Software Engineering

Besprechung zur Uebung 6 Softwaretests

Allgemeines, Formelles

- Für alle Gruppen
 - Abholung der Übungen: BIN 2.B.17
- Abschluss der Übungen Gesamtpunkteliste
 - Bitte kontrolliert die Punkteliste auf Korrektheit
- Prüfung
 - Findet am 15. Jänner ab 10:15 Uhr im Hörsaal 1.B.01 statt
 - Eine Musterprüfung zur Vorbereitung ist am Web
- Prüfung, PPO 01
 - Studierende nach PPO 01 belegen eine erweitere Schlussklausur
 - Klausur ist nicht länger, nur Aufgaben sind teilweise anders
 - Eine Zusatzübung + Lösung zur Vorbereitung ist am Web

Aufgabe 2.1: Testen (1)

Ziel

Das Programm mit der Absicht ausführen Fehler zu finden

Aufgabe

 Die Aufgabenstellung war etwas schwierig, da Bedingung der do-while Schleife sehr falsch

Kriterien

- Unterscheidung Black-Box Test (Aufgabe a) und White-Box (Rest)
- Punkteverteilung: a) i.&ii. 3P, iii. 3P, b) 2P, c) 1,5P, d) 1,5P, e) 2P.
- Genaues Aufzeigen des Fehlers und Korrektur war in der Aufgabe nicht explizit gefordert ...

4

Aufgabe 2.1: Testen (2)

Angabe

Kontext:

- Felder mit 30 Zeichen Länge
- Initialisierung mit Leerzeichen
- Speicherung von Namen darin

gegebener Code:

```
/**
 * Die Methode liefert die Position des letzten nicht leeren
 * Zeichens in der Zeichenkette text oder -1, wenn text nur aus
 * Leerzeichen besteht oder gar keine Zeichen enthält.
 *
 * @param text Eingabeparameter, Zeichenkette (Feld von elementaren
 * char Datentypen)
 * @return letztePos Funktionswert, ganze Zahl >= -1
 */
int lokalisiereLetzes (char[] text) {
 final char leer = ' ';
 int letztePos;
 letztePos = text.length - 1;
 do {
  if (text[letztePos] == leer) {
    letztePos = letztePos - 1;
  }
 }
 while (letztePos >= 0 || text[letztePos] != leer);
 return letztePos;
}
```

4

Aufgabe 2.1: Testen (3)

a) Black-Box Test

Array-Länge möglich von 0 bis 30.

- i. Äquivalenzklassen
 - 1. Kein Leerzeichen, Länge = 1, Bsp.: "a"
 - 2. Kein Leerzeichen, Länge > 1, Bsp.: "abc"
 - 3. Nur ein Leerzeichen, Bsp.: " "
 - 4. Nur Leerzeichen, Länge > 1, Bsp.: " "
- ii. Grenzwerte
 - 1. Leere Zeichenkette, Länge = 0
 - 2. Maximal lange Zeichenkette, Länge = 30
 - 3. Bsp Länge = 5; genau ein nicht leeres Zeichen am Ende
 - 4. Bsp Länge = 5; genau ein nicht leeres Zeichen am Anfang

4

Aufgabe 2.1: Testen (4)

iii. Testvorschrift

1. Einleitung

Aufbau

1.1 Zweck

Art und Zweck des im Dokument beschriebenen Tests

1.2 Testumfang

Welche Konfigurations-Einheiten der entwickelten Lösung getestet werden

1.3 Referenzierte Unterlagen

Verzeichnis aller Unterlagen, auf die im Dokument Bezug genommen wird

2. Testumgebung

2.1 Überblick

Testgliederung, Testgüte, Annahmen und Hinweise

2.2 Testmittel

Test-Software und -Hardware, Betriebssystem, Testgeschirr, Werkzeuge

2.3 Testdaten, Testdatenbank

Wo die für den Test benötigten Daten bereit liegen oder bereitzustellen sind

2.4 Personalbedarf

wieviel Personen zur Testdurchführung benötigt werden

3. Annahmekriterien

Kriterien für

- erfolgreichen Test-Abschluss
- Test-Abbruch
- Unterbrechung und Wiederaufnahme des Tests

4. Testfälle

Testfälle

Testfall	Eingabe	Erwartetes	Befund
		Resultat	
1	"a"	0	
2	"abc"	2	
3	" " (1 leeres Zeichen)	-1	
4	" " (2 leere Zeichen)	-1	
5	"" Leere Zeichenkette	-1	
	(Länge null)		
6	"abcdexyz"	29	
	Zeichenkette der		
	Länge 30 ohne		
	Leerzeichen		
7	"abcd "	3	
8	" abcd"	4	
9	"abc def"	6	

decken Äquivalenzklassen und Grenzwerte ab.

Aufgabe 2.1: Testen (5)

b) Schreibtischtest (White Box)

Testfall	Eingabe	Erwartetes Resultat	Befund
1	"a"	0	Endl.schl.
2	"abc"	2	Endl.schl.
3	"" (1 leeres	-1	ArrayOutOf-
	Zeichen)		BoundsException
4	" " (2 leere	-1	ArrayOutOf-
	Zeichen)		BoundsException
5	"" Leere	-1	ArrayOutOf-
	Zeichenkette		BoundsException
	(Länge null)		
6	"abcdexyz"	29	Endl.schl.
	Zeichenkette der		
	Länge 30 ohne		
	Leerzeichen		
7	"abcd "	3	Endl.schl.
8	" abcd"	4	Endl.schl.
9	"abc def"	6	Endl.schl.

```
/**
 * Die Methode liefert die Position des letzten nicht leeren
 * Zeichens in der Zeichenkette text oder -1, wenn text nur aus
 * Leerzeichen besteht oder gar keine Zeichen enthält.
 *
 * @param text Eingabeparameter, Zeichenkette (Feld von elementaren
 * char Datentypen)
 * @return letztePos Funktionswert, ganze Zahl >= -1
 */
int lokalisiereLetzes (char[] text) {
 final char leer = ' ';
 int letztePos;
 letztePos = text.length - 1;
 do {
  if (text[letztePos] == leer) {
    letztePos = letztePos - 1;
  }
 }
 while (letztePos >= 0 || text[letztePos] != leer);
 return letztePos;
```

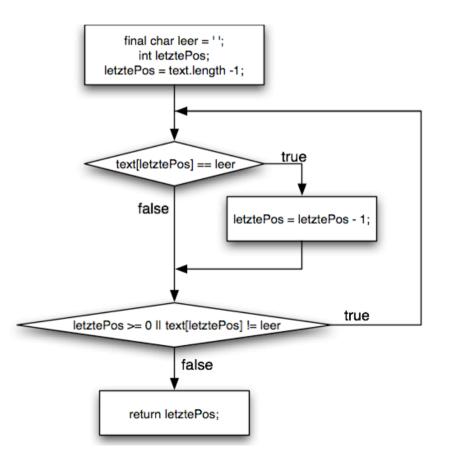
- Befunde bereiteten teilw. Probleme.
- Werden Probleme im Code entdeckt --> dokumentieren!
 - Abbruchbedingung sollte lauten:
 - letztePos >= 0 && text[letztePos] == leer
 - Bsp.: while anstatt do-while Schleife beseitigt die if-Abfrage.

Abbruchbedingung (Soll):

Und: beide Argumenten müssen 'true' sein.

Java: Wenn erstes Argument 'false' ist und ein Und (&&) folgt, wird *nicht* weiter geprüft.

Aufgabe 2.1: Testen (6)


c) Zweigüberdeckung

- = Anzahl durchlaufene Zweige / Anz. Zweige
- Jeder Pfeil ist ein Zweig
- Da es nicht terminiert:
 - Letzter Zweig wird nicht durchlaufen
 - **5/6**
 - = 83,3 %

d) Zweigüberdeckung

 Da das Programm nicht terminiert wird 100% Zweigüberdeckung nicht erreicht.

Flussgraph:

Aufgabe 2.1: Testen (7)

- e) White-Box versus Black-Box (am zuvor gezeigten Beispiel)
 - White Box
 - Prüft Programmablauf und Datenfluss; Güte abhängig von Überdeckung;
 - +
- "dead code" entdecken (Anweisungsüberdeckung)
- Lokalisierung von Defekten
- Falsch Implementierte Funktionalität
- Programmierfehler
- -
- Fehler im Gesamtsystem (--> Integrationstests)
- Fehler in der Spezifikation, Fehler in den Kommentaren
- Black Box
 - Blick "von weiter weg" auf das System
 - Finden von Äquivalenzklassen und Grenzfällen der Spezifikationen

Aufgabe 2.2: Zielorientiertes Messen (1)

- Ziel
 - Suche nach Massen, welche das Ziel quantitativ charakterisieren
- Kriterien
 - Nur das messen was zur Erreichen der Ziele beiträgt
 - Festgelegte Interpretation der ausgewählten Masse
- Lösungen
 - Mittel bis gut

Aufgabe 2.2: Zielorientiertes Messen (2)

Vorgegebenes **Ziel**:

- "Einfaches und schnelles Nachvollziehen des Simulationsablaufs und eventuelles Präzisieren von Simulationsparametern"
- a) Faktoren zur Zielerreichung und Fragen zur Qualitätskontrolle
 - Übersichtlichkeit des GUI
 - Wie schnell kann man eine Simulation starten?
 - Wie einfach kann man während der Simulation Parameter anpassen?
 - Intuitive Darstellung der Ergebnisse
 - Ist die Art der Darstellung der Ergebnisse leicht verstehbar?
 - Hilfestellungen im Programm
 - Gib es im Programm genügend Mechanismen die Hilfestellung bieten?
 - Benutzerfreundlichkeit des Editors
 - Wie leicht lassen sich neue Landschaften/Tiere erstellen?
 - Wie leicht lassen sich Paramter definieren?

Aufgabe 2.2: Zielorientiertes Messen (3)

- b) Messbare Merkmale und mögliche Skalentypen zu allen Fragen
 - Wie schnell kann man eine Simulation starten?
 - Zeit vom Starten des Programms bis zum Simulationsbeginn.
 - Verhältnisskala (Zeit in Sekunden)
 - Rechenzeit beim Programm- und Simulationsstart
 - Verhältnisskala (Zeit in Sekunden)
 - Wie einfach kann man während der Simulation Parameter anpassen?
 - Anzahl Klicks bis zur Anpassung
 - Absolutskala (ganze Zahl)
 - Einfachheit der Anpassung
 - Ordinalskala (Kategorien: einfach, mittel, schwierig)
 - ... weitere Merkmale

· ...

Direkte Masse vs. Indirekte Masse:

z.B. Durchlaufzeit ist direkt, Benutzerfreundlichkeit ist nur indirekt messbar.

Aufbau der Prüfung

- Zwei Teile, gesamt 120 Punkte und 90 Minuten Zeit.
- 1. Teil: Wissensfragen (40 Punkte, ca. 30 Minuten Bearbeitungszeit)
 - 10 Themenbereiche
 - Pro Bereich 6 Aussagen
 - Beurteilung der Aussagen mit: "richtig", "falsch" oder keine Antwort.
 - Korrekte Ankreuzung: Punkte
 - Falsche Ankreuzung: Punkteabzug
 - Keine Antwort: keine Punkte
- 2. Teil: Anwendungsaufgaben (80 Punkte, ca. 60 Minuten Bearb.zeit)
 - Anwendungsaufgaben zum Stoff der Vorlesung
 - Ähnlich den Aufgaben in den Übungen und Mini-Übungen der Vorlesung

Tutoren/TA für Modellierung FS 08

Frühjahrssemester 2008

- Wir suchen Tutoren und evtl einen Teaching Assistant für Informatik IIa:
 Modellierung.
 - Vorraussetzungen: Inf.IIa: Modellierung mit Erfolg bestanden; Interesse am Stoff und Freude an der Lehre.
 - Entlohnung: Geld, APS-Punkte, Horizonterweiterung.
 - Bei Interesse bitte bei Christina Cramer oder bei mir melden.

Danke für die Aufmerksamkeit.