
Department of Informatics

Software Quality Exercise 2
Testing and Debugging

1 Information

1.1 Dates
• Release: 12.04.2010 2pm
• Deadline: 26.04.2010 2pm
• Discussion: 10.05.2010 3.30pm

1.2 Formalities

Please submit your solution as a pdf and submit it via email to jeanneret@ifi.uzh.ch. The
subject of the email must begin with [FS 10 SWQ]. Exercises can be solved and handed in in
groups of two. Every member of a group must be able to answer questions about the group’s
solution. The document must include the names of group members. Finally, assignments are
written in English, but feel free to write your answers in German (or in French) if you like to do
so.

2 Introducing ImageJ

ImageJ is an image processing tool written in Java. With the help of plugins and macros, it can
be extended with new features, such as the support of new file formats or new analysis. Still, the
current architecture of ImageJ has reached its limits in terms of extensibility: many requested fea-
tures (such as the support of dynamic charts or the ability to use ImageJ on a cluster of computers)
cannot be implemented unless the tool is deeply refactored.

• The source code of ImageJ is hosted on the SVN repository located on Daiquiri. In previous ex-
ercise (3.2), you already checked out a local copy of this repository. A simple update (svn up)
is enough to download the source code.

1

• For this exercise, you will need JUnit. This dependency has been mentioned in the pom.xml
file of the project. Therefore, Maven2 will download it for you (when executing mvn install).

• In the repository, there is no metadata about the project for any IDE. Nevertheless, Netbeans
can import Maven2 projects while Maven can create an Eclipse project (with the command
mvn eclipse:eclipse). Note that before importing such a project in Eclipse, you need
to setup the classpath variable M2 REPO (Window, Preferences, Java, Build Path, Classpath
Variables) to the repository of Maven2 (which is usually located in $home/.m2/repository,
where $home is your home directory).

• To execute ImageJ, you can either launch it within Eclipse (the main class is ImageJ) or use
the jar file built by Maven2 (java -jar target/ImageJ-1.4.3q.jar).

One of the problem of ImageJ’s current architecture is that ImageJ data models and image process-
ing algorithms are tightly coupled to the GUI. Find 2 examples in the code where a single object
both transforms images and displays something in the GUI. Discuss, in maximum 10 sentences,
why this problem impacts both the extensibility and the testability of ImageJ.

3 Testing ImageJ

In Trac, there are 10 testing tasks available. Pick one of them (1 per group) and mark it as accepted
(so that no assignment is solved twice). Prepare a test plan for your assignment and explain what
kind of test it is and how you have chosen your test cases (you are free to choose your coverage
criteria).

Automate your tests with JUnit 41. For this purpose, create a new class in the src/test/java
directory, so that your tests are run by Maven2 during the build. Before checking in your contri-
bution, take note of the following points:

• If you need to use image files, you can place them in the /src/test/resources directory.
• You may have to modify ImageJ to perform your tests. If you do so, make your changes in

such a way that it preserves the behavior of ImageJ from the viewpoint of an user.
• System tests can be implemented at the presentation or function level. Your tests can open

windows and dialogs, but make sure that your tests close them programmatically, otherwise
the continuous build may not terminate.

• Make sure that the project can be built correctly (tests can fail though, you are not supposed
to repair the defects your tests have uncovered) before checking in your modifications. After
the commit, verify that Hudson has built the project. If the build fails on the build server, it is
very likely that it cannot be built by your colleagues either.

• Do not forget to include additional files in your commit (with the command svn add).
• In the commit’s comment, refer to the Trac ticket. Once you have completed your task, close

the ticket
• Report all related commits on the ticket.

Which difficulties have you encountered when automating your tests?

1See http://daiquiri.ifi.uzh.ch/trac/swq10/wiki/JUnit for some documentation on JUnit 4.

2

4 Improving the source code of ImageJ

In Trac, there are 10 “enhancement” tasks available. Pick one of them (1 per group) and mark it as
accepted (so that no assignment is solved twice). Each assignment concerns one class. Assess the
quality of its source code according to what you have learned in the Software Engineering lecture
(chapter 6). Fix some of its issues (at least three) and check-in your modifications. For example,
you can rename variables or methods, break methods into smaller one, document methods or
introduce enumeration types. Many IDEs, including Netbeans and Eclipse, provide tool support
for refactoring Java programs. Your modifications must preserve the behavior of ImageJ. Report
all related commits on the ticket before closing it.

Once you have accomplished both the testing and improvement assignments, create a snapshot
of the ImageJ project in the repository. The name of your tag must contain your Trac usernames.

5 Static Analysis

Static analysis of source code can help to hypothesize about the localization of a defect. Find data
and control dependencies in the statsmethod of the StaticAnalysis class (within the ImageJ
project). Chapter 11, from the Software Engineering lecture, may reveal helpful for this task.

a) What are the Set-Use, Use-Set, Set-Set relationships in this program?
b) Represent these relationships in a Program Dependency Graph (PDG).
c) Compute the static forward slice for

boolean inword = false (line 22).
Mark the corresponding path in the PDG.

d) Compute the static backward slice for
System.out.println("Number of words: " + nw); (line 38).
Mark the corresponding path in the PDG.

e) How can you find dead code (code that is never executed) in a PDG? What other problems
can be discovered with PDGs?

6 Hypothesizing about a Defect

On the website of the exercises, you can find a Java program called ArabianToRoman.jar. This
program translates positive integers (smaller than 4’000) to the corresponding roman numeral.
For example, 21 will be translated to XXI. You can launch this program with the following com-
mand:

java -jar ArabianToRoman.jar 21

It turns out that this program does not translate the number 16 correctly. Follow the scientific
method (chapter 5, slide # 22) to come up with the best diagnostic (which inputs produce an error
and what may be its cause) as possible. Report the complete history of your diagnostic in a table
containing (a) your hypothesis, (b) your test cases and (c) the result of your test cases.

3

