
Requirements Elicitation:

Tools for End-Users

Denise Ammann

University of Zurich, Department of Informatics

 Binzmühlestr. 14, CH-8050 Zurich, Switzerland

denise.ammann@uzh.ch

Abstract. Communication is difficult in requirements engineering. End-users

and IT specialists have different backgrounds, thus many misunderstandings

occur often without realizing it until later in the project. This causes financial

and timely drawbacks, thus early involvement of end-users for requirements

elicitation is essential. This paper discusses visualization and mobile tool

approaches for requirements elicitation for end-user tools. OpenProposal is a

visualization tool which expects the end-user to draw requirements onto their

screen and send them to IT specialists. Immediate visualization integrates the

end-user from the beginning into the description process. iRequire is a mobile

requirement elicitation tool, which end-users use in situ. The ConTexter mobile

tool is used in an IT ecosystem where wide-audiences report feedback for

different systems which have to be identified. In the appendix an approach for

teaching this topic to secondary school students is presented.

Keywords: Requirements elicitation, end-user tools, visualization, IT

ecosystem, mobile tools

1 Introduction

Rashid et al. [14] say that “requirements analysts and end-users essentially speak

different languages”. Costabile et al. [5] state that “end users do not understand

software developers jargon and developers often do not understand user jargon”.

Communication between end-users and IT specialists is a problem in requirements

engineering.

Pohl et al. [13] explain that “requirements have to be communicated”. For

communication a mutual medium is necessary, mostly it is a natural language such as

English. Even with a universal medium it has to be watched out for ambiguity,

misconception and different previous knowledge. Exchange of information can be

improved when there are common cultural, educational and social backgrounds and

experiences between the communication partners. Often stakeholders don’t have

common backgrounds with IT specialists therefore this causes misunderstandings

which lead to ambiguous requirements.

Studies show that 60% of project failures fall into the requirements engineering

phase [4] and mostly aren’t discovered until late during the project or when the

system has already gone life [13].The later the error is detected the more expensive is

the rectification [4]. Since missing or incomplete requirements cause projects to fail,

it is important to find solutions for improving the quality of requirements.

Software engineers expect well-formulated requirements written in a detailed

formal specification. For end-users to develop such specifications is very difficult and

time consuming. That’s why requirements analysts should write them with support of

the stakeholders. There are many methods and techniques for eliciting user

requirements which requirements analysts can use. Beyer et al. [2] claim that

traditional interviews, surveys and workshops [8] are mostly used but not always

suitable. To fill the communication gap between end-users and IT specialists these

techniques are often used [16].

The diversity of domains of systems is a challenge for the IT specialists since their

background is mainly IT. For each system they need to adjust to a new professional

environment and a way of thinking. The end-users are the ones that have the

knowledge of the non-IT topics and have to use the system in the end, thus they

should really know what is expected. That’s why it is important to find a way for end-

users to communicate requirements in an accurate and understandable manner. For

this reason it is important to have end-user tools where end-users can directly

document their environment as well as their tasks and needs right when they occur

during their daily work. Such tools are expected to have essential functionalities such

as usability, efficiency and structure [14].

There are different approaches to find useful end-user tools for eliciting

requirements. One approach is to find a common language between end-users,

requirements analysts and software engineers through visualization. Another approach

is recording a requirement or need when it occurs with a mobile tool.

2 Visualization

There are many solutions for visual requirements acquisition but mainly for

requirements analysts and software engineers, e.g. UML Use-Case diagrams [13],

mockups [11], rapid prototyping techniques [3]. End-users can mostly just give a

feedback due to their level of IT background. That’s why end-user tools are needed

where they can describe their needs in a natural way through visual aid. Perez et al.

[12] state that “visualization helps the end-user to identify their requirements” and it

is more intuitive and easy to use than textual languages.

In the next two sections two approaches are discussed. The OpenProposal approach

which is based on the Annotation Tool and Annotate!Pro, where end-users can

annotate requirements right when they happen. And the immediate visualization for

pervasive systems approach where the end-user is involved right from the beginning.

2.1 OpenProposal [15]

“OpenProposal is supposed to allow users to annotate their feature requests, error

reports or enhancement requests directly on their applications workspace and send

these requests to the requirements management. “ [15] End-users actively participate

in the software development process through submitting requirements for existing

software as well as software under development.

Figure 1 shows the workflow in requirements engineering with end-user

participation from Rashid et al. [14, 15]. The OpenProposal and Annotation Tool,

discussed later, are based on this workflow.

There are three key players, the end-user, the requirements analyst and the software

engineer, as well as five actions, specify, discuss, prioritize, decide and implement

specified in the workflow. End-users participate mainly in the specification and

discussion activities. Requirements analysts are responsible for the company’s

interests thus are involved in discussions, assigning priorities and making decisions.

They may also propose new requirements. Software engineers’ main focus is to

understand the user’s proposals, implement them correctly and contribute their

professional technical knowledge to all other activities.

Fig. 1. Workflow in requirements engineering with end-user participation [14, 15]

The OpenProposal approach is structured in three main components, the

OpenProposal Annotation Tool, the OpenProposal Mediator and the OpenProposal

Issue-Tracker. Figure 2 shows the architecture of OpenProposal.

The OpenProposal Annotation Tool is based on a previous Annotation Tool [14]

and Annotate!Pro[1]. It gathers the annotated requirements (screenshots, annotations,

metadata) in an XML specification which is sent to the mediator. The mediator

creates a new issue in the Issue-Tracker with the specifications received. The issue

can now be discussed and rated in the Issue-Tracker tool. A list of submitted

requirements is available in the annotation tool.

OpenProposal is intended to support the software development process, e.g. global

software development where team members are in different locations and can

improve their communication with visuals of OpenProposal. Research done by Rashid

et al. [15] has also shown that OpenProposal can improve collaboration between end-

users and software engineers and it performs better than conventional tools.

“OpenProposal was successfully realized in a real life scenario and is still in use”

[15].

Fig. 2. OpenProposal Architecture [15]

Annotate!Pro [1]. This tool is intended to communicate between people during

trainings, meetings, presentations, product development and help desk support. One

can simply draw on top of any running application and save it as a screenshot. This

approach was used for visually integrating requirements elicitation in the Annotation

Tool and eventually the OpenProposal. End-users can easily draw and save

requirements during daily work without much effort.

It is an easy to use tool, which doesn’t require much time for getting used to it. The

end-user simply has to start the program, a toolbar (see figure 3) appears with which

then end-user can draw requirements directly on their screen. Once marked all the

changes, a snapshot can be taken and then be sent to the requirements analyst and/or

software engineer.

Fig. 3. Annotate!Pro [1]

Annotate!Pro doesn’t provide a way of tracking the annotated requirements. Also

there is no formal notation language thus there is no common language between the

end-user and the IT specialist available. That’s why Annotate!Pro’s approach was a

basis for the Annotation Tool where the limitations were solved.

Other similar tools exist such as Jing [9] which focuses on annotated images, audio

and videos. But all of other tools show the same limitations, there is no formal

language and no way of tracking the requirements.

Annotation Tool [14]. The Annotation Tool eliminates the shortcomings of

Annotate!Pro. A web-based collaboration environment, such as an issue tracker,

provides traceability and a discussion platform for the submitted annotated

requirements. The end-user specifies with help of a template a few actions for the

visual annotations, such as moving, resizing, adding a button, changing the sorting of

a list. This template is well-structured through assisting dialogs for the end-user.

Moreover, window information like username, application title is automatically

collected and saved with the annotation requirement. Figure 4 shows how an

annotated screen could look.

Fig. 4. Annotated requirement including supporting template [14]

Rashid et al. [14] were not sure if end-users needed support with the specification

templates and if the users’ drafts were with reasonable effort understandable.

Additionally, the topic of privacy is mentioned, since automatically information is

collected, thus all users of this tool have to comply with the data privacy.

2.2 Immediate Visualization of Pervasive System Requirements [12]

Another approach for visualization is a tool for supporting immediate visualization of

pervasive system requirements. Perez et al. [12] characterize a pervasive system by

context-awareness, proactiveness, mobility and personalization. End-users have to be

able to describe the physical environment, the users, the services and devices of a

pervasive system [10]. This prototype allows end-users to describe their needs and

visualize them immediately. There are 3 types of users:

 End-user which are not familiar with computers.

 Advanced end-users that have some computer knowledge.

 Requirements engineers, who are professional computer experts and support the

end-users.

Figure 5 shows the natural requirements elicitation process for this tool. The term

natural states that something works the way people expect. This process is supported

by Natural Programming, Visual programming and Programming by Example

approaches. The process is split into 4 phases:

1. Context scope:

The requirements engineer adapts the characteristics for the tool such as the

profiles of the end-users and the domain of the system.

2. System specification:

Describe the main characteristics of the pervasive system. Advanced end-users

can define their own requirements. Regular end-users select predefined

requirements from a catalogue and define requirements only with support of the

requirements engineer.

3. Advanced system:

The new requirements get refined through defining new services and their

required configurations. The requirements engineer integrates the new

predefined requirements into the catalogue.

4. Validation:

The requirements engineer and the end-users validate the collected information

or repeat the process to correct the information iteratively. The validated

description is taken as a foundation for writing the formal requirements

specification.

The architecture of this tool is composed of an interface, a controller, a feature

model and a repository. End-users specify requirements using natural visualization

techniques on the interface. The controller checks for completeness of the

descriptions. In each step the controller is present. The predefined catalogue is

represented by the feature model. The descriptions are stored in the repository.

This tool focuses on the integration of the end-user from the beginning in the

requirements elicitation process. One reason is to reduce the difficulty that the client

doesn’t know what he really wants. In the future the focus is on automatically

transcribing the descriptions into a formal requirements specification.

Fig. 5. Natural requirements elicitation process [12]

3 Mobile Requirements Elicitation

Nowadays end-users are familiar with mobile devices. Using an application to

document requirements during daily work is effortless and easy. Mobile devices also

feature images, audio and video which can be integrated into the documentation.

Considering the huge variety of software which is available in one location, a so

called IT ecosystem [16], there need to be ways for identifying the systems for which

end-users want to report needs to. Mobile device applications can be very helpful for

wide-audience requirements engineering (WARE) [18], since the end-users for such

systems cannot easily be reached.

These two approaches were implemented. The first one is called iRequire, it is a

tool to use in situ, where the end-user is known. The second approach is called

ConTexter, it is a tool to use in an IT ecosystem where the end-user could be anyone.

3.1 iRequire [17]

End-users mostly take part in elicitation techniques such as interviews [7], workshops

[6] to discuss their needs but many practices are forgotten if one is out of the context.

This calls for a need to document requirements right when they happen.

The iRequire [17] is an approach for an end-user tool to use in situ. Nowadays end-

users are familiar with mobile devices, therefore iRequire is implemented as a mobile

device application. End-users can document their needs whenever and wherever they

want. An advantage of mobile devices is that they support the documentation with

different media types such as image, audio, video and text. Seyff et al. [17] introduced

three elicitation steps for iRequire shown in Figure 6.

Fig. 6. The iRequire Approach [17] – this figure shows the Capture Ration / Task and the

Capture Need and the Capture Contextual Information.

1. Capture Contextual Information:

Give insights of the end-users environment with text, image, audio and video.

2. Capture Needs:

Document upcoming needs with textual descriptions or audio recordings.

3. Capture Rationale / Task:

Explain textually or with an audio recording the importance of a requirement or

which task does get supported by the requirement.

To keep flexibility the order of the steps can be carried out as one likes, although

the sequence described above is suggested. Important to note is that the iRequire

approach is not a brainstorming tool, it focuses on requirements discovered during

daily work. After gathering the requirements, requirements analysts can analyze and

transcribe them into a formal requirements specification.

The implementation of the iRequire prototype is based on a Windows Mobile

smartphone. The screens are structured into a four-step wizard (see figure 7 and 8),

which allows a step-by-step guidance for the end-user.

Fig. 7. Taking a picture of the environment (left) and documenting a need (right) using

iRequire [17]

On screen one (see figure 7, left), the surroundings and relevant objects are

captured with pictures. Screen two (see figure 7, right) is where the actual need is

described with either recording an audio or writing a text. On screen three (see figure

8, left) the rationale or task is recorded or described. Screen four (see figure 8, right)

shows a summary of the captured requirement, which has to be confirmed before it is

stored in the database.

All screens show back, next and information buttons as well as a virtual keyboard.

Besides the input of the end-user, relevant information like location or time of

documentation is automatically colleced using GPS and time stamps.

Fig. 8. Capturing rationale / supported tasks (left) and summarizing captured information

(right) using iRequire [17]

An evaluation study was conducted which concluded that end-users were able to

follow through their regular tasks without getting disrupted by recording their needs.

For the future it is planned to do more evaluation studies for iRequire to explore more

precisely its benefits or limitation. The results from the first evaluation phase will be

integrated into the iRequire tool as well as additional technologies such as Bluetooth

and RFID. At this stage the collected requirements are stored locally, thus it is of

interest to distribute upcoming needs right away and to have an automated

transcription into a formal specification.

3.2 ConTexter [16]

An ecosystem in nature is an area where all living organisms interact autonomously

with each other and their non-living environment. Similarly an IT ecosystem

emphasizes on the emergent behavior of always changing systems, they evolve and

are not designed in one piece. Traditionally requirements are elicited before they are

implemented, in IT ecosystems they are identified while the system is up and running.

Regular workshop and interview techniques are not efficient with wide audience end-

users (WAEU) [18].

In public place people are confronted with many different systems for which

weaknesses and faults are noticed. People often like to give feedback if it can be done

in an effortless and easy manner. The ConTexter tool [16] provides such an approach.

It is implemented as a mobile device application. Since people are familiar with

mobile devices, the ConTexter application is effortlessly accessible and feedback is

fast and easily provided. But before providing the feedback, the receiving system has

to be identified. Mobile devices provide context information, such as geographical

and logical positions in the IT ecosystem, which can be identified through sensors e.g.

GPS, WLAN, Bluetooth, currently connected URLs.

Figure 9 shows a simplified IT ecosystem with two objects for which feedback can

be given. The stakeholder provides context information with the mobile device, such

that the ConTexter application can identify the location of the stakeholder as well as

objects in the range. The best addressees are selected and presented to the stakeholder

so he or she can decide who to give the feedback to.

Fig. 9. Context perspective [16]

These objects, which can also be software-free objects, have to register in order for

them to get feedback. They are called SmartObjects and are managed by the central

administration unit, logically seen as one unit, which can be distributed for robustness

or efficiency reasons. Once stakeholders want to give feedback they connect to the

central unit. Their location is identified and a list of SmartObjects is presented to the

stakeholder. The stakeholder can make a final decision on the addressee. There may

be feedback interactions necessary for determining the system. In figure 10 the

architecture of the ConTexter framework is shown. The architecture is described in

four parts:

 The GUI is the administration (create, define, edit) of the SmartObjects. It is a

Java Swing Application that works as a client and connects via Java Remote

Method Invocation (RMI) to the SmartObjectAdministration (part of the Central

Unit) and the Central ConTexter Unit.

 The mobile device is a G1 Smartphone with Android operating system.

 The Central unit identifies SmartObjects and informs on how to connect to them

with the context data provided by the Smartphone.

 The SmartObjectAdministration provides an interface between the Smartphone

and selected SmartObjects.

Fig. 10. Architecture of the ConTexter framework [16]

Figure 11 shows screenshots of the ConTexter mobile application used by the

UniImprove case study [16]. For this case study the scenario was to improve the

university services, software and other university objects using the ConTexter

application.

The left screen shows how to choose a feedback category, the middle view presents

the decision of a final addressee and on the right the feedback form for submitting is

displayed.

Fig. 11. Choosing category of feedback (left), selecting final addressee (middle) and submitting

feedback (right) [16]

Many open questions are still unanswered in this field therefore extended research

will have to be done. One possible extension could involve ad-hoc video clips

attachment. Currently Schneider et al. [16] are working on an iPhone interface to

compare with the Android application.

4 Conclusion

To fill the gap of communication between end-users and IT specialists, different

approaches for end-user tools were detected. With visualization tools end-users can

annotate requirements in a natural way. Mobile applications are based on a device the

end-user is already familiar with, thus documenting needs can easily be integrated

into daily activities. In an IT ecosystem everyone can be an end-user. In such a system

there are many systems which have to be identified in order for the requirements to be

submitted to the correct system.

Table 1. Benefits, limitations and outlook of the discussed tools.

Tool Benefits Limitations Outlook

Annotate!Pro End-users draw their

own needs

No tracking

Not formal language

Idea was reused in the

Annotation Tool

Annotation Tool

/ OpenProposal

End-users draw their

own needs with help of a

template

Tracking and discussion

platform

Automatic information

collection

Improving collaboration

between end-users and

IT specialists

Usage of templates

may need support

End-users have to

comply with data

privacy

No automated

transcription

Annotation Tool led to

OpenProposal

OpenProposal:

Extended studies

Additional

technologies

Automated formal

specification

Immediate

Visualization

Early integration of end-

users

Clarifying needs of end-

users

No automated

transcription

Automated formal

specification

iRequire End-users collect their

requirements during

daily activities without

disruption of their daily

task

No automated

transcription

Requirements are

stored locally

Extended studies

Additional

technologies

Automated formal

specification

ConTexter Feedback to multiple

systems

No automated

transcription

Find participating

end-users

Extended studies

Additional

technologies

Automated formal

specification

All these different approaches were implemented as a tool or prototype. Studies

were conducted and mostly concluded improvements and for the future more

extended studies will be done. In the future these tools will be more refined and

provide deeper insights for end-user involvement. Table 1 shows a summary of the

discussed tools. I would like to emphasize on the effort to involve end-users from the

beginning and the easy to use approaches. The focus is on tools where end-users can

work on their own. One of the main limitations and something to work on in the

future is to transcribe the collected requirements automatically into formal

specifications.

Combining aspects of the approaches could probably help gaining a successful

tool. The mobile device is already an important component for the end-user in

different approaches, such as the iRequire and the ConTexter application.

One aspect which was barely talked about are privacy issues. Many of the tools

include automatic collection of information for providing insights into the

environment of an end-user. This could cause end-users to be reluctant in

communicating their needs and desires. Letting end-users previewing and agreeing on

the automatically collected information could cease this problem.

References

1. Annotate!Pro, http://www.annotatepro.com/ (viewed on 25.03.2011)

2. Beyer, H., Holtzblatt, K.: Apprenticing with the customer. Communications of the ACM,

vol.38, no. 5, pp.45-52. ACM Press, New York (1995)

3. Beynon-Davies, P., Holmes, S.: Integrating rapid application development and participatory

design. In: IEE Proceedings – Software, vol. 4, pp. 105-112. (1998)

4. Boehm, B.: Software Engineering Economics. Prentice Hall, Englewood Cliffs (1981)

5. Costabile, M., Mussio, P., Provenza, L., Piccinno, A.: End Users as Unwitting Software

Developers. In: Forth Workshop on End-User Software Engineering (WEUSE IV). Leipzig

(2008)

6. Duggan, E.: Generating System Requirements with Facilitated Group Techniques. In:

Human-Computer Interaction, vol. 18, pp. 373-394. Lawrence Erlbaum Associates Inc.

Hillsdale, NJ, USA (2003)

7. Goguen, J., Linde, C.: Techniques for Requirements Elicitation. In: Proceedings of IEEE

International Symposium on Requirements Engineering, pp.152-164. San Diego, CA, USA

(1993)

8. Hickey, A., Davis, A.: Requirements Elicitation and Elicitation Technique Selection: A

Model for Two Knowledge-Intensive Software Development Processes. In: 36th Annual

Hawaii International Conference on System Sciences (HICSS’03), vol. 3. Hawaii (2003)

9. Jing, http://www.techsmith.com/jing/ (viewed on 25.03.2011)

10. Kolos-Mazuryk, L., Poulisse, G., van Eck, P.: Requirements Engineering for Pervasive

Services. In: Second Workshop on Building Software for Pervasive Computing. San Diego,

CA, USA (2005)

11. Nielsen, J.: Usability Engineering. Academic Press, Boston (1993)

12. Pérez, F., Valderas, P.: Allowing End-users to Actively Participate within the Elicitation of

Pervasive System Requirements through Immediate Visualization. In: Fourth International

Workshop on Requirements Engineering Visualization (REV’09). Atlanta, GA, USA (2009)

13. Pohl, K., Rupp, C.: Basiswissen Requirements Engineering. Dpunkt Verlag, Heidelberg

(2010)

14. Rashid, A., Meder, D., Wiesenberger, J., Behm, A.: Visual Requirement Specification In

End-User Participation. In: First International Workshop on Multimedia Requirements

Engineering (MERE'06 - RE'06 Workshop). IEEE Press, New York (2006)

15. Rashid, A., Wiesenberger, J., Meder, D., Baumann, J.: Bringing Developers and Users

closer together: The OpenProposal story. Multikonferenz Wirtschaftsinformatik (2008)

16. Schneider, K., Meyer, S., Peters, M., Schliephacke, F., Mörschback, J., Aguirre, L.:

Feedback in Context: Supporting the Evolution of IT-Ecosystems. In: Ali, M., Vierimaa, M.,

Oivo, M. (eds.) Product-Focused Software Process Improvement. LNCS, vol. 6156.

Springer 2010

17. Seyff, N., Graf, F., Maiden, N.: Using Mobile RE Tools to Give End-Users their Own

Voice. In: 18th IEEE International Requirements Engineering Conference, pp. 37-46, IEEE

Press, New York (2010)

18. Tuunanen, T., Peffers, K., Gengler, C.: Wide Audience Requirements Engineering (WARE):

A Practical Method and Case Study. Helsinki School of Economics. Sprouts: Working

Papers on Information Systems, vol. 4 art. 27. Finland (2004)

Appendix: Pedagogical Approach – How to teach this topic in

secondary school?

This appendix shows the preparation done for teaching this topic in secondary school.

The learning objectives shown in table 2 describe the time frame of the lessons, who

is the intended audience, what is the topic, what methods will be used during the

lesson and what tools are used and have to be available. The most important part is

identifying the different learning objectives, the mission statement, the disposition

objectives, the operational objectives and the fundamental idea.

Table 2. Learning objectives.

Time 3 lessons

Class Students in the last years of secondary school (age: 17-18)

Topic Requirements Elicitation – Tools for end-users

Methods: Discussions with plenum and in groups of two

Teacher presentation and demonstration

Individual exercise

Tools: Blackboard / overhead projector

Computer:

 PowerPoint Presentation

 Annotate!Pro

 Individual computers for students

Learning objectives: 1. Mission statement:

Studies show that 60% of project failures fall into the

requirements engineering phase [4] and mostly aren’t discovered

until late during the project or when the system has already gone

life [13].The later the error is detected the more expensive is the

rectification [4]. Since missing or incomplete requirements cause

projects to fail, it is important to find solutions for improving the

quality of requirements.

2. Disposition objectives:

Students know that the communication of requirements is

difficult between end-users and IT specialists therefore it is

important to find a common language through end-user tools.

Students have learned about the different approaches for end-user

tools and are aware of the importance of good requirements.

3. Operational objectives:

Students know how important the requirements engineering

phase is. They can argument that eliciting good requirements are

difficult and end-user tools are necessary to overcome the

communication gap Students can explain visualization tools and

mobile tools and know at least one example of each.

Additional: Fundamental idea

Introducing the requirements engineering phase, why end-user

involvement is important and getting to know visualization and

mobile tools for end-users.

Comments: For these lessons no previous knowledge is necessary. The focus

is on the end-user which are people without or little IT

background therefore the tools should be common sense and easy

to use.

 Depending on the overall plan of the course, I could imagine that

a software development project could be part of it. This project

could involve all software development phase such that

requirements engineering is part of it. Students can work after

this introduction on their project and implement what they have

learned. I could see some role playing games where they split up

in three groups, the first group is the end-user (client), the second

is the requirements analyst and the third represent the software

developer.

Table 3 shows a precise schedule for three lessons. This topic covers short teacher

presentations and many interactions with the students through discussions. Because of

the recency of the end-user tools and their implementations, it is difficult to give the

students more hands-on experience. That’s why the focus is on the discussions for

introducing at least the mindset of this topic.

Table 3. Schedule for three lessons.

Time What? Medium Who?

15’ Homework discussion

 Prepare at least 3 things you would change or

are needed around you, e.g. digital timetable at

the bus stop is missing, unsatisfying features of

the iPhone.

Blackboard /

overhead

projector

Students and

teacher

15’ Introduction into requirements engineering

 What are requirements?

 How are requirements elicited?

 Importance of end-user involvement.

 Communication problems between IT

specialists and end-users.

 End-user tools: visualization tools.

Presentation Teacher

5’ Introducing Annotate!Pro exercise

 Where is the tool?

 How can they start the tool?

Presentation /

Demonstration

Teacher

 Short example how it works.

45’ Exercise: Annotate!Pro

 Get familiar with Annotate!Pro.

 Chose a website or application to annotate.

 Think about why you would change, add,

remove or do something different, annotate this

and take a snapshot.

 Team up with someone and send your

annotated screenshot.

 Let the other person tell you what requirements

you communicated in your screenshot. Discuss

what was meant and what was understood and

why.

Take the break individually.

Individual

computers

Students

15’ Discuss and gather findings of the exercise. Discussion Students and

teacher

15’ Introduce mobile tools:

 iRequire: tool to use in situ.

 ConTexter: used in an IT ecosystem.

Presentation Teacher

15’ Discuss the different tools - advantages and

disadvantages, traceability, privacy issues, etc.

Discussion Students and

teacher

10’ Summarize, outlook and finish up the lesson. Presentation Teacher

