
Sources of Error in Software 
Cost Estimation           

Seminar on Software Cost Estimation 
WS 02/03         

Presented by 
Silvio Meier 

smeier@ifi.unizh.ch

         

Requirements Engineering Research Group 
Department of Computer Science 
University of Zurich, Switzerland    

Prof. M. Glinz 
Arun Mukhija   

Date: January, 7th 2003



Seminar on Software Cost Estimation 

Silvio Meier, January, 7th 2003  2   

 
Content  

1. Accuracy of Estimating Tools ................................................................................................3 
1.1 Sources of Inaccurate Historical Cost Data ......................................................................3 
1.3 Elimination and Avoidance of the Bias in Cost Data.......................................................4 

2. Judging the Accuracy of Software Cost Estimates.................................................................5 
3. Classes of Software Estimation Errors ...................................................................................7 

3.1 Metrics Errors ...................................................................................................................7 
3.2 Scaling Errors ...................................................................................................................8 
3.3 Executive and Client Errors..............................................................................................8 
3.4 Sizing Errors .....................................................................................................................9 
3.5 Activity-Selection Errors ..................................................................................................9 
3.6 Assignment-Scope Errors ...............................................................................................10 
3.7 Production-Rate Errors ...................................................................................................12 
3.8 Creeping User Requirements..........................................................................................12 
3.9 Critical Path Errors .........................................................................................................13 
3.10 Staffing Build-Up Errors ..............................................................................................14 
3.11 Technology Adjustment Errors ....................................................................................14 
3.12 Special or Unique Situations ........................................................................................15 

4. Summary and Conclusions ...................................................................................................15 
5. Appendix ..............................................................................................................................16 

5.1 References ......................................................................................................................16 
5.2 English/German Terms...................................................................................................16  



Seminar on Software Cost Estimation 

Silvio Meier, January, 7th 2003  3   

1. Accuracy of Estimating Tools 
A general problem in software cost estimation is, that historical cost data often contains a 
bias, so that this data can not directly be used for 

• development of cost estimation tools, respectively for the calibration of such tools and  
• comparing estimations against its real (historical) costs. 

Often available tools predict costs which are between 50 to 100 percent higher than the cost 
data tracked by cost tracking systems. Mostly, the currently available tools predict higher 
costs and longer schedules than historical data, that would be indicated by the corresponding 
projects. To get reliable cost data for the development of cost estimation tools and for 
determining the accuracy of cost estimations, there has to be first determined which parts of 
historical costs in software projects cause the bias. After determination, the bias can be 
eliminated.  

1.1 Sources of Inaccurate Historical Cost Data 
Cost tracking systems are seldom optimised and designed for cost tracking of software 
projects. One problem with conventional cost tracking systems, when using them for the cost 
tracking of software projects, is that there are many tasks or activities or even whole phases 
which are omitted. One reason is that the chart of accounts often does not match a full 
software life cycle. The following lines show examples of omitted costs in software cost 
tracking [Jones98]: 

• Early requirements phase 
• Unpaid overtime 
• Specialists work 
• Technical work by users 
• Project management 
• Travel costs  

In general, we can identify the following three problems when tracking historical cost data 
[Jones98]: 

• Failure to include all activities, that were performed 
• Failure to include all classes of workers 
• Failure to include unpaid overtime  

The most common reasons for above problems are: 
• The cost tracking was initialised after the first work for the system was started, so the 

first activities are not tracked. 
• Work which is done by non-programming personnel like database administrators, 

technical writers, etc. is not tracked 
• Project management work is not tracked (especially second level work or higher 

management work) 
• Technical work performed by users is not tracked.  

Omissions in software cost tracking are not the only sources of error when collecting 
historical data. There are other observations which were made during different software 
process assessments [Jones98]: 

• When projects are running low on funding, there is the tendency to charge time to 
other projects. 

• Some personnel refuse to use cost tracking systems at all. 
• Other personnel (electronic engineers, mechanical engineers) are involved in the 

software project (even coding), especially when a complex system is developed, but 



Seminar on Software Cost Estimation 

Silvio Meier, January, 7th 2003  4   

they don’t see their work as software project participants, so they don’t charge their 
time in the project cost tracking tool. 

• There is no cost-tracking system at all, i.e. no historical data is available for use during 
accuracy checks.  

1.3 Elimination and Avoidance of the Bias in Cost Data  
To use historical data for accuracy checking or calibrating estimation tools, it is needed to 
correct the historical cost data. This is a very difficult task which is mainly solved by doing 
interviews with project members and managers of the corresponding projects to filter the 
activities which are biased. The following rough values were investigated when doing such 
interviews. The values are set into relation with the total project effort [Jones98]: 

• 5 – 10 % will be spent before the cost tracking system is set up. 
• 15 –30 % of the work is done by workers which are not included in a typical cost-

tracking system. 
• The management effort will amount to between 10 to 20 % of the overall project. This 

effort is sometimes not tracked. 
• The user participation in technical work is between 5 to 20 % and is almost never 

tracked. 
• Unpaid overtime of exempt professionals and managers are in the range of 5 – 15%   

It can be stated, that the accuracy of cost data also depends on the industry as presented in the 
following Table 1.1 (from [Jones98]):  

Table 1.1: Patterns of Missing Software Cost Data by Industry [Jones98] 
Software subindustry Percentage of missing data Most common omissions 
Military software 10 Unpaid overtime 
Contracted or outsourced 
software 

10 Unpaid overtime 

Systems software 12 Unpaid overtime and 
documentation 

Commercial software 15 Unpaid overtime, user 
activities, noncode tasks, 
specialists and project 
managers 

End-user software 75 Everthing but coding 

 

The correction of the biased historical can be done with one or more of the following three 
ways. These methods are also used by software cost estimation tools developers to get 
accurate cost data: 

• Excluding incomplete projects from the project portfolio 
• Correcting wrong data and add missing data. Both kind of correctionscan be done by 

interviewing project members and other staff associated somehow to the project. 
• Building activity-based cost estimating tools  

A general suggestion is to avoid data which is not granular enough. It is useful to breakdown 
the project into activities and tasks! Data on the level of phases (requirements, design, coding, 
testing, etc.) is not useful for cost estimation.  
Also there are activities which are spread over more than one phase (e.g. configuration 
control, integration, preparation of user manual, etc.), that means that cost data of single phase 
activities  should not be used for estimating multiphase activities.  



Seminar on Software Cost Estimation 

Silvio Meier, January, 7th 2003  5     

A possible list of all activities and the most common omissions can be found in Table 1.2. 
Only 5 from 25 activities are accurate enough to be used directly (i.e. without corrections) for 
estimation purposes. Using inaccurate cost data implies higher productivity rates and makes 
projects look cheaper than they really are.  

Table 1.2 shows the minimal level of granularity to get enough accurate historical data to 
judge the accuracy of software estimation tools. Data on the level of projects is not useful. For 
fine tuning of cost estimation tools, two additional lower levels to the existing two levels are 
needed: tasks and subtasks. If we take as an example Unit Testing, the  tasks would be: 
Preparing, Running, Repairing. With all possible subtasks of a software project on the most 
granular level of precision, the cost tracking exceeds 1000 data elements.  

Table 1.2: Activities in a Software Project and Completeness of Data [Jones98] 
Activities performed Completeness of historical data 
Requirements Missing or incomplete 
Prototyping Missing or incomplete 
Architecture Incomplete 
Project planning Incomplete 
Initial analysis and design Incomplete 
Detail design Incomplete 
Coding Complete 
Reusable code acquisition Missing or incomplete 
Purchased package acquisition Missing or incomplete 
Code inspections Missing or incomplete 
Independent verfification and validation  Complete 
Configuration management Missing or incomplete 
Integration Missing or incomplete 
User documentation Missing or incomplete 
Unit testing  Incomplete 
Function testing Incomplete 
Integration testing Incomplete 
System testing Incomplete 
Field testing Incomplete 
Acceptance testing Missing or incomplete 
Independent testing Complete 
Quality assurance Missing or incomplete 
Installation and training  Missing or incomplete 
Project management Missing or incomplete 
Total project resources, costs Incomplete 

  

2. Judging the Accuracy of Software Cost Estimates 
When judging the accuracy of tools, there are three general issues which come to mind: 

• How good are the results of tools compared to historical cost data? 
• How good are different competing software cost estimation tools when they are 

compared against each other? 
• How good are manual estimations compared to tool estimations?  

First Issue 
As mentioned before, tools are often more accurate than historical cost data [Jones98]. When 
historical data is accurate, estimates usually come within  5 – 10 % percent, sometimes closer 
to the real costs. 
Second Issue 
There are many comparisons of tools, therefore have a look at [Jones98] where different 
studies are described, most of them are within a military context. 
Third Issue 
A study which is mentioned by [Jones98] shows that only 4 of 50 manual estimates (see 
Figure 1.1) were within a range of plus or minus 5 percent of the (corrected) historical costs. 



Seminar on Software Cost Estimation 

Silvio Meier, January, 7th 2003  6   

When the responsible people were asked for the reasons of so optimistic estimations, some of 
the captured answers [Jones98] were:   

• I could not get approval for an accurate estimate, so I had to change it 
• The project doubled in size after the requirements. 
• Debugging and testing took longer than we thought. 
• The new case tools we were using didn’t work right and slowed us down. 
• We didn’t have any estimating tools available at the same time the estimate was 

needed. 
• I lost some of my developers and had to find replacements.  

The most problems will be mentioned in one of the follwing 12 error classes in Section 3.   

Compared to manual estimates, automated ones are usually accurate or at least conservative 
for costs and schedules. In the above mentioned study, about 22 of  50 automated software 
cost estimations were within a range of plus or minus 5 percent of the historical cost. Only 
one estimate out of 50 was too optimistic (see figure 1.2). The direction of errors is reversed, 
i.e. more conservative estimates are made.  
In general we can say, that it would be the aim to be within this plus minus 5 percent range or 
at least to be not too optimistic, therefore automated estimation should be preferred.  

Figure 1.1: Accuracy of 50 Projects with Manual Estimation Techniques [Jones98] 

  



Seminar on Software Cost Estimation 

Silvio Meier, January, 7th 2003  7   

Figure 1.2: Accuracy of 50 Projects with Tool Estimation Techniques [Jones98] 

  

3. Classes of Software Estimation Errors 
The following error classes try to categorize all types of error being made by giving a 
description with an example of the error and a description of the error’s impact on the cost 
estimation. In estimations often appear more than one of the following mentioned errors. The 
errors also influence each other or cause further errors, so the impact of these errors can result 
in a heavy error in the cost estimation.  

3.1 Metrics Errors 
Error Description 
Doing software cost estimation by using LOC as metric is known to be unreliable since the 
1970s. 
There are two problems when using LOC as metric for estimating software costs:  

• The way the code is counted influences the metric. 
• LOC measures programs, but only the half of a software project effort is directly 

related to source code. 
The latter is worse, i.e. the LOC metric tends to move in a wrong estimation direction when 
using it. 
For example productivity measuring of higher level languages tends often to be estimated 
wrong, because higher level languages seem to have a lower productivity. This is because one 
can express with less LOC more functionality. Therefore, there is the paradoxical assumption 
that with higher level language increases the number of LOCs written in the same time as 
with a lower level language like assembler. But that’s a wrong conclusion. Normally you will 
write less LOC with a higher level language than with a lower level language in the same 
time. For example, if a software developer writes 600 LOC of assembly language per month, 
it will be a false conclusion to assume that the productivity will be about 700 LOC per month,  
when using the more powerful C++ language.  

The main problem of the LOC metric consists of two components: 
1. The historical data based upon LOC is not granular enough to include all necessary 

activities. 
2. The LOC metric is error-prone and dangerous for cross-language measurement or 

estimation purposes.  



Seminar on Software Cost Estimation 

Silvio Meier, January, 7th 2003  8   

In contrast, the function point metric is not error-prone like the LOC metric, because function 
points can use historical data independent of language. The last few years, function points 
spread very rapidly because of these advantages.  

Metric errors especially occur when doing manual estimations. Most software cost estimation 
tools support a LOC assumption for different programming languages, so that the estimation 
algorithms can be adjusted for each language.  

Impact of the Error 
When an estimate contains a metric error (e.g. for the productivity estimation by using the 
LOC from one language to estimate the LOC of another language) the deviation from the 
observed result can exceed 100 percent, if the languages vary widely.  

3.2 Scaling Errors 
Error Description 
Scaling errors occur, if historical data from small projects is used as estimation database for 
large sized projects. Large projects differ from small ones mainly in two ways [Jones98]:  

1. Large systems require more activities than small programs 
2. The costs of large systems do not follow the same profile as small programs  

First issue: The chart of accounts from Table 1.2 shows different activities that are performed 
for projects. Small projects often only perform at most 10 of 25 activities. Large civilian 
systems normally perform at least 20 of the 25 activities, and large military systems perform 
all 25 activities most of the time (see also Table 3.3, number of activities for different 
projects). 
Second Issue: The effort for the activities are dependent on the size of the project (see Table 
3.1) The size of the project is reflected by the function points in the table respectively by the 
KLOCs of code of the resulting system. 
One reason, why scaling errors often occur is because the estimation of large projects is done 
only a few times by project managers in their whole career. Therefore the experience with 
large scale projects is missing. Scaling errors occur very often. For example in [Jones98] is 
mentioned a government project with about 15 million LOC that was estimated with data 
from projects of less than 500 function points (or about 15000 LOCs).  

Table 3.1: Variantions in Software Effort Associated with Application Size [Jones98] 
Size, Function 
Poins 

Size, KLOC Coding % Paperwork % Defect Removal % Management and 
Support % 

1

 

0.1

 

70

 

5

 

15

 

10

 

10

 

1.0

 

65

 

7

 

17

 

11

 

100

 

10.0

 

54

 

15

 

20

 

11

 

1000

 

100.0

 

30

 

26

 

30

 

14

 

10000

 

1000.0

 

18

 

31

 

35

 

16

  

Impact of the Error 
Using data from small projects to estimate big projects can result in estimation errors of about 
one magnitude that means 1000 percent deviation.  

3.3 Executive and Client Errors 
Error Description 
Senior executives or client executives influence project estimation that they have the 
corporate politics power to arbitrarily reject valid estimates of a software project. Original 
estimates which are accurate or at least conservative are therefore rejected by executives. 



Seminar on Software Cost Estimation 

Silvio Meier, January, 7th 2003  9   

Often managers have the point of view, that the estimates do not fit in the financial or time 
scope of the enterprise. Therefore the project manager has to recast the estimate in order to get 
lower cost or a shorter time schedule. 
Because of this, software costs often reflect the subjective opinions of the executives, not the 
accurate and more objective estimates of the project managers. 
An analysis on cancelled software projects, which exceeded the time schedule or the project 
budget by more than 50 percent, approved that the cost estimates of more than 50% of these 
failed projects were influenced by executive managers or client executives and that the 
original estimates were accurate [Jones98]. Anyway, the project managers had still to take on 
responsibility.  

Impact of the Error 
In a project with client or executive errors, the direction of the errors is always the same: The 
projects take longer and cost more. Typical range of political errors result in a deviation of  
about 50 percent for the schedules and about 100 percent for costs. 
This results can also be observed in practice, where often projects are twice as long as 
estimated and cost almost as much more as the forced estimate. We can also observe that the 
estimation of cancelled software projects are “manipulated” by executives or client 
executives.  

3.4 Sizing Errors 
Error Description 
Predicting size is a very difficult task and often a very common source of error in software 
cost estimation. This can happen for external deliverables, such as  

• Quantity of source code 
• Number of screens 
• Number of pages in user documentation 
• Etc. 

Estimation errors are also possible for internal deliverables like: 
• Pages of specifications  
• Pages of planning documents 
• Test cases 
• Etc. 

The prediction of software cost for the above mentioned deliverables is supported by most 
tools which are today available. Size estimating errors are more common for manual estimates 
or when using older tools which do not support automated size estimation.  

Impact of the Error 
The deviation of the cost is approximately linear to the difference between the true size of the 
product and the anticipated size. There are empirical insights, that experienced project 
managers have a deviation in their size estimation of about plus or minus 15 percent, if the 
requirements are stable during the whole software process. The deviation of estimations of 
inexperienced project managers have big fluctuations in size errors and they approach 
deviations of about 100 percent and more.  

3.5 Activity-Selection Errors 
Error Description 
Activity-selection errors occur when necessary work is omitted (example: Omitting the 
activity for writing a user documentation). 
Most modern software cost estimation tools have a repository of more than 20 activities and 
corresponding tasks which are adjusted according to the project characteristics (e.g. if it is a 



Seminar on Software Cost Estimation 

Silvio Meier, January, 7th 2003  10   

military or a civilian project). There is often the possibility to use templates of historical 
projects or customized templates for activity and task selection. The reasons for the occurring 
of this error is very often that manual estimation methods are used.  
A possible pattern for a list of activities can be seen (see also [Jones98] and [Jones02]) in  
Table 3.2. This table contains all the different activities during a software project with all the 
effort which is spent for each activity (in relation to the overall project effort) depending on 
the project type. As we can see, there are large variations within the set of activities for each 
project type, therefore it is very dangerous to make rough estimations on the total project. 
Breaking down the estimation into activities and tasks, will end up in a much more reliable 
estimation of costs. It is also much more easy to validate the estimation because the inner 
structure of the performed work is apparent. 
From the 1960s to the early the 1990s, phase level and project level estimates were the norm 
when estimating software costs. Since the beginning of the 1990s, the usage of activity level 
based estimates is more and more common. 
Most tools for software cost estimation provide a standard list of activities and tasks and 
suggest an appropriate set of activities for a given project. More sophisticated tools will also 
differentiate different types of projects (civilian, military, large, small).  

Table 3.2: Percentage of Staff Effort by Activity [Jones98]  
Project Type in Percentage of Overall Project Effort 

Activity End User Web MIS Outsource  Commercial 

 

System Military 
Requirements -

 

3

 

7.5

 

9.0

 

4.0

 

4

 

7.0

 

Prototyping 10

 

10

 

2.0

 

2.5

 

1.0

 

2

 

2.0

 

Architecture -

 

-

 

0.5

 

1.0

 

2.0

 

1.5

 

1.0

 

Project plans -

 

-

 

1.0

 

1.5

 

1.0

 

2.0

 

1.0

 

Initial design -

 

-

 

8.0

 

7.0

 

6.0

 

7.0

 

6.0

 

Detail design -

 

-

 

7.0

 

8.0

 

5.0

 

6.0

 

7.0

 

Design reviews -

 

-

 

-

 

0.5

 

1.5

 

2.5

 

1.0

 

Coding 35

 

25

 

20.0

 

16.0

 

23.0

 

20.0

 

16.0

 

Reuse acquisition 5

 

5

 

-

 

2.0

 

2.0

 

2.0

 

2.0

 

Package purchase -

 

-

 

1.0

 

1.0

 

-

 

1.0

 

1.0

 

Code inspection -

 

-

 

-

 

-

 

1.5

 

1.5

 

1.0

 

Independent Verification and Validation -

 

-

 

-

 

-

 

-

 

-

 

1.0

 

Configuration management -

 

-

 

3.0

 

3.0

 

1.0

 

1.0

 

1.5

 

Formal integration -

 

-

 

2.0

 

2.0

 

1.5

 

2.0

 

1.5

 

User documentation 10

 

5

 

7.0

 

9.0

 

12.0

 

10.0

 

10.0

 

Unit testing 40

 

25

 

4.0

 

3.5

 

2.5

 

5.0

 

3.0

 

Function testing -

 

17

 

6.0

 

5.0

 

6.0

 

5.0

 

5.0

 

Integration testing -

 

-

 

5.0

 

5.0

 

4.0

 

5.0

 

5.0

 

System testing -

 

-

 

7.0

 

5.0

 

7.0

 

5.0

 

6.0

 

Field testing -

 

-

 

-

 

-

 

6.0

 

1.5

 

3.0

 

Acceptance testing -

 

-

 

5.0

 

3.0

 

-

 

1.0

 

3.0

 

Independent testing -

 

-

 

-

 

-

 

-

 

-

 

1.0

 

Quality assurance -

 

-

 

-

 

1.0

 

2.0

 

2.0

 

1.0

 

Installation and training -

 

-

 

2.0

 

3.0

 

-

 

1.0

 

1.0

 

Project management  -

 

10

 

12.0

 

12.0

 

11.0

 

12.0

 

13.0

 

Total 100

 

100

 

100

 

100

 

100

 

100

 

100

 

Total number of Activities 5

 

8

 

18

 

21

 

20

 

23

 

25

  

Impact of the Error 
Activity-selection errors can vary widely and exceed an order of magnitude or 1000 percent. 
The worst case would be, if the estimate belongs only to the coding activity. Because in 
software development there is the tendency to see only the coding work, these errors are very 
common.  

3.6 Assignment-Scope Errors 
Error Description 
The assignment-scope means the quantity of work that can be handled by the staff. If the 
quantity of work is too high, there is an error in the assignment-scope. 



Seminar on Software Cost Estimation 

Silvio Meier, January, 7th 2003  11   

Today all tools provide the possibility to make assignment-scope prediction for natural (e.g. 
lines of code, numbers of pages) and synthetic metrics (e.g. function points) or by user 
defined templates which are created based on historical project data. The error is more 
common for manual estimates. It results often if there are too few people available for the 
work. The error is more severe for maintenance estimates and for estimates of customer 
support. The error also depends on the capabilities of the staff. If there is staff available which 
is very experienced, it is possible that the same number of people can handle three times 
larger tasks than  novices. 
For making assignments of work, the estimator has to determine two features: 

• Grouping of job profiles 
• Estimating the work load that is handled on average by each job profile. 

Empirical studies observed work scopes for the following occupation groups: 
• Software development engineers and/or programmers 
• Software maintenance engineers and/or programs 
• System analysts 
• Technical writers 
• Quality-assurance specialists 
• Configuration control specialists 
• Integration specialists 
• Testing specialists 
• Customer-support specialists 
• Project managers 

In many large software companies like Microsoft, IBM, etc. there can be hundreds of such job 
profiles. There are also job profiles which contain more cross functionality in their job. 
Therefore the estimation for the assignment scope is very difficult to do. Examples for such 
job profiles are: 

• Administrative specialists 
• Database administration specialists 
• Network specialists 
• Multimedia specialists 
• Human factors specialists 
• System performance specialists 
• Process specialists  

An unsolved problem in the field of assignment scope research is that many companies do not 
use job profiles to categorize their software employees, or even have no job titles at all. 
Assignment-scope research is therefore very difficult. 
Also one important fact is, that the assignment scope is becoming more and more important 
because of four recent trends [Jones98]: 

• Downsizing and major layoffs of personnel in large companies. 
• Business process reengineering. 
• Shortages of software personnel brought on by huge changes and shifts throughout the 

whole software sector through normative, cultural and other economical or social 
changes, like the year-2000 problem or the software changes for the euro currency. 

• Increasing frequency of the outsourcing arrangements, i.e. personnel which are 
transferred to the outsource company.   

Impact of the Error 
The range of uncertainty can reach up to 100 percent for assignment-scope errors.   



Seminar on Software Cost Estimation 

Silvio Meier, January, 7th 2003  12   

3.7 Production-Rate Errors 
Error Description 
The production rate denotes the amount of work that can be completed by one person within a 
standard period of time (such as hour, work day, and so on). 
Production-rate estimation is supported by the most available software cost estimation tools 
which allow the users to create templates from historical data. Errors therefore often result 
from too optimistic estimates done manually.  
The estimation for production-rates can be expressed in natural metrics (like LOCs or pages) 
or in synthetic metrics (like function points). The latter is used the most, because synthetic 
metrics are additive along different activities. “Old” natural metrics like LOCs allow no 
aggregation and are not comparable along different activities, e.g. adding LOC and number of 
pages of user documentation or comparing them makes no sense. Productivity measures are 
better expressed in synthetic metrics. 
Table 3.3 shows average production rates in function points for the defined 25 main activities.  

Table 3.3: Production-rates in function points [Jones98]  
Function Points per Month  Work Hours per Function Point 

Activity Minimum Mode Maximum  Maximum Mode Minimum

 

Requirements 50.00

 

175.00

 

350.00

  

2.64

 

0.75

 

0.38

 

Prototyping 25.00

 

150.00

 

250.00

  

5.28

 

0.88

 

0.53

 

Architecture 100.00

 

300.00

 

500.00

  

1.32

 

0.44

 

0.26

 

Project plans 200.00

 

500.00

 

1500.00

  

0.66

 

0.26

 

0.09

 

Initial design 50.00

 

175.00

 

400.00

  

2.64

 

0.75

 

0.33

 

Detail design 25.00

 

150.00

 

300.00

  

5.28

 

0.88

 

0.44

 

Design reviews 75.00

 

225.00

 

400.00

  

1.76

 

0.59

 

0.33

 

Coding 15.00

 

50.00

 

200.00

  

8.80

 

2.64

 

0.66

 

Reuse acquisition 450.00

 

60.00

 

2000.00

  

0.33

 

0.22

 

0.07

 

Package purchase 350.00

 

400.00

 

1500.00

  

0.38

 

0.33

 

0.09

 

Code inspection 75.00

 

150.00

 

300.00

  

1.76

 

0.88

 

0.44

 

Independent Verification and Validation 75.00

 

125.00

 

200.00

  

1.76

 

1.06

 

0.66

 

Configuration management 1000.00

 

1750.00

 

3000.00

  

0.13

 

0.08

 

0.04

 

Formal integration 150.00

 

250.00

 

500.00

  

0.88

 

0.53

 

0.26

 

User documentation 20.00

 

70.00

 

100.00

  

6.60

 

1.89

 

1.32

 

Unit testing 70.00

 

150.00

 

400.00

  

1.89

 

0.88

 

0.33

 

Function testing 25.00

 

150.00

 

300.00

  

5.28

 

0.88

 

0.44

 

Integration testing 75.00

 

175.00

 

400.00

  

1.76

 

0.75

 

0.33

 

System testing 100.00

 

200.00

 

500.00

  

1.32

 

0.66

 

0.26

 

Field testing 75.00

 

225.00

 

500.00

  

1.76

 

0.59

 

0.26

 

Acceptance testing 75.00

 

350.00

 

600.00

  

1.76

 

0.38

 

0.22

 

Independent testing 100.00

 

200.00

 

300.00

  

1.32

 

0.66

 

0.44

 

Quality assurance 30.00

 

150.00

 

300.00

  

4.40

 

0.88

 

0.44

 

Installation and training 150.00

 

350.00

 

600.00

  

0.88

 

0.38

 

0.22

 

Project management 15.00

 

100.00

 

200.00

  

8.80

 

1.32

 

0.66

 

Cumulative results 3375

 

6580

 

15600

  

69.39

 

19.56

 

9.50

 

Arithmetic mean 135

 

263.2

 

624

  

2.78

 

0.78

 

0.38

  

Impact of the Error 
The impact of this error is difficult to generalize, because the production rates are highly 
specific to activities being performed and to the skill and experience of the personnel doing 
the work. The production-rate errors will normally be expressed as the difference between the 
true rate and the anticipated rate.  

3.8 Creeping User Requirements 
Error Description 
Creeping user requirements are the phenomenon of requirements which are not clear or not 
known when doing the initial requirements analysis. Creeping requirements begin to appear 
and evolve during the different phases of the software process. Empirical studies showed that 
creeping requirements are about 2 percent per month from the day of the initial agreement on 
requirements until the beginning of testing [Jones98]. Example: If there is a project which 
lasts about 24 month, the project schedule will grow roughly about 50 percent. 



Seminar on Software Cost Estimation 

Silvio Meier, January, 7th 2003  13   

Creeping requirements have also to be taken into account when doing estimates for software 
projects. But omissions of creeping requirements are very common, especially when doing 
estimations manually. Most estimation tools support the estimation of creeping requirements. 
The function point metric provides a specially good possibility of predicting creeping 
requirements. One of the five parameters is almost certainly affected: Inputs, Output, 
Inquiries, Logical Files, Interfaces.  
It’s easy to calculate cost for additional functionality expressed in function points using a 
proportional or even a superproportional calculation scale.  
Some of the today’s tools support the prediction of a probable volume of creeping 
requirements.  

Impact of the Error 
The deviation for this error can be expressed as the difference of the volume between planned 
and unplanned functionality of the product, and as a thumb rule of estimation, it can be 
assumed that new requirements of about 2 percent of the initial requirements volume per 
month will be added or change existing requirements.  

3.9 Critical Path Errors 
Error Description 
Software projects consist of a complex net of many activities. These activities contain many 
dependencies. Different tasks run often parallel and serial.  In this network of activities, there 
is a path, which is critical, i.e. if one of the node activities of this path run late, the schedule of 
the whole project will be delayed. 
The most frequent reason for critical path errors is related to debugging, testing and also other 
quality control measures. In 84 sample projects of IBM and ITT which ran late at least by six 
months [Jones98], there was too less time estimated for testing and debugging. The reason for 
this underestimation was mainly caused by executives and client executive errors which 
arbitrarily shortened the time schedule for the project. This approach very often causes 
problems.  
The examination of these projects showed up all the same pathological behaviour. All projects 
were in the first phases on time and there was no evidence that the project was late, often the 
project seemed to be ahead of the project time table. When the testing phase started, lots of 
problems appeared suddenly, so that the project was delayed. Figure 3.1 shows the difference 
between a pathological and a healthy project. As conclusion one can say, that skimping in 
quality control measures results in late projects.   

Figure 3.1: Project Characteristics of a Pathological and a Healthy Project [Jones98]             

Healthy 

Pathological

 

Requirements

 

Coding

 

Design

 

Testing

 

Maintenance

 

Costs

 



Seminar on Software Cost Estimation 

Silvio Meier, January, 7th 2003  14   

   
Impact of the Error 
Empirical results show that this error causes a schedule delay of about 25 percent and cost 
deviation of  about 35 percent. We also can assume that there are many costs hidden because 
of unpaid overtime which is very common for late projects.  

3.10 Staffing Build-Up Errors 
Error Description 
This problem happens not very often, but if it does, it is quiet severe. If contracts on software 
projects are completed, often the personnel who is needed to do the project is not available in 
the own personnel pool or the personnel is involved in another project. Therefore the 
company has to recruit the needed additional staff after completion of the contract. 
The staffing build-up errors occur, if the phase for the recruiting of the additional personnel 
takes longer than anticipated. This influences very often the time schedule of the project, so 
that the project can be delayed. 
This problem is amplified if there is a shortage in the software personnel market (e.g. when 
the year-2000 problem had to be solved). As a result of this, software personnel salaries are 
growing faster and get onto a very high level, which also causes that beside a late project 
schedule the cost for the project will increase very fast to a much more higher level than 
estimated.  

Impact of the Error 
The range of uncertainty matches the difference between the planned and the available 
personnel. The error is not easy to predict, especially because the personnel market is coming 
into the play.   

3.11 Technology Adjustment Errors 
Error Description 
Technology is always in change, i.e. methods for software engineering are continuously and 
newly developed. These methods and technologies are available in a huge range of tools. At 
the writing of [Jones98], the author states that more than 500 programming languages, more 
than 5000 software engineering tools, more than 150 specification and design methods and 
more than 50 different software methodologies were available on the market. 
Technology adjustment errors occur when the influence of different used technologies is not 
correctly estimated. It is often very difficult to estimate the effect of applied technologies. The 
following examples describe possible sources of error when doing such estimates: 

• Many software tools predict a productivity or quality increase without any empirical 
evidence. When project manager rely their estimates on such statements of software 
tool vendors, errors are possible. 

• Often there are new methodologies and methods which are upcoming in software 
engineering, but the tools do not implement them, when software projects begin to use 
these methods or methodologies. Examples are the client/server or Java applications, 
which became popular before they were supported by estimation tools. A related 
problem is also that for these new technologies is missing the necessary historical 
data. 

• Many new technologies have a very steep learning curve, which results very often in a 
much higher project effort than estimated (e.g. object-oriented software methods need 
much more time when they are used the first time in a project, compared to an old 



Seminar on Software Cost Estimation 

Silvio Meier, January, 7th 2003  15   

method). Tool vendors and managers tend to forget that new technologies need some 
time to get productivity advantages. 

The best is to stay current with advances in software technology. This should be done by the 
tool vendors, who should do a periodical update of the factors, which are included in the 
estimation tools.  

Impact of the Error 
The observed range of uncertainty for estimates can be up to 150 percent.  

3.12 Special or Unique Situations 
Error Description 
A special or unique situation can have an effect on a specific project and cause that its 
schedule gets into a delay or the project exceeds the given cost budget. Such situations are 
often not easy or impossible to predict (and therefore do not fit into the estimation algorithms) 
or have only a very small probability of occurrence and can be handled as remaining risks. A 
few examples for special or unique situations are [Jones98]: 

• Closure of an office or evacuation of staff due to weather conditions or fire or another 
natural disaster 

• Voluntary termination of more than 50 percent of project team members 
• Major layoffs or downsizing of project personnel 
• Illness or incapacity of key team members 
• Physical relocation of a project team from one city to another 
• Injunctions or legal actions which freeze project specifications or source code 
• Sale or merger of companies which affect specific projects 
• Travel costs for trips among geographically dispersed projects 
• Moving, living, and real-estate costs for hiring new employees 
• Reassignment of key personnel to special problems (like the year-2000 repair work).  

Impact of the Error 
Usually there is no way of dealing with such problems ahead of time. Also cost and schedule 
deviations are not predictable and can range in a wide variety.  

4. Summary and Conclusions 
One precondition to get precise cost estimations is to get accurate cost data from former 
software projects, which can be used to determine the accuracy of an estimation or an 
estimation tool/method and to calibrate the estimation database. Cost data of former software 
projects is often biased and has therefore to be adjusted first.  
During the estimation process, there are many possible sources of error. The following Table 
4.1 should again summarize the errors and show their impact on the cost estimation in a short 
way:  

Table 4.1: Summary of all Possible Sources of Error in Cost Estimation 
Error Impact on the Cost Estimation* 
Metrics Errors Can exceed 100% 
Scaling Errors Up to 1000% 
Executive and Client Errors Up to 50% for schedules 

Up to 100 % for costs 
Sizing Errors Between –15% and + 15% for experience estimators 

Can exceed 100% for inexperienced estimators 
Activity-selection Errors Up to 1000 % 
Assignment-scope Errors Up to 100% 
Productivity-rate Errors ? 
Creeping User Requirements Increases about 2% of the size of the initial requirements every month 
Critical path Errors Up to 25% for schedules 

Up to 35% for costs 



Seminar on Software Cost Estimation 

Silvio Meier, January, 7th 2003  16   

Staffing build-up Errors ? 
Technology Adjustment Errors Up to 150% 
Special or Unique Situations ? 

*The impact on the software cost estimation is the deviation to the estimated project costs.  

There are two possibilities to do software cost estimations. One possibility is to do it with a 
tool, the other is to do it manually. Manual estimations are very often too optimistic and 
therefore less accurate than estimations created with the help of tools. There are many factors 
which influence the costs of software projects. This plenty of data makes the manual 
estimation process very error-prone. 
For example you can avoid activity-selection errors if you have some kind of checklist or 
guidance through the estimation process, which will help you to find the right activities for 
your project. Also many of the estimation errors listed in Table 4.1 occur mainly when doing 
manual software cost estimations. Tools can help to avoid making these errors or at least they 
can help to get accurate cost estimations that contain errors on a more moderate level. 
But the usage of a software cost estimation tool is no guarantee for a good estimation, the 
estimator has still to have much experience and knowledge about former projects to get good 
results.   

5. Appendix 
5.1 References 
[Jones98] Jones, C. (1998), Chapter 9 : “Estimating Software Costs”, New York: 

McGraw-Hill 
[Jones02] Jones, C. (2002) : “Software Cost Estimation in 2002”, Utah: Software 

Technology Support Center, Hill Air Force Base, 
http://www.stsc.hill.af.mil/crosstalk/2002/06/jones.pdf

   

5.2 English/German Terms  
English Term German Term 
to anticipate erwarten 
chart of account Kontenplan 
exempt ausgemustert 
funding Finanzierung 
to recast umgestalten 
to skimp knausern, geizen 
steep steil 

 

http://www.stsc.hill.af.mil/crosstalk/2002/06/jones.pdf

