
Universität Zürich / Wintersemester 2002/2003

Seminar on Software Cost Estimation

Introduction on Software
Cost Estimation

Presented by

Rolf Hintermann

Institut für Informatik
der Universität Zürich

Prof. Dr. M. Glinz
Arun Mukhija

29. October, 2002

Seminar on Software Cost Estimation
Prof. Dr. M. Glinz

Arun Mukhija

R.Hintermann 2

Content

1 INTRODUCTION ... 3

1.1 The growing Importance of Software Cost Estimation...3

1.2 Birth of the Software Cost Estimation Industry..3

2 SOFTWARE COST ESTIMATION... 4

2.1 Time and Purpose of Estimates ..4

2.2 Potential Problems of Estimation...5

2.3 Different Methods of Estimation..5

3 ESTIMATION PROCESS .. 6

3.1 Key Factors and Objectives of the Estimate ..6

3.2 Activities of the Estimation Process ...8
3.2.1 Estimation Steps as proposed by Jones ..8
3.2.2 Estimation Steps as proposed by Boehm ...9

3.3 Reasons for underestimating ..10
3.3.1 Fantasy Factor or “Training by Managers” ..10
3.3.2 Omitting some cost factors ..11

4 CONCLUSION... 11

5 LITERATURE .. 11

Seminar on Software Cost Estimation
Prof. Dr. M. Glinz

Arun Mukhija

R.Hintermann 3

1 Introduction

1.1 The growing Importance of Software Cost Estimation
Software cost estimating has been growing in importance up to today. When the computer era
began back in the 1940’s, there were few computers in use and applications were mostly
small, one person projects. As time moved on, computers became widespread. Applications
grew in number, size and importance; costs to develop software grew as well. As a result of
that growth, the consequences of errors in software cost estimation became more severe too.
Still today, a lot of cost estimates of software projects are not very accurate, mostly too low.
This is not a surprising fact if we look at the various difficulties we have to face when
estimating software costs. The by far greatest amount of the total costs of a project arises from
the salaries of the personnel. Other costs, as license fees or new equipment for example, occur
only once and are not too hard to estimate. The costs for the human workers on the other hand
are highly correlated to the effort we need to perform the project. Therefore we have to get an
accurate enough estimate of the total effort in order to make a reasonable estimate of the
costs. The effort is estimated based on the size and complexity of the project, which both
derive from the specification. Because the requirements of the software are likely to change,
we have to take this into account too when estimating the effort. The big difference in
productivity of software developers is one of the hardest problems to solve during the
estimation process. An experienced developer will produce far more than a beginner. But
because each project is unique, uses it’s own tools and languages, the experience level of the
development team is hard to judge. Another problem appears when humans ere estimating.
We all tend to underestimate immaterial things like software. This is also a reason why
software is considered to be expensive by most people, although there is nothing to compare
its costs with. Today’s world would not be the same if there was no software.

1.2 Birth of the Software Cost Estimation Industry
Before 1970, software cost estimating was done manually using simple rules of thumb or
estimating algorithms developed through trial and error.
Around 1970, a number of researchers independently began to think about how to build
automated software cost estimating tools. Those pioneers all worked for large corporations
that were experiencing difficulties building large software systems.
On the early 1970’s the first automated software cost estimating tools had been built. Those
tools were internal estimating tools of the corporations the researchers worked for. Some of
them later evolved into commercial ones.
Around 1975, Allan Albrecht and his colleagues at IBM White Plains developed the original
version of the today widespread function points metric. This metric is based on five different
attributes of software applications:

1) Inputs
2) Outputs
3) Inquires
4) Logical Files
5) Interfaces

It is used to express the size of an application independently from the programming language
used. This independence makes it easier to estimate the size of the non-coding deliverables of
a project such as user manuals and the like.

Seminar on Software Cost Estimation
Prof. Dr. M. Glinz

Arun Mukhija

R.Hintermann 4

1977, the PRICE-S software-estimation model designed by Frank Freiman was the first
commercial tool to be marketed in the United States.
1979, the second commercial tool was introduced to the US-Market. This was the software
life-cycle management tool (SLIM) developed by Larry Putnam.
1981, Dr. Barry Boehm published his famous book “Software Engineering Economics” in
which he revealed the essential algorithms of the constructive cost model (COCOMO), which
is the only model whose algorithms aren’t considered trade secrets.
Also in 1981, Allan Albrechts paper on function points metric was published worldwide for
the first time as a part of Capers Jones book “Programming Productivity – Issues for the
Eighties”.
In 1982, Tom deMarco published his book “Controlling Software Projects” in which he
describes a functional metric that duplicated some of the features of Albrecht’s function
points, but was developed independently. Several of today’s tools support derived forms of
Tom deMarco’s function points.
In 1983, Charles Symons, a British software-estimating researcher, published an alternative
function point metric named Mark II function points, which became widely used in the United
Kingdom, Canada and Hong-Kong.
In 1984, IBM made a major revision of its function point metric, which is the basis of today’s
standard function points.
In 1985, Capers Jones’ SPQR/20 (for software productivity, quality and reliability) was put on
the commercial market. This was the first tool to explicitly support function point metrics and
bidirectional backfiring. Bidirectional backfiring is a mechanism to convert function points
into an equivalent logical statements total and vice versa. It also was the first tool trying to
predict a whole bunch of key software factors:

1) Sizing of all deliverables
2) Staffing by activity
3) Schedules by activity
4) Effort by activity
5) Costs by activity
6) Quality and defect severity levels
7) Defect removal efficiency
8) Reliability
9) Risks
10) Maintenance
11) Enhancements

In 1986, due to the rapidly growing usage of function point metrics, the international function
points users group (IFPUG) was founded in Toronto, Canada.
From 1986 until today, a lot of commercial software cost estimating tools have been released.
One new model to mention is COCOMO II, which added function point metrics and some
additional features to the original version.

2 Software Cost Estimation

2.1 Time and Purpose of Estimates
Prior to a project, a rough estimate is made to help managers to decide whether to make or
buy a software, perform a cost/use or break even analysis. In this estimate, the total costs and
the schedule are of interest.
During the development process, software cost estimates together with measurements provide

Seminar on Software Cost Estimation
Prof. Dr. M. Glinz

Arun Mukhija

R.Hintermann 5

a tool to the project manager to control the proceeding of each software phase. Those
estimates require more details to be effective.

2.2 Potential Problems of Estimation
As mentioned in the introduction, we face various problems when estimating software costs.
The Specification of a project builds the base of all our following estimation work.
Requirements changes will lead to a specification change. This is a very serious difficulty for
the estimators but also the developers.
When deriving the size of the project from the specification, humans tend to focus on the
components providing the core functionality of the final product. Often those components are
considered more complex than they really are. In most projects they actually are just a small
part of the whole code. Another consequence of this focus is that other components such as
the graphical user interface are highly underestimated. The same is true for the non coding
components of the project. All the documentation that is produced besides the code makes out
quite a big part of the total effort. Function point metrics are a good help to deal with those
problems. Estimation tools can prevent us from underestimating or even omitting certain
components.
A Situation where today’s tools cannot help the human estimator is when it comes down to
estimate the level of experience of the development team. The fact that in large projects the
one who is estimating does not know the developers does not make this task easier.
When really estimating the costs, organisational tasks on project management level are often
overlooked. This may lead to a delay of the project or higher costs.

2.3 Different Methods of Estimation
There exist various methods to perform a software cost estimate, each having it’s own
strengths and weaknesses:

1) Algorithmic models

In algorithmic models, cost can be looked at as a function with the major cost drivers as
variables. Inside such a model, one or more algorithms are used.
The strength of algorithmic models lies in its objectiveness. Its results are repeatable. A weak
point is that still some subjective input is needed

2) Expert judgement

As the name indicates, human experts perform the estimate when using this method. To make
the estimates more accurate, multiple experts are estimating.
The quality of the estimates made with this method highly depends on the skills of the
individual experts.

3) Analogy

The estimate is based on the data of similar previous projects.
When using this method, the biggest problem is to find representative previous projects.

4) Parkinson

The estimate is made equal to the available resources.

Seminar on Software Cost Estimation
Prof. Dr. M. Glinz

Arun Mukhija

R.Hintermann 6

5) Price to win

The estimate is made as low as necessary to win the job.
The strength of this way to estimate is that you will often get the contract for the project. The
weakness is obviously that you are almost sure to produce higher costs than predicted.

6) Top-down

First the total costs are estimated for the whole project. Total costs are then split up among the
different components.

7) Bottom-up

First each component is estimated separately. Then the results are added up to get an estimate
for the whole project.

3 Estimation Process

3.1 Key Factors and Objectives of the Estimate

Personnel

Technology

Processes

Environment

Software
Quality and
Productivity

Figure 1 Key estimate Factors (Jones, 97)

There are a lot of factors that have an influence on software costs; Capers Jones puts them
into four different Groups:

1) Personnel

The number of developers is in a less than linear relationship to the time span until delivery.
This simply means that we cannot just employ twice as many developers to finish the project
in half the time due to the super linearly growing costs of communication when doing this.

Seminar on Software Cost Estimation
Prof. Dr. M. Glinz

Arun Mukhija

R.Hintermann 7

But the number of workers linearly correlates to the costs of the project. Therefore we need to
find the optimal number of people to employ. We try to do this by investigating the data of
previously completed projects.
The level of experience of the developers will affect both, the schedule and the total costs.
High paid specialists might be needed during some phases of the development process.
In order to estimate accurately, we also have to consider the payment agreements, especially
how overtime is handled.
Whenever development groups work at different geographic locations, travel costs will occur
which can add up to a respectable part of the total costs, depending on the specific situation.

2) Environment

The office ergonomics will affect the total costs. Data of previous projects shows for example
that the average output of developers is higher in a silent environment. Most the time, the
environment is given and can only be adapted slightly.

3) Methods/Processes

The methods and processes used to develop software also have an influence on the costs.
Generally it can be said that the more communication is involved in the development process,
the lower the productivity will be. Data of completed project shows that especially project
using some kind of matrix organization where a lot of communication is needed have a lower
output than others. However one should also consider the experiences a corporation has made
using a method or process to develop software.

4) Technologies

A different group of key factors is the technology involved. It’s possible that new equipment
has to be bought. Those costs are more or less easy to estimate. More important are the
languages and tools used and how many reusable artefacts are available. It would be a great
advantage if the developers have some experience with the language chosen and the tools
used. The standards to be adhered are also a factor that should not be overlooked.

Additional key factors
Total costs also depend on what kind of software has to be developed. Estimates won’t be the
same for information systems, systems software, commercial software, military software and
embedded software. For example in a military project, there is a lot more documentation work
to do than if it was a commercial project.
Another key factor is the rate of changing requirements. It’s obvious that this rate itself has to
be estimated somehow, preferably making use of previous projects.

Objectives of the estimate
Software cost estimating performs more tasks than the name indicates. It’s not just the total
costs that are of interest but a lot more. Quite a few things other than costs are being estimated
during the process. Of main interest are the following:

- size of all deliverables
- staff needed
- schedule
- effort
- costs to develop

Seminar on Software Cost Estimation
Prof. Dr. M. Glinz

Arun Mukhija

R.Hintermann 8

- costs for maintenance/enhancement
- Quality
- Reliability

3.2 Activities of the Estimation Process
The two software cost estimating experts, Dr. Barry Boehm and Capers Jones describe the
activities to perform an estimate as a sequence of a few steps. The following two sections try
to summarize those descriptions

3.2.1 Estimation Steps as proposed by Jones
Because Jones sees the analysis of the requirements as a pre-estimating step, he starts his
sequence with step 0.

0) Analyze the requirements

Before a meaningful estimate can be produced on the costs of a software project, it needs to
be known what it will look like. Therefore it is necessary to understand the requirements
before actually beginning with real estimation activities.

1) Start with sizing

The size of all deliverables of the software project needs to be estimated. Those estimates are
very important, because almost all major cost drivers will later be estimated based directly or
indirectly on the size. If the sizes of the key deliverables cannot be predicted accurately, the
overall estimate won’t be accurate either.

2) Identify the activities to be included

In order to estimate accurately, the sets of activities that will be performed for the project need
to be identified. Activities include work to be done such as requirements, design, coding,
reviews, document creation, testing, integration, quality assurance, project management and
many others depending on the specific project.

3) Estimate software defect potentials and removal methods

The most expensive and time consuming work in the software development process is finding
bugs and fixing them. Bugs may not only appear in the code, but also in the requirements,
design or user documentation.

Seminar on Software Cost Estimation
Prof. Dr. M. Glinz

Arun Mukhija

R.Hintermann 9

4) Estimate staffing requirements

How many workers are needed depends on the overall size of the project, and on the activities
that will be performed. In this step it is essential not to forget any specialist that will be
needed.

5) Adjust assumptions based on capabilities and experience

The productiveness of developers varies greatly among the different individuals. Therefore
adjustments need to be made to the staffing estimate based on the level of experience and skill
factors of the development team.

6) Estimate effort and schedules

Effort and schedules are estimated based on the size of the project, the activities included, the
number of workers and their experience level. An interesting point here is that productivity
seems to be more closely related to the number of managers engaged in a project than to the
actual number of programmers involved. Productivity tends to decline when the number of
managers increases.

7) Estimate development costs

The costs for personnel are dependent on the effort, the schedules, the number of workers and
their average salary. If the project runs for several years, inflation rates need to be taken into
account, if it is international, currency exchange rates have an influence. The above costs
form a basic estimate. In addition there are several other cost factors that should not be
forgotten such as license fees, new equipment costs, travel costs, marketing and advertising
costs and others.

8) Estimate maintenance and enhancement costs

Estimating maintenance costs requires the knowledge of probable number of users of the
application and of the probable number of bugs or defects in the software at release time.
Estimating enhancements costs requires good historical data on the rate of change of similar
project, once their application was being used.

3.2.2 Estimation Steps as proposed by Boehm
1) Establish Objectives

In order not to waste any effort in gathering information that has no relevance to the need for
the estimate, it should be found out why this particular estimate is done prior to any other
activity. There is for example no use in going into details, if the decision-maker requires a
rough estimate to help him decide whether to make or buy software.

2) Plan for Required Data and Resources

Software cost estimation activity should be seen as an own mini project, which requires a
project plan. This plan does not need to be a detailed document, but at least some notes on the

Seminar on Software Cost Estimation
Prof. Dr. M. Glinz

Arun Mukhija

R.Hintermann 10

why, what, when, who, where, how, how much and whereas of the estimating activity should
be taken.

3) Pin Down Software Requirements

Requirements should be testable, otherwise they are not very useful to estimate the costs.
Where it is not possible to make a requirement testable or takes to much effort than we want
to spend with regard to the objective of the estimate, any assumptions that have been made
should be documented.

4) Work Out as Much Detail as Feasible

The more details we know about the software, the more accurate will be our estimate. The
reasons for this are that we understand the software’s technical aspects and we are less likely
to miss costs of the more unobtrusive components.
However, the degree of detail should be consistent with the objectives of the estimate.

5) Use Several Independent Techniques and Sources

It is a good idea to use different estimation methods to profit from their combined strengths
and to avoid the weakness of a single technique.

6) Compare and Iterate Estimates

It is important not just to perform independent estimates, but also to investigate why they
produce different results.

7) Followup

Once a software project started, it’s actual costs and progress should be measured and
compared against the estimate.

3.3 Reasons for underestimating
It is a fact that a lot of projects have been underestimated in the past and still are today,
meaning they either exceeded the planned costs, could not finish on time or in the worst case
had to be stopped. The following sections try to give some possible reasons for why this is the
case.

3.3.1 Fantasy Factor or “Training by Managers”
Boehm discovered, that when comparing cost estimates of humans against actual costs, their
estimate usually is about one third lower than the real cost. His explanation for this fact is that
people are basically optimistic, desire to please and generally are not familiar with the entire
software project and all the activities it includes.
Tom deMarco has a slightly different explanation. He simply states that the managers trained
us to give low estimates. In a survey on estimating techniques, most managers stated, that
their software estimates were dismal, but they weren’t dissatisfied with the estimation process
on the whole. This makes him conclude, that the managers do not want accurate estimates, but
rather underestimates, because we all tend to work harder, if we have a tight schedule.

Seminar on Software Cost Estimation
Prof. Dr. M. Glinz

Arun Mukhija

R.Hintermann 11

3.3.2 Omitting some cost factors
Another explanation could be that in most cases some significant cost drivers are simply
forgotten. If you take a look at how many cost drivers there are and how different the situation
for every project is, this seems quite reasonable. The following tasks are often omitted or
underestimated by human managers:

- effort to find and fix bugs
- production of paper documents
- travel costs
- testing
- administration
- contribution of specialists
- maintenance

4 Conclusion
Software cost estimating is a very complex process. There are a lot of factors that have an
influence on the costs of a project. Therefore I believe that estimation tools are necessary to
produce reliable estimates. Those tools still require some subjective inputs and I think they
still will in the near future. They also make sure, that no important factor is omitted in the
estimating process.
Because every project is unique and I do not believe that there is a best method to estimate
software costs, Boehm’s suggestion to use several estimation methods seems to be a good
idea to me.

5 Literature
Boehm, B. (1981). “Software Engineering Economics” Englewood Cliffs, N.J.: Prentice Hall.
DeMarco, T. (1995). “Why Does Software Cost So Much? And Other Puzzles of the
Information Age” New York: Dorset House.
Jones, C. (1998): “Estimating Software Costs” New York: McGraw-Hill.

