
Universität Zürich 
Institut für Informatik 

Martin Glinz !Harald Gall 
Software Engineering  
Herbstsemester 2010 

Kapitel 12 
Software Evolution und Reengineering!

© 2010 by Harald Gall. Alle Rechte vorbehalten. Reproduktion, Speicherung und Wiedergabe jeglicher Art sind ausschließlich  für den persönlichen, nicht kommerziellen Gebrauch 
gestattet, wobei bei auszugsweiser Wiedergabe die Quelle und das Copyright zu nennen sind. Die Verwendung für Unterrichtszwecke ist nicht gestattet.!



2!Software Engineering        © 2010 H. Gall!

Overview!

12.1 !Software Evolution!

12.2 !Software Maintenance!
12.3 !Evolution Processes!
12.4 !Legacy Systems!
12.4 !Reengineering!



3!Software Engineering        © 2010 H. Gall!

Objectives!

❍  To explain why change is inevitable if software systems are 
to remain useful!

❍  To discuss software maintenance and maintenance cost 
factors!

❍  To describe the processes involved in software evolution!
❍  To discuss an approach to assessing evolution strategies 

for legacy systems!



4!Software Engineering        © 2010 H. Gall!

Software change!

❍  Software change is inevitable!
●  New requirements emerge when the software is used;!
●  The business environment changes;!
●  Errors must be repaired;!
●  New computers and equipment is added to the system;!
●  The performance or reliability of the system may have to 

be improved.!

❍  A key problem for organisations is implementing and 
managing change to their existing software systems.!



5!Software Engineering        © 2010 H. Gall!

12.1!Software Evolution!

❍  Organizations have huge investments in their software 
systems - they are critical business assets.!

❍  To maintain the value of these assets to the business, they 
must be changed and updated.!

❍  The majority of the software budget in large companies is 
devoted to evolving existing software rather than 
developing new software.!



6!Software Engineering        © 2010 H. Gall!

Spiral model of evolution!



7!Software Engineering        © 2010 H. Gall!

❍  Program evolution dynamics is the study of the processes 
of system change.!

❍  After major empirical studies, Lehman and Belady 
proposed that there were a number of ʻlawsʼ which applied 
to all systems as they evolved.!

❍  There are sensible observations rather than laws. They 
are applicable to large systems developed by large 
organisations. Perhaps less applicable in other cases.!

Program evolution dynamics!



8!Software Engineering        © 2010 H. Gall!

Lehmanʼs laws!

Law Description

Continuing change A program that is used in a real-world environment necessarily
must change or become progressively less useful in that
environment.

Increasing complexity As an evolving program changes, its structure tends to become
more complex. Extra resources must be devoted to preserving
and simplifying the structure.

Large program evolution Program evolution is a self-regulating process. System
attributes such as size, time between releases and the number of
reported errors is approximately invariant for each system
release.

Organisational stability Over a program’s lifetime, its rate of development is
approximately constant and independent of the resources
devoted to system development.

Conservation of
familiarity

Over the lifetime of a system, the incremental change in each
release is approximately constant.

Continuing growth The functionality offered by systems has to continually increase
to maintain user satisfaction.

Declining quality The quality of systems will appear to be declining unless they
are adapted to changes in their operational environment.

Feedback system Evolution processes incorporate multi-agent, multi-loop
feedback systems and you have to treat them as feedback
systems to achieve significant product improvement.



9!Software Engineering        © 2010 H. Gall!

Lehmanʼs system types!

❍  S-system:  formally defined, derivable from a specification!
❍  P-system:  requirements based on approximate solution to 

a problem, but real-world remains stable!
❍  E-system:  embedded in the real world and changes as the 

world does!



10!Software Engineering        © 2010 H. Gall!

Applicability of Lehmanʼs laws!

❍  Lehmanʼs laws seem to be generally applicable to large, 
tailored systems developed by large organisations.!
●  Confirmed in more recent work by Lehman on the 

FEAST project (http://www.doc.ic.ac.uk/~mml/feast/).!
❍  It is open how they should be modified for!

●  Shrink-wrapped software products;!
●  Systems that incorporate a significant number of COTS 

components;!
●  Small organisations;!
●  Medium sized systems.!



11!Software Engineering        © 2010 H. Gall!

12.2!Software Maintenance!

❍  Modifying a program after it has been put into use.!

❍  Maintenance does not normally involve major changes to 
the systemʼs architecture.!

❍  Changes are implemented by modifying existing 
components and adding new components to the system.!



12!Software Engineering        © 2010 H. Gall!

Maintenance is inevitable!

❍  The system requirements are likely to change while the 
system is being developed because the environment is 
changing. Therefore a delivered system won't meet its 
requirements!!

❍  Systems are tightly coupled with their environment. When a 
system is installed in an environment it changes that 
environment and therefore changes the system 
requirements.!

❍  Systems MUST be maintained therefore if they are to 
remain useful in an environment.!



13!Software Engineering        © 2010 H. Gall!

Types of maintenance!

❍  Maintenance to repair software faults!
●  Changing a system to correct deficiencies in the way 

meets its requirements.!

❍  Maintenance to adapt software to a different operating 
environment!
●  Changing a system so that it operates in a different 

environment (computer, OS, etc.) from its initial 
implementation.!

❍  Maintenance to add to or modify the systemʼs functionality!
●  Modifying the system to satisfy new requirements.!



ISO/IEC 14764 - maintenance types!

❍  Corrective maintenance: Reactive modification of a 
software product performed after delivery to correct 
discovered problems.!

❍  Adaptive maintenance: Modification of a software product 
performed after delivery to keep a software product usable 
in a changed or changing environment.!

❍  Perfective maintenance: Modification of a software product 
after delivery to improve performance or maintainability.!

❍  Preventive maintenance: Modification of a software product 
after delivery to detect and correct latent faults in the 
software product before they become effective faults.!

14!Software Engineering        © 2010 H. Gall!



15!Software Engineering        © 2010 H. Gall!

Maintenance effort!



16!Software Engineering        © 2010 H. Gall!

System evolution vs. decline!

❍  Is the cost of maintenance too high?!
❍  Is the system reliability unacceptable?!
❍  Can the system no longer adapt to further change, and 

within a reasonable amount of time?!
❍  Is system performance still beyond prescribed constraints?!
❍  Are system functions of limited usefulness?!
❍  Can other systems do the same job better, faster or 

cheaper?!
❍  Is the cost of maintaining the hardware great enough to 

justify replacing it with cheaper, newer hardware?!



17!Software Engineering        © 2010 H. Gall!

Maintenance team responsibilities!

❍  understanding the system!

❍  locating information in system 
documentation!

❍  keeping system documentation 
up-to-date!

❍  extending existing functions to 
accommodate new or changing 
requirements!

❍  adding new functions to the 
system!

❍  finding the source of system 
failures or problems!

❍  locating and correcting faults!
❍  answering questions about the 

way the system works!
❍  restructuring design and code 

components!
❍  rewriting design and code 

components!
❍  deleting design and code 

components that are no longer 
useful!

❍  managing changes to the 
system as they are made!



18!Software Engineering        © 2010 H. Gall!

Maintenance problems!

❍  Staff problems!
●  Limited understanding!
●  Management priorities!
●  Morale!

❍  Technical problems!
●  Artifacts and paradigms!
●  Testing difficulties!



19!Software Engineering        © 2010 H. Gall!

Factors affecting maintenance effort!

❍  Application type!

❍  System novelty!

❍  Turnover and maintenance staff ability!

❍  System life span!

❍  Dependence on a changing environment!

❍  Hardware characteristics!

❍  Design quality!

❍  Code quality!

❍  Documentation quality!

❍  Testing quality!



20!Software Engineering        © 2010 H. Gall!

Measuring maintainability!

❍  Necessary data:!
●  time at which problem is 

reported!
●  time lost due to administrative 

delay!
●  time required to analyze 

problem!
●  time required to specify which 

changes are to be made!
●  time needed to make the 

change!
●  time needed to test the change!
●  time needed to document the 

change!

❍  Desirable data:!
●  ratio of total change 

implementation time to total 
number of changes 
implemented!

●  number of unresolved problems!
●  time spent on unresolved 

problems!
●  percentage of changes that 

introduce new faults!
●  number of components modified 

to implement a change!



21!Software Engineering        © 2010 H. Gall!

Maintenance costs!

❍  Usually greater than development costs (2* to  
100* depending on the application).!

❍  Affected by both technical and non-technical  
factors.!

❍  Increases as software is maintained.  
Maintenance corrupts the software structure so  
makes further maintenance more difficult.!

❍  Ageing software can have high support costs  
(e.g. old languages, compilers etc.).!



22!Software Engineering        © 2010 H. Gall!

Development/maintenance costs!



23!Software Engineering        © 2010 H. Gall!

Maintenance cost factors!

❍  Team stability!
●  Maintenance costs are reduced if the same staff are involved with 

them for some time.!
❍  Contractual responsibility!

●  The developers of a system may have no contractual responsibility 
for maintenance so there is no incentive to design for future 
change.!

❍  Staff skills!
●  Maintenance staff are often inexperienced and have limited domain 

knowledge.!
❍  Program age and structure!

●  As programs age, their structure is degraded and they become 
harder to understand and change.!



24!Software Engineering        © 2010 H. Gall!

Modeling Maintenance Effort (1)!

❍  Belady and Lehman equation:!
●  M = p + Kc-d !

• M ... total maintenance effort, !
•  p ... productive efforts, !
•  c ... complexity caused by lack of structured design 

and documentation, !
•  d ... c reduced by d, the degreee to which the 

maintenance team is familiar with the software!
•  K ... empirical constant determined by comparing this 

model with the effort relationships on actual projects!



25!Software Engineering        © 2010 H. Gall!

Modeling Maintenance Effort (2)!

❍  COCOMO II:!

●  Size = ASLOC (AA + SU +0.4*DM +0.3*CM + 0.3*IM) /100!
•  ASLOC ... number of source lines to be adapted!
•  DM ... percentage of design to be modified!
•  CM ... percentage of code to be modified!
•  IM ... percentage of external code (e.g. reuse code) to be 

integrated!
•  SU ... rating scale representing the amount of software 

understanding required (Table 11.2)!
•  AA ... assessment and assimiliation effort to assess code and 

make changes (Table 11.3)!



26!Software Engineering        © 2010 H. Gall!

Table 11.2.  COCOMO II rating for software understanding 

Very low Low Nominal High Very high 
Structure Very low 

cohesion, high 
coupling, 
spaghetti code 

Moderately low 
cohesion, high 
coupling 

Reasonably 
well- 
structured; 
some weak 
areas 

High cohesion, 
low coupling 

Strong 
modularity, 
information- 
hiding in data 
and control 
structures 

Application 
clarity 

No match 
between 
program and 
application 
world views 

Some 
correlation 
between 
program and 
application 

Moderate 
correlation 
between 
program and 
application 

Good 
correlation 
between 
program and 
application 

Clear match 
between 
program and 
application 
world views 

Self- 
descriptiveness 

Obscure code; 
documentation 
missing, 
obscure or 
obsolete 

Some code 
commentary 
and headers; 
some useful 
documentation 

Moderate level 
of code 
commentary, 
headers, 
documentation 

Good code 
commentary 
and headers; 
useful 
documentation; 
some weak 
areas 

Self-descriptive 
code; 
documentation 
up-to-date, 
well-organized, 
with design 
rationale 

SU increment 50 40 30 20 10 

COCOMO II - Software Understanding!



27!Software Engineering        © 2010 H. Gall!

Table 11.3.  COCOMO II ratings for assessment and assimilation effort. 

Assessment and assimilation increment Level of assessment and assimilation effort 
0 None 
2 Basic component search and documentation 
4 Some component test and evaluation 

documentation 
6 Considerable component test and evaluation 

documentation 
8 Extensive component test and evaluation 

documentation 

COCOMO II - Assessment & Assimilation!



28!Software Engineering        © 2010 H. Gall!

Maintenance prediction!

❍  Maintenance prediction is concerned with assessing which 
parts of the system may cause problems and have high 
maintenance costs!
●  Change acceptance depends on the maintainability of 

the components affected by the change;!
●  Implementing changes degrades the system and 

reduces its maintainability;!
●  Maintenance costs depend on the number of changes 

and costs of change depend on maintainability.!



29!Software Engineering        © 2010 H. Gall!

Maintenance prediction!



30!Software Engineering        © 2010 H. Gall!

Change prediction!

❍  Predicting the number of changes requires an 
understanding of the relationships between a system and 
its environment.!

❍  Tightly coupled systems require changes whenever the 
environment is changed.!

❍  Factors influencing this relationship are!
●  Number and complexity of system interfaces;!
●  Number of inherently volatile system requirements;!
●  The business processes where the system is used.!



31!Software Engineering        © 2010 H. Gall!

Complexity metrics!

❍  Predictions of maintainability can be made by assessing 
the complexity of system components.!

❍  Studies have shown that most maintenance effort is spent 
on a relatively small number of system components.!

❍  Complexity depends on!
●  Complexity of control structures;!
●  Complexity of data structures;!
●  Object, method (procedure) and module size.!



32!Software Engineering        © 2010 H. Gall!

Process metrics!

❍  Process measurements may be used to assess 
maintainability!
●  Number of requests for corrective maintenance;!
●  Average time required for impact analysis;!
●  Average time taken to implement a change request;!
●  Number of outstanding (queued) change requests.!

❍  If any or all of these is increasing, this may indicate a 
decline in maintainability.!



33!Software Engineering        © 2010 H. Gall!

12.3!Software Evolution Processes!

❍  Evolution processes depend on!
●  The type of software being maintained;!
●  The development processes used;!
●  The skills and experience of the people involved.!

❍  Proposals for change are the driver for system evolution!
❍  Change identification and evolution continue throughout 

the system lifetime.!



34!Software Engineering        © 2010 H. Gall!

Change identification and evolution!



35!Software Engineering        © 2010 H. Gall!

The system evolution process!



36!Software Engineering        © 2010 H. Gall!

Change implementation!



37!Software Engineering        © 2010 H. Gall!

Urgent change requests!

❍  Urgent changes may have to be implemented without 
going through all stages of the software engineering 
process!
●  If a serious system fault has to be repaired;!
●  If changes to the systemʼs environment (e.g. an OS 

upgrade) have unexpected effects;!
●  If there are business changes that require a very rapid 

response (e.g. the release of a competing product).!



38!Software Engineering        © 2010 H. Gall!

Emergency repair!



39!Software Engineering        © 2010 H. Gall!

Configuration control process!

❍  Problem discovered by or change requested by user/
customer/developer, and recorded!

❍  Change reported to the Configuration Control Board (CCB)!
●  CCB discusses problem: determines nature of change, 

who should pay!
●  CCB discusses source of problem, scope of change, 

time to fix; they assign severity/priority and analyst to fix!
❍  Analyst makes change on test copy!
❍  Analyst works with librarian to control installation of change!
❍  Analyst files change report!



40!Software Engineering        © 2010 H. Gall!

Change control issues!

❍  Synchronization:  When was the change made?!
❍  Identification:  Who made the change?!
❍  Naming:  What components of the system were changed?!
❍  Authentication:  Was the change made correctly?!
❍  Authorization:  Who authorized that the change be made?!
❍  Routing:  Who was notified of the change?!
❍  Cancellation:  Who can cancel the request for change?!
❍  Delegation:  Who is responsible for the change?!
❍  Valuation:  What is the priority of the change?!



41!Software Engineering        © 2010 H. Gall!

Impact analysis!

❍  Impact analysis is the evaluation of the many risks associated with the 
change, including estimates of effects on ressources, effort, and 
schedule.!

❍  Workproduct!
●  any development artifact whose change is significant, e.g. 

requirements, design and code components, test cases, etc.!
●  the quality of one can affect the quality of others!

❍  Horizontal traceability!
●  relationships of components across collections of workproducts!

❍  Vertical traceability!
●  relationships among parts of a workproduct!



42!Software Engineering        © 2010 H. Gall!

Interface change impact!

❍  Example: 
m components, we need to change k, we have to consider!
●  k * (m - k) + k*( k - 1 ) / 2!

❍  interfaces!!



43!Software Engineering        © 2010 H. Gall!

Managing software maintenance!



44!Software Engineering        © 2010 H. Gall!

Horizontal traceability!



45!Software Engineering        © 2010 H. Gall!

Underlying graph for maintenance!



46!Software Engineering        © 2010 H. Gall!

Automated maintenance tools!

❍  Text editors!

❍  File comparators!
❍  Compilers and linkers!
❍  Debugging tools!
❍  Cross-reference generators!

❍  Static code analyzers!
❍  Configuration management repositories!



47!Software Engineering        © 2010 H. Gall!

12.4!Reengineering!



48!Software Engineering        © 2010 H. Gall!

Software Rejuvenation!

❍  Redocumentation:  static analysis adds more information!

❍  Restructuring:  transform to improve code structure!
❍  Reverse engineering:  recreate design and specification 

information from the code!

❍  Reengineering:  reverse engineer and then make changes 
to specification and design to complete the logical model;  
then generate new system from revised specification and 
design!



49!Software Engineering        © 2010 H. Gall!

Taxonomy of software rejuvenation!



50!Software Engineering        © 2010 H. Gall!

Reverse Engineering!



51!Software Engineering        © 2010 H. Gall!

Redocumentation!

❍  Output may include:!
●  component calling relationships!
●  data-interface tables!
●  data-dictionary information!
●  data flow tables or diagrams!
●  control flow tables or diagrams!
●  pseudocode!
●  test paths!
●  component and variable cross-references!



52!Software Engineering        © 2010 H. Gall!

Reengineering!

❍  Restructuring or re-writing part or all of a legacy system 
plus changing its functionality according to new 
requirements!

❍  Applicable where some but not all sub-systems of a larger 
system require frequent maintenance.!

❍  Reengineering involves adding effort to make them easier 
to maintain. The system may be re-structured and re-
documented.!

❍  = Reverse Engineering + Delta + Forward Engineering!



53!Software Engineering        © 2010 H. Gall!

Reengineering!



54!Software Engineering        © 2010 H. Gall!

Advantages of Reengineering!

❍  Reduced risk!
●  There is a high risk in new software development. There 

may be development problems, staffing problems and 
specification problems.!

❍  Reduced cost!
●  The cost of re-engineering is often significantly less than 

the costs of developing new software.!

❍  e.g. Object-oriented Reengineering Patterns!



55!Software Engineering        © 2010 H. Gall!

Forward and Re-Engineering!



56!Software Engineering        © 2010 H. Gall!

The Reengineering process!



57!Software Engineering        © 2010 H. Gall!

Reengineering process activities!

❍  Source code translation!
●  Convert code to a new language.!

❍  Reverse engineering!
●  Analyze the program to understand it;!

❍  Program structure improvement!
●  Restructure automatically for understandability;!

❍  Program modularization!
●  Reorganize the program structure;!

❍  Data reengineering!
●  Clean-up and restructure system data.!



58!Software Engineering        © 2010 H. Gall!

Reengineering approaches!



59!Software Engineering        © 2010 H. Gall!

Reengineering cost factors!

❍  The quality of the software to be reengineered.!
❍  The tool support available for reengineering.!
❍  The extent of the data conversion which is required.!
❍  The availability of expert staff for reengineering. !

●  This can be a problem with old systems based on 
technology that is no longer widely used.!



60!Software Engineering        © 2010 H. Gall!

Legacy system evolution!

❍  Organisations that rely on legacy systems must choose a strategy for 
evolving these systems!
●  Scrap the system completely and modify business processes so 

that it is no longer required;!
●  Continue maintaining the system;!
●  Transform the system by re-engineering to improve its 

maintainability;!
●  Replace the system with a new system.!

❍  The strategy chosen should depend on the system quality and its 
business value.!



61!Software Engineering        © 2010 H. Gall!

System quality and business value!



62!Software Engineering        © 2010 H. Gall!

12.5!Legacy Systems!

❍  Low quality, low business value!
●  These systems should be scrapped. !

❍  Low-quality, high-business value!
●  These make an important business contribution but are 

expensive to maintain. Should be re-engineered or 
replaced if a suitable system is available.!

❍  High-quality, low-business value!
●  Replace with COTS, scrap completely or maintain.!

❍  High-quality, high business value!
●  Continue in operation using normal system 

maintenance.!



63!Software Engineering        © 2010 H. Gall!

Business value assessment!

❍  Assessment should take different viewpoints into account!
●  System end-users;!
●  Business customers;!
●  Line managers;!
●  IT managers;!
●  Senior managers.!

❍  Interview different stakeholders and collate results.!



64!Software Engineering        © 2010 H. Gall!

System quality assessment!

❍  Business process assessment!
●  How well does the business process support the current 

goals of the business?!

❍  Environment assessment!
●  How effective is the systemʼs environment and how 

expensive is it to maintain?!

❍  Application assessment!
●  What is the quality of the application software system?!



65!Software Engineering        © 2010 H. Gall!

Business process assessment!

❍  Use a viewpoint-oriented approach and seek answers from 
system stakeholders!
●  Is there a defined process model and is it followed?!
●  Do different parts of the organisation use different 

processes for the same function?!
●  How has the process been adapted?!
●  What are the relationships with other business processes 

and are these necessary?!
●  Is the process effectively supported by the legacy 

application software?!
❍  Example - a travel ordering system may have a low business 

value because of the widespread use of web-based ordering.!



66!Software Engineering        © 2010 H. Gall!

Environment assessment 1!

Factor Questions
Supplier
stability

Is the supplier is still in existence? Is the supplier financially
stable and likely to continue in existence? If the supplier is
no longer in business, does someone else maintain the
systems?

Failure rate Does the hardware have a high rate of reported failures?
Does the support software crash and force system restarts?

Age How old is the hardware and software? The older the
hardware and support software, the more obsolete it will be.
It may still function correctly but there could be significant
economic and business benefits to moving to more modern
systems.

Performance Is the performance of the system adequate? Do performance
problems have a significant effect on system users?



67!Software Engineering        © 2010 H. Gall!

Environment assessment 2!

Support
requirements

What local support is required by the hardware and
software? If there are high costs associated with this support,
it may be worth considering system replacement.

Maintenance
costs

What are the costs of hardware maintenance and support
software licences? Older hardware may have higher
maintenance costs than modern systems. Support software
may have high annual licensing costs.

Interoperability Are there problems interfacing the system to other systems?
Can compilers etc. be used with current versions of the
operating system? Is hardware emulation required?



68!Software Engineering        © 2010 H. Gall!

Application assessment 1!

Factor Questions
Understandability How difficult is it to understand the source code of the

current system? How complex are the control structures
that are used? Do variables have meaningful names that
reflect their function?

Documentation What system documentation is available? Is the
documentation complete, consistent and up-to-date?

Data  Is there an explicit data model for the system? To what
extent is data duplicated in different files? Is the data used
by the system up-to-date and consistent?

Performance Is the performance of the application adequate? Do
performance problems have a significant effect on system
users?



69!Software Engineering        © 2010 H. Gall!

Application assessment 2!

Programming
language

Are modern compilers available for the programming
language used to develop the system? Is the programming
language still used for new system development?

Configuration
management

Are all versions of all parts of the system managed by a
configuration management system? Is there an explicit
description of the versions of components that are used in
the current system?

Test data Does test data for the system exist? Is there a record of
regression tests carried out when new features have been
added to the system?

Personnel skills Are there people available who have the skills to maintain
the application? Are there only a limited number of people
who understand the system?



70!Software Engineering        © 2010 H. Gall!

System measurement!

❍  You may collect quantitative data to make an assessment 
of the quality of the application system!
●  The number of system change requests; !
●  The number of different user interfaces used by the 

system;!
●  The volume of data used by the system.!



71!Software Engineering        © 2010 H. Gall!

12.6!Summary - Key points (1)!

❍  Software development and evolution should be a single 
iterative process.!

❍  Lehmanʼs Laws describe a number of insights into system 
evolution.!

❍  Three types of maintenance are bug fixing, modifying 
software for a new environment and implementing new 
requirements.!

❍  For custom systems, maintenance costs usually exceed 
development costs.!



72!Software Engineering        © 2010 H. Gall!

Summary - Key points (2)!

❍  The process of evolution is driven by requests for 
changes from system stakeholders.!

❍  Software re-engineering is concerned with re-structuring 
and re-documenting software to make it easier to 
change.!

❍  The business value of a legacy system and its quality 
should determine the evolution strategy that is used.!



73!Software Engineering        © 2010 H. Gall!

References!

❍  S.L. Pfleeger, J.M. Atlee. Software Engineering: Theory and Practice, 
3rd edition, Pearson Education, 2006.!

❍  I. Sommerville. Software Engineering, 9th edition, Pearson Education, 
2011.!

❍  S. Demeyer, S. Ducasse, O. Nierstrasz. Object-Oriented 
Reengineering Patterns, Morgan-Kaufmann 2003. 
http://www.iam.unibe.ch/~scg/OORP/!

❍  M. Cusomano, R. Selby, Microsoft Secrets: How the World's Most 
Powerful Software Company Creates Technology, Shapes Markets 
and Manages People, Free Press, 1998.!

❍  T. Mens, S. Demeyer (Eds.), Software Evolution, Springer, 2008.!

❍  International Conference on Software Maintenance, IEEE!

❍  International Conference on Program Comprehension, IEEE!


