
Discussion SE Exercise 4Discussion SE Exercise 4

Dustin Wüest and Cédric Jeanneret

Requirements Engineering Research Group

D t t f I f tiDepartment of Informatics

University of Zurich

SE Exercise 4 Results

ge
A

ve
ra

Ex 2.1: Architecture Stylesy

1. What are the structural elements of the systems (their
roles, their responsibilities)?

2. What is the nature of communication between these
elements?

Find an architectural style that is appropriate.

Ex 2.1.A: Secretaryy
Pipes and Filters

Components
• Filters: Sorters, Filters, Converters

C tConnector
• Pipes

Advantages
• No complex components interactions
• Reusability and maintainable (add, arrange and substitute filter)

DisadvantagesDisadvantages
• Computational overhead (e.g. parsing in several filter)
• Batch processing

Ex 2.1.A: Secretaryy
Pipes and Filters

Ex 2.1.B: Students
Publish / Subscribe

Components
• Publishers / Subscribers

Connectors
• Message distribution and registration infrastructure.

Announcers of events do not know which components will be affected by
hthose events.

Advantages
l l f• Very low-coupling of components

Disadvantages
• Reliability (no guarantee of getting an answer)
• Simplicity (no control over the order of answers)• Simplicity (no control over the order of answers)
• Understandability (difficulty for reasoning independently of subscribers)
• Event abstraction does not cleanly lend itself to data exchange

Ex 2.1.B: Students
Publish / Subscribe

Ex 2.1.C: Department’s headp
Virtual Machine (Interpreter)

Components:
• Command interpreter
• Program state (data)g ()
• Interpreter internal state
• Program to be interpreted

Connectors:Connectors:
• Procedure calls / Memory access (very tightly coupled)

Advantages:Advantages:
• Highly dynamic behavior possible
• End-user programmability

Disadvantages:Disadvantages:
• Slow performance due to interpretation
• Difficulties for maintenance

Ex 2.1.C: Department’s headp
Virtual Machine (Interpreter)

Ex 2.2.A: Creational Patterns
Abstract Factory

Client

Abstract
Factory

Abstract
Products

Concrete
Factories

Concrete
P d t

Factories
Products

Ex 2.2.A: Creational Patterns
Abstract Factory

Provide an interface for creating families of related or
dependent objects without specifying their concrete classes.

Uses
• Isolate clients from implementation classesp
• A system should be independent of how its products are created,

composed and represented
• Configuration of a system with one of multiple families of product• Configuration of a system with one of multiple families of product
• Ensure consistency among products

Consequences
• Supporting new kind of products is difficult

Ex 2.2.A: Creational Patterns
Factory Method?

Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory
Method lets a class defer instantiation to subclasses.

Uses
• A class wants its subclasses to specify the objects it creates

• Connects parallel class hierarchies (e.g.: Figures and
Manipulators)

Ex 2.2.A: Creational Patterns
Factory Method?

Ex 2.2.A: Creational Patterns
Factory Method?

Languages

German English …

en
ts

WorkshopDoc

StudentDoc

D
o

cu
m

e

AssignmentDoc

…

Often, designs start out using Factory Method (less complicated, more
customizable, subclasses proliferate) and evolve toward Abstract Factory,
Prototype, or Builder (more flexible, more complex) as the designer discovers
where more flexibility is needed. (GoF, p136)

Ex 2.2.A: Creational Patterns
Prototype

Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this
prototype.

Uses
• A system should be independent of how its products are

t d d d t dcreated, composed and represented
• The classes to instantiate are specified at run-time

• To avoid building a hierarchy of factoriesTo avoid building a hierarchy of factories

Ex 2.2.A: Creational Patterns
Prototype

Ex 2.2.A: Creational Patterns
Builder

Separate the construction of a complex object from its
representation so that the same construction process can
create different representations.

Consequences
• It isolates code for construction and representation

• It provides a finer control over the construction process

Ex 2.2.A: Creational Patterns
Builder

Ex 2.2.A: Creational Patterns
Singleton

Ensure a class only has one instance, and provide a
global point of access to it.

Uses:
• There must be exactly one instance of a class and it must be

accessible to clients from a well-know access point

h l i h ld b bl d d i• The sole instance should be able to use an extended instance
without modifying their code

Ex 2.2.A: Creational Patterns
Singleton

Ex 2.2.A: Creational Patterns
Summary

Instead of creating documents itself:

Document doc = new EnglishWorkshopDoc();g p ()
An exporter object can:

• Call an abstract method. This method is implemented in a p
subclass which will decide which class to instantiate
(FactoryMethod)

D l t th ti f d t t bj t• Delegate the creation of document to an object
(AbstractFactory)

• Use a object that will build a document under its directionUse a object that will build a document under its direction
(Builder)

• Clone a prototype (Prototype)

Ex 2.3: Creational Patterns in Java

Singleton:
• java.lang.Runtime

Abstract Factory
• javax.xml.validation.SchemaFactory (creates a Schema)

Factory Method:
• java.net.SocketImpl (creates a java.io.InputStream)

Prototype:
• java.lang.Cloneable

Builder:
• java.lang.StringBuilder (builds String)

Ex 2.2.B: Structural Pattern
Proxy

Provide a surrogate or placeholder for another object to
control access to it.

Uses
• Remote Proxy (local representative for a remote object)

• Protection Proxy (verification of access rights)

• Virtual Proxy (creation of an object on demand)

• Smart References (housekeeping, locking)

Ex 2.2.B: Structural Pattern
Adapter

Convert the interface of a class into another interface
clients expect. Adapter lets classes work together that
couldn't otherwise because of incompatible interfaces.

A proxy has the same interface than its subject.

An adapter adapts the interface of its adaptee to a target.

Ex 2.2.B: Structural Pattern
Facade

Facade provides a unified interface to a set of interfaces
in a subsystem. Facade defines a higher-level interface
that makes the subsystem easier to use.

Facade defines a new interface whereas adapter reuses an
old interface.

Ex 2.2.B: Structural Pattern
Bridge

Bridge decouples an abstraction from its
implementation so that the two can vary independently.

Adapter is usually applied to objects after they have been
designed, Bridge define a stable interface for various
(future) implementations.

Ex 2.2.B: Structural Pattern
Decorator

A decorator attaches additional responsibilities to an
object dynamically keeping the same interface.
Decorators provide a flexible alternative to subclassing for
extending functionality.

Proxy provides (or prevent) access to its subject (which
provides the key functionality) decorator completes theprovides the key functionality), decorator completes the
functionalities of a component (which only provides part of
the functionality)the functionality)

Ex 2.3: Structural Patterns in Java

Adapter:
• java.io.InputStreamReader (adapts a InputStream to a Reader)
• java.awt.event.MouseAdapter (doesn’t adapt anything)

Decorator:
• java.io.FilteredInputStream (decorates an InputStream)
• javax.swing.border.TitledBorder (decorates a Border)

C iComposite:
• java.awt.Component (Container, like Panel, contains Label, Button)
• java.awt.Composite (refers to “compositing”, esp. “alpha compositing”)

Bridge:Bridge:
• java.net.Socket (implemented by a SocketImpl)

Facade:
• java awt Font• java.awt.Font

Proxy:
• java.lang.reflect.Proxy

Ex 2.2.C: Behavioral Patterns
Strategy

St t C t tStrategy Context

Concrete
Strategy

Ex 2.2.C: Behavioral Patterns
Strategy

Strategy defines a family of algorithms, encapsulates each
one, and makes them interchangeable. Strategy lets the
algorithm vary independently from clients that use it.

Uses:
• Configure a class with one of many behaviors (e.g.: ciphers,

lik IDEA AES)like IDEA or AES)

• Different variants of an algorithm with various space/time
tradeoff (e g : sort algorithms)tradeoff (e.g.: sort algorithms)

• Hide complex algorithm-specific data structure to a client

• Remove many conditional statements in a class operationsy p

Ex 2.2.C: Behavioral Patterns
Template Method

Ab t t Cl

Template

Abstract Class

Method

PrimitivePrimitive
Operations

Concrete Class

Ex 2.2.C: Behavioral Patterns
Template Method

A template method defines the skeleton of an algorithm
in an operation, deferring some steps to subclasses.
Template Method lets subclasses redefine certain steps of
an algorithm without changing the algorithm's structure.

Uses:
C l b l i b d fi i “h k ” i• Control subclass extensions by defining “hooks” operation

• Implement the invariant part of an algorithm and let
subclasses implements the parts that can varysubclasses implements the parts that can vary

• Avoid code duplication (of common behavior among several
classes)

Ex 2.2.C: Behavioral Patterns
State

State allows an object to alter its behavior when its
internal state changes. The object will appear to change
its class.

Uses:
• An object’s behavior depends on its state and it must change

it b h i t ti d di t tits behavior at run-time depending on state

• Operations have large, multipart conditional statements that
depend on the object’s statedepend on the object s state

Ex 2.2.C: Behavioral Patterns
State

Ex 2.2.C: Behavioral Patterns
Mediator

A mediator is an object that encapsulates how a set of
objects interact. Mediator promotes loose coupling by
keeping objects from referring to each other explicitly,
and it lets you vary their interaction independently.

In our case, a mediator would act like a “chief agent”,
organizing and managing his group This is absolutelyorganizing and managing his group. This is absolutely
contrary to the principle of the framework!

Ex 2.2.C: Behavioral Patterns
Summary

Encapsulate variation
• Strategy encapsulates an algorithm

• State encapsulates a state-dependant behavior

• Mediator encapsulates the protocol between objects

• Iterator encapsulates the way an aggregate object is
traversed

C d l t t t li t• Command encapsulates a request to a client

• Visitor encapsulates an operation on a object structure

Decouple Sender/Receivers with various trade offDecouple Sender/Receivers with various trade-off
• Command, Observer, Mediator, Chain of Responsibility

Ex 2.3: Behavioral Patterns in Java

Iterator:
• java.util.Iterator (iterates over a Collection)

Observer:
• java.util.Observer (observes an Observable)

Strategy:
• java.awt.LayoutManager (e.g.: GridBagLayout, FlowLayout,…)

Template Method:
• java.io.InputStream (read(byte[] b) uses the abstract primitive operation read())

Visitor:
j l d l l l i i (i i d f l)• javax.lang.model.element.ElementVisitor (visits a Java 6 AST, made of Element)

Command:
• javax.activation.CommandObject

MediatorMediator:
• java.awt.KeyboardFocusManager (manages the “focus” among

javax.swing.JComponent)

