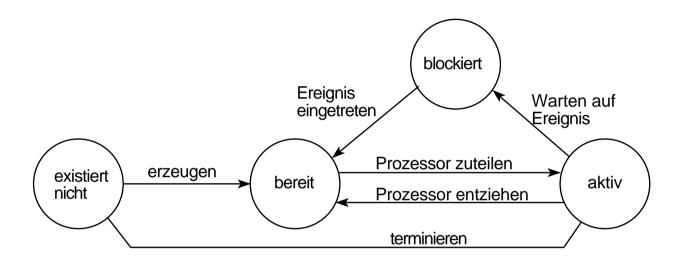
21 Prozesse und Kommunikation


21.1 Einführung

- Gleichzeitige, koordinierte Bearbeitung mehrerer Aufgaben
- Geographische Verteilung
- mehrere nebenläufige Prozesse

Prozess (process) – Eine durch ein Programm gegebene Folge von Aktionen, die sich in Bearbeitung befindet.

Nebenläufigkeit (concurrency) –Die parallele oder zeitlich verzahnte Bearbeitung mehrerer Aufgaben.

Mögliche Prozesszustände

- Statische Prozesse: alle Prozesse bei Systemstart erzeugt
- Dynamische Prozesse: Erzeugung/Terminierung im laufenden Betrieb

21.2 Prinzipien der Prozesskommunikation

Prozesse müssen miteinander kommunizieren:

- Austausch von Information
 - über gemeinsame Speicher
 - über Nachrichten
- Synchronisation des Arbeitsfortschritts
 - o Semaphore
 - Monitore

Kommunikation über

gemeinsame Speicher

einfach und schnell:

- kein Kopieren
- Prozessumschaltung nur zwischen Beteiligten
- keine Dienstprozesse notwendig

Kommunikationspartner für Protokolle selbst verantwortlich

nicht verteilbar

Nachrichten

langsamer:

- Kopieren erforderlich
- zusätzliche Prozessumschaltungen
- Dienstprozess(e) erforderlich

vorhandene Protokolle nutzbar

problemlos verteilbar

21.3 Typische Kommunikationsverfahren

21.3.1 Kanal/Mailbox

- Aufbau eines realen oder virtuellen Kanals zwischen Sender und Empfänger
- Asynchrone, gepufferte Übermittlung nicht adressierter Nachrichten (Mailbox-Paradigma)
- Kommunikationssystem stellt Dienste bereit für
 - Kanaleröffnung / -schließung
 - Versand
 - Benachrichtigung
 - o **Empfang**

21.3.2 Globaler Versand (Broadcast)

- Alle Knoten sind über einen Bus oder Ring verbunden
- Senderknoten setzt Nachricht ab
- Nachricht enthält Ziel- und/oder Quellenadresse
- Kommunikationssystem
 - verteilt Nachricht an alle
 - verwaltet das Medium und verhindert Kollisionen oder löst sie auf
- Jeder Knoten betreibt einen Mithörprozess, der
 - die Adressen jeder Nachricht mithört
 - bei Zieladressierung die für den Knoten bestimmten Nachrichten empfängt
 - bei Quellenadressierung aufgrund einer Adressentabelle die für ihn interessanten Nachrichten empfängt

21.3.3 Fernaufruf (Remote Procedure Call RPC / Remote Method Invocation RMI)

- Analogon zu lokalem Prozedur- /Methodenaufruf
- Softwaretechnisch sehr einfach und klar (verbirgt die Verteilung gegenüber den benutzenden Komponenten weitgehend)
- Kommunikationssystem übernimmt Benachrichtigung des Empfängers, Übertragung der Parameter und der Ergebnisse
- Sender wartet auf Ergebnis (synchrone Kommunikation)
- Kommunikationssystem stellt Dienste bereit zum Aufrufen, sich Aufrufen lassen und einen Namensdienst (wer ist aufrufbar)
- Adressat eines RPC/RMI muss ständig verfügbar sein Problem des Ausfalls muss gelöst werden

21.3.4 World Wide Web

Drei Kommunikationstypen:

- Synchroner Dateitransfer :Klassisches Laden einer Seite von einem über eine URL adressierten Server
- Synchroner Dienstaufruf (analog RPC)
 - Bearbeitung einer Anfrage (Suchmaschinen, Auskunftsdienste, ...)
 - Versand der Anfrage zum Server, Bearbeitung auf Server, Rückversand von Ergebnissen
 - zum Beispiel mit CGI-BIN, Java Servlets, ASP
- Dynamisches Laden von verteiltem Programmcode
 - Dynamisches Laden eines Programms von einem Server
 - Lokales Ausführen dieses Programms in geschützter Umgebung
 - Das Programm kann (unsichtbar für Klient) über das Netz kommunizieren
 - zum Beispiel Java-Applets

21.4 Bestimmung der Prozesse

- Wieviele Prozesse
- Statische oder dynamische Erzeugung
- Zuordnung von Funktionalität: Verteilung der Module auf Prozesse
- Bestimmung der Kommunikationsbedürfnisse, Festlegung der Kommunikationsart(n)
- Geographische Verteilung
- Zuordnung von Ressourcen

Mögliches Vorgehen

- Bestimmung unabhängiger externer Akteure
- Ein Prozess pro Akteur
- Alle Module zuordnen, die zur Erzeugung der vom Akteur verlangten Systemreaktionen erforderlich sind
- Bei Redundanz gemeinsame Leistungen in Dienstleistungsprozesse verlagern
- Weitere Prozesse in besonderen Situationen:
 - Aufgaben unterschiedlicher Dauer und Dringlichkeit
 - Aufgabe für einen einzigen Prozess zu umfangreich
 - Fehlertoleranz gefordert

- Kommunikationsbedürfnisse resultieren aus der Verteilung der Module auf Prozesse
- O Wahl der Kommunikationsmittel:
 - Passend zur Art des Kommunikationsbedürfnisses
 - Abgestimmt auf die Möglichkeiten der verwendeten Plattform

21.5 Ressourcenzuordnung

Zu treffende Allokationsentscheidungen

- ⊃ Prozesse → Prozessoren
- ⊃ Daten → Speicher
- Kommunikation → Medien, Kanäle
- Module möglichst als möglichst als Ganzes auf Prozesse verteilen
- Möglichst schwach gekoppelte Prozesse bilden
- Prozesse möglichst als Ganzes geographisch verteilen
- Entstehenden Kommunikationsbedarf berücksichtigen
- Machbarkeit prüfen (Leistung? Kommunikationsverbindungen?)

Kriterien

- Datenverkehr: Volumen akzeptabel
- Notwendige / entstehende Redundanzen: geprüft und entschieden
- ☆ Flexibilität / Ausbaubarkeit
- ☆ Geheimnisprinzip: gewährleistet
- ☆ Konformität zwischen logischer und physischer Struktur: wo möglich

21.6 Logische vs. physische Systemstruktur

Logische Systemstruktur: Module, Komponenten, Prozesse,...

Physische Systemstruktur:

- ☆ Gliederung der Software in Lieferungs- oder Verwaltungspakete
- ☆ Abhängig von
 - Entwicklungs- /Lieferstrategie
 - Möglichkeiten/Erfordernissen der verwendeten Programmiersprache
 - Einbindung vorhandener Software