
S ft Q lit FS 2011Software Quality FS 2011
Discussion Exercise 2Discussion Exercise 2

Requirements Engineering Research Group

Cédric Jeanneret

Department of Informatics
University of Zurich
http://www.ifi.uzh.ch/rerg/people/jeanneretttp // u c / e g/peop e/jea e et

Outline

• Frequent problems in exercise 2
Mod larit– Modularity

– Dependencies

• Introduction to exercise 3
• Formalities of the exam• Formalities of the exam
• Your questions

3/28/2011 2Software Quality FS 2011 - Discussion Ex 2

Exercise 2

• Very well solved in general
Good discipline within the development environment• Good discipline within the development environment
– some errors in commits
– 1 ticket left open
– (useful) commit comments

• ImageJ’s quality in use VS ImageJ’s internal qualityImageJ s quality in use VS ImageJ s internal quality
• http://imagejdev.org/

3/28/2011 3Software Quality FS 2011 - Discussion Ex 2

Modularity is important for software testingy p g
and evolution

Especially when working on a large piece of software
written by somebody else...

“It was not easy to find the responsible class for the y p
clearing, filling and inverting tasks. I finally found the
‘Menus’ class, which indicatings which class to use. In
th th i di ti ith t lthose, there are various redirections without clear
structure. Image manipulations are not separated to
classes which makes it difficult at times to follow theclasses, which makes it difficult at times to follow the
program logic.“

3/28/2011 4Software Quality FS 2011 - Discussion Ex 2

Modularity is important for software testingy p g
and evolution

• Allows decomposition of a system into simpler pieces &
understanding that system in terms of these piecesu de sta d g t at syste te s o t ese p eces
• Confines the search for a fault / an enhancement to a
single modulesingle module
• Drives the testing process: unit tests, integration tests,
system testssystem tests
• Allows the composition of systems from pieces (reuse)

MVC i l ibl f d i• MVC is only one possible pattern for decomposing
applications

3/28/2011 5Software Quality FS 2011 - Discussion Ex 2

Dependenciesp

• Set-Use: an instruction depends on the result of a
previous instructionp e ous st uct o

• Use-Set: an instruction requires a value that is later
updatedupdated

• Set-Set: the ordering of instructions will affect the final
output value of a variableoutput value of a variable

• An instruction B is control dependent on a preceding
instruction A if the latter determines whether B shouldinstruction A if the latter determines whether B should
execute or not.

3/28/2011 6Software Quality FS 2011 - Discussion Ex 2

Dependencies
Loops are challenging...

p

for (int i=0; i<a.length; i++) int i = 0;

h l (l h)value = a[i];

if (l i)

while (i < a.length)

value = a[i];
if (value<min)

min = value;
useset ...

i i 1min = value;

if (value>max)
set i = i + 1;

max = value;

3/28/2011 Software Quality FS 2011 - Discussion Ex 2 7

Dependencies
... so are arrays.

p

double[] minAndMax = new double[2];
set minAndMax

double[] minAndMax new double[2];

i A dM [0] i
use

minAndMax[0] = min;

use minAndMax[0]

minAndMax[1] = max;
use

[]
5

minAndMax[1]
7

return minAndMax;
use 7

3/28/2011 Software Quality FS 2011 - Discussion Ex 2 8

Exercise 3: Improving ImageJ with QFD and p g g J Q
ISO / IEC 9126-1

12 features
(int. & ext. quality)

feature
interactions(q y)

4 requirements
(quality in use)

means-end
analysis

(quality in use)

2 competitorsp

3/28/2011 9Software Quality FS 2011 - Discussion Ex 2

Exam

Location: BIN 2.A.10
Date: Monday May 2nd 2pmDate: Monday May 2nd, 2pm
Duration: 90 minutes
Language: German
Structure: ~1/3 MCQ ~1/3 Case Study and ~1/3 EssayStructure: ~1/3 MCQ, ~1/3 Case Study and ~1/3 Essay

Sample exam is available on the lecture’s website

’ l dScope: Lecture’s slides + Exercises
Cheat sheet: 1 double-sided handwritten A4 pagep g

3/28/2011 10Software Quality FS 2011 - Discussion Ex 2

JUnit
?
J

3/28/2011 Software Quality FS 2011 - Discussion Ex 2 11

Program Dependency Graph
?

g p y p

3/28/2011 Software Quality FS 2011 - Discussion Ex 2 12

Müssen bei Spin die LTL-Formeln invertiertp
werden oder nicht?

Spin looks for an execution satisfying a given property

Wh i ti ti h th t P h ld fWhen investigating whether property P holds for...
... all executions, let Spin search for a counterexample

spin –a –f "!P"spin a f !P ...
spin –a –f "![]P" ... or spin –a –f "<>!P" ...

... none of the executions, let Spin search for an example
spin –a –f "P" ...
spin –a –f "<>P" ...

Note the following equivalences:
¬A¬A and ¬A¬ A

3/28/2011 Software Quality FS 2011 - Discussion Ex 2 13

Müssen bei Spin die LTL-Formeln invertiertp
werden oder nicht?

Pr1: Absence of deadlock
(t1enabled V t2enabled V t3enabled V t4enabled)(t1enabled V t2enabled V t3enabled V t4enabled)

Pr2: T4 can be fired at least once
 t4enabled

Pr3: T3 can be fired an infinite number of time
 t3enabled

Pr4: As soon as P4 receives a token it never gets empty againPr4: As soon as P4 receives a token, it never gets empty again
¬p4 V (¬p4 U p4)

3/28/2011 Software Quality FS 2011 - Discussion Ex 2 14

Was sind acceptance cycles bei Spin?Was sind acceptance cycles bei Spin?

Never-claims generated from a LTL formulae have
acceptance states (labels beginning with "accept").

An acceptance cycle is an execution that passes throughp y p g
an accept state infinitely often.

Executions violating a liveness property are infinite!

The verifier looks for them only with the parameter –a.

3/28/2011 Software Quality FS 2011 - Discussion Ex 2 15

Müssen wir den Output von Spin verstehenp p
können?

(never claims generated from LTL formulae are stutter-invariant)
pan: claim violated! (at depth 43)

Statistics about the trace found
• Depth: # of transitions from the initial

pan: wrote Colony.pml.trail

[]

system state

[…]

State-vector 28 byte depth reached 43 errors: 1Statistics about the searchState vector 28 byte, depth reached 43, errors: 1
22 states, stored
0 states, matched

Statistics about the search
• Transitions: # of system states
• Stored states: # of unique system ,

22 transitions (= stored+matched)
0 atomic steps

states
• Depth: longest trace

3/28/2011 16Software Quality FS 2011 - Discussion Ex 2

Wie sieht Lamport’s Bakery Algorithmus in p y g
der Promela syntax aus?

Define 2 arrays as global variables
bit choosing[N] and byte number[N]bit choosing[N] and byte number[N]

Define 1 inline "procedure"
T h i b i h b []To compute the maximum number in the number[] array

Define 1 process (given number of iterations)
Sequence: enter CS, do something in CS, exit CS
Local variable: pidLocal variable: _pid

Do not use atomic or d_step blocks

3/28/2011 Software Quality FS 2011 - Discussion Ex 2 17

Lamport’s Bakery Algorithm
Maximum of an array

p y g

byte number[N];

inline i (i) {inline maximum(max, i) {
i = 0; max = 0;
do
:: i < N ->

if
:: max < number[i] > max number[i];:: max < number[i] -> max = number[i];
:: max >= number[i];
fi; i++;

:: i == N -> break;
od; }

3/28/2011 Software Quality FS 2011 - Discussion Ex 2 18

Lamport’s Bakery Algorithm
Skeleton of a client

p y g

byte number[N];

acti e [N] proct pe li t()active [N] proctype client()
Doorway:
compute a ticket number and store it (in number[_pid])p p

Backery:
inspect each client process. If process i ...

is choosing a ticket wait until it has a ticket- is choosing a ticket, wait until it has a ticket
- has a lower ticket number, wait until i has gone through CS
- has the same ticket number, but i<_pid, wait until i has gone through CS

Service (Critical Section):
set the ticket number to 0 and goto doorway again

3/28/2011 Software Quality FS 2011 - Discussion Ex 2 19

