RE I
 Discussion Exercise 2

Dr. Norbert Seyff and Cédric Jeanneret

Requirements Engineering Research Group
Department of Informatics
University of Zurich

University of Zurich
Department of Informatics

General Issue

- Read the assignments thoroughly!!!

Ex 1

- Did you distinguish between direct and indirect stakeholders?
- Did you explain why you think the chosen techniques fit?
- Does your interview help you in discovering requirements?

Ex 2

- Does your class diagram consider all important system aspects?
- Does each "system" have a class "system"?
- Is a user a person or a person a user?
- Did you name the associations you identified?
- Did you check the names of your classes?
- Did you use class diagrams to show a scenario?

Ex 2

- Did you analyze a domain or did you design a system?
- Did you represent a relationship with both an association and an attribute?

Ex 3a

- Which system are you referring to?
- Who starts your scenario?
- Which scenarios do you diagrams represent (order vs. delivery)?
- What about the granularity of your models?

Ex 3b

- What is the start state?
-What are the final states?
- Can you reach a final state?
- How can you reach a final state?

Ex 3d

- All models refer to the same system
- Take care that models are consistent and complete
- Language change
- Missing elements
-...

Ex 4

- You don't have to assign values to each output (it suffices to say that it is member of a given set)
- No order of execution (all lines must be evaluated to true)
- IF THEN ELSE... is a conditional expression (like the "cond? X : Y" expression in Java)

Ex 4 - A possible Solution

DeliveryAdministration

households : \mathbb{P} Household
deliverers : P Deliverer
distances : $($ Deliverer \times Household $) \rightarrow\{$ near, intermediate, far $\}$
assignments : Deliverer \rightarrow Household
dom distances \subseteq households \times deliverers
dom assignments \subseteq deliverers
ran assignments \subseteq households

SelectDeliverer

```
\DeltaDeliveryAdministration
household? : Household
distance! : {near,intermediate,far,none available}
deliverer! : Deliverer
nearAvailableDeliverers: P Deliverer
interAvailableDeliverers: P Deliverer
farAvailableDeliverers : P Deliverer
nearAvailableDeliverers }={d\mathrm{ : deliverers }|\mathrm{ distances(d, household?)}=\mathrm{ near }}\\mathrm{ dom assignments
interAvailableDeliverers }={d:\mathrm{ deliverers }|\mathrm{ distances (d,household?)}=\mathrm{ intermediate }}\\mathrm{ dom assignments
farAvailableDeliverers ={d:deliverers }|\mathrm{ distances(d,household?)}=\mathrm{ far }}\\mathrm{ domassignments
nearAvailableDeliverers }\not=\emptyset=>\mathrm{ deliverer ! }\in\mathrm{ nearAvailableDeliverers }\wedge\mathrm{ distance! = near
nearAvailableDeliverers }=\emptyset\wedge\mathrm{ interAvailableDeliverers }\not=\emptyset=>\mathrm{ deliverer! }\in\mathrm{ interAvailableDeliverers }\wedge\mathrm{ distance! = intermediate
nearAvailableDeliverers =\emptyset ^ interAvailableDeliverers =\emptyset ^ farAvailableDeliverers }\not=\emptyset=>\mathrm{ deliverer! }\in\mathrm{ farAvailableDeliverers }\wedge\mathrm{ distance! = far
nearAvailableDeliverers =\emptyset^\mathrm{ interAvailableDeliverers }=\emptyset\wedge\mathrm{ farAvailableDeliverers }=\emptyset=>\mathrm{ distance! = none available}
assignments' = if dissance! = none available then assignments else assignments }\cup{(\mathrm{ deliverer!, household?)}
distances'}=\mathrm{ distances
deliverers' }=\mathrm{ deliverers
households' = households
```

