
Discussion SE Exercise 6Discussion SE Exercise 6

Dustin Wüest and Cédric Jeanneret

Requirements Engineering Research Group

D t t f I f tiDepartment of Informatics

University of Zurich

SE Exercise 6 Results

ge
A

ve
ra

Ex 2.1.a: Black Box and White Box

System Testing:

Black Box
(state inspection for vehicles)

White Box
(inspection of a car by a mechanic)(p) (p y)

Unit Testing (like the getShortName() method):

Black Box
(User experience)

White Box
(Developer experience)(User experience) (Developer experience)

Ex 2.1.a: Black Box Testingg

Agent Names for JClusim…

Equivalence Classes
• Names without slashes: SimpleAgentp g

• Names with slashes: IFI/RERG/SimpleAgent

• Names with slashes at the end: IFI/RERG/

Boundary Values
• Empty names

• Names only made of slashes: /////

Ex 2.1.b: Black Box Testingg

Input Expected
Output

Actual
Output

Result

1 Si l A t Si l A t Si l A F il1 SimpleAgent SimpleAgent SimpleAgen Failure

2 IFI/RERG/SimpleAgent SimpleAgent SimpleAgen Failure

3 IFI/RERG/ RERG RERG Success3 IFI/RERG/ RERG RERG Success

4 (Empty String) (Empty String) (Exception) Failure

5 ///// (Empty String) (Empty String) Success

Ex 2.1.c: Branch Coverageg

Int slashPos;
String shortName = name;

4 branches:
•while (true/false)
•If (true/false)

slashPos = shortName.lastIndexOf("/");
shortName = shortName.substring(0,shortName.length()- 1);

3 branches covered
slashPos ==

shortName.length() -1

true

false

3 branches covered
75%

slashPos = shortName.lastIndexOf(« / »);

slashPos >= 0

shortName = shortName substring(slashPos+1);

true

false
shortName = shortName.substring(slashPos+1);

Return shortName;

Ex 2.1.d: Branch Coverageg

It is impossible to achieve 100% branch coverage with a
single test case: the IF-branch cannot be evaluated to true
and false within a single execution!

With two test cases:

Input Expected Actual Resultp p
Output Output

1 /A/A A A Success

2 A/ A A S2 A/ A A Success

Ex 2.1.e: White Box Testingg

Easy to detect with white box testing:
• Wrongly implemented functionality or programming errors

(localisation of the defect)

• Dead code (by trying to achieve full instruction coverage)

Hard to detect with white box testing:
i h ifi i• Errors in the specifications

• Errors at the interfaces

Problems ith interactions ith other components• Problems with interactions with other components

Ex. 2.2.a: GQM
Examples

Easy and rapid registration for students

Factors:Factors:
• Clarity of the user interface

• Does the user know which task he is currently performing?
I t iti it f th i t f• Intuitivity of the user interface

• Is the UI designed in a way that the users feel comfortable?
• Simplicity of registration process

• How many steps are required for the registration?
• Response time of the server

• Has the system acceptable response time?
• Number of problems

• How many students required an intervention from the secretary?

Ex. 2.2.b: GQM
Examples

Measures (type of scale):
• Does the user know which task he is currently performing?

• Support provided by the system (nominal: yes/no)

• Is the UI designed in a way that the users feel comfortable?
• Users satisfaction (ordinal: -- - ~ + ++)• Users satisfaction (ordinal: --, -, ~, +, ++)

• How many steps are required for the registration?
• Number of steps for a normal registration (absolute)

• Response time of the server
• Latency (ratio scale)

H t d t i d i t ti f th t ?• How many students required an intervention from the secretary?
• Number of problematic registration (absolute)

