Estimation Tools

Seminar on Software Cost Estimation
WS 02/03

Presented by
Christian Seybold

seybold@ifi.unizh.ch

Requirements Engineering Research Group
Department of Computer Science
University of Zurich, Switzerland

Prof. M. Glinz
Arun Mukhija

Date: January 28, 2003

Table of Contents

3

3

1 INTRODUCTION

2 STATISTICS ABOUT SOFTWARE MANAGEMENT TOOLS
2.1 HOW MUCH TOOL DO YOU NEED?.......oovmiiiiiinrieieiicinie ettt
22 HOW MUCH DO THESE TOOLS COST?curviiiirinieiicinteie ettt
2.3 HOW MUCH BENEFIT DO THEY PROVIDE?......ocoitiiiiinieiiicieie ettt
2.4 TRAINING ASPECTSoviviiiiucieiiiscaese ettt se s st s e

3 COST ESTIMATION TOOLS

.4
.5
.6

3.1 ACCURACY AND PRECISIONcocviiittieiteeeiteeeireeereeeseeenseeesseeeseessseessssessesesesssseessseesssessseesseensees
3.2 CONSTRUX ESTIMATE PROFESSIONALccovieitiietieereeeteeenseeenseeeseeesseessseesseeesseesseessseensesesseens
33 TASSC ESTIMATOR.......ccuveeiveeereeeireeeeeeeteeeeteeeeseeeseeeseeessseesseeesseessseessseesseeessesesseessseesseeseessseenses
3.4 SPARX SYSTEMS ENTERPRISE ARCHITECTcccoouviiiiuteeeeieteeeetteeeesnreeeessseesssssesssssseesssssessssseesnns

4 CONCLUSION
REFERENCES

Abstract

This talk is the last one in the series about Software Cost Estimation in the winter se-
mester 2002/03. We heard a lot about different techniques how to measure costs and
effort of software development. Up to now this was quite theoretical. This will change
with this talk: it is about estimation tools. Apart from some statistics about estimation
tools used in industry, the main focus lies on the demonstration of three selected tools.
It concludes with some statements on the use of tools that are to be discussed. As the
character of tools shall be practically demonstrated, this document differs in this point
from the talk. In the talk, a demonstration of these tools will be given whereas in this

document the tools are described from a theoretical point of view.

Christian Seybold, January 28, 2003

1 Introduction

Measurement using manual methods is difficult and expensive. For many years, the
only effective measurement tools were proprietary ones built by various corporations
for their own internal use. Starting about 20 years ago, a new sub industry began to
emerge of companies that build measurement tools for software quality, complexity,
defect tracking, cost tracking, schedule tracking, tools inventories, function point
tracking, and many other measurement topics.

As of 2001, there are more than 50 commercial software cost estimation tools mar-
keted in the United States, and at least 40 of them support function point metrics. The
“best practice” for software estimation is to utilize one or more of these software es-
timation tools and have experienced managers, consultants, and technical personnel
validate the estimate. For development schedules, output from most commercial soft-
ware cost estimating tools can feed directly into project management tools although
many commercial estimating tools also include schedule logic and can produce ap-
proximate schedules themselves [Jones98a].

The remainder is organized as follows. Chapter 2 categorizes software management
tools and gives some interesting statistics about cost estimation tools in distinction to
other categories. Chapter 3 describes three selected tools. Mainly, there functionality
is listed and a short evaluation is given. The last chapter gives some statements on
how to work with estimation tools. The provocative ones are to be discussed.

2 Statistics about software management tools

Software management tools include all kind of tools used in the context of software
development. To be able to understand the capability and the use of these tools, we
need to know which types of tools exists. So, in table 1 a categorization of tools is
given with their main functionality. As project planning and cost estimation tools are
the most important ones, these categories are described in more detail. Often, tools
and categories cannot be mapped accurately. Many tools cover more than one cate-

gory.

Tool category Functionality

Project planning * General purpose scheduling functions

(project manage- * Scheduling functions, Critical path analyses, precedence analysis, ...
ment) Resource management

Project tracking

Reporting functions, producing Gantt and PERT charts

Laying out the sequence of activities

Accumulating costs

Handling staff patterns

Lack of software projects knowledge base

Cost estimation * One of the most important categories

* Tools are based on knowledge of software projects

* Full sizing capabilities, activity-based schedule, cost estimating capabilities,
quality and reliability estimating capabilities, ...

* Function point and lines-of-code estimates including conversion in either
direction

* Side-by-side capability, show same project using a different development
scenario

* Schedule estimates usually to the phase levels, not to the scheduling of indi-
vidual employees

* Often includes quality estimates

Statistical analysis * Provide statistical functionality

Christian Seybold, January 28, 2003 3

Most common: producing averages for productivity and quality by organi-
zation unit and by time period

Methodology man-
agement (process
management)

Usually keyed to one development methodologies, such as rapid application
development

Provide guidance what deliverables are needed for scheduling, planning, ...
Aggregate managerial functions under one umbrella

Year-2000 analysis

Source code scanners, automated and semi-automated repair for the year-
2000 problem

Quality estimation

Prediction of defect potentials and defect removal efficiency
Estimation models are often company internal

Risk analysis

Prediction of technical risks, sociological risks
Prediction of the probability that a project will run late, exceeds its budget,

Portfolio analysis

Management of the application portfolio of a company, e.g. to get the tax-
able value

Assessment support

Support of standard forms of evaluating software methods and approaches,
e.g. CMM

Project measurement

Gather and manage project properties like size information of key deliver-
ables, staffing, effort, cost data and defects.

Complexity analysis

Measure complexity of source code, i.e. cyclomatic complexity, essential
complexity, ...

Value analysis

Prediction of direct and indirect revenues, development, maintenance, mar-
keting and support costs of software to be marketed
For in-house software, the value concepts are more difficult to enumerate

Budget support

Oldest form of project management automation
Deals with continuous monthly expenditures for software development (they
are not equal to departmental budget costs)

Variance-reporting

Deal with monthly variances or differences between anticipated expenditures
and actual expenditures

Project milestone
tracking

Tracking of resources, milestones or accomplishments
Record planned and actual events

Defect-tracking and

Predict, track and analyze defects

—measurement tools

Function point analy- | * Automate function point calculations
sis * Assign function points to different business units
* Derive function points from design or source code

Source code counting | * Parse or count source code

Tab 1: Software management tool categories and their functionality

In the following, several statistics are given comparing certain aspects of the software
management tools categories used in industry. They are about sizes of the used tools,
costs and benefit. All tables except the first one are taken from [Jones98a]. The first
one is taken from [Jones98b], as the numbers are more up to date there. However, as
they date from 1999, the “Year 2000 analysis™ category is still included, though it
does not play a role any more in our days. The categories can vary slightly from table
to table as they are taken out of different contexts. After that, some statements are
given on the training aspects of people going to work with tools.

2.1 How many tools do you need?

Table 2 [Jones98b] shows for lagging, average and leading companies, how meaning-
ful each software management tool category is for them. The importance factor is ex-
pressed in function points.

Christian Seybold, January 28, 2003 4

You can see that even lagging companies are using a considerable amount of project
planning tools whereas cost estimating tools, that have the same size for leading com-
panies, don’t play any role for lagging or average companies.

Category Lagging Average Leading
Project planning Fp 1,000 Fp 1,250 Fp 3,000
Project cost estimating 3,000
Statistical analysis 3,000
Methodology management 750 3,000
Year 2000 analysis 2,000
Quality estimation 2,000
Assessment support 500 2,000
Project measurement 1,750
Portfolio analysis 1,500
Risk analysis 1,500
Resource tracking 300 750 1,500
Value analysis 350 1,250
Cost variance reporting 500 1,000
Personnel support 500 500 750
Milestone tracking 250 750
Budget support 250 750
Function point analysis 250 750
Backfiring: LOC to FP 750
Function point subtotal 1,800 5,350 30,250

Tab 2: Sizes of project management tools (in FP) used
in lagging, average and leading companies (1999).

2.2 How much do these tools cost?

In table 3 you can see the average costs for one seat (one user) of these tools for three
different price levels. So, cost estimating tools are far the most expensive ones as they
are based on complex models. Quality estimating tools are second most expensive.
Project planning tools are somewhere in the middle field, as there is nothing compli-
cated about them. If there are costs of 0$ shown, this means that there are free tools
available. Looking at the costs only is not meaningful. You should also take the bene-
fit into account. This is done in the following table 4.

Tool-Category Low-cost Median-cost High-cost
Cost estimating $250 $2.500 $15.000
Quality estimating 150 500 5.000
Methodology management 0 1.250 3.500
Complexity analysis 75 500 3.000
Statistical analysis 0 750 2.500
Assessment support 0 750 2.000
Project planning 100 500 1.500
Risk analysis 0 500 1.500
Value analysis 0 500 1.500
Portfolio analysis 0 750 1.500
Year 2000 analysis 350 750 1,500
Project measurement 75 500 1.250
Budget support 0 500 1.000
Cost variance reporting 0 500 1.000
Project tracking 100 300 1,000
Defect tracking 200 500 1.000
Function point analysis 50 500 750

Christian Seybold, January 28, 2003 5

Source code counting 0 250 500
Total $1.350 $12.300 $45.000
Average $75 $683 $2.500

Tab 3: Approximate cost per seat for software management tools

2.3 How much benefit do they provide?

The four-year return on investment (ROI) for each dollar tool investment is shown in
table 4. It is given for each of the four years as well as the total sum over the four
years. Remember in the previous table, cost and quality estimating tools were the
most expensive ones. Here, you can see, that this investment is nevertheless worth,
because you can still get the highest benefit of them.

All tools have more or less strongly increasing ROI over the years with one exception:
the year-2000 analysis tools. Dating from 1999, there was only one year left to the
millennium change, so that the benefit of these investments shortly was to return. This
explains this amazing high number. But, this was a single event and we don’t expect a
similar event of this size. Already three years later, there is no RIO at all any more.

Tool-Category Year 1 Year 2 Year 3 Year 4 Total
Quality estimating $3.00 $450 | $12.00| $18.00 $37.50
Cost estimating 2.50 5.00 12.00 17.50 37.00
Methodology management 2.00 3.50 10.00 16.00 31.50
Project measurement 1.50 3.50 8.50 13.00 26.50
Project planning 1.50 4.00 8.00 12.50 26.00
Defect tracking 2.00 3.00 7.00 13.00 25.00
Year 2000 analysis 15.00 5.00 2.00 0.00 22.00
Assessment support 1.50 3.00 6.00 12.00 20.50
Project tracking 1.75 3.50 6.00 10.00 20.50
Value analysis 1.50 3.00 5.00 8.00 17.50
Function point analysis 1.75 3.00 4.50 8.00 17.25
Portfolio analysis 1.75 2.50 5.00 7.50 16.75
Statistical analysis 1.75 2.75 4.50 6.00 15.00
Risk analysis 1.50 2.50 3.50 5.50 13.00
Complexity analysis 1.30 2.00 3.00 4.50 10.80
Cost variance reporting 1.00 1.50 2.50 3.50 8.50
Budget support 1.00 1.50 2.00 3.00 7.50
Source code counting 1.00 1.00 1.00 1.00 4.00
Total $43.30 $54.75 | $102.50 | $156.00 $356.55
Average $2.41 $3.04 $5.69 $8.67 $19.81

Tab 4: Approximate four-year return on investment in software management tools

2.4 Training aspects

Most complex tools require substantial training and sometimes consulting assistance
to be used effectively. A study by Hewlett Packard of computer-aided software engi-
neering (CASE) tools found that unless $1.00 was spent on training users for every
$1.00 spent on CASE tools themselves, the tools did not improve performance sig-
nificantly.

A general rule of thumb for software training is that users of application packages

need about one day of instruction for every 3000 function points in the package. Thus
for a typical user of SAP features such as an accountant or controller who will utilize

Christian Seybold, January 28, 2003 6

about 30,000 function points (cp table 5), perhaps 10 days of training may be needed
to get fully up to speed.

Feature Function Points
Core SAP Integration 10,000
Financial accounting 50,000
Controller features 35,000
Fixed assets 25,000
Sales distribution 25,000
Materials management 30,000
Production planning 30,000
Quality management 20,000
Plant management 25,000
Human resources 15,000
Workflow 10,000
Project management 5,000
Cost modeling 2,500
Business engineering 5,000
TOTAL 287,500

Tab. 5: Subcomponents of the SAP software and its function point sizes

3 Cost Estimation Tools

As we have seen, cost estimating tools are the most important and the most expensive
tools, but they are also the tools to expect the highest benefit. For the estimation proc-
ess, they employ one or more of several known methods: parametric modeling,
knowledge-based modeling, rule induction, fuzzy logic, dynamic modeling, neural
networks, or case-based reasoning.
The Survey of the NASA about estimation tools [Seeds] gives a good overview about
the unmanageable amount of existing tools and their qualities. Here, ,,only* three
tools are discussed in more detail. They are selected for following reasons:

* Availability, e.g. evaluation versions,

* aconvincing first impression and

* acombination of several methods.

There are also tools available concentrating just on one method, e.g. function point
analysis. But as these methods are already well known and a tool calculating the for-
mula is not very exciting, they are not considered here. Finally, the following tools
have been selected for further evaluation in the following sections:
* Construx Estimate Professional is mainly a software cost estimation tool based
on a combination of estimation models.
* Tassc Estimator covers the software development process from architectural
estimates up to staff scheduling.
* The UML modeling tool EnterpriseArchitect includes an interesting early es-
timate based on Use Case Metrics.

The locations where these tools can be obtained are given in the reference section at
the end of this document. In the following sections, the tools are introduced in more
detail. But before that, a brief excursion is given on accuracy and precision and what
this means for tools.

Christian Seybold, January 28, 2003 7

3.1 Accuracy and precision

Accuracy and precision are related but not identical concepts, and the difference be-
tween the two is important to software estimation. Accuracy refers to how close to the
mark a measurement is. 3 is more accurate representation of pi than 4 is. (To seven
decimal places, pi equals 3.1415927.) Precision refers to how many significant digits
a measurement has. 3.14 is a more precise representation of pi than 3 is.

A measurement can be precise without being accurate, and it can be accurate without
being precise. 3 is an accurate representation of pi, but it is not precise. 3.3232 is a
precise representation of pi, but it is not accurate. Airline schedules are usually pre-
cise to the minute, but they are not very accurate. Measuring people’s heights in
whole feet might be accurate, but it would not be precise.

In software estimation, false precision is the enemy of accuracy. An effort estimate of
40 to 70 man-months might be both the most accurate and the most precise estimate
you can make. If you simplify it to 55 man-months, that’s like representing pi as
3.3232 instead of 3. It looks more precise, but it’s really less accurate.
Shortest-possible software schedules are achieved by creating the most accurate esti-
mates possible, not the most precise. If you want to achieve maximum development
speed, avoid false precision [Construx].

3.2 Construx Estimate Professional

Construx Software Builders' provide Construx Estimate [Construx], a free estimation
that includes the functionality of both COCOMO II and SLIM. Construx Estimate
uses Monte Carlo simulations to model complex interactions in the face of uncertain
estimating assumptions, making the company one of the few who offer a stochastic
method. On their website, they describe their tool themselves: “With over 30,000 us-
ers, Construx Estimate is the most popular estimation software in the world. Construx
Estimate is a parametric estimation tool that provides better predictability of your
projects”. Its features are listed in table 6.

Feawrs ___ Joeserpton

Sophisticated Estimate utilizes Monte Carlo simulation with 2 powerful estimation
Modeling models (SLIM and COCOMO) to model the cone of uncertainty.
Historical Data Achieve pinpoint estimation accuracy by calibrating Estimate with
Calibration projects from your own organization and project teams.

If you don't have historical data for your project, use Estimate to de-
Industry Data velop rough estimates based on industry performance data for differ-
ent types of applications.

GUI project esti- You can create estimates very early in a project by counting the
mation number of dialog boxes, reports, graphical outputs, and so on.
Function Point Estimate supports direct entry of both Function Points and Lines of
and Lines of Code Code to create detailed effort and schedule estimates.

" F ounded by Steve McConnell. He served as Editor in Chief of IEEE Software from 1999 to 2002,

was editor of IEEE Software's "Best Practices" column from January 1996 to August 1998, and acted
as a senior reviewer for IEEE Computer magazine. He is a member of IEEE Computer Society and
ACM.

Christian Seybold, January 28, 2003 8

Create size estimates for multiple modules within a project -- mod-
ules written in different languages, that are built by separate teams,
or that are broken into separate subsystems or components.

Multi-module es-
timation

Estimate contains 19 reports that describe your estimate in detail.

Reports Explain your estimate to your management, clients, or teammates.

Estimate allows you to enter constraints on cost, schedule, peak
staff, and maximum effort allowed. You can also set relative priorities
for cost, schedule, peak staff, and maximum effort.

Constraints and
Priorities

Tab. 6: Functionality of the Construx Estimate Professional Tool

Construx Estimate makes use of three mature estimation approaches:

1. SLIM was developed by Lawrence H. Putnam in the early 1970s and first of-
fered as a commercial product in 1978. The SLIM methodology is based on the in-
sight that efficiently run software projects follow well-defined patterns that can be
modeled with a set of exponential equations. These equations form the backbone of
Construx Estimate’s approach to creating cost, schedule, peak staffing, and defect es-
timates.

2. Cocomo 2.0 allows estimates to be created for virtually any kind of project by
specifying a set of cost drivers. Construx Estimate uses the Cocomo 2.0 model as a
supplement to the SLIM model when estimates are calibrated using cost drivers. A
productivity baseline is established using the project type settings; the productivity
factor is then adjusted using the computed Cocomo 2.0 productivity. Construx Esti-
mate uses Cocomo 2 data and algorithms from Cocomo II Model Definition Manual,
version 1.4.

3. Construx Estimate uses Monte Carlo simulations to model complex interactions
in the face of uncertain estimating assumptions. Construx Estimate simulates hun-
dreds or thousands of possible outcomes of the project being estimated based on size,
productivity, current project phase, and other parameters entered by the estimator. It
then estimates the likelihood of various project outcomes and assigns risk levels to
different planning options. In complex situations that involve a lot of uncertainty, the
methodology allows Construx Estimate to create meaningful estimates that would
otherwise be impossible to model.

Christian Seybold, January 28, 2003 9

Sample Project - Construx Estimate 1Ol =|
Flle Yiew Estimate Tools Construx Help

B © (FreEE Schedule and Effort Simulatian
Detailed Requirements / Ul Design Complete 250 o .
Calibration Type: Algorithmic [from cost drivers) 225 a a i
Scope [Lines of Code] % 200 .-_,“u 2
Expected: 101'439 5 0= - g a
Std Dev: 5'589 [+6%) = 150 g ° §| e m
Mit [Sth percentile]: 92'264 ® 125 g 9" Enn_ _@no®
Max [95th percentile]: 110'443 E 100 5 mf‘.@“ 8.
w75 o
Nominal Plan[] 0 5 ————ee
[all pricrities equally weighted) o
25 3
Effart: 85 staff-months 15 18 a0 7 2 % 25
Schedule: 13.7 months Schedule (marths)
Peak Staff: 9.7 staff
Coat: SFr 1152236
) Planning Options
D|:_|l|_n_'|um Plan @ 200 ®
[prionties set by estimatar] [}
Effart: 32 staff-months I (s ..
Schedule: 13.5 months £ 180 oo A S |
Peak Staff: 0B staff E 125 Cost Constraint @ b
Cost; SFr. 1:241'209 = oo L .
Project planning iz currently most constrained by the A 75
schedule constraint, E | g
[]
£ o L IS ®
25 | 944
a
10 11 12 13 14 13 16 17 18
Construx Schedule (marths)
Dellvering Software Project Succes
| Ready. [[| Estimate Quality: Good %

Fig. 1: Screenshot of the Construx Estimate Professional Tool, data of a sample project

In fig. 1, you can see the main screen of the tool. It focuses mainly on estimation of
cost, effort, schedule and peak staff providing both, a nominal and an optimal plan. It
makes a good impression, is easy to use, well documented and it includes a lot of
background information on software estimation as well as interesting case studies.

3.3 Tassc Estimator

ﬁ ControlB ar - [untitied] !EE

Project Template Toolz Help

e i A T

Fig. 2: Main menu of the Tassc Estimator Manager Edition.

-
start

The Tassc Estimator 2001 [Tassc] is available in three editions: lite, engineer and
manager edition. They differ just in the amount of functionality. The lite edition is
restricted to cost estimation based on architectural aspects whereas the manager edi-
tion also includes risk management and project scheduling. In this context, the man-
ager edition is used (see fig. 2).

The estimation follows a step-by-step process. In the main menu, this is reflected by
the horizontal alignment of the icons; in the model (see fig. 2) this is symbolized by
the gray stations (see fig. 3). For each station, you can see which factors influence the
estimation. Nevertheless, there is no need to work on them sequentially. At any point,

Christian Seybold, January 28, 2003 10

the current estimation results can be viewed. An example is given in fig. 4. This fact
supports both, a fast first guess as well as continual refinement of the input factors.

Project Effort

Software Effort

Dration and Cost

Praject Schedule

Fig. 3: Estimation process of the Tassc Estimator.

Beyond the pure cost estimation, this tool can deal with the whole development proc-
ess, as team and scheduling functions are included. This makes it easy to estimate also
remaining tasks and to compare the estimated numbers with the actual ones.

A nice tutorial on how to work with this tool is included whereas the documentation is
not very detailed, especially concerning the estimation model.

Christian Seybold, January 28, 2003 11

%@.Eslimatol - [carmrental]

Data “iew Help

Unzscheduled Baseline Praject Estimate

Software Production Total
Effort (hows] | 1310 | 125 | 1435
Duration [months] | a7 | TER 106
Cost [$) | 29325 | 5402 | 48727

Schedule:

— Activity Breakdown
Effort

Flanning DD @ 165
Anaysis | 228
Design I 204
Build [218
Test L 209

Integration | 186
Review | I 102
Production |G 125
ForHelp, press F1. | |0'% contingency

Fig. 4: Results screen of the Tassc Estimator.

3.4 Sparx Systems Enterprise Architect

EnterpriseArchitect [Sparx] is a fully functional UML modeling tool. Why it is cho-
sen in this context is the originality of the provided use case metrics. Use case metrics
can give a very first estimate based on use case diagrams. They are not supposed to be
very accurate. But as they are produced very easily, they can help to calculate the ef-
fort in a very early phase of the project, e.g. to determine the feasibility of a project.

[84 EA - 30 Day Trial - [F:\Program Files'Sparx Systems'\EA Trial\EANew.eap] ;IEIEI

File Edit “iew Diagram Project Reference Admin Help

FH R | GOES BEHE (2. &F¢ ¢ B d@Eem | g% F--Beso

O~ | [[- | [T & 2 -/ @-@%ERRE. - OaABE S,

Analysis Use Case Diagram: "Use Case Model” created: 12-Feb-2001 D0:00.00 modified: 17-Jan-200312:4536 100% 800 %1100 | Webpea ==
B @ ER K P

cto e @ Views

E-{@] Use Case View
B+ Business Process Model
=] Use Case Model

B8 Use Case Madel

- % Customer

% Operator

& Caloulate customer bil
Enter customer @& Enker customer information
E— infarmation ~-(Z Process customer payment
E3} Dryniaic View
\ @ty [+1-[@2] Logical iew
iy | [#-[8] Component Wiew
Process customer & Deployment Yiew
payment (3] Custom

wineludes
Calculate
customer bill
Physical

ston | 4] | LILI-EijE(tEXpIDrEr 5 Fesource View |
FHECE A& PR, RFEsLy 8% 248 QA | HE X,

Activity

State

SEqUEnCE

Lagical

Relations

IV

Fig. 5: Enterprise Architect Use Case diagram.

Christian Seybold, January 28, 2003 12

In fig. 5 you can see the main screen of this tool. An example use case diagram is se-
lected based on which the Use Case Metrics are calculated. The calculation form is
given in fig. 6. First, unadjusted use case points (UUCP) are calculated based on the
number and complexity of the drawn use cases. Multiplying this number with the
technical and environment complexity factor yields the Use Case Points (UCP). Both
complexity factors are themselves based on several weighted influence factors that are
shown in the dialog windows in fig. 7. Finally, multiplying the UCP with a default
hour rate per use cases gives the estimate effort. Without calibration of this default
hour rate, the results won’t be very meaningful.

—Use Cazes r— Technical Complexity Factor
Aol Pl Use Case Model | | | Unadiusted TCF Vaiue UTVy [5325
Bookmarked. Phaselike | Iaanotiie | TCF Weight Factor [TWF) 0.1
: Inelude
Reboad | [an = T | M o TCF Castant [TC] 08
Package | Mame | Tupe | Corn... | Phaze | TCF = TC + [TWwF & UT]: 1.1925|
|Jze Caze Model Process customer payment UseCaze 150 1.0
|lge Caze Model Operator Actor 1.00. 1.0
Use Caze Model Calculate custnl_‘ner bill) UgeCage 100.. 1.0 — Erwiromment Complesity Factor
Use Caze Model Enter custorner infarmation UgeCage BOO.. 1.0)
Use Caze Model Customer Actor 1.00.. 1.0 Unadiusted ECF ' alue [LIEW]: 24
ECF Wieight Factar [EWF]: 003
ECF Congtant [EC): 14
ECF =EC + [EWF = LUEY]: 068
Unadjusted Usze Case Paints [ULICP) = Surm of Complexity 32 Re-Calculate I Help |
lJse Cases 3 dve Hours per | Easy 58 Med: 117 Dift: 175 Repart I Close |
Usze Caze
Package Estimated
Use Case Paints [UCP) = UUCP * TCF * ECF = 32|= 115|068 = 25| uce
Default HDurSl E stimated work effart [hours] = I 15 = 25| = 3?5| hours

Fig. 6: Enterprise Architect Use Case Metrics Mask.

Technical Complexity Factors Id 4} | Environment Complexity Factors 2l

Set up Technical factors for estimation

Set up Environment factors for estimation
Factor Humber: Description: ‘wieight: Assigned Yalue:

Factar Humber: Description: ‘wWeight: Value:

|| | | | |] Fariliar with Rational Urified Process 1,50 2.00
- B
| el E

New | Delete | Save I New | Delete ”—Iﬁa\'a

Defined Technical Types
Defined Environment Types

Tupe | D escription | W'eightl Walue | Ex Walue

TCFO Distributed System 200 500 10.00 Ty e Lo — _ WEmiL | el || Ene,,

TCFO2 Response or throughput performan... 1.00 400 4.00 CFl Familat with Fational Llnited Process

TCFO3 End uger efficiency [anline) 1.00 200 2.00 ECF02 Apphcatlo_n expenence 0.50 500 250

TCFO4 Complex intenal processing 300 GO0 18.00 ECFO02 Object-ariented experience 100 500 500

TCFOS Code must be re-usable 200 300 GO0 ECFO4 Lead analyst capability 0a0 400 200

TCFOE Easy to instal 050 500 250 ECFO5 Mativation oo 500 500

TCFO7 Easy to use 050 200 150 ECFOE Stable requirements 2.00 400 800
ECFO7 Part-time workers -2.00 000 000

lggg Eg:;?éechange 12'33 g gg g'gg ECFO8 Dificult programming language q00 0 300 300

TCF10 Concurent 1.00 200 2.00

TCF11 Includ special security features 050 200 1.00

TCF12 Provide direct access for thid parti.. 0.05 5.00 025

TCF13 Special uzer training facities are re.. 1.00 300 3.00

| | ©

LClase Help | Total TCF: |59.25 Llose | Help Total ECF:|24.00

Fig. 7: Technical and Environment Complexity Factors of the Use Case Metrics.

Christian Seybold, January 28, 2003 13

4 Conclusion

Software estimation is now sophisticated enough so that a formal estimate using one
or more of the 50 commercial software estimation tools in conjunction with software
project management tools can minimize or eliminate unpleasant surprises later due to
schedule slippages or cost overruns. Indeed, old-fashioned purely manual cost and
schedule estimates for major software contracts should probably be considered an ex-
ample of professional malpractice. Manual estimates are certainly inadequate for
software contracts or outsource agreements whose value is larger than about $500,000
[Jones00].

The NASA describes their lessons learned like the following [Seeds]:

* There is a minimum development time below which a system cannot be com-
pleted successfully.

* There is a useful trade-off between time and effort.

* There is a functional coupling between size, schedule, effort, and reliability —
change one, the others all change.

* There is great payoff from improving the productivity of the development
process.

* There is no silver bullet.

* New development methods change the way you size a project.

And finally, here are some hints from the author on the usage of software estimation
tools:

* Using a tool is half the way for good estimates (just because you have recog-
nized the problem, you start working systematically, gathered data is always
available, and it is refined continually).

* There is no tool owning all functionality (don’t wait for the silver bullet).

» Start using tools early (to gather experience).

* Use more than one tool at the same time (to equalize lacks and differences).

* Avoid the change of tools (to be not confused).

* There is no need to know all these formulas. But know your tool well!

* Don’trely on tool results without thinking about it.

* Remember the difference between accuracy and precision.

* Tools usually are more conservative and accurate than manual estimates.

References

[Construx] http://www.construx.com/resources/estimate/

[Jones98a] Jones, T.C. (1998). Estimating Software Costs. New York: McGraw-
Hill.

[Jones98b] Jones, T.C. (1998). Project management Tools and Software Failures
and Successes. Crosstalk, The Journal of Defense Software Engineering.
July 1998, p.13.

[JonesOO] Jones T.C. (2000). Conflict & Litigation between software clients & De-
velopers. http://www.spr.com.

[Seeds] NASA. SEEDS: Strategic Evolution of ESE Data Systems. Survey of
Cost Estimation Tools. Deliverable 34.05.01, November 30, 2001.

[Sparx] http://www.sparxsystems.com.au

[Tassc] http://www.tassc-solutions.com

Christian Seybold, January 28, 2003 14

