0.3(CM) + 0.3(IM)
n DM = Design Modulation
n CM = Code Modulation
n IM  = Integration Modulation

n Se = Sn + Su 
k , k<1, k ª 6/7



11

Disadvantages / Problems (3)

n Complexity, reliability and quality
n Technological aids
n Non-programming activities
n Different measuring methods
n No prediction possible



12

We use LOC because ... (1)

n ... it is one of the most widely used technique in cost
estimation.

n ... it is the basic metric underlying to several cost
estimation models by Boehm.

n ... due to the widespread use, it allows a simple
comparison to data from many other projects, the
historical ones included.

n ... the alternative methods to the counting of LOC
are also fighting with problems and weaknesses.

n ... it is an easy method to measure effort.



13

We use LOC because ... (2)

n ... in spite of its unreliability for individual programs,
it gives reliable average results, which is crucial
especially for huge projects.

n ... it is also reliable in small projects when we
quantify the method.

n ... the discrepancies caused by including or
excluding JCL, administration or clerical work are
usually small.

n ... it considers in fact the higher productivity of high-
level languages.



14

We use LOC because ... (3)

n ... we can avoid lengthy code by organizing reviews,
increase the pressure of work or introduce
adjustment factors for especially verbose
programmers.

n ... cost estimation models like COCOMO, which are
based on lines of code, show a close agreement
between predicted and actual effort.

n ... there is a strong correlation between lines of code
and effort.

n ... there is also a strong correlation between lines of
code and alternative metrics.



15

Qualifying LOC

n “LOC is not a good productivity measure because it
penalizes high-level languages: Assembler
programmers produce five statements to a COBOL
programmer’s one. But you should not compare
COBOL to Assembler: they are as different as night
and day. If you compare COBOL programs only to
other COBOL programs, and PL/1 to PL/1, then LOC
provides a stable comparison tool.“ (Arthur)



16

Counting tokens (1)

n From Halstead‘s Software Science

n N1 = Number of operators
n N2 = Number of operands
n N   = N1 + N2

        = Number of tokens



17

Counting tokens (2)

n h1 = Number of different operators
n h2 = Number of different operands
n h   = h1 + h2

        = Vocabulary of a Program

n Volume V = N x log2 h

n S = N/c (c = language-dependent constant)



18

Counting modules

n Modularisation is used in every larger
program for reduction of complexity

n Average size is about 100 LOC
n But it varies from 10 to 10‘000 LOC
n Is there a similar measurement but with

smaller size variation of the single units?



19

Counting functions

n Same principles as for modules
n An interesting study shows

n A large number of students had the task to write a
program with the same defined functionality.

n The resulting programs were similar in their
number of functions, but not at all similar in their
number of modules.

n Independent from LOC
n Near to the Function Point Method



20

Metrics by Boehm

n a combination of parameters such as the number of routines,
operators, operands, files or master files and inputs/outputs.

n the number of variables of the program
n the amount of documentation
n the number of paragraphs in the requirements specifications
n the number of structure-chart in the software design

specifications
n the of lines of documentation written in a program design

language
n a subjective estimate of difficulty
n the number of machine instructions



21

Metrics by Jones

n Based on non-coding activities:
n the number of pages for the description of

software design
n the number of tests
n the number of repairs

n Jones himself states:
n “The same practical counting difficulties which

hamper use of line of code also hamper taking
measures of operators and operands.”



22

Cost and Effort

n We need figures about cost and effort
n for valuating estimators
n for managing projects

n It is important to know how data will be used
in the future before collecting them

n Are they coming from small or large projects?
n What are the difficulties in collecting data?



23

Collecting data in small projects

n Counting hours or days
n Precision is important:

n Interruption in work
n Intentional bias
n Non-programming activities
n Working time vs. education time

n For testing single factors of a project



24

Collecting data in large projects

n Counting person-months or person-years
n Things to consider:

n Four or five hours work in an eight-hour day
n Overestimation / Underestimation
n Use tools to collect data, not paper forms
n Do not change the measuring process
n Do use data for both, project management and

performance evaluation



25

Productivity rates

n Cost and effort measures have always to be
relevant for management goals

n Advantages of productivity rates:
n It provides information, which tools and

techniques are the best, why they are and under
what circumstances.

n It improves the precision of deadline prediction.
n It improves the productivity of programmers.



26

Conclusion

n Before using LOC we need to make precise
definitions.

n Considering a lot of alternatives, LOC is still
the widest used metric.

n Measuring effort and productivity has a lot of
advantages, but has to be done carefully.


