

Requirements Engineering for Context-Aware Systems

Andrei Cojocariu, andrei.cojocariu@uzh.ch

Institute for Informatics, University of Zurich

Binzmühlestrasse 14, CH-8050 Zurich, Switzerland

Abstract. The goal of this paper is to offer a walkthrough of two main aspects of

requirements engineering for context-aware systems. At first – the context, handling

the context data and how it is the context actually influencing the behavior of a

context-aware application. I am looking at how the user is being involved into the

requirement engineering process while trying to sketch myself an elicitation method

based on simple tables where the analyst can map requirements to contextual data.

Second part covers uncertainty into requirements, how is uncertainty being build,

why is it hard to detect and how can the analysts cope with it by using current state

of the art.

1. Introduction

The term of Context-Aware System (CAS) has first been introduced by Schilit, Adams

and Want [1] and ever since there is a growing community of scholars orbiting around

it. Inside this group and to some extend in the outside the purpose of context-aware

system could not be clearer; a better interaction between the device and its environment

it’s needed. It is envisioned that by tackling and trying to fill this gap the use of devices

both in the industry and personal environments will bring a big plus to productivity in

general. By being aware of its context an application can offer the user a set of services

that the user can immediately access or the application can even change its operations

set so that it matches the current context of the user. Though the benefits of working

with such a system are not hard to notice, context-aware systems are not yet very

common. Sitou and Spanfelner [2] point out that this could be because there is still a big

gap between the system behavior and user expectations. This problem is also being

found in regular systems, however along the way we have created good methods to cope

with it. It is actually the requirements engineering part of a system design process that

takes care that the user gets what he actually wants from the new system.

When it comes to context-aware systems, however, research is still being done in

order to find the best ways of engineering requirements of the system to be. Today’s

standard methods are not suitable one hundred percent for this type of systems. This is

mostly because there are several differences between a regular system where the

operational context is rather static and a context-aware system which is designed to

operate in a fast changing environment. Nevertheless requirements engineering for

context-aware systems is as important as for all the other systems and in this paper I will

mailto:andrei.cojocariu@uzh.ch

try to identify the current state of the art while pointing out the aspects and properties

that make context aware applications special from a requirements engineering point of

view. I will start with a general overview of context aware systems in section 2 and then

go into the requirements engineering process itself in section 3. Section 3 covers also in

more detail what context may refer exactly to, what methods we can use to catch and

model it while also actively involving the user into this process. Towards the end of

section 3 I am addressing uncertainty in requirements which another key challenge in

requirements engineering for context-aware systems.

2. Context and Context-Aware Systems

2.1 Context Aware

Trying to define a context aware system is not an easy task. But when trying to do so

one should first understand what context-aware actually means. Anind K. Dey [3]

defines it with:

“A system is context-aware if it uses context to provide relevant information and/or

services to the user, where relevancy depends on the user’s task.”

where context is any information that can be used to categorize the current situation

of a user.

2.2 Context Properties

A given context is made up of several elements, out of which we can easily identify:

 Location: position, orientation, velocity, etc.;

 User Identity: Profile, preferences, biometrics, social information etc.;

 Time: current date and time or future events, duration etc.;

 Activity: walking, sleeping, sitting, etc.;

 Current Task: work or social meeting, fitness, studying, etc.;

 Environment: temperature, humidity, light and noise levels;

 Hardware: current device information, network and surrounding devices;

Context aware systems can be then described as applications that are able to read

certain contextual elements, reason about them and then adjust their behavior so that it

meets in the best possible way the user needs in the current operational context. Further

coverage of context and what exactly means for a context-aware application is discussed

in 3.1.

3. Requirements Engineering

Requirements engineering is special in a context-aware system because in contrast to a

regular system the CAS is expected to perform in a versatile environment with

properties that might change or even be unknown at design time. As such, a context-

aware system must continuously monitor changes in its context and react accordingly.

1 2 3

3.1 Using Context in Requirements Engineering

The term context is not new for requirement engineers. Contextual inquire for example

is a method of requirement elicitation where the analyst creates a master-apprentice

relationship with the future users of the future system. Meaning that the analyst

(apprentice) tries to observe and understand how the user (master) behaves in his

environment. In this setup the analyst and user have an active relationship where the

analyst interacts with the user generally by asking questions about the current task. After

the observations have been done the analyst tries to design a series of requirements for

the system to be. Based on these requirements the future system will support the user by

partially or fully automating parts of the work process.

In contextual inquire the context only defines the work environment of the user and

it does not necessarily represent an input for the future system. The context here is

rather associated with the user and not with application itself. So in this way we can talk

about context-aware requirement engineering but can we say that the system based on

these requirements is also context aware? No, the system itself is still not aware of its

context. Thus when engineering requirements for a context aware system we have to

consider context as an input for the application. The application should be able to reason

about this input and then generate a context based output.

 Context Input Context reasoning Context based output

Fig 1, Flow of context information

3.2 Context as an Input

Our application behavior is highly dependent on input, mostly user input. Just imagine

how our daily uses of computers and software will be if there will be no keyboard or

mouse. We use these peripherals to tell our applications what we want and the

applications than react to our input. In a similar way if we will like to have applications

behave accordingly to the context, we should give them the context as an input.

However as users we cannot do this, it will be just a plus of burden for us and probably

also rather expensive in an enterprise setup. Therefore, the application should be

designed to read the context information by itself from the surrounding environment.

The analyst must also keep in mind that the application environment is not fully known,

so we have to work with a high level of uncertainty.

Another key factor to be considered when doing context based requirement

engineering is the quality of context (QoC). Even for a context-aware system the

behavior should not be fully dependent on the context. The application should be fitted

with a default operational mode that can be activated when the context information is

not sufficient to generate a valid context based output. According to Sheikh et al. [4]

QoC can be used to describe the precision or freshness of the context. The system will

have to rely on low level devices like sensors for reading context information. This

means that in some situations the image of current context will have to be constructed

using information from more than just one source. For example, if the mobile calendar

specifies that the user is now in a meeting so the ring volume should be set on silent, the

system, here a smartphone, cannot rely just on the calendar information to decide if the

user is really attending the meeting. Rather it can combine this information with the

location data provided by the cell-id or GPS, the location is can then be compared

against the event location in the calendar. In this example we have the context made up

of two elements, if one of them is not available, what should the system do? If the

volume is set low and the user is not really attending the meeting we then have a

conflict between what the user expectation are and the system behavior. This is of

course a basic example but it is nevertheless showing a challenge that the analyst will

face when trying to identify requirements which will reflect completely the user wishes

for the system to be. As well, it becomes obvious that there is a need for a good

mechanism that can be used to reason about the contextual data and the level of

adaptation the system can undertake given these data.

3.3 Context based Output

In the previous chapter I have tried to explain how context is similar to just any other

input an application requires in order to fulfill the user requirements. One aspect that is

maybe not that obvious when thinking about context-aware system is that the output of

the application should ideally also be context based. In fact, two different types of

outputs can be identified with a context-aware system when context data is changing:

 Execution of services in an automatic way;

 Presentation of information or services;

In addition to this, the system can associate and record current user actions given the

current context. We are talking about a simple learning module where the system is

capable of reasoning and learning of one’s user actions when a change occurs in the

context.

The first behavior refers to the capacity of the system to execute services with no

user intervention whenever the context is right. For example, in today’s mobile devices

the update and sync services are automatically started when the device has access to a

data connection.

The presentation of information and services is similar to what most of the smart

phones today do with the weather information. They detect changes in location and then

update the information that is presented to the user. A bit more though must however be

given to this point. If for example we are designing a mobile application that is

supposed to inform its user about the current local events; Movies, presentations or

exhibitions, whatever the user specified as interesting to him. In this example I suggest

that the context to be used in a double way. Location information can be used to build a

list of events in the area and then the current activity and future task of the user can be

used as an input to sort out irrelevant information. If for example the user’s calendar

Table 1, Example mapping of context to requirements where the used context is location.

specifies already a dentist appointment for Tuesday evening, presenting him a local

theater play for that evening could be irrelevant. So it is maybe wise when designing

and application to not consider only the current context but also future context

information that can be accessed. The following steps describe the example above,

notice that a two level reasoning over context is being proposed:

1. Get current location information; (City, Town)

2. Build a list of local events (Movies, presentations, exhibitions) ;

3. Get future context information; (future calendar events, business trips,

appointments)

4. Sort out irrelevant events; (events that overlap with events at 3)

5. Present information to the user;

3.4 User Involvement and Context Models

In the previous section I have shown how context can be used when engineering a

context aware system. However, this was more from an analyst point of view. The scope

of requirements is to also get an idea of what the user wants and finally what he can

expect from the finished system. Making the user understand what context is and how is

it influencing the system is in the end another challenge for the requirements engineer.

In most of the requirement elicitations methods the users have an active role but in

many cases they have a difficult time expressing their needs or expectations. Context-

aware systems make the situation even more complex. As seen in the previous chapter, a

context-aware system can sometimes automatically execute services. This is

nevertheless a nice feature of this type of application but it has also a not so bright side.

That is, the user might feel that he is not having full control over the application. It is

therefore critical for the requirements engineer to understand not only the needs of the

user but also his limits. One user might want his phone to go automatically on silent

when in a meeting but he may not want to miss a call from his pregnant wife for

example. This can for sure be a real situation and is the proof that when engineering

automatic system behavior much though must be given in order to identify all of these

situations. On the other hand, not much thinking has to be done to realize that covering

the entire range of situation it is actually impossible. The only thing that we can do at

the moment is to involve the user even more than we do with traditional applications.

By enlarging our elicitation vocabulary with keywords like when, where or how we

can maybe map the traditional used what to places and certain situations. We can start

by facing the user with the question: Where are you, most probable, going to use the

system? The answers can then be placed in a simple table, like this, making it simple

also for the user to understand and follow the process. The table below, pictures a way

of capture requirements and mapping them to location, for a context-aware automatic

vacuum cleaner.

Where What shall the system do What shall the system NOT do

Living room operate at night when energy is

cheaper

operate when lights are off

(in order to avoid tripping)

Kitchen operate at night when energy is

cheaper

operate when wet floor is

detected

Fig. 2. Context diagram for a context-aware cell phone incoming call function.

The user has first identified the places where he will like the device to operate and

then for each of these places he identifies what the system shall do.

The need for What shall the system not do is maybe not clear; but as such a system

does not rely directly on user input for a correct operation or control it is important to

allow the user specify what he will not like the device to do. Of course, this not wishes

can also be expresses in the What shall the system do but I believe that users tend to

think more about what they want than the opposite so this is why I think is important to

have it on its own column; just to help the user think and visualize easier in the direction

of shall not. Once the places have been identified by answering the where the Analyst

and the user can then move to when and try to identify activities and situations.

When What shall the system do What shall the system not do

In a meeting set volume on silent

block incoming calls

block calls from family

members.

… … …

Table 2, Example mapping of context to requirements where the used context property is current activity.

Such tables can be created for all the context properties presented in 2.3;

combinations of several properties can also be made if required but addressing them

individually is recommended in order to help the user focus specifically on a context

property rather than having him thinking about the whole range of context changes in

the same time.

Once the requirements are done, they need to be organized in models. Models are

used to write down and organize the requirements in such a way that they are easy

understandable both for the user and for the development and test teams. Of course one

might argue that once you have them in tables they are organized enough and already

quite easy to understand; However, here, the work of Desmet et al. [5] is worth

mentioning as he had created a context diagram that enforces analyst to first think of a

system in the classical way, un-ware of its context and then refine it by adding context

dependent adaptations triggered by changes at certain variation points. The example in

Fig. 2 shows that an incoming call triggers a different behavior of the cell phone

function of the battery status, location or current time.

Incoming Call

Ignore

Redirect

Answer machine

Battery = low

Location = meeting room

11pm < Time < 8am

For this particular example the diagram seems to indeed model a very good image of

both adaptations and contextual constrains, but it is well known that diagrams have a

problem with scalability so the diagram for a more complex system might be hard to

understand.

3.5 Environmental uncertainty

 In the previous chapters I have tried to define context and how is the context

data being used in context-aware systems. While now it can be said that a context-aware

application is dependent on its context as an input; the application environment is also

very important for a context-aware system. Though maybe not so obvious, application

context it is different from application environment. If context can be shortly defined as

“every piece of information which is computationally accessible” [5]; the environment

can be defined as the surroundings of the application out of which the context

information is being extracted. In fact, a context-aware system relies on its environment

for the quality of the contextual data it has access to. The weather service on

smartphones for example, relies on the presence of a nearby antenna in order to

determine the location of the phone and based on that, update the weather information.

But if there is no antenna in the nearby environment no update can be made, therefore it

can be said that the phone relies on its environment to provide the means for accessing

contextual data. If earlier it was said that it is hard to envision at design time the entire

range of contextual situation; the environment brings even more uncertainty in the

picture. It is impossible to know where the application will be used and if the

application will have access to sufficient contextual information in order to perform

adaptation and eventually meet its goals.

Researchers had recently looked for ways to deal with this uncertainty. One

interesting proposed solution is the RELAX requirements language.

3.6 The RELAX language

Going a bit back, to the context-aware vacuum cleaner, the user specifies that the

vacuum should operate only at night when energy is cheaper, but on the other hand

suggest that the vacuum should not operate when the lights are off in order to avoid

accidents. These two requirements can make the operation of the vacuum uncertain,

meaning that at a given point in time by trying to satisfy its requirements the vacuum

cannot actually operate. If we assume that for example another requirement is

introduced, that is:

The vacuum shall clean the floor every second day

we can then imagine under this conditions that the owners of the house go for a four

day skiing trip during the winter holidays and they forget to turn off the vacuum. We can

also assume that the price of energy is lower starting with 8 pm and the vacuum is aware

of this. This means that the second day after its last operation the vacuum will try to

clean shortly after 8pm, but given that in December at that time is already dark, the

vacuum cannot really operate. One requirement specifies that it should not operate

when there is no light. Thus, the vacuum had reached a requirements conflict. This

Formulate SHALL reqs.

Must it always

be satisfied?

Determine Environment

Determine MONITOR

situation was obviously not envisioned in the design processed and because the vacuum

does not know how to behave in uncertain situations will just do nothing.

The Relax language has been designed to allow the requirements engineer go

around the strong meaning of the traditional shall and allow uncertainty in the

requirements of a system. By using Relax the analyst can identify which goals of the

system are critical and which can be relaxed. The relaxation is done by following the

process diagram in Fig 3 [6]:

1. The analyst starts by defining a set of

requirements, in a traditional SHALL way;

2. For each of the requirements defined at

step 1, the analyst should consider whether it is

really mandatory for the requirement to be

satisfied. If it is critical for it to be satisfied then it

should not be changed and the analyst can move

to the next requirement. If on the other hand

meeting the requirement it is not a must, then the

SHALL should be replaced with a RELAX

operator, thus relaxing the requirement.

3. For each relaxed requirement, the analyst

shall then try to identify what are the

environmental aspects that are prone to change

and that can trigger the relaxation of this

requirement. These aspects should be noted with

the ENV keyword.

4. At this step, for each relaxed

requirement, the analyst should look for

properties of the environment that can be

observed. These properties should be noted with the

MON keyword and they will in most cases be identical

with the properties at step 3.

In our example we can assume that cleanliness is more important that costs so the

users and analyst will choose to change (RELAX) the

“Cleaning SHALL be done only during the night when the energy price is

cheaper”

To:

“Cleaning SHALL be done AS MANY TIMES AS POSSIBLE only during the

night when the energy price is cheaper.”

Notice the use of AS MANY TIMES AS POSSIBLE, this is a RELAX operator that

specifies that a requirement shall be satisfied always when it is possible. By relaxing our

energy requirement, the vacuum will still try to operate during the night but in the same

time it knows that this requirement is not as important as The vacuum shall clean the

No

Fig. 3. Relax Process

floor every second day. Therefore whenever needed the system can now trade between

requirements and eventually avoid deadlocks as the one shown earlier.

The full RELAX requirement must also specify the environmental properties that

can trigger a relaxation but also which are the properties that the system should monitor

in order to stay aware of these environmental properties.

“Cleaning SHALL be done AS MANY TIMES AS POSSIBLE only during the

night when the energy price is cheaper.”

 ENV: time passed since last operation; level of light in the environment;

 MON: internal clock; light sensors;

REL: internal clock is used to compute the time passed from the last cleaning;

light sensors provide whether the there is enough light to operate”

Where according with the RELAX documentation [9]:

 ENV: defines a set of properties that define the system's

 environment;

 MON: defines a set of properties that can be monitored by the system;

 REL: defines the relationship between the ENV and MON

 properties;

Covering fully the semantics and specifications of RELAX is outside the scope of

this paper, an extended coverage of the language being offered in [6], [7], [8], [9]. My

intention here was to merely cover briefly one of the solutions proposed for dealing with

uncertainty in requirement engineering.

4. Conclusion and Summary

A context-aware system comes with a complexity that the user may or may not

understand. It is therefore the job of the requirements engineers to somehow hide this

complexity while trying in the same time to capture the needs of the user in the most

pragmatic and efficient way. I have talked in the previous chapters about what context-

aware systems are and by using many different examples I tried to create a good picture

of the many shapes such a system can take. As far as requirements engineering is

concerned, I have tried to show that yes, there is more complexity involved but this

challenge can be addressed in some cases just by re-thinking traditional requirement

engineering methods.

At the moment there is no agreement on what is the right way to go, and even

though new methods have been suggested there are very few real world systems that

make use of these methods and it is therefore hard to understand their advantages or

disadvantages, for instance, the RELAX language is for sure an interesting idea but the

examples given by the authors are maybe a bit too far-sighted. This could be why at the

moment; most requirement engineers that do work with context-aware systems prefer to

actually improvise their own methods.

5. References

1. B. Schilit, N. Adams, and R. Want. (1994). Context-aware computing applications

(PDF). IEEE Workshop on Mobile Computing Systems and Applications (WMCSA'94),

Santa Cruz, CA, US. pp. 89–101.

2. W. Sitou and B. Spanfelner, Towards requirements engineering for context adaptive

systems, Computer Software and Applications Conference, 2007. COMP- SAC 2007 -

Vol. 2. 31st Annual International, vol. 2, pp. 593 - 600, 2007.

3. A. Dey, G. Abowd, P. Brown, N. Davies, M. Smith, and P. Steggles, Towards a better

understanding of context and context-awareness," in Proc. HUC '99: Proceedings of the

1st international symposium on Handheld and Ubiquitous Computing, ser. Lecture

Notes in Computer Science, vol. 1707. London, UK: Springer-Verlag, 1999, pp. 304-

307

4. K. Sheikh, M. Wegdam, and M. Sinderen, Mid-dleware support for quality of context in

pervasive context-aware systems, in Proc. PERCOMW '07: Proceedings of the Fifth

IEEE International Conference on Pervasive Computing and Communications

Workshops. Washington, DC, USA: IEEE Computer Society, 2007, pp. 461-466.

5. B. Desmet, J. Vallejos, P. Costanza, W. De Meuter, and T. D'Hondt, Context-oriented

domain analysis, in Proc. Modeling and Using Content, ser. Lecture Notes in Computer

Science, vol. 4635, 2007, pp. 178-191.

6. J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, J. Bruel, RELAX: Requirements-

Aware System. IEEE Computer Society 2010.

7. Jon W., Pete S., Nelly B., B.H.C. Cheng and Jean-Michael B. RELAX: Incorporating

Uncertainty into Specification of Self-Adaptive systems.

8. J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, RELAX: A language for self-

adaptive requirements. In Service-Oriented Computing: Consequences for Engineering

Requirements, pg. 24, 2008. SOCCER '08

9. J. Whittle, P. Sawyer, N. Bencomo, B. H. C. Cheng, J. Bruel, RELAX: a language to

address uncertainty in self-adaptive systems requirement. In Requirements Engineering

(2010) pg. 177-196 Springer-Verlang, London 2010

