
Discussion SE Exercise 1Discussion SE Exercise 1

Dustin Wüest and Cédric Jeanneret

Requirements Engineering Research Group

D t t f I f tiDepartment of Informatics

University of Zurich

SE Discussion / Interviews

Interviews are not systematic (random sample). They are
meant to verify that every member of a group participates
in solutions elaboration.

Future discussions may be based on short presentations of
students solutions.

In any case, you will be informed in advance. You are free
t d li th i it ti f t ti b t t fto decline the invitation for a presentation but not for an
interview.

SE Exercise 1 Results

ge
A

ve
ra

g

Submission Protocol

Archive
• Filename schema: Ex[n]_[NameA]_[NameB]

• Without special characters.

• Example: Ex2_Wueest_Jeanneret

• Content: a document and source code (no libraries)• Content: a document and source code (no libraries, …)

Document
• PDF files onlyPDF files only

• Must contain group members name and matriculation number

• If possible, send one document

Email subject begins with [SE EX HS08]

From now, these requirements must be satisfied

Part I – Code Understandingg

To apprehend JClusim, you were asked to:
• Understand the concepts used in JClusim

• Describe the generic behavior of an agent

• Figure out how an experiment is configured

These were prerequisites for the second part of the
exercise!

Part I – Code Understandingg
Ex 1: Structure

Evaluation:
• The “right” level of details

• Multiplicities and role names for associations

• Static and abstract elements

f• Correctness of the model

Frequent Problems Ex 1q
Layout

A diagram looses its
value if it is poorly p y
layouted.

Frequent Problems Ex 1q
Generalization / Realization

A generalization (left) relates a specific classifier to a more
general classifier.

A realization (right) relates an implementation to its
specification.

Frequent Problems Ex 1q
Navigable Associations

The second diagram
(bottom) implies that
if an Agent a carries
an Item i, the
following constraintfollowing constraint
holds: ≠

The first diagram (top)

a.carriedItem.carryAgent == a

The first diagram (top)
does not.

Frequent Problems Ex 1q
Assoc. + properties

The class Item has two carryingAgent properties:

one as attribute, the other as association end

Frequent Problems Ex 1q
Assoc. + properties

In UML, multiplicities are placed differently than in an
entity relationship diagram.

In JClusim, several agents work in an experiment (and not
vice-versa).

Part I – Code Understandingg
Ex 2: Behavior of an Agent

To understand the generic behavior of an Agent, you had the
choice between:

a) Represent an Agent as a state machine

b) Represent the behave() method as an sequence of actions

Evalutation:
• Correctness of the model (including its validity)(g y)

• The “scoping”. For example:
• An agent does not know anything about the end of the experiment

W t i t t d i th d t il f th d i k d b b h ()• We are not interested in the details of methods invoked by behave()

Part I – Code Understandingg
Ex 2 a): Agent’s behavior

An agent can essentially be in two states: Idle (when it
does not carry an item) or busy (when it does).

Frequent Problems Ex 2 a)q
Transition Labels

Usually, transition labels are written as:
Triggers [Guards] / Effect

A trigger is an event that may fires the transition
• The invokation of a method, the reception of a signal, …

A guard is a boolean expression (e.g. [isCarryingItem()])
• Enables or disables the transition• Enables or disables the transition
• Calling a method in a guard is allowed as long as it has no side

effects (such a method is called query method)

An effect is an optional behavior to be performed when the
transition fires

Part I – Code Understandingg
Ex 2 b): Agent’s behavior

Frequent Problems Ex 2 b)q
Fork/Join - Decision/Merge

Do not mix a decision (right, diamond at the top) with a join (left,
bar at the bottom), otherwise, your activity will be blocked.

Part I – Code Understandingg
Ex 3: Experiment Initialisation

You were asked to describe
the interaction between an
experiment and its settings.

Frequent Problems Ex. 3q

Replies to operation
calls go back to the
calling lifeline (and
nowhere else).

(Creation of objects is
usually depicted thisusually depicted this
way, to highlight the
fact they have beenfact they have been
created during the
interaction.)

Part II – Code Improvementp
Systematic Programming

You were not asked explicitely to apply what you were
taught during the first lecture, but you should have. It
makes your code more understandable, especially for the
correctors. Especially:

U i f l d bi (b d l• Use meaningful and non-ambiguous names (bad example:
maxValue for an attribute and valueMax for a variable)

• Do not write numerical values in the code but factor themDo not write numerical values in the code, but factor them
as a variable/constant (e.g. the size of the environment)

• Make your control structure visible with indentation

Part II – Code Improvementp
Ex 1: Optimization

Memoization:
+ querying an item is faster (and it happens often in JClusim)

- An item uses more memory

- The creation of an item takes more time

(-) If not implemented « correctly », the code of the constructor
is scattered with optimization code and the public interface of
an item may changean item may change

Lazy initialisation has another purpose: spare memory byLazy-initialisation has another purpose: spare memory by
delaying the creation of a (relatively) large object until it is
needed.

Part II – Code Improvementp
Ex 1: Optimization

public Item(double[] values) {
…

// Memoization computations

…

color = computeColor();

}

private Color computeColor() {

…

}

Part II – Code Improvementp
Ex 2: Documentation

package jclusim.base;
/**
* The class represents agents in a JClusim experiment. An agent moves around
* the environment. He can pickup items, carry them and drop them on an other
* ll* cell.
*
* This class is supposed to be extended to implement the specific behavior of
* an agent.
*
* @author Cedric Jeanneret
* @copyright Department for Computer Science, RERG
* @history 2008-08-01 CJ First Version
* @version 2001-08-01 CJ 1.0
* @responsibilities This class implements the behavior of an agent
* @see Experiment
* @see Item
* @see Cell
//
public abstract class Agent {…}

Part II – Code Improvementp
Ex 2: Documentation

/**

* Reference to the item currently carried by
* this agent.

* null if the agent is not carrying an item.

*

* @see Item

*/

private Item carriedItem;

Part II – Code Improvementp
Ex 2: Documentation

/**
* This method actually moves the agent to another
cell.
* This method is not meant to be overridden.
*
* @ tC ll Th ll th t i b t t* @param nextCell The cell the agent is about to
move to.
*
* @pre nextCell != null
* @post currentCell = nextCell &&
nextCell.getAgents().contains(this)g g () ()
*/
public final void move(Cell nextCell) {…}

Part II – Code Improvementp
Ex 3: New Experiment

Code reuse is not « blind copy-paste »…
• SimpleAgents used instead of the new Agent

• All agents at the same place instead of being randomly
placed

• Items placed regularly instead of randomly

Choose Next Cell

int dx = RandomVariable.drawDiscreteUniform(-1, 1) * speed;

int dy = RandomVariable.drawDiscreteUniform(-1, 1) * speed;

